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Editorial of the Research Topic
 From Raw MEG/EEG to Publication: How to Perform MEG/EEG Group Analysis With Free Academic Software



Free and open-source academic toolboxes have gained increasing prominence in the field of MEG/EEG research to disseminate cutting-edge methods, share best practices between different research groups, and pool resources for developing essential tools for the MEG/EEG community. Large and vibrant research communities have emerged around several of these toolboxes in recent years. Training events are regularly held around the world where the basics of each toolbox are explained by its respective developers and experienced power users. However, most training material and tutorials only show analysis of a single “typical best” subject, whereas most real MEG/EEG studies involve group data analysis. It is then left to the researchers to figure out how to make the transition and obtain group results. This special Research Topic addresses this gap by publishing detailed descriptions of complete group analyses for which code and data are also shared. The level of detail of the description should be such that the readers will be able to fully reproduce the analysis and results and port the analysis to their own data.

A total of 25 articles, summarized in Table 1, were accepted for this special issue. In particular to foster comparable analysis with different tools and strategies, we encouraged authors to reuse a dataset containing responses to face stimuli acquired by Richard Henson and Daniel Wakeman (Wakeman and Henson, 2015; https://openfmri.org/dataset/ds000117/) (HW dataset). This dataset is formatted following the Brain Imaging Data Structure specification (Gorgolewski et al., 2016), which has become increasingly popular in the MEG (Niso et al., 2018), EEG (Pernet et al., 2019) and iEEG fields (Holdgraf et al., 2019). The specific dataset contains multiple modalities, including EEG (with digitized electrode positions), MEG, fMRI, and anatomical MRI, making it suitable for demonstrating multimodal analysis pipelines. Out of the 25 published articles, 10 are using this data (Table 1). All other articles used data that is also publicly available.


Table 1. Article part of the special issue by order of publication date.

[image: Table 1]

The articles in this special issue focus on different aspects of MEEG data processing. Some articles processed EEG data (n = 9), MEG data (n = 8), joint EEG/MEG data (n = 7), or even EEG/MEG/fMRI data (n = 1). Four articles focused on automated processing of EEG data, 10 dealt

with source localization, 3 with connectivity analysis, 3 with statistical analysis, 2 with EEG data classification. Other topics included microstates and Bayesian modeling. Submissions were based on existing MEEG software, in particular EEGLAB (n = 7), FieldTrip (n = 7), MNE (n = 4), SPM (n = 3), Brainstorm (n = 2), and NUTMEG (n = 1). Of the 25 articles, 21 are using MATLAB, 4 are using Python, and 1 is partially using R. Most scripts and tools were released under the GNU/GPL license (n = 10), BSD or MIT commercial friendly license (n = 2), no specific license (n = 11), or a combination of licenses (n = 2).

For researchers starting to process MEG/EEG data, we would recommend downloading the HW dataset (https://doi.org/10.18112/openneuro.ds000117.v1.0.5) and trying the methods described in this special issue. A simplified BIDS version of this dataset with EEG only is also available (https://doi.org/10.18112/openneuro.ds002718.v1.0.5). Furthermore, we recommend researchers to format their own data to BIDS to facilitate the application of some of the tools in this special issue and help the field move toward better tool integration centered on the BIDS framework.

Overall, there is tremendous potential in using different tools to process the same datasets. First, it forces tool developers to use a standard data format (BIDS) and increases interoperability between tools. Second, these tools offer common features, so the community may compare and check the numerical validity of each approach. Validity checking of MEEG signal processing approaches is important for open-source software, which often has limited resources assigned for testing purposes. Being able to process the same dataset using different tools also makes it simpler for users to compare them and see which one fits their style best, whether it is mixed GUI/script tools like EEGLAB, Brainstorm, SPM and NUTMEG or pure scripting tools such as Fieldtrip or MNE. Finally, making it possible to combine the signal processing pipelines of different tools allows users to develop approaches, leading to new methodological developments.
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There is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8–13 Hz) and gamma-band (>40 Hz) activity. However, the application of PAC metrics to electrophysiological data can be challenging due to numerous methodological issues and lack of coherent approaches within the field. Therefore, in this article we outline the various analysis steps involved in detecting PAC, using an openly available MEG dataset from 16 participants performing an interactive visual task. Firstly, we localized gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses from area V1, defined using a multimodal parcelation scheme. These V1 responses were analyzed for changes in alpha-gamma PAC, using four common algorithms. Results showed an increase in alpha (7–13 Hz)–gamma (40–100 Hz) PAC in response to the visual grating stimulus, though specific patterns of coupling were somewhat dependent upon the algorithm employed. Additionally, post-hoc analyses showed that these results were not driven by the presence of non-sinusoidal oscillations, and that trial length was sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological issues and practical guidelines for ongoing PAC research will be discussed.

Keywords: PAC, phase, amplitude, sensory, oscillations, MEG, alpha, gamma


INTRODUCTION

Electrophysiological brain oscillations are often separated into distinct frequency bands, ranging from low-frequency delta (1–4 Hz) to high-frequency gamma (<40 Hz). The power and/or connectivity profiles of these frequency bands have been linked with specific neuronal and cognitive functions (Buzsáki and Draguhn, 2004; Palva et al., 2005). Whilst this has proven a powerful tool in neuroscientific research, there is emerging evidence that oscillations from different frequency bands also display specific coupling patterns—a phenomenon termed cross frequency coupling (CFC; Jensen and Colgin, 2007; Hyafil et al., 2015). One of the best studied forms of CFC is phase-amplitude coupling (PAC), in which the amplitude/power of a high frequency oscillation, often gamma (>40 Hz), is coupled to the phase of a lower frequency oscillation (Canolty et al., 2006; Canolty and Knight, 2010). PAC has been observed in multiple regions of the human brain, including the visual cortex (Voytek et al., 2010), auditory cortex (Cho et al., 2015), hippocampus (Lega et al., 2014; Heusser et al., 2016), and prefrontal cortex (Voloh et al., 2015; Voytek et al., 2015), in both electrocorticography (ECOG) and magnetoencephalography (MEG) recordings.

Within the visual system, there is strong evidence for a dynamic coupling between alpha phase (8–13 Hz) and gamma amplitude (>40 Hz; Voytek et al., 2010; Spaak et al., 2012; Bonnefond and Jensen, 2015). Alpha oscillations are associated with pulses of cortical inhibition every ~100 ms (Jensen and Mazaheri, 2010; Klimesch, 2012), whilst supporting communication through phase dynamics (Fries, 2015). In contrast, gamma oscillations emerge through local excitatory and inhibitory interactions, and synchronize local patterns of cortical activity (Singer and Gray, 1995; Buzsáki and Wang, 2012). In visual cortex, ongoing gamma-band activity becomes temporally segmented by distinct phases of alpha-band activity (Spaak et al., 2012; Bonnefond et al., 2017), possibly via inter-laminar coupling between supragranular and infragranular cortical layers (Mejias et al., 2016). Intriguingly, this coupling has been proposed to act as a mechanism for the dynamic co-ordination of brain activity over multiple spatial scales, with high-frequency activity within local ensembles coupled to large-scale patterns of low-frequency phase synchrony (Bonnefond et al., 2017), both within the visual system (Bonnefond and Jensen, 2015), and more widespread neurocognitive networks (Florin and Baillet, 2015). This would allow information to be routed efficiently between areas and for neuronal representations to be segmented and maintained, for example during visual working memory (Lisman and Idiart, 1995; Bonnefond and Jensen, 2015). Atypical patterns of PAC have also been proposed to underlie atypical cortical connectivity in several neurological conditions, including autism spectrum disorder (Khan et al., 2013; Kessler et al., 2016), schizophrenia (Kirihara et al., 2012), and Parkinson's Disease (Özkurt and Schnitzler, 2011; De Hemptinne et al., 2013).

Given the developing interest in cross-frequency coupling, it is vital for the wider neuroscience and electrophysiological community to understand the steps involved in its measurement and interpretation. This is especially important for PAC, which is beset with methodological pitfalls, since there are many competing algorithms, approaches, and currently no gold-standard set of analysis steps (Canolty and Knight, 2010; Jensen et al., 2016). It has also been suggested that numerous incidences of reported PAC may in fact be false positives, caused by suboptimal analysis practices and/or the presence of artifacts within the data (Aru et al., 2015; Hyafil, 2015). For example non-sinusoidal sawtooth-like oscillations can generate artificially inflated PAC values, via low-frequency phase harmonics (Lozano-Soldevilla et al., 2016; Cole et al., 2017; Vaz et al., 2017).

In this article, we outline a general approach for detecting changes in phase-amplitude coupling during visual processing, using a novel MEG dataset, analyzed using the Fieldtrip toolbox (Oostenveld et al., 2010), and openly available MATLAB scripts. Four common PAC algorithms were used to quantify the coupling between ongoing alpha phase (7–13 Hz) and gamma amplitude/power (>40 Hz) whilst participants viewed a static visual grating. Given the controversy surrounding PAC analysis, methodological steps were outlined in detail and justified by existing empirical research. Furthermore, follow-up analyses were conducted to establish the reliability of our results and to assess whether patterns of alpha-gamma PAC were driven by non-sinusoidal oscillations or insufficient data.



METHODS


Participants

Data were collected from 16 participants (6 male, 10 female, mean age = 28.25, SD = 6.23). All participants had normal or corrected to normal vision and no history of neurological or psychiatric illness.



Experimental Procedures

All experimental procedures complied with the Declaration of Helsinki and were approved by the Aston University, Department of Life and Health Sciences ethics committee. Participants gave written informed consent before participating in the study.



Paradigm

Participants performed an engaging sensory paradigm (Figure 1), designed to elicit patterns of high-frequency oscillatory activity. Each trial started with a variable fixation period of 1,500, 2,500, or 3,500 ms randomized across trials, followed by the presentation of a visual grating or auditory binaural click train stimulus; however only the visual data will be analyzed in this article. The visual grating stimulus had a spatial frequency of two cycles/degree and was presented for 1,500 ms. To keep participants engaged with the task, cartoon pictures of aliens or astronauts were presented after the visual grating, for a maximum of 500 ms. Please note that visual responses to the alien or astronaut picture did not form part of the MEG analysis. Participants were instructed to respond to the appearance of an alien picture using a response pad (maximum response period of 1,500 ms). The accuracy of the response was conveyed through audio-visual feedback, followed by a 500 ms fixation period. In total, the MEG recording lasted 12–13 min and included 64 trials with visual grating stimuli. Prior to MEG acquisition, the nature of the task was fully explained to participants and several practice trials were performed. Accuracy rates were above 95% for all participants indicating that the task was engaging and successfully understood.


[image: image]

FIGURE 1. The structure of the engaging sensory paradigm. Each trial started with a 1,500, 2,500, or 3,500 ms baseline period in which a square black box (the “porthole”) was centrally presented. This was followed by presentation of the visual grating stimulus (two cycles/degree) around the central porthole for 1,500 ms. A picture of an alien (target) or astronaut (non-target) was then shown within the porthole for 500 ms. Participants were instructed to respond after the appearance of an alien picture (maximum response time: 1,500 ms). Correct or incorrect responses were conveyed to the participant through audio-visual feedback in which the porthole turned green (correct) or red (incorrect) and a correct/incorrect tone was played. The times corresponding to the analyzed baseline and visual grating periods are labeled in orange/blue, respectively.





MEG Acquisition

MEG data were acquired using a 306-channel Neuromag MEG scanner (Vectorview, Elekta, Finland) made up of 102 triplets of two orthogonal planar gradiometers and one magnetometer. All recordings were performed inside a magnetically shielded room at a sampling rate of 1,000 Hz. Five head position indicator (HPI) coils were applied for continuous head position tracking, and visualized post-acquisition using an in-house Matlab script. For MEG-MRI coregistration purposes three fiducial points, the locations of the HPI coils and 300–500 points from the head surface were acquired using the integrated Polhemus Fastrak digitizer.

Visual stimuli were presented on a screen located 86 cm from participants (resulting in two cycles/degree for the visual grating), and auditory feedback through MEG-compatible earphones.



Structural MRI

A structural T1 brain scan was acquired for source reconstruction using a Siemens MAGNETOM Trio 3T scanner with a 32-channel head coil (TE = 2.18 ms, TR = 2,300 ms, TI = 1,100 ms, flip angle = 9°, 192 or 208 slices depending on head size, voxel-size = 0.8 × 0.8 × 0.8 cm).



