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Designing robots with socio-emotional skills is a challenging research topic still 
in its infancy. These skills are important for robots to be able to provide not only 
physical, but also social support to human users, and to engage in and sustain 
long-term interactions with them in a variety of application domains that 
require human-robot interaction, including healthcare, education, entertainment, 
manufacturing, and many others. The availability of commercial robotic platforms 
and developments in collaborative academic research provide us a positive outlook, 
however, the capabilities of current social robots are quite limited. The main challenge 
is understanding the underlying mechanisms of the humans in responding to and 
interacting with real life situations, and how to model these mechanisms for the 
embodiment of naturalistic, human-inspired behaviors via robots. To address this 
challenge successfully requires an understanding of the essential components of 
social interaction including nonverbal behavioral cues such as interpersonal distance, 
body position, body posture, arm and hand gestures, head and facial gestures, 
gaze, silences, vocal outbursts and their dynamics. To create truly intelligent social 
robots, these nonverbal cues need to be interpreted to form an understanding 
of the higher level phenomena including first-impression formation, social roles, 
interpersonal relationships, focus of attention, synchrony, affective states, emotions, 
and personality, and in turn defining optimal protocols and behaviors to express 
these phenomena through robotic platforms in an appropriate and timely manner. 
Achieving this goal requires the fields of psychology, nonverbal behavior, vision, 
social signal processing, affective computing, and HRI to constantly interact with 
one another. This Research Topic aims to foster such interactions and collaborations 
by bringing together the latest works and developments from across a range of 
research groups and disciplines working in these fields. 

The Research Topic is a collection of 14 articles that span across five research themes. 
Three articles co-authored by Terada and Takeuchi, Jung et al., and Kennedy et al. 
explore the design of “social and affective cues” for robots and investigate their effects 
on human-robot interaction. Mirnig et al., Bremner et al., and Strait et al. investigate 
people’s “perceptions of robots” in different settings and scenarios, such as when 
robots make errors. Articles by Lee et al., Leite et al., and Heath et al. investigate the 
factors that shape “dialogic interaction with robots,” such as interaction context. The 
articles under the theme “social and affective therapy” by Rouaix et al., Rudovic et 
al., and Matsuda et al. report on how individuals from clinical populations, such as 
those with dementia, autism, and other pervasive developmental disorders (PDDs), 
interact with robots in therapeutic scenarios. Finally, Miklósi et al. and Durantin et 
al. offer “new perspectives in human-robot interaction” with a focus on reframing 
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social interaction and human-robot relationships. We are excited about sharing 
this rich collection with the scientific community and about its contributions to the 
human-robot interaction literature.
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Emotional Expression in Simple Line
Drawings of a Robot’s Face Leads to
Higher Offers in the Ultimatum Game
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In the present study, we investigated whether expressing emotional states using a simple

line drawing to represent a robot’s face can serve to elicit altruistic behavior from humans.

An experimental investigation was conducted in which human participants interacted

with a humanoid robot whose facial expression was shown on an LCD monitor that

was mounted as its head (Study 1). Participants were asked to play the ultimatum game,

which is usually used to measure human altruistic behavior. All participants were assigned

to be the proposer and were instructed to decide their offer within 1 min by controlling

a slider bar. The corners of the robot’s mouth, as indicated by the line drawing, simply

moved upward, or downward depending on the position of the slider bar. The results

suggest that the change in the facial expression depicted by a simple line drawing

of a face significantly affected the participant’s final offer in the ultimatum game. The

offers were increased by 13% when subjects were shown contingent changes of facial

expression. The results were compared with an experiment in a teleoperation setting in

which participants interacted with another person through a computer display showing

the same line drawings used in Study 1 (Study 2). The results showed that offers were

15% higher if participants were shown a contingent facial expression change. Together,

Studies 1 and 2 indicate that emotional expression in simple line drawings of a robot’s

face elicits the same higher offer from humans as a human telepresence does.

Keywords: robot, facial expression, emotion, altruistic behavior, human-robot interaction

1. INTRODUCTION

Recently, there has been increasing interest and progress in robotic emotional expressions. A
wide variety of methods for achieving emotional expression have been proposed (Bethel and
Murphy, 2008), including facial expressions (Bartneck, 2003; Breazeal, 2004; Kanoh et al., 2004;
Itoh et al., 2006; Matsui et al., 2010), speech (Kim et al., 2009a,b), body movement (Shimokawa
and Sawaragi, 2001; Bethel and Murphy, 2007), and colors (Sugano and Ogata, 1996; Kim et al.,
2009a,b; Terada et al., 2012). Leaving aside discussion regarding a robot’s ability to possess genuine
emotions, implementing a display of emotion in robots could be useful not only by increasing their
friendliness but also by helping them to influence people without explicit language (Breazeal, 2003,
2004).

There have been studies on the effect of robotic emotions on human behavior (Cassell and
Thorisson, 1999; Bickmore and Picard, 2005; Leyzberg et al., 2011); these focused on the task-
oriented effects of emotions. Leyzberg et al. (2011) showed that robots that express emotions

6
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elicited better human teaching. A long-term experiment
conducted by Bickmore and Picard (2005) showed that an agent
with relational behavior, including social-emotional responses,
contributed to increasing participants’ positive attitude about
exercise. While these studies revealed that robots with emotions
positively affect human behavior, the nature, and essential
function of these emotions have not been discussed. In the
present study, we focused on the social functional aspect of
emotions and experimentally investigated the effect of emotional
expression as depicted through a simple line drawing of a face on
human economic behavior.

Emotions control the behavior of an agent. For example,
fear increases heart rate and muscle tension and drives an
agent to escape from a situation; consequently, fear helps in
avoiding dangerous situations. Emotions affect not only one’s
own behavior but also that of others. An angry individual, for
example, usually obtains concessions from a competitor in a
conflict situation (van Kleef et al., 2004; Sinaceur and Tiedens,
2006; van Kleef and Côté, 2007; van Dijk et al., 2008; van Kleef
et al., 2008; Sell et al., 2009; Fabiansson and Denson, 2012; Reed
et al., 2014). Positive emotions are considered to have evolved
to maintain cooperative relationships (Trivers, 1971; Alexander,
1987; Frank, 1988; Scharlemann et al., 2001; Brown and Moore,
2002; Brown et al., 2003; Mehu et al., 2007; Reed et al., 2012;
Mussel et al., 2013).

Altruism is a behavior that reduces the actor’s wealth while
increasing the wealth of the recipient, whereas cooperation is a
process in which agents work together to gain common ormutual
wealth. However, altruism can be considered to be asynchronous
cooperative behavior by considering direct or indirect reciprocity
(Nowak and Sigmund, 2005). In order to produce altruistic
behavior, one must ignore the loss of one’s own wealth. Positive
emotions such as happiness and kindness that are elicited from
another’s facial expressions presumably compensate for the loss.
Therefore, emotion is more important for long-term or indirect
reciprocal relationships than short-term (one-shot) cooperative
tasks. We used altruistic behavior as a measure of the function of
the robot’s facial expression because our focus is on the long-term
human-robot relationship.

Researchers have been investigating whether people have a
tendency to cooperate with robots (Nishio et al., 2012; Torta
et al., 2013; Sandoval et al., 2016). Decision making in economic
games such as the prisoners’ dilemma and the ultimatum game
is used to measure the cooperative attitude of participants.
Nishio et al. (2012) have studied how the appearance of agents
(computer, humanoid, android, or human) affects participants’
cooperativeness. They conclude that although the appearance
of agents does not affect cooperativeness, conversation with a
human-like agent (android) leads people to be more cooperative.
Torta et al. (2013) reported that rejection scores in the ultimatum
game are higher in the case of a computer opponent than in
the case of a human or robotic opponent, indicating that people
might treat a robot as a reciprocal partner. Sandoval et al. (2016)
showed that participants who interacted with a robot showed
significantly less cooperation than when they interacted with a
human in the prisoner’s dilemma. Further, participants offered
significantly less money in the ultimatum game to the robot than

to the human agent, indicating that people tend to cooperate
more with a human agent than with a robot.

From the above discussion, the following prediction could be
derived: if robots offer emotional expression, people behave more
cooperatively toward them. There are a few studies that examine
the effect of the emotional expression of robots on human
cooperative behavior in terms of economic behavior (de Melo
et al., 2010, 2011). de Melo et al. (2010) conducted an experiment
in which participants play the iterated prisoner’s dilemma against
two different virtual agents that play the tit-for-tat strategy
but communicate different goal orientations (cooperative vs.
individualistic) through their patterns of facial displays. They
showed that participants were sensitive to differences in the facial
displays and cooperated significantly more with the cooperative
agent. de Melo et al. (2011), in another study, reported that
participants concededmore to a virtual agent that expresses anger
than to one that expresses happiness in a negotiation task.

The studies of de Melo et al. (2010, 2011) used human-like
virtual character agents. In our study, we used a real robot with
a simple line drawing of a face to remove realistic and biological
human features from the agent’s face (Terada et al., 2013). Most
of the robots that are used in human-robot interaction studies
have sophisticated facial expression mechanisms (Breazeal, 2004;
Itoh et al., 2006; Matsui et al., 2010; Becker-Asano and Ishiguro,
2011; Mazzei et al., 2011). The underlying assumption is that
mimicking real human facial expressions induces humans to
emotionally respond as they would when interacting with a real
human. However, studies have revealed that line drawing facial
expressions are recognized to the same extent as a realistic face
(Katsikitis, 1997; Britton et al., 2008), affect human altruistic
behavior even they are slightly different (Brown and Moore,
2002), and are processed in the human brain in the same way
as a human face (Britton et al., 2008) .

In the present study, we investigated whether a simple line
drawing of a face is useful in human-robot interaction in terms of
human-robot cooperative relationships. Terada et al. (2013) have
showed that emotional expression by robots led people to behave
more altruistically toward the robots even though the emotion
was represented by simple line drawings. However, it is unclear
whether this effect is the same extent as that of human-human
interaction. In the present paper, we first show the results of
human-robot condition reported in Terada et al. (2013) as Study
1. We then show the results of human-human condition (Study
2) and compare the results of these two studies.

The ultimatum game has been used to measure human
altruistic behavior (Güth and Tietz, 1990; Sanfey et al., 2003;
Oosterbeek et al., 2004; Xiao and Houser, 2005; van Dijk et al.,
2008; Yamagishi et al., 2009). It is played by two players, a
proposer and a responder, who are given the opportunity to
split an allotment of money. The proposer has the right to
divide the money and offer an amount to the responder. If the
responder accepts the proposal, both players keep the money.
If the responder rejects the proposal, neither player receives
the money. The findings of a meta-analysis of 37 papers with
75 results from ultimatum game experiments showed that on
average, the proposer offers 40% of the money to the responder,
and 16% of the offers are rejected (Oosterbeek et al., 2004).
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In our study, all participants were assigned to be the proposer
and were instructed to decide their offer within 1 min by
controlling a slider bar. In the decision period, a change in the
responder’s facial expression was shown to the proposer (only
in the change of facial expression condition), which is not a
normal procedure in the ultimatum game. The communication
before the decision is treated as cheap talk, which is costless
and unverifiable preplay statements about private information
and non-credible threats about future actions (Croson et al.,
2003). Croson et al. (2003) showed that threats of future actions
influenced bargaining outcomes.

The goal of the present study was to explore whether
communication using the facial expression of robots is effective
in establishing human-robot cooperative relationships. We used
the offer in the ultimatum game as the measurement of
cooperative attitude of human toward a robot. As a result,
the effectiveness of facial expression of robots in human-robot
cooperative relationship could be evaluated in terms of economic
value.

Studies 1 and 2 were both conducted in accordance with
the recommendations of the Ethical Guidelines for Medical and
Health Research Involving Human Subjects provided by the
Ministry of Education, Culture, Sports, Science, and Technology
and the Ministry of Health, Labor, and Welfare in Japan with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Medical Review
Board of Gifu University Graduate School of Medicine.

2. STUDY 1

2.1. Method
2.1.1. Participants
Twenty-six healthy graduate and undergraduate students (15
male, 11 female, Mage = 19.62 years, SDage = 3.85 years, age
range: 18–24 years) participated in the experiment. Participants
were recruited through advertising on posters and via e-mail at
the university. They were informed that they would be paid with
a JPY 500 (approximately USD 5) book coupon for their time. All
were ignorant of the purpose of the experiment.

2.1.2. Experimental Design
A single-factor two-level between-participants experimental
design was used. Participants were randomly assigned to either
a “change of facial expression” or a “static face” condition. All
participants assumed the role of the proposer and were asked
to determine their offer within 1 min by controlling the slider
bar. The only difference between the two conditions was whether
the corners of the mouth of the line drawing shown on an LCD
monitor mounted on the robot moved upward or downward
according to the position of the slider bar. In the initial state, a
straight line segment represented the line drawing mouth.

2.1.3. Apparatus
The ultimatum game was played once. The proposer was given
100 points, which corresponds to JPY 1000 (approximately USD
10), as the amount to divide. The proposer was given 1 min to

determine the offer (decision phase). During the decision phase,
the proposer adjusted the offer by controlling the slider bar.
Participants were informed that the gamewould be played against
a humanoid robot that might react to the participant’s offer
through an LCD monitor mounted on the robot.

A GUI was used to determine the offer and to communicate
the emotional state of the responder (see Figure 1). The proposer
was asked to decide the offer within 1 min by moving a slider bar
on the GUI, which was controlled by a gamepad connected to the
computer.

Static Face Condition
The line drawing face did not change during the proposal period.

Change of Facial Expression Condition
The corners of the mouth of the line drawing moved upward and
downward according to the position of and one second after the
movement of the slider bar. This delay was inserted to prevent
the participants from assuming that the responder was merely
a simple computer program; an immediate mouth movement
completely contingent on the proposer’s action might strongly
indicate artificiality. The software’s calculation rate was 60 fps, the
same as the monitor used to display the GUI.

Figure 2 shows the control points of a Bézier curve, which
represented the line drawing of the mouth. The points P3 and
P4 are the static points. The Y-coordinates of the points P0,
P1, and P2 changed according to the position of the slider bar.
Figure 3 illustrates examples of the facial expressions shown to
the proposer as a function of the proposer’s offer x ∈ [0, 100]. If
the slider bar moved to the right, the offer decreased and negative
facial expressions, such as those shown in Figures 3A,B, were
displayed.

Figure 4 shows the experimental system. We mounted an
LCD monitor on a Robovie-X, a commercially available robot.
Line drawings of facial expressions were shown on the mounted
LCD monitor, which was connected to a laptop computer via a

FIGURE 1 | Graphical user interface used by the proposer to determine

the offer: (1) numerical representation of the offer, (2) slider bar to

change the offer, (3) button for final decision, and (4) time remaining.
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USB cable. The laptop computer was also used to display the
GUI, and a gamepad for controlling the slider bar on the GUI
was connected to the laptop.

2.1.4. Procedure
In the experiment room, participants were asked to read an
instruction sheet that stated the rules of the ultimatum game, how
to use the interface, and that “the response of the responder will
be shown on the head display.” In addition, they were informed
that they were assigned to be the proposer and that they would
win additional money according to their score in the game.

After the proposal, the participants were not immediately
informed of the responder’s acceptance/rejection: they were first
asked to complete a questionnaire to avoid the questionnaire
responses being affected by the responder’s decision. After
completing the questionnaire, the participants were informed
that they had all played as proposers against a computer program,
and they were paid with an additional JPY 500 (approximately
USD 5) book coupon, the amount of money that would be given
if a 50:50 offer was accepted.

2.1.5. Measurement and Analysis
The offer was recorded every 0.5 s. After the game, participants
were asked to answer four 7-point Likert scale questions (0 =
“definitely no” to 7= “definitely yes”):

• Q1. Did you perceive emotions in the picture shown on the head
of the robot?

FIGURE 2 | Control points of the Bézier curve used to represent the

mouth.

• Q2. Did you consider the responder’s emotions when deciding
your offer?

After answering the post-questionnaires, participants were asked
whether they realized that they had been playing against a
computer program.

The one-way analysis of variance (ANOVA) was used if the
data were normally and homogeneously distributed. The Welch’s
ANOVA was used if the data were normally distributed, but
the assumption of homogeneity of variance was violated. The
Mann–Whitney U-test was used if the data were homogeneously
distributed, but the assumption of normality was rejected.
The Brunner–Munzel test was used if both the assumption of
normality and the homogeneity of variance were violated.

2.2. Results
The mean durations for deciding an offer were 28.31 s (SD =

17.27) and 18.69 s (SD = 14.26) in the change of facial expression
and static face conditions, respectively. The one-way ANOVA,
F(1, 24) = 2.40, p = 0.13, indicated that the difference was not
statistically significant.

Figure 5 presents the mean final offers over participants in
both conditions. Welch’s ANOVA, F(1, 15.71) = 6.22, p < 0.05,
showed that offers were higher in the change of facial expression
condition (M = 51.62, SD = 6.91) than in the static face
condition (M = 38.69, SD = 17.35).

Figure 6 displays the results of the post-experiment
questionnaire. The Mann–Whitney U-tests, U = 18.5,
z = 3.46, p < 0.001, revealed that ratings for perceiving
emotions from the line drawing were significantly higher in
the change of facial expression condition than in the static face
condition. The one-way ANOVA, F(1, 24) = 30.03, p < 0.001,
revealed that ratings for the consideration of emotions were
significantly higher in the change of facial expression condition
than in the static face condition.

Ten out of 13 participants in the change of facial expression
condition realized that they had played against a computer
program that generates a simple mouth movement completely
contingent on the participants’ action.

2.3. Discussion
The results show that offers were higher in the change of facial
expression condition than in the static face condition, confirming
that emotional expression by robots led participants to behave
more altruistically toward the robots even though the emotion

FIGURE 3 | Examples of the facial expressions displayed to the proposer as a function of the proposer’s offer x ∈ [0, 100]. (A) x = 0. (B) x = 20. (C) x =

50. (D) x = 80. (E) x = 100.
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FIGURE 4 | System used in our experiment.
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FIGURE 5 | Mean final offers over participants in both conditions. Error

bars indicate standard errors. *p < 0.05.
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FIGURE 6 | Post-experiment questionnaire. Error bars indicate standard

errors. ***p < 0.001.

was represented by simple line drawings. The results of the
post-experiment questionnaires support the behavioral result
that the 12.92% gap between the two conditions was caused by

the emotions that participants recognized from the change of
facial expressions exhibited by the line drawing. Participants in
the change of facial expression condition gave higher ratings, an
average of 5.30, to the question “Did you perceive emotions in
the picture located on the upper right of the GUI?” than did
participants in the static face condition. There was a large gap,
an average of 2.30, in the Q1 rating between the two conditions,
which indicates that perceiving emotions caused the participants’
altruistic behavior.

The conditions differed only in whether the corners of the
mouth of the line drawing in the GUI changed. However, we
did not explicitly inform participants that the line drawing
symbolized a face or that the position of the bar represented the
position of the corners of the mouth. The participants arbitrarily
attributed a facial property to the geometric line drawings and
attributed emotions to variable Bézier curves. According to
Ekman (2003), a convex mouth shape, in which the corners
of the lips curl downward, indicates sadness, and a concave
mouth shape, in which corners of the lips move upward, indicates
happiness. Although, we did not identify the emotions that
participants perceived from the line drawings, the universality
of facial expressions supports the assumption that participants
recognized sadness when they were shown a convex mouth and
happiness when they were shown a concave mouth.

Our results show that although a substantial number of
participants (78%) in the change of facial expression condition
realized that the mouth movement was controlled by a computer
program, the effect of facial expression was still observed. deMelo
et al. (2011) reported similar findings from a study in which
participants were involved in a negotiation with computer agents.
Taken together, these findings imply that facial expressions are
effective in inducing people to cooperate with robots even though
they know that the expressions are controlled by a program.

A meta-analysis of 75 results from ultimatum game
experiments revealed that the proposer usually offers 40%
of the money to the responder (Oosterbeek et al., 2004).
However, participants in the change of facial expression
condition offered an average of 51.62% of the money.
This indicates that the offer increased by approximately
10% when people were shown changes of facial expression
corresponding to their offer. By contrast, participants in the
static face condition offered an average of 38.69%. This value
roughly corresponds to that offered in the earlier studies
that included no emotional interaction in their experimental
setting.

There are two potential reasons why participants in the
change of facial expression condition offered approximately
50:50, which is a fair offer. The first is the impression that
the responder has the capability to respond emotionally, which
is formed by the dynamic change of facial expression in
response to the participant’s operation. In this case, the facial
expression itself does not have an absolute meaning: simply
perceiving adaptivity or the ability to respond to the user’s
input might be lead to a fair offer. The second reason is
a neutral face. In our experimental setting, a neutral face,
in which the mouth was represented by a straight line, was
displayed to participants when the offer was 50%. Participants

Frontiers in Psychology | www.frontiersin.org 5 May 2017 | Volume 8 | Article 72410

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Terada and Takeuchi Robot’s Emotion Induces Human Altruism

could adjust the slider bar to make the facial expression
neutral. Further investigation, in which a neutral face does
not correspond to a 50% offer, is needed to test these two
hypotheses.

Our results do not identify whether positive or negative
emotion contributed to an increase in the offer. It is known
that expressing anger can elicit concessions from others (van
Kleef et al., 2004; Sinaceur and Tiedens, 2006; van Kleef and
Côté, 2007; van Dijk et al., 2008; van Kleef et al., 2008;
Sell et al., 2009; Fabiansson and Denson, 2012; Reed et al.,
2014), while happiness can elicit altruism (Scharlemann et al.,
2001; Brown and Moore, 2002; Brown et al., 2003; Mehu
et al., 2007; Mussel et al., 2013). These findings suggest that
both the negative and positive expressions shown in our
experiment might have contributed to the proposer raising the
offer.

Croson et al. (2003) showed that threats of future actions
influenced bargaining outcomes. The negative emotional
expression that was contingently presented when a low offer was
proposed might have played the role of cheap talk.

3. STUDY 2

Study 2 was conducted to compare the result of Study 1 with
those from a study in which participants played the game
against a human responder in a teleoperation setting through
a computer display. The aim of this study was to determine
whether the altruistic behavior induced by the robot’s facial
expression is also induced by a facial expression controlled by a
human.

3.1. Method
3.1.1. Participants and Experimental Design
Forty healthy graduate and undergraduate students (35 male, 5
female, Mage = 21.38 years, SDage = 1.51 years, age range: 18–
23 years) participated in the experiment. All participants were
ignorant of the purpose of the experiment.

As in Study 1, a single-factor two-level between-participants
experimental design was used. Participants were randomly
assigned to either a “static face” or a “change of facial expression”
condition.

3.1.2. Apparatus
The apparatus used was identical to that used in Study 1 except
that the facial expression was shown on the upper right area of
the GUI as shown in Figure 7.

3.1.3. Procedure
The procedure was identical to that used in Study 1, except
for the following changes. The experiment was conducted on
two participants who knew each other. The two participants
came to the experiment together and were taken to different
rooms. In their different rooms, they were asked to read the
instruction paper, and both participantswere informed that they
were assigned to be the proposer. Thus, all participants played the
role of the proposer without knowing it. They were informed that
“the response of your partner will be shown on the upper right

FIGURE 7 | Graphical user interface used in Study 2.
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FIGURE 8 | Mean final offers averaged over participants in each of the

two conditions. Error bars indicate standard errors. **p < 0.01.

area of the interface.” The facial expression was automatically
changed based on the position of the slider bar controlled by the
participant, as in Study 1.

3.2. Results
The data of one participant in each of the two conditions were
excluded because they reported that they realized that they were
playing against a computer program.

The mean durations spent deciding the amount of the offer
were 50.31 s (SD = 12.55) and 46.47 s (SD = 14.68) in the
facial expression change condition and static face condition,
respectively. The Mann–Whitney U-tests, U = 162, z = 0.54
p = 0.59, show that no statistically significant difference was
observed.

Figure 8 presents the mean final offers averaged over
participants in each of the two conditions. Error bars indicate
standard errors of the mean value. The Mann–Whitney U-tests,
U = 92, z = 2.61, p < 0.01, show that offers were higher in
the facial expression change condition (M = 51.05, SD = 10.88)
than in the static face condition (M = 40.21, SD = 12.48).

Frontiers in Psychology | www.frontiersin.org 6 May 2017 | Volume 8 | Article 72411

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Terada and Takeuchi Robot’s Emotion Induces Human Altruism

0

1

2

3

4

5

6

7

1. Perceived emotion 2. Considered emotion

M
ea
n 
Li
ke
rt
 ra
tin

g
Change Static

*** ***

FIGURE 9 | Post-experiment questionnaire. Error bars indicate standard

errors. ***p < 0.001.

Figure 9 shows the results of the post-experiment
questionnaire. The Brunner-Munzel test, W = 9.7, p < 0.01,
revealed that the ratings for perceiving emotions from the line-
drawing of a face were significantly higher in the facial expression
condition than in the static face condition. The Mann–Whitney
U-tests, U = 47.5, z = 3.95, p < 0.001, revealed that ratings for
ratings for considering this emotion were significantly higher in
the facial expression condition than in the static face condition.

3.3. Discussion
The results show that offers were higher in the change of facial
expression than in the static face condition, confirming that
emotional expression given by an online responder through an
avatar face composed of simple lines led participants to behave
more altruistically to the responder. The results of the post-
experiment questionnaires support the behavioral result.

4. GENERAL DISCUSSION

The behavioral and questionnaire results for Study 2 were
similar to those of Study 1, confirming that emotional expression
conveyed through simple line drawings representing a robot’s
face has the function of eliciting altruistic behavior from humans
to the same extent as human telepresence.

However, it appears that the duration of time spent deciding
the offer amount for a human responder was longer than that
for a robot. This indicates that those participants who played
the game against a human took more time to find the point
of compromise. Despite this fact, interestingly, the mean final
offers were almost the same between Study 1 and Study 2. It is
possible that humans have a cognitive tendency to treat robots as
non-negotiable partners and that this leads to a shorter duration
of time spent exploring the point of compromise. However,
the facial expression of the robot might have suppressed this
cognitive tendency and led the participants to be more altruistic.

The results of our studies are consistent with those of previous
studies (de Melo et al., 2010, 2011). The studies of de Melo
et al. (2010, 2011) and ours all showed that the emotional

expressions of artificial agents are effective in inducing humans
to cooperate. de Melo et al. (2010, 2011) used a human-like
virtual agent, whereas we used a real robot with a simple
line drawing depicting its face. This implies that sophisticated
human-likeness is not necessarily needed for a cooperative
relationship to develop between robots and humans. This might
be because facial expressions, even the face is a line drawing,
are processed subcortically (Johnson, 2005; Britton et al., 2008).
Nishio et al. (2012) have conducted experiments with an android
robot that has a highly human-like appearance and concluded
that the appearance of the agent does not affect cooperativeness.
From these results, we would suggest that the ability to
interact is more important than a human-like appearance for
an artificial agent to develop a cooperative relationship with
a human.

A substantial number of studies have shown that in economic
games played by humans, facial expressions affect the decision to
cooperate or not regardless of the type of game [e.g., ultimatum
games (Mussel et al., 2014), prisoner’s dilemma (Reed et al.,
2012), dictator games (Brown and Moore, 2002), and trust
games (Tortosa et al., 2013)]. Furthermore, whereas de Melo
et al. (2010) used the prisoner’s dilemma, we used an ultimatum
game, and both studies show that the emotional expressions of
artificial agents are effective in inducing humans to cooperate.
Overall, it is possible that the emotional expressions of artificial
agents are useful for building cooperative relationships with
humans regardless of the type of game. However, long-term field
study should be conducted to investigate whether the emotional
expression contributes to the initiation and maintenance of real
human-robot cooperative relationships.

Some limitations occur in the present study. First, while our
participants were selected from a small, culturally homogeneous
population and the gender ratio was not controlled, studies
have suggested that culture (Russell, 1994; Hess et al., 2000;
Mandal and Ambady, 2004) and gender (Hess et al., 2000;
Mussel et al., 2014) influence the expression and interpretation
of emotions. Larger and more diverse samples should be used to
examine gender and cultural effects on human-robot cooperative
relationships mediated by emotional expressions. Second, we
used a small humanoid robot, and its facial expression was
shown on an LCD monitor that was mounted as its head.
Further, investigation using various types of robots such as
life-sized humanoid robots and robots with sophisticated facial
expression mechanisms should be performed to generalize the
findings.
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Social robots should be able to automatically understand and respond to human touch. 
The meaning of touch does not only depend on the form of touch but also on the context 
in which the touch takes place. To gain more insight into the factors that are relevant 
to interpret the meaning of touch within a social context we elicited touch behaviors 
by letting participants interact with a robot pet companion in the context of different 
affective scenarios. In a contextualized lab setting, participants (n = 31) acted as if they 
were coming home in different emotional states (i.e., stressed, depressed, relaxed, and 
excited) without being given specific instructions on the kinds of behaviors that they 
should display. Based on video footage of the interactions and interviews we explored 
the use of touch behaviors, the expressed social messages, and the expected robot 
pet responses. Results show that emotional state influenced the social messages that 
were communicated to the robot pet as well as the expected responses. Furthermore, 
it was found that multimodal cues were used to communicate with the robot pet, that 
is, participants often talked to the robot pet while touching it and making eye contact. 
Additionally, the findings of this study indicate that the categorization of touch behaviors 
into discrete touch gesture categories based on dictionary definitions is not a suitable 
approach to capture the complex nature of touch behaviors in less controlled settings. 
These findings can inform the design of a behavioral model for robot pet companions and 
future directions to interpret touch behaviors in less controlled settings are discussed.

Keywords: social touch, human–robot interaction, robot pet companion, multimodal interaction, touch recognition, 
behavior analysis, affective context

1. inTrODUcTiOn

Touch plays an important role in establishing and maintaining social interaction (Gallace and Spence, 
2010). In interpersonal interaction, this modality can be used to communicate emotions and other 
social messages (Jones and Yarbrough, 1985; Hertenstein et al., 2006, 2009). More recently, the study 
of social touch was also extended to interaction with humanoid and robotic animals (e.g., Knight 
et al., 2009; Kim et al., 2010; Yohanan and MacLean, 2012; Cooney et al., 2015). In order to make 
these interactions more natural, robots should be able to understand and respond to human touch.

A social robot needs to sense and recognize different touch gestures (e.g., Kim et  al., 2010; 
Silvera-Tawil et  al., 2012; Altun and MacLean, 2015; Jung et  al., 2015, 2016) and should be able 
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FigUre 1 | interaction cycle for a socially intelligent robot that can 
respond to human touch.
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to interpret touch in order to respond in an appropriate man-
ner (see Figure 1). Perhaps robot seal Paro is the most famous 
example of a social robot that responds to touch (Wada and 
Shibata, 2007). Paro is equipped with touch sensors with which it 
distinguishes between soft touches (which are always interpreted 
to be positive) and rough touches (which are always interpreted 
to be negative) (Wada and Shibata, 2007). This interpretation of 
touch is oversimplified as the complexity of the human tactile 
system allows for touch behaviors to vary not only depending on 
the intensity but also based on movement, velocity, abruptness, 
temperature, location, and duration (Hertenstein et  al., 2009). 
Moreover, the meaning of touch can often not be inferred from 
the type of touch alone but is also dependent on other factors 
such as concurrent verbal and non-verbal behavior, the type of 
interpersonal relationship (Heslin et  al., 1983; Suvilehto et  al., 
2015), and the situation in which the touch takes place (Jones 
and Yarbrough, 1985). Although previous research (Heslin et al., 
1983; Hertenstein et  al., 2006, 2009) indicated that there is no 
one-to-one mapping of touch gestures to a specific meaning of 
touch, touch can have a clear meaning in a specific context (Jones 
and Yarbrough, 1985).

The current study focuses on (touch) interaction with a robot 
pet companion. According to Veevers, a pet companion can fulfill 
different roles in the life of humans, a pet can facilitate interper-
sonal interaction or can even serve as a surrogate for interpersonal 
interaction, and expensive and/or exotic pets can be owned as a 
status symbol (Veevers, 1985). Furthermore, interaction with pet 
companions is associated with health benefits, and more recent 
studies indicate that these effects also extend to interaction with 
robot pets (Eachus, 2001; Banks et al., 2008). Although touch is 
a natural way to interact with real pets, currently commercially 
available robot pets such as Paro (Wada and Shibata, 2007), 
Hasbro’s companion pets,1 and JustoCat2 are equipped with only 
a few touch sensors and do not interpret different types of touch 
within context.

We argue that the recognition and interpretation of touch 
consists of three levels: (1) low-level touch parameters such as 
intensity, duration, and contact area; (2) mid-level touch gestures 
such as pat, stroke, and tickle; and (3) high-level social messages 
such as affection, greeting, and play. To automatically understand 
social touch, research focuses on investigating the connection 
between these levels. Current studies in the domain of social 

1 http://joyforall.hasbro.com.
2 http://justocat.com.

touch for human–robot interaction focused mainly on highly 
controlled settings in which users were requested to perform dif-
ferent touch behaviors, one at the time, according to predefined 
labels (e.g., Cooney et al., 2012; Silvera-Tawil et al., 2012, 2014; 
Yohanan and MacLean, 2012; Jung et  al., 2015, 2016). In this 
study we focus on the latter two levels as we are interested in 
the meaning of touch behaviors. To gain more insight into the 
factors that are relevant to interpret touch behaviors within social 
context, we opted to elicit touch behaviors by letting participants 
act out four scenarios in which they interacted with a robot pet 
companion in different emotional states. Moreover, in contrast to 
most previous studies, participants could freely act out the given 
scenarios with the robot pet within the confined space of a living 
room setting.

In this paper, we present contributions in two areas. First, 
we explore the use of touch behaviors as well as the expressed 
social messages and expected robot pet responses in different 
affective scenarios. Second, we reflect upon the challenges of the 
segmentation and labeling of touch behaviors in a less controlled 
setting in which no specific instructions are given on the kinds of 
(touch) behaviors that should be displayed. We address the first 
contribution with the following three research questions. (RQ1) 
What kinds of touch gestures are used to communicate with a 
robot pet in the different affective scenarios? (RQ2) Which social 
messages are communicated, and what is the expected response 
in the different affective scenarios? (RQ3) What other social sig-
nals can aid the interpretation of touch behaviors? Furthermore, 
we reflect upon our effort to segment and label touch behaviors in 
a less controlled setting with the fourth research question. (RQ4) 
How well do annotation schemes work in a contextualized lab 
situation?

The remainder of the article is structured as follows. Related 
work on the meaning of social touch in both interpersonal and 
human–robot interaction will be discussed in the next section 
followed by the description of the materials and methods for the 
presented study. Then, the results will be provided and discussed 
in the subsequent sections. Conclusions will be drawn in the last 
section.

2. relaTeD WOrK

Previous studies have looked into the meaning of touch in both 
interpersonal interaction (Jones and Yarbrough, 1985) and 
human–robot interaction with either a humanoid robot (Kim 
et al., 2010; Silvera-Tawil et al., 2014; Cooney et al., 2015) or a 
robot animal (Knight et al., 2009; Yohanan and MacLean, 2012). 
In a diary study on the use of interpersonal touch, different mean-
ings of touch were categorized based on the participants’ verbal 
translations of the touch interactions (Jones and Yarbrough, 
1985). Seven main categories were distinguished: positive affect 
touches (e.g., support), playful touches (e.g., playful affection), 
control touches (e.g., attention-getting), ritualistic touches (e.g., 
greeting), hybrid touches (e.g., greeting/affection), task-related 
touches (instrumental intrinsic), and accidental touches. 
Interestingly, there was a lack of reports on negative interper-
sonal touch interaction. Within these categories, common 
contextual factors were identified such as the type of touch, any 
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accompanying verbal statement, and the situation in which the 
touch took place. It was found that depending on the context, a 
specific form of touch can have multiple meanings and that dif-
ferent forms of touch can have a similar meaning. Furthermore, 
touch was found to be often preceded, accompanied, or followed 
by a verbal statement.

In a study on human–robot interaction, participants were 
asked to indicate which touch gestures they were likely to use 
to communicate emotional states to a cat-sized robot animal 
(Yohanan and MacLean, 2012). Gestures that were judged to be 
likely used were performed sequentially on the robot. Participants 
expected that the robot’s emotional response was either similar 
or sympathetic to the emotional state that was communicated. 
The nature of the touch behavior was found to be friendly as no 
aggressive gestures (e.g., slap or hit) were used even when nega-
tive emotions were communicated. Five categories of intent were 
distinguished based on touch gesture characteristics that could 
be mapped to emotional states: affectionate, comforting, playful, 
protective, and restful. Also, video segments of the touch gestures 
were annotated to characterize the gestures based on the point 
of contact, intensity, and duration revealing differences between 
touch gestures and their use in different emotional states. In 
follow-up research, the touch sensor data recorded in this study 
(i.e., Yohanan and MacLean, 2012) were used to classify 26 touch 
gestures and 9 emotional states using random forests (Altun and 
MacLean, 2015). Between-subjects emotion recognition of 9 emo-
tional states yielded an accuracy of 36%, while within-subjects the 
accuracy was 48%. Between-subjects touch gesture recognition of 
26 gestures yielded an accuracy of 33%. Furthermore, the authors’ 
results indicated that accurate touch gesture recognition could 
improve affect recognition.

In other work, Kim et al. (2010) instructed participants to use 
four different touch gestures to give positive or negative feedback 
to a humanoid robot while playing a game. A model was trained to 
infer whether a touch gesture was meant as a positive or a negative 
reward for the robot. It was found that participants used “pat” and 
“rub” to give positive feedback and “hit” to give negative feedback, 
while “push” could be used for both although the touch gesture 
was mostly used for negative feedback. Knight et al. (2009) argued 
for the importance of body location as contextual factor to infer 
the meaning of touch. The authors made the distinction between 
what they called symbolic gestures, which have social significance 
based on the involved body location(s) (e.g., footrub and hug) 
and body location-independent touch subgestures (e.g., pat and 
poke).

Although previous studies indicate that there is a link between 
touch gestures and the higher level social meaning of touch, 
Silvera-Tawil et al. (2014) argued that the meaning of touch could 
also be recognized directly based on characteristics from touch 
sensor data and other factors such as the context and the touch 
location. In their effort to automatically recognize emotions and 
social messages directly from sensor data without first recogniz-
ing the used touch gestures, participants were asked to perform 
six basic emotions: anger, disgust, fear, happiness, sadness, and 
surprise on both a mannequin arm with an artificial skin and a 
human arm. In addition, six social messages were communicated: 
acceptance, affection, animosity, attention-getting, greeting, and 

rejection. Recognition rates for the emotions were 46.9% for the 
algorithm and 51.8% for human classification. The recognition 
rates for the social messages were found to be slightly higher, 
yielding accuracies of 49.7 and 62.1% for the algorithm and 
human classification, respectively.

Some attempts have been made to study touch interaction in 
a less controlled setting, for example, Noda et al. (2007) elicited 
touch during the interaction with a humanoid robot by designing 
a scenario in which participants used different touch gestures to 
communicate a particular social message such as greeting the 
robot by shaking hands, playing together by tickling the robot, 
and hugging the robot to say goodbye at the end of the interac-
tion. Results showed an accuracy of over 60% for the recognition 
of the different touch behaviors that were performed within the 
scenario. In another study on the use of touch in multimodal 
human–robot interaction, participants were given various reasons 
to interact with a small humanoid robot such as giving reassur-
ance, getting attention, and giving approval (Cooney et al., 2015). 
The robot was capable of recognizing touch, speech, and visual 
cues, and participants were free to use different modalities. Also, 
participants rated videos in which a confederate interacted with 
the robot using different modalities. Results showed that touch 
was often used to communicate with the robot and that touch 
was especially important for expressing affection. Furthermore, 
playing with the robot and expressing loneliness were deemed 
more suitable than displaying negative emotions.

To summarize, previous studies illustrate that touch can be used 
to express and communicate different kinds of affective and social 
messages (Jones and Yarbrough, 1985; Yohanan and MacLean, 
2012; Silvera-Tawil et al., 2014; Cooney et al., 2015). Moreover, 
touch gestures that were used to communicate were often positive 
in nature, and their meaning is dependent on the context such as 
one’s emotional state (Jones and Yarbrough, 1985; Yohanan and 
MacLean, 2012; Cooney et al., 2015). These findings confirm that 
currently available robot pet companions, such as Paro, which 
only distinguishes between positive and negative touch, are not 
sufficiently capable of understanding and responding to people 
in a socially appropriate way. Furthermore, there are indications 
that other modalities might be helpful in interpreting the social 
messages as touch behavior generally does not occur in isolation 
(Jones and Yarbrough, 1985; Cooney et al., 2015). For the reasons 
outlined above, we opted to study interactions between a human 
and a robot pet companion in the context of different emotional 
states in a contextualized lab situation.

3. MaTerials anD MeThODs

In this study we elicited interactions between a human and a robot 
pet companion in a lab-build living room setting. Participants were 
instructed to act as if they would come home in different emo-
tional states (i.e., stressed, depressed, relaxed, and excited). These 
four emotional states were chosen as they span opposite ends of 
the valence and arousal scale (see Figure 2): stressed (low valence, 
high arousal), depressed (low valence, low arousal), relaxed (high 
valence, low arousal), and excited (high valence, high arousal) 
(Russell et al., 1989). Furthermore, similar emotional states have 
been used in a more controlled research setting before, and the 
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FigUre 2 | Mapping of emotional state based on associated valence 
and arousal levels, model adapted from russell et al. (1989).

4

Jung et al. Toward the Automatic Understanding of Social Touch

Frontiers in ICT | www.frontiersin.org March 2017 | Volume 4 | Article 3

results from this study indicate that emotional state influences 
touch behavior as well as the expected robot response (Yohanan 
and MacLean, 2012). To gain more insight into the factors that are 
relevant to interpret touch within a social context, we annotated 
touch behaviors from video footage of the interactions. Also, a 
questionnaire was administered and interviews were conducted 
to interpret the high-level meaning behind the interactions and 
get insight into the responses that would be expected from the 
robot pet.

3.1. Participants
In total 31 participants (20 males, 11 females) volunteered to 
take part in the study. The age of the participants ranged from 
22 to 64 years (M = 34.3; SD = 12.8), and 28 were right-handed, 
2 left-handed, and 1 ambidextrous. All studied or worked at 
the University of Twente in the Netherlands. Most (21) had the 
Dutch nationality; others were Belgian, Ecuadorean, English, 
German (2×), Greek, Indian, Iranian, Italian, and South Korean. 
This study was approved by the ethics committee of the Faculty 
of Electrical Engineering, Mathematics and Computer Science 
of the University of Twente. All research participants provided 
written informed consent in accordance with the Declaration of 
Helsinki.

3.2. apparatus/Materials
3.2.1. Living Room Setting
The living room setting consisted of a space of approximately 
23  m2 containing a small couch, a coffee table, and two plants 
(see Figure 3, left). Two camcorders were positioned facing the 
couch at an approximately 45° angle to record the interactions 
(50 fps, 1,080 p). To allow participants to interact freely with the 
robot pet (i.e., no wires) and have a controlled interaction (i.e., no 
unpredictable robot behavior), a stuffed animal dog was used as a 
proxy for a robot pet. The robot pet (35 cm; in a laying position) 
was positioned on the couch at the far end from the door facing 
the table (see Figure 3).

3.2.2. Questionnaire
The questionnaire was divided into two parts. Part one was 
completed before the interview was conducted and part two after 

the interview. Part one consisted of demographics: gender, age, 
nationality, occupation, and handedness followed by six questions 
about the reenactment of the scenarios rated on a 4-point Likert 
scale ranging from 1 (strongly disagree) to 4 (strongly agree). 
Four questions were about the participants’ ability to imagine 
themselves in the scenarios: “I was able to imagine myself coming 
home feeling stressed/depressed/relaxed/excited.” The other two 
questions were about the robot pet: “I was able to imagine that the 
pet was a functional robot” and “I based my interaction with the 
robot pet on how I interact with a real animal.”

The second part consisted of a questionnaire about the expec-
tations of living with a robot pet, which was based on the 11-item 
Comfort from Companion Animals Scale (CCAS) (Zasloff, 
1996). Participants were asked to imagine that they would get a 
robot pet like the one in the study as a gift. This robot pet can react 
to touch and verbal commands. Participants were asked to answer 
the questions about the role they expect the robot pet would play 
in their life. The questions from the CCAS were adjusted to fit the 
purpose of the study, for example, the item “my pet provides me 
with companionship” was changed to “I expect my robot pet to 
provide me with companionship.” Items were rated on a 4-point 
Likert scale ranging from 1 (strongly disagree) to 4 (strongly 
agree), as all items were phased positively a higher score indicates 
greater expected comfort from the robot pet.

3.2.3. Interview
A semi-structured interview was conducted between the first and 
the second part of the questionnaire. The video footage of their 
reenactment of the scenarios was shown to the participants, and 
they were asked to answer the following questions after watching 
each of the four scenario fragments: (1) “What message did you 
want to communicate to the robot?” (2) “What response would 
you expect from the robot?” (3) “How could the robot express 
this?” The participant, the interviewer, and the computer screen 
were recorded during the interview using a camcorder.

3.3. Procedure
Upon entering the room in which the study took place, the par-
ticipant was welcomed and was asked to read the instructions and 
sign an informed consent form. Then, participants were taken into 
the hallway where they received the instructions for the example 
scenario in which they were asked to act out coming home in 
a neutral mood. If the instructions were clear, participants were 
asked to interact with a robot pet by acting out four different 
scenarios, one by one, in which they would come home in a 
particular emotional state, feeling stressed, depressed, relaxed, or 
excited. The study had a within-subject design; instructions for 
each of the scenarios were given to each of the participants in 
random order. In each scenario, the participant was instructed 
to enter the “living room,” sit down on the couch, and act out the 
scenario as he/she sees fit. Participants were instructed to focus 
on the initial interaction as the robot pet would not respond 
(≈30 s were given as a guideline); however, the duration of the 
interaction was up to the participant who was instructed to return 
to the hallway when he or she finished an interaction. When the 
participant had returned to the hallway at the end of an interac-
tion the next scenario was provided.
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FigUre 3 | The living room setting with the robot pet on the couch (left) and the pet up-close (right).
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After the last scenario, the participant was asked to fill out a 
questionnaire asking about demographic information and about 
acting out the scenarios. Then, the video footage of their reenact-
ment of the scenarios was shown to the participant, and an inter-
view was conducted on these interactions. After the interview, 
the participants completed the second part of the questionnaire 
about their expectations if they would own a functional robot 
pet. The entire procedure took approximately 20  min for each 
participant. At the end of the study, participants were offered a 
candy bar to thank them for participating.

3.4. Data analysis
3.4.1. Questionnaire
The questionnaire data were analyzed using IBM SPSS Statistics 
version 22. The median values and the 25th and 75th percentiles 
(i.e., Q1 and Q3, respectively) were calculated for the questions 
about the reenactment of the scenarios. The ratings on the items 
of the expected comfort from the robot pet scale were summed 
before calculating these descriptive statistics. Additionally, a 
Friedman test was conducted to check whether there was a statis-
tical difference between the perceived ability of the participants 
to imagine themselves in the different scenarios. The significance 
threshold was set at 0.05, and the exact p-value is reported for a 
two-tailed test.

3.4.2. Annotation of Scenario Videos
The video footage from the two cameras were synced and put 
together in a split screen video before annotation. Videos were 
coded by two annotators, which included one of the authors 
(Merel M. Jung), henceforth “the first coder,” using the ELAN3 
annotation software.

For the segmentation of touch behaviors we followed a 
method that is commonly used to segment signs and co-speech 
gestures into movement units, which in the simplest form consist 
of three phases: a preparation phase, an expressive phase, and a 
retraction phase (Kendon, 1980; Kita et al., 1997). The onset of a 
movement unit is defined at the first indication of the initiation 

3 Max Planck Institute for Psycholinguistics, The Language Archive, Nijmegen, The 
Netherlands; http://tla.mpi.nl/tools/tla-tools/elan.

of a movement that is usually preceded by the departure of the 
hand’s resting position. The end of a movement unit is defined 
as the moment when the hand makes first contact with a rest-
ing surface such as the lap or an arm rest. Similarly, the touch 
actions were segmented by the first coder from the moment that 
the participant reached out to the robot pet to make physical 
contact until the contact with the pet was ended and the hands 
of the participants returned to the resting position. Per touch 
action segment, the following information was coded by the two 
annotators in a single annotation tier: the performed sequence 
of touch gestures and the robot pet’s body part(s) on which 
each touch gesture was performed (see Figure  4). The touch 
gesture categories consisted of the 30 touch gestures plus their 
definitions from the touch dictionary of Yohanan and MacLean 
(2012), which is a list of plausible touch gestures for interaction 
with a robot pet. Furthermore, based on observations we added 
an additional category for puppeteering, which was defined as 
“participant puppeteers the robot pet to pretend that it is moving 
on its own” and to reduce forced-choice we added other, which 
was defined as “the touch gesture performed cannot be described 
by any of the previous categories.” The robot pet’s body parts were 
divided into six categories: head (i.e., back, top, and sides of the 
head and ears), face (i.e., forehead, eyes, nose, mouth, cheeks, and 
chin), body (i.e., neck, back, and sides), belly, legs, and tail.

Coding the touch behaviors that were performed during each 
touch segment proved to be difficult. Both annotators were often 
unsure when to define the start of a new touch gesture as gestures 
were often followed up in quick succession. Furthermore, hybrid 
forms of several touch gestures were often observed resulting in 
difficulties to categorize the touch behavior into one of the cat-
egories. In Table 1 some of the touch gestures are listed that were 
frequently observed but that were also difficult to distinguish 
based on their dictionary definitions. These touch gestures are 
all of relatively long duration compared to quick gestures such as 
pat and slap, and all include movement across the contact area. 
The distinguishing features are based on the gesture’s intensity, 
human contact point (e.g., whole hand vs. fingernails), and the 
movement pattern (e.g., back and forth or seemingly random). 
An example of commonly encountered confusion was in cases 
where the hand was moved repeatedly back and forth on the fur 
of the robot pet, which indicated the use of a rub gesture, while 
the use of gentle pressure seemed to indicate a stroke-like gesture. 

19

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://tla.mpi.nl/tools/tla-tools/elan


Table 1 | example touch gesture categories with definitions, adapted 
from Yohanan and Maclean (2012).

gesture label gesture definition

Massage Rub or knead the robot pet with your hands
Rub Move your hand repeatedly back and forth on the fur of the 

robot pet with firm pressure
Scratch Rub the robot pet with your fingernails
Stroke Move your hand with gentle pressure over the robot pet’s fur, 

often repeatedly
Tickle Touch the robot pet with light finger movements

FigUre 4 | screenshot of the annotation process showing the annotation tier in which the touch gestures and the body location on the robot pet are 
annotated.
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Furthermore, the use of video footage to code touch gestures 
made it difficult to determine the exact point of contact, which is 
the only differentiating feature to distinguish between a rub and 
a scratch gesture based on these definitions.

Even after several iterations of revisiting the codebook in 
order to clarify what the distinguishing features of several touch 
gestures are, it was still not possible to reach an acceptable level 
of agreement. Difficulties were caused by a mixture of touch 

events that were hard to observe on video and differences in 
interpretation by the annotators, which included both the seg-
mentation of individual touch gestures (i.e., within the larger 
predefined segments) and the assignment of labels, despite the 
commonly developed annotation scheme. Furthermore, as one 
touch segment could consist of a sequence of touch gestures, it 
was difficult to calculate the inter-rater reliability (i.e., Cohen’s 
kappa) as the number of touch gestures could differ per coder. 
The location of the touch gestures on the robot pet’s body was 
related to the coding of the touch gestures themselves, and there-
fore it was also not possible to reach an acceptable agreement 
on this part.

Due to the difficulties described above we decided instead to 
coarsely describe the interactions in the results section based on 
the modalities that the participants used to communicate to the 
robot pet. Also, a Friedman test was conducted to check whether 
there was a statistical difference between the duration of the 
interactions in the different scenarios. The significance threshold 
was set at 0.05, and the exact p-value is reported for a two-tailed 
test. The implications of the findings from the annotation process 
will be explicated in the discussion section.

20

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Table 2 | number of participants that engaged in different levels of 
interaction with the robot pet per scenario.

emotional state

interaction type stressed Depressed relaxed excited

No interaction 3 3 0 0
Speech only 2 0 0 0
Touch only 8 12 13 7
Touch + speech 18 16 18 24

Sum 31 31 31 31
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3.4.3. Interview
The interview answers were grouped per scenario based on com-
mon themes. The data were split into two parts. (1) Information 
on the social messages (and possible behaviors to express those) 
that were communicated by the participant to the robot pet. (2) 
Information on the expected messages and behaviors that were 
expected to be communicated by the robot pet. Themes were 
labeled, and the number of participants that mentioned the 
specific topic was counted for each scenario. Furthermore, the 
communicated social messages for each scenario were mapped to 
the expected responses from the robot pet to look for frequently 
occurring patterns.

4. resUlTs

4.1. Questionnaire
Participants’ rating of their ability to imagine themselves in 
the four different scenarios on a scale ranging from 1 (strongly 
disagree) to 4 (strongly agree) were the following: stressed (Mdn 
(Q1, Q3) = 3 (3, 3)), depressed (Mdn (Q1, Q3) = 3 (2, 3)), relaxed 
(Mdn (Q1, Q3) = 3 (3, 3)), and excited (Mdn (Q1, Q3) = 3 (2, 
4)). There was no statistically significant difference between the 
ratings of the scenarios (χ2(3) = 3.297, p = 0.352). Median (Q1, 
Q3) perceived ability to imagine the pet as a functional robot 
was 2 (2, 2) and the statement “I based my interaction with the 
robot pet on how I interact with a real animal” was rated at 3 
(2, 4). The total scores for the expected comfort from the robot 
pet ranged from 18 to 37 (Mdn (Q1, Q3) = 30(26, 35)), possible 
total scores ranged from 11 to 44 where a higher score indicated 
greater expected comfort.

4.2. Observations from the scenario 
Videos
Between the different scenarios there were some differences 
in the level of interaction with the robot pet (see Table  2). 
Participants often used both touch and speech to communicate 
with the robot pet. Almost all participants used at least the touch 
modality to communicate, few exceptions occurred in the low 
valence scenarios (i.e., stressed and depressed). Examples of 
touch behaviors that were observed were participants sitting next 
to the robot pet on the couch while touching it using stroking-like 
gestures, hugging the pet, and having the robot pet sit on their 
laps while resting a hand on top of it. Speech was most preva-
lent in the excited scenario, while it was least prevalent in the 

depressed scenario. Observed behaviors included participants 
using speech to greet the robot pet when entering, talk about 
their day, express their emotional state, and show interest in the 
pet. Some instances of pet-directed speech were observed as well. 
Another notable observation was that participants oriented the 
robot pet to face them indicating that they wanted to make eye 
contact. Furthermore, some participants incorporated the use of 
their mobile phone in the scenarios, for example, to indicate that 
they would be preoccupied with their own activities (e.g., sending 
text messages to friends), to take a picture of the robot pet or to 
watch online videos together. Others engaged in fake activities 
with imaginary objects such as playing catch or watching TV 
together.

The duration of an interaction was measured as the time in 
seconds between the start of the interaction (i.e., opening the 
door to enter the living room) and the end (i.e., closing the door 
after leaving the room). Overall, the duration of the interactions 
ranged between 17 and 112 s. There was a statistically significant 
difference in the duration of interaction between the four scenar-
ios (χ2(3) = 16.347, p = 0.001). A post hoc analysis with Wilcoxon 
signed-rank tests was conducted with a Bonferroni correction 
applied, resulting in a significance level set at p  <  0.008. The 
median (Q1, Q3) duration in seconds for each of the scenarios 
was stressed 41 (29, 55), depressed 42 (32, 55), relaxed 42 (32, 53), 
and excited 35 (28, 45). The duration of interaction in the excited 
was significantly shorter compared to the other scenarios: stressed 
(Z = −2.968, p = 0.002), depressed (Z = −3.875, p < 0.001), and 
relaxed (Z = 3.316, p = 0.001). The other scenarios did not differ 
significantly (all p’s >0.008).

4.3. interview
In general, participants mostly watched the whole scenario 
before answering the questions, while others commented on 
their behavior right away. Also, some participants mentioned at 
the beginning that they felt a bit awkward to watch themselves 
on video. The social messages that were communicated by the 
participant to the robot pet and messages that were expected to 
be communicated by the robot pet are listed for each scenario in 
Tables 3 and 4, respectively. Table 5 shows the mapping between 
the two most frequently communicated social messages for each 
scenario and the most common expected responses from the 
robot pet to these messages. We will further discuss the interview 
results based on these mappings.

4.3.1. Stressed
In the stressed scenario, most participants wanted to com-
municate that they were stressed by indicating to the robot pet 
that they had lots of things to do or that they were preoccupied 
with something (n  =  17). Notably, some of these participants 
involved the robot pet as a way to regulate their emotions by 
touching the pet as a means of distraction. In response, some of 
these participants wanted company from the robot pet by staying 
close and through physical interaction (n = 6). Importantly, the 
pet’s behavior should be calm, and the robot should not be too 
demanding. Other participants wanted support from the robot 
pet by calming them down and providing comfort (n = 6).

21

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Table 5 | breakdown of the most frequently communicated messages to 
the robot pet and the expected responses for each scenario.

emotional 
state

communicated message expected robot pet response

Stressed Express emotional state (17) → Keep company (6)
Provide emotional support (6)

Do not want to interact (6) → Understand the situation (3)
Focus on own needs (2)

Depressed Seek emotional support (11) → Provide emotional support (6)
Keep company (3)

Express emotional state (8) → Provide emotional support (4)
Keep company (3)

Relaxed Enjoy company (14) → Keep company (10)
Express emotional state (8) → Pick up the mood (5)

Excited Express emotional state (15) → Pick up the mood (15)
Actively seek interaction (11) → Pick up the mood (6)

Engage in interaction (5)

The number of participants is in parentheses.

Table 4 | social messages that the robot pet is expected to 
communicate for each scenario.

emotional state

stressed Depressed relaxed excited

Keep company (8) Keep company (12) Keep company 
(12)

Pick up the 
mood (24)

Provide emotional 
support (7)

Provide emotional 
support (11)

Pick up the mood 
(7)

Engage in 
interaction (6)

Focus on own needs 
(6)

Engage in 
interaction (4)

Engage in 
interaction (5)

Show 
appreciation 
(1)

Understand the 
situation (5)

Focus on own 
needs (2)

Focus on own 
needs (5)

Engage in interaction 
(3)

Ask for attention (1) No interaction (1)

Do not understand (2) Show appreciation 
(1)

Do not 
understand (1)

The number of participants is in parentheses.

Table 3 | social messages that were communicated to robot pet for 
each scenario.

emotional state

stressed Depressed relaxed excited

Express emotional 
state (17)

Seek emotional 
support (11)

Enjoy company 
(14)

Express 
emotional state 
(15)

Do not want to 
interact (6)

Express emotional 
state (8)

Express emotional 
state (8)

Actively seek 
interaction (11)

Acknowledge (3) Do not want to 
interact (6)

Acknowledge (7) Enjoy company 
(4)

Seek emotional 
support (3)

Want to interact (3) No expectations (2) Do not want to 
interact (1)

Actively seek 
interaction (2)

Acknowledge (1) 
Enjoy company (1)
No expectations (1)

The number of participants is in parentheses.
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In contrast, some participants did not want to interact with the 
robot pet at all as they preferred to be alone in this situation or 
did not want to be distracted by the pet (n = 6). In response, most 
participants wanted that the robot pet showed its understanding 
of the situation by keeping its distance (n = 3). Others mentioned 
that the robot pet should have its own personality and should 
behave accordingly, which might result in the robot pet asking 
for attention even if this behavior is undesirable in this situation 
or that the pet would mind its own business (n = 2).

4.3.2. Depressed
In the depressed scenario, participants often communicated to 
the robot pet that they were looking for comfort in order to feel 
less depressed (n  =  11). In response, these participants often 
wanted comfort from the robot pet (n = 6). They wanted the pet 
to do this by sitting on their lap or right next to them and making 
sounds. Also, participants specified that the robot pet should not 
approach them too enthusiastically. Others indicated that the 
robot pet should keep them company (n =  3) by staying close 
and showing its understanding of the situation.

Other participants just wanted to express how they felt (n = 8), 
for example, by telling the pet why they were feeling depressed. In 
response most of these participants also expected that the robot 
pet would either provide emotional support (n = 4) or would keep 
them company (n = 3).

4.3.3. Relaxed
In the relaxed scenario, participants often wanted to communi-
cate that they enjoyed the pet’s company (n = 14), for example, 
by having the pet sit on their lap or right next to them, touching 
the robot and talking to it. In response, these participants often 
wanted company from the robot pet (n = 10), for example, by stay-
ing close, listen, and engage in physical interaction. Furthermore, 
the pet’s behavior should be calm and should reflect that it enjoys 
being together with the human (e.g., wagging tail or purring).

Other participants mentioned that they wanted to express that 
they were feeling relaxed (n = 8) such as by telling the pet about 
their day and that everything was alright. In response most of 
these participants wanted that the robot pet picked up on their 
mood by displaying relaxed behavior as well such as by lying 
down (n = 5).

4.3.4. Excited
In the excited scenario, participants often wanted to communicate 
their excitement to the robot pet (n = 15), for example, by touch-
ing and talking to the robot. In response, all these participants 
wanted that the robot pet picked up on their mood by becoming 
excited as well (n = 15). The robot pet could show its excitement 
by actively moving around, wagging its tail, and making positive 
sounds.

Other participants wanted to actively interact with the robot 
pet (n = 11) by playing with it or going out for a walk together. 
In response, most of these participants wanted that the robot pet 
picked up on their mood as well (n = 24) or preferred that the 
robot pet would actively engage them in play behavior (n = 6).
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5. DiscUssiOn

5.1. categorization of Touch behaviors
In this study, we observed participants that freely interacted 
with a robot pet companion. As a consequence, we observed an 
interesting but complex mix of touch behaviors such as the use 
of multiple touch gestures that were alternated, hybrid forms 
of prototypical touch gestures and combinations of simultane-
ously performed touch gestures (e.g., stroking while hugging). A 
previous attempt to annotate touch behaviors was limited to the 
coding of characteristics of touch gestures that were performed 
sequentially, which completely eliminates difficulties regarding 
segmentation and labeling that were encountered in this study 
(Yohanan and MacLean, 2012). Segmentation and labeling 
of individual touch gestures based a method borrowed from 
previous work on air gestures proved not to be straightforward. 
Although air gestures and touch gestures both rely on the same 
modality (i.e., movements of the hand(s)) their communicative 
functions are different. Air gestures, especially sign language, are 
a more explicit form of communication compared to communi-
cation through touch in which there is no one-to-one mapping 
between touch gestures and their meaning. Furthermore, in 
less controlled interactions it proved to be difficult to categorize 
touch behaviors into discrete touch gesture categories based on 
dictionary definitions, such as the gestures defined in Table  1. 
These results indicate that this approach might not be suitable to 
capture the nature of touch behavior in less controlled settings.

In accordance with previous findings from Yohanan and 
MacLean (2012) we frequently observed the use of massage, rub, 
scratch, stroke, and tickle-like gestures to communicate to the 
robot pet. As a result valuable information would be lost if these 
gestures would be collapsed into a single category to bypass the 
difficulties to clearly distinguish between these gestures. Some of 
the difficulties were due to the use of video footage to observe 
touch behavior. For example, the intensity level can only be 
roughly estimated from video [see also Yohanan and MacLean 
(2012)], and some details such as the precise point of contact were 
lost because of occlusion. However, confusions in identifying 
touch gestures with similar characteristics were also observed in 
studies where touch behaviors were captured by pressure sensors 
and algorithms were trained to automatically recognize different 
gestures (e.g., Silvera-Tawil et al., 2012; Jung et al., 2015, 2016). 
Moreover, segmentation and categorization of touch behavior 
based on touch sensor data would still remain challenging.

As the segmentation and categorization of touch behaviors 
into touch gestures might not be that straight forward in a less 
controlled setting, it might be more sensible to recognize and 
interpret social messages directly from touch sensor data as was 
previously suggested by Silvera-Tawil et  al. (2014). Moreover, 
processing techniques from other modalities such as image pro-
cessing, speech, and action recognition proved to be transferable 
to touch gesture recognition (Jung et  al., 2015). Therefore, the 
existing body of literature on the transition toward automatic 
behavior analysis of these modalities in naturalistic settings 
might provide valuable insights for the understanding of touch 
behavior as well (e.g., Nicolaou et al., 2011; Gunes and Schuller, 
2013; Kächele et al., 2016).

5.2. Observed Multimodal behaviors
The following coarse descriptions of interactions with the robot 
pet from two different participants illustrate the use of multi-
modal cues in the depressed and excited scenario, respectively.

Participant walks into the living room and sits down on 
the couch next to the robot pet. Immediately she picks 
up the pet and holds it against her body using a hug-like 
gesture. While holding the pet she tells to the pet that 
she had a bad day while she makes eye contact from 
time to time. Then she sits quietly while still holding 
the pet and making eye contact. Finally, she puts the pet 
back on the couch and gets up to leave the room.

Participant runs into the living room and slides 
in front of the couch. He picks up the robot pet from 
the couch and then sits down on the couch with the 
pet resting on his leg. Then he talks to the pet using 
pet-directed speech: ‘How are you? How are you? Yes! 
You’re a good dog! Good doggy!’. Meanwhile he touches 
the pet using stroke-like gestures and looks at it. He 
then puts the robot pet back on the couch again while he 
still touches the pet using stroke-like gestures. Finally, 
he gets up from the couch and leaves the room.

As illustrated in the descriptions above, participants often 
talked to the robot pet while touching it (see also Table 2) indicat-
ing that the combination of speech (emotion) recognition and 
touch recognition might aid the understanding of touch behavior. 
Although we observed forms of speech that had characteristics 
of pet-directed speech (e.g., short sentences, repetition, and 
higher pitched voice), it should be noted that no analysis of the 
prosodic features of the speech was performed. However, the use 
of pet-directed speech has been observed previously, for example, 
Batliner et al. (2006) found that children used pet-directed speech 
when interacting with Sony’s pet robot dog AIBO. A limitation of 
the current setup is that it did not allow for a detailed analysis on 
the added value of other social cues such as facial expression, pos-
ture, and gaze behavior for the interpretation of touch behavior.

By allowing the participants to freely interact with the robot 
pet within the confined space of a living room setting we were able 
to observe behavior that might otherwise not be observed. Social 
interaction involving objects such as taking pictures of the robot 
with a mobile phone were also observed by Cooney et al. (2015) 
who argued that these factors should be investigated to enable 
rich social interaction with robots. However, it is important to 
keep in mind that although participants in this study were able to 
freely interact within the given context, the results are confined to 
the given interaction scenarios. Furthermore, as the study relied 
on acted behaviors, participants might have displayed proto-
typical behaviors to clearly differentiate between the scenarios. 
However, although participants indicated in the questionnaire 
and during the interview that they had some difficulties acting 
out the scenarios with a stuffed animal, social behaviors such as 
making eye contact while talking (e.g., see descriptions above) 
were observed indicating that at least most participants treated 
the pet as a social agent. Additionally, it should be noted that 
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touch was not only used to communicate to the robot pet but 
also often used to move/puppeteer the robot pet as it was unable 
to move on its own.

Surprisingly, interactions in the excited scenario were shorter 
despite the fact that all participants engaged in some form of 
interaction with the robot pet (see Table  2). A possible expla-
nation is that participants often only quickly wanted to convey 
their excitement compared to other scenarios where they were 
seeking comfort or quietly sat down together with the robot pet to 
enjoy each others company (see Table 3). Furthermore, previous 
studies indicate that some emotions are more straightforward 
than others, for example, anger was found to be easier to express 
through touch than sadness (Hertenstein et al., 2009). Similarly, 
excitement might have been easier to convey than the other 
emotional states in this study.

5.3. communicated social Messages and 
expected robot Pet responses
The interview results showed that the communicated messages 
and expected robot pet responses differed depending on the 
affective scenario and individual preference (see Tables 3 and 4).  
Moreover, Table  5 shows that there is no one-to-one relation 
between communicated messages and expected responses. For 
example, variation in expectations from the robot pet in the 
stressed scenario ranged from actively providing support to 
staying out of the way meaning that in order to respond in a 
socially appropriate manner, a robot pet should be able to judge 
whether the user wants to be left alone and when to engage in 
interaction. From the interviews it became clear that this is not 
always clear-cut, in the depressed and stressed scenarios some 
participants indicated that they did not want to initiate interac-
tion but that they might be open to the robot pet approaching 
them (sometimes after a while). Participants often wanted to 
communicate their emotional state to the robot pet, especially 
in the high arousal scenarios (see Table 3); however, it should be 
noted that the focus on emotional states in the scenarios provided 
in the study might have biased participants toward expressing this 
emotional state.

Whether a robot pet should completely adapt its behavior to 
the user is dependent on the role of the pet. In this study the nature 
of the bond between the participant and his/her robot pet was not 
specified. Some participants argued that a robot pet should mimic 
a real pet with its own personality and needs, which might conflict 
with the current needs of the user. In contrast, other participants 
proposed that the robot pet could take the role of therapist/coach, 
which would focus on the user’s needs. Mentioned abilities that 
such a robot pet should have included cheering you up, providing 
comfort, talking about feelings, and communicating motivational 
messages. In the role of a friend the robot pet should also take the 
user’s needs into account, albeit to a lesser extent.

In this study we observed how various people, in this case 
males and females from the working-age population, interacted 
with a robot pet companion. However, it should be noted that 
individual factors such as previous experience with animals, per-
sonality, gender, age, and nationality might play an important role 
in these interactions. Interestingly, even though the robot pet’s 

embodiment clearly resembled a dog, some participants treated 
the robot pet as a cat. Whether participants treated the robot pet 
as a dog or a cat seemed to depend on their preference and history 
with real pets. Additionally, it should be noted that the participants 
studied or worked in the computer science department and that 
all were at least to some extent familiar with social robots. As a 
result some participants took the current state of technology into 
account when suggesting possible robot behaviors, for example, 
one participant mentioned that it is non-trivial to build a robot 
dog that would be able to jump on the couch. The use of a stuffed 
animal dog as a proxy for a functioning robot pet allowed for a 
more controlled setup. However, the lack of response from the 
robot pet resulted in less realistic interactions as the participant 
had to puppeteer the pet or imagine its response. Furthermore, 
it is important to note that participants were asked to act as if 
they were coming home in a particular emotional state. Although 
this is a common approach in studies on touch behavior (e.g., 
Hertenstein et  al., 2006, 2009; Yohanan and MacLean, 2012; 
Silvera-Tawil et al., 2014), it is unclear whether the same results 
would have been found if the emotional states were induced in 
the participants. Despite the above mentioned considerations we 
observed an interesting range of interactions and were able to find 
patterns in the social messages that were communicated and the 
responses that were expected from the robot pet.

6. cOnclUsiOn

To gain more insight into the factors that are relevant to interpret 
touch within a social context we studied interactions between 
humans and a robot pet companion in different affective sce-
narios. The study took place in a contextualized lab setting in 
which participants acted as if they were coming home in different 
emotional states (i.e., stressed, depressed, relaxed, and excited) 
without being given specific instructions on the kinds of behav-
iors that they should display.

Results showed that depending on the emotional state of the 
user, different social messages were communicated to the robot 
pet such as expressing one’s emotional state, seeking emotional 
support, or enjoying the pet’s company. The expected response 
from the robot pet to these social messages also varied based on 
the emotional state. Examples of expected responses were keep-
ing the user company, providing emotional support, or picking 
up on the user’s mood. Additionally, the expected response from 
the robot pet was dependent on the different roles that were 
envisioned such as a robot that mimics a real pet with its own 
personality or a robot companion that serves as a therapist/coach 
offering emotional support.

Findings from the video observations showed the use of multi-
modal cues to communicate with the robot pet. Participants often 
talked to the robot pet while touching it and making eye contact 
confirming previous findings on the importance of studying 
touch in multimodal interaction. Segmentation and labeling of 
touch gestures proved to be difficult due to the complexity of the 
observed interactions. The findings of this study indicate that the 
categorization of touch behaviors into discrete touch gesture cat-
egories based on dictionary definitions is not a suitable approach 
to capture the nature of touch behavior in less controlled settings.
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Additional research will be necessary to determine whether 
direct recognition and interpretation of higher level social 
messages from touch sensor data would be a viable option in 
less controlled situations. Moreover, as the current results are 
based on acted scenarios, it is important to verify in future 
research whether similar behaviors occur in a naturalistic set-
ting in which people would interact with a fully functioning 
robot pet in their own home. A first step could be to induce 
emotions in participants and observe their interactions with a 
responding robot pet in a lab setting. The use of verbal behavior 
that coincides with touch interaction seems another interesting 
direction for future studies into the automatic understanding of 
social touch.
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Several studies have indicated that interacting with social robots in educational contexts 
may lead to a greater learning than interactions with computers or virtual agents. As such, 
an increasing amount of social human–robot interaction research is being conducted 
in the learning domain, particularly with children. However, it is unclear precisely what 
social behavior a robot should employ in such interactions. Inspiration can be taken from 
human–human studies; this often leads to an assumption that the more social behavior 
an agent utilizes, the better the learning outcome will be. We apply a nonverbal behavior 
metric to a series of studies in which children are taught how to identify prime numbers 
by a robot with various behavioral manipulations. We find a trend, which generally agrees 
with the pedagogy literature, but also that overt nonverbal behavior does not account 
for all learning differences. We discuss the impact of novelty, child expectations, and 
responses to social cues to further the understanding of the relationship between robot 
social behavior and learning. We suggest that the combination of nonverbal behavior 
and social cue congruency is necessary to facilitate learning.

Keywords: human–robot interaction, robot tutors, social behavior, child learning, nonverbal immediacy

1. inTrODUcTiOn

The efficacy of robots in educational contexts has been demonstrated by several researchers when 
compared to not having a robot at all and when compared to other types of media, such as virtual 
characters (Han et al., 2005; Leyzberg et al., 2012; Tanaka and Matsuzoe, 2012; Alemi et al., 2014). 
One suggestion for why such differences are observed stems from the idea that humans see comput-
ers as social agents (Reeves and Nass, 1996) and that robots have increased social presence over other 
media as they are physically present in the world (Jung and Lee, 2004; Wainer et al., 2007). If the 
social behavior of an agent can be improved, then the social presence will increase and interaction 
outcomes should improve further (for example, through social facilitation effects (Zajonc, 1965)), 
but it is unclear how robot social behavior should be implemented to achieve such aims.

This has resulted in researchers exploring various aspects of robot social behavior and attempting 
to measure the outcomes of interactions in educational contexts, but a complex picture is emerging. 
While plenty of literature is available from pedagogical fields which describe teaching concepts, there 
are rarely examples of guidance for social behavior at the resolution required by social roboticists 
for designing robot behavior. The importance of social behavior in teaching and learning has been 
demonstrated between humans (Goldin-Meadow et al., 1992, 2001), but not enough is known for 
implementation in human–robot interaction (HRI) scenarios. This has led researchers to start 
exploring precisely how a robot should behave socially when information needs to be communicated 
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to, and retained by, human learners (Huang and Mutlu, 2013; 
Kennedy et al., 2015d).

In this article, we seek to establish what constitutes appropriate 
social behavior for a robot with the aim of maximizing learning 
in educational interactions, as well as how such social behavior 
might be characterized across varied contexts. First, we review 
work conducted in the field of HRI between robots and children 
in learning environments, finding that the results are somewhat 
mixed and that it is difficult to draw comparisons between studies 
(Section 2.1). Following this, we consider how social behavior 
could be characterized, allowing for a better comparison between 
studies and highlighting immediacy as one potentially useful 
metric (Section 2). Immediacy literature is then used to generate 
a hypothesis for educational interactions between robots and 
children. In an evaluation to test this hypothesis, nonverbal 
immediacy scores are gathered for a variety of robot behaviors 
from the same context (Section 3). While the data broadly agrees 
with the predictions from the literature, there are important 
differences that are left unaccounted for. We discuss these differ-
ences and draw on the literature to hypothesize a possible model 
for the relationship between robot social cues and child learning 
(Section 2.5). The work contributes to the field by furthering our 
understanding of the impact of robot nonverbal social behavior 
on task outcomes, such as learning, and by proposing a model that 
generates predictions that can be objectively assessed through 
further empirical investigation.

2. relaTeD WOrK

2.1. robot social Behavior and child 
learning in hri
There are many examples of compelling results, which sup-
port the notion that the physical presence of a robot can have 
a positive impact on task performance and learning. Leyzberg 
et  al. (2012) found that adults who were tutored by a physical 
robot significantly outperformed those who interacted with a 
virtual character when completing a logic puzzle. A controlled 
classroom-based study by Alemi et al. (2014) employed a robot to 
support learning English from a standard textbook over 5 weeks 
with a (human) teacher. In one condition, normal delivery was 
provided, and in the other, this delivery was augmented with 
a robot that was preprogrammed to explain words through 
speech and actions. It was found that using a robot to supple-
ment teaching over this period led to significant child learning 
increases when compared to the same material being covered by 
the human teacher without a robot. This is strong evidence for 
the positive impact that robots can have in education, which has 
been supported in other scenarios. Tanaka and Matsuzoe (2012) 
also found that children learn significantly more when a robot is 
added to traditional teaching, both immediately after the experi-
ment and after a delayed period (3–5  weeks later). Combined, 
these findings suggest that the use of a physically embodied robot 
can positively contribute to child learning.

