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A multimodal human-robot sign 
language interaction framework 
applied in social robots
Jie Li 1, Junpei Zhong 2 and Ning Wang 3*
1 School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing, China, 
2 Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 
China, 3 Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom

Deaf-mutes face many difficulties in daily interactions with hearing people 
through spoken language. Sign language is an important way of expression and 
communication for deaf-mutes. Therefore, breaking the communication barrier 
between the deaf-mute and hearing communities is significant for facilitating their 
integration into society. To help them integrate into social life better, we propose 
a multimodal Chinese sign language (CSL) gesture interaction framework based 
on social robots. The CSL gesture information including both static and dynamic 
gestures is captured from two different modal sensors. A wearable Myo armband 
and a Leap Motion sensor are used to collect human arm surface electromyography 
(sEMG) signals and hand 3D vectors, respectively. Two modalities of gesture 
datasets are preprocessed and fused to improve the recognition accuracy and to 
reduce the processing time cost of the network before sending it to the classifier. 
Since the input datasets of the proposed framework are temporal sequence 
gestures, the long-short term memory recurrent neural network is used to 
classify these input sequences. Comparative experiments are performed on an 
NAO robot to test our method. Moreover, our method can effectively improve 
CSL gesture recognition accuracy, which has potential applications in a variety of 
gesture interaction scenarios not only in social robots.

KEYWORDS

social robots, sign language, gesture recognition, multimodal sensors, human-robot 
interaction

1. Introduction

According to statistics, there are over 70 million deaf people in the world.1 For these people, 
communication with others through verbal language is impossible. Therefore, there are a great 
many difficulties in their daily communications. For instance, deaf people could not hear a horn 
when crossing the street. How to help the deaf community and those who have language 
impairment enjoy accessible social lives is very important. A service robot is a kind of intelligent 
robot dedicated to providing service for improving human life. With the development of 
robotics, information science, and sensor technology, service robots have been applied widely 
in many fields, such as medical rehabilitation, education, transportation, and entertainment to 
domestic service (Siciliano and Khatib, 2016; Yang et al., 2018a; Gonzalez-Aguirre et al., 2021). 

1 World Federation of the Deaf. (2023). E. coli. http://wfdeaf.org/our-work/. [Accessed February 8, 2023].

OPEN ACCESS

EDITED BY

Alois C. Knoll,  
Technical University of Munich, Germany

REVIEWED BY

Chao Zeng,  
University of Hamburg, Germany
Xianfa Xue,  
South China University of Technology, China

*CORRESPONDENCE

Ning Wang  
 Katie.Wang@brl.ac.uk

SPECIALTY SECTION

This article was submitted to  
Neuromorphic Engineering,  
a section of the journal  
Frontiers in Neuroscience

RECEIVED 18 February 2023
ACCEPTED 20 March 2023
PUBLISHED 11 April 2023

CITATION

Li J, Zhong J and Wang N (2023) A multimodal 
human-robot sign language interaction 
framework applied in social robots.
Front. Neurosci. 17:1168888.
doi: 10.3389/fnins.2023.1168888

COPYRIGHT

© 2023 Li, Zhong and Wang. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 11 April 2023
DOI 10.3389/fnins.2023.1168888

54

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1168888%EF%BB%BF&domain=pdf&date_stamp=2023-04-11
https://www.frontiersin.org/articles/10.3389/fnins.2023.1168888/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1168888/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1168888/full
http://wfdeaf.org/our-work/
mailto:Katie.Wang@brl.ac.uk
https://doi.org/10.3389/fnins.2023.1168888
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1168888


Li et al. 10.3389/fnins.2023.1168888

Frontiers in Neuroscience 02 frontiersin.org

As a kind of service robot, the social robot is aimed at interacting with 
people in a human-centric way, which can provide a friendly way for 
interaction and services to meet the diverse demands of human beings 
(Breazeal et  al., 2016; Yang et  al., 2018b). Thus, social robots are 
expected to help the above-mentioned people communicate with 
others in a nonverbal way. In this sense, how to develop and design an 
intuitive, natural, easily interactive, and friendly interaction mode that 
can help these people communicate conveniently is a challenging topic 
for social robots.

Among various approaches to human-robot interaction (HRI), 
the way of using hand gestures for interaction facilitates more efficient 
communication between humans and robots. Since gesture interaction 
is a kind of non-contact way, which is more secure, friendly, and easy 
to accept by humankind. The gesture is one of the most widely used 
communicative manners. In the long-term social practice process, the 
gesture is endowed with a variety of specific meanings. At present, 
gesture has become the most powerful tool for expressing sentiment, 
intention, or attitude for humans. Hence, more and more researchers 
focus on gesture recognition and its applications. Many approaches 
are studied to recognize hand gestures by different modality sensors 
with various features. These approaches can be mainly categorized 
into three types: the wearable sensor-based approaches (Si et  al., 
2022), the vision sensor-based approaches (Mitra and Acharya, 2007; 
Oudah et al., 2020; Rastgoo et al., 2020; AI Farid et al., 2022), and the 
combination of the above-mentioned gesture recognition approaches 
(Wu et al., 2016; Xue et al., 2018; Roda-Sanchez et al., 2023). However, 
most of these studies were based on the single static or dynamic 
gestures to classification or recognition. Seldom of them focused on 
both dynamic and static recognition by using different modal 
information. Dynamic and static gestures are both needed to recognize 
under some specific circumstances, such as sign language recognition 
(SLR) for deaf or speech-impaired people.

Sign language is highly structural hand gestures, including static 
gestures and dynamic gestures. It serves as a useful tool for the deaf 
and hearing-impaired individuals in daily communication. The 
structural features of sign language make it very suitable for computer 
vision algorithms (Wu and Huang, 1999). Therefore, many relevant 
studies (such as SLR) are based on vision-based approaches (Cheok 
et al., 2019). The input data of vision-based SLR algorithms are usually 
divided into static gesture and dynamic gesture. Correspondingly, 
there are static-based and dynamic-based SLR approaches. For static 
sign language gestures, the approaches, such as K-nearest neighbor 
(Tharwat et al., 2015), support vector machine (Kurdyumov et al., 
2011), and multilayer perceptron (Karami et al., 2011) are used to 
obtain better results. The vision-based dynamic sign language 
approaches include hidden Markov model (HMM; Wang et al., 2003), 
dynamic time wrapping (Lichtenauer et al., 2008), relevance vector 
machine (Wong and Cipolla, 2005), and finite state machine (Hong 
et al., 2000), etc.

Recently, with the advent of deep neural networks (DNN, Cao 
et al., 2022a), various deep learning algorithms are applied to SLR 
(Camgoz et al., 2018; Cui et al., 2019; Qi et al., 2021). Pu et al. 
presented a dynamic convolutional neural network (CNN) SLR 
model based on RGB video input (Pu et  al., 2018). Wei et  al. 
combined the 3D convolutional residual network and bidirectional 
long short-term memory (LSTM) network to recognize dynamic 
sign language gestures (Wei et  al., 2019). Similarly, Cui et  al. 

developed a dynamic SLR framework by combining CNN and 
bidirectional LSTM networks (Cui et al., 2019). Ye et al. proposed 
a 3D Recurrent CNN to classify gestures and localize joints (Ye 
et al., 2018). With the development of sensor technology (Chen 
et al., 2020; Cao et al., 2022b), many high accuracy and low cost 
sensors appears, such as Kinect and Leap Motion Controller 
(LMC) sensors. These sensors can capture hand or arm 
information more conveniently. The combination of new emerging 
sensors and deep learning approaches brings more new 
possibilities for SLR. Chong and Lee used the features recorded 
from the LMC sensor to classify 26 letters in American Sign 
Language (ASL). The recognition accuracy reaches 93.81% with 
DNN algorithms (Chong and Lee, 2018). Naglot et al. used a deep 
learning method to achieve 96.15% based on LMC gesture samples 
(Naglot and Kulkarni, 2016). Kumar et al. (2017a) presented a 
multimodal framework combining the HMM and bidirectional 
LSTM networks. The framework can recognize isolated sign 
language gesture datasets from Kinect and LMC sensors. To 
improve the accuracy of SLR, researchers fused different features 
to achieve the expected results. Kumar et al. (2017a) classified 25 
Indian sign language (ISL) gestures by employing the coupled 
HMM to fuse the Leap Motion and Kinect sign language 
information. Bird et al. (2020) presented a late fusion approach to 
multimodality in SLR by fusing RGB and 3D hand data with a 
deep convolutional network. In the above research works, the sign 
language gestures involve both isolated static and dynamic hand 
gestures, based on Chinese sign language (CSL), ISL, ASL, and 
other sign languages from different countries, etc. The SLR 
approaches include traditional machine learning, deep learning, 
and the combination of both algorithms. However, these studies 
seldom take into account both static and dynamic sign language 
gestures in a classifier at the same time. Moreover, most of the 
researchers focus on using depth or RGB information as the input 
data of the classifier. Generally, the fusion of different modal input 
data also often uses these two data. The SLR framework proposed 
by Bird et  al. fused two modalities of gesture datasets both 
captured from one sensor (LMC; Bird et al., 2020). Hence, inspired 
by the previous work (Naglot and Kulkarni, 2016; Kumar et al., 
2017a,b; Bird et  al., 2020), we  propose a multimodal SLR 
framework that combines CSL features from several sensors to 
recognize static and dynamic hand gestures. This framework uses 
the deep learning method to fuse two modalities features from 
two different sensors to improve the recognition accuracy. The 
proposed multimodal framework can not only recognize singular 
CSL gestures but also recognize gestures consisting of two 
singular gestures.

Sign language mainly use the human hands to convey information. 
In some cases, other body parts such as fingers, arms, and head also 
used to convey information (Wu and Huang, 1999). CSL gestures 
mainly use human hands and arms. Therefore, the focus of this paper 
is to use human hand and arm information to classify corresponding 
gestures. Different from most of the vision-based input data, this work 
fuses the information from the visual sensor and surface 
electromyography (sEMG) signals by using Leap Motion and a 
wearable Myo armband. Though some research works in the gesture 
recognition area use human arm sEMG captured by Myo armband or 
other similar devices. Sometimes, higher recognition accuracy is also 
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achieved. But for SLR, seldom research applies sEMG signals to 
classify different sign language gestures. In this work, considering the 
characteristic of CSL, we apply the advantages of information fusion 
to fuse two modalities of data to improve recognition accuracy. It 
combines the advantages of arm sEMG information in gesture 
recognition and the complementary for different modal sensor 
information. Besides, SLR is mainly applied to the daily 
communication between deaf, speech-impaired, and autism spectrum 
disorders (ASD) communities, the proposed CSL recognition 
framework is applied to social robots. Thus, it can promote 
communication between these communities and entertainment 
with robots.

The main contribution of this work is that an HRI system by 
integrating two modalities of CSL data is developed for deaf and 
speech-impaired people, which enables the social robots to 
communicate with target people efficiently and friendly. Most 
importantly, the proposed system can be applied in other interaction 
scenarios between robots and autistic children. The remainder of the 
paper is organized as follows. The CSL gestures classification method 
is presented in section 2. Section 3 provides the simulations and case 
studies on the real-world robot. Section 4 concludes this work and 
discusses the further potential applications.

2. Methodology

The overview of the proposed HRI system is shown in Figure 1. It 
includes three phases: data collection, data classification, and 
robot response.

2.1. System overview

In this data collection phase, we mainly collect four different kinds 
of common CSL gestures. Here, two modalities of hand action data 
are collected from two different modal sensors. Leap Motion is applied 
to capture human hand 3D features. Meanwhile, the human arm 
sEMG signals are captured by the Myo armband.

In the data classification phase, the collected gesture data from 
two sensors are preprocessed, respectively. Then, the features of two 
modalities datasets are fused as one dataset, which serves as input to 
the LSTM classifiers.

In the robot response phase, after the gesture data is recognized 
by the LSTM classifier, the results are transformed into executable 
commands of the social robot. Later, the robot makes a response to 
the recognition results.

2.2. Data collection and preprocessing

Figure  2 presents the overall steps of the data collection, 
preprocessing, and feature fusion. As aforementioned, the Myo 
armband and LMC are used to capture arm sEMG signals and 
human hand movements, respectively. As shown in Figure 2, a 
participant wears the Myo armband on the forearm and puts his/
her hand onto the Leap Motion sensor within viewing range to 
capture sEMG signals and hand movement information 
synchronously. When a participant is performing a certain sign 
language, the data are recorded synchronously from the Myo 
armband and LMC. That is, the sEMG signals and human hand 3D 
vectors from both sensors are timely collected. In this paper, four 
daily CSL gestures are considered.

2.2.1. Hand 3D information captured by leap 
motion sensor

Leap motion is an optical hand tracking sensor that captures 
the movements of human hands with sub-millimeter accuracy. The 
sketch of LMC is shown in Figure  3A. The core of the device 
consists of three infrared LEDs placed at equal distances from each 
other, and two stereo cameras placed between each pair of IR 
sensors (Li et al., 2019). With these devices, LMC can detect the 
bones and joints of the human hand accurately by combining 
stereoscopy and depth-sensing. The view of a 3D representation of 
the hand translated by the two cameras is shown in 
Figure 3B. Compared with the Microsoft Kinect sensor, LMC is 
more portable, smaller ( L W H cm× × = × ×8 3 1 1

3
. ), and lower-

cost (Weichert et  al., 2013). Here, the Leap Motion sensor is 
applied to collect 3D vectors of the human hand.

Two healthy participants aged 22–35 years contributed to a dataset 
of CSL gestures. They are asked to repeat each gesture 50 times 
comfortably. The length of each gesture is recorded within 5 s to avoid 
muscle fatigue and affect data quality. During the data recording, 
participants are asked to take a break for each repeat. They told the 
details of data collection in advance. Four different gestures of the 
right hand are recorded at a frequency of 50 Hz. The LMC data are 
recorded by the deep cameras located on the sensor facing the 
participants’ hand. It is worth noting that both participants placed 
their palms at the same height above the LMC sensor. Also, the 
positions of the Myo armband for them are the same.

FIGURE 1

The framework of the proposed multimodal human-robot 
interaction (HRI) system.
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Figure 4 demonstrates the fingertips, wrist, and palm position. For 
each performed gesture, we record all the 3D coordinates of human 
hand. Then, the start palm position, the difference between the start 
palm positions, changes of palm positions, palm direction, and 
velocity of the palm are extracted from these 3D coordinates. As 
shown in Figure 4, we also extracted the yaw, pitch, and roll of the 
palms. It is noted that yaw is the angle between the negative z -axis 

and the projection of the vector onto the x - z  plane. Similarly, pitch 
and roll are the angles between the corresponding negative coordinate 
axes and the projection of corresponding vectors. In other words, pitch, 
yaw, and roll represent the rotations around the x , y , and z  axes, 
respectively. The angle is calculated through two 3D vectors (Bird et al., 
2020). Assuming that the angle θ  is constructed by the vectors of a  
and 



b , then it can be computed as follows

FIGURE 2

An overall diagram of the HRI system.

A B

FIGURE 3

The view of Leap Motion Controller (LMC). (A) Schematic view of LMC. (B) 3D view of human hand from LMC (Weichert et al., 2013).
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where a  and b  are vectors made up of two points in space 
following the LMC coordinate system. The LMC sensor adopts a 
Cartesian coordinate system based on right-hand. The origin is at the 
top center of LMC. a  and b
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where the subscripts of a  and b  correspond to the x , y , and 
z  coordinates of each vector in space, respectively.

In this work, nine features (six 3D coordinates and three 
one-dimensional angle) are chosen to distinguish four CSL gestures. 
Each 3D coordinate is three-dimensional. Hence, the total dimensions 
of the nine features are 21, as shown in Table 1. It is known that the 
features of dynamic gestures are time-varying. The change of palm 
position can reflect that change well. Hence, the palm position (as 
shown in the second feature in Table 1) is extracted as one of the 
features to distinguish dynamic and static gestures effectively. Thus, 
the proposed framework can recognize both static and dynamic 
gestures without another special classifier. Noting that the wrist 
position is extracted to reflect the change of arm.

2.2.2. Human arm sEMG signals captured by Myo 
armband sensor

Figure 5 shows the sketch of Myo armband. It is a wearable and 
lightweight elastic armband. Myo armband is produced by the 
Thalmic Labs which consists of several metal contacts. These metal 
contacts can measure the electrical activity of the user’s forearm 

muscles. Thus, the Myo armband can recognize their hand gestures 
and detect their arm motion by reading the electrical activity of 
human muscles. The Myo armband has eight detection channels. 
Correspondingly, eight-channel sEMG signals of the human forearm 
arm are captured to classify sign language gestures together with LMC 
data. Since gestures are collected synchronously from the Myo 
armband and Leap Motion sensor, the sampling frequencies for both 
sensors are the same. The raw sEMG signals are noisy. Therefore, it is 
necessary to process the signals captured by the Myo armband to train 
the gesture classifier effectively (Zardoshti-Kermani et  al., 1995; 
Phinyomark et al., 2013; Camargo and Young, 2019).

2.2.3. Data preprocessing for two data subjects
Based on the above-mentioned, four CSL gestures recorded from 

two sensors are depicted in Figure 6. These four gestures are chosen 
because they are commonly used by Chinese people. The useful right-
hand gestures for general conversation include “you,” “me,” “everyone,” 
and “good.” For the four gestures, only “everyone” is the 
dynamic gesture.

FIGURE 4

The coordinate system of the Leap Motion sensor and diagram of the bone data detected by it.

TABLE 1 Descriptions of CSL collected from leap motion sensor.

Features Descriptions

Palm position 3D coordinates ( X , Y , and Z )

Change of palm position 3D coordinates ( X , Y , and Z ) The difference 

between the start and the end position of palm.

Palm normal 3D coordinates ( X , Y , and Z )

Palm direction 3D coordinates ( X , Y , and Z )

Palm velocity 3D coordinates ( X , Y , and Z )

Yaw of the palm Angle (one dimension)

Pitch of the palm Angle (one dimension)

Roll of the palm Angle (one dimension)

Wrist position 3D coordinates ( X , Y , and Z )
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Before the datasets are fed into the classifier, we must preprocess 
them to obtain a better recognition result. For the LMC data, each 
feature is normalized to a value between 0 and 1. The purpose of 
normalization is to make the preprocessed data limited to a certain 
range, so as to eliminate the adverse effects (such as causing the 
training time to increase, which also may lead to the failure of 
convergence) caused by the singular samples.

As for the Myo data, preprocessing and feature extracting are 
necessary before training a classifier. Since the sEMG signals are noisy and 
different features influence the recognition performance, the 
preprocessing technique is an efficient way to reduce the impact on 
recognition results caused by the above factors. Low-pass filtering and 
band-pass filtering are used to preprocess the sEMG signals first. The 
low-pass filtering is aimed at obtaining signals with a frequency of 
5–200 Hz, and band-pass filtering is used to obtain the envelope of sEMG 
signals. Then, the root mean square (RMS; Kundu et al., 2018; Le Sant 
et al., 2019) is extracted as a feature of sEMG signals. Compared with 
other features, such as waveform length (Phinyomark et al., 2009; Arief 
et al., 2015), and autoregressive model features (Subasi, 2012; Krishnan 
et al., 2019), it has been verified that the RMS feature obtain the best result 
under different lengths of sampling moving window (Luo et al., 2020).

2.2.4. Data fusion of two modalities data
After preprocessing, we can obtain two datasets from LMC and 

Myo armband sensors. Recent studies have shown that sensor fusion 
can promote richness, completeness, and accuracy of information 
with less uncertainty to enhance the performance of training 

(Chavez-Garcia and Aycard, 2015; Li et al., 2020). Here, feature-level 
fusion is applied to fuse information of two sensors. Two preprocessed 
sequences are merged into a longer sequence with 29 dimensions as 
input of the LSTM network. In other words, each gesture has 29 
features. For each gesture, the data collected from both sensors have a 
history of 50 frames. Thus, the size of each gesture is 50*29.

2.3. Deep learning classification 
approaches

Recurrent neural network (RNN) is a commonly used approach 
in training and classifying time-series data. However, it is easy to 
occur gradients explosion or vanish when RNN handles long-term 
dependence. LSTM is designed to solve this problem. Compared with 
general RNN, LSTM performs better in learning longer time-series 
data. In this work, the LSTM network is used to classify the 
multimodal CSL gesture sequences.

The key to the effectiveness of LSTM in dealing with sequence 
problems lies in memory blocks and gates (Hochreiter and Schmidhuber, 
1997). As shown in Figure 7A, each memory block consists of an input 
gate, a memory cell, an output gate, and a forget gate. The memory cell 
retains information relying on different time intervals. The input gate, 
forget gate, and output gate determine whether the information flow can 
enter or exit the memory cell. Three independent gates work together to 
ensure that the cell retains information for a long time. Figure 7B shows 
the actual structure of the LSTM memory cell.

FIGURE 5

The view of Myo armband.

FIGURE 6

Four kinds of CSL gestures.
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As shown in Figure 7B, xt  is the input of the LSTM network, and 
ht  is the output of the network. ft , it , and ot  respectively denote 
the forget gate, input gate, and output gate variables of the LSTM 
network. The subscripts t  and t −1  represent the current time and 
previous time. ct  is the memory cell state. The notation of σ  and 
tanh  denote sigmoid and hyperbolic activation functions, 
respectively. With the memory gates, the input, output, and key 
parameters of the LSTM network can be computed (Graves, 2013)

 
i W x W h W c bt ix t ih t ic t i= + + +( )− −σ 1 1  

(3)

 
f W x W h W c bt fx t fh t fc t f= + + +( )− −σ 1 1  

(4)

 
c f c i W x W h bt t t t cx t ch t c= + + +( )− −1 1tanh

 
(5)

 o W x W h W c bt ox t oh t oc t o= + + +( )−σ 1  
(6)

 
h o ct t t= ( )tanh

 
(7)

where subscripts i , o , f , and c  respectively represent the 
parameters related to the input gate, output gate, forget gate, and 
memory cell. The subscripts of the weight matrix are similar. For 
instance, Wih  denotes the input-hidden matrix, Wic  denotes the 
input-memory cell matrix, etc. Similarly, bf , bi , bc , and bo  present 
the biases of corresponding subscripts for the LSTM network. tanh  
is the hyperbolic activation function, while Ã  is the sigmoid 
activation function.

The special structure of the memory cell endows the LSTM 
network with powerful capability in modeling time-based sequences 
with long-range dependencies. Therefore, the applications of this 
network have covered a great many fields successfully. In this work, 
the LSTM network is used to classify the time-series CSL gestures. 
With this network, the CSL gestures can be classified well. Then, the 
classification results will be  sent to a social robot for interaction 
and reaction.

This section first outlined the proposed framework and briefly 
introduced each module of this framework. Then, the collection of the 

A

B

FIGURE 7

The architecture of the long short-term memory (LSTM) network. (A) The composition of LSTM memory blocks. (B) The structure of LSTM memory 
cell.
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sign language datasets, and the preprocessing and fusion of two 
different sensor data were elaborated in detail. Lastly, the relevant 
classification algorithm makes the above datasets suitable to our 
framework was presented.

3. Experiments and results

Two experiments were performed to verify the proposed HRI 
framework. First, we compare the recognition performance of sensor 
fusion-based multimodal gesture datasets with individual sensor 
datasets. Then, we test the proposed framework according to several 
gesture recognition results and reactions with the NAO robot using 
LMC and Myo armbands.

3.1. Experimental setup

The experimental platform is introduced below:

3.1.1. Hardware platform
The experimental devices mainly include two gesture collection 

sensors and a social robot. As aforementioned, the Myo armband and 
LMC sensors are used to collect eight-channel sEMG signals and hand 
3D information, respectively. The social robot applied in the experiment 
is a NAO robot. As a bipedal humanoid robot, NAO is produced by the 
French Aldebaran Robotics Company. It is currently the most influential 
social robot research platform (Bartneck et al., 2019). Because the robot 
is low cost, easy to program, small in size, portable, and able to conduct 
research outside the laboratory (Su et al., 2007; Cohen et al., 2011; 
Garimort et al., 2011). Therefore, it has become a widely used robotic 
platform for HRI research by academic institutions around the world. 
Here, it is used to communicate with a person by gestures.

3.1.2. Software environment
The LSTM classifier was run on an Intel i7-4600M CPU with 

2.9GHZ which has 8 GB of GDDR5 memory. The LSTM model was 
built using the Python 3.6 library of Keras and trained using fusion 
data. Control software of NAO robot Choregraphe is employed to 
interact via gestures with a specified person. Both software runs on 
Windows 10 operating system.

3.2. Multimodal gestures comparison 
experiments and results

The demonstration data from the Kinect sensor and Myo armband 
will be preprocessed before it is fed into the incremental learning 
method. Firstly, the data fusion method based on the KF is used to 
fuse the joint angles and joint angular velocities to obtain a more 
accurate and smooth dataset. Since the demonstration data are not 
matched in the timeline, then the dynamic time warping (DTW) 
algorithm is applied to align it. Here, the two preprocessing methods 
will be introduced briefly.

3.2.1. Settings
The first experiment is performed to test the recognition 

performance for multimodal gestures. To compare with single 

modality data, three different sensor datasets are fed into the LSTM 
classifier. The corresponding conditions are considered as follows.

Condition 1: Single modality data from LMC sensor. The input 
data of the LSTM network are the 21-dimension (as listed in Table 1) 
3D hand vectors collected from the LMC sensor.

Condition 2: Single modality data from Myo armband. In other 
word, the input data of the LSTM network are the eight-channel 
sEMG signals of the human forearm arm with eight dimensions.

Condition 3: Two modality sensors data from two sensors (Leap 
Motion sensor and Myo armband). In this condition, the input data 
of the LSTM network is the combination of the 21-dimension 3D 
hand vectors and the eight-dimension sEMG signals of the human 
forearm arm. Before the data are fed into the network, the two sensors 
datasets are preprocessed and normalized, respectively. Then, the 
normalized datasets are fused as a new input vector of the LSTM.

In the conditions 1 and 2, the steps are the same except that the 
input data is different. The LSTM model is trained by feeding each of 
the time-series training data in batches of 10. And this is performed 
over 100 epochs of training. There are 400 sequences for four CSL 
gestures in total. The data set is randomly divided into training data 
and cross-validation data at a ratio of 90–10, respectively. It means that 
the number of training and testing sets is 360 and 40, respectively.

There are two important parameters for the LSTM network that 
can improve the classification results. One is the number of hidden 
neurons, and the other is the epoch. To obtain the optimal performance, 
the number of hidden neurons and epochs for the LSTM network 
under the above conditions are successively valued from 1 to 150. 
Table 2 shows the parameters setup of the LSTM network under three 
conditions. Figure  8 shows the model of the LSTM network. The 
superscript n  of xn

0 49:
 denotes the dimensions of gesture features. The 

values of n  are different under the above three conditions. The 
subscript of xn

0 49:
 is the length of each gesture sample. The subscript 

m  of Sm  denotes the number of gesture samples.
For each epoch, the training and test accuracy are computed and 

echoed. The computation of accuracy is as follows

 
Accuracy

correct

total

=
Ges
Ges  

(8)

where Gescorrect  denotes the number of gestures classified 
correctly. Gestotal  represents the total number of gesture 
samples collected.

TABLE 2 Parameters setup for the first three experiments.

Parameters Condition 1 Condition 2 Condition 3

Size of input 50 ∗ 21 50*8 50*29

Size of output 4 4 4

Number of hidden 

neurons

20 20 15

Epoch 50 50 30

Batch size 10 10 10
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3.2.2. Results and analysis
For all conditions, the training processes were performed and 

repeated several times to obtain a better model of the LSTM 
classifier. At the end of all the epochs of training, the model is made 
to test with the cross-validation data and its accuracy is also echoed. 
To prevent overfitting, the model is trained over 100 times. At each 
time, the loss and accuracy are noted. At the end of each training, 
the model is saved. The model with the least loss and highest cross-
validation accuracy is chosen for use in the second experiment. The 
classification results of CSL gestures under three conditions are 
shown in Figure 9.

Obviously, the classification accuracy under condition 3 achieves 
100%, while the accuracy could not achieve that under conditions 1 
and 2. In other words, the multimodal sensor fusion-based input data 
obtains a better performance in comparison with that of single-
modality sensor data. The recognition accuracies under conditions 2 
and 3 are the same when the single modality sensor datasets are used.

Figure 10 shows the classification results corresponding to three 
conditions of the above-mentioned scenarios. With the increase of 

training epochs, loss gradually converges to three different values 
corresponding to three conditions. It means that the multimodal 
fusion data achieves the highest recognition accuracy with convergent 
loss values.

As shown in Figure  11, the confusion matrices under three 
conditions are presented to explore the impact on classification results 
based on misclassified gestures and different modality data. The 
recognition accuracy under condition 3 is 100%, which means that all 
testing gestures are correctly recognized. Hence, we will not discuss 
the confusion matrix under condition 3. From Figure 11, we can find 
that only one CSL gesture is classified incorrectly under conditions 1 
and 2 in the test samples. This is because both of the conditions have 
the same recognition accuracy. But the misclassified gestures are not 
the same. The misclassified gesture type is “you” under condition 1, 
and that is “me” under condition 2. That is probably because the two 
gestures have the same postures except for directions.

3.3. HRI experiments and results

3.3.1. Settings
The second experiments were conducted on an NAO robot 

based on the first experiments. Firstly, two different modalities of 
testing CSL gestures were sent to the LSTM classifier. Then, the 
recognition results were transported to the NAO robot for 
understanding and reaction. Based on the recognition results, 
Choregraphe APP converts the corresponding gestures into 
executable commands so that the robot can perform and respond. 
In other words, the output of the classifiers being coded into 
commands for the robot’s response. Hence, the recognition of 
human hand motion for the robot is from the system. Choregraphe 
connects robots via Ethernet. The experimental platform and 
experiment steps are shown in Figure 12. Once these gestures are 
classified and sent to Choregraphe, the corresponding responses of 
the NAO robot will be performed.

Noting that the classifier model under the third condition in 
the first experiment is saved to recognize the testing gestures in 

FIGURE 8

The LSTM model used in the experiment.

FIGURE 9

Classification accuracies under three conditions for the first 
experiment.
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this experiment. Testing data include two types of gestures: four 
kinds of captured singular gestures and two combination gestures 
consisting of them. The combined CSL gesture is composed 
according to Chinese grammar which can express a complete 
meaning. The testing gestures are shown in Table 3. In Chinese, 
“hello” is a combination of the two words “you” and “good,” and 
“hello, everyone” is a combination of the three words “you,” “us,” 

and “good.” As shown in Table 3, six gestures are tested in total 
for the second experiment.

3.3.2. Results and analysis
The experiment was performed more than 10 times for each 

gesture. Figure 13 shows the response results of the NAO robot 
corresponding to the six gestures. In Figure 13A, the words in the 

A

C

B

FIGURE 10

The first experiment results under three conditions. (A) CSL gestures classification results under condition 1. (B) CSL gestures classification results 
under condition 2. (C) CSL gestures classification results under condition 3. In panels (A–C), the blue curves with star markers denote the recognition 
accuracy of the training set, and the yellow curves with circle markers denote the recognition accuracy of the testing set. The magenta and green 
curves are the loss values of the training sets and testing sets, respectively.
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upper right corner are four kinds of gesture results recognized by 
the NAO robot and the gestures of NAO are the corresponding 
response results. In Figure 13B, the response results of the NAO 
robot gesture are divided into two steps for each combination 
gesture. Obviously, the robot’s responses to the six gestures are 
different. For the single gestures, the robot’s response is only one 

step. However, the response according to the combination gestures 
is two steps. This implies that the proposed framework can interact 
with people through CSL gestures and react with reasonable 
responses. It also indicated that the proposed system can not only 
interact with the robot based on a single gesture but also interact 
through a combination of gestures.

A B

FIGURE 11

The confusion matrices of the first experiment under conditions 1 and 2. (A) The confusion matrix under condition 1. (B) The confusion matrix under 
condition 2. In panels (A,B), x-axis denotes the real sample labels, and the y-axis denotes the predicted sample labels. The top and bottom elements on 
the main diagonal filled with green color, respectively, represent the number and percentage of the samples that are correctly predicted. The top and 
bottom elements inside of each pink square, respectively, represent the number and percentage of wrong predicted samples. The top and bottom 
elements inside of lower and right light gray squares represent the prediction accuracy and error rate of corresponding samples.

A

B

FIGURE 12

The experimental system of the second experiment. (A) The experimental platform of the second experiment. (B) The experimental steps of the 
second experiment.
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A

B

FIGURE 13

The NAO robot interaction results of experiment 2. (A) Robot response results of the four singular hand gestures. (B) Robot response results of the two 
combination gestures.
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4. Discussion

Two experiments are conducted to verify the effectiveness of the 
proposed framework. According to the first experimental results, we can 
conclude that the multimodal sensor data can effectively improve 
recognition accuracy, similar to the experimental findings of Zeng et al. 
(2019) and Zeng et al. (2020). The confusion matrices of experiment 1 
under conditions 1 and 2 imply that different single-modal sensor data can 
classify different kinds of gestures. Leap Motion sensor data can achieve a 
good result in human hand posture by capturing a 3D skeletal hand 
model. The Myo armband sensor can obtain better results in gestures with 
significant differences in sEMG signals. This also demonstrates that 
different modal sensor data provides complementary information. Hence, 
the fused multimodal data achieves the best results in the first experiment.

To investigate the application of our proposed framework in HRI 
and its advantages in CSL gesture classification, we performed another 
experiment. In general, most of the conventional gesture classification 
frameworks can only classify singular static or dynamic sign language 
gestures. However, our SLR framework can classify both singular and 
combination gestures well. This combination is not only in terms of 
gestures but also in terms of the special framework. As the input of the 
LSTM network, the dynamic and static gestures samples are mixed in 
one dataset. We  can distinguish them effectively by the specific 
features captured from the LMC. The second experimental results 
have proved that. In addition, our proposed SLR framework also can 
be applied in other HRI scenarios. It provides a novel way for the SLR 
application in social robots and provides a compatible SLR framework.

5. Conclusion and future work

This paper presented a multimodal CSL recognition framework 
applied in HRI between deaf-mutes and social robots. The multimodal 
framework considers multiple sensor information for the human hand 
and arm, including human 3D vector and arm sEMG signals. The Leap 
Motion sensor and Myo armband are used to capture corresponding 
signals. Then, the preprocessing techniques are carried out aimed at 
reducing the training process to improve recognition accuracy to some 
extent. For LMC data, the normalization method is to limit data to a 
certain range to eliminate the adverse effects of singular samples. Since the 
sEMG signals are noisy, low-pass filtering and band-pass filtering are used 
to preprocess the signals. After that, the RMS feature is extracted from 
sEMG signals and fused with Leap Motion data as the input data of the 
classifier. Our method fuses the sensor data from a wearable and vision-
based devices at the feature level. Comparative experiments have validated 
the method. The proposed multimodal framework can facilitate deaf and 
speech-impaired people to learn sign language through a social robot with 

the ability of SLR. Our future work will concentrate on developing a 
framework with a stronger generalization capability to recognize various 
sign languages without the limitation of country and language restrictions.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

JL: human-robot interaction system design, methodology, and 
experiments. JL and NW: results analysis. JL: manuscript writing and 
original draft. JL, JZ, and NW: review and editing. JL and JZ: funding 
acquisition. Each author has read and edited the manuscript, and 
agrees with its content. All authors contributed to the article and 
approved the submitted version.

Funding

This work was supported by the Startup Foundation of Chongqing 
Technology and Business University under Grant No. 950321049 and 
No. 2056019, and partially supported by the Germany/Hong Kong 
Joint Research Scheme sponsored by the Research Grants Council of 
Hong Kong and the German Academic Exchange Service of Germany 
(Ref. No. G-PolyU505/22), PolyU Start-up Grant: ZVUY-P0035417, 
CD5E-P0043422 and WZ09-P0043123.

Acknowledgments

The authors thank the participants for their valuable time in 
data collecting.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or 
those of the publisher, the editors and the reviewers. Any product that 
may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2023.1168888/
full#supplementary-material

TABLE 3 All testing gestures in the second experiment.

Type Gestures

Four singular hand 

gestures

Good

You

Us

Me

Two combination 

gestures

Hello (combination of you and Good gestures)

Hello, everyone (combination of you, us, and Good 

gestures)
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STDP-based adaptive graph
convolutional networks for
automatic sleep staging

Yuan Zhao, Xianghong Lin*, Zequn Zhang, Xiangwen Wang,

Xianrun He and Liu Yang

College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China

Automatic sleep staging is important for improving diagnosis and treatment,

and machine learning with neuroscience explainability of sleep staging is shown

to be a suitable method to solve this problem. In this paper, an explainable

model for automatic sleep staging is proposed. Inspired by the Spike-Timing-

Dependent Plasticity (STDP), an adaptive Graph Convolutional Network (GCN) is

established to extract features from the Polysomnography (PSG) signal, named

STDP-GCN. In detail, the channel of the PSG signal can be regarded as a

neuron, the synapse strength between neurons can be constructed by the STDP

mechanism, and the connection between di�erent channels of the PSG signal

constitutes a graph structure. After utilizing GCN to extract spatial features,

temporal convolution is used to extract transition rules between sleep stages,

and a fully connected neural network is used for classification. To enhance

the strength of the model and minimize the e�ect of individual physiological

signal discrepancies on classification accuracy, STDP-GCN utilizes domain

adversarial training. Experiments demonstrate that the performance of STDP-GCN

is comparable to the current state-of-the-art models.

KEYWORDS

sleep stage classification, graph convolutional network (GCN), spike-timing-dependent

plasticity (STDP), domain adaptation, Polysomnography (PSG)

1. Introduction

A proper sleep cycle plays a vital role in maintaining one’s mental and physical wellbeing.
However, with the increasing mental stress of modern life, sleep disorders have become an
issue that cannot be overlooked. Sleep quality and sleep disturbances are usually assessed
by dividing the sleep state according to the patient’s Polysomnography (PSG) throughout
the night, PSG records various human physiological signals such as Electroencephalography
(EEG), Electromyogram (EMG), Electrooculogram (EOG) and Electrocardiogram (ECG).
The Rechtschaffen and Kales standard (Wolpert, 1969) and American Academy of Sleep
Medicine (AASM) standard (Berry et al., 2012) are commonly used to classify PSG signals as
a standard code for classifying sleep states. One person’s overnight PSG recording is a very
large amount of data, manually labeling such a large number of PSG signals is a very single
and tedious task, and it is prone to errors, which is unbearable for clinically diagnosed sleep
disorders. Therefore, it is crucial to identify and categorize sleep state staging in order to
properly diagnose sleep-related disorders. Automatic sleep staging can greatly improve the
efficiency and accuracy of sleep state classification, and greatly liberate human resources so
that experts can focus more on diagnosing and treating diseases.
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There has been a lot of valuable work on automatic sleep state
classification in recent years, automatic sleep staging mainly uses
traditional machine learning methods in the early stage, such as
Support Vector Machine (SVM) (Alickovic and Subasi, 2018) or
Random Forest (RF) (Memar and Faradji, 2018), which have high
requirements for handcrafted features. Since traditional machine
learning methods require complex feature engineering, researchers
began to use deep learning for automatic sleep staging and achieved
high accuracy (Supratak et al., 2017; Phan et al., 2019; Bakker
et al., 2022; Li et al., 2022; Martín-Montero et al., 2023; Zhang
et al., 2023). Although deep learning methods have achieved high
accuracy, they have not fully exploited the topology of functional
connections in different brain regions. The brain is a complex
network of structurally and functionally interconnected regions,
localized dysfunction often propagates and affects other regions
leading to large-scale network changes. The recent development
of graph neural networks (GNN) (Kipf and Welling, 2016) has
led researchers to explore the use of GNN to extract spatial
features of PSG signals, the GraphSleepNet (Jia et al., 2020) uses
GCN to extract EEG signals by using EEG signals as nodes of
GNN, which achieves state-of-the-art performance compared to
previous methods.

In addition, the automatic sleep staging task also face a
challenge, which is the trained model often performs well on
the training data set, but the performance of the model is
often unsatisfactory due to individual differences or measurement
equipment errors in actual application. The physiological signals
of different subjects vary greatly, so it is necessary to consider
improving the adaptability of the model to different data
distributions. Some efforts have tried to use domain adaptation to
improve the adaptability of the model (Tzeng et al., 2014; Ganin
et al., 2016; Jia et al., 2021a) and have achieved good results. The
basic idea of Domain Adaptation is to map the source domain and
target domain data into a feature space. By finding a unified metric
in the same feature space, the feature distribution of the source
domain and target domain data is as close as possible, which can
improve the performance of the model based on source domain
data feature training on target domain data.

The current method has achieved high accuracy in automatic
sleep staging tasks, but the following challenges still need to be
solved: (1) The feature extraction ability of the model needs to
be improved. In particular, the current model does not make full
use of the functional connection between brain regions and the
interdependence between different modes of data in PSG data. (2)
The graph-building algorithm of the GNN model is often based on
back-propagation while ignoring the interpretability of the graph-
building algorithm. (3) It is necessary to effectively improve the
adaptive ability of themodel to the data. Due to the huge differences
in physiological signals between individuals, models with good
performance in training data sets often perform poorly in actual
deployment.

The establishment method of graph structure is the core to
solving the first two challenges, which due to a graph of different
brain regions can be seen as an explainable result, as brain region
connections with abnormal patterns can help explain the causes of
sleep disorders (Griffa et al., 2013). Building an explainable graph
structure is difficult due to: (1) Pre-defined graphs cannot adapt

to functional connectivity of brain regions in different sleep stages;
(2) Graph generation algorithms trained by end-to-end may learn
unsuitable parameters with small amounts of train data, and this
approach is less explainable.

To address the difficulty of building graphs for GNN, we
adaptively compute graph structures through a neuroscience
mechanism. When using GNN for automatic sleep staging, we
assume that each PSG channel corresponds to a node in the graph,
and the connections between channels correspond to connections
between different brain regions. The connections between brain
regions are made up of connections between neurons, and neurons
are connected through synapses, so it is reasonable to build
connections between brains through the strength of synapses.
The synapses adjustment rule between neurons has made a lot
of progress in neuroscience (Fornito et al., 2015), such as the
Hebbian theory proposed by Hebbian (Hebb, 1949), which shows
that the weight between two neurons increases if the two neurons
activate simultaneously, and reduces if they activate separately,
which is often summarized as “Cells that fire together wire
together". But Hebbian theory doesn’t make predictions about the
firing of presynaptic neurons after postsynaptic neurons, which is
solved by spike-timing-dependent plasticity (STDP). The concept
of STDP was first proposed by Taylor (1973), Bi and Poo (1998)
discovered that postsynaptic synapses that were activated within 5–
20 ms before the spike were strengthened, whereas synapses that
were activated within a similar time window after the spike was
weakened, STDP core idea is to calculate the weight of the direct
connection of two neurons according to the sequence of the two
connected neurons firing pulses (Dan and Poo, 1992). These rules
about weight adjustment between neurons motivate us to apply
weight adjustment rules between neurons to build graph structures.

In this paper, we propose an adaptive GCN based on Spike-
Timing-Dependent Plasticity, named STDP-GCN. The connection
between various PSG signal channels forms a graph structure, and
the channel of the PSG signal may be thought of as a neuron, the
STDP process used to build the strength of the synapses between
neurons, which builds the graph. The transition rules between sleep
stages are extracted using temporal convolution after the GCN, and
classification is performed using a fully connected neural network.
In particular, domain adaptation is applied in the classification
network to improve the adaptive ability of the STDP-GCN. We
summarize the main contributions of this paper:

• An explainable STDP adaptive graph learning algorithm
is proposed. The STDP adaptive graph learning algorithm
employs the STDP mechanism from neuroscience to
dynamically establish inter-channel dependencies without
any labeling and exhibits exceptional performance.

• The proposed STDP-GCN can capture both temporal
and spatial features of PSG separately through spatio-
temporal graph convolution. Furthermore, it can reduce
discrepancies between individual physiological signals and
enhance performance through domain adaption.

• Through comparative experiments on the ISRUC-S3
dataset and SLEEP-EDF-153 dataset, the proposed STDP-
GCN demonstrated the highest accuracy compared to
existing models.
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2. Related works

2.1. Sleep stage classification problem

The human sleep process can be divided into three main
parts: Wake, Rapid Eye Movement (REM), and Non-rapid Eye
Movement (NREM) according to AASM standard (Berry et al.,
2012). The main features of REM are rapid eye movements and
relaxation of body muscles, while NREM is characterized by
shallower, slower, and more uniform breathing, slower heart rate,
lower blood pressure, and no obvious eyeballs. NREM can be
divided into three stages: N1, N2, and N3 to assess the depth of
sleep. This article divides sleep states into five categories (Wake, N1,
N2, N3, and REM) according to the AASM standard.

The PSG signal is divided into epochs of the 30s, and each
epoch is labeled as a sleep state. According to the AASM standard,
experts use the features of the PSG data of the current epoch and the
previous and previous epochs to mark the sleep state of the current
epoch, because sleep state transition patterns are very valuable, for
example, it usually enters the N1 stage after wake stage.

In this paper, the sleep stage classification problem can be
defined as input multiple epochs, which is defined as X =

(xi−c, ..., xi, ..., xi+c) ∈ RM×N×L, output a sleep state of the current
epoch ŷ, where c indicates the temporal context, andM = 2c+ 1 is
the number of temporal contexts, N is the number of nodes in the
PSG, L is the number of features per channel.

2.2. Automatic sleep staging methods

Recent years have seen a significant amount of research in
the academic field surrounding automatic sleep staging, due to
its crucial role in the diagnosis of sleep disorders. Designing
features for PSG signals manually through traditional methods is a
challenging task due to the complexity of the signal features, which
makes deep learning particularly effective in the task of automatic
sleep staging.

With the rapid development of deep learning, Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
are widely used in automatic sleep staging. Zhang and Wu (2017)
propose a new model called Fast Discriminant Complex-valued
Convolutional Neural Network (FDCCNN) for extracting features
from raw EEG data and classifying sleep stages. Chambon et al.
(2018) introduced a deep neural network to perform temporal sleep
stage classification from multimodal and multivariate time series,
which can be learned end-to-end without computing spectrograms
or extracting manual features. Phan et al. (2019) propose a
hierarchical recurrent neural network named SeqSleepNet, which
is designed to run on multi-channel time-frequency image inputs
to solve the automatic sleep staging problem. Perslev et al. (2019)
propose U-time to analyze physiological time series segmentation
of sleep data. Cai et al. (2021) propose a novel graph-time
fusion dual-input convolutional neural network approach to detect
sleep stage. Perslev et al. (2021) introduce A deep learning-based
automated sleep staging system (U-SLEEP) that provides accurate
segmentation of A wide range of patient cohorts and PSG protocols
that were not considered when building the system. Jia et al. (2021b)

propose the SalientSleepNet, which is a multimodal significant
wave detection network for sleep staging.

Although deep learning achieves high performance, it ignores
the interdependencies between PSG signal channels. Jia et al. (2020)
propose a new deep graph neural network GraphSleepNet for
automatic sleep stage classification, which can adaptively learn the
internal connections between different EEG channels. Thus, it can
better serve the spatio-temporal graph convolution network (ST-
GCN) for sleep stage classification. The lack of interpretability
in the above methods highlights the need for a model with
explainable features, as interpretability is crucial for understanding
the underlying cause of sleep disorders in neuroscience.

3. Methodology

The overall architecture of STDP-GCN is shown in Figure 1.
The main ideas of STDP-GCN are as follows: (1) Build the graph
structure using an adaptive STDP graph learning algorithm; (2)
After a spatio-temporal GCN aggregates the signal, and a fully
connected network is used for classification. Models are carefully
designed to get the best results in this paper.

3.1. STDP Graph Learning

The process of STDP graph learning algorithm is: (1) encode
PSG signals into pulse sequences; (2) calculate the connection
weights between pulse sequences according to STDP algorithm,
so as to obtain the interdependence between PSG channels.
This section first introduces the encoding algorithm and STDP
algorithm, and then introduces the STDP graph learning algorithm.

Encoding: STDP learning needs the spike train as input, so
the raw PSG signal needs to be converted into a spike train at
first. Encoding continuous signals is typically accomplished using
analog-to-spike encoding algorithms, including Threshold Based
Representation (TBR), Ben’s Spiking Algorithm (BSA) (Schrauwen
and Van Campenhout, 2003), and Moving Window (MW) (Petro
et al., 2020). Typically, BSA algorithms are employed to transform
audio data into a spike train. However, as PSG signals are also
distributed across the frequency spectrum, some studies (Nuntalid
et al., 2011; Medini et al., 2015). have utilized BSA algorithms to
encode PSG signals. So the BSA algorithm is well suited to encode
PSG signals. In this paper, the BSA algorithm is used to convert
the PSG signal into a spike train. The BSA algorithm is based on
encoding a signal using an FIR filter. The Finite Impulse Response
(FIR) filter is widely used in digital signal processing, the main
function is to leave a useful signal, we set the cutoff frequency of
FIR to 0.8 and the length to 20 according to the BSA algorithm. By
computing two error values Eq.(1) and Eq.(2) at each time instant
τ , which can be defined as

error1 =
∑M

k=0
abs

(

s
(

k+ τ
)

− h
(

k
))

, (1)

error2 =
∑M

k=0
abs

(

s
(

k+ τ
))

, (2)

here s is the original signal and h is an FIR filter of lengthM. If
Eq.(1) is less than Eq.(2) minus the threshold, then encode a spiking
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FIGURE 1

The framework of STDP-GCN. The STDP graph learning approach views each channel in the PSG as a neuron, with the STDP mechanism

determining the strength of connections between neurons to form a graph structure across the PSG channels. The graph structure is then used for

graph convolution, followed by temporal convolution to learn the sleep stage transition rules, and a fully connected neural network is applied for

classification.

FIGURE 2

Ben’s Spiking Algorithm. The blue curve is an EEG signal, and the red

vertical line is the spike sequence encoded by the EEG signal

according to the BSA encoding algorithm.

and subtract the filter from the input. The signal can be recovered
from the spike train by a convolution between the spike train and
the FIR filter. The origin signal and its spike train encoded using
BSA are shown in Figures 2, 3.

Spike-timing-dependent plasticity: After encoding the PSG
signal into a spike train, the STDP algorithm is used to learn the
correlation between the pulse sequences. STDP learning rules are a
synaptic plasticity mechanism discovered in biological experiments
(Bi and Poo, 1998). A typical neuron consists of a cell body (soma),
dendrites, and a single axon. Dendrites receive action potentials
from other neurons and transmit them to the body of the cell.
Axon’s function is to transmit information to different neurons.

FIGURE 3

Trace STDP rules. spikepre and spikepost are the EEG signals and their

spike trains encoded by BSA, W shows how the weights change

according to the spike trains.

Under the STDP process, the synapse will strengthen if the
firing spike of the pre-neuron tends to occur on average before the
output spike of the post-neuron. If the spiking of the pre-neuron
tends to occur immediately after the output spiking of the post-
neuron, the synapse weights of the two neurons are slightly weaker
(Bi and Poo, 1998). In general, the STDP process can be defined as

1ω =







Ae
tpre−tpost

τ , tpre − tpost < 0,

Be−
tpre−tpost

τ , tpre − tpost > 0,
(3)
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here, 1ω represents the amount of change in synaptic strength,
tpre − tpost represents the time difference between the presynaptic
pulse and the postsynaptic pulse, A > 0 and B < 0 are the learning
rates that control the 1ω. However, the implementation of Eq. (3)
is not feasible as it requires separate recording of the firing times of
neurons before and after. It is easier to implement STDP using the
double-pulse trace-based approach (Morrison et al., 2008) provided
by Eq.(4), Eq.(5). The core idea of the double-pulse trace-based
approach is that synaptic weights decrease when the pre-neuron
fired spike and the synaptic weight increases when the post-neuron
is fired.

1ω
−
ij

(

t
f
j

)

= −F−
(

ωij

)

yi

(

t
f
j

)

, (4)

1ω
+
ij

(

t
f
i

)

= −F+
(

ωij

)

yi

(

t
f
i

)

, (5)

here, Eq.(4) depicts a decrease in synaptic weight when a

spike t
f
j from pre-neuron j arrives; Eq.(5) expresses an increase

in synaptic weight when a spike t
f
i from post-neuron i arrives,

−F+
(

ωij

)

and −F−
(

ωij

)

are functions that control the increment
of weights.

dxj

dt
= −

xj

τx
+
∑

t
f
j

δ

(

t − t
f
j

)

, (6)

dyi

dt
= −

yi

τy
+
∑

t
f
i

δ

(

t − t
f
i

)

. (7)

The double-pulse trace-based approach uses trace to describe
pre-neuron membrane potential xj and post-neuron membrane
potential yi. The membrane potential rises immediately when the
neuron receives a spike, and then slowly decreases to the resting
potential over time, which can be expressed by differential equation

Eq.(4), Eq.(5). t
f
j and t

f
i is the spike firing time of post-neuron i after

pre-neuron j, δ is the pulse function, which is 1 at t = 0, and 0 at
other times.

Adaptive graph learning: In this paper, the PSG signal input of
an epoch is defined as a graphG(V ,E,A), whereV is the set of nodes
in the graph, each node corresponds to a channel in the PSG, and
E represents the edge between nodes, A is the adjacency matrix of
the graph. The adjacency graph is an important input of the graph
neural network. In this paper, the graph learning algorithm can be
defined as inputting PSG data of an epoch and outputting a graph
structure of the epoch.

The main purpose of adaptive STDP graph learning is to
learn graph structures using STDP. As shown in the upper part
of Figure 1, when the PSG is input to the STDP adaptive graph
learning module, the signals of each channel in the PSG are
first encoded into a spike train by the BSA algorithm. The spike
train of a channel is regarded as the spike train emitted by a
neuron, the connection between the channel and the channel
can be regarded as a synapse, and the synapse strength can be
obtained by the STDP. If the pre-neuron emits a spike before
the post-neuron emits a spike, it can be seen that there is a

connection between the pre-neuron and the post-neuron. The
STDP graph learning algorithm used in this paper is distinct from
other graph structure construction algorithms in that it relies
on the STDP algorithm to establish interdependencies between
different channels. However, this algorithm requires time steps
for simulation, resulting in increased computational overhead. To
save time, we employ an improved STDP algorithm and GPU
parallel computing. After the STDP graph learning module, the
relationship between channels and channels can be obtained, which
is represented as an adjacency matrix. The topology of multivariate
data can be used as input to spatio-temporal graph convolution to
extract feature representations in the spatial dimension.

The input of STDP-GCN is a sequence of multiple epochs,
each epoch will use the STDP graph algorithm to adaptively
learn a graph structure, which can be defined as input X =

(xt−c, ..., xt , ..., xt+c), output A = (at−c, ..., at , ..., at+c). The PSG
signal and graph structure at time step t are represented by xt
and at , respectively. The weight calculation between channel j and
channel i in the STDP graph structure algorithm can be expressed
as

aji =

L
∑

t=1

i(1ω
−
ij

(

t
f
j

)

+ 1ω
+
ij

(

t
f
j

)

), (8)

here, aji is the synapse weight between pre-neuron and post-

neuron, 1ω
−
ij

(

t
f
j

)

is the amount of change in the synaptic weight

when the presynaptic spike is fired, and 1ω
+
ij

(

t
f
i

)

is the amount of

change in the synaptic weight when the post-synaptic fired spike.
After constructing the graph, the preprocessed original signal and
the adjacency graph enter the STGCN layer together.

The cross-entropy is used as a loss function to tune the
parameters of the spatio-temporal graph convolution, which is
defined as

L = −
1

L

L
∑

i=1

N
∑

n=1

yi,n log(ŷ), (9)

here, L is the number of samples, while N is the number of
categories of sleep stages, and y is the ground truth label.

3.2. Spatial-temporal graph convolution

Graph convolution: The main purpose of graph convolution is
to aggregate and extract the spatial dimension features of signals.
EEG of different channels can measure the electrical signals of
corresponding brain regions, and the relationship between signals
between brain regions can be aggregated by graph convolution. We
use spectral graph convolution theory to build graph convolution
layers and to speed up training, we use a simplified GCN. The signal
propagation between layers is shown in Eq.(10), where D− 1

2AD− 1
2

is the constructed Laplacianmatrix,A is the adjacency graphmatrix
constructed by STDP,H is the result of the previous layer, andW is
the learnable parameter matrix, σ is the activation function.

H(l) = σ

(

D
− 1

2 AD
− 1

2H(l−1)W(l−1)
)

. (10)

Convolution in time dimension: According to the AASM
standard, the sleep transition rule, that is, the sleep staging of

Frontiers inNeuroscience 05 frontiersin.org
2423

https://doi.org/10.3389/fnins.2023.1158246
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1158246

the preceding and following periods is an important reference
condition for judging the current sleep state. Therefore, taking
transition rules into account can improve the accuracy of the
classification. STDP-GCN utilizes an adaptive STDP graph learning
algorithm for graph construction and feature extraction through
GCN at distinct time steps. It subsequently employs time-wise
convolution to learn the transition rules. After the data passes
through the graph convolution layer, the information of the
data has been fully aggregated, and then convolution in the
time dimension will better extract the sleep transition rules. The
convolution in the time dimension in this paper can be described
as follows:

H(l+1) = softmax
(

8 ∗

(

softmax
(

H(l)
)))

, (11)

here softmax is the activation function, 8 denotes the convolution
kernel, ∗ denotes the standard convolution operation.

Domain adaptation:Machine learning models rely heavily on
data distribution and the data distribution of PSG may vary
significantly due to individual differences. Therefore, we hope
that STDP-GCN can effectively learn how to extract common
core features. By treating an individual’s physiological signal as a
domain, we can use the domain adaptation to learn the common
features between domains and effectively improve the robustness
of the model.

The idea of domain adversarial training (Ganin et al.,
2016) originates from Generative Adversarial Network (GAN)
(Goodfellow et al., 2014), which consists of a generator and a
discriminator. Generators are used to generate false data, and
discriminators are used to determine whether the input data is
generated false data or real data. The core idea of GAN is to
hope that the false data generated by the generator can deceive the
discriminator, which is also improving the discriminant ability to
prevent being deceived. The two play against each other until the
whole system reaches a stable state. Similarly, domain adversarial
training is when the model extracts features from the source
domain and the target domain, respectively, and then trains the
discriminator, hoping that the discriminator cannot distinguish
the extracted features from the source domain from the target
domain. This allows the target domain’s data to be generated with a
feature distribution as close to the source image as possible, thereby
reducing the domain shift.

As depicted in Figure 4, there are two main tasks to be
completed in the domain adversarial training of STDP-GCN: (1)
Accurate classification of source domain datasets to minimize the
error of automatic sleep staging; (2) To confuse the source domain
dataset with the target domain dataset, maximize the domain
classification error. Feature extractor Gf maps input xi to feature
space to get domain-invariant featureXf , and thenXf input domain
discriminator D and sleep stage classifier. Feature extractor Gf is
defined as

Xi
f = Gf

(

xi; θf
)

, (12)

where Xi
f
denotes the transferred features of xi, θf is the trainable

parameter of Gf .
Sleep stage classifier Gf and its loss can be defined as

ŷic = Gy

(

Xi
f ; θy

)

(13)

Lc(ŷ
i
c, yi) = log

1

ŷic
yi (14)

where ŷci predicted label, θy is the trainable parameter of Gy.
Domain discriminator Gd and its loss can be defined as

ŷid = Gd

(

Xi
f ; θd

)

, (15)

Ld(ŷ
i
d, di) = di log

1

ŷi
d

+ (1− di) log
1

ŷi
d

(16)

where ŷdi is the predicted result of the domain discriminator, di
represents the binary label of the i-th sample and is used to indicate
whether the sample belongs to the source or target domain, θy is
the trainable parameter of Gy. The overall loss of training can be
defined as

E(θf , θc, θd) =
1

n

n
∑

i=1

Lic − λ

(

1

n

n
∑

i=1

Lid +
1

n′i

n
∑

i=n+1

Lid

)

(17)

Through Gradient Reversal Layer (GRL), domain
adaptation can be naturally integrated into the back-
propagation algorithm of the network to unify the
training process. The network optimization process is
defined as

(θ̂f , θ̂c) = argmin
θ̂f ,θ̂c

L(θf , θc, θ̂d) (18)

θ̂d = argmin
θd

L(θ̂f , θ̂y, θd) (19)

The parameters of the sleep stage classifier are updated
by minimizing the objective function, and the parameters
of the domain discriminator are updated by maximizing the
objective function.