MEG-MRI Coregistration and 3D Cortical Mesh Construction

MEG data were co-registered with participants MRI structural scan by matching the digitized head shape data with surface data from the structural scan (Jenkinson and Smith, 2001). The aligned MRI-MEG image was used to create a forward model based on a single-shell description of the inner surface of the skull (Nolte, 2003), using the segmentation function in SPM8 (Litvak et al., 2011). The cortical mantle was then extracted to create a 3D cortical mesh, using Freesurfer v5.3 (Fischl, 2012), and registered to a standard fs_LR mesh, based on the Conte69 brain (Van Essen, 2012), using an interpolation algorithm from the Human Connectome Project (Van Essen et al., 2012; instructions here: https://goo.gl/3HYA3L). Finally, the mesh was downsampled to 4002 vertices per hemisphere. Due to the extensive computation time involved in these procedures, all participant-specific cortical meshes are available to download in the /anat directory of the Figshare repository (see later).



Pre-processing

MEG data were pre-processed using Maxfilter (temporal signal space separation, .9 correlation), which suppresses external sources of noise from outside the head (Taulu and Simola, 2006).

Further pre-processing steps were performed in Matlab 2014b using the open-source Fieldtrip toolbox v20161024 (Oostenveld et al., 2010; script: 1_preprocessing_elektra_frontiers_PAC.m). Firstly, for each participant the entire recording was band-pass filtered between 0.5 and 250 Hz (Butterworth filter, low-pass order 4, high-pass order 3) and band-stop filtered (49.5–50.5 Hz; 99.5–100.5 Hz) to remove residual 50 Hz power-line contamination and its harmonics. Data were then epoched into segments of 4,000 ms (1,500 ms pre, 1,500 ms post-stimulus onset, with 500 ms of padding either side) and each trial was demeaned and detrended. Trials containing artifacts (SQUID jumps, eye-blinks, head movement, muscle) were removed if the trial-by-channel (magnetomer) variance exceeded 8 × 10−23, resulting in an average of 63.5 trials per condition, per participant. Indices of removed trials are included in the Supplementary Materials. Site-specific MEG channels containing large amounts of non-physiological noise were removed from all analyses (MEG channels: 0111, 0322, 2542, 0532).



Source Analysis

Source analysis was conducted using a linearly constrained minimum variance beamformer (LCMV; Van Veen et al., 1997), which applies a spatial filter to the MEG data at each vertex of the 3D cortical mesh, in order to maximize signal from that location whilst attenuating signals elsewhere. Beamforming weights were calculated by combining the covariance matrix of the sensor data with leadfield information. Due to rank reduction following data cleaning with Maxfilter, the covariance matrix was kept at a rank below 64 components, which explained 99% of the variance. For all analyses, a common filter was used across baseline and grating periods, and a regularization parameter of lambda 5% was applied.

Due to prior interest in the gamma and alpha-bands (Hoogenboom et al., 2006; Muthukumaraswamy et al., 2010; Michalareas et al., 2016), the visual data were band-pass filtered (Butterworth filter) between 40–60 Hz (gamma) and 8–13 Hz (alpha), and source analysis was performed separately for each frequency band. To capture induced rather than evoked visual activity, a period of 300–1,500 ms following stimulus onset was compared with a 1,200 ms baseline period (1,500–300 ms before grating onset). The change in oscillatory power for each vertex was averaged across participants, interpolated onto a 3D mesh provided by the Human Connectome Project (Van Essen, 2012), and thresholded at a value which allowed the prominent patterns of power changes to be determined (see Figure 3, script: 2_get_source_power.m).



Extracting Area V1 Time-Series

Trial time-courses were extracted from bilateral visual area V1, defined using a multi-modal parcelation from the Human Connectome Project, which combined retinotopic mapping, T1/T2 structural MRI and diffusion-weighted MRI to accurately define the boundaries between cortical areas (Glasser et al., 2016; Figure 3C). The downsampled version of this atlas can be found in the parent directory of the Figshare repository (see later). To obtain a single spatial filter from this region, we performed a principle components analysis (PCA) on the concatenated filters from 182 vertices of bilateral V1, multiplied by the sensor-level covariance matrix, and extracted the first component. The sensor-level data was then multiplied by this spatial filter to obtain a V1-specific “virtual electrode” (script: 3_get_VE_frontiers_PAC.m), and the change in oscillatory power between grating and baseline periods was calculated from 1 to 100 Hz, using a 500 ms time window, sliding in steps of 20 ms and ±8 Hz frequency smoothing (script: 4_calc_pow_change.m). It is important to note that while we decided to use a multimodal atlas, visual area V1 virtual electrode time-series could also be defined using a more standard volumetric approach, for example the AAL atlas, which is included in the Fieldtrip toolbox (Oostenveld et al., 2010).



Phase Amplitude Coupling (PAC) Analysis

V1 time-courses were examined for changes in alpha-gamma phase amplitude coupling (PAC). The general procedure is outlined in Figure 2. The first step was to obtain estimates of low frequency phase (fp) and high frequency amplitude (fa) for each trial using a fourth order, two-pass Butterworth filter, and then applying the Hilbert transform (Le Van Quyen et al., 2001). To avoid sharp edge artifacts, which can result in spurious PAC (Kramer et al., 2008), the first 500 ms and last 500 ms of each trial was discarded.
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FIGURE 2. Illustration of the phase amplitude coupling (PAC) analysis procedure. The V1 time-series were filtered to obtain estimates of phase and amplitude, using a narrow (±1 Hz) bandwidth for the phase and a variable bandwidth (±0.4 times the center frequency) for the amplitude. Phase and amplitude information were obtained via the Hilbert transform. The coupling between phase and amplitude was then quantified using Mean Vector Length, Kullback-Leiber, or Phase Locking Value algorithms to produce a Modulation Index value.



The bandwidth of the filter used to obtain fp and fa is a crucial parameter in calculating PAC (Aru et al., 2015). The filters for extracting fa need to be wide enough to capture the center frequency ± the modulating fp. So, for example, to detect PAC between fp = 13 Hz and fa = 60 Hz, requires a fa bandwidth of at least 13 Hz [47 73]. If this condition is not met, then PAC cannot be detected even if present (Dvorak and Fenton, 2014). We therefore decided to use a variable bandwidth, defined as ±0.4 times the center frequency (e.g., for an amplitude of 60 Hz, the bandwidth was 24 Hz either side [36 84]), which has been shown to improve the ability to detect PAC (Berman et al., 2012; Voloh et al., 2015). For alpha-band phase (maximum 13 Hz), this allowed us to calculate PAC for amplitudes above 34 Hz. The bandwidth for fp was kept narrow (1 Hz ± the center frequency), in order to extract sinusoidal waveforms. Furthermore, each trial was visually inspected to confirm that the fp filtered oscillations were sinusoidal in nature.

Next, the coupling between fp and fa was quantified using four common PAC approaches1: the Mean-Vector Length modulation index, originally described in Canolty et al. (2006); the Mean-Vector Length modulation index described in Özkurt and Schnitzler (2011); the phase-locking value modulation index described in Cohen (2008); and the Kullback-Lieber modulation index described in Tort et al. (2010b). These approaches were selected due to their popularity in the MEG/EEG PAC literature (e.g., Mathewson et al., 2011; Khan et al., 2013; Bonnefond and Jensen, 2015; Cho et al., 2015), and to demonstrate the diversity of PAC results based on the algorithm selected.

The mean vector length modulation index (MVL-MI-Canolty) approach estimates PAC from a signal with length N, by combining phase (ϕ) and amplitude information to create a complex-valued signal: faei(ϕfp) (Canolty et al., 2006), in which each vector corresponds to a certain time-point (n). If the resulting probability distribution function is non-uniform, this suggests a coupling between fp and fa, which can be quantified by taking the length of the average vector.

[image: image]

However, MI-values from the MVL-MI-Canolty algorithm have been shown to partly reflect the power of fa oscillations, rather than their coupling (Canolty and Knight, 2010). Therefore, as an alternative to surrogate data, we applied a MVL-MI algorithm from Özkurt and Schnitzler (2011), which includes a normalization factor corresponding to the power of fa. Özkurt and Schnitzler (2011) suggest that their algorithm is more resilient to measurement noise, and is therefore highly relevant for MEG data, which has an inherently lower signal-to-noise ratio compared with invasive electrophysiological recordings (Goldenholz et al., 2009).
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The PLV-MI-Cohen approach assumes that if PAC is present, the envelope of fa should oscillate at the frequency corresponding to fp. The phase of fa envelope can be obtained by applying the Hilbert transform (angle): ϕfa. The coupling between the low-frequency ϕfp phase values and the phase of the amplitude envelope, ϕfa, can be quantified by calculating a phase locking value (PLV), in much the same way as determining phase synchronization between electrophysiological signals.
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Finally, the KL-MI-Tort approach estimates PAC by quantifying the amount of deviation in amplitude-phase distributions. This involves breaking fp into 18 bins, and calculating the mean amplitude within each phase bin, normalized by the average value across all bins. Although the number of phase bins chosen is arbitrary, the specific number (9, 18, or 36) does not seem to influence PAC estimation (Figure S1; van Driel et al., 2015). The modulation index is calculated by comparing the amplitude-phase distribution (P) against the null hypothesis of a uniformly amplitude-phase distribution (Q).
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Mathematically, this is computed using the Kullbeck-Leiber distance (D), related to Shannon's entropy.
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Using these four approaches (MVL-MI-Canolty; MVL-MI-Özkurt; KL-MI-Tort; PLV-MI-Cohen) we calculated PAC between phases 7–13 Hz (in 1 Hz steps) and amplitudes 34–100 Hz (in 2 Hz steps), for the time-period 300–1,500 ms following grating presentation and a 1,200 ms baseline period. PAC-values were calculated separately for each trial and then averaged to obtain a single MI-value per amplitude and phase. This was repeated using surrogate data, created by shuffling trial and phase-carrying information (200 surrogates), to normalize MI-values. On a PC with 32 GB of RAM, and Intel(R) Core™ i7-4790 processor, the computation time for these procedures was 4.5 h (script: 5_visual_PAC_four_methods.m).

To assess changes in the strength of PAC between the grating and baseline periods, the comodulograms were compared using non-parametric cluster-based statistics, which have been shown to adequately control the type-I error rate for electrophysiological data (Maris and Oostenveld, 2007). First, an uncorrected dependent-samples t-test was performed (grating vs. baseline), and all MI-values exceeding a 5% significance threshold were grouped into clusters. The maximum t-value within each cluster was carried forward. Next, a null distribution was obtained by randomizing the condition label (grating/baseline) 1,000 times and calculating the largest cluster-level t-value for each permutation. The maximum t-value within each original cluster was then compared against this null distribution, with values exceeding a threshold of p < 0.05 deemed significant.



Sinusoidal Oscillations

One major issue in cross-frequency coupling analysis is the presence of non-sinusoidal sawtooth-like oscillations (Jensen et al., 2016; Cole et al., 2017), which can result in spurious estimates of PAC (Lozano-Soldevilla et al., 2016). This property of oscillations can be quantified by calculating the time taken from trough to peak (rise-time), peak to trough (decay-time), and the ratio between these values (Dvorak and Fenton, 2014; Cole and Voytek, 2017). We therefore calculated this ratio for the visual V1 data from 7 to 13 Hz, and performed a t-test to check for differences in non-sinusoidal oscillations between grating and baseline periods (script: 6_check_non_sinusoidal.m).



Simulated PAC Analysis

To investigate the validity of the four PAC approaches, we constructed 1.2 s of simulated data with known alpha-gamma PAC [fp = 10 Hz; fa = 50–70 Hz; code adapted from Kramer et al. (2008) and Özkurt and Schnitzler (2011)] and added a random level of noise (signal-to-noise ratio >−11.5 dB). Comodulograms were produced using the four PAC algorithms on 64 trials of simulated data. Using the same code, we also investigated how the four algorithms were affected by trial length (0.1–10 s in 0.1 s steps, script: 7_simulated_PAC_analysis.m).



Analysis Code and Data Sharing

MEG data are available to download online at Figshare (https://doi.org/10.6084/m9.figshare.c.3819106.v1), along with participant-specific 3D cortical meshes. Access to the raw structural MRI data will be granted upon reasonable request and ethical approval from Aston University Life and Health Sciences ethics committee. Data analysis code has been made available to download from Figshare (permanent version: https://doi.org/10.6084/m9.figshare.5297032), Github (https://github.com/neurofractal/sensory_PAC) and within the Supplementary Materials. This includes MATLAB code for the four PAC algorithms, which can be applied to electrophysiological data arranged in the standard Fieldtrip format (Oostenveld et al., 2010). Please note that these scripts have been optimized for the Windows operating system and MATLAB versions above 2014b (see supplementary materials for other software dependencies). Successful use of the scripts requires the user to have at least a basic understanding of MATLAB, signal processing, and the methodological complexities surrounding PAC. We therefore direct the reader to a number of excellent reviews and empirical papers (Canolty et al., 2006; Jensen and Colgin, 2007; Canolty and Knight, 2010; Aru et al., 2015; Hyafil et al., 2015).