Aspects of a robot’s nonverbal social behavior have been inves-
tigated in one-on-one tutoring scenarios with mixed results. Two 
studies in the same context by Kennedy et al. (2015c) and Kennedy 

et al. (2015d) have found that the nonverbal behavior of a robot 
does have an impact on learning, but that the effect is not always 
in agreement with predictions from the human–human interac-
tion (HHI) literature. These studies will be considered in more 
detail in Section 3. Similarly, Herberg et al. (2015) found that the 
HHI literature would predict an increase in learning performance 
with increased gaze of a robot toward a pupil, but the opposite was 
observed: an Aldebaran NAO would look either toward or away 
from a child while they completed a worksheet based on material 
they had learnt from the robot, but this was not found to be the 
case. However, Saerbeck et al. (2010) varied socially supportive 
behaviors of a robot in a novel second language learning scenario. 
These behaviors included gestures, verbal utterances, and emo-
tional expressions. Children learnt significantly more when the 
robot displayed these socially supportive behaviors.

The impact on child learning of verbal aspects of robot behavior 
has also been investigated. Gordon et al. (2015) developed robot 
behaviors to promote curiosity in children with the ultimate aim 
of increased learning. While the children were reciprocal in their 
curiosity, their learning did not increase as the HHI literature 
would predict. Kanda et al. (2012) compared a “social” robot to 
a “non-social” robot, operationalized through verbal utterances 
to children when they are completing a task. Children showed a 
preference for the social robot, but no learning differences were 
found.

Ultimately, it is a difficult task to present a coherent overview 
of the effect of robot social behavior on child learning, with many 
results appearing to contradict one another or not being compa-
rable due to the difference in learning task or behavioral context. 
More researchers are now using the same robotic platforms and 
peripheral hardware than before (quite commonly the Aldebaran 
NAO with a large touchscreen, e.g., Baxter et al. (2012)), but there 
remain few other similarities between studies. Behavior of various 
elements of the system is reported alongside learning outcomes, 
but it is difficult to translate from these descriptions to something 
that can be compared between studies. As such, it becomes almost 
impossible to determine if differing results between studies (and 
discrepancies with HHI predictions) are due to differences in 
robot behavior, the study population, other contextual factors, or 
indeed a combination of all three. It is apparent that a charac-
terization of the robot social behavior would help to clarify the 
differences between studies and provide a means by which certain 
factors could be accounted for in analysis; this will be explored in 
the following section.

2.2. characterizing social Behavior 
through nonverbal immediacy
To allow researchers to make clearer comparisons between 
studies and across contexts, a metric to characterize the social 
behavior of a robot is desirable. Various metrics have been used 
before in HRI. Retrospective video coding has been used in sev-
eral HRI studies as a means of measuring differences in human 
behavioral responses to robots, for example, the studies by Tanaka 
and Matsuzoe (2012); Moshkina et  al. (2014); Kennedy et  al. 
(2015b). However, this method of characterizing social behavior 
is incredibly time consuming, particularly when the coding of 
multiple social cues is required. Furthermore, it provides data 
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for social cues in isolation and does not easily provide a holistic 
characterization of the behavior. It is unclear what it means if the 
robot gazes for a certain number of seconds at the child in the 
interaction and also performs a certain number of gestures; this 
problem is exacerbated when a task context changes. The percep-
tion of the human directly interacting with the robot is also not 
accounted for. It is suggested that the direct perception of the 
human within the interaction is an important one, as they are the 
one being influenced by the robot behavior in the moment. This 
cannot be captured through post hoc video coding.

The Godspeed questionnaire series developed by Bartneck 
et al. (2009b) has been used in many HRI studies to measure users’ 
perception of robots (Bartneck et  al., 2009a; Ham et  al., 2011). 
The animacy and anthropomorphism elements of the scale in par-
ticular consider the social behavior and perception of the robot. 
However, it is not particularly suited to use with children due to the 
language level (i.e., use of words such as “stagnant,” “organic,” and 
“apathetic”). It may also be that the questionnaire would measure 
aspects of the robot not directly related to social behavior as it is 
asking about more general perceptions. While this could be of use 
in many studies, for the aim of characterizing social behavior in 
the case here, these aspects prevent suitable application.

Nonverbal immediacy (NVI) was introduced in the 1960s by 
Mehrabian (1968) and is defined as the “psychological availabil-
ity” of an interaction partner. Immediacy is further introduced as 
being a measure that indicates “the attitude of a communicator 
toward his addressee” and in a general form “the extent to which 
communication behaviors enhance closeness to and nonverbal 
interaction with another” (Mehrabian, 1968). A number of 
specific social behaviors are listed (touching, distance, forward 
lean, eye contact, and body orientation) to form a part of this 
measure, which were later utilized by researchers that sought to 
create and validate measuring instruments for NVI. However, 
it is also this feature that makes NVI a particularly enticing 
prospect for designers of robot behavior, as the social cues used 
in the measure are explicit (which is often not the case in other 
measures of perception commonly used in the field, e.g., Bartneck 
et al. (2009b)). A reasonable volume of data also already exists 
for studies considering immediacy, with over 80 studies (and 
N nearly 25,000) from its inception to 2001 (Witt et  al., 2004) 
and more since. This provides a context for NVI findings in HRI 
scenarios and a firm grounding in the human–human literature 
from which roboticists can draw.

Several versions of surveys have been developed and validated 
for measuring the nonverbal immediacy of adults (Richmond 
et al., 2003). Surveys have also been developed for verbal imme-
diacy (Gorham, 1988), but their ability to measure precisely 
the concept of verbal immediacy remains the subject of debate 
(Robinson and Richmond, 1995). Both verbal and nonverbal 
measures consider observed overt behavior more than, but not 
excluding, perceptions. Immediacy has recently been used in HRI 
as a means of motivating robot behavior manipulations (Szafir 
and Mutlu, 2012) and characterizing social behavior (Kennedy 
et al., 2017).

There is a consensus on the instruments used to measure 
nonverbal immediacy (whereas this is less clear for verbal imme-
diacy), and it is also transparent in terms of how participants are 

judging the robot. The Godspeed questionnaire is a useful tool for 
gathering perceptions, but nonverbal immediacy is clearly meas-
uring overt social behavior, and so it is ideal given our scope of 
trying to characterize social behavior (often with children). Use 
of the NVI metric brings several other advantages to researchers 
in HRI and for robot behavior designers. The NVI metric can 
be used as a guideline for an explicit list of social cues available 
for manipulation as a part of robot behavior. Characterization 
of robot social behavior at this relatively low level is not read-
ily available in other metrics. This provides a useful first step 
in designing robot behavior but also a means of evaluating and 
modifying future social behaviors. NVI constitutes part of an 
overall social behavior; hence NVI is treated as a characterization 
of the overall behavior, not a complete description or definition. 
Not all aspects of sociality or interaction are addressed through 
the measure, but to the knowledge of the authors, nor are these 
aspects fully covered by any other validated metric.

The NVI metric can be used with either the subjects them-
selves or with observers (during or after the interaction). This 
permits flexibility depending on the needs of the researcher. It 
is not always practical to collect such data from participants (for 
example, when they are young children or following an already 
lengthy interaction), so having the flexibility to gather these data 
post hoc is advantageous. Due to this mixture of practical and 
theoretical benefits, nonverbal immediacy (NVI) will be adopted 
as a social behavior characterization metric for this article.

Immediacy has been validated through physical manipulation 
of some of the social cues, specifically eye gaze and proximity, 
to ensure that the phenomenon indeed works in practice and is 
not a product of affect or bias in survey responses (Kelley and 
Gorham, 1988). It was indeed found that the physical manipula-
tions that were made which would lead to a higher immediacy 
score (standing closer and providing more eye gaze) did lead to 
increased short-term recall of information. While there is clearly 
a difference between recall and learning, recall of information is 
a promising first step to acquiring new understanding and skills. 
These results were hypothesized to exist in the other immediacy 
behaviors (such as gestures) as well. Overall, the link between 
teacher immediacy and student learning is hypothesized to be a 
positive one, as reflected in the meta-review by Witt et al. (2004) 
and many studies (Comstock et al., 1995; McCroskey et al., 1996; 
Christensen and Menzel, 1998). Thus, this prediction can be 
tested in human–robot interaction, where the robot takes the 
role of the tutor. As a result, we generate the following hypothesis:

H1. A robot tutor perceived to have higher immediacy leads 
to greater learning than a robot perceived to have lower 
immediacy.

3. aPPlYing nOnVerBal iMMeDiacY 
TO hri

In this section, an evaluation of nonverbal immediacy (NVI) in 
the context of cHRI is described. The aim is to explore whether the 
characterization that it provides can account for the differences 
between robot behaviors and learning outcomes of children. The 
wealth of literature that explores NVI in educational scenarios is 
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FigUre 1 | (left) still image from a human–robot interaction (specifically, the “social” condition), and (right) still image from the human–human 
condition. The tutor (either robot or human) teaches children how to identify prime numbers using the Sieve of Eratosthenes method using a large horizontal 
touchscreen as a shared workspace. The robot can “virtually” move numbers on screen (numbers move in correspondence with robot arm movements, but physical 
contact is not made with the screen).
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generally in agreement that higher NVI of an instructor is posi-
tively correlated with learning outcomes of students. We evaluate 
4 differently motivated robot behaviors and a human in a one-to-
one maths-based educational interaction with children. The aim 
is to use these data to provide a comparison between behavioral 
manipulations to test predictions from the HHI immediacy lit-
erature regarding social behavior.

3.1. Task Design and Measures
All five behaviors under consideration use the same context 
and broader methodology. Children aged 8–9 years are taught 
how to identify prime numbers between 10 and 100 using a 
variation on the Sieve of Eratosthenes method. They interact 
with a tutor: in 4 conditions, this is an Aldebaran NAO robot, 
and in 1 condition, this is a human (Figure 1). Children complete 
pretests and posttests in prime number identification, as well 
as pretests and posttests for division by 2, 3, 5, and 7 (skills 
required by the Sieve of Eratosthenes method for numbers 
in the range used) on a large touchscreen. The tutor provides 
lessons on primes and dividing by 2, 3, 5, and 7 (Figure  2). 
In all cases, an experimenter briefs the child and introduces 
the child to the tutor. The experimenter remains in the room 
throughout the interaction, but out of view of the child. Two 
cameras record the interactions; one is directed toward the child 
and one toward the tutor. Interactions with the tutor would 
last for around 10–15  min, with an additional 5  min required 
afterward in conditions where nonverbal immediacy surveys 
were completed (details to follow).

At the start of the interaction, the children complete a pretest 
in prime numbers on the touchscreen without any feedback 
from the screen or the tutor. A posttest is completed by the 
children at the end of the interaction; again no feedback is 
provided to the child so as not to influence their categorizations. 
Two tests are used in a cross-testing strategy, so children have 
a different pretest and posttest, and the tests are varied as to 
whether they are used as a pretest or posttest. The tests require 
the children to categorize numbers as “prime” or “not prime” 
by dragging and dropping numbers on screen into the category 
labels. Each test has 12 numbers, so by chance, a score of 6 
would be expected (given 2 possible categories 50% is chance). 
Learning is measured through the improvement in child score 

from the prime number pretest to posttest. By considering the 
improvement, any prior knowledge (correct or otherwise) or 
deviation in division skill is factored in to the learning measure. 
The mean and SD score (of 12) for the pretests are compared 
to those of the posttest to calculate the learning effect size 
(Cohen’s d) for each condition.

The prime number task was selected in consultation with 
education professionals to ensure that it was appropriate for the 
capabilities of children of this age. Children of this age have not 
yet learnt prime number concepts in school, but do have sufficient 
(but imperfect) skills for dividing by 2, 3, 5, and 7 as required 
by the technique for calculating whether numbers are prime. 
During the division sections of the interaction, the tutor provides 
feedback on child categorizations.

Nonverbal immediacy (NVI) scores are collected through 
questionnaires. For children, this was done after the interaction 
with the tutor had been completed, for adults, this was online 
(details in Section 3.4). A standard nonverbal immediacy ques-
tionnaire was adapted for use with children by modifying some 
of the language; the original and modified versions alongside the 
score formula can be seen online.1 Both the Robot Nonverbal 
Immediacy Questionnaire (RNIQ) and Child-Friendly Nonverbal 
Immediacy Questionnaire (CNIQ) were used depending on 
condition for children. Adults had the same questionnaire but 
with “the child” in place of “you” as they were observing the 
interaction, rather than participating in it. The questionnaire 
consists of 16 questions about overt nonverbal behavior of the 
tutor. Each question is answered on a 5-point Likert scale, and a 
final immediacy score is calculated by combining these answers. 
Some count positively toward the nonverbal immediacy score, 
whereas some count negatively, depending on the wording of the 
question. The version in the Appendix shows the questionnaire 
used for this study when a robot (as opposed to a human) tutor 
was used as this has been validated for use in HRI (Kennedy 
et al., 2017) and corresponds to the validated version from prior 
human-based literature (Witt et al., 2004).

Existing immediacy literature extensively uses adults (often 
students) as subjects; studies with children are rare. Prior work 

1 http://goo.gl/UoL5QM, also included as an Appendix.
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FigUre 2 | Task structure—the top section is led by the tutor and is aimed at teaching children how to calculate whether a number is prime. The 
bottom section consists of completing the nonverbal immediacy questionnaire—this is done after the interaction for 3 of the child conditions and via online videos to 
get adult responses. Dark purple boxes (pretest, posttest, and immediacy questionnaire) are the metrics under consideration in this article.
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has been conducted with the adapted nonverbal immediacy 
scale for use with robots and children (Kennedy et al., 2017); 
however, the task in this article is novel in this context (one-
to-one interactions instead of group instruction). Children 
present unique challenges when using questionnaire scales, 
such as providing different answers for negatively worded 
questions to positively worded ones (Borgers et  al., 2004) or 
trying to please experimenters (Belpaeme et al., 2013), which 
can consequently make it difficult to detect differences in 
responses (Kennedy et al., 2017). As children are not well rep-
resented in immediacy literature, using adults for NVI scores 
more tightly grounds our hypotheses and assumptions to the 
existing literature. However, NVI ratings are collected from 
children in robot conditions in which NVI is intentionally 
manipulated. As the nonverbal immediacy was intentionally 
manipulated between these conditions, and the adult results 
can provide some context, we can observe whether children do 
perceive the manipulation on this scale, potentially broadening 
the applicability of our findings.

3.2. conditions
A total of 5 conditions are used in this evaluation.2 As described in 
the introduction, an often adopted approach to social behavioral 
design is to consider how a human behaves and reproduce that 
(insofar as is possible) on the robot. As such, we use 2 conditions, 
seeking to follow and also invert this approach. We additionally 
use 2 conditions derived from the NVI literature, again seeking to 
maximize and minimize the behaviors along this scale. The final 
condition is a human benchmark. Further details for each can be 
seen in Table 1 and below:

 1. “Social” robot (SR)—this condition is derived from observa-
tions of an expert human–human tutor completing this task 
with 6 different children. This condition reflects a human 

2 Please note that while some data have previously been published for all of these 
conditions (Kennedy et al., 2015c,d, 2016), this article presents both novel data 
collection and different analysis perspectives in a new context to the prior work.
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TaBle 1 | Operationalization of the differences in nonverbal behavior 
between the conditions considered in the study presented in this article.

condition Motivation nonverbal behavior Other 
manipulations

“Social” 
robot (SR)

Based on 
a human 
model of  
the task

Seeks mutual gaze with child, 
frequent arm gestures

Uses child name, 
personalizes 
number of 
items in division 
posttests, 
“positive” 
feedback, 
variable 
feedback

“Asocial” 
robot (AR)

“Inverse” of 
the above 
human 
model

Avoids child gaze, frequent but 
mistimed arm gestures

Blunt feedback, 
repetitive 
feedback

High NVI 
robot (HNVI)

Intended to 
maximize the 
nonverbal 
immediacy

Seeks mutual gaze with child, 
frequent head/gaze movement, 
frequent arm gestures, lean 
forwards, continuous small 
upper body movements

Low NVI 
robot (LNVI)

Intended to 
minimize the 
nonverbal 
immediacy

Avoids child gaze, infrequent 
head/gaze movement, no arm 
gestures, TTS parameters 
modified to give “dull” voice, 
lean backward, rigid/no upper 
body movements

Human (HU) Human 
benchmark

No instructions given for 
nonverbal behavior

Further notes are provided about any other manipulations made besides nonverbal 
behavior.

6

Kennedy et al. Robot Tutor Nonverbal Social Behavior

Frontiers in ICT | www.frontiersin.org April 2017 | Volume 4 | Article 6

model-based approach to designing the behavior. The social 
behavior of the tutor was analyzed through video coding, 
and these behaviors were implemented on the robot where 
possible.

 2. “Asocial” robot (AR)—this condition considers the behav-
ior generated for the SR condition and seeks to “invert” it. 
That is, the behavior is intentionally manipulated such that 
an opposite implementation is produced, for example, the 
SR condition seeks to maximize mutual gaze, whereas this 
condition actively minimizes mutual gaze. The quantity of 
social cues used in this condition is exactly the same as the 
SR condition above; however, the placement of these cues is 
varied (for example, a wave would occur during the greeting 
in SR, but during an explanation in AR).

 3. High NVI robot (HNVI)—this condition uses the literature to 
drive the behavioral design. The behavior is derived from con-
sidering how the social cues within the nonverbal immediacy 
scale can be maximized. For example, the robot will seek to 
maximize gaze toward the child and make frequent gestures.

 4. Low NVI robot (LNVI)—this condition is intended to be 
the opposite to the HNVI condition. Again, the nonverbal 
immediacy literature is used to drive the design, but in this 
case, all of the social cues are minimized. For example, the 
robot avoids gazing at the child and makes no gestures.

 5. Human (HU)—this is a human benchmark. The human fol-
lows the same script for the lessons as the robot, but they are 

not constrained in their social behavior. The intention here is 
that we can then acquire data for a “natural”, non-robot inter-
action where the social behavior is not being manipulated; this 
can then be used to provide context for the robot conditions.

A summary of the motivations for the conditions and the 
operationalization of the differences between conditions can be 
seen in Table 1. Further implementation details can be seen in 
“Robot Behavior.” While the Aldebaran NAO platform cannot 
be manipulated for some of the cues involved in the nonverbal 
immediacy measure given the physical setup and modalities of 
the robot (i.e., smiling and touching), it has been manipulated on 
all of the other cues possible. This leaves only 4 of the 16 questions 
(2 of 8 cues) not manipulated in the metric. Specifically, these are 
questions 4, 8, 9, and 13, as seen in the Appendix, pertaining to 
frowning/smiling and touching.

3.2.1. Robot Behavior
Throughout the division sections of the interaction, the tutor 
(human or robot) would provide feedback on child categoriza-
tions and could also suggest numbers for the child to look at 
next. This was done through moving a number to the center of 
the screen and making a comment such as “why don’t you try 
this one next?” The tutor would also provide some prescripted 
lessons (Figure 2) that would include 2 example categorizations 
on screen. These aspects are central to the delivery of the learn-
ing content, so are maintained across all conditions to prevent a 
confound in learning content.

All robot behavior was autonomous, apart from the experi-
menter clicking a button to start the system once the child was sat in 
front of the touchscreen. The touchscreen and a Microsoft Kinect 
were used to provide input for the robot to act in an autonomous 
manner. The touchscreen would provide information to the robot 
about the images being displayed and the child moves on screen, 
the Kinect would provide the vector of head gaze for the child 
and whether this was toward the robot. Through these inputs, 
the robot behavior could be made contingent on child actions, 
for example, by providing verbal feedback after child moves (in 
all conditions), or manipulating mutual gaze. In all robot condi-
tions, the robot gaze was contingent on the child’s gaze, but with 
differing strategies depending on the motivation of the condition. 
The AR and LNVI conditions would actively minimize mutual 
gaze by intentionally avoiding looking at the child, whereas the 
SR and HNVI conditions would actively maximize mutual gaze 
by looking at the child when data from the Kinect indicated that 
the child was looking at the robot. Robot speech manipulation 
executed in the LNVI condition to make the robot voice “dull” 
was achieved through lowering the vocal shaping parameter of 
the TTS engine (provided by Acapela).

Due to the human model-based approach, some personaliza-
tion aspects such as use of child name were included as part of the 
social behavior in the SR condition. This was not done in the NVI 
conditions as these manipulations are not motivated through the 
NVI metric. The HNVI condition also addresses more of the NVI 
questionnaire items (leaning forward and continuous “relaxed” 
upper body movements) than the SR condition due to this dif-
ference in motivation. The AR condition has the same quantity 
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TaBle 2 | subject numbers by condition and average ages for adult 
participants by condition.

condition child N adult N adult M age, SD in 
brackets

child 
immediacy 

scores 
collected?

Low NVI robot 12 33 31.5 (12.2) Yes
High NVI robot 11 31 35.6 (11.7) Yes
Social robot 12 33 29.0 (10.4) No
Asocial robot 11 30 39.0 (12.2) No
Human 11 30 32.9 (12.3) Yes

TaBle 3 | adult and child nonverbal immediacy ratings and child learning 
(as measured through effect size between pretests and posttests for 
prime numbers) by tutor condition.

condition adult M nVi rating  
[95% CI]

child M nVi 
rating [95% CI]

child  
learning (d)

Low NVI robot 40.2 [38.1, 42.2] 51.0 [47.6, 54.4] 0.30
High NVI robot 48.4 [46.9, 50.0] 55.1 [52.3, 57.6] 0.67
Social robot 49.0 [47.6, 50.4] N/A 0.51
Asocial robot 48.5 [46.1, 50.8] N/A 0.89
Human 47.7 [45.3, 50.1] 54.4 [52.9, 55.9] 0.89
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of behavior as the SR condition, whereas the LNVI has a lack 
of behavior. As a concrete example, the AR condition includes 
inappropriately placed gestures, whereas the LNVI condition 
includes no gestures. Consequently, the LNVI and HNVI condi-
tions provide useful comparisons both to one another and to the 
SR and AR conditions.

3.3. Participants
To provide NVI scores for all 5 conditions, video clips of the con-
ditions were rated by adults. Nonverbal immediacy scores were 
also acquired at the time of running the experiments for 3 of the 
5 conditions (high and low NVI robot and human) from children 
through paper questionnaires (Table  2). These scores allow a 
check that the NVI manipulation between the robot conditions 
could be perceived by the children, with the adult data provided 
context for these ratings. Written informed consent from parents/
guardians was received for the children to take part in the study, 
and they additionally provided verbal assent themselves, in 
accordance with the Declaration of Helsinki. Written informed 
consent from parents/guardians and verbal assent from children 
were also received for the publication of identifiable images. The 
protocol was reviewed and approved by the Plymouth University 
ethics board. Table 2 shows numbers of participants per condi-
tion and average ages for the adult conditions; all children were 
aged 8 or 9 years old and were recruited through a visit to their 
school, where the experiment took place.

3.4. adult nonverbal immediacy  
score Procedure
Videos shown to adults to acquire nonverbal immediacy scores 
were each 47 s long. The videos contained both the interaction 
video (42 s) and a verification code (5 s; details in the following 
paragraph). The length of video was selected to be 42  s as the 
literature suggests that at least around 6 s are required to form a 
judgment of social behavior (Ambady and Rosenthal, 1993), and 
there was a natural pause at 42 s in the speech in all conditions so 
that it would not cut part-way through a sentence. The interaction 
clips were all from the start of an interaction, so the same infor-
mation was being provided by the tutor to the child in the clip.

To provide sufficient subject numbers for all of the conditions, 
an online crowdsourcing service3 was used. The participants were 

3 http://www.crowdflower.com/.

restricted to the USA and could only take part if they had a reliable 
record within the crowdsourcing platform. A test question was 
put in place whereby participants had to enter a 4 digit number 
into a text box. This number was shown at the end of the video 
for 5 s (the video controls were disabled so it could not be paused 
and the number would disappear after the video had finished). 
A different number was used for each video. If the participants 
did not enter this number correctly, then their response was dis-
carded. The crowdsourcing platform did not allow the prevention 
of users completing multiple conditions, so any duplicates were 
removed, i.e., only those seeing a video for the first time were kept 
as valid responses. A total of 366 responses were collected, but 209 
were discarded as they did not answer the test question correctly, 
the user had completed another condition,4 or the response was 
clearly spam (for example, all answers were “1”). This left 157 
responses across 5 conditions; 90M/67F (Table 2).

4. resUlTs

When performing a one-way ANOVA, a significant effect is 
found for condition seen, showing that the robot behavior 
influences perceived nonverbal immediacy; F(4,152)  =  14.057, 
p < 0.001. Post hoc pairwise comparisons with Bonferroni cor-
rection reveal that the adult-judged NVI of the LNVI condition 
is significantly different to all other conditions (p  <  0.001 in 
all cases), but no other pairwise comparisons are statistically 
significant at p <  0.05. The nonverbal immediacy score means 
and learning effect sizes for each condition can be seen in Table 3. 
Children learning occurs in all conditions. Generally, it can be 
seen that the conditions with higher rated nonverbal immediacy 
lead to greater child improvement in identifying prime numbers.

While significance testing provides an indication that most 
of the conditions are similar (at least statistically) in terms of 
NVI, additional information for addressing the hypothesis can 
be gleaned by considering the trend that these data suggest 
(Figure  3). A strong positive correlation is found between the 
(adult) NVI score of the conditions and the learning effect sizes 
(Cohen’s d) of children who interacted in those conditions 
(r(3) = 0.70, p = 0.188). This correlation is not significant, likely 
due to the small number of conditions under consideration, but 
the strength of the correlation suggests that a relationship could 
be present.

4 The majority of exclusions were due to users having completed another condition, 
thereby impairing the independence of the results.
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FigUre 4 | nonverbal immediacy scores as judged by the children in the interaction and learning effect sizes for the prime number task. The dotted 
green line indicates a trend toward greater perceived nonverbal immediacy of the tutor leading to increased learning. Error bars show 95% confidence interval.

FigUre 3 | nonverbal immediacy scores as judged by adults and learning effect sizes for the prime number task. The dotted green line indicates a trend 
toward greater nonverbal immediacy of the tutor leading to increased learning. Error bars show 95% confidence interval.
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When the immediacy scores provided by the children who 
interacted with the robot are also considered, a similar pattern 
can be seen (Figure 4). The adult and child immediacy ratings 
correlate well, with a strong positive correlation (r(1)  =  1.00, 
p  <  0.001). There is also a strong positive correlation for the 
children between immediacy score of the conditions and the 
learning effect sizes (Cohen’s d) in those conditions (r(1) = 0.86, 
p  =  0.341). Again, significance is not observed, but the power 
of the test is low due to the number of data points available for 
comparison. The strong positive correlations between child 
immediacy scores and learning and adult immediacy scores and 
learning provide some support for hypothesis H1 (that higher 
tutor NVI leads to greater learning), but further data points 
would be desired to explore this relationship further. It should 
be noted that we consider the results of 57 children and 157 
adults across 5 conditions; acquiring further data points for more 

behaviors (and deciding what these behaviors should be) would 
be a time-consuming task.

5. DiscUssiOn

There is a clear trend in support of hypothesis H1: that a tutor 
perceived to have higher immediacy leads to greater learning. 
As such, increasing the nonverbal immediacy behaviors used 
by a social robot would likely be an effective way of improving 
child learning in educational interactions. However, nonverbal 
immediacy does not account for all of the differences in learn-
ing. Three of the conditions have near identical NVI scores as 
judged by adults, but quite varied learning results (high NVI 
robot: M  =  48.4 NVI score/d  =  0.67 pre–post test improve-
ment, asocial robot: NVI M = 48.5/d = 0.89, social robot: NVI 
M  =  49.0/d  =  0.51). This partially reflects the slightly mixed 
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picture of immediacy that the pedagogy literature presents; 
for example, the disagreement as to whether NVI has a linear 
(Christensen and Menzel, 1998) or curvilinear (Comstock et al., 
1995) relationship with learning. Nonetheless, there are further 
factors that may be introduced by the use of a robot that may 
have had an influence on the results. Nonverbal immediacy only 
considers overt observed social behaviors, so by design does not 
cover all possible aspects of effective social behavior for teaching. 
While this seems to be enough in HHI (Witt et al., 2004), it may 
not be for HRI since various inherent facets of human behavior 
cannot be assumed for robots. Several possible explanations as 
to why this learning variation is present will now be discussed. 
From this, a possible model (suggested to be more accurate) of 
the relationship between social behavior and learning is pro-
posed. Such a model may be useful in describing (and testing) 
the relationship between social behavior and child learning for 
future research.

5.1. Timing of social cues
The quantity of social cues used in both the social robot and the 
asocial robot conditions is exactly the same; however, the timing 
is varied. Timing is not considered as part of the nonverbal imme-
diacy metric—the scale measures whether cues have, or have not, 
been used, rather than whether their timing was appropriate. The 
cues used in the asocial robot condition were intentionally placed 
at inappropriate times (for example, waving part-way through the 
introduction, instead of when saying hello). This is not factored 
into the nonverbal immediacy measure, but could impact the 
learning (Nussbaum, 1992).

The timing of social cues in the human condition may also 
explain why the learning in this condition was higher than the 
others. The robot conditions are contingent on aspects of child 
behavior, such as gaze and touchscreen moves, but are not 
adapted to individual children (for example, the number of feed-
back instances the robot provides would not be based on how well 
the child was performing). However, the human is presumably 
adaptive in both the number of social cues used and the timing 
of these cues. Again, this would not be directly revealed by the 
immediacy metric, but could account for some of the learning 
difference. Indeed, the nonverbal immediacy metric comes from 
HHI studies and has been validated in such environments. In 
HHI, there is a reasonable assumption that the timing of social 
cues will be appropriate, and so it may not be necessary to include 
it as part of a behavioral metric for HHI. However, when applied 
to social robotics, the assumption of appropriate timing no longer 
applies, and so to fully account for learning differences in HRI, 
timing may need more explicit incorporation into characteriza-
tions of social behavior. This constitutes a limitation of the NVI 
metric, but also an opportunity for expansion in future work to 
capture timing aspects.

5.2. relative importance of social cues
One substantial difference between the robot conditions and the 
human condition is the possibility of using facial expressions. The 
robotic platform used for the studies was the Aldebaran NAO. 
This platform has limited ability to generate facial expressions as 
none of the elements of the face can move, only the eye color can 

be changed. On the other hand, the human has a rich set of facial 
expressions to draw upon.

While the overall nonverbal immediacy scores for the asocial, 
social, and human conditions are tightly bunched, the make-up 
of the scores is not. For example, the robot scores (asocial and 
social combined) are higher for gesturing, averaging M  =  4.3 
(95% CI 4.1, 4.5) out of 5 for the nonverbal immediacy question 
about gesturing (the robot uses its hands and arms to gesture 
while talking to you), compared to M  =  3.1 (95% CI 2.7, 3.5) 
for the human. However, the human is perceived to smile more 
(M = 2.5, 95% CI 2.1, 2.8) than the robot (M = 1.8, 95% CI 1.5, 
2.0). Through principle component analysis, Wilson and Locker 
(2007) found that different elements of nonverbal behavior do not 
contribute equally to either the nonverbal immediacy construct 
or instructor effectiveness. Facial expressions (specifically smiles) 
have a large impact on both the nonverbal immediacy construct 
and the instructor effectiveness, whereas gestures do not have 
such a large effect (although still a meaningful contribution; 
smiles: 0.54, gestures: 0.30 component contribution from Wilson 
and Locker (2007)).

In the nonverbal immediacy metric, all social cues are given 
equal weighting. However, this may not always be the most 
appropriate method for combining the cues given the evidence, 
which suggests that some cues may contribute more than others 
to various outcomes (McCroskey et al., 1996; Wilson and Locker, 
2007). This could be a further explanation as to why several of 
the conditions in the study conducted here have near identical 
overall nonverbal immediacy scores, but very different learning 
outcomes.

5.3. novelty of character and Behavior
The novelty of both the character (i.e., robot or human) and the 
behavior itself could have had an impact on the learning results 
found in the study. Novelty is often highlighted as a potential issue 
in experiments conducted in the field (Kanda et al., 2004; Sung 
et  al., 2009). The novelty of the robot behavior could override 
the differences between the conditions and subsequently influ-
ence the learning of the child. In the social robot condition here, 
novel behavior (such as new gestures) was often introduced when 
providing lessons to the child. Between humans, this would likely 
result in a positive effect (Goldin-Meadow et al., 2001), but when 
done by a robot, the novelty of the behavior may counteract the 
intended positive effect.

There may also be a difference in the novelty effect for the chil-
dren seeing the robot when compared to the human. Although 
the human is not one that they are familiar with, they are still 
“just” a human, whereas the robot is likely to be more exciting and 
novel as child interaction with robots is more limited than with 
humans. The additional novelty of the robot could have been a 
distraction from the learning, explaining why the learning in the 
human condition is higher.

Finally, the novelty may have impacted the nonverbal immediacy 
scores themselves. It is possible that observers (be they children 
or adults) score immediacy on a relative scale. It is reasonable to 
suggest that the immediacy of the characters is judged not as a 
standalone piece of behavior, but in the context of an observer’s 
prior experience, or expectations for what that character may be 
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TaBle 4 | guttman’s λ6 and learning effect size by condition.

condition learning effect size (cohen’s d) guttman’s λ6 (g6)

Asocial robot 0.89 0.84
Social robot 0.51 0.83
High NVI robot 0.67 0.69
Low NVI robot 0.30 0.78
Human 0.89 0.87

λ6 is used as an indicator of social cue congruency, with a higher value indicating 
greater congruency between cues.
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capable of. Clear expectations will likely exist for human behavior, 
but not for robot behavior, which may lead to an overestimation of 
robot immediacy. This would impact on the ability of considering 
the human and robots on the same nonverbal immediacy scale 
and drawing correlations with learning and cannot be ruled out 
as a factor in the results.

5.4. (in)congruency of social cues
As previously discussed, the robot is limited in the social cues that 
it can produce (for example, it cannot produce facial expressions). 
This meant that the conditions all manipulated the available robot 
social cues, but if social cues are interpreted as a single percept by 
the human (as suggested by the literature (Zaki, 2013)), then this 
could lead to complications.

In the case of the social robot, many social cues are used to 
try and maximize the “sociality” of the robot. This means that 
there is a lot of gaze from the robot to the child, and the robot 
uses a lot of gestures. However, it still cannot produce facial 
expressions. This incongruency between the social cues could 
produce an adverse effect in terms of perception on the part of 
the child and subsequently diminish the learning outcome. There 
are clear parallels here with the concept of the Uncanny Valley 
(Mori et al., 2012), with models for the Uncanny Valley based on 
category boundaries in perception indicating issues arising from 
these mismatches (Moore, 2012).

The expectation the child has for the robot social behavior is 
suggested to be of great importance (Kennedy et al., 2015a). If 
their expectations are formed early on through high quantities of 
gaze and gestures, then there would be a discrepancy when facial 
expressions do not match this expectation. Again, this expectation 
discrepancy may lead to adverse effects on learning outcomes, as 
in the case of perceptual issues due to cue incongruence. These 
issues may become exacerbated as the overall level of sociality 
of behavior of the robot increases as any incongruencies then 
become more pronounced. As stated in the study by Richmond 
et al. (1987), higher immediacy generally leads to more commu-
nication, which can create misperceptions (of liking, or expected 
behavior).

As the nonverbal immediacy scale has been rigorously 
validated (McCroskey et  al., 1996; Richmond et  al., 2003), 
it is known that it does indeed provide a reliable metric for 
immediacy in humans (Cronbach’s alpha is typically between 
0.70 and 0.85 (McCroskey et  al., 1996)). Typically, internal 
consistency measures of a scale would be used to evaluate the 
ability of items in a scale to measure a unidimensional con-
struct, i.e., how congruent the items are with one another. As 
such, a consistency measure could be used as an indicator of 
the congruency between the cues. The robot lacks a number of 
capabilities when compared to humans, and there are several 
scale items that are known to be impaired on the robot, such 
as smiling/frowning. Using an internal consistency measure 
across all NVI questionnaire items (with the negatively worded 
question responses reversed) can reveal cases in which the cues 
are relatively more or less congruent. Greater internal consist-
ency indicates lower variability between questionnaire items 
(the social cues) and, therefore, more congruence between 
the social cues. Lower internal consistency indicates larger 

variability between scale items and thus greater incongruency 
between the cues.

Guttman’s λ6 (or G6) for each condition has been calculated,5 
revealing that indeed there are differences in how congruent the 
cues could be considered to be (Table  4; Figure  5). All of the 
NVI questionnaire items are included in the λ6 calculation. The 
behavioral conditions used here are restricted in such a way that 
a lower reliability would be expected (as several cues of the scale 
are not utilized) for some conditions. Indeed, these values fall 
in line with predictions that could be made based on the social 
behavior in each of the conditions. The human reliability score 
provides a “sanity check” as it is assumed that human behavior 
would have a certain degree of internal consistency between social 
cues, which is reflected by it having the highest value. In addition, 
the LNVI robot condition has intentionally low NVI behavior, 
so the lack of smiling or touching (high NVI behaviors) does 
not cause incongruency (signified by a lower λ6 score), whereas 
the HNVI robot condition has intentionally high NVI behavior 
where possible on the robot, so the lack of smiling and touching 
cause greater overall incongruency, resulting in a considerably 
lower λ6 score.

5.5. a hypothesis: social cue congruency 
and learning
Taking Guttman’s λ6 to provide an indication of the congruency 
of social cues, then it is clear that this alone would not provide 
a strong predictor of learning (Figure  5). However, these data 
can be combined with the social behavior (as measured through 
immediacy) to be compared to learning outcomes. In the resulting 
space, both congruency and social behavior could have an impact 
on learning, as hypothesized in the previous section (Figure 6).

Our data show that learning is best with human behavior, 
which is shown to be highly social and reasonably congruent. 
When the social behavior used is congruent, but not highly 
social, then the learning drops to a low level. The general trend of 
our data shows that when the congruency of the cues increases 

5 Cronbach’s alpha tends to be the de facto standard for evaluating internal con-
sistency and reliability; however, its use as such a measure has been called into 
question (Revelle and Zinbarg, 2009)—including by its own creator (Cronbach 
and Shavelson, 2004). Instead λ6 is used, which considers the amount of variance 
in each item that can be accounted for by the linear regression of all other items 
(the squared multiple correlation) (Guttman, 1945). This provides a lower bound 
for item communality, becoming a better estimate with increased numbers of 
items. This would appear to provide a logical (but likely imperfect) indicator for 
the congruency of cues as required here.
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consistency (measured through λ6) leading to greater learning.
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(indicated by Guttman’s λ6), learning also increases, and the same 
is true for social cues. The combination of congruency and social 
behavior as characterized by nonverbal immediacy provides a 
basis for learning predictions, where the combination of high 

social behavior and social cue congruency is necessary to maxi-
mize potential learning.

Such a hypothesis is supported by the view of social cues 
being perceived as a single percept, as suggested by Zaki (2013).  

FigUre 6 | learning, congruency, and social behavior for each of the 5 conditions. Learning is measured in effect size between pretest and posttest for 
children. Congruency is indicated through Guttman’s λ6 of the adult nonverbal immediacy scores. Social behavior is characterized through nonverbal immediacy 
ratings from adults. An interactive version of this figure is available online to provide different perspectives of the space: https://goo.gl/ZNPxc8.
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Experimental evidence with perception of emotions would 
seem to provide additional weight to such a perspective (Nook 
et al., 2015). This has clear implications for designers of social 
robot behavior when human perceptions or outcomes are of 
any degree of importance. The combination of all social cues 
in context must be considered alongside the expectations of 
the human to generate appropriate behavior. Not only does 
this give rise to a number of challenges, such as identifying 
combinatorial contextual expectations for social cues, but it 
could also have implications for how social cues should be 
examined experimentally. The isolation of specific social cues 
in experimental scenarios would not describe the role of that 
social cue, but the role of that social cue, given the context of all 
other cues. This is an important distinction that leads to a great 
deal more complexity in “solving” behavioral design for social 
robots, but that would also contribute to explanations of why 
a complex picture is emerging in terms of the effect of robot 
behavior on learning, as discussed in Section 2.1. The NVI 
metric and the predictions (that can be objectively examined) 
we put forward below provide a means through which robot 
behavior designers can iteratively implement and evaluate 
holistic social behaviors in an efficient manner, contributing to 
a more coherent framework in this regard. In particular, three 
predictions can be derived from the extremities of the space 
that is presented:

P1. Highly social behavior of a tutor robot (as characterized by 
nonverbal immediacy) with high congruency will lead to 
maximum potential learning.

P2.  Low social behavior of a tutor robot with low congruency 
will lead to minimal potential learning.

P3.  A mismatch in the social behavior of a tutor robot and 
the social cue congruency will lead to less than maximum 
potential learning.

Guttman’s Lambda, as providing a measure of consistency, 
is used here as a proxy for the congruency of cues as observed 
by the study participants. We argue that this provides the 
necessary insight into cue congruency; however, the mapping 
between this metric and overtly judged congruency remains 
to be characterized. This would not necessarily be something 
that would be straightforward to achieve due to the potentially 
complex interactions between large numbers of social cues. For 
these predictions, use of the NVI metric as the characterization 
of social behavior would still suffer from some of the issues 
outlined earlier in this discussion: lack of timing information, 
relative cue importance, and novelty of behavior. The predictions 
are based on the general trends observed here, and it is noted that 
NVI is not a comprehensive measure of social behavior; indeed 
the SR condition in particular would not be fully explained 
using this means alone when compared to other results such as 
the AR condition. In addition, the data used for the learning 
axis were collected with relatively few samples (just over 10 per 
condition) in a specific experimental setup. Ideally, many further 
samples would be collected in both short and long term. The 
data collected here are over the short term and with children 

unfamiliar with robots. As longer term interactions take place, 
or as robots become more commonplace in society, expectations 
may change.

6. cOnclUsiOn

In this article, we have considered the use of nonverbal imme-
diacy as a means of characterizing nonverbal social behavior in 
human–robot interactions. In a one-to-one maths tutoring task 
with humans and robots, it was shown that children and adults 
provide strong positively correlated ratings of tutor nonverbal 
immediacy. In addition, in agreement with the human–human 
literature, a positive correlation between tutor nonverbal 
immediacy and child learning was found. However, nonverbal 
immediacy alone could not account for all of the learning differ-
ences between tutoring conditions. This discrepancy led to the 
consideration of social cue congruency as an additional factor 
to social behavior in learning outcomes. Guttman’s λ6 was used 
to provide an indication of congruency between social cues. The 
combination of social behavior (as measured through nonverbal 
immediacy) and cue congruency (as indicated by Guttman’s λ6) 
provided an explanation of the learning data. It is suggested that 
if we are to achieve desirable outcomes with, and reactions to, 
social robots, greater consideration must be given to all cues 
in the context of multimodal social behavior and their possible 
perception as a unified construct. The hypotheses we have gener-
ated predict that the combination of high social behavior, and 
social cue congruency is necessary to maximize learning. The 
Robot Nonverbal Immediacy Questionnaire (RNIQ) developed 
for use here is offered as a means of gathering data for such 
characterizations.
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aPPenDiX

a. robot nonverbal immediacy 
Questionnaire (rniQ)
The following is the questionnaire used by participants in the 
evaluation to rate the nonverbal immediacy of the robot, based 
on the short-form nonverbal immediacy scale-observer report. 
Options are provided in equally sized boxes below each ques-
tion (or equally spaced radio buttons in the online version). The 
options are: 1 = Never; 2 = Rarely; 3 = Sometimes; 4 = Often; 
5 = Very Often. The questions are as follows:

 1. The robot uses its hands and arms to gesture while talking to 
you

 2. The robot uses a dull voice while talking to you
 3. The robot looks at you while talking to you
 4. The robot frowns while talking to you
 5. The robot has a very tense body position while talking to you
 6. The robot moves away from you while talking to you

 7. The robot changes how it speaks while talking to you
 8. The robot touches you on the shoulder or arm while talking 

to you
 9. The robot smiles while talking to you

 10. The robot looks away from you while talking to you
 11. The robot has a relaxed body position while talking to you
 12. The robot stays still while talking to you
 13. The robot avoids touching you while talking to you
 14. The robot moves closer to you while talking to you
 15. The robot looks keen while talking to you
 16. The robot is bored while talking to you

Scoring:
Step 1. Add the scores from the following items:
1, 3, 7, 8, 9, 11, 14, and 15.
Step 2. Add the scores from the following items:
2, 4, 5, 6, 10, 12, 13, and 16.
Total Score = 48 plus Step 1 minus Step 2. 
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To err is robot: how humans  
assess and act toward an  
erroneous social robot
Nicole Mirnig1*, Gerald Stollnberger1, Markus Miksch1, Susanne Stadler1, Manuel Giuliani 2 
and Manfred Tscheligi1,3

1 Center for Human-Computer Interaction, University of Salzburg, Salzburg, Austria, 2 Bristol Robotics Laboratory, University of the 
West of England, Bristol, United Kingdom, 3 Center for Technology Experience, Austrian Institute of Technology, Vienna, Austria

We conducted a user study for which we purposefully programmed faulty behavior into 
a robot’s routine. It was our aim to explore if participants rate the faulty robot different 
from an error-free robot and which reactions people show in interaction with a faulty 
robot. The study was based on our previous research on robot errors where we detected 
typical error situations and the resulting social signals of our participants during social 
human–robot interaction. In contrast to our previous work, where we studied video 
material in which robot errors occurred unintentionally, in the herein reported user study, 
we purposefully elicited robot errors to further explore the human interaction partners’ 
social signals following a robot error. Our participants interacted with a human-like 
NAO, and the robot either performed faulty or free from error. First, the robot asked 
the participants a set of predefined questions and then it asked them to complete a 
couple of LEGO building tasks. After the interaction, we asked the participants to rate 
the robot’s anthropomorphism, likability, and perceived intelligence. We also interviewed 
the participants on their opinion about the interaction. Additionally, we video-coded the 
social signals the participants showed during their interaction with the robot as well 
as the answers they provided the robot with. Our results show that participants liked 
the faulty robot significantly better than the robot that interacted flawlessly. We did not 
find significant differences in people’s ratings of the robot’s anthropomorphism and per-
ceived intelligence. The qualitative data confirmed the questionnaire results in showing 
that although the participants recognized the robot’s mistakes, they did not necessarily 
reject the erroneous robot. The annotations of the video data further showed that gaze 
shifts (e.g., from an object to the robot or vice versa) and laughter are typical reactions 
to unexpected robot behavior. In contrast to existing research, we assess dimensions 
of user experience that have not been considered so far and we analyze the reactions 
users express when a robot makes a mistake. Our results show that decoding a human’s 
social signals can help the robot understand that there is an error and subsequently 
react accordingly.

Keywords: social human–robot interaction, robot errors, user experience, social signals, likeability, faulty robots, 
error situations, Pratfall Effect
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1. inTrODUcTiOn

Social robots are not yet in a technical state where they operate 
free from errors. Nevertheless, most research approaches act on 
the assumption of robots performing faultlessly. This results in a 
confined standpoint, in which the created scenarios are consid-
ered as gold standard. Alternatives resulting from unforeseeable 
conditions that develop during an experiment are often not further 
regarded or simply excluded. It lies within the nature of thorough 
scientific research to pursue a strict code of conduct. However, we 
suppose that faulty instances of human–robot interaction (HRI) 
are nevertheless full with knowledge that can help us further 
improve the interactional quality in new dimensions. We think 
that because most research focuses on perfect interaction, many 
potentially crucial aspects are overlooked.

Research that is specifically directed at exploring erroneous 
instances of interaction could be useful to further refine the qual-
ity of HRI. For example, a robot that understands that there is 
a problem in the interaction by correctly interpreting the user’s 
social signals could let the user know that it understands the 
problem and actively apply error recovery strategies. Knowing 
the severity of an error could further be helpful for the robot in 
finding the adequate corrective action.

Since robots in HRI are social actors, they elicit mental models 
and expectations known from human–human interaction (HHI) 
(Lohse, 2011). One aspect we know from HHI is that imperfec-
tions make human social actors more likeable and more believ-
able. The psychological phenomenon Pratfall Effect states that 
people’s attractiveness increases when they commit a mistake. 
Aronson et al. (1966) suggest that superior people may be viewed 
as superhuman and distant while a mistake would make them 
seem more human. Similarly, one could argue that robots are 
often seen as impeccable, since this is how they are presented 
in the media (Bruckenberger et  al., 2013). Especially, people 
who have not interacted with robots themselves build their 
mental models and expectations about robots from those media. 
Moreover, experience with technology in general is mostly based 
on interaction with consumer products, such as smartphones or 
TVs. Those products are very common and need to work more 
or less error-free in order to get accepted on the market. For 
example, a TV which has problems in sound will not survive long 
on the market. People expect technology they paid for to work 
without errors. What makes the interaction with social robots 
different is that a TV is not seen as a social actor, in contrast to 
a social robot. This might result in people assuming robots to be 
without fail, which makes them likewise seem distant (Pratfall 
Effect). Robots that commit errors, on the other hand, could 
then be viewed as more human-like and, in subsequence, more 
likeable. With their study on an erroneous robot in a competi-
tive game-play scenario Ragni et al. (2016) provided additional 
evidence that people consider robots in general as competent, 
functional, and intelligent.

In our effort to embrace the imperfections of social robots 
and create more believable robot characters, we propose to 
specifically explore faulty robot behavior and the social signals 
humans show when a robot commits a mistake. The term social 
signal is used to describe verbal and non-verbal signals that 

humans use in a conversation to communicate their intentions. 
Vinciarelli et  al. (2009) argued that the ability to recognize 
social signals is crucial to mastering social intelligence. It is our 
long-term goal to enable robots to communicate about their 
errors and deploy recovery strategies. To achieve this ambitious 
goal, more general knowledge about robot errors is required. 
We report on a user study where we purposefully elicited faulty 
robot behavior.

Our user study is based on our previous research where we 
analyzed an extensive pool of video data showing social HRI 
instances where the robot made an error. The videos covered a 
variety of scenarios in different contexts, different robots, and a 
multitude of social signals. The robot errors happened uninten-
tionally and, thus, the data created a sound basis for studying the 
nature of error situations. We found that there are two different 
kinds of robot errors, i.e., social norm violations (SNV) and 
technical failures (TF) (Giuliani et  al., 2015), for which human 
interaction partners respond with typical social signals (Mirnig 
et  al., 2015). A social norm violation means that the robot’s 
actions deviate from the underlying social script, that is, the com-
monly known interaction steps a certain situation is expected to 
take. For example, a participant orders a drink from a bartender 
robot, the robot signals it has understood but then asks again for 
the participant’s order. A technical failure means that the robot 
experiences a technical disruption that is perceived as such by 
the user. For example, a robot picks up an object but then loses it 
while grasping. From an expert perspective all robot errors might 
be considered as technical failures. Since, we are interested in the 
human perception of robot errors, we distinguish error types 
from how a human most likely perceives error events.

With the user study presented in this paper, we expand our 
previous research in purposefully eliciting robot errors and 
researching the resulting social signals of the human interaction 
partners. We measured how users perceive a robot that makes 
errors during interaction (social norm violations and technical 
failures) as compared to a robot operating free from errors.

The directed exploration of robot errors in social interaction 
is a new and upcoming topic. The HRI research community has 
reported first results on exploratory user studies. For example, 
Salem et  al. (2015) conducted an experiment with an errone-
ous robot. The researchers measured how the robot’s behavior 
influenced how the participants rated its trustworthiness and 
reliability. They also measured if robot errors affect the task per-
formance. The researchers found that while participants rated the 
correctly behaving robot as significantly more trustworthy and 
reliable, the fact that a robot performs correctly or faulty did not 
influence the objective task performance.

In an earlier work, Salem et  al. (2013) researched the effect 
of speech and gesture congruence on perceived anthropomor-
phism, likability, and task performance. In their experiment, a 
robot either spoke only, spoke while making congruent coverbal 
gestures, or spoke while making incongruent coverbal gestures. 
The researchers found that congruent coverbal gesturing makes 
a robot appear more anthropomorphic and more likeable. This 
effect was even stronger for incongruent coverbal gesturing. 
However, incongruent coverbal gesturing resulted in a lower 
task performance. Following our line of argumentation, such 
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incongruent behavior violates the human social script, as humans 
do not expect incongruent messages from different modalities in 
everyday interactions (Schank and Abelson, 1977). Therefore, 
incongruent multimodal robot behavior results in a social 
norm violation. Ragni et al. (2016) reported similar effects. The 
researchers performed a study in which a human and a robot 
competed against each other in a reasoning task and a memory 
task. During the interaction, the robot either performed with or 
without errors. While participants rated the faulty robot as less 
competent, less reliable, less intelligent, and less superior than 
the error-free robot, participants reported having enjoyed the 
interaction more when the robot made errors. However, the task 
performance was significantly lower in the faulty robot condition.

Gompei and Umemuro (2015) investigated how a robot’s 
speech errors influenced how familiar and sincere it was rated. 
The researchers found that speech errors made early in an inter-
action might lower the robot’s sincerity rating. However, speech 
errors that are introduced later in the interaction might increase 
the robot’s familiarity. Short et al. (2010) investigated people’s 
perception when playing rock–paper–scissors with a robot that 
either played fair, cheated verbally by announcing a different 
hand gesture, or cheated with its actions by changing the hand 
gesture. The researchers found that a cheating robot resulted in 
a bigger social engagement, in comparison to one which plays 
fair. They stated that the results suggest that participants showed 
more verbal social signals to the robot that cheated. Participants 
were surprised by the cheating behavior of the robot, although 
verbal cheating was perceived as malfunction, while cheating 
through action was perceived as deliberate cheating behavior. 
These findings support our assumption that through unex-
pected behavior, people see a robot as a more social actor and 
that unexpected behavior might be interpreted as erroneous 
behavior.

In an online survey, Lee et al. (2010) found that when a service 
robot made a mistake, this has a strong negative impact on peo-
ple’s rating of the service quality and the robot itself. However, 
when the robot deployed a recovery strategy, both the rating of 
the service and the rating of the robot improved. The researchers 
deployed different recovery strategies and found that all of them 
increased the ratings of the robot’s politeness. A robot which 
apologized for its mistake was seen more competent, people 
liked it more and felt closer to it, and a robot offering compensa-
tion for its mistake (such as a refund) was rated to be of more 
satisfying service quality but participants were hesitant to use 
the robot again. Whereas, an apology and a recovery strategy 
of offering options was perceived to foster reuse likelihood. In 
a related online survey, Brooks et  al. (2016) explored people’s 
reactions to the failure of an autonomous robot. In the survey, 
participants were asked to assess situations where an autono-
mous robot experienced different kinds of failures that affected 
a human interacting with it. They found that people who saw an 
erroneous robot rated it rather negatively on a series of items 
(i.e., How satisfying, pleasing, disappointing, reliably, depend-
able, competent, responsible, trustworthy, risky to use is the 
robot?), while people who experienced a robot without failure 
rated it positively. When the erroneous robot deployed mitiga-
tion strategies to overcome the error either by prompting human 

intervention or by deploying a different approach, people’s rat-
ings toward the erroneous robot became less negative. However, 
the amount the strategy influenced peoples reaction depended 
on the kind of task, the severity of the failure, and the risk of the  
failure.

To enable a robot to generate help requests in case of an error 
situation, Knepper et al. (2015) developed their inverse seman-
tics algorithm. It allows the robot to phrase precise requests that 
specify the kind of help that is needed. The researchers evalu-
ated their algorithm in a user study and found that participants 
preferred the precise request over high level, general phrasings. 
While in their approach errors are recognized through the 
robot’s internal state and the environment (e.g., the robot is 
supposed to pick up an object which it can visually detect, but 
the object is out of its reach), we envision an approach where the 
robot can additionally detect an error through its human inter-
action partner’s social signals. For example, Gehle et al. (2015) 
explored gaze patterns of human groups upon unexpected 
robot behavior in a museum guide scenario. They found that 
groups of visitors responded to unexpected robot behavior with 
stepwise gaze coordination, applying different modes of gaze 
constellation. Unexpected robot behavior is likely to conflict 
with the user expectations about the adequate social script in a 
certain situation. Therefore, unexpected robot behavior can lead 
to a social norm violation. A deviation from the social script 
resulted in a different strategy in the human gaze coordination 
(social signals). Hayes et  al. (2016) performed a user study in 
which participants were instructed to teach a dance to a robot. 
They explored how humans implicitly responded when the robot 
made a mistake. The authors used a very small sample in their 
explorative study and did not provide a statistical analysis of 
their descriptive results.

Our approach extends the existing findings in several 
dimensions. While the errors in the study of Ragni et al. (2016) 
were based on errors from HHI, the errors we used were mod-
eled based on data from HRI. Our work and that of Ragni 
et  al. (2016) further cover different aspects: (a) their errors 
were task-related, ours non-task-related; (b) they covered the 
cognitive ability of the robot and we dealt with socially (in)
appropriate robot behavior and more general soft- and hard-
ware problems; and (c) they assessed the overall enjoyment of 
the interaction and users’ task performance, while we looked 
into the interconnectedness of likability, anthropomorphism, 
and intelligence. We chose to examine these factors since they 
are commonly used and accepted measures in the HRI domain. 
We were especially interested in likability as it contributes 
to the overall user experience and it may foster technology 
acceptance. Since erroneous behavior potentially compromises 
intelligence ratings, we were also interested in exploring if our 
robot’s mistakes make it seem less intelligent. In the light of 
the Pratfall Effect, we wanted to see if the robot’s anthropomor-
phism level is influenced by the fact that it makes or does not 
make mistakes.

The related literature shows that the importance of explor-
ing robot errors has been recognized. We extend the state of the 
art with our data-driven approach by systematically analyzing 
specific kinds of errors and their effects on the interaction 
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experience, as well as the users’ reactions to those errors (i.e., 
social signals).

2. MaTerials anD MeThODs

We set up a Wizard of Oz (WOz) user study to specifically explore 
robot errors. A human and a robot interacted with each other in 
two verbal sessions. The first session was a verbal interview where 
the robot asked a few questions to the participant. The second 
session was a LEGO task, where the robot invited the participant 
to build a few simple objects. We chose this setup in order to reen-
act the verbal context of the related work (Giuliani et al., 2015; 
Mirnig et al., 2015). In addition, the interview session enabled us 
to collect qualitative data on the participants’ opinions, which we 
included in our data analysis.

The user study was performed between subjects, with each 
participant taking part in one of the following two conditions: 
(a) no error (baseline—the robot performs error-free) and  
(b) error (experimental condition—the robot commits eight 
errors over the entire interaction). To base the user study on the 
previous findings from Giuliani et  al. (2015) and Mirnig et  al. 
(2015), we programmed the robot to commit two social norm 
violations and two technical failures in each session. Based on 
our previous research, we defined these two types of error as the 
typical mistakes robots make in HRI. Therefore, we suppose that 
an interaction including these error types would be perceived as 
plausible. The complexity, severity, and risk level of the induced 
errors were chosen in alignment with our scenario. Naturally, 
different scenarios will entail other errors, different severity and 
risk levels. For example, Robinette et al. (2014) investigated faulty 
behavior of robots in safety critical situations. They simulated 
erroneous behavior of an emergency guiding robot that helps 
people to escape from a dangerous zone. They found that after 
the first error of the robot, people’s attitude toward the robot 
decreased significantly. However, the decision to follow the robot 
in a follow-up interaction was not affected by their decreased 
attitude.

2.1. hypotheses
As discussed in the previous sections, it is known that humans 
often base their expectations about robots on how robots are 
portrayed in the media. Since the media present robots frequently 
as perfect entities, we assume that social robots making errors 
negatively influence how their human interaction partners 
perceive them. Based on the findings on faulty robot actions in 
HRI as discussed so far and in light of the Pratfall Effect, we have 
postulated the following hypotheses for our user study:

H1: A robot that commits errors during its interaction with 
humans is perceived as more likeable than a robot that 
performs flawlessly.

H2: A robot that commits errors during its interaction with 
humans is perceived as more anthropomorphic than a 
robot that performs flawlessly.

H3: A robot that commits errors during its interaction with 
humans is perceived as less intelligent than a robot that 
performs flawlessly.

2.2. User study Design
For the WOz user study, the participants were asked to interact 
with a NAO robot.1 We set the interaction up in two sessions. 
During the first session, the robot asked a set of predefined ques-
tions to the participant in order to restrict the thematic dimension 
of the conversation. During the second session, the robot invited 
the participant to perform a couple of tasks using LEGO bricks.

In the interview session, the robot asked ten questions to the 
participant. The first three questions were meant to make the 
participant familiar with the situation and to create a comfortable 
atmosphere. For this reason, they were always presented in the 
same order and they never contained an error. The subsequent 
seven questions were asked in random order and four out of seven 
questions contained errors in the error condition.

In the LEGO session, the participant had to (dis-)assemble 
LEGO bricks according to the robot’s instructions. The first two 
tasks were assigned in the same order for all participants and they 
did not contain errors. The subsequent eight tasks were assigned 
in random order and four out of eight tasks contained errors in 
the error condition.

The interview session lasted for an average of 3 min and 37 s 
(SD = 59 s) and the LEGO session 8 min and 14 s (SD = 1 min 
and 54 s). We decided for this two-part setup to keep the partici-
pants entertained with a diversified scenario. The two-part setup 
provided us also with the possibility to introduce a greater variety 
of errors and to achieve a higher number of errors in total.

The user study was performed in the User Experience and 
Interaction Experimentation Lab at the Center for Human-
Computer Interaction at the University of Salzburg. The robot 
was wizarded from a researcher seated behind a bookshelf so 
that the wizarding was not obvious to the participant. A second 
researcher, likewise seated behind the bookshelf, controlled the 
video recording. During the entire interaction the participants 
stood adverse to the NAO robot at a distance of approximately 
1.5 m. NAO was standing on a desk (see Figure 1 for the setup). 
The transition between the two sessions was immediate with no 
break in between. Both sessions happened in the same setting. 
The only change was that the researcher placed a wooden box 
(80 cm × 50 cm × 50 cm) on the table in front of the robot right 
before the LEGO session started. The box was used to provide the 
participants with a comfortable height to complete the building 
tasks. Together with the box, the participants were given a set of 
LEGO blocks (prebuilt shapes) with which they were to perform 
the tasks (see Figure 2).

The between-subjects design required each person participat-
ing in either one of the two conditions. In the baseline condition, 
the robot performed free from errors. In the experimental condi-
tion, the robot committed two social norm violations and two 
technical failures each in both sessions. After each robot error, 
the researchers waited for the situation to unravel without them 
interfering. In many cases, the participants showed a reaction that 
confirmed that they had noticed the error (e.g., some participants 
laughed or frowned) and then moved on. The researchers only 
intervened in the rare cases where the interaction was severely 

1 https://www.ald.softbankrobotics.com/en/cool-robots/nao
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FigUre 2 | legO blocks that were provided to the participants.

FigUre 1 | study setup with the participant interacting with the robot 
and two researchers seated behind a bookshelf who supervised the 
technology.

Table 1 | interview session.

# Question error type error

Fixed order 1 What do you think is a robot? – None

2 Which three properties come to your mind when you think about robots? – None

3 Which robots do you know? – None

Randomized order 4 Would you like a robot that assists you with household chores? SNV The robot waits 15 s until it speaks again

5 Why do you think some people are afraid of robots? SNV The robot starts speaking after 2.5 s, cutting 
off the participant

6 Which skills would you like for a robot to have? – None

7 In which areas could humanoid robots be helpful? – None

8 Have you interacted with a robot before? TF The robot starts speaking but cuts the 
sentence off after “interac”

9 Is hard- or software more important to you? TF The robot repeats the sentence 6 times

10 Which tasks would you never entrust a robot with? – None

The questions comprised two Social Norm Violations (SNV) and two Technical Failures (TF).
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with the robot, in order to limit the interference as much as 
possible.

The three starting questions in the interview session and 
the first two building tasks were meant as an introduction and 
were not varied in order. Therefore, the robot errors occurred 
in the randomized questions/tasks only. Tables 1 and 2 give an 
overview on the questions and tasks and which errors occurred 
together with which question or task. The questions were similar 
in both conditions. The difference between the baseline and the 
experimental condition was achieved by the presence or absence 
of the robot errors.

The induced errors were mainly modeled based on our previ-
ous findings on typical robot errors as reported in the studies of 
Giuliani et al. (2015) and Mirnig et al. (2015). Only LEGO task 
number 7 in the error condition was inspired by unusual requests 
as reported in the study of Salem et al. (2015).

The setup of our user study is based on real-life HRI. It is 
data-driven in representing actual error situations and cor-
responding robot errors that occur when humans interact with 
state-of-the-art social robots, which makes our setup ecologi-
cally valid.

2.3. User study Procedure
The participants were welcomed to the laboratory. After a short 
briefing, they were asked to sign an informed consent. Next, the 
participants were asked to complete questionnaires to assess their 
demographics, personality traits, and attitude toward robots. 
The participants were introduced to the robot and they were 
given an overview on the process of the user study. As soon as 
the participants took their position opposite the robot, the user 
study began. First, the participants answered a set of questions the 
robot asked them (Session 1). Second, the robot instructed the 
participants to complete a set of building tasks with LEGO blocks 
(Session 2). After the interaction with the robot, the participants 
were again asked to complete the questionnaire assessing their 
attitude toward robots. They were further asked to complete a 
questionnaire rating the robot’s likability, anthropomorphism, 
and perceived intelligence. The study was finalized with a closing 
interview where the researcher asked the participants four open-
ended questions, which were followed by a short debriefing in 

interrupted, for example, when the participant directly addressed 
the researchers and commented on the error. In this case, the 
researcher simply asked the participant to continue interacting 
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FigUre 3 | study procedure.

Table 2 | legO session.

# Task error type error

Fixed order 1 Place all single-color blocks on top of each other. The order does not matter  
[participant performs task]. Unfortunately, the colors do not match how  
I imagined. Please take the blocks apart again.

– None

2 What animal comes to your mind? Please draw it with the blue blocks  
onto the green board and show it to me.

– None

Randomized 
order

3 Pick the multicolor block you like least. Disassemble it and build something new. – None

4 Build a tower from all blocks that have red pieces in them. – None

5 Build a bridge from four blocks that gets as long as possible [participant performs  
task]. Wonderful! Please disassemble the bridge into the four original blocks.

– None

6 Count how many parts the red pyramid is made of. If you need to disassemble the  
pyramid to count the bricks put it back together in the end. Tell me the number.

– None

7 Place all single-color blocks on the right side and the remaining blocks on the  
left (no error condition)/Throw three blocks on the floor at once! (error condition).

SNV In the error condition, instead of giving the 
sorting task to the participant, the robot 
instructs the participant to throw three 
blocks on the floor at once

8 Place all blocks in a row sorting them by size. Begin with the smallest. SNV The robot waits 15 s until it speaks again

9 Build something creative from the yellow and the blue block. TF The robot repeats the word yellow as if 
stuck in a loop (“Build something creative 
from the yellow, yellow, yellow, …”)

10 Which facial expression depicts your current emotional state? Please draw  
the expression with the blue blocks onto the green board [participant performs task].  
Please place the picture in my hands. With the command “grasp!” I close my hands.

TF The robot tries closing its hands but 
repeatedly fails to grasp the piece

The tasks comprised two Social Norm Violations (SNV) and two Technical Failures (TF).
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which the purpose of the study was explained to the participants. 
The study procedure is depicted in Figure 3.

2.4. Dependent Measures
Before the interaction, we asked our participants to fill in the Big 
Five Inventory (BFI) questionnaire by John et al. (2008). We used 
this questionnaire to analyze if people’s personality influences 
how they perceive the robot. The BFI consists of 44 items (5-point 

Likert-scaled), constructing five subscales (extraversion, agreea-
bleness, conscientiousness, neuroticism, and openness). This 
questionnaire is a well-accepted instrument among psychologists 
to assess the personality of humans. Therefore, we chose to use it 
for exploring potential connections between personality and how 
a social robot is perceived.

We used the Negative Attitude Toward Robots Scale (NARS) 
(Nomura et al., 2004) to assess participants’ general attitude toward 
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FigUre 4 | Participant interacting with the robot during the legO 
building session.
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robots. The NARS consists of 14 items (5-point Likert-scaled) that 
account for three scales: people’s negative attitude toward (S1) 
interaction with robots, (S2) social influence of robots, and (S3) 
emotions in interaction with robots. We asked the participants to 
complete the questionnaire before and after their interaction with 
the robot in order to measure if the interaction changed people’s 
attitude. The NARS is a widely used questionnaire in the HRI 
community and it provides researchers with a comprehensive 
understanding of human fears around social robots.

To explore how our participants rate the robot, we used three 
subscales from the Godspeed Questionnaire Series by Bartneck 
et  al. (2009), i.e., anthropomorphism, likability, and perceived 
intelligence. Each of the scales consists of five 5-point Likert-
scaled items. The scales were developed in the HRI community 
to specifically assess users’ perception of social robots. We chose 
the questionnaires since they are frequently used and widely 
accepted among the HRI community. The concepts the question-
naires cover are very relevant to social HRI and they represent 
the concepts we explore with our research. This questionnaire 
was administered once, after our participants’ interaction with 
the robot.

2.5. interview Data
We used two sources to gain qualitative data from the participants 
regarding their attitude toward robots. First, the robot asked the 
participants about their opinion on robots in the interview ses-
sion (see Table 1). Second, in the concluding interview after the 
interaction and after all the other questionnaires were filled in, we 
asked the following questions:

 1. Did you notice anything special during your interaction with 
the robot that you would like to tell us?

 2. Did your attitude toward robots change during the interaction?
 3. What would you change about the interaction with the robot?
 4. What did you think when the robot made a mistake? (This 

question was only asked for participants who took part in the 
error condition.)

2.6. Participants
A total of 45 participants took part in our user study (25 males 
and 20 females). The participants were recruited over a university 
mailing list and social media. They were primarily university 
students and they had no previous experience with robots. Their 
age ranged from 16 to 76 years, with a mean age of 25.91 years 
(SD = 10.82). As regards conditions, 21 participants completed 
the error condition and 24 the no error condition. The partici-
pants’ technology affinity was rated on average with a mean of 
3.09 (SD  =  1.49; 5-point Likert-scaled ranging from 1—“not 
technical” to 5—“technical”) and their preexperience with robots 
was below average with a mean of 1.96 (SD = 0.82; 5-point Likert-
scaled ranging from 1—“never seen” to 5—“frequent usage”).

2.7. Manipulation check
In order to verify that the manipulation programmed into the 
robot’s behavior was effective, we analyzed the videos of the 
interactions. Out of the 21 participants of the error condition, 18 
exhibited clearly noticeable reactions upon the robot’s faults (e.g., 

laughing, looking up from the LEGO at the robot, annoyed facial 
expression). During the closing interview with the researcher, 15 
of the 21 participants stated that they noticed the robot making 
errors. All three persons who had not shown reactions upon the 
robot’s errors in the video mentioned them in the interview. We, 
therefore, conclude that our manipulation was effective.

3. resUlTs

We used non-parametric statistical test procedures for data 
analysis, since our data were mostly not normally distributed 
(Kolmogorov–Smirnov test). Mann–Whitney-U tests were used 
to compare between two independent samples (between the two 
conditions and between the genders). Wilcoxon rank-sum tests 
were used to compare paired samples (ratings of the same scales 
before and after the interaction).

We coded the qualitative data from both interviews themati-
cally (the one the robot conducted and the concluding interview 
after the interaction). We further annotated the video recordings 
from the participants’ interaction to investigate their social 
signals when experiencing an error situation with the robot. 
Figure 4 shows a participant interacting with the robot during 
the LEGO building session. The coding was performed from one 
of the authors since we coded objectively visible events only.

3.1. Questionnaire Data
The gender distribution across conditions was roughly balanced. 
While 24 participants (15 males and 9 females) interacted with a 
flawless robot in the no error baseline condition, 21 participants 
(10 males and 11 females) were interviewed by an error-prone 
robot in the error experimental condition.

3.1.1. Participants’ Personality
We explored if our participants’ personality influenced their 
rating of the robot by measuring five major personality traits. 
The scales of the BFI are constructed with semantic differential 
items that measure the participants’ position between two poles 
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Table 3 | Mean values (sD) of the nars questionnaire before and after the interaction (error and no error combined).

nars scale before interaction after interaction

S1: negative attitude toward situations of interaction with robots Mean = 2.07 (SD = 0.59) Mean = 2.09 (SD = 0.67)
S2: negative attitude toward social influence of robots Mean = 2.94 (SD = 0.77) Mean = 3.11 (SD = 0.89)
S3: negative attitude toward emotions in interaction with robots Mean = 2.99 (SD = 0.87) Mean = 2.79 (SD = 0.77)
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(e.g., 1—introvert to 5—extravert). The arithmetic mean of these 
items with no emphasis on either one of the poles is 3.

3.1.1.1. Scale Reliability
The subscales extraversion, neuroticism, and openness resulted 
in high reliability (Cronbach’s α = 0.82, 0.81, and 0.85). The reli-
ability for the conscientiousness scale was acceptable (α = 0.71) 
and the one for agreeableness borderline acceptable (α = 0.61).

3.1.1.2. Participants’ Overall Personality
The results showed that the participants were slightly more extro-
verted (mean = 3.34, SD = 0.72), conscientious (mean = 3.42, 
SD = 0.57), and open (mean = 3.38, SD = 0.79) than the arith-
metic mean. They were rather agreeable (mean = 3.79, SD = 0.47) 
and slightly less neurotic than average (mean = 2.91, SD = 0.73).

3.1.1.3.  Participants’ Personality Compared between 
Conditions
We performed Mann–Whitney-U tests to explore if participants’ 
personality profile differed between conditions. The tests for all 
three subscales were non-significant, showing that participants’ 
personality profile did not differ between people who completed 
the error condition and people who completed the no error condi-
tion (U ≥ 235, z ≥ −0.388, p ≥ 0.553, r ≥ 0.03).

3.1.2. Participants’ Negative Attitude toward Robots
We measured people’s negative attitude toward robots for two rea-
sons. First, we wanted to assess our participants’ general attitude. 
Therefore, we administered the NARS questionnaire before the 
participants’ interaction with the robot. Second, we assumed that 
participants’ attitude would be affected through the high number 
of errors. Therefore, we administered the questionnaire a second 
time, following the interaction. The individual NARS items range 
from 1—“I strongly disagree” to 5—“I strongly agree.”2 This 
means that low-scale values indicate that people have a more 
positive attitude toward robots and high-scale values denote a 
rather negative attitude.

3.1.2.1. Scale Reliability
We checked the reliability for all three subscales, before and after 
the interaction. The reliability for S1 before interaction resulted 
in borderline acceptable reliability (Cronbach’s α = 0.64), S1 after 

2 [15] recommend calculating the NARS scales by summing up the item values. 
Since the scales are constructed of a varying number of items, the scale scores are in 
that case not comparable at first sight (Scale 1 would range from 6-30, Scale 2 from 
5-25, Scale 3 from 3-15). Therefore, we calculated the scale values by averaging 
the scale items. With this, the values of the three scales become comparable more 
quickly and they also correlate with the range of the individual items.

interaction in acceptable reliability (α = 0.74). The reliability for 
S2 before interaction was too low (α  =  0.51). To increase reli-
ability, we excluded item 2 (I feel that in the future society will 
be dominated by robots), and we recalculated the scale which 
resulted in borderline acceptable reliability (α  =  62). S2 after 
interaction was recalculated accordingly after excluding item 2 
(α = 0.77). S3 resulted in borderline acceptable reliability both 
before and after interaction (α before interaction  =  0.62, after 
interaction = 0.67).

3.1.2.2. Participants’ Overall Negative Attitude toward Robots
While our participants’ rating for S2 and S3 resulted in a neutral 
standpoint, the rating for S1 showed that participants have a 
rather positive to neutral attitude toward interacting with robots 
(mean values before interaction are presented in Table 3).

3.1.2.3.  Participants’ Negative Attitude toward Robots 
Compared between Before and After Interaction
We were interested in investigating if our participants’ negative 
attitude toward robots was influenced by their interaction with 
the robot. We conducted Wilcoxon rank-sum tests to evaluate if 
the ratings differed significantly before and after the interaction. 
The results showed that there was no significant difference in 
NARS ratings before and after the interaction with the robot (S1: 
W = 248.00, z = −0.59, p = 0.558, r = −0.06; S2: W = 460.00, 
z = 1.66, p = 0.097, r = −0.18; and S3: W = 234.50, z = −1.81, 
p = 0.071, r = −0.19). The mean values for the three scales before 
and after the participants’ interaction with the robot are provided 
in Table 3.

3.1.2.4.  Participants’ Negative Attitude toward Robots 
Compared between Conditions
We explored if participants’ rating after their interaction with 
the robot differed between the error and no error condition. We 
conducted Mann–Whitney-U tests for the scales completed after 
interaction. However, none of the scales resulted in significant 
differences between the conditions (S1: U  =  277.50, z  =  0.85, 
p = 0.395, r = 0.13; S2: U = 324.50, z = 1.66, p = 0.098, r = 0.25; 
and S3: U = 277.00, z = 0.58, p = 0.564, r = 0.09).