4. Experiments

4.1. Datasets and experimental settings

In this paper, the ISRUC-S3 dataset and SLEEP-EDF-153
dataset are used to verify the validity of the STDP-GCN model.
There are PSG recordings of 10 healthy subjects in the ISRUC-S3
dataset, with 6 EEG channels, 2 EOG channels, 3 EMG channels,
and 1 ECG channel. Each epoch is divided into 5 sleep states
by AASM standard. The SLEEP-EDF-153 dataset recorded the
PSG signals of 78 healthy subjects, and the EEG was obtained
by sampling from the Fpz-Cz and Pz-Oz electrode positions at
100 HZ. The SLEEP-EDF-153 dataset classifies labels into eight
modes (wake-up, S1, S2, S3, S4, REM, motion, and unknown)
according to the Rechtschaffen and Kales standard (Wolpert, 1969).
To simplify the process of setting experimental parameters, we
combine S3 and S4 into S3 according to AASM standards (Berry
et al., 2012).

We use subject-independent cross-validation to test the effect
of the STDP-GCN. Due to the different number of individuals
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FIGURE 4

Domain adversarial training framework for STDP-GCN. Following the blue arrow, the PSG signal is processed through the feature extractor to acquire

the domain-invariant feature, which then proceeds to the sleep stage classifier for classification and computation of the label loss, before

undergoing back-propagation. Along the yellow arrow, the domain-invariant feature is fed into the domain discriminator for domain classification

and calculation of the domain loss, which then undergoes backpropagation through the Gradient Reverse Layer.

TABLE 1 Experiment hyperparameter setting.

Hyperparameter description Value

Optimizer Adam

Learning rate 1e-4

Number of training epochs 500

Batch size 256

Dropout probability 0.5

Weight decay 1e-3

Layer number of GCN 1

The number of temporal contextsM 5

τ values of neurons 100.0

Threshold for spiking 1.0

Learning rate for STDP 1e-2

Domain classifier architecture 450-512-100-2

Initial λ value of Gradient Reversal Layer 1.0

contained in the data set, we apply 10-fold cross-validation
on the ISRUC-S3 data set and 20-fold cross-validation on the
SLEEP-EDF-153 dataset. The hyperparameters of STDP-GCN
are listed in Table 1, and we apply the same experimental
settings to all baselines to pursue comparative fairness. This
article uses PyTorch to implement the model and training,
and the code has been released at: https://github.com/thegoist/
STDP-GCN.

4.2. Experimental results and comparison

This section uses STDP-GCN to compare with the other
baselines, showing the superiority of the current STDP-GCN.
As evident from Tables 2, 3, STDP-GCN outperforms prior
methods in multiple metrics. By utilizing the STDP mechanism
in constructing its graph structure, STDP-GCN aligns with the
principles of neuroscience and effectively leverages the inter-
channel dependencies to enhance the extraction of spatial features,
resulting in better performance across various indicators. It can
be observed from the table that the traditional machine learning
algorithm SVM and RF is less accurate than other methods
because it cannot learn temporal transition rules, while CNN and
RNN can rely on learning transition rules in the time dimension
and learning features in the spatial dimension to achieve higher
accuracy. The channels in the PSG signal are not separated by
Euclidean distances, so using Euclidean distance for convolution
may overlook the non-Euclidean distance information between
channels. The experimental data demonstrates that Wake and N1
indicators are always mutually exclusive. An increase in the Wake
indicator leads to a decrease in the N1 indicator. The reason behind
this is that the N1 stage is prone to misclassification as Wake due
to the shared characteristics between them. Based on the AASM
standard (Berry et al., 2012), both fully awake and drowsiness are
included in the Wake stage, and the electrophysiological signals
and psychological characteristics of drowsiness even continue to
the N1 stage, which could be the main reason for misclassification.
In addition, we also explored the effect of different folds on
cross-validation, as shown in Table 4. We also applied 5-fold
cross-validation on ISRUC-S3, where the performance of 5-fold
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TABLE 2 Overall results comparison on ISRUC-S3.

Methods Overall results F1-score for each class

Accuracy F1-score Wake N1 N2 N3 REM

SVM (Alickovic and Subasi, 2018) 73.3% 72.1% 86.8% 52.3% 69.9% 78.6% 73.1%

RF (Memar and Faradji, 2018) 72.9% 70.8% 85.8% 47.3% 70.4% 80.9% 69.9%

MLP+LSTM (Dong et al., 2018) 77.9% 75.8% 86.0% 46.9% 76.0% 87.5% 82.8%

CNN+BiLSTM (Supratak et al.,
2017)

78.8% 77.9% 88.7% 60.2% 74.6% 85.8% 80.2%

CNN (Chambon et al., 2018) 78.1% 76.8% 87.0% 55.0% 76.0% 85.1% 80.9%

ARNN+RNN (Phan et al., 2019) 78.9% 76.3% 83.6% 43.9% 79.3% 87.9% 86.7%

STGCN (Jia et al., 2020) 79.9% 78.7% 87.8% 57.4% 77.6% 86.4% 84.1%

MSTGCN (Jia et al., 2021a) 82.1% 80.8% 89.4% 59.6% 80.6% 89.0% 85.6%

STDP-GCN 82.6% 81.0 % 83.5% 62.9% 83.1% 86.0% 90.6%

The bold result is the best result.

TABLE 3 Overall results comparison on SLEEP-EDF-153.

Methods Overall results F1-score for each class

Accuracy F1-score Wake N1 N2 N3 REM

SVM (Alickovic and Subasi, 2018) 71.2% 57.8% 80.3% 13.5% 79.5% 57.1% 58.7%

RF (Memar and Faradji, 2018) 72.7% 62.4% 81.6% 23.2% 80.6% 65.8% 60.8%

CNN+BiLSTM (Supratak et al.,
2017)

78.5% 75.3% 91.0% 47.0% 81.0% 69.0% 79.0%

MSTGCN (Jia et al., 2021a) 86.4% 84.1% 85.5% 75.3% 89.8% 80.4% 89.3%

STDP-GCN 87.4% 83.2 % 91.1% 60.1% 89.1% 84.6% 88.8%

The bold result is the best result.

TABLE 4 Cross-validation of di�erent fold numbers on the ISRUC-S3 dataset.

Overall results F1-score for each class

Accuracy F1-score Wake N1 N2 N3 REM

5-folds 80.3% 78.5% 83.6% 58.8% 82.0% 82.0% 84.6%

10-folds 82.6% 81.0% 83.5% 62.9% 83.1% 86.0% 90.6%

cross-validation decreased relative to 10-fold, probably due to
the increase in the adversarial sample and the decrease in the
test sample.

4.3. Experiments and analysis

To visualize the graph structure generated by the STDP graph
learning algorithm, we applied the algorithm to generate the
adjacency graph structure of all data in the ISRUC-S3 dataset. By
summing up all the adjacency graph matrices adaptive learned
through the STDP graph learning algorithm in each state, the brain
functional connectivity in each sleep state is shown in Figure 5.
The explainability of STDP-GCN can be explored by observing the
graph structure generated by the STDP graph learning algorithm.
There are numerous functional connections because the brain is
more active during the wake period (Larson-Prior et al., 2011).

During the NREM stage, the brain gradually enters a deep sleep
state and exhibits limited connectivity, typically represented by
one or two channels. Conversely, in the REM stage, the functional
connections between brain regions are relatively weak (Spoormaker
et al., 2010).

In order to verify the effectiveness of the STDP graph learning
algorithm, this paper uses different graph construction methods
to compare the graph structures, which is shown in Figure 6.
The graph structures used for comparison mainly include (1)
Fully connected adjacency matrix. Fully connected adjacency
matrix means that each brain area has functional connections
with the same weight, which is not conducive to extracting the
spatial features of the graph. (2) Random matrix, each brain
area is randomly connected. (3) Graph learning algorithm, which
builds the loss by establishing the feature difference between
different channels, and learns through backpropagation. Through
the experimental results, it can be seen that the fully connected
adjacency matrix has the worst effect, and the graph learning
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FIGURE 5

Visualization of the adjacency matrix learned by the STDP graph learning algorithm(Wake Stage, N1 Stage, N2 Stage, N3 Stage, and REM Stage).

FIGURE 6

Performance comparison of di�erent graphs.

algorithm has the best effect, while the STDP graph learning
algorithm is close to the graph learning algorithm, and is better
than the randommatrix algorithm, which it is shown that the graph
learned by the STDP graph learning algorithm is effectiveness, and
it also shows that the relationship between brain regions can be
constructed through synaptic plasticity. The reason why the STDP
graph learning algorithm is slightly lower than the graph learning
algorithm may be that the STDP algorithm only pays attention to
the changes in the synaptic strength caused by the impulse signal
between neurons, and the connections between other brain areas
are not fully utilized, such as adjacent brain areas. There should also
be some connection between the zones.

Temporal context is used as an input that has a significant
impact on the model, and we use different temporal contexts
to test their impact on performance. As demonstrated in
Figure 7, the classification performance of STDP-GCN on the
ISRUC-S3 dataset varies with the number of input contexts
M. With insufficient input contexts, the model will struggle
to learn the temporal transition rules, while an excessive
number of contexts will make it challenging for the model to
accurately comprehend the temporal transition rules. Optimal
performance has been observed when the number of input
contextsM = 5.

Figure 8 illustrates that the model’s performance gradually
decreases as the number of adversarial data increases. This

FIGURE 7

Performance comparison of di�erent time contexts.

FIGURE 8

Comparing performance with varying numbers of adversarial data.

phenomenon can be attributed to the variance in data distribution
of PSG, which is influenced by individual differences. As the
number of adversarial samples increases, the number of non-
adversarial samples decreases, causing the model to face challenges
in learning common features.

We plot the training loss curves for subject-independent
cross-validation of the ISRUC-S3 dataset. As shown in Figure 9,
the loss of the domain classifier decreases and converges as

Frontiers inNeuroscience 09 frontiersin.org
2827

https://doi.org/10.3389/fnins.2023.1158246
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1158246

FIGURE 9

Training loss curves for cross-validation of the ISRUC-S3 dataset. The loss value of the domain discriminator is represented by the blue curve, and the

loss of the domain classifier is represented by the red curve.

the epoch increases, while the loss of the domain discriminator
oscillates but eventually decreases and converges, suggesting that
adversarial training is helping the model learn invariant features
between domains.

5. Discussion

In this paper, we propose STDP-GCN for automatic sleep
staging. The main advantage of STDP-GCN is to compute the
interdependencies between nodes using the STDP algorithm
with neuroscience mechanism, and then construct the graph
structure between nodes, so STDP-GCN makes full use of
the interdependencies between nodes through GCN to extract
features. The STDP graph learning algorithm does not require
backpropagation and labeling, it only needs to encode the PSG
signal as a pulse sequence to calculate the graph structure of the
PSG channel, which not only has a neuroscience mechanism but
also has a good performance. As shown in Figure 6, when compared
with other graph structure construction algorithms, the STDP
graph learning algorithm had the highest accuracy metrics on both
the ISRUC-S3 dataset and the SLEEP-EDF-153 dataset, and most of
the remaining evaluation metrics outperformed existing methods.
In automated sleep staging, individual differences in physiological

signals often result in models that perform well in training and
poorly in testing. This problem can be effectively addressed by using
adversarial training. Figure 9 shows the loss curves of the domain
classifier and the domain discriminator during adversarial training
on the ISRUC-S3 dataset, from which it can be seen that the loss
curve of the domain discriminator decreases in oscillation. This
phenomenon indicates that the domain discriminator acts as an
adversarial training operation, and in addition, the performance
metrics of the model training also prove the effectiveness of
adversarial training.

STDP-GCN also comes with some disadvantages. Firstly, the
STDP algorithm requires time steps for simulation, and even with
the modified STDP algorithm and GPU parallel computing, the
STDP graph learning algorithm is still slower than the rest of
the graph structure algorithms. Second, STDP-GCN sometimes
misclassifies Wake and N1 because bothWake and N1 have similar
features. This still indicates that STDP-GCN needs to strengthen its
feature learning capability.

6. Conclusion

Inspired by Spike-Timing-Dependent Plasticity, this paper
proposes an adaptive graph convolution network (GCN) for
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automatic sleep staging, named STDP-GCN. The key advantage
of STDP-GCN is its ability to establish connections between brain
regions through the synaptic weight adjustment mechanism among
neurons. This algorithm dynamically establishes inter-channel
dependencies without any labeling and exhibits exceptional
performance. Comparative experiments show that the performance
of STDP-GCN is comparable to the leading models in the field.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://sleeptight.isr.uc.pt/; https://physionet.
org/content/sleep-edfx/1.0.0.

Author contributions

YZ wrote the paper and performed the experiment. XL
guided the experiment design and reviewed the manuscript.
ZZ contributed significantly to the experiment. XW discussed
about the results and analysis. XH performed the analysis. LY
helped perform the analysis with constructive discussions. All
authors helped with developing the concepts and writing the
paper. All authors contributed to the article and approved the
submitted version.

Funding

This research was supported by the National Natural Science
Foundation of China (Grant no. 62266040), the Key Research and
Development Project of Gansu Province (Grant no. 20YF8GA049),
the Industrial Support Plan Project for Colleges and Universities
in Gansu Province (Grant no. 2022CYZC-13), and the Lanzhou
Municipal Science and Technology Project (Grant no. 2019-1-34).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alickovic, E., and Subasi, A. (2018). Ensemble svm method for automatic
sleep stage classification. IEEE Trans. Instrum. Meas. 67, 1258–1265.
doi: 10.1109/TIM.2018.2799059

Bakker, J. P., Ross, M., Cerny, A., Vasko, R., Shaw, E., Kuna, S., et al. (2022).
Scoring sleep with artificial intelligence enables quantification of sleep stage ambiguity:
hypnodensity based on multiple expert scorers and auto-scoring. Sleep. 46, zsac154.
doi: 10.1093/sleep/zsac154

Berry, R. B., Budhiraja, R., Gottlieb, D. J., Gozal, D., Iber, C., Kapur, V. K.,
et al. (2012). Rules for scoring respiratory events in sleep: update of the 2007 aasm
manual for the scoring of sleep and associated events: deliberations of the sleep apnea
definitions task force of the american academy of sleep medicine. J. Clinical Sleep Med.
8, 597–619. doi: 10.5664/jcsm.2172

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type.
J. Neurosci. 18, 10464–10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998

Cai, Q., Gao, Z., An, J., Gao, S., and Grebogi, C. (2021). A graph-
temporal fused dual-input convolutional neural network for detecting sleep stages
from EEG signals. IEEE Trans. Circuits Syst. II Express Briefs. 68, 777–781.
doi: 10.1109/TCSII.2020.3014514

Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., and Gramfort, A. (2018).
A deep learning architecture for temporal sleep stage classification using multivariate
and multimodal time series. IEEE Trans. Neural Syst. Rehabilitation Eng. 26, 758–769.
doi: 10.1109/TNSRE.2018.2813138

Dan, Y., and Poo, M. M. (1992). Hebbian depression of isolated neuromuscular
synapses in vitro. Science. 256, 1570–1573. doi: 10.1126/science.1317971

Dong, H., Supratak, A., Pan, W., Wu, C., Matthews, P. M., and Guo, Y. (2018).
Mixed neural network approach for temporal sleep stage classification. IEEE Trans.
Neural Syst. Rehabilitation Eng. 26, 324–333. doi: 10.1109/TNSRE.2017.2733220

Fornito, A., Zalesky, A., and Breakspear, M. (2015). The connectomics of brain
disorders. Nat. Rev. Neurosci. 16, 159–172. doi: 10.1038/nrn3901

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,
F., et al. (2016). Domain-adversarial training of neural networks. in Domain
Adaptation in Computer Vision Applications. Advances in Computer Vision and
Pattern Recognition, eds G. Csurka (Springer, Cham). doi: 10.1007/978-3-319-
58347-1_10

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). “Generative adversarial nets,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’14. p.
2672–2680, Cambridge, MA, USA: MIT Press.

Griffa, A., Baumann, P. S., Thiran, J.-,p., and Hagmann, P. (2013).
Structural connectomics in brain diseases. Neuroimage. 80, 515–526.
doi: 10.1016/j.neuroimage.2013.04.056

Hebb, D. (1949). Organization of behavior. J. Clin. Psychol. 6, 335–307.
doi: 10.1002/1097-4679(195007)6:3<307::AID-JCLP2270060338>3.0.CO;2-K

Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., et al. (2021a). Multi-
view spatial-temporal graph convolutional networks with domain generalization for
sleep stage classification. IEEE Trans. Neural Syst. Rehabilitation Eng. 29, 1977–1986.
doi: 10.1109/TNSRE.2021.3110665

Jia, Z., Lin, Y., Wang, J., Wang, X., Xie, P., and Zhang, Y. (2021b). “SalientSleepNet:
Multimodal salient wave detection network for sleep staging,” in Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence. ed Z.-H. Zhou
(International Joint Conferences on Artificial Intelligence Organization), 2614–2620.
doi: 10.24963/ijcai.2021/360

Jia, Z., Lin, Y., Wang, J., Zhou, R., Ning, X., He, Y., et al. (2020). GraphSleepNet:
Adaptive spatial-temporal graph convolutional networks for sleep stage classification.
IJCAI. 2021, 1324–1330. doi: 10.24963/ijcai.2020/184

Kipf, T. N. and Welling, M., (2016). “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Representations
(ICLR 2017).

Larson-Prior, L. J., Power, J. D., Vincent, J. L., Nolan, T. S., Coalson,
R. S., Zempel, J., et al. (2011). Modulation of the brain’s functional network
architecture in the transition from wake to sleep. Prog. Brain Res. 193, 277–294.
doi: 10.1016/B978-0-444-53839-0.00018-1

Li, M., Chen, H., and Cheng, Z. (2022). An attention-guided spatiotemporal
graph convolutional network for sleep stage classification. Life. 12, 5.
doi: 10.3390/life12050622

Martín-Montero, A., Armañac-Julián, P., Gil, E., Kheirandish-
Gozal, L., Álvarez, D., Lázaro, J., et al. (2023). Pediatric sleep apnea:
characterization of apneic events and sleep stages using heart rate

Frontiers inNeuroscience 11 frontiersin.org
3029

https://doi.org/10.3389/fnins.2023.1158246
https://sleeptight.isr.uc.pt/
https://physionet.org/content/sleep-edfx/1.0.0
https://physionet.org/content/sleep-edfx/1.0.0
https://doi.org/10.1109/TIM.2018.2799059
https://doi.org/10.1093/sleep/zsac154
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1109/TCSII.2020.3014514
https://doi.org/10.1109/TNSRE.2018.2813138
https://doi.org/10.1126/science.1317971
https://doi.org/10.1109/TNSRE.2017.2733220
https://doi.org/10.1038/nrn3901
https://doi.org/10.1007/978-3-319-58347-1_10
https://doi.org/10.1016/j.neuroimage.2013.04.056
https://doi.org/10.1002/1097-4679(195007)6:3<307::AID-JCLP2270060338>3.0.CO;2-K
https://doi.org/10.1109/TNSRE.2021.3110665
https://doi.org/10.24963/ijcai.2021/360
https://doi.org/10.24963/ijcai.2020/184
https://doi.org/10.1016/B978-0-444-53839-0.00018-1
https://doi.org/10.3390/life12050622
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1158246

variability. Comput. Biol. Med. 154, 106549. doi: 10.1016/j.compbiomed.2023.
106549

Medini, C., Zacharia, R. M., Nair, B., Vijayan, A., Rajagopal, L. P., and Diwakar,
S. (2015). “Spike encoding for pattern recognition: Comparing cerebellum granular
layer encoding and bsa algorithms,” in 2015 International Conference on Advances
in Computing, Communications and Informatics (ICACCI) (Kochi: IEEE), 1619–1625.
doi: 10.1109/ICACCI.2015.7275845

Memar, P., and Faradji, F. (2018). A novel multi-class EEG-based sleep stage
classification system. IEEE Trans. Neural Syst. Rehabilitation Eng. 26, 84–95.
doi: 10.1109/TNSRE.2017.2776149

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological
models of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Nuntalid, N., Dhoble, K., and Kasabov, N. (2011). “Eeg classification with bsa spike
encoding algorithm and evolving probabilistic spiking neural network,” in Neural
Information Processing, Lu, B.-L., Zhang, L., and Kwok, J., (eds). Berlin, Heidelberg:.
Springer Berlin Heidelberg. p. 451–460. doi: 10.1007/978-3-642-24955-6_54

Perslev, M., Darkner, S., Kempfner, L., Nikolic, M., Jennum, P. J., and Igel, C.
(2021). U-Sleep: resilient high-frequency sleep staging. NPJ Digital Med. 4, 1–12.
doi: 10.1038/s41746-021-00440-5

Perslev, M., Jensen, M. H., Darkner, S., Jennum, P. J., and Igel, C. (2019). U-Time: A
fully convolutional network for time series segmentation applied to sleep staging. Adv.
Neural Infor. Proc. Syst. 4415–4426.

Petro, B., Kasabov, N., and Kiss, R. M. (2020). Selection and optimization
of temporal spike encoding methods for spiking neural networks. IEEE
Trans. Neural Netw. Learn Syst. 31, 358–370. doi: 10.1109/TNNLS.2019.290
6158

Phan, H., Andreotti, F., Cooray, N., Chen, O. Y., and De Vos, M. (2019).
SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-
sequence automatic sleep staging. IEEE Trans. Neural Syst. Rehabilitation Eng. 27,
400–410. doi: 10.1109/TNSRE.2019.2896659

Schrauwen, B., and Van Campenhout, I. (2003). “BSA, a fast and accurate spike
train encoding scheme,” in Proceedings of the International Joint Conference on Neural
Networks. Portland, Oregon USA: IEEE. p. 2825–2830. doi: 10.1109/IJCNN.2003.
1224019

Spoormaker, V. I., Schroter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M.,
Wehrle, R., et al. (2010). Development of a large-scale functional brain network
during human non-rapid eye movement sleep. J. Neurosci. 30, 11379–11387.
doi: 10.1523/JNEUROSCI.2015-10.2010

Supratak, A., Dong, H., Wu, C., and Guo, Y. (2017). DeepSleepNet: a model for
automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural
Syst. Rehabilitation Eng. 25, 1998–2008. doi: 10.1109/TNSRE.2017.2721116

Taylor, M. M. (1973). The problem of stimulus structure in the behavioural theory
of perception. South African J. Psychol. 3:23–45.

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain
confusion: Maximizing for domain invariance. arXiv [Preprint]. arXiv:1412.3474.

Wolpert, E. A. (1969). A manual of standardized terminology, techniques and
scoring system for sleep stages of human subjects. Arch. Gen. Psychiatr. 20, 246–247.

Zhang, J., and Wu, Y. (2017). A new method for automatic sleep
stage classification. IEEE. 11, 1097–1110. doi: 10.1109/TBCAS.2017.
2719631

Zhang, Y., Cao, W., Feng, L., Wang, M., Geng, T., Zhou, J., et al. (2023). Shnn: a
single-channel eeg sleep staging model based on semi-supervised learning. Expert Syst.
Appl. 213, 119288. doi: 10.1016/j.eswa.2022.119288

Frontiers inNeuroscience 12 frontiersin.org
3130

https://doi.org/10.3389/fnins.2023.1158246
https://doi.org/10.1016/j.compbiomed.2023.106549
https://doi.org/10.1109/ICACCI.2015.7275845
https://doi.org/10.1109/TNSRE.2017.2776149
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1007/978-3-642-24955-6_54
https://doi.org/10.1038/s41746-021-00440-5
https://doi.org/10.1109/TNNLS.2019.2906158
https://doi.org/10.1109/TNSRE.2019.2896659
https://doi.org/10.1109/IJCNN.2003.1224019
https://doi.org/10.1523/JNEUROSCI.2015-10.2010
https://doi.org/10.1109/TNSRE.2017.2721116
https://doi.org/10.1109/TBCAS.2017.2719631
https://doi.org/10.1016/j.eswa.2022.119288
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Frontiers in Neuroscience 01 frontiersin.org

Segmentation of multi-regional 
skeletal muscle in abdominal CT 
image for cirrhotic sarcopenia 
diagnosis
Genshen Song 1,2†, Ji Zhou 3†, Kang Wang 1,2, Demin Yao 1,2, 
Shiyao Chen 3* and Yonghong Shi 1,2,4*
1 Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China, 
2 Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, 
Shanghai, China, 3 Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan 
University, Shanghai, China, 4 Academy for Engineering & Technology, Fudan University, Shanghai, China

Background: Sarcopenia is generally diagnosed by the total area of skeletal 
muscle in the CT axial slice located in the third lumbar (L3) vertebra. However, 
patients with severe liver cirrhosis cannot accurately obtain the corresponding 
total skeletal muscle because their abdominal muscles are squeezed, which 
affects the diagnosis of sarcopenia.

Purpose: This study proposes a novel lumbar skeletal muscle network to 
automatically segment multi-regional skeletal muscle from CT images, and 
explores the relationship between cirrhotic sarcopenia and each skeletal muscle 
region.

Methods: This study utilizes the skeletal muscle characteristics of different spatial 
regions to improve the 2.5D U-Net enhanced by residual structure. Specifically, 
a 3D texture attention enhancement block is proposed to tackle the issue of 
blurred edges with similar intensities and poor segmentation between different 
skeletal muscle regions, which contains skeletal muscle shape and muscle fibre 
texture to spatially constrain the integrity of skeletal muscle region and alleviate 
the difficulty of identifying muscle boundaries in axial slices. Subsequentially, a 
3D encoding branch is constructed in conjunction with a 2.5D U-Net, which 
segments the lumbar skeletal muscle in multiple L3-related axial CT slices into 
four regions. Furthermore, the diagnostic cut-off values of the L3 skeletal muscle 
index (L3SMI) are investigated for identifying cirrhotic sarcopenia in four muscle 
regions segmented from CT images of 98 patients with liver cirrhosis.

Results: Our method is evaluated on 317 CT images using the five-fold cross-
validation method. For the four skeletal muscle regions segmented in the images 
from the independent test set, the avg. DSC is 0.937 and the avg. surface distance 
is 0.558 mm. For sarcopenia diagnosis in 98 patients with liver cirrhosis, the cut-
off values of Rectus Abdominis, Right Psoas, Left Psoas, and Paravertebral are 
16.67, 4.14, 3.76, and 13.20 cm2/m2 in females, and 22.51, 5.84, 6.10, and 17.28 cm2/m2 
in males, respectively.

Conclusion: The proposed method can segment four skeletal muscle regions 
related to the L3 vertebra with high accuracy. Furthermore, the analysis shows that 
the Rectus Abdominis region can be used to assist in the diagnosis of sarcopenia 
when the total muscle is not available.
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1. Introduction

Sarcopenia is a pathological decrease in skeletal muscle, 
including primary sarcopenia and secondary sarcopenia. Primary 
sarcopenia is the aging and atrophy of skeletal muscle with age, 
which is related to the aging process of humans. And secondary 
sarcopenia is caused by poor dietary intake, malnutrition and 
chronic diseases such as cirrhosis of the liver (Bauer et al., 2019). 
Sarcopenia is a common complication in patients with liver 
cirrhosis, characterized by the loss of muscle strength and mass. 
According to statistics (Xiao et  al., 2019), as many as 7 million 
people in China suffer from cirrhosis, accounting for 0.5% of the 
total population. The prevalence of sarcopenia in cirrhotic patients 
is between 40% and 70% due to metabolic abnormalities resulting 
from decreased liver function (Cao et al., 2017). Study (Tantai et al., 
2022) shows that cirrhotic sarcopenia increases the risk of falls, 
fractures, decreased quality of life, or acute-on-chronic liver failure 
in patients with cirrhosis. Sarcopenia is significantly associated with 
morbidity and mortality in cirrhotic patients (Hanai et al., 2015) 
and is an independent predictor of survival in patients with 
cirrhosis (Kim et al., 2017). Therefore, early and accurate diagnosis 
of sarcopenia is helpful for the clinical treatment and management 
of liver cirrhosis patients.

Sarcopenia is generally diagnosed by the third lumbar skeletal 
muscle index (L3SMI). L3SMI is defined by measuring the skeletal 
muscle area in the axial CT slice of the third lumbar (L3) vertebra, and 
then calculating the ratio of cross-sectional muscle area to the square 
of body height. For diagnosing patients with cirrhotic sarcopenia, the 
L3SMI’s cut-off values are 50 cm2/m2 in males and 39 cm2/m2 in 
females (Carey et al., 2017). However, in some diseases, it would not 
be enough to only measure these muscles. For example, parts of the 
abdominal muscles of patients with severe ascites may be severely 
squeezed; or the progression of myosteatosis varies in different muscle 
regions in nonalcoholic fatty liver disease. A recent study also explored 
the sarcopenia defined by different muscle groups such as total skeletal 
muscle, psoas major muscle, and rectus abdominis muscle as a 
prognostic factor for patients with advanced hepatocellular carcinoma 
(Wu et  al., 2021). This shows that in the diagnosis of cirrhotic 
sarcopenia, considering the effect of disease on muscle in different 
regions, partitioning skeletal muscle regions and analyzing each 
muscle region separately may be a useful supplement to the analysis 
of the total skeletal muscle.

Therefore, this paper will study the multi-regional skeletal muscles 
from multiple L3-related CT slices. As shown in Figure 1, red, yellow, 
green, and blue represent the labels of Rectus Abdominis (the rectus 
abdominis, external oblique abdominis, internal oblique abdominis, 
and transversus abdominis at the anterior periphery of L3), 
Paravertebral (the paravertebral muscle groups such as the erector 
spine at the posterior part of L3), Right Psoas and Left Psoas (the 
psoas major, psoas minor, and psoas square on the right and left sides 
of L3) respectively. Once these skeletal muscle regions are segmented 

from the L3-related axial CT slices, they can efficiently assist in the 
diagnosis of sarcopenia.

However, there are various challenges in segmenting multiple 
skeletal muscle regions in abdominal or abdominopelvic CT images. As 
shown in Figure 1, there are obvious differences in the shape and size of 
different skeletal muscles; the boundaries between different skeletal 
muscle regions or between skeletal muscle and surrounding tissue are 
unclear or rough, such as the edges of the Right Psoas and Left Psoas in 
Figure 1; morphological differences of the same skeletal muscle region 
between different individuals affect segmentation; physiopathological 
conditions such as muscle fatty degeneration and muscle-reducing 
obesity affect muscle morphology and signal intensity in CT images; 
artifacts in CT images increase the difficulty of segmentation.

Deep Convolution Neural Network (CNN) (LeCun et al., 1998) is 
an effective model for muscle region segmentation in abdominal CT 
images, including Fully Convolutional Network (FCN) (Long et  al., 
2015) architecture and encoder–decoder-based models such as 2D 
U-Net (Ronneberger et al., 2015), 3D U-Net (Çiçek et al., 2016), and 
Swin-unet (Cao et al., 2023). For example, Dabiri et al. (2019) used FCN 
and 2D U-Net to segment skeletal muscles in L3- or L4-related CT slices 
for body composition analysis. Castiglione et al. (2021) and Dabiri et al. 
(2020) firstly automatically located the axial slice at the L3 centroid from 
a whole-body or partial-body CT image, and then used 2D U-Net–based 
models to segment body components, such as skeletal muscle. Park et al. 
(2020) developed and validated an FCN-based system to analyze skeletal 
muscles in the axial CT images at the inferior endplate of the L3. Blanc-
Durand et al. (2020) used CNN to predict the muscle surface from the 
axial CT slices related to L3. And Weston et al. (2020) used U-Net variant 
architecture to segment muscles and other tissues in the abdominopelvic 
CT images. However, these methods only considered the total skeletal 
muscle segmentation but did not pay attention to different muscle region 
segmentation. The relationship between the total skeletal muscle and the 
diagnosis of sarcopenia can be obtained, but the diagnostic effectiveness 
of muscles in each region cannot be analyzed.

Recent studies have gradually focused on the segmentation of 
multiple skeletal muscle regions. Burns et al. (2020) used 2D U-Net-
based model to automatically segment multiple muscle groups in the 
L3- and L4-related axial CT slices to detect central sarcopenia. Huang 
et al. (2020) used BS-ESNet to automatically segment paravertebral 
muscles in axial MRI slices at different spine levels. Barnard et al. 
(2019) used 2D U-Net based model to automatically segment the left 
paraspinal muscle in the axial CT slice at the twelfth thoracic vertebra. 
Although these methods focused on muscle segmentation in different 
regions, they did not pay attention to the multi-regional analysis in 
multiple axial CT slices related to L3. And they did not explore the 
relationship between cirrhotic sarcopenia and each skeletal 
muscle region.

Therefore, the study presents the method to accurately segment 
multiple skeletal muscle regions in the axial slices associated with the 
L3 vertebra, and then calculate the clinical indices and use them for the 
diagnosis of sarcopenia. L3SMI can usually be calculated from muscle 
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regions segmented in two consecutive axial slices associated with the 
L3 vertebra, i.e., L3 middle and its adjacent lower slices (Wang et al., 
2020), or one axial slice, i.e., L3 upper (Carey et al., 2017) or end slice 
(Li et al., 2020). However, recent studies demonstrated that the average 
difference of the skeletal muscle volume measurement was significantly 
lower than that of the corresponding region in a single CT slice by 
segmenting the entire abdominopelvic skeletal muscle (Borrelli et al., 
2021). Inspired by this, the study uses the average cross-sectional area 
of the total skeletal muscle volume corresponding to the L3 vertebra to 
calculate a more reasonable skeletal muscle index. Furthermore, the 
relationship between each regional skeletal muscle and L3SMI is also 
investigated for sarcopenia diagnosis.

2. Materials and methods

2.1. Data description

This study used abdominal or abdominopelvic CT images of 317 
patients from Zhongshan Hospital affiliated to Fudan University in 
Shanghai, China, including 216 cirrhotic patients and 101 
non-cirrhotic patients. And height and gender of 98 patients in the 
cirrhosis group were also collected to analyze the relationship between 

sarcopenia and each skeletal muscle region. According to the 
diagnostic criteria of cirrhotic sarcopenia (Carey et al., 2017), there 
were 54 patients with sarcopenia, 43 of which were male and 11 
females, and 44 patients with non-sarcopenia, 21 of which were male 
and 23 females. The mean age of the patients was 57 years old.

The imaging parameters for abdominal or abdominopelvic CT 
scans are as follows: the in-plane spacing is between 
0.562 mm × 0.562 mm and 0.888 mm × 0.888 mm; the slice thickness 
is 5.0 mm; the image acquisition matrix is 512 × 512; and the number 
of L3 related axial slices are between 4 and 8.

Experienced clinicians manually labeled the skeletal muscle 
regions in all L3-related axial CT slices. According to muscle type and 
distribution, four skeletal muscle regions in the axial, sagittal, and 
coronal planes are obtained and shown in rows A and B of Figure 1. 
Here, red, green, blue, and yellow represent the label of Rectus 
Abdominis, Right Psoas, Left Psoas, and Paravertebral, respectively.

2.2. L3 localization and image 
preprocessing

Abdominal or abdominopelvic CT images contain many 
abdominal and lumbar regions, so it is necessary to accurately locate 

FIGURE 1

(A) The axial CT slices related to L3 are labeled and extracted. (B) The distribution of the four skeletal muscle regions is displayed in axial, sagittal, and 
coronal planes, and red, green, blue, and yellow represent the labels of Rectus Abdominis, Right Psoas, Left Psoas, and Paravertebral, respectively. 
(C) The red arrows indicate the skeletal muscle in the same location, and the skeletal muscles indistinguishable in the axial plane have distinct 
distinguishing features in the sagittal and coronal planes.
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the L3 vertebra. This can be achieved by our developed method of 
automatic localization and identification of vertebra in spine CT 
images (Qin et al., 2021), which is further checked and confirmed by 
the clinician. Once the L3 was successfully detected, all axial slices 
related to L3 can be extracted, totaling about 4 to 8 slices, as shown in 
row A of Figure 1.

For all L3-related axial slices extracted from each CT image, if the 
number of the slices was less than 8, zero-padding was performed 
along the axial direction, so that the number of L3-related axial slices 
of all CT images was equal. Finally, the image block composed of 
L3-related slices was represented by a tensor with size 8 × 512 × 512 
(depth × height × width), which was convenient for inputting the 
network and extracting the axial space feature. The extracted slices 
were processed by intensity normalization. Considering the fact that 
the minimum and maximum Hounsfield Unit (HU) values are varied 
among all CT images, in order to obtain better image contrast, the full 
range of HU values of each image was mapped to [0, 1].

2.3. Skeletal muscle segmentation network

Figure 2 depicts the lumbar skeletal muscle segmentation network 
(LSMU-Net for short). The input of the network is the multiple 
L3-related axial slices of the abdominal CT images, and the outputs are 
the labels of the four skeletal muscle regions. The network mainly 
consists of two hybrid architectures, i.e., a 2.5D encoding–decoding 
network improved by residual structure, and a 3D encoding branch that 
enhances the spatial texture information. Specifically, the dedicated 
texture attention enhancement block is utilized to discern the blurred 

skeletal muscle boundaries in the 2D axial image shown in row C of 
Figure 1 from the 3D image space. The details are described as following.

2.3.1. 2.5D encoding-decoding network
The 2.5D network, which is composed of the encoding and 

decoding branches connected by skip channel connections, is used to 
implement segmentation in the axial CT slice image. Here, although 
the 2.5D branch uses 2D convolution kernel, the input of the network 
consists of CT volumes with multiple slices. In particularly, to adapt 
to the 2.5D network, slices of the input volume are squeezed into a 
batch, so that a volume represented by a tensor with size 
1 × 1 × 8 × 512 × 512 (batch × channel × depth × height × width) is 
squeezed and processed by a dimensional permutation to the size of 
8  ×  1  ×  512  ×  512 (batch  ×  channel  ×  height  ×  width). Here, 8 
originally denotes the depth dimension of the volume and then the 
number of image batch. The batch of the permutated slices is fed into 
the 2.5D encoding branch containing 5 successive Block2D modules 
with 4 stages of 2× max-pooling layer, and then goes through the 
decoding branch with 4 stages of 2× Upsample and Block2D module 
to obtain the hierarchical feature map at each stage. The features of the 
corresponding layer are concatenated in the channel dimension. In the 
last layer of the decoding branch, the feature map is restored to the 
same size as the input image and fused with the output features of both 
the 3D encoding branch and the channel connection in the channel 
direction, then the feature map represented by a tensor with size 
8 × 152 × 512 × 512 is obtained. Finally, a 1 × 1 convolution layer is 
deployed to obtain the prediction maps of 5 categories represented by 
a tensor with size 8 × 5 × 512 × 512 as the final outputs (4 regions of 
skeletal muscles and background).

FIGURE 2

Illustration of the lumbar skeletal muscle segmentation network (LSMU-Net). LSMU-Net containing two parts, i.e., 2.5D Encoding-Decoding Network 
and 3D Encoding Branch. The dimension representation pattern is batch × channel × height × width in the 2.5D network, whereas 
batch × channel × depth × height × width in the 3D branch.
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2.3.2. 3D encoding branch
This is the contextual feature extraction network of the volumetric 

region composed of multiple L3-related axial slices. The network 
consists of 3 layers. Each layer of the 3D encoding branch is composed 
of the max-pooling layer, a Block3D module, and a texture attention 
enhancement block. The output feature map of the Block3D is halved 
by down-sampling using a max-pooling operation. The obtained 
feature maps are transferred to the next layer, simultaneously 
enhanced by the texture attention enhancement block, then restored 
to the original image size, and finally expanded 8 times by duplication 
operation for connecting with the output feature of the 2D decoder 
branch in the channel dimension. In the study, the input is an 
L3-related volumetric image represented by a tensor with size 
1 × 1 × 8 × 512 × 512. After multiple layers of extracted features are 
concatenated to form 3D hierarchical features, the tensor size is 
8 × 112 × 512 × 512 (batch × channel × height × width). Furthermore, 
the channel connection operation is performed with the feature of the 
last layer of the 2.5D network.

Block2D and Block3D: as the basic structure of the LSMU-Net, 
Block2D and Block3D take the residual structure of 2D ResU-Net  
(He et al., 2016) as a reference, but they also have differences. First, the 
convolutional layers are cascaded with InstanceNorm and LeakyReLU 
to form the basic blocks; subsequently, three groups of basic blocks are 
cascaded and jump-connected to form Block2D or Block3D with 
residual structures, respectively, as shown in Figure 3. Block2D has a 
3 × 3 convolutional kernel and Block3D has a 3 × 3 × 3 kernel. These 
two structural blocks do not change the number of channels, but can 
effectively deepen the model, facilitating finer edge feature extraction 
and providing better correction for skeletal muscle refinement. The 
down-sampling process of the 3D branch contains more trainable 

features, which requires more convolutional layers to extract spatial 
information. Therefore, the designs of residual connections in 
Block2D and Block3D are different, with more convolutional layers in 
Block3D so that spatial information and 3D structural characteristics 
can be sufficiently propagated and utilized in the whole network.

Here, it should be noted that the study takes the 2.5D network as 
the backbone structure. The initial reason is that the number of L3 
axial CT slices is small, which limits multiple down-sampling of the 
3D network. And the studies (Liu et al., 2017; Isensee et al., 2021) 
shows that conventional 3D segmentation methods may deteriorate 
the performance in the anisotropic medical image, and anisotropic 
convolution on specific planes with better resolution and more 
appearance features may also improve the accuracy (Jia et al., 2022). 
As shown in row C of Figure 1, the red arrows indicate the same 
position of the axial, sagittal, and coronal planes, and the skeletal 
muscles that cannot be distinguished in the axial plane have distinct 
characteristics in the sagittal and coronal planes. The 3D encoding 
branch precisely extracts the spatial context information (shown by 
the red arrows) lost in the 2.5D network, and the fusion of these 
features enables the 2.5D network to refine the edges of the skeletal 
muscle region from the shape of the muscle fiber bundle, improving 
the segmentation performance. And the studies (Meyer et al., 2021) 
also shows that the ensemble of 2.5D and 3D network does improve 
the accuracy in 3D medical image segmentation. Finally, the training 
time is reduced because the number of parameters in the 2.5D 
network is less than that of the 3D network.

2.3.3. Texture attention enhancement block
To better integrate 3D features and 2.5D features, Zhou et  al. 

(2019) simultaneously selected and trained four adjacent 2D slice 

FIGURE 3

Illustration of the basic residual structures of 2.5D and 3D networks, i.e., Block2D and Block3D, as well as Texture Attention Enhancement Block.
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images to complement the 3D features, then extracted the features 
from 2.5D and 3D branches, and fused them after attention 
enhancement. In this study, based on the standard Squeeze-and-
excitation (SE) Block (Hu et al., 2020), a texture attention enhancement 
block is constructed to compress the channel feature in the 3D 
network and enhance the blurred edge regions, as shown in Figure 3. 
The features extracted by Block3D represented by a tensor with size 
channel × depth × height × width are fed into the attention block. 
Firstly, the global average pooling is carried out to obtain the feature 
map represented by a tensor with size channel × 1 × 1 × 1. Then it 
passes through two layers of a fully connected layer, in which the 
number of neurons in the first fully connected layer is channel/16 
(following SE Block), and the second fully connected layer restores the 
original number of neurons. This operation increases the nonlinear 
processing and can fit the complex correlation between channels. 
Then the probability map is generated through the Sigmoid function. 
Secondly, the features extracted by Block3D are input into the Texture 
Attention Block after passing the Sigmoid function, and the pixel-level 
attention information is obtained through this operation. The 
proposed Texture Attention Block can increase the range of attention, 
as shown in Eq. (1).

 TextureAttention x x x( ) = −( )1  (1)

where x represents the input probability map. This formula 
assigns a higher weight to the edge region whose probability is 
close to 0.5 and a lower weight to the area whose probability is far 
away from 0.5.

By adding the output feature of Eq. (1), the network no longer 
only pays attention to the middle part of the skeletal muscle but 
also enhances the edge refinement based on the shape constraints 
of the skeletal muscle fibre bundles. The texture attention 
enhancement block applied in the 3D branch is aim to calculate the 
weight of the corresponding pixel level and the weight of the 
channel at the same time, and combine the two. The utility of the 
texture attention enhancement block is based on the local 
information of the image, and more attention is paid to the skeletal 
muscle edge. The part of the skeletal muscle edge is given a high 
weight value through the pixel-level weight, and the background 
and the internal area of the skeletal muscle are set a small weight 
value. Finally, the channels are compressed by the Squeeze and 
Upsample block to restore the feature map represented by a tensor 
of original size 512 × 512 in the height and width directions for easy 
fusion with the 2.5D network.

2.3.4. Loss function
For an input abdominal CT image, four skeletal muscle regions 

are segmented by combining the multi-class cross-entropy loss 
function, Lossce, and the dice loss function, Lossdice. The calculation 
of these loss function is shown in Eqs. (2)–(4).
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where C = 5 denotes the four skeletal muscle regions and the 
background. ωc denotes the weight of region c. yic  indicates the 
ground truth value of the ith  pixel which belongs to the cth label. ˆc

iy  
denotes the predicted value of the ith  pixel which is predicted as the 
cth label. H and W denote the height and width of the 2D axial CT 
image, respectively.

The sizes of the four skeletal muscle regions vary greatly, which 
means there is a class imbalance problem that may lead to the instability 
of the segmentation network. Therefore, during the training stage, it is 
necessary to punish the low confidence (such as Right Psoas and Left 
Psoas) prediction by setting the weight in the loss function. Specifically, 
the pixel proportions of the four skeletal muscle regions and 
background in the training images are counted, and then the regions 
with smaller proportions are set with large weights, and the regions 
with large proportions are set with small weights, as shown in Eq. (5).
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where H, W, and D denote the height, width, and depth of the 
training image and Ncdenotes the number of pixels counted in the cth

label. As a result, the prior statistics of ωc ensure the class equilibrium 
optimization of the loss function.

2.4. Training and testing parameter settings

The experiments were conducted on Ubuntu 18.04 operating 
system and PyTorch framework, configured with Intel® Core™ 
i5-9600K (3.70 GHz × 6 CPUs), 64 GB RAM and RTX 3090 GPUs. 
The study was evaluated on the abdominal CT images of 317 patients, 
including 216 cirrhotic patients and 101 non-cirrhotic patients. Firstly, 
we randomly divided these data into training group (n = 252) and 
independent test group (n = 65). Cirrhotic images and non-cirrhotic 
images were evenly distributed in each group. Secondly, on the train 
group, we used the five-fold cross-validation method to evaluate the 
proposed algorithm. That is, we randomly divided all the sampled into 
five groups and used four groups for training and the left-out group 
for testing in each fold. Cirrhotic images and non-cirrhotic images 
were evenly distributed in each fold. And the Adam optimizer with a 
learning rate of 0.001 was used to execute for 30 epochs in each fold, 
and five models were obtained. Thirdly, the model with the best 
performance of five models was selected to run on the independent 
test group for the final inference.

2.5. Evaluation indicators

The evaluation metrics of our segmentation results are based on 
standard measures calculated from pixel-level confusion matrix, 
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including Dice similarity coefficient (DSC) (Zou et al., 2004) and 
Sensitivity calculated from Eqs. (6) and (7), respectively.
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+ +
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where c denotes a category label. TPc and TNc denote the numbers 
of the true positive and the true negative pixels in the cth skeletal 
muscle region, while FPc and FNc are the numbers of the false positive 
and the false negative pixels in that category, respectively.

Average symmetrical surface distance (ASSD) is the average 
Hausdorff distance between the outer surfaces of the segmentation 
result and the ground truth, calculated from Eqs. (8) and (9).
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where Sc and Gc denote the surfaces of the segmentation and the 
ground truth of class c, respectively. The shortest distance from any 
voxel vs belonging to Sc toGc is calculated in Eq. (8). ||·||2 represents 
the Euclidean Distance. NSc  and NGc

 represent the number of voxels 
in the surfaces of the segmentation and the ground truth of class c, 
respectively. The unit for ASSD is a millimeter.

3. Experimental result

3.1. Ablation comparison experiments

To illustrate the overall structural validity of the proposed 
network, we reproduced 2D U-Net, 3D U-Net, 2D ResU-Net, and 3D 
ResU-Net (Lee et  al., 2017) for comparison experiments. The 
normalization function and the activation function were 
InstanceNorm and LeakyReLU. In addition, since nnU-Net (Isensee 
et al., 2021) is an out-of-the-box representative of 3D U-Net, and has 
achieved the excellent results in several medical image segmentation 
tasks, in order to evaluate the performance of LSMU-Net, we used the 
latest code (nnU-Net V2, including 2D nnU-Net and 3D nnU-Net) 
from the official nnU-Net website1 to segment the same data set 
following the same cross-validation method. The cirrhosis dataset has 
previously been used for slice-based segmentation in literature (Liu 
et al., 2019), but that study only described the segmentation model 
and lacked a detailed description of the training set, the validation set, 
cross-validation, and DSC calculation of each dataset, so no 
comparison was made with it. It is worth noting that, in order to make 

1 https://github.com/MIC-DKFZ/nnUNet

a fair comparison, all the experiments in the study did not enhance 
the data, which indicates that the results may have the risk 
of overfitting.

Table 1 shows the DSC results of different methods in segmenting 
the four skeletal muscle regions of Rectus Abdominis, Right Psoas, 
Left Psoas and Paravertebral regions. It can be noted from rows 1–4 of 
Table  1 that the DSC values of the methods combining with the 
residual structure, namely 2D and 3D ResU-Net, are generally better 
than those of the corresponding 2D and 3D U-Net, respectively. 
Therefore, these structures were used in our network. The ablation 
experiments in rows 7 to 10 of Table 1 also show that the combination 
of residual structure in our method did improve the DSC values of all 
skeletal muscles. Rows 5 and 6 shows that the DSC values of the four 
skeletal muscle regions segmented by 2D and 3D nnU-Net. In 
particular, the DSC values by 3D nnU-Net are 0.948, 0.929, 0.922, and 
0.954, respectively, and the corresponding values by our LSMU-Net 
are 0.943, 0.928, 0.922, and 0.957  in row 12. The segmentation 
performance of 3D nnU-Net is slightly higher than that of LSMU-Net 
in regions of Rectus Abdominis and Right Psoas. The DSC value of 
LSMU-Net is higher than that of 3D nnU-Net in Paravertebral. The 
DSC values of 3D nnU-Net and LSMU-Net are the same in the 
Left Psoas.

To evaluate the utility of each module, the ablation experiments 
of LSMU-Net were conducted from different perspectives while 
keeping the parameter settings unchanged. The DSC results of the 
four skeletal muscle regions are shown in rows 7 to 11 of Table 1. 
First, the residual module, 3D encoding branch, and texture attention 
enhancement block were removed from LSMU-Net, respectively. In 
row 7, there are no 3D branch nor attention block to enhance spatial 
information. Although the remaining 2.5D backbone network has the 
same residual structure as 2D ResU-Net, their convolutional layers 
are arranged differently because our Block2D has an additional layer 
of convolutional operation before the residual structure. In row 8, 
DSC increase in all four skeletal muscle regions by comparing to row 
7 with the addition of the 3D branch without attention. As the 3D 
branch with attention block in the study mainly focuses on edge 
refinement to obtain more accurate skeletal muscle edges, which is 
more effective in improving the edges of skeletal muscles with small 
areas like the Right Psoas and Left Psoas. Thus, DSC could also 
be improved with the addition of only one 3D branch. In row 9, the 
network including Block2D and Block3D removes all residual 
structures compared to LSMU-Net. It can be seen that the decrease 
of DSC indicates that the residual structures in the network is useful 
for the segmentation of skeletal muscle. To illustrate the validity of 
the weights in the loss function, we  removed the weights from 
LSMU-Net in row 10 and found that the DSCs of Rectus Abdominis, 
Right Psoas, and Left Psoas decrease compared with LSMU-Net. 
Secondly, row 11 shows the results of LSMU-Net using the SE block, 
which is slightly worse than the results of LSMU-Net using the 
texture attention enhancement block in row 12. This indicates that 
our texture attention enhancement block can improve the 
segmentation of fuzzy regions and optimize the performance of 
our method.

Table 2 shows the LSMU-Net ablation comparison experiment on 
the average index of four skeletal muscle regions in the independent 
test dataset. The prediction results of 3D nnU-Net are 0.938, 0.942, 
and 0.578 mm in terms of DSC, Sensitivity, and ASSD (mm), 
respectively. The corresponding results of LSMU-Net are 0.937, 0.944, 
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and 0.558 mm, respectively. The ASSD of LSMU-Net is slightly lower 
than those of other networks.

3.2. Quantitative segmentation results

Our LSMU-Net method was used to segment the four skeletal 
muscle regions in the CT image. Table 3 shows the accuracy of the 
segmentation results for the independent test dataset. For the four 
skeletal muscle regions, DSC reached above 0.92, and Sensitivity 
exceeded 0.93. Our method achieved the best segmentation results for 
the Paravertebral muscles, which were easy to segment because of 
their large area and concentration near the L3 vertebra. However, the 
skeletal muscles represented by Right Psoas and Left Psoas are very 
small, so the corresponding metrics are low, which makes the average 
values of the corresponding muscles less than those of the 
Paravertebral muscles.

Table 3 also shows the average surface distance error of the four 
skeletal muscle regions. The Paravertebral muscle had the smallest 
ASSD of 0.410 mm; while the Left Psoas muscle had the largest ASSD 
at 0.689 mm. The average ASSD for all skeletal muscles reached 
0.558 mm.

3.3. Qualitative segmentation results

To observe whether our method achieved effective segmentation 
of skeletal muscle edges, Figure  4 shows the comparison of the 
segmented contours and the target contours in a CT image from the 
independent test dataset. The green line shows the contour of the 
target, and the red line denotes the contour of the segmentation result.

As seen in Figure 4, 2D U-Net, 3D U-Net, 3D ResU-Net, and 
LSMU-Net-RS have a poor effect on segmenting skeletal muscle in 
this data. Compared to LSMU-Net-3D, LSMU-Net-AB, and 

TABLE 1 LSMU-Net ablation comparison experiment shown on DSC in the independent test dataset.

# 3D AB RS W Rectus abdominis Right psoas Left psoas Paravertebral

3D U-Net 1 0.924 ± 0.001 0.914 ± 0.002 0.902 ± 0.004 0.946 ± 0.001

2D U-Net 2 0.936 ± 0.002 0.925 ± 0.002 0.915 ± 0.003 0.955 ± 0.000

3D ResU-Net 3 ✓ 0.925 ± 0.002 0.916 ± 0.003 0.909 ± 0.003 0.952 ± 0.001

2D ResU-Net 4 ✓ 0.940 ± 0.001 0.926 ± 0.002 0.918 ± 0.003 0.957 ± 0.001

3D nnU-Net 5 0.948 ± 0.001 0.929 ± 0.002 0.922 ± 0.002 0.954 ± 0.001

2D nnU-Net 6 0.946 ± 0.001 0.926 ± 0.003 0.916 ± 0.003 0.956 ± 0.000

LSMU-Net based

7 ✓ ✓ 0.940 ± 0.001 0.925 ± 0.002 0.914 ± 0.002 0.954 ± 0.001

8 ✓ ✓ ✓ 0.942 ± 0.001 0.926 ± 0.002 0.920 ± 0.003 0.957 ± 0.001

9 ✓ ✓ ✓ 0.931 ± 0.001 0.916 ± 0.001 0.906 ± 0.003 0.950 ± 0.001

10 ✓ ✓ ✓ 0.941 ± 0.001 0.927 ± 0.002 0.918 ± 0.003 0.957 ± 0.001

LSMU-Net + SE 11 ✓ ✓ ✓ 0.942 ± 0.001 0.926 ± 0.002 0.915 ± 0.003 0.956 ± 0.001

LSMU-Net 12 ✓ ✓ ✓ ✓ 0.943 ± 0.001 0.928 ± 0.002 0.922 ± 0.002 0.957 ± 0.001

#, method number; 3D, 3D encoding branch; AB, attention block; RS, residual structure; W, weights. The bold value indicates that the method in row has achieved the best performance.

TABLE 2 LSMU-Net ablation comparison experiment shown on the average index of four skeletal muscle regions in the independent test dataset.

# 3D AB RS W DSC Sensitivity ASSD (mm)

3D U-Net 1 0.922 ± 0.002 0.918 ± 0.003 1.263 ± 19.103

2D U-Net 2 0.934 ± 0.002 0.941 ± 0.001 0.695 ± 2.261

3D ResU-Net 3 ✓ 0.925 ± 0.002 0.923 ± 0.003 0.691 ± 2.045

2D ResU-Net 4 ✓ 0.935 ± 0.002 0.942 ± 0.001 0.641 ± 0.845

3D nnU-Net 5 0.938 ± 0.001 0.942 ± 0.002 0.578 ± 1.187

2D nnU-Net 6 0.936 ± 0.002 0.941 ± 0.002 0.814 ± 6.055

LSMU-Net based

7 ✓ ✓ 0.933 ± 0.002 0.937 ± 0.001 0.631 ± 0.785

8 ✓ ✓ ✓ 0.936 ± 0.002 0.942 ± 0.001 0.695 ± 3.711

9 ✓ ✓ ✓ 0.926 ± 0.002 0.922 ± 0.003 1.279 ± 12.220

10 ✓ ✓ ✓ 0.936 ± 0.002 0.947 ± 0.001 0.677 ± 1.381

LSMU-Net + SE 11 ✓ ✓ ✓ 0.935 ± 0.002 0.939 ± 0.001 0.623 ± 0.881

LSMU-Net 12 ✓ ✓ ✓ ✓ 0.937 ± 0.002 0.944 ± 0.001 0.558 ± 0.715

#, method number; 3D, 3D encoding branch; AB, attention block; RS, residual structure; W, weights. The bold value indicates that the method in row has achieved the best performance.
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LSMU-Net-W, the LSMU-Net can reduce the wrong pixels at the 
edges of the segmentation results. In LSMU-Net, the green line 
contours overlap more with the red line contours, especially in uneven 
areas. While using the 2D ResU-Net, most of the muscles are well 
segmented, but in the magnified edge part, it is still non-fine edge 
segmentation compared to LSMU-Net. While compared with the 
network using SE attention (i.e., LSMU-Net + SE), LSMU-Net shows 
smoother boundary segmentation. This shows that the effect of edge 
refinement of the network proposed in the study is obvious. The 
visualization results of nnU-Net is similar to that of LSMU-Net.

To illustrate the performance of the 3D encoding branch, Figure 5 
visualizes the results of any three CT images segmented by LSMU-
Net-3D and LSMU-Net from the sagittal or coronal views, respectively. 
Red, green, blue, and yellow represent the segmentation of Rectus 
Abdominis, Right Psoas, Left Psoas, and Paravertebral, respectively. 
For the muscle boundary region between the Right Psoas and 
Paravertebral muscles that is difficult to distinguish, the segmentation 
result by LSMU-Net is closer to the Ground Truth label than that by 
LSMU-Net-3D by observing the magnified corresponding area. The 
reason is that the texture attention block of 3D encoding branch 
enhances the spatial integrity of the skeletal muscle bundle, thereby 
solving the challenge of identifying the boundaries of skeletal 
muscle bundles.

3.4. Auxiliary diagnostic information

As mentioned previously, the existing diagnostic index for 
‘sarcopenia’ is the assessment of overall skeletal muscle (e.g., L3SMI). 
However, the larger the skeletal muscle volume involved in the 
calculation, the more reasonable the calculated value for diagnosing 
the presence or absence of sarcopenia. In the study, the average cross-
sectional area of skeletal muscle volume corresponding to the L3 
vertebra is used. Furthermore, since our LSMU-Net can segment four 
skeletal muscle regions in all L3-related axial slices, this makes it 
possible to quantitatively investigate the symptoms of cirrhotic 
sarcopenia in multiple muscle regions around L3. Therefore, this study 
will take the L3SMI, the diagnostic index of sarcopenia, as criterion to 
explore its relationship with the muscle indices of the four skeletal 
muscle regions.

The relationship was explained by the correlation analysis in the 
CT images of 98 patients in the cirrhosis group. Firstly, the average 
cross-sectional areas of the total skeletal muscle volume, as well as the 
four skeletal muscle regions, were calculated, respectively; secondly, 
referring to L3SMI’s formula, that is, the ratio of the skeletal muscle 
area to the square of the body height, four potential diagnostic indices 

were obtained, i.e., rectus abdominal index (RAI) based on Rectus 
Abdominis region, right psoas index (RPI) based on Right Psoas 
muscle region, left psoas index (LPI) based on Left Psoas muscle 
region and paravertebral index (PI) based on Paravertebral muscle 
region. Here, the total psoas index (TPI) was calculated by summing 
the Left Psoas and Right Psoas muscle region; finally, according to 
gender and whether it is sarcopenia, the correlations between the new 
index and L3SMI were calculated and listed in Table 4.