RESULTS


Source Localization

In order to establish patterns of oscillatory power changes following presentation of the visual grating, gamma-band (40–60 Hz), and alpha-band power (8–13 Hz) were localized for a 300–1,500 ms period post-stimulus presentation. Results for the gamma-band (Figure 3A), show an increase in oscillatory power which localizes to the ventral occipital cortex (Hoogenboom et al., 2006). Results for the alpha band (Figure 3B) showed a general decrease in power, located primarily in occipital areas, but extending into temporal and parietal regions. The more widespread spatial pattern could reflect on-going upstream processes triggered by the appearance of the grating, for example anticipation of the upcoming target (Stenner et al., 2014).
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FIGURE 3. Whole-brain oscillatory power changes following the presentation of the visual grating are marked by (A) increases in the gamma-band (40–60 Hz) and (B) decreases in the alpha-band (8–13 Hz), localized primarily in the ventral occipital cortex. Power maps were thresholded at a value which allowed prominent patterns of power changes to be determined, indicated by the white dotted line. Time-courses were extracted from bilateral visual area V1, defined using the atlas region shown in (C) from the HCP-MMP 1.0 parcelation (Glasser et al., 2016). (D) These V1 responses showed reductions in alpha/beta power and increases in gamma-band (40–70 Hz) power.





Visual Area V1 Power Changes

Time courses from area V1 were extracted (Figure 3C), and the change in oscillatory power between grating and baseline periods from 1 to 100 Hz was calculated (Figure 3D). Whilst results show individual variability in peak frequencies and the strength of oscillatory power, on average, activity within visual area V1 displays a reduction in alpha/beta power (8–20 Hz), and an increase in gamma power (40–70 Hz). The MEG data, therefore display well-established patterns of alpha and gamma-band event-related synchronization and desynchronization within visual area V1 (Hoogenboom et al., 2006; Bonnefond and Jensen, 2015; Michalareas et al., 2016), which is a crucial first step in calculating reliable estimates of PAC (Aru et al., 2015).



Alpha-Gamma PAC

Visual area V1 responses were next examined for changes in alpha-gamma PAC. Specifically, we set out to test whether the coupling between alpha-band phase and gamma-band amplitude was altered during presentation of the visual grating. Phase-amplitude comodulograms were produced between a range of phase frequencies (7–13 Hz) and amplitude frequencies (34–100 Hz), using the four algorithms described in Section Methods: MVL-MI-Canolty; MVL-MI-Özkurt; PLV-MI-Cohen, and KL-MI-Tort. Grating and baseline comodulograms were compared using cluster-based non-parametric statistics (Maris and Oostenveld, 2007).

Results are shown in Figure 4A. Using the MVL-MI-Canolty algorithm, there was a significant increase in alpha-gamma PAC over a large proportion of the comodulogram, between 40–100 Hz and 7–13 Hz, with a peak at 50–70 Hz amplitude and 9–10 Hz phase. This large area of significantly increased PAC is likely to reflect, in part, power increases in the gamma-band (Canolty et al., 2006). The alternative MVL-MI- Özkurt algorithm, which normalizes MI-values by the high-frequency oscillatory power, displayed a smaller area of significant coupling, with increased PAC between an amplitude of 50–70 Hz and phase of 10 Hz. There was also a similar cluster of significantly increased PAC between 9–11 Hz and 50–70 Hz using the PLV-MI-Cohen approach. The KL-MI-Tort results showed clusters of increased PAC between amplitudes of 50–100 Hz and phases of 9–10 Hz, but decreased PAC between amplitudes of 60–90 Hz and phases of 12–13 Hz. However, none of these clusters passed a significance threshold of p < 0.05 (two-tailed). Similar results were obtained after normalizing MI values with surrogate data (Figure 4B).
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FIGURE 4. Phase-amplitude comodulograms produced by statistically comparing modulation index (MI)-values from 300 to 1,500 ms post-grating onset to a 1,200 ms baseline period, using four separate approaches. Comodulograms for (A) raw MI values and (B) MI values normalized by surrogate data are shown separately. The black dotted line represents significantly different phase-amplitude coupling frequencies (p < 0.05; for details of non-parametric cluster-based statistics see Section Methods).





Non-sinusoidal Oscillations

To determine whether our alpha-gamma PAC results were driven by differences in the sinusoidal properties of oscillations between baseline and grating periods, the ratio between oscillatory rise-time and decay-time was calculated. For the alpha phase frequencies (7–13 Hz), there was no difference in this ratio (all frequencies p > 0.05), suggesting that our results are unlikely to be caused by increased non-sinusoidal sawtooth-like properties of alpha oscillations during stimulus period compared to baseline.



Simulated PAC

To further validate our PAC results, we generated simulated data with known alpha-gamma coupling (10–11 Hz phase, 50–70 Hz amplitude). Using the same MATLAB code as for the MEG data, we were able to successfully detect this alpha-gamma PAC using the MVL-MI-Canolty, MVL-MI-Özkurt, PLV-MI-Cohen and KL-MI-Tort algorithms (Figure 5A). By varying the trial length of the simulated data, we found that PAC values were affected by trial length, with data segments under 1 s producing artificially inflated PAC (Figure 5B).
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FIGURE 5. Results of the simulated PAC analysis. (A) Phase-amplitude comodulograms produced using the MVL-MI-Canolty, MVL-MI-Özkurt, PLV-MI-Cohen, and KL-MI-Tort algorithms were able to successfully detect the 1.2 s of simulated coupling between 10 Hz phase and 50–70 Hz amplitude. (B) The coupling between 10 Hz phase and 60 Hz amplitude was calculated as a function of simulated data trial length. For trial data under 1 s, all four algorithms produced artificially inflated PAC.






DISCUSSION

This article has outlined various steps involved in the detection and validation of PAC in a visual MEG dataset (data shared at: https://doi.org/10.6084/m9.figshare.c.3819106.v1), utilizing the open-source Fieldtrip toolbox (Oostenveld et al., 2010) and customized Matlab scripts (all scripts shared at: https://github.com/neurofractal/sensory_PAC). We first confirmed that presentation of the visual grating was accompanied by decreases in alpha power (8–13 Hz) and increases in gamma power (>40 Hz) within visual area V1. Although this may seem redundant given the wealth of evidence for alpha and gamma oscillations in visual processing (Hoogenboom et al., 2006; Bonnefond and Jensen, 2015; Michalareas et al., 2016), it is crucial to establish clear increases/decreases in the power spectrum at two distinct frequencies as a first step in MEG-PAC analysis (Aru et al., 2015; Hyafil et al., 2015). Using four PAC algorithms, we showed that visual responses obtained from area V1 displayed a general increase in alpha-gamma PAC as expected (Voytek et al., 2010; Spaak et al., 2012; Bonnefond and Jensen, 2015). However, it is important to note that specific patterns of coupling depended on the algorithm selected. The MVL-MI-Canolty algorithm showed large increases in PAC during the grating period, covering almost the entire alpha and gamma frequency ranges, most likely as a result of MI values being biased by increases in high-frequency power following presentation of the visual grating (Canolty et al., 2006). This approach is therefore less suitable for detecting PAC between separate periods of data and/or trials. The MVL-MI-Özkurt algorithm, which normalizes the MI value by high amplitude power, along with the PLV-MI-Cohen algorithm produced a much more constrained pattern of significant alpha-gamma PAC, with peaks between 9–11 Hz phase and 50–70 Hz amplitude. Whilst the KL-MI-Tort approach also showed a general increase in alpha-gamma PAC around 9–11 Hz, none of the phase-amplitude clusters reached significance. This may be due to the relatively short number of trials used in the experiment, the low signal-to-noise ratio of MEG recordings (Goldenholz et al., 2009), variations in the peak alpha and gamma oscillatory frequencies (Muthukumaraswamy et al., 2009), combined with the fact that the KL-MI-Tort approach is relatively conservative (van Driel et al., 2015). More generally, it is important to emphasize that all four PAC metrics are highly sensitive to a range of factors (Dvorak and Fenton, 2014; Aru et al., 2015), which are often hard to control (Berman et al., 2012), resulting in both type I and type II statistical errors.

One such issue is the presence of non-sinusoidal sawtooth-like oscillations in electrophysiological data, which can result in spurious PAC (Lozano-Soldevilla et al., 2016), especially when phase is obtained with wide band-pass filters. By computing the ratio between rise-time and decay-time of alpha oscillations within area V1, we showed that non-sinusoidal oscillations did not differ between baseline and grating periods, and are unlikely to account for our results. Another issue in trial-based PAC analysis is data length, with some previous reports suggesting that 10 s or more is required for detecting theta-gamma coupling (Dvorak and Fenton, 2014; Aru et al., 2015). However, using simulated alpha-gamma PAC we determined that 1 s of data was sufficient to obtain stable estimates. We encourage the reader to run similar follow-up analyses after finding significant PAC to check for spurious coupling caused by, for example, non-sinusoidal oscillations (Jensen et al., 2016; Lozano-Soldevilla et al., 2016) and/or insufficiently long trials (Dvorak and Fenton, 2014).


Practical Considerations for PAC Analysis

Cross-frequency coupling is gaining significant interest within the electrophysiological community (Canolty and Knight, 2010; Dvorak and Fenton, 2014; Aru et al., 2015; Hyafil et al., 2015), and therefore it is important for researchers to consider the methodological pitfalls and caveats which commonly arise during PAC analysis. Firstly, due to the presence of edge artifacts at the start and end of time-series created by bandpass filtering, which can result in artefactual PAC (Kramer et al., 2008), sufficient padding should be included around trials. Concatenating data from separate trials to create longer data segments results in similar edge artifacts (Kramer et al., 2008), and should be avoided. Secondly, if the bandwidth of the filter used to extract the amplitude does not contain the side-bands of the modulating phase frequency, PAC cannot be detected even if present (Dvorak and Fenton, 2014). The use of a variable band-pass filter which scales with amplitude frequency, can alleviate this issue and improve the sensitivity of detecting PAC (Berman et al., 2012; Voloh et al., 2015). Thirdly, periods which contain non-stationary periods should be avoided. This includes sensory evoked potentials which induce correlations between frequency bands via phase reset (Sauseng et al., 2007), and can be misinterpreted as PAC (Aru et al., 2015). For this reason, we did not analyse the first 300 ms following visual grating presentation, due to the presence of visual evoked potentials (Di Russo et al., 2002). Fourth, given that PAC algorithms produce values ranging from 0 to 1, data are commonly not normally distributed, and therefore the use of non-parametric statistics is paramount. Whilst surrogate data are often employed (Tort et al., 2010b; Aru et al., 2015), this may not be possible where data are organized into short trials and temporal correlations between surrogate and true time-series are high (Dvorak and Fenton, 2014). Therefore, to assess changes in PAC, using a baseline period or contrasting between conditions, combined with non-parametric statistics may prove to be a useful alternative for sensory neurocognitive research.




LIMITATIONS

This study has compared four PAC algorithms (Canolty et al., 2006; Cohen, 2008; Tort et al., 2010b; Özkurt and Schnitzler, 2011), which are among the most commonly used approaches in sensory EEG/MEG research (Mathewson et al., 2011; Khan et al., 2013; Bonnefond and Jensen, 2015; Cho et al., 2015). However, these only comprise a small subset of the available algorithms designed to quantify PAC (Canolty and Knight, 2010; Hyafil et al., 2015). There have also been advances in measuring transient changes in PAC (Dvorak and Fenton, 2014), directed PAC (Jiang et al., 2015) and algorithms designed for spontaneous neural activity (Florin and Baillet, 2015; Weaver et al., 2016). A more comprehensive evaluation of algorithms and their application to real-world electrophysiological data is beyond the scope of this article, but would nevertheless benefit the field of cross-frequency coupling. Secondly, in order to detect alpha-gamma PAC within visual area V1, we used a broad filter bandwidth, defined as ±0.4 times the amplitude center-frequency. Consequently, the alpha-gamma comodulograms will be unable to differentiate between adjacent gamma sub-bands, which have been proposed to fulfill differing neurocognitive roles (Buzsáki and Wang, 2012; Bosman et al., 2014), and patterns of PAC (Vaz et al., 2017). However, for the visual MEG data presented here, there was only an increase in gamma power within one band (40–70 Hz), and therefore the smearing of adjacent sub-bands is unlikely. Finally, we have focussed on PAC within the visual cortex, which is known to display highly sinusoidal alpha oscillations (Tort et al., 2010a). However, there are many examples of non-sinusoidal brain oscillations caused by physiological neuronal spiking patterns (Fontanini and Katz, 2005), including hippocampal theta (4–8 Hz) and sensorimotor mu (9–11 Hz) rhythms (Lozano-Soldevilla et al., 2016; Scheffer-Teixeira and Tort, 2016), which are indicative of behavior and disease states (Cole and Voytek, 2017). Therefore, whilst non-sinusoidal oscillations generate spurious PAC, this does not mean that these oscillations are uninteresting, but simply that common PAC algorithms, such as, the ones employed in this article, are ill-suited for these scenarios. Where non-sinusoidal oscillations are present, PAC analysis could proceed by correcting for non-uniform phase distributions (e.g., van Driel et al., 2015) in order to disentangle nested oscillations from neural spiking (Vaz et al., 2017).