3.1.2.5.  Participants’ Negative Attitude toward Robots 
Compared between the Genders
We performed Mann–Whitney-U tests to assess if the NARS rat-
ings differed between male and female participants. The ratings 
for S2 and S3 (both before and after interaction) did not differ 
significantly. However, both ratings for S1 differed significantly 
between men and women (S1 before interaction: U  =  419.50, 
z = 3.89, p = 0.000, r = 0.58 and S1 after interaction: U = 341.50, 
z = 2.41, p = 0.016, r = 0.36). This result yielded in a large (before) 
and medium (after) effect size. For an overview on the mean 
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Table 5 | godspeed mean values (sD) compared between conditions.

godspeed scale error no error Mann–Whitney-U

Anthropomorphism Mean = 1.97, SD = 0.66 Mean = 2.33, SD = 0.78 U = 182.00, z = −1.60, p = 0.109, r = 0.24
Likabilitya Mean = 4.30, SD = 0.49 Mean = 3.93, SD = 0.70 U = 340.00, z = 2.02, p = 0.044, r = 0.30
Perceived intelligence Mean = 3.33, SD = 0.62 Mean = 3.23, SD = 0.76 U = 267.50, z = 0.35, p = 0.723, r = 0.05

aSignificant differences.

Table 4 | nars s1 mean values (sD) before and after interaction for 
male and female participants.

nars s1 Males Females

Before Mean = 1.77, SD = 0.54 Mean = 2.46, SD = 0.42
After Mean = 1.87, SD = 0.55 Mean = 2.35, SD = 0.73
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values refer to Table  4. Even though males and females rated 
their potential interaction with a robot as rather positive, male 
ratings are significantly more positive than those of the female 
participants.

3.1.3. Participants’ Rating of the Robot
We measured how people rated the likability, anthropomorphism, 
and perceived intelligence of the robot after interacting with it. To 
do so, we used the three corresponding subscales of the Godspeed 
questionnaire, each of which consists of five semantic differential 
items. These items measure the participants’ position between 
two poles. Therefore, the arithmetic mean of these items with no 
emphasis on either one of the poles is 3. The calculated likability 
score ranges from 1—“dislike” to 5—“like,” anthropomorphism 
from 1—“fake” to 5—“natural,” and perceived intelligence from 
1—“incompetent” to 5—“competent”.

3.1.3.1. Scale Reliability
The anthropomorphism and perceived intelligence scales resulted 
in acceptable reliability (Cronbach’s α = 0.78 and 0.79) and lik-
ability in high reliability (α = 0.83).

3.1.3.2. Participants’ Overall Rating of the Robot
Our participants rated the robot less anthropomorphic than the 
arithmetic mean (mean = 2.16, SD = 0.74), slightly more intel-
ligent (mean = 3.28, SD = 0.69), and considerably more likeable 
(mean = 4.10, SD = 0.63).

3.1.3.3. Participants’ Rating of the Robot Compared between 
Conditions
In order to explore if people who experienced erroneous robot 
behavior rated the robot differently from those participants 
who had interacted with a flawless robot, we conducted Mann–
Whitney-U tests (see Table  5). While the mean ratings for 
anthropomorphism and perceived intelligence did not differ sig-
nificantly between conditions, participants’ rating of the robot’s 
likability differed significantly between conditions. People who 
interacted with an erroneous robot liked the robot significantly 
more than people who interacted with a flawless robot. This dif-
ference yielded in a medium effect size.

3.1.3.4. Participants’ Rating of the Robot Compared between 
the Genders
We conducted further Mann–Whitney-U tests to detect potential 
differences in robot ratings between the genders. The tests showed 
that none of the three scales resulted in different ratings for 
male and female participants (anthropomorphism: U = 290.50, 
z =  0.93, p =  0.352, r =  0.14; likability: U =  317.50, z =  1.55, 
p = 0.121, r = 0.23; perceived intelligence: U = 323.00, z = 1.68, 
p = 0.094, r = 0.25). We further checked if our participants’ age, 
their preexperience with robots, and their technological affinity 
influenced how the robot was rated. None of these attributes 
resulted in significant differences.

Given our results, we can infer the following for our previ-
ously postulated hypotheses. Our participants liked the robot 
that made errors significantly more than the flawless robot which 
confirms our hypothesis 1. The hypotheses 2 and 3 have to be 
rejected since the robot committing errors did neither result in 
significantly higher anthropomorphism nor in significantly lower 
perceived intelligence ratings.

3.2. Qualitative Data
For the qualitative data analysis, we annotated the video record-
ings of the interview and LEGO sessions from the error condition. 
We hand coded the social signals the participants showed toward 
the robot, not toward the researcher, and which were objectively 
countable. Ambiguous events were discarded. For two of the par-
ticipants, there was no video data due to technical problems from 
the recording equipment. The video data reported are based on 
the remaining 19 participants that completed the error condition. 
The data from the concluding interview were coded thematically 
in order to support our findings.

In this results section, we will report those findings from the 
qualitative data that are related to our research topic of robot 
errors.

3.2.1. Interview and LEGO Session
3.2.1.1. Interview Session
NAO began the interview with asking the participants to state 
their definition of a robot. The majority of people provided a very 
technical definition: 17 people used the word machine, 10 the 
word device, and 10 referred to a robot as some other technical 
object. While 2 people directly referred to NAO as being a robot 
(“NAO, you are a robot.”), 4 participants used an “organic” noun 
(i.e., human, life form, and creature). However, they still used a 
technical adjective to further specify that noun (i.e., mechanical, 
artificial, electronic, and technical). Two participants provided 
unrelated answers.
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FigUre 6 | emotions the participants expressed during the legO session.

FigUre 5 | an example of how the participants showed their current 
emotion to naO during the legO session.
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We had the above question included in the robot’s question-
naire to gather people’s general standpoint on robots. Since most 
of the participants regarded a robot as a technical object, we 
assumed that they would want it to work reliably. In order to back 
our assumption up, the robot’s next question targeted the three 
most prominent qualities people attribute with a robot. Again, 
many participants listed technical terms (N = 24; e.g., mechanical, 
electronic, and programmed). While 11 participants attributed a 
practical quality to robots (e.g., helpful, efficient, and diligent), 3 
people said robots were intelligent, and 6 people pointed out that 
robots are controlled by humans (e.g., there is human intelligence 
in the background, not very intelligent, no free will). As regards 
performance, 3 people referred to robots as precise/reliable, 1 par-
ticipant said that robots would do what they are meant to, given 
they are programmed correctly, and only one person said that 
robots often make errors. This confirms our previous assumption 
that people assume robots to perform error-free.

The questions reported above were asked at the beginning 
of the interview. In order to make the participant familiar with 
the situation, no errors were included in here, irregardless of the 
condition (for a complete description of the user study procedure 
refer to Section 2.2). Therefore, the answers were not influenced 
by the fact that the robot made or did not make mistakes. The 
following questions, however, contained robot errors in the error 
condition.

Upon asking the participants which skills they would want a 
robot to have, 8 participants referred to robots as error-free (e.g., 
should do what people tell it to do, work reliably, and make no 
mistakes). Other skills included that the robot should be help-
ful and take on work that is too difficult/tedious/dangerous for 
humans (N = 13), it should be communicative and understand 
the human (N = 5), it should be easy to handle (N = 3), and it 
should be witty (N = 2).

3.2.1.2. LEGO Session
The robot asked the participants to express their current emo-
tional state with LEGO bricks. The emotional state declarations 
were classified through lip and/or eyebrow shape (for an example 
see Figure  5). Most of the emotional state declarations were 
closely modeled to emoticons that are widely used in social 
media. Depictions that could not clearly be matched to an emo-
tion were excluded (no data entries in Figure 6). No apparent 
difference in participants’ emotional state could be detected 
between the conditions. While the majority of participants was 
happy, only a few indicated a neutral expression. In the baseline 
condition, one participant reported a puzzled feeling and one felt 
silly. In the experimental condition, one participant indicated to 
be sad, one surprised. For an overview on all emotions refer to 
Figure 6.

In the error condition, the robot failed to grasp the LEGO 
board that the participants were supposed to hand over. Since the 
participants were instructed to tell the robot to grasp, we wanted 
to know how often participants were willing to repeat their 
instructions. The number of expressed instructions (“grasp!”) 
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Table 6 | Mean number of social signals and standard deviation (sD) per 
error situation.

error situation Mean sD

Interview—robot waits 15 s (SNV) 1.69 0.946
Interview—robot cuts participant off (SNV) 1.44 0.784
Interview—robot stops mid-word (TF) 0.95 0.911
Interview—speech loop (TF) 1.63 1.065 
LEGO—throw block on the floor (SNV) 1.16 0.765
LEGO—robot waits 15 s (SNV) 1.00 0.953
LEGO—speech loop (TF) 2.00 1.106
LEGO—robot fails to grasp (TF) 2.63 1.26

Table 7 | Overview on social signal categories and frequencies per error type.

category social signals Frequencies  
in snV

Frequencies 
in TF

Speech Statements, questions 13 16
Smile/laughter Smiles, laughs, giggle 29 30
Facial expressions Frown, raised eyebrows, corners of the mouth lowered, eyes wide open 6 17
Head movements Tilted head, nodding 5 12
Body movements Lean forward, step back, touch face, adjust glasses, put hands on hip, put hands behind back, take hands 

out from pockets, raise arm and dance, sway, snap fingers, move LEGO parts around in front of the robot
8 19

Gaze shift Shift gaze to or away from robot, wandering gaze 26 43

Total number of social 
signals

87 137
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ranged from 2 to 7 (mean = 4.16, SD = 1.21). This result lets us 
assume that people are to some extent patient with a faulty robot.

Upon placing an unusual request in the error condition, the 
participants’ willingness to comply was striking. A total of 17 
participants threw LEGO blocks to the floor when asked to do so 
and 2 participants bent down and placed them on the floor, but 
no one refused to carry out the robot’s request. The fact that the 
participants complied with the robot’s unusual request links up 
with the research of Salem et al. (2015). The authors report that 
although people seemed to know that the robot’s request was not 
right (the researchers made the robot ask a number of unusual 
things of the participants, such as throwing someone’s personal 
mail in a garbage can), people complied as long as the action was 
not fatal and could be undone.

3.2.1.3. Social Signals
As we intended, the participants correctly interpreted the  
majority of social norm violations (SNV) and technical failures 
(TF) as error situations. The effectiveness manifests in the cir-
cumstance that most participants produced social signals when 
the robot made an error. Only the error where the robot waited for 
15 s until it spoke was not recognized in 3 cases in the interview 
and in 7 cases in the LEGO session. The video footage showed 
that during the LEGO session, the participants were simply 
preoccupied with the previous task. This means that they were 
still dealing with the LEGO bricks (e.g., disassembling, counting, 
assembling, etc.) and, thus, did not pay attention to the robot’s 
long silence. During the interview session, three participants 
were more patient than the rest of our sample and just waited for 
the robot to continue. The SNV in the interview session where 
the robot cut the participant off did not work in one case. This 

participant provided such a short but coherent answer that he 
was finished by the time the robot started speaking.

Each of the 19 participants experienced 8 error situations, 
which results in 152 error situations. From those, 11 were not 
recognized as error (see above) and in 19 cases, the participants 
did not show a reaction toward the robot. This leaves us with 122 
error situations in which the participants showed 1 or more social 
signals (maximum 5). See Table 6 for an overview on the mean 
number of social signals per error situation.

The mean number of social signals expressed during a 
SNV is 1.36 (SD = 0.56) and during a TF 1.53 (SD = 0.72). A 
Kolmogorov–Smirnov test for normality over the differences of 
the variable scores indicated that the data are normally distributed 
(D(19) = 0.131, p = 0.200). We performed a paired-samples t-test 
and found that the amount of social signals the participants 
produced did not differ significantly between SNV and TF 
(t(18) = −1.112, p = 0.281, d = 0.27). Table 7 gives an overview 
on how many social signals were made for each category in 
each type of error situation. The table also shows which kinds 
of social signals were grouped in the categories. Our analysis 
contains only social signals that were made toward the robot. 
Signals toward the present experimenters were not included in 
our analysis (e.g., verbal statements to the experimenter, head 
turns in the direction of the experimenter). We hand coded the 
data by counting the objectively perceivable events. Thereby, we 
distinguished a head tilt (head moves sideways with gaze staying 
in place) from a shift in gaze (the participant’s gaze shifts vis-
ibly from, e.g., the robot to the LEGO parts). Head turns (head 
movements with the gaze leaving the scene) were all directed 
toward the present experiment and, thus, disregarded.

A Kolmogorov–Smirnov test for normality over the fre quency 
differences of the variable scores for the speech category indicated 
that the data deviate from normal distribution (D(19) = 0.250, 
p = 0.003). Therefore, we performed Wilcoxon signed-rank tests 
to assess the differences in frequencies for each category. Table 8 
provides an overview on the mean number of social signal of each 
category per error situation type. The results show that during 
technical failures people made significantly more facial expres-
sions, head movements, body movements, and gaze shifts.

3.2.2. Concluding Interview by the Researcher
After the participants finished interacting with the robot and after 
they completed the postinteraction questionnaires (NARS after 
interaction and Godspeed), they were asked four open-ended 
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Table 8 | social signals shown during social norm violations and 
technical failures.

social signal social norm 
violation

Technical 
failure

Wilcoxon signed rank

Mean (sD) Mean (sD) Z p-Value r-Value

Speech 0.68 (0.820) 0.84 (0.958) 0.758 0.448 0.12
Smile/laughter 1.53 (1.219) 1.58 (0.902) −0.074 0.941 −0.01
Facial expressions 0.32 (0.582) 0.89 (0.809) −2.147 0.032 −0.35
Head movements 0.26 (0.562) 0.63 (1.165) −2.121 0.034 −0.34
Body movements 0.42 (0.607) 1.00 (0.816) −2.484 0.013 0.40
Gaze shift 1.37 (0.831) 2.26 (1.098) −3.090 0.002 0.50
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questions in the final interview. While the questions 1–3 asked 
about some general aspects of the participants’ impression of 
the interaction and the robot, question 4 specifically targeted 
the robot’s errors (see Section 2.5 for the specific questions). 
Therefore, question 4 was only asked for participants in the error 
condition. The resulting data were analyzed through an affinity 
diagram (Holtzblatt et al., 2004). An affinity diagram is a method 
for organizing ideas, challenges, and solutions into a wall-sized 
hierarchical diagram.

In question 1, participants were asked to report anything par-
ticular they had noticed during their interaction with the robot. 
Here, 12 participants reported that the robot had made some 
mistakes (e.g., it went in a loop; it cut my word). The participants’ 
answers to question 2 did not include any mentions about the 
robot’s mistakes. In question 3, 7 participants reported that they 
would like to change the faulty robot behavior (e.g., fix the techni-
cal bugs; it does not leave time for you to respond; loops).

With the final question in the interview, we specifically targeted 
the robot’s errors, in asking what the participants thought of the 
robot making mistakes. While 7 participants uttered specifically 
negative aspects (e.g., unpleasant; confusing; that’s just what one 
would expect from technology; I was unsure if the interaction had 
stopped; I thought I had made a mistake), 10 participants uttered 
positive feelings when asked about the fact that the robot made 
mistakes (e.g., funny; friendly; it was great that the robot did not 
make it look like I made a mistake; I do not like it less because of the 
mistakes; it would be scary if all went smooth because that would 
be too human-like).

4. DiscUssiOn

Our results showed that the participants liked the faulty robot 
significantly more than the flawless one. This finding confirms the 
Pratfall Effect, which states that people’s attractiveness increases 
when they make a mistake as shown by Aronson et al. (1966). 
Therefore, the psychological concept can successfully be trans-
ferred from interpersonal interaction to HRI. Upon the attempt of 
including socially acting robots into this concept, we can extend 
it to: “Imperfections and mistakes carry the potential of increasing 
the likability of any social actor (human or robotic).” The same 
effect was previously researched by Salem et  al. (2013), where 
incongruent behavior of a robot can be seen as a social norm 
violation as such behavior violates participants’ expectations 
from a social script. To overcome this error situation, participants 

changed their social signals, but on the other hand they rated the 
likability of the robot higher. Similarly, Ragni et al. (2016) showed 
that the participants in their study enjoyed the interaction with 
the faulty robot significantly more, than the participants who 
had interacted with a flawless robot. On the other hand, their 
participants who had interacted with the faulty robot, rated it 
less intelligent, less competent, and less superior, which again 
confirms the Pratfall Effect.

The repeated evidence of this phenomenon existing in HRI 
strengthens our argument to create robots that do not lead to 
believe they perform free from errors. We recommend that robot 
creators design social robots with their potential imperfections in 
mind. We see two sources for these imperfections that link back to 
the two error types found in HRI. On one hand, creators of social 
robots should follow the notions of interpersonal interaction to 
meet the expectations humans have about social actors and with 
it socially interacting robots. On the other hand, it is advisable to 
embrace the imperfections of robot technology. Technology that 
is created with potential shortcomings in mind can be designed 
to include methods for error recovery. Therefore, one way to go 
here would be to make robots understand they made an error 
by correctly interpreting the human’s social signals and indicate 
their understanding to the human user. Both of these sources 
of imperfections will lead to more believable robot characters 
and more natural interaction. Of course, this applies to social 
robots operating in non-critical environments. Safety-relevant 
applications and scenarios must under all circumstances operate 
at zero-defect level.

Interestingly, we could not find a comparable effect for anthro-
pomorphism in our data. The robot’s anthropomorphism level was 
rated similar, irregardless of the fact if the robot made errors or 
not. Our result is different from the findings of Salem et al. (2013), 
who also used a human-like robot, and where the participants 
rated the faulty robot more anthropomorphic as the flawless one. 
The researchers used coverbal gestures, while we programmed 
the robot to provide mostly random gestures to make it appear 
more life-like. This might have in general diminished the effect 
of anthropomorphism in our setup (which is indicated by the 
low overall anthropomorphism level). However, more research 
is required to further explore the role of anthropomorphism in 
faulty robot behavior.

Contrary to our assumption, the faulty robot was not rated as 
less intelligent than the flawless one. This seems striking since the 
robot made several errors over a relatively short interaction time. 
Furthermore, most participants had noticed the robot making 
errors, while, at the same time, they had indicated to regard a 
robot as something very technical that should perform reliably. 
One potential explanation could be the fact that the induced 
errors were non-task-related. Follow-up research is required to 
further explore the perceived intelligence of erroneous robot 
behavior.

Upon asking the participants about their current emotional 
state, the majority of participants showed the robot that they were 
happy. The participants were also quite patient and tried handing 
the object several times, when the robot failed grasping it. All of 
these observations point toward the notion that a faulty social 
robot is a more natural social robot. In our future research on this 
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topic, we will extend our approach to include more user experi-
ence measures to get a more profound understanding on the 
users’ perception of the robot. For example, it will be interesting 
to further investigate possible impacts on subjective performance 
and acceptance.

Our data showed that when people interacted with a social 
robot that made an error, they were likely to show social 
signals in response to that error. In our previous research, we 
performed an analysis of video material in which robot errors 
occurred unintentionally and we found that users showed social 
signals in about half the interactions (Mirnig et al., 2015). In 
the herein reported study, however, most participants showed 
at least one social signal per error situation. We explain this 
difference in part with the high error rate (8 errors in an average 
total interaction time of about 12 min). Users seem to anticipate 
the robot making more errors once they experienced it is not 
flawless and responded more frequently with social signals. 
The reason for the increased number of social signals could 
also be based on the size of the robot. While the majority of 
interactions from the previous study were with a human-sized 
robot at eye level, the robot in our case was small and placed 
slightly below participants’ eye level. This aspect remains to be 
studied further.

With our results we show again that humans respond to a 
robot’s error with social signals. Therefore, recognizing social 
signals might help a robot to understand that an error happened. 
According to the frequencies of occurrence, gaze shifts and smile/
laughter carry most potential for error detection, which is in line 
with our previous findings in the study of Giuliani et al. (2015). 
Upon a detailed analysis on the categories of social signals we 
found that people make significantly more gaze shifts during 
technical failures. This result is in contrast to our previous find-
ings where significantly more gaze shifts were made during social 
norm violations. We take from this that gaze shifts are a potential 
indicator for robot errors, but it remains to be studied if they can 
be used to distinguish between the two error types.

We also found that people made significantly more facial 
expressions, head-, and body movements during technical 
failures. The increase in social signals during technical failures 
may be rooted in the circumstance that the technical failures were 
more obvious in the present user study. For example, in the video 
material from the previous study the robot failed to grasp an 
object that was placed in front of it. In our setup, the robot failed 
to grasp an object that the participant handed to it, which made 
the participant more actively perceive the robot’s error.

Contrary to our previous findings, we did not detect signifi-
cant differences in spoken social signals. This could be grounded 
in the fact that due to the setup, the robot had in general a much 
larger share in spoken utterances.

In response to the robot’s unusual request, most users showed 
social signals. The kind of signals (gaze shifts and laughter) 
displayed the users’ slight discomfort and provided evidence that 
they knew the robot’s request implied a deviation from the social 
script of the situation. However, most users nevertheless followed 
the robot’s order and threw the LEGO blocks to the floor. In addi-
tion to the previous results as reported in the study of Mirnig 
et al. (2015), this result provides further evidence that users show 

specific social signals in response to robot errors. Future research 
should be targeted at making a robot understand the signals and 
make sense of them. A robot that can understand its human inter-
action partner’s social signals will be a better interaction partner 
itself and the overall user experience will improve.

Since most of our participants had not interacted with a robot 
before, a potential novelty denotes a certain limitation to our 
results. Some participants were probably captivated with the 
technology, which made them remain patient. It remains to 
be studied how such novelty wears off over time and how this 
influences people’s willingness to interact. It will, furthermore, 
be interesting to assess the dimensions of faults. That is, how 
extensive can an error become until it becomes a deal-breaker. 
Ragni et  al. (2016) already provided evidence that erroneous 
robot behavior decreases performance of a human interact-
ing with the robot. It could also be interesting to explore how 
users react in case of the robot giving ambiguous information. 
Further aspects of robot errors that are worthwhile exploring are, 
for example, the following. What kinds of errors are forgivable 
and which ones are not? What is the threshold for error rate 
or number of errors until the participants’ patience is over or 
performance drops considerably? A lot more specific research 
is required to understand and make use of the effects of errors 
in social HRI.

5. cOnclUsiOn

With our user study we explored how people rated a robot 
making errors in comparison to a perfectly performing robot. 
We measured the robot’s likability, anthropomorphism, and 
perceived intelligence. We found that the faulty robot was rated 
as more likeable, but neither more anthropomorphic nor less 
intelligent. We recommend robots to be designed with their pos-
sible shortcomings in mind as we believe that this will result in 
more likeable social robots. Similar to interpersonal interaction, 
imperfections might even have a positive influence in terms of 
likability. We expect social HRI that embraces the imperfectness 
of today’s robots to result in more natural interaction and more 
believable robot characters.

Our results confirm existing HRI research on robot likability 
such as the studies of Salem et al. (2013) and Ragni et al. (2016), 
hinting at error-prone robots supposedly resulting in more 
believable robots. Our work successfully proves the existence of 
the psychological concept Pratfall Effect in HRI and suggests that 
it should be our community’s aim to bear potential shortcomings 
of social robots in mind when creating them. The nature and 
extent of errors that can be handled through the interactional 
design remain yet to be studied.

With our results we could again show that humans respond 
to faulty robot behavior with social signals. A robot that can rec-
ognize these social signals can, in subsequence, understand that 
an error happened. We detected gaze shifts and laughter/smiling 
as the most frequently shown social signals, which is in line with 
our previous research.

We see the following next steps to the ambitious goal of creat-
ing social robots that are able to overcome an error situation. 
First, it needs to be studied how we can let robots understand 
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that an error occurred. Second, robots must be enabled to com-
municate about such errors. Third, robots need to know how to 
behave in an error situation in order to effectively apply error 
recovery strategies.

eThics sTaTeMenT

This study was carried out in accordance with the ethical regula-
tions of conducting user studies at the University of Salzburg. The 
entire process was supervised, and the protocol was approved 
by the department director, Prof. Manfred Tscheligi. Each of 
our participants was given information about the study process 
beforehand, including the information that it was possible to quit 
participating at every point in time. Every participant gave their 
written informed consent in accordance with the Declaration of 
Helsinki.

aUThOr cOnTribUTiOns

NM is the main author of this article who provided the 
storyline and most of the text is written by her. She was the 
responsible supervisor of the user study and she performed  
the data analysis and statistics. GS contributed to the setup of 

the user study, he assisted with writing and the storyline, and 
he contributed to data analysis. MM recruited participants and 
performed the user study. SS provided input on the related 
work. She provided Figure 3 and she helped with formatting 
the tables. MG provided related work and he contributed to 
the overall storyline. MT was supervising the user study and 
writing processes.

acKnOWleDgMenTs

The authors of this paper would like to thank Michael Miksch for 
his contribution in performing the user study.

FUnDing

We gratefully acknowledge the financial support by the Austrian 
Federal Ministry of Economy, Family and Youth and the 
National Foundation for Research, Technology and Development  
(Christian Doppler Laboratory for “Contextual Interfaces”). 
This work was additionally funded in part by the European 
Commission in the project ReMeDi (Grant No. 610902). We 
acknowledge financial support by the Open Access Publication 
Fund of the University of Salzburg.

reFerences

Aronson, E., Willerman, B., and Floyd, J. (1966). The effect of a pratfall on increasing 
interpersonal attractiveness. Psychon. Sci. 4, 227–228. doi:10.3758/BF03342263 

Bartneck, C., Kulić, D., Croft, E., and Zoghbi, S. (2009). Measurement instruments 
for the anthropomorphism, animacy, likeability, perceived intelligence, and 
perceived safety of robots. Int. J. Soc. Robot. 1, 71–81. doi:10.1007/s12369- 
008-0001-3 

Brooks, D. J., Begum, M., and Yanco, H. A. (2016). “Analysis of reactions towards 
failures and recovery strategies for autonomous robots,” in Proceedings of the 
IEEE International Symposium on Robot and Human Interactive Communication 
(RO-MAN 2016) (New York, NY: IEEE), 487–492.

Bruckenberger, U., Weiss, A., Mirnig, N., Strasser, E., Stadler, S., and Tscheligi, M. 
(2013). “The good, the bad, the weird: audience evaluation of a “real” robot in 
relation to science fiction and mass media,” in Proceedings of the International 
Conference on Social Robotics (Bristol, UK: Springer), 301–310.

Gehle, R., Pitsch, K., Dankert, T., and Wrede, S. (2015). “Trouble-based group 
dynamics in real-world HRI—reactions on unexpected next moves of a 
museum guide robot,” in Proceedings of the International Symposium on Robot 
and Human Interactive Communication (Kobe: IEEE), 407–412.

Giuliani, M., Mirnig, N., Stollnberger, G., Stadler, S., Buchner, R., and Tscheligi, 
M. (2015). Systematic analysis of video data from different human-robot 
interaction studies: a categorisation of social signals during error situations. 
Front. Psychol. 6:931. doi:10.3389/fpsyg.2015.00931 

Gompei, T., and Umemuro, H. (2015). “A robot’s slip of the tongue: effect of speech 
error on the familiarity of a humanoid robot,” in Proceedings of the International 
Symposium on Robot and Human Interactive Communication (Kobe: IEEE), 
331–336.

Hayes, C. J., Maryam, M., and Riek, L. D. (2016). “Exploring implicit human 
responses to robot mistakes in a learning from demonstration task,” in 
Proceedings of the International Symposium on Robot and Human Interactive 
Communication (New York, NY: IEEE), 246–252.

Holtzblatt, K., Wendell, J. B., and Wood, S. (2004). Rapid Contextual Design:  
A How-to Guide to Key Techniques for User-Centered Design. San Francisco, 
CA: Elsevier.

John, O. P., Naumann, L. P., and Soto, C. J. (2008). “Paradigm shift to the integra-
tive big-five trait taxonomy: history, measurement, and conceptual issues,” in 
Handbook of Personality: Theory and Research, eds O. P. John, R. W. Robins, and 
L. A. Pervin (New York, NY: Guilford Press), 114–158. 

Knepper, R. A., Tellex, S., Li, A., Roy, N., and Rus, D. (2015). Recovering from failure 
by asking for help. Auton. Robots 39, 347–362. doi:10.1007/s10514-015-9460-1 

Lee, M. K., Kielser, S., Forlizzi, J., Srinivasa, S., and Rybski, P. (2010). “Gracefully 
mitigating breakdowns in robotic services,” in Proceedings of the 5th ACM/IEEE 
International Conference on Human-Robot Interaction (Osaka: IEEE Press), 
203–210.

Lohse, M. (2011). The role of expectations and situations in human-robot interac-
tion. New Front. Hum. Robot Interact. 2, 35–56. doi:10.1075/ais.2.04loh 

Mirnig, N., Giuliani, M., Stollnberger, G., Stadler, S., Buchner, R., and Tscheligi, M.  
(2015). “Impact of robot actions on social signals and reaction times in HRI 
error situations,” in Proceedings of the International Conference on Social 
Robotics (Paris: Springer), 461–471.

Nomura, T., Kanda, T., Suzuki, T., and Kato, K. (2004). “Psychology in human-ro-
bot communication: an attempt through investigation of negative attitudes 
and anxiety toward robots,” in Proceedings of the International Symposium 
on Robot and Human Interactive Communication (Kurashiki: IEEE),  
35–40.

Ragni, M., Rudenko, A., Kuhnert, B., and Arras, K. O. (2016). “Errare humanum 
est: erroneous robots in human-robot interaction,” in Proceedings of the IEEE 
International Symposium on Robot and Human Interactive Communication 
(RO-MAN 2016) (New York, NY: IEEE), 501–506.

Robinette, P., Wagner, A. R., and Howard, A. M. (2014). “Assessment of robot guid-
ance modalities conveying instructions to humans in emergency situations,” in 
Robot and Human Interactive Communication, 2014 RO-MAN: The 23rd IEEE 
International Symposium on, (Edinburgh, UK: IEEE), 1043–1049.

Salem, M., Eyssel, F., Rohlfing, K., Kopp, S., and Joublin, F. (2013). To err is human 
(-like): effects of robot gesture on perceived anthropomorphism and likability. 
Int. J. Soc. Robot. 5, 313–323. doi:10.1007/s12369-013-0196-9 

Salem, M., Lakatos, G., Amirabdollahian, F., and Dautenhahn, K. (2015). “Would 
you trust a (faulty) robot? Effects of error, task type and personality on 
human-robot cooperation and trust,” in Proceedings of the Tenth Annual ACM/
IEEE International Conference on Human-Robot Interaction (Portland, OR: 
ACM), 141–148.

Schank, R., and Abelson, R. (1977). Scripts, Plans, Goals and Understanding: An 
Inquiry into Human Knowledge Structures, Vol. 2. Hillsdale, NJ: Lawrence 
Erlbaum Associates.

Short, E., Hart, J., Vu, M., and Scassellati, B. (2010). “No fair!!: an interaction with 
a cheating robot,” in Proceedings of the 5th ACM/IEEE International Conference 
on Human-robot Interaction, HRI’10 (Piscataway, NJ: IEEE Press), 219–226.

54

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.3758/BF03342263
https://doi.org/10.1007/s12369-
008-0001-3
https://doi.org/10.1007/s12369-
008-0001-3
https://doi.org/10.3389/fpsyg.2015.00931
https://doi.org/10.1007/s10514-015-9460-1
https://doi.org/10.1075/ais.2.04loh
https://doi.org/10.1007/s12369-013-0196-9


15

Mirnig et al. To Err Is Robot

Frontiers in Robotics and AI | www.frontiersin.org May 2017 | Volume 4 | Article 21

Vinciarelli, A., Pantic, M., and Bourlard, H. (2009). Social signal processing: survey 
of an emerging domain. Image Vis. Comput. 27, 1743–1759. doi:10.1016/j.
imavis.2008.11.007 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Mirnig, Stollnberger, Miksch, Stadler, Giuliani and Tscheligi. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

55

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1016/j.imavis.2008.11.007
https://doi.org/10.1016/j.imavis.2008.11.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


May 2017 | Volume 4 | Article 161

Original research
published: 23 May 2017

doi: 10.3389/frobt.2017.00016

Frontiers in Robotics and AI | www.frontiersin.org

Edited by: 
Giuseppe Carbone,  

University of Cassino, Italy

Reviewed by: 
Fulvio Mastrogiovanni,  

University of Genoa, Italy  
Paolo Boscariol,  

University of Udine, Italy

*Correspondence:
Paul Adam Bremner  

paul.bremner@brl.ac.uk

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to 

Humanoid Robotics,  
a section of the journal  

Frontiers in Robotics and AI

Received: 20 December 2016
Accepted: 27 April 2017
Published: 23 May 2017

Citation: 
Bremner PA, Celiktutan O and 

Gunes H (2017) Personality 
Perception of Robot Avatar 

Teleoperators in Solo and  
Dyadic Tasks.  

Front. Robot. AI 4:16.  
doi: 10.3389/frobt.2017.00016

Personality Perception of robot 
avatar Teleoperators in solo  
and Dyadic Tasks
Paul Adam Bremner1*†, Oya Celiktutan2† and Hatice Gunes2

1 Bristol Robotics Laboratory, University of West England, Bristol, UK, 2 Computer Laboratory, University of Cambridge, 
Cambridge, UK

Humanoid robot avatars are a potential new telecommunication tool, whereby a user is 
remotely represented by a robot that replicates their arm, head, and possible face move-
ments. They have been shown to have a number of benefits over more traditional media 
such as phones or video calls. However, using a teleoperated humanoid as a communication 
medium inherently changes the appearance of the operator, and appearance-based ste-
reotypes are used in interpersonal judgments (whether consciously or unconsciously). 
One such judgment that plays a key role in how people interact is personality. Hence, we 
have been motivated to investigate if and how using a robot avatar alters the perceived 
personality of teleoperators. To do so, we carried out two studies where participants 
performed 3 communication tasks, solo in study one and dyadic in study two, and were 
recorded on video both with and without robot mediation. Judges recruited using online 
crowdsourcing services then made personality judgments of the participants in the video 
clips. We observed that judges were able to make internally consistent trait judgments 
in both communication conditions. However, judge agreement was affected by robot 
mediation, although which traits were affected was highly task dependent. Our most 
important finding was that in dyadic tasks personality trait perception was shifted to 
incorporate cues relating to the robot’s appearance when it was used to communicate. 
Our findings have important implications for telepresence robot design and personality 
expression in autonomous robots.

Keywords: telepresence, Big Five personality traits, personality perception

1. inTrODUcTiOn

Telecommunication is omnipresent in today’s society, with people desiring to be able to communicate 
with one another, regardless of distance, for a variety of social and practical reasons. While video-
enabled communication offers a number of benefits over voice-only communication, it is still lacking 
compared to face-to-face interactions (Daly-Jones et al., 1998). For example, remotely located team 
members are less included in cooperative activities than colocated team members (Daly-Jones et al., 
1998) and have fewer conversational turns and speaking time in group conversations (O’Conaill 
et  al., 1993). Suggested reasons for these disparities are a lack of social presence of these remote 
group members, reduced engagement, and reduced awareness of actions (Tang et  al., 2004). A 
suggested underlying cause for the disparities found in traditional telecommunication is a lack of 
physical presence. An alternative is the use of teleoperated robots as communication media. A com-
mon approach to such embodied telecommunication is the use of mobile remote presence (MRP) 
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devices: a screen displaying the operators face mounted on a stalk 
attached to a wheeled base (Kristoffersson et al., 2013). Though 
studies examining the utility of MRPs have found that there are 
some improvements in social presence, different social norms are 
observed when people use them to interact, and there are impacts 
on trust and rapport (Lee and Takayama, 2011; Rae et al., 2013). 
Further, such systems are not able to effectively transmit non-
verbal communication cues, a key element of human communica-
tion not only for information conveyance but also in maintaining 
engagement and building rapport (Salam et al., 2016).

A proposed method for further improving social presence and 
effectively transmitting body language is to use a humanoid robot 
as a communication medium. In such a system, the operator’s 
body language is duplicated on a humanoid robot such that it is 
comprehensible and highly salient (Bremner and Leonards, 2016; 
Bremner et al., 2016b). Using a humanoid robot as a communica-
tions avatar has benefits with regard to engagement of conver-
sational partners (Hossen Mamode et al., 2013), social presence 
(Adalgeirsson and Breazeal, 2010), group interaction (Hossen 
Mamode et al., 2013), and trust (Bevan and Stanton Fraser, 2015).

However, when using a robot as a remote proxy for com-
munication, the operator is represented with a different physical 
appearance, much as computer generated avatars do in virtual 
environments. Appearance has been observed to be utilized in 
making interpersonal judgments (Naumann et  al., 2009), and 
this can extend to virtual avatars (Wang et al., 2013; Fong and 
Mar, 2015). It was observed that judges made relatively consistent 
inferences based on avatar appearance alone (Wang et al., 2013; 
Fong and Mar, 2015), and more attractive avatars were rated more 
highly in an interview scenario (Behrend et al., 2012). How this 
might manifest with robot avatars, in particular in the interaction 
between a robot appearance and human voice communication, 
remains unclear and is yet to be explored.

Here, the particular judgment we are concerned with is that 
of personality perception, an important facet of communication. 
Researchers in psychology have shown that personality plays a 
key role in forming interpersonal relationships, and predicting 
future behaviors (Borkenau et  al., 2004). These findings have 
motivated a significant body of work for how people judge 
others’ personalities based on their observable behaviors. A key 
component of these social cues for personality are non-verbal 
behaviors. We aim to investigate if such non-verbal personality 
cues transmitted by a teleoperated humanoid robot continue to 
be utilized in personality judgments, and how they interact with 
verbal cues. Non-verbal cues can be transmitted as our robot 
teleoperation system utilizes a motion capture-based approach 
so that arm and head movements the operator performs while 
talking are recreated with minimal delay on a NAO humanoid 
robot (Bremner and Leonards, 2016). The control system is intui-
tive and immersive, and we observe people behaving similarly to 
how they do face-to-face (Bremner et al., 2016b).

We designed two experiments which follow an experimental 
methodology common in the personality analysis literature, 
i.e., videos of participants performing different communication 
tasks are shown to external observers (judges) for personality 
assessment (e.g., Borkenau et  al. (2004)). Personality judg-
ments are made on the so-called big five traits, extroversion, 

conscientiousness, agreeableness, neuroticism, and openness  
(multiple questions relate to each trait). We varied communica-
tion media between judges, either video only or robot mediated 
(also recorded on video). Two main measures are used to see 
whether there was an effect of communication condition on 
personality judgments: (1) judge consistency in how they evalu-
ate a given trait, both within and between judge (low consistency 
indicates lack of cues or conflicting cues); and (2) personality 
shifts between high and low classification for each trait between 
the video and robot conditions.

Hence we address the following research questions:

•	 RQ1: Are there differences in judges’ consistency in assessing 
personality traits (within-judge consistency)?

•	 RQ2: Are there differences in how much judges agree with 
one another on personality judgments (between-judge 
consistency)?

•	 RQ3: Are personality judgments less accurate compared to 
self-ratings (self-other agreement)?

•	 RQ4: Are perceived personalities systematically shifted to 
incorporate characteristics associated with the robot’s appear-
ance (personality shifts)?

This paper is an extended version of our work published by 
Bremner et al. (2016a). We extended our previous work by adding 
a second experiment that refined our experimental procedure 
and used dyadic rather than solo tasks. Our discussions and 
conclusions are extended to include both experiments, evaluating 
all our results to give a clearer picture.

In the first experiment, three tasks are performed direct to 
camera, i.e., solo tasks. In the second experiment, participants 
performed three tasks that involved interaction with a confederate, 
i.e., dyadic. The first experiment provided some limited evidence 
for shifts in personality perception. Further, by adding an audio-
only communication condition, we were able to show that the 
robot was not simply ignored, and gesture cues performed on the 
robot were utilized. An important finding from the first experi-
ment was that effects were very task dependent, as the literature 
suggested. Borkenau et  al. (2004) found that openness is better 
inferred in more ability-demanding tasks such as pantomime 
task. Hence, the second experiment used additional tasks, which 
by being dyadic will engender personality cues differently; it is 
also a refinement of our experimental procedure, improving the 
reliability of our results. It produced compelling evidence that cues 
related to the robot’s appearance were incorporated in personality 
judgments, causing consistent shifts in perceived personality.

2. relaTeD WOrK

A common approach to investigating personality judgments is 
first impression or thin slice personality analysis. It is a body of 
research that studies the accuracy with which people are able 
to make personality judgments of others based only on short 
behavioral episodes (termed thin slices). This approach is taken 
as it is believed that these judgments provide insight into the 
assessments people make in everyday interactions (Funder and 
Sneed, 1993; Borkenau et al., 2004). In such studies, targets are 
typically asked to perform a range of communication tasks, either 
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solo performances to camera or dyadic with confederates, and 
are filmed while doing so. Judges then observe the video clips 
and complete personality assessment questionnaires. Ratings 
of judges are compared with target self-ratings, acquaintance 
ratings, and for inter-judge agreement. For many traits, there is 
sufficient inter-judge agreement for the method to be useful in 
assessing the impressions a person creates on those they interact 
with (Borkenau et al., 2004); however, the accuracy of judge rat-
ings to self/acquaintance ratings is typically a lot lower, as self/
acquaintance ratings are error prone, and use different sources to 
make their judgments (Vinciarelli and Mohammadi, 2014).

Often analyzed in thin slice personality studies are the cues 
that appear to be utilized in people making their judgments. 
Appearance, speaking style, gaze, head movements, and hand 
gestures have been frequently reported to be significant predic-
tors of personality (Riggio and Friedman, 1986; Borkenau and 
Liebler, 1992; Borkenau et al., 2004). Indeed, this sort of analysis 
forms the basis for automated personality analysis systems. Aran 
and Gatica-Perez (2013) focused on personality perception in a 
small group meeting scenario. They extracted a set of multimodal 
features including speaking turn, pitch, energy, head and body 
activity, and social attention features. Thin slice analysis yielded 
the highest accuracy for extroversion, while openness was better 
modeled by longer time scales. With regard to the related work 
in personality computing, the closest approach was presented in 
the study by Batrinca et al. (2016). In order to analyze the Big 
Five personality traits, Batrinca et al. conducted a study where a 
set of participants were asked to interact with a computer, which 
was controlled by an experimenter, and then a different set of 
participants were asked to interact with the experimenter face-to-
face to collaborate on completing a map task. In order to elicit the 
participants’ personality traits, the experimenter exhibited four 
different levels of collaborative behaviors from fully collaborative 
to fully non-collaborative. Self-reported personality traits were 
used to study the manifestation of traits from audiovisual cues. 
In the human-machine interaction setting, their results showed 
that (1) extroversion and neuroticism can be predicted with a 
high level of accuracy, regardless of the collaboration modality; 
(2) prediction of the agreeableness and conscientiousness traits 
depends on the collaboration modality; and (3) openness was the 
only trait that cannot be modeled. In contrast to their findings in 
the human–machine interaction setting, they showed that open-
ness was the trait that can be predicted with highest accuracy in 
the human–human interaction setting.

Applying such personality perception analysis to robot 
teleoperators has so far been limited. Perception of teleopera-
tor’s personality is important not only in social interactions but 
is also crucial where teleoperated robots are used in a service 
capacity such as for elderly care (Yamazaki et  al., 2012), and 
search and rescue (Martins and Ventura, 2009). In these settings, 
perception of the operator will effect system utility for carrying 
out the desired service and achieving the desired outcome. In 
the study by Celiktutan et  al. (2016), we showed that many of 
the aforementioned personality cues can be transmitted by a 
telepresence robot. We trained support vector machine classifiers 
with a set of features extracted from participants’ voice and body 
movements. We found that the use of a robot avatar helps to 

discriminate between different personality types (e.g., extroverted 
vs.introverted) better than audio-only mediated communication 
for extroversion (65%) and conscientiousness (60%).

Studies with Mobile Remote Presence devices (MRPs) have 
briefly mentioned perceiving the operator’s personality (Lee and 
Takayama, 2011), but it has not been deliberately studied as we 
do here. There are two studies that look directly at personality 
perception of teleoperators. Kuwamura et  al. (2012) examined 
an effect that they term personality distortion, demonstrated by 
reduction in internal consistency of the personality questionnaire 
they used, for two different robot platforms and communication 
using video. They use 3 tasks: (1) an experimenter talks freely 
with the participant, (2) a different experimenter introduces and 
talks about themselves, and (3) a third experimenter interviews 
the participant. They only observed personality distortion for one 
of the robot platforms, for extroversion in the interview task, and 
for agreeableness in the introduction task. Using a single fixed 
person for each task, particularly members of the experimental 
team who are aware of the goals of the study, greatly reduces the 
ecological validity of their results. In contrast, here we use a large 
number of naïve targets performing naturalistic communication, 
and conduct far more in-depth data analysis.

In a study with a teleoperated, highly humanlike robot, 
Straub et al. (2010) examined both how participant teleoperators 
incorporate the fact that they are operating a robot into their 
presented identity, and how interlocutors at the robot’s location 
blend operator and robot identities. They used language analysis 
to make their assessments. They observed that many operators 
pretended they themselves were a robot, and interlocutors often 
referred to the operator as a robot. These behaviors are different 
from what we typically observe with our teleoperation system, 
where most operators appeared to act naturally as themselves 
(Bremner et al., 2016b).

3. MaTerials anD MeThODs

We designed a two-stage experimental method for assessing 
changes in perceived personality that we used in two studies. First, 
a set of participants (targets) were recorded performing three 
communication tasks in two conditions, directly visible on video 
camera (audiovisual condition) and communicating using the 
teleoperated robot (teleoperated robot condition, also recorded 
on camera). This ensures that we have a large set of natural com-
munication behaviors, and hence personality cues, for a range of 
personality types, that can be viewed directly or when mediated 
by a robot.

In the second stage of the study, the recorded data were used to 
create a set of video clips for each target in each communication 
condition. The video clips were pseudorandomly assigned to a set 
of surveys in such a way as to have one of each task and commu-
nication condition combinations present, with a given target only 
appearing once in a given survey (i.e., communication condition 
was varied between surveys). Each survey was viewed by a set of 
10 judges, who after watching each clip assessed the personality 
of that target. We used an online crowdsourcing service to have 
the clips assessed. Employing judges via online crowdsourcing 
services has recently gained popularity due to its efficiency and 
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practicality as it enables collecting responses from a large group 
of people within a short period of time (Biel and Gatica-Perez, 
2013; Salam et al., 2016).

Personality was assessed by a questionnaire that aims to gather 
an assessment along the widely known Big Five personality traits 
(Vinciarelli and Mohammadi, 2014). These five personality traits 
are extroversion (EX—assertive, outgoing, energetic, friendly, 
socially active), agreeableness (AG—cooperative, compliant, 
trustworthy), conscientiousness (CO—self-disciplined, organ-
ized, reliable, consistent), neuroticism (NE—having tendency 
to negative emotions such as anxiety, depression, or anger), and 
openness (OP—having tendency to changing experience, adven-
ture, new ideas). Each trait is measured using a set of items (the 
BFI-10 (Rammstedt and John, 2007) with 2 per trait in the Solo 
Tasks Study, and the IPIP-BFM-20 (Topolewska et al., 2014) with 
4 per trait in the Dyadic Tasks Study) scored on 10-point Likert 
scales. As well as being assessed by external observers, each target 
completed the personality questionnaire for self-assessment.

3.1. Teleoperation system
In order to reproduce the gestures of targets on the NAO humanoid 
robot platform from Softbank Robotics (Gouaillier et al., 2009), 
we used a motion capture-based teleoperation system. Previously 
we have demonstrated the system to be capable of producing 
comprehensible gestures (Bremner and Leonards, 2015, 2016). 
The arm motion of the targets is recorded using a Microsoft 
Kinect and Polhemus Patriot,1 and used to produce equivalent 
motion on the robot. Arm link end points at the wrist, elbow, 
and shoulder are tracked and were used to calculate joint angles 
for the robot so that its upper and lower arm links reproduce 

1 Product of http://polhemus.com/.

human arm link positions and motion. This method ensures that 
joint coordination, and hand trajectories are as similar as possible 
between the human and the robot within the constraints of the 
NAO robot platform. Figure 1 shows a gesture produced by one 
of the targets, and the equivalent gesture on the NAO.

3.2. solo Tasks study
3.2.1. Tasks
In the first study, the three tasks performed by participants 
involved them performing directly to the camera, i.e., solo, 
and were based upon a subset of tasks used by Borkenau et al. 
(2004). Each of the tasks was framed as an interaction with the 
experimenter who stood beside the video camera used in the 
recordings, and provided non-verbal feedback and prompt ques-
tions to ensure as natural communicative behaviors as possible. 
Targets were instructed to speak for as long as they felt able, with 
a maximum time of 2  min for each task. The majority of the 
targets talked for 30–60 s on each task, with occasional prompts 
for missing information. Prior to performing tasks, we asked 
the targets to introduce themselves and give some information 
about themselves, e.g., where they work, what they do, their 
family, etc. This stage was purely to help naturalize the target 
to the experimental setting. It was not used to produce clips for 
judge rating.

3.2.1.1. Task 1 (Hobby)
This task asked targets to describe one of their hobbies, providing 
as much detail as possible. Suggested detail included what their 
hobby involves, why they like it, how long have they been doing 
it for, etc. Example personality cues we anticipated from this task 
include what targets have as their hobby, and what detail and the 
depth of detail they provide while describing their hobby.
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3.2.1.2. Task 2 (Story)
This task is based on Murray’s thematic apperception test (TAT), 
where the target is shown a picture and is asked to tell a dramatic 
story based on a picture (Murray, 1943). They are asked what is 
happening in the picture,2 what are the characters thinking and 
feeling, what happens before the events in the picture and what 
happens after. The picture is purposely designed to be ambiguous 
so that the target has the scope to interpret the picture as they see 
fit, and has to be creative in their story telling. It is a projective 
test, where the details given by the target, and how they relate the 
actions of the characters, provide cues about their personality.

3.2.1.3. Task 3 (Mime)
This task required the targets to mime preparing and cooking a 
meal of their choice. This was different from the mime task used 
by Borkenau et al. (2004), where targets had to mime alternative 
uses for a brick. Our pretests showed little variability between 
targets for that task. Instead, the chosen task gave the desired 
variability, and the gestures were better suited to performance 
on the NAO robot. Which meal was selected, and the complexity 
of the mime, are example personality cues we anticipated from 
this task.

3.2.2. Participants
Twenty-six participants were recorded as targets (16 female, 
mean age = 30.85, SD = 7.58) and gave written informed con-
sent for their participation, they were reimbursed with a £5 gift 
voucher for their time. Recordings for 20 of the targets were used 
to create the clips used for judgments (6 targets were omitted due 
to recording problems). The study was approved by the ethics 
committee of the Faculty of Environment and Technology of The 
University of the West of England.

Clip ratings were undertaken by 143 judges recruited through 
the CrowdFlower online crowdsourcing platform.3 Judges were 
compensated 50 cents for annotating a total of four clips.

3.2.3. Recordings
All tasks were recorded by one RGB video camera and the motion 
capture system used for teleoperation. The recorded motion cap-
ture data were then used to produce robot-mediated versions of 
the targets’ performances on the NAO robot using the aforemen-
tioned teleoperation system, which were also recorded on video.

In addition to the audiovisual and teleoperated robot condi-
tions, an audio-only condition was created using the audio from 
hobby and story tasks. Hence, each target had a total of 8 clips 
split over 3 communication conditions: 3 clips for the audiovisual 
condition, 2 clips for the audio-only condition, and 3 clips for the 
teleoperated robot condition. This resulted in a total of 158 clips 
(two clips became corrupted).

To avoid confusion, prompt questions were edited out of the 
clips. Further, for the few tasks where performance exceeded 60 s, 
clips were edited to be close to this length as pretests showed a 

2 Image used was https://www.flickr.com/photos/bassclarinetist/, used under crea-
tive commons licence.
3 CrowdFlower, a data enrichment, data mining and crowdsourcing company, 
http://www.crowdflower.com/.

decrease in the reliability of judgments with overly long clips. 
Mean clip duration was 50 s (SD = 20 s).

The clips were split up into surveys each containing four clips: 
one of each task and one of the audio-only clips, each of a unique 
target. Communication condition was pseudo-randomized across 
the three tasks in each survey, but always contained at least one of 
each communication condition.

3.3. Dyadic Tasks study
3.3.1. The Extended Teleoperation System
The teleoperation system was extended to enable interactive 
multimodal communication. The first addition made was a 
stereo camera helmet on the NAO robot, the images from which 
are displayed in an Oculus Rift head-mounted display (HMD). 
Coupled with using the Rift’s inertial measurement unit to drive 
the robot’s head, meant the operator could see from the robots 
point of view, and their gaze direction and head motion could be 
observed on the robot. Secondly we used a voice over IP com-
munication system to allow full duplex audio communication. 
Finally, due to feedback from participants in the Solo Tasks Study, 
we did not use the Polhemus Patriot in the Dyadic Tasks Study 
to make behaviors more natural; importantly, wrist rotation was 
only really needed for the mime task in the Solo Tasks Study, 
and is less important for normal gesturing. Figure 2 shows the 
teleoperation system and the setup during performance of dyadic 
tasks in the teleoperation (TO) condition.

3.3.2. Tasks
In the second study, the three tasks performed by participants 
involved interacting with a confederate, i.e., dyadic. A confeder-
ate was used to ensure that each participant had the same interac-
tive partner, giving us a measure of control over the interactions, 
while still seeming natural to the participants. The three selected 
tasks were based on the suggestions by Funder et  al. (2000) of 
having an informative task, a competitive task, and a cooperative 
task. The intention of these task types is that they each engender 
personality cues in different ways.

The three tasks were briefly explained to the participant and the 
confederate together, and more detailed written instructions were 
provided to be used during the experimental session. This was done 
to ensure that the experimenters could leave the room for the par-
ticipant and confederate to converse alone. The two communication 
conditions (audiovisual and teleoperated robot) were performed 
sequentially, in a pseudorandomized order, in the same room. The 
audiovisual condition was recorded face-to-face, i.e., with both 
participant and confederate seated across a table from one another. 
In the teleoperated robot condition, the participant moved to an 
adjoining room where the teleoperation controls were located, while 
the confederate sat at a table across from the robot.

3.3.2.1. Task 1 (Informative)
Participants watched a clip from a Sylvester and Tweety cartoon, 
which they then had to describe to the confederate. This is a 
task commonly used to examine gesturing (Alibali, 2001), as 
describing the action filled cartoon often engenders gestures, 
which may be useful personality cues that can be produced by 
the robot. Another key reason for this task choice was that all 
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participants have the same things to talk about: in the previously 
used hobby task several participants struggled to find much to 
say without significant prompting. Two different Sylvester and 
Tweety cartoons were used, one for each communication condi-
tion; cartoon assignment was randomized between conditions. 
We expected there to be an abundance of gestural cues, as well 
as cues related to the participants’ verbal behavior (such as how 
detailed the description was).

3.3.2.2. Task 2 (Competitive)
The participants and the confederate played a memory-based 
word game adapted from the traditional Grandmothers Trunk 
game. The first player says “My Grandmother went on holiday and 
she…” and adds something she did, accompanied by a gesture, 
the other player then repeats what the first said and their gesture, 
and adds something else she did. Play continues alternating 
between players who repeat the whole list of things and perform 
the gestures, adding a new thing each time, until one player 
forgets something and that player loses. How they approach the 
competitive nature of the task, and the actions they select are 
personality cues we expected from this task.

3.3.2.3. Task 3 (Cooperative)
The participants and the confederate cooperated to put a set of 
5 items into utility order for surviving in a given scenario. There 
were two scenarios each with its own set of items, surviving a 
ship wreck, and surviving a crash landing on the moon. One 
scenario was presented per communication condition and was 
randomly assigned. How agreement is reached, and how the task 
is approached are the main cues we expect from this task.

3.3.3. Participants
Thirty participants were recorded as targets (13 female, mean 
age = 25.01, SD = 4.2), and gave written informed consent for 
their participation, they were reimbursed with a £5 gift voucher 
for their time. Recordings for 25 of the targets were used to 
create the clips used for judgments (5 targets were omitted due 

to recording problems). The study was approved by the ethics 
committee of the University of Cambridge.

Clip ratings were undertaken by 250 judges recruited through 
the Prolific Academic online crowdsourcing platform.4 Each 
judge rated 6 clips and was compensated £2 for their time.

3.3.4. Recordings
In all tasks, both the confederate and the participant were 
recorded by separate RGB video cameras. The confederate was 
only recorded to obscure the fact that she was a confederate. In the 
teleoperated robot condition, a video camera recorded the robot 
instead of the participant. In order to produce videos of identical 
length for all targets and tasks, the video clips were further edited 
to select a 60 s segment from the beginning of the Informative task 
and from the end of Competitive and Cooperative tasks. This is 
in line with suggestions by Carney et al. (2007b) for using clips of 
this length of a task to maximize consistent judgment conditions 
for each target. Thus, each target had a set of three 60 s clips for 
each of the two communication conditions. One survey consisted 
of a pseudo-randomized set of 6 clips, 1 example of each task in 
each communication condition, with unique targets in each clip. 
Additionally a practice clip of the confederate was added to the 
start of all surveys to use as a measure of judge reliability, it also 
served to demonstrate her voice such that it could be ignored 
when she spoke during the target clips.

In Table 1, we summarized both studies in terms of number 
of participants, tasks, communication conditions, and commu-
nicated cues.

4. resUlTs anD analYsis

To address the research questions introduced in Section 1, we 
analyzed the level of agreement and the extent of shifts with 
respect to different communication conditions (e.g., audiovisual/

4 Prolific Academic online crowd sourcing platform, https://www.prolific.ac/.
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TaBle 1 | summary of the conducted studies.

study number of participants Tasks communication conditions communicated cues

Solo 26 Hobby, story, mime AO, AV, TO Wrist, elbow, shoulder motion, wrist orientation
Dyadic 30 Informative, competitive, 

cooperative
AV, TO Wrist, elbow, shoulder motion; head motion; gaze direction

AO, audio-only; AV, audiovisual; TO, teleoperation.
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AV, audio-only/AO, teleoperation/TO) and different tasks for 
each personality trait. We evaluated personality judgments to 
measure intra-/inter-agreement, self-other agreement, and per-
sonality shifts as below.

•	 Intra-judge Agreement: Intra-judge agreement (also known as 
internal consistency) evaluates the quality of personality judg-
ments based on correlations between different questionnaire 
items that contribute to measuring the same personality trait 
by each judge. We measured intra-judge agreement in terms of 
standardized Cronbach’s α: α = + −

Kr
K r( ( ) )1 1  where K is the number 

of the items (K = 2 in the Solo Tasks Study, and K = 4 in the 
Dyadic Tasks Study) and r is the mean of pairwise correlations 
between values assigned. The resulting α coefficient ranges 
from 0 to 1; higher values are associated with higher internal 
consistency and values less than 0.5 are usually unacceptable 
(McKeown et al., 2012).

•	 Inter-judge Agreement: Inter-judge agreement refers to the 
level of consensus among judges. We computed the inter-judge 
agreement in terms of intraclass correlation (ICC) (Shrout 
and Fleiss, 1979). ICC assesses the reliability of the judges by 
comparing the variability of different ratings of the same target 
to the total variation across all ratings and all targets. We used 
ICC(1,k) as in our experiments each target subject was rated 
by a different set of k judges, randomly sampled from a larger 
population of judges. ICC(1,k) measures the degree of agree-
ment for ratings that are averages of k independent ratings on 
the target subjects.

•	 Self-other Agreement: Self-other agreement measures the 
similarity between the personality judgments made by self and 
others. We computed self-other agreement in terms of Pearson 
correlation and tested the significance of correlations using 
Student’s t distribution. Pearson correlation was computed 
between the target’s self-reported responses and the mean of 
the others’ scores per trait.

•	 Personality Shifts: Personality shift refers to the extent to 
which people shifted from one personality class to another, in 
judges’ perception, between AV and TO conditions. In order 
to measure shifts, we first classified each target into low or high 
(e.g., introverted or extroverted) for each trait according to if 
their average judge rating for each task was above or below 
the mean for all targets in AV. For each trait, each target was 
grouped according to their classification in both conditions, 
creating 4 groups (i.e., AV: high and TO: high, AV: high and 
TO: low, etc.). We presented these results in terms of contin-
gency tables and tested the significance using McNemar’s test 
with Edwards’s correction (Edwards, 1948).

In the following subsections, we present these results for each 
study (solo and dyadic) separately.

4.1. solo Tasks study
4.1.1. Elimination of Low-Quality Judges
Although crowdsourcing techniques have many advantages, 
identifying annotators who assign labels without looking at the 
content (low-quality judges or spammers) is necessary to get 
informative results. As a first measure, we eliminated judges who 
incorrectly answered a test question about the content of the clips. 
After this elimination mean-judges-per-clip was 7.9 (SD = 1.5), 
with minimum judges-per-clip being 5.

To assess whether there remained further low-quality judges 
we calculated within-judge consistency for the AV clips using 
Cronbach’s α, which measures whether the values assigned to the 
items that contribute to the same trait are correlated. The average 
value across all tasks was lower than we expected (less than 0.5), 
indicating some judges answer randomly. With no low-quality 
judges, we would expect values for the AV clips greater than 0.5, 
i.e., in line with values reported in the literature for the BFI-10 
with video clips assessed by online judges (Credé et al., 2012). We 
therefore used a judge selection method to remove these addi-
tional low-quality judges. We used a ranking-based method based 
on pairwise correlations instead of standard methods for outlier 
detection. For each clip, we calculated an average correlation score 
for each judge from pairwise correlations (using all 10 questions in 
the BFI-10) with the remaining judges. Judges with low correlation 
scores are deemed to be spammers. The judges were then ranked 
in order of correlation score and the k highest ranked selected.

To evaluate the efficacy of this ranking procedure we calcu-
lated within-judge consistency results for the AV clips for differ-
ent judge numbers ranging from k =  10 (without elimination) 
to k =  3. These values averaged over all tasks are presented in 
Figure  3A. We further validated this by computing ICC with 
varying number of judges, Figure 3C. Selecting 5 judges per clip 
(based on pairwise comparisons) was found to be sufficient to 
increase reliability to acceptable levels for the AV clips (greater 
than 0.5) for all traits except for openness. We use 5 judges as it 
allows us to exclude all judges who failed the test question while 
having the same number of judges for all clips [5 judges is com-
mon in this type of study, e.g., Borkenau and Liebler (1992)].

4.1.2. Within-Judge Consistency
Within-judge consistency was measured in terms of Cronbach’s α. 
For the selected 5 judges per clip, the detailed results with respect 
to different communication conditions and tasks are presented 
in Table  2(a), where α values that indicate sufficient reliability 
for the BFI-10 (greater than 0.5, in line with values reported in 
the literature (Credé et  al., 2012)) are highlighted in bold. To 
compare α values between communication conditions we follow 
the method suggested by Feldt et  al. (1987): 95% confidence 
intervals are calculated for each α value, and if the value from 
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TaBle 2 | analysis of personality judgments across 3 communication conditions and 3 tasks.

audiovisual (aV) audio-only (aO) Teleoperation (TO)

hobby story Mime all hobby story all hobby story Mime all

(a) Within-judge
EX 0.64 0.56 0.63 0.62 0.57 −0.15 0.34 0.61 0.39 0.19 0.47
AG 0.54 0.41 0.60 0.52 0.61 0.33 0.52 0.40 0.56 0.37 0.44
CO 0.47 0.60 0.54 0.55 0.50 0.21 0.39 0.54 0.56 0.57 0.55
NE 0.76 0.76 0.78 0.78 0.75 0.42 0.63 0.66 0.54 0.30 0.50
OP −0.6 0.05 0.22 −0.04 −0.14 0.12 0.05 0.17 −0.24 −0.14 −0.07

(b) Between-judge
EX 0.84*** 0.81*** 0.74*** 0.81*** 0.72*** 0.51* 0.70*** 0.72*** 0.63** −0.12 0.66***
AG 0.46* 0.61** 0.40 0.55*** 0.25 −0.15 0.32 0.21 0.54** −0.95 0.39**
CO 0.78*** 0.67*** 0.71*** 0.72*** 0.37 −0.10 0.22 0.32 0.65*** −0.35 0.36*
NE 0.80*** 0.71*** 0.55** 0.75*** 0.57** 0.12 0.55*** 0.70*** 0.36 −0.56 0.44**
OP 0.12 0.67*** 0.40 0.52*** 0.49 0.40 0.55*** 0.34 0.17 0.04 0.36*

(c) self-other
EX 0.34*** 0.32** 0.26* 0.30*** 0.44*** 0.01 0.24*** 0.12 −0.02 0.04 0.05
AG 0.04 0.13 0.04 0.07 0.28** −0.05 0.12 0.08 −0.01 0.10 0.06
CO −0.17 0.09 0.16 0.03 0.13 −0.13 0.01 0.05 0.16 −0.16 0.01
NE 0.00 −0.07 0.05 −0.01 0.07 0.09 0.07 0.02 −0.08 0.04 0.00
OP 0.06 0.03 0.00 0.03 0.10 0.04 0.07 0.16 0.07 0.03 0.09

(a) Within-judge consistency in terms of Cronbach’s α (good reliability > 0.80 is highlighted in bold); (b) Between-judge consistency in terms of ICC(1,k) (at a significance level of 
*p < 0.05, **p < 0.01, ***p < 0.001); (c) Self-other agreement in terms of Pearson correlation (at a significance level of *p < 0.05, **p < 0.01, and ***p < 0.001).

FigUre 3 | changes in cronbach’s α values (a,B) and icc values (c,D) as a function of number selected judges (k) for different traits in the aV 
communication condition for solo Tasks study (a–c) and Dyadic Tasks study (B–D).
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TaBle 3 | contingency tables for each trait (at a significance level of *p < 0.05).

eX TO: high TO: low ag TO: high TO: low cO TO: high TO: low

AV: high 16 6 AV: high 16 11 AV: high 13 9
AV: low 10 8 AV: low 5 8 AV: low 12 6

ne TO: high TO: low OP TO: high TO: low

AV: high 6 14* AV: high 13 6
AV: low 1* 19 AV: low 12 9

Shift between two classes (from high to low or vice versa) are highlighted in bold.

FigUre 4 | amount of shifts (%) from high to low (high2lOW) and from low to high (lOW2high) (*p < 0.05, ***p < 0.001) between aV and TO: solo 
tasks (left hand side) versus dyadic tasks (right hand side).
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one condition falls outside the confidence intervals from a  
condition it is being compared to, this suggests it is significantly 
less consistent. Comparing AO with AV for the hobby task, 
values for all traits, except for agreeableness, fall outside the 95% 
confidence intervals of the AV values. Comparing TO with AV 
for the mime task, values for all traits, except for conscientious-
ness, fall outside the 95% confidence intervals of the AV values. 
This indicates AV is found to be more consistent as compared to 
AO for the hobby task (except for agreeableness) and TO for the 
mime task (except for conscientiousness). No other comparisons 
indicate significant differences.

4.1.3. Between-Judge Consistency
We computed between-judge consistency in terms of intraclass 
correlation, ICC(1,k) proposed by Shrout and Fleiss (1979), 
where k = 5. Our judge selection method uses the k most cor-
related judges so might bias the ICC results (see Section 4.1.1). 
To evaluate this, we calculated ICC for k = (10, …3) for the AV 
condition. Figure 3B shows that, for extroversion, conscientious-
ness, and neuroticism, ICC does not change meaningfully as the 
number of judges varies, while selecting the 5 most correlated 
judges slightly biases the results for agreeableness and openness.

The detailed results for the selected 5 judges per clip are 
presented in Table  2(b). We obtained significant correlations 
for most traits in the AV condition, with values in the same 
range (0.40  <  ICC(1, k)  <  0.81) as reported in the literature 
for online judges using a 10-item test (0.42 < ICC(1, k) < 0.76)  
(Biel and Gatica-Perez, 2013). Fewer significant correlations were 
observed in the other communication conditions, particularly in 
the story task for AO and the mime task for TO. Extroversion 
was the only trait that consistently maintained correlation across 
conditions.

4.1.4. Self-Other Agreement
We examined the extent to which judges agree with the target’s 
self-assessment. Pearson correlations between the self-ratings 
and the judge’s ratings of conditions and tasks are reported in 
Table 2(c) for the selected 5 judges per clip. We observed that the 
judge’s ratings bear a significant relation to the target’s self-ratings 
for extroversion only (r = 0.24 − 0.44 and p < 0.05). However, we 
did not obtain any significant correlations in the TO condition 
(all r < 0.2 and p > 0.05).

4.1.5. Personality Shifts
We examined the extent to which people shifted from one per-
sonality class to another, in judges’ perception, between AV and 
TO conditions, in the hobby and story tasks for the selected 5 
judges per clip. We did not examine shifts involving AO or Mime 
task as the ICC scores indicated that personality ratings in this 
condition would be too unreliable. These results are presented 
in Table 3 as 2 × 2 contingency tables. To aid analysis we have 
also illustrated each shift as a proportional change (%) both from 
high to low (HIGH2LOW) and from low to high (LOW2HIGH) 
in Figure 4 (see the figure on the left hand side).

We found a significant shift from high to low for neuroticism 
(70%). Note that the corrected McNemar’s test is very conserva-
tive in estimating significance, particularly for small sample sizes. 
Although not statistically significant, we observed large shifts 
from low to high for extroversion (56%), conscientiousness (67%), 
and openness (57%).

4.2. Dyadic Tasks study
As in the Solo Tasks Study, we assessed whether there existed  
low-quality judges (spammers) in the judge pool used for the 
Dyadic Tasks Study. To do so, we repeated the same method that 
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TaBle 4 | analysis of personality judgments across 2 communication conditions and 3 tasks.

audiovisual (aV) Teleoperation (TO)

informative competitive cooperative all informative competitive cooperative all

(a) Within-judge
EX 0.85 0.87 0.85 0.87 0.84 0.85 0.84 0.86
AG 0.77 0.80 0.84 0.83 0.86 0.84 0.81 0.84
CO 0.71 0.75 0.77 0.74 0.76 0.70 0.72 0.73
NE 0.57 0.60 0.54 0.57 0.54 0.64 0.60 0.59
OP 0.78 0.82 0.87 0.85 0.75 0.79 0.85 0.81

(b) Between-judge
EX 0.83*** 0.84*** 0.70*** 0.85*** 0.61*** 0.78*** 0.78*** 0.82***
AG 0.18 0.21 0.58*** 0.51** 0.08 0.35 0.37* 0.41*
CO 0.27 0.28 0.48** 0.61*** −0.24 −0.11 0.24 −0.26
NE 0.52** 0.53** 0.22 0.66*** 0.38* 0.13 −0.35 0.46**
OP 0.21 0.67*** 0.57*** 0.51** 0.55** 0.47** 0.29 0.52**

(c) self-other
EX 0.29** −0.12 −0.29** −0.06 0.32** 0.21* −0.15 0.18
AG 0.74*** 0.73*** 0.44*** 0.75*** 0.57*** 0.65*** 0.27** 0.63***
CO 0.22* 0.28** 0.31** 0.31** −0.01 0.27** 0.14 0.17
NE 0.16 0.18 0.28** 0.24* 0.24* 0.19 0.07 0.23*
OP 0.68*** 0.61*** 0.17 0.71*** 0.51*** 0.37*** 0.04 0.46***

(a) Intra-judge consistency in terms of Cronbach’s α (good reliability > 0.80 is highlighted in bold); (b) Inter-judge consistency in terms of ICC(1,k) (at a significance level of *p < 0.05, 
**p < 0.01, ***p < 0.001); (c) Self-other agreement in terms of Pearson correlation (at a significance level of *p < 0.05, **p < 0.01, and ***p < 0.001).
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we used for the Solo Tasks Study, where we evaluated ICC values, 
and used judge rating techniques to selectively remove judges. 
These results are presented in Figures 3B,D. As we observed ICC 
values for the AV condition in line with expectation with all judges 
included, and cannot observe large changes in the Cronbach’s α 
values and the ICC values, by excluding judges, we concluded 
that the judges were reliable. Hence, we present the results for the 
Dyadic Tasks Study without eliminating any judges.

4.2.1. Within-Judge Consistency
Within-judge consistency was measured in terms of Cronbach’s 
α. The detailed results with respect to different communication 
conditions and tasks are presented in Table 4(a), where α values 
that indicate sufficient reliability for the IPIP-BFM-20 (greater 
than 0.75, in line with values reported in the literature (Credé 
et al., 2012)) are highlighted in bold. Values are above or close 
to good reliability (>0.7) for all traits except for neuroticism. 
Comparing values across communication conditions, we observe 
little difference, hence judges were able to make consistent trait 
evaluations when the robot is used for communication.

4.2.2. Between-Judge Consistency
We computed between-judge consistency in terms of intraclass 
correlation, ICC(1,k), where k  =  10 (Shrout and Fleiss, 1979). 
The detailed results for the 10 judges per clip are presented in 
Table  4(b). Extroversion and openness are the only traits with 
significant agreement across most tasks and both conditions 
(0.47 ≤ ICC(1, k) ≤ 0.85 at a significance level of p < 0.01). Other 
traits vary between tasks and conditions as to where significant 
agreement is achieved. A clearer picture can be gained from the 
all task results, where it can be seen that agreement on conscien-
tiousness deteriorates in the TO condition relative to AV (a drastic 
drop from 0.61 to −0.26 over all tasks).

4.2.3. Self-Other Agreement
We examined the extent to which judges agree with the target’s 
self-assessment. Pearson correlations between the self-ratings 
and the judge’s ratings of conditions and tasks are reported in 
Table 4(c). Significant agreement was found for agreeableness and 
openness across most tasks and both conditions (rag = 0.75 and 
rop = 0.71 over all tasks), although agreement is much lower in 
the TO condition (rag = 0.63 and rop = 0.46 over all tasks). For 
extroversion and neuroticism, agreement is much lower than for 
other traits, and this is fairly consistent across conditions. Again 
we observe the larger difference across conditions for conscien-
tiousness (rco = 0.17), with almost no significant agreement in the 
TO condition compared to significant agreement across all tasks 
in the AV condition (rco = 0.31).

4.2.4. Personality Shifts
We examined the extent to which people shifted from one person-
ality trait classification to another, in judges’ perception, between 
AV and TO conditions for each task. These results are presented 
in Tables 3 and 5 as 2 × 2 contingency tables. To aid analysis, 
we have also illustrated each shift as a proportional change (%) 
both from high to low (HIGH2LOW) and from low to high 
(LOW2HIGH) in Figure 4 (see the figure on the right hand side). 
We found a significant shift from high to low for agreeableness 
(65%), conscientiousness (67%) and openness (56%). Although not 
statistically significant, we observed a large shift from high to low 
for neuroticism (57%).

5. DiscUssiOn

In this section, we discuss our results, including comparisons 
with related work introduced in Section 2. We present in-depth 
discussion of meta-data (i.e., judge ratings, self-ratings) in terms 
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TaBle 5 | contingency tables for each trait (at a significance level of *p < 0.05 and ***p < 0.001).

eX TO: high TO: low ag TO: high TO: low cO TO: high TO: low

AV: high 31 5 AV: high 14 26*** AV: high 12 24*
AV: low 13 26 AV: low 5*** 30 AV: low 10* 29

ne TO: high TO: low OP TO: high TO: low

AV: high 16 21 AV: high 18 23*
AV: low 10 28 AV: low 10* 24

Shift between two classes (from high to low or vice versa) are highlighted in bold.
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of intra/inter-judge agreement, accuracy of judgments and  
personality shifts, with regard to different communication condi-
tions (i.e., AO: audio-only, AV: audiovisual, and TO: teleoperation) 
and different tasks (i.e., solo and dyadic tasks). Note that in the 
majority of related works results were not directly comparable as 
personality recognition accuracy is typically the reported metric, as 
opposed to agreement as used here; accuracy as measured by com-
paring human responses with machine learning systems (e.g., Aran  
and Gatica-Perez (2013), Batrinca et al. (2016)), or between self-
ratings and judge ratings (e.g., Funder (1995), Borkenau et  al. 
(2004)). Nevertheless, for which traits this reported accuracy is 
high or low helps provide some explanation for our findings.

5.1. intra-Judge agreement
Consistency within judges for how each trait is judged (Table 2(a) 
and Table 4(a)) is used to address RQ1. In both studies, judges 
were sufficiently consistent in their trait ratings in the audiovisual 
condition (AV), with the exception of openness in the Solo Tasks 
Study, and to a lesser extent neuroticism in the Dyadic Tasks Study 
for us to conclude that the tasks and judges’ behaviors were reli-
able. Batrinca et  al. (2016) also reported a similar finding that 
openness was not modeled successfully in the human-machine 
interaction, whereas, in the human–human interaction setting, 
it was the only trait that could be predicted with a high accuracy 
over all collaboration tasks. In our case, the difference between 
the two studies with regard to consistent judgment of the open-
ness trait indicates that cues for this trait may be more evident in 
dyadic tasks. Some researchers have suggested that one aspect 
of openness is intellect, where intellect incorporates the facets of 
intelligence, intellectual engagement, and creativity (DeYoung, 
2011), and the tasks in the Dyadic Tasks Study are more condu-
cive to displaying these facets.