Figure 6 also visualizes the correlation analysis between the new 
indicators and L3SMI depending on the gender of the patients in the 
cirrhosis group. As seen in Table  4 and Figure  6, the correlation 
between the five new indicators and L3SMI is higher in 
Non-sarcopenia patients than in Sarcopenia patients. Compared to 
the Male patients, the RAI and PI of the Female patients have a higher 
correlation with L3SMI, while their RPI, LPI, and TPI have a lower 
correlation with L3SMI. The correlation between RAI and L3SMI is 
the highest regardless of gender and whether the patient suffered from 
sarcopenia. From the overall data, the correlation between all indices 
and L3SMI is greater than 0.80.

Furthermore, according to the diagnostic cut-off value of L3SMI, 
Table 5 lists the cut-off value, corresponding Accuracy and AUC of the 
five new indicators in the diagnosis of cirrhotic sarcopenia in female 
and male, respectively. Due to the highest correlation between RAI 
and L3SMI, the diagnostic accuracy of 0.941 can be  achieved by 
selecting the appropriate cut-off value such as 16.67 cm2/m2 in female. 
Therefore, the Rectus Abdominis can achieve the alternative 
diagnostic effect in cases where the overall skeletal muscle is not 
available. As seen in Table 5, the diagnostic effect of skeletal muscle 
region index is RAI  >  PI  >  LPI  =  RPI  =  TPI for female and 
RAI > LPI = TPI > RPI > PI for male.

The receiver operating characteristic (ROC) curve provides a 
simple way to observe the diagnostic performance of a clinical 
indicator. The performance of the ROC curve is usually expressed by 
the area under curve (AUC), the value of which is the size of the area 
under the ROC curve. The closer the AUC is to 1.0, the higher the 
performance of the diagnostic index. When the AUC is equal to 0.5, 
the performance of the diagnostic index is the lowest. Table 5 shows 
the AUC of RAI, RPI, LPI, PI and TPI in females and males, 
respectively. It can be  seen that the RAI index performed best in 
identifying cirrhotic sarcopenia in females and males. The diagnostic 
cut-off values for skeletal muscle regional indicators selected from the 
AUC results are ordered as RAI > PI > RPI > LPI > TPI for female and 
RAI > LPI > TPI > RPI > PI for male.

4. Conclusion

This study presented an automatic segmentation method of multi-
region skeletal muscle in abdominal or abdominopelvic CT images. 
Our method achieved good performance by combining the 
appearance of skeletal muscle regions in CT images into advanced 
U-Net architecture. Specifically, our method includes enhancement of 
the existing U-Net models; texture attention enhancement block for 
augmenting the blurred edges of skeletal muscles; 3D encoding branch 
for extracting feature of muscle fiber bundles; and loss functions using 
the prior knowledge to reduce the class imbalance. Therefore, our 
method accurately segmented the multiple skeletal muscle regions 
from all L3-related axial slices in more than 300 abdominal or 

TABLE 3 DSC, sensitivity, and ASSD (mm) of four skeletal muscle regions 
of the CT image in the independent test dataset segmented by our LSMU-
Net.

DSC Sensitivity ASSD (mm)

Rectus abdominis 0.943 ± 0.001 0.943 ± 0.002 0.431 ± 0.045

Right psoas 0.928 ± 0.002 0.941 ± 0.001 0.689 ± 1.299

Left psoas 0.922 ± 0.002 0.938 ± 0.001 0.701 ± 1.409

Paravertebral 0.957 ± 0.001 0.953 ± 0.001 0.410 ± 0.030

Average 0.937 ± 0.002 0.944 ± 0.001 0.558 ± 0.715
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abdominopelvic CT images, and the segmentation prediction time 
meets the clinical real-time requirement.

Based on the segmentation results of four skeletal muscle regions, 
the five skeletal muscle region indices were calculated, and their 
correlation with L3SMI was quantitatively analyzed in the diagnosis 
of sarcopenia. The five skeletal muscle region indices, especially RAI, 
could be used to assist in the diagnosis of sarcopenia in cases where 
the total muscle was not available.

5. Discussion

Clinically, sarcopenia is usually diagnosed by L3SMI calculated on 
the skeletal muscle region. Existing deep learning methods have 
greatly improved the performance of skeletal muscle segmentation, 
however, for patients with cirrhosis, skeletal muscle may be squeezed 
and deformed by pathological changes, resulting in errors in the 
calculation of L3SMI. This study proposed the lumbar skeletal muscle 

FIGURE 4

Comparison of the segmented contours and the target contours in a CT image from the generalized dataset. The green line denotes the target 
contour, and the red line denotes the contour of the segmentation result.
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segmentation network based on the U-Net enhanced by residual 
structure to segment four skeletal muscle regions in all axial CT slices 
related to L3 (i.e., LSMU-Net). The average cross-sectional area of four 
skeletal muscle regions can be used to calculate the diagnostic indexes 
of sarcopenia.

Comparative ablation experiments showed that the LSMU-Net 
method proposed in the study has good performance in terms of DSC, 
Sensitivity, and ASSD, which indicates the feasibility of LSMU-Net. 
The experimental results also showed that 2D nnU-Net and 3D 
nnU-Net perform well in the segmentation tasks. LSMU-Net is 
slightly superior to 2D nnU-Net in DSC, Sensitivity, and 
ASSD. LSMU-Net is slightly superior to 3D nnU-Net in ASSD and 
Sensitivity, while DSC is lower than the corresponding values of 3D 
nnU-Net. The performance of our method is achieved by combining 
the advanced 2D U-Net with residual structure, texture attention 
enhancement blocks, 3D encoding branches and the priori knowledge. 

Different from our LSMU-Net, nnU-Net still uses the original U-Net 
structure, but achieves good performance with the help of many 
advanced techniques, such as image preprocessing, dynamic 
adaptation of network topology, training strategy, inference post-
processing and so on. Therefore, in addition to the improvement of 
network structure, the optimization and integration of data processing 
and training methods are also extremely important in future 
segmentation work.

Among the four skeletal muscle regions, Rectus Abdominis 
and Paravetebral muscle are larger, while Right Psoas and Left 
Psoas are smaller. From the perspective of segmentation 
evaluation index, the index of the first two regions is higher, while 
that of the latter two regions is slighter lower. This shows that the 
proposed network still has difficulties in segmenting small targets 
such as the Right Psoas and the Left Psoas, and the performance 
of the segmentation method needs to be improved.

In addition to L3SMI, sarcopenia is also diagnosed by psoas 
muscle index (PMI). PMI is often calculated based on the psoas 
major muscle, defined as the ratio of the cross-sectional area of 
bilateral psoas major muscles to the square of body height. The 
PMI’s cut-off values are 5.24 cm2/m2 in males and 3.85 cm2/m2 in 
females (Dolan et  al., 2019). In this study, TPI was calculated 
based on the custom Left Psoas and Right Psoas regions, which 
includes the psoas major muscle and the psoas square muscle. 
TPI’s cut-off values are 12.51 cm2/m2 in males and 7.27 cm2/m2 in 
females. Obviously, TPI is defined in a larger skeletal muscle 
region than PMI, which may be a useful complement to PMI.

According to the results of AUC, in females, the comprehensive 
performance of RPI and LPI is higher than that of TPI; while in 

FIGURE 5

Illustration of the performance of 3D encoding branch by qualitative comparison of the segmentation results of any three CT images by LSMU-Net-3D 
and LSMU-Net from the sagittal or coronal views, respectively. The magnified region shows that the result output by LSMU-Net is closer to the ground 
truth label for the area between the right psoas (green) and the paravertebral muscles (yellow) that is difficult to distinguish.

TABLE 4 Correlation analysis between new indices (RAI, RPI, LPI, PI, and 
TPI) and L3SMI in the CT images of 98 patients in the cirrhosis group 
according to gender and whether it is sarcopenia.

RAI RPI LPI PI TPI

Sarcopenia 0.879 0.767 0.693 0.697 0.767

Non-sarcopenia 0.902 0.842 0.799 0.772 0.848

Female 0.935 0.712 0.692 0.862 0.766

Male 0.926 0.842 0.780 0.796 0.836

All Data 0.932 0.839 0.801 0.831 0.847
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males, the diagnostic value of LPI (AUC = 0.875) is similar to that 
of TPI (AUC = 0.871), but different from that of RPI (AUC = 0.862). 
The comprehensive performance of RPI and LPI could not 
be compared to that of TPI in males. This issue may be related to 
the small number of samples of existing data sets, which need to 
be explored and analyzed in more cases of cirrhotic sarcopenia.

The segmented network and the five new metrics of skeletal 
muscle regions could better assist physicians. The results of this 
study may play a very important auxiliary role in the diagnosis of 
cirrhotic sarcopenia, especially in cases where intact skeletal 
muscle is not available in axial CT slices. However, this study also 
has some shortcomings, such as the data set is only from one 
institution, and the number of cases is only 317. In addition, the 

study only considered the effects of muscle and did not address 
other parameters, such as intra-abdominal fat, organ fat and 
subcutaneous fat. In the future, we will combine these parameters 
for further study to improve the automatic diagnosis 
of sarcopenia.
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A touch-free human-robot 
collaborative surgical navigation 
robotic system based on hand 
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Robot-assisted minimally invasive surgery (RAMIS) has gained significant traction 
in clinical practice in recent years. However, most surgical robots rely on touch-
based human-robot interaction (HRI), which increases the risk of bacterial 
diffusion. This risk is particularly concerning when surgeons must operate 
various equipment with their bare hands, necessitating repeated sterilization. 
Thus, achieving touch-free and precise manipulation with a surgical robot is 
challenging. To address this challenge, we propose a novel HRI interface based 
on gesture recognition, leveraging hand-keypoint regression and hand-shape 
reconstruction methods. By encoding the 21 keypoints from the recognized 
hand gesture, the robot can successfully perform the corresponding action 
according to predefined rules, which enables the robot to perform fine-tuning 
of surgical instruments without the need for physical contact with the surgeon. 
We  evaluated the surgical applicability of the proposed system through both 
phantom and cadaver studies. In the phantom experiment, the average needle 
tip location error was 0.51  mm, and the mean angle error was 0.34 degrees. In 
the simulated nasopharyngeal carcinoma biopsy experiment, the needle insertion 
error was 0.16  mm, and the angle error was 0.10 degrees. These results indicate 
that the proposed system achieves clinically acceptable accuracy and can assist 
surgeons in performing contactless surgery with hand gesture interaction.

KEYWORDS

robot-assisted minimally invasive surgery, surgical robot, human-robot interaction, 
gesture recognition, contactless surgery

1. Introduction

Robot-assisted minimally invasive surgery (RAMIS) is now well established in clinical 
practice due to its high precision and minimal invasiveness (Nagyné Elek and Haidegger, 2019; 
Haidegger et al., 2022). In RAMIS, preoperative medical image data is utilized to plan the surgical 
path, while the robot performs the approach during the surgery as per the plan. Surgeons must 
manipulate various software to control the navigational surgical robot throughout the procedure, 
especially to fine-tune surgical instruments with their perspective in complex surgeries. However, 
at present, adapting the surgical robot by manual means increases the risk of bacterial diffusion, 
rendering the surgeon unable to control the robot during surgery while complying with the high 
sterile requirements. To address this issue, various types of study have been proposed. Some 
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studies have attempted to solve this problem by using other devices 
such as joysticks and pedals to transform the surgeon’s command into 
actions (Díaz et al., 2014; Ohmura et al., 2018). Nevertheless, in the 
case of joysticks, human-robot interaction (HRI) tasks applied to 
surgical robots are performed through master–slave operations, with 
which has not been effectively resolved on the movement difference 
between the master and slave console and the problem of over-
operation. On the other hand, the pedal-based solutions are still 
limited by behavioral consistency, which impedes their use for every 
surgeon in RAMIS, particularly those who are unskilled. Recently, 
several studies have attempted to address this issue through contactless 
HRI using touch-free solutions (Nestorov et al., 2016; Cho et al., 2018; 
Despinoy et  al., 2018), with a particular focus on hand gesture 
recognition-based HRI. The researchers have made significant progress 
in modeling and analyzing hand gesture recognition. These studies 
have adopted various frameworks to predict users’ intentions in HRI 
tasks and enable robots to perform corresponding actions, including 
probabilistic graphical models of temporal processes, deep learning 
techniques with supervised learning, and other methods including 
unsupervised learning algorithms, among others (Van Amsterdam 
et al., 2021; Cao et al., 2022).

Probabilistic graphical models of temporal processes, which have 
been widely utilized in speech recognition for time series analysis, 
have also served as a source of inspiration for gesture recognition in 
HRI tasks (Ahmidi et al., 2017). Chen et al. (2015) introduces a novel 
hand gesture recognition model based on hidden Markov models 
(HMM), which could identify a worker’s gesture patterns and 
intentions with reliable accuracy. Mavroudi et al. (2018) proposes a 
framework for fine-grained gesture segmentation and recognition, 
which employs a Conditional Random Field (CRF) model and a 
frame-level representation based on discriminative sparse coding. 
Reiley et al. (2008) utilizes Linear Discriminant Analysis (LDA) and 
HMM to build models for gesture recognition, which improved the 
recognition rate by promoting discrimination between sub-gestures 
instead of the entire gesture, thus enabling them to capture the internal 
variability of each segment. The aforementioned models have been 
implemented effectively to analyze the kinematic signals for the da 
Vinci surgical robot. Deep learning techniques, specifically the 
implementation of deep convolutional neural networks (CNN), have 
been employed for the purpose of recognizing gestures. In the study 
by Oyedotun and Khashman (2017), the image is first preprocessed 
using binarization, followed by setting a threshold to locate the 
gesture, and finally, a CNN is utilized to recognize the gestures. 
Similarly, ElBadawy et  al. (2017) uses a 3D CNN-based gesture 
recognition system to analyze normalized images, achieving a 
recognition rate averaging 90%. Huynhnguyen and Buy (2021) 
introduces a 2-stage surgical gesture recognition approach, where one 
stage detects the transition between consecutive gestures using a 3D 
CNN, and the other stage classifies video clips into corresponding 
gesture classes based on a long short-term memory (LSTM) neural 
network. Experimental results using JIGSAWS’s suturing video dataset 
show that the proposed method achieves an accuracy of over 70% for 
both tasks. Moreover, Fang et al. (2019) presents a gesture recognition 
system that combines generative adversarial network (GAN) and 
CNN, achieving better results with fewer samples.

Furthermore, there are alternative approaches for gesture 
recognition in HRI tasks. Huang et  al. (2011) presents a gesture 
recognition approach that relies on Gabor filters and a support vector 

machine (SVM) classifier. Their proposed method is highly resistant 
to variations in illumination, leading to recognition rates that improve 
from 72.8 to 93.7%. Tarvekar (2018) introduces a skin threshold 
segmentation approach for recognizing and categorizing gestures by 
segmenting hand regions in images and extracting color and edge 
features through an SVM classifier. Shi et al. (2021) proposes a novel 
domain adaptive framework for robotic gesture recognition that aligns 
unsupervised kinematic visual data, enabling the real robot to acquire 
multi-modality knowledge from a simulator. The empirical evidence 
indicates that the model has the potential to significantly enhance the 
operational efficiency of the real robot, resulting in a noteworthy 
12.91% increase in precision. Moreover, there exist cases in which the 
recognition of hand gestures is facilitated through the utilization of 
Leap Motion™ and Kinect™ devices (Ahmad et  al., 2016; Jin 
et al., 2016).

In current RAMIS procedures, limited interactions between the 
surgeon and the robot restrict surgical efficiency. And it is apparent 
that the majority of present-day studies employ relatively intricate 
techniques to achieve specific HRI tasks using various devices. 
However, little study has presented a comprehensive framework for 
gesture recognition that exhibits strong generalization capabilities and 
high efficiency, which can be applied effectively to address the problem 
of the contactless HRI in RAMIS. To this end, we propose a concise 
and effective framework for navigational surgical robots to perform 
actions in response to the surgeon’s gestures in this paper, utilizing 
touch-free solutions based on hand gesture recognition technology. 
This framework facilitates the robot to execute surgical interventions 
under the guidance of an expert surgeon and a surgical navigation 
system, resulting in enhanced medical treatment efficacy and 
conserved healthcare resources, while also ensuring aseptic conditions 
that impede bacterial dissemination.

2. Materials and methods

2.1. System composition

As depicted in Figure  1, the collaborative surgical navigation 
robot system is primarily composed of a computer workstation, an 
optical positioning-based surgical navigator, auxiliary accessories such 
as surgical probes and locators, and a robot module that includes a 
7-DoF robotic arm and its controller. Both the operating table and 
surgical navigator are mobile devices that can be adjusted to fit the 
patient and surgeon’s positions. The workstation and its internal 
software connect the surgical navigator and the robot into a closed-
loop structure. The surgical navigator tracks the patient and surgical 
instruments in real-time by positioning reflective balls mounted on 
the operating table and the robot manipulator. The collaborative 
surgical robot, with its terminal surgical instruments, can 
be positioned flexibly around the operation table and controlled by the 
surgeon’s hand gestures. The navigator constructs an enhanced 
surgical field by integrating preoperative medical information of 
patients (e.g., target organs, vessels and planned surgical paths) with 
the location and target points of intraoperative instruments attached 
to the actual patient body to provide surgeons with augmented visual 
information. With the direct navigation interface, hand gesture 
guidance can be used as a direct and natural method to interact with 
the surgical robot.
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2.2. System workflow

The figure displayed in Figure 2 outlines the workflow of the 
proposed surgical system. The computer workstation serves as 
the main control and computation center, enabling robot control, 
generating enhanced surgical visual information, and supporting 
human-robot interaction. The hardware layer of the collaborative 
surgical robot system is denoted with blue dotted lines, while the 
human subjects involved in the touch-free surgical procedure, 
such as the surgeon, surgical navigation interface, surgical robot 
motion/execution, patient, and HRI interface, are located above 
this blue layer. The data flow is indicated by black arrow lines, 
including control and feedback flows between the subjects and 
hardware modules. The surgeon-centered interaction flow is 
shown with red dotted lines, highlighting the data flow among 
the subjects. For this contactless robot-assisted puncture 
treatment with a surgical navigation interface, a semi-automatic 
mode of surgical procedure is proposed. Surgeons are required 
to select surgical targets and needle insertion sites through 
patient image guidance before surgery and plan corresponding 
surgical paths. During surgery, surgeons can fine-tune the 
needle’s posture directly through hand gesture interaction. The 
generation of the surgical navigation interface is based on our 
previous research (Liu et al., 2017; Chen et al., 2021). This paper 
centers on the attainment of contactless HRI objectives, 
specifically, the detection of gestures and the subsequent control 
of surgical robots.

2.3. Gesture recognition model

In this section, our attention is directed towards the gesture 
recognition module of our approach. The specific architecture of the 
model is illustrated in Figure 3.

The main function of the hand gesture recognition network is to 
process monocular images captured by the camera to acquire the 
desired pose and shape of the hand. The 3D pose of the hand is denoted 
by the 3D position of keypoints, while the shape of the hand is 
represented in the form of a mesh. We have identified a total of 21 
keypoints on the hand as regression targets, which include the position 
of the wrist, finger joints, and fingertips. The 3D position of each key 
point is denoted by the (x, y, z) coordinates. The hand shape is 
represented by a mesh consisting of 778 nodes, with associated 
connection information between them. We represent the mesh in the 
network as a graph G(V, E), where V represents the 778 nodes and E 
denotes the connection information between them. Our gesture 
recognition module employs a Unet architecture and utilizes a multi-
layer convolutional network for feature extraction, resulting in a feature 
map of varying sizes. This is followed by convolution and upsampling 
to extend the feature map and combine it with the previously extracted 
features at each layer. Our approach is divided into several distinct parts.

2.3.1. Keypoint regression branch
In order to simultaneously regress the pose of both hands, a 

regression approach is utilized to predict the keypoint locations. The 

FIGURE 1

Overview of the non-contact collaborative surgical navigation robot system.
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position information of the hand keypoints, with a shape of (2, 21, 3), 
is unfolded into a 126-dimensional vector, which is then paired with 
dataset labels to calculate the L2 loss values. This enables the network 
to learn how to regress the keypoints. Eq. (1) depicts the generation 

of the keypoint positions. The regression process employs the last 
layer of the encoder output, which passes through multiple 
homogeneity networks and is subsequently expanded into a 
126-dimensional vector that represents the 3D positions of joints.

FIGURE 3

The concrete architecture of the hand gesture recognition model.

FIGURE 2

Workflow of the hand-gesture based surgeon-robot cooperation.
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(1)

where P∈ 2 21 3× ×
 indicates the vector of 126 dimensions, 

Ximg  is the RGB image, fen  and fde  represent encoder and decoder 
of the regression branch respectively, and f flat  denotes a flatten 
function that can convert a three-dimensional matrix to a 
126-dimensional vector.

2.3.2. Auxiliary prediction branch
Three distinct auxiliary methods are employed to aid the model 

in making accurate predictions. These methods consist of hand 
segmentation, density mapping, and 2D pose. The 2D pose branch 
transforms the ultimate feature map of the Unet architecture into 21 
heatmaps, which denote the 2D positions of both hands. Meanwhile, 
the hand segmentation branch restores the feature map to its original 
resolution, producing a mask with distinct pixel values for the left 
hand, right hand, and background. In addition, dense matching 
produces a dense mapping map with the same dimensions as the 
original map by establishing correspondences between images in a 
manner analogous to positional coding. We utilize dense matching to 
define the correspondence between vertices and image pixels, 
employing various hues to represent individual vertices.

The three categories of auxiliary information are labeled 
independently in the dataset and are utilized to compute the loss 
values, allowing the network to more effectively extract hand features.

2.3.3. Hand shape regression branch
Convolutional mesh regression is utilized in this branch to 

generate precise and dense 3D shapes for the hands. This classical 
method produces a 3D mesh aligned with the image, enabling the 
generation of intricate and fine 3D shapes. The hand shape regression 
branch comprises a network with graph convolution. As 
demonstrated in Eq. 2, the feature maps are spanned and propagated 
into two fully connected layers with a position embedding module to 
derive the left-hand and right-hand graph structures, respectively. 
The process for the former graph structure is illustrated in Eq. 3, 
where it is first subjected to graph convolution and subsequently, the 
outputs are passed through a multi-head attention mechanism 
module to establish attention between nodes within itself and merge 
with the features extracted from different layers by the feature 
extractor. Finally, it is transmitted to the interaction attention module 
across the left and right hands to determine the interaction 
relationship between the hands and assist in modifying their shape 
information. The hand mesh is generated in a coarse-to-fine 
approach, where a coarse mesh is initially generated, and then, 
according to the nearest neighbor mode, it is up-sampled following 
the rules of graph coarsening to acquire a finer mesh, with the 
features of the coarse mesh assigned to its children vertices. With the 
final layer of the graph processed, a mesh consisting of 778 vertices 
is obtained.

 
V V f FL R g img
0 0
, = ( )  (2)

where Fimg  represents the feature map from Resnet50 encoder, 
fg  indicates the function that converts feature map into graph 

structure with fully connected layers and position embedding module.
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where VL
i

 and VR
i

denote the hand vertices of the i-th layer of the 
left and right hand shape regression branch, respectively. Ii  is the 
feature map from the encoder and decoder, Gi  indicates the function 
with Graph convolution, interaction attention, and up-sampling.

2.4. Hand gesture mapping to robot

Upon identifying hand gestures, it becomes imperative to regulate 
the surgical robot’s motion, ensuring the meticulous adjustment of 
surgical instruments, culminating in the seamless execution of a 
non-invasive surgical procedure. To maneuver the robot with 
precision, it is essential to encode the hand’s posture and 
correspondingly map it to appropriate commands.

2.4.1. Encoding
To quantify the position information of keypoints, we initially 

need to extract appropriate features. We opt to use the Euclidean 
distance between joints to calculate the distance between each pair of 
keypoints. By using features with high differentiation, we  can 
accurately represent and distinguish various commands, thereby 
enhancing the system’s reliability. For this purpose, we employ the 
distance between the fingertip and the root point as features for binary 
encoding, where a distance greater than a predefined threshold is 
encoded as 1 and vice versa. The binary encoding principle is 
illustrated in Eq. 4.

 
B d threshold
i

i=
≥




−1

0

0if

otherwise  
(4)

where di−0  indicates the distance between the i-th finger’s tip and 
root point, and Bi  represents the code for the corresponding finger.

2.4.2. Gesture mapping
To ensure optimal system stability and minimize the risk of 

accidental touches, a dual-hand posture control method is employed. 
A set of eight distinctive hand gestures has been carefully selected to 
showcase this control scheme, as illustrated in Figure 4. Gesture A 
involves clenching the left hand while extending the forefinger of the 
right hand. In Gesture B, the right hand is clenched while the left hand 
extends the forefinger. Gesture C is characterized by an open left hand 
with the right hand extending the forefinger, while in Gesture D, the 
right hand is open with the left hand extending the forefinger. Gesture 
E entails an open left hand while the right hand is clenched, and 
Gesture F involves an open right hand while the left hand is clenched. 
In Gesture G, both hands extend their forefingers, whereas in Gesture 
H, both hands are clenched.

2.4.3. Safety strategies for HRI
Our methodology involves employing a continuous and 

uninterrupted stream of video frames that are captured by the 
camera. Relying on a single frame for recognition and command 
transmission would give rise to ambiguity and instability within the 
system. To circumvent this, we formulated a simple state machine to 
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manage and filter the triggers of gestures. As shown in Figure 5, 
we assigned a distinct counter for each gesture, which increments 
each time the recognition outcomes correspond to the code of that 
specific gesture and resets to zero if another gesture appears. To 
curtail erroneous touches and bolster the robustness of the system, 

we programmed the counter to activate the corresponding control 
command when it reaches a specific threshold. Following the 
triggering of a gesture, the counter does not immediately clear but 
rather remains at a value above the threshold until a subsequent 
action clears it.

3. Results

The hand gesture interaction model is implemented on the 
collaborative robotic arm, Franka Emikia, and its effectiveness is 
verified through experiments on phantom and cadaver research, 
following the process outlined in Figure 2.

3.1. Gesture recognition accuracy

In order to apply gesture recognition model to surgical robots, 
it is necessary to first test the accuracy of recognizing predefined 
gestures. We  evaluated the recognition accuracy and 
corresponding robot operation effects of eight gestures through 
two experiments involving 10 volunteers. In the first experiment, 
each volunteer performed the predefined gestures at different 
locations, and each gesture was tested five times on the same 
volunteer. The average recognition accuracy for each gesture is 
shown in Table 1. It is worth noting that there was one recognition 
failure in the third and fifth categories, which was due to the 
fingers being obstructed. In the second experiment, volunteers 
manipulated the robot through gestures to complete a specified 
task, aimed at verifying the learning difficulty and efficiency of 
the gesture interaction. The completion time for the task, which 
involved touching a specified object, ranged from 1 min 27 s to 
2 min 32 s among the 10 volunteers, with an average of 1 min 49 s. 
These results demonstrate that the gestures we  designed for 
interaction are straightforward and easily learned, and that the 
corresponding actions of the robot are reasonable.

FIGURE 4

Predefined 8 gestures and its corresponding commands in robot. (A) From left to right are: Gesture A, Gesture B, Gesture C, Gesture D, Gesture E, 
Gesture F, Gesture G and Gesture H. (B) Gesture-motion corresponding rules.

FIGURE 5

State machine design for HRI tasks.
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3.2. Phantom experiment

3.2.1. Experimental settings
The phantom experiment involved the use of a surgical robot to 

perform expected actions based on human hand gestures on a skull 
model. A target tumor composed of a metal nail with dimensions of 
2 × 2 × 2 mm was prepared in the eyebrow center of a phantom to 
simulate the location of the puncture target. Simultaneously, 
we located a metal block, measuring 4 mm3, onto the model’s nasal tip 
to imitate the surgical entry point. The skull model was then subjected 
to CT scanning and introduced into a surgical navigator to simulate 
surgical path planning, with the entry point being the tip of the nose 
and the target location being the eyebrow center.

A surgeon from a hospital participated in the phantom 
experiment. With the guidance of the surgical navigation system, 

the needle held by the surgical robot was gradually inserted 
through touch-free hand gesture interaction with the surgeon. 
The target and actual path of the needle were derived after 
insertion into the phantom, and the position error of the needle 
tip in the preoperative plan was estimated with the help of the 
surgical system. The workflow of the phantom experiment is 
illustrated in Figure 6.

3.2.2. Experimental result
Table 2 showcases the mean positioning error of the needle tip 

and the rotation angle error of the needle. The experimental data 
reveals that the needle tip’s average positioning error is 0.51 mm, 
and the average angle error is 0.34 degrees. The results obtained 
from the surgeon’s five experiments are outlined in Table 2.

TABLE 1 Accuracy of eight gesture recognition with predefined categories.

Category 1 2 3 4 5 6 7 8

Accuracy 100% 100% 98% 100% 98% 100% 100% 100%

FIGURE 6

The flow of phantom experiment. (A) Mockup preparation and 3D reconstruction; (B) Surgical planning and intraoperative navigation; (C) HRI through 
hand gesture; (D) Verify after surgery.
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3.3. Cadaver experiment

3.3.1. Experimental settings
In this section, a simulated experiment was conducted to perform 

a biopsy for nasopharyngeal carcinoma on a cadaver. To create the 
lesion, we placed a small metal block with a volume of 8 mm3 at the 
nasopharyngeal apex of the cadaver head. CT scanning was then 
performed to obtain medical information with marked points of the 
cadaver, as illustrated in Figure 7. Using these CT data, we performed 
3D reconstruction to create an image-guided space where surgical 
planning could take place. The needle entry point was located at the 
top of the anterior nostril, and the target point was at the top of the 
nasopharynx where the metal block was located.

Similar to the phantom experiment, the surgical robot adjusted its 
position gradually until the needle tip reached the insertion point of 
the surgical path, following the hand gesture interactive instructions 
of the surgeon. With the guidance of surgical navigation and hand 
gesture interaction, the needle was positioned to align with the 
planned path and maintained in that posture until it reached the 
lesion. In the same way, we estimated the errors in the location and 
angle of the needle tip.

3.3.2. Experimental result
Figure  8 illustrates the outcomes of the simulated biopsy for 

nasopharyngeal carcinoma. The red and green lines displayed in the 

figure indicate the intended surgical path and the real needle location, 
respectively. In Figure  8A, the path of the simulated biopsy is 
demonstrated. Figure 8B exhibits that the needle approached the entry 
point with a posture that is in agreement with the planned path. 
Ultimately, Figure 8C portrays the outcome of the needle insertion 
into the simulated lesion. As can be seen from Figure 8, the actual 
needle position nearly matches the planned surgical path. By fitting 
the needle information in the surgical navigator, we obtained an actual 
location error of 0.16 mm and an angle error of 0.10 degrees.

4. Discussion

In this study, we presented a novel framework for recognizing 
gestures using monocular color images, achieving an accuracy rate of 
over 98% in recognizing all predefined gestures. Compared with 
traditional manual procedures, the proposed framework for gesture 
recognition facilitates efficient contactless interaction between 
surgeons and surgical robot in RAMIS, thereby mitigating the risk of 
bacterial transmission and enhancing surgical efficacy by enabling 
precise fine-tuning of related instruments.

Both phantom experiments and cadaver studies were successfully 
conducted to provide proof of concept for the contactless HRI to assist 
in RAMIS, and it is evident that sub-millimeter precision was achieved 
after implementing the trials with hand gesture interaction. We suggest 
two potential rationales for the positive results observed in our 
experimentation. The first evidence of the enhanced precision in hand 
gesture recognition is derived from the auxiliary prediction branch, 
which significantly contributes to the extraction of both 3D and 2D 
hand features. Another possible explanation could be  that each 
adjustment of the robot we designed is considerably subtle, especially 
in terms of its ability to make adjustment for orientation. This, in turn, 
increases the possibility of accurate movement of the surgical robot 
according to the intended surgical plan. Moreover, the surgical robot 
can be configured with high efficiency, and the HRI interface exhibits 
a shallow learning curve (the average learning time of only 1 min and 
49 s) in a simulated task, thereby results in no significant increase in 
surgery preparation time. It was proved that with the aid of hand 

TABLE 2 Error of the needle insertion in phantom experiment.

Number of 
experiments

Needle

Position error 
(mm)

Angle error 
(°)

1 0.40 0.14

2 0.54 0.22

3 0.67 0.57

4 0.63 0.41

5 0.32 0.36

FIGURE 7

The position of the simulated lesion in nasopharyngeal apex. (A) Coronal plane; (B) Cross section; (C) Sagittal plane.
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gesture interaction, the surgeon can effortlessly fine-tune surgical 
instruments without physical contact for a majority of the time.

Although the current version of the non-contact collaborative 
surgical navigation robot system has showed favorable outcomes, it is 
not without its limitations. One example of this is the limitation faced 
by the surgeons in adjusting the surgical instruments, as they can 
merely adjust them through one gesture at a time. This results in an 
increase of the motion steps and a decrease in task efficiency. We think 
this can be effectively solved by designing more gestures. Additionally, 
the complex environment of the operating room with a multitude of 
medical instruments and limited space may lead to restricted image 
acquisition and occasional hand occlusion, resulting in recognition 
failures. Hand occlusion is also the reason for the two cases of 
recognition failure in Table  1. Furthermore, the proposed state 
machine may cause discomfort as it necessitates maintaining a gesture 
for a period of time, while the designed model lacks recognition of 
dynamic gestures, limiting the surgeon’s control over the surgical 
robots through dynamic gestures.

At present, the available data from phantom and cadaver cases is 
sufficient to establish the feasibility of the touchless HRI interface for 
RAMIS. We believe that our work will be regarded as the fundamental 
basis of touchless surgical robot HRI, and it has been preliminary 
substantiated by both phantom and cadaveric investigations. The 
findings have indicated the efficacy of the design of the collaborative 
system in aiding other surgical procedures involved RAMIS and 
demand stringent sterility standards. We believe that the framework 
we  have established will form a practical system and be  applied 
in clinic.

5. Conclusion

The feasibility and validity of the framework we proposed in 
this paper are verified through the experiments on both phantoms 
and cadavers. The experimental findings evince the surgical robot’s 
ability of fine-tuning instruments through augmented visual 
feedback from the navigation surgical system and contactless hand 
gesture recognition, thus by minimizing bacterial, the surgical 

safety can be enhanced. At the same time, the framework is easily 
integrated into a real surgical robot. The future works should 
endeavor the study of surgical robot application utilizing mixed 
reality technology that integrates touch-free solutions and the 
development of more dynamic hand gestures to augment the 
integration flexibility.
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FIGURE 8

Simulated biopsy results. (A) Simulated surgical path. (B) The needle reaches the top of the anterior nostril. (C) The needle reaches the simulated lesion.
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Due to the demand for sample observation, optical microscopy has become an 
essential tool in the fields of biology and medicine. In addition, it is impossible 
to maintain the living sample in focus over long-time observation. Rapid focus 
prediction which involves moving a microscope stage along a vertical axis to 
find an optimal focus position, is a critical step for high-quality microscopic 
imaging of specimens. Current focus prediction algorithms, which are time-
consuming, cannot support high frame rate imaging of dynamic living samples, 
and may introduce phototoxicity and photobleaching on the samples. In this 
paper, we propose Lightweight Densely Connected with Squeeze-and-Excitation 
Network (LDSE-NET). The results of the focusing algorithm are demonstrated 
on a public dataset and a self-built dataset. A complete evaluation system was 
constructed to compare and analyze the effectiveness of LDSE-NET, BotNet, and 
ResNet50 models in multi-region and multi-multiplier prediction. Experimental 
results show that LDSE-NET is reduced to 1E-05 of the root mean square error. 
The accuracy of the predicted focal length of the image is increased by 1 ~ 2 
times. Training time is reduced by 33.3%. Moreover, the volume of the model only 
reaches the KB level, which has the characteristics of being lightweight.

KEYWORDS

focus prediction, deep learning, medical microscopy, DenseNet, squeeze and excitation

1. Introduction

Nowadays, microscopy is still the most frequently used microscopic detection technology 
for examining thin sections and stained tissue sections on slides, playing an irreplaceable role 
in biomedicine, materials chemistry, industrial inspection, and other aspects (Ikeda et al., 2009; 
Zhang et al., 2014; Carrera et al., 2017). When the microscope is used for imaging living cells, 
defocus blur may occur due to thermal fluctuation of the microscope body and the movement 
of the microscope sample (Kreft et al., 2005). In addition, motion blur will also occur due to the 
uneven morphology of samples (Xu and Jia, 2010). Defocus blur and motion blur, as two of the 
most common microscopic imaging artifacts, can seriously degrade the imaging quality of 
digital pathology instruments (Redondo et al., 2012). Thus, maintaining the internal focal 
position of the microscope is a challenge. And when faced with a large number of samples, a 
large sample area, and a long observation time, manual focusing is impractical (Wang et al., 
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2018; Pinkard et al., 2019a). Therefore, autofocusing is crucial for 
high-precision microscope imaging.

The earliest research on autofocusing technique can be traced 
back to 1898 (Haosheng and Yu, 2021), but it was not until the 1960s 
that autofocusing technique was first used in the photographic system 
(Qiumei, 2006). Traditional autofocusing techniques almost use active 
focusing methods based on range finding, through the sensor to 
measure the distance to achieve (Lichang, 2015; Chen et al., 2020). 
With the gradual development of precision instruments toward 
intelligence and automation, higher requirements have been put 
forward for microscopes (Meng et  al., 2022). Hence, a micro 
autofocusing technique based on digital image processing has 
gradually gained the attention of researchers (Kui, 2018). Image 
processing-based autofocusing methods are mainly divided into depth 
from defocus and depth from focus (Yunhao, 2019).

Depth from defocus was first proposed by Pentland in 1987, to 
obtain depth information from the defocused images and use optical 
principles to calculate the focal distance, to achieve the purpose of 
autofocusing (Pentland, 1987). Although depth from defocus 
processes fewer images and has a faster-focusing speed (Gao and Ge, 
2014), the focusing accuracy depends on the establishment of a 
correct focusing mathematical model (Rui, 2021), which can only 
be estimated theoretically at present, it is not completely accurate and 
just approach to idealization infinitely, which result in larger error 
effect (Meng, 2005). Depth from focus does not need to establish the 
mathematical model of the imaging system in advance, it is a method 
of focusing search process (Shiyun, 2022), whose core is focusing 
search algorithm and definition evaluation function (Yuhu et  al., 
2013). However, it still does not equip with good adaptability, and 
cannot get accurate definition evaluation on some collected images 
with multi-noise (Yu and Lu, 2022). Meanwhile, depth from focus 
algorithm needs to acquire and process a series of data that image 
from clear to fuzzy, which takes much time (Yipeng et al., 2005) and 
cannot satisfy both focusing accuracy and real-time at the same time, 
unable to coordinate the two to a favorable standard (Fan, 2021).

In recent years, with the rapid development of computer 
technology, deep learning has also ushered in explosive growth (Wang 
et al., 2016; Cao et al., 2021; Hu et al., 2022), and has achieved a good 
application prospect in computer vision tasks (Cao et al., 2022a) such 
as image classification (Cao et al., 2020; Cheng et al., 2021; Hussain 
et al., 2021; Safari et al., 2021; Hang et al., 2022), and object detection 
(Ranjan et al., 2018; Hassaballah et al., 2021; Cao et al., 2022b). By 
extracting the image deep feature information, and predicting 
information within a very short period, can greatly improve the 
validity and accuracy of the detection results. Therefore, the use of 
deep learning techniques for microscopic imaging autofocusing has 
become a focused research of biomedical microscopic images in 
recent years.

In 2018, Jiang et  al. (2018) explored the application of deep 
convolution neural networks (CNNs) for microscope autofocusing. 
They used the trained model to predict the focal position of the acquired 
image without axial scanning, which significantly improved the 
autofocusing speed of the microscope and avoided the defects associated 
with autofocusing algorithm. In the following year, Pinkard et  al. 
(2019b) designed a fully connected Fourier neural network based on 
coherent illumination, which uses an additional non-axial illumination 
source to predict the single image focus and emphasizes the 
generalization Capability between sample types. Dastidar (2019) First 

improved on input dataset by no longer acquiring multiple images in 
the vertical direction and maximizing the image sharpness to achieve 
autofocusing, instead, the difference image of two defocus images with 
a fixed spacing of 2 μm as inputs for deep convolution networks (CNN) 
to predict the optimal distance to be moved, to achieve the best focus 
relative for current position. In 2021, Luo proposed an autofocusing 
method (deep-R) based on deep learning. The network blindly and 
automatically outputs the focused image by training the sample 
microscopic image obtained at any defocus plane (Luo et al., 2020).

In the same year, Li et al. (2021) proposed a deep learning-based 
autofocusing framework that estimates the position of the focal plane 
of the objective lens relative to the plate by receiving two defocus 
images acquired by the fluorescence microscope of the plate, providing 
a deterministic measure in the prediction. Therefore, image blocks 
that may contain background or low-contrast objects can be excluded, 
improving accuracy. However, organisms have unique forms and 
characteristics, which may make microscopic images too different. 
The method proposed by Li needs to rely on a relatively large dataset 
to fit the ideal model, otherwise, the predictive performance of unseen 
samples will be reduced, the network generalization capability is weak, 
and the efficient prediction of multi-domain, multi-rate microscopic 
defocus images cannot be realized.

To accurately predict the focal length of defocus images, this paper 
proposes a deep learning network architecture with lightweight, faster 
computing speed, wider prediction area, and stronger generalization 
ability, while considering both efficiency and accuracy. The 
implementation of the method is described in detail from the 
construction of the dataset, model construction, and training method. 
A complete evaluation system is constructed, comparing and 
analyzing the performance gap of this network and other network 
models such as ResNet50 and BotNet. Finally, summarized and 
analyzed the important results of the experiment.

2. Construction of test dataset

2.1. Test facility and data acquisition

The dataset for this experiment consists of two parts, one using 
the open source dataset, and the other part was observed using the 
ML-31-M biomicroscope equipped with a 10X/22 large field of view 
eyepiece as standard (Provided by Guangzhou Mingmei Technology). 
Under the lighting conditions of the LED coherent illumination that 
comes with the device, an MD50-T microscope digital camera with 
2.2 μm × 2.2 μm image element size and 5 megapixels was used to 
acquire an effective pixel high-resolution image of 2,592 × 1,944 size.

Figure 1 shows the schematic diagram of the ML-31-M biological 
microscope, where part A is the MD50-T microscope camera with a 
resolution of 5 megapixels, which can provide a frame rate of 14fps in 
full pixel mode. Part B is an adjustable large field of view 
WF10X/22 mm double-headed eyepiece. C is a four-hole converter 
equipped with four infinity distance flat-field achromatic objectives of 
10X/0.10, 20X/0.25, 40X/0.65, and 100X/1.25. The ML-31-M used is 
a binocular microscope with two fluoroscopic systems. The imaging 
principle is based on binocular stereo vision, where different parts of 
the objective are observed through different eyepieces and the images 
are subsequently combined through brain vision processes. As shown 
in Figure 2A, the sample slide forms an inverted real image by the 
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magnification of the objective lens, and the light rays are secondarily 
magnified by the multiplier module, and then the light rays are cast 
down to the eyepiece imaging lens for convergence, and finally enter 
the eyepiece to form a magnified orthogonal virtual image to 
be observed.

The microscope imaging process is based on the imaging 
principle of the convex lens, and the schematic diagram is shown in 
Figure 2B. P is the observation point of the sample, s is the distance 

from the center of the convex lens to the image detector, D is the 
diameter of the lens aperture, and R is the radius of the blurred image 
point where p’ falls on the image detector. The relationship between 
focal length f, object distance u, and image distance v satisfies 
Gauss’s formula:

 

1 1 1
u v f
+ =

 (1)

FIGURE 1

(A) Sketch of ML-31-M biological microscope. (B) Real picture of ML-31-M biological microscope.

FIGURE 2

(A,B) are the principle diagram. (A) Binocular microscope imaging principle diagram (Wu et al., 2020). (B) Microscope imaging principle diagram.
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When a clear flat image is observed, the viewing surface at this 
point is the focal plane of the system. But in defocus plane, will form 
a fuzzy image point on the observation surface, the radius of the image 
point R can characterize the degree of focus of the image, that the 
value of z in the figure is greater, the image is more away from the focal 
plane, the image point fuzzy circle is larger, the relationship holds:

 

R
D

z
v

s
v s/ 2

1 1
= = −







 (2)

From the above two equations, we can obtain:

 
R s D

f u s
= − −











2

1 1 1

 (3)

Clear imaging by changing the value of u\s\f so that the image 
plane is located at the focal plane.

Figure 3 shows the microscopic imaging of the same centroid in 
the tumor cells depicting the imaging situation at different focal 
planes. When z = 0um, microscopic imaging is in the plane of focus 
when the image clarity is the highest. Subsequently, the defocus plane 
image is acquired by moving up and down a certain step, and the 
z-value is the distance the objective lens is moved with respect to the 
plane of focus. It is clear from the microscopic images that the further 
away from the defocus plane to the focal plane, the lower the sharpness 
of the image.

2.2. Building of the dataset

High-resolution microscopic images located in the focus can 
clearly observe the morphology and structure of the sample. 

However, it is impractical to achieve manual focusing in the face of 
a large number of data samples, so there is an urgent need to 
develop a method that enables accurate prediction of the focal 
length to achieve high-resolution autofocusing. To achieve the 
accuracy of the model, it is not enough that only use the public 
dataset. For this reason, the experiments in this paper use a 
two-part dataset.

One part is a self-built dataset, that using the ML-31-M 
biomicroscope to collect. The process starts with the initial focusing 
of the sample, the next fine-tuning of the focus to achieve optimal 
definition, and move the sample to different defocus positions 
ranging from −10 μm to +10 μm in steps of 0.5 μm to obtain defocus 
images. As shown in Figure 4. The above steps were repeated for the 
entire sample in 1 mm lateral steps, and a total of 20 sets of data 
were collected, each containing approximately 40 images. Finally, 
the images and the corresponding focus position information were 
saved, and the defocus image under two magnifications of 20X and 
40X were acquired by same method.

Another part is the public dataset (Jiang et al., 2018), micrographs 
were observed with an Eclipse electron microscope (provided by 
Nikon Eclipse) at 0.75 NA, 20X lens, which was obtained from a 
5-megapixel color camera (Pointgrey BFS-U3-51S5C-C) with a 
3.45 μm pixel size. Keeping the defocus distance range from +10 μm 
to −10 μm, 40 defocus stacks with 0.5 μm step spacing were 
captured in the same field of view, totaling 40 × 40 images in the 
same field of view, and the obtained images were segmented into 
approximately 130,000 images of size 224 × 224 for network 
training. This is shown in Figure 4.

3. Model structure

3.1. Method overview

Deep convolutional neural networks have been widely used in 
image classification and processing in recent years. In this paper, 
we  use the collected defocus image data combined with 
convolutional neural networks to construct an end-to-end model 
to predict the focal length of an image, and maximize the 
requirements for high-accuracy prediction under multiple regions. 
The model is as follows:

 D F Sp
k= ( ),δ  (4)

Sk denotes a 224 × 224 size defocus cell image, Dp  is the 
predicted focal length obtained after training the network model, and 
F  is the regression function obtained after training, and δ  is a set of 
network learning parameters including learning rate, number of 
iterations, etc. In the training process, by feeding a large number of 
dataset consisting of defocus images into the network, the training is 
continuously iterated to obtain the optimal parameters δ of the 
model, the gap between the predicted focal length Dp and the real 
focal length Dt is minimized, which makes the problem 
transformed into:

 
δ δm

t pm L D D= ( )arg in ,

 (5)

FIGURE 3

Cell micrograph (observed with a 20X Eclipse motorized 
microscope, acquired by Pointgrey BFS-U3-51S5C-C camera).
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For some wide-field high-resolution images, in order to get the 
focal length more accurately and quickly, it needs to be partitioned 
into small images of 224 × 224  in height and width for prediction 
respectively, and the results will be averaged so that the original model 
will be transformed into:

 
D avg F s F s F sp

k k
h
k= ( ) + ( ) + + ( )( )( ..σ δ δ δ1 2

, , ,

 (6)

Dp  is the focal length of the predicted wide-field and high-
resolution image, avg ( ) is the averaging function, s sk k

1 2
, ⊃  is 

the same wide-field high-resolution image split into different 
224 × 224 small images，and σ  is the discriminant function, 
Because in the process of segmenting the wide-field high-
resolution image into small images, a part of the image will 
include most of the blank area, resulting in unreliable prediction 
results obtained from this part of area, which needs to 
be discarded.

3.2. The proposed network structure

For the autofocusing of wide-field and high-resolution microscopic 
images, this paper proposes an LDSE-NET automatic focal distance 
prediction deep learning framework, using DenseNet as the main 
framework of the model in the network. Since 2015 He et al. (2016) 
proposed ResNet for the problems of vanishing gradient, explosion 
gradient and performance degeneracy that occur with deeper network 
layer structures, and the performance of deeper networks can be further 
improved by jumping connections between shallow and deep networks, 
weakening the strong connections between each layer. However, due to 
the large number of layers built by ResNet, more computational 
resources and time are required. So Huang et  al. (2016) further 
improved the feature reuse capability based on ResNet and proposed 
DenseNet with dense connection operation.

Figure 5 the input of each layer of the network and the output of all 
previous layers of the network, which mainly focuses on improving the 
network performance from the perspective of feature reuse, enhancing 

FIGURE 4

Cell micrograph (observed with the ML-31-M biological microscope, acquired by the MD50-T microscope camera). (A) 20X objective observation 
(B) 40x objective observation.

FIGURE 5

Network structure of DenseNet.
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the feature propagation, and improving the efficiency of information and 
gradient transmission in the network. The network contains three layers 
structure of Dense block layer, Transition layer, and Classification layer. 
Where Dense block layer consists of a composite with BN, ReLU, and 
Conv nonlinear mapping functions, designed with a pre-activation 
strategy to make network training easier and generalization performance 
better; Conv represents the convolution layer in the deep neural network, 
which undertakes convolution calculation in the process of model 
reasoning. Transition layer is used for the connection between dense 
blocks and contains 1 × 1Conv, 2 × 2 Average pooling; Classification layer 
consists of Global average pooling and Fully connected layer, the input 
of each layer of the network includes the output of all previous layers of 
the network. Compared with ResNet50, this network mainly focuses on 
improving the network performance from the perspective of feature 
reuse, enhancing feature propagation, and improving the efficiency of 
information and gradient transmission in the network.

In addition, to emphasize the information feature channel, better 
adapt to the dataset, and further improve the prediction performance, 
the network architecture is adjusted and optimized in this paper. The 
number of Convolutional layers in the Dense Block is reduced, and 
some of the activation function in it are replaced with Tanh, making the 
network structure simpler and more efficient. On this basis, the SE 
module is connected after the last Dense Block to improve the accuracy 
of the image focal length prediction task to a certain extent. In this 
paper, the model is completed by sequentially superimposing the dense 
block, transition block, and squeeze excitation module. As shown in 
Figure 6.

The input of this CNN network structure is an unfocused blurred 
image captured by a microscope. The image is first passed through a 
Convolutional layer of a 7 × 7 matrix with a step size of 2 and a padding 
of 3 and then passed through a 3 × 3 maximum pooling layer with a step 
size of 2. The output is passed through the constructed Dense block 
layer in turn, compressing the Dense block layer input and all the 
extracted feature information with the help of Transition blocks, 
changing the size of the channels’ number so that the number of 
channels between adjacent dense blocks can correspond to each other, 
further enhancing the feature propagation between each layer, and the 
output is passed through the SE module to extract more feature 
information. Finally, the output is sent to the 7 × 7 Global average 
pooling layer and the Fully connected layer. The output of the network 
is a Regression layer, and the result is the predicted sample focal length.

3.2.1. Dense block layer
Dense block layer is an important part of LDSE-NET, which is 

used to further improve the effectiveness of information transfer 
between each layer, and the specific propagation formula is as follows:

 
X H X X XL L L= …( )−0 1 1, , ,

 (7)

X X XL0 1 1, , ,…[ ]− refers to the concatenation of the feature-maps 
produced in layer 0 1 1, , ,… −L , and HL[ ] is defined as a composite 
function of three consecutive operations consisting of normalization 
function, activation function, and convolution function, and the input 
of each layer is the output of the mapping results of all previous layers, 
and also the feature mapping result of the current layer is used as the 
input of the later layers, and the structure is shown in Figure 7.

3.2.2. Transition layer
The above-mentioned Dense block layer equation only works if the 

feature map is the same size, so the Transition layer needs to be used to do 
pooling and convolution to change the size of the feature map. So that the 
size of the feature map output from the Dense block layer is consistent 
with the shape size of the input of the next layer. The structure of the 
Transition layer used in this network is shown below, consisting of the BN 
layer of normalization function, Tanh of activation function, Conv of 
1 × 1, and Average pooling of 2 × 2, and the structure is shown in Figure 8.

3.2.3. Squeeze-excitation module
The SE module improves the representativeness of the network by 

enabling it to perform dynamic channel-wise feature recalibration (Jie 
et al., 2018). This structure consists of Global average pooling layer, 
Fully connected layer, and linear activation function. The feature 
outputs of LDSE-NET are used as input to the SE module to increase 
the sensitivity to useful feature information. It learns the global 
information by fusing the convolutional features of each channel and 
filters out the less useful feature information to improve the 
expressiveness of the model. This is shown in Figure 9.

3.2.4. Squeeze
Squeeze works by compressing the global spatial information into 

a single channel using Global average pooling. In principle, the 
channel statistics Z is achieved by reducing the spatial U dimension 
height and width, which can be summarized by the equation:

 
Z F u

H W
u i jm sq m

i

H

j

W
m= ( ) =

×
( )

= =
∑∑1

1 1

,

 (8)

3.2.5. Excitation
This module is designed to take advantage of the global information 

obtained by compression and aims to fully capture channel-wise 

FIGURE 6

Network structure of LDSE-NET.
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dependencies (Jie et al., 2018), and consists of two Fully connected 
layers and an activation function, as shown in Figure 9A. In order to 
better adapt to the data set of this experiment, the sigmoid activation 
function is changed to the Tanh activation function, so the excitation 
operation S can be summarized by the formula:

 S F z W g z W W W zes= ( ) = ( )( ) = ( )( ), ,σ σ δ2 1  (9)

where W R W R x x
C
r
C C C

r
1 2 0∈ ∈ ( ) = ( )

× ×
, , maxδ ,  representing 

the ReLU activation function alleviates the vanishing gradient 
problem, and compared with Sigmoid activation function, 

σ x e
e

x

x( ) = −

+

−

−
1

1

2

2
 improves the convergence speed, z is the channel 

information collected by the above Squeeze operation. The final 
output X Rm

H W∈ ×  is obtained by multiplying the channels between 
the scalar sm and the feature map um. This can be written as

 
X F u s s um scale m m m m= ( ) =, •

 (10)

4. Experiment results and analysis

4.1. Model training

The experimental training process in this paper was run on a 
desktop computer with an NVIDIA GeForce RTX 3080 graphics card, 

an Inter Core i5-12600KF CPU and 32 GB of RAM. After some small 
sample tests, the parameters of the LDSE-NET were determined. Mean 
square error (MSE) was used as the model loss function, defined as:

 
Loss MSE D D

n
D Dt p

i

n
i
t

i
p= ( ) = −( )

=
∑,
1

1

2

 (11)

In the above equation, MSE ( ) represents the root mean square 
error function, Dt represents the true focal length in the dataset, Dp 
represents the result predicted by the network, and n is the number of 
samples. The training optimizer uses Adam deep learning optimization 
algorithm, sets the network learning rate to 0.001, and uses the lr_
scheduler mechanism to adjust the learning rate at certain epoch 
intervals to achieve a better training effect. The batch size is set to 50 
images, and the training is stopped when the loss values of the test set 
and training set tend to stabilize and do not decline. Using RGB 
channels images from the public dataset, dividing the dataset RGB 
Channels images into training set and test set in a 9:1 ratio, and there 
is no intersection between them. To verify the performance of the 
network, this experiment compares the network structures of 
ResNet50 and BotNet (Bottleneck Transformer Network) and obtains 
the experimental results of each network structure separately.

4.2. Prediction results and analysis

According to the above indexes for training, the results of the 
prediction accuracy changes are shown in Figures  10A–C, the 
LDSE-NET has a small oscillation range of the loss values of the 
training set and the test set throughout the training process, and after 
about 50 epochs, the loss values of both the training set and the test 
set fluctuated within 0.005, and there was a significant decline in the 
training process, with the final model loss value stabilizing around 
1E-05. On the contrary, the other two networks showed larger 
fluctuations in the loss values during the training process. The BotNet 
test set loss value fluctuated sharply between 0.01 and 0.02 and could 
not decrease; when ResNet50 had a sharp increase in error after 
training to a certain epoch, followed by a dramatically decrease, and 
the loss value could not be stable. The final model loss values of both 
networks can only drop to around 1E-04, and the training effect is 
poor compared to the LDSE-NET.

FIGURE 7

Dense block layer of LDSE-NET.

FIGURE 8

The transition layer of LDSE-NET.
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Besides, this paper compares three models in multiple sets of renal 
sample images of the focal length prediction results, and selects the error 
result distribution of three sets of data as shown in Figures 11A–C. From 
the figure, the three networks have little difference in the prediction 
effect in the range of −10 μ m to −5 μ m, because defocus images blur to 
a large degree and contain fewer image features, making each network 
have the same effect. In the interval of −5 μm ~ +5 μm, by evaluating the 
prediction error distribution, it can be found that most of the error 
distribution of LDSE-NET model is within +250 nm ~ −250 nm. In 
contrast, the prediction error of the ResNet50 model is mostly 
distributed beyond 500 nm. Overall, compared with BotNet and 
ResNet50 networks, the prediction accuracy of LDSE-NET network is 
improved by 1 and 2.5 times, respectively.

In addition to the improvement in prediction accuracy, the 
purpose of this paper is to increase the computational speed of the 
model as well as to make it more lightweight. The specific comparison 
results are shown in Table 1. All three networks were trained by the 
same hardware device, and when the model training was completed, 
the training time of LDSE-NET was about 6 h, and the speed was 

improved by 20% compared to BotNet and 33.3% compared to 
Resnet50. The model size is simpler and lighter than the other two 
networks, with only about 12% of the size of the two networks.

4.3. Comparison of the predicted effect of 
variable magnification, variable area

To further evaluate the performance of the network. In this paper, 
we also use the 20 sets of data collected above containing a total of 
about 110,000 images of size 224 × 224 for training and testing, which 
are also divided into training set and test set in the ratio of 9:1, with 
no intersection between the two sets of data. The network models were 
trained according to the above-mentioned network parameter metrics 
to obtain the network models under 20X lens and 40X lens, 
respectively, and used to predict the focal length of defocus images 
under different magnifications.

As shown in Figure 12, the predicted images were first divided 
into nine regions of 3 × 3, which do not have overlapping parts, and 

A B

FIGURE 9

(A) Squeeze-Excitation module overall structure diagram. (B) Detail connection diagram.

Training Epoch Training EpochTraining Epoch

A B C

FIGURE 10

(A–C) represents train_loss and test_loss for ResNet50, BotNet, LDSE-NET three different networks.
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the focal length prediction was performed for these regions separately. 
Comparing the prediction results under the two magnifications, it can 
be seen that the prediction effect of 20X is better than 40X, and the 
error is reduced by about 100 nm ~ 200 nm. This is due to the fact that 
the field of view under the 40X lens is narrower and contains fewer 
cells, and the edge position becomes more blurred compared to the 

20X lens, which makes each image may contain many blank areas after 
cutting into small images, resulting in its feature information is more 
blurred and sparse, which makes the prediction focal error increase. 
In addition, the prediction results of the network for the middle of the 
image are better than the edge locations, which is most likely because 
the entire field of view is too large for the microscope head and camera 
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Focal Distance

Er
r(n

m
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Focal Distance
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r(n

m
)

Sample3

A B C

FIGURE 11

(A–C) Prediction error distribution of the three networks for sample 1, sample 2, and sample 3.

TABLE 1 Performance comparison of ResNet50, BotNet, and LDSE-NET.

NET Focusing error (nm) Model size Final loss Train time

ResNet50 0.5 ± 0.32 4.002 MB 3.89E-04 9 h

BotNet 0.38 ± 0.29 3.701 MB 2.04E-04 7.5 h

LDSE-NET 0.15 ± 0.17 480 KB 7.65E-05 6 h

R:380

20x

Error/nm

B:290
L:229

R:253
B:202
L:151

R:222
B:214
L:116

R:368
B:263
L:200

R:339
B:206
L:119

R:394
B:286
L:242

R:337
B:327
L:223

R:398
B:213
L:159

R:442
B:316
L:204

Actual focal:+2500nm

R:638

40x

Error/nm

B:391
L:341

R:689
B:551
L:360

R:472
B:224
L:206

R:616
B:470
L:264

R:594
B:366
L:240

R:491
B:358
L:290

R:642
B:432
L:318

R:541
B:352
L:256

R:461
B:318
L:296

Actual focal:+2500nm

A

B

FIGURE 12

R, B, and L represent ResNet50, BotNet, and LDSE-NET three different networks. (A) Prediction error of 20X lens (B) Prediction error of 40X lens.
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FIGURE 13

Focal length error of 20X, 40X images predicted by different networks.

to focus over the entire field of view, resulting in the possible existence 
of more blurred locations on the edges. Therefore, during the training 
and prediction process, the image in the center of the field of view can 
be selected, and more accurate results will be obtained.