CONCLUSION

In conclusion, we have outlined the key analysis steps for detecting changes in alpha-gamma PAC during sensory processing, using an example visual MEG dataset. While alpha-gamma PAC was shown to increase, the specific patterns of alpha-gamma coupling depended upon the specific algorithm employed. Follow-up analyses showed that these results were not driven by non-sinusoidal oscillations or insufficient data. In future, we hope that a variety of PAC algorithms will be implemented alongside existing open-source MEG toolboxes (Oostenveld et al., 2010; Tadel et al., 2011; Gramfort et al., 2014), with detailed guidance and advice, so that PAC can form a natural analysis step in electrophysiological research.
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FOOTNOTES

1Due to inconsistent naming practices, we refer to the quantitative value of PAC as the modulation index (MI) across all four approaches.
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An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject.

Keywords: MEG, analysis pipeline, MNE-Python, minimum norm estimate (MNE), tactile expectations, group analysis, good practice


INTRODUCTION

Magnetoencephalography (MEG) studies often include questions about how different experimental factors relate to brain activity. To test experimental factors, one can create contrasting conditions to single out the unique contributions of each experimental factor. Single subject studies using MEG would face two limitations in singling out the contributions of experimental factors. Firstly, the MEG signals of interest are mostly too weak to find due to the noise always present in MEG data, and secondly there is often an interest in making an inference from one's data to the population as a whole. Group level analyses can circumvent these limitations by increasing the signal-to-noise ratio and by allowing for an inference to the population as a whole. It should be mentioned though that single subject analyses can be meaningful for clinicians trying to diagnose patients. Epilepsy investigations are routinely carried out on single subjects. Despite the fact that most studies rely on group level comparisons to increase the signal-to-noise ratio and for allowing for inferences to the population, almost all tutorials are based on single subject analyses. In the current paper, part of a special issue devoted to group analysis pipelines, I try to remedy this for anyone fancying using the MNE-Python (Gramfort et al., 2013) analysis package. The example analysis that will be used is focused on group level source reconstruction analyses of evoked responses, since this is a very common strategy in the MEG literature. As such, the focus is on how to organize a data analysis pipeline, but for more general introductory information about MEG and the analysis of evoked fields in general, see Hämäläinen et al. (1993) and Hari and Puce (2017). The organizational principle will be that all parts, both within-subject and between-subject parts, of the analysis will be accessible from the Python interface using a single script. The data is structured according to the Magnetoencephalography Brain Imaging Data structure (MEG-BIDS) format to ease access to the data (Galan et al., 2017).

The basic idea of the current group pipeline is to set up a structure that allows for:

1. Dividing output files into folders belonging to the respective subjects and recordings.

2. Applying an operation across a group of subjects.

3. (Re)starting the analysis at any intermediate point by saving output for each intermediate point.

4. Plotting the results in a way that allows for changing the figures in a principled, but flexible manner.

A structure that allows for all four points will minimize the time that researchers have to spend on (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable.



THE NEUROSCIENTIFIC EXPERIMENT

Since the focus is on how to conduct a group analysis, the neuroscientific questions answered with the pipeline are neither novel nor interesting. The focus is rather on the pipeline, which can facilitate other experimenters' research, so that they efficiently can answer their own novel and interesting questions. The reserved digital object identifier (DOI) for the data repository, where data for this experiment and scripts for the pipeline can be freely downloaded is: 10.5281/zenodo.998518. The corresponding URL is: https://zenodo.org/record/998518. The study that the data are taken from is not published yet. The updated and maintained github code can be found at https://github.com/ualsbombe/omission_frontiers.


Goal of Analysis

The goal of the analysis is to make a statistical appraisal of the neural activation evoked from the stimulation of the right index finger. The question is whether evidence can be found against the null hypothesis that neural activation in the contralateral somatosensory cortex does not depend on whether or not the right index finger is stimulated. This has been shown to be a robust effect, which makes it suitable for illustrating the pipeline. In reality, it is well known that stimulation of the finger evokes (at least) two evoked responses, the first after ~60 ms and the second after ~135 ms (Hari et al., 1984). The first localizes to contralateral primary somatosensory cortex and the second to bilateral secondary somatosensory cortex. To meet this goal, the following are sufficient: (1) evoked responses from each subject's raw data. (2) volume conductors and forward models based on the subjects' magnetic resonance images (MRIs) of their brains. (3) minimum norm estimates for each subject (4) statistics across the events based on the individual source reconstructions. The paradigm (Figure 1) and the whole analysis pipeline for each subject is shown in Figure 2.


[image: image]

FIGURE 1. An example sequence of the experimental paradigm is shown. The annotations on the bottom show the coding used throughout for the different events of interest. Stimulations happened at a regular pace, every three seconds. When omissions occurred, there were thus six seconds between two consecutive stimulations.
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FIGURE 2. Cookbook for performing the Minimum-Norm Estimates for a single subject.



A far from comprehensive list of studies facilitating similar pipelines includes: word recognition paradigms (Halgren et al., 2002; Pulvermüller et al., 2003); language lateralization assessment (Raghavan et al., 2017); auditory stimulation (Coffey et al., 2016) expectations toward painful stimulation (Fardo et al., 2017); face processing (Junghöfer et al., 2017); cross-sensory activations in visual and auditory cortices (Raij et al., 2010); somatosensory response activations (Nakamura et al., 1998) and many more.



Subjects

Twenty participants volunteered to take part in the experiment (eight males, twelve females, Mean Age: 28.7 y; Minimum Age: 21; Maximum Age: 47). The experiment was approved by the local ethics committee, Regionala etikprövningsnämnden i Stockholm. Both written and oral informed consent were obtained from all subjects.



Paradigm

The paradigm is based on building up tactile expectations by rhythmic tactile stimulations. These tactile expectations are every now and then violated by omitting otherwise expected stimulations (Figure 1). The inter-stimulus interval was 3,000 ms. Around every twenty-five trials, and always starting after an omission, periods of non-stimulation occurred that would last 15 s. The first six seconds worked as a wash-out period, and the remaining nine seconds were cut into three epochs of non-stimulation. There are thus nine trigger values in the data responding to nine different kinds of events (Table 1).



Table 1. Mapping of trigger values and annotated events.
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During the stimulation procedure, participants were watching an unrelated nature programme with sound being fed through sound tubes into the ears of participants at ~65 dB, rendering the tactile stimulation completely inaudible. Participants were instructed to pay full attention to the movie and no attention to the stimulation of their finger. In this way, expectations should be mainly stimulus driven, and thus not cognitively driven or attention driven.

An analysis of evoked responses will be carried out. The specific parameters going into the analysis will become apparent in the analysis steps below.



Preparation of Subjects

In preparation for the MEG-measurement each subject had their head shape digitized using a Polhemus Fastrak. Three fiducial points, the nasion and the left and right pre-auricular points, were digitized along with the positions of four head-position indicator coils (HPI-coils). Furthermore, about 200 extra points, digitizing the head shape of each subject, were acquired.



Acquisition of Data

Data was sampled on an Elekta TRIUX system at a sampling frequency of 1,000 Hz and on-line low-pass and high-pass filtered at 330 and 0.1 Hz, respectively. The data were first MaxFiltered (-v2.2) (Taulu and Simola, 2006), movement corrected and line-band filtered (50 Hz). MaxFiltering was done with setting the coordinate frame to the head coordinates, setting the origin of the head to (0, 0, 40 mm), setting the order of the inside expansion to 8, setting the order of the outside expansion to 3, enabling automatic detection of bad channels and doing a temporal Signal Space Separation (tSSS) with a buffer length of 10 s and a correlation limit of 0.980. Calibration adjustment and cross-talk corrections were based on the most recent calibration adjustment and cross-talk correction performed by the certified Elekta engineers maintaining the system.



Conventions

<variable> will be used to refer to the variable called “variable.”

function will be used to refer to the function called “function.”

[parameter] will be used to the parameter called “parameter.”

script will be used to refer to the script called “script.”



Requirements

The packages in Table 2 are required to run the scripts, and the versions listed are the ones that have been used to test the scripts.



Table 2. Packages, their purposes and origins, that are necessary for the pipeline.
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CODE


General Structure of the Code

The idea behind this pipeline is that each processing step can be run independently of what is in the workspace of the python interpreter as long as the appropriate processing step has been applied once earlier. To ascertain this almost all the functions begin with loading the appropriate data and by saving the processed data.

MNE-Python functions are used to do the actual operations. The functions supplied in this pipeline mostly serve as convenience functions that load the right data, process it and finally save it so it can be loaded for the next processing step.

Structure of pipeline.py

This is the main script, which is used to designate which operations should be run on the MEG data. The pipeline script is ordered into five blocks of code: Imports (Code Snippet 1), Paths (Code Snippet 2), Operations (Code Snippet 3), Parameters (Code Snippet 4), and the Processing Loop. It can be found one directory up from <script_path> (Code Snippet 1).

Imports

This sets the home folder <home_path>, which should to be changed to the user's home folder and imports necessary packages. Also make sure that the path to the scripts <script_path> points to the appropriate path where the below scripts can be found (Code Snippet 1). Finally also set the project name <project_name> to the folder where your analysis is stored.

[image: image]

Code Snippet 3. Importing packages necessary for the pipeline.

Input/output—io_functions.py

The file io_functions.py is a set of functions that loads and saves operational steps with a consistent naming structure. These need not be called from pipeline.py, since everything is taken care of in the appropriate operations (Code Snippet 3).

Operations—operations_functions.py

The file operations_functions.py is a set of functions that uses MNE-Python functions to apply the actual operations that are set with the pipeline script. These are set by the operations dictionary ([operations_to_apply], (Code Snippet 3))

Plotting—plot_functions.py

The file plot_functions.py is a set of convenience functions used for making a subset of possible plots. If [save_plots] is set to <True>, whatever is plotted will be saved in the given subject's figure directory (see [figures_path]). Since there are many variations on what plots one might want to create, I have included only very general plot functions that users can modify according to their own needs.

Paths

This sets the paths according to the structure of the downloadable data. <subjects_to_run> can be set to only a subset of the subjects (Code Snippet 2).
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Code Snippet 2. Setting up the paths for structuring the data.

Operations

The operations block contains a dictionary with all the operations you can apply to the downloadable data. All values should be Boolean, meaning that they should be set to either True (1) or False (0). The appropriate operations for all values set to True will be applied to all subjects. The keys, e.g., “filter_raw,” correspond one-to-one in name with functions in operations_functions imported above (Code Snippet 1), except for keys that start with “plot_.” They correspond one-to-one with functions in plot_functions (Code Snippet 1). Make sure to run “populate_data_directory” before all the others. This will create all the necessary paths for the current analysis (Code Snippet 3). The operations are arranged in the order that they are most naturally performed, but since the output from each step is saved, one can jump into the analysis at any given point after a given step has been completed, if one wants to change some parameters. As an example of calculating the grand averages of the evoked fields and subsequently plotting the grand averages, the following keys need to be set to 1 (True): populate_data_directory; filter_raw; find_events; epoch_raw; run_ica; apply_ica; get_evokeds; grand_average_evokeds; plot_grand_average_evokeds or plot_grand_average_evokeds_butterfly. Which functions are run by setting these keys will be shown below (Code Snippets 5–10 and 23). Another example is for running the MRI preprocessing necessary for creating a forward model. For this, the following keys need to be set to 1 (True): import_mri; segment_mri; apply_watershed; make_source_space; make_bem_solutions; create_forward_solution (Code Snippets 12–15 and 17–18). [In between a semi-manual transformation (Figure 6) bringing the MEG and MRI data into the same coordinate needs to be done, which can be made more precise using make_dense_scalp_surfaces (Code Snippet 16)].
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Code Snippet 3. Dictionary of operations that can be applied to the data. The value associated with each key (e.g., “filter_raw”) is a boolean, i.e., either True (1) or False (0).

Parameters

The variables here (Code Snippet 4) go into the functions as parameters that the comments above them associate them with, e.g., <lowpass> goes as a parameter into filter_raw (Code Snippet 5). Preset is a number of bad channels. <overwrite>, allows for making sure that overwriting is only done when explicitly requested, while <save_plots> determines whether plots are saved.
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Code Snippet 4. Parameters that need to be set for the operations applied.