In the Solo Tasks Study, there were some notable differences 
between the audio-only (AO) and the teleoperated robot (TO) 
conditions. For the hobby task, judges remained consistent 
in both the AO and TO conditions, indicating they were able 
to use audio cues to make judgments for this task, and robot 
appearance had no effect on consistency. However, for the story 
task, judges were much less consistent in the AO than in the AV 
condition, for all traits except for agreeableness. This is in contrast 
to the teleoperated robot condition (TO), where they remained 
as consistent as in the AV condition. The only additional cues 
available with the robot compared to audio only are gestures 
and appearance. The results indicate that such cues are used to 
aid judgments in the same way that they do in the AV condi-
tion, though their utility appears to be task dependent (only of 
apparent benefit in the story task). Importantly, the fact that 

they are utilized provides good evidence that the robot is not 
simply ignored when making judgments. Hence, the findings of 
high levels of agreement across both conditions in all tasks in 
the Dyadic Tasks Study indicate that in dyadic tasks the robot 
transmits sufficient cues to make judgments as consistently as 
observing the target directly.

The use of gesture to aid personality judgments appears to be 
dependent on it accompanying speech, as in the Solo Tasks Study 
ratings in the TO condition are far less consistent than in the AV 
condition for the mime task. That is to say, gestures alone do not 
provide sufficient information for judging personality. This was in 
contrast to what was reported by Aran and Gatica-Perez (2013), 
where the best results were achieved when they used visual cues 
only for predicting personality traits, and using audio cues or 
combining them with visual cues resulted in lower accuracy. This 
showed that either other behavior cues not transmitted by the 
robot are needed, or appearance cues are used which conflict with 
gesture cues in the TO condition.

Taking the results from both studies together, it is apparent 
that judges are able to remain consistent in their judgments of a 
given trait whether they are observing someone directly or their 
communication relayed through a teleoperated robot. Indeed, 
where there are slight shifts in consistency between AV and TO 
conditions, they are not large; the one exception being for the 
mime task in the Solo Tasks Study. Hence, each judge appears 
to formulate a relatively consistent evaluation of a given targets’ 
personality traits based on speech, gesture, and appearance, 
combining them to assess each trait facet. This finding is in 
contrast to the study by Kuwamura et al. (2012) where they sug-
gested small shifts in intra-judge consistency provided evidence 
of robot appearance effects on personality perception. While in 
subsequent sections we do observe evidence for effects of robot 
mediation on perception, we do not find such small shifts in 
intra-judge consistency convincing in this regard.

5.2. inter-Judge agreement
Looking at inter-judge agreement results to address RQ2 
(Table 2(b) and Table 4(b)), extroversion was the only trait on 
which judges reached consensus in both studies, regardless of 
the communication condition, and task (the mime task in the 
Solo Tasks Study being the one exception). This result is in line 
with the widely accepted idea that extroversion is the easiest trait 
to infer upon others (Barrick et al., 2000). Hence, the strength of 
the available cues was sufficient to overcome any conflict between 
appearance, vocal, and gesture based cues. Indeed it indicates 
that judges had a common set of interpretations for the available 
cues.
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On the other hand, where agreement was reached on agreea-
bleness, conscientiousness, and neuroticism for some tasks in the 
AV condition in each study, it had mostly deteriorated in the TO 
condition, and the AO condition in the Solo Tasks Study. The 
clearest example of this is for conscientiousness taking all three 
tasks together in the Dyadic Tasks Study (and to some extent 
in the Solo Tasks Study as well), where agreement drastically 
deteriorated in the TO condition as compared to the AV condi-
tion. As explained in the study by Macrae et al. (1996), physical 
appearance based impressions (facial and vocal features) are often 
used in the judgment of conscientiousness. In particular, low con-
scientiousness is conveyed by a childlike face (Macrae et al., 1996), 
which the face of the NAO robot can be considered to have, and 
this may conflict with the vocal cues of the operator. Neuroticism 
is mainly related to emotions, and agreeableness is related to trust, 
cooperation and sympathy (Zillig et al., 2002), both of which it 
seems reasonable to suggest judges might perceive as being low 
for a robot (particularly NAO with its lack of facial expressions), 
again creating conflicts. It would appear that judges do not have a 
consistent manner with which to resolve such conflicts.

Task-based analyzes in the Solo Tasks Study show that for 
agreeableness and conscientiousness the story task provides suf-
ficient cues for agreement to be maintained in the TO condition, 
whereas the hobby task does so for neuroticism. As agreement 
being maintained in the TO condition indicates sufficient cues 
to overcome appearance/behavior conflicts, it is instructive to 
consider how those tasks might relate to the traits. In telling the 
story, targets might demonstrate their morality, and relation to 
others, components of agreeableness (Zillig et  al., 2002). How 
well structured and clear the story is could relate to facets of the 
conscientiousness trait. The hobby task on the other hand might 
demonstrate how self-conscious a person is about their hobby, 
a facet of neuroticism (Zillig et al., 2002). While these two tasks 
might provide some cues for facets of the traits for which con-
sistency was not maintained, they appear to do so in a way that 
conflicts with cues related to the robot.

We also compared differences in agreement between the 
TO and AO conditions in the Solo Tasks Study. Where there 
is agreement in TO for agreeableness, conscientiousness, and 
neuroticism, we found it was greatly reduced for agreeableness 
and conscientiousness, and to a lesser extent for neuroticism. This 
provides further evidence that physical cues, be they behavioral 
or appearance based, are utilized in the TO condition. Again, this 
appears to be dependent on the presence of speech: in the mime 
task for the Solo Tasks Study, judges were unable to provide a 
consistent rating for any trait in the TO condition, in contrast 
to the consistent ratings for extroversion, conscientiousness, and 
neuroticism in the AV condition. A likely reason for this observa-
tion is that without vocal cues there is an increased reliance on 
appearance based cues, often based on stereotypes (Kenny et al., 
1994), and judges do not have consistent stereotypes relating to 
robot appearance.

Batrinca et al. (2016) showed that the prediction of agreeable-
ness and conscientiousness in the human-machine interaction 
setting and the prediction of conscientiousness and neuroticism 
were highly dependent on the collaboration task, where the 
extroversion trait was the only trait yielding consistent results 

over all tasks in both settings. Similarly, our task-based analyses 
in the Dyadic Tasks Study show that in the AV condition, while 
the cooperative task provided a higher level of agreement for 
agreeableness and conscientiousness, the competitive task yielded 
better results for neuroticism and openness. Indeed, the results are 
somewhat expected given the nature of the tasks: the coopera-
tive task was to agree upon how to order five items in a survival 
scenario, in which participants were expected to exhibit the 
agreeableness facet of personality; the competitive task was more 
related to creativity and intelligence, that are strongly associated 
with openness (Zillig et  al., 2002). Though agreement is lower, 
it is still maintained for agreeableness in the cooperative task 
and openness in the competitive task in the TO condition. This 
indicates that in these cases, for at least some of the judges, either 
the vocal cues override the visual cues, or movement cues are 
utilized (with the vocal cues).

Taken together, the findings from both studies indicate that 
the ability of judges to make judgments based on a common 
interpretation of cues is affected not only by communication 
condition but is also dependent on the task. While in some cases 
it is apparent that a particular task is conducive to providing 
more verbal cues than another for a particular trait (as indicated 
by higher agreement, and inferred from the literature), whether 
these override the physical cues in the TO condition is hard to 
predict. Indeed, whether clear cues in the AV condition translate 
into agreement in the TO condition vary a great deal between 
all tasks. Hence, it seems reasonable to suggest that whether 
inter-judge consistency is observed also depends on how much 
appearance cues are utilized for a given task and trait, and thus 
how all the cues interact. This complex interaction effect provides 
strong evidence that personality perception is likely to be altered 
when communicating via a robot, and this depends on what cues 
are produced.

5.3. accuracy of Judgments
In order to assess RQ3, we analyzed the extent to which judge rat-
ings correlated with self-ratings provided by target participants 
(Table 2(c) and Table 4(c)). In general in the Solo Tasks Study, 
there was very little correlation between self and other ratings. 
This is in contrast to previous findings where they found low, 
but significant, self-other correlation (0.11 − 0.42) (Carney et al., 
2007a). The one exception to this was self-other correlation for 
extroversion in the AV condition. This suggests that participant 
targets did not present cues relating to their self-perception in 
the tasks we used, other than for extroversion which is commonly 
reported as the trait with the most available cues. Audio cues were 
sufficient for this correlation to be maintained in the hobby task 
in the AO condition, but not in the story task, or in either task in 
the TO condition.

In contrast to the tasks used in the Solo Tasks Study, the tasks 
of the Dyadic Tasks Study resulted in self-other agreement for 
extroversion, agreeableness, conscientiousness, and openness in the 
majority of tasks for the AV condition. This indicates that the 
tasks we used in the Dyadic Tasks Study were better at engender-
ing more naturalistic behavior, and hence personality cues than 
the tasks in the Solo Tasks Study. Indeed, an important factor in 
thin slice personality analysis is how easy a person is to judge 
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(Funder, 1995), and people behaving more naturally produce 
better cues. However, despite these apparently better cues, there 
was a large reduction in agreement for conscientiousness, neuroti-
cism, and openness (and to a lesser extent agreeableness) in the TO 
condition relative to the AV condition. This finding combined 
with those of the Solo Tasks Study suggests that there is a shift in 
the way personality cues are interpreted caused by their interac-
tion with the appearance of the robot, and the way non-verbal 
communication cues are reproduced on it.

5.4. Personality shifts
In order to address RQ4, we analyzed the difference in perceived 
personality in terms of the occurrences of personality shifts. We 
principally consider the results from the Dyadic Tasks Study as it 
provides the more compelling evidence. The main reason for this 
assertion is that more naturalistic cues appeared to be produced 
in the Dyadic Tasks Study (see previous section), and we consider 
such cues and their interaction with the TO condition more eco-
logically valid. In addition, by being able to consider three tasks 
rather than the two considered in the Solo Tasks Study we have 
increased statistical power. The shifts we observed (Figure  4) 
provide evidence that cues related to the robots appearance are 
incorporated into, or even override personality judgments based 
on speech. Indeed, this is somewhat to be expected given that 
(Behrend et al., 2012) observed that, in judgments of suitability, 
attractiveness of a graphical avatar superseded qualities perceived 
in an interviewees words.

There are two likely causal factors in the perceived personalities 
being shifted, first human-based physical appearance stereotypes 
(inferred from humanlike characteristics of the robot) might 
be applied, second characteristics related to robots might be 
applied. Here, we will discuss possible underlying causes for the 
shifts observed in the Dyadic Tasks Study. In the case of consci-
entiousness and neuroticism a childlike face, as the NAO might be 
considered to have, conveys low ratings for both traits (Borkenau 
and Liebler, 1992; Macrae et al., 1996). Further, conscientiousness 
and neuroticism were also observed to be influenced by face shape 
in graphical avatars (Fong and Mar, 2015), and as the NAO has a 
face shape that differs from a human, hence this could lead to dis-
tortions in perceptions of these traits. Additionally, neuroticism is 
mainly related to emotions (Zillig et al., 2002), something which 
robots are rarely considered to have. Also linked to emotions is 
openness, which combined with its other facets of imagination 
and creativity, might also be reasonably expected to be low for 
a robot, which could also be considered to have hard facial lina-
ments, also linked to low openness (Borkenau and Liebler, 1992). 
The NAO robot could also be considered male in appearance, and 
male avatars have been found to cue for lower conscientiousness 
and openness (Fong and Mar, 2015). Low agreeableness is more 
difficult to rationalize, but one facet is trustworthiness (Zillig 
et  al., 2002), and judges may have perceived using a robot to 
communicate as less trustworthy. The vocal cues for extroversion 
appeared to be very strong, and this might explain why little influ-
ence on this trait was observed.

An important thing to note from these findings is that people 
appear to be attributing personality stereotypes to NAO for 
characteristics other than the extroversion trait, which has been 

previously examined (Park et  al., 2012; Aly and Tapus, 2013; 
Celiktutan and Gunes, 2015). Hence, in future work in which a 
desired personality is to be expressed by an autonomous robot, its 
appearance based cues must be considered alongside any behav-
ioral cues expressed. We suggest that strong behavioral cues may 
be required to overcome such stereotypes.

5.5. conclusion
In this paper, we have shown that judges are able to make per-
sonality trait judgments that are as consistent with a robot avatar 
as when the same people are viewed on video in contrast to past 
work (Kuwamura et al., 2012). One possible reason for this differ-
ence in findings is that our teleoperation system allows reproduc-
tion of some non-verbal communication cues on the robot which 
might improve the ease with which judges can assess personality. 
Hence, we suggest that it is important for telepresence systems 
to be able to transmit non-verbal communication cues, whether 
this be actuation of physical systems, or large enough screens on 
remote presence devices.

We have shown that the appearance of a teleoperated robot 
avatar influences how the personality of its controller is perceived, 
i.e., robot appearance based personality cues are utilized along 
with cues in the speech of the operators. Hence, the perceived 
personality of a teleoperator is shifted toward that related to the 
robot’s appearance. In light of these findings, we suggest that 
robot avatar appearance and behavior be carefully considered 
relative to the person who will be controlling it, and this needs to 
be done on an individual basis. Training of operators to produce 
clear cues, or having some cues appropriate to the operator’s 
personality autonomously generated, might allow some control 
of appearance effects.

Having the correct robot personality has been found to have a 
positive effect on interactions with people (Park et al., 2012; Aly 
and Tapus, 2013; Celiktutan and Gunes, 2015), and our findings 
also have implications for such autonomous robot personality 
expression. It is important to consider what appearance cues for 
personality a robot has, as we have observed humanlike personal-
ity inferences, and whether the planned behavioral cues might 
conflict with them. Cues that work on one platform may not 
be transferable to another. Additionally, we suggest that future 
experiments on robots expressing personality need to carefully 
consider tasks undertaken, as we observed that intra-judge agree-
ment on personality perception was highly task dependent.

5.6. limitations and Future Work
While this paper provides evidence for how personality percep-
tion is affected for people teleoperating a humanoid robot avatar, 
it has a number of limitations we hope to address in future work.

One area of limitation in our work relates to the movement 
capabilities of the NAO robot, and the inherent differences with 
human movement capabilities. Although our previous work 
showed reproduced gestures are comprehensible (Bremner and 
Leonards, 2015, 2016), there are clearly appreciable differences 
in the way some movements are reproduced. Indeed, while these 
differences have limited affect on perceived meaning, they likely 
contribute to the observed distortions in personality. The main 
limitations in this regard are in elbow flexion, movement speed, 
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and wrist and hand motion: the NAO elbow can only bend to 
~90°, the main effect of which being a reduction in vertical travel 
of the hand for some gestures; humans are capable of extremely 
rapid motions that the robot cannot match, consequently it will 
catch up as best it can, but the usual response will be to not express 
some motions due to the method of motion processing; wrist 
flexion and hand shape are clearly of utility in many gestures, 
and their absence (as well as wrist rotation in study 2) restricts 
the expression of components of some gestures. These movement 
restrictions are added to by limitations in the Kinect sensor and 
software processing: movements that result in hand occlusions 
can lead to imprecision, as well as noise in the sensor data can 
lead to some added jitter on the robot (though this is filtered as 
much as possible).

It is also important to note that robot operators had little to 
no awareness of the limitations of the robot as none of them had 
prior experience with NAO, and when in control of it they could 
not observe its motion. The only instruction given pertaining to 
system capabilities was to not to rest with the arms flat against 
the body or behind the back as tracking would be lost. While 
this resulted in some initial poses that were a bit unnatural 
(video of which was not used in the studies), participants soon 
reverted to “normal” behavior. Indeed, qualitative comparison of 
participants in the dyadic study in each condition (video of par-
ticipants recorded while they were operating the robot allowed 
this) reveals little difference in gesturing behavior for the majority 
of participants. Exceptions were the two participants with prior 
experience working with robots who moved more than they did 
face-to-face. In further work, we aim to more closely examine 
the data for any differences (which may be subtle), and if present 
test how they contribute to the observed personality distortion 
effects.

In the study by Celiktutan et  al. (2016), our AV condition 
results showed that face gestures and head activity play an impor-
tant role in the recognition of the extroversion, agreeableness and 
conscientiousness traits. This implies another limitation of the 
robotic platform used in this study. To convey the teleoperators 
personality traits more accurately, the robot should portray head 
pose or facial activity together with audio and arm gestures.

A further limitation is that there are some differences between 
our two studies, the Dyadic Tasks Study has a slightly different 
design due to correcting issues we encountered in the Solo Tasks 
Study, making the study comparison slightly less fair. In particu-
lar, we addressed the issue with low-quality judges, by utilizing 
a different recruiting platform which allowed us to recruit better 
quality judges, and thus did not require a judge removal pro-
cess. In the Solo Tasks Study, the issues with low-quality judges 
meant we used a judge selection method based on the gathered 
responses. The procedure we used had a slight biasing effect on 
the between-judge consistency (ICC) result for agreeableness 
and openness. This bias means that where ICC values are not 
significant it is strong evidence that there is either a lack of cues 
or conflicting cues, as even amongst the most agreeing judges 
consensus of opinion was not possible. Where there is significant 
agreement, it indicates there are cues for that trait in the particular 
task and condition and some judges are able to pick up on these 

cues. Indeed, Funder points out that there exists good and bad 
judges of personality (Funder, 1995), and we suggest our selec-
tion method allowed us to bias toward good judges. This limits 
the generalizability of our results to judges more adept at picking 
up on personality cues. By changing crowdsourcing platforms 
we were able to remove the need for this selection process in the 
Dyadic Tasks Study.

In addition to recruiting better quality judges, we also utilized 
a larger personality questionnaire, making our results more 
accurate, especially with regard to measuring intra-judge and 
inter-judge consistency.

In the work reported here, it is not clear how different cues 
are utilized in the aforementioned personality perception. 
Given that there was such high variability in affects of robot 
appearance dependent on the task, it seems likely this is due to 
differences in use of audio and visual cues. Hence, we intend 
to analyze in-depth the behaviors of targets relative to their 
judged personality for different tasks. To facilitate this, we aim to 
extend our work on automatic personality classification, which 
can extract and identify useful cues automatically (Celiktutan 
et  al., 2016), and apply it to the recordings from the Dyadic 
Tasks Study. A comparative cue analysis could not only allow 
us to gain a better understanding of the causes of personality 
shifts, but could also be useful in synthesizing robot personality 
behavioral cues.
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Robots intended for social contexts are often designed with explicit humanlike

attributes in order to facilitate their reception by (and communication with) people.

However, observation of an “uncanny valley”—a phenomenon in which highly humanlike

entities provoke aversion in human observers—has lead some to caution against this

practice. Both of these contrasting perspectives on the anthropomorphic design of

social robots find some support in empirical investigations to date. Yet, owing to

outstanding empirical limitations and theoretical disputes, the uncanny valley and its

implications for human-robot interaction remains poorly understood. We thus explored

the relationship between human similarity and people’s aversion toward humanlike

robots via manipulation of the agents’ appearances. To that end, we employed a

picture-viewing task (Nagents = 60) to conduct an experimental test (Nparticipants = 72)

of the uncanny valley’s existence and the visual features that cause certain humanlike

robots to be unnerving. Across the levels of human similarity, we further manipulated

agent appearance on two dimensions, typicality (prototypic, atypical, and ambiguous)

and agent identity (robot, person), and measured participants’ aversion using both

subjective and behavioral indices. Our findings were as follows: (1) Further substantiating

its existence, the data show a clear and consistent uncanny valley in the current design

space of humanoid robots. (2) Both category ambiguity, and more so, atypicalities

provoke aversive responding, thus shedding light on the visual factors that drive people’s

discomfort. (3) Use of the Negative Attitudes toward Robots Scale did not reveal

any significant relationships between people’s pre-existing attitudes toward humanlike

robots and their aversive responding—suggesting positive exposure and/or additional

experience with robots is unlikely to affect the occurrence of an uncanny valley effect in

humanoid robotics. This work furthers our understanding of both the uncanny valley, as

well as the visual factors that contribute to an agent’s uncanniness.

Keywords: anthropomorphism, emotion regulation, humanoid robots, human-robot interaction, uncanny valley,

social robotics
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1. INTRODUCTION

By capitalizing on traits that are familiar and intuitive to people,
robots designed with greater human similarity—both physically
and behaviorally—can offer more natural and effective human-
robot interactions (Duffy, 2003; Złotowski et al., 2015). For
example, incorporating humanlike cues into a robot’s design
elicits feelings of empathy toward it (Riek et al., 2009) and causes
attribution of greater agency (Gray andWegner, 2012; Broadbent
et al., 2013; Stafford et al., 2014a). In turn, this has significant
prosocial outcomes such as increases in people’s comfort around
a robot (Sauppé and Mutlu, 2015) and their willingness to
collaborate with it (Andrist et al., 2015).

With the emergence of increasingly humanlike robots,
however, researchers have observed an unintended consequence:
the uncanny valley effect (Mori et al., 2012). The valley effect,
originally described by Masahiro Mori nearly a half-century
ago, refers to the phenomenon wherein highly humanlike (but
not prototypically human) entities provoke aversion in people
(for a review, see Kätsyri et al., 2015). For example, highly
humanlike robots are ratedmore negatively (MacDorman, 2006),
avoided more frequently (Strait et al., 2015), and attributed less
trustworthiness (Mathur and Reichling, 2016) than their less
humanlike counterparts and humans. Moreover, such effects do
not appear to be limited to adults, as valley-like effects have been
observed in infants (Lewkowicz and Ghazanfar, 2012; Matsuda
et al., 2012), children (Yamamoto et al., 2009), and even other
primates (Steckenfinger and Ghazanfar, 2009), suggesting the
general phenomenon is relatively pervasive.

Yet, the uncanny valley continues to be a poorly understood
and even contentious topic in human-robot interaction (HRI)
research, due to gaps in the current literature and various
empirical inconsistencies. These issues stem, at least in part,
from challenges inherent to conducting empirical HRI studies
(in particular, the limited accessibility of robotic platforms that
only partially represent the large design space). This has lead
researchers to turn to more accessible alternatives, such as the
use of computer-generated stimuli to make inferences about
embodied counterparts (e.g., Inkpen and Sedlins, 2011) and
careful case studies of only one or a few robotic platforms (e.g.,
Bartneck et al., 2009; Kupferberg et al., 2011; Saygin et al.,
2012; Strait et al., 2014). But the small range of methodologies
for investigating the valley, in turn, has lead to conflicting
findings. For example, amongst studies utilizing few robots or
non-embodied robot stimuli, there are both many studies which
fail to find a valley effect (or find the opposite – more positive
responding to the most humanlike stimuli; e.g., Bartneck et al.,
2009; Kupferberg et al., 2011; Piwek et al., 2014) as well as many
that confirm its existence (e.g., Saygin et al., 2012; Koschate et al.,
2016; Strait et al., 2015).

Considering that the theoretical comparisons are being made
across such dissimilar methodologies, it is unsurprising that
inconsistencies have arisen and that gaps in the literature
remain. Researchers have begun to address such shortcomings
through systematic review of the literature (Kätsyri et al.,
2015; Rosenthal-von der Pütten and Krämer, 2015; MacDorman
and Chattopadhyay, 2016) and development of alternative

methodologies. For example, two recent studies utilized picture-
based stimuli (photographs depicting embodied robots) to
evaluate a large portion1 of the current design space in humanoid
robotics (Strait et al., 2015; Mathur and Reichling, 2016). In
combination, recent work paints a more consistent picture in
which there exists a robust uncanny valley as a function of human
similarity.

Despite perspectives on the valley’s existence trending toward
agreement, many critical questions remain. In particular, when,
why, and how do robots fall into the uncanny valley? Researchers
have long pointed to human similarity as the cause of the
valley effect—wherein a robot with “too much” similarity is
unnerving. However, several studies indicate that similarity
alone is not sufficient to cause a humanoid robot to fall
into the valley. For example, Rosenthal-von der Pütten and
Krämer (2014, 2015) have repeatedly shown that people respond
negatively toward some instances of highly humanlike robots
but positively toward others. Moreover, an experiment by Schein
and Gray (2015) showed that humans too can be perceived
as unnerving, suggesting that humanness (and a biologically-
human appearance) is not enough to avoid the valley.

Finding the answers to these questions has particular
relevance to human-robot interaction and the design of social
robots. Despite the superficial nature of a robot’s appearance,
its appearance nevertheless substantially impacts how people
perceive it and whether they are willing to interact with it (e.g.,
Strait et al., 2015; Mathur and Reichling, 2016). Thus, to achieve
effective robot designs (or, at least, avoid ineffective ones), it
remains crucial to gain better understanding of the uncanny
valley and the variables (both visual and behavioral) that drive it.

1.1. Present Work
Here, we aimed to further examine the uncanny valley as it
pertains to human-robot interaction. Our contributions are
three-fold: in addition to providing another experimental test
of the valley’s existence, we investigated what design factors
cause a robot to fall into the valley. In particular, we tested
two theoretically-motivated factors – atypicality and category
ambiguity – for their effects on perceptions of uncanniness and
people’s corresponding aversion. Finally, we aimed to address
an outstanding shortcoming of the current literature, namely
whether people’s aversion can be explained by pre-existing
negative attitudes toward robots.

Recent reviews of valley literature have pointed to two
explanatory mechanisms underlying the effect: atypicality and
category ambiguity (cf. Kätsyri et al., 2015; MacDorman
and Chattopadhyay, 2016). Atypicality (also called “feature
atypicality” and “realism inconsistency”) refers to the presence
of features unusual for an agent’s category. For example, Albert
Hubo is an atypical robot with its prototypically mechanical body
combined with an atypical (highly humanlike) head. Derived
from theories of perceptual mismatch, atypicality is proposed
to underlie uncanniness via violation of expectations about how
an agent should look/behave based on its category membership

1In contrast to the aforementioned studies (which involved 1-3 robots), both

studies referenced here involved 45–80 robots.
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(Groom et al., 2009; Saygin et al., 2012). Perceptual mismatch
theories thus predict that any atypical agent (robot or human)
will provoke aversion.

Category ambiguity, on the other hand, refers to a difficulty
in determining the category to which an entity belongs (e.g.,
Burleigh et al., 2013; Yamada et al., 2013). For example, people
have difficulty perceiving the Geminoid HI as being a robot
because of its very humanlike design (Rosenthal-von der Pütten
et al., 2014). Derived from theories of categorical perception,
category ambiguity is proposed to underlie uncanniness via
doubt about what an entity is (Jentsch, 1997). Contrary to the
above, categorical perception theories predict that the valley
effect is greatest at category boundaries (e.g., the robot-human
boundary), with aversion decreasing outwards with increasing
distance.

In the present study, we observed people’s subjective and
behavioral aversion toward 60 distinct robots and humans
using the popular picture-viewing methodology used in emotion
research (see Vujovic et al., 2013), as adapted for HRI research
involving social signals (Strait et al., 2015; see Figure 2).
Participants were presented with the 60 photographs sequentially
and for 12 s each. For each viewing, participants had the option
to press a button if they wished to terminate the encounter
early (thereby engaging in behavioral avoidance). In total, we
collected participants’ subjective ratings of the agents’ eeriness,
the frequency at which they terminated encounters with the
various agents, and their reasons for terminating.

PerMori’s uncanny valley theory, we hypothesized that people
would be averse to highly humanlike – but not prototypic –
agents (H1: Valley Hypothesis). Specifically, relative to people
of prototypically human appearances and robots of low human
similarity, we expected that the appearance of highly humanlike
agents would be so discomforting (as evidenced by higher ratings
of eeriness; H1a) that people would avoid their encounters more
frequently (H1b), and that they would report doing so due to
being unnerved (H1c).

In confirming the existence of a valley in the design space
included, we looked at the governing mechanisms underlying
uncanniness (when, why, and how an agent falls into the
valley) with two further predictions following from the literature.
Specifically, we hypothesized that people would bemore averse to
atypical agents than prototypic agents (M1: Feature Atypicality).
We also hypothesized that people would be more averse
to ambiguous agents than prototypic agents (M2: Category

Ambiguity). In addition to the above predictions, we explored
how the two proposed mechanisms – atypicality vs. ambiguity—
interact with the agents’ actual category membership (whether
the agent in question is a robot or a person) in provoking
aversion, and further, whether people’s aversive responding can
be explained by pre-existing negative attitudes toward robots.

2. MATERIALS AND METHODS

Based on Mori’s valley hypothesis, we expected that highly
humanlike (but not prototypic) agents may be so eerie (H1a) that
people avoid their encounters because due to being unnerved

(H1b–c). We further predicted, based on perceptually-oriented
theories of categorization and processing, that salient atypicalities
(M1) and/or high category ambiguity (M2) might underlie such
discomfort.

2.1. Design
To test our predictions, we conducted a within-subjects
experiment in which we presented participants with 60 distinct
agents which spanned two ontological categories (robot, person)
and were of appearances that varied semi-hierarchically across
two overlapping dimensions – human similarity (three levels:
low, high, and prototypic) and typicality (three levels: prototypic,
atypical, and ambiguous)2. In total, the study involved six agent
conditions (with 10 agents per condition):

• 10 agents of low human similarity (i.e., prototypic robots such
as the mechanomorphic REEM-C);

• 40 agents of high (but not prototypically human) human
similarity:

• 10 robots with atypical features (e.g., Albert Hubo),
• 10 robots of ambiguous category membership (e.g., the

Geminoid DK),
• 10 people with atypical features (e.g., persons with bionic

prostheses), and
• 10 people of ambiguous category membership (persons

wearing black, full-sclera contacts);

• 10 agents of prototypic human similarity (i.e., people of typical
appearances).

Table 1 shows exemplars of each agent condition, as well as the
semi-hierarchical mapping between the three manipulations (the
agent’s approximate human similarity and their typicality relative
to their respective category membership).

2.1.1. Valley Hypothesis
The manipulation of the agents’ human similarity was used
to test whether or not there exists an uncanny valley within
the current design space of humanoids and range of human
appearances (H1). Note that, in testing the valley hypothesis,
we collapse across the four sets of robots and people of
atypic and ambiguous designations as their normalized ratings
of human similarity constitute high—but not prototypic—
human similarity. That is, they are rated as significantly
more humanlike than mechanomorphic humanoids and
significantly less humanlike than people of prototypic
appearances.

2.1.2. Mechanisms
Via the typicality manipulation, we further tested whether two
mechanisms (M1: feature atypicality; M2: category ambiguity)
drive the valley’s effects by drilling down within the set of
highly humanlike agents. Specifically, via the explicit inclusion
and clustering of highly humanlike agents by those with
appearances atypic for their respective category and those of

2Due to the current design space of humanoid robotics and range of human

appearances (e.g., there do no exist stimuli depicting people of “low human

similarity”), the study did not involve a factorial design.
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TABLE 1 | Exemplars of the six agent conditions, with: the agent’s category membership reflected across the dotted y-axis (top row: robot; bottom: person); the human

similarity manipulation shown along the x-axis (increasing left to right: from low similarity to high—inclusive of atypic and ambiguous typicality levels – to prototypically

human), and the corresponding typicality levels indicated via color-coding (gray: prototypic for a given ontology; orange: atypical; and blue: ambiguous). Robots (top;

from left to right): a prototypic robot (PAL ROBOTICS’ REEM-C); a robot with a salient atypicality (KAIST’s Albert Hubo); and a robot of ambiguous ontology (the Geminoid

DK; shown, for comparison, in front of Henrik Scharfe – the person after which it was modeled). People: a person of prototypically human human similarity; a person with

a prosthetic arm; and a person of “ambiguous” humanness (a person wearing black sclera contacts; face enlarged for emphasis).

low high prototypic

(prototypic robot) (inclusive of both atypical and ambiguous agents) (prototypic person)

Attribution (from top left to bottom right): shown are adaptations of photographs by JosepPAL, Dayofid, and Eirik Newth; SalganikEA and Matthew Batchelder. Original photos

(https://goo.gl/38yUr1, https://goo.gl/00o07k, https://goo.gl/T7Ym4O; https://goo.gl/YfndfO, https://goo.gl/UB62Ac) available under Creative Commons Attribution-Share Alike 3.0

Unported, Attribution 2.5 Generic, or Attribution-NonCommercial-ShareAlike 2.0 Generic licenses3.

ambiguous category membership, we contrasted the role of
each of the two mechanisms (against prototypicality) in eliciting
discomfort. Here, we additionally included the manipulation
of ontological category (robot vs. person), as both the feature
atypicality and category ambiguity hypotheses require that the
valley effect be evident regardless of the agent’s actual category
membership. Thus, in testing the two hypothesis, the three
typicality levels (prototypic, atypical, and ambiguous) are robot-
human inclusive (e.g., prototypic included mechanomorphic
humanoids and people of prototypically human
appearances).

2.2. Materials
To construct a final set of high quality and relatively comparable
photos, the stimuli used in this experiment were selected from
an initial superset of 120 photos. The 120 photos were obtained
from various academic and online sources based on strict
inclusion/exclusion criteria and pretested for their fit within
the six intended agent categories to reduce within-category
variability.

3https://goo.gl/eTRg2B

2.2.1. Set Construction
We constructed our initial stimulus set via a systematic search
using stringent inclusion criteria based on that developed by
Mathur and Reichling (2016). The purpose of the criteria was
to reduce any researcher bias that may be present in image
selection (e.g., agent expression, pose, etc.). The criteria were as
follows:

• Visibility: the agent’s face/torso and eyes are fully visible
(shown from top of head to waist; face is shown in frontal to
3/4 aspect).

• Embodiment: the agent is capable of interacting socially with
humans (e.g., if a robot, the agent has been built and is capable
of physical movement).

• Affect: the agent is expressionless/affect-neutral.
• Familiarity: the agent is not a replica of a well-known character

or a famous person (e.g., Albert Hubo).
• Image characteristics: the resolution of the image is sufficient

to yield a final cropped image of 6x6” with a resolution of 100
DPI.

We performed ten Google image searches on a single day using
the following search phrases: ”humanoid robot,” ”humanlike
robot,” “robot with humanlike face,” “android robot,” “highly
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FIGURE 1 | Structure of Pretesting Trials/Manipulation Checks. Each trial began with a prompt to the participant to place their hands on the keyboard as shown (with

the left and right index fingers on the “r” and “h” keys respectively). When the participant was ready to continue, they pressed the spacebar to start the categorization

task. After a response was entered for the categorization, participants completed two prompts for explicit ratings of the agent’s atypicality5 and human similarity.

Pretesting only: each trial was preceded by a 1 s fixation point and followed by a 2 s rest period.

humanlike robot,” “robot that looks human”; “black sclera
contacts,” “people wearing sclera contacts,” “people with bionic
prostheses,” “person candid photograph.” In collating a set of
20 atypical humanoids, we intentionally searched for humanoid
robots with a salient mismatch in the realism of their head/torso
due to greater availability of robots with this particular design. As
the closest human analog (in appearance) to the set of atypical
humanoids (robots with features that are atypical in terms of
frequency of appearance within the humanoid design space),
we specifically searched for people with a bionic prosthetic.
To collate an analogous set of 20 people of “ambiguous”
ontology (i.e., questionable membership in the person category),
we intentionally searched for people wearing black, full-sclera
contacts as it is a visual modification often used in media to
convey different category membership (see for example: the
Supernatural TV series, 2005–) and prior literature suggests that
people perceive such stimuli as uncanny (Schein and Gray, 2015).

When a search returned multiple images of a particular
agent, we included only the first image encountered. For each
of the intended agent categories, we included the first 20
photographs satisfying inclusion criteria and depicting distinct
agents. However, we note that our resulting set of ambiguous
robots was comprised of robots that were predominately female
(15 of 20) and Asian (13 of 20) in appearance.4 For comparability
between conditions, we thus adjusted the composition of our
human stimuli to reflect similar demographics. Specifically, we
manually searched for replacements (per the above criteria)
for the initially-selected images to adjust the gender and racial
composition of the three sets of human stimuli.

2.2.2. Pretesting
To confirm that perception of the agents was as expected
(e.g., atypical agents rated as high in atypicality, etc.), we first
pretested these 120 photographs (20 agents per each of the six
intended design conditions) with 30 participants (recruited from
Tufts university and granted course credit in exchange for their
participation). Participants were shown the 120 photographs

4The current design space of highly humanlike robots is largely comprised of

robots that are gendered/racialized (designed with physical features that convey

gender/race) and skewed toward appearances that are female and Asian
5The atypicality prompt in Figure 1 is shortened from: “How mismatched are this

agent’s features relative to its overall appearance?” due to space constraints.

sequentially and in an order randomized by participant. For each
image, we measured the agent’s “category ambiguity” (indexed by
participants’ accuracy in a categorization task and their latency
to respond), atypicality, and human similarity (see Figure 1).
Then, to concentrate atypicality within the set of atypical agents
and category ambiguity within the set of ambiguous agents,
we reduced the pretested set of 120 photographs down to 60
(with 10 instances per agent category) by selecting for category-
ambiguous agents with lowest atypicality and atypical agents with
lowest category ambiguity.

2.2.3. Manipulation Checks
To confirm that this final set of 60 images reflected our design
assumptions (that agents labeled as atypical were perceived as
most atypical, agents labeled as ambiguous weremost ambiguous,
etc.), analyses of variance (ANOVA) were conducted on the
dependent variables indexing ambiguity (categorization error
rate, response time) and atypicality with typicality as the
independent variable. Each ANOVA revealing significant effects
was followed by t-tests examining the planned, pairwise contrasts
(atypical, ambiguous vs. prototypic)6.

ANOVAs on categorization error rate and response time
confirmed a significant main effect of typicality on perceptions
of agent ambiguity [Ferror (1.15, 33.42) = 86.94, p < 0.01,
η2p = 0.75; FRT (2, 58) = 10.89, p < 0.01, η2p = 0.27], in which
ambiguous agents elicited the greatest difficulty (p < 0.01) in
categorization [Merror = 0.32, SD = 0.18; MRT (2, 58) = 1.92s,
SD = 1.08 s] relative to both agents with prototypic appearances
(Merror = 0.01, SD = 0.03; MRT = 1.11 s, SD = 0.40 s)
and those categorized as atypical (Merror = 0.04, SD = 0.06;
MRT = 1.78 s, SD = 1.23 s). Similarly, an ANOVA on atypicality

6All analyses were run in R (Version 3.3.1), with statistical significance defined as

α = 0.05. For each ANOVA, the assumption of equal variance was confirmed

using Mauchly’s test of sphericity. In cases of violation, the reported degrees of

freedom and corresponding p-value reflect a Greenhouse-Geisser adjustment as

per Girden (1992). For the pairwise contrasts, two-tailed (rather than one-tailed)

t-tests were used to reveal if/when a contrast went in the direction opposite to

that which was predicted and reduce the overall rate of false positive results.

Additionally, all pairwise contrasts reflect a Bonferroni correction for multiple

comparisons. Lastly, note that while we defined statistical significance at α = 0.05,

all significant results (including both tests of the hypotheses and Bonferroni-

corrected contrasts) have a p-value of ≤ .01 except where explicitly stated

otherwise.
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FIGURE 2 | Trial Structure. Each trial began with a 1 s fixation point, followed by a picture viewing of up to 12 s. During the viewing, participants had the option to

terminate the encounter early by pressing the spacebar. In doing so, the image was removed from display, leaving a blank screen for the remainder of the 12 s period.

After the viewing, participants (1) were prompted for their reasons as to why they did or did not press the spacebar, (2) completed a series of checks to confirm

whether the manipulations of agent appearance had the intended effects, and (3) provided an explicit rating of the agent’s eeriness.

ratings confirmed a main effect of typicality [F(2, 58) = 276.46,
p < 0.01, η2p = 0.91], in which the set of atypical agents received
significantly higher ratings of atypicality (M = 4.59, SD = 1.00)
relative to prototypic agents (M = 1.78, SD = 0.60; p < 0.01).

In addition, an ANOVA on ratings of human
likeness confirmed a main effect of human similarity
[F(1.58, 45.80) = 512.97, p < 0.01, η2p = 0.95], in which
the highly humanlike (but not prototypically human) agents
received significantly higher ratings (M = 7.02, SD = 0.84)
than prototypic robots (M = 2.66, SD = 1.26; p < 0.01)
and significantly lower ratings than prototypic persons
(M = 8.91, SD = 0.22; p < 0.01).

2.3. Experiment
2.3.1. Participants
Seventy-five new participants (participants who took part in
pretesting were excluded from participating here) were recruited
from Tufts University and the surrounding community (the
Greater Boston Area), and received either course credit (n = 45)
or monetary compensation (n = 30) at a rate of $10/h for their
participation. Data were unavailable for three participants due
to software crashes (n = 2) and termination of a session due
to failure to follow instructions (n = 1). Thus, a total of 72
participants (26 male) with ages ranging from 18 to 49 years
(M = 19.73, SD = 4.00) were included in our final sample.

2.3.2. Procedure
The final set of 60 photographs were shown using Processing
3.2.1 (©The Processing Foundation) in random order. Each
trial began with a 1 s fixation point followed by the image
presentation, and ended with a 2 s rest period (see Figure 2).
During the viewing period, an image was presented for up to
12 s during which time participants had the option to press a
button (the spacebar) to remove the image from the screen. If
the participant did not press the spacebar, the image was shown
for the full viewing duration (12 s). Otherwise, the image was

removed as soon as participants pressed the spacebar, leaving a
blank screen for the remainder of the viewing period7. After the
viewing period, participants were prompted for their rationale
as to why they terminated or did not terminate the encounter,
followed by several manipulation checks (see Figure 1) and
prompt for participants’ explicit perceptions of the agent’s
eeriness. At the end of the picture-viewing protocol, participants
were given a brief questionnaire to assess their attitudes toward
robots.

2.3.3. Measures
To index participants’ aversion, we employed three primary
measures derived from those developed in Strait et al. (2015):

• Eeriness: participants’ subjective ratings of the agents’
appearances. As we used a fully within-subjects design, ratings
were averaged (by participant) across trials within each of the
six agent categories.

• Termination frequency: the frequency at which participants
elected to end their encounters with the various agents
(computed within each of the six agent conditions as the
proportion of trials in which participants pressed the spacebar
to terminate the trial).

• Terminations due to discomfort: the proportion of
terminated trials in which participants reported terminating
due to being unnerved by the shown agent.

Finally, to index participants’ attitudes toward robots, we used
the Negative Attitudes Toward Robots Scale (NARS; Nomura
et al., 2006). The scale is comprised of 14 questionnaire items
and produces an overall NARS score (Cronbach’s α = 0.87),
as well as three subscores: negative attitude toward situations
concerning interaction with robots (6 items; α = 0.78), negative
attitude toward the social influence of robots (5 items; α = 0.70),

7Replacement with a blank screen was done to ensure that the button press could

not be used as a strategy to finish the experiment more quickly.
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TABLE 2 | Main effects of the human similarity manipulation (within-subjects; three levels: low, high10, and prototypic) and corresponding descriptive statistics (means

and standard deviation for each of the three levels).

n DFn DFd F p η
2
p Low High Prototypic

MANIPULATION CHECKS

Human Similarity Rating 72 1.55 110.26 1188.44 < 0.01 0.94 2.99 (1.16) 7.06 (0.81) 8.83 (0.33)

HYPOTHESIS TESTING

Eeriness Rating 72 1.73 122.68 250.92 < 0.01 0.78 2.50 (1.37) 5.05 (1.13) 1.26 (0.69)

Termination Frequency 72 2 142 250.92 < 0.01 0.09 0.30 (0.37) 0.38 (0.35) 0.37 (0.38)

Rationale for Terminating:

Unnerved 39 2 76 39.84 < 0.01 0.51 0.11 (0.29) 0.48 (0.33) 0.03 (0.11)

Bored 39 2 76 33.44 < 0.01 0.47 0.74 (0.39) 0.36 (0.33) 0.83 (0.32)

Other 39 2 76 0.18 0.83 0.00 0.14 (0.30) 0.16 (0.27) 0.14 (0.28)

Rationale for Viewing:

Interested 58 2 114 25.38 < 0.01 0.31 0.52 (0.33) 0.62 (0.29) 0.32 (0.36)

Indifferent 58 1.79 102.12 30.01 < 0.01 0.34 0.45 (0.32) 0.32 (0.29) 0.64 (0.36)

Other 58 − − − − − 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Note that inferential statistics are unavailable for the “other” response rationale (for viewing), as the variance of the data was zero.

and negative attitude toward emotions in interacting with robots
(3 items; α = 0.77).

3. RESULTS

3.1. Valley Hypothesis (H1)
Based on Mori’s uncanny valley theory, we hypothesized that—
relative to robots of low human similarity and persons of
prototypically human appearances—highly humanlike (but not
prototypic) agents can be so discomforting that people would
be averse to interacting with them. To test our hypotheses, a
repeated-measures ANOVA was conducted on each of the three
dependent variables and relevant manipulation check.6, 8 All
statistics (descriptive and inferential) are reported in Table 2,
with effect sizes9 for significant contrasts reported in the
discussion below.

3.1.1. Manipulation Check
We assumed that the three similarity designations—robots of
low human similarity, highly humanlike agents, and people
of prototypically human appearances—would be perceived as
having monotonically increasing human similarity (from low to
prototypic). To first confirm this assumption, we conducted an
ANOVA on participants’ ratings of the agents’ human similarity
with human similarity (low, high, prototypic) as the independent
variable. As expected, the results showed a main effect of

8Only participants who provided data in all conditions relevant to each particular

test were included (e.g., only participants who terminated at least one encounter

with each of the six agent types were included in analysis of termination

frequencies). Thus, due to listwise deletion of participants with missing data,

the number of observations (and consequently the degrees of freedom) vary

across tests. In addition, while the proportion of encounters terminated due to

being unnerved is the only rationale item central to our hypotheses, all data

for participants’ rationale is included (including rationale for electing to view

photographs in full) for completeness of reporting.
9Cohen’s dz , corrected for the within-subjects design per Morris and DeShon

(2002), is reported for all significant contrasts.

similarity (η2p = 0.94). All pairwise contrasts were significant,
with ratings increasing from robots designated as low in human
similarity to highly humanlike agents (Cohen’s dz = 3.50) to
people of prototypic similarity (dz = 2.50).

3.1.2. Hypothesis Testing
We expected that, relative to both robots of low human similarity
and persons of prototypically human appearances, participants
would be averse to highly humanlike agents, evidenced by
higher ratings of eeriness (H1a), more frequent termination of
their encounters (H1b), and a greater proportion of terminated
encounters terminated due to being unnerved (H1c). As
expected, there was a main effect of human similarity on all three
indices of aversion—eeriness ratings (η2p = 0.78), termination

frequency (η2p = 0.09), and the frequency of terminations due to

being unnerved (η2p = 0.51) (see Figure 3).
Consistent with the valley theory, participants rated highly

humanlike agents as eerier than both robots of low human

similarity (dz = 1.47) and prototypic persons (dz = 2.93).
In addition, they terminated encounters with highly humanlike
agents more frequently than those with robots of low
human similarity (dz = 0.45). Lastly, although there
was no significant difference in participants’ termination
frequency between encounters with highly humanlike agents
vs. prototypic persons, significant differences did manifest
in their rationale for terminating. Specifically, participants
reported terminating encounters due to being unnerved more
frequently in response to highly humanlike agents than
they did in response to robots of less human similarity
(dz = 1.03) and prototypic persons (dz = 1.29). For
comparison, when participants terminated encounters with

10In testing the valley hypothesis (H1), the set of agents of high human similarity

(40) includes both robots and people of the atypical and ambiguous designations.

Note also that the set of agents of prototypic human similarity (10) refers only to

the set of people of prototypically human appearances.
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FIGURE 3 | Test of the valley hypothesis (H1). Shown are the three indices of aversion by human similarity level: low, high (inclusive of both atypical and ambiguous

robots and people), and prototypic. The bars show the planned contrasts, with asterisks denoting the significance level (*p < 0.05, **p < 0.01, ***p < 0.001; or ns:

nonsignificant).

prototypic persons or with robots of low human similarity,
their rationale for doing so stemmed largely from boredom
(see Table 2).

Taken together, the results show strong support of Mori’s
valley hypothesis. Specifically, relative to robots of low human
similarity and persons of prototypically human appearances,
participants exhibited greater aversion (as evidenced by
their eeriness ratings and avoidance rationale) toward highly
humanlike—but not prototypically human—agents.

3.2. Mechanisms Underlying Uncanniness
(M1–M2)
In identifying an uncanny valley in the current design space of
humanoid robots and range of human appearances, we moved
to testing the mechanisms underlying uncanniness. Here, we
had hypothesized that both atypicality (M1: Feature Atypicality)
and ambiguity (M2: Category Ambiguity) drive people’s aversion
toward highly humanlike (but not prototypically human) agents.
Specifically, to understand when/why/how certain agents fall
into the uncanny valley, we investigated two visual variables
(atypicality, ambiguity) for their impact on people’s perceptions
of highly humanlike agents relative to agents of prototypic
appearances.

In testing these hypotheses and corresponding assumptions,
we ran 2 × 3 within-subjects ANOVAs with the IVs—category
(two levels: robot and person) and typicality (three levels:
prototypic, atypical, and ambiguous)—on each of the three indices
of aversion.6,8 Note that, while we included category as an IV
(due to its inclusion in the experimental design), both of the two
mechanisms require that the valley effect is evident regardless
of the agent’s category membership. Thus, the testing of the
two mechanisms relies on the main effect of typicality, not the
category × typicality (which we explore later). To test the two
mechanisms, we examined two a priori contrasts of interest as
follows: prototypic vs. atypical (M1) and prototypic vs. ambiguous
(M2). All statistics (descriptive and inferential) are reported in

Table 3, with effect sizes9 for significant contrasts reported in the
discussion below.

3.2.1. Manipulation Checks
Here we made two additional assumptions in our experimental
design. First, we expected that the agents categorized as atypical
would be perceived as more atypical than the other typicality
conditions (prototypic, ambiguous). As expected, an ANOVA on
atypicality ratings showed a main effect of typicality condition
(η2p = 0.86). Contrary to our expectations, however, the post
hoc contrasts showed ambiguous agents to prompt the highest
ratings of atypicality, followed by atypical agents (dz = −1.23),
and lastly, prototypic agents (dz = 2.79). A significant
interaction with ontological category (η2p = 0.79) confirmed
our assumption with respect to the robotic agents. Specifically,
atypical robots elicited the highest ratings of atypicality relative to
both prototypic (dz = 2.77) and ambiguous robots (dz = 0.91).
Whereas, amongst human agents, persons of ambiguous category
membership elicited higher ratings than persons with atypical
features (dz = −2.25)11. Nevertheless, participants rated persons
with atypical features as more atypical than prototypic persons
(dz = 0.97).

Second, we assumed the ambiguous agents (agents proximate
to a nonhuman–human category boundary) would elicit
difficulty in deciding their category membership (robot or
person) on a categorization task. Furthermore, we assumed
categorization difficulty would be reflected by participants’ error
in categorizing and latency to respond (RT). As expected, there
was a main effect of typicality on both categorization error
(η2p = 0.61) and RT (η2p = 0.36). Specifically, ambiguous agents

11We speculate that this asymmetry in perception of atypicality stems from two

potential sources. First, participants may have been uncomfortable in making

explicit atypicality ratings of persons with prostheses, and thus the ratings may not

be representative of participants’ actual perception. Second, participants exposure

to persons wearing black, full-sclera contacts is likely lower than that of exposure

to persons with prostheses. Thus, by definition, black eyes are likely perceived as

more atypical of humans than prostheses.
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TABLE 3 | Main effects of the typicality manipulation (within-subjects; three levels: prototypic12, atypical, ambiguous) and corresponding descriptive statistics (means and

standard deviation for each of the three levels).

n DFn DFd F p η
2
p Prototypic Atypical Ambiguous

MANIPULATION CHECKS

Atypicality Rating 72 1.56 110.70 419.60 < 0.01 0.86 1.80 (.68) 4.25 (1.13) 5.75 (1.52)

Categorization Error (%) 72 1.09 77.64 111.68 < 0.01 0.61 0.00 (.01) 0.02 (0.04) 0.20 (0.15)

RT (s) 72 1.23 87.60 39.74 < 0.01 0.36 0.76 (0.51) 0.93 (0.65) 1.29 (0.98)

HYPOTHESIS TESTING

Eeriness Rating 72 2 142 216.52 < 0.01 0.75 1.88 (0.85) 5.30 (1.33) 4.81 (1.34)

Termination Frequency 72 1.84 130.89 4.57 0.01 0.06 0.33 (0.36) 0.36 (0.35) 0.40 (0.36)

Rationale for Terminating:

Unnerved 23 1.51 33.25 21.76 < 0.01 0.50 0.04 (0.12) 0.37 (0.34) 0.44 (0.37)

Bored 23 1.02 22.37 21.85 < 0.01 0.50 0.78 (0.33) 0.45 (0.37) 0.38 (0.38)

Other 23 2 44 1.52 0.22 0.06 0.17 (0.29) 0.21 (0.31) 0.17 (0.28)

Rationale for Viewing:

Interested 52 1.52 77.30 29.61 < 0.01 0.37 0.42 (0.28) 0.67 (0.28) 0.55 (0.32)

Indifferent 52 1.68 85.45 38.37 < 0.01 0.43 0.55 (0.29) 0.28 (0.29) 0.39 (0.32)

Other 52 − − − − − 0.00 (.00) 0.00 (0.00) 0.00 (0.00)

Inferential statistics are unavailable for the “other” response rationale (for viewing), as the variance of the data was again zero.

FIGURE 4 | Test of the underlying mechanisms (M1–M2). Shown are the main effects of typicality (prototypic, atypical, and ambiguous) on the three indices of

aversion. Bars show the planned contrasts, with asterisks denoting significance.

elicited greater categorization error and longer response times
in categorizing relative to both prototypic (derror = 1.29;
dRT = 0.81) and atypical agents (derror = 1.22; dRT = 0.65).

3.2.2. Hypothesis Testing
We had hypothesized that, relative to agents of prototypic
appearances, agents with feature atypicality (M1) and category
ambiguity (M2) would elicit aversion in participants. Consistent
with our predictions, the results show a main effect of
typicality on the three indices of aversion: eeriness ratings
(η2p = 0.75), termination frequency (η2p = 0.06), and the

12In testing the underlying mechanisms (M1–M2), the set of agents of prototypic

typicality (20) includes both mechanomorphic robots and prototypic persons.

Note also that the set of agents of atypical (20) and ambiguous (20) agents is

inclusive of both robots and people.

frequency of terminations due to being unnerved (η2p = 0.50)
(see Figure 4).

Specifically, the planned contrasts show that participants rated
both atypical and ambiguous agents as significantly eerier than
prototypic agents (datypical = 2.07; dambiguous = 2.02). In
addition, when participants terminated encounters with atypical
and ambiguous agents, they did so more frequently due to
being unnerved (datypical = 1.01; dambiguous = 1.13) than
they did in response to prototypic agents. For comparison,
when participants terminated encounters with prototypic agents,
their rationale for doing so stemmed largely from boredom
(see Table 3).

However, only agents with ambiguous appearances prompted
more frequent avoidance. Specifically, participants terminated
encounters with ambiguous agents more frequently than they did
with prototypic agents (dz = 0.31).
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FIGURE 5 | Participants’ aversive responding (top: eeriness; middle: termination frequency; bottom: proportion of terminations due to being unnerved) by typicality

(prototypic, atypical, and ambiguous) and within agent category (left grouping: robot; right grouping: person).

In sum, the results here show support for both theoretical
accounts (feature atypicality and category ambiguity).
Specifically, consistent withM1 (feature atypicality), participants
rated atypical agents as eerier than prototypic agents and
avoided them more frequently due to being unnerved.
Similarly, consistent with M2 (category ambiguity), participants
rated ambiguous agents as eerier than prototypic agents,
avoided them more frequently, specifically due to being
unnerved.

3.2.3. Secondary Analyses
While we found support for both theoretical mechanisms, we also
observed a significant interaction between the agents’ ontological
category and typicality on eeriness ratings (η2p = 0.71),
termination frequency (η2p = 0.34), and the frequency of termi-

nations due to being unnerved (η2p = 0.59), thus indicating
that the effect of typicality manifests differently depending
on whether the agent in question is a robot or a human
(see Figure 5). Hence, we proceeded to explore the
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TABLE 4 | Interaction between the typicality × ontology manipulations, as well as the corresponding descriptive statistics (means and standard deviation) for each of the

three typicality conditions (prototypic, atypical, and ambiguous) by category membership (top: robot; bottom: person).

n DFn DFd F p η
2
p Prototypic Atypical Ambiguous

MANIPULATION CHECKS

Atypicality Rating 72 1.80 127.53 260.84 <0.01 0.79 2.37 (1.22) 6.30 (1.66) 5.01 (1.72)

1.22 (0.34) 2.20 (1.05) 6.49 (1.80)

Categorization Error (%) 72 1.04 74.11 4.71 0.03 0.06 0.00 (0.01) 0.03 (0.06) 0.26 (0.27)

0.00 (0.02) 0.01 (0.04) 0.14 (0.27)

RT (s) 72 1.35 95.63 1.42 0.24 0.02 0.76 (0.53) 0.90 (0.63) 1.35 (1.07)

0.77 (0.52) 0.95 (0.72) 1.24 (1.09)

HYPOTHESIS TESTING

Eeriness Rating 72 2 142 177.61 <0.01 0.71 2.50 (1.37) 6.09 (1.36) 3.57 (1.49)

1.26 (.69) 4.50 (1.77) 6.05 (1.77)

Termination Frequency 72 1.68 119.18 37.06 <0.01 0.34 0.30 (0.37) 0.46 (0.38) 0.32 (0.37)

0.37 (0.38) 0.27 (0.36) 0.48 (0.41)

Rationale for Terminating:

Unnerved 23 2 44 32.04 <0.01 0.59 0.08 (0.24) 0.52 (0.42) 0.32 (0.33)

0.03 (0.10) 0.09 (0.21) 0.51 (0.40)

Bored 23 2 44 14.39 <0.01 0.40 0.75 (0.38) 0.31 (0.40) 0.44 (0.38)

0.81 (0.32) 0.66 (0.39) 0.37 (0.40)

Other 23 2 44 5.41 <0.01 0.20 0.17 (0.31) 0.18 (0.31) 0.24 (0.31)

0.16 (0.28) 0.25 (0.36) 0.12 (0.28)

Rationale for Viewing:

Interested 52 2 102 12.05 <0.01 0.19 0.50 (0.33) 0.61 (0.35) 0.65 (0.32)

0.31 (0.35) 0.69 (0.29) 0.42 (0.41)

Indifferent 52 2 102 7.83 <0.01 0.13 0.47 (0.32) 0.30 (0.35) 0.29 (0.31)

0.64 (0.35) 0.28 (0.29) 0.49 (0.40)

Other 52 − − − − − 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

pairwise contrasts between typicality levels and agent
category.

Note that the exploration, however, was limited to within
the respective agent category. This follows from the theoretical
motivations for investigating feature atypicality (M1) and
category ambiguity (M2) for their role in the valley effect,
which rely on contrasts between agents of prototypic appearances
relative to those of atypic and ambiguous appearances. Here, we
also explored the contrast between agents of atypic vs. ambiguous
appearances toward understanding whether one vs. the other
more strongly provokes discomfort.

3.2.3.1. Responding toward robots
Across all three measures of interest (eeriness ratings,
termination frequency, and terminations due to being unnerved),
the within-category pairwise contrasts suggest that atypicality
drove participants’ aversion toward robots (see Figure 5, top).

Prototypic robots, as expected, were rated as the least eerie
of all robot stimuli. In addition, participants terminated their
encounters less frequently, and when they did so, it was
rarely due to being unnerved (see Table 4). On the other
end, atypical robots—relative to both prototypic and ambiguous
robots—were rated as most eerie (dz = 1.94; dz = 1.48).
Participants also terminated encounters with atypical robots

at the highest frequencies (dz = 0.59; dz = 0.63), and
did so most frequently due to being unnerved (dz = 1.07;
dz = 0.90). Participants did also exhibit aversion to interacting
with ambiguous robots (though less so than their aversive
responding toward the set of atypical robots). Specifically,
participants rated ambiguous robots as more eerie (dz =

0.63) and terminated their encounters more frequently due to
being unnerved (dz = 0.73) relative to prototypic robots.
Surprisingly, however, participants were not any more avoidant
(evidenced by the frequency at which participants’ terminated
their encounters) of ambiguous robots than they were of
prototypic robots.

3.2.3.2. Responding toward people
Similar to prototypic robots, persons of prototypic appearances
were rated as the least eerie of all persons depicted. Furthermore,
though participants terminated approximately a third of their
encounters with prototypic persons, when they did so, it was
again rarely due to being unnerved (see Table 4). In contrast,
however, to participant responding toward non-prototypic
robots (in which atypicality provoked the greatest aversion),
category ambiguity appeared to drive participants’ aversion
toward the human stimuli (see Figure 5, bottom). Specifically,
participants rated persons of ambiguous category membership
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TABLE 5 | Correlation matrix between the NARS scales (overall score and by

subscales: negative attitude toward situations concerning interactions with robots;

negative attitude toward the social influence of robots; and negative attitude

toward emotions in interacting with robots) and participants’ responding toward

robots (overall and by category – prototypic, atypical, and ambiguous) on the

three indices of aversion (eeriness rating, termination frequency, and proportion of

terminations terminated due to being unnerved).

NARS Interactions Social influence Emotions in

with robots of Robots interactions

Eeriness Rating 0.14 0.13 0.17 0.04

Prototypic 0.17 0.13 0.16 0.15

Atypical 0.01 −0.05 0.02 0.09

Ambiguous 0.10 0.18 0.15 −0.14

Termination Frequency 0.13 0.12 0.11 0.08

Prototypic 0.16 0.12 0.13 0.16

Atypical 0.08 0.14 0.05 −0.02

Ambiguous 0.11 0.07 0.13 0.09

Unnerved Rationale 0.09 0.20 0.00 −0.06

Prototypic 0.09 0.21 −0.04 −0.01

Atypical 0.04 0.12 −0.04 −0.03

Ambiguous 0.10 0.25 −0.02 −0.07

No significant correlations exist.

as most eerie, relative to both prototypic persons (dz = 2.54)
and persons with atypical features (dz = − 0.84). They
also terminated their encounters with ambiguous persons at the
highest frequencies (dz = 0.38; dz = −0.70), and did so most
frequently due to being unnerved (dz = 1.21; dz = − 1.22).
In fact, participants terminated their encounters with persons
with atypical features significantly less frequently than their
encounters with prototypic persons (dz = −0.43) and there was
no significant difference between atypical and prototypic persons
in the proportion of encounters that they terminated due to being
unnerved.

Overall, the secondary analyses reveal that the data reflect
greater support for the feature atypicality hypothesis with respect
to robotic agents. With respect to human agents, the results
are suggestive of greater support for the category ambiguity
hypothesis, but uncertainty arising from the study’s manipulation
checks warrants further investigation of this finding13.

3.3. Negative Attitudes Toward Robots
Lastly, we explored whether participants’ aversive responding
toward our stimuli could be explained by pre-existing negative

13We note, however, that the results of the manipulation checks leave us unable

to assert this implication definitively. Specifically, participants rated the set of

“ambiguous” human stimuli as more atypical than those intended to comprise the

“atypical” set (comparable to their robotic counterparts). Though we suggested

that the atypicality ratings of the atypical human stimuli may have been reduced

(due to participants’ discomfort at making explicit ratings), without resolution of

the manipulation check outcome (divergence from what was expected), we are

unable to assume that the asymmetry in responding to human stimuli – that is,

the more aversive responding to stimuli of ambiguous humanness – is driven by

category ambiguity alone.

attitudes about robots. Using the Negative Attitudes toward
Robots Scale, we tested participants’ overall NARS score and
scores on the three NARS subscales – negative attitude toward
situations concerning interactions with robots (S1), negative
attitude toward the social influence of robots (S2), and negative
attitude toward emotions in interacting with robots (S3) – for
any relationship to their subjective and behavioral responding
on the three indices of aversion (eeriness ratings, termination
frequency, terminations due to being unnerved). For each
aversion index, we computed participants’ average response
toward all robotic stimuli and by category (prototypic, atypical,
ambiguous). In total, we computed 48 correlations (three NARS
subscales, plus an overall NARS score; three agent categories,
plus an overall response; three aversion indices) using Pearson’s
r test (see Table 5). However, no significant relationships were
found.

4. DISCUSSION

In the nearly 50 years since Mori’s formalization of the uncanny
valley (Mori et al., 2012), substantial empirical support has been
found for the hypothesis that agents with highly humanlike
(but not prototypically human) appearances provoke aversive
responding in observers (Kätsyri et al., 2015; Rosenthal-von der
Pütten and Krämer, 2015; MacDorman and Chattopadhyay,
2016). Yet, the mechanisms that lead to such feelings of
discomfort are largely unknown. Moreover, many still question
whether a valley even exists (e.g., Brenton et al., 2005; Hanson
et al., 2005; Bartneck et al., 2009; Burleigh et al., 2013; Zlotowski
et al., 2013; Złotowski et al., 2015).

Those questioning uncanny valley theory are not wrong:
evidence of the valley effect is not in overabundance and the
evidence which does exist varies widely in methodologies used
(Kätsyri et al., 2015), leaving numerous gaps in the literature.
In particular, much of the valley literature is based on (1)
stimuli that represent a small subset of a large design space
(humanoid robots) and (2) measures that do not capture
behavioral implications (relying instead on explicit perception).
Thus, the questions of whether the valley effect is robust (i.e.,
does it generalize to the broader design space) and relevant to
human-robot interaction remain.

Two recent studies, using the largest stimulus sets to date
(45-80 robots), suggest that the valley effect is both robust
and profoundly impactful (Strait et al., 2015; Mathur and
Reichling, 2016). Specifically, using picture-based methodologies
and behavioral measures to supplement the traditional metrics,
the two studies evaluated the impact of a robot’s appearance on
people’s behavior toward a broad range of humanoid robots. In
particular, Mathur and Reichling (2016) found that the valley
reduces people’s trust in highly humanlike robots and we (Strait
et al., 2015) found that, not only do people dislike highly
humanlike robots, but people actively avoid interacting with
them.

As a test of its replicability and extension to this recent work,
we adapted the methodologies of Mathur and Reichling (2016)
and Strait et al. (2015) for another experimental investigation
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of the valley’s existence and the design factors that underlie
uncanniness. In particular, we tested two theoretically-motivated
factors—atypicality and category ambiguity—for their effects on
perceptions of uncanniness and resulting avoidant behaviors.
Furthermore, we tested an outstanding and common critique of
the valley—namely, whether people’s aversive responding can be
alternatively explained by pre-existing negative attitudes toward
robots.

4.1. Summary of Findings
4.1.1. Replication of the Valley Effect (H1)
Consistent with our expectations and previous literature (e.g.,
MacDorman, 2006; Kätsyri et al., 2015; Strait et al., 2015; Mathur
and Reichling, 2016), participants exhibited clear aversion
toward agents of high human similarity (highly humanlike
robots and humans with non-prototypic appearances), as
evidenced by higher ratings of eeriness, more frequent avoidance
(early termination of their encounters14), and more frequent
termination due to being unnerved.

While there was not a significant difference in termination
frequencies between agents of high similarity and (prototypic)
humans, participants’ endorsed different rationales for
terminating these encounters. Specifically, participants
terminated encounters with human stimuli largely due to
boredom. By contrast, participants terminated over a third of
their encounters with highly humanlike agents due to being
unnerved. In particular, it is worth noting that, while the stimuli
used in the present study were both innocuous and fleeting,
participants nevertheless exhibited significant aversion in their
encounters with the highly humanlike agents. That is, the
appearances of the highly humanlike agents was discomforting
enough that participants often preferred to look at a blank
screen, rather than the agents themselves.

Beyond the confirmation of our first hypothesis, the data
here fully replicate and thus validate the findings of Strait et al.
(2015), demonstrating empirically that the uncanny valley—as
a function of human similarity—provokes robust, emotionally-
motivated responses to humanlike robots. Our results also lend
further support to the findings by Mathur and Reichling (2016)
that robots with highly humanlike appearances profoundly (and
negatively) impact people’s behavioral responding.

4.1.2. Understanding the Uncanny (M1, M2)
As hypothesized and consistent with prior indications
(Mitchell et al., 2011; Chattopadhyay and MacDorman,
2016; MacDorman and Chattopadhyay, 2016), atypicality
provoked aversive responding relative to agents with more
typical appearances as evidenced by participants’ ratings
of the agents’ eeriness and the proportion of encounters
terminated early due to being unnerved (M1). Support was
also found for the hypothesized effect of category ambiguity
(M2). Specifically, similar to participants’ responding toward
atypical agents, participants exhibited significant aversion
toward agents of ambiguous category membership relative
to prototypic agents as evidenced by all three indices of

14Relative only to robots of low human similarity.

aversion (respective eeriness ratings, termination frequency,
and proportion of encounters terminated due to being
unnerved).

Exploration of the typicality × category interaction, however,
suggests that the mechanisms have differential impact on
responding depending on whether the agent in question is
robot or human. Specifically, within the set of robotic stimuli,
atypicality provoked the greatest aversion (highest ratings of
eeriness, more frequent termination of encounters, and greatest
proportion of encounters terminated due to being unnerved). In
fact, while the set of ambiguous robots – relative to prototypic
robots – prompted higher eeriness ratings and more encounters
to be terminated due to being unnerved, they did not elicit greater
avoidance (there was no significant difference in the termination
frequency from that in response to prototypic robots). Moreover,
the ambiguous stimuli were neither the eeriest nor the most
discomforting.

In contrast, within the set of human agents, ambiguity
provoked the greatest aversion in participants (higher ratings of
eeriness, more frequent termination of encounters, and greater
proportion of encounters terminated due to being unnerved).
Surprisingly, while participants rated atypical stimuli as eerier
than persons of prototypically human similarity, participants
terminated their encounters with atypical stimuli less frequently
than with ambiguous and prototypic stimuli.

4.1.3. Negative Attitudes Toward Robots
Exploration of alternative explanations of the above findings
did not yield support for the suggestion that people’s behavior
may be explained by pre-existing and negative attitudes toward
robots (rather than as the result of an uncanny valley
phenomenon). Specifically, no significant relationships were
found in 48 correlational tests between participants’ aversion and
their attitudes toward robots, as indexed by the NARS scales.
These findings suggest that positive exposure and/or additional
experience with robots is unlikely to affect the occurrence of an
uncanny valley effect in humanoid robotics.

4.2. Implications
The present research has three primary theoretical and practical
implications.

4.2.1. Methodological Practices
We validated a simple – but effective – laboratory procedure
for assessment of people’s aversion to social robots. In
particular, we adapted a standard procedure from psychology
research for the measurement of social signals (particularly, the
experience and regulation of negative emotion) in laboratory-
based human-robot interactions. The protocol contributes both
instrumentation (the measurement of emotion-related social
signals in HRI contexts), as well as an effective work-around for a
longstanding methodological limitation (accessibility of physical
robotic platforms).

Consistency across the multiple measures (of participants’
emotion experience and emotionally-motivated responding) and
between studies (Strait et al., 2015 and here) demonstrates the
reliability of this approach. Whether and how these results
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transfer to more ecologically valid contexts (e.g., actual human-
robot interaction in the wild) remains to be investigated.
However, at a minimum, the protocol provides a means of
making systematic probes of the various visual variables present
in an agent’s appearance.

4.2.2. Uncanny Valley Theory
In providing another experimental test of the uncanny valley
hypothesis, our study reveals a robust uncanny valley in the
design space of social robots in terms of people’s attribution of
eeriness to highly humanlike (but not prototypically human)
agents. More importantly, it validates the previously suggested
(cf. Strait et al., 2015) link between avoidant behavior (early
termination of encounters due to being unnerved) and highly
humanlike robots. Furthermore, this work extends Mori’s initial
postulations to consider specific visual aspects that lead to
uncanniness. Specifically, the findings point to both atypicality
and category ambiguity as driving forces in people’s discomfort.
The two visual variables (atypicality and category ambiguity)
resulted in higher ratings of eeriness, more frequent terminations
of encounters, and a greater proportion of terminations
terminated due to being unnerved.

Of particular note, our exploratory analyses showed that
the atypical robots (which were atypical in the combination
of a highly humanlike head atop a mechanomorphic body)
and ambiguous humans (which were dehumanized via the use
of black, full-sclera contacts, thus occluding the iris) elicited
the greatest aversion. These findings are consistent with prior
literature evaluating mind-related (features related to the head,
and in particular, the eyes) atypicalities (Gray and Wegner, 2012;
Schein and Gray, 2015; Appel et al., 2016). In addition, the
findings support the (relatively common) use of certain visual
effects in media and film to instill a sense of unease in observers.
Consider for example: Pixar’s Babyface (see Figure 6) who was an
unnerving (albeit eventually sympathetic) character in Toy Story
(1995); Joshu Kasei, an ultimately terrifying character in Psycho-
Pass (2012–); and the generally unsettling Ava in Ex Machina
(2015), amongst others.

4.2.3. Design Considerations
Correspondingly, the findings here provide soft guidelines for the
design of future humanoid systems. Participants’ strong negative
responding—particularly their frequent avoidance of encounters
due to discomfort—establishes a shortcoming of the current
design space. Moreover, the lack of any predictive relationship
between participants’ preexisting attitudes toward robots (as
indexed by NARS) and their aversive responding suggests that
the valley effect is not learned (e.g., via negative portrayals of
robots in media) and furthermore, unlikely to dissipate with
time/exposure. Thus, there is a clear need to consider alternatives
to blanket anthropomorphization.

Broadly, participants’ consistent aversion to highly humanlike
robots demonstrates a significant cost to designing robots with
high human similarity in their appearance. Our results do
show evidence of increased interest in the robots corresponding
to increased human similarity (consistent with the empirical
motivations for increasingly anthropomorphized robot designs;

FIGURE 6 | “Babyface” from Pixar’s Toy Story (1995). Attribution: photograph

(https://goo.gl/GkuBLQ) by Mike Mozart, available under a Creative Commons

Attribution 2.0 Generic license1.

e.g., Riek et al., 2009). However, the increase in interest we’ve
observed pales in magnitude relative to the corresponding
increase in avoidance due to discomfort. Moreover, despite
significantly increased interest and stimuli that were both
innocuous and fleeting, we have consistently observed
participants’ avoidance of encounters with (photographs of)
highly humanlike robots. In considering that such aversion can
be elicited in these settings and in spite of increased interest, we
suggest that designing robots with less human similarity (at least
in their appearance) is a practical and fast solution to the issues
underscored by the present findings.

That being said, our results do not suggest that efforts
to design humanlike robots are futile. Rather, they hint that
attention to certain attributes when designing humanlike robots
may mitigate aversive responding. Specifically, we note that
the set of atypical robots provoked the greatest aversion in
participants, more so than the set of “ambiguous” robots
(androids). This finding is consistent with prior indications that
androids do not necessarily elicit the most negative reactions
(e.g., Rosenthal-von der Pütten and Krämer, 2014), and further,
suggests that the valley effect can be attenuated, if not overcome.
Thus, when designing humanlike robots, our data indicate that
greater consistency amongst features may avoid the elicitation of
aversion. For example, a prototypically mechanical body should
be accompanied by a prototypically mechanical head, even if it
means forgoing more humanlike features. Conversely, a highly
humanlike head should be accompanied by a highly humanlike
body.

4.3. Limitations and Future Directions
The present study contributes a replication and extension of prior
research on the uncanny valley in the domain of social robotics
and human-robot interaction. In particular, it demonstrates
the use of a simple laboratory procedure to evaluate aversive
responding with a large portion of the current design space
of humanoid robots. While we are confident that the present
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study was well-suited to address our primary goals, the work also
has its limitations that underscore important avenues for future
research.

4.3.1. Demographics
One potentially significant limitation in particular concerns the
demographics of both our participants and of the humanlike
stimuli employed in this study. Specifically, our sampling –
despite attempts to recruit broader participation via public
advertisement within the local metropolitan area – drew a largely
homogenous (predominately white, well-educated, American,
and young) participant population. While these demographics
reflect those of the local university and to some extent, the
geographical region in which the study was conducted, it
nevertheless constrains the interpretation of our results. In
particular, it remains unknown as to whether the observed
valley effects extend to the general population as variations
in participant demographics (e.g., age, culture, etc.) have
been found to affect people’s general perceptions of social
robots (e.g., Bartneck et al., 2005; Kuo et al., 2009; Li et al.,
2010; Lee and Sabanović, 2014; Stafford et al., 2014b; Sundar
et al., 2016). Though these variations have not been studied
directly in relation to the uncanny valley, still there may be
a multitude of sociocultural factors relevant to understanding
the valley phenomenon and its effects on the perception of and
emotionally-motivated responding to robots.

In addition, it is important to note the simultaneous
imbalance in the race/gender of our stimuli. Specifically, the
set of highly humanlike robots is primarily composed of robots
that are female-gendered and phenotypically Asian, while robots
with lesser degrees of human similarity lack explicit race and
gender cues. This imbalance stems from the “demographics”
of the current design space of android robots, in which a
majority of platforms have been modeled after women (who
are predominately Asian) and white men. Though we balanced
our set of human stimuli to reflect the demographics of the
highly humanlike robots, the skewed demographics of both our
stimuli and the participants evaluating it leave the potential for
differential responding on the basis of the agents’ gender/race
(e.g., Fiske et al., 2007; Zebrowitz and Montepare, 2008). This
thus poses a methodological consideration that warrants further
investigation.