Secondly, Figure 13 shows the prediction focal error plots of 
each of the three networks for the same high-resolution defocus 
image with a large field of view at different magnifications. 

Combining the results of this experiment, it can be seen that for 
20X magnification images, the prediction error of ResNet50 and 
BotNet are mostly above 300 nm. On the contrary, most of the 
prediction error of LDSE-NET remain below 300 nm. Similarly, 
from the 40X magnification error map distribution, it can be seen 
that more than 60% of regions of ResNet50 and BotNet have error 
over 500 nm, while the average error of LDSE-NET is controlled 
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around 300 nm. Therefore, the error of LDSE-NET is significantly 
smaller than the other two networks for both 20X and 40X 
magnification data, and the accuracy of some areas is improved by 
1 ~ 2 times compared to BotNet and ResNet50.

In addition, to satisfy the requirement for error reduction, the 
computational speedup is also an important purpose. Here, three 
models are utilized to directly predict the single image focal 
length, as shown in Figure 14, large-field high-resolution images 
of different regions of the same sample are selected, all 
experiments are conducted on the same computational platform 
and obtain the running time. The specific comparison effect is 
shown in Figure 15, in terms of time efficiency comparison, the 
computation time of LDSE-NET network is improved by 

0.02 s ~ 0.04 s. Combined with the above experimental contents, 
this shows that this network is better than ResNet50 and BotNet 
in terms of accuracy and time.

5. Conclusion

In this paper, we present a dense model LDSE-NET with squeeze 
excitation for predicting the focal length of the defocus images 
under the medical microscope. Its effectiveness in focal length 
prediction is verified by using multi-region and multi-magnification 
image data. Through the evaluation of the prediction results in the 
test set, compared with the other two networks of BotNet and 

FIGURE 14

(A–F) represent picture1 ~ picture6 test sample images respective.

FIGURE 15

Comparison of the time required to predict a single image by different network predictions.
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ResNet50, the accuracy of the image focal length prediction of 
LDSE-NET is improved and the model proposed is lighter. This 
network reduces the information loss, improves the transmission 
efficiency of information in the network, and further proves the 
feasibility and practicability of deep learning in the prediction of 
focal length of microscopic imaging on the basis of previous studies, 
and provides ideas for future research.
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Birds-Eye-View (BEV) maps provide an accurate representation of sensory cues

present in the surroundings, including dynamic and static elements. Generating

a semantic representation of BEV maps can be a challenging task since it relies

on object detection and image segmentation. Recent studies have developed

Convolutional Neural networks (CNNs) to tackle the underlying challenge.

However, current CNN-based models encounter a bottleneck in perceiving

subtle nuances of information due to their limited capacity, which constrains the

e�ciency and accuracy of representation prediction, especially formulti-scale and

multi-class elements. To address this issue, we propose novel neural networks for

BEV semantic representation prediction that are built upon Transformers without

convolution layers in a significantly di�erent way from existing pure CNNs and

hybrid architectures that merge CNNs and Transformers. Given a sequence of

image frames as input, the proposed neural networks can directly output the BEV

maps with per-class probabilities in end-to-end forecasting. The core innovations

of the current study contain (1) a new pixel generation method powered by

Transformers, (2) a novel algorithm for image-to-BEV transformation, and (3)

a novel network for image feature extraction using attention mechanisms. We

evaluate the proposed Models performance on two challenging benchmarks,

the NuScenes dataset and the Argoverse 3D dataset, and compare it with

state-of-the-art methods. Results show that the proposed model outperforms

CNNs, achieving a relative improvement of 2.4 and 5.2% on the NuScenes and

Argoverse 3D datasets, respectively.

KEYWORDS

BEV maps, deep learning, attention, transformers, autonomous driving

1. Introduction

The advancement in deep learning has facilitated a better understanding of semantic
representation and contributed to more accurate prediction of object locations. This line of
research has a wide range of applications in autonomous driving (Ohn-Bar et al., 2020; Yi
et al., 2021; Cao et al., 2022a; Wang et al., 2022).

Recent studies have made significant strides in mapping multiple side-view images to
Birds-Eye-View (BEV) semantic maps, aiming to predict the positional probability of each
element. These BEV maps have proven to be potent tools for environment perception,
fundamental to autonomous navigation and driver assistance systems. As illustrated
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in Figure 1, cameras strategically positioned around the vehicle
capture RGB images from all directions. Surrounding-aware
systems then model these images to generate comprehensive 360-
degree BEV maps, offering a panoramic understanding of the
vehicle’s environment. However, creating BEV maps is challenging;
it represents a complex, multi-stage processing flow encompassing
ground plane estimation, road segmentation, lane detection, and
object detection, as described in Chen et al. (2020), Pan et al. (2020),
and Roddick and Cipolla (2020). It’s a laborious process with
challenges, yet its importance for safe and efficient autonomous
navigation cannot be overstated. The ideal scenario is to design an
end-to-end framework powered by deep learning. This approach
would directly predict the desired map representation from
sensor observations, providing a comprehensive understanding
of the environment in a single step. In this context, semantic
segmentation emerges as an indispensable tool, particularly in
autonomous driving. Semantic segmentation helps distinguish
various environmental elements, like roads, pedestrians, vehicles,
etc., enabling the system to interpret and interact safely with its
surroundings. By integrating this with our proposed end-to-end
BEV map generation, we aim to facilitate a more robust, efficient,
and safer autonomous driving system.

Several studies, such as Hendy et al. (2020), Mani et al. (2020),
Wu et al. (2021), Cao et al. (2022b), and Han et al. (2022), have
shown that CNNs are capable of capturing a large receptive field;
however, this comes with a trade-off involving deepening the neural
network structure. Despite being highly discriminative, semantic
features extracted from deeper convolution layers are not suitable
for representing small-sized/multi-class elements, which limits the
accuracy of predicting multi-element BEV representations. Recent
studies, including Yi et al. (2021) and Yu et al. (2021), have
indicated that shallow feature maps are more effective for small-
scale object detection as they provide rich spatial information.
As a result, balancing the need for capturing large receptive field
and extracting highly discriminative features can be challenging
for CNNs. Current studies have shown that Transformers are
able to achieve feature extraction with a large receptive field in a
shallow structure.

Exploring various strategies for developing high-quality
Bird’s Eye View (BEV) maps has become increasingly essential in
technology and science, particularly with the rise of autonomous
navigation and robotics. While several methodologies have
been presented, they tend to rely on large training samples and
display less resilience when faced with varying circumstances.
Furthermore, these previous studies primarily utilized
Transformers for tasks involving classification, which output a set
of per-class probabilities as exhibited by Han et al. (2022), Hu et al.
(2022), and Li et al. (2022). This leaves a significant area within the
transformative potential of Transformers untapped—generating
BEV semantic representation. We venture into relatively uncharted
territory, exploring the potential of using Transformers exclusively
to generate a BEV semantic representation, thereby bypassing
the necessity for convolution layers. Unlike the conventional
approaches, which focus on “classifying” image-based data, our
approach looks at both input and output as images—a procedure
we refer to as “image generation.” This shift from classification
tasks to generation tasks, utilizing Transformers, might pave the

way to more efficient, scalable, and diverse applications, ultimately
expanding the possibilities of BEV mapping technologies.
Comprehensive semantic feature extraction is the bedrock for
constructing high-quality BEV maps. To improve this process, the
research community must be willing to test novel approaches. Our
proposed use of Transformers as a sole agent for generating BEV
semantic representation stands as a pioneering endeavor in this
domain, challenging the conventional paradigms that have been
established. As such, it will contribute to the broader discourse
on effective BEV mapping and extend the functional capabilities
of Transformers. The outcomes of this study could potentially
guide further developments and improvements in autonomous
navigation systems, robotics, and other related areas where BEV
maps are paramount. This research is not merely a theoretical
experiment but a concrete step forward in the practical application
of Transformers in the real world.

To achieve this goal, the paper addresses two main
challenges: (1) how to extract global-local discriminative
features using Transformers, and (2) how to generate pixels
from image features without the use of convolution layers. A
main challenge for Transformers is their high dependence on
data availability for training the model to achieve promising
performance. Additionally, the way attention-a core component of
Transformers-is applied to image generation is still under-explored.
In the paper, we propose a Transformer-based framework that
generates BEV semantic representations in an end-to-end process.
To fully capture features, a new attention mechanism is employed
for spatial relationships. Traditional neural networks always
overlook a large number of semantic features due to the projections
of features in different planes. To overcome this limitation,
we design a new plane transformation algorithm. Previous
methods have relied mostly on convolution layers for multi-class
representation generation. However, since Transformers and
convolution would restrict the performance improvement of
each other, a pure Transformer-powered generator is proposed to
address the issue. Alongside this, a stable training scheme is also
developed to specifically target the new framework.

The contributions of this study can be summarized as follows.

• We propose a new framework purely powered by
Transformers for predicting BEV semantic representations.
The framework achieves this objective in an end-to-end
manner without convolution layers. This approach differs
dramatically from the existing CNN-based methods, greatly
simplifying the pipeline and improving perceptual details.

• We propose a feature extractor based on a Transformer to
memorize global clues and further mine local clues. The
extractor contains an overlapping patch generation method
and multi-head attention-based blocks.

• We design a new generator powered by Transformers to
generate pixels based on per-class prediction probabilities.
The carefully-designed pipeline is essential for generating
successful BEV semantic representations. In addition, a simple
trick is proposed that can transform image features into
BEV features.

• We achieve competitive results on two challenging datasets,
namely 19.9% Mean IoU on the NuScenes dataset and 19.1%
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FIGURE 1

Schematic illustrating the process of BEV semantic representation prediction in environment perception. A set of surround-view monocular cameras

are used to capture the surrounding environment (RGB images). These images are passed through a road-aware system to generate BEV maps

containing the location and shape information of various elements.

Mean IoU on the Argoverse 3D dataset. Compared with
leading CNN-based methods, our model demonstrate an
improvement of 2%–6 % in Mean IoU, and about 1% IoU
improvement is achieved on challenging prediction tasks.

The remainder of the paper is structured as follows. Section 2
reviews deep learning-powered studies. Section 3 provides details
on the proposed frameworks and technologies. Section 4 presents
the experimental results and discussion. Section 5 concludes the
works and shows the future research direction.

2. Related work and basics

2.1. Surrounding-aware system in
autonomous driving

The surrounding-aware system plays a crucial role in
connecting road conditions and driving assistance systems.
However, current technologies, such as sensing, detection, and
segmentation, are limiting the development of these systems
Predicting BEV representation based on monocular images is a

challenging problem for several reasons including multitasking,
complex 3D estimation, and multi-class prediction. Traditional
studies have proposed neural networks based on semantic
segmentation for BEV representation prediction (Pan et al.,
2020; Lu et al., 2021). However, these 2D representations lack
spatial relationships and are not effective in complex 3D spatial
scenarios. Recent studies have reported two categories of solving
this challenge: camera geometry and transformation implicitly, as
reported by Lu et al. (2021) and Yao et al. (2021). The former
has achieved significant performance by using on multi-type data
input, while the latter is more suitable for building a simple learning
framework in an end-to-end manner.

Although current methods are effective based on single data
input, they are not able to fully mine the spatial dependency,
which severely hinders the performance of multi-scale/multi-
class element prediction. In the paper, the proposed neural
networks are specifically developed to exploit rich spatial clues
by considering the global spatial relationship in a shallow
framework, instead of focusing on particular regions in a deep
structure. The purely Transformer-based neural networks are
proposed in the paper, and several related or derived techniques
are developed.
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FIGURE 2

Architecture of CNN-based networks for BEV representation prediction.

2.2. CNN-based studies

In previous studies, Convolutional Neural networks (CNN)
have been widely used for image processing. As shown in
Figure 2, the process typically contains three steps: (1) extracting
features from input images, (2) projecting planar image
features to BEV features, and (3) generating pixels under the
BEV map. Current studies have utilized leading CNN-based
backbones for feature extraction, such as ResNet (He et al.,
2016), Feature Pyramid Network (FPN) (Lin et al., 2017),
and DeepLab network (Yang et al., 2018). In addition, recent
works by Hendy et al. (2020) and Mani et al. (2020), have
incorporated BEV view transformation based on FPN and
employed adversarial loss to optimize BEV representation.
Inspired by the Generative Adversarial Network (GAN), some
studies have proposed Top-down networks, with the Inverse
Perspective Mapping (IMP). The front view image is mapped to
the ground plane by homography (Zhu et al., 2018; Hu et al.,
2023).

However, a significant issue has arisen in these CNN-based
studies. While the accurate prediction of large-size objects has
reached a saturation point, the forecast of small-size things still
remains an unresolved challenge. The majority of CNN-based
networks excel in local semantic segmentation. Still, they need to
catch up when predicting global BEV maps. The reason for this
lies in the inherent trade-off between network depth and the range
of the receptive field. In CNN-based networks, the receptive field
can access the depth of the network. While this sounds beneficial
in theory, allowing the network to capture more complex patterns
with more layers, it also escalates the challenges associated with
model training. Deeper networks tend to suffer from difficulties in
training due to issues such as vanishing and exploding gradients.
Moreover, as the web grows in depth, it becomes increasingly
computationally intensive, which might not be sustainable in
real-world, resource-limited applications. In light of this, there is
a pressing need for novel solutions that can accurately predict
large and small objects in BEV maps while also addressing the

computational and training challenges associated with deep CNN-
based networks. We can only unlock the full potential of BEV
mapping for autonomous navigation and related applications by
overcoming these hurdles.

2.3. Transformer-based studies

In 2020, Google AI introduced Vision Transformer (ViT) for
image classification without convolution layers (Dosovitskiy et al.,
2020). ViT divides the input image into square patches of equal
sizes, followed by the pure Transformer architecture processing
directly on the patch sequence to mine global-local features and
output per-class probabilities. Originally, Transformers were
proposed for Natural Language Processing (NLP) tasks (Vaswani
et al., 2017), but ViT has achieved impressive performance
on multiple image recognition benchmarks. Transformers
have also been used to solve other vision-related problems,
including object detection, semantic segmentation, and image
processing, where they outperformed CNN-based networks
including object detection, semantic segmentation, and image
processing (Han et al., 2022). Typical studies by Carion et al.
(2020), Chen et al. (2021a), Misra et al. (2021), and Mazzia
et al. (2022), have reported that self-attention mechanism used
in Transformers help model long-term features effectively.
Furthermore, some studies, such as Ba et al. (2016), Liu et al.
(2021), and Zheng et al. (2021) have extended Transformers
to the field of semantic segmentation by designing the encoder
based on Transformers, then adding other existing decoders to
model the image context. However, the following limitations
exist in recent Transformers-based studies: (1) the global
modeling scheme leads to high computational costs and
requires a large amount of data, and (2) the decoder design
still relies on convolutional layers. To the best of our knowledge,
no prior studies have explored a pure Transformer-based
framework for predicting BEV semantic representations without
convolution layers.
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FIGURE 3

Architecture of the proposed approach. The end-to-end framework contains three modules: (1) Feature extraction from input images, (2) Image

features are projected to BEV features, and (3) BEV semantic representation prediction. A Transformer-based network encodes global-local spatial

features powered by multi-head attention. The image-plane features can be transformed to BEV-plane features with the smallest possible loss of

feature information. A generative network further processes BEV global-local spatial features and predicts the final classification probabilities.

3. Method

We approach the prediction of BEV representation by framing
it as a global-local spatial relationship mining problem. Given a set
of look-around image inputs, the proposed method generates the
corresponding BEV representations in order. These representations
can be simply synthesized into full-space BEV maps. In this
section, we present the technical details of our proposed method
according to the processing order in the end-to-end framework,
as shown in Figure 3. We begin by explaining a Transformer-
based extractor that achieves image encoding, while balancing
the global spatial attention and receptive field. Next, we describe
how we transform the side views into BEV views and mine
the relationship of the inter-frame through a homography-based
algorithm. We also present a new Transformer-based predictor
for making predictions in BEV views. To represent the state of
the world, including vehicles, drivable areas, and land boundaries,
we use the semantic occupancy grid, which is an extension of
occupancy grid maps. We then introduce an association training
scheme that ensures the stable convergence of Transformer-based
neural networks.

3.1. Image encoding

In alignment with the conventional Vision Transformer
(ViT) method, our proposed model uses a backbone to extract
image features crucial for generating Bird’s Eye View (BEV)
semantic representations. The extraction process is mathematically
outlined in Equation (1), with the details underpinning this
method comprehensively discussed in Dosovitskiy et al. (2020).

Our feature extractor incorporates several vital components:
multi-head self-attention, multilayer perceptrons (MLPs), residual
connections, layer normalization, positional encoding, and
meticulously structured network topology. Each component plays
an instrumental role in the overall process of BEV generation. The
multi-head self-attention mechanism is particularly crucial in this
process. It enables the model to focus on different parts of the
input image simultaneously, thus allowing it to capture complex
patterns and dependencies in the input data. This capability is vital
for tasks like BEV prediction, where various aspects of an image
contribute to the final output. Multilayer perceptrons further
enhance the model’s capability to understand complex patterns
in the data. At the same time, residual connections help combat
the vanishing gradient problem, enabling the model to learn more
effectively from the data. Layer normalization ensures that the
model’s training remains stable and efficient by standardizing the
inputs to each network layer. Meanwhile, positional encoding is
employed to provide the model with information about the relative
positions of the pixels in the input image, which is crucial for
tasks involving spatial data. Finally, the network topology defines
the overall structure of the model and is designed in a way to
optimize the information flow and processing within the model. By
intertwining these components, our feature extractor presents an
effective means of obtaining and interpreting image data, fulfilling
the essential role in BEV generation.

z0 = [xclass; x
1
pE; x

2
pE; ......; x

N
p E]+ Epos,

E ∈ R(P
2·C)×D,Epos ∈ R(N+1)×D

zℓ
′ = MSA(LN(zℓ−1))+ zℓ−1, ℓ = 1......L

zℓ = MLP(LN(zℓ′))+ zℓ
′, ℓ = 1......L

(1)
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For image encoding, we design a Transformer-based network
considering the requirements of feature transformation. First, the
input of the network X takes an image with three dimensions
(C × H × W) as input and converts it into a 2D vector [xp ∈

HW/P2 × (P2 · C)]. To achieve the conversion, we split the image
into multiple patches of fixed-size (size: P × P) that is carefully
designed tomine local cuesmore effectively. Specifically, each patch
is extended by i pixels to create overlap between patches, so the size
of each patch is (P+2i)× (P+2i). Our research has shown that this
careful design achieves regular training and robust optimization.
Moreover, the embedding matrix Ecan covert each patch to the
(N × D) dimensions, and the Epos is the position code to prevent
the patch order from being disrupted. MSA means the operation
powered by the multi-head self-attention (MSA) whose technical
details are similar to that of the ViT. TheMLP consists of the Linear
layer (LN) and the tanh function.

Due to poor inductive bias performance, Transformer-based
models show high sensitivity to input perturbations. However, to
enhance their generalization performance, the proposed neural
networks are expected to be insensitive to input perturbations.
To achieve this, a new attention (AEd(X)) is introduced in the
transformer encoder process. This new attention model draws
inspiration from the contributions in Kim et al. (2021), and
recomputes the dot product similarity in attention using Euclidean
distance, as illustrated in Equation (2), where Pq, Pk, and Pv
respectively denote the important parameters in the projection
process i.e., Query, Key, and Value; and dn denotes the dimension
of features in multi-head attention.

AEd(X) = Softmax(Ed(XPq,XPk)/
√

dn)XPv (2)

Our proposed approach diverges significantly from typical
Transformer-based classification models in terms of its output.
In conventional models, the multilayer perceptrons (MLPs)
output within the Transformer is typically a set of classification
probabilities. However, in our work, the MLPs output image
features. These features, rich in semantic information, are then
transformed into Bird’s Eye View (BEV) features, as further detailed
in the following sub-section. This innovation has multiple potential
benefits. Most importantly, it has a considerable impact on the
computational efficiency of our model. Given that image features
contain essential information in a condensed form, this method
dramatically reduces the volume of data to be processed in
subsequent stages. Instead of classification probabilities, the output
features bring the significant advantage of lowering the model’s
complexity and reducing the computation load. Furthermore, the
model can bypass the computationally intensive step of converting
probabilities back into image features by directly working with
image features instead of possibilities. This further economizes
the computational resources required, making the model more
efficient and quicker. In essence, our approach is designed to
effectively extract and utilize image features for BEV mapping,
all while maintaining computational efficiency. This streamlined
process, which provides detailed BEV features without the usual
computational burdens, is a key advancement over traditional
Transformer-based classification models.

3.2. Image-to-BEV

The process of converting a side view captured by the vehicle
camera to the BEV perspective is significantly challenging, largely
due to the fundamental differences between the two coordinate
systems. Unfortunately, the feature extraction network can only
output image-plane features. Hence, the main objective is to
reduce feature loss during the feature transformation process. An
image-plane feature map that has a height H and width W is
transformed into a BEV-plane that has a depth Z and width X, with
channel C unchanged.

Motived by the Hough transform, we design an effective
method for projecting features from image-plane to BEV-plane
features (FIP → FBEV ), as shown in Equation (3). Where rl, θl, and
cl denote horizontal plane, azimuth, and elevation in a feature map
location, respectively; andw(rl ,θl) denotes the weights learned by the
framework. Technically, we first collapse the vertical and channel
dimensions into a transition dimension and keep the horizontal
dimension unchanged. We then reset the transition features to get
a new tensor with the size (C × Z ×W). Finally, we resample into
a Cartesian coordinate system, namely, the BEV of the trapezoid,
thus establishing a new camera geometry.

FBEV(rl ,θl ,cl)
=

∑

w(rl ,θl)×FIP(rl ,θl ,cl) (3)

Compared with recent studies, such as Pan et al. (2020) and
Philion and Fidler (2020), the proposed method utilizes a cost-
saving operation to address the challenge of retaining the depth
features of the input.

3.3. BEV semantic representation
generation

Generating semantic features entirely using Transformer-based
model can be a huge challenge because the Transformers need to
generate pixels in spatial regions instead of traditional predicted
class labels. Inspired by studies of combining Transformers to
GANs, such as Chen et al. (2021b), Jiang et al. (2021), an Lee et al.
(2021), we proposed a new projector to generate BEV semantic
representation without convolution and pooling layers through two
stages: BEV semantic representation generation from single image
and BEV representation fusion. Unlike GANs, the discriminator (a
special Loss of GAN) is not required, and we design an associate
training scheme to supervise the end-to-end framework.

We develop the Transformer Encoder module to generate new
pixels in spatial space. We first introduce an affine transformation
A to each image feature patch, followed by the use of the Fourier
function for patch embedding. In technical terms, the architecture
is represented by Equations (4) and (5), where (x, y) denotes the
values of patch pixel obtained from the patch embedding, L is
the length of the input sequence, Efou is the Fourier encoding to
compute the spatial position of the pixel, and Mθ is the MLP
operation. The results show that the proposedmodule is effective in
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generating BEV pixels, as shown in the details presented in Figure 6.

z0 = Epos, Epos ∈ R(N+1)×D

zℓ
′ = MSA(LN(zℓ−1,w))+ zℓ−1, ℓ = 1......L

zℓ = MLP(LN(zℓ′,w))+ zℓ
′, ℓ = 1......L

(4)

y = LN(hL,w)
x = [Mθ (Efou, y

1), ......,Mθ (Efou, y
L)]

(5)

Motivated by the multiple observation information methods
(Wang et al., 2019; Roddick and Cipolla, 2020), we propose a
Bayesian-based information natural fusion method. The main
objective is to build a wraparound BEV representation by
calculating the occupancy probability of each view feature in the
global coordinate system. First, we use the Log-odds operation
(denoted as lci,t) to equate the occupancy probability p(mc

i |ot) that
are the output of the network, where mc

i is the i-th observation of
an object of class cin network output. Next, The combination of
observations from the 1st to the t-th is shown in Equations (6) and
(7).

lci,1 : t = lci,1 : t−1 + lci,t − lc0

lc0 =
p(mc

i )
1−p(mc

i )

(6)

lc0 =
p(mc

i )
1−p(mc

i )
(7)

3.4. Training

We design an association training scheme to obtain more
accurate predicted probabilities containing three Loss functions,
as shown in Equation (8). First, the Binary cross-entropy (Lbce)
is used to train semantic occupancy probabilities P(·), as shown
in Equation (9). Second, to stimulate the framework to achieve
efficient convergence on complex images, such as small object-
contained images and partial occlusions, we introduce another Loss
function (Lcomp), as shown in Equation (10). Finally, we design
a feature transformation loss Lft to train Hough transfom-based
process, as shown in Equation (11). Here, D is a discriminant that
distinguishes between the ground-truth and the predictions, and
gcls denotes the prediction ground-truth. The proposed framework
is programmed in an end-to-end manner.

Lasso = Lbce + Lcomp + Lft (8)

Lbce =

N
∑

i=1

αmi · log(p(mi))+ (1−α)(1−mi) · log(1− p(mi)) (9)

Lcomp = 1− P(mi)log2P(mi) (10)

Lft =
∑

D(fIP→BEV · fip(X), gcls) (11)

4. Experiment and discussion

In this subsection, we first empirically compare CNNs with
Transformers and discuss the results. Next, we empirically assess
the effectiveness of the proposed method on two challenging
benchmarks and compare it with state-of-the-art methods.
Moreover, we show the performance of neural networks on typical
challenging tasks.

4.1. Experimental settings

4.1.1. Database
We choose two particularly challenging benchmarks to evaluate

the proposed model, i.e., the NuScenes dataset (Caesar et al.,
2020) and the Argoverse 3D dataset (Chang et al., 2019). They
are large-scale datasets in the field of autonomous driving. For
data selection, we follow the standard procedures used in most
previous studies (Philion and Fidler, 2020; Roddick and Cipolla,
2020). From the NuScenes dataset, we select four categories of
maps predicted by images, which contain 14 elements. From the
Argoverse 3D dataset, we select eight out of 15 elements for
map prediction. Additionally, since both datasets are designed
for object detection, and the labels are provided in vectorized
and 3D bounding boxes, we regenerate labels to fit the map
prediction task. As for technical details, we follow the recent
works Philion and Fidler (2020) and Roddick and Cipolla (2020).
The main approach we apply is generating annotations for
rasterized BEV images via vector label mapping and binary
mask generation. The predicted elements consist of Drivable
(Dri.), Pedestrian Crossing (Ped.C.), Vehicle (Veh.), Large Vehicle
(L.Veh.), Walkway (Wal.), Carpark (Carp.), Car, Truck, Bus,
Trailer (Tra.), Construction Vehicle (Con.V.), Pedestrian (Ped.),
Motorcycle (Mot.), Bicycle (Bic.), Traffic cone (Tra.C.), and Barrier
(Bar.).

4.1.2. Evaluation
To ensure fairness in comparison, we select the Intersection

over Union (IoU) score as the main evaluation metric. The IoU
evaluation shows the similarity between the element prediction
area and the ground truth area, with higher values indicating more
accurate predictions.

4.1.3. Implementation
We first pre-train the proposed network with the ImageNet

dataset using SGD, with a batch size of 512. Considering that
the smaller the input patch size is, the more computationally
expensive it is, we choose a patch size of 64 × 64. The number
of attention heads is 6, and the number of the transformer
blocks is increased to 6 (typically 4). The Adam algorithm is
utilized for training, with a weight decay of 0.1 and a batch size
of 32.
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FIGURE 4

The loss function curves for three methods on the NuScenes.

4.2. Ablation study

Our first step is to conduct ablation study on the NuSences
dataset (14 elements) to evaluate the effectiveness of two proposed
fundamental techniques: Transformer-based feature extraction
model (ViT-FE) and the Transformer-based BEV semantic
representation generation model (ViT-RG). The main purpose of
this study is to assess how well Transformers perform in BEV
representation prediction. In most CNN-based studies, ResNet-
based networks are used for feature extraction, and networks with
a Top-down structure are used for BEV representation generation.
Hence, we mix and match the proposed different modules and the
leading CNN-based networks.

In the ablation study, we select three leading deep modules for
mixing and matching, including a ResNet-50 backbone (R) (He
et al., 2016), a ResNet-50 with the FPN structure (R-FPN) (Yu
et al., 2022), and an IPM-based Top-down network (IPM) (Deng
et al., 2019). We train the above three models using SGD with a
momentum of 0.9, a batch size of 32, and a wight decay of 0.1.

Table 1 shows the results of the ablation study, and all of
the Abbreviated names are listed above for reference. The results
clearly indicate that the proposed ViT-FE and ViT-RG show a
considerable improvement in performance as compared to CNN-
based models, with an increase of around 6% higher (Mean IoU).
These findings highlight the effectiveness of using Transformer-
based to predict BEV semantic representation. Specifically, the
Transformer-based modules can gradually improve the prediction
accuracy for large-scale objects by about 2% and significantly
improve it for challenging small-scale objects by about 1% IoU.

Ensuring stable training is important for neural networks,
especially for Transformer-based networks. We propose a new
framework based purely on Transformers. To evaluate the
training effect of the proposed neural networks, we conduct
empirical experiments on a challenging benchmark (NuScenes).
As depicted in Figure 4, our method achieves comparable
training performance to other CNN-based methods. We suppose
that the proposed Transformer-based neural networks can be
generalized for the BEV semantic prediction task. Stable training
serves as the basis for further improving the performance of
Transformer-based methods.
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4.3. Main results and comparison to
state-of-the-art works

In this subsection, we present a comparison of the proposed
model with three recent works, including a View Parsing Network
(VPN, published in IEEE RAL, 2020) (Pan et al., 2020), a Top-
down network with transformer layer (DPT, published in CVPR
2020) (Roddick and Cipolla, 2020), and Lift-Splat-Shoot network
(L-S-S, published in ECCV 2020) (Philion and Fidler, 2020). The
CNN-based baseline [R-FPN (Yu et al., 2022) + IPM (Deng et al.,
2019)] is also shown for reference. It should be noted that the sub-
datasets chosen for each study are not identical due to the large scale
of autonomous driving datasets. To ensure a fair comparison, we
follow the part of the results reported by the DPT, and then we train
and test the L-S-S using the same experimental setup.

4.3.1. Main results
The NuScenes dataset contains a greater variety of objects

than the Argoverse 3D dataset, making it more challenging.
As demonstrated in Table 2 our proposed network achieved a
significant improvement in the Mean IoU metric, with 0.8% higher
than the DPT, 1.4% higher than the L-S-S, and 2.4% higher than
the VPN. Table 3 shows that the proposed network attains the
leading performance on the Argoverse 3D dataset. Specifically,
the proposed network exhibits further improvements in the
prediction rate of large-scale objects by about 2% in the prediction
rate of large-scale objects. The main result is breaking through
the bottleneck of small-scale object prediction. In comparison,
the prediction accuracy based on the CNN networks remains
essentially unchanged. Figure 5 shows the Precision-recall curves
of four interesting elements selected from the NuScenes dataset.
The closer these curves are to the upper right, the better the models
prediction performance for positive samples.

4.3.2. Discussion
Through an extensive examination of our experimental

results, several key insights have been gleaned, reaffirming the
innovative nature and potential of the method. First, Transformer-
based networks substantially improved the prediction of BEV
semantic features. This represents a significant stride forward
compared to traditional methods, suggesting that Transformers
hold great promise in advancing BEV mapping capabilities. This
marked performance enhancement demonstrates the effectiveness
of Transformer-based approaches. It provides a valuable reference
point for future research endeavors, opening up new avenues for
exploration and innovation. Second, our proposed Transformer-
based feature extractor demonstrated a superior ability to extract
finer features than CNN-based networks. This superiority is
particularly significant in predicting small-scale objects. In this
task, the extraction of intricate details is of utmost importance.
This underlines the capacity of Transformer-based models to
outperform their CNN counterparts in tasks that require a keen
discernment of finer details, thus broadening their potential
applications in related fields such as object detection and
recognition. Last, our unique contribution is the introduction T
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TABLE 3 Main results (IoU) on the Argoverse 3D dataset.

Method Dri. Bus Tra. L.Veh. Ped. Mot. Bic. Veh. Mean

R-FPN + IPM 54.2 5.2 0.3 8.5 2.7 0.8 0.2 15.8 11

VPN (Pan et al., 2020) 64.9 3 0.4 9.7 6.2 1.9 0.9 23.9 13.9

L-S-S (Philion and Fidler, 2020) 65.2 13.7 1.8 11.7 8 5.7 3.4 30.8 17.5

DPT (Roddick and Cipolla, 2020) 65.4 11 0.7 11.1 7.4 5.7 3.6 31.4 17

Proposed 66 17.5 2.9 13.8 8.6 6.4 4.2 33.7 19.1

A larger value indicates better performance.

FIGURE 5

Precision-recall tradeo� on the NuScenes dataset.

of a Transformer-based feature generator capable of outputting
pixel points instead of per-class probability. This novel approach
has exhibited superior performance compared to traditional Top-
down networks. By moving from per-class possibilities to pixel
point outputs, the proposed model offers a more nuanced and
detailed understanding of the input image, essential for complex
image generation tasks like BEV mapping. It also presents a more
versatile and granular output format that can be more readily
adapted to various applications. These observations demonstrate
the superiority and innovation of our proposed Transformer-based
approach to BEV semantic feature extraction and generation. This
research has not only bridged a significant gap in the field but
also paved the way for further advancements and applications
of Transformer-based models in the broader domain of image
processing and analysis.

4.4. Performance on challenging scenarios

This paper aims to making contribution to the discussion of
global-local spatial relationship learning, which is better at multi-
class and multi-scale element prediction. To further show the
performance of the proposed method on challenging tasks, we
evaluate its performance using challenging samples, i.e., complex
lanes, small-scale pedestrian, dark environments, two key traffic
signals, and multi-class element.

Figure 6 shows the qualitative results on the NuScenes dataset.
Two state-of-the-art methods are introduced for comparison. The
key conclusions are as follows. (1) The proposed method predicts
BEV semantic representation that closely matches ground-truth

labels. (2) The proposed method can effectively perceive more
detailed features, such as vehicle contours, subtle changes in
lane lines, and small-sized pedestrians. For example, the VPN
fails to predict small-size elements like pedestrians, and the DPT
only predicts elements that are close to the camera, while the
proposedmethodworks well. (3) The proposedmethod can achieve
state-of-the-art performance in complex field situations, including
illuminant-changed scenarios and occlusion. For example, in the
night driving, the prediction result of the VPN does not contain
vehicles, and the DPT can only predict parts of vehicles. In
comparison, the proposed method can still accurately predict the
number and location of vehicles in occlusion scenarios.

Furthermore, we test our proposed method by examining
its performance on multi-class element prediction, as shown in
Figure 7. We deployed the technique to generate Bird’s Eye View
(BEV) semantic representations for each element in scenarios that
pose significant challenges, such as occlusion, the presence of
multi-class/multi-scale objects, and dim illumination. The results
have been highly encouraging, demonstrating that our model
can accurately predict the position and shape of each element.
These positive results confirm our method’s effectiveness and
point toward its high computational efficiency and scalability,
particularly in large-scale environments. Despite the complexity
introduced by multi-class/multi-scale objects and conditions like
occlusion and dim lighting, the model maintains an impressive
performance. This attests to themodel’s robustness and adaptability
in diverse and challenging situations. Notably, the computational
efficiency of our method does not compromise its scalability.
Our model can seamlessly handle an increased number of classes
or a larger scale of images without requiring a proportional
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FIGURE 6

Qualitative results on the NuScenes dataset. For a fair comparison, we follow the color scheme utilized in the DPT. We evaluate methods on six

challenging scenarios and compare the proposed method with two baselines.

increase in computational resources. This computational scalability
is crucial for real-world applications where the model might need
to operate in vast and complex environments. This capability
could be highly beneficial in numerous practical applications,
from autonomous navigation systems to robotics, which requires
a nuanced understanding of their surroundings.

5. Conclusions

The paper presents novel neural networks powered by
Transformers for BEV representation prediction, which is
substantially different from CNN-based networks which are

commonly reported in existing works. Our method focuses on
map generation through image-plane feature extraction and
transformation, without the use of convolution and pooling layers.
In this way, per-class element prediction and BEV map generation
are implemented through an end-to-end framework. Results
demonstrate strong performance on two large-scale benchmarks,
i.e., the NuScenes dataset and the Argoverse 3D dataset. The
model attains greater accuracy improvement for large-size object
prediction (about 2 % IoU) and a breakthrough for small-scale
object prediction (about 1 % IoU). Furthermore, the proposed
method shows a leading performance in challenging scenarios.

In the future, we will study (1) train Transformer-based
networks with less data, (2) memorize more distant global clues,
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FIGURE 7

Visualization of the multi-class element prediction results on the NuScenes. An autonomous vehicle predicts a BEV representation with six elements

in a cloudy scene. The BEV representation of the six elements is present separately.

and (3) build a Transformer-based temporal framework. We
argue that the boost in performance of BEV representation
prediction depends on spatiotemporal relationship mining, and
balancing between data-driven approaches and performance-
boosting techniques is key for deep learning.
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Exploiting semantic information
in a spiking neural SLAM system

Nicole Sandra-Ya�a Dumont*, P. Michael Furlong, Je� Orchard

and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

To navigate in new environments, an animal must be able to keep track of its

position while simultaneously creating and updating an internal map of features in

the environment, a problem formulated as simultaneous localization andmapping

(SLAM) in the field of robotics. This requires integrating information from di�erent

domains, including self-motion cues, sensory, and semantic information. Several

specialized neuron classes have been identified in the mammalian brain as being

involved in solving SLAM. While biology has inspired a whole class of SLAM

algorithms, the use of semantic information has not been explored in such work.

We present a novel, biologically plausible SLAMmodel called SSP-SLAM—a spiking

neural network designed using tools for large scale cognitive modeling. Our

model uses a vector representation of continuous spatial maps, which can be

encoded via spiking neural activity and bound with other features (continuous

and discrete) to create compressed structures containing semantic information

frommultiple domains (e.g., spatial, temporal, visual, conceptual).We demonstrate

that the dynamics of these representations can be implemented with a hybrid

oscillatory-interference and continuous attractor network of head direction cells.

The estimated self-position from this network is used to learn an associative

memory between semantically encoded landmarks and their positions, i.e., an

environment map, which is used for loop closure. Our experiments demonstrate

that environment maps can be learned accurately and their use greatly improves

self-position estimation. Furthermore, grid cells, place cells, and object vector

cells are observed by this model. We also run our path integrator network

on the NengoLoihi neuromorphic emulator to demonstrate feasibility for a full

neuromorphic implementation for energy e�cient SLAM.

KEYWORDS

simultaneous localization and mapping, semantic SLAM, path integration, spiking neural

networks, neuromorphic, hyperdimensional computing, neural engineering framework,

semantic mapping

1. Introduction

Simultaneous localization andmapping (SLAM) is the computational process of keeping
track of one’s location while navigating an unknown environment (i.e., localization) and,
simultaneously, creating a map of the environment (i.e., mapping). Accurate localization is
required for building metric map from egocentric observations, but errors in localization
accumulate when relying solely on internally generated signals or self-motion (i.e., path
integration or dead reckoning). An allocentric environment map can be used to correct
these errors, making localization and mapping interdependent processes. SLAM is a core
problem in mobile robotics, particularly in applications where high-precision GPS data is
not available, such as in autonomous underwater vehicles or planetary exploration (Kim and
Eustice, 2013; Palomeras et al., 2019; Geromichalos et al., 2020).
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Biological systems have evolved to solve these problems.
Animals are capable of navigating and creating maps of novel
environments, deducing their current location, and retracing their
steps. Considerable research has been conducted to investigate the
neural mechanisms underlying spatial cognition in animals. It is
known that many animals—including rodents (Mittelstaedt and
Mittelstaedt, 1982; Etienne, 1987; Benhamou, 1997), bats (Aharon
et al., 2017), and humans (Mittelstaedt andMittelstaedt, 2001) – are
capable of path integration. Tolman (1948) proposed that animals
construct “cognitive maps”: internal mental constructs used to
retain and retrieve information about the relative locations and
features of an environment. Such maps are widely believed to be
used to discover novel shortcuts and provide corrections to path
integration, much like SLAM systems in robots. Indeed, animals
have access to a plethora of external sensory information, such as
visual landmarks and odor trails, which can be used to correct
the errors that would accumulate when using path integration
alone. The hippocampal formation is believed to be crucial for
such computations, with place cells, head direction cells, and grid
cells thought to play significant roles. In fact, Safron et al. (2022)
have characterized the hippocampal-entorhinal system as “themost
sophisticated of all biological SLAMmechanisms".

While SLAM is a well-studied problem, and modern mobile
robots are capable of performing SLAM, animal navigational
abilities are still superior; they are more robust, efficient and
adaptive, making them more useful in challenging real-world
environments. Animals can use information from multiple sensory
modalities (e.g., visual, olfactory, auditory, magnetoreception, and
idiothetic cues) for navigation. Additionally, animals are able to
navigate and map their environment in real-time using power-
constrained computational resources, which is something that
robots are still not able to achieve—brains are far more energy
efficient than the GPUs or CPUs used to execute typical SLAM
algorithms. The brain consumes around 20 Watts of energy while
a single modern graphics card requires around 350 Watts. By
taking inspiration from biology, researchers are trying to develop
SLAM algorithms that are optimized for online processing, and
that can run on resource-constrained platforms. For instance,
neuromorphic hardware—designed to mimic the functionality of
biological neural networks—is particularly well-suited for resource-
constrained computing because it is designed to be energy-efficient
and can perform brain-like computations using minimal resources
(Bersuker et al., 2018; Thakur et al., 2018; Rathi et al., 2021).

Biology has influenced the development of a new category
of SLAM models that includes RatSLAM (Milford et al., 2004),
DolphinSLAM (Silveira et al., 2015), and NeuroSLAM (Yu et al.,
2019), among others. Remarkably, some of these models have
demonstrated performance comparable to contemporary state-of-
the-art approaches. However, this is still an active area of inquiry,
with questions remaining regarding scalability and biological
plausibility of these approaches, as well as their deployability on
neuromorphic hardware. While these types of SLAM algorithms
have made notable progress, they have yet to fully explore the
wealth of knowledge available from neuroscience and cognitive
science. Animals extract and make use of higher-order semantic
information about their environment and landmarks from raw
sensory inputs while navigating. Recent advancements in robotics

have successfully incorporated semantic information into SLAM
models (Bowman et al., 2017; Zhang et al., 2018; Chen et al., 2019;
Fan et al., 2022). Semantic SLAMmodels use deep neural networks
to extract semantic information to build environment maps.
By utilizing higher-level conceptualization of states grounded
in cognitive meaning, these models can augment and improve
upon purely metric SLAM. Consequently, the construction of
maps containing semantic representations empowers such SLAM
systems to interact with environments in sophisticated and
intelligent ways.

In the same way that biology can aid in the development
of AI and robotics, computational modeling can also provide
valuable insights into biological research questions. By creating
computational models of SLAM that are constrained to be
biologically plausible, we can gain a deeper understanding of
the neural algorithms that may underlie spatial cognition in
animals. For example, we can investigate hypotheses on how exactly
cognitive maps may be learned, stored, and used to assist in
navigation. Or how multi-modal sensory information is integrated
during the construction of cognitive maps. Or how such maps may
be accessed and queried to reason about space.

In this work, we unite biologically inspired and semantic SLAM
in our model SSP-SLAM, and consider how our computational
model can explain neuroscientific observations. Specifically, we
present a novel spiking neural network SLAM system, called
SSP-SLAM. This model is built using the Neural Engineering
Framework (NEF) (Eliasmith and Anderson, 2003) and the
Semantic Pointer Architecture (SPA) (Eliasmith, 2013). The NEF
provides a systematic method for embedding a state space model
into a spiking neural network that can run on neuromorphic
hardware. The SPA, which includes Spatial Semantic Pointers
(SSPs), provides an approach for representing and processing
symbol-like information in connectionist systems. The SPA
provides an architecture and “semantic pointer" representations,
for characterizing neural processing, including that of symbols,
as manipulation of high-dimensional vectors. This enables the
development of systems that can learn and reason about symbolic
information in a scalable, differentiable, and compositional
manner. These methods are used in SSP-SLAM to build
environment maps. These maps are core to the functioning of
SSP-SLAM, as they integrate semantic information, while being
combined with an SSP-based path integrator. The resulting model
provides the following contributions:

• We propose and implement a novel spiking neural network
SLAMmodel.

• We constrain our model to only use quantities that are known
to be represented in hippocampus, like spatial representations
of head direction cells, object vector cells, place cells, and grid
cells. Furthermore, biologically plausible, Hebbian-like rules
are used to learn an environment map in the form of an
associative memory.

• We explore compositional semantic map representations
using the SPA and the principles of vector symbolic
architectures more broadly. We demonstrate how such a map
can be queried post-training to recall what landmarks were
in particular areas, recall where landmarks of certain types or
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colors were located, and compute (online) the vector between
self-position and landmarks in memory.

• We illustrate first steps toward a neuromorphic
implementation of our model, showing that the path
integration component of SSP-SLAM can be run on an
emulator of Intel’s Loihi neuromorphic chip.

2. Materials and methods

2.1. The semantic pointer architecture

Our computational SLAM model is built using the tools
and principles of the semantic pointer architecture (SPA). This
framework has been used to model various cognitive processes,
such as action selection (Stewart et al., 2012b), planning (Blouw
et al., 2016), memory and free recall (Gosmann and Eliasmith,
2021), and reinforcement learning (Rasmussen and Eliasmith,
2014; Duggins et al., 2022). Furthermore, it has been used to
construct a large-scale functional brain model, Spaun (Eliasmith
et al., 2012; Choo, 2018), with over 6 million neurons and 20
billion connections. The SPA proposes that semantic pointers are
the fundamental representations of biological cognition (Eliasmith,
2013). Semantic pointers are spiking neural implementations of
high-dimensional vectors that are defined by their compression
relations to other neural representations. In the case of cognitive
semantic pointers, they can be used to represent concepts, objects,
or states, and can be combined in a distributed and compositional
manner to represent more complex meanings or structures. By
means of the neural engineering framework (NEF), semantic
pointers in the SPA are generated by the activities of a collection
of spiking neurons. Operations on the underlying vectors are then
performed through setting the connections within the spiking
neural network. As such, the SPA provides a means to translate
symbolic cognitivemodels into biologically plausible spiking neural
networks, and is an approach to neurosymbolic AI. As we will
demonstrate, it can be used to build a spiking neural network SLAM
model that is deployable on neuromorphic hardware.

2.1.1. Algebra of cognition
The cognitive representations in the SPA are based on

hyperdimensional computing, also known as vector symbolic

architectures (VSAs), which bridge symbolic and connectionist
approaches to AI. A VSA is any computing framework in which
symbols and structured compositions of symbols are represented
as high-dimensional vectors. The VSA includes a set of algebraic
operations, defined over the vector space, that correspond to
operations on the underlying symbols, effectively creating an
algebraic language for cognition. The key operations that define
this algebra are a similarity measure, a hiding operation, a
bundling operation, a binding operation, and an inverse operation.
The specification of these operations differentiates particular
VSAs. In this work, we implement the SPA using Holographic
Reduced Representations (HHRs; Plate, 1995), realized in spiking
neural networks.

The similarity measure between two semantic pointers indicates
the semantic similarity of the symbols they represent. This is

given by the cosine similarity (or dot product), which is also the
measure for semantic similarity used in many vector encodings in
machine learning (Mikolov et al., 2013). The bundling operation
is addition, and is used to group semantic pointers in a set.
The binding and hiding operations are used to combine symbols
together (e.g., combining a slot and filler, to have a single slot-filler
representation). In HRRs, binding and hiding are done by one
operation, circular convolution,

A⊛ B = F
−1{F{A} ⊙ F{B}}, (1)

where F is the Discrete Fourier Transform (DFT), and ⊙ is the
Hadamard product. The inverse operation takes a single input
vector and produces a single output vector that reverses the effect
of binding with the input vector, (A ⊛ B) ⊛ B−1 = A. In
HRRs, an easy-to-compute and numerically stable approximate
inverse (involution) is frequently used. It is defined as B−1 =
[

B1,Bd,Bd−1, . . . ,B2
]

.
To understand how these operations are used to compose

and reason about structured representations, consider a concrete
example. Let X denote the semantic pointer representation of the
concept X. The sentence, “a brown cow jumped over themoon", can
thus be represented via binding and bundling operations as follows:

SUBJECT⊛ (COLOR⊛ BROWN+ ANIMAL

⊛COW)+ VERB⊛ JUMP+ OBJECT⊛ MOON (2)

The semantic pointer representations of various slots (e.g., subject,
color, verb) are boundwith the semantic pointers representations of
various fillers (e.g., cow, jump), all of which are summed together
to represent their collection in a single sentence. The final vector
can be queried via the inverse operation to retrieve information.
For example, by binding the final vector with VERB−1 we can
approximately obtain the semantic pointer JUMP.

Typically, VSAs have been used to represent discrete symbols
with a one-to-one mapping used to translate between symbols
and vectors. Random high-dimensional vectors are often used.
Certain models have employed machine learning techniques to
obtain vector embeddings with desired similarity characteristics
(Mitrokhin et al., 2020). In recent years, VSAs have been extended
to represent continuous features using a mapping conceived as a
fractional version of the binding operator.

2.1.2. Spatial semantic pointers
Spatial Semantic Pointers (SSPs) extend VSAs to support

representation of continuous features (Komer et al., 2019). Here,
the mapping from input features to an output vector, Rm →

R
d, is explicitly defined. A d-dimensional SSP representing an

m-dimensional variable x is given by

φ(x) = F
−1 {

eiAx
}

(3)

where A ∈ R
d×m is the encoding matrix of the representation,

Ax is a d-vector, and eiAx is a vector of d complex numbers. The
dot products of x with a fixed set of d vectors—the rows of the
encoding matrix—are cast as the phases of complex exponentials
to obtain the high dimensional SSP useful for hyperdimensional
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computing. There is freedom in the selection of this matrix.
However, to ensure the SSP is real-valued, the encoding matrix
must be chosen so that eiAx is conjugate symmetric. Though
originally SSPs were developed as a fractional extension to the
binding operator of HRRs, the resulting mapping is similar to
the encoding used in Random Fourier Features (RFF), a popular
method for approximating kernels in machine learning (Rahimi
and Recht, 2007; Furlong and Eliasmith, 2022).

A useful property of SSPs is that binding in the SSP space is
equivalent to addition in the variable space,

φ(x)⊛ φ(x′) = F
−1

{

eiAx ⊙ eiAx
′
}

= φ(x+ x′) . (4)

Thus, it is easy to “update" SSP representations without any
decoding. For instance, it is easy to “move" an object located
somewhere with one or more binding operations.

Generally, the SSP representation of a number is similar to
nearby numbers (in terms of Euclidean distance), and dissimilar
to distant ones—with some rippling effects. As a result, similarity
between SSPs provides a method for visualizing these high-
dimensional vectors (see Figure 1). The similarities between a
particular SSP and a set of SSPs that represent points gridded over
m-dimensional space can be computed and plotted. We refer to
such plots as similarity maps. For example, a similarity map of an
SSP, φ′, representing a 1−D variable is a plot of x vs. φ′ ·φ(x), which
has been shown to be a sinc function in the limit d → ∞ (Voelker,
2020). For SSPs representing 2D variables, a similarity map can be
depicted as a surface plot or a heat map as in Figure 1.

A primary advantage of the SSP representation is that it can
be used in combination with semantic pointers encoding discrete
symbols. Figure 1 provides a concrete demonstration of such a
representation. Consider a simple 2D environment consisting of
different objects and landmarks: a robot, two boxes, and a wall (see
Figure 1A). The position of the robot, (x1, y1), can be encoded
as a SSP, φ(x1, y1). This, in turn, can be bound (i.e., circularly
convolved) with the semantic pointer representing the concept of
a robot, ROBOT, to obtain ROBOT ⊛ φ(x1, y1)—this represents a
robot at a particular location. Likewise, the semantic pointer for a
tool box can be bound with SSPs encoding their locations, (x2, y2)
and (x3, y3), to obtain BOX⊛

(

φ(x2, y2)+ φ(x3, y3)
)

; in this case,
the sum of SSPs is used to represent a set of locations. The wall
in the environment covers an area D, which can be represented by
integrating the SSP encoding over that area,

∫∫

D φ(x, y)dxdy. All
together, the complete environment can be represented by adding
all of these object-location vector encodings:

M = ROBOT⊛ φ(x1, y1)+ BOX⊛
(

φ(x2, y2)+ φ(x3, y3)
)

+WALL⊛

∫∫

D
φ(x, y)dxdy (5)

This vector was constructed and “queried" for different locations
with approximate unbinding. The results of this unbinding are
shown in Figures 1B–D. The high-dimensional SSPs are visualized
in this figure via their similarity to neighboring points.

2.1.3. Probability representations
Recent work has demonstrated that the algebra of cognition

defined by VSAs and SSPs has a probabilistic interpretation

(Furlong and Eliasmith, 2022). Using the tools provided by the NEF,
it is possible to construct spiking neural networks that embody
probability distributions and perform computations related to
probability, such as determining entropy and mutual information
(Furlong et al., 2021; Furlong and Eliasmith, 2023).

In particular, SSPs can be used for kernel density estimation
(KDE), a non-parametric method used for estimating a probability
density function of a random variable X. To approximate a
PDF f given a set of samples, {x1, x2, . . . , xn}, drawn from an
unknown distribution, one can average kernel functions around
each data point, k(x − xi), to obtain a smooth estimate, f̂ , of the
underlying PDF:

f̂ (x) =
1

n

n
∑

i=1

k(x− xi). (6)

KDE has the advantage of being non-parametric and flexible,
allowing the estimation of complex and multi-modal distributions.
However, the choice of the kernel function is crucial for the
accuracy and smoothness of the estimate. Common kernel
functions used in KDE include the Gaussian, Epanechnikov, and
triangle kernels.

The similarity, or dot product, between SSPs approximates a
sinc kernel function. Consequently, we can define k(x − xi) =

φ(x) · φ(xi). Our KDE is given by 1
n

∑n
i=1 φ(x) · φ(xi) = φ(x) ·Mn,

where Mn = 1
n

∑n
i=1 φ(xi) is the average over datapoint SSP

representations. Unlike the kernels listed above, the normalized
sinc can take on negative values, but it can be used to obtain
probability densities with a simple correction,

f̂ (x) ≈ (φ(x) ·Mn − ξ )+ (7)

where ξ is a fixed scalar chosen so that
∫ ∞

−∞
(φ(x) ·Mn− ξ )+dx = 1

(Glad et al., 2003, 2007). Note that this is simply a ReLU neuron
with bias ξ , and either weights Mn and input φ(x), or vice versa—
weights φ(x) and input Mn. In the former case, a population of
many such neurons (with varying incoming synaptic weights Mn)
can be interpreted as estimating the probability of a query φ(x)
under different distributions. In the later case, the activities of a
population of neurons would represent the probabilities of different
sample points x under a given input distribution represented by
SSPs,Mn. Notably, the sinc estimate is often more accurate than the
“optimal” Epanechinikov estimate (Section 1.3, Tsybakov, 2009).

Using SSPs for neural probability computations in this way
results in different interpretations of the standard VSA operations,
which are useful in the context of SLAM. Under this interpretation,
bundling is used to add new datapoints to a running meanMn, and
is a kind of belief update, binding can be used for multivariate KDE,
and the inverse operation that performs unbinding is analogous
to conditioning.

2.1.4. The neural engineering framework
The SPA is not just a VSA, but rather a full architecture

that includes a variety of functional components, as well as
the neural instantiation of a VSA. To create spiking neural
networks that implement algorithms involving VSAs and SSPs,
we require methods to embed vector representations into the
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FIGURE 1

(A) A toy 2D environment consisting of a robot, boxes, and walls. Information about the objects and their locations was encoded in single vector M,

as per Equation (5). (B) The vector M was queried for the location of the robot by approximate unbinding: M⊛ ROBOT−1 ≈ φ(x1, y1). The heat map

shows the cosine similarity between the query output and SSP representations of points gridded over 2D space. (C) The similarity map obtained from

querying the map M for the location of boxes. (D) The similarity map obtained from querying for the wall area.

activity of spiking neurons, and to be able to perform computations
on these vectors via projections between neural populations.
The NEF provides such methods, which are described by three
primary principles.

The first principle of representation specifies how the collective
neural activity of a population encodes a vector and vectors can be
decoded out of spike trains. The activity of neuron i in a population
encoding a vector, φ ∈ R

d, is given by,

ai(t) = Gi [αiei · φ + βi] , (8)

where αi > 0 is the neuron’s gain, βi is its bias, ei is its encoder,
and Gi is a non-linear function—in this work, the leaky-integrate-
and-fire (LIF) function. The gain and bias parameters vary amongst
neurons to create a heterogeneous population. Encoders determine
the type of input a specific neuron is responsive to, thus capturing
the neuron’s “receptive field". In the case of a neural population
representing SSPs, it is reasonable to set encoders as SSPs that
represent random points in space. This produces a population of
neurons that are sensitive to specific spatial locations—i.e., place
cells. Other types of spatial sensitive neurons can be constructed
using different neural encoders and SSP encoding matrices. In
Dumont and Eliasmith (2020), grid cells were obtained this way.

A vector represented by the activity of a population of N

neurons can be decoded from a linear combination of the spiking
neural activity after post-synaptic filtering:

φ̂ =

N
∑

i=1

ai(t) ∗ h(t)di, (9)

where ∗ is convolution and di ∈ R
d are called the decoders of

the population. Least-squares optimization is typically used to solve
for the decoders. The function h(t) is a post-synaptic filter and is
parameterized by τsyn, the post-synaptic time constant:

h(t) =

{

e−t/τsyn if t > 0

0 otherwise.
(10)

The second principle of the NEF, transformation, provides the
method for setting weights between two neural populations to

compute a desired function. Assume a population of N neurons
representing a vector, φ, is fully connected to a different population
of N′ neurons. Suppose we would like second population to
represent some function of the vector, f (φ). This function can be
decoded out of the first population’s activity,

f̂ (φ) =
n

∑

i=1

ai(t) ∗ h(t)d
(f )
i . (11)

These function-specified decoders, d
(f )
i , can be solved for using

samples of the desired function output or, if sample outputs
are not available, decoders can be learned online in response
to error signals (see Section 2.1.5). Decoding the output of the
first population and encoding it into the activity of the second
population is equivalent to multiplying the filtered activities of the
first population with a weight matrix and feeding that current into
the second population, which will have activities given by

bj(t) = Gi

[

N
∑

i=1

wijai(t)+ βj

]

, wij = αjej × d
(f )
i (12)

where× is an outer product.
The result is a standard neural network, with populations

connected via weighted synapses. The NEF provides a method to
generate the weight matrices that are the outer product between
the decoders of the first population (which are optimized) and
the encoders of the second (which are pre-set, usually to match
biological tuning curves).

The last principle of the NEF is dynamics. Dynamical systems
can be embedded into in a recurrently connected population of
spiking neurons using this principle. The NEF proposes that to
implement a non-linear dynamical system φ̇ = f (φ)+g(u) (where u
is some input signal), the incoming connection from the population
representing the input umust compute the transform τg(u) (where
τ is the post-synaptic time constant), and the recurrent connection
from the population representing S to itself must compute the
transform τ f (φ)+ φ. This is due to the use of post-synaptic filters.
This principle allows us to embed a wide variety of non-linear
dynamical systems into spiking neural networks, which we exploit
in Section 2.2.1.
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2.1.5. Learning rules
Biologically plausible learning rules that only use local

information can be used in the NEF for modifying synaptic
weights online. The Prescribed Error Sensitivity (PES) (MacNeil
and Eliasmith, 2011) is an error-driven learning rule in which,
to learn a connection between a pre- and post-population of
neurons, the pre-population’s decoders are modified in response to
an error signal:

1di = κEai, (13)

which is equivalent to modifying weights by

1wij = −καjej · Eai (14)

where κ is a learning rate, ai are pre-population neural
activities (filtered spikes), αj are post-population gains, ej are
the post-population encoders, and E is an error signal we
seek to minimize. This signal may be computed by other
neural populations in a model. Biologically, we can think
of those populations as dopaminic neurons that can modify
weights in this way via dopamine levels. Real data of spike
timing dependent plasticity is matched by PES when used in
combination with the unsupervised Bienenstock, Cooper, Munro
(BCM) learning rule, which sparsifies weights (Bekolay et al.,
2013).