Applying the Operations

To reiterate: all functions mentioned below come from the script: operations_functions.py. They are dependent on the input/output-functions from io_functions.py that are always called from operations_functions.py. Which processing steps are run depend on what dictionary keys in <operations_to_apply> in pipeline.py are set to True. The user only needs to change pipeline.py to apply the functions described herein. The functions operations_functions.py and io_functions.py should not be changed, but more functions can be added for needs not covered in this protocol.

Preprocessing the MEG Data

Dependencies

This part is only dependent on MNE-Python. All data plotted for single subjects is from subject sub-01.

MaxFilter

Since the MaxFilter software is proprietary software we do not expect everyone to have access to it, and thus the MaxFiltered data will be the starting point of the analysis from the MEG side.

Read MaxFiltered data and low-pass filter

Use filter_raw (Code Snippet 5) to read in the data and low-pass filter it according to [lowpass]. Three parameters, [name, save_dir, overwrite] occur for the first time here and are set by the corresponding variables <name, save_dir, overwrite> in pipeline.py. They determine the prepending name (oddball_absence) of the file to be saved, the path to which it should be saved, and finally whether it should be overwritten or not (True/False). Both the MaxFiltered and the low-pass filtered data can be plotted. This is done, respectively, with plot_maxfiltered and plot_filtered. The power spectra for the raw data can be plotted with plot_power_spectra. The effect of applying a low-pass filter is that it attenuates the contribution of frequencies above that cut-off while mostly preserving the contribution of frequencies below that cut-off. Since evoked responses are normally below frequencies of 30 Hz, the setting of the low-pass filter to 70 Hz should increase the signal-to-noise ratio by removing noise sources oscillating at frequencies >70 Hz. Signal-to-noise ratio might be improved even further by lowering the low-pass filter. This is left as an exercise to the user.

[image: image]

Code Snippet 5. The function for filtering the raw data.

Find events of interest and adjust timeline

Use find_events (Code Snippet 6) to find the events in the low-pass filtered data file and to adjust the events by the delay between the trigger and the actual event (the blowing up of the membrane). [stim_channel] and [min_duration] are used to set the stimulus channel and the minimum duration of an event in seconds, which are also their normal behaviours in MNE-Python. Events shorter than that are regarded as spurious and not included. [adjust_timeline_by_msec] is adjusting the events by the measured delay between the trigger value in the MEG recording and the actual blowing up of the membrane (41 ms).

[image: image]

Code Snippet 6. The function for finding the events in the raw files. This function also adjusts the timeline for the events for the delay between the trigger and the actual event.

Epoch the raw data files

The parameters [event_id, tmin, tmax, baseline, reject, bad_channels, decim] all serve their normal purposes in MNE-Python. The [event_id] parameter is a dictionary indicating the names used for each event. In the code, this follows the naming in Table 1. The [tmin] and [tmax] parameters together define the time range (in seconds) around the triggers that make up each epoch, here chosen to be −0.200 and 1.000 s. After 1.000 s, one rarely sees evoked components, but this depends on one's paradigm. One should always check whether activity seems to return to baseline. In this case it does (Figures 4, 9). The [baseline] parameter indicates which part of the epoch, if any, should be used as a baseline. This demeans the whole epoch by the average magnetic field measured in the baseline time range. Here, the pre-stimulus time range, −0.200 to 0.000 s, is used, amounting to the assumption that there is no evoked activity of interest before the stimulation. This removes the offset response from each sensor and makes the evoked response amplitudes quantifiable relative to the pre-stimulus time range. It also removes the unwanted effects of slow drifts in the data (Gross et al., 2013), potentially leading to different offsets for each epoch. The [reject] parameter allows for automatically rejecting epochs where a given threshold value is exceeded, here chosen to be 4 pT for magnetometers and 400 pT/cm for gradiometers. These values are rejected since they are so high that they are not likely to arise due to neuronal activity. A list of subject-specific bad channels is passed to epochs_raw (Code Snippet 7) by [bad_channels], which have been filled in in <bad_channels_dict>. These have been assessed to contain very noisy data. When rejecting trials based on threshold values, it is always recommended to assess whether the rejection is due to a few bad channels. If this is so, it is advisable to just mark the relevant channel(s) as bad instead. For faster processing of the pipeline [decim] can be set to a higher value to downsample the data.
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Code Snippet 7. The function for epoching the raw data, defining events, time before trigger, time after trigger, what to use as the baselining period, rejection threshold, which channels are bad and by which factor to decimate (downsample) the data.

Run independent component analysis (ICA)

Use run_ica to estimate the independent components that explain the data the best, using the “fastica” algorithm (Hyvärinen, 1999). Epochs are then created that contain the electrooculographic- and electrocardiographic-related signals (eye blinks and heart beats). Next step is finding the indices for the components that correlate with eye blinks and heart beats. For the eye blinks this was done with Pearson correlation and for the heart beats this was done with the default method in MNE-Python, namely cross-trial phase statistics (Dammers et al., 2008). Finally, these components are removed from the ICA-solution, and the solution is saved. The removed components can be plotted with plot_ica (Figure 3). A particular issue that may arise when using ICA is that some components, say the heart beat component, may not be identifiable in all subjects. This would mean that it would not be possible to process all subjects in the same manner. There may be several reasons for this, e.g., the heart beat signal being only very weakly represented in the MEG data, as may happen for subjects where the distance between the heart and the head is great, i.e., tall subjects, or it may simply be that the recording is too noisy to faithfully record the electrocardiogram. The problem of having differently processed subjects is greatest in between-group studies where having different signal-to-noise ratios between groups may bias results. In within-group studies, the problem is thus less severe, since the decreased signal-to-noise ratio will apply to all conditions the given subject participated in, if ICA is run on all conditions collapsed, as is the case here. Alternative strategies for eye blinks and eye movements is to manually or automatically reject trials that contain eye blinks or excessive eye movements. To automatically reject trials that contain eye blinks or eye movements, one can add a key to the dictionary <reject> (Code Snippet 4) containing a threshold value for rejecting trials based on the electrooculogram. The process used here for ICA depends on automatic selection of components. These components should always be plotted to ascertain that they make sense, which can be done with plot_ica. As artefact rejection always requires some subjective assessment, it is always useful to describe in some detail how these assessments were made. Following the suggestions for good practice by Gross et al. (2013) one should describe the ICA algorithm (fastica: Code Snippet 8), the input data to the algorithm (the epoched data: Code Snippet 8), the number of components estimated (sufficient number to explain at least 95% of the variance: Code Snippet 8), the number of components removed (three components: Figure 3) and the criteria for removing them (the aforementioned cross-trial phase statistics and Pearson correlation for heart beats and eye blinks respectively, which may be changed in ica.find_bads_eog and ica.find_bads_ecg: Code Snippet 8). It should also be mentioned that one can use subjective assessment of whether components are likely to be related to eye blinks or heart beats (Andersen, this issue).
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FIGURE 3. ICA components corresponding to eye blinks (ICA 000 and ICA 0001) and heart beats (ICA 028).
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Code Snippet 8. The function for finding the independent components that most likely correspond to eye blinks, eye movements and heart beats.

Zero out eye- and heart-related components in the epoched data

Use apply_ica (Code Snippet 9) to zero out the components identified above to clean the data of eye- and heart-related activity.
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Code Snippet 9. The function for removing the eye blink, eye movement and heart beat components from the epoched data.

Event-related fields after relevant components have been removed

Finally, the event-related fields are found for all the events of interest by looping through <epochs.event_id> and an averaged response is created for each event by calling get_evokeds (Code Snippet 10). The cleaned epochs can be plotted with plot_epochs_image (Figure 4). The event-related fields can be plotted with plot_evokeds and plot_butterfly_evokeds.
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Code Snippet 10. The function for calculating the evoked responses based on the ICA-cleaned epochs.
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FIGURE 4. Epochs and event-related field for channel MEG 1812 for condition standard 3. The colouring indicates the field strength for each epoch. Two evoked responses can be seen after about 60 and 135 ms respectively.



Summary

This part of the code covered filtering of the data, finding events of interest, epoching of the data, estimating independent components, removing the eye- and heart-beat-related components and finally averaging the cleaned data. Expected evoked response can be seen after about 60 and 135 ms (Figure 4). The averages will be used for the subsequent source reconstruction of the data. To this end we need to preprocess the MRI data as well.

Preprocessing the MRI Data

Dependencies

The python functions required for preprocessing the MRI data require FreeSurfer http://freesurfer.net/ and MNE-C http://martinos.org/mne. Both run exclusively on Linux and Mac platforms using the Bash language https://www.gnu.org/software/bash/. The plotting functions are based on MNE-Python. The function for creating high-resolution scalp surfaces also requires MATLAB. This is not strictly necessary for completing the source analysis, but is included since it aids in aligning the MEG and MRI coordinate systems. Due to concerns about subject anonymity, the original MRI data are not provided. The “bem” folder for each subject in <subjects_dir> is provided though, as this information is judged non-sensitive. The python functions, import_mri, segment_mri and apply_watershed (Code Snippets 12–14) can thus not be applied to the data, but they are included such that users can these in their own experiments. They cover reading in dicom files, segmenting the brain and delineating the surface between brain, skull and skin. The functions below (Code Snippets 12–17) all use the local function run_process_and_write_output to call the commands in Bash and print the output of the operations in the Python console (Code Snippet 11).

[image: image]

Code Snippet 11. The local function used for calling Bash commands, setting the subjects_dir, and printing the outputs of the Bash commands in the Python console.

Read in dicom files

Use Code Snippet 12 to read in the MR1s. This creates a subject folder in the SUBJECTS_DIR directory required by FreeSurfer.

[image: image]

Code Snippet 12. Code for importing the dicom files into the FreeSurfer folder, which FreeSurfer requires.

Segment the MRI

Use Code Snippet 13 to do the full segmentation of the brain into its constituent parts using FreeSurfer. [openmp] sets the number of processors that FreeSurfer will use. This is a very lengthy process and takes between ~6–24 h for each subject depending on processing power.

[image: image]

Code Snippet 13. Code for doing a full FreeSurfer segmentation (a very lengthy process).

Create boundaries with the Boundary Element Method (BEM) using the watershed algorithm

Use Code Snippet 14 to create surfaces for the inner skull, the outer skin, the outer skull and the brain surface with an MNE-C command, which uses FreeSurfer code. Copies of the watershed files are created in the bem-folder for each subject since this is where MNE-C expects to find them.

[image: image]

Code Snippet 14. Code for creating the boundary elements necessary for defining the volume conductor.

Make source spaces

Use Code Snippet 15 to create a source space that is restricted to the cortex with ~10,000 sources modelled per hemisphere as equivalent current dipoles normal to the cortical surface.

[image: image]

Code Snippet 15. Code for making the source space.

The source space can be plotted with plot_source_space (Figure 5).
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FIGURE 5. Source space. Sources are restricted to the cortex. Yellow dots mark equivalent current dipoles on the cortical surface.



Make scalp surfaces

Use Code Snippet 16 to make high-resolution scalp surfaces for each subject. This eases the co-registration since it makes it easier to identify the fiducials, nasion and left and right pre-auricular points. The MNE-C code here is dependent on MATLAB, but the high-resolution scalp surfaces are not strictly necessary for the completing the analysis. Their purpose is to ease the co-registration of the MEG and MRI data.
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Code Snippet 16. Code for making high-resolution scalp surfaces.

Create solutions for the BEMs

Use Code Snippet 17 to create a volume conductor model describing how the magnetic fields spread throughout the conductor (the head). [homog] makes a single-compartment model (sensible for MEG). [surf] instructs MNE-C to use the surfaces created with the watershed algorithm. [ico] determines the downsampling of the surface. [ico, 4] results in ~10,000 sources for the two hemispheres.
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Code Snippet 17. Code for making the BEM-solutions, that is the volume conductor.

Source Reconstruction of Time Courses

Co-registration

Call the function mne.gui.coregistration directly from a Python environment to co-register the MEG data to the MRI data. Fiducials used are the nasion and the left and right pre-auricular points. The scalp surfaces made above should make it easier to identify these fiducials. When these have been set, load a file that has the extra head shape digitization points and lock the fiducials. Then fit the head shape, and if the fit looks good save the transformation file as “oddball_absence_dense-trans.fif” in the same folder where all other MEG data files are saved. The resulting transformation can be plotted with plot_transformation (Figure 6). Note that a transformation with this name has already been supplied, such that the analysis can be replicated faithfully.
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FIGURE 6. Transformation. The positions of the head, skull, brain, and helmet sensors after the transformation.