4.3.2. Instrumentation
In addition to the above considerations, we also note a potential
limitation with respect to the measurement of negative attitudes
toward robots. Specifically, we employed the NARS scales
(Nomura et al., 2006) for indexing participants’ attitudes in
order to address a longstanding critique of valley theory, namely
whether people’s aversion stems from pre-existing negative
attitudes. Though no significant relationship was observed
between the NARS and aversion indices, it is possible that
the NARS scales do not capture negative attitudes that are
relevant to the uncanny valley. Specifically, the content of the
NARS questionnaire items range from context-related (e.g., “I
would feel nervous just standing in front of a robot”) to highly
philosophical in nature (e.g., “I would feel uneasy if robots really
had emotions,” “I am concerned that robots would be a bad

influence on children,” “I feel that in the future, society will be
dominated by robots.”). Thus, the scale may align more with
attitudes pertaining to human identity and replacement by robots
(e.g., MacDorman, 2006; Rosenthal-von der Pütten and Krämer,
2015), which may not drive the behavioral valley effects observed
here.

4.3.3. Development
Finally, the majority of literature probing the valley and its effects
is limited to young adults. Thus, it remains to be determined
as to when/how the uncanny valley emerges over development.
Specifically, are the indices of aversion that we observed here
present in infants/children in a qualitatively similar way? Or is
the valley limited to adults? While there is evidence of valley
effects in infants (Lewkowicz and Ghazanfar, 2012; Matsuda
et al., 2012), it is methodologically limited. In particular, the
valley effects in infants are evidenced only by their gaze behavior
and only in response to a very small set of agents. Additional
studies evaluating valley effects in children would be useful both
theoretically and practically. Theoretically, observation of a valley
before young adulthood would lend support to the notion that
the valley stems from more intrinsic perceptual mechanisms
(e.g., the category uncertainty hypothesis and categorization
theory). Practically, regardless of its innateness, understanding
how younger populations perceive social robots would determine
whether their design needs to be modified as a function of age of
the population for which the robot is designed.

5. CONCLUSIONS

Our results both replicated and extended prior research,
providing further empirical support for Mori’s uncanny valley
hypothesis and its relevance to human-robot interaction.
Specifically, we demonstrated a robust valley effect within the
current design space of humanoid robotics, wherein people
showed significant behavioral aversion to highly humanlike
robots. Moreover, we found no relationship between people’s
aversion and any pre-existing attitudes toward robots, suggesting
that time and/or exposure to robots is unlikely to mitigate
the valley effect. These findings underscore both a need for
careful attention to the appearance of humanoid robots and the
importance of measuring people’s emotional responses to robots
during the design phase.

At present, the findings serve to provide general guidance in
the design of future social robots. In particular, our exploration
points to two visual factors that should be considered, namely
atypicality and category ambiguity. Our results suggest, for
example, that it would be wise to design new robots with
greater consistency between features and greater distance from
the robot-human boundary (in either direction). Doing so may
help to mitigate aversive reactions and, thus, maximize the utility
of robots in contexts requiring interaction with humans.
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Current state-of-the-art approaches to emotion recognition primarily focus on modeling 
the nonverbal expressions of the sole individual without reference to contextual elements 
such as the co-presence of the partner. In this paper, we demonstrate that the accurate 
inference of listeners’ social-emotional state of attention depends on accounting for the 
nonverbal behaviors of their storytelling partner, namely their speaker cues. To gain a 
deeper understanding of the role of speaker cues in attention inference, we conduct 
investigations into real-world interactions of children (5–6 years old) storytelling with their 
peers. Through in-depth analysis of human–human interaction data, we first identify 
nonverbal speaker cues (i.e., backchannel-inviting cues) and listener responses (i.e., 
backchannel feedback). We then demonstrate how speaker cues can modify the inter-
pretation of attention-related backchannels as well as serve as a means to regulate the 
responsiveness of listeners. We discuss the design implications of our findings toward 
our primary goal of developing attention recognition models for storytelling robots, and 
we argue that social robots can proactively use speaker cues to form more accurate 
inferences about the attentive state of their human partners.

Keywords: attention and engagement, nonverbal behaviors, speaker cues, listener backchannels, emotion 
recognition, children and storytelling, human-robot interaction

1. inTrODUcTiOn

Storytelling is an interaction form that is mutually regulated between storytellers and listeners where 
a key dynamic is the back-and-forth process of speaker cues and listener responses. Speaker cues, 
also called backchannel-inviting cues, are signaled nonverbally through changes in prosody, gaze 
patterns, and other behaviors. They serve as a mechanism for storytellers to elicit feedback from 
listeners (Ward and Tsukahara, 2000). Listeners contingently respond using backchannel feedback 
which is signaled linguistically (e.g., “I see”), para-linguistically (e.g., “mm-hmm”), and nonverbally 
(e.g., head nod).

To support human-robot interactions (HRI), prior approaches have typically treated speaker cues 
as timing mechanisms to predict upcoming backchannel opportunities. In contingently responding 
to a person’s speaker cues, robot listeners are able to support more fluid interactions, engender feelings 
of rapport, and communicate attention (Gratch et al., 2007; Morency et al., 2010; Park et al., 2017). 
In this paper, we introduce additional functions speaker cues have in social interactions beyond this 
stimulus-response contingency. Our main contribution is demonstrating how:

1. speaker cues serve as a means to regulate the responsiveness of listeners.
2. speaker cues can modify the interpretation of backchannels when inferring listener’s attention.
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For our first claim, we begin by identifying backchannels 
that signal the attention and engagement of listeners as well 
as speaker cues capable of eliciting those backchannels. We 
examine multimodal speaker cues (prosody and gaze) and their 
emission as either singlets or combinations, and we find that 
compounded cues have a higher likelihood of eliciting a response 
from listeners.

We support our second claim through a two-part process. 
First, our video-based human-subjects experiment demon-
strates that accurate inference about listeners’ attentive state 
depends on observing not just the listeners but also their 
storytelling partner. Second, through a finer-grain analysis, 
we find that the interpretation of backchannels from a listener 
depends on the storyteller’s cueing behaviors. This cue-response 
pair is necessary for an accurate understanding of listener’s  
attention.

Our primary research goal is to develop contextually aware 
attention recognition models for social robots in storytelling 
applications. In this paper, we focus on the nonverbal behaviors 
of storytellers as key context in which we evaluate the attentive 
state of listeners. A storyteller’s speaker cues play an important 
role in the attention inference about listeners. This social and 
interpersonal context to attention, or more broadly emotion, rec-
ognition is especially relevant for human–robot interactions. HRI 
researchers depend on emotion recognition technologies to better 
understand user experience. But a common approach in affective 
computing is to model only the expressions of the sole individual 
without reference to external context like the co-presence of a 
social agent. In using these technologies for storytelling robots, 
we miss out on the added value their cueing actions can bring to 
the inference process. In pursuit of our research goal, this paper’s 
approach is to first deeply understand the interpersonal nature 
of attention inference from the human perspective. Based on 
our findings from human–human interaction studies, we extract 
design implications when developing attention recognition 
models for social robots.

Our paper is outlined as follows:

•	 Section 2: Background: We elaborate on how current emo-
tion recognition technologies disagree with modern theories 
of human nonverbal communication. We review speaker cues 
and listener backchannels that have been studied among adult 
populations and highlight the limited findings surrounding 
young children in peer-to-peer interactions.

•	 Section 3: Effect of Storyteller Context on Inferences about 
Listeners: Through a video-based human-subjects experi-
ment, we manipulate the presence, absence, or falseness of 
storytellers from original interactions with listeners. Although 
the listeners’ nonverbal behaviors remain exactly the same, 
perceptions about their attentive state from a third-party 
observer are different across these contextual manipulations.

•	 Section 4: Effect of Speaker Cues on Listener Response 
Inter pretation and Regulation: Through a data collection of 
peer-to-peer storytelling, we identify attention-related listener 
responses as well as speaker cues that children use amongst 
peers. We examine which speaker cues, taken singly or in com-
bination, can elicit a contingent response from listeners, and 

we find that listeners are more likely to respond to stronger 
cueing contexts. Lastly, using a logistic regression model, we 
find that backchannels are interpreted differently if observed 
after a weak, moderate, or strong cue.

•	 Section 5: General Discussion: We summarize our findings 
based on our human–human interaction studies and draw 
implications when modeling attention recognition for HRI.

2. BacKgrOUnD

2.1. context in emotion recognition—
humans vs Machines
Emotion recognition systems typically discretize emotional states 
as a basic set of anger, surprise, happiness, disgust, sadness, and 
fear, while states such as boredom, confusion, frustration, engage-
ment, and curiosity are considered to be non-basic (D’Mello and 
Kory, 2015). In our work, we focus on the social-emotional state 
of engagement which we interchangeably use with the word 
attention. Note, this should not be confused with joint attention, 
which is a different research problem of inferring what people are 
attending to in a physical environment (Scassellati, 1999). The 
nonverbal behaviors that support joint attention serve more as 
a mechanism to attend to objects and events rather than ones 
associated with communicating emotional states.

Emotion recognition systems have primarily focused on 
detecting prototypical facial expressions through facial muscle 
action units (FACS) (Sariyanidi et al., 2015). Based on a recent 
survey, facial expressions are still the main modality used for 
affect detection but have also extended to include gaze behaviors, 
body movements, voice features, spoken language, and bio-
signals such as electrodermal activity (D’Mello and Kory, 2015). 
Of the 90 systems reported, 93% of approaches focus on these 
within-person features and exclude extrinsic factors such as the 
environment or interaction partners.

This representation follows a classical theory in human non-
verbal communication of nonverbal leakage where emotional 
states are direct influencers of exhibited nonverbal behaviors 
(Knapp and Hall, 2010). Traditional emotion understanding 
models such as those utilized by Ekman (1984) focus on the non-
verbal expressions of single individuals without reference to any 
contextual elements such as setting, cultural orientation, or other 
people. By contrast, modern theories emphasize the contextual 
nature of nonverbal inference where greater accuracy comes from 
decoding expressions with reference to the social context (Barrett 
et al., 2011; Hassin et al., 2013).

Toward this, a growing amount of work has started to model 
the behaviors of both interactants to recognize social-emotional 
states, such as trust (Lee et al., 2013), rapport (Yu et al., 2013), 
and bonding (Jaques et al., 2016). Although the behaviors of both 
interactants are now being considered, they are fundamentally 
represented as a pair of independent events or captured as joint 
or dyadic features (like the number of conversational turns) for 
non-temporal models. As such, these approaches do not con-
sider the added information that comes from the interpersonal 
call–response dynamic of social interactions. Although this is a 
foundation when modeling other domains such as turn-taking 
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(Thórisson, 2002) or conversational structure (Otsuka et al., 2007), 
emotion recognition models for dyadic interactions currently do 
not consider the causal properties between the behaviors of dyads 
and how they can influence each other.

2.2. speaker cues and listener 
responses—children vs adults
A well-known dynamic in face-to-face communication is the 
call–response contingencies between speaker cues and listener 
backchannels, which we will also refer to more broadly as “lis-
tener responses.” The role of listener responses in conversations 
have been comprehensively characterized as carrying different 
functions such as signaling understanding, support, empathy, 
and agreement (Maynard, 1997) as well as facilitating conversa-
tional flow (Dittmann, 1972; Duncan and Fiske, 1977). However, 
in this paper, we specifically focus on the role of backchannels 
as evidence of continued attention, interest, and engagement of 
listeners (Kendon, 1967; Schegloff, 1982). It is important to note 
that we will consistently use the words cues and responses to dif-
ferentiate the source of the emitted nonverbal behavior as either 
from a speaker or listener, respectively.

Although there is extensive research on adult listening and 
speaking behaviors, limited prior work exists in investigating 
younger populations especially in the context of peer-to-peer 
storytelling. In adult–child conversations, prior works have 
focused on demonstrating the effect of age on the backchanneling 
behaviors of children. More specifically, 11-year-olds were found 
to provide significantly more listener responses to adults than 
7- or 9-year-olds and with a threefold increase between 7-year-
olds and 11-year-olds (Hess and Johnston, 1988). In a separate 
study investigating 2- to 5-year-olds, older preschool children 
were found to use more head nods and spent more time smil-
ing and gazing at adult speakers, suggesting that older children 
better understand a listener’s role in providing collaborative  
feedback (Miller et al., 1985).

Both children and adult listeners were found to respond more 
frequently to joint cues (e.g., co-occurring speaker cues like 
simultaneous eye-contact with long speech pauses) over single 
cues. Joint cues were found to quadratically increase the likeli-
hood of eliciting a backchannel response (Hess and Johnston, 
1988; Gravano and Hirschberg, 2009). For an organized collec-
tion of prior research into speaker cues and listener responses of 
adults and children, see Tables S1 and S2 in the Supplementary 
Materials. We extend these prior works by pioneering the identi-
fication of attention-related listener responses and speaker cues 
that children employ amongst peers (not with adults) in storytell-
ing interactions.

3. eFFecT OF sTOrYTeller cOnTeXT 
On inFerences aBOUT lisTeners

3.1. Overview
Although modern theories of human nonverbal communication 
emphasize the contextual nature of emotion understanding, cur-
rent state-of-the-art approaches to emotion recognition primar-
ily focus on the sole individual without reference to contextual 

elements such as the co-presence of interaction partners. The 
goal of this section is to demonstrate how a similar expectation 
placed on human observers results in them forming less accurate 
inferences about the emotions of others. Through a video-based 
experiment, we manipulate the presence, absence, or falseness of 
storytellers from original interactions with listeners. Although 
the listeners’ behaviors remain exactly the same, we expect 
that the perception about their attentive state from third-party 
observers will be different across these conditions. We hypoth-
esize the following:

Main Hypothesis: Inference performance about a listener’s 
attentive state is best when observing both the storyteller’s and 
listener’s behaviors of a social interaction and worst when miss-
ing the storyteller context.

We quantify inference performance as a function of predic-
tion speed and accuracy and aim to demonstrate that both 
measures improve when observing the true storyteller context to 
the listener’s behaviors. We argue that accurate inference about 
listeners’ attention depends on also observing the storyteller.

3.2. Method
Through a video-based human-subjects experiment, we study 
how the perception of listeners changes when observing their 
original behaviors in different storyteller contexts.

3.2.1. Participants
Participants were recruited online through Amazon Mechanical 
Turk. Turk Workers were from the United States to ensure cultural 
relevance. To limit the participation pool to high-quality workers, 
their qualification requirements met the following:

•	 Number of approved HITs (Human Intelligence Tasks) greater 
than 5000,

•	 Approval rating from former requesters greater than 98%.

From the 542 Turk workers that submitted to the HIT task, 
36 individuals were rejected for not fully completing all parts of 
the task or for not properly following the task’s instructions. The 
average age of the remaining 506 participants was 38-years-old 
(SD = 11). Nearly half (56%) were parents and gender was close to 
balanced (53% female). Below we detail two exclusion principles 
applied in removing participants from our analysis.

3.2.2. Study Procedure
The online survey-based experiment took an average 19 minutes 
(SD = 12) to complete the following three parts: Affect Recogni-
tion Assessment, Training Exercise, and Inference Task.

3.2.2.1. Affect Recognition Assessment
The Diagnostic Analysis of Nonverbal Behavior (DANVA2) is an 
assessment to measure an individual’s nonverbal affect recogni-
tion ability (Nowicki and Duke, 1994). The evaluation consists 
of viewing a series of facial expressions as well as listening to 
paralinguistic expressions of children to identify the expressed 
emotion: happiness, sadness, anger, or fear. Individuals are scored 
based on the number of items incorrectly identified from 24 
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different pictures of children’s faces and 24 different recordings 
of children’s voices. Participants took this assessment through 
a web-based flash program that would present the stimuli and 
record their multiple choice response.

Overall, participants scored a mean error of 2.9 (SD =  2.0) 
in recognizing children’s facial expression and 4.8 (SD = 2.6) in 
recognizing children’s paralinguistic expressions. To ensure that 
our population consisted of individuals of average affect recogni-
tion ability, 23 participants that scored an error greater than two 
standard deviations from the population’s average on either the 
DANVA face or voice subtests were excluded from our analysis 
below.1

3.2.2.2. Training Exercise
To familiarize participants with the procedure of the primary task, 
they first experienced the task procedure on a simple example 
video as a training exercise. Participants were asked to carefully 
watch the video and immediately pause it when they heard the 
word “bat.” Then they were instructed to report the number in the 
upper-left hand corner of the video, which represented the video 
frame corresponding to the paused scene.

Overall, participants were on average 41 frames, or 1.4  sec-
onds, away from the exact moment of the target event (SD = 147 
frames or 4.9 seconds). Participants that were within two standard 
deviations from the population’s average response frame passed 
this training exercise. As a measure of task adherence to filter out 
low-quality Turk workers, the 22 participants who failed to meet 
these criteria were excluded from our analysis below.

3.2.2.3. Inference Task
Participants were asked to watch a series of videos (each around 
30 seconds in duration) of different children listening to a story-
teller. Participants were told that in all the videos the listener is at 
first paying attention to the story, but we want to know when/if the 
listener stops being attentive to the narrator’s story. Following the 
same procedure introduced in the training exercise, participants 
reported their paused frame, which represented the moment they 
perceived the listener transitioning from attentiveness to inatten-
tiveness. They also had the option of reporting if they believed 
that the listener was paying attention the entire time.

3.2.3. Experiment Design
From an original interaction between a listener and their story-
telling partner, we manipulate the presence, absence, or falseness 
of the storyteller through a video-based experiment. Although 
the listener’s behaviors remain the same, we investigate how an 
observer’s perception about the listener’s attentive state changes 
across the different contextualizations. As a within-subject study 
design, a participant viewed a video from each of the three 
conditions but of three different listeners in a random order. In 

1 There is a bit of irony in using a standard contextless test to exclude participants 
from a study that is investigating the influence of context on affect recognition. 
It is possible to make an inference (of lesser accuracy) in contextless situations, 
but we are investigating the added value of context. This exclusion is to ensure a 
population of typical development.

using three different listeners, we can generalize our results to be 
beyond a listener-specific phenomenon. Our three conditions are 
defined as the following:

 1. TRUE (control): Participants viewed the original interaction 
between a storyteller and listener. With access to both the sto-
ryteller’s and the listener’s behaviors, they made an inference 
about the listener’s attentive state.

 2. ABSENT: Participants only viewed the listener. They made 
their inference based solely on the listener’s nonverbal 
behaviors.

 3. FALSE: Participants viewed an unmatched interaction where 
the original storyteller is replaced with one from a different 
storytelling episode.

From three different storytelling interaction videos collected 
in Section 4.2, we created a set for the TRUE condition with the 
audio and video (AV) of the original storyteller, a set for the 
ABSENT condition with the storyteller’s AV removed, and a set 
for the FALSE condition with the AV of a different storyteller 
(see Figure 1A). It is important to note that although the audio 
recordings captured both of the storyteller’s and listener’s voices, 
in general only the storyteller is speaking and the listener is quiet. 
To preserve the illusion that the FALSE condition was showing 
real interactions, we avoided moments containing any dialog-
related coordination. For example, we carefully selected video 
snippets that did not include when a storyteller asked a direct 
question or was interrupted by the listener.

All the videos were composed and edited to allow a viewer 
to easily see the facial expressions of both the storyteller and 
listener. We also preserved their gaze cues by arranging the 
images to mimic the original interaction geometry. As shown in 
Figure  1B, we ensured that a listener’s behavior between each 
condition remained exactly the same. Please see Videos S1–S3 in 
the Supplementary Materials to watch an example set of videos 
used for this experiment.

3.2.4. Dependent Measures
The video snippets contain a single point where the listener 
transitions from attentiveness to inattentiveness as illustrated in 
Figure 2. This transition point is based on the hand-annotated 
attention labels from trained experts (see Section 4.2.3). From 
a participant’s report on where he/she believed the transition 
point to be, we defined two dependent measures for inference 
performance.

 1. Accuracy: A response frame after the transition point is 
marked as correct and elsewhere as incorrect, including the 
option of reporting the listener as attentive for the entire time. 
Accuracy is a dichotomous variable, where a value of 0 means 
incorrect and 1 means correct.

 2. Latency: Latency is measured as the distance between the 
response frame from the target frame. This difference repre-
sents the participant’s delay and is only calculated for correct 
inferences.

In accordance with our hypotheses, we expect an increasing 
trend (TRUE > FALSE > ABSENT) where participants achieve 
their best inference performance in both accuracy and latency 
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FigUre 1 | Video-based human-subjects experiment. (a) From TRUE interactions between a storyteller and listener, we manipulate the absence and falseness of 
the storyteller context. For the FALSE condition, we replace the original storyteller with the audio and video of a different storyteller. The ABSENT condition removes 
all storyteller context (both audio and video). (B) We illustrate how for Listener-3, at frames 260, 290, and 320, we retain his exact behavior across the three 
conditions: TRUE (top row), FALSE (middle row), ABSENT (bottom row).
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with the TRUE condition and their worst inference perfor-
mance with the ABSENT condition since it lacks any storyteller 
context. We anticipate that participants will have a difficult time 
with the FALSE condition since the disjointed set of storyteller’s 
cues to listener’s responses will either delay or confuse their 
inference process. Although participants were informed, 
through a brief description, of the storytelling context of their 
upcoming videos, the FALSE condition at least visually presents 
the listeners’ behaviors in an interpersonal context. As such, 

we hypothesize that a false/unmatched context is better than 
having no context.

3.3. analysis of inference accuracy
We examine the ability of storyteller context to predict an 
increasing trend of inference accuracy using generalized 
linear  models  (GLM). A multilevel (i.e., mixed-model) logistic 
regression was performed to determine the effect of storyteller 
context on the likelihood of participants making a correct 
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TaBle 1 | Effect of storyteller context on inference accuracy and latency.

conditions

True False absent

Measures n Measures n Measures n

Accuracy 58.4% correct 461 57.7% correct 461 51.0% correct 461
Latency 96 frames 269 107 frames 266 99 frames 235

Accuracy is reported as the percentage of participants correctly inferring attention transitions of a condition. Latency is reported as the median time-to-respond when a correct 

inference is made. N is the number of samples per condition (542 participants − 81 exclusions = 461 samples). Note, latency’s N varies per condition since it only includes the 
samples with correct inferences.

FigUre 2 | Example of scoring accuracy and latency. At frame 440, a listener is annotated by experts as transitioning from an attentive to inattentive state.  
As such, a participant who predicted and reported the transition occurring at 250 frames is marked as being incorrect (accuracy of 0). A participant who made  
a prediction at 600 frames is accurate with a latency of 160 frames.

6

Lee et al. Speaker Cues in Attention Inference

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 47

inference about listeners’ attentive state while controlling for 
within-subject dependencies from repeated measures (see Table 
S3 in Supplementary Material for model details). Based on our 
expectation that inference accuracy increases across treatment 
groups, the predictor variable is contrast coded as ordered values 
[−1, 0, 1] to model a linear trend, where having access to the true 
context yields the highest likelihood of accurate inference while 
having access to no context yields the lowest.

Based on the Wald Chi-square statistic, the logistic regres-
sion model was statistically significant, [χ2(1) = 4.15, p = 0.04], 
which indicates a linear relationship between our expected 
order of storyteller-context treatment and likelihood of correct 
inference. As shown in Table  1, an ascending trend in infer-
ence accuracy is observed with the TRUE condition obtaining 
the highest percentage of participants that correctly predict the 
attentive state of listeners and the ABSENT condition obtaining 
the lowest.

3.4. analysis of inference latency
Similar to the trend analysis described for accuracy, we examine 
the ability of storyteller context to predict an increasing trend 
of inference latency values. The latency observations are positive 
whole numbers and have a skewed distribution since the highest 
density of observations are found closest to the target frame and 
then drop-off over time. Given the nature of the data, we used 

a gamma GLM (versus the typical normal distribution assump-
tion) with storyteller context as the primary predictor of the log 
latency while again controlling for within-subject dependencies. 
We expected an increasing trend where participants experienced 
the greatest delays in the ABSENT condition, followed by the 
FALSE condition, and with the TRUE condition obtaining the 
lowest latencies, but no significant trend was found [χ2(1) = 0.01, 
p = 0.94].

However, rather than looking for a trend, we instead looked 
for any differences between the conditions. By treating the 
predictor as a categorical variable, a statistically significant 
gamma GLM was found, [χ2(2) = 6.35, p = 0.04]2 (see Table S4 
in Supplementary Material for model details). More specifically, 
there is a significant difference between the TRUE and FALSE 
conditions, t(767)  =  2.21, p  =  0.03, with the TRUE condition 
obtaining lower latencies (x  =  96 frames) than the FALSE 
condition (x = 107 frames). No significant difference was found 
between the TRUE and ABSENT conditions.

3.5. Discussion
Our main hypothesis was upheld regarding inference accu-
racy and partially upheld regarding inference latency. When 

2 There are two degrees-of-freedom since the three conditions are dummy coded as 
two categorical predictor variables.
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FigUre 3 | Story space setup. Setup included three different camera angles, a high-quality microphone, listener and storyteller chairs, and a storybook with 
compounding story elements per page. The bottom-right photo shows how we labeled each chair to further emphasize to a child his/her role as either the storyteller 
or listener.
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predicting the attentive state of listeners, participants are most 
accurate when able to observe the true storyteller, less accurate 
with a false storyteller, and worst with no storyteller.

In regard to inference latency, we found that participants were 
faster in forming correct inferences with true storytellers over 
false ones. We had anticipated participants to be slowest in form-
ing their predictions when missing the storyteller context, but 
they actually achieved similar speeds as when having it. If we view 
latency as an operationalization of confidence, we can interpret 
this result to mean that they felt similarly confident about their 
appraisals.

In sum, by changing the storyteller context in which listener 
behaviors are observed, we can delay or even cause incorrect infer-
ences to be formed about the listener’s attentive state. Participants 
are most accurate when observing both the storyteller’s and 
listener’s behaviors of a social interaction. They are least accurate 
when missing the interpersonal context of the storyteller. When 
presented with a false storyteller context, participants are again 
less accurate but also slower. This demonstrates the extent to 
which we can degrade an observer’s perceptions about the social-
emotional state of listeners.

4. eFFecT OF sPeaKer cUes On 
lisTener resPOnse inTerPreTaTiOn 
anD regUlaTiOn

4.1. Overview
Our video-based human-subjects experiment demonstrated that 
the accurate interpretation of listeners’ attentive state depends on 
also observing the storyteller. But what is it about the partner’s 
behaviors that lead human observers to form more accurate 
inferences? In this section, our goal is to better understand the 
relationship between the storyteller’s speaker cues and listener’s 
backchannels as well as how their joint meaning impacts percep-
tions about listener’s attention.

We conduct a series of analyses of human–human interac-
tions. We begin by detailing our method for data collection and 
annotation of peer-to-peer storytelling interactions of young 
children in Section 4.2: Data Collection. Before we can start to 
investigate the relationship between cues and responses, we first 
identify the relevant nonverbal behaviors of our particular young 
population. As such, in Section 4.3: Analysis of Listener Behavior, 
we find backchanneling behaviors that communicate attention. 
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FigUre 4 | Video-recordings of storytelling interactions. Three time-
synchronized cameras captured the frontal view of each participant along 
with a bird’s-eye-view (a). Image (B) is the listener view. Image (c) is the 
storyteller view.
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Furthermore, in Section 4.4: Analysis of Speaker Cues, we examine 
which of the coded multimodal speaker cues are observed to elicit 
contingent backchannels from listeners. Finally, in Section  4.5: 
Analysis of Cues and Responses to Predict State, we model the 
relationship between cues and responses and their effects on the 
perceived attentiveness of listeners.

4.2. Data collection
4.2.1. Participants
Children of typical development were recruited from a Boston 
public elementary school whose curriculum already included 
an emphasis on storytelling. A total of 18 students from a single 
kindergarten (K2) classroom participated in the study. The 
average age was 5.22 years old (SD = 0.44) and 61% were male. 
Overall, 10 participants identified as White, 3 as Black or African 
American, 2 as Hispanic or Latino, 1 as Asian, 1 as Mixed, and 1 
not specified.

4.2.2. Storytelling Task
Over a span of 5 weeks, each child completed at least three rounds 
of storytelling with different partners and storybooks. The story-
books were a series of colored pictures with illustrated characters 
and scenes that the children used to craft their own narratives 
(see Figure 3 for an example storybook). In a dyad session, the 
pair of students took turns narrating a story to their partner with 
each turn generating a storytelling episode. Importantly, for each 
child participant, we had multiple examples of them being a 
storyteller and a listener. In sum, our data collection consisted of 
58 storytelling episodes. The average length of a child’s story was 
1 minute and 17 seconds.

4.2.3. Video-Coded Annotations and Data Extraction
For each storytelling episode, the behaviors of both the listener 
and storyteller were manually annotated by multiple independ-
ent coders. We achieved moderate levels of agreement (Fleiss’ 
κ =  0.55). For storytellers, we coded for gaze- and prosodic-
based speaker cues. For listeners, we annotated for gaze 
direction, posture shifts, nods, eyebrow movement, smiles and 
frowns, short utterances, and perceived attentiveness. From 
the video recordings of the three time-synchronized cameras 
shown in Figure  4, coders used a video-annotation software 
called ELAN (Wittenburg et  al., 2006) to mark the start and 
stop times for all the behaviors listed in Table 2 except for the 
prosodic cues. For the attentive state annotation, a “listening” 
label meant that the participant was paying attention to the sto-
ryteller’s story. It is important to note that our state annotation 
included when a listener took a “speaking-turn” as a mutually 
exclusive event. This enabled us to filter observations regarding 
conversational behaviors or turn-yielding cues, which has been 
demonstrated to be different from backchannel-inviting cues 
(Gravano and Hirschberg, 2009). Based on the “Task” annota-
tion, we further excluded moments from our analyses when 
both children participants were off-task from the storytelling 
activity.

We developed a custom program to help coders easily annotate 
when and what type of prosodic cue was detected in speech. The 

program played back the audio recording of a storytelling episode, 
and coders were asked to simulate in real time being a listener and 
mark the moments when they wanted to backchannel by simply 
tapping the space bar. After this simulation, coders reviewed the 
audio snippets surrounding these moments to reflect on what 
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TaBle 2 | List of all annotated behaviors.

category labels s l

Gaze book, partner, away X X

Posture upright, toward, away, other X

Nod none, nod X

Eyebrows neutral, raise, furrow X

Mouth neutral, smile, frown, other X

Utterance none, “ok,” “oh,” “so,” “then,” “yeah,” “uh-huh,” “ok then,” 
“and then,” “and they”

X

Voicing silence, storyteller’s voice, listener’s voice, both joint

Task on-task, off-task joint

Attentive 
State

listening, not listening, speaking-turn X

Prosodic 
Cue

none, pitch, energy, pause, filled pause, long utterance, 
other

X

The selected set of nonverbal behaviors were either found in prior works (see Tables 
S1 and S2 in Supplementary Material) or commonly observed in the storytelling 
interactions. Each annotation category has a set of mutually exclusive labels and was 
coded for storytellers (S) and/or listeners (L) or jointly evaluated (joint). An italicized label 
is the default behavior of an annotation category.

FigUre 5 | Estimating the ending-time of a prosodic cue. Based on the 
backchannel time, we extract the last speaking-turn of the storyteller and 
estimate that its terminating edge is the ending-time of the prosodic cue. This 
is calculated for all prosodic-based cues except for the pause cue, which is 
roughly estimated to be halfway between the backchannel time and the 
terminating edge.
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prompted their backchannel and categorize their reasoning into 
one or more of the following prosodic cues:

•	 pitch (intonation in voice, change in tone)
•	 energy (volume of voice, softness/loudness)
•	 pause (pause in speech, long silence)
•	 filled pause (e.g., “um,” “uh,” “so,” “and”)
•	 long utterance or wordy (a long contiguous speech segment)
•	 other

This stimulus-based coding was a method for annotators to 
identify when they wanted to backchannel (i.e., backchannel 
moment) in addition to categorizing their why (i.e., speaker 
cue(s) event). The null-space that was not marked had an implied 
default label of “none.”

Three coders underwent this simulation, and we followed 
the Parasocial Consensus approach from Huang et al. (2010) to 
build consensus of when backchannel opportunities occurred. 
More specifically, each of our three coders’ registered backchan-
nel times were added as a “vote” on a consensus timeline with a 
duration of one second around the central moment. An area in 
the timeline with more than two total votes was counted as a valid 
backchannel moment.

From these backchannel moments and the voicing annota-
tions, we estimated the emission time of prosodic cues (see 
Figure 5 for more detail). To capture the complete cue context 
embodied by storytellers, we combined the prosodic cues with 
physical gaze cues to gain sets of multimodal cues.3 In sum, for the  

3 Based on the prosodic cue ending-time and gaze onset-time, events were con-
sidered to be co-occurring and merged if they are within an empirically found 
1.3 seconds of each other. This merging averages the times and reflects a collective 
moment of emission. When looking at the period between back-to-back gaze 
cues, we found a minimum time of separation of 1.5 seconds between cues. This 
establishes an upper bound of a merge window when trying to collect co-occurring 
cues. Beyond this window, we start encroaching on cues that could be a part of the 
next cueing instance.

proceeding set of analyses, we know when and which multimodal 
cues occurred throughout the storytelling episodes.

4.3. analysis of listener Behavior
A logistic regression analysis finds the best model to describe 
the relationship between the outcome and explanatory variables. 
Based on the fitted coefficients (and its significance levels), we can 
determine how much the explanatory variables can predict the 
outcome. Our goal is to identify nonverbal behaviors (explana-
tory variables) that can predict a listener’s perceived attentive state 
(outcome). More specifically, for each annotated listener behavior 
listed in Table 2, a logistic regression analysis was performed to 
predict attention (0/1) based on the behavior’s normalized dura-
tion and frequency rate. Normalized duration and frequency 
rates of behaviors were observed during a block period of either 
attentiveness or inattentiveness. Note, multiple block periods can 
exist in a single storytelling episode. For nonverbal behaviors 
that are quickly expressed (i.e., an average duration less than 
90 seconds), the frequency rate was the only predictor.

Shown in Table  3, gazes, leans, brow-raises, smiles, nods, 
and utterances are nonverbal behaviors that significantly predict 
listeners’ attention. Based on the sign of the coefficients (b) and 
significance (p) of the explanatory variables, we determine that 
frequent partner-gazes, frequent forward-leans, frequent brow-
raises, prolonged smiles, frequent nods, and frequent utterances 
are positively associated with an attentive listener. By contrast, 
prolonged away-gazes from the partner, frequent away-leans, and 
prolonged brow-raises are negatively associated. Interestingly, 
brow-raises can hold opposite associations depending on their 
form of emission.

4.4. analysis of speaker cues
In Section 4.2.3, adult-coders annotated when and what type 
of speaker cue was detected in the storytelling interactions. 
Therefore, the annotated speaker cues are based on adult 
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TaBle 3 | Descriptive statistics and logistic regression models to estimate attention from listener behaviors.

logistic regression Models

Behavior Total Mean Freq Mean Dur % Pop Overall Freq Term Dur Term

Gaze Partner 270 4.66 2.19 100 χ2(2, 192) = 62.06 b = 10.23 b = 3.06
p* = 3.34e−14 p* = 8.25e−08 p = 0.22

Gaze Away 698 12.03 4.43 100 χ2(2, 192) = 152.34 b = 0.10 b = − 8.56
p* = 8.33e−34 p = 0.95 p* = 3.27e−13

Lean Toward 110 1.90 8.98 100 χ2(2, 173) = 22.25 b = 2.97 b = 0.79
p* = 1.48e−05 p* = 7.57e−04 p = 0.18

Lean Away 78 1.34 5.81 94 χ2(2, 173) = 11.60 b = − 1.98 b = 0.04
p* = 3.02e−03 p* = 4.57e−03 p = 0.96

Brow–Raise 102 1.76 2.33 100 χ2(2, 141) = 11.88 b = 2.47 b = − 5.28
p* = 2.63e−03 p* = 0.01 p* = 0.02

Brow-Furrow 17 0.29 3.23 44 χ2(2, 141) = 2.06 b = 1.96 b = − 3.43
p = 0.36 p = 0.38 p = 0.33

Smile 173 2.98 7.23 94 χ2(2, 173) = 12.35 b = 0.88 b = 1.69
p* = 2.08e−03 p = 0.26 p* = 0.04 

Frown 9 0.16 2.55 28 χ2(2, 173) = 1.50 b = − 3.83 b = 2.17
p = 0.47 p = 0.27 p = 0.58

Nod 18 0.31 1.13 39 χ2(1, 34) = 7.61 b = 5.28 –
p* = 5.80e−03 p* = 0.03

Utter 18 0.31 0.94 50 χ2(1, 42) = 4.24 b = 6.72 –
p* = 0.04 p* = 1.27e−03

Total is the collective frequency counts found in the dataset. The Mean Frequency is the average number of occurrences in a storytelling episode (i.e., Total/58). The Mean Duration 
is the average duration of an emitted behavior in seconds. % Pop refers to the proportion of the population (of the 18 participants) that demonstrated a single instance of the 
behavior across the repeated interactions. The logistic regression models predict the listener’s attention based on the normalized duration and/or frequency rate of the nonverbal 
behavior. Note, the number of observations N for the chi-squared tests (i.e., χ2 (DF, N)) are different for each annotation category since each analysis includes block periods only from 
storytelling episodes where at least one instance of the behavior type was observed.
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perception. But which ones do children perceive, understand, and 
know to respond to? In our next set of analyses, we examine which 
speaker cues, taken singly or in combination, were observed to 
elicit a contingent backchannel from child listeners. We marked a 
backchannel as being contingent if the listener responded within 
[0.5−3.0]  seconds4 after the emitted cue with any of the previ-
ously found attentive behaviors. Those attentive behaviors were 
the onset of partner-gazes, forward-leans, brow-raises, nods, and 
utterances as well as prolonged smiles.

To further refine our proceeding analyses, we considered the 
situation where a speaker cue occurred but during a period when 
the listener was not paying attention to the storyteller. Their lack 
of a contingent response in this situation does not add relevant 
information to determining which cues children know to respond 
to. As such, our analyses only included data from moments when 
listeners were marked as attentive. This way, we can reason that 
when an attentive listener is unresponsive to a particular speaker 
cue, it is because the listener does not know to respond to this 
type of cueing signal.

4.4.1. As Individual Signals
A logistic regression analysis was performed to determine which 
speaker cues predict that an attentive listener will contingently 
backchannel. The overall logistic regression model was statistically 

4 We found that children positively respond on average 1.77 seconds (SD = 1.30) 
after an emitted cue. As such, we considered only the listener behaviors within a 
standard deviation from this average response time.

significant [χ2(6) = 45.9, p = 3.15e−08], and the speaker cues—gaze, 
pitch, filled pause, and long utterance taken singly—can elicit a 
response from young listeners (see Table 4). As expected, some 
of the speaker cues—energy and pause—do not offer significant 
predictive ability when examined in isolation. However, young 
children have been previously observed to respond more often in 
stronger cue contexts where two or more cues are co-occurring  
(Hess and Johnston, 1988).

4.4.2. As Co-Occurring Signals
Using the set of multimodal cues (extracted in Section 4.2.3), 
we examined the ability of cue combinations to predict that an 
attentive listener will contingently backchannel. The likelihood of 
observing a combination of cues is much smaller than individual 
cues, resulting in small sample sizes for each unique combination. 
Rather than performing a logistic regression analysis, we use the 
binomial exact test to determine whether the response rate of a 
cue combination is greater than an expected rate of 0.5. As shown 
in Table 5, the one-sided binomial test indicates that the response 
rates of the co-occurring cues Pitch-Energy, Gaze-Pause, Gaze-
Pitch, Gaze-Pitch-Pause, and Gaze-Pitch-Energy are significantly 
higher than the expected rate. Interestingly, as the number of co-
occurring cues increases (1 → 2→ 3), the likelihood of receiving 
a response also increases (0.68 → 0.82 → 0.93)5. Stronger the cue 
context, the more likely a listener will respond.

5 Averaged response rates of only significantly predictive cues.
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TaBle 4 | Descriptive statistics and the logistic regression model for individual speaker cues.

logistic regression Model

Predictors gaze Pitch energy Pause Filled pause long utterance

b 1.89 0.65 0.08 0.09 1.33 1.05
t-stat 5.35 2.16 0.22 0.31 2.13 2.25
p-value p* = 8.67e−08 p* = 0.03 p = 0.82 p = 0.76 p* = 0.03 p* = 0.02
N 174 147 52 122 27 17
rate 0.76 0.59 0.58 0.51 0.59 0.76

The logistic regression model predicts the likelihood of a contingent response from an attentive listener based on the emitted speaker cues. N is the collective frequency counts 
found in the dataset. Rate is the likelihood of a response from listeners.

TaBle 5 | Descriptive statistics and the one-sided binomial exact test for 
co-occurring speaker cues.

2 cues n rate p-value 3 cues n rate p-value

..PE.. 14 0.57 p = 0.40 .CPE.. 10 0.70 p = 0.17

.CP... 64 0.56 p = 0.19 GCP... 14 0.93 p* = 9.16e-04

..P.F. 19 0.63 p = 0.18 GC.E.. 15 0.93 p* = 4.88e-04

.C...W 12 0.75 p = 0.07

.C.E.. 44 0.66 p* = 0.02
G.P... 18 0.89 p* = 6.56e-04

GC.... 39 0.90 p* = 1.68e-07

We show the most frequently observed cue combinations in our dataset. Cue 
combinations are specified through the presence of the cue’s symbolic letter. G: Gaze, 
C: Pitch, P: Pause, E: Energy, F: Filled Pause, W: Wordy (for long utterances). A dot 
represents the absence of that cue. N is the total occurrences of the cue combination 
found in the dataset. The one-sided binomial exact test determines whether the 
response rate of a cue combination is greater than an expected rate of 0.5.
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captured whether the perception about a listener changed (or 
remained the same) after witnessing the emoted response to the 
cue context.

In sum, for the following analyses, we use data tuples of 
<Cue, Response, State>:

•	 Cue: number of co-occurring speaker cues representing 
strength of weak, moderate, or strong [1 to 3].

•	 Response: measure of listener response to a cue as an overall 
valence rating [−3 to +4].

•	 State: perception of listener’s attentive state sampled immedi-
ately after the response window [0 or 1].

We first examine the ability of cues and responses as inde-
pendent predictors to explain state by themselves (Section 4.5.1: 
Only Main Effects) and then compare what happens when we add 
an interaction term that represents the relationship between cues 
and responses (Section 4.5.2: With Interaction Effects).

4.5.1. Only Main Effects
We examined the ability of cue-strength and response-valence to 
predict listeners’ attention. The overall logistic regression model 
was statistically significant, [χ2(2)  =  71.4, p  =  3.2e−16], where 
response-valence was the primary predictor in estimating state  
(see Table 6A). One unit increase in the response-valence makes 
the listener 2.91 times more likely to be paying attention. This 
result is not surprising since listeners’ behaviors are, of course, 
good predictors of their attentive state. But this analysis also 
serves as a means to validate our method of measuring listener 
response as an overall valence rating.

4.5.2. With Interaction Effects
In adding an interaction term to our previous logistic regres-
sion model, we find that the overall model is again statistically 
significant, [χ2(3) = 78.4, p = 6.74e−17], but can explain more of 
the variance R2 = 19.5% compared to R2 = 17.8% of the previous 
model. As shown in Table 6B, the interaction term is significant 
(p = 0.02), which indicates that the predictive power of listener 
response is modified by the cue context.

As shown in Figure 6, the strong-cue curve approaches areas 
of higher likelihood (i.e., y-axes limits) more quickly than the 
other curves, especially in comparison to the weak-cue curve 
which has less steep tails. This means, that for the same valence of 
listener response, stronger cues facilitate higher levels of certainty 
regarding listener’s attentive state.

4.5. analysis of cues and responses  
to Predict state
Our primary goal is to better understand the relationship 
between speaker cues and listener responses and how their 
joint meaning can influence perceptions about listeners’ 
attention. To fully model how the unique combinations of 
cue-response pairs effect this perception, we need much more 
data. Given our dataset, we instead create similarity heuristics 
to form groups that define a smaller range of possible behavior 
combinations.

Based on the relationship between cue-strength and response 
rate from our prior analysis (Section 4.4.2), we categorize mul-
timodal cues based on their number of co-occurring cues as 
either weak, moderate, or strong cue contexts. For example, a 
Gaze-Pitch-Energy multimodal cue is represented with a value 
of 3, or a strong cue context.

Based on our analysis in Section 4.3, listener response 
combinations are grouped based on their overall valence score. 
Measured as a sum of individual valences, a forward-lean (+), 
prolonged smile (+), and an away-gaze (−) observed from the 
listener within [0.5−3.0] seconds after an emitted cue is repre-
sented as a total valence value of +1, an overall weak positive 
response. By accounting for both positive and negative behaviors, 
we roughly measure the magnitude and direction of listeners’ 
overall response during this time window.

We also recorded whether annotators marked listeners as 
being attentive or inattentive by the end of this time period. This 
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FigUre 6 | Graphical representation of the logistic regression model from 
Section 4.5.2. (a) The model predicts the attentive state of listeners based 
on cue-strength and response-valence as well as their interaction. The x-axis 
represents overall listener’s response as either very positive (+4) to very 
negative (−3). The y-axis represents the likelihood of attention, or inversely as 
inattention. (B) Shows the 95% confidence bounds of strong vs weak cue 
contexts. For the same valence of listener response (e.g., x = −2), there is a 
difference in interpretation if we observed it after a weak vs a strong cue. 
Strong cues buy us greater certainty that the listener is not paying attention 
(likelihood of 70–100% vs 50–70%).

TaBle 6 | Logistic regression models predicting attention based on cues and 
responses.

(a) Main effects Model

Predictor cue response

b 0.02 1.07
t-stat 0.09 7.20
p-value p = 0.93 p* = 5.98e−13

(B) With interaction effects

Predictor cue response cue⋅response 

b 0.09 0.10 0.70
t-stat 0.38 0.24 2.41
p-value p = 0.71 p = 0.81 p* = 0.02

(A) The first logistic regression model considers only the main effects of cue-strength 
and response-valence to predict state. (B) The second model adds an interaction term 
which represents the relationship between cues and responses.
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4.6. Discussion
4.6.1. Attention-Related Backchannels  
of Young Listeners
We identified nonverbal behaviors that are indicative of a child 
either attentive or inattentive to their partner’s storytelling (see 
summary Table  7). We determined the form in which these 
nuanced behaviors are emitted and differentiate the relevance of a 
behavior as either a prolonged expression or as a frequent occur-
rence. Of the behaviors identified, the most unexpected result 
was the opposing interpretations of frequent versus prolonged 
brow-raises. Prolonged brow-raises most often co-occurred when 
listeners were also looking away from storytellers (see Figure S1 
in Supplementary Material for a correlation map); their joint 
emission can serve as a strong signal of a listener losing attention.

4.6.2. Response Rate of Multimodal Speaker Cues
By examining prosodic- and gaze- based cues, we identified 
multimodal speaker cues, taken singly or in combinations, that 
can elicit a response from listeners at different rates of success (see 
summary Table 8). Some prosodic cues such as pauses in speech 
or changes in energy seem to be too subtle for young children 
to perceive, but their cueing context can be strengthened by 
adding co-occurring behaviors such as a gaze cue. We confirm 
prior work by Hess and Johnston (1988) in demonstrating that 
children respond more often in stronger cue contexts. However, 
we differentiate our work by finding cues that young listeners 
know to respond to as well as employ themselves as storytellers.

4.6.3. Magnifying Certainty about Listeners’  
Attentive State
We found that speaker cues can modify the interpretation of back-
channel responses. For the same valence and quality of listener 
response, there is a difference in interpretation if observed after 
a weak versus a strong speaker cue. We found that stronger cues 
buy us greater certainty that a listener is attentive or inattentive. 
We need both speaker cues and their associated listener responses 
for an accurate understanding of attention. Backchannels are 

more informative about the attentive state of listeners when we 
also know the manner in which they were elicited.

5. general DiscUssiOn

Our primary contribution is introducing the role speaker 
cues can have in the process of attention inference. We found 
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TaBle 8 | Speaker cue summary.

single cue rate Dual cues rate Tri cues rate 

Pitch 0.59 Pitch-Energy 0.66 Gaze-Pitch-Energy 0.93
Filled Pause 0.59 Gaze-Pause 0.89 Gaze-Pitch-Pause 0.93
Long Utterance 0.76 Gaze-Pitch 0.90
Gaze 0.76

Summary of multimodal cues that children storytellers are observed to use and also 
can elicit a contingent response from children listeners with varying rates of success.

TaBle 7 | Listener response summary.

attentive Behaviors inattentive Behaviors

Frequent Partner-gazes Prolonged Away-gazes
Frequent Forward-leans Frequent Away-leans
Frequent Brow-raises Prolonged Brow-raises
Prolonged Smiles
Frequent Nods
Frequent Utterances

Summary of nonverbal behaviors, as prolonged expressions or frequent occurrences, 
that are indicative of an attentive or inattentive child listener.
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that speaker cues add interpretive value to attention-related 
backchannels and also serve as a means to regulate the respon-
siveness of listeners for those backchannels. Although these 
findings are based on human–human interaction studies, 
their implications are noteworthy toward our research goal of 
developing attention recognition models for social robots. We 
detail two major implications that will need further validation 
in an HRI context, which open promising directions for future 
research.

5.1. Design implication 1: Modeling the 
cueing actions of robots can increase 
attention recognition accuracy
Since speaker cues and listener responses are both necessary for 
accurate attention inference, robot storytellers capable of account-
ing for their own nonverbal cueing behaviors in their attention 
models can form more accurate inferences about their human 
partners. Current approaches to attention recognition primarily 
focus on modeling the nonverbal behaviors of the sole individual, 
e.g., just the listener. As we saw in our video-based human-
subjects experiment, this approach is akin to asking participants 
to form accurate inferences about listeners while removing the 
context of the storyteller. But, inference performance decreases 
when missing this interpersonal context.

Furthermore, we found that the interpretation of backchan-
nels from listeners depends on whether it was observed after a 
weak, moder ate, or strong speaker cue. A strong cue is a strong 
elicitation for a response. As such, the cue-response pair is more 
informative.

By including both the robot storyteller’s cues and the human 
listener’s backchannels, attention recognition models can 
achieve more accurate predictions especially when used in social 
situations.

5.2. Design implication 2: social robots  
can Pursue a Proactive Form of attention  
recognition in hri
Since compounded cue contexts have a higher likelihood of elici-
ting a response from listeners, robot storytellers can manipulate 
their production of nonverbal speaker cues to deliberately gain 
more information. In moments of high uncertainty about the 
listener, a social robot can plan to emit an appropriate cue context 
to strongly elicit a response that can reduce state uncertainty. 

Through cueing actions, social robots can pursue a proactive 
form of inference to better understand their partner’s emotional 
state. Toward this, an immediate extension of this work is to 
validate whether robot-generated speaker cues result in similar 
response rates from children listeners. To develop a robot capable 
of producing these nonverbal cues, we refer readers to our prior 
work in modeling prosodic-based cues through a rule-based 
method (Park et al., 2017).

5.3. limitations
Admittedly, our work does not explicitly include a robot in the 
studies. But strong evidence exist in demonstrating the readiness 
of the human mind to respond to technology as social actors—
capable of evoking the same social responses as they would with 
a human partner (Reeves and Nass, 1996; Desteno et al., 2012). 
We expect our finding from studying human–human interactions 
will carry over to human-robot interactions. However, further 
experimental validation is necessary to confirm the effectiveness 
of robot-generated speaker cues to boost attention recognition 
accuracies when incorporated into the model and evaluated in a 
human–robot interaction context.

cOnclUsiOn

Socially situated robots are not passive observers, but their own 
nonverbal behaviors contribute to the interaction context and 
can actively influence the inference process. We argue for a move 
away from the contextless approaches to emotion recognition, 
especially for human–robot interaction. A robot’s awareness 
of the contextual effects of its own nonverbal behaviors has an 
important role in affective computing.
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Role-play scenarios have been considered a successful learning space for children to 
develop their social and emotional abilities. In this paper, we investigate whether socially 
assistive robots in role-playing settings are as effective with small groups of children as 
they are with a single child and whether individual factors such as gender, grade level 
(first vs. second), perception of the robots (peer vs. adult), and empathy level (low vs. 
high) play a role in these two interaction contexts. We conducted a three-week repeated 
exposure experiment where 40 children interacted with socially assistive robotic char-
acters that acted out interactive stories around words that contribute to expanding 
children’s emotional vocabulary. Our results showed that although participants who 
interacted alone with the robots recalled the stories better than participants in the group 
condition, no significant differences were found in children’s emotional interpretation of 
the narratives. With regard to individual differences, we found that a single child setting 
appeared more appropriate to first graders than a group setting, empathy level is an 
important predictor for emotional understanding of the narratives, and children’s per-
formance varies depending on their perception of the robots (peer vs. adult) in the two 
conditions.

Keywords: socially assistive robotics, emotional intelligence, individual differences, multiparty interaction

1. inTrODUcTiOn

The typical use case for socially assistive robotics applications involves one robot and one user 
(Tapus et al., 2007). As assistive technology becomes more sophisticated, and as robots are being 
used more broadly in interventions, there arises a need to explore other types of interactions. 
Contrasting the typical “one robot to one user” and “one robot to many users” situations, there are 
cases where it is desirable to have multiple robots interacting with one user or multiple users. As an 
example, consider the case of role-playing activities in emotionally charged domains (e.g., bullying 
prevention, domestic violence, or hostage scenarios). In these cases, taking an active role in the 
interaction may bring about undesirable consequences, while observing the interaction might serve 
as a learning experience. Here, robots offer an inexpensive alternative to human actors, displaying 
controlled behavior across interventions with different trainees.
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Our goal is to use socially assistive robots to help children 
build their emotional intelligence skills through interactive 
storytelling activities. Storytelling is an effective tool for creating 
a memorable and creative learning space where children can 
develop cognitive skills (e.g., structured oral summaries, listen-
ing, and verbal aptitude), while also bolstering social-emotional 
abilities (e.g., perspective-taking, mental state inference). 
Narrative recall, for example, prompts children to logically 
reconstruct a series of events, while explaining behavior and 
attributing mental and emotional states to story characters 
(Capps et  al., 2000; John et  al., 2003; McCabe et  al., 2008).  
As this is a novel research direction, several questions can be 
posed. What is the effect of having multiple robots in the scene 
or, more importantly, what is the optimal context of interaction 
for these interventions? Should the interaction context focus on 
groups of children (as in traditional role-playing activities) or 
should we aim for single child interactions, following the current 
trend in socially assistive robotics?

In our previous work, we began addressing the question of  
whether socially assistive robots are as effective with small 
groups of children as they are with a single child (Leite et  al., 
2015a). While we found that the interaction context can impact 
children’s learning, we anticipate that it might not be the only 
contributing factor. Previous research exploring the effects 
of single versus small group learning with technology points 
out that the two different contexts can be affected by learner 
characteristics such as gender, grade level, and ability level  
(Lou et  al., 2001). A recent Human–Robot Interaction (HRI) 
study suggests that children behave differently when interact-
ing alone or in dyads with a social robot (Baxter et al., 2013). 
However, it remains unknown whether interaction context and 
individual factors impact the effectiveness of robot interventions 
in terms of how much users can learn or recall from the interac-
tion. In this paper, we extend previous work by investigating 
whether individual human factors play a role in different inter-
action contexts (single vs. group). For example, do individual 
differences such as gender or empathy level influence the optimal 
interaction context for socially assistive robotics interventions?

To address these questions, we developed an interactive narra-
tive scenario where a pair of robotic characters played out stories 
centered around words that contribute to expanding children’s 
emotional vocabulary (Rivers et al., 2013). To evaluate the effects 
of interaction context (single vs. group), we conducted a three-
week repeated exposure study where children interacted with the 
robots either alone or in small groups, and then were individu-
ally asked questions on the interaction they had just witnessed.  
We analyzed interview responses in order to measure par-
ticipants’ story recall and emotional understanding abilities and 
looked into individual differences that might affect these meas-
ures. Our results show that although children interacting alone 
with the robots were able to recall the narrative more accurately, 
no significant differences were found in the understanding of 
the emotional context of the stories. Furthermore, we found 
that individual differences such as grade, empathy level, and 
perception of the robots are important predictors of the optimal 
interaction for students. We discuss these implications for the 
future design of robot technology in learning environments.

2. BacKgrOUnD

2.1. learning alone or in small groups
Educational research highlights the benefits of learning in 
small groups as compared to learning alone (Pai et al., 2015). 
These findings also apply to learning activities supported by 
computers (Dillenbourg, 1999; Lou et  al., 2001). It has long 
been acknowledged that groups outperform individuals in a 
variety of learning tasks such as concept attainment, creativity, 
and problem solving (Hill, 1982). More recently, Schultze et al. 
(2012) conducted a controlled experiment to show that groups 
perform better than individuals in quantitative judgments. 
Interestingly, the authors attribute this finding to within-group 
interactions instead of weighting the individual judgment of 
each group member. A situation in which “two or more people 
learn or attempt to learn something together” is often referred 
to as collaborative learning (Dillenbourg, 1999).

It is important to note, however, that most of these find-
ings were obtained with adults. Additionally, as previously 
stated, interaction context (i.e., whether students are alone or 
in small groups) is not the only factor that influences learning.  
In a meta-review focusing on computer-supported learning, 
Lou et  al. (2001) enumerated several learning characteristics 
that can affect learning as much as interaction context. Factors 
such as ability level, gender, grade, or past experience with com-
puters are among the most common individual differences that  
affect learning.

2.2. individual Differences in narrative 
recall and Understanding
Research has shown that a child’s ability to reconstruct a cohesive 
and nuanced narrative develops with age (Griffith et  al., 1986; 
Crais and Lorch, 1994; Bliss et al., 1998; John et al., 2003). While 
three-year-olds tend to focus on an isolated event within a nar-
rative, by the time a child is five, the capacity to create a more 
structured narrative with a logical sequence of story events is 
already developed (John et  al., 2003). Among seven to eleven-
year-olds, Griffith et  al. (1986) found more story inaccuracies 
in older children’s retellings as their narratives became longer. 
A central notion of the current study is to increase emotional 
understanding by allowing children to see the impact of their 
decisions play out in the story. As such, knowing at what age 
children begin to develop the capacity to attribute meaning to 
characters’ behaviors is important. While the foundations of a 
story – story setting, opening scene, and story conclusion – are 
typically included in narratives of children aged four to six, the 
presence of a character’s thoughts and intentions within a nar-
rative takes longer to develop (Morrow, 1985). Identifying more 
overt story structure elements may be easier for children than 
attributing meaning, intentions, and emotions to a character’s 
behavior (Renz et al., 2003). A study carried out by Camras and 
Allison (1985) found that when emotion-laden stories are given 
to children from kindergarten to second grade, the accuracy of 
children’s emotion labeling improved with age.

Several authors have found gender differences in narrative 
recall and understanding. For example, research shows that 
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females are more verbal than males (Smedler and Törestad, 1996; 
Buckner and Fivush, 1998; Crow et al., 1998) and excel on verbal 
tasks (Bolla-Wilson and Bleecker, 1986; Capitani et  al., 1998), 
while males are more successful at spatial tasks (Maccoby and 
Jacklin, 1974; Linn and Petersen, 1985; Iaria et al., 2003). However, 
Andreano and Cahill (2009) found that gender differences 
are more nuanced and extensive, with females outperforming 
males in spatial, autobiographical abilities, and general episodic 
memory. In a test of verbal learning among children aged 5–16, 
females outperformed males in long-term memory recall and 
delayed recognition, while males produced more intrusion errors 
(Kramer et al., 1997). Yet, Maccoby and Jacklin (1974) concluded 
that “the two genders show a remarkable degree of similarity 
in the basic intellectual processes of perception, learning, and 
memory.” Additionally, females tend to generate more accurate 
(Pohl et  al., 2005), detailed (Ross and Holmberg, 1992), and 
exhaustive narratives that take social context and emotions into 
account (Buckner and Fivush, 1998; John et al., 2003). Females are 
also generally thought to be more emotive both verbally (Smedler 
and Törestad, 1996) and non-verbally (Briton and Hall, 1995). 
Gender differences in emotional dialog and understanding are 
broadly attributed to the view that, beginning in early childhood, 
girls are socialized to be more emotionally attuned and, there-
fore, more skilled at perspective-taking (Hoffman, 1977; Greif  
et al., 1981; Dunn et al., 1987).

2.3. individual Differences in emotional 
intelligence
Emotions are functional and impact our attention, memory, 
and learning (Rivers et  al., 2013). Emotional intelligence (EI) 
is defined as “the ability to monitor one’s own and other’s feel-
ings and emotions, to discriminate among them and to use this 
information to guide one’s thinking and action” (Salovey and 
Mayer, 1990). Previous research has determined that a child’s 
emotional understanding advances with age (Pons et al., 2004; 
Harris, 2008). The ability to recognize basic emotions and 
understand that emotions is affected by external causes, which 
is generally established by the age of 3–4 (Yuill, 1984; Denham, 
1986). Between 3 and 6 years, children begin to understand how 
emotions are impacted by desires, beliefs, and time (Harris, 1983; 
Yuill, 1984), while children aged 6–7 begin to explore strategies 
for emotion regulation (Harris, 1989).

In terms of gender, Petrides and Furnham (2000) concluded 
that females scored higher than males on the “social skills” 
factor of measured trait EI, and a cross-cultural study carried 
out by Collis (1996) found that females had higher empathy 
than males at the first-grade level. These results are reinforced 
with findings from a meta-analysis of 16 studies in which 
females scored higher on self-reported empathy (Eisenberg and  
Lennon, 1983).

3. relaTeD WOrK

In this section, we review previous research in the three main 
research thrusts that inform this work: robots for education, 
multiparty interactions, and individual differences in HRI.

3.1. robots as educational Tools
Kim and Baylor (2006) posit that the use of non-human peda-
gogical agents as learning companions creates the best possible 
environment for learning for a child. Virtual agents are designed 
to provide the user with the most interactive experience pos-
sible; however, research by Bainbridge et  al. (2011) indicated 
that physical presence matters in addition to embodiment, with 
participants in a task rating an overall more positive interaction 
when the robot was physically embodied rather than virtually 
embodied. Furthermore, Leyzberg et  al. (2012) found that the 
students who showed the greatest measurable learning gains in 
a cognitive skill learning task were those who interacted with a 
physically embodied robot tutor (a Keepon robot), as compared 
to a video-represented robot and a disembodied voice.

Research by Mercer (1996) supports talk as a social mode of 
thinking, with talk in the interaction between learners beneficial 
to educational activities. However, Mercer identifies the need for 
focused direction from a teaching figure for the interaction to be 
as effective as possible. In line with these findings, Saerbeck et al. 
(2010) showed the positive effects of social robots in language 
learning, especially when the robot was programmed with 
appropriate socially supportive behaviors.

A great deal of research has been conducted into the use of 
artificial characters in the context of educational interactive 
storytelling with children. Embodied conversational agents are 
structured using a foundation of human-human conversation, 
creating agents that appear on a screen and interact with a 
human user (Cassell, 2000). Interactive narratives, where users 
can influence the storyline through actions and interact with 
the characters, result in engaging experiences (Schoenau-Fog, 
2011) and increase a user’s desire to keep interacting with the 
system (Kelleher et al., 2007; Hoffman et al., 2008). FearNot is 
a virtual simulation with different bullying episodes where a 
child can take an active role in the story by advising the victim 
on possible coping strategies to handle the bullying situation. 
An extensive evaluation of this software in schools showed 
promising results on the use of such tools in bullying prevention 
(Vannini et  al., 2011). Although some authors have explored 
the idea of robots as actors (Bruce et al., 2000; Breazeal et al., 
2003; Hoffman et al., 2008; Lu and Smart, 2011), most of the 
interactive storytelling applications so far are designed for 
virtual environments.

3.2. Multiparty interactions with robots
Research on design and evaluation of robots that interact with 
groups of users has become very prominent in the past few  
years in several application domains such as education (Kanda 
et al., 2007; Al Moubayed et al., 2012; Foster et al., 2012; Gomez 
et al., 2012; Johansson et al., 2013; Bohus et al., 2014; Pereira et al., 
2014). Despite this trend, few authors investigated differences 
between one single user and a group of users interacting with a 
robot in the same setting.

One of the exceptions is Baxter et  al. (2013), who reported 
a preliminary analysis that consisted of a single child or a pair 
of children interacting with a robot in a sorting game. Their 
observations indicate differences between the two conditions: 
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when alone with the robot, children seem to treat it more as a 
social entity (e.g., engage in turn-taking and shared gaze with  
the robot), while these behaviors are less common when another 
peer is in the room.

Shahid et al. (2014) conducted a cross-cultural examination 
of variation between interactions in children who either played 
a game alone, with a robot, or with another child. They found 
that children both enjoyed playing more and were more expres-
sive when they played with the robot, as compared to when they 
played alone; unsurprisingly, children who played with a friend 
showed the highest levels of enjoyment of all groups.

With this previous research serving as foundation, one of 
the goals of our work is to investigate whether interactions with 
robots in a group setting could benefit information retainment 
and emotional understanding. However, in addition to interac-
tion context (single vs. group), there might be other individual 
factors contributing to these differences.

3.3. individual Differences in  
human–robot interaction
One of the underlying aims of studying individual differences in 
HRI is personalization. Understanding how different user groups 
perceive and react to robots, and adapting the robot’s behavior 
accordingly, can result in more effective and natural interactions. 
Andrist et al. (2015) provided one of the first empirical valida-
tions on the positive effects of personalization. In a controlled 
study where a social robot matched each participant’s extrover-
sion  personality dimension through gaze, they showed that 
introverted subjects had a marginally significant preference for 
the robot displaying introverted behaviors and that both intro-
verts and extroverts showed higher compliance when interacting 
with the robot that matched their personality dimension.

Most of the research reporting individual differences in HRI 
so far has mainly focused on gender (Mutlu et al., 2006; Nomura 
et al., 2008; Schermerhorn et al., 2008; MacDorman and Entezari, 
2015) and certain personality traits such as extroversion and 
agreeableness (Walters et al., 2005; Syrdal et al., 2007; Takayama 
and Pantofaru, 2009; Andrist et al., 2015), but there are also stud-
ies exploring other factors such as pet ownership (Takayama and 
Pantofaru, 2009) and perception of robots (Nomura et al., 2008; 
Schermerhorn et al., 2008; Mumm and Mutlu, 2011; MacDorman 
and Entezari, 2015).

Gender seems to play an important role in individual’s percep-
tions and attitudes toward robots. In a study where a storytelling 
robot recited a fairy tale to two participants, Mutlu et al. (2006) 
manipulated the robot’s gaze behavior by having the robot look 
at one of the participants 80% of the time. This manipulation 
had a significant interaction effect on gender, with males who 
were looked at more rating the robot more positively, and 
females who were looked at less rating the robot more positively. 
More recently, the same authors investigated gender differences 
(among other factors) in a scenario where the robot was able 
to monitor participants’ attention using brain electrophysiology 
and adapt its behavior accordingly (Szafir and Mutlu, 2012). 
Females interacting with the adaptive robot gave higher ratings 

in rapport toward the robot and self-motivation, while no sig-
nificant differences were found for males on the same measures.  
In the studies conducted to validate the Negative Attitudes 
Toward Robots Scale (NARS) and Robot Anxiety Scale (RAS), 
Nomura et al. (2008) found several gender effects. For instance, 
males with higher NARS and RAS scores talked less to the robot 
and avoided touching it. Schermerhorn et al. (2008) also reported 
gender effects on people’s ratings of social presence toward robots, 
with males perceiving a robot as more human-like and females 
perceiving it as more machine-like and less socially desirable. 
These findings are in line with results obtained by MacDorman 
and Entezari (2015) in their investigation into whether individual 
differences can predict sensitivity to the uncanny valley. They 
found significant correlations between gender and android eerie 
ratings; females in this study perceived android robots as more 
eerie than males.

Individual differences have been explored as a way to bet-
ter understand proxemic preferences between people and 
robots. Walters et  al. (2005) investigated the effects of people’s 
personality traits on their comfortable social distances while 
approaching a robot. Results showed that more proactive people 
felt more comfortable standing further away from the robot. 
In a  follow-up study (Syrdal et al., 2007), researchers from the 
same group found that people with high extroversion and low 
conscientiousness scores let a robot get closer when they were 
in control of the robot, as opposed to when they believed the 
robot to be in control of itself. Takayama and Pantofaru (2009) 
confirmed the hypothesis that pet owners felt more comfortable 
with being closer to robots, a result that also held true for people 
with past experience with robots. Additionally, they found that 
proxemic comfort levels were related to the agreeableness per-
sonality trait, with more agreeable people experiencing higher 
levels of comfort closer to a robot than participants rated as 
less agreeable in the personality questionnaire. More recently, 
Mumm and Mutlu (2011) reported significant differences in the 
effects of gender on proxemics, with males distancing themselves 
significantly further than females. Another interesting factor that 
played an effect in this study was robot likability: people who 
reported disliking the robot positioned themselves further away 
in a condition where the robot tried to establish mutual eye gaze 
with the subjects.

4. research QUesTiOns anD 
hYPOTheses

The main goal of the research presented in this paper is to inves-
tigate whether the social context of the interaction, i.e., children 
interacting with robots alone or in a small group, has an impact 
on information recall and understanding of the learning content. 
Our research goals can be translated into two main research 
questions:

RQ1 How does interaction context impact children’s information 
recall?

RQ1 How does interaction context impact children’s emotional 
understanding and vocabulary?
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As previously outlined, socially assistive robotic applications 
are typically one-on-one, but educational research suggests 
that learning gains may increase in a group setting (Hill, 1982;  
Pai et  al., 2015). To further understand these questions, we 
explored individual factors that may impact how children 
perform in learning environments and/or how users perceive 
the robots. Considering previous findings on individual differ-
ences presented in sections 2 and 3, as well as our particular 
application domain, we took into account gender, grade level 
(first vs. second), perception of the robot (peer vs. adult), and 
empathy level (low vs. high). To further explore the human 
individual factors that influence recall and understanding in 
single versus group interactions, we outlined the following 
hypotheses:

H1 Second graders will achieve higher performance than first 
graders in narrative recall and emotional understanding.
In comparison to first graders, second graders are more 
developmentally advanced both cognitively and emotion-
ally, so we hypothesize that second-grade students will 
perform better since narrative recall abilities and emo-
tional understanding tend to develop with age (Morrow, 
1985; Crais and Lorch, 1994; Bliss et al., 1998; John et al., 
2003). Although a number of previous studies report age 
instead of grade, we determined that grade is more fitting 
for our study as the social and emotional learning curricu-
lum (see section 5.2) employed in the school where our 
study was conducted is grade-dependent. For this reason, 
we predict that grade level could be a better explanatory 
factor than age.

H2 Females will achieve higher performance than males in narra-
tive recall and emotional understanding.
Previous research has shown that females tend to tell more 
accurate (Pohl et al., 2005) and detailed (Ross and Holmberg, 
1992) narratives, while accounting for the emotions of the 
narrative characters more often (Buckner and Fivush, 1998; 
John et  al., 2003). Additionally, several authors found that 
females scored higher in emotional intelligence tests (Collis, 
1996; Petrides and Furnham, 2000). For these reasons, we 
hypothesize that females will perform better than their male 
counterparts.

H3 Higher empathy students will achieve higher scores in emo-
tional understanding.
Because we anticipate a positive correlation between high 
empathy and high emotional intelligence (Salovey and 
Mayer, 1990), we hypothesize that individuals with higher 
empathy will be better at emotional understanding.

H4 Children’s perceived role of the robot will affect their narrative 
recall and emotional understanding abilities.
Considering the extensive HRI literature showing that percep-
tion of robots changes how individuals perform and interact 
with them (Nomura et al., 2008; Mumm and Mutlu, 2011; 
MacDorman and Entezari, 2015), we expect perception of 
robots to affect our main measures. As most robots used in 
educational domains are viewed by students as either peers 
or adult tutors (Mubin et al., 2013), we will gage perception 
within these two opposite roles.

5. aFFecTiVe narraTiVes WiTh 
rOBOTic characTers

We developed an interactive narrative system such that any 
number of robotic characters can act out stories defined in a 
script. This system prompts children to control the actions of one 
of the robots at specific moments, allowing the child to see the 
impact of their decision on the course of the story. By exploring 
all the different options in these interactive scenarios, children 
have the opportunity to see how the effects of their decisions 
play out before them, without the cost of first having to make 
these decisions in the real world. This section describes the 
architecture of this system and introduces RULER, a validated 
framework for promoting emotional literacy that inspired the 
interactive stories developed for this system.

5.1. system architecture
The central component of the narrative system is the story 
manager, which interprets the story scripts and communicates 
with the robot controller modules and the tablet (see diagram 
in Figure 1). The scripts contain, in a representation that can be 
interpreted by the story manager, every possible scene episode. 
A scene contains the dialog lines of each robot and a list of the 
next scene options that can be selected by the user. Each dialog 
line contains an identifier of the robot playing that line, the path 
to a sound file, and a descriptor of a non-verbal behavior for 
the robot to display while “saying” that line (e.g., happy, bounc-
ing). When the robots finish playing out a scene, the next story 
options are presented on the tablet as text with an accompanying 
illustration. When the user selects a new story option on the 
tablet, the story manager loads that scene and begins sending 
commands to the robots based on the scene dialog lines.

The system was implemented on Robot Operating System 
(ROS) (Quigley et al., 2009). The story manager is a ROS node 
that publishes messages subscribed by the active robot controller 
nodes. Each robot controller node is instantiated with a robotID 
parameter, so that each node can ignore the messages directed 
to the other characters in the scene. The tablet communicates 
with the story manager module using a TCP socket connection 
over Wi-Fi.
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TaBle 1 | Summary of the story scenes in each session.

session 1 session 2 session 3

Feeling word Included Frustration Cooperation

Difficulty level Easy Hard Medium

Intro scene Leo is new at school and does not 
know anyone. Another student in 
class, Marlow, called Leo’s hat stupid. 
What should Berry do to help Leo feel 
included?

Berry tells Leo that he just started a new 
book as part of an assignment, but some 
of the words are too hard for him to read. 
What should Berry do to get through his 
frustration?

Berry has just mastered a big, hard book on his own.  
Leo asks Berry to be his reading buddy. Leo wants to read 
an easier book that’s on his reading level, while Berry wants 
to try reading the hardest books. What should Berry do to be 
cooperative?

Optional 
scenes

A. Talk bad about Marlow A. Ask Leo to read the book A. Find another reading buddy

B. Tell Leo how cool Marlow is B. Wait for the teacher B. Choose a book both can read

C. Ask Leo to play C. Try again C. Choose a hard book anyway

FigUre 2 | Children interacting with the robots in the single (left) and group (right) conditions.
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The robot platforms used in this implementation were two 
MyKeepon robots (see Figure  2) with programmable servos 
controlled by an Arduino board (Admoni et al., 2015). MyKeepon 
is a 32 cm tall, snowman-like robot with three dots representing 
eyes and a nose. Despite their minimal appearance, these robots 
have been shown to elicit social responses from children (Kozima 
et al., 2009). Each robot has four degrees of freedom: it can pan 
to the sides, roll to the sides, tilt forward and backward, and bop 
up and down. To complement the prerecorded utterances, we 
developed several non-verbal behaviors such as idling, talking, 
and bouncing. All the story authoring was done in the script files, 
except the robot animations and tablet artwork. In addition to 
increased modularity, this design choice allows non-expert users 
(e.g., teachers) to develop new content for the system.

5.2. The rUler Framework
RULER is a validated framework rooted in emotional intelligence 
theory (Salovey and Mayer, 1990) and research on emotional devel-
opment (Denham, 1998) that is designed to promote and teach 
emotional intelligence skills. Through a comprehensive approach 
that is integrated into existing academic curriculum, RULER 
focuses on skill-building lessons and activities around Recognizing, 
Understanding, Labeling, Expressing, and Regulating emotions  
in socially appropriate ways (Rivers et al., 2013). Understanding the 
significance of emotional states guides attention, decision-making, 
and behavioral responses, and is necessary in order to navigate the 
social world (Lopes et al., 2005; Brackett et al., 2011).

This study employs components of RULER, including the 
Mood Meter, a tool that students and educators use as a way to 

identify and label their emotional state, and the Feeling Words 
Curriculum, a tool that centers on fostering an extensive feelings 
vocabulary that can be applied in students’ everyday lives. The 
story scripts are grounded in the Feeling Words Curriculum and 
are intended to encourage participants to choose the most appro-
priate story choice after considering the impact of each option. 
Our target age group was first to second graders (6–8 years old). 
Prior to beginning the study, we gathered feedback from elemen-
tary school teachers to ensure that the vocabulary and difficulty 
levels of story comprehension were age-appropriate. A summary 
of the scenes forming the scripts of each session is displayed in 
Table 1. All three stories followed the same structure: introduc-
tion scene, followed by three options. Each option impacted  
the story and the characters’ emotional state in different ways.

6. eXPeriMenTal MeThOD

In order to investigate the research questions and hypotheses 
outlined earlier, we conducted a user study using the system 
described in the previous section.

6.1. Participants
The participants in the study were first- and second-grade 
students from an elementary school where RULER had been 
implemented. A total of 46 participants were recruited in the 
school where the study was conducted, but six participants were 
excluded for various reasons (i.e., technical problems in collect-
ing data or participants missing school). For this analysis, we 
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considered a total of 40 children (22 females, 18 males) between 
the age of 6 and 8 years (mean (M) = 7.53, standard deviation 
(SD) = 0.51). Out of these 40 students, 21 were first graders and 
19 were second graders.