Another, unsupervised, learning rule is the Oja learning rule
(Oja, 1982), which modifies the Hebbian learning rule in order
to improve stability. The vector version of this rule, the “Voja”
learning rule, shifts encoders so that neurons fire selectively at
particular inputs and activity is sparsified:

1ei = κai(x− ei). (15)

This rule has been used for training heteroassociative memory
networks (Voelker et al., 2014), and is used in SSP-SLAM, along
with the PES rule, to train an associative memory.

2.2. The SSP-SLAM model

In this paper, we develop a spiking neural network
SLAM model using semantic pointers, SSPs and the
NEF. The model, SSP-SLAM, consists of six main neural
populations, grouped into four modules, that provide all the
necessary functionality.

• Localization module

– Path integrator: A network maintaining an allocentric self-
position estimate, represented as a SSP φ̂(x(t)), that is
dynamically updated using a velocity signal. Specifically,
this is a recurrent neural network, consisting of many sub-
populations representing controlled oscillators that contain
heading direction cells.

– Grid cell (GC) population: A population representing a
“cleaned-up" version of the SSP self-position estimate,
φ(x̂(t)).

• Landmark perception module

– Object vector cell (OVC) population: A population that
encodes the SSP representation of distances and directions
to landmarks and environmental features in view—i.e., an
egocentric representation of feature locations.

– Object location (OL) population: A population that
performs circular convolution to obtain an allocentric SSP
representation of feature locations.

• Environment map module

– Associative memory (AN) network: A network that learns
a mapping between landmarks and locations using the
biologically plausible PES and Voja learning rules.

• Loop closure module

– Map estimate (ME) population: A population that performs
circular convolution to obtain an alternative estimation of
self-position using the environment map. This provides
corrections to the path integrator.

Each element of the SSP-SLAM model is described in more detail
below and a high-level overview of the model is given in Figure 2.

2.2.1. Localization module
In prior work, we have used SSPs to maintain a neural

estimate of an agent’s self-position while navigating an environment
(Voelker et al., 2021; Dumont et al., 2022). To build a network that
maintains an encoding of position, consider how φ(x) changes if x
is a function of time. We can relate the rate of change of φ to the
velocity ẋ(t):

φ̇(x(t)) = F
−1{eiAx(t) ⊙ iAẋ(t)}, (16)

where ⊙ is element-wise multiplication. Now consider the
dynamics of an SSP in the Fourier domain. Taking the Fourier
transform of Equation (16), we get,

F{φ̇(x(t))} =
(

iAẋ
)

⊙ F{φ(x(t))} . (17)

Note that the dynamics of the Fourier components of an SSP
are independent of one another. The dynamics of the jth Fourier
coefficient of the SSP can be written as

d

dt

[

ReF{φ(x)}j
ImF{φ(x)}j

]

=

[

0 −ωj

ωj 0

][

ReF{φ(x)}j
ImF{φ(x)}j

]

, (18)

where ωj ≡ Aj,: · ẋ(t)

Each Fourier coefficient of the SSP is thus a simple harmonic
oscillator. The real and imaginary components of the Fourier
coefficients of the SSP oscillate about the unit circle with time-
varying frequency ωj = Aj,: · ẋ(t). The oscillator frequencies
are modulated by the velocity; in other words, they are velocity
controlled oscillators (VCOs). In our model, we modify the
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FIGURE 2

The SSP-SLAM model. Output of the localization module is used (along with the egocentric feature locations encoded by the OVC population) to

train an associative memory network, which can be thought of as an environment map. The output of this map is, in turn, used for error correction of

the PI model.

dynamics of Equation (18) so that the unit circle is an attractor and
the oscillators self-stabilize:

d

dt

[

ReF{φ(x)}j
ImF{φ(x)}j

]

=







−ωjImF{φ(x(t))}j +
1−r2j
rj

ReF{φ(x)}j

ωjReF{φ(x(t))}j +
1−r2j
rj

ImF{φ(x)}j






,

(19)

where rj ≡ |F{φ}j|.

This reduces drift and ensures the entire SSP vector remains unit
length. Thus, our path integrator is a hybrid between continuous
attractor and oscillatory inference models of path integration.

To realize this representation and dynamics in a spiking neural
network, we use the tools of the NEF as described above. The SSP
estimate of self-position is encoded in ⌊ d2 ⌋ recurrent populations
of spiking neurons, each of which is a VCO. Only ⌊ d2 ⌋ VCO
populations are needed since the Fourier transform of the SSP
has conjugate symmetry (half of its Fourier components can be
computed from the other half).

To compute the non-linearities bet ween the frequency and SSP
Fourier coefficients, we must represent both in a single population,
as is standard in the NEF. The vector being represented by the
collective activity of the jth VCO population is,

[

ωj ReF{φ̂(x)}j ImF{φ̂(x)}j
]T

. (20)

We write φ̂(x) here to emphasize that this is an estimate of
φ(x). Due to noise inherent in neural encoding and the dynamics
being approximated by recurrent connections rather than being
computed exactly, this estimate will drift from the SSP encoding of
the ground truth position over time. Indeed, the vector encoded by
the path integrator will even drift from the sub-space of SSP vectors
in R

d without some form of correction.
A population of speed- and heading-direction cells that encode

the agent’s velocity projects onto the VCO populations. The
connection weights compute the linear transform needed to obtain
the input frequencies, Aẋ(t) = ω. Each VCO neural population
is recurrently connected to itself with weights optimized by least
squares to implement the dynamics of Equation (19).

An advantage of this model is its ability to perform localization
in space of different dimensionality without major modification.
Consider the SSP representation of a x(t) ∈ R

m, given by
φ(x(t)) ∈ R

d, compared to an SSP of the same dimension d, but
encoding a higher dimension variable, φ(y(t)) where y(t) ∈ R

p

and p 6= m. In either case, the dynamics of the SSP are given
by Equation (18). The same set of VCO populations can model
the dynamics of φ(x(t)) and φ(y(t)) – the only difference between
their computations is the calculation of the frequencies, ωj, used in
the VCOs. These frequencies are input to the path integrator, with
incoming synaptic weights performing the linear transformation
from self-motion to frequencies, Aẋ(t). The same path integrator
network can receive input from multiple sources, with synaptic
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gating used to switch between localization in different dimensional
spaces and coordinate frames.

Note that the VCO populations consist of spatially sensitive
neurons, but these neurons will not resemble place or grid cells.
Each oscillator is a population representing a frequency (derived
from velocity) and a single Fourier coefficient of the SSP. This
results in neurons with conjunctive sensitivity to heading direction,
speed, and spatial position (in a periodic fashion, resembling a
plane wave). Their firing patterns are velocity dependent bands or
stripes. Banded cells have been predicted by other VCO models
(Burgess, 2008) and have been a point of contention since reports
of band cells in the hippocampal formation are limited, and their
existence is controversial (Krupic et al., 2012; Navratilova et al.,
2016). Additionally, grid cells do not intrinsically emerge from PI
in the model presented in this section. Nevertheless, SSPs naturally
represent grid cells, and we use such a population to represent the
collective output of all VCOs after a clean-up operation and provide
a better basis for the downstream construction of place cells and
spatial maps (Orchard et al., 2013; Dumont and Eliasmith, 2020).
This is not unwarranted, given the observations from theMEC. The
deeper layers of the MEC receive hippocampal output [along with
input from many other cortical areas (Czajkowski et al., 2013)],
and is where head-direction cells, speed cells, and conjunctive grid
cells are primarily located (Witter andMoser, 2006). The superficial
layers of the MEC, specifically layer II, mainly provide input to
the hippocampus and consist mostly of “pure" grid cells (Sargolini
et al., 2006). This suggests that the deeper layers and head direction
cells may play a crucial role in integrating external input, much
like the path integrator network in SSP-SLAM. The output of
this integration is then processed into more stable, purely spatial
representations in the superficial layers, like the grid cell population
in SSP-SLAM, which are used for downstream tasks. However, this
narrative is subject to debate, and not universally accepted.

As described in Section 2.1.3, SSPs can be used to construct
probability distributions. When performing path integration, we
are interested in obtaining an estimate of the agent’s position at a
given point in time. Let φ̂(x(t)) be the vector represented by the
path integrator network at time t. The network is initialized to
encode the SSP φ(x(0)), from which a prior probability distribution
can be computed. At every simulation time step this belief state
is updated according to the dynamics given in Equation (19).
Then, the probability density of the agent being at a location x̂
is f̂ (x̂) ≈ (φ(x̂) · φ̂(x(t)) − ξ )+. The position estimate of the
path integration model is taken to be the x̂ that maximizes this
posterior distribution, i.e., the maximum a posteriori probability
(MAP) estimate. A simple example path decoded in this manner
is shown in Figure 3. The SSP representation of the MAP estimate,
φ(x̂), is computed as a part of the “clean-up" process applied to the
output of the VCOs to obtain the input to the grid cell population.

2.2.2. Landmark perception module
In the SSP-SLAM model, the agent not only receives a self-

velocity signal as input, but additionally receives observations of
its local environment. As an animal moves through space, sensory
systems and other brain regions provide information about its
surroundings. The inferotemporal cortex, for example, plays a

vital role in object recognition (Rajalingham and DiCarlo, 2019),
and populations in the medial entorhinal cortex (MEC) appear
to encode vectors to nearby objects (Høydal et al., 2019). It is
possible to create a spiking neural network that uses raw sensory
data to recognize objects and estimate their displacement from
the observer, though it remains an active area of research. For
example, Osswald et al. (2017) presented a spiking neural network
model and neuromorphic demonstration of stereo-correspondence
in 3D space. Spiking neural algorithms for object detection (Kim
et al., 2020b) and place recognition (Hussaini et al., 2022) have also
been developed. Moreover, deep learning has proven to be highly
successful in computer vision tasks such as semantic segmentation
(Lateef and Ruichek, 2019), and these pre-trained artificial neural
networks can be converted to spiking neural networks (Cao et al.,
2015). However, in this work, visual processing of raw sensory data
is out of scope. Instead, we assume that information regarding
distance to landmarks and landmark identity is provided directly
as input to SSP-SLAM.

Specifically, we let {B1,B2, . . . } be a set of semantic pointers
representing features or landmarks in an environment, at locations
{x1, x2, . . . }. The input to SSP-SLAM uses these representations to
determine the SSP representation of the vector from the agent to
each landmark within the agent’s field of view, φ(xi−x(t)). In short,
the input is represented in a population that encodes an egocentric
representation of landmark locations that will change over time
as the agent passes by landmarks. The neurons in this population
have activity patterns like those of object vector cells (OVCs) in the
MEC, so we call the population the OVC population. The output
of the path integrator and OVC populations are bound together to
compute allocentric features locations, φ̂(x(t)) ⊛ φ(xi − x(t)) =

φ̂(xi) ≈ φ(xi). This is stored in the object location (OL) population.
As with path integration positions, the allocentric SSP estimate

of an landmark location, φ̂(xi), can be converted into probabilities.
The probability density of landmark Bi being at a location x is
(φ(x) · φ̂(xi)− ξ )+ (see Figure 4 for examples).

2.2.3. Environment map module
In SSP-SLAM, an environment map is stored in the weights

of a heteroassociative memory network. This memory network
architecture was first presented in Voelker et al. (2014). It is a
neural population that maps input to some desired association.
The PES learning rule, given in Equation (13), is used to train the
decoders (i.e., the outgoing synaptic weights) of the population.
Concurrently, the Voja learning rule, given in Equation (15), is used
to modify the population’s encoders. This shifts neurons’ encoders
to be more similar to input they receive. It results in sparser
representations in the population, which helps prevent catastrophic
forgetting or interference.

Networks that map between landmarks and locations can
be thought of as encoding a cognitive map. In SSP-SLAM,
several landmark-location mappings are of interest. The
associative memory network just described maps features in
the agent’s field of view (e.g., objects, landmarks, barriers,
colors, etc.) to the current estimate of those feature’s locations
as SSPs, φ̂(xi). Notably, these environmental features can be
structured representations. For example, vector representations
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FIGURE 3

The time evolution of the posterior distribution f(x) = (φ(x) · φ(t)− ξ )+, where φ(t) is the output of the vector encoded by the collective activities of

neurons in the path integrator network. The black “x" shows the ground truth x(t) at the sampled times, and the grey line shows the complete ground

truth path.

FIGURE 4

(A) An example 2D environment consisting of three point landmarks (a blue square, blue triangle, and orange triangle) and a wall region. An agent

transverses a 60 s long trajectory through the environment (the black line). The agent has a limited field of view. The grey circles around landmarks

indicates the distance at which the landmark is visible to the agent. SSP-SLAM is used to estimate the agent’s location and learn a map of this

environment. (B–E) The environment map network, trained to map features to locations, is probed at the end of the simulation. In (B), the location of

the blue triangle is recalled by passing in B⊛ T to the environment map network. The heat map shows the similarity of the output of the network to

SSPs representing points over the 2D. This represents the probability over locations. (C) The recall of the location of all blue landmarks, plotted as a

similarity map. (D) The recall of the location of all triangle landmarks, plotted as a similarity map. (E) The recall of the wall area.

of a color, smell, and shape can be bound or bundled
together to create a multi-sensory landmark. Using such
representations, complex semantic environment maps can
be learned.

Other mappings can be used as well. For example, a network
can be trained to map feature locations φ̂(xi), to feature symbols.
Or, alternatively, a mapping from feature locations to feature
symbols bound with their location, φ̂(xi) ⊛ B, can be learned.
Given an SSP input that represents the whole area of an
environment, the network will approximately recall

∑

i φ(xi)⊛ Bi,
and so a single vector representation of a complete map can be
recovered. We demonstrate a variety of these mappings in the
Section 3.

2.2.4. Loop closure module
The combination of the PI model (presented in Section

2.2.1) and the associative memory network (for environment
mapping) provides the core components of a SLAM model. As
landmarks are discovered, their perception drives the training
of a memory network, which learns a mapping from a symbol-
like representation of features, Bj, to their locations, φ̂(xi). When
landmarks are re-encountered, the past estimate of their location is
recalled by the memory network. This might be different than the
current estimate of their locations computed in the OL population,
due to errors accumulating in the PI computation. The difference in
estimations is used to correct the PI model. This full loop is shown
in Figure 2.
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TABLE 1 The hyperparameters used for experiments with SSP-SLAM,

exceptions are noted in the text.

Parameter Default value

Number of neurons

PI 45,000

GC 1,000

OVC 1,000

OL 27,000

AM 1,000

ME 27,000

Dim of SSPs, d 181

View radius of agent 0.3× env. radius

Post-synaptic time constant, τsyn 0.05

Max firing rate of LIF neurons 200–400 Hz

Proportion of active neurons 0.1

Voja learning rate 5× 10−3

PES learning rate 1× 10−2

3. Results

3.1. Mapping in 2D environments

In this section, we focus on a single example environment to
demonstrate map querying and accuracy in SSP-SLAM. As shown
in Figure 4A, we use a simple 2D environment that contains three
point landmarks (a blue square, blue triangle, and orange triangle)
as well as a wall region. To provide a path, we generate a random,
frequency-limited trajectory through the environment and use
finite differences to obtain velocities along the path (see Figure 4).
The velocity input signal is represented by a spiking neural
population, introducing noise to the signal. Model parameters used
in this and subsequent experiments (unless stated otherwise) are
given Table 1.

The environment map network is trained to map semantic
pointers representing environment features to the feature locations
as SSPs. Given the map in Figure 4, it ideally learns the
following associations:

BLUE⊛ SQUARE → φ([0.6, 0.2]) (21)

BLUE⊛ TRIANGLE → φ([0.0,−0.6]) (22)

ORANGE⊛ TRIANGLE → φ([−0.2, 0.2]) (23)

WALL →

∫ 1.1

0.5

∫ −0.95

−1.1
φ(x, y)dxdy

+

∫ 1.1

0.95

∫ −0.4

−1
φ(x, y)dxdy (24)

where BLUE is a semantic pointer representing the color
“blue", SQUARE is the semantic pointer representing the shape
“square", etc.

At the end of the simulation, the actual mapping learned by the
environment map network is probed. The locations of particular
point landmarks is recalled by feeding in semantic pointer input,
e.g., BLUE ⊛ TRIANGLE as shown in Figure 4B. Additionally, the

map was queried for locations of all landmarks sharing certain
characteristics. For example, the locations of all blue landmarks
was queried by giving the network input BLUE ⊛ (SQUARE +

TRIANGLE) (see Figure 4C).
In Figure 5A, theMAP estimates of point landmark locations at

the end of the simulation are shown. Also plotted is the output of
a biologically plausible computation of the vector from the model’s
self-position estimate to all recalled landmark locations. The output
from querying the environment map network for each landmark’s
SSP location, φ̂(xi), is combined with the output of the localization
module to compute these vectors over the simulation run time. This
is done by taking the inverse of the SSP output of the localization
module, φ(x̂(t))−1, and binding it with recalled locations from the
associative memory, φ(x̂(t))−1

⊛φ̂(xi) = φ̂(xi−x(t)) ≈ φ(xi−x(t)).
This produces an estimate of the vector distance between the agent
and landmark i – a useful quantity for navigation. The error in
this computation is plotted in Figures 5B, C. At the beginning of
the simulation, environment map has not yet been learned and
so the output φ̂(xi − x(t)) is inaccurate. After an item has been
encountered, the error drops.

An associative memory that maps landmark location SSPs to
landmark semantic pointers is also trained in this experiment. After
learning, SSPs are passed into this network to recall the semantic
pointers of landmarks or features at particular locations or over
particular areas. An example of querying an area is shown in
Figure 6.

3.2. Maintaining neural activity patterns

The activity patterns of spiking neurons in various components
of the SSP-SLAM are presented and discussed here. SSP-SLAM is
run on a 150 s path, recorded from a rat by Sargolini et al. (2006),
with ten landmarks at random locations added to the environment
for our experiment. Spike trains are recorded from neurons in
the path integrator network, GC population, OVC population, and
the associative memory network during the simulation. Activity
patterns from certain example neurons are shown in Figure 7.

In Figure 7A, we see that a neuron in the GC population
indeed has hexagonally patterned activity, as expected. However,
this pattern deteriorates when using the path integrator alone. The
corrections computed using the trained environment map module
ensure the pattern’s stability. This environment map is learned
by modifying the outgoing connection weights in the associative
memory population using the PES rule, while the Voja learning
rule is used to modify the encoders of the associative memory
population. This results in neurons developing selective sensitivity
to particular encountered landmarks, similar to hippocampal place
cells (Geiller et al., 2017; Kim et al., 2020a). This is apparent in
Figure 7C. In Figure 7B, the activity of a neuron from the OVC
population is shown and, as expected, its activity is like that of the
object-vector cells of the MEC.

Activity from an example neuron from aVCOpopulation in the
path integrator is shown in Figure 7D. Here the spatial sensitivity of
the neuron is not discernible. There are no obvious stripe or band
patterns, due to the neuron’s conjunctive sensitivity to velocity. In
a non-random path with correlation between path velocity and
position, a stripe pattern would be more apparent (for example,
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FIGURE 5

The results from querying vectors to landmarks in the same environment from Figures 4, 6. (A) Each “X” marks the model’s MAP estimate of a point

landmark’s location at the end of the simulation. The arrows are estimates of the vectors between self-position and recalled landmarks at the end of

the simulation. These approximate vectors are estimated from φ̂(xi − x(t)), obtained by binding the model’s other SSP estimates,

φ(x̂(t))−1 ⊛ φ̂(xi) ≈ φ(xi − x(t)). (B) The similarity error, 1− φ(xi − x(t)) · φ̂(xi − x(t)), over the simulation time t. (C) The distance between the MAP estimate

obtained from φ̂(xi − x(t)) and the ground truth vector between self-position at time t and landmark locations, xi − x(t).

FIGURE 6

(A) An example 2D environment and a query area (the dark grey shaded region). The SSP representing the query area is given as input to an

associative memory network that learned to map object location SSPs to object features, using the output of SSP-SLAM’s path integrator and OB

network components. (B) The similarity of the output of the associative memory network to all object semantic pointers in the environment. The

results indicate that the orange triangle and blue square are within the queried area.

the spiral path example used in Dumont et al., 2022). However, the
histogram in Figure 7D showing the distribution of spike counts
by heading direction shows that the neuron has selective sensitivity
to heading directions between 337.5◦ and 360◦ from north. Thus,
this neuron is not unlike the head direction cells with conjunctive
sensitivity to velocity and position found in the MEC in Sargolini
et al. (2006).

3.3. Localization in 2D environments

In this experiment, the accuracy of localization in SSP-SLAM
is explored. SSP-SLAM is tested on ten different environments. In

each environment, ten random locations were chosen for point
landmarks, and a two minute-long path generated. The paths are
randomly generated from band-limited white noise signals. The
model is initialized with the SSP representation of the starting point
of the path, and receives the velocity along the path (computed
using finite differences) as input over the simulation run time.

To determine the accuracy of the model, the raw spiking data
is interpreted as a position estimate as follows (see Figure 8).
The vector represented by the path integrator network, φ̂(x(t)),
is decoded from neural activities. Then the x̂ that maximizes
(φ(x̂) · φ̂(x(t)) − ξ )+ is computed. This is the MAP estimate
of self-position.

The average accuracy of SSP-SLAM localization output is
shown in Figure 8. Plotted are similarity and distance errors.
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FIGURE 7

Firing patterns of neurons in SSP-SLAM. The path used for the simulation is shown in grey [obtained from Sargolini et al. (2006)]. Red dots indicate the

positions at which a neuron fired. (A) A neuron from the GC population encoding φ(x̂(t)). Spikes are recorded with the normal functioning of

SSP-SLAM in the top row. For the second row, error correction from the learned environment map is turned o� (i.e., the GC population was

representing the output of path integration alone). The first column of both rows presents result half way through the simulation, while the second

column displays the complete recording. The corrections from the environment map help maintain the grid-cell-like activity pattern over time. (B) A

neuron from the OVC population encoding the SSP representation of the vector between x(t) and any landmarks in view. Object locations are

marked with an “x". For this simulation, only three landmarks are included for clarity of the visualization. This neuron fires when an landmark is east of

the agent. (C) A neuron from the associative memory population. The Voja learning rule shifts the neuron’s encoder toward its input, resulting in the

neuron firing when a particular landmark (marked with an “x") is in view. (D) A neuron from a VCO population in the path integrator. Neurons in this

population have conjunctive sensitivity to velocity and position. On the right panel, spike counts are binned by the heading direction of the path,

demonstrating the neuron’s preference for a particular head direction.

The increasing similarity error for SSP-SLAM shows that it is
not perfectly representing the SSP encoding of the ground truth.
However, the low distance error indicates that an accurate position
estimate can be decoded from the output of SSP-SLAM. The
absolute trajectory error (the average deviation from ground truth
trajectory per time-step) for SSP-SLAM is 0.0529± 0.0315 in these
experiments. For the PI model alone, this error is 0.7876 ± 0.2958
Integrating the RMSE between SSP-SLAM’s MAP estimate and the
ground truth over the entire simulation time yields 5.758 ± 3.704
for SSP-SLAM and 73.728 ± 33.69 for PI. The error corrections
provided by the environment map in SSP-SLAM result in a more
than ten-fold improvement in localization error.

Figure 9 shows examples of the path estimate of SSP-SLAM
compared to the exact path and the path integrator network alone
(i.e., dead reckoning); the full SSP-SLAM model accurately follows
the true path for the entire trajectory. In contrast, the results
from the path integrator alone are very poor in these experiments
due to the length of the paths and the number of neurons used.
Early on in the simulation, the vector represented by the path
integrator leaves the manifold in R

d of the SSPs. Since it is no
longer representing a valid SSP, an accurate position cannot be
decoded and so the position estimate jumps wildly in the space. In

contrast, the corrections computed using the environment map in
SSP-SLAM keep the path integrator output near the ideal result.

3.4. Localization in 3D environments

While we have focused on 2D environments in this work, the
model and all representations naturally generalize to any number of
dimensions. In Figure 10, we show how the same model structure
using 3D SSPs can be used to accurately perform 3D localization.
There are no differences between this and the 2D models, other
than using SSP vectors, φ(x), encoding x ∈ R

3.

3.5. Neuromorphic simulation of dead
reckoning

To investigate the feasibility of deploying SSP-SLAM on
neuromorphic hardware, we simulated the path integrator network
on the NengoLoihi emulator. This Python package allows spiking
neural network models built in Nengo to be run on Intel’s Loihi
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FIGURE 8

The solid line is the performance measure averaged over ten trials of di�erent paths. Also shown are shaded error bars. (A) The similarity error,

1− φ(x(t)) · φ̂(x(t)), over the simulation time t – i.e., how far the o� the vector output of the path integrator is from the SSP encoding of the ground

truth. (B) The distance between the model’s MAP estimate of self-position and the ground truth over the simulation time.

FIGURE 9

Each panel shows model results for a di�erent environment/ trial. The ground truth paths are plotted as grey solid lines. The dashed blue line is the

location estimate from SSP-SLAM. The dashed orange line is the estimate from the path integration network without any corrections from the

environment map network (i.e., dead reckoning).

architecture. It includes both support for running models on the
Loihi hardware and a Loihi emulator, which we used for these
experiments. In this experiment, we run the model on paths
derived from the KITTI odometry benchmark (Geiger et al., 2012).
However, we do not use raw visual input from the KITTI datasets,
as our model does not support visual SLAM. Rather, we use velocity
signals computed via finite differences on the ground truth paths
and represented by a neural population. To compensate for the

absence of the landmark perception, environment map, and loop
closure modules, the total number of neurons in the path integrator
was increased to 90,000 to reduce drift. Results are shown in
Figure 11.

Notably, the NengoLoihi emulator implements the same
limited precision mathematics as the actual hardware, using 8-
bit weights and a quantized neuron response function. Figure 11
shows that the path integrator network is robust to these additional
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FIGURE 10

Results from 3D SLAM. The ground truth path is shown in grey, the SSP-SLAM MAP estimate is in blue, and the locations of ten point landmarks are

given by the black dots.

constraints, and continues to perform largely as expected, although
with more error compared to the typical performance of the full
SSP-SLAMmodel (Section 3.3).

4. Discussion

4.1. Prior research

The development and implementation of SLAM algorithms for
mobile robots has garnered significant attention in academic and
engineering communities. Approaches generally involve recursive
Bayesian estimation—via various kinds of Kalman Filters (Smith
et al., 1990; Brossard et al., 2018), Particle Filters (Montemerlo
et al., 2002; Sim et al., 2005), or occupancy grid methods
(Stachniss et al., 2004)—or graph optimization (Thrun and
Montemerlo, 2006; Sünderhauf and Protzel, 2012). In recent years,
researchers have focused on incorporating semantic information
into SLAM systems, using deep artificial neural networks,
particularly convolutional or recurrent neural networks for object
detection and semantic segmentation. The use of semantic
information in SLAM has been found to improve performance
and robustness of robot localization (Frost et al., 2016; Stenborg
et al., 2018; Bowman, 2022). Furthermore, robots equipped with
semantic SLAM hold the promise of performing higher-level tasks,
such as planning paths based on human instructions that reference
objects in the environment. Concurrently, an alternative approach
to SLAM, drawing inspiration from the brain, has continued to
develop novel algorithms with the goal of improving efficiency
and robustness (Milford et al., 2004, 2016; Silveira et al., 2015;
Yu et al., 2019). In this line of research, models of neural path
integration inspired by hippocampal cells are used for localization.
Coupling such neural algorithms with recent developments in
neuromorphic hardware, as we have done here, aims to both

improve our understanding of how the brain accomplishes SLAM
and to improve the power efficiency of engineered solutions.

Neural localization models used in this alternative approach
can generally be divided into two categories: Continuous Attractor
Network (CAN) models (Samsonovich and McNaughton, 1997;
Tsodyks, 1999; Conklin and Eliasmith, 2005) and Oscillator-
Interference (OI) models (O’Keefe and Burgess, 2005; Burgess
et al., 2007; Hasselmo et al., 2007; Welday et al., 2011). In
CAN models, path integration is performed by a recurrently
connected neural sheet, whose dynamics sustain a single Gaussian-
like activity bump that represents the self-position estimate of
an agent. In contrast, in OI models, the self-position estimate
is encoded by the phase differences between Velocity-Controlled
Oscillators (VCOs)—oscillators whose frequency is modulated by a
velocity signal.

The seminal application of neural-inspired methods to SLAM
is RatSLAM, in which visual odometry is used to drive a CAN
(Milford et al., 2004, 2016). The CAN consists of “pose cells"
(similar to the place and head direction cells found in the
hippocampal formation) and maintains an estimate of self-position
and orientation. Sensor data is processed outside the neural
network to create a template array (for example, raw visual input
is converted to an intensity profile vector). When a novel template
is observed, a new “local view cell" (similar to the spatial view
cells in the hippocampus) is added to the network. The population
of these cells is sparsely connected to the CAN, with associations
learned via Hebbian learning. Additionally, a graph is constructed
and updated with a graph relaxation algorithm online to create a
topological environment map. Its nodes store experiences in the
form of activity of pose cells and local view cells along with robot
pose estimates.

In contrast, a hybrid OI-CAN model is used for path
integration in SSP-SLAM and a graphical environment map is
not learned—instead, the outgoing connection weights from the
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FIGURE 11

Results from the path integrator network simulated on the NengoLoihi emulator using two di�erent 3D paths constructed from the KITTI odometry

dataset (Geiger et al., 2012). (A, D) Comparison of the ground truth paths (in grey) to our model’s MAP estimate (in orange) along di�erent

dimensions. (B, E) The probability the model assigns to the ground truth over time. (C, F) The RMSE between the MAP estimate and ground truth.

memory network implicitly store a map which can be retrieved
by querying the network. The Voja rule, which is used to shift
the associative memory population encoders toward observed
input in SSP-SLAM, plays a similar role to the template novelty
detection and addition of local view cells that occurs in RatSLAM.
Furthermore, we have not implemented an externalmodule for pre-
processing of sensory data, and we use landmark semantic pointers
and displacement SSPs in lieu of templates. Object detection and
depth estimation algorithms would be required to obtain this input
from visual data.

Many models have since extended the original RatSLAM.
CAN SLAM models with place cell-like activity were also used by
BatSLAM (Steckel and Peremans, 2013), an extension to RatSLAM
for handling environment information from sonar sensors, and
DolphinSLAM (Silveira et al., 2015), developed for 3D SLAM in
underwater environments. A CAN consisting of conjunctive grid
cells was used in the SLAMmodel presented in Zeng and Si (2017).
Three-dimensional SLAM in realistic environments with grid cells
was also explored in NeuroSLAM (Yu et al., 2019). Unlike our
work, none of these models use spiking neural networks.

More recent research has focused on developing spiking
networks for SLAM and testing them on neuromorphic hardware.
Spiking 2D SLAM models were presented in Tang and Michmizos
(2018), Tang et al. (2019), and Kreiser et al. (2020a,b). In Kreiser
et al. (2020a), a SLAM system on the Loihi chip was used to estimate
the head position of an iCub robot as it visually explored a wall with

a dot pattern acting as the environment. Tang et al. (2019) made use
of a depth camera and Bayesian updates on a posterior distribution
represented by neural population. They found that their SLAM
system, when run on Loihi, was more energy efficient by two orders
of magnitude compared to a baseline method on a CPU. While
the models discussed here use raw sensory input, it should be
noted that non-spiking visual modules are used to process this
information and obtain input for SLAM. For instance, intensity
profile vectors or feature colors and distances from the observer
are used. In contrast to SSP-SLAM, none of the models mentioned
incorporate any elements of OI to perform path integration, or
perform 3D SLAM. Furthermore, some of these models employ
“localist"/discrete representations, such as using one neuron to
represent each integer value for heading direction or discretized
distance to features. This approach does not support generalization
and does not scale well to higher dimensional representations,
unlike SSPs.

Taken together, and summarized in Table 2, past work provides
examples of spiking and non-spiking networks, using CANs
for path integration. However, unlike SSP-SLAM, none of these
approaches provides a methodology for incorporating semantic
information or for online learning of semantic environmental
maps. In addition, none of these employ SSPs, or the same
combination of a OI-CAN network in a fully spiking model capable
of functioning equally well in both 2D and 3D spatial environments,
as demonstrated above.
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TABLE 2 Comparison of bio-inspired SLAMmodels.

Model Sensors Input
representation

Dim. Localization Env. map Cells Experiment
scale

Spiking Neuromorhpic
hardware

SSP-SLAM None Displacement to
features as an SSP
and feature
identities as SPs

Any, tested on 2D
& 3D

OI-CAN hybrid Weights between
landmark
population to
landmark locations

HDC, GC,
landmark cells,
OVC

Small Yes Partially

RatSLAM (Milford
et al., 2004, 2016)

Monocular camera Greyscale image
intensity profile

2D CAN Topological map
associating local
views with position
stored as a graph

Pose cells, local
view cells

Large No No

BatSLAM (Steckel
and Peremans,
2013)

Biomimetic sonar Intensity difference
between left and
right Echolocation
Related Transfer
Functions

2D CAN Topological map
local views with
position stored as a
graph

Pose cells, local
view cells

Small No No

DolphinSLAM
(Silveira et al., 2015)

Sonar & visual One-hot
representation
obtained from
FabMAP algorithm
on top of a Bag of
Words model

3D CAN Graph with nodes
storing local view,
place cell and
position while edges
store displacements

3D PC, local view
cells

Small No No

NeuroSLAM (Yu
et al., 2019)

Panoramic camera Greyscale image
intensity profile

3D CAN Topological map
storing activities of
local view cells,
GCs, HDCs, and
estimated pose

3D PC, conjuctive
3D GC and HDC,
local view cells

Large No No

Kreiser et al.
(2020a)

Event-based camera Detection of
blinking LEDs at
different
frequencies

2D CAN Weights from
landmark
population to a
HDC population

HDC, landmark
cells

Small Yes Fully

Tang et al. (2019) RGB-Depth camera Discretized
distances to
landmarks

2D CAN Weights from PC to
a displacement-
from-border
population

2D PC, HDC,
border cells,
Bayesian cells

Small Yes Fully
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4.2. Performance

We have presented the results of several experiments on
SSP-SLAM to assess its performance and utility. The model
demonstrates accurate localization capabilities on different paths,
both two-dimensional and three-dimensional. To achieve this, a
hybrid OI-CAN model is employed for path integration. Notably,
this is the only SLAM model (to our knowledge) that uses
OI techniques for localization. This approach has the advantage
of easy generalization to higher dimensional spaces. Typically,
CAN models describe a neural population as a 2D sheet or
3D array (often with periodic boundary conditions), where the
geometry specifies the recurrent connectivity pattern required
for localization. However, this only supports unimodal position
estimates, and the connectivity pattern must be modified and made
more complicated tomove to higher dimensional path integration.1

In contrast, in our approach the recurrent connectivity of the
path integrator network remains the same regardless of spatial
dimensionality. This allows the same model to switch seamlessly
between SLAM in different spaces and domains.

Furthermore, SSP-SLAM encodes environment maps in the
outgoing connections of an associative memory network, which
are learned online using biologically plausible learning rules. The
map generated is a semi-metric, semantic map that uses symbol-
like vector representations that have been leveraged in a variety of
large-scale cognitive models (Eliasmith, 2013; Arora et al., 2018;
Kajić et al., 2019; Kelly et al., 2020; Gosmann and Eliasmith,
2021). By working in the SSP and VSA paradigm, we are able
to formulate the problem in such a way that unites metric and
semantic SLAMs. This approach unites analytical models of vehicle
motion and map construction with neural networks, resulting in
a formulation that is compatible with modern ML approaches to
robotics, while still maintaining the explainability of the system.
These feature distinguishes SSP-SLAM from other bio-inspired
SLAMmodels and makes it the first spiking semantic SLAMmodel
to our knowledge.

This inclusion of semantic information helps SSP-SLAM be
more accurate. Specifically, SSP-SLAM performs loop closure via
corrections to the PI network provided by the environment map,
which leads to significant improvements in localization accuracy.
After training, the map can be queried to obtain object locations
given their symbol-like representation as a semantic pointer.
Alternatively, item representations can be obtained by querying
specific areas, or vectors between the agent and landmarks can
be computed. These kinds of direct queries of semantic map
knowledge cannot be easily made with past spiking network
map representations.

Finally, a key element of the model, the path integrator, was
tested on a neuromorphic emulator. The results indicate that the
model can maintain expected accuracy (given the absence of error

1 Recent research has explored variants to traditional CANs that overcome

these limitations. A multimodal CAN model was presented in Wang and

Kang (2022) and research exploring CANs with arbitrary dimensional

attractor manifolds and more biologically realistic asymmetries in synaptic

connectivity was presented in Darshan and Rivkind (2022). Such CAN variants

have not been used in SLAM systems.

correction mechanisms) on neuromorphic hardware. Notably, all
additional operations used in the model have been implemented on
neuromorphic hardware in other work (Knight et al., 2016; Mundy,
2017), so we believe this demonstration strongly suggests that a
full neuromorphic implementation is achievable. Overall, this study
presents a novel and promising approach to SLAM based on a fully
spiking neural network.

4.3. Limitations

This study presents a novel model that employs biologically-
inspired mechanisms to solve SLAM. However, SSP-SLAM has
several limitations. First, the full SSP-SLAM model has not been
tested on a neuromorphic chip emulator nor has the model
been deployed on an actual neuromorphic hardware platform.
Second, the model was tested on a small scale and artificial
environments, which restricts what conclusions we can draw as to
its generalizability to more complex, real-world environments.

To improve the model’s utility, it is essential to test it on real-
world input and integrate it with a network that can process raw
sensory data. Such an approach would enhance the model’s ability
to handle more complex and diverse environmental conditions.
Moreover, the current model’s accuracy is inferior to that of non-
biologically inspired SLAM methods, which limits its usefulness
to mobile robotics. This accuracy drop and the use of small
scale test environments is true of current spiking SLAM models
more generally. Despite this, the use of neuromorphic computing
and hardware has the potential to improve energy efficiency of
SLAM systems, which is particularly useful in mobile robotics
applications. This encourages further research into spiking SLAM
systems. Reduced power demands permits the deployment of
SLAMs in progressively more power-constrained environments,
such as edge computing or operations in GPS-denied settings, like
space or sub-sea exploration. An increasing number of algorithms
have harnessed the advantages of spike-based computing to make
gains in efficiency and speed (Yakopcic et al., 2020; Davies et al.,
2021; Yan et al., 2021).

Therefore, while the current model shows promise in enabling
biologically-inspired SLAM, its limitations in terms of testing
and accuracy should be addressed before considering its wider
application in real-world scenarios. Further research could focus
on testing the model on larger networks and more complex
environments, as well as investigating ways to improve its accuracy.

4.4. Future work

One clear direction for future work is ameliorating the
limitations discussed in the previous section. Beyond this, there
are several other directions that warrant further exploration—
for example, explicit modeling of sensor uncertainties using
SSPs, introducing coupling dynamics to increase localization
accuracy, higher-dimensional SLAM, and integration with other
cognitive models.

Accurate of localization is vital and phase drift is one of the
main factors contributing to SSP inaccuracy. As path integration
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progresses, errors can accumulate in the phases of the velocity-
controlled oscillators (VCOs), resulting in inconsistencies that
degrade the spatial information (e.g., see Figure 8). The loop-
closure error corrections (Figure 2) can shift the phases toward the
true values, but the phase inconsistencies would still be present.
However, one could take advantage of the redundancy in the SSP
representation by adding coupling between the VCOs that enforce
their proper phase relationships (Orchard et al., 2013).

Additionally, higher-dimensional SLAM could be a promising
area of investigation. The proposed model can be extended to
localization and mapping in any dimension of space by modifying
the input without changing the model or hyperparameters.
Although SLAM is mainly applied to navigation and mapping
in physical spaces, operating in dimensions equal to or less than
three, it is possible that the same neural mechanisms underlying
spatial navigation and mapping could be applicable to non-spatial
domains, such as mapping in high-dimensional conceptual space.
The idea that similar computations to those behind SLAM may be
understood as core cognitive processes has been proposed in Safron
et al. (2022).

The application of SSP-SLAM to localization and mapping in
various spaces (including non-spatial ones) via interactions with
other cognitive systems is promising area for future research. By
employing control mechanisms to manipulate the input to SSP-
SLAM, it may be possible to model different cognitive functions.
For instance, one could switch between motion input from sensory
systems to perform localization and input from memory and
cognitive maps to simulate path replay or planning. This could
be realized by integrating SSP-SLAM with more complex memory,
action selection, and reasoning systems. Since the proposed model
was developed using the SPA, it fits naturally within the context
of NEF and other SPA models, including Spaun (Stewart et al.,
2012a; Choo, 2018). Integration of the proposed SLAMmodel with
other models constructed with these tools could be used to develop
systems equipped with more sophisticated cognitive capabilities
and able to tackle multiple tasks. Exploiting memory and reasoning
capabilities in large spatial environments remains a challenge for
models of biological cognition.

4.5. Summary

In conclusion, we have proposed a novel spiking semantic
SLAM model, SSP-SLAM, which is inspired by the hippocampal
formation in the mammalian brain. The model is unique in
its integration of a hybrid OI-CAN path integrator, online
biologically-plausible learning of an environment map, and use
of symbol-like object representations in a spiking network. This
combination enables the model to perform SLAM accurately
in small scale environments and learn representations that can
be queried in powerful ways. For example, it can provide
information about what is located in a particular area of
the map, report vectors between landmarks, and identify the
location of objects based on their properties, such as their
color. Furthermore, these techniques advance the sophistication of
biologically plausible SLAM networks, showing a wide variety of

previously identified cell types while demonstrating functionality
in 2D and 3D environments.

Finally, we have tested a core component of the network on a
neuromorphic hardware emulator, which represents an important
step toward achieving a full system running on neuromorphic
hardware. While significant work remains to achieve this goal,
we believe that the methods and components employed in this
study provide a foundation for future research in this area. With
continued progress, this spiking semantic SLAMmodel could have
important applications in a wide range of fields, including robotics,
artificial intelligence, and neuroscience.
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Kajić, I., Schröder, T., Stewart, T. C., and Thagard, P. (2019). The semantic pointer
theory of emotion: Integrating physiology, appraisal, and construction. Cogn. Syst. Res.
35–53. doi: 10.1016/j.cogsys.2019.04.007

Kelly, M. A., Arora, N., West, R. L., and Reitter, D. (2020). Holographic declarative
memory: distributional semantics as the architecture of memory. Cogn. Sci. 44, e12904.
doi: 10.1111/cogs.12904

Kim, A., and Eustice, R. M. (2013). Real-time visual slam for autonomous
underwater hull inspection using visual saliency. IEEE Transact. Robot. 29, 719–733.
doi: 10.1109/TRO.2012.2235699

Kim, S., Jung, D., and Royer, S. (2020a). Place cell maps slowly develop via
competitive learning and conjunctive coding in the dentate gyrus. Nat. Commun. 11,
4550. doi: 10.1038/s41467-020-18351-6

Kim, S., Park, S., Na, B., and Yoon, S. (2020b). “Spiking-yolo: spiking neural
network for energy-efficient object detection,” in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34 (New York, NY), 11270–11277.

Frontiers inNeuroscience 19 frontiersin.org
101100

https://doi.org/10.3389/fnins.2023.1190515
https://doi.org/10.1016/j.cub.2017.10.012
https://doi.org/10.1016/j.procs.2018.11.060
https://doi.org/10.1006/anbe.1996.0464
https://doi.org/10.1002/hipo.20518
https://doi.org/10.1002/hipo.20327
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s10827-005-6558-z
https://doi.org/10.1523/JNEUROSCI.2646-13.2013
https://doi.org/10.1016/j.celrep.2022.110612
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1126/science.1225266
https://doi.org/10.1007/978-94-009-3531-0_19
https://doi.org/10.1016/j.patcog.2021.108225
https://doi.org/10.1038/ncomms14531
https://doi.org/10.1002/rob.21943
https://doi.org/10.1111/1467-9469.00339
https://doi.org/10.1037/rev0000250
https://doi.org/10.1002/hipo.20374
https://doi.org/10.1038/s41586-019-1077-7
https://doi.org/10.1109/LRA.2022.3149030
https://doi.org/10.1016/j.cogsys.2019.04.007
https://doi.org/10.1111/cogs.12904
https://doi.org/10.1109/TRO.2012.2235699
https://doi.org/10.1038/s41467-020-18351-6
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dumont et al. 10.3389/fnins.2023.1190515

Knight, J., Voelker, A. R., Mundy, A., Eliasmith, C., and Furber, S. (2016). “Efficient
spinnaker simulation of a heteroassociative memory using the neural engineering
framework,” in 2016 International Joint Conference on Neural Networks (IJCNN)
(Vancouver, CA: IEEE), 5210–5217.

Komer, B., Stewart, T. C., Voelker, A. R., and Eliasmith, C. (2019). “A neural
representation of continuous space using fractional binding,” in 41st Annual Meeting
of the Cognitive Science Society (Montreal, QC: Cognitive Science Society).

Kreiser, R., Renner, A., Leite, V. R., Serhan, B., Bartolozzi, C., Glover,
A., et al. (2020a). An on-chip spiking neural network for estimation of the
head pose of the icub robot. Front. Neurosci. 14, 551. doi: 10.3389/fnins.2020.
00551

Kreiser, R., Waibel, G., Armengol, N., Renner, A., and Sandamirskaya, Y. (2020b).
“Error estimation and correction in a spiking neural network for map formation
in neuromorphic hardware,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA) (Virtual: IEEE), 6134–6140.

Krupic, J., Burgess, N., and O’Keefe, J. (2012). Neural representations
of location composed of spatially periodic bands. Science 337, 853–857.
doi: 10.1126/science.1222403

Lateef, F., and Ruichek, Y. (2019). Survey on semantic segmentation
using deep learning techniques. Neurocomputing 338, 321–348.
doi: 10.1016/j.neucom.2019.02.003

MacNeil, D., and Eliasmith, C. (2011). Fine-tuning and the stability of recurrent
neural networks. PLoS ONE 6, e22885. doi: 10.1371/journal.pone.0022885

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv:1301.3781.

Milford, M., Jacobson, A., Chen, Z., and Wyeth, G. (2016). “Ratslam:
using models of rodent hippocampus for robot navigation and beyond,”
in 16th International Symposium of Robotics Research, ISRR ’13 (Springer),
467–485.

Milford, M. J., Wyeth, G. F., and Prasser, D. (2004). “Ratslam: a hippocampal
model for simultaneous localization and mapping,” in IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, Vol. 1 (New Orleans,
LA: IEEE), 403–408.

Mitrokhin, A., Sutor, P., Summers-Stay, D., Fermüller, C., and Aloimonos, Y.
(2020). Symbolic representation and learning with hyperdimensional computing.
Front. Robot. AI, 7. doi: 10.3389/frobt.2020.00063

Mittelstaedt, H., and Mittelstaedt, M.-L. (1982). “Homing by path integration,” in
International Symposium on Avian Navigation (ISAN), eds F. Papi and H. G. Wallraff
(Pisa: Springer), 290–297.

Mittelstaedt, M.-L., and Mittelstaedt, H. (2001). Idiothetic navigation in humans:
estimation of path length. Exp. Brain Res. 139, 318–332. doi: 10.1007/s002210100735

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). “Fastslam:
A Factored Solution to the Simultaneous Localization and Mapping Problem,” in
Proceedings of the AAAI Conference on Artificial Intelligence (Palo Alto, CA: AAAI
Press), 18, 593.

Mundy, A. (2017). Real Time Spaun on Spinnaker Functional Brain Simulation on a
Massively-Parallel Computer Architecture. Manchester: The University of Manchester.

Navratilova, Z., Godfrey, K. B., and McNaughton, B. L. (2016). Grids from bands,
or bands from grids? an examination of the effects of single unit contamination on grid
cell firing fields. J. Neurophysiol. 115, 992–1002. doi: 10.1152/jn.00699.2015

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J. Math.
Biol. 15, 267–273. doi: 10.1007/BF00275687

O’Keefe, J., and Burgess, N. (2005). Dual phase and rate coding in hippocampal
place cells: theoretical significance and relationship to entorhinal grid cells.
Hippocampus 15, 853–866. doi: 10.1002/hipo.20115

Orchard, J., Yang, H., and Ji, X. (2013). Does the entorhinal cortex use the Fourier
transform? Front. Comput. Neurosci. 7, 179. doi: 10.3389/fncom.2013.00179

Osswald, M., Ieng, S.-H., Benosman, R., and Indiveri, G. (2017). A spiking neural
network model of 3d perception for event-based neuromorphic stereo vision systems.
Sci. Rep. 7, 40703. doi: 10.1038/srep40703

Palomeras, N., Carreras, M., and Andrade-Cetto, J. (2019). Active slam for
autonomous underwater exploration. Remote Sens. 11, 2827. doi: 10.3390/rs11232827

Plate, T. A. (1995). Holographic reduced representations. IEEE Transact. Neural
Netw. 6, 623–641. doi: 10.1109/72.377968

Rahimi, A., and Recht, B. (2007). Random features for large-scale kernel machines.
Adv. Neural Inf. Process. Syst. 20, 1177–1184.

Rajalingham, R., and DiCarlo, J. J. (2019). Reversible inactivation of different
millimeter-scale regions of primate it results in different patterns of core object
recognition deficits. Neuron 102, 493–505. doi: 10.1016/j.neuron.2019.02.001

Rasmussen, D., and Eliasmith, C. (2014). “A neural model of hierarchical
reinforcement learning,” in Proceedings of the 36th Annual Conference of the Cognitive
Science Society, eds P. Bello, M. Guarini, M. McShane, and B. Scassellati (Austin:
Cognitive Science Society), 1252–1257.

Rathi, N., Agrawal, A., Lee, C., Kosta, A. K., and Roy, K. (2021). “Exploring spike-
based learning for neuromorphic computing: prospects and perspectives,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE) (Grenoble:
IEEE), 902–907.

Safron, A., Catal, O., andVerbelen, T. (2022). Generalized simultaneous localization
and mapping (g-slam) as unification framework for natural and artificial intelligences:
towards reverse engineering the hippocampal/entorhinal system and principles of
high-level cognition. Front. Syst. Neurosci. 16, 787659. doi: 10.3389/fnsys.2022.787659

Samsonovich, A., and McNaughton, B. L. (1997). Path integration and cognitive
mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920.
doi: 10.1523/JNEUROSCI.17-15-05900.1997

Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M.-
B., et al. (2006). Conjunctive representation of position, direction, and velocity in
entorhinal cortex. Science 312, 758–762. doi: 10.1126/science.1125572

Silveira, L., Guth, F., Drews-Jr, P., Ballester, P., Machado, M., Codevilla, F., et al.
(2015). An open-source bio-inspired solution to underwater slam. IFAC PapersOnLine
48, 212–217. doi: 10.1016/j.ifacol.2015.06.035

Sim, R., Elinas, P., Griffin, M., Shyr, A., and Little, J. J. (2005). “Vision-based
slam using the rao-blackwellised particle filter,” in IJCAI Workshop on Reasoning with
Uncertainty in Robotics, Vol. 14 (Edinburgh: Citeseer), 9–16.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain
spatial relationships in robotics. Autonom. Robot Vehicles 167–193.
doi: 10.1007/978-1-4613-8997-2_14

Stachniss, C., Hahnel, D., and Burgard, W. (2004). “Exploration with active loop-
closing for fastslam,” in 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 2 (Sendai: IEEE), 1505–1510.

Steckel, J., and Peremans, H. (2013). Batslam: Simultaneous
localization and mapping using biomimetic sonar. PLoS ONE 8, e54076.
doi: 10.1371/journal.pone.0054076

Stenborg, E., Toft, C., and Hammarstrand, L. (2018). “Long-term visual localization
using semantically segmented images,” in 2018 IEEE International Conference on
Robotics and automation (ICRA) (Brisbane: IEEE), 6484–6490.

Stewart, T., Choo, F.-X., and Eliasmith, C. (2012a). “Spaun: a perception-cognition-
action model using spiking neurons,” in Proceedings of the Annual Meeting of the
Cognitive Science Society (Sapporo), Vol. 34.

Stewart, T. C., Bekolay, T., and Eliasmith, C. (2012b). Learning to select
actions with spiking neurons in the basal ganglia. Front. Neurosci. 6, 2.
doi: 10.3389/fnins.2012.00002

Sünderhauf, N., and Protzel, P. (2012). “Switchable constraints for robust pose
graph slam,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (Vilamoura-Algarve: IEEE), 1879–1884.

Tang, G., and Michmizos, K. P. (2018). “Gridbot: An autonomous robot controlled
by a spiking neural network mimicking the brain’s navigational system,” in Proceedings
of the International Conference on Neuromorphic Systems (Knoxville), 1–8.

Tang, G., Shah, A., and Michmizos, K. P. (2019). “Spiking neural network on
neuromorphic hardware for energy-efficient unidimensional slam,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Macau: IEEE),
4176–4181.

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., et al.
(2018). Large-scale neuromorphic spiking array processors: a quest to mimic the brain.
Front. Neurosci. 12, 891. doi: 10.3389/fnins.2018.00891

Thrun, S., and Montemerlo, M. (2006). The graph slam algorithm with
applications to large-scale mapping of urban structures. Int. J. Rob. Res. 25, 403–429.
doi: 10.1177/0278364906065387

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189.
doi: 10.1037/h0061626

Tsodyks, M. (1999). Attractor neural network models
of spatial maps in hippocampus. Hippocampus 9, 481–489.
doi: 10.1002/(SICI)1098-1063(1999)9:4<481::AID-HIPO14>3.0.CO;2-S

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Berlin: Springer.

Voelker, A. R. (2020). A short letter on the dot product between rotated fourier
transforms. arXiv:2007.13462.

Voelker, A. R., Blouw, P., Choo, X., Dumont, N. S.-Y., Stewart, T. C., and Eliasmith,
C. (2021). Simulating and predicting dynamical systems with spatial semantic pointers.
Neural Comput. 33, 2033–2067. doi: 10.1162/neco_a_01410

Voelker, A. R., Crawford, E., and Eliasmith, C. (2014). “Learning large-scale
heteroassociative memories in spiking neurons,” in Unconventional Computation
and Natural Computation, 13th International Conference, UCNC 2014, London, ON,
Canada. doi: 10.1007/978-3-319-08123-6

Wang, R., and Kang, L. (2022). Multiple bumps can enhance robustness
to noise in continuous attractor networks. PLoS Comput. Biol. 18, e1010547.
doi: 10.1371/journal.pcbi.1010547

Welday, A. C., Shlifer, I. G., Bloom, M. L., Zhang, K., and Blair, H.
T. (2011). Cosine directional tuning of theta cell burst frequencies: evidence

Frontiers inNeuroscience 20 frontiersin.org
102101

https://doi.org/10.3389/fnins.2023.1190515
https://doi.org/10.3389/fnins.2020.00551
https://doi.org/10.1126/science.1222403
https://doi.org/10.1016/j.neucom.2019.02.003
https://doi.org/10.1371/journal.pone.0022885
https://doi.org/10.3389/frobt.2020.00063
https://doi.org/10.1007/s002210100735
https://doi.org/10.1152/jn.00699.2015
https://doi.org/10.1007/BF00275687
https://doi.org/10.1002/hipo.20115
https://doi.org/10.3389/fncom.2013.00179
https://doi.org/10.1038/srep40703
https://doi.org/10.3390/rs11232827
https://doi.org/10.1109/72.377968
https://doi.org/10.1016/j.neuron.2019.02.001
https://doi.org/10.3389/fnsys.2022.787659
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1126/science.1125572
https://doi.org/10.1016/j.ifacol.2015.06.035
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1371/journal.pone.0054076
https://doi.org/10.3389/fnins.2012.00002
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1177/0278364906065387
https://doi.org/10.1037/h0061626
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4$<$481::AID-HIPO14$>$3.0.CO;2-S
https://doi.org/10.1162/neco_a_01410
https://doi.org/10.1007/978-3-319-08123-6
https://doi.org/10.1371/journal.pcbi.1010547
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dumont et al. 10.3389/fnins.2023.1190515

for spatial coding by oscillatory interference. J. Neurosci. 31, 16157–16176.
doi: 10.1523/JNEUROSCI.0712-11.2011

Witter, M. P., and Moser, E. I. (2006). Spatial representation and the architecture of
the entorhinal cortex. Trends Neurosci. 29, 671–678. doi: 10.1016/j.tins.2006.10.003

Yakopcic, C., Rahman, N., Atahary, T., Taha, T. M., and Douglass, S. (2020).
“Solving constraint satisfaction problems using the loihi spiking neuromorphic
processor,” in 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE) (Grenoble: IEEE), 1079–1084.

Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S.,
et al. (2021). Comparing loihi with a spinnaker 2 prototype on low-latency

keyword spotting and adaptive robotic control. Neuromor. Comp. Eng. 1, 014002.
doi: 10.1088/2634-4386/abf150

Yu, F., Shang, J., Hu, Y., and Milford, M. (2019). Neuroslam: a brain-
inspired slam system for 3d environments. Biol. Cybern. 113, 515–545.
doi: 10.1007/s00422-019-00806-9

Zeng, T., and Si, B. (2017). Cognitive mapping based on conjunctive representations
of space and movement. Front. Neurorobot. 11, 61. doi: 10.3389/fnbot.2017.00061

Zhang, L., Wei, L., Shen, P., Wei, W., Zhu, G., and Song, J. (2018). Semantic
slam based on object detection and improved octomap. IEEE Access 6, 75545–75559.
doi: 10.1109/ACCESS.2018.2873617

Frontiers inNeuroscience 21 frontiersin.org
103102

https://doi.org/10.3389/fnins.2023.1190515
https://doi.org/10.1523/JNEUROSCI.0712-11.2011
https://doi.org/10.1016/j.tins.2006.10.003
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1007/s00422-019-00806-9
https://doi.org/10.3389/fnbot.2017.00061
https://doi.org/10.1109/ACCESS.2018.2873617
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 14 July 2023

DOI 10.3389/fnins.2023.1221740

OPEN ACCESS

EDITED BY

Alois C. Knoll,

Technical University of Munich, Germany

REVIEWED BY

Yingbai Hu,

Technical University of Munich, Germany

Wang Juan,

South China University of Technology, China

*CORRESPONDENCE

Dan Huang

dan78huang@163.com

RECEIVED 12 May 2023

ACCEPTED 20 June 2023

PUBLISHED 14 July 2023

CITATION

Qiu H, Huang D, Zhang B and Wang M (2023) A

novel multidimensional uncalibration method

applied to six-axis manipulators.

Front. Neurosci. 17:1221740.

doi: 10.3389/fnins.2023.1221740

COPYRIGHT

© 2023 Qiu, Huang, Zhang and Wang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A novel multidimensional
uncalibration method applied to
six-axis manipulators

Haitao Qiu1, Dan Huang2*, Bo Zhang3 and Ming Wang3

1School of Electric Power Engineering, South China University of Technology, Guangzhou, China,
2School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou,

China, 3School of Mechanical Engineering, Ningxia University, Yinchuan, China

This study proposes a multidimensional uncalibrated technique for tracking

and grasping dynamic targets by a robotic arm in the eye-in-hand mode.

This method avoids complex and cumbersome calibration processes, enabling

machine vision tasks to be adaptively applied in a variety of complex environments,

which solved the problem of traditional calibration methods being unstable in

complex environments. The specific method used in this study is first, in the

eye-in-hand mode, the robotic arm moves along the x, y, and z axes in sequence,

and images are taken before and after each movement. Thereafter, the image

Jacobian matrix is calculated from the three (or more) sets of images collected.

Finally, the robotic arm converts the target coordinates in the real-time captured

images by the camera into coordinates in the robotic arm coordinate system

through the image Jacobian matrix and performs real-time tracking. This study

tests the dynamic quasi-Newton method for estimating the Jacobian matrix

and optimizes the initialization coupling problem using the orthogonal moving

method. This optimization scheme significantly shortens the iteration process,

making the uncalibrated technology more fully applied in the field of dynamic

object tracking. In addition, this study proposes a servo control algorithm with

predictive compensation tomitigate or even eliminate the systematic error caused

by time delay in dynamic target tracking in robot visual servo systems.