Create forward model

Use create_forward_solution (Code Snippet 18) to create the forward model for the source reconstructions. This contains the source space, the volume conductor model, the transformation between the MEG and MRI coordinate systems and information about the channels in the data. The forward model is linking the source model (where sources are and how sources are oriented) to the sensors in the recording system. The volume conductor models how the magnetic field spreads from the sources, here we modelled them as spreading homogeneously (Code Snippet 17), to the sensors, whose positions are stored in the information field of the raw data. The co-registration is necessary to make sure that the MRI data and the MEG sensors are in the same coordinate space. In physical units, the forward model contains the magnetic field/gradient estimates for each sensor for each source given a unit-activation of the source (1 nAm).
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Code Snippet 18. Function for creating the forward solution (also known as the lead field). This is created from the BEM-solution (the volume conductor), the channel info about the sensor positions, the coordinate transformation between the MEG and the MRI data and the source space defining where sources are.

Estimate noise covariance

Use estimate_noise_covariance (Code Snippet 19) to estimate the noise covariance and regularize it. The noise covariance serves as an estimate of the noise in the data, which is necessary for MNE-like solutions. Regularization is done since the smallest eigenvalues of the noise covariance matrix might be inaccurate, thus giving rise to errors in the source estimates. The noise covariance matrix can be plotted with plot_noise_covariance (Figure 7). To investigate more thoroughly whether regularization is necessary, one can set the parameter [method] in mne.compute.covariance to “auto” to test which of several ways of estimating the covariance is optimal (Engemann and Gramfort, 2015). This is a lengthy process though (>12 h) on a modern computer, but will give estimates, among other things, on whether regularization would improve the estimate of the noise in the data. It is possible though just to compare whether or not regularization should be applied to the noise covariance matrix estimated by using the trials, by just comparing the “diagonal_fixed” and “empirical” methods using mne.compute.covariance, which is much faster (on the scale of minutes), This also allows for comparing different degrees of regularization. Including the regularization done here allowed for better noise covariance matrices for all subjects when compared to not including regularization, according to the approach of Engemann and Gramfort (2015).
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Code Snippet 19. Function for estimating the noise covariance in the MEG data.
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FIGURE 7. Noise covariance matrices. As can be seen the covariance between magnetometers is greater than between gradiometers. This can be explained by magnetometers being more sensitive to far away sources than gradiometers are.



Create the inverse operator

The final step before estimating source activity is to create an inverse operator, which contains the info about the MEG-recordings, the estimated noise, the source reconstruction method used and the forward model. This is done with create_inverse_operator (Code Snippet 20).
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Code Snippet 20. Function for creating the inverse operator that defines what inverse solution should be applied.

Estimating the source time courses

Finally, we estimate the source time courses. [method] is set in the parameter selection. dSPM is a depth-weighted minimum source estimate (Dale et al., 2000), MNE is the classical algorithm described by Hämäläinen and Ilmoniemi (1994) and sLORETA is described by Pascual-Marqui (2002). A source time course (stc-file) is created for each condition. This is done with source_estimate (Code Snippet 21). Here, dSPM is chosen as the [method] parameter since it is known to reduce the bias that MNE has toward superficial cortical areas.
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Code Snippet 21. Function for doing the actual minimum norm estimate source reconstruction.

The spatial source distribution for a given time point can be plotted with plot_source_estimates (Figure 8). <mne_evoked_time> in pipeline.py can be set to control which time point is plotted.
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FIGURE 8. Spatial distribution of neural activity at 56 ms for standard 3 for sub-01: There is some spread, but there is a clear activation of the contralateral sensory cortex. Values are dSPM-values. These are current estimates normalized with the noise-covariance. The cortex is shown inflated with gyri darker than sulci.



Morph to a common template

Use morph_data_to_fsaverage (Code Snippet 22) to make a meaningful estimate across subjects, by morphing the data from each individual subject to a common template brain. In this case, the fsaverage brain from FreeSurfer is used (This requires the fsaverage brain to be in $SUBJECTS_DIR). [method] can be “dSPM,” “MNE,” or “sLORETA.”
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Code Snippet 22. Function for making morph maps that define how individual subject source reconstructions can be mapped onto a common template that allows for comparisons between subjects.

Summary

Now we have estimated source time courses for all the individual subjects. The next step is to meaningfully make a group estimate across subjects. The activity for our example subject (sub-01) can be localized to the somatosensory cortex (Figure 8) as was expected.

Between Subjects Analyses

Dependencies

This part is only dependent on MNE-Python.

Sensor space

With the function grand_average_evokeds (Code Snippet 23), the grand average in sensor space for each condition is calculated and saved. Grand averages can be plotted with plot_grand_averages_evokeds and plot_grand_averages_butterfly_evokeds (Figure 9). Note that these may not be easy to interpret since the relative positions between a given subject's head and the MEG sensors will differ from the relative positions between any other subject's head and the MEG sensors. The early and the late responses are picked up however (Figure 9).
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Code Snippet 23. Function for calculating grand averages across the evokeds of individual subjects.
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FIGURE 9. Grand average butterfly plot for standard 3 showcasing the SI (56 ms) and SII (135 ms) components.



Source space

With the function average_morphed_data (Code Snippet 24), the grand average in source space over the morphed source time courses for each condition is calculated and saved. [method] can be “dSPM,” “MNE,” or “LORETA.” The grand averages for the source space can be plotted with plot_grand_averages_source_estimates (Figure 10). <mne_evoked_time> needs to be set.
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Code Snippet 24. Function for calculating the grand average across all individual morphed subject source reconstructions.
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FIGURE 10. Spatial distribution of neural activity at 56 ms for grand average of standard 3: There is some spread, but there is a clear activation of the contralateral sensory cortex. Values are dSPM-values. These are current estimates normalized with the noise-covariance. The cortex is shown inflated with gyri darker than sulci.





Statistical Analyses

This part is only dependent on MNE-Python.

With the function statistics_source_space (Code Snippet 25), different statistical null hypotheses can be tested.
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Code Snippet 25. Function for doing cluster statistics in source space.

<independent_variable_1>, <independent_variable_2>, <time_window> and <n_permutations> should all be set. With plot_grand_averages_source_estimates_cluster_masked (Figure 11) the t-masked grand average source estimates can be plotted. <p_threshold> should be set. This function can be changed such that any other function in the mne.stats module is used.
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FIGURE 11. A t-value map for standard 3 vs. non-stimulation at 56 ms. The cortex is shown inflated with gyri darker than sulci.






SUMMARY

This protocol allows for all steps of conducting a MEG group study aiming to provide evidence for a significant effect of one experimental condition compared to another experimental condition using Minimum Norm Estimates of MEG data. We found as expected that stimulation of the finger elicited more activity in the contralateral somatosensory cortex than when no such stimulation occurred.



DISCUSSION

The presented pipeline allows for covering all steps involved in an MNE-Python pipeline focusing on evoked responses and the localization of their neural origin. Furthermore, it also supplies a very flexible framework that users should be able to extend to meet any further needs that the user may have. Facilitating other MNE-Python functions not showcased here across groups of subjects can be attained by emulating the style of defining functions presented here. If one is interested in estimating induced responses, one can use the functions in the mne.time_frequency module. The neural origin of induced responses are often localized with beamformer solutions (Gross et al., 2001), which can also be performed with MNE-Python using the mne.beamformer module. Both these can be extended by a user with some programming experience.

The present pipeline is all contained within a single pipeline script and three function scripts containing the functions called from the pipeline. Another way of organizing one's data is to creating batches using build systems like GNU Make (https://www.gnu.org/software/make/) (Stallman et al., 2002), luigi (https://luigi.readthedocs.io/en/stable/), doit (http://pydoit.org/).



AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and approved it for publication.



FUNDING

Data for this study was collected at NatMEG (www.natmeg.se), the National infrastructure for Magnetoencephalography, Karolinska Institutet, Sweden. The NatMEG facility is supported by Knut and Alice Wallenberg (KAW2011.0207). The study and LMA, was funded by Knut and Alice Wallenberg Foundation (KAW2014.0102).



REFERENCES

 Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S., and Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nat. Commun. 7:11070. doi: 10.1038/ncomms11070

 Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., et al. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67. doi: 10.1016/S0896-6273(00)81138-1

 Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev, M., Pietrzyk, U., et al. (2008). Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE Trans. Biomed. Eng. 55, 2353–2362. doi: 10.1109/TBME.2008.926677

 Engemann, D. A., and Gramfort, A. (2015). Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals. Neuroimage 108, 328–342. doi: 10.1016/j.neuroimage.2014.12.040

 Fardo, F., Auksztulewicz, R., Allen, M., Dietz, M. J., Roepstorff, A., and Friston, K. J. (2017). Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex. Neuroimage 153, 109–121. doi: 10.1016/j.neuroimage.2017.03.041

 Galan, J. G. N., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., et al. (2017). MEG-BIDS: an extension to the brain imaging data structure for magnetoencephalography. bioRxiv 172684. doi: 10.1101/172684

 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267. doi: 10.3389/fnins.2013.00267

 Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., et al. (2013). Good practice for conducting and reporting MEG research. Neuroimage 65, 349–363. doi: 10.1016/j.neuroimage.2012.10.001

 Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., and Salmelin, R. (2001). Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc. Natl. Acad. Sci. U.S.A. 98, 694–699. doi: 10.1073/pnas.98.2.694

 Halgren, E., Dhond, R. P., Christensen, N., Van Petten, C., Marinkovic, K., Lewine, J. D., et al. (2002). N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. Neuroimage 17, 1101–1116. doi: 10.1006/nimg.2002.1268

 Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497. doi: 10.1103/RevModPhys.65.413

 Hämäläinen, M. S., and Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32, 35–42. doi: 10.1007/BF02512476

 Hari, R., and Puce, A. (2017). MEG-EEG Primer. New York, NY: Oxford University Press.

 Hari, R., Reinikainen, K., Kaukoranta, E., Hämäläinen, M., Ilmoniemi, R., Penttinen, A., et al. (1984). Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr. Clin. Neurophysiol. 57, 254–263. doi: 10.1016/0013-4694(84)90126-3

 Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural. Netw. 10, 626–634. doi: 10.1109/72.761722

 Junghöfer, M., Rehbein, M. A., Maitzen, J., Schindler, S., and Kissler, J. (2017). An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses. Soc. Cogn. Affect. Neurosci. 12, 695–705. doi: 10.1093/scan/nsw179

 Nakamura, A., Yamada, T., Goto, A., Kato, T., Ito, K., Abe, Y., et al. (1998). Somatosensory homunculus as drawn by MEG. Neuroimage 7, 377–386. doi: 10.1006/nimg.1998.0332

 Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl. D), 5–12.

 Pulvermüller, F., Shtyrov, Y., and Ilmoniemi, R. (2003). Spatiotemporal dynamics of neural language processing: an MEG study using minimum-norm current estimates. Neuroimage 20, 1020–1025. doi: 10.1016/S1053-8119(03)00356-2

 Raghavan, M., Li, Z., Carlson, C., Anderson, C. T., Stout, J., Sabsevitz, D. S., et al. (2017). MEG language lateralization in partial epilepsy using dSPM of auditory event-related fields. Epilepsy Behav. 73, 247–255. doi: 10.1016/j.yebeh.2017.06.002

 Raij, T., Ahveninen, J., Lin, F.-H., Witzel, T., Jääskeläinen, I. P., Letham, B., et al. (2010). Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices. Eur. J. Neurosci. 31, 1772–1782. doi: 10.1111/j.1460-9568.2010.07213.x

 Stallman, R. M., McGrath, R., and Smith, P. (2002). GNU Make: A Program for Directed Compilation. Boston, MA: Free Software Foundation.

 Taulu, S., and Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys. Med. Biol. 51, 1759–1768. doi: 10.1088/0031-9155/51/7/008

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Andersen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	ORIGINAL RESEARCH
published: 06 February 2018
doi: 10.3389/fnins.2018.00048






[image: image2]

Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models


Romy Frömer1,2*, Martin Maier2,3 and Rasha Abdel Rahman2,3


1Cognitive Linguistic and Psychological Science, Brown University, Providence, RI, United States

2Humboldt-Universität zu Berlin, Berlin, Germany

3Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany

Edited by:
Alexandre Gramfort, Inria Saclay - Île-de-France Research Centre, France

Reviewed by:
Camillo Porcaro, Istituto di Scienze e Tecnologie della Cognizione (ISTC) - CNR, Italy
 Maximilien Chaumon, UMR7225 Institut du Cerveau et de la Moelle Épinière (ICM), France

* Correspondence: Romy Frömer, romy_fromer@brown.edu

Specialty section: This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

Received: 30 September 2017
 Accepted: 22 January 2018
 Published: 06 February 2018

Citation: Frömer R, Maier M and Abdel Rahman R (2018) Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models. Front. Neurosci. 12:48. doi: 10.3389/fnins.2018.00048



Here we present an application of an EEG processing pipeline customizing EEGLAB and FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single trial information. The key component of our approach is to create a comprehensive 3-D EEG data structure including all trials and all participants maintaining the original order of recording. This allows straightforward access to subsets of the data based on any information available in a behavioral data structure matched with the EEG data (experimental conditions, but also performance indicators, such accuracy or RTs of single trials). In the present study we exploit this structure to compute linear mixed models (LMMs, using lmer in R) including random intercepts and slopes for items. This information can easily be read out from the matched behavioral data, whereas it might not be accessible in traditional ERP approaches without substantial effort. We further provide easily adaptable scripts for performing cluster-based permutation tests (as implemented in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach is particularly advantageous for data with parametric within-subject covariates (e.g., performance) and/or multiple complex stimuli (such as words, faces or objects) that vary in features affecting cognitive processes and ERPs (such as word frequency, salience or familiarity), which are sometimes hard to control experimentally or might themselves constitute variables of interest. The present dataset was recorded from 40 participants who performed a visual search task on previously unfamiliar objects, presented either visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted to different datasets.