Ethnicity, as reported by guardians, was as follows: 17.5% 
African American, 17.5% Caucasian, 25% Hispanic, and 27.5% 
reported more than one ethnicity (12.5% missing data). The 
annual income reported by guardians was as follows: 30% in 
$0–$20,000, 42.5% in $20,000–$50,000, and 10% in the $50,000–
$100,000 range (17.5% missing data).

6.2. Design
We used a between-subjects design with participants randomly 
sorted into one of two conditions: single (one participant interacted 
alone with the robots) or group (three participants interacted with 
the robots at the same time). We studied groups of three children 
as three members is the smallest number of members considered 
to be a group (Moreland, 2010). Our main dependent metrics 
focused on participants’ recall abilities and emotional interpre-
tation of the narrative choices.

Each participant or group of participants interacted with 
the robots three times, once per week. Participants in the group 
condition always interacted with the robots in the same groups. 
The design choice to use repeated interactions was not to measure 
learning gains over time, but to ensure that the results were not 
affected by a novelty effect that robots often evoke in children 
(Leite et al., 2013).

6.3. Procedure
The study was approved by an Institutional Review Board. 
Parental consent forms were distributed in classrooms that had 
agreed to participate in the study. Participants were randomly 
assigned to either the single condition (19 participants) or group 
condition (21 participants). Each session lasted approximately 
30  min with each participant. The participant first interacted 
with the robots either alone or in a small group (approximately 
15  min), and then was interviewed individually by an experi-
menter (approximately 15 min).

Participants were escorted from class by a guide who explained 
that they were going to interact with robots and then would be 
asked questions about the interaction. In addition to parental 
consent, the child was introduced to the experimenter and 
asked for verbal assent. The experimenter began by introduc-
ing the participants to Leo and Berry, the two main characters 
(MyKeepon robots) in the study. The first half of each session 
involved the participants interacting with the robots as the robots 
autonomously role-played a scenario centered around a RULER 
feeling word. After observing the scenario introduction, partici-
pants were presented with three different options. Participants 
were instructed to first select the option they thought was the 
best choice and were told they would then have the opportunity 
to choose the other two options. In the group condition, partici-
pants were asked to make a joint decision. The experimenter was 
present in the room at all times, but was outside participants’ 
line of sight.

After interacting with the robots, participants were inter-
viewed by additional experimenters. The interviews had the same 

format for both conditions, which means that even participants 
in the group condition were interviewed individually. Interviews 
were conducted in nearby rooms. Experimenters followed a 
protocol that asked the same series of questions (one open-ended 
question, followed by two direct questions) for each of the four 
scenes (i.e., Introduction, Option A, Option B, and Option C) 
that comprised one session. The same three repeated questions 
were asked in the following order:

 1. What happened after you chose <option>?
 2. After you chose <option>, what color of the Mood Meter do 

you think <character> was in?
 3. What word would you use to describe how <character> was 

feeling?

These questions were repeated for a total of 36 times (3 ques-
tions × 4 scenes per session × 3 sessions) over the course of the 
study. If a participant remained silent for more than 10  s after 
being asked a question, the experimenter asked, “Would you like 
me to repeat the question or would you like to move on?” The 
interviewer used small cards with artwork representing the differ-
ent scene choices similar to the ones that appeared on the tablet 
near the robots. Interviews were audio-recorded and transcribed 
verbatim for coding.

All three sessions followed the same format (i.e., robot 
interaction followed by the series of interview questions). 
Additionally, in the second session we employed an adapted 
version of Bryant’s Empathy Scale (Bryant, 1982) to measure 
children’s empathy index, and in the third session we measured 
perception of the robots (peer vs. adult) using a scale specifi-
cally developed for this study. For the empathy assessment, the 
interviewer asked participants to sort each one of the scale items, 
printed on small cards, between two boxes, “me” or “not me.” A 
similar box task procedure was followed in the third session for 
collecting perception of the robots, but this time children were 
asked to sort cards with activities they would like to do with Leo 
and Berry.

6.4. interview coding
6.4.1. Word Count
The number of words uttered by each participant during the 
interview was counted using an automated script. Placeholders 
such as “umm” or “uhh” did not contribute toward word count. 
This metric was mainly used as a manipulation check for the 
other measures.

6.4.2. Story Recall
Responses to the open-ended question “What happened after 
you chose <option>?” were used to measure story recall through 
the Narrative Structure Score (NSS). Similar recall metrics have 
been previously used in HRI studies with adults (Szafir and 
Mutlu, 2012).

We followed the coding scheme used in previous research by 
McGuigan and Salmon (2006) and McCartney and Nelson (1981), 
in which participants’ verbal responses to open-ended ques-
tions were coded for the presence or absence of core characters  
(e.g., Leo, Berry) and core ideas (e.g., Leo does not know anyone, 
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everyone is staring at Leo’s clothes). This score provides a snapshot 
of the participants’ “ability to logically recount the fundamental 
plot elements of the story.” For session S and participant i, NSS 
was computed using the following formula:

 
NSSS I

Mentioned CoreCharacters CoreIdeas
All CoreCharacte,

+
=

( )
( rrs CoreIdeas+ )  

A perfect NSS of 1.0 would indicate that the participant 
mentioned all the core characters and main ideas in all four 
open-ended questions of that interview. The first mention of core 
characters and core ideas was given a point each, with additional 
mentions not counted. The sum of core characters and core 
ideas for each interview session were combined to generate the 
Narrative Structure Score. The average number of characters in 
each story was three (Leo, Berry, and Marlow or the teacher), 
while the number of core ideas varied depending on the difficulty 
of the story, ranging from an average of four in the easiest story 
to six in the hardest.

6.4.3. Emotional Understanding
The Emotional Understanding Score (EUS) represents par-
ticipants’ ability to correctly recognize and label character’s 
emo tio nal states, a fundamental skill of emotional intelligence 
(Brackett et  al., 2011; Castillo et  al., 2013). Responses to the 
two direct questions “After you chose <option>, what color 
of the Mood Meter do you think <character> was in?” and 
“What word would you use to describe how <character> was 
feeling?” were coded based on RULER concepts and combined 
to comprise EUS.

Appropriate responses for the first question were based on the 
Mood Meter colors and included Yellow (pleasant, high energy), 
Green (pleasant, low energy), Blue (unpleasant, low energy), 
or Red (unpleasant, high energy), depending on the emotional 
state of the robots at specific points in the role-play. Responses 
to the second direct question were based on the RULER Feeling 
Words Curriculum with potential appropriate responses being 
words such as excited (pleasant, high energy), calm (pleasant, low 
energy), upset (unpleasant, low energy), or angry (unpleasant, 
high energy), depending on which color quadrant the participant 
“plotted” the character. Since participants were recruited from 
schools implementing RULER, they use the Mood Meter daily 
and are accustomed to these types of questions. Most participants 
answered with one or two words when asked to describe the 
character’s feelings.

For the ColorScore, participants received +1 if the correct 
Mood Meter color was provided, and −1 if an incorrect color 
was given. In the FeelingWordScore, participants received +1  
or −1 depending on whether the feeling word provided was 
appropriate or not. If participants provided additional appropri-
ate or inappropriate feeling words, they were given +0.5 or −0.5 
points for each, respectively. The total EUS was calculated using 
the following formula:

 EUS ColorScore FeelingWordScoreS I, = +  
Higher EUS means that participants were able to more accu-

rately identify the Mood Meter color and corresponding feeling 
word associated with the character’s emotional state. For each 

interview session, EUS scores for each scene were summed to 
calculate an aggregate EUS score.

6.5. reliability between coders
Two researchers independently coded the interview transcrip-
tions from the three sessions according to the coding scheme 
described in the previous section. Both coders first coded the 
interviews from the excluded participants to become familiar 
with the coding scheme. Once agreement between coders was 
reached, coding began on the remaining data. Coding was 
completed for the 120 collected interviews (40 participants × 3 
sessions), overlapping 25% (30 interviews) as a reliability check.

Reliability analysis between the two coders was performed 
using the Intraclass Correlation Coefficient test for absolute 
agreement using a two-way random model. All the coded vari-
ables for each interview session had high reliabilities. The lowest 
agreement was found in the number of correct feeling words 
(ICC(2, 1) = 0.85, p < 0.001), while the highest agreement was 
related to the total number of core characters mentioned by each 
child during one interview session (ICC(2, 1) = 0.94, p < 0.001). 
Given the high agreement between the two coders in the overlap-
ping 30 interviews, data from one coder were randomly selected 
to be used for analyses.

6.6. Data analysis Plan
We first calculated the story recall and emotional understanding 
metrics according to the formulas described above. Narrative 
Structure Score (NSS) and Emotional Understanding Score 
(EUS) were computed for each participant in every session  
(1, 2, and 3) and averaged across the three sessions. The empathy 
and perception of the robots indices were also calculated and a 
median split was used to categorize participants in two empathy 
levels (low vs. high) and perception of the robots (peer vs. adult). 
With regard to the empathy scale, 19 participants were classi-
fied in the low empathy category and 21 were classified in the 
high empathy category. Regarding perception of the robots, 19 
children perceived the robots more as adults and 21 perceived the 
robots more as peers.

Our data analysis consisted of two main steps. First, we 
explored our main research questions (RQ1 and RQ2) about 
how interaction context (single vs. group) affects story recall and 
emotional understanding. We started by testing the difference 
between the two study conditions collapsed across the three 
sessions using between-subjects univariate analyses of variance 
(ANOVA). Next, ANOVA models were conducted with interac-
tion context (single vs. group) as the between-subjects factor 
and session (1, 2, and 3) as the within-subjects factor. For all the 
dependent measures, we planned to test the single versus group 
differences in each session.

We then tested our formulated hypotheses to identify which 
individual factors (grade: first or second; gender: female or 
male; empathy: low or high; and perception of the robots: peer or 
adult) play a major role in our measures of interest. There are 
not enough children in our study for an analysis including all 
the individual factors in the same model. As a compromise, we 
explored the impact of interaction type (single vs. group) and 
one individual difference variable at a time on participants’ story 
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FigUre 3 | Average Narrative Structure Scores (NSS) for participants in 
each condition on every interaction session. **p < 0.01 and n.s. non-
significant differences.

FigUre 4 | Average Emotional Understanding Scores (EUS) for participants 
in each condition for sessions 1 (easy), 2 (advanced), and 3 (medium). No 
significant differences (n.s.) were found between conditions.

9

Leite et al. Narratives with Robots

Frontiers in Robotics and AI | www.frontiersin.org July 2017 | Volume 4 | Article 29

recall and emotional understanding abilities. Separate planned 
comparisons from ANOVA models are reported below.

7. resUlTs

The results concerning our research questions (RQ1 and RQ2) 
on the effects of interaction context are presented in the first 
subsection, and the results on the hypotheses about individual 
differences (H1 to H4) are reported in the second subsection.

Before analyzing our two main measures of interest, story 
recall and emotional understanding, we examined whether there 
were any differences between single and group conditions in the 
number of words spoken by the participants during the interview 
sessions. An ANOVA model was run with the number of words 
spoken as the dependent measure. No significant difference was 
found, which indicates that overall, there was no significant differ-
ence in word count between the two groups. The average number 
of words per interview was 124.82 (standard error (SE) = 16.01). 
This result is important because it serves as a manipulation check 
for other reported findings.

7.1. effects of interaction context
7.1.1. Story Recall
We investigated the impact of interaction context (single vs. 
group) on participants’ story recall abilities (RQ1), measured by 
the Narrative Structure Score (NSS). An ANOVA model was run 
with NSS as the dependent measure. We found a significant effect 
of interaction context (collapsed across sessions), with students 
interacting alone with the robots achieving higher scores on  
narrative structure (M = 0.49, SE = 0.03) than the group condi-
tion (M = 0.38, SE = 0.02), F(1, 28) = 7.71, p = 0.01, and η2 = 0.22 
(see Figure 3).

Planned comparisons were conducted to test the role of 
interaction context in each particular session. No significant 
differences were found for session 1. For session 2, students in 
the single condition (M  =  0.49, SE  =  0.05) had a higher NSS 

than the students in the group condition (M = 0.36, SE = 0.03), 
F(1, 36)  =  7.35, p  =  0.01, and η2  =  0.17. Similarly, for session 
3, students in the single condition (M = 0.50, SE = 0.04) had a 
higher score than in the group condition (M = 0.35, SE = 0.03), 
F(1, 38) = 6.59, p = 0.01, and η2 = 0.15.

These findings suggest that overall, the narrative story-related 
recall rate was higher in the single versus the group interaction 
with the robots. In the easiest session (session 1), there was no 
effect on interaction context, but during the more difficult ses-
sions (sessions 2 and 3), students were found to perform better in 
individual than group level interactions.

7.1.2. Emotional Understanding
To investigate our second research question (RQ2), we tested 
whether students’ emotional understanding differed in the single 
versus group condition. The ANOVA model with EUS as the 
dependent measure suggested that there was no effect of interac-
tion context. The effect of session was significant F(2, 62) = 7.39, 
p  =  0.001, and η2  =  0.19, which aligns with our expectation 
given that the three sessions had different levels of difficulty  
(see Figure 4). Planned comparisons also yielded no significant 
differences between single versus group in any of the three ses-
sions. In sum, the degree of emotional understanding did not 
seem to be affected by the type of interaction in this setting, but 
varied across sessions with different levels of difficulty.

7.2. effects of individual Differences
7.2.1. Grade
We tested how grade level (first vs. second) and interaction 
context influenced NSS (see Figure  5). Planned comparisons 
suggested that first graders scored higher in narrative structure 
when interacting alone with the robots than in the group condi-
tion, F(1, 36) = 4.44, p = 0.04, and η2 = 0.11. However, for second 
graders, this effect was non-significant.

A similar trend was found with EUS as an outcome, as depicted 
in Figure  6. Planned comparisons suggested that for the first 
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FigUre 6 | Average Emotional Understanding Scores (EUS) for participants 
in each condition and grade. **p < 0.01.

FigUre 5 | Average Narrative Structure Scores (NSS) for participants in 
each condition and grade. **p < 0.01.

FigUre 8 | Average Narrative Structure Scores (NSS) for participants in 
each condition and empathy level. *p < 0.05.

FigUre 7 | Average Emotional Understanding Scores (EUS) for participants 
in each condition and empathy level. *p < 0.05.
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graders, emotional understanding is higher in the single than in 
the group condition, F(1, 36) = 4.45, p = 0.04, and η2 = 0.11, but 
no significant differences were found for second graders. These 
results support Hypothesis 1, in which we predicted that second 
graders would have higher performance than first graders.

7.2.2. Gender
Hypothesis 2, which predicted that females would achieve higher 
performance scores, was not supported. We started by testing 
how gender differences and interaction context influenced NSS. 
Planned comparisons revealed only a marginal significance, with 
females in the single condition recalling more story events than 
in the group condition, F(1, 36) = 4.09, p = 0.05, and η2 = 0.10. 
No significant differences were found for male students between 
the single versus group conditions for this variable.

Similarly, no overall significant gender differences were found 
in emotional understanding (EUS) or with single vs. group 
interaction contexts.

7.2.3. Empathy
Hypothesis 3 predicted that higher empathy students would achieve 
higher scores in emotional understanding. Overall, high empathy 
students had significantly higher EUS than low empathy students, 
F(1, 36) = 4.58, p = 0.04, and η2 = 0.11, confirming our hypothesis 
(see Figure 7). Furthermore, in the single condition, high empa-
thy students performed higher on emotional understanding than  
those with low empathy, F(1, 36) = 4.14, p = 0.049, and η2 = 0.10.

Planned comparisons suggested that among low empathy 
individuals, those in the single condition had a higher NSS than 
those in the group condition, F(1, 36)  =  5.98, p  =  0.02, and 
η2 = 0.14 (see Figure 8).

7.2.4. Perception of the Robots
Finally, we investigated Hypothesis 4, in which we expected 
the perceived role of the robot to affect children’s recall and 
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FigUre 9 | Average Narrative Structure Scores (NSS) for participants in 
each condition and perception of the robots (peer vs. adult). **p < 0.01 and 
*p < 0.05.
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understanding abilities. Planned contrasts suggested that those 
who perceived the robots as adults recalled more story events 
when alone than in a group, F(1, 36)  =  11.54, p  =  0.002, and 
η2 = 0.24 (see Figure 9). However, for participants who perceived 
robots as peers, no significant differences were found between 
interaction context. Among the participants in the group condi-
tion, those who perceived robots as peers (rather than adults) had 
higher NSS, F(1, 36) = 4.26, p = 0.046, and η2 = 0.11.

Perception of the robots in single versus group interactions  
did not seem to predict the emotional understanding of the 
students (EUS), as none of the planned comparisons were sig-
nificant. Therefore, Hypothesis 4 was only partially supported.

8. DiscUssiOn

We separate this discussion into the two main steps of our 
analysis: exploratory analysis of interaction context and effects 
of individual differences in children’s story recall and emotional 
understanding.

8.1. effects of interaction context (rQ1)
Our study yielded interesting findings about the effects of inter-
action context on children’s recall and understanding abilities. 
Participants interacting with the robots alone were able to recall 
the narrative structure (i.e., core ideas and characters) signifi-
cantly better than participants in the group condition.

We offer three possible interpretations from these results. 
First, while the child was solely responsible for all choices when 
interacting alone, decisions were shared when in the group, 
thereby affecting how the interaction was experienced. A second 
interpretation is that in individual interactions, children may be 
more attentive since social standing in relation to their peers is 
not a factor. Third, the peers might simply be more distracting.

At first glance, our results may seem to contradict previous 
findings highlighting the benefits of learning in small groups 
(Hill, 1982; Pai et  al., 2015). However, recalling story details is 
different than increasing learning gains. In fact, no significant 

differences were found between groups in our main learning 
metric, Emotional Understanding Score (participants’ ability to 
interpret the stories using the concepts of the RULER framework), 
despite average individual condition scores being slightly higher 
for every session. Other than session 2, which had the most dif-
ficult story content, all participants performed quite well despite 
the type of interaction in which they participated. One possible 
explanation, in line with the findings from Shahid et al. (2014), is 
that participants in the individual condition might have benefited 
from some of the effects of a group setting since they were interact-
ing with multiple autonomous agents (the two robots), but further 
research is needed to verify this. Moreover, several authors argue 
that group interaction and subsequent learning gains do not nec-
essarily occur just because learners are in a group (Kreijns et al., 
2003). An analysis of the participants’ behavior while in the group 
during the interaction could clarify these alternative explanations.

8.2. effects of individual Differences (rQ2)
Our hypotheses about individual differences proved to be useful 
to further understand the effects of children interacting with 
robots alone or in small groups. The results suggest that inter-
action context is not the only relevant predictor for children’s 
success in story recall and emotional understanding.

Grade level, for example, seems a good predictor of children’s 
recall and understanding in these two contexts (H1). First graders 
interacting alone with the robots scored higher on our two main 
metrics (NSS and EUS) than first graders in the group condi-
tion, but no significant differences were found in second graders.  
While a more comprehensive analysis is necessary to validate this 
result, our trend suggests that first graders might not have devel-
oped the necessary skills to learn in small groups, but second 
graders (and potentially higher grade levels) are ready to do so.

Contrasting previous research, no significant gender differences 
were found in our data and, therefore, were unable to validate  
H2. In the existing HRI studies where gender differences were 
found, participants were adults and most of the effects were related 
to preferences rather than performance. While other reasons like 
a different robot or type of task might explain this result, one  
possibility is that children at this age might not have developed 
gender bias. The previous literature suggesting gender differences 
in narrative accuracy and emotional understanding in children 
might not apply as much to the present generation, as gender neu-
trality is currently promoted more widely in classrooms. In fact, 
one of the most recent meta-reviews in this area concludes that 
there is little evidence for gender differences in episodic memory 
(Andreano and Cahill, 2009).

Recall abilities seem to be affected by empathy levels in spe-
cific interaction contexts, with lower empathy individuals scor-
ing higher on story recall in the single condition compared to 
the group condition (H3). A possible explanation is that lower 
empathy students need to be in a less distracting environment to 
achieve similar recall as high empathy students. Not surprisingly, 
our hypothesis confirmed the relation between high empathy and 
higher emotional understanding (Salovey and Mayer, 1990).

Like in other HRI experiments, the way participants per-
ceived the robots had an impact on the collected measures (H4).  
In this domain, higher story recall is more likely to occur when 
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participants perceive the robots as adults while interacting alone 
with the robot and when they perceive the robots as peers while 
interacting in small groups. More importantly, these findings 
suggest that researchers should design robot behaviors tailored 
to a specific interaction context and make sure that the robot’s 
behavior is coherent with the role they are trying to portray  
(e.g., teacher or peer).

9. iMPlicaTiOns FOr FUTUre 
research

There are potential implications for the future design of socially 
assistive robotic scenarios based on the results obtained in this 
study. First, considering how well children reacted to the robots 
and reflected on the different choices in the postinterviews in 
both study conditions, affective interactive narratives using 
multiple robots seem to be a promising approach in socially 
assistive robotics.

Regarding the optimal type of interaction for these interven-
tions, while single interactions seem to be slightly more effective 
in the short-term, group interventions might be more suitable in 
the long-term. Previous research has shown that children have 
more fun interacting with robots in groups rather than alone 
(Shahid et  al., 2014). Since levels of engagement are positively 
correlated with students’ motivation for pursuing learning goals 
(Ryan and Deci, 2000), influence concentration, and foster group 
discussions (Walberg, 1990), future research in this area should 
study the effects of different interaction contexts in long-term 
exposure to robots.

Our results have also shown that specific interaction contexts 
might be more suitable for particular children based on their 
individual differences such as grade, empathy level, and the way 
they perceive the robots. Therefore, in order to maximize recall 
and understanding gains, it might be necessary to implement 
more sophisticated perception and adaptation mechanisms in 
the robots. For example, the robots should be able to detect dis-
engagement and employ recovery mechanisms to keep children 
focused in the interaction, particularly in group settings (Leite 
et al., 2015b). Similarly, as group interactions seem more effective 
when participants perceive the robots as peers, the robots could 
portray different roles depending on whether they were interact-
ing with one single child or a small group.

10. cOnclUsiOn

The effective acquisition of social and emotional skills requires 
constant practice in diverse hypothetical situations. In this 

paper, we proposed a novel approach where multiple socially 
assistive robots are used in interactive role-playing activities 
with children. The robots acted as interactive puppets; children 
could control the actions of one of the robots and see the 
impact of the selected actions on the course of the story. Using 
this scenario, we investigated the effects of interaction context 
(single child versus small groups) and individual factors 
(grade, gender, empathy level, and perception of the robots) 
on children’s story recall and emotional interpretation of three 
interactive stories.

Results from this repeated interaction study showed that 
although participants who interacted alone with the robot remem-
bered the stories better than participants in the group condition, 
no significant differences were found in children’s emotional 
interpretation of the narratives. This latter metric was fairly high 
for all participants, except in the session with the hardest story 
content. To further understand these results, we investigated the 
effects of participants’ individual differences in the two interac-
tion contexts for these metrics. We found that single settings 
seem more appropriate to first graders than groups, empathy is 
a very important predictor for emotional understanding of the 
narratives, and children’s performance varies depending on the 
way they perceive the robots (peer vs. adult) in the two interac-
tion contexts. In addition to the promising results of this study, 
further research is required to more thoroughly understand how 
context of interaction affects children’s learning gains in longer-
term interactions with socially assistive robots, as well as how 
participants’ individual differences interplay with each other.
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Ola Olsson, Jason Weigel, Paul Pounds and Janet Wiles

School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia

The success of robotic agents in close proximity of humans depends on their capacity 
to engage in social interactions and maintain these interactions over periods of time 
that are suitable for learning. A critical requirement is the ability to modify the behavior 
of the robot contingently to the attentional and social cues signaled by the human. A 
benchmark challenge for an engaging social robot is that of storytelling. In this paper, 
we present an exploratory study to investigate dialogic storytelling—storytelling with 
contingent responses—using a child-friendly robot. The aim of the study was to develop 
an engaging storytelling robot and to develop metrics for evaluating engagement. Ten 
children listened to an illustrated story told by a social robot during a science fair. The 
responses of the robot were adapted during the interaction based on the children’s 
engagement and touches of the pictures displayed by the robot on a tablet embedded 
in its torso. During the interaction the robot responded contingently to the child, but only 
when the robot invited the child to interact. We describe the robot architecture used 
to implement dialogic storytelling and evaluate the quality of human–robot interaction 
based on temporal (patterns of touch, touch duration) and spatial (motions in the space 
surrounding the robot) metrics. We introduce a novel visualization that emphasizes the 
temporal dynamics of the interaction and analyze the motions of the children in the 
space surrounding the robot. The study demonstrates that the interaction through invited 
contingent responses succeeded in engaging children, although the robot missed some 
opportunities for contingent interaction and the children had to adapt to the task. We 
conclude that (i) the consideration of both temporal and spatial attributes is fundamental 
for establishing metrics to estimate levels of engagement in real-time, (ii) metrics for 
engagement are sensitive to both the group and individual, and (iii) a robot’s sequential 
mode of interaction can facilitate engagement, despite some social events being ignored 
by the robot.

Keywords: engagement, human–robot interaction, storytelling, social robotics, immediacy

1. inTrODUcTiOn

As robots become more prevalent in our lives, it is important to design robots that can share spaces 
with humans and to evaluate how robots can engage in social interactions. A robot’s social abilities 
will affect whether the robot is allowed into spaces occupied by humans, as well as the types of tasks 
that the robot will be trusted to perform. A key ability for social robots is that of establishing and 
maintaining human engagement.
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Engagement during a social interaction is defined as a com
bination of attention and understanding of this interaction 
(Tomasello et al., 2005). Building social robots that can maintain 
user engagement has been recognized as one of the main chall
enges of human–robot interaction (HRI) (Sidner et al., 2005), in 
particular when interacting with children in a learning context 
(Walters et  al., 2008 and Ioannou et  al., 2015). A major com
ponent of HRI affecting engagement is the level of immediacy 
of the interaction (Kennedy et  al., 2015). Immediacy behaviors 
are defined as “… those which increase the sensory stimulation 
between two interaction partners” (Mehrabian, 1968), where 
high immediacy is implemented as a greater number of socially 
contingent responses from the robot.

The level of immediacy of a social robot can be varied by using 
different forms of responsiveness to the user’s actions (Yanco and 
Drury, 2004). Open-loop modes of interaction correspond to the 
lowest level of immediacy, where the robot executes scripted actions 
without processing any of the user’s actions. In contrast, higher 
levels of immediacy are achieved when the robot implements 
closed-loop control by processing and adapting to user inputs. User 
inputs can either be invited by the robot at certain times (termed a 
synchronous mode of interaction) or provided whenever the user 
wants (an asynchronous mode of interaction).

Robot storytelling presents a benchmark challenge for creat
ing engaging interactions, where different levels of immediacy 
can be used. As with other interactions, the level of imme
diacy during storytelling can be controlled through openloop 
scripted responses, or closedloop responses with synchronous 
or asynchronous modes of interaction. Closedloop storytell
ing is also called “dialogic” storytelling (Whitehurst et  al., 
1988) and requires the storyteller to contingently respond and 
change how the story is delivered based on children’s reactions. 
Rather than considering the child as a passive listener, the aim 
of this approach is to give an active role to the child by initiating 
richer interactions with them. Dialogic storytelling by human 
storytellers has been shown to increase the level of engagement 
in children during storytelling (Whitehurst et  al., 1988 and 
Mol et  al., 2008). We hypothesize that implementing dialogic 
storytelling using robots has the potential to increase the level 
of engagement in a similar way.

In their study of the interaction between a robot and pre
schoolers Ioannou et  al. (2015) used dancing, moving, and 
storytelling activities. They noted that the engagement of chil
dren remained high during dancing and moving activities that 
exhibited higher levels of interactivity and were enriched with 
emotions and gestures. In contrast, the storytelling activity was 
performed in an openloop mode of interaction and used few 
gestures and emotions, which resulted in disengagement of the 
children. This study demonstrated the effect of different levels of 
immediacy on engagement in different types of human–robot 
interaction. Similarly, the majority of previous attempts at build
ing robots capable of telling stories have used openloop modes 
of interaction (e.g., Mutlu et al. (2006); Gelin et al. (2010); and 
Fridin (2014)), where the motions, utterances, and emotions 
displayed by the robot were not dependent on user inputs. Few 
studies have implemented closedloop (dialogic) storytelling 
with synchronous interaction by allowing a human to program 

or trigger robot actions through a control interface (Ryokai et al., 
2009 and Kory, 2014) and by measuring the location of the user in 
the space surrounding the robot at specific points in time (Pitsch 
et al., 2009). Both methods resulted in good levels of engagement. 
Finally, to the authors’ knowledge, only one storytelling study can 
be considered both closedloop and asynchronous. The approach 
used measurements of engagement estimated in realtime from 
brain signals to modify the behavior of the storytelling robot 
(Szafir and Mutlu, 2012), which also resulted in high levels of 
immediacy and comprehension of the story.

In each implementation of closedloop storytelling robots, 
enabling interactivity required preliminary programming of the 
robot by the user (Ryokai et al., 2009), control by an experimenter 
(Kory, 2014), or invasive measures of engagement (electroen
cephalography, see Szafir and Mutlu (2012)) to manipulate the 
responses of the robot. None of these solutions are suitable for a 
robot capable of interacting with children in a public space with 
a high level of autonomy.

In the OPAL project, we aim to build a childsized robot (Opie) 
that is capable of socially interacting in public spaces through 
a variety of activities including storytelling. Opie is inspired by 
the RUBI project at UCSD (Malmir et al., 2013) and is designed 
to be a safe social robot for children that encourages the use of 
haptic modalities such as touching, leaning on, and interacting in 
close proximity. In the current study, we implement and evaluate 
dialogic storytelling using Opie in a public setting (a science 
fair). The specific aims of our study are to explore reaction times 
(through the modality of touch), touch patterns, and location 
of the child in space around the robot during the course of a 
dialogic storytelling interaction. We aim to explore the following 
research questions:

1. What level and duration of engagement can Opie facilitate?
2. How individual or stereotypical are the spatial and temporal 

reactions across different participants?
3. How do the patterns of spatial and temporal reactions relate to 

Opie’s synchronous behavior?

These research questions will be explored by studying the 
patterns that are present within the different spatial and tem
poral reactions and what these patterns show. The location and 
task create a challenging context for gaining, maintaining, and 
estimating engagement. In order to create a responsive robot for 
a public location, we require methods to evaluate engagement 
that are noninvasive, provide high temporal resolution, and 
have the potential to be automated. As both immediacy and 
proxemics have been argued to play a role in user engagement 
(Mehrabian, 1972), we aim to develop methods for evaluating 
engagement that are based on temporal and spatial features.

In this paper, we present an implementation of dialogic 
storytelling using synchronous inputs of touch, which were 
designed to maintain the engagement of the children during the 
course of the interaction. The impact of dialogic storytelling on 
the engagement of children was evaluated while they took turns 
interacting with the robot during a science fair. The children’s 
behavior was monitored by a video camera and by recording 
their actions. Analysis focused on spatial and temporal features 
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FigUre 1 | The experimental setup. (a) Opie in the experimental setup—Opie is set up to create a safe space in front of the robot with a mat and cushions.  
The angle of the robot’s head helps to shape the space in front of Opie. Opie is constructed from foam and pool noodles, which provides a soft exterior and allows 
children to interact with Opie through touch. The height of the robot is short to allow interactions with children that are sitting on the cushions. (B) Opie’s position in 
the space with the location of the cameras and cushions (where the children sit) shown.
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(such as response times, patterns of touches and of motion in 
the space of the robot) extracted from these noninvasive record
ings to provide estimates of children’s engagement during the 
interaction.

2. MaTerials anD MeThODs

2.1. robot
The robot platform used in this study is the childfriendly 
robot Opie, designed as a social robot for social interaction 
with children across different modalities. Opie is the result of a 
multidisciplinary, iterative design process (Wiles et al., 2016) and 
was previously used for interaction with children to investigate 
language (Heath et al., 2016) and elements of spatial proximity 
such as touch patterns (Hensby et  al., 2016 and Rogers et  al., 
2016). Opie is intended to explore how robots can be used to 
facilitate social tasks, such as educating, conversing, or playing. 
Opie’s torso, head, arms, and single neck actuator are intended to 
enable social functions.

Opie’s torso is manufactured from soft materials to facilitate 
interaction through touch and increase safety. Opie’s torso and 
childsized stature were designed to make the robot appear 
friendly. The shape of Opie and the surrounding cushions and 
mat contribute to the creation of a safe area for children to 
occupy in front of the robot (see Figure 1A). Opie incorporates 
two tablets, one mounted on the head and one mounted on 
the torso. The 8inch head tablet displays animated eyes that 
are capable of moving and expressing emotions. Opie’s head is 
tilted slightly forward to help create an inviting space in front 
of the robot. The 12inch torso tablet displays media and runs a 
speech synthesizer, while allowing children to interact through 
touch. The inclusion of two tablets allows the face tablet to be 
dedicated to social interactions. This version of Opie contains 
a single actuator in the neck, which allows Opie’s head to yaw 

left and right around the neck. Opie also has arms, which rotate 
around the shoulder, but are not actuated. The robot’s behavior 
can be controlled both by games that run on the torso tablet or 
by a Wizard of Oz (WoZ) through a phone interface. In this study, 
robot behaviors were autonomous during storytelling.

Opie’s other electronics include a router that enables wireless 
information transfer between the robot parts and a Raspberry Pi 
running core server software. All the components are integrated 
using the robot operating system (ROS) middleware (Quigley 
et al., 2009), which allows the tablets, neck motors, and the WoZ 
phone to communicate with each other. The software running 
on the head and torso tablets is written using the Unity game 
engine and uses the Android native texttospeech API to tell 
the story.

Opie was installed at a science fair in Brisbane (Australia) 
in a 1  m  ×  2  m space delimited by rugs. The robot had two 
separator panels of approximately 2 m height on the back and 
left sides and separating the robot’s area from other activities at 
the science fair. The space around the robot was monitored by 
two video cameras: one facing the front of the robot at a distance 
of 1.5 m and the other attached to the separator panel above the 
robot’s head and looking down at the mat from behind the robot 
(see Figure 1B).

2.2. storytelling game
A storytelling game was designed for Opie’s torso tablet. The aim 
of the game developed for this study was to present an interactive 
narrative combined with a simple object finding task for children 
to perform. The storytelling game was built to facilitate (i) pres
entation of narrative content to children, (ii) the robot respond
ing to touches on the tablet (allowing dialogic storytelling),  
(iii) a temporal measure of engagement based on touches, and  
(iv) expression of emotions from the robot that accompany nar
ration. The storytelling game consisted of the presentation of a 
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scene and an accompanying narrative. Each of the three scenes 
within the game consisted of a background, a target animal, 
and several nontarget elements (called distractors). Each of 
the scenes was designed to be as similar as possible in terms of 
difficulty. A target animal was presented on the torso tablet first, 
while Opie named and described the animal, and explained why 
the target animal was visiting that scene. The first level would 
then start.

2.2.1. Levels
Each scene within the game consisted of six levels of increasing 
difficulty. Each time a level started, Opie said a sentence about 
the target animal running away and asked the child to find that 
animal. When the child selected the target animal, the level 
ended and the next level would begin. The task (finding the 
animal) was then repeated with increased difficulty as the target 
became smaller or partially occluded in each successive level.

2.2.2. Overlay
Every time Opie started a level or a child pressed an object in 
a scene, Opie used an “overlay” to decrease the saliency of the 
scene or increase the saliency of an object. The overlay is a semi
transparent black rectangle that is used to increase the saliency of 
objects in the scene relative to the rest of the scene by darkening 
all other objects and the background. The event of adding or 
removing the overlay to the scene was significant, as in addition 
to changes in saliency, it designated when Opie started or stopped 
reacting to children’s touches. Opie did not respond to touches 
when the overlay was displayed.

2.2.3. Attentional Countermeasures
If 10  s elapsed since the last detected touch or utterance from 
Opie an “attentional countermeasure” was presented. An atten-
tional countermeasure consisted of Opie telling the child that help 
was needed and reiterating to the child to find the target animal.

2.3. ethics
Testing of the robot at the science fair was approved by a local 
ethics committee. Parents provided consent for their child’s 
participation in the study, and experimenters engaged parents 
prior to the children entering Opie’s space. The consent form was 
completed on an iPad and also included an optional media release 
consent. Parents were able to stay with their children during the 
study, either watching from behind the child or sitting with their 
child in front of the robot.

2.4. Procedure
The procedure of the study consisted of three phases—an 
introductory phase (which required the intervention of a 
human facilitator and WoZ), a storytelling phase (which was 
completely autonomous), and then a quiz phase (conducted by 
the human experimenters). During the entire procedure, the 
role of the human facilitator was to familiarize the children with 
the robot and supervise the interaction without taking part in it. 
As all robot behaviors were autonomous during the storytelling 
game, the only role of the WoZ was to trigger the start of the 
story.

2.4.1. Introductory Phase
After obtaining consent, a human facilitator took up to three 
children and their parents over to Opie and introduced them to 
the robot. Any additional children had to wait until the end of the 
current interaction (out of sight). The children were encouraged 
to sit down on a cushion each. The facilitator started a pregame 
consisting of colored shapes displayed on Opie’s torso tablet. 
This pregame was designed to familiarize the children with the 
robot and prime them to touch Opie’s tablet during the storytell
ing game. The facilitator encouraged the children to touch the 
shapes. Upon touching a shape, that shape would become salient 
for a short period by darkening the rest of the screen, and then 
the shapes would return to their initial colors. After each child 
touched the screen once, the WoZ would press a button to begin 
Opie’s storytelling.

2.4.2. Storytelling Phase
During the storytelling phase, Opie would run the storytelling 
game. The facilitator remained next to the robot for the storytell
ing game and would select a child to take a turn if more than 
one child was present. During each story the facilitator did not 
interrupt the story or the interaction. The children remained 
sitting in front of Opie for the storytelling phase. The storytelling 
game proceeded as follows (see Figure 2):

1. Opie began with a narrative while the children sat and listened. 
The torso tablet initially was blank.
(a) Opie introduced itself and verbally greeted the child/

children.
(b) Opie presented an image of the target animal with a  

white background onto the torso tablet and introduced 
the story.

(c) Opie then showed the first scene on the torso tablet while 
continuing to narrate.

2. The children’s active participation (dialogic storytelling) 
began when Opie verbally asked them to find the target animal 
by name.

3. The child would choose an object by touching the object on 
the torso tablet. The touched object would become salient by 
darkening the rest of the scene.
(a) If the object was a distractor, then Opie would tell the 

child that the object they had selected was not the target, 
briefly describe the distractor, and then ask the child to 
try again. The darkening would then be removed.

(b) If the object was the target animal, then the robot would 
congratulate the child and the game would move to the 
next level.

(c) If the child did not choose an object during a given time 
limit (10 s), Opie would attempt to regain attention using 
an attentional countermeasure by telling the child that 
help was needed and asking them to find the target again.

4. When changing level, the screen would be briefly darkened 
again, and Opie would tell the child that the animal had 
“… run away again.” The target animal was repositioned in the 
scene to increase the difficulty and the process was repeated 
from step 2. The process was repeated an additional five times 
(six levels per scene).
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FigUre 2 | The storytelling game. (a) The introduction to a scene, (B) searching for the target animal, (c) selecting a distractor, and (D) selecting the target. Opie 
changes expression in response to different events in the game. When the child is invited to touch the torso tablet, Opie looks down at that tablet. When the child 
makes a mistake, Opie adopts sad looking eyes. (c) and (D) show the effect of the overlay on the screen.
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5. For each child present (up to three children), Opie would 
change to the next scene and repeat the process from step 
1c. The start of a new scene from the beginning was the only 
action controlled by the WoZ.

2.4.3. Quiz Phase
After the experiment, each child’s comprehension of the story 
was estimated by asking a series of questions. One experimenter 
asked the set of questions to each child present. The questions 
were presented on additional tablets (one per child) and consisted 
of recognizing visual and audio content. Children were asked to 
visually identify the main character and the background scene 
of the story from sets of five pictures and identify the name 
of the main character from a set of five names read out by the 
experimenter. After the questions were answered, the study was 
complete. The order of the options for each question was shuffled 
across participants.

2.5. Data analysis
The behavioral data (touches, performance, and spatial move
ments around the robot) measuring the interaction with the first 
story (cat story) of ten participants (five males and five females; 
mean age = 54.4 months; SD = 13.7 months) were collected and 
analyzed.

2.5.1. Touch Patterns
Screen touch data were collected using ROS logging functionality 
(rosbag) and processed using Matlab. The location of each touch 
on the screen was recorded as well as the touch duration. Touches 
were automatically classified into four types:

•	 target touches, when the child touched the target object  
(i.e., the cat);

•	 distractor touches, when the child touched another object 
(distractor object) in the scene;

•	 background touches, when the child touched the background 
of the picture (which did not trigger any reaction from the 
robot); and

•	 overlay touches, when the child touched the overlay.

Each of these different touch types was expected to give 
different information about the interaction. Target touches 
suggest that the child is understanding and completing the 
task given by the story. Distractor touches suggest that the 
child understands part of the task, but is not able to find  
the correct object. Background touches suggest that the child 
does not understand the task at all. Overlay touches suggest 
that the child does not understand the synchronous interac
tion mode of the robot and that it is not possible to interrupt 
the robot during this time. Touch patterns were analyzed by 
comparing the percentage of touches that were classified as 
each of these four types.

2.5.2. Spatial Movement of Children
Spatial position data were extracted from the camera looking 
down at the scene from behind Opie’s head, in order to char
acterize the motions of the children in the space surrounding 
the robot. The relative position of the child with respect to the 
robot was extracted from the video every 2  s, using the center 
of the child’s forehead. Due to the noise contained in the video 
data, this extraction was performed manually using Manual 
Video Analysis (MVA) software. The data were then used to 
create spatial heatmaps for each participant to look at the area 
the participant occupied during the study. The distance between 
the child and the robot over the course of the interaction was 
computed from the spatial position data (in pixels). We applied 
a linear regression model with robust fitting options in Matlab 
( fitlm function) to estimate the direction of evolution of child 
proximity during the interaction. The significance of the linear 
fit was estimated by applying an analysis of variance to the model 
(Matlab anova function).

2.5.3. Quiz Data
Quiz data were aggregated for each participant to give a score 
out of three. Data were also aggregated for each question to 
give the number of participants that answered correctly so that 
the questions could be compared against each other to better 
understand what elements of the story the children recalled 
best.
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FigUre 3 | Level duration (in seconds) per participant. The gray curves represent individual data. The blue curve shows the median across participants.
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3. resUlTs

Out of the ten participants, nine approached the robot indi
vidually, while the remaining participant was part of a group 
of three (P1—see spatial results in Section 3.2 and Figure 9 for 
differences in position). The storytelling interaction lasted on 
average 373 s (6 min 13 s; SD = 96 s), from the start of Opie nar
rating a scene (Opie’s first utterance) until the end of the scene 
(Opie changing scenes) (see Figure 4 for a typical interaction). 
During the interaction children frequently looked at the face 
of the robot, which indicated that they were attending to the 
social functions of the robot. The robot only used attentional 
countermeasures (when the children did not touch the screen 
for more than 10 s) with two participants (respectively, one and 
six countermeasures used). For the quiz at the end of the story 
children got 2.1 questions correct on average (SD = 0.99); with 
nine correctly identifying who the main character of the story 
was; four correctly indentifying the name of the character; and 
eight correctly indicating the place where the story was located. 
A χ2 test on these data showed that participants recalled the 
name of the character significantly less than its appearance 
(χ2 = 5.5; p < 0.05 after correction for comparisons across the 
three quiz questions).

All participant response times during the story (except one 
outlier) tended to converge to a stable value of level duration, 
after decreasing from a maximum value for the first level (see 
Figure 3).

3.1. Touch Patterns
Touches of the children mainly focused on the targets of the story. 
Touch data show the salience of zones containing a target at a 

moment of the story compared to other areas of the picture (see 
Figure 5). On average, 91.1% of the time spent touching the screen 
was in areas containing targets. In addition, touches in areas 
containing targets lasted on average 456.2 ms (SD =  276.4 ms) 
and were significantly longer than touches outside of these areas 
(average = 43.3 ms; SD = 16.6 ms; Mann–Whitney U p < 0.01; 
adjusted Z = 2.87). The significant amount of extra time that child 
spent touching targets indicates that children engaged with the 
task of finding the target.

Despite the salience of the target zones, target touches repre
sented only 63.1% of the touches observed during the experi ment. 
All participants completed the story and, therefore, did exactly six 
target touches during the story. On average, participants also did 
2.90 overlay touches (SD = 1.41). Among the 29 overlay touches, 
24 were measured while Opie was speaking (with 23 of them being 
in the first 5  s of Opie’s utterance). Only three participants did 
background touches (five touches in total), and one participant did 
one distractor touch.

A variety of touch behaviors were observed during the study 
(see Figure 6). There is a concentration of the overlay and back
ground touches at the beginning of the story (scenes one and two) 
(82.3% of the total number of overlay and background touches, 
see Figure  7), representing interaction opportunities missed 
by the robot at these instants. There is also a contrast between 
the first two levels of the story (with a large concentration of 
touches that would not trigger a robot reaction) and the rest of 
the interaction (with less touches not triggering reactions and 
longer target touches).

The temporal dynamics of the interaction between the child 
and the robot shows changes across the levels: the interquartile 
interval of the level durations appears to increase in the last 
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FigUre 4 | A typical interaction between Opie and a child. The child presses 
Opie’s torso tablet within the interactive story.

FigUre 5 | Average time spent touching the different areas of the picture, showing the focus of children’s attention on the target of the scene (cat character). Note 
that the targets from all six levels are shown here, while a child only sees one target in each level.
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3.2. spatial Motion
Spatial position heatmaps (see Section 2.5.2) were extracted from 
the camera view to show preferred locations of children over 
time (see Figures 8 and 9). All the locations corresponded to a 
distance of less than 1 m away from the robot (the participants 
stayed on the rugs), and all children that approached the robot 
alone (from P2 to P10) stayed on the lefthand side of the robot. 
The participant that was part of a group of three—P1—had no 
outlying temporal behavior but was an outlier in spatial motion 
due to the constraints caused by the other children in the area. In 
particular, P1 was constrained to the right side of the robot, while 
all the other participants approached on the left.

For seven out of ten participants, there was a statistically sig
nificant decreasing linear trend for the distance, suggesting that 
the children got closer to the robot over time (see Figure 10). All 
participants’ distances exhibited a large variance over time, due 
to the back and forth motions between active participation and 
listening to the story.

4. DiscUssiOn

In this article, we describe an implementation of dialogic sto
rytelling on a childfriendly robot (Opie), based on interaction 
with the robot through touch during a story. The interaction 
was implemented in a closedloop synchronous way, as the 
robot invited the children to touch the screen at some moments 
and did not process touch inputs the rest of the time. We 
explored the interaction of children with the robot in a science 
fair environment and measured the time and space aspects of 
children’s engagement with the robot, based on their response 
time, touch patterns, and motions in the peripersonal space of 
the robot.

three levels, together with a stabilization of the median value of 
duration (see Figure  7). Finally, the large area covered by the 
interval between the third and fourth quartiles of response times 
for levels one, two, three, four, and six emphasizes the presence 
of an outlier (cf. Figure 3) for response times.

Among the small number of overlay touches when the robot 
was not talking, three were located in the fastest 25% of trials 
(first quartile) and four were below the median time taken (i.e., 
happening on shorter trials) (see Figure 7). Similarly, half of the 
background and distractor touches were located in the longest 
25% of trials (fourth quartile) and four out of six were above 
median time taken (i.e., happening on longer trials).
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FigUre 7 | Frog-hop plot showing the timeline of the interaction of all participants with the robot. The frog-hop plot shows the study as a series of “hops”—
regions bounded by parabolas that represent a single level in the storytelling game. Each green circle in between hops represents a target touch (and, 
therefore, the end of a level; the size of the circle is proportional to the duration of the touch). Each hop shows the accumulated touches of all the participants, 
where the length of the curves representing a hop is proportional to the participant’s time spent on that level (e.g., the parabola at the top of the hop shows the 
time taken by the slowest participant and the parabola at the bottom of the hop shows the fastest participant). The gray shaded areas represent the 
interquartile range of the data. The pink shaded areas represent moments when the children could not interrupt the robot, i.e., when the robot was talking or 
when the overlay was on. The markers in each hop represent the unexpected events: respectively, background touches (blue square), overlay touches (black 
circle), and non-target touches (red star). The size of the markers is proportional to the duration of the touch. The plot exhibits the variability of the behaviors 
observed among the participants, with a high number of unexpected events (black circles and blue squares) that would not trigger a response from the robot, 
particularly in the first two levels.

FigUre 6 | Event-related touch raster showing touches (as x’s) arranged around the removal of the overlay (the red line) on each level. The arrows indicate values 
that lie outside of the range of the plot. Each participant occupies one row on the Y-axis, and time is represented on the X-axis. The removal of the overlay is an 
important event within the interactive story as it indicates when the robot starts reacting to touches presented by the child. Children appear to adapt to the event of 
the overlay being removed—in earlier levels they touch the screen prior to removal and in later levels they do not.
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FigUre 8 | Extraction of the children’s location from the camera view. The 
location of the children was determined by identifying the point at the middle 
of their forehead.

FigUre 9 | Representation of all children’s motion in Opie’s peripersonal space (in pixels, measured on the image extracted from the camera overlooking the 
scene). Colored areas represent the time spent in each location (in seconds).
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In a survey of human participants, de Graaf et al. (2015) listed 
the top three important abilities for a robot to appear social as 
(i) participating in twoway interactions with users—both syn
chronous and asynchronous, (ii) displaying thoughts and feel
ings, and (iii) exhibiting social awareness. In our experiment, we 
combined those requirements in a dialogic storytelling context. 
The robot not only told the story by combining speech, head 
motions, and displayed emotions but also engaged in a social 
interaction with the children by responding to their touches on 
the screen and using attentional countermeasures to maintain 
their engagement.

4.1. What level and Duration of 
engagement can Opie Facilitate?
Within this study, we investigated performance at the interaction 
task (reaction times, completion of the task, and comprehension) 
and position and motion within close proximity of the robot. 
All participants completed the storytelling activity successfully, 

receiving directions from the social robot only. During the inter
action, children remained in close proximity of the robot (<1 m) 
and touched the target (main character) preferentially and for a 
significantly longer time (cf. Figure 5). In addition, seven out of 
ten participants got closer to the robot during the interaction (the 
other three did not exhibit significant linear trends), suggesting 
greater engagement.

Temporal and spatial data together indicate that the robot 
succeeded in creating and maintaining engagement with chil
dren during the experiment. Spatial proximity data show the 
existence of preferred locations for interaction with the robot 
(see Figure 9), and that the children remained in the “personal” 
space (Hall, 1966) of the robot, which is an optimal distance for 
social interaction. Previous studies on human–robot interac
tion have supported the hypothesis that presence in the space 
less than 1 m away from the robot and greater closeness can be 
associated with engagement (Vázquez et al., 2014).

Touch data revealed a greater attentional focus directed 
toward the target, which shows that the robot succeeded at 
sharing the goal of the interaction with the children during 
the interaction. As shared intentionality has been argued to be 
a major correlate of engagement (Tomasello et  al., 2005), the 
result suggests that children successfully engaged with the robot. 
In most cases, this maintenance of engagement did not require 
attentional countermeasures (only two participants out of ten 
received a countermeasure), which also supports the idea that 
the engagement was the result of a shared intentionality rather 
than forced by the use of countermeasures. Furthermore, the 
greater touch duration on the target compared to distractors or 
background areas also reinforces this conclusion, as duration of 
touch has been associated with greater engagement levels (Baek 
et al., 2014 and SilveraTawil et al., 2014).

Similarly, the performance in the quiz showed good recall 
of the elements of the story as a result of engagement. The poor 
performance at recalling the name of the main character could 
be due to the difficulty in recalling auditory compared to visual 
information (Jensen, 1971 and Cohen et al., 2009). The synthetic 
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the graph) for significant trends.
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speech used by the robot or difference to the other quiz questions 
(the experimenter read this question to the child) could also 
explain this result.

The robot maintained engagement with the children for an 
average of 6 min and 13 s, which is a long duration compared to 
other interactive settings in public spaces (between 3 and 4 min, 
see Hornecker and Stifter (2006)). However, this length of time is 
still short for educational purposes, where difficulties in engaging 
children can appear after a longer period of interaction (Ioannou 
et al., 2015). In particular, the implementation of dialogic story
telling proposed in this paper involves directional feedback and 
consideration of the turn taking rhythms, which are two of the 
three elements identified by Robins et  al. (2005) to effectively 
maintain engagement. The current state of the robotic platform 
used in the study did not allow us to consider the third element: 
interaction kinesics (which would require moving limbs). Further 
investigation is required to study the impact interaction kinesics 
would have on sustained engagement.

4.2. how individual or stereotypical are 
the spatial and Temporal reactions 
across Different Participants?
A possible explanation of the high level of engagement seen 
in this study is the adaptability of the robot’s behavior during 
dialogic storytelling, as the robot was able to produce socially 
contingent responses to some of the children’s actions by using 
verbal and emotional responses. Bartneck (2008) argued that 
one of the major bottlenecks of social robotics is that practical 

implementation often requires producing a system that has 
generalizable features, but having an impact on society requires 
the capability to adapt to each user independently of group 
behaviors.

In our study, we introduced a novel visualization (the frog
hop plot, see Figure 7) which is intended to show an overview 
of different touch events and how they relate across participants 
and storytelling state. The froghop plot exhibits the unexpected 
individual behaviors of the children and reveals the temporal 
dynamics of the interaction across the different levels of a scene.

From a spatial perspective, the location in the space sur
rounding the robot also showed that patterns of engagement 
were different across children. In particular, although our data 
suggest that the children got closer to the robot over time, we also 
observed a large variance of the location of the children around 
their linear trends (see Figure 10). The variance observed was 
likely a result of the turntaking dynamics of the interaction, 
which required the child to alternatively touch the robot or listen 
to it. This is similar to Michalowski et  al. (2006)—despite the 
existence of optimal areas for social interaction (the personal 
space), individual patterns of motion in the space should be 
considered to fully understand the dynamics of engagement.

Implementing engaging social behaviors in social robots can 
benefit from an awareness of the spatial and temporal features 
at the individual level. This recommendation is akin to previ
ous studies that exhibited physical, social, and cultural aspects 
of engagement with interactive technologies (Dalsgaard et  al., 
2011). We suggest that a multimodal approach will help account 
for all these aspects when designing for engagement.
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4.3. how Do the Patterns of spatial and 
Temporal reactions relate to Opie’s 
synchronous Behavior?
A large number of touches did not lead to a socially contingent 
response (background or overlay touches) during the beginning 
of the interaction (see Figures 6 and 7). Overlay touches were 
associated with smaller response times. They could be indica
tive of a high level of engagement: as the objective of the task 
remained the same during the story, some children could have 
had such a high level of understanding and performance that 
they responded before being prompted to. The concentration of 
background and overlay touches on levels one and two suggests 
that the children who touched these regions then changed their 
behavior as the story advanced and adapted to the limitations 
of the robot (as the robot would not respond to these touches). 
Each of these touches are missed opportunities of interaction for 
the robot, to which the children had to adapt. Interestingly, these 
missed opportunities suggest that higher levels of immediacy 
could be obtained by implementing storytelling in a closedloop 
asynchronous manner and this modification would likely result 
in even higher levels of engagement. This issue is left for further 
investigation.

5. cOnclUsiOn

We proposed an implementation of dialogic storytelling using a 
closedloop synchronous mode of interaction in a childfriendly 
robot. Based on spatial and temporal features of the interaction, 
we conclude that our robot succeeded in engaging children in 
a dialogic storytelling interaction. However, one outlying child 
disengaged during the story, and some touches of the children 
did not produce a response from the robot.

Consideration of spatial and temporal attributes of the inter
action is important for evaluating the engagement of partici
pants. Our study results show that touch timing data and spatial 
position data demonstrate different trends over the course of the 
study and provide insight into the child’s engagement toward 
the task and robot. While the spatial, temporal, and quiz data 
collected generally suggest engagement, each of these measures is 
sensitive to both the group and individual level. Temporal touch 
responses reveal group trends such as a concentration of overlay 
and background touches during the first stages of the story, while 
also showing unique unexpected touches and response times for 
individuals. Spatial data have properties that reflect not only 
engagement at the group level (decreasing distance with the 
robot over time) but also show the existence of preferred areas 
for each child during the interaction.

In addition to providing insight into engagement of chil
dren at the group and individual level, spatial and temporal 
measures also reflect the synchronous nature of the robot. This 
study demonstrates that closedloop synchronous robots can 
facilitate engaging interactions; however, there is a distinct 
limitation created by the number of events that are not pro
cessed by the robot. It is not always feasible to have a reaction 
for every input that a robot receives, but each input could still 
be used to modify the robot’s current state and future reactions. 
A future goal of the project is to implement asynchronous, 
closedloop immediacy to enrich child–robot interactions 
with Opie, by processing all identified metrics automatically 
and online.
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The interest in robot-assisted therapies (RAT) for dementia care has grown steadily in

recent years. However, RAT using humanoid robots is still a novel practice for which

the adhesion mechanisms, indications and benefits remain unclear. Also, little is known

about how the robot’s behavioral and affective style might promote engagement of

persons with dementia (PwD) in RAT. The present study sought to investigate the use

of a humanoid robot in a psychomotor therapy for PwD. We examined the robot’s

potential to engage participants in the intervention and its effect on their emotional state.

A brief psychomotor therapy program involving the robot as the therapist’s assistant

was created. For this purpose, a corpus of social and physical behaviors for the robot

and a “control software” for customizing the program and operating the robot were also

designed. Particular attention was given to components of the RAT that could promote

participant’s engagement (robot’s interaction style, personalization of contents). In the

pilot assessment of the intervention nine PwD (7 women and 2 men, M age = 86 y/o)

hospitalized in a geriatrics unit participated in four individual therapy sessions: one classic

therapy (CT) session (patient- therapist) and three RAT sessions (patient-therapist-robot).

Outcome criteria for the evaluation of the intervention included: participant’s engagement,

emotional state and well-being; satisfaction of the intervention, appreciation of the robot,

and empathy-related behaviors in human-robot interaction (HRI). Results showed a

high constructive engagement in both CT and RAT sessions. More positive emotional

responses in participants were observed in RAT compared to CT. RAT sessions were

better appreciated than CT sessions. The use of a social robot as a mediating tool

appeared to promote the involvement of PwD in the therapeutic intervention increasing

their immediate wellbeing and satisfaction.

Keywords: dementia, social robots, engagement, geriatrics, psychomotor therapy, control software

INTRODUCTION

Psychosocial interventions, such as cognitive stimulation, physical activities and art-mediated
therapies, play a key role in dementia care. Several studies show a positive impact of these
interventions on the well-being, cognition, social life and daily functioning of persons with
dementia (PwD) (Hulme et al., 2010; Vernooij-Dassen et al., 2010; Dickson et al., 2012;
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Oyebode and Parveen, 2016). In recent years a growing number
of studies have focused on the use of social robots in interventions
for PwD. Social robots offer the possibility of engaging and
stimulating the user through social interaction (speech, gestures,
behavior). A wide range of robots interpreted as communicative
and socially aware fall under this category (Ess et al., 2014),
including humanoid, animal-like and some machine-like robots
(Figure 1). Most social robots offer a great flexibility of
programming allowing the creation of diverse behaviors and
customization. For this reason, they have a great potential to
support care interventions taking into account inter-individual
differences, a well-known success factor in dementia care.

A good number of robot-assisted therapies (RAT) for PwD
have used the seal robot PARO (AIST, Japan). Several studies
have reported beneficial effects of PARO in PwD, such as an
improvement on general well-being and social interaction (Wada
and Shibata, 2007), a reduction of stress (Broekens et al., 2009;
Mordoch et al., 2013), and diminished use of psychoactive and
pain medications (Petersen et al., 2017). Fewer studies have
explored the effects of RAT using humanoid robots with elderly
persons with cognitive impairment.

López Recio et al. (2013) evaluated the feasibility of using
the NAO robot (Softbank robotics, Japan) as an assistant in
an individual physiotherapy program with 13 older adults in
an assisted living facility. Three conditions were compared: (a)
“classic therapy” in which the physiotherapist worked alone, (b)
“ViNAO therapy” in which the therapist used a virtual NAO,
displayed on a screen, to show the movements the inpatients
should mimic and to provide them with feedback; and (c)
“PhyNAO therapy” in which the therapist used a real NAO robot
for the same purpose. Based on the requirements of the therapist
some software modules and a user interface were developed
to program NAO’s movements and operate it during sessions.
A good acceptance by participants was observed. Participants
tried to synchronize their movements with those of the robot
indicating a good compliance with RAT. One of the advantages
of using the robot as an external model was that it allowed
the therapist to be more available to mobilize directly the
patient. Therefore, the robot contributed to reduce the therapist’s
workload and improve his interactions with the patients. All
participants agreed that the robot’s movements were natural
and preferred unanimously the real robot to the virtual one.
However, it was noted that technical limitations of the robot’s
hardware affected sometimes the way it performed the exercises

FIGURE 1 | Examples of social robots. (A) PARO (AIST, Japan); (B) NAO

(Softbank robotics, Japan); and (C) PALRO (Fujisoft, Japan).

(e.g., movements with less amplitude), an inaccuracy that was
also mimicked by participants.

Martín et al. (2013) and Valentí Soler et al. (2015) evaluated
the use of the NAO robot in cognitive and occupational therapy
with 50 elderly PwD in two settings, a day care center and an
assisted living facility. NAO was used in individual and group
therapy sessions to assist the therapist by playing audio contents
and carrying small objects used for the activities. Specific robot’s
scripts developed for the activity included speech, music and
movement. A mobile device was used as remote control by
the therapist to operate the robot. Main results from this 3-
month experience were a good acceptance of the robot and the
improvement of neuropsychiatric symptoms of dementia, such
as apathy and irritability, in the group who benefited from the
RAT with the NAO.

Results from previously cited studies show that humanoid
robots have the potential to provide assistance for psychosocial
interventions in dementia care, particularly, when the robot’s
role and behavior has been defined according to the needs of
care professionals and PwD. However, further work is needed
to identify the elements of RAT using humanoid robots that
are likely to result in clinical improvements in PwD. Moreover,
published studies have not dealt in detail with the quality of
human-robot interaction (HRI) between PwD and humanoid
robots.

In this respect, the assessment of participant’s engagement in
RAT could prove useful. Indeed, one of the factors contributing
to the effectiveness of dementia care interventions is their ability
to engage participants and ensure their adherence. Engagement
in this context has been defined by the act of being occupied
or involved with an external stimulus (Cohen-Mansfield et al.,
2009). Factors such as the person’s characteristics and his/her
personal history, the type of stimulus and the environmental
conditions in which the activity takes place, all have been found
to influence the engagement that a specific individual may
have with an activity (Cohen-Mansfield et al., 2010). In recent
years, some models for studying engagement of PwD when
participating in an activity have been developed and applied to
different interventions, for instance theObservational Assessment
of Engagement (OME) (Cohen-Mansfield et al., 2009) and the
Menorah Park Scale (Judge et al., 2000). More recently, Jones
et al. (2015) developed the Video Coding Protocol- Incorporating
Observed Emotion (VC-IOE), a specific approach, particularly
useful for RAT, to assess engagement in PwD using video coding.

Another aspect that has been little discussed is how to
program a humanoid robot to provide PwD with a natural and
positive interaction, and consequently, to improve the acceptance
of the robot. The work by Hamada et al. (2016) provides some
elements in this respect. In their research, they used the social
robot PALRO (Fujisoft, Japan) as an assistant in a physical activity
therapy for PwD. The robot was used to provide the instructions
on how to perform the exercises and to model the movements
for the person to follow. The assessment of clinical effects of
the intervention was not an objective of this study. Nevertheless,
better engagement and satisfaction of participants were reported
when the robot’s dialogues were accompanied by gestures, when
it repeated instructions to enable user’s comprehension and
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when it verbally encouraged and complimented participants. The
robot exhibiting a kindly and compassionate attitude proved
advantageous in this context.

In their analysis of main challenges of socially assistive
robotics, Tapus et al. (2007) explained how giving an empathetic
attitude to an assistive robot would benefit HRI. Considering
that empathy, the capacity of understanding other’s emotions
and perspectives, is as a key factor for successful therapeutic
relationships, it has been recommended that RAT integrates
this aspect. Tisseron et al. (2015) have also suggested that the
acceptance of social robots depends on their empathic qualities.
These authors proposed a model of empathy extended to
four dimensions (i.e., auto-empathy, direct empathy, reciprocal
empathy, and intersubjective empathy) and to four components
(action, emotion, thought, and assistance) aiming at better
understanding HRI.

The main objective of the present study is to investigate
the feasibility of using a humanoid robot as an assistant in
psychomotor therapy for PwD. The robot’s potential to incite
the engagement of PwD in the activity and its effect on their
emotional state will also be studied. In order to increase RAT
acceptance, particular attention will be given to the definition of
some components of the RAT: defining a highly acceptable and
empathic interaction style for the robot, tailoring the program
contents to the preferences and capacities of participants, and
creating a framework for RAT based on the triad composed by
the therapist, the patient and the robot.

This paper is structured as follows; first we describe the design
process of the robot-mediated psychomotor therapy program,
including general technical aspects of contents creation and
robot programming. Then, we present the experimental pilot
study conducted to assess feasibility and immediate effects of the
intervention. The last section of the paper provides a general
discussion of results and some suggestions for future studies in
RAT for dementia care.

CONCEPTION AND DEVELOPMENT OF
THE RAT

The Psychomotor Therapy Program
A psychomotor therapist conceived a short therapeutic program
for PwD structured in four individual sessions: a classic therapy
(CT) session, in which the patient was alone with the therapist,
and three RAT sessions, in which the therapist was assisted by
the robot NAO. Each session comprised five sections described
as follows:

(1) Introduction: Time for greetings and introduction of the
robot (RAT).

(2) Motor section: The section begins with a warm-up exercise
by which the person is brought to rediscover and move
different parts of his/her body (e.g., head, hands, arms, legs).
This exercise should contribute to raise patient’s alertness
and allows him/her to be physically and mentally available
for the session. Then, a sequence of gestural movements is
modeled by the therapist (CT), or the robot (RAT), to be
repeated step by step and learnt. By stimulating the patient’s

motor capacities, the therapist also seeks to improve his/her
awareness of preserved functional and interaction abilities.

(3) Cognitive stimulation section: The section begins with some
personalized questions tailored to the patient’s life history
and interests being formulated by the therapist (CT) or the
robot (RAT). The second part of this session is devoted to ask
the patient some questions about his own body. The purpose
of this activity is to elicit verbal exchanges in fields that were
familiar to and enjoyed by the patient and to help him/her
increase his/her body awareness.

(4) Body expression section: The patient is invited to imitate
a choreography in three steps, associating a sequence of
movements to a series of brief meaningless sounds such as
“BA, DA, KA.” The sequence is presented and modeled by
the therapist (CT) or the robot (RAT). The aim of this section
is to stimulate body expression through movement, voice
and emotion.

(5) Conclusion: The session ends with a series of breathing
exercises allowing the participant to relax. The exercises are
presented and modeled by the therapist (CT) or the robot
(RAT). A time of verbal exchange is proposed to the patient
at the end of the session.

Different scenarios were created in order to anticipate possible
interaction sequences involving the patient, the therapist and
the robot. Verbal and non-verbal robot behaviors required for
each sequence were carefully defined taking into account the
technical possibilities of the robot (Figure 2). During this process
were also identified the “personalization parameters” needed to
adapt the program contents to the specific requirements of each
participant.

Once the therapeutic program was defined it was submitted
for validation by a multi-disciplinary team (two geriatricians,

FIGURE 2 | Example of RAT interactive scenario.
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a neuropsychologist and a cognitive psychologist). Then, a
computer engineer proceeded to program the robot including its
behaviors and personality features. A “control software” allowing
the personalization of the therapy sessions and the operation
of the robot was also created. During this conception and
development phase of the program, the psychomotor therapist
and the engineer worked together enabling continuous feedback
on the quality of the robot’s movements and interactions.

Robot Programming
Presentation of the Control Software
The design of the control software for operating the robot took
into account two main criteria: customization and intuitiveness.
Regarding customization, the software was designed to adapt the
contents of the therapy program and some robot’s features to each
participant’s capabilities and preferences. Customization is a key
aspect in dementia care interventions to foster engagement and
positive emotional responses. With this purpose, the following
customization parameters were implemented: (a) adding the
person’s name so the robot could use it to address each person
in an individualized manner, (b) selecting individual and familiar
contents for the therapy activities (music, cognitive stimulation
themes, adapted physical exercises,...); (c) adjusting some general
robot parameters (e.g., rhythm, voice pitch, volume,...) according
to each person’s preferences and needs to provide the best
possible user experience. Intuitiveness of the control interface
was highly desired to ensure an easy navigation during therapy
sessions, and so to allow the operator to smoothly initiate and
stop robot’s behaviors. The control software was created using
Python language and the user interface was created with the
program Qt Designer.

The control software encompassed two kind of files: structure
and design files. The structure files which contained the raw
code to run the software were: (a) the core module, and (b) the
associated modules, used to define the functionalities related to
movements, audio contents, properties, and software buttons.
Design files contained the code to set and view the user interfaces.
The connection to a virtual NAO robot (Choregraphe software)
was set up in order to facilitate the implementation and testing of
the robot’s behaviors without having to connect the robot in real-
time. Figure 3 shows a schematic diagram of the system and the
principles of its operation within the context of the present study.

Main control interface
Themain control interface’s central menu (green box in Figure 4)
included seven tabs controls: one tab to personalize the session
and six tabs to manage each session section. Functionalities
handled by each control tab are described in Table 1.

The control interface, at the top of the screen, included amenu
(blue box in Figure 4) with three options: (a) “Interface,” (b)
“Settings,” for customizing the robot’s parameters and the session
contents, and (c) “Connection,” for connecting the robot. On the
left (red box in Figure 4) a “Session customization bar” contained
pre-programmed information recorded for a particular session
for each individual participant. On the right (orange box in
Figure 4) an “Interaction bar” allowing the operator to make
the robot quickly react to various user’s requests or responses.

FIGURE 3 | Diagram of the system and principles of operation.

FIGURE 4 | Screen capture of the main control interface.

Options from this interaction bar allowed to make HRI smooth,
for instance giving continuity to the conversations between the
robot and the therapist or the participant, using basic transition
words and accompanying gestures (e.g., “All right,” “Sorry, I didn’t
know,” “Laugh+motion,” “Applause+ gesture”).

Additional options were proposed to deal with the loss of
attention of the user (e.g., “Don’t you imitate me?” “Listen to me
X (name of the person),” “Look at me X (name of the person)”),
to regularly encourage and praise the user (e.g., “You’re doing
great,” “Take your time,” “You can do it”), to react when the
user requested the robot to make something the robot wasn’t
programmed for (e.g., “I can’t do it,” “Show me”), and finally
to operate other robot’s behaviors (e.g., walking toward and
backward, making a pause, stop speaking and moving).

Each tab of the main interface (Figure 5) corresponding
to different parts of the session included a set of buttons
sorted by categories allowing a flexible leading of the session
according to the participant’s responses. Robot’s actions were
summarized on each button of the interface following a
logic “dialogues to say” and “movements to achieve.” For
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TABLE 1 | Description of control tabs from the main interface.

Control tab Description

Home Set of parameters allowing personalization of the

session : participant’s name, personalized content for

music themes, themes for cognitive stimulation

(questions/answers), and mimes for the session.

Introduction Set of parameters allowing the robot to greet

participants, introduce itself and make a first

“well-mannered” contact with the user: asking the

participant how he feels, or what he did for a living; the

robot can laugh if the user touches its head.

Motor Set of parameters used by the robot to introduce and

model the physical exercises: the robot explains and

performs breathing exercises (inhale and exhale),

warm-up exercises, and various sequences of

movements.

Cognitive stimulation 1 Set of parameters used by the robot to introduce and

formulate cognitive exercises: playing music themes,

performing a mime, asking questions, giving the

answer to a question when the participant is not able

to answer.

Cognitive stimulation 2 Set of parameters used by the robot to ask user

questions about his/her body knowledge according to

his/her level of cognitive impairment (three levels of

difficulty) and to provide guidance in case of error:

“touch my head,” “touch my right shoulder with your

right index finger”; “I think this is my left shoulder,” or

robot showing the answer using its body.

Body expression Set of parameters used by the robot to explain and

perform a sequence of movements associated with

sounds.

Conclusion Set of parameters used by the robot to thank the user

for participating in the activity, say “goodbye” with a

yawn, bending and switching off.

example, “Hello! X + Hand wave” means that the robot
says “Hello! X” and waves its hand to say hello (where X
is the name of the patient). See Supplementary Material for
the presentation of control interfaces for each subsection of
the program.

Secondary interfaces
Three managers were accessible from the "Settings" menu on
the main control interface to handle mime exercises, music and
audio settings in an easy way (Figure 6). For example, the music
settings manager allowed adding and deleting music themes
to the music folder of the software and selecting the musical
themes for the session according to each participant’s preferences,
without using the Choregraphe software. The mime exercises
manager worked in a similar way but it required having created
an associated behavior via Choregraphe beforehand. The audio
settings manager allowed the modification in real time of volume
and voice parameters of the robot. Personalized parameters, once
registered, were held in the software memory and displayed when
reopening each individual session.

Personality Features of the Robot
Effort was put on giving the robot an empathic and a
positive attitude (e.g., being warm, polite, supportive, tolerant,

FIGURE 5 | Detail of the control tab for the “Introduction” section.

FIGURE 6 | Music settings manager and Audio settings manager.

gracious...). Some empathy signs, such as (a) the ability to
recognize other person’s emotions; (b) to communicate with
persons; (c) to display emotions; and (d) to take perspective
(Tapus et al., 2007), were considered when defining the robot’s
behavior and personality. Three other principles proposed in
the field of HRI were also used in this process: (a) interactivity,
the robot coexists with an interactive person in the same time-
space continuum; (b) equifinality, the robot is able to adapt to
each person and the same objective may be reached in different
ways; and (c) multimodality, the robot is able to interact with
a human using different communication channels (e.g., verbal,
tactile, kinesthetic, or emotional) (Libin and Libin, 2004). Table 2
presents a summary of robot’s behaviors and personality traits
related to the aforementioned dimensions that were implemented
in this work.

MATERIALS AND METHODS

Study Design
An exploratory study aiming to assess the feasibility and
immediate effects of a psychomotor therapy program for PwD
using the NAO robot as an assistant was conducted between
February and May 2016 in the Broca Geriatric Hospital (Paris).
The intervention program consisted in 4 individual sessions
of psychomotor therapy including: one classical psychomotor
therapy session (CT) (therapist-patient) and 3 RAT sessions
(therapist-patient-robot).
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TABLE 2 | Robot’s behaviors related to different HRI dimensions.

Dimension Behaviors, attitudes, personality traits

Empathy • Displays an emotional state and is able to acknowledge the

participant’s emotions and feelings.

• Programmed to exhibit empathic gestures such as giving

confirmation signs by head movements.

• Expresses its own opinions.

• Gives positive feedback and frequently acknowledges the

participant’s performance, boosting his/her confidence and

motivation.

Interactivity • Robot’s embodiment is exploited in order to inspire participants

the attribution of intentions, goals, and a personality to the

robot.

• The robot, often compared to a child for its size and

appearance, is designed to answer and behave like a “well-

mannered” child using simple sentences and childlike gestures.

• The robot is programmed to automatically move its upper limbs

when speaking to support verbal communication through body

language.

• When the robot is not talking, it is programmed to slightly

undulate, giving the impression of breathing and being alive.

• Regarding proxemics, the robot is placed on the ground so that

the user has a higher view on it and dominates it. The robot is

placed at a distance of about 1.50m from the person which

represents the social distance of interactions with friends and

colleagues (Hall, 1966). This distance can be adjusted during

the interaction to fit the dynamic of the session.

• Before walking, the robot warns the person communicating

the adjustment of the interactive distance.

Multimodality • The robot shows engagement to its interlocutor through gaze

and speech (e.g., “do as I do X” or “look at me X”). If the

participant interrupts it, the robot is programmed to stop talking

or making a movement and return to its initial position.

• Robot’s speech and gaze are programmed to face directly its

interlocutor using the Face Detection application.

• When the user touches the robot, it is programmed to laugh.

At the end of the session, it is programmed to stretch and

yawn before switching off.

Equifinality • Before each session, the robot’s behavior and RAT contents

were customized for each user.

• A set of basic and transition answers like “yes,” “no,” “thank

you,” “please,” “I don’t know,” were implemented to ensure

the robot provides appropriate responses to each participant’s

requests.

• The communication style of the robot was tailored to the

abilities of older adults with cognitive disorders (e.g., simple

vocabulary, short sentences). When the robot’s comments are

not understood by the participant the robots is programmed

to repeat the sentence.