KEYWORDS

image Jacobianmatrix, machine vision, uncalibrated visual servo, dynamic quasi-Newton

algorithm, robot

1. Introduction

In the 1960s, due to the development of robotics and computer technology, people began
to study robots with visual functions, and in the 1980s, the concept of robot visual servo was
proposed. In the following decades, robot visual servoing underwent rapid development.
Visual servo control mainly inputs visual information provided by visual sensors into the
control system, enabling the control system to process external information. Traditional
robot visual servo systems are mostly implemented based on system model calibration
technology (Gans, 2003; Huang et al., 2022), which mainly involves models such as camera
models, robot models, and target object models. The camera model refers to the internal
and external parameters of the camera; the robot model generally refers to the robot
kinematics model; the target model mainly refers to the depth information from the target
to the end of the robotic arm, as well as the pose and motion parameters of the target
in a fixed coordinate system. In the traditional robot visual servo system, the first step
is to complete the calibration of the camera and the calibration between the camera and
the robot (Hutchinson et al., 1996) to obtain an accurate conversion matrix between the
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image coordinate system and the robot coordinate system. Then,
based on the calibrated transformation matrix, the coordinates
of the target object in the image captured by the visual system
are converted to obtain the pose of the robot in the coordinate
system. Finally, the robot tracks, locates, and grasps the target
object in the camera’s field of view based on the converted
coordinate information (Kang et al., 2020). Throughout the entire
work process, the accuracy of the transformation matrix between
the image coordinate system and the robot coordinate system is
heavily dependent (Malis, 2004). The calibration work between the
camera and the robot is extremely cumbersome, requiring data
such as the internal and external parameters of the camera, the
motion model of the robot model, and the position relationship
between the camera and the fixed position of the robot. However,
in practical applications, replacing the camera or camera lens,
or loosening the installation position between the camera and
the robot can cause deviation in the calibration results, requiring
complex calibration work to be carried out again. The traditional
calibration methods for robot visual servo systems make it difficult
for them to operate in complex working environments, which is
currently a bottleneck limiting the development of robot visual
servo systems.

To break the bottleneck, researchers have begun to focus on
studying the “eye-in-hand” structure visual servo control method
for calculating the image Jacobian matrix without knowing system
parameters. The robot visual servo system still needs to overcome
many technical difficulties to be put into normal use in various
complex production environments.

The development of uncalibrated technology between
cameras and robots without knowing system parameters
can be divided into multiple stages: 1. The robot visual
servo system achieves precise positioning and grasping
of static targets through uncalibrated technology; 2. the
robot visual servo system achieves tracking and positioning
of dynamic targets through uncalibrated technology;
and 3. the robot visual servo system achieves practical
production applications with low latency and high accuracy
in complex environments.

The fundamental goal of implementing a robot visual servo
system is to achieve precise positioning and grasping of static
targets. Hosoda and Asada first proposed the exponential weighted
recursive least squares method to obtain the Jacobian matrix.
This method achieves servo tracking and positioning of stationary
targets in an uncalibrated state, but there are still shortcomings
in terms of system stability and accuracy of image feature
extraction (Hosoda and Asada, 1994; Cao et al., 2022a,b). Yoshimi
and Allen introduced an additional robotic arm to explore
motion and observed corresponding changes in image features
during each calculation cycle. Then, they combined the least
square method to calculate the Jacobian matrix of the current
image, achieving more accurate two-dimensional target tracking.
However, this method is too cumbersome and lacks real-time
performance, making it difficult to apply in practical work
(Yoshimi and Allen, 1995). In addition, many researchers have
obtained the image Jacobian matrix by converting the online
estimation of the Jacobian matrix into system state observation
(Jianbo, 2004) or recursive formula calculation (Longjiang et al.,

2003) and tested the algorithm from four aspects: initial value,
operating range, stability, and robustness. Simulation experiments
have been conducted to verify the reliability of the algorithm
(Hao and Sun, 2007). At this stage, it is possible to use
robot visual servo systems for positioning and grasping static
targets in industrial production applications that meet various
requirements (Singh et al., 1998). Compared to traditional
calibration methods (Jingmei et al., 2014), it avoids the tedious
process of repeated calibration.

With the development of production technology, the function
of only achieving precise positioning and grasping static targets
no longer meets the production needs of enterprises. Therefore,
Piepmeier proposed the Broyden method to estimate the image
Jacobian matrix, thereby achieving tracking and positioning of
moving targets. However, when the deviation of image features is
large, the performance of the control system will decrease, even
leading to control failure (Piepmeier and Lipkin, 2003). When the
robot visual servo system tracks irregularlymoving targets (Haifeng
et al., 2010), it is necessary to improve the real-time performance
of the system (Zaien et al., 2014) and the convergence speed of
the image Jacobian matrix (Chang et al., 2020). However, while
ensuring the real-time performance of the system, it can also lead
to problems such as slow recognition speed and low accuracy of the
visual system during high-speed movement. Many researchers have
combined BP neural networks and genetic algorithms (Samad and
Haq, 2016; Chen et al., 2020; Yuhan et al., 2021;Wu et al., 2022) and
applied them to real-time image processing in the visual system,
improving the processing speed of the visual system, improving the
processing speed of the visual system. In addition, it is necessary
to improve the robustness of the robot’s visual servo system (Li
et al., 2009; Hao et al., 2020) to adapt to stable operation in
various complex environments. For example, in the field of medical
equipment, the robot servo system needs to operate absolutely
accurately and stably (Piepmeier, 2003; Gu et al., 2018; Zhang et al.,
2020), thus improving the robustness and anti-interference of the
system is very important (Cao et al., 2021; Gao and Xiao, 2021).

This study researches the application background of tracking
and trajectory coverage of irregular dynamic targets. First, an
online estimation test of the dynamic quasi-Newtonian Jacobian
matrix was conducted in the simulation system. After analyzing
the simulation test results, the system initialization process was
targeted and optimized, significantly improving the convergence
speed of Jacobian matrix iteration. In addition, this study also
proposes a predictive compensation Jacobian matrix PI control
algorithm to solve the lag problem of the visual system in the
dynamic tracking process, effectively improving the accuracy of the
robot servo system in the dynamic tracking process.

The remainder of this article is structured as follows. In
Section 2, a detailed introduction is given to the control
system. This includes the hardware composition of the control
system, theoretical deduction of uncalibrated technology, and an
introduction to servo control algorithms. In Section 3, we present
the experimental results and discuss them. These results include the
iterative process for the proposed uncalibrated visual servo system
and the optimized iterative process. In addition, a comparative
analysis of the research and experimental data conducted in this
study is also presented in Section 4.
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FIGURE 1

Bozhilin 6-axis robotic arm platform.

FIGURE 2

Schematic diagram of the eye-in-hand model.

2. Control system

2.1. Operating platform

The robot uncalibrated servo technology reviewed in this study
is based on the application of tracking and coating trajectories
to moving targets. The technology analyzed in this study can be
applied to different fields such as the application of mobile robots
to building cracks and robot welding. The robot platform used in
this study is a six-axis industrial robot independently developed
by Bozhilin, as shown in Figure 1. A Daheng high-speed industrial
camera is installed at the end of the robotic arm to collect image
information within the working range of the robotic arm. The
camera used needs to have a large field of view, as the target
object cannot leave the camera’s field of view during uncalibrated
initialization; otherwise, it will cause the Jacobian matrix error to
increase. The camera and robot are installed in the eye-in-hand
mode, and the model diagram is shown in Figure 2.

FIGURE 3

Camera pinhole imaging model.

2.2. Process of uncalibration

Uncalibration technology, such as traditional calibration
techniques, is used to describe the relationship between the speed
of robot end effectors and the rate of feature change in the image.
Assuming a point P in three-dimensional space, based on the
traditional camera pinhole imaging model as shown in Figure 3, it
can be concluded that

{

xi =
f
zc
xc

yi =
f
zc
yc

(1)

Pc(xc, yc, zc) is the coordinate of point P in the camera
coordinate system, Pw(xw, yw, zw) is the Cartesian coordinate
of point P in the world coordinate system (robotic arm base
coordinate system), PI(xi, yi) is the projection coordinate of point
P in the camera plane coordinate system, and (ui, vi) is the pixel
coordinate in the pixel plane coordinate system.

The relationship between the camera imaging plane coordinate
PI(xi, yi) and the pixel plane coordinate (ui, vi) is

{

ui =
xi
dx

+ u0
vi =

yi
dy

+ v0
(2)

In the above equation, u0 and v0 are the pixel coordinates of
the penetration point of the camera’s optical axis in the pixel plane,
while dx and dy represent the spatial distance represented by a
single pixel in theX andY directions in the pixel plane, respectively.

Convert the above equation into a matrix equation as follows:
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FIGURE 4

Framework diagram of the robot servo system.

FIGURE 5

Simulation model of Puma560 Robot Arm Servo System.
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Assuming that the focal length of the camera is f, under the
ideal pinhole model of the eye-in-hand system, the conversion
relationship between the camera coordinate system and the pixel
coordinate system is

[

ui
vi

]

=
f

zc

[

xc
yc

]

(4)

According to the motion equation of the robot’s end effector,
we have

Pc = �c ∗ Pc + Tc (5)










xc = zcwy + Tx −
vizc
f
wz

yc =
uizc
f
wz − zcwx + Ty

zc =
vizc
f
wx −

uizc
f
wy + Tz

(6)

Converting the above equation into a matrix equation, we
obtain as follows:

[

u

v

]

=





f
zc

0 −
ui
zc

−
uivi
f

f 2+u2i
f

−vi

0 −
f
zc

−
vi
zc

−
f 2+V2

i
f

uivi
f

ui



 ·

[

Tc

�c

]

(7)

In practical applications, it is impossible to obtain the
transformation matrix between (ui, vi) and [Tc,�c]T by measuring
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FIGURE 6

Initial position of the servo system.

FIGURE 7

Position of the servo system in the end.

each variable in the above equation. Therefore, the variables in the
matrix are considered unknown:

[

u

v

]

=

[

a11 a12 a13 a14 a15 a16
b11 b12 b13 b14 b15 b16

]

·



















Tx

Ty

Tz

ωx

ωy

ωz



















(8)

On the six-axis robotic arm platform, a single feature pixel does
not meet the dimensional requirements, so three feature points are
taken and stacked up and down:
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(9)

FIGURE 8

Motion trajectory of feature points in the image plane.

Ḟ represents the rate of change of image features, J0 represents
the Jacobian transformation matrix, and Ṗ represents the motion
vector of the robotic arm end effector. The above equation can be
expressed as follows:

.
F = J0

.
P (10)

In practical applications, we need to convert the two change
rates

.
F of image features to obtain the motion vector

.
P of the

robotic arm end effector, so we need to inverse the Jacobian
matrix J = J0

−1.

.
P = J0

.
F (11)

In application, two change rates of image features are obtained
from two adjacent images, so discretization of equations is also
required. In the process of high-frequency camera image retrieval,
we assume that the Jacobian matrix of adjacent two frames of
images remains approximately unchanged. The discrete equation
can be obtained as follows:

F(n+1) ≈ F(n) + J(n) · 1P(n) (12)

P(n+1) ≈ P(n) + J(n)
-1 · 1F(n) (13)

J = 1F · 1P-1 (14)

During the initialization process of the robot visual servo
system, there is a coupling relationship between multiple
movements of the robot, which can lead to the irreversibility
and solvability of the Jacobian matrix. In order to obtain
a more accurate Jacobian matrix, this article optimized the
initialization process of the robot visual servo system. Therefore,
by standardizing the movement direction of the robotic arm
during the initialization process, the obtained feature point set is
naturally linearly uncorrelated by decomposing the movement
of the robotic arm into independent movements of each degree

of freedom
[

Tx Ty Tz ωx ωy ωz

]

during the initialization

process. When moving in the independent Tx direction,
we get
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FIGURE 9

Characteristic points error control chart. (A) Pixel error of characteristic points on the image. (B) Position error of characteristic points in reality. (C)

Angle error of the robotic arm.
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After completing the initialization of the image Jacobianmatrix,
it is necessary to update and iterate the matrix in real time to ensure
accuracy during the robot operation process. In the image plane,
the difference between the actual feature and the expected feature is
f (θ , t) = y(θ , t)− y∗, where θ is the joint angle and t is time. Taylor
expansion is performed on the deviation function f (θ , t) and the
radiation model is defined asm(θ , t).

m(θ , t) = f (θk, tk)+ J(θ − θk)+
∂fk

∂t
(t − tk) (17)

At moment k-1, we get

f (θk−1, tk−1) = m(θk−1, tk−1)

= f (θk, tk)+ Jk(θk−1 − θk)+
∂fk
∂t (tk−1 − tk)

(18)

The iterative equation can be obtained as follows:

Jk = Jk−1 +
(1fk − Jk−11θ −

∂fk
∂t 1t)1θ t

1θ t1θ
(19)

2.3. Servo control algorithm

The process of running a robot visual servo control system is
as follows: first, the visual system captures images and processes
them, and then the processed image information inputs into the
robot controller to start the robot moving. There is a time delay
between the visual system capturing images and the robot starting
tomove, which can cause systematic errors in the robot’s tracking of
dynamic targets. Therefore, in the process of robot motion control,
this study designs a Jacobian matrix PI control algorithm with
predictive compensation to reduce systematic errors caused by the
time lag.

Assuming that the expected image feature of the moving target
is f ∗(u∗, v∗) and the actual feature of the robot pose after the image
Jacobian matrix transformation is ft(ut , vt) the actual pose and
expected pose feature error of the system are as follows:

e(t) = f ∗ − ft (20)

In order to improve the real-time performance of the system
and ensure that the target motion speed is fast and can complete
effective tracking tasks, a predictive compensation method is
introduced into the Jacobian matrix control algorithm on the
inverse Jacobian matrix visual servo control algorithm, and a
Jacobian matrix PI control algorithm with predictive compensation
is designed. We define the system image feature error as follows:

eh(t) = f d − f ht (21)

TABLE 1 Characteristic point iteration error data table.

Iterations Image
error/pixel

Position
error/mm

Angle error/◦

1 133.68860 174.48133 98.2602

5 18.79910 17.89122 10.6121

10 6.10400 5.50026 3.6511

15 2.29155 1.76988 1.4074

20 0.70234 0.57714 0.3932

25 0.23001 0.18867 0.1286

30 0.07536 0.06163 0.0420

35 0.02469 0.02002 0.0137

40 0.00809 0.00639 0.0044

45 0.00265 0.00193 0.0014

50 0.00087 0.00047 0.0004

TABLE 2 Optimized feature point iteration error data table.

Iterations Image
error/pixel

Position
error/mm

Angle error/◦

1 133.68860 174.48133 98.2602

2 7.1235 7 4.1

3 2.52 2.1 1.62

4 0.70234 0.57714 0.3932

5 0.4 0.32 0.2

25 0.0043 0.0037 0.0018

50 0.00087 0.00047 0.0004

In the above equation, f ht is the current image feature, and f d is
the expected image feature. The predicted compensation amount ξ
is defined as follows:

ξ = kVimage (22)

Vimage is the rate of change in image features, and k is the
compensation coefficient.

In the process of dynamic target tracking, in order to reduce
system tracking error, the PI control algorithm is introduced into
the inverse Jacobian matrix control algorithm, with a control
amount of

uh(n) = 1f h(n+ 1) = f h(n+ 1)− f h(n) (23)

In order to reduce the impact of system image processing time
delay on the system, the compensation amount will be predicted ξ

bringing it into the control algorithm to obtain the final visual servo
control algorithm:

uh(n+ 1) = J(KPeh(n)+ KI

n
∑

i=0

eh(n))+ kVimage (24)
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FIGURE 10

Error control chart after decoupled optimization. (A) Pixel error of characteristic points on the image. (B) Position error of characteristic points in

reality. (C) Angle error of the robotic arm.

KP and KI represent the proportional and differential
coefficients, while k represents the predictive compensation
coefficient of the system, which is related to the rate of change of
image features. As shown in Figure 4, the robot control system is
combined with the visual system to form a closed-loop robot visual
servo system.

3. Experimental results

3.1. Simulation test

To verify the correctness of the uncalibrated visual servo
algorithm, a robotic arm model, a monocular camera model, and

a target object model were established in the simulation platform
MATLAB by simulating real robotic arm servo experiments. A
camera robotic arm model with “eyes in hand” was adopted,
and the Jacobian online estimation algorithm using the dynamic
quasi-Newton method was used for visual feedback. By using
a visual controller, the control amount is calculated using
image feature deviation to drive the end of the robotic
arm to move toward the target. Finally, the effectiveness of
the uncalibrated visual servo algorithm was verified through
simulation experiments, providing a theoretical basis for practical
development work.

We established a robotic armmodel, monocular camera model,
and target object model in the simulation platform MATLAB. The
robotic arm is a six-axis Puma560 robotic arm. The camera has a
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FIGURE 11

Comparison of iterative convergence before and after initialization optimization. (A) Pixel error of characteristic points on the image. (B) Position

error of characteristic points in reality. (C) Angle error of the robotic arm.

resolution of 1,024 ∗ 1,024, a focal length of 8mm, and is installed
at the end of the robotic arm (eye in hand). The target object is three
small balls located above the robotic arm.

At the initial moment, the end of the robotic arm undergoes
six exploratory movements. As shown in Figure 5, it is a simulation
model of the servo system. The robotic arm is Puma560, and the
camera is installed at the end of the robotic arm in green. The three
blue balls in the picture are the target objects. Robot movement
generates displacement 1P0 at the end of the robotic arm and the
displacement of feature points 1F0 within the image plane. The
initial value of the Jacobian matrix is

J0 = 1F0 · 1P0
-1 (25)

Using the dynamic quasi-Newton method to update the
Jacobian matrix, the update frequency of the robotic arm is set to
0.1–0.2mmpermovement until the pixel error of the image reaches
the range.

3.2. Experimental results of the dynamic
quasi-Newton method

The error of the robotic arm in this experiment
after 20 iterations is 0.31. After 35 iterations, the error
is 0.011. After 56 iterations, the error was 0.0001,
and the final image coordinates of the small ball were
761.999661.999, 761.999412.0, and 212.0661.999, respectively.
The initial expected pixel coordinates were 762662, 762412,
and 212662.

The initial posture of the robotic arm servo system and the
pixel coordinates of three small balls are shown in Figure 6. The
posture and ball pixel coordinates at the end of the servo are
shown in Figure 7. The motion trajectories of the feature points
of three small balls in the image plane are shown in Figure 8.
The error of the entire process (image error and robotic arm
end pose error) varies with the number of cycles, as shown in
Figure 9.
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FIGURE 12

Dynamic tracking error comparison.

3.3. Orthogonal initialization method test
results

According to the simulation experiment results shown in
Table 1, it can be seen that the uncalibrated system requires
multiple iterations to achieve the specified accuracy. However,
in actual production environments, there is no enough time
for iterative optimization. Looking at the simulation results
data, it was found that the Jacobian matrix obtained from
the uncalibrated initialization of the original scheme had
a significant error in conversion. Through analysis, it was
found that during the initialization process, images before and
after movement were obtained by moving the robotic arm.
In this process, there is coupling in the movement of the
manipulator, which will lead to an irreversible and unsolvable
Jacobian matrix.

To make the multiple sets of image feature points obtained
after the robotic arm moves linearly uncorrelated, it is necessary to
decouple the collected feature point set. This will be an incredibly
complex and cumbersome task. Therefore, by standardizing the
movement direction of the robotic arm during the initialization
process, the obtained feature point set is naturally linearly
uncorrelated. The iterative process error data of the uncalibrated
system after the decoupling optimization initialization process
is shown in Table 2, and the error of the entire process varies
with the number of cycles, as shown in Figure 10. In Figure 11,
it can be seen that the iterative speed of the Jacobian matrix
after decoupling optimization has been significantly improved.
Faster iterative convergence speed can effectively improve the

real-time performance of robot visual servo systems during
dynamic tracking.

In Figure 11, the vertical axis represents the error during the
robot iteration process, and the horizontal axis represents the
number of iterations. The update cycle for each iteration of the
robot is not fixed. The iterative process includes camera shooting,
image processing, and robot motion. Due to the different amount
of information in each cycle, the iteration period will fluctuate
between 20 and 30 ms.

3.4. Comparison of experimental results

The above simulation tests have verified the reliability of the
dynamic quasi-Newton method and the iterative algorithm
after decoupling optimization. Next, the two algorithms
mentioned above and the servo control algorithm with predictive
compensation will be tested on the robotic arm. During the testing
process, the robot dynamically tracks the target ball moving on
the conveyor belt. The tracking process error data is recorded by
identifying the distance between the centroid position of the target
ball in the photos captured by the camera during the tracking
process and the laser point position vertically shot by the robot
arm. The tracking error curves of the three algorithms are shown
in Figure 12.

From the tracking error curve in Figure 12, it can be observed
that the iterative algorithm after decoupling optimization and the
servo control algorithm with predictive compensation have a faster
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convergence speed than the dynamic equal Newton method. The
servo control algorithm with predictive compensation can further
reduce the tracking error in the convergence state.

4. Conclusion

This study investigates the application of the dynamic
equal Newton method, the iterative algorithm after decoupling
optimization, and the servo control algorithm with predictive
compensation in robot uncalibrated visual servo systems. However,
due to the dynamic equal Newton method requiring multiple
iterations to obtain an accurate Jacobian matrix, a decoupling
optimization method for the initialization process was proposed
by analyzing the entire process of the uncalibrated robot visual
servo system. The iterative algorithm after decoupling optimization
can effectively reduce the number of iterations and improve the
convergence speed of the Jacobian matrix through simulation
testing. Therefore, this algorithm has a high practical value in
production applications.

Due to the time lag that cannot be completely eliminated
when moving from the visual system to the robot’s active position
information in the eye-in-handmode, this study proposes amethod
called the servo control algorithm with predictive compensation to
weaken or even eliminate the tracking error caused by the time lag.
It showed a very significant effect on the experimental test results.
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Single-view multi-human pose
estimation by attentive
cross-dimension matching
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Vision-based human pose estimation has been widely applied in tasks such as

augmented reality, action recognition and human-machine interaction. Current

approaches favor the keypoint detection-based paradigm, as it eases the learning

by circumventing the highly non-linear problem of direct regressing keypoint

coordinates. However, in such a paradigm, each keypoint is predicted based on

its small surrounding region in a Gaussian-like heatmap, resulting in a huge waste

of information from the rest regions and even limiting the model optimization. In

this paper, we design a new k-block multi-person pose estimation architecture

with a voting mechanism on the entire heatmap to simultaneously infer the key

points and their uncertainties. To further improve the keypoint estimation, this

architecture leverages the SMPL 3D human body model, and iteratively mines

the information of human body structure to correct the pose estimation from

a single image. By experiments on the 3DPW dataset, it improves the state-

of-the-art performance by about 8 mm on MPJPE metric and 5 mm on PA-

MPJPE metric. Furthermore, its capability to be employed in real-time provides

potential applications for multi-person pose estimation to be conducted in

complex scenarios.

KEYWORDS

attentive learning, multi-person pose estimation, single-image pose estimation, keypoint

prediction, cross-dimension matching

1. Introduction

Vision-based human pose estimation has been favored in tasks of augmented reality,
action recognition, human-machine interaction, etc. However, estimating human poses from
a single image is a persistent challenge for the research community. In traditional algorithms,
manually designed human body models are adopted to obtain local representations
and global pose structures. However, the complexity of the human pose is far beyond
the representation ability of hand-crafted features. In recent years, various human pose
estimation technologies have been progressed driven by deep learning algorithms and
large datasets.

The current mainstream 2D Human Pose Estimation (HPE) models can be divided
into two categories: regression-based method and detection-based method. The former
attempts to learn the direct mapping from an image to human keypoint (e.g, joint)
coordinates (Toshev and Szegedy, 2014), which is yet a highly nonlinear problem and
difficult to learn. The latter has dominated HPE for years due to high performance and
intends to predict location heatmaps of parts or key points (Newell et al., 2016; Chu et al.,
2017). However, the heatmaps are typically with low feature resolution and each keypoint
only focuses on a small local region, resulting in a large waste of propagated gradients from
the rest regions during model optimization.

Considering that current methods do not make full use of the information of human
body structure, we propose a new k-block human pose estimation approach. Given a
forecasted heatmap, this approach employs a voting mechanism over the entire heatmap
to calculate keypoint coordinates and their corresponding uncertainties. Thus, compared to
the traditional form, more feature information can be utilized through the increased number
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of back-propagated gradients, and non-informative key points (e.g.,
by occlusion) will be given less attention during learning.

Due to the lack of depth information, the traditional 2D pose
estimation often yields keypoint ambiguity. However, the human
body structure based on 3D coordinates can better alleviate this
problem. Leveraging the Skinned Multi-Person Linear (SMPL) 3D
structure model of human body (Loper et al., 2015), we design
an iterative coordinate matching strategy between 2D and 3D
key points. The matching is optimized by using the Singular
Value Decomposition (SVD) algorithm. The 2D coordinates can be
corrected based on the predicted 3D key points and the optimized
corresponding Euclidean transforms.

Compared with other human pose estimation schemes, we
focus onmining the prior structure information of the human body
itself and use the information of key points to reconstruct the pose
model. With the new designed k-block module and corresponding
optimization algorithm, the human body pose information can
be iteratively corrected and the final output is based on the
combination of the predicted human 2D/3D pose estimation.

2. Related works

2.1. 2D human pose estimation

As aforementioned, the direct regression learning of keypoint
coordinates is difficult because it is a highly nonlinear problem,
which lacks learning robustness. In comparison, the heatmap
learning has a dense pixel information supervision, but the
resolution of the heatmap is usually low due to downsampling
operations such as pooling and strided convolution in the model,
which limits the accuracy of the final estimated coordinates.
A typical effort to this problem is the design of Hourglass
module (Newell et al., 2016). It uses an hourglass-shaped model
to gradually restore the features compressed in high-dimensional
space to the original scale. Detail information such as faces and
hands are captured by local features, which are restored and
fused in the corresponding heatmaps with the same dimensions
of features. Further efforts such as data stream adjustment (Bulat
et al., 2020) and high-resolution (Sun et al., 2019) are also proposed
to improve the network efficiency.

In addition to the keypoint detection, another problem that
should be faced in the multi-person pose estimation is how
to divide a large number of recognized pose key points into
corresponding human bodies. The existing solutions are mainly
divided into the top-down and the bottom-up paradigms. The
former is achieved with a two-stage pipeline, which firstly employs
off-the-shelf detectors on the input image to locate region of
interests (RoI, denoted by bounding boxes) of human bodies, which
are then individually processed by single-person pose estimators.
But such approaches may be suboptimal since the pose estimation
results are significantly affected by the detection accuracy, the
focus of these methods is on the exploration of more efficient
detectors (He et al., 2017; Ren et al., 2017). In contrast, the bottom-
up methods firstly predict the key points of all persons in the
image and then group them into different human bodies. The
difficulty lies in how to correctly assemble the joint points. A
typical approach is the OpenPose (Cao et al., 2017). It uses the
Part Affinity Fields (PAF) module to predict the Part Confidence

Maps and Part Affinity Fields on the entire image, which are
further matched based on the learned local association fields. In
other approaches, Newell et al. performed simultaneous detection
and grouping with the Associative Embedding (Newell et al.,
2017). They designed a new deep network structure to generate
location heatmaps and associative embedding tags for each joint,
distinguishing between different human bodies by tags. Although
the processing speed of bottom-up methods is relatively fast and
even real-time applicable (Cao et al., 2017; Nie et al., 2018), their
performance is greatly affected by the complex backgrounds or
occlusions. Therefore, motion information has been considered in
recent works (Ohashi et al., 2020; Wang et al., 2020), which yet
require video frames instead of a single image as inputs.

2.2. 3D human pose estimation

In mainstream models, the 3D human pose estimation is
defined as the estimation of 3D human joint points. Related
methods are mainly divided into two strategies: one-stage
estimation and two-stage estimation. The one-stage methods
directly estimate 3D poses from the input image in the
presentations such as 3D heatmaps (Pavlakos et al., 2017), position
maps (Sun Y. et al., 2021), and depth information (Liu et al.,
2021). In contrast, the two-stage methods firstly estimate 2D
human poses and then uplift them to the 3D space via pre-learned
structural information (Zhou et al., 2016, 2017) or regression
models (Martinez et al., 2017; Sun et al., 2017). Since two-stage
methods are highly dependent on accurate 2D pose estimators,
the combination of powerful backbone networks (Simonyan and
Zisserman, 2015; Sun S. et al., 2021) became a trend in achieving
impressive performance. However, as the human body structure
information is implicitly modeled by neural networks, there is
no guarantee that the output 3D skeleton in these methods is
consistent with the real ones.

Aside from the 3D skeletons, the prior statistics about human
body structure have also drawn increased research attention. A
representative is the SMPL human body model (Loper et al., 2015),
which is utilized to parameterize the output targets in model-
based 3D pose estimation methods. Compared with model-free
methods, these approaches directly predict controllable parameters,
which facilitates an end-to-end 3D pose estimation without
secondary adjustment, such as the SMPLify model proposed
by Bogo et al. (2016). Since the mapping from an image to
the shape space and the relative rotation of body parts is hard
to learn, forms of intermediate representations and supervision
are chosen to alleviate this problem, such as contours, semantic
part segmentation, and 2D heatmaps. For example, Kanazawa
et al. (2018) designed the adversarial priors and iterative error
feedback (IEF) loops to reduce the difficulty of regression.
Arnab et al. (2019) exploited temporal context information. Guler
and Kokkinos (2019) used partial voting expressions and post-
processing to improve regression networks. Kolotouros et al.
(2019) leveraged an optimization paradigm to provide additional
3D supervision from unlabeled images. The hybrid inverse
kinematics solution (HybrIK) (Li et al., 2021) leveraged the twist-
and-swing decomposition to transform the 3D joints to shape
estimation via both Kinematics and inverse Kinematics modeling
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FIGURE 1

An overview of proposed multi-person pose estimation framework. Reproduced with permission from the o�cial 3DPW benchmark, available at

https://virtualhumans.mpi-inf.mpg.de/3DPW/.

and circumvented direct learning the abstract parameters of the
general human body models.

In this paper, we propose a novel monocular multi-person
pose estimation framework by exploiting the advantages of both
2D and 3D strategies. For backbone, this framework employs the
Deformable DETR model (Zhu et al., 2021) (left part of Figure 1).
It serves as a multi-person detector as well as a provider of
reference regions and image features for the k-block module, which
covers the entire heatmap information by a voting mechanism.
Additionally, the k-block introduces uncertainties to 2D keypoint
estimation, so that occluded joint points are given lower weights
in the learning process, as they are less informative and can be
inaccurately estimated, resulting in higher uncertainties. We also
leverage an SMPL-based parametric model with a 2D–3D iterative
optimization process. The core of our optimization algorithm is to
estimate the optimal transformmatrix and depths through iterative
fitting between 2D and 3D relative coordinates. In this way, an
accurate pose estimation can be obtained step by step without
requring depth information.

3. Proposed method

3.1. 2D human characterization based on
k-block structure

As previously introduced, the existing detection-based 2D pose
estimation paradigm is designed to predict the location heatmap
of key points, but is limited by the insufficient computational
resolution. Moreover, most values on the heatmap are set to zero
except for small local region surrounding the joints (Figure 4B),
thus having no effect on the estimation of joint point coordinates.
This fact forces a lot of back-propagated gradients to suppress
predictions at non-joint positions, not only leading to a less efficient
overall learning, but also making the model preferentially predict
zero values.

To address these problems, we propose the k-block-based
single-person pose estimation module, as illustrated in Figure 2.
The input image is firstly processed by the backbone network to

extract a feature tensor with a size of w × h pixels and l channels.
With a further convolution in the channel dimension, a new tensor
is predicted with k channels, which is equal to the number of to be
predicted joint points. The tensor is further fed into the k-block
module to generate the voting matrices. The joint points of the
human body are finally predicted according to the corresponding
voting results. The detailed calculation process is shown in Figure 3.

Here, we denote the i-th channel of input tensor as a heatmap
(with a size of w × h). The k-block module firstly accumulates
heatmap values in both u- and v-directions. The obtained vectors
zu and zv are then considered as the coordinate voting weights of
the corresponding joint point in the u- and v-direction. By applying
the Softmax operation on both weighting vectors, the normalized
weight distributions z

′

u and z
′

v are obtained. Given a vector with a
length of n, it generates an enumeration vector e = [1, 2, ...n], which
corresponds to the sequence of row or column IDs. The element-
wise product of the normalized weight distribution z∗ and the
enumeration sequence e is thus the distribution of corresponding
voting values. The predicted joint coordinates can be calculated by
summing up of the voting values. Additionally, we denote the joint
coordinate uncertainty ci,u/v as the standard deviation of the voting
values, i.e., the more concentrated the vote distribution is, the lower
the uncertainty will be.

A comparison of Gaussian heatmap used in traditionalmethods
and the k-block weights predicted in our approach is illustrated
in Figure 4. In order to achieve a sufficient accuracy for the joint
location, Gaussian heatmaps often require a larger resolution (e.g.,
128 × 128 pixels). The non-joint areas are indicated in black
in Figure 4B, in which a large number of gradients are used to
suppress non-zero predictions. This part of the gradients has
little effect on the prediction of joint points, resulting in a slow
convergence of the model. Moreover, it still consumes a lot of
computation in these areas in the forward inference stage, although
their predictions are not considered. However, for heatmaps with
larger Gaussian kernels, although more pixels are involved in the
joint point estimation, the location accuracy can be reduced due to
the reduction of the gap between predicted values.

In this paper, a new k-block structure is designed and the
coordinate values of human joints are calculated from all heatmap
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FIGURE 2

k-block-based 2D single-person pose estimation.

FIGURE 3

k-block prediction process.

FIGURE 4

Comparison of Gaussian heatmap and k-block weights. (A) Input. (B) Gaussian (128 × 128). (C) k-Block (32 × 32).

elements at the same time, which greatly reduces the waste of
gradients based on Gaussian heatmap prediction, so that it can

use less computation (e.g., with a resolution of 32 × 32 pixels,
which is yet still larger than the small local joint region in

Gaussian heatmap) to obtain more gradient propagation to achieve

similar accuracy.
In our proposed approach, each joint point estimation is

regarded as a Gaussian distribution. Given an estimated coordinate

xi (i.e., ui or vi) and its ground truth x̂i, the estimation error fe(xi)
follows the Gaussian distribution, interpreted as

fe(xi) =
1

√
2πci

exp(−
(xi − x̂i)2

2c2i
) (1)

with the standard deviation ci. By applying the logarithm form of
(1) and considering all joint points, the loss for k-block module is
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expressed as

LKB =
∑

i

(log(
√
2πci)+

(xi − x̂)2

2c2i
)+ ωc

∑

i

1

2
c2i , (2)

where ωc represents the weight of the additional regularization
term and is empirically set to 0.2. The set of inferred 2D joint points
are denoted as P2D = {p2D,1, ..., p2D,k}.

3.2. 3D human characterization based on
SMPL parameters

The SMPL (Loper et al., 2015) is a vertex-based three-
dimensional model containing a fixed set of parameterized
expressions based on the statistics of a large amount of real human
body data. In this paper, the SMPL model is selected as the prior
structure of the rigid human body, since it can accurately express
different postures and movements. It should be noted that the
original SMPL model also needs a set of root coordinates to
further determine the 3D coordinates of the joint point. In this
paper, we focus on the spatial relation between the 3D coordinates
(e.g., relative to the body center), thus it requires no additional
corresponding root points. Here, we implement an additional
output head after the decoder of Derformable DETR (Zhu et al.,
2021) to infer both the human body shape parameter β and the
pose parameter θ from an input image, as illustrated in the middle
part of Figure 1.

The complete shape parameters consist of a total of 50 items
with only the first 10 open-sourced. Statistics show that most of
the parameter values are in the range from –1.5 to +1.5. This paper
chooses the Smooth-L1 loss as the shape loss function and adjusts
its second-order loss range to (–1.5, 1.5), interpreted as

Lshape =
∑

i

{

2
9 (βi − β̂i)2, |βi − β̂i| ≤ 1.5

| 23 (βi − β̂i)| − 0.5, |βi − β̂i| > 1.5
, (3)

where βi is the predicted i-th element of shape parameter β in the
SMPL model and the symbolˆindicates the ground truth.

Additionally, we introduce the Quaternion notation to avoid
the ambiguity problem induced by Euler angles used in the original
SMPL. Let the normalized vector of the rotation axis be (x′, y′, z′)
and the rotation angle be α ∈ (−π ,π]. The pose parameter of
SMPL can be expressed as

θ = (x′ sin
α

2
, y′ sin

α

2
, z′ sin

α

2
, cos

α

2
). (4)

Considering that theQuaternion representation is a normalized
vector and its element value is in the range of (−1, 1), the loss
function of the pose parameter is selected as an L1 loss with an
additive regularization term:

Lpose = ‖θ − θ̂‖1 + ωp

∣

∣1− ‖θ‖22

∣

∣ , (5)

where θ i represents the i-th element of θ and ωp denotes the weight
of the regularization term and empirically set to 1.

Based on the inferred shape parameter β and pose parameter
θ , we can estimate the 3D joint point coordinates according to

the SMPL model. The computation details can be referred to
work (Loper et al., 2015). The point set is coordinate-normalized
(by removing the mean and rescaling with the reciprocal of
standard deviation) and denoted asQ3D = {q3D,1, ..., q3D,k}.

3.3. 2D-3D keypoint optimization

To correct the prediction results, especially for 2D joint points,
we resort to the idea of 3D pointmatching. Generally, given two sets
of matched 3D points P = {p1, p2, ..., pk} and Q = {q1, q2, ..., qk},
the aim is to find a set of Euclidean transforms {R, t} to minimize
their alignment errors. The optimal transform {R∗, t∗} can be
obtained by solving the Least Squares problem as

(R∗, t∗) = argmin
k

∑

i

1

2
‖Rpi + t − qi‖

2
2. (6)

If the mean values of both sets P and Q are removed, which
means their center are aligned at the origin, we obtain

t∗ = t = 0. (7)

Thus, Eq. (6) can be reformulated as

R∗ = argmin
k

∑

i

1

2
‖Rpi − qi‖

2
2. (8)

The square term of above equation can be calculated as

‖Rpi − qi‖
2
2 = p⊤i pi − p⊤i R

⊤qi − q⊤i Rpi + q⊤i qi. (9)

Noting that (q⊤i Rpi)
⊤ = p⊤i R

⊤qi, by discarding constant
terms, Eq. (8) can be further simplified as

R∗ = argmax
k

∑

i

q⊤i Rpi = argmax tr(Q⊤RP)

= argmax tr(RPQ⊤),

(10)

where P and Q denote the matrix forms of point sets. Leveraging
the SVD decomposition, it obtains PQ⊤ = U6V⊤. Equation (10)
can then be reformed as

R∗ = argmax tr(RU6V⊤) = argmax tr(6V⊤RU). (11)

Since R, U , and V are all orthogonal matrices, the matrixM =

V⊤RU is also orthogonal. Thus, we obtain

1 = m⊤
i mi =

∑

j

m2
i,j → m2

i,j ≤ 1 → |mi,j| ≤ 1, (12)

where mi is the i-th row ofM and mi,j is the j-th element of mi. As
6 = diag[σ1, ..., σk] is a diagonal matrix, there is

tr(6M) =
∑

i

σimi,i ≤
∑

i

σi. (13)
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FIGURE 5

Multi-scale information for multi-person pose estimation.

FIGURE 6

Deformable DETR-based multi-person pose estimation.

Obviously, only withmi,i = 1 can tr(6M) be maximized. Then,
M becomes a unit matrix, which is

I = M = V⊤R∗U . (14)

By solving the above equation, we obtain the optimal rotation
matrix R∗ = VU⊤.

If the depths of 2D joint points are known, with the
above solution, we can correct the 2D joint points with their
corresponding 3D coordinates estimated by the SMPL model, as
illustrated in the right part of Figure 1. This is based on the fact

that the SMPL is built on the statistics of a large set of real human
bodies. Thus, its representation about the spatial relation between
joint points should be more consistent with the real ones compared
to the k-block-based estimation. Since the predicted 2D joint points
are depthless, we consider their depths as additional to be optimized
parameters in the entire optimization process. The main idea is
to firstly lift the 2D key points into 3D space by assigning them
with initial depth values, which are then gradually optimized by
the 3D matching according to the solved rotation matrix. With
iterations in this process, the accuracy of the estimated depth, the
solved rotationmatrix and the corresponding 2D coordinates of 3D
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FIGURE 7

Trend of loss with di�erent hyperparameters set (Case1:

λshape = 0.4, λpose = 0.4, λSMPL = 0.4, λDET = 0.25, λKB = 0.25; Case2:

λshape = 0.25, λpose = 0.25, λSMPL = 0.25, λDET = 0.25, λKB = 0.25;

Case3: λshape = 0.25, λpose = 0.25, λSMPL = 0.25, λDET = 0.25,

λKB = 0.4; Case4: λshape = 0.2, λpose = 0.25, λSMPL = 0.15, λDET = 0.4,

λKB = 0.3).

TABLE 1 Exploration on performance of di�erent multi-person pose

estimation strategies with ↓ indicating that lower values are better.

Multi-scale FPN Correction MPJPE (mm)↓

X 58.5

X 57.9

X X 57.2

key points are progressively improved. Here the z-axis is defined
as aligned with the depth direction, which is perpendicular to the
image plane.

During the optimization, we also introduce the uncertainties of
estimated 2D keypoint locations by the k-block module. Since the
joint points in occluded or low-light areas are often estimated more
inaccurately due to less information, their uncertainties will be high
and their matching errors should be less weighted. Thus, Eq. (8) can
rewritten as

R∗ = argmin
∑

i

1

2
wi‖Rpi + qi‖

2. (15)

The weight wi is set to 1/ci, which is the reciprocal of the
uncertainty ci. We further define a diagonal weight matrix W =

diag[w1, ...,wk]. Leveraging Eq. (10), the above equation can be
reformed as

R∗ = argmax tr(RP⊤WQ) = argmax tr(6V⊤RU) (16)

with the new SVD decomposition P⊤WQ = U6V⊤. This can be
considered as a weighted 2D coordinate correction process based
on SMPL parameters. Detailed steps of this process are listed in
Algorithm 1, where the iteration number is empirically set to 3.

Input:

2D keypoint set P2D with coordinate matrix P2D,

diagonal uncertainty matrix C2D; Normalized 3D

keypoint set Q3D with coordinate matrix Q3D.

Output:

Corrected 2D keypoint coordinates P2D.

1: Calculate mean vector p2D and standard deviation

vector σ 2D of P2D.

2: Lift P2D to 3D space by assigning initial depth

z = 0;

3: Normalize P2D to the same center and scale of Q3D;

4: Calculate product: S = P⊤
2DC

−1
2DQ3D;

5: SVD decomposition: S = U6V⊤, and obtain rotation

matrix R∗ = VU⊤;

6: Ensure det(R∗) = 1, so that R∗ is a rotation matrix;

7: Correct z-coordinates of P2D based on Q3D and R∗;

8: Repeat step 4 to 7 to optimize R∗ and z-coordinates

of P2D;

9: Restore non-normalized P2D based on Q3D, R∗, p2D

and σ 2D;

10: return Corrected P2D.

Algorithm 1. Weighted 2D coordinate correction based on SMPL

parameters.

3.4. Multi-person detection and pose
estimation

Since pedestrians can appear in the image with different
scales due to their sizes or distances in the 3D world space,
the representation ability of features only extracted from a single
layer of neural network becomes insufficient. Hence, the multi-
person pose estimation scheme should be adapted to multi-
scale image information. Considering the multi-layer convolution
characteristics of the deep neural network itself, the deeper the
layer is, the greater information amount a single neuron will
capture, i.e., a deeper layer corresponds to a greater receptive field.
Therefore, we can extract features from different layers of the
backbone network to obtain the multi-scale information, as shown
in Figure 5. Although such a multi-scale feature manipulation
yields mere computational overhead, it has shortcomings like that
the features from shallow layers are with relative low semantic
information, limiting the prediction performance, while the deep
layers are with relatively low resolution, leading to insufficient
information amount within an RoI.

Referring to the Feature Pyramid Network model (FPN), we
add an additional information recovery branch to the backbone
(i.e., the ResNet). As shown on the left side of Figure 6, the bottom-
up process indicates the feedforward feature calculation in the
original model. As the layer deepens, the corresponding feature
map gradually becomes downsampled. The top-down process is
the gradual feature restoration toward the original image size. By
fusing the information from different levels, the shallower layer
obtains both higher resolution and richer semantic features. For
inference, according to bounding box sizes, feature maps from the
corresponding FPN layer are selected to be cropped and sent to
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FIGURE 8

Examples of results under di�erent multi-person pose estimation strategies. (A) Multi-scale. (B) FPN. (C) FPN and correction.

the k-block module to estimate the pose of each individual person.
Additionally, we adopt the RoI Align (He et al., 2017) to avoid the
dislocation of feature tensors caused by quantization operations.

To further improve the pedestrian detector performance, we
employ the Deformable DETR framework (Zhu et al., 2021), as
illustrated in Figure 6. In terms of single-frame pose estimation,
the Deformable DETR model provides the candidate regions of
detected persons and their corresponding image features for the
k-block module. Thus, a simultaneous multi-person detection and
pose estimation can be achieved. In addition to the detection
bounding boxes, we also introduce another output head to
the original Deformable DETR to regress the shape and pose
parameters β and θ of the SMPL model. The SMPL model is
further applied in the iterative optimization process introduced
in Section 3.3 to correct the predicted 2D key points, resulting
in the final architecture proposed in this paper as shown in
Figure 1. The total loss function for training the entire architecture
is interpreted as

Ltotal = λshapeLshape + λposeLpose + λSMPLLSMPL+

λKBLKB + λDETLDET ,
(17)

where LDET denotes the object detection loss defined in the
Deformable DETR (Zhu et al., 2021), LSMPL represents the squared
errors of keypoint coordinates predicted by the SMPL, and the
subscripted term λ indicates the corresponding weight of each loss.

4. Experiments and evaluations

4.1. Experimental setups

Here we choose two mainstream datasets, i.e.,
3DPW (Von Marcard et al., 2018) and Human3.6M (Ionescu
et al., 2011, 2014), for experiments. The 3DPW is a single-view
multi-person 3D pose dataset containing 60 video sequences (24

TABLE 2 Comparison with state-of-the-art multi-person pose estimators.

Model MPJPE (mm)↓ PA-MPJPE (mm)↓

HMR (Kanazawa et al., 2018) 130.0 81.3

SPIN (Kolotouros et al.,
2019)

96.9 59.2

ROMP (Sun Y. et al., 2021) 76.7 47.3

HybrIK (Li et al., 2021) 74.1 45.0

DynBOA (Huang et al.,
2020)

65.5 40.4

Ours 57.2 35.5

for training, 24 for test, and 12 for validation) shot in outdoor
environments such as forests, streets, playgrounds, etc. This dataset
also includes a large number of 2D/3D pose annotations, 3D body
scans, and SMPL parameters. The Human 3.6M is a multi-view
single-person 3D pose dataset captured in an indoor space. It
contains 3.6 million 3D human poses and corresponding videos
(50 FPS) from 15 scenes, with keypoint annotations of both 2D/3D
positions and angles. For evaluation, the video is downsampled at
a ratio of 5/64 to eliminate redundancy.

Since our proposed method adopts predicted 3D key points
to assist the correction of predicted 2D keypoint coordinates,
3D annotations are employed in supervising the module for
3D keypoint prediction learning, which is also one of the main
reasons in choosing above datasets for evaluation. In experiments,
the proposed architecture is implemented by the PyTorch on a
computer platform with a CPU of Intel i9@3.50 GHz, a GPU of
NVIDIA RTX 3090 and a memory of 32 GB. During training,
we adopt the Adam optimizer with a learning rate of 1e-3. The
manual selection of hyperparameters, based on experience, has a
substantial effect on the outcome of training. Consequently, various
hyperparameters were designed and promptly evaluated with a
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FIGURE 9

Example of prediction results by di�erent multi-person pose estimators. (A) HMR. (B) SPIN. (C) HybrIK. (D) Ours.

TABLE 3 Runtime comparisons with di�erent estimators.

Method FPS Backbone Device

RepNet (Wandt
and Rosenhahn,
2019)

10 Stacked hourglass network NVIDIA TITAN X

VIBE (Kocabas
et al., 2020)

10.9 ResNet-50 1070Ti GPU

ROMP (Sun Y.
et al., 2021)

20.8 HRNet-32 1070Ti GPU

ROMP (Sun Y.
et al., 2021)

30.9 ResNet-50 1070Ti GPU

Ours 9 DETR NVIDIA RTX 3090

consistent number of iterations in order to choose the suitable
configuration. It can be seen in Figure 7 that when the weights
λshape, λpose, and λSMPL of 3D pose estimation are relatively small
and the weight λDET of the human detection box is relatively large,
there is a minimum loss trend (case 4). This may be due to the fact
that the human detection box is the foundation of the top-down
approach and its accuracy will directly influence the subsequent
2D/3D pose estimation. To this end, the weights for loss terms
are empirically set as: λshape = 0.2, λpose = 0.25, λSMPL = 0.15,
λDET = 0.4 and λKB = 0.3.

TABLE 4 Comparison with state-of-the-art single-person pose

estimators.

Model MPJPE
(mm)↓

Input
frames

Training
ratio

V
id
eo

VIBE (Kocabas
et al., 2020)

65.6 16 50%

Bundle (Arnab
et al., 2019)

63.3 190 100%

Att3DPose (Liu
et al., 2020)

45.1 243 100%

Si
n
gl
e

Im
g.

RepNet (Wandt
and Rosenhahn,
2019)

89.9 1 100%

SMPLify (Bogo
et al., 2016)

80.7 1 50%

HMR (Kanazawa
et al., 2018)

56.8 1 50%

Ours 65.8 1 10%

For evaluation, we choose metrics of Mean Per Joint Position
Error (MPJPE) and the Procrustes Alignment Mean Per Joint
Position Error (PA-MPJPE), calculated as follows:

MPJPE =
1

k

k
∑

i

‖pi − pi‖2, (18)
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FIGURE 10

Example of multi-person pose estimation results (Red points:

original output coordinates of the k-block module; Blue points:

results by unweighted 3D correction algorithm; Green points:

results by uncertainty-based weighted correction algorithm).

PA−MPJPE =
1

k

k
∑

i

‖p′i − p′i‖2, (19)

where pi refers to the predicted position of the i-th joint point while
pi indicates the corresponding ground truth. The p′i also denotes
the position of the i-th joint point, yet with the predicted skeleton
firstly aligned to its ground truth by rotation, translation and
scaling. To facilitate a fair comparison with other mainstream pose
estimators on above benchmarks, we calculate the corresponding
3D coordinates of predicted 2D key points by using the optimized
depths and the given camera parameters. Thus, position errors can
be measured in the 3D space.

4.2. Evaluation on multi-person pose
estimation

In the first experiment, we explore the performance of
different strategies for multi-person pose estimation introduced in
Section 3.4, i.e., the direct multi-scale information fusing scheme,
the FPN-based scheme and the SMPL correction-based scheme. For
a fair comparison, all schemes adopt the Deformable DETR as base-
detector and are evaluated on the 3DPW dataset. The results are
reported w.r.t. the MPJPE metric in Table 1.

Obviously, introducing FPN module improves the mean joint
position error by 0.6 mm according to the MPJPE metric, which
proves that the top-down feature restoration process in the FPN
is more efficient than the direct feature combination of different
scales. By integrating the SMPL correction algorithm, the MPJPE
is further reduced by 0.7 mm, demonstrating the benefit of 3D
human body structure prior in the 2D keypoint prediction task.
The processing speed of our entire architecture is about eight–nine
FPS, which can be applied in real-time use cases. A qualitative
comparison is also shown in Figure 8. As depicted, the direct

multi-scale information fusion yields relative large estimation
errors (Figure 8A). By only introducing the FPN module, the
improvement is limited (Figure 8B). By further deploying the SMPL
correction algorithm, the estimation errors at the end of the torso,
on the arms and on the legs are compensated (Figure 8C).

We also compare the pose estimation results of our proposed
architecture with those by other mainstream multi-person
pose estimators including HMR (Kanazawa et al., 2018),
SPIN (Kolotouros et al., 2019), ROMP (Sun Y. et al., 2021),
HybrIK (Li et al., 2021) and DynBOA (Huang et al., 2020).
Results of compared methods are listed in Table 2. It can be
seen that the model based on k-block and SMPL parameter
estimation proposed in this paper has reached a new level of
state-of-the-art performance on the 3DPW dataset. It outperforms
other approaches by an error reduction of about 5 mm w.r.t.
the PA-MPJPE metric. In terms of the MPJPE metric, a larger
accuracy gain is obtained, which is 8.3 mm. Examples of pose
prediction results are shown in Figure 9. To be noted, since some
of compared methods are not open-sourced, we only illustrate
the prediction results of methods whose codes are available. As
can be seen, in complex activities such as couple dancing, the key
points at the end of body parts (e.g., arms and legs) can be easily
misdetected in mainstream pose estimators while our method can
still accurately locate these key points, proving its strong scene
adaptability. Furthermore, we compare the inference time of the
proposed method to the published results of other approaches,
whose specific results are presented in Table 3. The use of DETR,
with its large number of network parameters, inevitably sacrifices
inference speed in order to achieve good results.

4.3. Evaluation on single-person pose
estimation

Although our proposed architecture is designed aiming at the
multi-person pose estimation task, it can still be applied for single-
person pose estimation. Here, we evaluate our architecture on the
Human3.6M dataset. As this dataset consists of millions of images
and our computation resources are limited, we train our approach
only on 10% of the training set. The evaluation results are reported
in Table 4. As can be seen, the video-based pose estimators generally
outperform single-view-based approaches. This can be attributed to
additional motion information extracted from consecutive frames.
However, the increased accuracy comes at the cost of processing a
large number of frames, such as the top-rankedmethod Att3DPose,
which requires 243 input frames. As to ourmethod, its performance
is comparable to the video-based VIBE (Kocabas et al., 2020) and
Bundle (Arnab et al., 2019), and surpasses the singe-view-based
RepNet (Wandt and Rosenhahn, 2019) and SMPLify (Bogo et al.,
2016). Although the SMPLify is also an SMPL-based model, we
achieve a position error reduction of about 15 mm by adopting the
iterative optimization of 2D–3D key points, further demonstrating
its advantages. However, our method is still with an error gap of 9
mm to the method HMR (Kanazawa et al., 2018), which is learned
on half of the training data. As our model is only learned on 10% of
the training data, there is still potential to improve its performance.
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FIGURE 11

Prediction results under low-illumination (left) and with occlusion (right).

FIGURE 12

Example of negative results caused by occlusion with significant errors on legs. (A) Self-occlusion. (B) Occlusion by other people. (C) Occlusion by

object.

4.4. Exploration on uncertainty weighting

The essence of k-block module is not only to predict the 2D
key points but also to estimate their uncertainties based on the
large heatmap information. In this experiment, we qualitatively
explore its influence on the keypoint weighting in the optimization

process. As illustrated in Figure 10, we depict the key points
directly predicted by the k-block module in red, the ones corrected
by SMPL yet without considering uncertainties in blue, and
those corrected by the uncertainty-based weighted optimization
in green. As can be seen, key points directly predicted by
the k-block module are with obvious errors such at the head,
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elbows, writs, and ankles. By applying the correction algorithm
with the 3D SMPL model, the keypoint errors at the end of
body parts are only reduced to some extent (e.g., the hand
of the right person in Figure 10). By introducing uncertainty-
based weighting in the optimization process, the keypoint errors
are further reduced and the estimated skeleton looks more
realistic. The uncertainty-based weighting is also beneficial to use
cases under low-illumination or with occlusion, where individual
key points become difficult to predict due to deteriorated
image information. However, by considering uncertainties in
the optimization, we can still obtain relative accurate keypoint
prediction by fitting the informative body parts with the 3D shape
and pose estimated by the SMPL model (Figure 11), validating the
proposed approach.

5. Conclusion and discussion

In this paper, we present a new single-view multi-person pose
estimation approach. It manifests improvements over existing
approaches in two main aspects: Firstly, it proposes a k-block
module to simultaneously calculate the 2D key point coordinates
and their uncertainties, which improves the extraction of heatmap
features and facilitates the attentive learning of more informative
key points. Secondly, it employs a 3D shape and pose estimation
based on the SMPL model and further proposes an uncertainty-
weighted correction algorithm to iteratively align the estimated 3D
coordinates with the predicted 2D key points. By experiments on
the 3DPW benchmark, it surpassing state-of-the-art approaches
by a gain of about 8 mm on MPJPE metric and 5 mm on
PA-MPJPE metric. Additionally, it is real-time applicable and
preforms robust against complex scenarios. Nonetheless, when
the human body is subjected to self-occlusion or occlusion (see
Figure 12), there is an ambiguity in depth estimation, which has a
consequential impact on 3D pose estimation. Therefore, it is worth
noting several important considerations for the future work: (1)
incorporating an angle-axis representation or a regularization term
to represent rotation; (2) improving the model accuracy for node
coordinates through the utilization of multi-perspective images
and designing a lighter, more compact model through network
coding schemes.
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learning-based control of a knee
exoskeleton with uncertainties
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Stockholm, Sweden, 2Department of Mathematics, University of Iowa, Iowa City, IA, United States

Introduction: Research interest in exoskeleton assistance strategies that

incorporate the user’s torque capacity is growing rapidly. However, the predicted

torque capacity from users often includes uncertainty from various sources, which

can have a significant impact on the safety of the exoskeleton-user interface.

Methods: To address this challenge, this paper proposes an adaptive

control framework for a knee exoskeleton that uses muscle electromyography

(EMG) signals and joint kinematics. The framework predicted the user’s knee

flexion/extension torque with confidence bounds to quantify the uncertainty

based on a neuromusculoskeletal (NMS) solver-informed Bayesian Neural

Network (NMS-BNN). The predicted torque, with a specified confidence level,

controlled the assistive torque provided by the exoskeleton through a TCP/IP

stream. The performance of the NMS-BNN model was also compared to that of

the Gaussian process (NMS-GP) model.

Results: Our findings showed that both the NMS-BNN and NMS-GP models

accurately predicted knee joint torque with low error, surpassing traditional NMS

models. High uncertainties were observed at the beginning of each movement,

and at terminal stance and terminal swing in self-selected speed walking in both

NMS-BNN and NMS-GP models. The knee exoskeleton provided the desired

assistive torque with a low error, although lower torque was observed during

terminal stance of fast walking compared to self-selected walking speed.

Discussion: The framework developed in this study was able to predict knee

flexion/extension torque with quantifiable uncertainty and to provide adaptive

assistive torque to the user. This holds significant potential for the development

of exoskeletons that provide assistance as needed, with a focus on the safety of

the exoskeleton-user interface.

KEYWORDS

machine learning, data-driven biomechanical models, inverse dynamics,

neuromusculoskeletal modeling, uncertainty quantification

1. Introduction

Exoskeletons have enormous potential to enhance movement and to contribute to
neuromuscular rehabilitation in persons with motor disorders such as stroke, cerebral palsy,
and spinal cord injury (Sartori et al., 2016; Li et al., 2019, 2021; Liu et al., 2019; Zhang et al.,
2019). Exoskeleton-assisted rehabilitation training involves the use of control algorithms
aimed at improving muscle strength, neuroplasticity, and movement enhancement in

Frontiers inNeuroscience 01 frontiersin.org
129128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1254088
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1254088&domain=pdf&date_stamp=2023-08-30
mailto:lanie@kth.se
https://doi.org/10.3389/fnins.2023.1254088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1254088/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1254088

users (Fujii et al., 2017). These control strategies can be classified
into three types: passive control, triggered passive control, and
assist-as-needed control (Marchal-Crespo and Reinkensmeyer,
2009; Meng et al., 2015; Proietti et al., 2016). Passive control refers
to a technique in which the exoskeleton is in charge and guides
the user to follow predefined trajectories or assistive forces/torques
that have been extracted from healthy populations. The user
is passive in the movement and does not actively control the
exoskeleton. This type of control is often used in the initial stages
of therapy to re-acquaint a limb to movement. Triggered passive
control is a variant of passive control, where the user initiates
the exoskeleton’s assistance. Once activated, the user is again
passive in the movement as the exoskeleton moves along pre-
determined trajectories. This technique is often used to incorporate
the brain-machine interface into the control process, providing
assistance to individuals with irreversible impairments, such as
tetraplegia (Proietti et al., 2016). Assist-as-needed control, also
known as “user-in-charge” or “active control,” empowers the user to
perform daily tasks with the aid of an exoskeleton. The exoskeleton
provides assistance based on the user’s ability and intention to
generate torque, with the aim of promoting neuroplasticity and
user autonomy. This active control technique is typically applied in
persons with residual motor function (Chen et al., 2016; Durandau
et al., 2017; Li et al., 2018; Yao et al., 2018). The primary focus of
this paper is on active control techniques that seek to supplement
the user’s insufficient muscle contributions with assistance from
an exoskeleton. Providing torque assistance based on the user’s
movement intention requires precise and robust decoding of motor
function, which can be achieved through recording of underlying
neuromuscular activities, such as brain and nerve signals and
muscle electromyography (EMG) signals. EMG signals, which
capture the electrical excitation of muscles, are a commonly used
method for predicting joint torques, as they are easy to obtain and
offer crucial insights into humanmotion (Sartori et al., 2018; Huang
et al., 2019; Mounis et al., 2019).