Keywords: EEG, EEGLab, Linear mixed models, cluster-based permutation tests, processing pipeline


INTRODUCTION

If I do something 100 times, will every time be the same? If I classify fruits as apples and pears, how does the appearance of a particular fruit influence how easily I can identify it as one or the other? How does my experience in classifying apples and pears shape my brain responses to this task? How does variability in neural responses relate to variability in behavior?

Addressing such questions is facilitated by recent developments in statistical and signal processing methods, paralleled by the emergence of open source toolboxes implementing those methods. In many disciplines, ANOVAs, comparing means between conditions at the level of participant averages are now complemented by regression-based methods, such as linear mixed models (LMMs, e.g., Baayen et al., 2008) estimating manipulation-related trial-by-trial variations in behavior and neural correlates. Open source toolboxes, such as EEGLAB (Delorme and Makeig, 2004), allowing for flexible, easy and transparent access to the data, facilitate the application of such methods to psychophysiological data (Dambacher et al., 2006; Dimigen et al., 2011).



WHY CHANGE A WINNING TEAM? LIMITATIONS OF TRADITIONAL AVERAGING APPROACHES AND SOLUTIONS

Typically, after preprocessing (re-referencing, ocular correction, filtering, segmentation, baseline correction, and artifact rejection) EEG data are averaged within conditions and participants, and these averages are then analyzed for mean differences between conditions and their interactions using repeated measures ANOVAs. Averaging serves to extract the event-related potential (ERP) from background activity. This traditional averaging approach has several limitations. One of these limitations is related to the implicit assumption that every participant's average has the same quality and that the same number of observations constitutes each of those averages. In practice EEG datasets often do not meet this assumption even when equal numbers per cell are experimentally planned. Differences in performance accuracy and artifact rejection during EEG-data processing inevitably result in unequal numbers of trials contributing to individual averages within participants and conditions. These unequal contributions are not considered in traditional ANOVA approaches, where every participant's average has the same weight in all conditions. A second limitation is related to the implicit assumption that experimental manipulations yield uniform effects across all participants and items. Random variance (individual differences or variance across items) in effect sizes are not taken into account. In reality, participants and items may vary substantially in their effect sizes, which can lead to biases in group-level estimates. The most severe limitation of the averaging approach is its dependency on discrete factor levels and its resulting inability to test for parametric effects. Splitting continuous variables into categorical variables reduces statistical power and might conceal nonlinear effects with results critically depending on the range in which variables were sampled and the way the variables were split (Cohen, 1983; MacCallum et al., 2002; Baayen, 2004). Furthermore, splitting and the required matching of other variables may result in a selection of unusual materials (Hauk et al., 2006).

As demonstrated by Smith and Kutas (2015a), as an alternative to averaging, ERPs can be estimated using regression procedures and in fact the averaging method is merely a special case of the least squares method underlying regression. Table 1 provides an overview of the commonalities and differences of ANOVA, regression and linear mixed models (LMMs). LMMs, like regression and ANOVA, are based on the general linear model (for an overview, see Bolker, 2008). In addition to estimating regression weights (or contrasts) at the group level—fixed effects—they also estimate systematic variance between individuals—random effects. To put it simply, they jointly estimate group effects and individual differences—the latter often considered nuisance in experimental approaches (Cronbach, 1957). Fixed effects include the intercept (b0 in regression terms), often the grand mean across all participants and conditions (depending on contrast settings), and effect estimates for each predictor (i.e., experimental condition or covariate) and specified interaction terms. Random effects provide estimates for the variance of these effects. Not formally parameters of the model, Best Linear Unbiased Predictors (BLUPS) are also provided that estimate how each participant (or item) systematically varies from those group level estimates (Baayen et al., 2008). Thus, for each specified random effect, BLUPS are individual participants' estimates of those effects relative to the group estimate and can be read out from the model (examples for BLUPS will be provided in brackets along with the explanation of the corresponding different random effects). Random effects include as a minimum random intercepts, that is how much individuals differ from the group intercept (the group level P3 component might have an amplitude of 4.2 μV, but R.F.'s mean amplitude might be 6.3 μV [+2.1 μV], while M.M.'s is 2.7 μV [−1.5 μV] and R.A.R's is 3.6 μV [−0.6 μV]). These can also be specified for items, allowing the dependent variable to vary between different stimuli (e.g., the P3 component to different apples and pears might vary depending on how prototypical a given item is for the respective category). When random effects are estimated for both individuals and items, that is referred to as crossed random effects (Baayen et al., 2008). Finally, random effects can be specified for experimental effects—as random slopes, both by-subject or by-item. These estimate to which degree experimental effects vary between individuals or items (e.g., R.F. might show a stronger effect of an uncertainty manipulation compared to the group mean while M.M. might show a smaller effect). Accounting for these additional sources of variance provides more reliable group-level estimates (Barr et al., 2013; Matuschek et al., 2017), but these variations might as well be exploited to investigate how individual differences in experimental effects relate to each other (random effect correlations; Kliegl et al., 2010). With these features, LMMs are a powerful tool to overcome the limitations of traditional averaging approaches in ERP research (see above):



Table 1. Comparison of methods.
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First, LMMs—performed on single trials—take all data into account and are robust to unequal numbers of observations per cell and even missing values (Pinheiro and Bates, 2000). They are therefore suitable for unbalanced designs, e.g., where participants' behavior determines the number of observations (Fröber et al., 2017). Second, random slopes provide a means to estimate random variance in effect sizes while computing the fixed group effect, yielding more robust estimates and avoiding Type I errors (Barr et al., 2013; Matuschek et al., 2017). Third, in contrast to the many observations of limited discrete sampling points of the independent variable required by the averaging approach, regression based approaches with fewer observations of discrete values across a larger value range have larger power and allow for the test of nonlinear relationships (Cohen, 1983; MacCallum et al., 2002; Baayen, 2004). To illustrate, when investigating the effect of reward on feedback related potentials, in order to obtain reliable ERPs for each type of reward one would need at least 30 trials of each reward magnitude. On the other hand, in a regression-based approach, on the same overall number of trials, reward could be varied continuously from a given low to a given high reward, and linear, but also quadratic or cubic effects of reward across that range could be tested (Frömer et al., 2016a).

To summarize, single-trial regression-based approaches are equivalent to the averaging approach with regard to estimating ERPs (Smith and Kutas, 2015a). Further, LMMs as an extension of standard regressions help account for some of the problems posed for the application of ANOVAs, such as unequal observations per cell (Pinheiro and Bates, 2000), variability in effect sizes across individuals (Barr et al., 2013; Matuschek et al., 2017) and items (Baayen et al., 2008), as well as unbalanced designs (Fröber et al., 2017). We will next explore some examples where the advantages of LMMs (as an instance of the regression based approach) were successfully exploited to investigate ERPs.

LMMs were first applied to EEG data in 2011 (Amsel, 2011; Dimigen et al., 2011), their application to psychophysiological data was proposed long before that (Bagiella et al., 2000). In the psycholinguistic domain, LMMs are widely used, following the maxim that “words are people, too” (R. Kliegl, personal communication) in the sense that, just like people, they vary in a myriad of characteristics. Amsel (2011) investigated the effects of a variety of such characteristics, e.g., semantic richness and imageability on ERPs related to word processing, while controlling for variables well known to affect word processing, such as word length and word frequency and crossed random effects. Dimigen et al. (2011) used LMMs to control for word and sentence characteristics and crossed random effects in sentence reading with simultaneous EEG and eye tracking, showing effects of gaze duration, word predictability and frequency on N400 amplitude. Since, LMMs have been applied in active reading, to ERPs (Kornrumpf et al., 2016) and in the time-frequency domain (Kornrumpf et al., 2017), in the motor learning domain (Frömer et al., 2016a,b) and in the area of cognitive control (Fröber et al., 2017).

These are just a few selected examples meant to illustrate the potentials of this approach. They are certainly not the only studies applying LMMs, and other regression based approaches have been applied and for example been combined with computational modeling (e.g., Cavanagh et al., 2012; Fischer and Ullsperger, 2013; Collins and Frank, 2016).



THE “WHAT” TO THE “HOW”: DETERMINING TIME WINDOWS AND REGIONS OF INTEREST

Choosing a statistical approach is only one decision researchers have to make. Another, and perhaps more difficult decision is what data to apply this approach to. EEG data are incredibly rich. In the present dataset, we have 65 channels and 1s of time series at each of those, summing up to 26,000 data points to be potentially analyzed (the 200 ms baseline excluded). This number is not unusual for EEG experiments. Thus, determining the right time-windows and regions of interest (ROIs) to test group-level effects is a challenge. Even with clear hypotheses on which ERP components will be affected by the experimental manipulations, the selection is not trivial, because latencies and topographical distributions can vary to a certain degree across studies. The problem is amplified when new effects are explored and there is no substantial previous literature to help develop direct hypotheses on the nature of those effects (e.g., time course or spatial distribution). Especially in face of the replication crisis, fishing expeditions that might yield some, but in the worst-case spurious effects, should be avoided (for a detailed discussion, see Luck and Gaspelin, 2017). One statistically robust way to determine suitable time windows and electrode sites are cluster-based permutation tests (CBPT) as implemented in FieldTrip (Maris and Oostenveld, 2007). In a nutshell, this approach tests the null hypothesis that observations for different conditions are drawn from the same distribution and are therefore exchangeable. Therefore, if observing similar effects under random assignment of condition labels is highly unlikely (less than 5% of the permutations show them), this hypothesis is rejected and the observed condition effect is considered significant (Maris, 2004, 2012). The cluster-based procedure further makes use of the EEG property that observations on adjacent sites and time points are often correlated, because a real effect most likely affects multiple electrodes similarly and persists across several tens to hundreds of milliseconds (or sampling points). While in other approaches this violates assumptions of statistical independence, here this property is exploited to identify spatio-temporal clusters. Samples with positive and negative t-values (retrieved from simple t-tests at each sensor-sample pair) exceeding a threshold (e.g., p < 0.05 according to parametric test) are clustered separately. The added t-values of sampling points within each cluster form the cluster-level statistics. The largest (absolute) value from that cluster level statistic is then compared to the permutation distribution of maximal cluster statistics. That permutation distribution is created by randomly assigning condition labels and running the same test many times (e.g., 1,000 times), retrieving the maximum cluster statistics every time. If the maximum cluster statistic from the real data is larger than 95% of the maximum cluster statistics in the permutation distribution, then the null hypothesis that the two conditions are sampled from the same distribution is rejected. To temporally and spatially locate the effect, all (absolute) cluster level statistics larger then the 95th percentile (for α = 0.05) of the permutation distribution are then taken to be significant under the assumption that no cluster statistic exceeds this critical value. The major advantage of this approach is that it does not require knowledge or assumptions about the underlying unknown distributions and that it reduces a large quantity of comparisons down to one statistical test, reducing Type I error probability while maintaining sensitivity. A detailed description of the procedure and mathematical demonstration of its correctness are provided in Maris and Oostenveld (2007).



THE PRESENT STUDY

The goal of the present study is to facilitate the application of regression-based methods on single-trial ERP data by providing example code covering the whole process from data cleaning to statistical analysis with LMMs. Thus, we present an application of a processing pipeline integrating (1) EEG-data processing with EEGlab (Delorme and Makeig, 2004) for data cleaning, structuring and plotting, (2) applying cluster-based permutation-tests as implemented in FieldTrip (Maris and Oostenveld, 2007) for data screening and ROI selection, and (3) single-trial based LMM analyses using the lme4 package for R (Bates et al., 2015b). An overview of the processing pipeline is shown in Figure 1.
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FIGURE 1. Flow chart of the different parts of the processing pipeline. Script names are reduced to their numbers for simplicity.



The data were obtained using a visual search task, in which participants indicated the location of a deviant object in a circular array of newly learned objects (left or right). Search arrays were either presented intact or blurred, manipulating perceptual certainty. Besides typical analyses of manipulation effects on ERPs, here we link single-trial estimates of behavior and neural correlates of decision-making—particularly N2 and P3b —to demonstrate how the presented pipeline can also be employed to investigate brain-behavior relationships. All data and scripts can be downloaded from https://osf.io/hdxvb/.