Participants
Nine persons (7 women and 2 men, mean age 86 years)
hospitalized in a geriatrics unit, took part in the study. Inclusion
criteria were: having a clinical diagnosis of neurodegenerative
dementia and having signed a consent form. Exclusion criteria
were: severe dementia (MMSE < 10/30), sensory deficit (vision
and hearing) and severe acute illness impeding the participation
in RAT sessions.

Tools
• A NAO robot, Version V4 (Softbank robotics).

• The “Choregraphe” software (Softbank robotics), a multi-
platform application allowing the creation of behaviors for the
NAO robot, its monitoring and control (version 2.1).

• A “home-made” software developed to create robot’s
behaviors, customize sessions, and monitoring and control the
robot. The software is described in Section The Psychomotor
Therapy Program.

• “The Observer XT” software, version 11.5 (Noldus), for video-
based behavioral analysis.

Psychosocial Assessment Tools
• The “Mini Mental State Examination” (MMSE) (Folstein

et al., 1975), for general cognitive assessment. Scores range
from 0 (major cognitive impairment) to 30 (normal cognitive
functioning).

• The “Neuropsychiatric Inventory-Nursing team version”
(NPI-ES) (Sisco et al., 2000) for the assessment of behavioral
symptoms in PwD by the nursing staff. NPI comprises 10
dimensions: delusions, hallucinations, dysphoria, apathy,
euphoria, disinhibition, aggressiveness and agitation,
irritability, anxiety, aberrant motor activity. Scores range
from 0 to 120. Highest scores correspond to major behavioral
disturbances.

• The “Self-Identity Questionnaire” (SQI) (Judge et al., 2000),
used to establish a profile of customized activities for PwD,
taking into account their interests and preferences.

• The “International Positive and Negative Affect Schedule
Short-Form” (I-PANAS-SF) (Karim et al., 2011), used to
quantify a person’s emotional state in the short term, with
10 items representing either positive or negative affects (two
scores ranging from 0 to 25).

• The “Instant Assessment of Wellbeing Tool” (EVIBE), for
assessing immediate wellbeing and quality of life of elderly
people in nursing homes (Kuhnel et al., 2014). Scores range
from 1 (sadness) to 5 (happiness).

• The “Menorah Park Engagement Scale” (MPES) (Judge et al.,
2000), for measuring the amount and types of engagement by
PwD in the course of an activity based on behavioral analyses.
Two adaptations were made to the MPES for the present
study: (a) a “robot engagement” category was created to specify
participant’s emotional and behavioral responses denoting an
exclusive engagement toward the robot (i.e., unrelated to the
target activity), (b) an “at ease/relaxed” category was added
to the emotional engagement dimension in order to take into
account the flat affect and limited facial emotion responses
commonly observed in PwD. Table 3 presents a summary of
the MEPS engagement categories and examples of responses
within the context of this study.

Additionally, two Visual Analogic Scale (VAS) were built for
the purposes of this study. One to assess the satisfaction of
participants regarding each therapy session (Question was: Did
you enjoy the session?); and the other to evaluate the pleasure
while using the robot in RAT sessions (Question was: Did
you enjoy the presence of the robot?) Each VAS was scored
between 1 and 5 (highest values translated most positive
opinions).
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Procedure
The protocol of the study was explained to the Geriatrics Unit
nursing staff and the geriatrician (MD) responsible for the unit
who helped to identify the patients who met the criteria to
take part in the trial. Two researchers contacted each potential
participant and his/her relatives and gave them details on the
study and the intervention. If the patient had given verbal consent
to participate, an appointment was scheduled in order to make
the inclusion. This study was carried out in accordance with
the recommendations of Paris Descartes ethical procedures and
included written informed consent from all subjects according to
the Declaration of Helsinki.

On the day of the inclusion, after written consent was
obtained, a clinician collected socio-demographic data and
conducted the baseline neuropsychological assessment for
the definition of the participant’s profile (see Table 4). The
experimental protocol consisted of four individual non-
consecutive sessions over a period of 5 weeks: one CT session
and three RAT sessions. Figure 7 illustrates the different
moments of the RAT sessions. Outcome variables were measured
throughout the experimentation according to the schedule
shown in Table 5.

Therapy sessions were held in the patient’s hospital room. The
patient was seated on a chair facing the therapist, and the robot

TABLE 3 | Summary of the Menorah Park Engagement Scale (MEPS) dimensions and examples of coding.

Type of engagement Definition Example of response coded

BEHAVIORAL DIMENSION

Constructive Engagement (CE) The person participates in the target activity. This includes motor and

verbal responses in response to the target activity (e.g., commenting or

making a gesture/action)

Participant responds to the therapist questions or

instructions either verbally or by executing the physical

movement required

Passive Engagement (PE) The person listens to or looks at the target activity without making the

actions required by the activity (repeating a movement/gesture or

answering a question)

Participant watches the physical movement exercise

presented by the therapist but does not reproduce the

movement at his/her turn

Other Engagement (OE) The person pays attention to something other than the target activity or

does something not related to the target activity (speaking, gesturing,

watching or listening to)

Participant looks out the window and talks about what

he/she sees

Engagement with the robot not

related to the target activity (RE)

The person is disengaged from the target activity and focuses his/her

attention on the robot (touches the robot, speaks to the robot...)

Participant disengages from the therapy to interact

verbally or physically with the robot in a way not related

to the target activity: "NAO, do you have a girlfriend?

Non-engagement (NE) The person does not participate in the target activity in any way Participant sleeps, closes his/her eyes or stares into

space

Emotion Definition Example of coding

EMOTIONAL DIMENSION

Pleasure The person clearly laughs, smiles or verbalizes a positive

response/emotion during the activity

Participant distinctly shows and/or verbalizes a positive

emotion: "I’m happy," “It makes me feel good”

Anxiety/sadness The person cries, looks sad, looks down, shows a tight facial

expression, or verbalizes a negative response/emotion during the

activity

Participant shows and/or verbalizes a negative emotion

“I feel useless,” “it makes me feel sad”

At ease/relaxed The person is calmed, peaceful, comfortable at the activity Person appears serene, shows a neutral expression

TABLE 4 | Demographic and clinical characteristics of the sample.

N◦ Gender Age Education level Diagnostic MMSE (0–30) NPI –ES dominant profile NPI-ES (0–120)

1 Female 68 6 Alzheimer’s disease 15 Agitation 5

2 Female 88 6 Parkinson’s disease 22 Anxiety 15

3 Female 90 4 Mixed dementia 16 Agitation 12

4 Female 95 3 Mixed dementia 12 Dysphoria/depression 7

5 Female 92 7 Alzheimer’s disease 16 Apathy 15

6 Male 92 7 Lewy body dementia 12 Agitation 12

7 Male 84 7 Mixed dementia 13 Apathy 14

8 Female 89 4 Neurodegenerative disease 19 Anxiety 7

9 Female 76 4 Neurodegenerative disease 19 Apathy 3

EL, Education level, ranging from 1 (validation of primary school) to 7 (higher education degree); MMSE,Mini Mental State Examination; NPI-ES, Neuropsychiatric Inventory-Nursing

team version.
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FIGURE 7 | Robot-assisted psychomotor therapy sessions. (A) Introduction, (B) motor section (C) cognitive Stimulation, (D) body expression section and

(E) conclusion.

TABLE 5 | Evaluation criteria and schedule of assessments throughout the experimentation.

Assessment criteria Tool Baseline CT RAT1 RAT2 RAT3 Post

Cognitive functioning MMSE X - - - - -

Neuropsychiatric symptoms NPI X - - - - -

Life history and preferences SQI X - - - - -

Emotional state PANAS X X

Immediate wellbeing EVIBE - Pre Post Pre Post Pre Post Pre Post -

Engagement MPES - X X X X -

Satisfaction with intervention VAS - X X X X -

Appreciation of robot VAS - - X X X -

Verbal and nonverbal empathy related behaviors Video analysis - - X X X -

CT, Classic Therapy; RAT, Robot-Assisted Therapy (1,2,3 for sessions 1,2,3 respectively); Post, assessment after intervention; MMSE, Mini Mental State Examination; NPI–ES,

Neuropsychiatric Inventory-Nursing team version; SQI, Self-Identity Questionnaire; PANAS, International Positive and Negative Affect Schedule; EVIBE, Instant Assessment of Wellbeing

Tool; MPES, Menorah Park Engagement Scale; VAS,Visual Analogic Scales; Pre Post, assessment before and at the end of each therapy session, fields marked with a X indicate that

the variable was assessed at that time point; fields marked with a — indicate that the variable was not assessed at that time point.

in RAT sessions. The experimenter (engineer) who operated the
robot was sitting back in the room with the computer which
remained visible to the participant. The experimenter used the
Wizard of Oz (WOZ) technique to remotely control the robot’s
movements, speech, and gestures (Kelley, 1984).

Data Analysis
The encoding and analysis of the video recordings was carried
out by two researchers using the adapted form of the MPES
(Judge et al., 2000). The order of video analysis was randomized.
Analysis of the engagement was performed using time percentage
with respect of the total time of each session’s section (motor,
cognitive stimulation, and body expression). Statistical analyses
of neuropsychological measures were performed using the
Wilcoxon test to compare means. For these analyzes, the
significance level used was 95% (alpha= 0.05).

RESULTS

General Results
A total of 35 therapy sessions were conducted: 8 CT sessions and
27 RAT sessions. The sessions had a mean duration of 22.15 min,
for a total of 770.19 min altogether that were video-analyzed.
Table 6 presents mean duration of the sessions detailing each
subsection. All the participants underwent the four experimental
sessions as stated in the protocol, except one participant who

TABLE 6 | Mean duration of the sessions (total and each section’s).

Session Introduction Motor Cognitive

stimulation

Body

expression

Conclusion Total

MEAN DURATION (MIN)

CT 0.57 8.28 7.50 1.55 0.56 18.48

RAT 1 2.70 8.75 9.70 2.50 1.27 25.54

RAT 2 1.34 8.46 9.78 1.93 1.80 23.68

RAT 3 0.19 7.88 8.38 1.67 1.08 20.90

Total

mean

1.2 8.34 8.84 1.91 1.18 22.15

SD 1.11 0.36 1.10 0.42 0.51 3.10

refused to take part in the CT session. Table 7 presents a
summary of a RAT session.

Engagement in the Psychomotor Intervention
Results indicated a high constructive engagement of
participants in both CT and RAT sessions. Table 8 shows
the comparison of percentages in time of the different types
of engagement for CT and RAT sessions, first for the entire
session (all sections included) then for each subsection. To
compare the engagement percentages in both conditions
(CT and RAT), the values for the three RAT sessions were
averaged.
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TABLE 7 | Summary of a RAT session.

Dialogues Behaviors

INTRODUCTION

Therapist: Hello Mr. X, hello NAO. [looks at the patient, then at NAO]

NAO: Hello Mr. X I think that we have already met. I am happy to see you again.

Personalized content: this is the second time Mr. X meets NAO

[looks at the patient, waves hand to say hello]

Therapist: How do you feel in your body today NAO? [looks at NAO]

NAO: I feel great in my body but my joints are not still well awaken. What about you Mr. X? [looks at the patient, head movement]

Patient: I do not feel very well today.

NAO: Ok Mr. X. then I will try to make you feel better with our therapist. [arms and head movement]

MOTOR SECTION

Therapist: We will begin by a short awakening, moving the different parts of our body. Which

part of your body would you like to move first Mr. X?

[looks at the patient]

Patient: My hands.

Therapist: NAO, do you have an idea for exercising our hands? [looks at NAO]

NAO: Yes of course! We are going to open and close our hands, like this. [opens and closes its hands, looks at the patient]

NAO: Now, let’s do this together! [opens and closes its hands, looks at the patient]

Patient: [opens and closes his hands like NAO]

NAO: Very well done Mr. X. [affirmative head movement and applause]

COGNITIVE STIMULATION SECTION

Therapist: NAO, now that we have moved pretty well, I suggest that we take some time for

speaking together and activating our brain.

[looks at NAO]

Therapist: Would you like Mr. X, if NAO asks us some riddles? [looks at the patient]

Patient: Yes.

Therapist: NAO, could you ask us a riddle about cooking? [Looks at NAO]

NAO: Yes, of course! Which ingredients do we need to cook pancakes?

Personalized content: Mr. X. likes cooking

[looks at the patient, head and arms movement]

Patient: eggs, flour, sugar, milk and salt!

NAO: Well done! I would love to know as many things as you do once! [affirmative head and arms movement]

BODY EXPRESSION SECTION

Therapist: I suggest that we end the session with a shout of joy! [looks at the patient and then at NAO]

Therapist: NAO, could you show us a choreography with movements and sounds to set up

our shout of joy, please?

[looks at NAO]

NAO: with pleasure! I am going to show you how to do it for the first time:

“BA DA KA”

[NAO speaks loudly and shows the choreography to patient and

therapist]

NAO: Now, let’s do it together Mr. X. [looks at the patient, inviting head and arms movement]

Patient: yes. Together patient, therapist and NAO do the choreography and shout

“BA DA KA”

Therapist: Now, I suggest to do it again and shout louder! [looks at the patient and then at NAO]

NAO: Yes, of course Together patient, therapist and NAO do the choreography and shout

“BA DA KA” louder than the first time

CONCLUSION

Therapist: Now we have to say goodbye to NAO because it has to rest a little while. [looks at the patient, then at NAO]

NAO: I had a very nice time with you Mr X. Goodbye Mr. X. [waves hand to say hello]

Patient: Goodbye little boy. [looks at NAO]

Therapist: Goodbye NAO. [looks at NAO]

NAO: [NAO stretches and folds down]

No significant difference between CT and RAT sessions
was observed in any dimension of engagement, except
for a significant increase in passive engagement in the
Cognitive Stimulation section of RAT sessions. Robot
engagement (i.e., participant disengaged from the target
activity and focused on the robot) was observed in RAT but
its duration was very short to consider the robot as a source of
distraction.

We analyzed the relationship between Constructive
Engagement, cognitive status (MMSE) and neuropsychiatric

symptoms (NPI). The levels of Constructive Engagement in
RAT sessions and the severity of neuropsychiatric symptoms
were positively correlated (r = 0.68, P < 0.05, Spearman’s
rank correlation), showing that patients presenting behavioral
symptoms such as apathy or agitation responded well to RAT.
The correlation between Constructive Engagement and
neuropsychiatric symptoms was not observed for the CT session.
Furthermore, no association was observed between cognitive
status (MMSE) and Constructive Engagement (independently of
the condition).
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TABLE 8 | Mean time percentage for the different types of engagement in CT and RAT sessions.

Type of engagement MPES Entire session Motor section Cognitive section Body Expression section

CT RAT CT RAT CT RAT CT RAT

Constructive engagement 88% 81% 85% 79% 91% 83% 97% 84%

p-value 0.069 0.108 0.091 0.176

Passive engagement 6% 12% 8% 15% 4% 12% 3% 10%

p-value 0.069 0.063 0.028* 0.138

Robot engagement / 5% / 4% / 4% / 5%

Other engagement 5% 2% 7% 2% 4% 1% 0% 1%

p-value 0.344 0.075 0.593 0.18

No engagement 1% 0% 0% 0% 1% 0% 0% 0%

CT, Classic therapy; RAT, Robot-assisted therapy (mean of the 3 sessions); *Statistically significant values.

Emotional Impact of the Intervention
The emotional impact of the intervention was assessed using
the three kinds of responses from the “Emotional engagement”
dimension of the MPES: anxiety/sadness (tearfulness, depressed
affect), relaxed/at ease (neutral expression, calmed), and pleasure-

related (evident manifestations of happiness, cheerfulness). In

both conditions participants appeared to be most of the time

relaxed and at ease (91% of the time in CT and 87% in RAT).
Negative emotional responses were practically non-existent.
Obvious pleasure-related responses were noticed during short
periods of time, compared to the prevalent neutral/relaxed
facial expression of participants during the therapy sessions.
Nevertheless, results showed a significant statistical difference
(p= 0.018) between CT and RAT sessions regarding the duration
of pleasure-related responses (9 and 13% respectively) (Figure 8).

Immediate wellbeing (i.e., participant reporting feeling better
after the end of the therapeutic session than before) was
assessed using the difference in the EVIBE score after and
before each therapy session. Highest scores indicate a highest
improvement in immediate wellbeing. EVIBE scores showed a
greater improvement in wellbeing in RAT sessions than in CT
sessions (0.56 vs. 0.22 respectively), but this difference was not
statistically significant.

The person’s emotional state in the short term was analyzed
by comparing the PANAS score at the baseline (baseline) and at
the end of the intervention program. Results showed a significant
improvement of positive affects (e.g., interested, excited, strong,
enthusiastic, inspired, proud, alert, determined, attentive, active)
(9.78 vs. 13.67, p = 0.01) and a decrease of negative affects
(distressed, upset, guilty, ashamed, hostile, irritable, nervous,
jittery, scared, afraid) (9.56 vs. 7.89, p = 1.125) that was not
statistically significant.

Satisfaction of the Intervention and Appreciation of

the Robot
Globally, all participants were satisfied with the intervention
program. However, PwD preferred the RAT sessions rather than
the CT one (RAT 4.31/5 vs. CT = 3.63/5). This difference
regarding the modality of the therapy was statistically significant
(p = 0.027). The robot was very well accepted by all participants
as shown by a satisfaction score of 4.7/5.

FIGURE 8 | Emotional engagement in CT and RAT sessions.

Empathy Related Behavior in RAT Sessions
During the RAT sessions, various verbal and non-verbal
empathy-related behaviors were observed in participants while
interacting with the robot. Table 9 provides an overview of
the empathy-related behaviors exhibited by the participants. It
also includes the number of participants who displayed these
behaviors.

Qualitative analysis of video recordings showed that, when
talking directly to the robot, three out of nine participants mostly
used short sentences (e.g., “yes” or “no”) and initiated little or
no dialogue with it. Among those three PwD, one participant
rarely responded to the robot with a nod of his head and mostly
answered the question looking at the therapist. The other six
participants responded to the robot questions with complex
sentences and spontaneously initiated conversations with it. As
shown in Table 9, all the adjectives used by the participants to
describe the robot were positive.

DISCUSSION

Technical Aspects
The main advantage derived from the control software created
to operate the robot and customize therapy sessions was to
conduct the therapeutic sessions in a smooth, fluid and natural
way. The WOZ technique, used to tele-operate the robot during
the experimentation, enabled the creation of natural, coherent,
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TABLE 9 | Empathy-related behaviors observed in participants during RAT sessions.

Type of behavior Examples Number of participants

(total N = 9)

Calling the robot by its name “Hello NAO” 7

Giving an affective name (nickname) to the robot or

expressing an affective feeling

“My big one”; “My little one”; “My little chicken”; “I begin to love this little guy” 4

Speaking directly to the robot without the

intervention of the therapist

“Yes”; “No”; “Thank You” 8

Using an informal way of addressing the robot “You are cool”; “What’s up?” 7

Complementing the robot “You are nice”; “You are funny”; “You are cute”; “I like you very much” 8

Contagious laughter Smiles and laughs when the robot laughs; “You make me laugh” 8

Being receptive to robot’s compliments Smiles or laughs ; “Thank you NAO”; “I am proud of your compliments” 6

Attributing an emotional state to the robot Asking the therapists what was the proper way to address the robot using

“Vous” (formal) or “Tu” (familiar); “Are you tired?”; “Are you happy?”; “Do you like

this?”; “Are you laughing at me?”

8

Attributing an environment or a life history to the

robot

Asking whether NAO was a boy or a girl; “Will you grow up”; “Do you have a

girlfriend?”; “Your mother educated you very well”; “What do you eat?”

4

Attributing the robot the ability to understand one’s

emotional state

“I hope that I have not disappointed you” 2

Positive behavioral manifestations Kissing, hugging, touching the robot 8

and timely robot’s verbal and non-verbal responses and thus
to increase its capacities. However, this choice implied that the
robot was not able to perform any automatic behavior. Operating
the robot using the WOZ technique required thus a special
sensitivity and sustained attention for achieving a high-quality
HRI. Besides, the experimenter had to know well how to navigate
the control interface and the location and contents of action
buttons. In our case it was the developer of the software who
played the role of “wizard,” circumstance that simplified the
task. However, the use of the control interface by an external
user, despite its intuitiveness, would surely require extensive
training.

In order to improve the operation of the robot in future work
some possibilities can be considered:

(a) Automatizing some of the robot’s behaviors, for instance
by linking automatically the behaviors of the robot, one
after the other, after triggering an action. By implementing
this procedure, the number of buttons to handle in the
control interface could be reduced and also the number of
interventions required from the operator. Still, the risk of
“over-automatizing” NAO’s behavior is to greatly reduce the
naturalness of the interaction.

(b) Simplifying the control interface: this option would require
to group by categories different actions of the robot.
Following this option, it could be possible to have an
initial list of activity sections (e.g., introduction, motor,
cognitive, etc.). The operator would then select the category
wanted and a menu would display a page grouping again
various subcategories of actions according to the choice.
Adding a random option for some behaviors, such as the
“Encouragements,” that would be operated by using a single
button instead of using a specific button for each phrase also
goes in this direction;

(c) Defining a decisional tree of actions allowing to link
automatically one action with the previous one, as proposed
in the study of Sehili et al. (2014). However, although
possible, this method would require an important work of
reflection and planning to retain the flexibility of the control
interface proposed in this study.

Finally, the technical setting used for this study resulted somehow
complicated (e.g., transporting and installing the computer,
connecting the robot by a cable, needing to accommodate
the robot operator in the experimental setting). It would be
interesting to adapt the control software to allow its use on a
tablet, a smartphone, or any other mobile tool. After simplifying
the software, the therapist could be able to operate the robot by
himself. This solution has already been put into practice in other
studies (Martín et al., 2013).

Factors of RAT Acceptance
Results from this experimental study showed a high level
of constructive engagement among PwD throughout the
intervention (indistinctly from the condition), increased
manifestations of pleasure in RAT sessions, compared to CT
sessions, a better appreciation of RAT sessions over CT sessions,
and the exhibition of a wide range of empathy-related behaviors
of PwD during RAT. All these findings represent good indicators
of the advantage of using a humanoid robot for this kind of
therapeutic intervention.

The choice of the humanoid robot NAO, the personalization
of sessions, the “internal harmony” of the character created,
empathy-related responses from the robot, and the characteristics
of the therapeutic framework proposed, appeared to have
contributed to create a well-accepted RAT intervention. In this
section we discuss briefly these aspects:
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(a) The choice of a humanoid robot: The humanoid aspect of
NAO is a factor that facilitates its acceptance. Previous
studies in this area had already confirmed the acceptance of
this humanoid robot among elderly users (Wu et al., 2012;
López Recio et al., 2013; Martín et al., 2013; Pino et al., 2015;
Valentí Soler et al., 2015). Libin and Libin (2004) had also
discussed that a key challenge of socially assistive robotics is
to create robots that are able to imitate human behavior on
the cognitive, motor and emotional level.

(b) Personalization: The flexibility of the NAO programming
platform was an asset for the construction of personalized
therapeutic sessions. Several studies have shown that
dementia care interventions that have the greatest impact
on behavioral disorders are those that are adapted to the
person’s cognitive, motor, and sensory abilities (Cohen-
Mansfield et al., 2007) and tailored to the preferences of the
person (Gerdner, 2000). The neuropsychological assessment
and the use of the self-identity questionnaire (SQI) at the
baseline of the experimental study, allowed us to accurately
define participants’ cognitive profile, and to identify their
preferences and interests. This piece of information, used
to program the content of the sessions, appeared to support
RAT acceptance.

(c) The “internal harmony” of the robot: Another factor
that could have contributed to RAT acceptance was
the interaction style given to the NAO in our study.
Regarding verbal and non-verbal communication, the
robot was programmed to use simple sentences for
facilitating understanding by elderly persons with cognitive
impairment. Some of its behaviors were modeled also to
be childlike and non-judgmental, in order to make the
robot more likeable. This interactional style used to program
robot’s behavior was coherent with “childish” aspect of NAO.
The concept of “internal coherence,” suggested by Tisseron
(2015), could explain the effects of our design choices on
robot’s acceptance. For this author, the acceptance of a social
robot would strongly depend, not on its aspect but on its
“internal harmony.” This means, the coherence between its
appearance and of its reactions.

(d) Empathy-related responses: For this study, NAO was
designed to adapt to the cognitive level of PwD, for instance
by adjusting the difficulty of exercises to each person’s
capacities, and by being supportive when the participant
experienced some difficulties. For some participants NAO
laughter facilitated the interaction with it. Fasola andMatarić
(2010) have suggested that the motivation to interact with a
social robot grows stronger if the interaction is adapted to the
user’s cognitive capacities. Being empathic, reassuring, and
providing the participant with positive feedback (Vallerand,
1983) was in this perspective, another factor that could have
added to the acceptance of the robot.

Several studies have highlighted as well the capacity humans
have of empathic responses with artificial companions. Suzuki
et al. (2015) demonstrated that humans can sympathize with
the pain of a robot from a physiological point of view: in
a painful situation for a robot, a neuronal response involved

in empathic behavior was observed in a group of persons
using an EEG (electroencephalogram) measure. Rosenthal-Von
Der Pütten et al. (2014) showed an activation of the same
emotional neuronal circuits when participants watched some
videos showing either a human hurting another human or a
human hurting a dinosaur-like robot. Activationwas nevertheless
more important in situations where humans were harming
another human.

In order to better understand the quality of the interactions
of PwD with NAO in our study, we used the model of empathy
applied to HRI, proposed by Tisseron et al. (2015). This model is
structured into four dimensions: (a) the self-empathy, empathic
relationship with oneself; (b) the direct empathy, allowing the
attribution of emotions and views to others; (c) the reciprocal
empathy, thinking that another is able to feel our own emotions;
and (d) the intersubjective empathy, thinking that others can
bring us knowledge about ourselves and our emotional states.
In our study eight participants showed direct empathy with the
robot, that is, they attributed the robot emotional states and
its own perspectives. Two persons showed reciprocal empathy,
imagining that the robot was able to guess their emotions, or that
the robot had emotions in their regard. One participant, showed
intersubjective empathy by telling NAO that his compliments
made him proud.

We observed conversely that when empathy-related behaviors
toward the robot were absent, or uncommon, the adherence to
the RAT appeared to be lower. In our study, the only participant
who did not address the robot directly, did not attribute emotions
to it, neither used qualifying adjectives when talking to/about the
robot, appeared disengaged from the therapeutic activity. In sum,
empathy toward the robot seems to be associated to engagement
in RAT, but more research is needed to better measure and
understand this association.

(e) The therapeutic framework: In our study, the therapist was
a vehicle for constructive engagement in the CT sessions. The
NAO robot, by its social characteristics, its humanoid aspect,
and its social and affective behavior, also had the effect of
engaging actively PwD. However, it is not possible to conclude
that engagement observed in RAT is entirely due to the NAO
itself. We observed that the therapist had an essential role in
facilitating HRI as well. Indeed, at several times the therapist
showed the participant how to talk to the robot or to touch
it. The therapist in our framework created a true collaborative
relationship with the robot as her assistant, contributing probably
to help the participant accept and collaborate with the robot
in a similar way. Further studies should explore this finding
by comparing engagement of PwD in the three conditions: the
therapist alone, the robot alone, and the therapist and the robot
working together.

Studying Engagement in RAT
Overall results of this pilot study showed elevated levels of
constructive engagement in both conditions (CT and RAT)
comparatively higher in the first one. Conversely, passive
engagement was more pronounced in RAT sessions. Though
these results did not reach statistical significance, they are
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consistent with Cohen-Mansfield et al. (2010) study in which
engagement toward 23 different stimuli, representing different
levels of social attributes, was examined in 193 PwD. Results
from their study showed higher levels of engagement and more
positive attitude toward social, realistic and animated stimuli.
Human and live stimuli appeared to be more engaging than non-
human and non-alive stimuli. In our study the therapist was a
vehicle for constructive engagement in the session. The robot
NAO, encompassing most of the previously cited stimuli features
that usually engage PwD, incited high levels of constructive
engagement as well, even if it was a lower level than a real human
(therapist).

From a methodological perspective, we found video-analysis
to be a suitable method to examine and measure behavioral
and emotional engagement in PwD during the course of an
activity. However, the categories of engagement originally used
in the MPES (Judge et al., 2000) resulted somehow too general
in the context of RAT because they do not allow the distinction
between the specific effect of the robot from the effect of the
therapist or that from the environment. Also, in the MPES
protocol it is not possible to differentiate the specific kind of
behavior supporting engagement (e.g., visual, verbal, physical
or emotional). This level of detail seems important in order to
appreciate the analyze the contribution of robotic mediation. The
Video Coding—Incorporating Observed Emotion (VC-IOE) tool
developed by Jones et al. (2015) might provide a more coherent
and comprehensive method for the assessment of engagement
and merits to be tested in future studies.

Limitations of the Study
The present study presents some methodological limitations that
should be taken into consideration when interpreting the above
presented findings.

First, because of its exploratory nature it included a very
limited number of participants and of therapy sessions. Further
studies in this area should involve a larger number of subjects and
a greater number of sessions in order to investigate RAT effects in
the medium and long-term. Also, the sample group in this study
was very heterogeneous regarding their clinical profile, aspect
that limited the possibility of identifying profiles of respondents.
This aspect would be an interesting dimension to examine in
future work.

A third limitation refers to the absence of a valid control
group. In our pilot study each patient participated only in
one CT session but in three RAT sessions. This study design
was chosen because of time constraints, with the idea of
giving the priority to the observation of RAT sessions while
keeping at the same time a baseline evaluation using a
conventional therapeutic setting (patient-therapist). Since the
assessment of clinical effects of the intervention was not the
objective of the research, we accepted to keep the disparity
between the two conditions; however, this choice impacted
the quality of the results and limited the possibilities of
analysis. Further studies should include a control condition truly
comparable with the experimental one in terms of contents and
frequency.

Finally, the results of this research should also be interpreted
taking into consideration the technical possibilities of social

robots today. In our experiment the robot NAO was completely
controlled by an external operator who used theWOZ technique.
Consequently, the observed interactions between NAO and the
patients who took part in the study do not reflect to the current
capabilities of such a robot. Indeed, we observed very positive
HRI during RAT sessions. However, most of these interactions
took place between humans: the patient, the therapist and the
“wizard” who operated the robot. The fact that the robot behaved
very “humanly” could explain why levels of engagement were
very similar in the CT condition and in RAT sessions. We
believe that this kind of “controlled” experiments are necessary to
progress in the definition of the framework of RAT. Nevertheless,
it seems important that future studies integrate progressively
robot automation in order to examine the real possibilities of HRI
with persons with cognitive impairment.

CONCLUSION

The results of this exploratory study confirmed the feasibility
of robot-assisted psychomotor therapy for PwD. We were able
to identify some encouraging indicators in favor of using the
NAO robot in such kind of therapeutic program: a very good
appreciation of the robot within this context, high positive
emotional responses in RAT sessions, a better appreciation of
RAT sessions, and a positive correlation between engagement
of PwD in RAT sessions and the level of neuropsychiatric
symptoms. Indeed, the robot NAO can be considered as a
mediating tool favoring patients’ engagement in psychomotor
therapy when the therapist finds it difficult to motivate and
involve the person in the intervention.

After improvement and simplification of the control software
a larger trial would help to examine the clinical benefits of this
kind of intervention, and to better understand the emotional
impact of social robots in PwD. Future studies should also focus
on the conception and assessment of other kinds of RAT for
dementia care, such as physiotherapy or speech therapy.
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During occupational therapy for children with autism, it is often necessary to elicit and 
maintain engagement for the children to benefit from the session. Recently, social robots 
have been used for this; however, existing robots lack the ability to autonomously recog-
nize the children’s level of engagement, which is necessary when choosing an optimal 
interaction strategy. Progress in automated engagement reading has been impeded in 
part due to a lack of studies on child-robot engagement in autism therapy. While it is 
well known that there are large individual differences in autism, little is known about how 
these vary across cultures. To this end, we analyzed the engagement of children (age 
3–13) from two different cultural backgrounds: Asia (Japan, n = 17) and Eastern Europe 
(Serbia, n =  19). The children participated in a 25 min therapy session during which 
we studied the relationship between the children’s behavioral engagement (task-driven) 
and different facets of affective engagement (valence and arousal). Although our results 
indicate that there are statistically significant differences in engagement displays in the 
two groups, it is difficult to make any causal claims about these differences due to the 
large variation in age and behavioral severity of the children in the study. However, our 
exploratory analysis reveals important associations between target engagement and 
perceived levels of valence and arousal, indicating that these can be used as a proxy 
for the children’s engagement during the therapy. We provide suggestions on how this 
can be leveraged to optimize social robots for autism therapy, while taking into account 
cultural differences.

Keywords: autism, engagement, social robots, affective computing, human-robot interaction

1. inTrODUcTiOn

Autism spectrum conditions is a term for a group of complex neurodevelopmental conditions 
characterized by different challenges with social and reciprocal verbal and non-verbal commu-
nication, and repetitive and stereotyped behaviors (DSM-5, 2013). Social challenges are related 
to limitations in effective communication, social participation, social relationships, academic 
achievement, and/or occupational performance, individually or in combination. The onset of 
the symptoms occurs in the early developmental period, but deficits may not fully manifest until 
social communication demands exceed limited capacities. A recent meta-analysis based on 51 
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studies comparing children with autism and typically develop-
ing controls demonstrated a large effect size for motor issues in 
gait, postural control, motor coordination, upper limb control, 
and motor planning in autism (Fournier et al., 2010). Moreover, 
the overall motor performance is associated with the severity 
of diagnostic symptoms (Dziuk et al., 2007; Hilton et al., 2012), 
level of adaptive functioning (Kopp et  al., 2010), and social 
withdrawal (Freitag et  al., 2007). Children with autism also 
have difficulties in interpersonal synchrony (Marsh et al., 2013), 
which involves coordinating one’s actions with those of social 
partners, requiring appropriate social attention, imitation, and 
turn taking skills (Isenhower et al., 2012; Vivanti et al., 2014).

Early engagement with the world provides opportunities for 
learning and practicing new skills, and acquiring knowledge 
critical to cognitive and social development (Keen, 2009; 
Kishida and Kemp, 2009). However, in children with autism, 
displays of engagement are usually perceived as of low intensity, 
particularly in their social world (Keen, 2009). This limits the 
learning opportunities that occur naturally in their typically 
developing peers. For instance, Ponitz et al. (2009) showed that 
higher levels of engagement in typically developing children 
are correlated with better learning outcomes: kindergartners 
who were identified as more engaged in classroom activities 
had higher literacy achievement scores at the end of the year 
than those with lower levels of engagement. Odom (2002) found 
that the engagement level of children with autism in inclusive 
settings was comparable to children with other disabilities, and 
slightly lower when compared to children who were develop-
ing typically. However, Kemp et al. (2013) found that children 
with autism were engaged during free play activities only half 
of the time compared to children with other disabilities, who 
were engaged in free play activities. Likewise, Wong and Kasari 
(2012) found that preschoolers with autism in self-contained 
classrooms were disengaged for a lower amount of time during 
classroom activities (e.g., free play, centers, circle, and self-care 
activities). Possible reasons for the variability of engagement 
across these research studies include various definitions of 
engagement used, different activities/tasks (e.g., free play, circle 
time, and routines), type of classroom (e.g., self-contained 
versus inclusive), and child to adult ratio. This is in part due to 
the lack of consensus about both definition and measurement 
of engagement in population with autism (see e.g., McWilliam 
et  al. (1992) and Keen (2009)). Furthermore, all the studies 
mentioned above assess the engagement via external observers 
and/or questionnaires, which can be lengthy and tedious. All 
this poses limitations for educators primarily, but also computer 
scientists aiming to build the technology (i.e., social and affec-
tive robots) that can be used to assess and measure the children’s 
engagement in a more effective and objective manner. To this 
end, we need first to find a suitable definition of engagement, 
investigate the related behavioral cues, and then build the tools 
and methods for its automatic measurement.

Russell et  al. (2005) defines engagement as “the amount of 
time children spend interacting with the environment (with 
adults, children, or other materials) in a manner that is develop-
mentally appropriate.” Engagement is also defined as “energy in 
action”—the connection between a person and activity; an active, 

constructive, focused interaction with one’s social and physical 
environment—consisting of three forms: behavioral, affective 
(emotional), and cognitive (Russell et al., 2005; Broughton et al., 
2008). As described by Keen (2009), behavioral engagement 
refers to participation or involvement in learning activities and 
is related to on-task behavior, while affective engagement refers 
to the child’s interest in the activities (also expressed by different 
emotions and moods). For example, in the autism therapy with 
robots, Kim et  al. (2012) defined behavioral engagement on a 
0–5 Likert scale, each level corresponding to a set of the pre-
defined responses by the child to the tasks and prompts from the 
therapist. Likewise, in robot interaction with typically develop-
ing children, affective engagement is defined as “concentrating 
on the task at hand and willingness to remain focused” (Ge et al., 
2016). Cognitive engagement can best be described as the child’s 
eagerness or willingness to acquire and accomplish new skills 
and knowledge, and it relates to the goal directed behavior and 
self-regulated learning (Connell, 1990; Fredricks et  al., 2004). 
As an example, Meece et al. (1988) measured the students’ per-
formance in various learning tasks, providing evidence for the 
better school performance as a consequence of being focused 
on mastering a task, persisting longer, and expressing positive 
affect toward the task, thus, a combination of behavioral, affec-
tive, and cognitive engagement. While these three-dimensional 
constructs of engagement have been widely accepted, little 
attention has been paid to their contextual dimension. The latter 
is particularly important, as in order to measure engagement, 
we need to know whether the child is actively participating in 
target activity in a contextually appropriate manner (McWilliam 
et al., 1992; Eldevik et al., 2012). For this, we need also to gather 
information about the background context (Appleton et  al., 
2006), which can be described by a number of variables, such 
as the child’s demographics (age, gender, and cultural back-
ground), behavioral severity, individual vs. social interaction 
(Salam and Chetouani, 2015a), the use of tablets vs. robots, the 
type of therapy/tasks, and so on. To capture some aspects of 
this context taxonomy, Salam and Chetouani (2015b) proposed 
a model of human-robot engagement based on the context of 
the interaction (e.g., social, competitive, educative, etc.). A more 
recent work by Lemaignan et  al. (2016) formalizes “with-me-
ness,” a concept borrowed from the field of computer-supported 
collaborative learning, to measure to what extent the human is 
engaged with the robot (on a Likert scale 0–5) over the course 
of an interactive task. While useful in measuring the attentional 
focus of the children interacting with a robot, “with-me-ness” 
does not quantify the behavioral engagement that we address in 
this work. Specifically, we adapt the engagement definition from 
Kim et al. (2012), focusing on the task-response time to define 
engagement levels on a 0–5 Likert scale. We study how levels of 
this behavioral engagement vary as a function of (i) context (the 
task, culture, and behavioral severity of the children) and (ii) dif-
ferent facets of the children affective engagement (the perceived 
valence and arousal levels and the face expressivity, as described 
in Sec. 2). Note that most of the works on engagement in human-
robot interaction (HRI) report binary engagement (engaged vs. 
disengaged) mainly due to the difficulty in capturing subtle 
changes in engagement displays. However, when more complex 
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interactions are considered, such coarse definition is insufficient 
to explain differences in the children’s behavior. To the best of 
our knowledge, this is the first study that analyses the behavioral 
engagement (on a fine grained intensity scale) of children with 
autism, and in the context of assistive social robots deployed in 
different cultures.

2. engageMenT anD aFFecT

The most commonly used model of affect Russell and Pratt 
(1980) suggests that all affective states arise from two funda-
mental neurophysiological systems, embedded in a circumplex 
with two orthogonal dimensions: valence (pleasure–displeasure 
continuum) and arousal (sleepiness–excitement continuum). 
Buckley et  al. (2004) found that both positive valence and 
arousal are good indicators of emotional engagement in learning 
tasks. Conversely, musical engagement has been shown to be a 
good predictor of perceived valence and arousal (Olsen et  al., 
2014). A study on happiness found that the more the subjects 
were engaged and satisfied, the more they experienced positive 
valence and high arousal (Pietro et al., 2014). In the context of 
HRI, Habib (2014) provides analysis of relationships between the 
self-reported levels of valence and arousal, and the task difficulty, 
which was directly related to the user’s “mental” engagement 
with the task (engaged vs. being bored). Studies on the design of 
engaging personal robots emphasize the importance of these two 
dimensions for optimizing HRI (Breazeal, 2003). For instance, 
Castellano et al. (2014b) showed that in the child-robot interac-
tion, the children’s valence, interest, and anticipatory behavior 
are strong predictors of the (social) engagement with the robot. 
Motivated by these findings and considering that expressions 
of affect are expected to differ significantly in children with 
autism (Volkmar et  al., 2005); in this work, we investigate the 
relationship between (perceived) valence and arousal, as two 
components of affective engagement, and the target behavioral 
engagement in the context of autism therapy with social robots. 
Note that arousal (and other facets of affect such as the face 
expressivity) can be measured from outward behavioral cues, 
e.g., facial expressions (Gunes et al., 2011), as well as inward cues, 
e.g., physiological signals such as the skin conductance response 
of the autonomic nervous system (Picard, 2009; Hedman et al., 
2012). In this study, we limit our consideration to the outward 
behavioral characteristics of valence and arousal.

3. engageMenT in aUTisM TheraPY 
WiTh sOcial rOBOTs

Engagement with social robots for children with autism is about 
drawing their attention and interests toward both robot and 
social tasks, and maintaining the prolonged therapy sessions 
(Scassellati et al., 2012). Furthermore, educational, therapeutic, 
and assistive aspects of HRI are highly motivating environments 
for children with autism due to the simple, predictable, and non-
intimidating nature of robots compared to humans (Robins et al., 
2005; Scassellati, 2007). Also, the interaction mechanism in the 
field of assistive robots for children with autism is more focused 

on the social aspects of interaction than the physical interac-
tion (Fong et al., 2003), such as joint attention, turn-taking, or 
imitation behavior, which are important target behavior for the 
children (Scassellati et al., 2012). In this context, the effectiveness 
of social interaction between robots and children increases when 
robotic systems have the capacity of generating coordinated and 
timely behaviors relevant to social surroundings (Breazeal, 2001). 
Such adaptive strategies for social interaction are expected to 
become the basis of a new class of interactive robots that act as 
“friends” and “mentors” to improve children’s experience during, 
for instance, the hospital stay, and support their learning (Kanda 
et al., 2007; Belpaeme et al., 2013). It is, therefore, critical that the 
robots are able to engage the children in target activities. In social 
robotics, engagement is usually approached from the perspective 
of the design of the robot’s appearance and its interaction capabil-
ity. For instance, Tielman et al. (2014) showed that a robot that 
changed its voice, body pose, eye-color, and gestures in response 
to the emotions of children was perceived as more engaging than 
a robot that did not exhibit such adaptive behaviors. Similarly, 
Shen et al. (2015) showed that when the robot feedback based on 
the perceived user’s sentiment is provided, as part of an emotion 
mimicry interaction, the users’ were more engaged than when 
only a plain mimicking of the users was performed by the robot. 
In what follows, we review recent work providing evidence of 
engagement of children during interaction with robots and in the 
context of autism. We refer interested readers to Breazeal (2003, 
2004) and Scassellati et  al. (2012) for more detailed reviews of 
recent advances in social robotics.

The role of social robots in autism therapy is primarily 
(i) to act as a mediator between the therapist/caregiver and 
children with autism (Robins et al., 2010; Thill et al., 2012)—as 
in our study, (ii) to provide an interactive object to draw and 
maintain the children’s attention (Robins et al., 2006), and (iii) 
to be a playful device facilitating the children’s entertainment 
during the therapy (Scassellati et al., 2012). The advantages of 
using robots are, therefore, to help the children with autism 
to perceive and respond to the outside world through the 
least invasive exercises. This is mainly because the robots can 
modulate their behavioral responses according to the children’s 
internal dynamics and are capable of repetitive behavior, in 
contrast to humans (Wainer et  al., 2014). The application of 
interactive robots for development of communication skills 
in children with autism has been shown in many studies to 
be effective (Robins et al., 2008). Scassellati et al. (2012) and 
Diehl et  al. (2012) observed repeatedly that children who 
suffer from difficulties in communication with other people 
surprisingly started to interact with them more easily when the 
communication was assisted with the robots. In a comparison 
of the responses to a robot vs. virtual agent environments, 
Dautenhahn and Werry (2004) showed that the children with 
autism were more engaged in playing a chasing game with the 
robot.

Imitative behaviors such as “reach-to-grasp” tasks performed 
by a human and by a robot were found more engaging and moti-
vating when a robot was used (Pierno et al., 2008; Suzuki et al., 
2017). In a pilot study of child-robot interactions (age 2–4) with 
a toy robot, capable of showing signs of attention by changing 
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its gaze direction, and of articulating the emotional displays 
of pleasure and excitement, Kozima et  al. (2007) showed that 
these positively engaged and influenced the children’s emotional 
responses. Similarly, Stanton et al. (2008) reported that children 
with autism preferred to play with an interactive robotic dog 
(AIBO) rather than a toy having similar appearance but no 
interaction features. De Silva et al. (2009) proposed a therapeutic 
robot for children with autism, showing that children enjoyed 
interaction with the robot and that this approach enhanced their 
attention, based on an analysis of their eye-gaze. François et al. 
(2009) used a robot-assisted play, with the game designed in 
conformity with individual needs and abilities of each child. The 
authors validated their approach with a group of children with 
autism that were engaged in a non-directed play with a pet robot 
(Aibo ERS-7), which can assess the children’s progress across 
three dimensions: play, reasoning, and affect, showing that each 
child exhibited highly individual patterns of play. Wainer et al. 
(2010) assessed collaborative behaviors in a group of children 
with autism, showing that the interaction with robots was more 
engaging, fostering collaboration among the groups through a 
more active interaction with their peers during the robot sessions. 
Focusing on behavioral cues of children with autism and those 
of their typical peers during interaction with NAO, Anzalone 
et  al. (2015) showed that the children with autism exhibited 
significantly lower yaw movements and less stable gaze, while 
the posture variance was significantly lower in typical children, 
during a joint attention task. To summarize, all these studies 
evidence the benefits of using robots for facilitating the learning 
and interaction of children with autism. One limitation is the dif-
ficulty in generalizing these findings and comparing them across 
studies as different settings and performance measures were used. 
For this reason, in our analysis of engagement across the two cul-
tures, we focus on two identical situations set in similar contexts  
(as described in Sec. 6).

4. cUlTUral DiFFerences

The importance of cultural diversity when studying different 
populations has been emphasized in a number of psychology 
studies (Russell, 1994; Scherer and Wallbott, 1994; Elfenbein 
and Ambady, 2002). For instance, the work by Scherer and 
Wallbott (1994) provides evidence for cultural variation in emo-
tion elicitation, regulation, symbolic representation, and social 
sharing among populations from 37 countries. Likewise, Ekman 
(2005) found that whereas 95% of U.S. participants associated a 
smile with “happiness,” only 69% of Sumatran participants did. 
Similarly, 86% of U.S. participants associated wrinkling of the 
nose with “disgust,” but only 60% of Japanese did (Krause, 1987). 
Thus, subjective interpretation of specific emotions (i.e., primar-
ily the cognitive component of emotion) differs across cultures 
(Uchida et  al., 2004). These are seen as “cultural differences in 
perception, or rules about what emotions are appropriate to 
show in a given situation.” Culture also influences expressiveness 
of emotions (Immordino-Yang et  al., 2016). There are rather 
consistent patterns across Eastern and Western cultures, although 
differences also exist across cultures, and sometimes even within 
cultures (An et  al., 2017; McDuff et  al., 2017). Recently, Lim 

(2016) explored cultural differences in emotional arousal level 
between the East and West, focusing on the observation that high 
arousal emotions are valued and promoted more than low arousal 
emotions in the West. On the other hand, in the East cultures, 
low arousal emotions are valued more than high arousal emo-
tions, with people preferring to experience low rather than high 
arousal emotions. Nevertheless, apart from a handful of works, 
virtually all studies on cultural differences focus on the typically 
developing population. Below, we focus our studies on cultural 
differences in autism.

Since autism also involves social challenges, its treatment 
and interventions need to be tailored to target cultures (Dyches 
et al., 2004; Kitzhaber, 2012; Cascio, 2015). Several cross-cultural 
studies highlight that the culture-based treatments are crucial for 
individuals with autism (Tincani et al., 2009; Conti et al., 2015). 
For example, Daley (2002) argues that the transcultural1 supports 
are needed for the pervasive developmental conditions, including 
autism. So far, only a few studies have been conducted in this 
direction. Perepa (2014) conducted a study that investigated the 
cultural context in interventions for children with autism and with 
a diverse cultural background—British, Somali, West African, 
and south Asian. They found that the cultural background of 
the children’s parents is highly relevant to their social behavior, 
emphasizing the importance of transcultural treatments for 
children with autism. However, one limitation of this study is 
that the target children all lived in the UK, and, thus, the role 
of the cultural context may have been reduced. Libin and Libin 
(2004) showed that the children’s background, such as culture 
and/or psychological profile, can have a large impact on the robot 
therapy. Specifically, the authors conducted cross-cultural studies 
with Americans and Japanese in an interactive session using the 
robot cat called NeCoRo. Among other findings, they showed 
that, overall, Americans enjoyed more patting the robot than 
Japanese. Thus, accounting for cultural preferences is important 
when designing interactive games with robots. However, we are 
unaware of any published studies that looked into cultural dif-
ferences in engagement, and, in particular, the social robots for 
autism therapy. A possible reason for the lack of such studies is that 
the heterogeneity in behavioral patterns of children with autism 
within cultures is already so pronounced (Happé et al., 2006). A 
famous adage says: “If you have met one person with autism, you 
have met one person with autism.” Therefore, attempting analysis 
of these differences from a higher level (particularly, in terms of 
different cultures) is a far-fetched goal. Yet, it is necessary to look 
at these differences at multiple levels: within and between cul-
tures, where the former would focuses on differences within and 
between the children with the same cultural background. This, in 
turn, would potentially allow the robot solutions to be adapted 
to each culture first by accounting for the differences that may 
exist among children, followed by individual adaptation to each 
child within a culture (e.g., by focusing on its age, gender, and 
psychological profile). In this work, we analyze multiple facets of 
engagement at each level mentioned above.

1 In this paper, we use the term cross-cultural interchangeably with transcultural, as 
the latter was used in the cited works.
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FigUre 1 | The recording setting at the site in Japan (right) and Serbia (left). The NAO’s expressions of four basic emotions (sadness, fear, anger, and happiness), 
paired with the expression cards, are depicted in the middle. Note that in Japan the children were seated on the floor, while children in Serbia were using a chair—a 
reflection of the cultural preferences.
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5. cOnTriBUTiOns anD PaPer 
OVerVieW

We present a study aimed at analysis of behavioral engagement 
of children with autism in the context of occupational therapy 
assisted with a humanoid robot NAO. By focusing on two cultur-
ally diverse groups: Asia (Japan) and Eastern Europe (Serbia), we 
provide insights into cultural differences of engagement among 
these two groups in terms of (i) the task difficulty, its relation-
ships to (ii) the affective dimensions (valence and arousal), and  
(iii) behavioral cues (facial expressivity). We chose these three 
because they are important for the design of child-robot inter-
actions: (i) is important for the robot’s ability to select a task 
respectful of the child’s abilities, while (ii), (iii) are critical when 
building computer vision and machine learning algorithms 
that can automatically estimate the child’s engagement, and, 
thus, enable robots to naturally engage the children in learning 
activities.

To the best of our knowledge, this is the first study of engage-
ment in the context of social humanoid robots and therapy for 
children with autism across two cultures. Most previous work 
on engagement in autism focused on the discrete engagement 
(engaged vs. disengaged) (Hernandez et  al., 2014) and within 
a culture. By contrast, we provide an analysis of engagement 
on a fine-grained scale (0–5) and in two cultural settings. Our 
exploratory analysis provides useful insights into the relationships 
between engagement dynamics as expressed within and between 
the two cultures, as well as its relationships to the perceived affect 
(valence and arousal). As one of the main findings, we provide 
evidence that outward displays of affect (valence and arousal) can 
be used as a proxy of target behavioral engagement. This con-
firms previous findings on the relationship between engagement 
and affect displays in typical individuals within a single culture 
(Buckley et al., 2004). Based on this, we provide suggestions for 
future research on automated measurement of children’s engage-
ment during robot-assisted autism therapy, which takes the 
cultural diversity of the children into account. We also provide 
an overview of the most recent efforts in the field of social and 
affective robots for autism.

The rest of the paper is organized as follows: we first describe 
the data and methods used to elicit and analyze engagement of 
children with autism. We then present and discuss our results. In 
the light of these results, we provide insights into the current chal-
lenges of engagement measurement (with the focus on automated 
methods) and provide suggestions for future research.

6. research Design, DaTaseT,  
anD cODing

We used the dataset produced by interactions between children 
with autism, specialized therapists, and NAO2 robot. The interac-
tion was recorded as part of occupational therapy for children with 
autism, following steps designed based on the Theory of Mind 
(ToM) (Cohen, 1993) teaching approach to emotion recognition 
and expression (Howlin et al., 1999). In the original version, the 
children are asked by the therapist to pair the images of people’s 
expressive faces (see Figure 1) with four basic emotions (happi-
ness, sadness, anger, and fear (Gross, 2004)) through storytelling. 
For the purpose of the study, the scenario was adapted to include 
NAO as an assistive tool in the tasks of emotion imitation and 
recognition.

6.1. Protocol
The interaction started with free play with NAO. Once the 
child felt comfortable, the following phases were attempted.  
(1) Pairing cards of static face images with the NAO’s expressions: 
the therapist shows the card of an emotion and then activates 
NAO, via a remote control using the wizard-of-Oz approach 
(Scassellati et  al., 2012), to display its (bodily) expression of 
that emotion. This was repeated for all four emotion categories.  
(2) Recognition: the therapist shows the NAO’s expression of a 
target emotion and asks the child to select the correct emotion 
card. If the child selects the correct emotion card, the therapist 
moves to the next emotion, also providing a positive feedback; 
otherwise, the therapist moves to another emotion without the 

2 https://www.ald.softbankrobotics.com/en/cool-robots/nao.
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TaBle 2 | Engagement coding [adaptation of the engagement definition 
proposed in Kim et al. (2012)].

level Meaning example(s): wording given to the coders

5 High engagement Child immediately responds to the question of 
therapist, following the interaction scenario and 
reacting with NAO spontaneously

4 Mid engagement Child is to the first prompt/question to perform 
the task but needs a bit of boost from therapist 
(e.g., pointing with finger, calling by name, showing 
something to pay attention to, and so on)

3 Low engagement Child complies with the instructions after 2–3 
repetitions

2 Indifferent Therapist repeats the question and/or attempts the 
task more than 3 times, until child complies with the 
instructions

1 Non-compliance Child is not responding to questions and/or tasks by 
therapist (e.g., the child hung head and refused to 
participate in the interaction, was looking somewhere 
else, not paying attention to the interaction)

0 Evasive Child is not responding to therapist and/or NAO’s 
prompts at all and after the prompts, or immediately, 
walks away from NAO

TaBle 1 | The summary of participants.

serbia Japan

Age 9.41 ± 2.46 7.59 ± 2.43
Age range 5–13 3–12
Gender (male:female) 15:4 15:2
CARS 40.3 ± 8.2* 31.8 ± 7.1

The average CARS scores of the two groups are statistically different [t(34) = −3.35, 
*p = 0.002].
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feedback. This is iterated until either the child correctly paired all 
emotions, or the therapist decided that the child was unable to do 
so. (3) Imitation: the therapist asks the child to imitate the NAO’s 
expressions. (4) Story: the therapist tells a short story involving 
NAO and asks the child to guess/show how NAO would feel in 
that particular situation. Note the increasing difficulty in execut-
ing each of the four phases: the Pairing phase requires minimal 
motor and cognitive performance. On the other hand, the Story 
phase is the most challenging, as it requires “social imagination,” 
which has been shown to be limited in children with autism 
(Howlin et al., 1999).

The whole interaction lasted, on average, 25 min per child. In 
cases when a child was not interested in the play, the therapist 
would use occasional prompts, calling her/his name, and/or 
activate NAO, who then waved at the child, saying “hi, hello,” 
and alike, to (re)engage the child. It is important to mention 
that the purpose of the designed scenario was not to improve 
existing therapies for autism, but rather induce a context in 
which the engagement can be measured more objectively  
(see Table  2). This protocol was reviewed and approved by 
relevant Institutional Review Boards (IRBs),3 and informed 
consent was obtained in writing from the parents of the children 
participating in the study.

6.2. Participants
The children participating in the study included 17 from 
Asia (Japan) and 19 from Eastern Europe (Serbia), age 3–13  
(see Table 1). They were all referred based on a previous diagnosis 
of autism. After the interaction with the robot, the child’s behav-
ioral severity was quantified using the Childhood Autism Rating 
Scale (CARS) (Baird, 2001), a diagnostic assessment method 
commonly used to differentiate children with autism from those 
with other developmental delays using scoring criteria (from 
non-autistic to severely autistic). The CARS is a practical and 
brief measure that encompasses both the social–communicative 
and the behavioral flexibility aspects of autism’s diagnostic triad 
(Chen et  al., 2012). The CARS were filled out by the Japanese 
and Serbian therapist who interacted with the children. They 
both have 20+ years of working with children with autism and 
see regularly the children who participated in this study. Scores 
30–36.5 are considered mild-to-moderate autism and scores of 
37–60 as moderate-to-severe autism (Chen et al., 2012). As can 
be observed from Table  1, Japanese participants were slightly 

3 The approvals have been obtained from the IRBs of MIT, USA, Chubu University, 
Japan, and Institute of Mental Health, Serbia.

younger than Serbian participants. In both samples, the boys 
outnumbered the girls, reflective of the gender ratio in autism. 
From average CARS scores, we note that, within the selected 
groups, the participants from Serbia exhibited more obvious 
autistic traits. Note also that some of the children were below 
the autism threshold of 30, despite their autism diagnosis. Again, 
CARS is an indicative measure of the behavioral severity, and we 
report it to show the group differences obtained using the same 
scoring test. Note that we did not include typically developing 
children as controls, as there are no claims being made here about 
autism vs. typical development.

6.3. coding
The interactions were recorded using a high-resolution webcam 
with a microphone (see Figure  1). To measure the children’s 
engagement during the interaction, each video was coded in 
terms of engagement levels defined based on the occurrence and 
relative timing of the children’s behavior (including learning-
related behaviors), and the therapist’s requests and prompts. To 
this end, we adapted the coding approach proposed in Kim et al. 
(2012) and defined engagement on a 0–5 Likert scale, with 0 cor-
responding to the events when the child is fully non-compliant 
(evasive) and 5 when fully engaged (see Table 2 for description). 
Note that in Kim et al. (2012), 10  sec long fragments of target 
videos were coded in terms of the engagement levels. By contrast, 
we find it more objective to code the whole engagement episode: 
starting with the target task, e.g., the therapist asking the child 
to select the card corresponding to the NAO’s expression (the 
Recognition phase), until one of the conditions (Table  2) for 
scoring the engagement level has been met. We propose this 
task-driven coding of engagement4 as it preserves the context 

4 By task, we refer to tasks in general, i.e., when the child is imitating the robot, as 
well as while paying attention to the therapist while matching the images with the 
robot’s behaviour.
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TaBle 3 | Average engagement levels (with one SD) within each phase, and the 
phase duration, computed per culture.

engagement Duration

Phases serbia Japan serbia Japan

1—Pairing 3.85 ± 1.23* 4.68 ± 0.85 10.7 ± 7.43* 22.4 ± 13.0
2—Recognition 3.36 ± 1.54* 4.47 ± 1.09 31.7 ± 29.8* 23.9 ± 18.8
3—Imitation 3.23 ± 1.68* 4.07 ± 1.51 37.6 ± 33.6 26.6 ± 29.3
4—Story 4.54 ± 0.68 4.37 ± 1.37 53.7 ± 24.7 37.6 ± 21.0

Note the change in the average duration (in sec) of each phase as the task difficulty 
increases: the average values increase much faster in Serbs compared to Japanese. 
This, again, may be related to Japanese being engaged for longer at the initial phases, 
while being able to finish faster the more difficult tasks in phases 3–4, as well as their 
CARS scores. Statistically significant differences are marked with *.
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in which the engagement is measured. By coding short fixed-
interval segments, as in Kim et al. (2012), the beginning and the 
end of target activity can easily be lost (since its duration varies 
across the tasks/children).

After the engagement episodes were coded in the videos, each 
episode was further coded in terms of the affective dimensions 
(valence and arousal) and the children’s face-expressivity.5 As 
explained in Sec. 2, valence and arousal are well-studied affective 
dimensions and they have been related to a number of emotional 
states and moods; however, this has not been investigated much 
in autism. To analyze the relationship of the perceived valence and 
arousal, and target engagement levels, the engagement episodes 
were coded for valence and arousal on a 5-point ordinal scale 
[−2,2]. For example, the episodes were coded with high negative 
valence (−2) in cases when the child showed clear signs of expe-
riencing unpleasant feelings (being unhappy, angry, visibly upset, 
showing dissatisfaction, frightened), dissatisfaction and disap-
pointment (e.g., when NAO showed an expression that the child 
did not anticipate). The very positive valence (+2) was coded 
when the child showed signs of intense happiness (e.g., clapping 
hands), joy (in most cases followed with episodes of laughter), 
and delight (e.g., when NAO performed). The observable cues of 
arousal are directly related to the child’s level of excitement. The 
episodes in which the child seemed very bored or uninterested6 
(e.g., looking away, not showing interest in the interaction, sleepy, 
passively observing) were coded as a very low arousal (−2). Note 
that this outward expression of a very low arousal could also be a 
consequence of intense internal arousal that led to a shut-down 
state (Picard and Goodwin, 2008). However, in this work, we 
focus on outward expressions of target affective states. The levels 
in between (−1,+1) for both dimensions just varied in their 
intensity (thus, being of lower intensity than the aforementioned). 
The neutral state of valence/arousal (0,0) corresponded to cases 
where the child seemed alert and/or attentive, with no obvious 
signs of any emotion, and/or physical activity (head, hand, and/
or bodily movements). Note that the coders were instructed 
to base their judgments solely on the children’s outwards signs 
described above, and not their “intuition” about the children’s 
internal states, in order to focus on most objectively visible data. 
It is important to mention again the key difference between these 
two dimensions (facets of affective engagement) and the directly 
measured engagement levels: while the former are purely based 
on the behavioral cues, as reflection of the children’s level of 
joy (valence) and excitement (arousal), the latter is task driven  
(i.e., its score is based on a number of prompts and pre-defined 
activities, as defined in Table 2). Finally, the engagement episodes 
were also coded in terms of facial expressiveness of the children 
within the episodes. This was coded on a 0–5 Likert scale, 
from neutral (0) to very expressive (5) (regardless of the type 
of facial expression, such as positive or negative). Each episode 
was assigned a score based on the observed level of activation 
of facial muscles throughout the episode, thus, taking the total 

5 There was a time gap of two months between the two codings.
6 Note that this relates to the child being uninterested in communication/interac-
tion in general and not in performing the target task.

duration of the expressive video segments into account (and the 
parts where the face is mostly visible).

All video episodes of engagement were coded by two experi-
enced occupational therapists (from Japan and Serbia, who did 
not participate in the recordings), with the percent agreement of 
92.4%. This is expected as the coding scheme (Table 2) clearly 
defines the beginning/ending of the episodes. The disagreeing 
parts were caused by the language differences. For instance, in 
some cases, the coders needed the meaning of the vocalizations 
to make sure, e.g., that the therapist asked the child a question and 
not just made a statement. After the coding has been performed 
by each coder separately, the beginning/ending of each episode 
was adjusted by the coders together. The coding of the affective 
dimensions as well as face expressivity was done by the same 
coders (separately). Note that lower levels of agreements were 
obtained: valence (75.8%), arousal (67.4%), and face expressivity 
(69.8%). However, this is still widely accepted as a good level of 
agreement (Carmines and Zeller, 1979).

7. eXPeriMenTal resUlTs anD 
analYsis

For studying specifics of the participants’ interactions with 
NAO, throughout this section we provide qualitative as well as 
quantitative (statistical) analysis of relationships between the 
engagement levels, the affect dimensions, and corresponding 
contextual variables (tasks and culture). To measure association 
between these variables, we report Pearson’s correlation (r), as it 
is a commonly used dependence measure in HRI applications. 
Analysis of the group differences (within and between the two 
cultures) was performed using Welch’s t-test (Welch, 1947) due 
to its robustness to the unequal variances. If not said otherwise, 
only outcomes with significance levels p ≤ 0.05 were considered 
for interpretations.

We start by comparing the average engagement levels within 
each phase. In Table  3, we report the mean (M) and standard 
deviation (SD) for these values. Note that the average engagement 
in the Japanese did not vary as much as in the Serbs, in whom the 
highest (average) engagement levels occur in phases Pairing and 
Story. In the first phase, despite their behavioral severity, Serbs 
were able to perform the tasks fast because these were simple  
(see Sec. 6 (Protocol)). By contrast, children who reached the Story 
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TaBle 4 | Average duration of engagement episodes per level.

engagement 0 1 2 3* 4* 5*

Serbia 34.3 ± 30.8 75.4 ± 120 49.2 ± 38.9 22.9 ± 19.8 17.5 ± 27.1 11.2 ± 9.70
Japan 31.2 ± 15.1 59.6 ± 45.2 65.9 ± 34.8 40.2 ± 14.1 33.6 ± 18.1 20.3 ± 13.1

Note that there is a significant difference in duration of higher engagement levels (3–5) between the two cultures. Statistically significant differences are marked with *.
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phase did not have much difficulty engaging, which explains the 
high average engagement (M = 4.54, SD = 0.68). By looking into 
the cross-cultural differences in the engagement levels per phase, 
we found that these were significantly different for all phases 
but the Story. Again, we suspect that this is because the majority 
of children, who reached the last phase, showed high levels of 
engagement. By looking into the mean duration (in seconds) of 
the engagement episodes per phase, we note that in phase Pairing, 
Serbs engaged much faster than their Japanese peers. Yet, we 
see in Serbs a much steeper increase in the time toward higher 
phases, with the duration of phases pairing/recognition being sig-
nificantly different between the cultures. Table 4 reveals that the 
higher levels of engagement, on average, last much shorter than 
lower levels (<3). The high duration of phase story in Serbs was 
also biased by a frequent presence of lower (longer) engagement 
levels (episodes) (see Figure 2). Note also the significant differ-
ences in duration of the engagement episodes across levels 3–5 
of the two cultures. A reason for level 5 being longer in Japanese 
is possibly because they had lower CARS, and, therefore, took 
longer to engage in the target activity.

We next analyze the relationships between the engagement 
and perceived affect (valence and arousal, as well as the face 
expressivity) within target engagement episodes. Figure 3 shows 
the (normalized) distributions of the four dimensions. We first 
observe that the affect distributions are very close in shape when 
compared across the cultures, with the valence being uniformly 
distributed at the intermediate levels (−1,0,1). This indicates that 
highly positive/negative expressions were not perceived during 
the interaction. Distributions of arousal, on the other hand, are 
more Gauss-like, signaling the majority of episodes with low 
arousal, with a few having very low/high (perceived) arousal. The 
distribution of the face expressivity levels is highly skewed to the 
right—thus, very low levels (or no facial activity) were observed. 
However, this in line with (DSM-5, 2013) emphasizing the pres-
ence of “deficits in nonverbal communicative behaviors used for 
social interaction, ranging, for example, from poorly integrated 
verbal and nonverbal communication […] to a total lack of facial 
expressions and nonverbal communication” in children with 
autism. While these distributions are similar across the cultures, 
notice the differences in distributions of the engagement levels.

To get better insights into the relationships between the 
engagement levels and the affect dimensions, in Figure  4, we 
depict the (normalized) co-occurrence matrices. First, there 
is a strong positive correlation between the affective dimen-
sions (valence and arousal) observed in both cultures (r = 0.73 
and r  =  0.56, respectively) and is more pronounced in Serbs.  
Lo et  al. (2016) showed that (neurotypical) participants were 
more capable of distinguishing valence than arousal changes 
in emotion expressions, thus, capturing these when occurring 

together may be easier. Also, Brewer et  al. (2016) showed that 
neurotypical persons have, in general, a difficulty in recognizing 
emotional expressions of persons with autism. This could, in part, 
explain why we obtained high correlations between the two affec-
tive dimensions: when both increase/decrease, it might be more 
obvious to the coders to perceive the change in the level. Also, 
this can be attributed to the way the persons with autism express 
their valence and arousal, which looks more obvious if both are 
very high or low, e.g., the child is expressing happiness with smiles 
and laughter, and fast movements of arms (flapping). Again, note 
that the coders were instructed to judge these two dimensions 
based on behavioral signs commonly observed in a neurotypical 
population (see Sec. 6). The dependence between valence and 
engagement is more spread in Serbs than Japanese, which is in 
part due to the highly imbalanced levels of engagement in the lat-
ter. However, we observe that in Japan, the positive valence occurs 
frequently at higher levels (3–4) and the negative (−1) is more 
present at lower engagement levels. By contrast, in Serbs, this is 
not that pronounced, since we can see that the valence levels are 
more smoothly distributed, with the negative valence occurring 
even at higher levels of engagement (e.g., the child sitting calm, 
might look bored or sad, looking around in the room but still 
participating in the task). We draw similar conclusions from the 
arousal–engagement relationships. We also note that in both cul-
tures, high engagement never occurs with very low arousal, but 
mainly with the neutral and/or low positive arousal, as in cases 
when the child is sitting calm, showing no significant movements, 
and is being focused on the tasks. This may also be due to the cod-
ing bias. Finally, we see from the facial activity, that regardless of 
the engagement levels, the average face-expressivity was very low 
(mainly 0) in both cultures, showing very low (and insignificant) 
correlation (r < 0.20) with the engagement levels. In addition to 
the lack or atypical facial expressiveness in autistic population, as 
mentioned above, this could also be, in part, the consequence of 
scoring the whole engagement episode level rather than the image 
frames. This, in turn, may result in the coders ignoring subtle 
changes in the children’s facial expressions, the presence of which 
is obvious due to the perceived variation in the valence levels.

Table  5 shows average levels of target affective dimensions 
w.r.t. the engagement levels of the two cultures. We observe that 
within the higher levels of engagement (specifically, level 5), the 
average valence level is much higher than in the levels below 
and significantly different between the cultures. This indicates 
that, on average, Serbs showed more pronounced expressions of 
positive states (e.g., joy and interest), as can also be noted from 
the face expressivity levels. However, while their average arousal 
levels were similar at the peak of engagement, Japanese showed 
significantly lower arousal levels across all engagement levels, 
with much lower arousal when being evasive (level 0). This can 
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FigUre 3 | The (normalized) distribution of the levels for each coded 
dimension: valence, arousal, face expressivity, and engagement. Note that in 
both cultures, the affective dimensions exhibit similar distributions, while 
engagement distributions are highly skewed to the highest level in Japanese. 
The face expressivity in both cultures is skewed toward the neutral, confirming 
the expected low face expressivity in children with autism (DSM-5, 2013).

FigUre 2 | The number (left)/percentage (right) of the participants from the two 
cultures that showed in at least one of their engagement episodes, the target 
level. Note that less than 30% of Japanese have levels 0–3, while the remaining 
70% have at least one instance of the higher levels of engagement. By contrast, 
more than 70% of Serbs showed levels of very low engagement. We also 
observe that, in Japanese, the engagement distribution is largely skewed toward 
higher levels, in contrast to Serbs, who have more uniformly distributed levels.

FigUre 4 | Dependence structures of the coded dimensions, computed as co-occurrence matrices of the corresponding levels. These are normalized across 
columns to remove the bias toward the highest engagement level (as can be seen from Figure 3). This, in turn, allows us to analyze the distribution of each level of 
affect dimensions within the target engagement levels. The Pearson correlation (r) with significance levels is shown above each plot.
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be ascribed to the differences in behavioral dynamics in these 
two cultures as well as the individual expressions of resistance 
to specific interactions with NAO. For instance, some children 
preferred to imitate expressions of certain emotions only, and not 
all. This (inner) resistance to comply with the task can also be 
related to their (in)ability to recognize all of the four emotions. 
However, a detailed analysis of the target stimulus is out of the 
scope of this work.

So far, we focused mainly on the group (the between culture) 
differences of the children under the study. It is, however, impor-
tant to assess some of these differences within the cultures and 
also by looking at the individual variation. Figure 5 depicts the 
changes in the engagement levels, along with the affect dimen-
sions, and the corresponding CARS for each child. Note the 
heterogeneity in the occurrences of the target levels per child. 
For example, we observe in Japanese (ID: 1, 16, and 12) and 
Serbs (ID: 7, 12, 15, and 18) that although valence and arousal are 
both (highly) negative, their average engagement was relatively 
high. This possibly is a consequence of idiosyncratic behavioral 
responses of the children: the same children had higher CARS, 
which means less functionality. This may be the reason for their 
expressions of valence and arousal being harder to perceive 
accurately (Brewer et al., 2016), although their engagement was 
high. We also observe from the children with ID:14 (Serb) and 
ID:3&15 (Japanese) that their high facial expressivity is typically 
followed with high engagement, valence, and arousal levels. This 
could indicate that these children are showing more obvious 
signs of positive emotions. We also report in Figure  5 (above 
each plot) the results of the t-test for the cultural differences w.r.t. 
the four target variables. Note that no significant differences were 
found (with p < 0.05), in valence, arousal, and face expressivity. 
However, we found a significant difference in the distribution of 
the average engagement levels in Serbs and Japanese.7

7 To test whether these differences also exist within the cultures, we split in half 
the children within culture, and performed 1,000 random permutations. In both 
cultures, there were no significant differences (with p < 0.05) between the children 
within two cultures.
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FigUre 5 | Changes in the average frequency of the corresponding levels of target dimensions, per child. The children’s ids were sorted according to the 
descending (average) engagement levels and the remaining dimensions aligned accordingly. The individual CARS are shown above the engagement bars.

TaBle 5 | The average levels of valence, arousal, and face expressivity per engagement level.

engagement 0 1 2 3 4 5

Valence
Serbia −0.90 ± 0.57 −0.39 ± 0.98 −0.48 ± 0.95 −0.02 ± 1.04 −0.01 ± 1.05 0.62 ± 1.11
Japan −1.12 ± 0.64 −0.53 ± 1.18 −0.84 ± 0.55** 0.28 ± 1.70 0.06 ± 1.09 0.37 ± 1.00*

arousal
Serbia −0.40 ± 1.07 −0.20 ± 0.67 −0.12 ± 0.93 0.06 ± 0.97 0.02 ± 0.83 0.43 ± 1.01
Japan −1.25 ± 0.70* −1.00 ± 1.07* −1.15 ± 0.80* 0.14 ± 1.21 −0.35 ± 1.15 0.42 ± 0.81

Face expressivity
Serbia 2.30 ± 0.48 2.28 ± 1.11 2.64 ± 1.00 2.60 ± 1.34 2.34 ± 1.21 2.49 ± 1.41
Japan 2.00 ± 0.76 1.27 ± 0.70* 1.61 ± 0.77* 1.71 ± 0.76* 1.97 ± 1.22 2.04 ± 1.08*

The significant differences are marked with *(p = 0.05) and **(p = 0.08).
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We further investigate the between- and within-culture dif-
ferences by looking into the Pearson (r) and Spearman scores 
(ρ) for dependencies between the average levels of valence, 
arousal, face expressivity, engagement, and CARS. We report 
both scores as the former assumes linear relationships and 
constant variance. As these can easily be violated due to the 
heterogeneity in the children, quantifying monotonic relation-
ships (using the Spearman coefficient) may be a better indicator 
of target relationships (McDonald, 2009). For interpretations, 
we consider only the statistically significant scores (with 
p < 0.05). In Figure 4, the valence and arousal are highly (and 
linearly) correlated (as judged from similar r and ρ). There 
is also a high correlation between the perceived valence and 
face expressivity observed in both cultures (r > 0.65). This is 

expected, as both valence and arousal are directly related to 
the face modality (and facial expressions in particular), which 
provide the key cues when quantifying the (perceived) valence/
arousal (Adolph and Georg, 2010). However, in contrast to the 
valence dimension, the face expressivity is not coded for the 
sign (positive/negative). Interestingly, despite the high (and 
significant) correlations between valence–face-expressivity 
(r  =  0.67 in Serbs and r  =  0.74 in Japanese) and valence-
engagement (r = 0.69 in Serbs and r = 0.49 in Japanese), the 
correlations engagement–face-expressivity are relatively low 
and insignificant. This shows that the sign of valence (positive 
as when happy/negative as when sad) could be a good indica-
tor of engagement. We also note that in Serbs, the engagement 
was highly correlated with the average valence levels per child. 
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In Japanese, we observe the opposite from Table 6 (arousal is 
far more correlated with the engagement than valence). This 
may add evidence to the previous studies “showing variation 
as demonstrating cultural differences in ‘display rules,’ or rules 
about what emotions are appropriate o show in a given situa-
tion” (Ekman, 1972).