Joint torque prediction is crucial in the control of exoskeleton-
assisted rehabilitation and has frequently been achieved through
two methods: physics-based neuromusculoskeletal (NMS)
modeling and artificial neural networks (ANNs) (Pizzolato et al.,
2015, 2019; Zhang et al., 2020, 2021). To improve prediction
accuracy, ANNs have been integrated into NMS models in recent
research. In our recent study (Zhang et al., 2022), an NMS
solver-informed ANNmodel was developed to estimate ankle joint
torque by combining features from an NMS model with a standard
ANN, based on measured joint angles and muscle EMG signals
during gait and isokinetic motions. This hybrid model was overall
more accurate than the NMS or standard ANN models alone, but
still showed poor prediction performance in one subject during
gait, possibly due to incorporating less informative or misleading
input features from the NMS model. This highlights the necessity
of quantifying the uncertainty of joint torque predictions for safe
and efficient human-exoskeleton interaction; accurate estimation
of joint torque is crucial for determining the appropriate level of
assistance from an exoskeleton.

A Bayesian Neural Network (BNN) is a well-established
type of ANN for making predictions with uncertainties and
has great potential in safe and efficient exoskeleton control

(Cursi et al., 2021; Wei et al., 2021; Zhong et al., 2021).
Unlike conventional ANNs (Cao et al., 2022b; Hu et al.,
2022), BNNs incorporate probability distributions to represent
prediction uncertainty and provide a probability distribution
indicating the likelihood of different outcomes (Cursi et al., 2021).
This characteristic makes BNNs useful for decision-making in
various fields, including biomechanics, meteorology, and robotics.
For instance, Zhong et al. (2021) developed a BNN-based
framework for predicting the environmental context of lower
limb prostheses. The quantified prediction uncertainty could lead
to context recognition strategies that enhance reliable decision-
making, efficient sensor fusion, and improved design of intelligent
systems for various applications. Another popular technique for
making predictions with uncertainties is the Gaussian Process
(GP) (Chen et al., 2013; Yun et al., 2014; Maritz et al., 2018;
Guo et al., 2019; Cao et al., 2022a). GP models the output as
a Gaussian distribution with mean and covariance parameters,
wherein the uncertainty is expressed by the covariance. Liang
et al. (2021), for example, developed a GP model to estimate
knee joint angles and uncertainties from EMG signals during
walking and running movements. As both BNNs and GPs can
estimate prediction uncertainty, it is of interest to compare the two
methods in the context of safe and efficient human-exoskeleton
interaction.

The objective of this study was thus to develop an
NMS uncertainty-informed adaptive control framework
for a knee exoskeleton. The framework aimed to provide
accurate predictions of the user’s knee flexion/extension
(F/E) physiological torque, while also quantifying the level of
estimation uncertainty. To achieve this, an NMS solver was
employed to inform the machine learning models, which would
subsequently adjust the assistance level based on the level of
uncertainty. Another aim was to compare the predictions with
uncertainties from the NMS solver-informed BNN (NMS-
BNN) model with those from the NMS solver-informed GP
(NMS-GP) model.

2. Methods

We developed an adaptive control framework for a knee
exoskeleton based on an NMS-BNN model (Figure 1). The NMS-
BNN takes two types of inputs: (1) experimental measurements—
muscle signals and joint angles, and (2) informative physical
features extracted from the underlying NMS solver, such as
individual muscle force and joint torque. The NMS-BNN outputs
knee joint torque with uncertainty quantification in the form
of confidence bounds. The predicted torque with a specified
confidence level is then used to control the assistive torque provided
by the knee exoskeleton through a TCP/IP data stream. The study
results consist of two key components: (1) an analysis of the NMS-
BNN model’s prediction accuracy and uncertainty, compared to
the traditional NMS model and to the NMS-GP model; (2) an
evaluation of the tracking performance of the assistive torque
provided by the knee exoskeleton.
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FIGURE 1

Schematic of the adaptive control framework for a knee exoskeleton based on an NMS solver-informed BNN (NMS-BNN) model. The inputs to the

NMS-BNN include observed muscle signals and joint angles, as well as physical features derived from the NMS solver such as individual muscle force

and joint torque. The NMS-BNN outputs knee joint torque with uncertainty quantification in the form of confidence bounds. The predicted torque

with a specified confidence level is then used to control the assistive torque provided by the knee exoskeleton through a TCP/IP data stream.

FIGURE 2

Experimental setup: subjects equipped with EMG sensors and markers, performed movements in an instrumented motion lab.

2.1. Data collection and processing

Eight able-bodied subjects (sex: 4F/4M; height: 168.1
± 9.4 cm; weight: 65.2 ± 17.8 kg; age: 29 ± 4 years) were
recruited. The Swedish Ethical Review Authority (Dnr.
2020-02311) approved this study, and all subjects provided

informed written consent documents. All participants were
asked to do five movement types (Figure 2), specifically slow
walking, normal walking, fast walking, sit-to-stand, and
stand-to-sit. During the experiments, each movement was
repeated at least ten times. The sequence of movements was
randomized.
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Surface EMG signals (aktos nano, myon, Schwarzenberg,
Switzerland) from vastus medialis (VM), vastus lateralis (VL),
rectus femoris (RF), semitendinosus (ST), biceps femoris (BF),
gastrocnemius medialis (GM), and gastrocnemius lateralis (GL)
of each participant’s one randomly-selected leg were measured at
1,000 Hz. EMGs were post-processed by bandpass filtering (30–300
Hz), rectifying, low pass filtering (6 Hz), and normalizing to the
maximum EMG value among all movement trials (Sartori et al.,
2016; Pizzolato et al., 2017; Hoang et al., 2018).

Marker trajectories were recorded at 100 Hz using a 3D motion
capture system (V16, Vicon, Oxford, UK), with marker placement
based on the CGM2.3 model (Leboeuf et al., 2019). Ground
reaction forces (GRFs) were measured at 100 Hz with three force
plates (AMTI, MA, USA). Kinematics were calculated via inverse
kinematics by solving a weighted least square optimization problem
to minimize the discrepancy between virtual xi and measured x

exp
i

marker trajectories (Lu and O’connor, 1999), Equation (1).

min
q

(
N
∑

i

θi‖x
exp
i − xi‖

2), (1)

where q represents the generalized coordinates of the model and
θi is the weight of ith marker. Kinetics were computed via inverse
dynamics by solving for joint torques in the dynamic equations of
motion (Pandy, 2001) (Equation 2),

M(q)q̈+ C(q, q̇)+ G(q)+ R(q)Fmt + Fe = 0 (2)

where q, q̇, q̈ are the vector of generalized position, velocity and
acceleration, respectively; M(q) is mass matrix and M(q)q̈ is a
vector of inertial forces and torques; C(q, q̇) is the vector of
centripetal and Coriolis forces and torques; G(q) is the vector
of gravitational forces and torques; R(q) is the matrix of muscle
moment arms; Fmt is a vector of musculotendon forces and
R(q)Fmt is the vector of musculotendon torques; Fe is the vector
of external force and torques (i.e., GRFs in this paper). A low-pass
fourth-order zero-lag Butterworth filter (6 Hz) was used to filter
joint kinematics and kinetics (Winter et al., 1974; Mantoan et al.,
2015; Derrick et al., 2020).

2.2. EMG-driven neuromusculoskeletal
model

The EMG-driven NMS model used in this study was the
open-source CEINMS model (Pizzolato et al., 2015) (Figure 3).
This model includes four components: musculotendon kinematics,
muscle activation dynamics, muscle contraction dynamics,
and joint dynamics relationships (Sartori et al., 2011). The
musculotendon kinematics component calculates moment arms
and musculotendon lengths, while the muscle activation dynamics
component computes muscle activation based on the available
EMG information. The relationship between EMG excitation, e(t),
and neural activation, u(t), is expressed in Equation (3) (Lloyd and
Besier, 2003):

u(t) = α · e(t − τ )− β1 · u(t − 1)− β2 · u(t − 2) (3)

where α is the muscle gain parameter, β1 and β2 are the recursive
parameters [β1 = C1 + C2, β2 = C1 · C2, with |C1| < 1, |C2| < 1,
and α − β1 − β2 = 1 for a stable solution (Lloyd and Besier,
2003; Buchanan et al., 2004; Pizzolato et al., 2015)], and τ is the
electromechanical delay. Muscle activation, a(t), is described by
Equation (4):

a(t) =
eAu(t) − 1

eA − 1
(4)

where A is the shape factor (Buchanan et al., 2004; Hoang et al.,
2018).

The muscle contraction dynamics component calculates the
muscle force with a Hill-type muscle model, represented by
Equation (5):

F = Fm0 [Fal(l) · Fv(v) · a+ Fpl(l)+ dp · v]cos(θ) (5)

where Fm0 is the muscle’s maximum isometric force, Fal(l) describes
the relationship between activemuscle force and fiber length l, Fpl(l)
describes the relationship between passive muscle force and fiber
length, Fv(v) describes the relationship between muscle force and
fiber contraction velocity v, θ is the fiber pennation angle, and dp is
the muscle damping parameter.

Finally, the joint dynamics component computes joint torque
by multiplying muscle forces and moment arms.

The parameters were calibrated as outlined by Pizzolato et al.
(2015), with optimal fiber length and tendon slack length adjusted
within ±15% of initial values, coefficients C1 and C2 limited to
values between −1 and 1, and parameter A bounded between
(−3, 0). The maximum isometric force was determined using a
strength coefficient with a range of 0.5 to 2.5. The optimization
process focused on minimizing the error between predicted and
actual joint torques (computed via inverse dynamics) during the
calibration procedure. This optimization task was achieved by
employing a simulated annealing algorithm, which iteratives to
refine the parameter values. The algorithm was executed until the
average change in the objective function’s value reached a tolerance
level of 10−5.

2.3. NMS-BNN model

The NMS-BNN models consist of an input neural layer, 3
hidden layers, and an output neural layer. The inputs, x =

[x1, x2, . . . , xm]T where m = 21, were augmented with two types
of features (Figure 4): (1) Muscle EMG signals and joint kinematics
(knee F/E angle) from a 3Dmotion capture system, and (2) physical
features such as muscle forces and NMS torque from an underlying
NMS solver, to increase the model’s accuracy by providing more
information about the system beingmodeled. Each hidden layer has
40 neurons. The estimated knee torque with uncertainties bound
was determined in the output layer.

In BNNs, weights are treated as probability distributions rather
than as single point estimates, as in standard neural networks
(Figure 4). These distributions are used to reflect the uncertainty
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FIGURE 3

Schematic structure of an EMG-driven neuromusculoskeletal model with four components: the musculotendon kinematics component calculates

musculotendon lengths and moment arms; the muscle activation dynamics component uses the EMG information to compute muscle activation;

the muscle contraction dynamics component, predicts musculotendon force using musculotendon length and muscle activation based on a

Hill-type muscle model; and finally, the joint dynamics component computes joint torques with musculotendon forces and moment arms as inputs.

FIGURE 4

Architecture for the NMS-BNN model. The NMS-BNN models consist of an input neural layer, 3 hidden layers, and an output neural layer. The inputs,

x = [x1, x2, . . . , xm]
T where m = 21, were augmented with two types of features: (1) Muscle EMG signals and joint kinematics from a 3D motion

capture system, and (2) Physical features such as muscle forces and NMS torque from an underlying NMS solver, to increase the model’s accuracy by

providing more information about the system being modeled. Each hidden layer has 40 neurons. The estimated knee torque with uncertainties

bound was determined in the output layer. Weights are treated as probability distributions rather than as single-point estimates as in standard neural

networks. These distributions are used to reflect the uncertainty in weights and predictions.

in weights and predictions. The posterior probability of weights,
P(W|X), is computed using Bayes theorem as follows (Equation 6):

P(W|X) =
P(X|W)P(W)

P(X)
(6)

where X is the data, P(X|W) represents the likelihood of the data
given weights W, and P(W) is the prior probability of the weights.

The denominator, P(X), represents the probability of the data,
which is obtained by integrating the likelihood of the data given
weights and the prior probability of weights over all possible values
of weights, represented by Equation (7):

P(X) =

∫

P(X|W)P(W)dW (7)
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The BNN package TensorBNN, developed by Kronheim et al.
(2022), was used in this study. The hyper-parameters of the BNN
models were determined using a “coarse-to-fine” random search
method (Bergstra and Bengio, 2012). During training, the mean
square error was used as the loss function and a batch size of
32 was applied. Three hidden layers were included. Each hidden
layer has 40 neurons with a tanh activation function. A Gaussian
likelihood with a standard deviation of 0.1 was employed. Prior to
sampling, the model was pre-trained using the AMSGrad optimizer
with learning rates of 0.01, 0.001, and 0.0001, with a patience of 10.
To obtain a point cloud of the posterior density of neural network
parameters, Hamiltonian Monte Carlo (HMC) sampling was used
to compute the likelihood function. HMC is a Markov chain
Monte Carlo method that leverages a fictitious potential energy
function derived from the posterior density of the neural network
parameters. Numerical approximation was conducted using the
leapfrog method, with the number of leapfrog steps and step size
determining the distance traveled to the next proposed point. The
number of steps for the HMC hyper-parameter sampler remained
constant, while the step size was adapted using the Dual-Averaging
algorithm based on the acceptance rate of the sample during 80%
of the burn-in period. It is worth noting that selecting suitable
values for the number of steps and step size can be challenging,
and TensorBNN incorporates the parameter adapter algorithm
to automatically optimize these parameters (Wang et al., 2013;
Kronheim et al., 2022).

2.4. NMS-GP model

The NMS-GP model was developed using the same input
data as the NMS-BNN model, which comprised experimentally
obtained muscle signals and joint kinematics, as well as physical
features such as muscle forces and NMS torque extracted from the
underlying NMS solver. TheNMS-GPmodel f (x) was specified by a
mean functionµ(x) and a covariance function k(x, x

′
), as expressed

in equation (8) (Rasmussen, 2004).

f (x) ∼ GP(µ(x), k(x, x
′

)) (8)

where the mean function µ(x) provides an estimate of the expected
value of the model at a given input, while the covariance function,
also referred to as the kernel function, quantifies the similarity
between two inputs. The Gaussian process model offers various
kernel functions to capture the underlying structure of data.
Among them, the radial basis function kernel (RBF) is widely used
due to its smoothness and infinite differentiability, as shown in
Equation (9),

k(x, x′) = exp(−
|x− x′|2

2l2
) (9)

where l controls the length-scale of the kernel, and |x − x′| is the
Euclidean distance between inputs x and x′.

Another popular kernel function is the Matern kernel, which is
a generalization of the RBF kernel and is defined as Equation (10),

k(x, x′) =
21−ν

Ŵ(ν)

(√
2ν

l
|x− x′|

)ν

Kν

(√
2ν

l
|x− x′|

)

(10)

where ν determines the smoothness of the kernel, Kν is the
modified Bessel function, Ŵ(ν) is the Gamma function, and l

controls the scale of the kernel.
For modeling noise in data, the White Noise Kernel, as shown

in Equation (11), is commonly used,

k(x, x′) = σ 2δ(x− x′) (11)

where σ 2 is the noise variance parameter that determines the
amplitude of the noise, and δ(x − x′) is the Dirac delta function.
This function equals one when x = x′ and zero otherwise, ensuring
that the kernel function is non-zero only at the diagonal of the input
space.

The Linear kernel is another widely used kernel that models
a linear relationship between the input and output variables.
Specifically, it can be formulated as depicted in Equation (12):

k(x, x′) = σ 2xTx′ (12)

where σ 2 represents the variance parameter.
In Gaussian process modeling, the combination of different

kernel functions can improve the performance of the model.
In this regard, we selected a combination of Matern, White
Noise, and Linear kernels after conducting extensive testing to
obtain the most accurate predictions. The Matern kernel was
used to capture non-linear patterns, while the White Noise kernel
accounted for measurement errors and uncertainty, and the Linear
kernel modeled linear relationships between the input and output
variables. Hyperparameters such as length scale, signal variance,
noise variance, and others were optimized during the training
process to enhance the model’s performance. In the Matern kernel,
we set ν to 3/2, and the length scale was bounded between the
range of (0.01, 200), with variance confined within the range of
(10−3, 105). Similarly, the White Noise kernel had a noise variance
bounded between (0.03, 100), while the Linear kernel had a variance
range of (10−3, 105).

2.5. Knee exoskeleton

The knee exoskeleton hardware consists of a drive unit (Gen.1,
Maxon, Switzerland), a 3D-printed thigh-shank frame, and thigh
and shank straps (Orliman 94260, Spain). The drive unit features
a brushless DC motor (EC90 flat), a MILE encoder with 4,096
counts per turn, a three-stage planetary gearbox with an 18-bit
SSI absolute encoder, and an EPOS4 position controller. The drive
unit is capable of providing a continuous torque of 54 Nm and a
maximum torque of 120 Nm on a 20% duty cycle. The system can
operate on a DC power supply ranging from 10 to 50vV and its
actuation speed can reach up to 22 rpm.

2.6. Evaluation protocol

2.6.1. Joint torque prediction
The prediction accuracy of the knee joint torque for NMS,

NMS-GP, andNMS-BNNmodels was investigated. The uncertainty
of the predicted torque by NMS-GP and NMS-BNN models
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FIGURE 5

The distributions of NRMSE between estimated and

measured/actual knee joint torques across subjects in NMS,

NMS-GP, and NMS-BNN models during five daily activities. The

violin plots depict the probability distributions of NRMSE using

kernel density plots, and the box plots represent the minimum,

lower quartile, median, upper quartile, and maximum values of

NRMSE. A significant di�erence between any two models is

indicated by an asterisk (∗), based on paired t-test (for normally

distributed data) or Wilcoxon signed-rank test (for non-normally

distributed data) with Bonferroni correction.

was also analyzed. The prediction accuracy and uncertainty
quantification was compared in five cases:Gaitslow,Gaitself ,Gaitfast ,
SitToStand, and StandToSit, which were trained using data from
each movement separately. NMS-GP and NMS-BNN models were
trained using 80% of the data and evaluated on the remaining
data, while NMS models were calibrated using three trials of each
movement and tested on the same data as NMS-GP andNMS-BNN
models. The input data from each trial consisted of approximately
100 time-series data points and 21 dimensions.

Two prediction error metrics were evaluated: the Normalized
Root Mean Square Error (NRMSE, ENRMS) and the Root Mean
Square Error (RMSE, ERMS). A low prediction error indicated a
high prediction accuracy. NRMSE was calculated by dividing the
RMSE (between the predicted and actual torque) by the range of
joint torque observed during the corresponding motion:

ERMS =

√

√

√

√

1

N

N
∑

n=1

(yp,n − yn)2 (13)

ENRMS =
ERMS

(ymax − ymin)
× 100% (14)

where yn and yp,n are the measured/actual and predicted torque
respectively; and ymin and ymax are the minimum and maximum
measured torque in corresponding movements. The RMSE and
NRMSE were calculated for each subject and the average was
obtained across eight subjects. The results section presents the
average values of RMSE and NRMSE.

The normality of the data distribution was evaluated using
Shapiro-Wilk tests (p < 0.05 significance level). To determine the

FIGURE 6

The distributions of RMSE between estimated and measured/actual

knee joint torques across subjects in NMS, NMS-GP, and NMS-BNN

models during five daily activities. The violin plots depict the

probability distributions of NRMSE using kernel density plots, and

the box plots represent the minimum, lower quartile, median, upper

quartile, and maximum values of NRMSE. A significant di�erence

between any two models is indicated by an asterisk (∗), based on

paired t-test (for normally distributed data) or Wilcoxon signed-rank

test (for non-normally distributed data) with Bonferroni correction.

differences among the NRMSEs and RMSEs estimated by the three
approaches, pairwise comparisons were performed using either
paired t-tests for normally distributed data or Wilcoxon signed-
rank tests for non-normally distributed data, both with Bonferroni
correction applied and significance level of p < 0.05.

The uncertainty of the predicted torque by NMS-GP and NMS-
BNN models was quantified by using a 95% confidence level (CL),
which means that there is a 95% probability that the true value of
the function being modeled falls within the predicted interval. A
high uncertainty value indicates low confidence in the predicted
value.

2.6.2. Exoskeleton assistive torque tracking
performance

We also evaluate the tracking performance of the knee
exoskeleton’s assistive torque provided by the adaptive control
framework during five daily activities by using the two metrics:
NRMSE and RMSE (between desired and actual torque provided
by the knee exoskeleton). The assistance level AL of the knee torque
provided by the adaptive control framework is adapted/determined
by the uncertainties U quantified by the NMS-BNN model, as
described by the following equation:

AL =



































0.8 if U < 0.05

0.6 if 0.05 ≤ U < 0.1

0.4 if 0.1 ≤ U < 0.15

0.3 if 0.15 ≤ U < 0.2

0.1 if U ≥ 0.2

(15)
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FIGURE 7

(A) The uncertainty quantification of predicted knee joint torque by the NMS-GP and NMS-BNN models across subjects during five daily activities, as

the mean ± 1 standard deviation of all subjects. The uncertainty was quantified using a 95% confidence level, meaning that there is a 95% probability

that the true value falls within the predicted interval. A high uncertainty value indicates low confidence in the prediction. (B) One example of

measured knee flex/extension torques (Nm/kg) by inverse dynamics (ID) and predicted values by both NMS and NMS-GP models during five daily

activities. The standard deviation in the NMS-GP models highlights the uncertainties from the expected mean value. (C) One example of predicted

knee flex/extension torques by NMS-BNN models was presented and compared with the same example from ID and NMS models in (B). The

standard deviation in the NMS-BNN models also highlights the uncertainties from the expected mean value.

FIGURE 8

The tracking error of the knee exoskeleton’s assistive torque provided by the adaptive control framework during five daily activities, presented as (A)

NRMSE and (B) RMSE. The violin plots illustrate the probability distributions of prediction error through kernel density plots, and the box plots depict

the minimum, first quartile, median, third quartile, and maximum values of the prediction error.
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3. Results

3.1. Joint torque prediction

Overall, both NMS-BNN and NMS-GP models accurately
predicted knee joint torque with relatively low error (RMSE: NMS-
GP≤ 0.05 Nm/kg, NMS-BNN≤ 0.07 Nm/kg; NRMSE: NMS-GP≤

5.9%, NMS-BNN≤ 6.8%). The errors were considerably lower than
those of NMS models (RMSE:≤ 0.14 Nm/kg, NRMSE: ≤ 18.3%,
Figures 5, 6).

The NRMSE prediction error for the NMS-GP and NMS-BNN
models was significantly lower than that of the NMS models in all
cases, except the StandToSit case (Gaitslow: p < 0.01 and p < 0.01;
Gaitself : p < 0.01 and p < 0.01; Gaitfast : p < 0.01 and p < 0.01,
SitToStand: p < 0.01 and p < 0.01, StandToSit: p = 0.08 and
p = 1.45; Figure 5). Similar findings were also observed in the
RMSE.

Among the NRMSE predicted by NMS models in five cases,
the NRMSE in the StandToSit case was the lowest (≤ 7.2%). No
significant differences were observed in the StandToSit case among
NMS, NMS-GP, and NMS-BNN models (NMS:≤ 7.2%, NMS-GP:
≤ 5.5%; NMS-BNN: ≤ 6.8%).

Both the NMS-GP and NMS-BNN models had relatively high
uncertainties in the predicted knee torque at the beginning of
each movement, particularly in the Gaitself case (Figure 7A). In
the NMS-GP model, high uncertainties were observed during
terminal stance and terminal swing in theGaitself case. On the other
hand, the NMS-BNNmodel had high uncertainties during terminal
stance, initial swing, and terminal swing in all gait speeds.

The predicted torque by the NMS models had a poorer
agreement with the measured torque compared to the NMS-GP
and NMS-BNNmodels (Figures 7B, C). Relatively high offsets were
observed at the beginning of each movement in NMS models.

3.2. Exoskeleton assistive torque tracking
performance

Overall, the knee exoskeleton accurately provided the required
assistive torque with relatively low error (RMSE:≤ 0.06 Nm/kg,
NRMSE: ≤ 5.6%, Figure 8). Among the five movements, the
NRMSE was evenly distributed among all subjects for walking
movements, while one outlier was noted in both sit-to-stand
and stand-to-sit movements. The sit-to-stand movement had the
highest tracking error among the five movements.

Generally, the actual assistive torque provided by the knee
exoskeleton matched the desired torque well (Figure 9). However,
it is important to note that limited torque was provided at the start
of the sit-to-stand movement. Additionally, relatively low assistive
torque was observed during the terminal stance of fast walking
compared to self-selected speed walking.

4. Discussion

We developed an NMS-BNN-based adaptive control
framework for a knee exoskeleton using muscle EMG signals

and joint kinematics. We also compared the predictions with
uncertainties from the NMS-BNN model with those from the
NMS-GP model. We observed both NMS-BNN and NMS-GP
models showed accurate predictions of knee joint torque with
low error, outperforming traditional NMS models, indicating the
benefits of incorporating NMS features into machine learning
models. High uncertainties, however, were observed at the
beginning of each movement and at terminal stance and terminal
swing in the self-selected speed walking in both NMS-BNN and
NMS-GP models. The knee exoskeleton provided the desired
assistive torque accurately, with a relatively low error. Lower levels
of torque were observed during terminal stance in fast walking
compared to self-selected walking speed. The level of assistive
torque was determined and adjusted based on the uncertainty
in the NMS-BNN predictions, promoting the safety of the
exoskeleton-user interface.

Incorporating the user’s physiological joint torque into
exoskeleton control strategies has in recent years become
feasible, and has vast potential to improve task performance
and rehabilitation outcomes. Among common techniques for
predicting joint torque, EMG-drivenNMSmodels require expertise
and complex calibration, whereas machine learning models are
more accessible but considered as black boxes (Hoang et al., 2018;
Ezati et al., 2019; Soleimani and Nazerfard, 2021). To improve
prediction accuracy, ANNs have been integrated into NMSmodels,
allowing the advantages of both approaches to be leveraged.
However, ensuring the safety and efficiency of exoskeleton control
is also crucial, particularly when using predicted torque as inputs
for the exoskeleton. To address this, this study integrated NMS
with machine learning models with uncertainty quantification for
joint torque prediction. As mentioned earlier, Both BNNs and
GP models can provide predictions with associated uncertainties.
While BNN models incorporate Bayesian methods to quantify
the uncertainty in predictions, GP models are based on Gaussian
processes and provide a probabilistic model for predictions
with uncertainties. In the current study, we also compared the
predictions with uncertainties between NMS-BNN and NMS-
GP models. We found both NMS-BNN and NMS-GP models
accurately predicted knee joint torque with relatively low error
(RMSE: NMS-GP ≤ 0.05 Nm/kg, NMS-BNN ≤ 0.07 Nm/kg;
NRMSE: NMS-GP ≤ 5.9%, NMS-BNN ≤ 6.8%), and were found
to be superior to traditional NMS models (RMSE ≤ 0.14 Nm/kg,
NRMSE ≤ 18.3%). The results are attributed to the addition
of machine learning layers, which further train the model by
minimizing the error betweenmeasured and predicted joint torque.

The quantification of uncertainty by either the NMS-BNN
or NMS-GP models can supply the exoskeleton controller with
valuable data for decision-making, which could enhance safety in
the exoskeleton-user interaction. For instance, we observed high
uncertainties at the beginning of each movement in both NMS-
BNN and NMS-GP models (Figure 7). This is likely due to the
physical characteristics adopted from NMS models, which show a
noticeable offset at the start of eachmovement. InNMSmodels, two
prior time steps of neural activation from each MTU are required
to calculate muscle neural activation (Zhang et al., 2022). At the
beginning of a cycle, these past two neural activation values are
not yet obtainable and are approximated using EMG signals from
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FIGURE 9

One example of the desired and actual assistive torque provided by the knee exoskeleton during five daily activities.

two previous time steps, potentially leading to initial inaccuracies
in predicted torque. Furthermore, high uncertainties were observed
during the terminal stance and terminal swing in self-selected speed
walking in both NMS-BNN and NMS-GP models. This may be
attributed to the of transitions between the stance and swing phases
of gait.

The knee exoskeleton provided the desired assistive torque
accurately, with a relatively low error (RMSE:≤ 0.06 Nm/kg,
NRMSE: ≤ 5.6%, Figure 8). The assistive torque was achieved
through current control in the motor, a widely used closed-
loop control technique (Zhang et al., 2018; Azocar et al., 2020;
Nuckols et al., 2021). The current control system aims to maintain
a consistent current in the motor, even as its speed and load
conditions vary. Precise control over the motor’s torque production
can be achieved through current control, though accuracy may
be influenced by factors such as the quality of current sensing
and the speed of the control loop’s response. To estimate output
torque, the control system uses the measured current as feedback,
as the current is proportional to the torque produced by the
motor (Azocar et al., 2020). This allows the control system
to determine the amount of torque produced and adjust the
exoskeleton accordingly.We observed lower levels of torque during
the terminal stance of fast walking compared to self-selected
walking speed (Figure 9). This discrepancy may be due to the
increased uncertainties present during fast walking, which in turn
led to a lower level of assistance torque being assigned according
to our control strategy (Equation 15). It is worth noting that an
outlier was observed in the sit-to-stand and stand-to-sit movements
(Figure 8). This deviation may be attributed to the limited torque
capacity of the exoskeleton at the beginning of the sit-to-stand
movement and at the end of the stand-to-sit movement (Figure 9).

This study focused on evaluating the feasibility of the NMS-
BNN framework by implementing a basic current control strategy.
The objective was to assess the overall viability of the framework.
However, future studies are necessary to investigate more advanced
control techniques, such as impedance control. The current control
strategy may result in less smooth assistive torque. Therefore,
in future studies, we recommend incorporating an improved
control strategy that takes into account both uncertainties and
the closest points of predicted torque to enhance the smoothness
and improve the user-exoskeleton interface. Furthermore, while
our current study centers on the knee joint, it is important
to note that the approach can be adapted and extended to

other joints as well. Additionally, it is worth mentioning that
the maximum torque that can be generated by the system is
54 Nm, which may also impact the smoothness of the assistive
torque. Thus, this should be considered in future control strategies.
It should be noted that this study did not involve testing
the performance of the NMS-BNN-based adaptive framework
on real users for practical applications. Further research is
essential to address this issue and ascertain the practicality of the
framework.

5. Conclusion

In this study, we proposed an NMS-BNN-based adaptive
control framework for a knee exoskeleton that uses muscle
EMG signals and joint kinematics. The NMS-BNN model
combines a traditional NMS model with modern machine
learning techniques and includes uncertainty quantification. The
proposed framework also measures uncertainty in predictions and
incorporates it into the control design to ensure safety of the
exoskeleton-user interface. We also compared the performance
of the NMS-BNN model to an NMS-GP model, which also
predicts uncertainties. Detailed information relating to how to
combine traditional models with machine learning models with
uncertainties can provide useful guidance for designing exoskeleton
control strategies.
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A non-contact interactive system 
for multimodal surgical robots 
based on LeapMotion and visual 
tags
Xinkang Zhang 1,2, Jie Wang 1,2, Xiaokun Dai 1,2, Shu Shen 3* and 
Xinrong Chen 1,2*
1 Academy for Engineering and Technology, Fudan University, Shanghai, China, 2 Shanghai Key 
Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, China, 
3 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of 
Posts and Telecommunications, Nanjing, China

In recent years, the integration of robots in minimally invasive surgery has gained 
significant traction in clinical practice. However, conventional contact-based 
human-computer interaction poses the risk of bacterial infection, significantly 
limiting the role of robots in surgery. To address this limitation, we  propose 
an innovative interaction method rooted in gestures and visual tags, allowing 
surgeons to control and fine-tune surgical robots without physical contact with 
the environment. By encoding the six gestures collected using LeapMotion, 
we can effectively control the surgical robot in a non-contact manner. Moreover, 
utilizing Aruco technology, we have accurately identified the 3D spatial position 
of the visual label, and developed 12 fine-tuning operations to refine surgical 
instruments. To evaluate the applicability of our proposed system in surgery, 
we  designed a relevant experimental setup. In the experiment, we  achieved 
enough precision. These results demonstrate that our system meets the clinical 
standard, providing doctors with a non-contact and flexible means of interacting 
with robots during surgery.

KEYWORDS

surgical robot, human-computer interaction, LeapMotion, Aruco, non-contact

1. Introduction

With the rapid advancement of sensor technology and computer technology in recent years, 
the capabilities of robots and manipulators have become more sophisticated and performed 
better. As a result, they have become increasingly prominent in various aspects of daily life and 
specific fields. This surge in demand for human-computer interaction and the development of 
human-computer interaction technology have led to a proliferation of mainstream methods, 
including joystick buttons, voice interaction, and gesture recognition, among others. In recent 
years, human-computer interaction has emerged as a popular research area in the fields of smart 
homes, customer service, remote control, and medicine.

In the medical field, human-computer interaction technology is widely utilized for 
rehabilitation purposes, assistance for those with disabilities, and surgical robots (Díaz et al., 
2014; Ohmura et al., 2018; Nagyné Elek and Haidegger, 2019; Cao et al., 2022a). Chen C. et al. 
(2023) decompounds muscle EMG signals to quantify neural features and map them to 
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three-degree-of-freedom wrist movements through a multiple linear 
regression model. This method has shown great potential in the 
reconstruction process. Chen W. et al. (2023) employs myoelectric 
signals from the lower limbs to control exoskeletons. The quadriceps 
and hamstring muscles are selected to obtain gait information, and 16 
dry electrodes measure electromyography signals transmitting 
information to a host computer via Bluetooth. The processed signals 
help users control their gait effectively. Ali et al. (2023) proposes a 
deep learning-based Thought-to-Text conversion for patients with 
neurodegenerative diseases like Alzheimer’s disease type through 
EEG. Collected EEG signals are preprocessed with a band-pass filter 
and divided into five classifier tasks using XGBoost (Ogunleye and 
Wang, 2019) classifier. Finally, the CNN-LSTM deep neural network 
(Mutegeki and Han, 2020) learns advanced features from MI-EEG 
signals and translates them into corresponding alphabets. Coughlan 
et  al. (2020) utilizes machine vision to provide voice prompts for 
visually impaired patients. Specifically, the Camera Input–Output 
(CamIO) augmented reality tool guides the patient in 3D space using 
a pen covered with 3D visual labels, leading the patient closer to 
the target.

In the realm of surgical robots, various information modalities 
will also be utilized to assist medical professionals (De Rossi et al., 
2021; Long et al., 2021; Cao et al., 2022b). Surgical robots possess 
distinct advantages over humans, including unparalleled precision, 
exceptional stability, and rapid execution. As a result, they have 
become increasingly prominent in endoscopic surgery (Kang et al., 
2009; Gifari et al., 2019) in recent years.

According to Jacob et al. (2011), a system is proposed to track the 
surgeon’s hands, identify required surgical instruments, and have the 
robotic arm pass them to the doctor. However, this system is still 
slower than manual work, and nurses who pass instruments 
themselves do not need to leave the operating table, indicating a weak 
irreplaceability in surgery. Next, referring to Van Amsterdam et al. 
(2022), a video-based surgical assessment system is proposed, 
including automatic activity recognition, technical skill assessment, 
book assistance, and other functions. By integrating a multi-modal 
attention mechanism into a dual-stream temporal convolutional 
network, real-time dynamic weight kinematics and visual 
representation calculation improve fine-grained surgical data analysis 
accuracy. However, these methods have a common problem: 
complexity and single modality interaction. To address this, different 
interaction methods need to be introduced. Moving on, Cho et al. 
(2018) aims to establish a non-contact computer-assisted surgery 
system. LeapMotion’s mature gesture recognition module is used to 
obtain hand gestures, and features are manually extracted before 
being aligned with support vector machine (SVM) classification 
(Chang and Lin, 2011). This creates a non-contact control interface 
with gesture recognition functionality. Similarly, Dwivedi et al. (2019) 
combines myoelectricity and visual tags to manipulate a robotic arm. 
Kam et al. (2018) provides three-dimensional attitude information to 
control the robotic arm’s position, while processed myoelectric 
signals control the bionic hand at the arm’s end for grasping actions. 
In our previous work (Wang et  al., 2023), we  explored gestural 
interactions with various countries to achieve seamless human-
computer interaction and contactless operation. However, a common 
limitation is that users must maintain a predetermined posture to 
perform a single trigger on a specific action, which lacks the dynamic 
flexibility of more complex gestures.

Most of the existing systems rely on complex technology and have 
high equipment requirements. Therefore, finding a balance between 
simplicity and robustness is crucial. In this paper, we  propose a 
straightforward method that integrates consumer-grade gesture 
recognition technology LeapMotion with accurate 3D space perception 
technology based on visual labels Aruco. This framework allows 
surgeons to interact with surgical robots without physical contact, 
leveraging the potential of surgical navigation systems. By doing so, 
we can maximize the capabilities of surgical robots in surgical procedures.

2. Materials and methods

2.1. System composition

The navigation operating system is primarily composed of a 
computer workstation, a gesture recognition module, an Aruco 
recognition module, a surgical navigator based on optical positioning, 
a surgical probe, a positioner, and a robot module comprising a seven-
axis robotic arm and a control cabinet. All navigators and operating 
tables can be  moved according to the position of the patient and 
doctor. One of the workstations is connected to the surgical navigation 
system and robotic system. The surgical navigation system tracks the 
precise position of surgical instruments and patients in real-time 
using the locator installed on the surgical instrument and the 
operating table, which consists of an array of reflective balls. Doctors 
can operate the collaborative surgical robot and its end-effectors with 
great flexibility through gesture recognition and tag-based recognition 
technologies. The entire surgical navigation system creates an 
enhanced surgical space, aligning the target area or target point in the 
preoperative medical image with the real patient’s body to provide 
visual assistance for the doctor. In such cases, gesture and visual tag 
information can be used as a remote, aseptic method to adjust the 
position of surgical instruments (Figure 1).

2.2. System workflow

The proposed whole surgical system is depicted in Figure 2. The 
computer workstation acts as the central control unit to regulate the 
robot, generate enhanced surgical imaging data, and facilitate 
human-computer interaction. The hardware component of the 
collaborative interactive surgical robot system is represented by blue 
in the figure. In addition to the operator, surgical navigation interface, 
surgical robot movement/execution, patient, and contactless 
interaction system, the figure also depicts the data flow of hardware-
participant interaction, indicated by black arrows, and the surgeon-
centric flow of interaction, shown using red arrows. To achieve 
varying degrees of operational flexibility under non-contact 
conditions, a system employing non-contact human-computer 
interaction is proposed. The surgeon must adjust the position of the 
surgical instrument or operate the surgical instrument according to 
a predetermined trajectory during surgery. The surgeon can move 
and fine-tune the surgical robot through contactless gesture control 
and a special marker with visual markers. The article’s core is to 
utilize two types of sensors and decoding technologies to enable 
seamless and flexible interaction between the surgeon and instrument 
during the procedure using non-contact means.
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2.3. Gesture interaction based on 
LeapMotion

In this section, our attention is directed toward the gesture 
recognition module based on LeapMotion. The specific architecture 
of the model is illustrated in Figure 3.

Gesture information collected via LeapMotion is utilized to rapidly 
adjust the position of the surgical instrument held by the robotic arm. 
LeapMotion is a device used to collect gestures, and the collected 
information includes the overall position of the hand, the position of key 
points on the hand, the length and direction of the fingers, and other 
related data. In this work, LeapMotion will continuously obtain timing 
frames, and the pose data will be parsed and expressed in a form that is 

convenient for us. The posture data will then be decoded into instructions 
and transmitted to the surgical robot module to perform the 
corresponding operation. For the simplicity and robustness of the 
instructions, we have defined six instructions to control the robotic arm 
to move quickly and over a large range.

2.3.1. Introduction and principle of LeapMotion 
equipment

LeapMotion is a somatosensory device developed by LEAP, which 
specializes in recognizing the geometric information of the hand. The 
device consists of two cameras and three infrared LED lights, allowing 
it to obtain images from two angles and depth information using 
infrared light. The binocular camera’s principle is based on the human 

FIGURE 1

Overview of the surgical navigation robot system.

FIGURE 2

Workflow of the surgeon-robot system.
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visual system, making LeapMotion more accurate and reliable in hand 
recognition. Its recognition accuracy reaches one hundredth of a 
millimeter, which is more accurate than Microsoft’s Kinect and has 
more advantages in gesture interaction. Additionally, LeapMotion has 
a lower price compared to data gloves, making it a more cost-effective 
option in most scenarios, with sufficient precision (Table 1).

2.3.2. Reading and data processing of 
LeapMotion

LeapMotion’s two cameras capture images from different angles 
and reconstruct the 3D information of the palm in space. The 
detection range is approximately 2.5–60 cm above the sensor. The 
coordinates of the entire space are as follows: the Cartesian 
coordinate system is centered on the sensor, and the X-axis of the 
coordinate’s points to the right, the Y-axis points upward, and the 
Z-axis points away from the screen. The unit of the output distance 
value is millimeters. Each frame of information contains the 
position and orientation of the center of the palm, as well as the 
position and pose information of each key point on the hands and 
fingers. The approximate structure of the read structure is shown in 
Figure 3.

To represent manipulation commands, certain hand features must 
be extracted. In the interaction design of this article, specific keypoint 
distance and normal features are selected as features to reflect the 
uniqueness of different hand poses. In the interaction design, there are 
two overall postures of the hand: one where the palm is facing down, and 
the other where the palm is facing inward. The orientation can 
be  determined by the normal vector of the hand. To determine the 
orientation, the method used is to calculate the cosine similarity between 
the vector and the standard coordinate axis vector. The similarity ranges 
from −1 to 1, and the greater the similarity, the closer the two vectors are 
aligned. From this, we can obtain the palm direction information.

To detect finger poses, distance features between key points are 
extracted, specifically, whether the fingers are bent or stretched based 
on the distance from the fingertip to the base of the palm. And 
determine the command according to the gesture of the finger.

The hand information in each frame can be extracted from the 
frames read out from the device, including the first 3D coordinate 
x Rstart i� � 3and the tail 3D coordinate x Rend i� � 3 of each finger. In 
addition, the position of the root x Rroot ∈

3  of the hand can also 
be obtained.

 

( )
( )

if , _
if , _

− −

− −

 ≥=  <

1 threshold d
0 threshold d

start i root i
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start i root i

d x x
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(1)

where si  indicates the state of the i-th finger, and threshold d_  
represents the threshold for judging the state of the finger, d  is an 
operator used to calculate the Euclidean distance.

To take palm orientation into account, two vectors are used 
to represent.

 d RL ∈
3
 (2)

 d RR ∈
3
 (3)

where dL indicates the palm facing direction of the left hand, while dL 
indicates the palm facing direction of the right hand.

 S s s s s dL L� � �0 1 2 3, , , ,  (4)

 S s s s s dR R� � �0 1 2 3, , , ,  (5)

where SL indicates the state of the left hand, while SR  indicates the 
state of the right hand.

FIGURE 3

The LeapMotion used in this work.

TABLE 1 Accuracy of hand recognition with predefined categories.

Category 1 2 3 4 5 6

Accuracy 95% 97% 99% 96% 98% 98%
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The state of the two hands will be decoded into different operating 
instructions, corresponding to different actions.

2.4. Interaction based on Aruco

A second-stage fine-tuning of the manipulator pose and 
position is carried out using an Aruco-based pose estimation 
method. Aruco is a widely used label in computer vision 
localization tasks and augmented reality applications, first 
proposed in the paper (Garrido-Jurado et al., 2014) in 2014. By 
placing Aruco on the object to be estimated or tracked, attitude 
estimation and tracking of the object can be achieved through its 
posture. In this paper, Aruco is used as a means of manipulation, 
and the operation action is obtained by detecting its posture. 
Through rotation and displacement in different directions, a total 
of 12 operating instructions, corresponding to 12 distinct actions, 
are generated. These instructions are used for fine-tuning the 
robotic arm in a limited range.

2.4.1. Encoding
The full name of the Aruco code is the Augmented Reality 

University of Cordoba, which is visually represented as a square with 
a black background, and the grid pattern inside the square serves as a 
distinct identifier. The size of the detected square is a crucial reference 
information for estimating 3D pose from monocular RGB images. In 
image editing tasks, the position information provided by the Aruco 
tag enables accurate processing of the perspective relationship of the 
image. In scenarios where robots are required to be positioned, such 
as automated warehouses, the Aruco mark can serve as both a 
positioning mark for robots and an identification mark for 
designated areas.

2.4.2. Aruco generation
We use opencv to generate Aruco’s markers. There are 25 

predefined markup dictionaries. All Arucos in each dictionary 
contain the same number of blocks. According to different 
parameters, such as size, id, border width, etc., Aruco codes with 
predefined patterns and sizes are generated as needed for 
manipulation. As shown in Figure 4, in this work, we employ 
Aruco codes of size 10 × 10.

2.4.3. Pose estimation and parameter resolve
To detect the location and pose of tags, several steps are 

involved. First, the most prominent contour must be  extracted 
using a local adaptive threshold method, which is highly robust to 
various lighting conditions. Next, contour extraction is performed, 
followed by a four-vertex polygon approximation. The resulting 
four-vertex polygon area is then passed through the homography 
matrix to eliminate perspective projection. Otsu’s binarization 
method is used for thresholding. The interior of the polygon is then 
divided into a grid to assign 0 or 1 individually. Finally, the result is 
matched with the result in the dictionary to obtain the id of the tag. 
The pose relative to the camera is estimated by minimizing the 
reprojection error of the corners.

Here, we use python based programming language and opencv to 
obtain the position and pose of labels in detail. Opencv is a widely used 

open source library for computer vision and image processing. It 
contains a large number of image processing tools and can help 
developers create applications such as machine learning, target 
detection and tracking, and image processing. Opencv is heavily used 
in both academia and industry. In order to help users develop quickly 
and concisely, aruco’s related interfaces have been integrated into the 
cv2.aruco library of opencv. We call several of the APIs to implement 
the label positioning function. Three APIs are mainly used: cv2.aruco.
Dictionary_get() is used to obtain the dictionary of labels for 
corresponding label searches; cv2.aruco.detectMarkers() is used to 
detect labels from the image; and cv2.aruco.
estimatePoseSingleMarkers() is used To estimate the pose of the label 
detected in the previous step and obtain the rotation and 
translation information.

We use these APIs to get the pose Rvec∈ 3 and position 
Tvec∈ 3  of Aruco. Rvec  represents rotation in three directions, 
which are Angpitch, Angroll , and Angyaw . Tvec represents 
displacement in three axes, which are tx, t y, and t y.
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where _ _t threshold pos indicates the positive threshold, and 
_ _t threshold neg represents the negative threshold. sx indicates 

whether there is a significant displacement on the x-axis. And 
_ _A threshold pos indicates the positive threshold, and 
_ _A threshold neg  represents the negative threshold. spicth indicates 

whether there is a significant deflection in the pitch angle.

 S s s s s s sx y z pitch roll yaw� � �, , , , ,  (8)

where S indicates the status byte from Aruco. Among the six flag bits 
included in S, sx is calculated as shown in the formula above. 
According to the translation of the tag in the x direction in the three-
dimensional coordinate system, when the translation is greater than 
the positive direction threshold, this direction flag is set to 1. When 
the translation is less than the negative direction threshold, set the 
direction flag to −1. If neither of the above two conditions is met, set 
it to 0. In the same way, the calculation method of sy  is: compare the 
translation of the label in the y direction with the corresponding 
threshold, and obtain the flag position sy  in the y direction; the 
calculation method of sz is: compare the displacement of the label in 
the z direction with the corresponding threshold. Compare and get 
the flag bit sz in the z direction. Similarly, spitch is a flag bit obtained 
by comparing the rotation angle on the pitch axis with a preset 
threshold. Based on this, we can determine whether the label has a 
sufficient rotation angle in this direction. sroll is a flag for rotation on 
the roll axis, indicating whether the label has sufficient rotation in this 
direction. syaw is a flag for rotation on the yaw axis, indicating 
whether the label has sufficient rotation in this direction.
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2.5. Interaction with surgical robot

In stage 1, when quickly adjusting the position, use gestures to 
adjust. For example, if you  want to control the movement of the 
robotic arm, make a corresponding action above the Leap Motion. 
After detecting that the gesture and direction of the two hands meet 
the corresponding conditions, start counting. When the threshold is 
reached, set the preset action flag to True. Start to transmit signals to 
the surgical robot. When the robot reaches the designated position, 
change the gesture to clear the marked position.

2.5.1. Pose estimation and parameter resolve
In the second stage, the position of the Aruco tag is adjusted by 

translation, and its angle is adjusted by rotation, thereby triggering 
corresponding actions. Through the same mechanism, the instruction 
of the corresponding action is triggered, and the flag is set to true.

2.5.2. Aruco attitude command calculation
After obtaining the position and attitude of the tag, we need to 

generate the corresponding operation instructions. In this part, we use 
a state machine commonly used in control systems to control the 
triggering of operation instructions. As shown in the flow chart on the 
left side of Figure 5, we set a counter. When the status of the tag meets 
the trigger condition of a certain instruction, the corresponding 
counter value will increase. When the trigger condition is met for 
more than 30 consecutive frames, we will send the corresponding 
operation instructions. In order to prevent false triggering, our 
program stipulates that if a frame does not meet the conditions, the 
corresponding counter will be set to 0, thus ensuring the stability of 
the instruction triggering process.

2.5.3. Pose mapping to robot
After obtaining the operator’s posture, it needs to be mapped to 

the robot end effector, and the corresponding inverse kinematics is 
calculated to obtain the joint angle of the target robot, and then the 

relevant operations are completed according to the operator’s 
control intention. In the design of this paper, we divide it into two 
mapping relationships according to the speed of the operator’s 
posture change. When the robot is far away from its operating 
object, the operator needs to control the robot to perform large 
movements, and the operator’s posture changes relatively quickly. 
Accordingly, we  designed the first mapping relationship of fast 
motion, as shown in Figure 6, including forward, backward, up, 
down, left, and right based on the end effector, and the speed is 
0.5 m/s. This mapping relationship ensures the moving speed of the 
manipulator under absolute safety and can reach the vicinity of its 
operating object as soon as possible. When the robot reaches the 
vicinity of its operating object, it needs to adjust the posture of the 
end effector according to the operating task, and reach the target 
point at a relatively slow speed for related replacement. To this end, 
we designed a second fine-tuning mapping relationship as shown 
in Figure 7, including forward and backward, up, down, left, and 
right, and end-effector as a reference with a speed of 0.1 m/s. Fine-
tuning of the direction of the actuator as a reference, including left 
pick, right pick, up pick, down pick, clockwise rotation, and 
counterclockwise rotation. The trajectory movement and attitude 
adjustment of the entire desired are based on the Franka open-
source library and the ROS control package. In order to realize the 
robot’s smooth response and real-time attitude tracking, a speed 
closed-loop controller suitable for the Franka robot is designed, and 
the control frequency is 1,000 Hz, which corresponds to the real-
time communication frequency allowed by the Franka mechanical 
alarm system.

3. Results

The interaction model is implemented on the collaborative robotic 
arm, Franka Emikia, and its effectiveness is verified through 
experiments, following the process outlined in Figure 8.

FIGURE 4

Aruco mark.
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3.1. LeapMotion hand recognition accuracy

To integrate our gesture recognition module into a robot, 
we first conducted an accuracy test on our module. We recruited 
10 volunteers and evaluated the success rate of six gestures on 
average. Each volunteer performed each gesture five times, 
resulting in a time range of 2 min 10 s to 3 min 15 s for the task to 
be completed. These findings demonstrate that our gesture-based 
operation method is not only user-friendly but also effective, even 

for beginners. The actions we  designed are reasonable 
and efficient.

3.2. Aruco recognition accuracy

Different from gestures, as shown in Table 2, using Aruco to 
operate can represent 12 types of instructions for fine-tuning the 
position of surgical instruments. Specifically, the difference lies in 

FIGURE 5

State machine design for HCI tasks.

FIGURE 6

The hand gesture and corresponding action.
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two aspects. Firstly, there are six more rotation instructions than 
gesture operations. Secondly, the operation using Aruco will 
be  much more precise. For fine-tuning after adjusting the 
instrument using hand gestures. We had 10 volunteers attempt to 
trigger 12 different commands, and their success rates are as 
follows. In addition, the same target experiment was carried out, 
but this time volunteers were allowed to use a combination of both 
modes of operation. The result was a significant reduction in time, 
with an average of 25 s shaved off. The main reason for the improved 
operating efficiency is the simplicity and convenience of the newly 
designed control method.

3.3. Phantom experiment

In this experimental part, under the guidance of the surgical 
navigation system, we used LeapMotion and Aruco tags to control the 
surgical robot to hold the puncture instrument and reach the preset 
point. And with the help of the surgical system we can calculate the 
error in position (Table 3).

3.3.1. Experimental settings
In this experiment, the volunteers will move according to the 

predetermined route on the target on the skull model. In this process, 

FIGURE 7

The Aruco gesture and corresponding action.

FIGURE 8

The flow of phantom experiment.
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the volunteers will first use gestures to control the surgical instruments 
to move faster, and then use Aruco to control them when they reach 
the target point. We analyzed the planned surgical path and the actual 
surgical path, and obtained the error of the path.

3.3.2. Experimental result
The five experiments in Table 2 show the average alignment error 

of the needle tip, and the experimental data show that the average 
alignment error is 1.13 mm.

4. Discussion

In this research, we propose a novel pose recognition framework 
and integrate it into a robot, successfully completing related operations 
in various task sets. Compared to traditional manual operation, 
remote teleoperation based on human body pose estimation is highly 
feasible and can be seamlessly integrated into existing robots, enabling 
remote-operated robotics under various conditions. This is 
particularly evident in the medical task of puncture operation, where 
remote operation minimizes the risk of germ spread, reduces the time 
required for disinfection, and enhances the efficiency of surgery.

Although the current system design has shown good 
performance in various tasks, there are still some limitations to 
be addressed. In the trajectory tracking task, the robot did not move 
precisely along the set trajectory, resulting in slight trajectory 
fluctuations. This may have contributed to the poor network 
communication effect, causing the robot to receive the attitude 
estimation signal from the operator with a delay. As a result, the 
operator had to continuously adapt their posture to operate the 
robot, leading to an over-correction phenomenon. However, these 
limitations can be  overcome by leveraging 5G technology and 
dedicated network lines. Additionally, in the robot-assisted 
puncture surgery task, although the robot completed the task 
flawlessly under remote operation by the operator, the operator 
lacked the tactile feedback and force feedback that are essential in 
a real surgical setting. As a result, the operator had to rely more 

heavily on the visual information provided by the navigation system 
throughout the procedure.

The current system design allows for remote teleoperation 
through the operator’s posture, with the assistance of relevant visual 
information. Experimental results demonstrate that the proposed 
system can effectively control surgical instruments for both large-scale 
movements and fine-tuning in a non-contact scenario.

5. Conclusion

In this work, a novel human-computer interaction method based 
on LeapMotion and Aruco is proposed and applied in contactless 
robotic surgery. This approach allows for a more hygienic and cost-
effective surgical experience compared to traditional methods of 
grasping the robotic arm with the surgeon’s hand. By leveraging the 
guidance of surgical navigation systems, the position of surgical 
instruments can be accurately and quickly adjusted, streamlining the 
surgical process. Our proposed method has been proven effective and 
robust through previous experiments, and holds significant practical 
potential in clinical settings. Moving forward, the upgrade of sensors 
and optimization of algorithms can further expand the auxiliary 
functions of surgical robots, providing stronger support for the 
surgical system.
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TABLE 2 Accuracy of Aruco recognition with predefined categories.

Category 1 2 3 4 5 6

Accuracy 97% 94% 95% 96% 97% 98%

Category 7 8 9 10 11 12

Accuracy 98% 99% 99% 96% 98% 98%

TABLE 3 Error of the needle insertion in phantom experiment.

Number of 
experiments

Position error (mm)

1 1.25

2 1.20

3 1.06

4 1.00

5 1.15
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DCENet-based low-light image 
enhancement improved by 
spiking encoding and convLSTM
Xinghao Wang , Qiang Wang *, Lei Zhang , Yi Qu , Fan Yi , 
Jiayang Yu , Qiuhan Liu , Ruicong Xia , Ziling Xu  and Sirong Tong 

Equipment Management and Unmanned Aerial Vehicle Engineering School, Air Force Engineering 
University, Xi’an, China

The direct utilization of low-light images hinders downstream visual tasks. 
Traditional low-light image enhancement (LLIE) methods, such as Retinex-based 
networks, require image pairs. A spiking-coding methodology called intensity-
to-latency has been used to gradually acquire the structural characteristics of an 
image. convLSTM has been used to connect the features. This study introduces 
a simplified DCENet to achieve unsupervised LLIE as well as the spiking 
coding mode of a spiking neural network. It also applies the comprehensive 
coding features of convLSTM to improve the subjective and objective effects 
of LLIE. In the ablation experiment for the proposed structure, the convLSTM 
structure was replaced by a convolutional neural network, and the classical 
CBAM attention was introduced for comparison. Five objective evaluation 
metrics were compared with nine LLIE methods that currently exhibit strong 
comprehensive performance, with PSNR, SSIM, MSE, UQI, and VIFP exceeding 
the second place at 4.4% (0.8%), 3.9% (17.2%), 0% (15%), 0.1% (0.2%), and 4.3% 
(0.9%) on the LOL and SCIE datasets. Further experiments of the user study in 
five non-reference datasets were conducted to subjectively evaluate the effects 
depicted in the images. These experiments verified the remarkable performance 
of the proposed method.

KEYWORDS

intensity-to-latency, spiking encoding, low-light enhancement, unpaired image, deep 
learning

1 Introduction

The lack of illumination leads to the loss of image information, which severely affects the 
execution of visual tasks, e.g., face recognition, object detection, dataset preparation, and 
autonomous driving (Li J. et al., 2021; Liu et al., 2021; Tang et al., 2022; Guo et al., 2023). 
Capturing images in low-light conditions poses a challenge owing to the limited aperture size, 
demand for instantaneous processing, and limited memory resources. To mitigate the issues 
of structuring and the high expense of research and development associated with hardware, 
refining images in low-light settings through minimalistic software algorithms aligns better 
with predictable requirements.

In low-light image enhancement (LLIE), the first effective methods were based on 
histogram equalization, the Retinex model, gamma transform, and fusion. Fusion-based 
methods achieve better performance in terms of image indicators, such as brightness and 
color, through exposure-splicing fusion methods. This method is typically synthesized by 
collecting images under different exposure conditions (Wang et al., 2016). Another method 
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fuses the illumination map of night and day to enhance the image 
(Rao et al., 2010); however, such processing generally renders a poor 
visual effect.

The method based on the Retinex model divides the low 
illumination image into reflection and illumination components or 
adds a noise component by constructing a suboptimal problem. The 
estimated reflection component is considered the result of 
enhancement. Previous attempts to improve Retinex replaced the 
logarithmic solution with a typical enhanced Lagrange solver to 
enhance the image with a long image processing time. However, the 
variational optimization algorithm has a high computational cost. 
Moreover, it introduces unnecessary pseudo-details in the image.

The adaptive GAMMA transform can improve an image’s 
contrast; however, most algorithms of this class still cause local 
overexposure or underexposure in the enhanced result. As most 
images are captured in non-uniform lighting conditions, Chen et al. 
(2022) proposed a naturalness- and information-preserving method 
for processing them. The MEMBHE algorithm (Dar and Mittal, 2020) 
improved the functionality of the transform through histogram 
equalization after multiple exposure smoothing. Nevertheless, it 
overconsumes memory and requires arduous incremental updates.

Several methods for achieving LLIE with deep learning (DL) have 
been researched. Among them, supervised learning, a mature and 
informative DL method typically constructed by an end-to-end 
network, was the first to be applied to an LLIE field. Low-light net 
(LLNet) (Lore et al., 2017) was the first end-to-end LLIE network 
established by constructing a deep auto-encoder structure. MBLLEN 
(Lv et al., 2018) uses three subnetworks to extract rich image features 
of different levels and introduces a regional loss function into the 
network loss function to employ different loss weights for high- and 
low-light regions. In the same vein, Li et al. (2021) determined that 
enhancing the low-frequency layer of a low-light image with noise was 
easier than directly enhancing the whole image. Progressive recursive 
networks (Cai et al., 2018) were used to perform staging, which is a 
more efficient method for preserving image details and removing 
noise. In that method, each subnetwork could better achieve its own 
function, which was eventually enhanced by gradually improving the 
quality of the image.

Ke et al. (2020) established an SCIE multiexposure dataset (Ke 
et al., 2020) consisting of low-contrast images with different exposure 
levels and their corresponding high-quality reference images. 
Furthermore, they introduced the high- and low-frequency 
components of images as prediction targets. A double-exposure fusion 
algorithm (Ying et al., 2017) was proposed to design the weight matrix 
of image fusion using an illuminance-estimation technique. Then, a 
camera response model was introduced to synthesize the 
multiexposure images. Low- and high-exposure images can also 
be  used to estimate the perceptual gain, signal strength, signal 
structure, and mean intensity. Perceptual gain suits an underexposed 
image. The feature fusion and recalibration module (FFRM) (Singh 
et al., 2024) was proposed to recalibrate and merge the features to 
provide an enhanced output image. Intrinsic image decomposition 
(Zhang and Ma, 2023) can be applied to the fusion of multiexposure 
to generate HDR images.

Retinex was combined with DL for enhanced performance (Chen 
et al., 2018; Zhang Y. et al., 2019; Tang et al., 2023). The attention 
mechanism was combined with the Retinex model to construct DL 

networks for enhancement (Chen et  al., 2022). A decomposition 
network (Liu et al., 2023) was developed with a self-supervised fine-
tuning strategy that achieved promising performance without manual 
hyperparameter tuning. Different sensitivities relate to different 
regions. The low-rank regularized Retinex model (Bao et al., 2022) can 
represent the image as low-rank decomposition, preserve the image 
details and high-frequency information, and improve the visual 
quality of the image. A plug-and-play framework for image 
enhancement and noise removal based on the Retinex theory (Wu 
et al., 2023) was introduced. Inspired by guided filtering and using 
synthetic data for network training, Li et  al. (2018) designed a 
lightweight network architecture based on the Retinex theory. By 
including the unsettling V channel image component in the HSV 
color space, the component was converted to a reflection component 
using a DL network (Jiang Z. et al., 2021). Owing to their significant 
worth, their Retinex and DL-based methods were applied in image 
dehazing and underwater image enhancement (Xu et al., 2022; Shen 
et al., 2023).

The development of LLIE in DL is not limited. Creative thinking 
models, such as those based on unsupervised learning, represented by 
the unsupervised learning method (Zhu et al., 2020; Li et al., 2021), 
generative network architecture (Jiang Z. et al., 2021), and normalizing 
flow (Wang et al., 2022), show the immense research potential of 
LLIE. The strategy network learns the local exposure sequentially 
using reinforcement learning for a segmented subimage (Rong et al., 
2018). In the generated adversarial network architecture, global–local 
discriminators (Jiang Z. et al., 2021) were used to ensure that the 
enhanced results resemble real normal light images. With the strong 
capability of image generation, diffusion models were applied to 
LLIE. For example, the pyramid diffusion model (Zhou et al., 2023) 
was constructed to solve the RGB shift. Moreover, the inference speed 
of the diffusion model was accelerated. As a scientific structure for 
image feature extraction, transformers have become some of the most 
prevalent network structures in vision processing. The regional 
distributions have been effectively managed, and the histogram loss 
has been designed in a stage transformer-guided network (Jiang et al., 
2023). Half-wavelet attention block and hierarchical M-Net were 
utilized to improve computation consumption and reserve context 
information, aided by the DAU block and discrete wavelet 
transformation (Fan et al., 2022).

Spiking neural networks (SNNs) are frequently employed in 
numerous pixel-level classification tasks (Martinez-Seras et al., 2023), 
such as object detection (Zhang et al., 2023b), image segmentation 
(Zhang et al., 2023a), and anomaly detection (Yusob et al., 2018). 
Research centered on SNNs includes methods for neural network 
learning, data coding, and hardware platforms. The learning 
approaches for SNNs can be  divided into supervised and 
unsupervised learning, which are represented by spike-timing-
dependent plasticity (STDP). Spiking encoding, which involves 
utilizing discrete pulsed signals to convey information, is a method 
of signal transmission. Neuroscience computing has access to 
specialized offline or online application-specific integrated circuit 
platforms, as well as neuromorphic computing cores that can support 
various learning rules and neuronal models. Nonetheless, spiking 
neural network research continues to confront significant barriers. 
The training of the transformed SNN still relies on the 
backpropagation algorithm of artificial neural networks (ANNs). As 
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the performance difference between the SNN and the core ANN is 
small, the former cannot provide significant advantages. Moreover, 
generative tasks, such as LLIE, image patching, multimodal image 
generation, and network deployment, present significant challenges. 
As a new neural network structure, the SNN’s internal algorithm can 
be implemented in LLIE.

The main contributions of this study are as follows: (1) According 
to the progressive output results with the specified number concluding 
the embodiment of the image structure characteristics, the application 
of the SNN in a spiking encoding method for LLIE has distinct 
advantages in extracting structural features from images (the 
intensity-to-latency encoding outputs multiple feature maps with 
structure and specified steps); and (2) a convLSTM structure that can 
better absorb the features from multiple feature maps. Based on 
unlabeled, unsupervised, and unpaired image training via simplified 
DCENet, the proposed structure is improved by spiking encoding and 
the convLSTM module. The research introduces spiking encoding, 
which concludes the image’s backbone information to describe the 
hierarchical information. The rest of the paper follows this structure: 
Section 2 describes the proposed enhancement method. Section 3 
describes the user study and ablation experiment carried out in the 
study and compares the performance of the proposed method with 
the state-of-the-art network structure based on seven objective 
indicators. Section 4 concludes the study and discusses the 
potential applications.

2 Proposed method

2.1 DCENet structure

The DCENet structure, as the primary structure used for 
unsupervised enhancement, divides the LLIE into a high-order 
iterative process, i.e., the input dark light image is finally enhanced 
through several iterations of the same operation. Figure 1 depicts the 
overall enhancement process and part of the ablation study, which 
can also have a description in literal form. The input passes through 
the spiking encoding module and ConvLSTM described in 
subheadings 2.2 and 2.3, respectively, and then through the 
convolution module containing skip links. The sum module in 
Figure 1 means a direct overlay between the ConvLSTM’s final output 
and the input dark light images. The resulting features select the 
feature graph of a certain channel in order and combine the matrix 
of the same size in the length and width scale of the output and input 
images with the initial input tensor according to Equation (1). The 
matrix is used as the input for the next iteration, and the feature 
graph of the next channel is selected as needed for the next 
iteration operation.

Compared with the mathematical relationship represented by the 
previous gamma transform, the DCENet structure changes the training 
coefficient of the second term of the right-hand side of Equation (1) into 
a training coefficient matrix with the same dimensions as those of the 

FIGURE 1

DCENet structure with spiking encoding and convLSTM.
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input image. This can restrain the problem of over-enhancement or 
under-enhancement of the image to a certain extent. Finally, the normal 
brightness area in the image is maintained, and the low illumination area 
is restored. A  is the output of the network, which can be divided into 
several pieces denoted by An . Based on the number of iterations n, the 
final output enhancement result is xn .

 
x x A x xn n n n n= + −( )− − −1 1

2
1

 
(1)

2.2 Spiking encoding method

In this study, spiking encoding from the overall DCENet structure 
equals the intensity-to-latency transform (Mozafari and Ganjtabesh, 
2019), as illustrated in Figure 2. First, the intensity-to-latency transform 
requires an initial parameter, i.e., time step S. Then, the grayscale image, 
which corresponds to a matrix with shape (H,W), is reshaped to a vector 
with H × W dimensions by R(·) as illustrated in Equation (2). We named 
this original vector V. For the next step, the vector was arranged in 
descending order. This procedure generated two vectors with the same 
dimensions: the first vector is the descending order vector Vd, while the 
second one is the index vector Vi, corresponding to the index in V and this 
relation is represented by Equation (3).

 
V H W R I H W1, ,∗ =  ( )

 
(2)

 
V V D Vd i, = ( )  

(3)

where K is the number of non-zero elements in an original vector 
V. The split parameter θ is set in Equation (4). Vd and Vi are split into 
small vector pieces; θ decides the shape of these pieces. The small 
vector piece returns to the dimension H × W, which is called the 
spiking encoding vector Tm in Equation (5), with the complementary 
element filled with 0. The small label m ranges from 0 to the time step 
S. The start time step T0 is composed of the value in the first split piece, 
and the value in T0 is rearranged to the original position in V 
according to Vi. The second time step T1, which is based on T0, adds 
the second small piece, and the value in the second piece is adjusted 
to the original position in the same way. Thus, the intensity-to-latency 
transformation is complete. The sequence of outputs Tm is reshaped to 
similar dimensions as those of the input image, which are denoted by 
Em, with the dimensions of (S,H,W). This procedure is formulated as 
Equation (6). R*(·) means the reverse calculation manipulation of R(·). 
(Considering the length of the paper, its time step in the figure is 
set to 6.)
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>
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(4)

 
T split Vm d= ( ),θ

 
(5)

FIGURE 2

Intensity-to-latency encoding data-flow schematic diagram.
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E R T Vm m i= ( )∗ ,

 
(5)

2.3 ConvLSTM

The features extracted by the intensity-to-latency transform have 
certain similarities and differences. These features will constitute an 
image sequence with fluent features. The convLSTM structure is 
applicable in this scenario. ConvLSTM is proposed for precipitation 
nowcasting (Shi et al., 2015), the backbone of which is the recurrent 
neural network (RNN) for spatiotemporal prediction with 
convolutional structures. This design is convenient for video and 
image sequence-related tasks. ConvLSTM is similar to LSTM, which 
is also called FC-LSTM, and its block structure is illustrated in 
Figure 3.

The convLSTM computation method is based on LSTM’s gate 
relationship. The distinction between its different layers is the 
input and output dimensions. The core of convLSTM is the 
convLSTM cell, which represents one convLSTM layer. ConvLSTM 
cell is an RNN-like structure; therefore, a specific hidden-layer 
parameter called hidden state is required. In every convLSTM 
layer, the hidden state is initialized with a zero element of 
dimensions (C1,H,W). One of the input sequence time step 
tensors I, which is another input of convLSTM and the outputs 
from spiking encoding, with dimensions (C,H,W), were 
concatenated with δ. It outputs a combined tensor with dimensions 
(C + C1,H,W), corresponding to the concatenate calculation 
represented by concat in Equation (6), which needs two different 

variables. The convLSTM cell accepts this combined tensor and 
outputs the tensor with dimensions (4 × C1,H,W). The outputs 
were divided into four tensors with dimensions (C1,H,W) for the 
outputs of different gates: input, forget, and output gates, and a 
new δ for the subsequent layer and input time step. This divided 
single step is represented by the split. The calculation procedure 
is summarized in Equations 6–10 and Figure 2.

 
mid conv concat It t1 1 1 1= ( ) =( )− −δ , ,dim

 
(6)

 
c c c c split mid hiddeni f o g, , , dim= =( )1 1, ,

 
(7)

 
a S c a i f o g A ct a t g= ( ) = = ( ), , , ;

 
(8)

 η ηt t t t tf i g= ° + °−1  (9)

 
δ ηt t to A= ° ( )  

(10)

In the convLSTM structure, δ and η, which are output by one 
convLSTM cell, pass to the next cell at a certain time. This time 

FIGURE 3

ConvLSTM block data-flow schematic diagram.
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corresponds to the next time step in the same layer. This RNN-like 
network structure will preserve the main features from the previous 
time step image feature. The δ is also output to the convLSTM cell, 
combined with the new hidden states δ` and η` in the next layer in the 
same time step. The overall output of the convLSTM module is the 
tensor with dimensions (1,C`,H,W), which is labeled output in 
Figure 2. The time step dimension is eliminated with the convLSTM 
module and S(·), sigmoid activation function, and A(·), tanh 
activation function.

2.4 The loss items of the DCENet structure

Four loss items, namely spatial consistency loss, color constancy 
loss, exposure control loss, and illumination smoothness loss, were 
considered for the convergence of the network. The loss function used 
by the network is represented by Equation (12). The spatial consistency 
loss item was calculated by Equation (13). The purpose of setting the 
spatial consistency loss item was to maintain the difference between 
the original image and the adjacent area of a pixel in the enhanced 
image as small as possible. The X  represents the tensor X  after 
channel averaging and average pooling for every 4 × 4 area. K  is the 
number of pixels after average pooling in one feature map channel. 
These pixels are separated by a distance of 1, which corresponds to a 
point assemble called R i( ) . This difference logic will enhance the 
pixel neighborhood within the same spatial structure. By introducing 
the sum item, the pixel neighborhood consistency can be promoted 
to the spatial position consistency of the whole image. The setting of 
this loss item will maintain the spatial consistency of the image before 
and after enhancement.

 
L L L W L W Lspa col col tv tv= + + +exp  

(12)

 

L
K

E E O Ospa
i

K

j i
i j i j= − − −( )

= ∈ ( )
∑ ∑1

1

2

R  

(13)

To ensure the overall improvement in brightness, the exposure 
loss was established as Equation (14). The average value of pixels in 
the pixel block corresponding to the gray-level image of the output-
enhanced image should meet certain size requirements, and the 
reference average value was set to 0.7. Em

′  represents the mth pixel 
value after image channel mean processing and pooling for the 
enhancement of the final result. The pooling operation may have 
different parameters. Hence, quotes were added to distinguish it from 
the spatial consistency loss term. The number of pixels after pooling 
was set to M.

 
L

M
E

m

M

mexp .= −( )
=

′∑1 0 7
1

2

 
(14)

The value of one color channel of the image should not 
significantly exceed that of the other channels. Hence, the loss of color 
was set to a constant value represented by Lcol  represented by 
Equation (15). This loss should go through all pairings in the three 
color channels. To better satisfy this condition, the spatial average of 

the enhanced image is calculated, and a three-channel difference loss 
term was constructed to satisfy this conclusion. (c1,c2) traverses all 
pairwise combinations in the three RGB color channels. Ec1  and Ec2  
represent the enhancement result’s mean value of one RGB channel.

 

L E E c R G G B B Rcol
c c c

c c= −( ) = ( ) ( ) ( ){ }
∀( )∈
∑
1 2

1 2 2

,
, , , , ,,

 

(15)

Different from the final enhanced image result, A is the network 
output. In Equation (16), N, which equals to H W×  dimensioned by 
An , represents the shape of the input. d  represents the gradient of 

A; for instance, Aiy
d  relates to the longitudinal gradient of A in the ith 

iteration. The illumination smooth loss Lillu  was established here.

 
L

N
A Aillu

i

n

d
ix
d

iy
d= +( )

=
∑∑1

0  
(16)

Considering that the brightness change between adjacent pixels is 
not significant, the gradient term was introduced to the network 
output to ensure a monotonic relationship between adjacent pixels. 
No texture was introduced in the network output. Instead, it was 
introduced from the original image through the relationship. As a 
common loss term for LLIE, the estimation of the illumination 
smooth loss term is similar to the calculation of light smoothness loss 
in Zhang Y. et al. (2019).

3 Experiments and evaluation

3.1 Experimental setup

The hardware part adopts an 11 GB GTX 1080 Ti. The software is 
PyTorch framework 1.10.0 v. The spiking encoding convLSTM-
augmented LLIE model was constructed using the Python 3.7 library 
of PyTorch and trained using datasets consisting of unpaired images. 
The optimization process of the proposed network employed the 
ADAM optimizer with default parameters and a fixed learning rate of 
1 × 10−4. The weights Wcol and Wtv were set to 0.5 and 20, respectively. 
These parameters remained constant in all experiments.

The datasets, i.e., LLIE fields, were divided into referenced and 
unreferenced image datasets. Typical referenced image datasets 
include LOL, SCIE, and MIT-Adobe FiveK, while unreferenced 
datasets include VV, NPE, and LIME. The LOL dataset has a 
considerably different degree of underexposure from the rest, which 
is suitable for the comparison of the overall performance of LLIE 
algorithms. The SCIE dataset is a multiexposure image sequence 
dataset with rich illumination information, which is highly suitable 
for algorithm debugging. Hence, we  selected the LOL and SCIE 
datasets for the experiments. We retained the original training and test 
dataset distributions for the LOL dataset. In each image sequence of 
the SCIE dataset, the first image was chosen as the low-light image to 
be enhanced, whereas the most suitable one was chosen as the high-
light reference image among the third, fourth, and fifth images. 
We used a user study to evaluate five common unreferenced datasets, 
namely VV, NPE, LIME, DICM, and MEF. We hypothesized that the 
key performance of LLIE should lie in the size of the space occupied 
by its running process, which can influence the integration of related 
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tiny systems. This feature represents the application’s ability to 
integrate with other functions and algorithms of the testing process 
and of the model itself.

There are five assessment indices for image objective evaluation, 
namely peak signal-to-noise ratio (PSNR), structural similarity index 
measure (SSIM), mean square error (MSE), universal image quality 
index (UQI) (Wang and Bovik, 2002), and visual information fidelity 
(VIF) (Sheikh and Bovik, 2006). The calculated evaluation indices are 
listed in Table 1. In this table, h,r corresponds to H’s and R’s results of 
the Laplace filter. The nonzero (*) function realizes 0 to 1. ∑gauss 
represents the summation of the results of different Gaussian filter 
parameters. Gaussian filtering was used for H and R. The number n 

depicts the Gaussian filtering times. For instance, 
2

1nR +  indicates that 
the square calculation was performed first, followed by Gaussian 

filtering. 1
2

nR +  indicates that Gaussian filtering was performed first, 
followed by square calculation. x  represents the uniform filter for x. 
PSNR and MSE are non-negative. Test images with reference images 
were calculated to get the PSNR value. The larger the PSNR, the less 
the image noise and the better the image quality, and SSIM reflects 
structural similarity. It is typically used to measure whether the image 
backbone of the image recovered by the LLIE has also been restored. 

The SSIM ranges from 0 to 1; only when two sets of identical image 
data converge will the SSIM reach 1. The indicator, UQI, reflects the 
measure of the degree of linear correlation, the closeness of the mean 
luminance, and the similarity of contrast between the enhanced result 
and the reference image. VIF combines a natural image statistical 
model, an image distortion model, and a human vision system model. 
Compared to the PSNR, SSIM, and other indicators, because the 
numerator of the VIF index calculation formula is the information 
fidelity criterion (IFC), VIF has a higher consistency with subjective 
vision. The higher its value, the better the image quality.

3.2 Ablation study

As the proposed method is based on the DCENet structure, the 
change in the enhancement properties after introducing the 
spiking+convLSTM structure must be  considered. The study 
demonstrates the influence of each loss term of the loss function on 
the enhancement results under different loss combinations. In the 
ablation experiment, different loss combinations were used for 
retraining. The necessity of each loss item was retested using the 
proposed DCENet-based method to prevent the negative effects of 
spiking encoding and convLSTM.

TABLE 1 A calculation of the objective image evaluation index.

Image evaluation index Mathematical expression Range Trend for better

PSNR
( )

10log
2

10
MAX H

MSE

[0,+∞) To positive infinity

SSIM
( ) ( )

( )

ˆ ˆ2 1 2 21
3 ˆ ˆ[ 1 ( ) 2

2 2

22 2 2 2 2

RH K MAX H RH K MAX H

R H K MAX H R H K MAX Hchannel

   + × + + ×      
 + + × + + ×  

∑

[0,1] Closer to 1

MSE

( )
( )1

,
R H

H W ab ab
a b I

−
×

∈
∑

[0,+∞) Smaller

UQI

( )( )
ˆ ˆ4
ˆ ˆ2 2 2 2

RHRH

R H R H+ +

[−1,1] Closer to 1

VIF

( )
log 1

2

2 22
10

,

H Hg
svsqgauss a b I

 − +
+  ∈

∑ ∑
[0, +∞] Closer to 1

TABLE 2 The performance comparison of the ablation study for different substructures (red bold for the best, black bold for the second best).

Detection 
methods

datasets PSNR SSIM MSE UQI VIF

SimpleDCE LOL 17.1200 0.5969 0.0309 0.7694 0.8564

SCIE 15.4942 0.6036 0.0337 0.8047 0.5617

Spiking + CNN LOL 17.2140 0.5999 0.0291 0.7689 0.9394

SCIE 15.1792 0.6007 0.0353 0.7945 0.5856

Proposed 

(Spiking+convLSTM)

LOL 18.3374 0.5974 0.0227 0.8369 1.1019

SCIE 16.7519 0.7289 0.0221 0. 8,413 0.5358

Proposed + CBAM LOL 16.9693 0.5968 0.0315 0.7653 0.8539

SCIE 15.3300 0.6026 0.0347 0.8010 0.5635
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FIGURE 4

Ablation study by three substructures (obvious areas for specific differences) (A) CBAM (B) spikingCNN result (C) the simple dce structure (D) the result 
obtained by proposed structure.

TABLE 3 Different loss function assemblies of ablation study in the LOL and SCIE datasets (red bold for the best, black bold for the second best).

Lcol Ltv Lspa Lexp Datasets PSNR SSIM MSE UQI VIF

  LOL 10.7278 0.3607 0.0940 0.3944 0.2599

SCIE 9.7752 0.3467 0.1326 0.2811 0.2252

  LOL 10.8758 0.3745 0.0908 0.4175 0.2800

SCIE 10.2279 0.3660 0.1241 0.3243 0.2342

  LOL 12.4312 0.4727 0.0670 0.7956 0.5626

SCIE 13.1966 0.4463 0.0602 0.7650 0.7316

  LOL 11.0469 0.4633 0.0844 0.7478 0.4725

SCIE 11.3607 0.4384 0.0793 0.7144 0.6979

  LOL 8.0262 0.3444 0.1657 0.5044 0.4472

SCIE 8.6462 0.3565 0.1435 0.4935 0.8410

  LOL 10.9274 0.3682 0.0909 0.4029 0.2717

SCIE 9.8145 0.3491 0.1317 0.2844 0.2273

   LOL 14.2867 0.5006 0.0470 0.8284 0.4368

SCIE 14.3752 0.4610 0.0437 0.7912 0.8286

   LOL 8.1473 0.3512 0.1607 0.5078 0.4504

SCIE 8.6934 0.3591 0.1417 0.4963 0.7412

   LOL 10.7671 0.3631 0.0932 0.3984 0.2608

SCIE 9.8145 0.3491 0.1317 0.2844 0.2273

   LOL 13.0447 0.5859 0.0693 0.8047 0.1875

SCIE 14.9476 0.5691 0.0335 0.8125 0.7470

    LOL 18.3374 0.5974 0.0227 0.8369 1.1019

SCIE 16.7519 0.7289 0.0221 0.8413 0.5358
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Another ablation experiment should also be considered, which 
focuses on spiking encoding and convLSTM itself. Thus, three ablation 
study experiments, whose network is made up of the only light 
DCENet structure, the structure with the CBAM attention mechanism, 
or the CNN structure that replaces the convLSTM, have been 
considered for comprehensively verifying the proposed structure’s 
necessity. In the two ablation studies, the training parameter did not 
change. The SCIE dataset was applied for specific calculations.

Only light DCENet structure: Without the proposed spiking 
encoding and convLSTM structure, the enhancement is only realized 
by DCENet.

Structure with CBAM attention mechanism: Based on the only-
light DCENet structure, the CBAM attention mechanism is set after 
the first layer.

CNN structure that replaces convLSTM: The enhancement was 
running using a CNN structure instead of convLSTM. The dimensions 
of the spiking encoding image sequence were trimmed, and the image 
sequence was superimposed to form a feature map.

The ablation study about the importance of spiking encoding and 
convLSTM is summarized in Table  2. Compared with the basic 
DCENet structure, spiking combined with the CNN structure 
revealed that the integration of spiking encoding alone improved the 

FIGURE 5 (Continued)
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performance. Specifically, the VIF parameter showed significant 
increments of 9.7 and 4.3% on the LOL and SCIE datasets, respectively. 
However, when considering other indicators, the objective evaluations 
of the LOL and SCIE datasets demonstrated a contrary trend. This 
suggests that the combination of spiking and CNN methods may not 
be beneficial for enhancing model generalization stability. To improve 
upon this, the study adopted the classic CBAM attention mechanism 
as a representative approach for introducing attention mechanisms. 
Data suggest that incorporating attention mechanisms alone reduced 
the number of essential evaluation criteria, such as PSNR, SSIM, and 
UQI. Additionally, the combination of convLSTM and spiking 
encoding not only elevated the evaluation index on the SCIE dataset 
but also surpassed the effect of the convolutional network 

combination. In addition, we identified only minor differences in the 
subjective effects of the methods under the ablation experiments. 
These effects are presented in Figure 4.

Ablation experiments assess the impact of different loss function 
terms on the image enhancement quality. The proposed approach 
employed four loss function terms. Their pairwise and three-way 
combinations and the corresponding image evaluation index 
parameters are listed in Table  3. Of the six paired combination 
parameters, color constant loss and exposure loss substantially 
enhanced image quality, followed by spatial consistency loss and 
exposure loss. Consequently, we infer that exposure loss is the most 
crucial loss item, followed by color constant loss and spatial 
consistency loss, which exert the least impact on light smoothness loss.

FIGURE 5

The loss function assembly in LOLdataset (A) original low-light image (B) color constancy loss and exposure loss (C) illumination smooth loss, 
exposure loss (D) color constancy loss, spaital consistency loss, (E) spaital consistency loss, exposure loss, (F) illumination smooth loss, color 
constancy loss, (G) illumination smooth loss, spaital consistency loss (H) illumination loss, exposure loss and color constancy loss (I) color constancy 
loss, exposure loss and spatial consistency loss (J) illumination loss, color constancy loss and spatial consistency loss (K) illumination loss, exposure 
loss and spatial consistency loss.
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The study revealed a consistent trend among the four pairs of 
three-way combination parameters. The method that incorporated 
exposure loss, color constant loss, and spatial consistency loss 
outperformed all others in the overall index. However, in terms of 
UQI, the method combined with exposure loss, color constant loss, 
and illumination smooth loss performed similarly to the rest. Notably, 
all four loss functions operated simultaneously. In other words, the 
index value corresponding to the method proposed in Table 1 is still 
the best. However, in both the LOL and SCIE datasets, UQI and VIF 
were marginally inferior to the composite approach of exposure loss, 
color constant loss, and spatial consistency loss. This highlights the 
indispensability of using four loss functions. Figures 5, 6 illustrate the 
influence of each loss function on the image enhancement effect. As 

observed, exposure loss directly controls image enhancement, while 
color constant loss mainly controls image distortion 
after enhancement.

3.3 Performance comparison

After gaining an understanding of the proposed LLIE method, 
we conclude that the LLFLOW (Wang et al., 2022), BIMEF (Ying et al., 
2017), RRDNet (Zhu et  al., 2020), zero-DCE (Guo et al., 2020a), 
DRBN (Yang et al., 2020), EXCNet (Zhang Y. et al., 2019), Lightennet 
(Zhang et  al., 2019), Enlighten Anything (Zhou et  al., 2023), 
EnlightenGAN, DSLR (Ignatov et al., 2017), BREAD (Hu and Guo, 

TABLE 4 The performance comparison of the ablation study in the SICE dataset (red bold for the best, black bold for the second best).

Detection 
methods

PSNR SSIM MSE UQI VIF

RRDNet 12.4675 0.5469 0.0594 0.5713 0.3487

zero-DCE 16.0794 0.6618 0.0365 0.8208 0.6829

DRBN 15.8745 0.4667 0.0290 0.8008 0.2575

EXCNet 16.0427 0.6006 0.0334 0.7626 0.3675

LightenNet 11.2150 0.3216 0.0810 0.7228 0.4736

DSLR 15.1002 0.5996 0.0318 0.7839 0.3348

BIMEF 15.7917 0.5904 0.0326 0.7936 0.3678

LLFLOW 15.0300 0.5830 0.0364 0.7918 0.4452

Enlighten anything 14.9228 0.6193 0.0443 0.8393 0.4487

Proposed 

(Spiking+convLSTM)

16.7519 0.7289 0.0221 0. 8,413 0.5358

EnlightenGAN 16.6135 0.6219 0.0260 0.8306 0.5310

BFSA 12.0203 0.4419 0.0721 0.5401 0.5002

Bread 16.0787 0.6209 0.0292 0.7962 0.6295

TABLE 5 The performance comparison of the ablation study in the LOL dataset (red bold for the best, black bold for the second best).

Detection 
methods

PSNR SSIM MSE UQI VIF

RRDNet 13.1360 0.5598 0.0695 0.5286 0.4951

zero-DCE 17.5592 0.5750 0.0228 0.8355 1.0560

DRBN 17.2850 0.5174 0.0238 0.7222 0.5668

EXCNet 14.8137 0.5539 0.0643 0.7010 0.4894

LightenNet 10.5513 0.1243 0.1183 0.6142 0.1467

DSLR 16.1505 0.6273 0.0389 0.6932 0.5073

BIMEF 17.0586 0.5565 0.0254 0.7792 0.4692

LLFLOW 15.5407 0.5625 0.3552 0.7353 0.5331

Enlighten Anything 16.8056 0.5646 0.0280 0.8678 0.5288

Proposed 

(Spiking+convLSTM)

18.3374 0.5974 0.0227 0.8369 1.1019

EnlightenGAN 17.2322 0.6945 0.0287 0.8189 0.7589

BFSA 11.0324 0.4429 0.1031 0.3894 0.3573

Bread 17.6990 0.6530 0.0273 0.7888 0.8823
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2022), and BFSA (Long et al., 2023) algorithms have strong robustness 
and potential applications. The proposed method was compared with 
two referenced datasets in the LLIE field based on five performance 
indicators. Figure 7 directly demonstrates the enhancement effect. 
Tables 4, 5 list the performance index values of the proposed method 
and several of the most popular enhancement methods in the two 
reference image datasets. The proposed method yielded the best 
values, with the PSNR, SSIM, MSE, UQI, and VIFP exceeding the 
second place at 4.4% (0.8%), 3.9% (17.2%), 0% (15%), 0.1% (0.2%), 
and 4.3% (0.9%), respectively. The numbers inside parentheses 

represent the increase in the SCIE dataset. In addition, we  also 
measured the parameters related to the actual application 
characteristics of the resulting algorithm. In the actual application of 
the image algorithm, the hardware space occupied by the model and 
the space occupied by the test process warrant attention.

Enlighten Anything performs similarly to the EXCNet method. 
However, it has a good research starting point, which is combined 
with the large segmentation pretrained model algorithm (Kirillov 
et  al., 2023). Although the LightenNet method meets the 
characteristics of lightweight, it yields several poor indices. The 

FIGURE 6 (Continued)
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performance of EXCNet methods is relatively moderate compared to 
other state-of-the-art methods. The model occupies a relatively large 
space. In the performance evaluation, the proposed methods, 
zero-DCE and EnlightenGAN, ranked the highest. The primary role 
of LLIE methods is to assist with enhancing the realization of other 
algorithmic functions. Generally, the model and testing process 
should occupy less space for better integration with other product 
features. As indicated in Table 6, the space occupied by the proposed 
algorithm in the test process ranks second, which is only larger than 
the poorly performing RRDNet, while the space occupied by the 
model itself reaches 151 KB, which is more than half of the space 
occupied by the second place.

3.4 User study

Certain LLIE-related datasets have no reference images 
corresponding to normal light, only images under dark lighting 
conditions, and therefore it was difficult to use objective 
evaluation indicators, such as PSNR, to evaluate image quality. 
To make the performance comparison clearer, more intuitive, and 
more efficient for these non-reference image datasets, a user 
study was performed to assess the human perception of the 
proposed method. The images tested by the user study included 
various image contents in different environments, including 
animals, exterior scenes, and buildings. Based on the user 

FIGURE 6

The loss function assembly in SCIE dataset (A) original low-light image (B) color constancy loss and exposure loss (C) illumination smooth loss, 
exposure loss (D) color constancy loss, spaital consistency loss, (E) spaital consistency loss, exposure loss, (F) illumination smooth loss, color 
constancy loss, (G) illumination smooth loss, spaital consistency loss (H) illumination loss, exposure loss and color constancy loss (I) color constancy 
loss, exposure loss and spatial consistency loss (J) illumination loss, color constancy loss and spatial consistency loss (K) illumination loss, exposure 
loss and spatial consistency loss.
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FIGURE 7 (Continued)
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feedback data, we constructed a radar map with a maximum of 
100 score points for each index, which answered the following 
five questions:

 a. Are the details noticeable?
 b. Are the colors vivid?
 c. Is the result visually realistic?
 d. Do the results contain overexposed/underexposed artifacts or 

over-enhanced/under-enhanced regions?
 e. Do the results have unnatural texture and noticeable noise?

A single radar map can clearly compare the performance of 
different methods in various aspects of an unreferenced image dataset. 
The larger the area of the radar map, the better the subjective 
comprehensive evaluation of the method. Each angular direction, 
which ranges from 70 to 100 on the radar map, represents the user 
rating score for a specific problem. The five radar plots in Figure 8 
illustrate the distributions of scores evaluated on different questions 
for different LLIE methods, where the bright red lines in the radar 
map represent the proposed method. We compared the results of the 
proposed method for the user study with those of the other LLIE 

FIGURE 7

The performance comparsions for different combinations of loss function in SCIE dataset (A) original low-light image (B) RRDNet (C) zerodce 
(D) DRBN, (E) EXCNet (F) Lightennet, (G) DSLR, (H) BIMEF (I) LLFLOW (J) Enlighten Anything (K) EnlightenGAN (L) Proposed method (M) Bread 
(N) BFSA.
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FIGURE 8

User study for 5 non-reference LLIE datasets (A) VV (B) NPE (C) LIME (D) DICM (E) MEF (F) legend of radar map.

TABLE 6 Memory occupation of the model and testing process (red bold for the best, black bold for the second best).

Detection methods Testing memory Model memory

RRDNet 1,040,384 (1.04 MB) 511 KB

zero-DCE 29,149,184 (29.1 MB) 315 KB

DRBN 53,602,358 (53.6 MB) 2.2 MB

EXCNet 22.9 MB (in Tensorflow) 157.2 MB

LightenNet 366.6 MB (in MATLAB) 108 KB

DSLR 40,600,532 (40.5 MB) 3.2 MB

BIMEF 125.8 MB (in MATLAB) /

LLFLOW 239.6 MB 20.9 MB (smallest version)

Enlighten anything 137,830,912 (131.6 MB) 144 MB

Proposed (Spiking+convLSTM) 22,233,600 (22.23 MB) 151 KB

EnlightenGAN 590,612,992 (590.61 MB) 33,774 KB

Bread 2451.456 MB 6.6 MB

BFSA 3999.744 MB 230.1 MB
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methods using a paired t-test (Guo et al., 2020). The results revealed 
that the effect of EnlightenGAN was the least different from that of the 
proposed method, except for zero-DCE.

4 Discussion

The dark light image enhancement method proposed in this paper 
has been tested by ablation experiments of different image evaluation 
indices in different datasets and performance comparison 
experiments, which have verified its performance superiority. In terms 
of space proportion, the model in this study is a single model, which 
does not need to involve a pre-training model or other model 
framework fusion methods. Enlighten Anything involves the 
pre-training weight of the SAM model. Compared with EnlightenGAN 
and related reinforcement learning methods, the new method has 
relatively low training configuration requirements and difficulty. The 
limitation of this method is that it is time-consuming at an average of 
0.007 s, as determined by the LOL test dataset, which is marginally less 
than EnlightenGAN. After testing, it was found that the convLSTM 
structure occupied 0.006 s during testing. However, it still enhances 
images at 140 fps, which exceeds the real-time demand of 30 fps.

5 Conclusion

Originating from the further introduction of spiking coding 
mechanisms into DL, a novel network exhibits better performance 
based on DCENet by spiking encoding and convLSTM. Intensity-to-
latency conversion, which is a spiking-coding methodology, can 
be used to gradually acquire the structural characteristics of an image. 
The multiple subgraphs generated by this method relate to the time 
step defined by spiking coding, and convLSTM is suitable for solving 
the image sequence problem and introducing the relationship 
information between multiple images into the network structure. 
Furthermore, the simplified DCENet structure without supervision 
achieved a superior result in terms of improvement. The performance 
comparison of this method with nine conventional methods in terms 
of five metrics was validated. The ablation study proved the necessity 
of the various parts of the structure, such as network and training 
losses. The proposed method yielded the best values with PSNR, 
SSIM, MSE, UQI, and VIFP. The proposed model occupies only 
151 KB, which will better meet the algorithm integration and practical 
application requirements on a small chip.

6 Scope

The dark light enhancement method used in the study is closely 
related to the bionic neural networks and learning systems section of 
the special issue. The relationship between dark light enhancement 
and neural networks is that neural networks can be applied to tasks 
with dark light enhancement. Dark light enhancement is an image 
processing technique designed to improve the visibility of images 
taken in low-light conditions. By learning a large amount of training 
data, a neural network can automatically learn and extract the features 
in the image and perform enhancement processing on the image to 
improve the quality and visibility of the image.

By using a neural network, a dark light-enhanced model can 
be built, which is capable of receiving an input image and producing 
the enhanced image as output. The neural network can automatically 
learn and fit the mapping relationship between the input image and 
the output image through the connection and weight adjustment 
between the multiple layers of neurons. By training and optimizing 
the neural network, it can enhance the dark light image and have 
better generalization ability for different input images.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

XW: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Visualization, 
Writing – original draft, Writing – review & editing. QW: Project 
administration, Resources, Writing – review & editing. LZ: 
Conceptualization, Writing – original draft, Writing – review & 
editing. YQ: Software, Writing – review & editing. FY: 
Conceptualization, Visualization, Writing – review & editing. JY: 
Supervision, Validation, Writing – review & editing. QL: Formal 
analysis, Methodology, Writing – review & editing. RX: Investigation, 
Validation, Writing – review & editing. ZX: Data curation, Formal 
analysis, Writing – review & editing. ST: Conceptualization, Formal 
analysis, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

167166

https://doi.org/10.3389/fnins.2024.1297671
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1297671

Frontiers in Neuroscience 18 frontiersin.org

References
Bao, C., Guo, Z., Yao, W., Ding, X., and Zhang, D. (2022). A novel low-light 

enhancement via fractional-order and low-rank regularized retinex model. Comput. 
Appl. Math. 42:7. doi: 10.1007/s40314-022-02140-6

Cai, J., Gu, S., and Zhang, L. (2018). Learning a deep single image contrast enhancer 
from multi-exposure images. IEEE Trans. Image Process. 27, 2049–2062. doi: 10.1109/
tip.2018.2794218

Chen, X., Li, J., and Hua, Z. (2022). Retinex low-light image enhancement network 
based on attention mechanism. Multim. Tools Appl. 82, 4235–4255. doi: 10.1007/
s11042-022-13411-z

Chen, W., Wang, W., Yang, W., and Liu, J. (2018). Deep Retinex decomposition for 
low-light enhancement. arXiv. doi: 10.48550/arXiv.1808.04560

Dar, K. A., and Mittal, S. (2020). A dynamic fuzzy histogram equalization for high 
dynamic range images by using multi-scale Retinex algorithm. SSRN electron. J. doi: 
10.2139/ssrn.3565891

Fan, C.-M., Liu, T.-J., and Liu, K.-H. (2022). Half wavelet attention on m-net+ for 
low-light image enhancement. Neural Inf. Process. Syst., 3878–3882. doi: 10.1109/
ICIP46576.2022.9897503

Guo, C., Li, C., Guo, J., Loy, C. C., Hou, J., Kwong, S., et al. (2020a). Zero-Reference 
Deep Curve Estimation for Low-Light Image Enhancement. [online] arXiv.org. doi: 
10.48550/arXiv.2001.06826

Guo, J., Ma, J., Garcia-Fernandez, A. F., Zhang, Y., and Liang, H. (2023). A survey on 
image enhancement for low-light images. Heliyon 9:e14558. doi: 10.1016/j.heliyon.2023.
e14558

Guo, X., Wang, Y., Zhou, N., and Zhu, X. (2020b). Optimal weighted two-sample t-test 
with partially paired data in a unified framework. Journal of Applied Statistics 48, 
961–976. doi: 10.1080/02664763.2020.1753027

Hu, Q., and Guo, X. (2022). Low-light image enhancement via breaking down the 
darkness. Int. J. Comput. Vis. 131, 48–66. doi: 10.1007/s11263-022-01667-9

Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., and Van Gool, L. (2017). DSLR-
quality photos on Mobile devices with deep convolutional networks. Int. Conf. Comput. 
Vis. doi: 10.1109/iccv.2017.355

Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., et al. (2021). Enlightengan: 
deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 
2340–2349. doi: 10.1109/tip.2021.3051462

Jiang, Z., Li, H., Liu, L., Men, A., and Wang, H. (2021). A switched view of retinex: 
deep self-regularized low-light image enhancement. Neurocomputing 454, 361–372. doi: 
10.1016/j.neucom.2021.05.025

Jiang, N., Lin, J., Zhang, T., Zheng, H., and Zhao, T. (2023). Low-light image 
enhancement via stage-transformer-guided network. IEEE Trans. Circuits Syst. Video 
Technol. 33, 3701–3712. doi: 10.1109/TCSVT.2023.3239511

Ke, X., Xin, Y., Baocai, Y., and Rynson, W.H.L. (2020). Learning to restore low-light 
images via decomposition-and-enhancement. IEEE WA, USA

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023). 
Segment Anything. In: ICCV 2023. Available at: https://arxiv.org/pdf/2304.02643v1.pdf

Li, J., Feng, X., and Hua, Z. (2021). Low-light image enhancement via progressive-
recursive network. IEEE Trans. Circuits Syst. Video Technol. 31, 4227–4240. doi: 10.1109/
tcsvt.2021.3049940

Li, C., Guo, C., and Chen, C. L. (2021). Learning to enhance low-light image via zero-
reference deep curve estimation. IEEE Trans. Pattern Anal. Mach. Intell. 1, 4225–4238. 
doi: 10.1109/tpami.2021.3063604

Li, C., Guo, C., Han, L.-H., Jiang, J., Cheng, M.-M., Gu, J., et al. (2022). Low-light 
image and video enhancement using deep learning: a survey. IEEE Trans. Pattern Anal. 
Mach. Intell. 44, 9396–9416. doi: 10.1109/tpami.2021.3126387

Li, C., Guo, F., Porikli, J., and Pang, Y. (2018). Lightennet: a convolutional neural 
network for weakly illuminated image enhancement. Pattern Recogn. Lett. 104, 15–22. 
doi: 10.1016/j.patrec.2018.01.010

Liu, X., Xie, Q., Zhao, Q., Wang, H., and Meng, D. (2023). Low-light image 
enhancement by retinex-based algorithm unrolling and adjustment. IEEE Trans. Neural 
Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3289626

Liu, J., Xu, D., Yang, W., Fan, M., and Huang, H. (2021). Benchmarking low-light 
image enhancement and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 129, 1153–1184. 
doi: 10.1007/s11263-020-01418-8

Long, L., Dian, J., Nan, A., Jinyuan, L., Xin, F., Zhongxuan, L., et al. (2023). Bilevel Fast 
Scene Adaptation for Low-Light Image Enhancement. International Journal of Computer 
Vision. doi: 10.1007/s11263-023-01900-z

Lore, K. G., Akintayo, A., and Sarkar, S. (2017). LLNet: a deep autoencoder approach 
to natural low-light image enhancement. Pattern Recogn. 61, 650–662. doi: 10.1016/j.
patcog.2016.06.008

Lv, F., Lu, F., Wu, J., and Lim, C.. (2018). MBLLEN: Low-light image/video 
enhancement using CNNs. In British machine vision conference. Newcastle, UK

Martinez-Seras, A., Del Ser, J., Lobo, J. L., Garcia-Bringas, P., and Kasabov, N. (2023). 
A novel out-of-distribution detection approach for spiking neural networks: design, 
fusion, performance evaluation and explainability. Inf. Fusion 100:101943. doi: 10.1016/j.
inffus.2023.101943

Mozafari, M. N. D. A., and Ganjtabesh, M. T. M. (2019). Spyketorch: efficient 
simulation of convolutional spiking neural networks with at most one spike per neuron. 
Front. Neurosci. 13:625. doi: 10.3389/fnins.2019.00625

Rao, Y., Lin, W., and Chen, L. (2010). Image-based fusion for video enhancement of 
night-time surveillance. Opt. Eng. 49:120501. doi: 10.1117/1.3520553

Rong, Y., Liu, W., Zhang, Y., Zhi, Q., Zhao, D., and Zhang, B. (2018). Deepexposure: 
learning to expose photos with asynchronously reinforced adversarial learning. Neural 
Inf. Process. Syst. 31, 2149–2159.

Sheikh, H. R., and Bovik, A. C. (2006). Image information and visual quality. IEEE 
Trans. Image Process. 15, 430–444. doi: 10.1109/tip.2005.859378

Shen, Z., Xu, H., Jiang, G., Yu, M., Du, B., Luo, T., et al. (2023). Pseudo-retinex 
decomposition-based unsupervised underwater image enhancement and beyond. Digit. 
Signal Process. 137:103993. doi: 10.1016/j.dsp.2023.10399

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W. K., and Woo, W. (2015). 
Convolutional LSTM Network: A Machine Learning Approach for Precipitation 
Nowcasting. Advances in neural information processing systems. doi: 10.48550/
arxiv.1506.04214

Singh, K., Pandey, A., Agarwal, A., Agarwal, M. K., Shankar, A., and Parihar, A. S. 
(2024). Frn: fusion and recalibration network for low-light image enhancement. 
Multimed. Tools Appl 83, 12235–12252. doi: 10.1007/s11042-023-15908-7

Tang, L., Ma, J., Zhang, H., and Guo, X. (2022). DRLIE: Flexible Low-Light Image 
Enhancement via Disentangled Representations. IEEE transactions on neural networks and 
learning systems 1–14. doi: 10.1109/tnnls.2022.3190880

Tang, H., Zhu, H., Tao, H., and Xie, C. (2023). An improved algorithm for low-light image 
enhancement based on retinexnet. Appl. Sci. 12:7268. doi: 10.3390/app12147268

Wang, Z., and Bovik, A. (2002). A universal image quality index. IEEE Signal Process. 
Lett. 9, 81–84. doi: 10.1109/97.995823

Wang, Q., Fu, X., Zhang, X.-P., and Ding, X. (2016). A fusion-based method for single 
backlit image enhancement. In 2016 IEEE international conference on image processing 
(ICIP). 4077–4081. Phoenix, AZ, USA

Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.-P., and Kot, A. (2022). Low-light image 
enhancement with normalizing flow. Proc. Int. AAAI Conf. Artif. Intell. 36, 2604–2612. 
doi: 10.1609/aaai.v36i3.20162

Wu, T., Wu, W., Yang, Y., Fan, F.-L., and Zeng, T. (2023). Retinex image enhancement 
based on sequential decomposition with a plug-and-play framework. IEEE Trans. Neural 
Netw. Learn. Syst., 1–14. doi: 10.1109/tnnls.2023.3280037

Xu, S., Zhang, J., Qin, X., Xiao, Y., Qian, J., Bo, L., et al. (2022). Deep retinex 
decomposition network for underwater image enhancement. Comput. Electr. Eng. 
100:107822. doi: 10.1016/j.compeleceng.2022.107822

Yang, W., Wang, S., Fang, Y., Wang, Y., and Liu, J. (2020). From fidelity to perceptual 
quality: a semi-supervised approach for low-light image enhancement. Proc. IEEE 
Comput. Soc. Conf. Comput. Vis. Pattern Recognit, 3063–3072. doi: 10.1109/
cvpr42600.2020.00313

Ying, Z., Li, G., and Gao, W. (2017). A bio-inspired multi-exposure fusion framework 
for low-light image enhancement. arXiv. doi: 10.48550/arxiv.1711.00591

Yusob, B., Mustaffa, Z., and Sulaiman, J. (2018). Anomaly detection in time series data 
using spiking neural network. Adv. Sci. Lett. 24, 7572–7576. doi: 10.1166/asl.2018.12980

Zhang, H., Fan, X., and Zhang, Y. (2023a). Energy-efficient spiking segmenter for 
frame and event-based images. Biomimetics 8:356. doi: 10.3390/biomimetics8040356

Zhang, H., Li, Y., He, B., Fan, X., Wang, Y., and Zhang, Y. (2023b). Direct training 
high-performance spiking neural networks for object recognition and detection. Front. 
Neurosci. 17:1229951. doi: 10.3389/fnins.2023.1229951

Zhang, L., Liu, X., Shen, Y., Zhang, S., and Zhao, S. (2019). Zero-Shot Restoration of 
Back-lit Images Using Deep Internal Learning. Proceedings of the 27th ACM 
International Conference on Multimedia, Nice, France.

Zhang, H., and Ma, J. (2023). Iid-mef: a multi-exposure fusion network based on 
intrinsic image decomposition. Inf. Fusion 95, 326–340. doi: 10.1016/j.inffus.2023.02.031

Zhang, Y., Zhang, J., and Guo, X. (2019). Kindling the darkness: a practical low-light 
image enhancer. MM '19: Proceedings of the 27th ACM international conference on 
multimedia, 1632–1640. doi: 10.1145/3343031.3351069

Zhou, D., Yang, Z., and Yang, Y. (2023). Pyramid diffusion models for low-light image 
enhancement. Neural Inf. Process. Syst. doi: 10.48550/arXiv.2305.10028

Zhu, A., Zhang, L., Shen, Y., Ma, Y., Zhao, S., and Zhou, Y. (2020). “Zero-shot 
restoration of underexposed images via robust retinex decomposition” in IEEE Inter. 
Conf. Multimedia Expo(ICME), 1–6. doi: 10.1109/ICME46284.2020.9102962

168167

https://doi.org/10.3389/fnins.2024.1297671
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s40314-022-02140-6
https://doi.org/10.1109/tip.2018.2794218
https://doi.org/10.1109/tip.2018.2794218
https://doi.org/10.1007/s11042-022-13411-z
https://doi.org/10.1007/s11042-022-13411-z
https://doi.org/10.48550/arXiv.1808.04560
https://doi.org/10.2139/ssrn.3565891
https://doi.org/10.1109/ICIP46576.2022.9897503
https://doi.org/10.1109/ICIP46576.2022.9897503
https://doi.org/10.48550/arXiv.2001.06826
https://doi.org/10.1016/j.heliyon.2023.e14558
https://doi.org/10.1016/j.heliyon.2023.e14558
https://doi.org/10.1080/02664763.2020.1753027
https://doi.org/10.1007/s11263-022-01667-9
https://doi.org/10.1109/iccv.2017.355
https://doi.org/10.1109/tip.2021.3051462
https://doi.org/10.1016/j.neucom.2021.05.025
https://doi.org/10.1109/TCSVT.2023.3239511
https://arxiv.org/pdf/2304.02643v1.pdf
https://doi.org/10.1109/tcsvt.2021.3049940
https://doi.org/10.1109/tcsvt.2021.3049940
https://doi.org/10.1109/tpami.2021.3063604
https://doi.org/10.1109/tpami.2021.3126387
https://doi.org/10.1016/j.patrec.2018.01.010
https://doi.org/10.1109/TNNLS.2023.3289626
https://doi.org/10.1007/s11263-020-01418-8
https://doi.org/10.1007/s11263-023-01900-z
https://doi.org/10.1016/j.patcog.2016.06.008
https://doi.org/10.1016/j.patcog.2016.06.008
https://doi.org/10.1016/j.inffus.2023.101943
https://doi.org/10.1016/j.inffus.2023.101943
https://doi.org/10.3389/fnins.2019.00625
https://doi.org/10.1117/1.3520553
https://doi.org/10.1109/tip.2005.859378
https://doi.org/10.1016/j.dsp.2023.10399
https://doi.org/10.48550/arxiv.1506.04214
https://doi.org/10.48550/arxiv.1506.04214
https://doi.org/10.1007/s11042-023-15908-7
https://doi.org/10.1109/tnnls.2022.3190880
https://doi.org/10.3390/app12147268
https://doi.org/10.1109/97.995823
https://doi.org/10.1609/aaai.v36i3.20162
https://doi.org/10.1109/tnnls.2023.3280037
https://doi.org/10.1016/j.compeleceng.2022.107822
https://doi.org/10.1109/cvpr42600.2020.00313
https://doi.org/10.1109/cvpr42600.2020.00313
https://doi.org/10.48550/arxiv.1711.00591
https://doi.org/10.1166/asl.2018.12980
https://doi.org/10.3390/biomimetics8040356
https://doi.org/10.3389/fnins.2023.1229951
https://doi.org/10.1016/j.inffus.2023.02.031
https://doi.org/10.1145/3343031.3351069
https://doi.org/10.48550/arXiv.2305.10028
https://doi.org/10.1109/ICME46284.2020.9102962


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Provides a holistic understanding of brain 

function from genes to behavior

Part of the most cited neuroscience journal series 

which explores the brain - from the new eras 

of causation and anatomical neurosciences to 

neuroeconomics and neuroenergetics.

Discover the latest 
Research Topics

See more 

Frontiers in
Neuroscience

https://www.frontiersin.org/journals/Neuroscience/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Advanced methods and applications for neurointelligence
	Table of contents
	A multimodal human-robot sign language interaction framework applied in social robots
	1. Introduction
	2. Methodology
	2.1. System overview
	2.2. Data collection and preprocessing
	2.2.1. Hand 3D information captured by leap motion sensor
	2.2.2. Human arm sEMG signals captured by Myo armband sensor
	2.2.3. Data preprocessing for two data subjects
	2.2.4. Data fusion of two modalities data
	2.3. Deep learning classification approaches

	3. Experiments and results
	3.1. Experimental setup
	3.1.1. Hardware platform
	3.1.2. Software environment
	3.2. Multimodal gestures comparison experiments and results
	3.2.1. Settings
	3.2.2. Results and analysis
	3.3. HRI experiments and results
	3.3.1. Settings
	3.3.2. Results and analysis

	4. Discussion
	5. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	STDP-based adaptive graph convolutional networks for automatic sleep staging
	1. Introduction
	2. Related works
	2.1. Sleep stage classification problem
	2.2. Automatic sleep staging methods

	3. Methodology
	3.1. STDP Graph Learning
	3.2. Spatial-temporal graph convolution

	4. Experiments
	4.1. Datasets and experimental settings
	4.2. Experimental results and comparison
	4.3. Experiments and analysis

	5. Discussion
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Segmentation of multi-regional skeletal muscle in abdominal CT image for cirrhotic sarcopenia diagnosis
	1. Introduction
	2. Materials and methods
	2.1. Data description
	2.2. L3 localization and image preprocessing
	2.3. Skeletal muscle segmentation network
	2.3.1. 2.5D encoding-decoding network
	2.3.2. 3D encoding branch
	2.3.3. Texture attention enhancement block
	2.3.4. Loss function
	2.4. Training and testing parameter settings
	2.5. Evaluation indicators

	3. Experimental result
	3.1. Ablation comparison experiments
	3.2. Quantitative segmentation results
	3.3. Qualitative segmentation results
	3.4. Auxiliary diagnostic information

	4. Conclusion
	5. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

	A touch-free human-robot collaborative surgical navigation robotic system based on hand gesture recognition
	1. Introduction
	2. Materials and methods
	2.1. System composition
	2.2. System workflow
	2.3. Gesture recognition model
	2.3.1. Keypoint regression branch
	2.3.2. Auxiliary prediction branch
	2.3.3. Hand shape regression branch
	2.4. Hand gesture mapping to robot
	2.4.1. Encoding
	2.4.2. Gesture mapping
	2.4.3. Safety strategies for HRI

	3. Results
	3.1. Gesture recognition accuracy
	3.2. Phantom experiment
	3.2.1. Experimental settings
	3.2.2. Experimental result
	3.3. Cadaver experiment
	3.3.1. Experimental settings
	3.3.2. Experimental result

	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Focus prediction of medical microscopic images based on Lightweight Densely Connected with Squeeze-and-Excitation Network
	1. Introduction
	2. Construction of test dataset
	2.1. Test facility and data acquisition
	2.2. Building of the dataset

	3. Model structure
	3.1. Method overview
	3.2. The proposed network structure
	3.2.1. Dense block layer
	3.2.2. Transition layer
	3.2.3. Squeeze-excitation module
	3.2.4. Squeeze
	3.2.5. Excitation

	4. Experiment results and analysis
	4.1. Model training
	4.2. Prediction results and analysis
	4.3. Comparison of the predicted effect of variable magnification, variable area

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Surrounding-aware representation prediction in Birds-Eye-View using transformers
	1. Introduction
	2. Related work and basics
	2.1. Surrounding-aware system in autonomous driving 
	2.2. CNN-based studies
	2.3. Transformer-based studies

	3. Method
	3.1. Image encoding
	3.2. Image-to-BEV
	3.3. BEV semantic representation generation
	3.4. Training

	4. Experiment and discussion
	4.1. Experimental settings
	4.1.1. Database
	4.1.2. Evaluation
	4.1.3. Implementation

	4.2. Ablation study
	4.3. Main results and comparison to state-of-the-art works
	4.3.1. Main results
	4.3.2. Discussion

	4.4. Performance on challenging scenarios

	5. Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Exploiting semantic information in a spiking neural SLAM system
	1. Introduction
	2. Materials and methods
	2.1. The semantic pointer architecture
	2.1.1. Algebra of cognition
	2.1.2. Spatial semantic pointers
	2.1.3. Probability representations
	2.1.4. The neural engineering framework
	2.1.5. Learning rules

	2.2. The SSP-SLAM model
	2.2.1. Localization module
	2.2.2. Landmark perception module
	2.2.3. Environment map module
	2.2.4. Loop closure module


	3. Results
	3.1. Mapping in 2D environments
	3.2. Maintaining neural activity patterns
	3.3. Localization in 2D environments
	3.4. Localization in 3D environments
	3.5. Neuromorphic simulation of dead reckoning

	4. Discussion
	4.1. Prior research
	4.2. Performance
	4.3. Limitations
	4.4. Future work
	4.5. Summary

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	A novel multidimensional uncalibration method applied to six-axis manipulators
	1. Introduction
	2. Control system
	2.1. Operating platform
	2.2. Process of uncalibration
	2.3. Servo control algorithm

	3. Experimental results
	3.1. Simulation test
	3.2. Experimental results of the dynamic quasi-Newton method
	3.3. Orthogonal initialization method test results
	3.4. Comparison of experimental results

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Single-view multi-human pose estimation by attentive cross-dimension matching
	1. Introduction
	2. Related works
	2.1. 2D human pose estimation
	2.2. 3D human pose estimation

	3. Proposed method
	3.1. 2D human characterization based on k-block structure
	3.2. 3D human characterization based on SMPL parameters
	3.3. 2D-3D keypoint optimization
	3.4. Multi-person detection and pose estimation

	4. Experiments and evaluations
	4.1. Experimental setups
	4.2. Evaluation on multi-person pose estimation
	4.3. Evaluation on single-person pose estimation
	4.4. Exploration on uncertainty weighting

	5. Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification
	1. Introduction
	2. Methods
	2.1. Data collection and processing
	2.2. EMG-driven neuromusculoskeletal model
	2.3. NMS-BNN model
	2.4. NMS-GP model
	2.5. Knee exoskeleton
	2.6. Evaluation protocol
	2.6.1. Joint torque prediction
	2.6.2. Exoskeleton assistive torque tracking performance


	3. Results
	3.1. Joint torque prediction
	3.2. Exoskeleton assistive torque tracking performance

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	A non-contact interactive system for multimodal surgical robots based on LeapMotion and visual tags
	1. Introduction
	2. Materials and methods
	2.1. System composition
	2.2. System workflow
	2.3. Gesture interaction based on LeapMotion
	2.3.1. Introduction and principle of LeapMotion equipment
	2.3.2. Reading and data processing of LeapMotion
	2.4. Interaction based on Aruco
	2.4.1. Encoding
	2.4.2. Aruco generation
	2.4.3. Pose estimation and parameter resolve
	2.5. Interaction with surgical robot
	2.5.1. Pose estimation and parameter resolve
	2.5.2. Aruco attitude command calculation
	2.5.3. Pose mapping to robot

	3. Results
	3.1. LeapMotion hand recognition accuracy
	3.2. Aruco recognition accuracy
	3.3. Phantom experiment
	3.3.1. Experimental settings
	3.3.2. Experimental result

	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	 References

	DCENet-based low-light image enhancement improved by spiking encoding and convLSTM
	1 Introduction
	2 Proposed method
	2.1 DCENet structure
	2.2 Spiking encoding method
	2.3 ConvLSTM
	2.4 The loss items of the DCENet structure

	3 Experiments and evaluation
	3.1 Experimental setup
	3.2 Ablation study
	3.3 Performance comparison
	3.4 User study

	4 Discussion
	5 Conclusion
	6 Scope
	Data availability statement
	Author contributions
	References

	Back cover