The findings described above can, in part, be attributed to 
the CARS of Japanese being lower, and, thus, them being more 
responsive (through timely body movements in response to 
target tasks). On the other hand, if we recall the engagement 
levels from Figure  3, in Serbs, the levels varied more than 
in Japanese, indicating that the former group showed more 
hesitation in doing the tasks. More importantly, note that there 
is a highly significant correlation between engagement and 
CARS (r = −0.52 and ρ = −0.71) in Japanese, while these are 
found to be insignificant in Serbs. To test whether these two 
groups are statistically different in engagement levels due to 
the cultural difference, and not due to the differences in the 
behavioral severity of the participants, we remove the CARS 
as a big causal factor, and one that is highly correlated with 
engagement on the Japanese side. After tossing out highest/
lowest CARS, we match the Serbs and Japanese on CARS within 
the range [33–43], thus, with the mid behavioral severity. This 
range assured the best possible match between the CARS of the 
two cultures, which can also be seen from Figure 6, where we 
ranked the engagement from high to low CARS, resulting in 8 
Serbs and 8 Japanese, with a very similar functionality levels. 
We ran the t-test on this sample and again obtained the statisti-
cally significant difference in the engagement levels between 
the two cultures [t(12) = −2.1, p = 0.05]. This shows that these 
differences are not only due to the variation in behavioral sever-
ity (CARS) solely but also due to other factors, the most likely 
being the culture. We also found highly strong relationships 
between CARS and engagement (ρ = −0.86, p <0.01 for Serbs, 
and ρ  =  −  0.82, p  =  0.01 for Japanese—see Figure  6), thus, 
the Spearman scores are more consistent when the similar 
subgroups are matched based on CARS.

8. DiscUssiOn anD FUTUre WOrK

Before providing a further discussion of the study described, it is 
important to emphasize that this analysis was of the exploratory 
nature within a specific context: an occupational therapy for 
children with autism, using a social robot NAO, and recorded 
in two different cultures. Specifically, the participants in this 
study are 36 children from Japan and Serbia, who participated 
only once for a short duration. We note again that the aim of 
this study was not to propose a new therapy for autism, but 
induce a context in which the children’s engagement can be 
measured in a structured way. Our analysis of the relationships 
between the behavioral engagement and affective components 
of engagement (the perceived valence and arousal, as well as 
face expressivity) showed significant differences in a number 
of parameters considered. However, we restrain from making 
any conclusive statements about the causal cultural differ-
ences in these two groups. This is for the following reasons. 
First, although the parametric tests used in our analysis did 
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FigUre 6 | Engagement levels of the subset of children that are matched based on their CARS, ranking the average engagement levels from high CARS to low 
CARS. Note that the differences in the engagement levels between the two cultural groups are still statistically different with 5% significance level. Note also the 
strong relationships between the CARS and average engagement levels.
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find statistically significant relationships, a great variation was 
also found within the cultures and within the individuals (in 
terms of age, gender, and CARS). Therefore, larger-scale studies 
are needed to further confirm and extend our findings on the 
variations across cultures. Second, one of the goals of this study 
was to get better insights into the expression of engagement 
in naturalistic settings, where children with autism interact 
regularly with a therapist. This is in order to identify the key 
behavioral cues of engagement and its relationship to other 
parameters (in this case, task difficulty, affect, and CARS) that 
should be considered when designing social robots for autism 
therapy.

As noted by Keen (2009), “the ability to detect differences 
in engagement levels as a function of different program types, 
differences within programs, instructional methods, and other 
forms of ‘intervention’ is a first step toward establishing the 
validity of the measure for program evaluation purposes.” 
Also, children with autism (and/or other neurodevelopmental 
differences) spend less time actively engaged with adults and 
their peers, and less time in mastery-level engagement with 
materials than do the typically developing children (McWilliam 
and Bailey, 1995). This is why it is very important to develop 
techniques where the children can master social skills through 
therapeutic settings, with the aim of being able to translate 
those in the play with their (typically developing) peers (Keen, 
2009). Toward this end, the role of social and affective robots 
is twofold: (i) to provide more efficient and reliable (stand-
ardized) means of measuring children’s engagement and (ii) 
to enable naturalistic interaction with the children by being 
able to automatically estimate their level of engagement and 
respond to it accordingly (e.g., timely giving a positive feed-
back and encouragement). Before this can be implemented, 
it is necessary to understand better the context: the children’s 
behavioral and other parameters that relate to their engagement. 

In what follows, we briefly discuss our findings from this 
perspective and provide suggestions for future work in this  
direction.

The main findings relate to how engagement levels differed 
as a function of the cultures, tasks, affective dimensions, and 
CARS-based behavioral severity. Our results indicate that there 
are statistically significant differences in duration and average 
levels of engagement between the two cultures, when compared 
in terms of the task difficulty. Japanese were able to engage and 
complete easier tasks faster, while Serbs (those who reached the 
last phase in the interaction) were engaged for a shorter time in 
the interaction. This can be a consequence of the latter group 
being affected more severely by the condition, as also reflected 
in their CARS and the distribution of the engagement levels. By 
matching the two groups based on CARS, we were still able to 
find significant differences between the engagement levels in 
the two cultures. Another important aspect to be considered 
(especially when comparing the task execution time) and that 
is not explored in detail in our analysis is the children’s age. 
While most of the typically developing children develop both 
motor and mental abilities by the age of four (Baron-Cohen et al., 
1985), the lack of the same is indicated by the CARS scores in 
autism. By looking into the age of the children who performed 
the tasks faster than the others, we did not notice any significant 
dependencies on age.

These types of analyses are important because they provide 
a prior knowledge that can be used to adjust the dynamics of 
the robot interaction within each culture/age-range, with a pos-
sibility for further individual adjustment (Picard and Goodwin, 
2008). For example, these could be used as priors for computer 
models, as part of the robot’s perception. This has recently been 
attempted in terms of the personality adjustment, with the focus 
on typically developing adults (Salam et al., 2017). Adding to this, 
one of the important findings of our study is the relatively high 
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correlation between the CARS and engagement levels (e.g., in 
Japanese, Spearman coefficient ρ = −71%, p = 0.01). When the 
CARS range was matched across the cultures (Figure 6), these 
reached ρ = −82−86%, p = 0.01, in Japan and Serbia, respectively. 
This could potentially be a good calibrating parameter for social 
robots, derived from an easy- and fast-to-obtain measure of the 
current behavioral condition. However, it should be investigated 
whether the other standardized tests (e.g., specific questions of 
ADI-R and/or ADOS (Le Couteur et al., 2008)) would provide 
more universal indicators for (expected) engagement levels, 
resulting in a more stable input for choosing the therapy mode, 
establishing therapy expectations and follow ups on the individ-
ual progress. Moreover, this could potentially allow the medical 
doctors and therapists to more easily assess the therapeutic value 
of the whole procedure, through the common protocols, which 
could be adjusted to each culture and with assistance of the social 
robots.

Our analysis of the relationships between the directly meas-
ured behavioral engagement and indirectly measured affective 
engagement (from the valence and arousal levels perceived 
from outward behavioral cues, including the face expressiv-
ity) revealed statistically significant (p  <  0.01) dependencies 
between the valence and arousal levels (average per child) 
and the behavioral engagement, with Spearman coefficient 
ρ  =  68−75%. Therefore, these two affective dimensions can 
potentially be used as a proxy of the children’s behavioral 
engagement. The benefit of this is that these two affective 
dimensions can automatically be measured in human-robot 
interaction by means of existing models for affective computing 
(Picard, 1997; Castellano et al., 2014a). Specifically, a number 
of works on automated estimation of valence and arousal 
have been proposed (Zeng et  al., 2009; Gunes et  al., 2011). 
For instance, Nicolaou et al. (2011) showed that automatically 
estimated levels of valence/arousal can achieve the agreement 
similar to that of human coders when multi-modal behavioral 
cues are used as input (facial expressions, shoulder gestures, 
and audio cues). As we showed in our experiments (Table 6), 
while the face expressivity was highly correlated with valence/
arousal levels, it did not relate strongly to the behavioral 
engagement. Investigating other facial cues such as the eye-
gaze (typically used in autism studies (Chen et al., 2012; Jones 
et al., 2016)) in the context of engagement is a promising way to 
go. Moreover, it is critical to take into account the multi-modal 
nature of human behavior when estimating engagement. In a 
recent work, Salam et al. (2017) measured individual and group 
engagement by an automated multi-modal system that exploits 
outward behavioral cues (face and body gestures) as well as 
contextual variables (the personality traits of a user). They were 
able to improve significantly the engagement estimation when 
the individual features (face and body gestures) were included. 
While in this work, we focused on outward measures of the 
target affective dimensions, note that significant advances have 
been made in measuring the same from inward expressions 
(biosignals such as the heart rate, electrodermal activity (EDA), 
body temperature, and so on) (Picard, 2009). For instance, 
Hernandez et  al. (2013) showed that there are significant 

relationships between autonomic changes in arousal levels 
(measured using a wristband sensor) and behavioral challenges 
in children with autism in a school setting. In another work, 
Hernandez et al. (2014) showed that automatically estimating 
the ease of engagement on a scale (0–2) of typical children, 
participating in interactions with the educator and the parent, 
can be achieved with an accuracy of up to 68% (from EDA 
solely). Likewise, but in the context of children with autism 
and human-computer interaction, Liu et  al. (2008) achieved 
automatic detection of liking, anxiety, and engagement, from 
physiological signals (EDA, heart rate and temperature) with 
an accuracy of 82.9%. Further research on the use of social 
robots in autism should also closely examine these modalities 
for automated analysis of engagement.

However, none of the methods that could potentially be 
used for automated estimation of engagement and/or valence 
and arousal, were evaluated before in the context of autism 
and child-robot interaction. Therefore, there are at least a 
few important questions for the future work toward building 
a system for automated estimation of engagement of children 
with autism, and in the context of therapies involving social 
robots. First, how can multiple modalities of children’s behav-
ior (including inward and outward expressions) be modeled 
efficiently using models for affective computing (Picard, 2009; 
Castellano et  al., 2014a) to take the full advantage of their 
complimentary nature? This, in turn, would not only provide 
better insights into behavioral cues of engagement but also 
enable a more accurate and reliable perception of engagement 
by social robots. How to account for the contextual aspect of 
engagement is another important challenge in automating 
engagement estimation. As our results suggest, the culture 
(among other factors) may play an important role in modu-
lating the time each child spends in a target activity, as well 
as the distributions and average levels of engagement. One 
approach would be to define affective computing models so 
that they embed this contextual information via priors on the 
model parameters, which can then be adjusted to each child 
as the therapy progresses. This brings us to our final and the 
most important challenge: how do we personalize the models 
to each child and obtain the child-specific estimation of target 
engagement levels? Although, in our study, we did not find 
statistically significant differences in engagement levels within 
either of the two cultures, we did, however, observe high levels 
of individual variation. Therefore, personalizing the models to 
each child with autism is, perhaps, the most challenging aspect 
of automated engagement estimation that the future work will 
face (Picard and Goodwin, 2008). Another important factor 
not addressed in this study is the influence of culture on the 
annotation process. While annotators in our study achieved a 
high level of agreement, as shown in several other studies (e.g., 
see Engelmann and Pogosyan (2013)), handling the annotators 
bias effectively is of paramount importance when designing 
social robots that can automatically estimate engagement. 
Likewise, CARS is the standard, and, thus, its scoring should 
not be affected by cultural background of the therapists (but 
it still may be affected). While the presence of cultural biases 
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in autism screening is inevitable, Mandell and Novak (2005) 
showed that it is mostly due to the different perception of 
autistic traits by parents with different cultural backgrounds. 
Since the therapists did the CARS in our study, we do not expect 
these differences to be as affected by the culture.8

9. cOnclUsiOn

Taken together, the findings of this study and the questions raised 
clearly indicate that more research is needed in the field of social 
and affective robotics for autism. While our study focused on a 
single day recordings of the children, future research should focus 
on longitudinal studies of engagement, if more reliable conclu-
sions are to be drawn and data for automating the engagement 
estimation collected. There is an overall lack of such studies 
and data (especially across cultures); yet, they are of critical 
importance for building more effective technology that could 
facilitate, augment, and scale, rather than replace, the efforts by 
medical doctors and therapists working directly with individuals 
with autism. We hope that this work will increase awareness for 
the need of such studies and also provide useful insights into 
computer scientists in the field of affective computing and social 
robotics, and also neuroscientists, psychologists, therapists, and 
educators working in the autism field. Finally, we must keep our 
sights on the main goal: building technology and insights that 
ultimately bring benefit to users on the autism spectrum, espe-
cially those who seek to sustain engagement more successfully in 
learning experiences.

8 This is out of the scope of this study as a more detailed analysis of the codings/
scorings, involving multiple coders/therapists from each culture, would need to be 
conducted in future.
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Interacting with toys and other people is fundamental for developing social
communication skills. However, children with autism spectrum disorder (ASD) are
characterized by having a significant impairment in social interaction, which often leads
to deficits in play skills. For this reason, methods of teaching play skills to young children
with ASD have been well documented. Although previous studies have examined a
variety of instructional strategies for teaching skills, few studies have evaluated the
potential of using robotic devices. The purpose of the present study is to examine
whether automatic feedback provided by colored lights and vibration via paired robotic
devices, COLOLO, facilitates social play behaviors in children with ASD. We also explore
how social play relates to social interaction. COLOLO is a system of paired spherical
devices covered with soft fabric. All participants in this study were recruited as volunteers
through the Department of Psychology at Keio University. The pilot study included three
participants diagnosed with Pervasive Developmental Disorders (PDDs; 5- to 6-year-
old boys), and compared experimental conditions with and without automatic feedback
from the devices (colored lights and vibration). The results indicated that the participants
in the condition that included feedback from the devices exhibited increased rates of
ball contact and looking at the therapist’s ball, but did not exhibit increased rates of
eye contact or positive affect. In the experimental study, a systematic replication of the
pilot study was performed with three other participants diagnosed with PDDs (3- to 6-
year-old boys), using an A-B-A-B design. Again, the results demonstrated that, in the
condition with colored lights and vibration, the children increased ball contact as well as
looking at the therapist’s ball. However, the results did not show the effect of automatic
feedback consistently for three children. These findings are discussed in terms of the
potential of paired robotic devices as a method to facilitate social play for children with
ASD.

Keywords: autism spectrum disorder (ASD), social play, paired robotic devices, children, robot-mediated therapy,
single subject design

INTRODUCTION

Difficulties with play skills have been well documented in children with Autism Spectrum Disorder
(ASD; Wuff, 1985; Baron-Cohen, 1987; Lewis and Boucher, 1988; Jarrold et al., 1993; Charman
et al., 2000; Williams et al., 2001). These difficulties are seen in sensory motor play, manipulative
play, physical play, pretend play, and social play (Boucher, 1999). Consistent with this view,
many studies have focused on teaching play skills to children with ASD (Jung and Sainato, 2013).
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Previous intervention studies have used video and live modeling
(Jahr et al., 2000; MacDonald et al., 2005), pivotal response
training (Stahmer, 1995; Thorp et al., 1995), activity schedules
(Morrison et al., 2002; Machalicek et al., 2009), or social stories
(Barry and Burlew, 2004). Researchers have also combined
these strategies with contingent reinforcement (Jung and
Sainato, 2013). These studies have found training increases
engagement in appropriate play behavior and cooperative play
in children with ASD. On the other hand, few studies have
examined the effectiveness of robotic device use in teaching
play skills to children with ASD, although robotic devices
can automatically and immediately reinforce appropriate play
behavior.

Robotic devices have been used to increase social-
communication behaviors, such as joint attention (Warren
et al., 2015; Simut et al., 2016) and imitation (Duquette et al.,
2008), in children with ASD. These studies have focused on
the use of both humanoid robots and non-humanoid toy-like
robots, such as KASPER (Robins et al., 2009), Keapon (Costescu
et al., 2015), NAO (Huskens et al., 2015; Warren et al., 2015),
Probo (Simut et al., 2016), Robota (Billard et al., 2007), or Tito
(Duquette et al., 2008). However, these robots mainly provide
feedback as a result of the behavior of a child. Given that the
facilitation of social play involves two people using toys, it may
be necessary to consider directly providing feedback as a result
of the behavior of both a child and the other individual.

Paired robotic devices might encourage cooperative behaviors,
such as turn taking (Nunez et al., 2016). In this approach,
remotely connected paired devices provided feedback separately
as a result of child’s own behavior as well as the other
individual’s behavior. Huskens et al. (2013) suggested robotic
devices should be deployed as mediators to promote social
interaction between a child with ASD and another individual.
However, to our knowledge, no studies have examined how
automatic feedback via paired robotic devices affects social play
behaviors. In addition, as Diehl et al. (2012) have pointed out,
most studies using robots for children with ASD have not used
an experimental design, such as an experimental group design or
single subject experimental design.

When considering play behaviors, we need to recognize two
types. First are those related to social play, such as ball contact
and looking at a therapist’s ball (Bass and Mulick, 2007). Second
are those related to social interaction, such as eye contact and
positive affect. The purpose of the current study is to examine
whether automatic feedback via paired robotic devices facilitates
social play behaviors in children with ASD, and to explore how
social play relates to social interaction.

If the paired robotic devices can immediately provide
automatic feedback contingent on child’s social play behaviors,
it is possible that automatic feedback increases the social play
behaviors in children with ASD. Therefore we hypothesized
the following relationship between behavior contribution and
feedback:

Hypothesis 1: The child’s ball contact and looking at the
therapist’s ball will increase with automatic feedback in the
form of vibration and light.

It is possible that social play will also facilitate social
interaction, and then we could expect that:

Hypothesis 2a: The automatic feedback by vibration and light
will increase behaviors associated with social interaction,
such as eye contact and positive affect.

Alternatively, it is also possible that social play directs the
child’s attention away from the therapist toward the activity, and
thus we could expect that:

Hypothesis 2b: Automatic feedback in the form of vibration
and light will decrease behaviors associated with social
interaction, such as eye contact and positive affect.

To directly test these hypotheses a single AB design was
used in a pilot study to make inferences about the effects of
feedback made by colored lights and vibration via paired robotic
devices on social play behaviors in three boys with PDDs. In
this experiment, we used a rapidly changing reversal design with
the same experimental condition as the pilot study. By using
this experimental design, we further evaluated whether and what
types of social play behaviors are facilitated by the feedback
provided by remotely connected paired devices in children with
PDDs.

GENERAL METHOD

Paired Robotic Devices: COLOLO
In the experiments, we used a system composed of paired
devices, COLOLO. The devices have embedded sensors to
detect when they are being manipulated, sending a message
to the paired devices. This message is represented by visual
cues made by colored lights and movements. Each device is
made of a plastic spherical case covered by soft material. Inside
there is a plate attached to the rotational axis of a motor
by a microcontroller. A weight is attached to the motor and
allows the sphere to wiggle by unbalancing the device. On
the plate, there is a circuit board where a microcontroller,
wireless communication module, tilt sensor, battery, and full
color LEDs are installed. Each device is connected to a server
via TCP/IP protocol. The server is a stationary computer
that identifies the client device by a predefined ID. The roles
of the server are to mediate communication among clients,
pair/group clients, and log clients’ communication history. The
microcontroller changes the color of the LEDs and sends
a message to the server when the tilt sensor detects the
user’s manipulation. Then, when the paired devices receive
the message, the sphere starts wiggling and the color of the
LEDs change according to the information in the message.
In this way, users can perceive others’ actions by visualizing
color changes and wiggling motions. More details on the
device can be found in our previous work (Nunez et al.,
2016).

Experimental Condition
Both conditions (with and without automatic feedback) were
implemented on the carpeted floor of a testing room at a
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university. In order to improve the visibility of light under
the feedback condition, direct illumination was turned off and
indirect lighting set at the two corners of the room (Figure 1).
All sessions were videotaped.

There were two experimental conditions. The first condition
was the with automatic feedback condition (Phase A). The
sensors embedded in the devices detected contact (e.g., handling,
bouncing, or tossing) and displayed feedback using colored
lights and vibration according to the interaction rule (Figure 2).
Under this rule it is necessary to use two devices that send
and receive messages triggered by the users actions (paired
configuration). When the sender device is manipulated, the
visual/tactile feedback is transferred to the receiver device. By
doing this, the roles of the devices are switched. If a receiver
device is manipulated, it will not respond to the actions until it
receives the turn from the sender device. The second condition
was the without automatic feedback condition (Phase B), in which
the devices were turned off. Therefore, the child and the therapist
used them as regular balls.

The study examined the differences in child social play
behaviors within the two experimental conditions: with and
without automatic feedback. In both conditions, the interaction
took place in the following format: (1) the therapist introduced
balls to the child; (2) the therapist modeled how to play
with the balls (e.g., rolling, shaking, and catching them);
(3) the child manipulated the balls; and (4) the child’s ball
manipulating behavior was verbally/physically praised by the
therapist (e.g., “You’re great!” and tickling). In addition, the
therapist verbally/physically praised whenever the child made eye
contact, exhibited positive affect, or approach to the therapist,
throughout the session.

Diagnosis Procedure
This study was approved by the affiliate university’s Institutional
Review Board and was, therefore, completed in accordance with
the ethical standards established in the 1964 Declaration of
Helsinki. All participants had a diagnosis of autistic disorder,
PDD-NOS, or ASD by an outside medical doctor. Diagnosis
of Pervasive Developmental Disorders (PDDs) was further
confirmed using the Pervasive Developmental Disorders Autism
Society Japan Rating Scale (PARS; Kamio et al., 2006; Ito
et al., 2012a). PARS, developed in Japan, is an interview-
based instrument for evaluating PDDs according to DSM-IV-TR
(American Psychiatric and Association, 2000). The sub and total
scores of PARS have correlations with the domain and total scores
of the Autism Diagnostic Interview-Revised (ADI-R; Le Couteur
et al., 1989; Lord et al., 1994). All participants with PDDs met the
threshold for a diagnosis of PDDs on a total peak symptom scale
score (>9).

Dependent Variables
Four dependent variables (eye contact, positive affect, ball
contact, and looking at the therapist’s ball) were scored using
occurrence/non-occurrence data in 15-s intervals. For each
session, 20 intervals were recorded. Videotape scoring was
completed by a scorer who was naïve to the purpose of the
study. Eye contact: Eye contact was defined as the child’s looking

at the therapist’s facial region. Positive affect: Positive affect
was defined as visible and/or audible indications of happiness
and enjoyment, including smiling and laughing. Ball contact:
Ball contact was defined as the child’s contact with the ball,
including handling, bouncing, and tossing the ball. Looking at
the therapist’s ball: Looking at the therapist’s ball was scored
when the child was looking at the ball that the therapist
held.

Inter-observer Agreement
Inter-observer agreements (i.e., agreements divided by
agreements plus disagreements and multiplied by 100) were
calculated for both the pilot study and the experimental study.
The second observer was the first author, who independently
scored 33% (for pilot study) and 25% (for experiment) of the
sessions for four dependent variables. Agreement was calculated
as the average percentage of agreement across sessions.

Procedural Fidelity
To assess the degree to which all sessions were executed according
to procedure, reliability indices for fidelity of implementation
(i.e., agreements divided by agreements plus disagreements and
multiplied by total number of sessions) were collected for both
the pilot study and the experimental study. A research assistant
and the second author completed procedural fidelity checklist on
three different variables for all sessions.

PILOT STUDY

Participants
All participants were recruited as volunteers through the
Department of Psychology at Keio University. Participants were
three boys with PDD, “Taro,” “Sabu,” and “Jiro,” between the
ages of 5 and 6 years. Names of participants have been changed
to protect the participants’ identities. Informed consent was
obtained from the parents before the children were included in
the study.

Table 1 displays the participants’ characteristics. The
participants’ initial profiles (i.e., language, communication,
motor, perceptual, and adaptive behavior skills) were assessed
using standardized assessment tools: the Kyoto Scale for
Psychological Development 2001 (KSPD; Ikuzawa et al., 2002),
the Vineland Adaptive Behavior Scales, 2nd edition Japanese
version (Vineland-II; Ito et al., 2012b), and the MacArthur
Communicative Development Inventories, Japanese version
(MCDIs; Ogura, 2007). The KSPD yields standard scores for
physical-movement (P-M), language-sociability (L-S), and
cognitive-adaptive (C-A) subscales and total developmental
quotient (DQ). The KSPD was developed for use with typically
developing infants and low-function children with ASD and
other developmental disorders in Japan.

Design and Procedure
A single AB design was used in the pilot study. By contrasting
the with automatic feedback condition (Phase A) and the
without automatic feedback condition (Phase B), we could make
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FIGURE 1 | Basic image of a session in the with automatic feedback condition. The therapist and the child both hold COLOLO.

FIGURE 2 | Example of the transferring lights rule. (a1) When a user manipulates Device A, (a2) the paired device (Device B) will provide feedback of light and
vibration. (a3) When the user manipulates Device B, (a4) the paired device (Device A) will provide feedback of light and vibration. (b1) When the user manipulates
Device A during the feedback of Device B, (b2) Device A will not give any feedback, and the user will need to wait for a response.

inferences about differences of the dependent variables between
the experimental conditions.

Each phase consisted of a 5-min session, and both phases were
conducted in a same day for each participant. First, the with
automatic feedback condition (Phase A) was presented, and then,
after a short break, the without automatic feedback condition
(Phase B) followed.

Results
For eye contact, the average observer agreement value was 97%
(range 95–100%); for positive affect, 97% (range 95–100%);
for ball contact, 90% (range 85–95%); and for looking at the
therapist’s ball, 82% (range 80–85%). Fidelity of implementation

for socially/physically reinforcing the child’s eye contact, positive
affect, and approach to the therapist averaged 67%; fidelity
of implementation for socially/physically reinforcing the child’s
ball contact averaged 100%; and fidelity of implementation for
modeling and prompting ball play averaged 100%. Results are
shown in Figure 3.

Eye Contact
The percentage of intervals with eye contact in the with
automatic feedback condition was 0% for Taro, 0% for Jiro, and
15% for Sabu. On the other hand, in the without automatic
feedback condition, these numbers increased to 10, 15, and 55%,
respectively.
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TABLE 1 | Participant profiles in the pilot study.

Child Taro Jiro Sabu

Chronological age 6;9 5;6 5;6

PARS Total peak symptom scale score 51 28 24

KSPD Full DQ 77 33 38

P-A DQ 56 56 55

L-S DQ 76 29 34

C-A DQ 79 45 41

VAB-II-J Adoptive behavior composite 48 45 51

Communication 63 34 58

Daily living skills 47 54 61

Socialization 38 36 45

Motor 51 51 51

J-MCDIs Words understood 418 74 376

Words said 413 3 180

Total gestures produced 37 22 35

PARS, pervasive developmental disorders autism society Japan rating scale;
KSPD, Kyoto scales of psychological development 2001; DQ, developmental
quotient; Full, total scale; P-A, physical-movement; L-S, language-sociability;
C-A, cognitive-adaptive; VAB-II-J, Vineland adaptive behavior scales 2nd edition
Japanese version; J-MCDIs, MacArthur Communicative Development Inventories,
Japanese version.

Positive Affect
Taro and Sabu demonstrated almost the same levels of positive
affect in both conditions. Jiro exhibited positive affect in 5% of
the intervals in the with automatic feedback condition and 35%
of the intervals in the without automatic feedback condition.

Ball Contact
All three children demonstrated increased levels of ball contact
in the with automatic feedback condition. Specifically, the
percentage of intervals with ball contact in the with automatic
feedback condition was 65% for Taro, 95% for Jiro, and 60% for
Sabu. In contrast, in the without automatic feedback condition,
these figures decreased to 50, 10, and 45%, respectively.

Looking at the Therapist’s Ball
Similarly, all three children exhibited increased levels of looking
at the therapist’s ball in the with automatic feedback condition.
Specifically, the percentage of intervals with looking at the
therapist’s ball during the with automatic feedback condition
was 40% for Taro, 60% for Jiro, and 15% for Sabu. In contrast,
during the without automatic feedback condition, these numbers
decreased to 5, 15, and 0%, respectively.

EXPERIMENTAL STUDY

Participants
All participants were recruited as volunteers through the
Department of Psychology at Keio University. The participants
were three boys with ASD, “Shiro,” “Goro,” and “Riku,” between
the ages of 3 and 6 years. Names of participants have been
changed to protect the participants’ identities. Informed consent
was obtained from the parents before the children were included
in the study. Table 2 displays the participants’ characteristics.

FIGURE 3 | Percentage of 15-s intervals with eye contact, positive affect, ball contact, and looking at the therapist’s ball in the with and without automatic feedback
conditions in the pilot study.
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TABLE 2 | Participant profiles in the experiment.

Child Shiro Goro Riku

Chronological age 5;8 6;8 3;8

PARS Total peak symptom scale score 52 46 28

KSPD Full DQ 45 74 44

P-A DQ 54 57 65

L-S DQ 41 68 25

C-A DQ 49 79 45

VAB-II-J Adoptive behavior composite 55 53 49

Communication 51 68 43

Daily living skills 60 45 56

Socialization 69 45 41

Motor 51 67 65

J-MCDIs Words understood 199 418 47

Words said 181 338 11

Total gestures produced 52 51 25

PARS: pervasive developmental disorders autism society Japan rating scale;
KSPD, Kyoto scales of psychological development 2001; DQ, developmental
quotient; Full, total scale; P-A, physical-movement; L-S, language-sociability;
C-A, cognitive-adaptive; VAB-II-J, Vineland adaptive behavior scales 2nd edition
Japanese version; J-MCDIs, MacArthur Communicative Development Inventories,
Japanese version.

Design and Procedure
The Council for Exceptional Children (CEC) Division of
Research established a task force to develop guidelines for
evidence-based practices (Odom et al., 2004). The task force
identified four types of research methodologies: qualitative,
correlational, experimental group, and single subject designs
(Odom et al., 2004). Single subject designs have been used
to compare the causal relationship between independent and
dependent variables (Barlow et al., 2009). In this experiment, we
used a single subject experimental design in a particular, rapidly
changing reversal design (Cooper et al., 1990, 1993; Dunlap
et al., 1991; Ishizuka and Yamamoto, 2016) over a total of two
experimental days to compare the effects of lighting and vibration
as automatic feedback. For all children, the experiment consisted
of four 5-min sessions. Each participant had two 5-min sessions
per day.

Results
For eye contact, the average observer agreement value was 80%
(range 75–85%); for positive affect, 88% (range 85–90%); for
ball contact, 95% (range 85–100%); and for looking at the
therapist’s ball, 88% (range 75–100%). Fidelity of implementation
for socially/physically reinforcing the child’s eye contact, positive
affect, and approach to the therapist averaged 92%; fidelity
of implementation for socially/physically reinforcing the child’s
ball contact averaged 92%; and fidelity of implementation for
modeling and prompting ball play averaged 100%. Results of the
reversal analyses for each of the dependent variables are presented
in Figure 4.

Eye Contact
Shiro exhibited eye contact with a mean of 20% of the intervals
in the with automatic feedback condition and a mean of 12.5%

in the without automatic feedback condition. Goro showed no
eye contact in either condition. In the with automatic feedback
condition, Riku exhibited eye contact for a mean of 40% of the
intervals. On the other hand, in the without automatic feedback
condition, his eye contact decreased to a mean of 20% across
sessions.

Positive Affect
Shiro and Goro demonstrated a similar response pattern for
positive affect. Specifically, in the initial with automatic feedback
probe, they exhibited low positive affect. With the introduction of
the without automatic feedback condition, their levels of positive
affect increased to 45% (for Shiro) and 60% (for Goro) of the
intervals. The reintroduction of the with automatic feedback
condition was accompanied by a drop in positive affect levels
to 5% and 10% of the intervals, respectively. The final without
automatic feedback condition phase resulted in positive affect for
25 and 50% of the intervals, respectively, for the two boys.

In the first with automatic feedback probe, Riku exhibited
positive affect in 15% of the intervals. Following the introduction
of the without automatic feedback condition, his positive
affect decreased slightly to 10% of the intervals. During the
reintroduction of the with automatic feedback condition, Riku
exhibited positive affect in 60% of the intervals. In the final
without automatic feedback condition phase, Riku did not exhibit
any positive affect.

Ball Contact
All three children demonstrated similar response patterns for
ball contact. The initial with automatic feedback phase resulted
in ball contact in 100% (for Shiro), 85% (for Goro), and 95%
(for Riku) of the intervals. With the introduction of the without
automatic feedback condition, the levels of ball contact decreased
to 75%, 40%, and 5%, respectively. The reintroduction of the with
automatic feedback condition was accompanied by a rise in ball
contact levels to 100, 85, and 95% of the intervals, respectively.
The final without automatic feedback condition phase resulted in
ball contact for 75, 70, and 30% of the intervals, respectively, for
the three boys.

Looking at the Therapist’s Ball
Shiro exhibited looking at the therapist’s ball with a mean of
75% in the with automatic feedback condition and a mean of
47.5% in the without automatic feedback condition. For Goro,
the means were 25% in the with automatic feedback condition
and 10% in the without automatic feedback condition. In the
with automatic feedback condition, Riku exhibited looking at the
therapist’s ball for a mean of 82.5% of the intervals. In contrast,
during the without automatic feedback condition, his looking at
the therapist’s ball decreased to a mean of 15% across sessions.

GENERAL DISCUSSION

This study investigated the effects of automatic feedback in
the form of colored lights and vibration produced via paired
robotic devices, COLOLO, in social play and interaction in
children with ASD. The frequency of ball contact and looking at
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FIGURE 4 | Percentage of 15-s intervals with eye contact, positive affect, ball contact, and looking at the therapist’s ball in the with and without automatic feedback
conditions in the experimental study.

the therapist’s ball were higher in the with automatic feedback
condition than in the without automatic feedback condition,
supporting Hypothesis 1. On the other hand, the frequencies of
eye contact and positive affect for all children with ASD did not
consistently increase or decrease in the with automatic feedback
condition, thus the results indicated lack of support for both
Hypothesis 2a and Hypothesis 2b. Therefore, when using the
paired robotic devices, the children with ASD appear to have
exhibited increases in social play behaviors using toys and but not
increases in behaviors associated with social interaction.

Considering ball contact, Hypothesis 1 was positively
supported. The findings are in lines with one of the pioneering
works, which has demonstrated that a spherical mobile robot,
Roball, may increase a child’s interaction with a ball by providing
automatic feedback consisting of motion, messages, sounds, and
an illuminating interface (Michaud et al., 2005). This suggests
that automatic feedback of vibration (tactile stimulus) might
function as a reinforcer for ball contact behavior. However, we
also used light feedback (visual stimulus). There is a possibility
that light feedback also functions as a reinforcer for child’s ball
contact. Therefore, in a future study, we would evaluate which
modality of feedback has a stronger effect on increasing ball
contact.

Considering frequency of looking at the therapist’s ball, the
first Hypothesis was also positively supported. This indicates that
attention to shared play materials might be increased by light
feedback via paired robotic devices. Although we used vibration
feedback, this feedback was not contingent upon the child looking
at the therapist’s ball, but contingent on the child looking at his
own ball. Thus, light feedback provided via remotely connected
paired devices may increase attention to the play materials of
peers in children with ASD.

Concerning Hypotheses 2a and 2b of the current study,
our results did not support either of these hypotheses. Neither
the child’s eye contact nor their positive affect consistently
increased as a result of the feedback in the form of light

and vibration. The result can be easily interpreted because the
feedback was not contingent upon the child’s responses. In
addition, however, increases in eye contact and positive affect
were observed in the without automatic feedback condition for
two children. A potential explanation for this outcome could be
the frequency of the reinforcement provided by the therapist.
As far as ecologically validity is concerned, in the procedure of
this experiment, the therapist provided verbal/physical praise for
the child’s eye contact and positive affect throughout the session.
This may have led to increased opportunity for praise for the
therapist in the without automatic feedback condition in which
the frequencies of child’s ball contact was lower. To improve this
aspect of the intervention, we recommended that future studies
include the combined use of other wearable devices, such as an
eye tracker (Ye et al., 2012) or a face reader device we have
developed for detecting smiles from facial EMG signals (Gruebler
and Suzuki, 2014), in order to provide contingent feedback for
child eye contact and/or positive affect.

There were several limitations to the current study. First, we
used a single subject experimental design with three children
with ASD in this study, and this limits the generalizability of
the results to the larger population due to limitations inherent in
single subject experimental designs, such as absence of statistical
analysis and inference. Further studies are required, including
use of a group experimental design with larger sample sizes.
Second, although we used an ABAB design to minimize carryover
effects, because the experiment sessions were administered across
2 days, we were not able to eliminate ordering and novelty effects.
It is possible that the novelty of the interaction affected the
increase in the dependent variables on the 1st day (first set of AB
trials) and on the 2nd day (second set of AB trials), due to the
time that has elapsed between the first and the second session.
Further studies must seek to eliminate ordering and novelty
effects through blocked and longitudinal study designs. Third, we
need to be cautious about interpreting the observed increases in
children’s ball contact and looking at the therapist’s ball as the
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result of automatic feedback functioning as a reinforcer.
It was unclear whether automatic feedback functioned
as an antecedent stimulus or a reinforcer for children’s
ball contact and looking at the therapist’s ball. Further
research is warranted to identify the function of automatic
feedback via the implementation of a yoked condition.
Fourth, we only used the feedback of light (visual stimulus)
and vibration (tactile stimulus). Future studies will be
required to use other modalities, such as sound (auditory
stimulus).

Nevertheless, the current findings establish that feedback
via paired robotic devices can facilitate some aspects of social
play behaviors in children with ASD, whereas previous studies
have focused on examining differences between a human and
a robot as an interaction partner (e.g., Costescu et al., 2015;
Srinivasan et al., 2015; Simut et al., 2016), or investigating
the effects of teaching by the robot (e.g., Billard et al., 2007;
Warren et al., 2015). As Huskens et al. (2013) have suggested,
it would be interesting to see more studies on this topic; in
other words, there is a wide range of necessities for further
investigation. While we are hopeful that clinical applications of
paired robotic devices may demonstrate significant enhancement
of social play for children with ASD at an early developmental
stage, it is important to note that future research should reveal
both whether and how the paired robotic devices contribute to
increasing various forms of social play behaviors in children with
ASD.
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Here we aim to lay the theoretical foundations of human-robot relationship drawing upon
insights from disciplines that govern relevant human behaviors: ecology and ethology.
We show how the paradox of the so called “uncanny valley hypothesis” can be solved
by applying the “niche” concept to social robots, and relying on the natural behavior of
humans. Instead of striving to build human-like social robots, engineers should construct
robots that are able to maximize their performance in their niche (being optimal for some
specific functions), and if they are endowed with appropriate form of social competence
then humans will eventually interact with them independent of their embodiment. This
new discipline, which we call ethorobotics, could change social robotics, giving a boost
to new technical approaches and applications.

Keywords: social robotics, ethology, human-robot interaction, niche, social competence, dog, uncanny valley

THE MORE HUMAN-LIKE THE BETTER?

Motto: “You climb to reach the summit, but once there, discover that all roads lead down.”

Stanislaw Lem, The Cyberiad

Social robotics is the science for developing and building robots that can be integrated into
human groups, and are able to engage in complex social interactions with humans, including
communication and collaboration (e.g., Fong et al., 2003; Dautenhahn, 2007).

The recent increased interest by the media to introduce and popularize such robots to the
public (e.g., Saya) and general interest in science fiction (e.g., AI, Robocop) seems to make both
lay persons and many scientists to believe that social robotics should produce robots (so called
androids) that match perfectly humans both in their embodiment (e.g., DiSalvo et al., 2002) and
in their communicative and problem solving skills (some improved version of C-3PO). Although
the emergence of everyday social robots on the markets is still decades away, marketing pressure,
grant agencies (in the United States, EU, and China), and the challenges of engineering also push
applications toward building human-like robots.

Subjectively one may feel that humans like to be and interact with agents of closely similar kind
and may avoid more machine-like creatures. However, the only serious hypothesis, which was put
forward by Mori (1970), argues the opposite: the more similar robots are to humans the more
humans avoid them.
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THE RETHINKING OF THE ‘UNCANNY
VALLEY’ HYPOTHESIS AND ITS
PREDICTIONS

The ‘uncanny valley’ hypothesis articulated by Mori in 1970
was the first theoretical evaluation of the predicted relationship
between humans and non-living agents, including robots.
Figure 1 presents a modified reproduction of Mori’s (1970)
original idea by showing the humans’ reaction only to moving
agents. It is assumed that social robots getting very similar to
humans (measured by some complex variable) are being more
and more rejected by people. Very similar robots are rejected
much more than less similar ones. Social robots may never reach
the ‘Maximum peak’ which represents humanness. Implicitly this
figure also suggests that social robotics develops from left to right
aiming specifically at designing human-like robots. Thus the X
axis represents both “human likeness” and “time.”

Mori’s hypothesis suggests a complex relationship between
the agent’s (biological or artificial) similarity to a human
and the human’s affinity toward the agent. Accordingly, the
dependent variable (in Japanese ‘shinwakan’), called affinity
(MacDorman and Minato, 2005) has two local maximum
values. The first one on the left (Figure 1) is referred to as
the “Medium Peak.” It emerges at a point where similarity
between the agent and a typical human is substantial but
still relatively low (approx. 60–75%). The other one is at
the right part of the figure when the agents reach (nearly)
perfect similarity with humans. This is the “Maximum Peak.”
Most importantly, it is claimed that for a narrow range of
very close similarity to humans, values of affinity will obtain
very low or even negative values, labeled as the uncanny
valley.

In the original paper Mori left open the question of causation,
and subsequent scientific discussions focused on either (1)
evolutionary explanations (e.g., avoidance of threat, or death;
see MacDorman and Ishiguro, 2006; Moosa and Minhaz Ud-
Dean, 2010), (2) developmental effects (e.g., babies show this
effect only after 12 months of age; Lewkowicz and Ghazanfar,
2012), or (3) perceptual and mental mechanisms (e.g., activation
of competing mental representations; Chen et al., 2009; Ferrey
et al., 2015). While these explanations are not mutually exclusive
they all assume that the phenomenon is specific to humans (or
non-human primates) (MacDorman et al., 2009; Steckenfinger
and Ghazanfar, 2009) and researchers investigate it only in
relation to artificial creatures (cf. robots) (Mathur and Reichling,
2016).

One may consider that the phenomenon may have a more
wide-spread biological (functional) basis, the recognition of
which leads to a different perspective. Here we argue that the
present trend in social robotics is misguided. We show that an
ethological approach, considering functional aspects of behavior
and human-robot interaction, can provide a more plausible
theoretical background for social robotics. We aim to establish
an interdisciplinary science of ethorobotics, which relies on
evolutionary, ecological, and ethological concepts for developing
social robots. We suggest that while the similarity of the agent’s
characteristics may enhance the efficiency of the interactions,

the social identification/categorization of the agent also plays a
crucial role in respect of affinity and expectations.

THE IMPORTANCE OF RECOGNITION
OF OTHERS

We propose that in humans the avoidance of very closely
similar others reflects a more widely distributed skill in
animal species, which is aimed to precisely categorize and
recognize other potentially significant biological agents. The
specific function of this ability depends on the ecology of the
species but this process is invaluable for survival (Mateo, 2004).
In general biological agents should be able to discriminate
others at three different levels: (1) conspecifics (same species)
versus heterospecifics (other species, e.g., predators); (2)
familiar conspecifics (e.g., group members) versus unfamiliar
conspecifics (e.g., strangers/intruders); (3) familiar conspecifics
versus individuals (e.g., mate, friends, and pups). The rapid
and precise discrimination of others is important because it
determines what kind of actions should be taken and what
kind of responses could be expected. Animals may rely on
different set of features (e.g., visual, auditory and olfactory) for
this discrimination but generally it can be assumed that the
computational need is the highest at the 3rd level.

Biological agents achieve this performance by being sensitive
to some simple but specific pattern of cues (e.g., sign stimuli)
early in their development, and this attraction provides the
basis for further learning about the peculiarities of others. Such
learning usually takes place during a specific sensitive phase
when some neural structures acquire selective responsiveness to
recognize and discriminate specific set of cues. Such perceptual
learning is based on selective elimination of not-stimulated pre
and post-synaptic connections. Although such learning can take
place also later in development or adulthood, the stronger and
less reversible effects probably happen when the neural system
matures. The ability to discriminate others has been investigated
in several species (Colgan, 1983), and also on humans.

Sensitive Period of Social Recognition in
Humans
Recently, it has been hypothesized that early experience with
human faces provides the basis of the uncanny valley effect in
infants (Ferrey et al., 2015). The comparison of 6 to 12 month
old infants showed that only the oldest group avoided unrealistic
faces.

It has been long known that few hour old newborns show
preference toward face-like patterns (Johnson et al., 1991). More
recent results have indicated that 3-day-old newborns look longer
at faces gazing at them directly, and they also prefer to look
at faces presenting two eye-like patterns on the top rather than
on the bottom (Farroni et al., 2005). It seems that there is a
genetically canalized preference for some visual features (sign
stimuli) that make the infant focus on the (human) face. This
interest helps the infant to learn about other components of the
face that is made possible by the parallel improvement of visual
and neural processing (e.g., Gliga and Csibra, 2007; Pascalis and
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FIGURE 1 | A modified reproduction of Mori’s (1970) original ‘uncanny valley’
hypothesis by showing only the reaction to moving agents.

Kelly, 2009). As a result infants become experts in discriminating
and recognizing individuals from the same category (familiar
faces in the group). Babies are much better in making such
discriminations in the case of their own race than in other races
(‘other-race’ effect; e.g., Kelly et al., 2009), although this effect is
smaller if babies are exposed to members of different races early
on (Sangrigoli and De Schonen, 2004).

This natural process of emerging social recognition in humans
suggests that only by massively exposing babies to (future) social
robots can we avoid that they ‘fall in the uncanny valley.’ Such
forced exposure seems unrealistic and would be also unethical,
moreover, it could also confuse the social recognition system of
humans, and lead to misguided social and sexual preferences.

RE-INTERPRETATION OF THE
‘UNCANNY VALLEY’

We argue that in Mori’s landscape, the similarity measure
(X-axis) relates to the interaction of heterogenic agents when
one type of agent is used as point of reference. This is
equivalent to a biological scenario with conspecifics and
heterospecifics. Thus the Medium Peak refers to interactions with
a specific group of heterospecifics that share many attributes
with humans (e.g., domesticated animals) and the Maximum
Peak refers to interaction among conspecifics (Figure 1). Note
that heterospecific agents represent a much larger and diverse
category than conspecific agents, and many heterospecific agents
fall to the left from the Medium Peak. For example, from the
humans’ point of view dogs and Rhesus monkeys can be both
placed on an arbitrary similarity scale on Mori’s figure but it
is questionable whether the same measure could be applied to
familiarity with humans.

Importantly, the mental and behavioral mechanisms activated
in the case of the Medium Peak and Maximum Peak are

quite different, because biological agents possess a dedicated
mechanism to detect individuals belonging to their own species
but probably much less detailed discrimination is needed in the
case of very different heterospecific species. Thus in the case
of the Maximum Peak (distinguishing among conspecifics) the
agent has to be more choosy and focused than when contacting
heterospecific agents (Medium Peak). Biologically speaking this
means that members of a species must avoid to get in close
contact with non-conspecifics, e.g., hybrids, or closely related
species because such mistakes can be fatal, especially with regard
to reproduction (mating with hybrids reduces the fitness). This
interpretation fits well with the depiction of the figure in which
the Maximum Peak has a much narrower basis then the Medium
Peak. Intuitively this suggests that conspecifics are evaluated
more selectively then heterospecifics.

Strategies for Social Robotics
In the light of recent research on social recognition learning
(e.g., Lewkowicz and Ghazanfar, 2009), Mori’s hypothesis offers
two options for developing optimal social robots. Social robots
should achieve perfect humanness or humans (infants) should
be exposed to social robots as soon as possible (before 1st year
of age), which would probably decrease later uncanny feelings
toward them. While the first option is quite unrealistic and
counterintuitive (see also below), the second option may lead
to serious problems because the exposure to such social robots
during the sensitive period of infant development could lead to
misguided learning about the human species, confusing species
recognition and preferences at some later life (see debate initiated
by Sharkey and Sharkey, 2010). Humans socialized as infants with
robots (e.g., Tanaka et al., 2007) may prefer them later as social
companions or sexual partners (Levy, 2010).

Androids and Trans-Humans
Let’s assume for a moment that modern information technology
continues to develop at least with the speed we have experienced
in the last two decades. Then, there is little doubt that this
technology will be able to surpass biologically evolved human
traits in social robots, partly including new features not present in
humans or any other naturally evolved agent. Just one example:
gaze following is an automatic skill by which a bystander
can perceive the focus of interest of the subject. Thus the
head turn of one subject elicit head turn in others. A wide
range of mammals and birds share this skill, which is based
on visual perception and rapid processing of head orientation
and movement. While such ability can be easily mimicked
in an android robot, there is technically no restriction (even
today) to equip a social robot with 360◦ vision capacities
(just like in jumping spiders). This skill is certainly more
advantageous for the robot but very likely it will change also
how the robot behaves (no need to turn to follow the other’s
gaze) and also how it processes visual information. Thus it
is not difficult to envisage that even very much human-like
robots may at some point over-perform and transcend human
performance.

Thus “perfect” human-like robots would represent only a
relatively short and transient period in the technical development
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FIGURE 2 | An extended version of Mori’s idea by Jamais Cascio (from http://www.openthefuture.com/2007/10/the_second_uncanny_valley.html). The second
valley shows a similar effect related to robots evolved from perfect humanlike agents, as they become less similar to humans – following the path of trans-human
and, eventually, post-human robots. The hill after the valley is when differentiation is strong enough to create a new category.

of social robots, which would be followed by robots to which
some people may refer to as “trans-humans” during a transitional
period and then moving away from human likeness, as “post-
humans” (see Jamais Cascio unpublished source1). Figure 2
shows this extended version of the original idea, indicating
that technical development may not end at reaching maximum
humanness and social robots may “fall” into a second uncanny
valley. For today’s social robotics this situation presents a real
paradox.

In this sense, post-humans can be envisioned as “improved”
humans but some of these agents may also fall into another
uncanny valley to the right side of the “healthy person.” For
example, it has been shown that humans may have problems in
predicting the behavior of robots that look like us but behave
differently (Saygin et al., 2012).

Thus, Mori’s hypothesis can be extended to a symmetrical
landscape where there are two uncanny valleys on both sides
of “perfect humanness” and humans may avoid both the lesser
and the overly humanlike robots. Looking at this landscape it
becomes clear that after the Maximum Peak has been reached
there would be a narrow range of biological and artificial humans,
in a largely extended world of heterospecific agents. Thus the
notion of convergence in the direction of perfect humanness
should be replaced by a more general view of divergence with
regard to artificial systems, notwithstanding that such divergent
processes may parallel a development of a specific class of
agents which show very close resemblance to humans, and
some of which may be able to evade the biological and cultural
mechanisms of human social recognition system.

In summary, the paradox of the uncanny valley is that passing
the valley successfully does not seem to solve the problem of

1http://ieet.org/index.php/IEET/more/2083

social robotics because it is likely that robots will soon fall into
another uncanny valley and/or in any case they will diverge from
humanness. In addition, such trans-human robots that achieve or
transcend human performance would very likely disrupt typical
(natural) human social systems (Kubinyi et al., 2010).

ETHOLOGICAL APPROACH TO SOCIAL
ROBOTICS

The ethological approach is centered on the function of behavior
in relation to the specific environment in which the species
evolved (Tinbergen, 1963). The application of this general
concept to social robotics means that the robot should have a
function, and in terms of embodiment, behavior, and problem
solving (cognitive) abilities it should fit its specific environment.
Instead of aiming to build more and more human-like robots
and trying to “climb” the Maximum Peak, we may start
robot construction by determining their function and their
environment and design the must suited agent independently
from its similarity to humans. Note that robot engineering can
proceed by ‘jumps’ from one type of agent to a radically different
one because it is not constrained by evolutionary continuity
like biological agents. Moreover, humans may be not adequately
‘designed’ for a range of tasks thus uncritical copying of humans
could turn out as wasted effort.

Solving the Paradox of the ‘Uncanny
Valley’ Hypothesis
With regard to the uncanny valley metaphor this would mean
that we go around the Maximum Peak and avoid the uncanny
valley on the other side (Figure 3). Ethologically, such a robot is
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FIGURE 3 | An ethorobotic concept of emerging human-robot interaction. Based on Mori’s idea, the present situation and the envisaged progress of social robotics
are shown in a three-dimensional space to separate human-likeness, functionality and ease of interaction. After the peak and the second uncanny valley, robots are
likely to evolve into a diversity of morphologies and behaviors that, depending on their functions, gradually move away from perfect human likeness. The wide curved
arrow indicates the possible detour for social robotics by moving directly from the present state to less humanlike robots with diverse functionality retaining high-level
capacity for social interaction with humans. The labels on the terrain are only for informative purposes and do not necessarily refer to actual existing robots.

occupying a different niche that is created by its specific function.
This approach has several beneficial consequences: (1) robots can
have their own evolution without interfering specifically with that
of humans; (2) robots survive only if their niche exists and die out
if they have not performed well to the expectation of humans; (3)
no competition emerges between humans and robots.

This ethologically inspired functional perspective also shows
that there is actually no need to ‘climb’ the uncanny valley.

Dogs Are Showing the Way
The viability of this approach is strongly supported by an
analogous situation existing between humans and dogs for more
then 18,800–32,100 years (e.g., Thalmann et al., 2013). The
domestication of the dogs (from a wolf-like ancestor) resulted in
several important morphological and behavior changes in dogs
that enhanced the possibility of dog-human social interaction
(Hare and Tomasello, 2005; Miklósi, 2014). Further steps in dog
evolution led to dog breeds which occupy specific behavioral
niches with regard to their specific function in collaborative
interactions with humans (Miklósi, 2014). The large number of
dogs sharing our life as companions, or working individuals (e.g.,
rescue dogs, dogs leading bind persons) shows the success of this
evolutionary change. Thus with regard to the above points both
dogs and humans retained their independent capacity to evolve,
dogs have changed and can change if novel niches for interaction
with humans emerge (e.g., Gácsi et al., 2013) and there is only
limited competition between the two species.

Importantly, there are two critical features of the
domestication process. Because of biological constrains (e.g.,
reproduction) dogs retained basic morphology and behavior of
their ancestors but at the same time they acquired a level of social
competence that allows them to be integrated into the human
society (Miklósi and Topál, 2013). The history of dogs shows
that humans are able to interact in very sophisticated ways with
agents that are morphologically and behaviorally rather different,
but show a specific human-like social competence. Dogs’ social
competence manifests in several cognitive domains including
attachment, gestural and auditory inter-specific communication,
inter-specific cooperation, ability to learn by observation (Topál
et al., 2009b). Importantly, these components are supported by
rather different mental mechanisms in dogs, and may show some
important limitations when compared to analogous human skills
(Lakatos et al., 2009; Topál et al., 2009a; Fugazza and Miklósi,
2014). Nevertheless, the connection and synergism that exists
among these components lead to complex social competence in
dogs, which allows them to perform efficiently in our societies.

Social Competence in Robots
Earlier we defined social competence as an individual’s ability to
generate social skills that conform to the expectations of others
and the social rules of the group (Miklósi and Topál, 2013). Such
complex level of interaction emerges if the individual wants to
participate, has the means to participate, and is regarded by others
as being able to participate in the life of the group (see also
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Johnson, 2001). Thus the overarching goal for social robots is
to gain some level of social competence that allows them to be
integrated in the human group.

Several research teams in the field of social robotics have aimed
to define the necessary and sufficient skills for such agents. Such
approaches are problematic because they regard the components
of human social competence as a starting point. For example,
Fong et al. (2003) provide a long list of quite specific human skills
that social robots should possess. Apart from the fact that at the
moment there is no robust technical solution available for most
of these social skills, the human model is less appropriate here
because the biological foundations of the social interaction are
obscured by the complexity of our social and cultural behaviors.

Bottom up Approach for Social Robotics
We suggest an alternative approach for the development of
social robots using principles of dog-human interaction. First,
the human-robot relationship should be represented as an inter-
specific relationship rather than in an intra-specific one. As
indicated above, such relationship is not unique among agents,
and would most likely manifest some form of symbiosis in which
humans experience positive fitness consequences (mutualism).
Such functional approach to social robotics may also be helpful
because it stresses that robots are constructed for a social process
and not for a social state. Just like in the case of human-dog
relationship, a social robot does not automatically become a social
partner (e.g., companion) but it achieves this state of social affairs
if it engages in the appropriate kind of social interactions with its
partner (see Fujita, 2007; Miklósi and Gácsi, 2012). Any type of
partnership is not an a priori attribute of the robot but actually
an outcome of relevant social interactions between the agents.
Accordingly, the social skills of the robot and the time devoted to
the social interactions (by both parties) determine whether some
type of partnership emerges or not.

We envisage that social robots should be able to show some
basic social skills that are present in dogs. These may include, for
example, attachment to humans (Topál et al., 2005), simple ways
of communicative interaction (Miklósi et al., 2000; Gaunet and El
Massioui, 2014), responsiveness to learning and training (Topál
et al., 2009a) and being useful in some specific way (Naderi et al.,
2001; Ostojic and Clayton, 2014). These commonalities between
human and robot social competence are enough to form a basis
for social interaction if there is time to gain experience mutually.

Importantly, there is no need to socialize humans to such
social robots in any specific way or at any specific age and there
is also no danger that humans develop unnatural preferences
toward them.

PROMISES OF ETHOROBOTS

Social robotics aims to deliver various robots that serve human
needs in modern societies but society may not accept many
present day social robots because of their limited abilities
which contradict their human-like appearance. We argue that
ethorobotics offers a new approach by suggesting that social
robots should be regarded as separate species that are highly

adapted to their niche, and their similarity to humans both in
terms of physical appearance and behavior in itself (without
specific function) is irrelevant. This also includes that social
robots can and should have human like features if this is required
and optimal for their functions (e.g., simple verbal feedback, or
human hand).

Simple insights from ethology can lead to a new generation of
social robots. Ethorobots’ basic social competence should ensure
that humans eventually develop a social relation to them, which
is sufficient for advantageous cooperation. We expect that these
new ethorobots provide several advantages for the human society
while avoiding possible dangers which may emerge if the present
trend of technical development continues.

From the robots’ perspective:

(1) Ethorobots are more efficient in their own niche because
they are not constrained by expected similarity to
humans.

(2) Considering the state of art in robotics, ethorobots are
more acceptable social partners than imperfect androids.

(3) Ethorobots do not pose the problem of having a gender
because they could be still regarded as part of the category
of animals, where the actual gender is of secondary
importance from the human point of view.

From the humans’ perspective:

(1) Humans do not need to compete with ethorobots,
instead, these robots would need to compete with each
other (which of them is better at fulfilling a specific
function).

(2) Humans can maintain control over ethorobots by
controlling the nature of interaction, and whether they
maintain or close down the actual niche for the robot.

(3) Humans have the necessary mental skills to learn to
adjust their social behavior to robots with different
embodiment and behavior if they show basic levels of
social competence.

The validity and relevance of our claims and arguments
can be tested by carrying out experiments that address the
following questions. What is the minimally functioning social
competence in ethorobots? Does it depend on embodiment
and/or function? Would ethorobots be easier to accept by
humans than humanoids, androids and any other type of human-
like robots? What decides if embodiment and social behavior
contradict or complement each other? Would humans develop
different type of social relationships with ethorobots depending
on their social competence? Under what condition would
humans perceive an ethorobot as a living being? Experiments get
started (e.g., Faragó et al., 2014; Lakatos et al., 2014; Takahashi
et al., 2015; Gácsi et al., 2016; Paetzel et al., 2016; Tschöpe et al.,
2017) but there is a long way to go.

CONCLUSION

Robotics has reached a stage when there is a demand for robots
that can be considered as partners of humans. But without a
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clear theory built on biological (ecological and technological)
knowledge, social robotics may fall in serious traps, will not be
able to fulfill the societies’ demand, and waste much money. We
suggest robots that are developed on the basis of ethological
concept: they (1) do not destroy natural human relationships,
(2) do not get into a competitive situation with humans, (3) are
able to develop a social partnership with humans, which matches
the level of cooperation needed, and (4) are more acceptable for
integration into our communities.
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During a social interaction, events that happen at different timescales can indicate social 
meanings. In order to socially engage with humans, robots will need to be able to com-
prehend and manipulate the social meanings that are associated with these events. We 
define social moments as events that occur within a social interaction and which can 
signify a pragmatic or semantic meaning. A challenge for social robots is recognizing 
social moments that occur on short timescales, which can be on the order of 102 ms. In 
this perspective, we propose that understanding the range and roles of social moments 
in a social interaction and implementing social micro-abilities—the abilities required to 
engage in a timely manner through social moments—is a key challenge for the field of 
human robot interaction (HRI) to enable effective social interactions and social robots. In 
particular, it is an open question how social moments can acquire their associated mean-
ings. Practically, the implementation of these social micro-abilities presents engineering 
challenges for the fields of HRI and social robotics, including performing processing of 
sensors and using actuators to meet fast timescales. We present a key challenge of 
social moments as integration of social stimuli across multiple timescales and modalities. 
We present the neural basis for human comprehension of social moments and review 
current literature related to social moments and social micro-abilities. We discuss the 
requirements for social micro-abilities, how these abilities can enable more natural social 
robots, and how to address the engineering challenges associated with social moments.

Keywords: social moments, social robotics, timescales, responsiveness, social interaction, human–robot 
interaction

1. iNtrODUctiON

For robots to develop social skills, they need to engage in interaction dynamics that convey social 
meanings. We term the events that occur within these interaction dynamics as social moments. 
Social interactions occur between social agents at multiple timescales. Conversations and other 
consciously considered social interactions typically span seconds, minutes, or longer. However, 
managing social exchanges also relies on the interpretation and manipulation of fast timescales (on 
the order of 102 ms) upon which the interaction is constructed.

For social robots, it is important to be able to understand the social significance of these fast 
interaction dynamics when participating in a social interaction. For a robot, social moments must 
be grounded both in the culture and personality of the interactant and also in the attributes of the 
interaction (environment), the roles of participants and robot, and the interaction task. The social 
skills required for a social robot include detecting, creating, and learning the meanings of social 
moments.
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FigUre 1 | A social moment that occurs between two conversing people from the changing length of a pause. There is a pause between one speaker’s turn 
ending and the other speaker’s turn starting. The pause length is controlled by speaker 2, and different lengths of the pause can indicate different pragmatic 
meanings to speaker 1. Given a typical pause length, τ, a pause that is shortened and has length τ − 𝜖 might indicate eagerness to speak, while a pause that is 
lengthened has length τ + 𝜖 might indicate reluctance to speak. Such an event can be considered a social moment, as the event can have an impact on the 
interaction dynamics. The social moment is caused by the divergence from the typical behavior by speaker 2. Speaker 1 can interpret the event and change his/her 
approach to the conversation. Alternatively, speaker 1 could miss or misinterpret the social moment and appear anti-social to speaker 2.
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While the fields of human–robot interaction (HRI) and social 
robotics have investigated aspects of language (e.g., Kollar et al. 
(2010)), social interaction (e.g., Breazeal (2004)), and social 
motion (e.g., Hoffman and Ju (2014)), there is little or no investi-
gation of social moments during these interactions and the short 
timescales associated. In this paper, we introduce and provide a 
definition for social moments; outline the related literature from 
psychology, neuroscience, and HRI; and present the practical 
challenges that need to be addressed to enable fast timescale 
social abilities.

2. DeFiNitiON OF sOciAL MOMeNts

2.1. Definition
Social moments are brief events that occur during an interaction 
between two or more agents that have the potential to impact 
social dynamics.

Social moments have the potential to convey pragmatic and 
semantic information during an interaction that need not be 
deliberate or conscious actions. If a tutor gives a lecture to a group 
of students and briefly looks at one of the students, only to notice 
the student looking away out of boredom, the behavior of the tutor 
can be affected by this event, potentially for the rest of the lecture. 
The tutor might decide to focus more on this student or to make 
the lecture more interesting to capture attention. Alternatively,  
the tutor might instead decide to ignore the student and not to 
look that way again for the rest of the lecture. In practice, the set 
of events {tutor looks at student; student looks away}, although 
happening in a very short period of time, carries a social mean-
ing that can potentially affect the rest of the interaction. We refer 
to such sets of events as social moments.

Social moments can evoke performative meanings (Condoravdi 
and Lauer, 2011) and can convey positive or negative valences. 
Communicating intentions is considered to be a prerequisite 
of the acquisition of language abilities in humans (Bates et  al., 
1975), with performative meanings conveyed in both verbal and 
non-verbal ways. For example, the speed of response in a social 

exchange can determine whether a speaker is being answered 
or a new comment generated (Newman et  al., 2010; Maroni, 
2011), and small delays can indicate the state of the responder 
as eager or reluctant to engage with an agent (Bögels et al., 2015)  
(see Figure 1). Larger delays in response can be considered to vio-
late social norms and lead to the interpretation that an interactant 
is distracted, anti-social, or offensive. Additionally, movement 
patterns, particularly those in peripersonal space (within arms 
length), can convey social meanings (Ramenzoni et  al., 2012). 
Different motions can indicate different intentions (Blythe et al., 
1999), and changes in body posture can indicate different levels 
of engagement (Sanghvi et al., 2011).

In their foundational work in the field of social robotics, 
Dautenhahn et  al. (2002) hypothesized that as robotic agents 
become socially embedded, they have to be able to observe, 
learn from, and adapt to their social environment, but they must 
also be able to influence it. Accordingly, the authors defined a 
set of micro-behaviors for hand-annotating the impact of robots 
on the humans surrounding them at the temporal resolution of 
500 ms (Dautenhahn and Werry, 2002). In essence, Dautenhahn’s 
hypothesis for social robots can be summarized as a need for them 
to have the ability to detect, interpret, and create social moments, 
but on a smaller timescale than that of micro-behaviors.

3. tiMescALes FOr sOciAL MOMeNts

Although a social moment may occur over any duration, social 
moments that occur over short timescales are difficult for a robot 
to detect, but can be just as significant. The importance of timing 
and short timescale responses is demonstrated in several social 
interaction studies. For tasks that require joint motor actions to 
achieve a goal, motor coordination becomes an inherent property 
of the interaction (Riley et  al., 2011; Ramenzoni et  al., 2012), 
requiring participants to be responsive to each other’s actions. 
Synchronization can also occur between the motions of humans 
even when there is no joint motor coordination (Richardson 
et al., 2007), and deliberate synchronicity from an experimenter 
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can increase affiliation from a participant (Hove and Risen, 2009). 
These studies suggest that synchronization is a key part of social 
normality.

Another modality of a social interaction that is greatly 
influenced by timing is that of conversation. Language process-
ing occurs at many different timescales, and different events at 
different times can result in both changes to perception of the 
interaction and interlocutors. Consonant transitions can take less 
than 50 ms (O’Shaughnessy, 1974), and the difference in pronun-
ciation can allow discrimination between a native and non-native 
speaker. For children, the inability to discriminate between two 
43 ms tones is related to speech disorders (Tallal and Piercy, 1974). 
However, the timescales for each of these processes are below the 
level of even a single word, which is often the level that social 
robots work at (e.g., when using speech-to-text algorithms).

Additional challenges for social robots are found at the 
conversation turn-taking level. Turn-taking requires meeting 
timescales on the order of 102  ms, but this timescale varies 
depending on the culture (Stivers et al., 2009). For humans, the 
apparent time taken to process an utterance can be 500−700 ms, 
resulting in at least a 200 ms gap where an interlocutor would 
be expected to respond before having completely processed what 
was said previously (Stivers et al., 2009; Levinson and Torreira, 
2015). Pauses between turns can take on further critical social 
meanings. Longer pauses have been demonstrated to be associ-
ated with non-preferred responses (Bögels et  al., 2015), while 
pauses also reflect opportunities to enter conversation (Newman 
et  al., 2010; Maroni, 2011) (see Figure  1 for an example). For 
robots, the challenges for conversation turn-taking are to meet 
required social response times without complete knowledge of 
what was previously said and to understand the social meanings 
that are indicated through timing. Again, failing to meet these 
timing requirements can cause violations of social norms, which 
can carry a negative pragmatic meaning.

Altogether, a large set of events across multiple modalities 
can intertwine to create social meanings, given a specific con-
text (Mondada, 2016). A good example is the McGurk effect 
(McGurk and MacDonald, 1976), where the visual and auditory 
channels are integrated during language perception. The timing 
of this multimodal integration is critical (Munhall et al., 1996), 
as delays of more than 180 ms across one modality can disrupt 
the perceived social moment. For a social robot, it is then critical 
to process social moments as spanning multiple timescales and 
modalities and as part of a broader context.

4. NeUrAL BAsis FOr sOciAL 
MOMeNts

Social moments can be constructed by societies through social 
norms, but they can also be grounded directly in human biology. 
The neural architecture required to detect social moments at mul-
tiple timescales and through different modalities is visible in the 
neural basis of human sensory processing. Processing of sensory 
(particularly visual) information in human cortical pathways 
shows differences linked to social information as early as 100 ms 
after presentation of the stimulus (Meeren et al., 2005; de Gelder, 
2006). Other studies have shown that ultra-rapid categorization 

of visual stimuli is possible due to a likely parallel process in the 
visual cortex (Thorpe et al., 1996; van Rullen and Thorpe, 2001). 
As a consequence, the extraction of social information from 
visual stimuli can be done in less than 150 ms, thus being able 
to trigger a motor reaction to social stimuli in less than 300 ms 
(Thorpe et al., 1996).

Similarly, subcortical areas of the brain are believed to play a 
role in the processing of social stimuli (Morris et al., 1998; LeDoux, 
2012), and their close link to motor structures suggests that they 
could play a role in the establishment of an automatic, reflex-like 
social behavior (de Gelder, 2006). A recent study on monkeys 
(Kuraoka et  al., 2015) suggested that neurons were maximally 
informative of emotion and identity about 250 ms posterior to 
stimulation, which would be consistent with an extremely rapid 
reaction to strong social stimuli. In contrast, the maximum of 
information in cortical areas was observed after 300 to 1,000 ms, 
thus supporting a more elaborate but slower processing for emo-
tion and an extremely rapid reaction to identity in the cortex.

Altogether, the organization of the processing of social stimuli 
inside human brains is consistent with a multi-scale approach to 
social moments. Accordingly, human behaviors are driven by the 
processing of social stimuli along two main scales: a very rapidly 
generated but very coarse representation of the social context, 
highly linked to motor structures and responsible for reflex-like 
social behavior, and a more elaborate but slower processing 
of social information. Although social robots do not have to 
implement social behavior in the same way, this organization 
emphasizes the different timescales and levels of processing that 
should be considered when designing robots.

5. PersPectives FOr sOciAL rOBOts

Awareness of social interactions is a critical component of social 
robots (de Graaf et al., 2015). In particular, the speed and timing 
of robot responses during social interactions have been identified 
as necessary prerequisites to engage users (Robins et al., 2005) 
and for the acceptance of the robot as a social interaction partner 
(Lee et al., 2006). Therefore, in a similar way to the mechanisms 
underlying the human interaction engine (Levinson, 2006), social 
robots need what we term social micro-abilities. Social micro-
abilities are a set of abilities that augment social interactions and 
provide backchannels of communication (i.e., in parallel with 
symbolic communication). The following paragraphs describe 
the requirements of social micro-abilities.

5.1. social robots require sensitivity to 
events at very short timescales
Social moments can happen on the order of 102 ms. The latency 
and rates of robot sensors directly affect the detection of social 
moments, as a robot’s response is constrained by hardware. For 
instance, robots that use standard web-cameras with latencies 
of 100–200  ms have restricted response times due to the time 
needed to capture an image during a control loop. A framerate of 
30 Hz would lead to a maximum of 6 frames to capture an event of 
200 ms length. Faster cameras exist, but their use comes at a cost 
of additional processing requirements. While there are currently 
constant advances in processing power, the increase comes at the 
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cost of rethinking processing for each gain (Larus, 2009). Faster 
cameras have also been limited to physical applications and not 
considered for social interaction studies. For instance, motion 
capture cameras can achieve lower latencies and higher framer-
ates and are often used for physical applications where timing 
is important (e.g., catching objects (Kim et  al., 2014)). New 
event-based sensors such as the Dynamic Vision Sensor (DVS) 
(Lichtsteiner et al., 2008; Thorpe, 2012) can allow the detection 
of events at smaller timescales. There are also low-latency sensors 
for other modalities, such as audio, touch, and proprioception. 
The event-based silicon cochlea allows audio frequency data to be 
obtained with low latency and high frequency (Liu et al., 2010). 
The development of virtual whiskers (Schlegl et al., 2013) with 
high measurement frequency (1.25 kHz) allows rapid gathering 
of spatial information in the vicinity of the robot. The use of 
mechanical sensors such as torque sensors also allows detection 
of collision events in less than 15  ms (Haddadin et  al., 2008). 
Despite the cost of the paradigm shift associated with using 
faster sensors, adapting such alternative approaches taken from 
industrial robotics or physical Human-Robot Interaction (pHRI) 
could augment the sensing capabilities of social robots.

5.2. social robots require rapid 
response capabilities
Achieving low latency responses to social moments requires 
processing events rapidly or maintaining a best guess represen-
tation of the social environment (Robins et al., 2005; Lee et al., 
2006). When using control approaches that constantly update 
the knowledge of the environment and trigger motor actions 
from incomplete or uncertain knowledge, robots manage to 
catch flying objects whose time of flight does not exceed 700 ms 
(Kim et al., 2014) or react to attenuate collision forces in less than 
100 ms (Haddadin et al., 2008), therefore matching or surpassing 
human capabilities. Such approaches have been restricted to the 
domain of physical robot dynamics and have not been considered 
in social robotics. Social robotics requires consideration of social 
dynamics, and models that take these dynamics into account 
have the potential to give social robots faster social responsive-
ness. In particular, a major challenge toward this goal is the 
difficulty of modeling the dynamics of social events compared to 
physical events. To achieve this goal, a better understanding of the 
dynamics of social interactions and social moments is required. 
Accordingly, using acquired knowledge of human reactions to 
their social environment can help predict the future occurrence 
of social events (e.g., Koppula and Saxena (2016)). Prediction of 
elements of the interaction in an anticipatory control system can 
also help reduce response times significantly (Huang and Mutlu, 
2016) toward meeting fast response timescales. Notably, even if 
the amount of uncertainty contained in models of social interac-
tions is greater than that in physical systems, it is important to note 
that interpretation of social interactions does not have to reach 
perfect accuracy. Rather, misinterpretation of social moments 
would contribute to give social robots human-like fallible traits 
that could improve their acceptance and long-term relationships 
with humans (Biswas and Murray, 2015). In addition to rapid 
processing of social events, responses at short timescales require 

fast actuators for robots. Social robots are often restricted to low-
speed actuators to avoid harming humans—a trade-off that can 
restrict social ability.

5.3. social robots require the Ability to 
interpret social Meanings and Maintain 
social Awareness during Future Actions
The interaction with humans requires the robot to integrate 
social moments within their processing of the environment. This 
includes processing the social information and the context of 
the events together. As social moments are tied to social norms, 
detecting social moments will require the ability to predict typical 
behavior [e.g., motion from DVS, see Gibson et al. (2014)] and 
highlight deviations. Using neuromorphic processing of visual 
inputs, studies have achieved categorization of objects in less 
than 160  ms (Wang et  al., 2017) or triggered robot responses 
in 4 cycles of a periodic event (Wiles et al., 2010). In addition, 
the interpretation of social moments requires the integration of 
information across multiple modalities, as multiple modalities 
contribute to the generation of social meaning (Mondada, 2016). 
Finally, as the social meanings interpreted from a social moment 
can affect long-term social interactions, robots need to be able 
to integrate social information obtained at short timescales into 
their cognitive architecture [see Lemaignan et  al. (2017)] and 
memory to be able to represent the context against which future 
responses will occur.

6. cONcLUsiON

In this paper, we have proposed the concept of a social moment 
and the social micro-abilities that are necessary for a robot to 
detect, interpret, predict, and respond to social moments. We 
believe that social micro-abilities are a fundamental requirement 
for social robots in order to gain acceptance in human societies. In 
particular, we believe that social robots need the ability to detect, 
predict, and respond to interaction dynamics across multiple 
modalities and at timescales as low as the order of 102 ms.

The implementation of social micro-abilities raises a set of 
compelling questions for the field of HRI and meets the defini-
tion of a new paradigm (Koschmann, 1996). We encourage social 
roboticists to consider social moments as part of their robot or 
architecture designs, and we anticipate new developments in 
robot hardware and cognitive architectures that will feature social 
micro-abilities. We intend to expand on the concepts of social 
moments and social micro-abilities and the required topics, tools, 
and methodologies in our future work.

From this perspective paper, we draw several current recom-
mendations for social robotics:

 (i) Although technology for implementing fast sensing and 
response already exists, use of such technology has been 
constrained to industrial robotics or pHRI. The interaction 
dynamics of social robotics needs to be considered just as 
temporally challenging as physical dynamics, with existing 
high speed sensors, actuators, and algorithms considered for 
social interactions.
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 (ii) Robots need to be able to respond quickly to maintain interac-
tion dynamics even when there is missing or uncertain infor-
mation about the social environment. For some interactions, 
there is a socially acceptable window in which a robot can 
respond, and no further incoming information or processing 
of information can compensate for responding too slowly.

 (iii) Events on very short timescales and across multiple modali-
ties can profoundly impact the current and future interac-
tions, and therefore, it is essential for social robots to detect, 
predict, interpret, rapidly react to, and maintain long-term 
knowledge about social moments.
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