METHODS


Participants

The final sample comprised 40 participants (8 male) with a mean age of 23.82 years (SD = 5.07). Participants gave informed consent and received course credits for their participation.



Apparatus and Stimuli

Stimuli were presented on a 4/3 17″ BenQ monitor with a resolution of 1280 x 1024 using Presentation (Neurobehavioral Systems, Berkeley, USA) at a viewing distance of 60 cm. Stimuli consisted of eight rare, unfamiliar objects presented on a light blue square producing an equal stimulus size of 2.7° visual angle for each object stimulus. Each stimulus array contained 12 objects (all either intact or blurred) arranged in a circle (diameter = 12° visual angle). For blurred stimuli, a Gaussian filter (sigma = 10) was applied to the original stimuli. Manual responses and RTs were registered using custom-made response buttons.



Procedure and Design

Participants performed a visual search task while EEG was recorded. After a short practice block participants performed 1920 trials of the visual search task, organized in 5 blocks separated by self-paced breaks. Each trial started with the presentation of a fixation cross at the center of the screen, followed by the search display after 1 s. The search display consisted of 11 identical objects and one deviant, and was presented for 200 ms, followed by a fixation cross. Participants indicated whether the deviant object was on the left or right side of the display by pressing a button with their corresponding hand's index finger (Figure 2). Within a search display all stimuli were visually similar (either light or dark stimulus group), and presented either intact or blurred. Trials ended with the response or after a time out of 2 s after search array onset. Prior to the test session, participants had acquired knowledge about the objects (Maier et al., 2014), which will not be investigated here.
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FIGURE 2. Trial schematic. After a 1 s fixation cross, a circular visual search array of 12 objects was shown. Participants indicated whether the deviant object was on the left or the right side. Trials with the deviant in the top or bottom row were not analyzed.





Electrophysiological Recording and Analyses

EEG data were recorded using brain vision recorder (Brain Products) from 64 Ag/AgCl electrodes mounted in standard electrode caps (Easycap) with a sampling rate of 500 Hz, and referenced against A1. The vertical EOG was recorded below the left eye (IO1).

EEG data analysis was conducted using Matlab (R2016a, MathWorks Inc.) and the EEGlab toolbox (Version 13_6_5b; Delorme and Makeig, 2004). EEG data were re-referenced to average reference and A1 activity was retrieved. Ocular artifacts were corrected with surrogate data based on individual eye movements recorded separately and obtained using Brain Electric Source Analysis (BESA 6.0) software (Ille et al., 2002). The corrected data were filtered (0.5 Hz low cut off and 40 Hz high cutoff). These steps were performed using F01_preprocessing.m. Cleaned data were segmented from −200 to 800 ms relative to stimulus onset and baselines were corrected to the prestimulus interval. Segments containing artifacts, hence values ±150 μV or gradients larger than 50 μV were invalidated and thereby excluded from further analysis. All trials of all participants were combined in a 3D matrix (channels, time points, trials by participants), which forms the basis for all further ERP analyses (F02_epoching_structuring.m).



Analyses

Behavioral data processing and statistical analyses other than CBPT were conducted using R-Studio (Version 3.1.1; R Core Team, 2014). Trials in which the deviant was on the center-top or center-bottom positions and therefore hard to assign to either the left or right visual field, and miss trials were excluded from all analyses. Accuracy was analyzed with generalized linear mixed models (GLMMs), fitting a binomial model (Bolker, 2008). For the linear mixed models (LMM) analyses of reaction times (RTs) and ERPs, we further excluded trials with incorrect responses. LMMs and GLMMs were computed with the lme4 package (Bates et al., 2015b) and p-values with the lmerTest package, using Satterthwaite approximation for degrees of freedom. RTs were modeled using perceptual certainty (intact vs. blurr) and deviant position (right vs. left visual field) as fixed effects. As random effects we modeled random intercepts for participants (variance in individual means across all conditions, e.g., variance in average response time or ERP magnitude) and object pairs (variance in means across stimuli, e.g., variance in average response times across stimuli), as well as random slopes for the predictors (estimates the variance in the effect of a given manipulation across individuals or items). Random effects not supported by the data, that is explaining zero variance according to singular value decomposition were excluded to prevent overparameterization (Bates et al., 2015a). For all predictors we applied sliding difference contrasts, thus the resulting estimates can be interpreted as the difference between subsequent factor levels (level 2 minus level 1, e.g., intact minus blurred). The advantage of this contrast is that the fixed effect intercept (group-level mean) is estimated as the grand average across all conditions (e.g., the empirical group-level mean), rather than the mean of a baseline condition, as for example for the default treatment contrast, which can cause troubles when using multiple predictors. Single trial information for CBPT and plotting was exported to Matlab in the same analysis script, F00_behavioral_data_and_LMM_analyses.R. CBPT were performed using FieldTrip (Version 20170701) in F04_permutation tests.m based on aggregated data obtained with F03_prep_permutation_tests.m. Relevant time windows of the single trial EEG data, as determined using CBPT were then exported for single trial LMM analyses using F05_export.m (see section electrophysiology in results for specific time windows and regions of interest). ERP data were plotted using F06_plotting.m. Fixed effects structures of LMMs and GLMMs were reduced stepwise by excluding non-significant interaction terms/predictors and compared using anova ratio tests until the respectively smaller model explained the data significantly worse than the larger model (significant X2-test). We further compared and report AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion), fit indices that are smaller for better fitting models. Compared to AIC, BIC implements a stronger penalty for model complexity (number of parameters). Significant interactions would be followed up by running models with factors constituting the interaction within each other to obtain estimates for the comparison within each level of the respective other factor. Note that for this procedure to be accurate, these models need to be specified identically to the original model except for the nesting. For comparison, we also provide code to obtain these with the difflsmeans function from the lmerTest package.




RESULTS


Behavior

Hit rates and reaction times are displayed in Figure 3. Reduced perceptual certainty impaired performance, decreasing hit rates and increasing reaction times. Hit rates were further higher in the right compared to the left visual field. In both hit rates and RTs we observed significant perceptual certainty by deviant position interactions. Model estimates are summarized in Table 2.
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FIGURE 3. Hit rates and reaction times by deviant position and perceptual certainty. Error bars depict 95% confidence intervals (CI).





Table 2. Effects of perceptual certainty on performance contingent on deviant position.
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The upper part of the table displays the fixed effects for the GLMM (left, accuracy) and LMM (right, RTs). GLMM estimates are log-ratios and LMM estimates can be read out directly in milliseconds. Note that in these analyses we only use categorical predictors with two factor levels each applying sliding difference contrasts, thus the estimates refer to the differences in means (or changes in log-ratios in response types for GLMMs) between factor levels (or conditions). The bottom part of the table summarizes the random effects, providing standard deviations as estimates of the variance in each component (Participant and Item are random intercepts, respectively and indented components below are the corresponding random slopes for perceptual uncertainty and deviant position), and goodness of fit estimates log likelihood and restricted maximum likelihood (REML) deviance. We report these metrics in line with the documentation in Kliegl et al. (2013).

We followed up the significant interaction by running additional models with the two factors nested within each other to obtain the effects of one factor at each level of the other factor, respectively. For accuracy, the model with deviant position nested within perceptual certainty revealed a significant deviant position effect for blurred (b = 0.41, p < 0.001), but not intact stimuli (b = 0.22, p = 0.085). Nesting perceptual certainty within deviant position, we obtained significant effects for both, left (b = 1.05, p < 0.001) and right (b = 0.86, p < 0.001) deviant position. In RTs, there was no significant deviant position effect for either blurred (b = −6.57, p = 0.067) or intact stimuli (b = −2.86, p = 0.418). When nesting perceptual certainty within deviant position, perceptual certainty effects were significant for the left (b = −35.80, p < 0.001) and right (b = −32.08, p = 0.001) deviant position.

For comparison, we ran standard repeated measures ANOVA and regression on the RT data (cf. F00 for detailed outputs of those analyses). The ANOVA showed only a main effect of perceptual certainty, while the regression showed significant main effects for both perceptual certainty and deviant position. We compared AICs and BICs of regression and LMM to assess relative fit to the data and the LMM had smaller, hence more favorable fit indices than the regression (AIC: 565152 vs. 578335, BIC: 565249 vs. 578379). To see what drives the difference between LMMs and regression, we ran two additional LMMs: one omitting the random effect for items and one with random intercepts per participant only, omitting random slopes. Both models still showed significant interactions of perceptual certainty and deviant position. The main effect of deviant position emerged as a trend in the model without crossed random effects and became significant when omitting random slopes. The standard error of that effect dropped from 3.42 in the original model to 2.69 in the model without crossed random effects to 0.86 in the model with random intercept for participants only, which is how the small effect yielded significance. Thus, the LMM was more sensitive than the ANOVA and more specific than the ordinary regression.

For accuracy, ANOVA is not the appropriate test, so we only ran a logistic regression in comparison. The logistic regression on accuracy yielded the same results as the LMM with regard to significant effects, however, similar to the RT models, the regression underestimated the standard errors. Further, AIC and BIC for the GLMM were smaller than those for the logistic regression (AIC: 19958 vs. 21938, BIC: 20100 vs. 21974), indicating that the GLMM fits the data better. Again, we stepwise omitted random effects in the GLMM and standard errors of the estimates approached those in the logistic regression (and so did AIC and BIC).



Electrophysiology

CBPTs comparing mean amplitudes over the epoch 0–800 ms revealed that the blurred and intact stimulus conditions differed significantly. As shown in Figure 4, differences started around 100 ms after stimulus onset and remained throughout the whole epoch. Three clusters underlay the significant difference: From 116 ms on, the blurred condition evoked more positive amplitudes at central, parietal and frontocentral electrode sites (p = 0.002). Furthermore, two clusters with lower amplitudes in the blurred compared to the intact condition were observed, between 124 and 594 ms at parietal and occipital electrodes (p = 0.002) and between 640 and 800 ms at frontal and frontocentral electrodes (p = 0.008). Here we limit the follow-up analyses to the fronto-central N2 between 250 and 350 ms (FC1, FC2, C1, Cz, C2), as well as the centro-parietal P3b/CPP (CP3, CP1, CPz, CP2, CP4, P3, Pz, P4, PO3, POz, PO4) between 400 and 550 ms. The fronto-central N2 typically peaks between 200 and 300 ms and is thought to reflect fast signaling of task relevant information and is modulated by conflict, task engagement and surprise (Ullsperger et al., 2014). The centro-parietal P3b is proposed to reflect evidence accumulation with regard to response selection (Twomey et al., 2015) and peaks around the time of the response in perceptual decision-making tasks (Ullsperger et al., 2014).
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FIGURE 4. Results of the CBPT on the main effect of perceptual certainty (blurr–intact). Electrodes that are part of clusters with p-values < 0.05 are highlighted in the corresponding time windows.



N2 Amplitude

To test the effects of our experimental manipulation on N2 amplitude, we regressed perceptual certainty, deviant position and their interaction on N2. The model estimates are summarized in Table 3 and can be read out directly as mean differences in μV for main effects. Note that the N2 is a negative component; so negative estimates correspond to an increase in amplitude and positive estimates to a decrease in amplitude.



Table 3. Effects of perceptual certainty and deviant position on N2 amplitude.
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Figure 5 shows the topographies separately for blurred and intact stimuli in the left and right visual field, as well as the difference between blurred and intact stimuli in the left and right visual field, respectively. The time course at Cz is visualized in Figure 6.
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FIGURE 5. Topographies in the N2 time range (250–350 ms) for intact and blurred stimuli in the left and right visual field, as well as respective difference topographies. ROI electrodes are highlighted.
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FIGURE 6. ERP images and average ERPs at electrode Cz. (Left and Right) Show color-coded amplitudes for all trials of blurr and intact, respectively. Trials are sorted according to RTs, marked as a black line. (Center) Average ERPs by perceptual certainty and visual field.



We observed a significant main effect of perceptual certainty, with a reduced N2 for blurred compared to intact stimuli. Further, N2 amplitude was significantly reduced for the right compared to the left deviant position. Finally, we observed a significant interaction between perceptual certainty and deviant position.

To follow up this interaction, we computed models with the factors nested within each other. Those revealed a significant effect of perceptual certainty for the right (b = −0.77, p < 0.001), and the left deviant position (b = −1.01, p < 0.001). The descriptively larger effect estimate for the left target position, consistent with behavioral findings, suggests that the effect of perceptual certainty was stronger when the deviant was presented in the left visual field than when it was presented in the right visual field. Testing deviant position effects nested within blurred and intact stimuli, we observed a significant deviant position effect for intact (b = 0.43, p < 0.001), but only a trend for blurred stimuli (b = 0.19, p = 0.051). Note that these comparisons can alternatively be obtained using the difflsmeans function of the lmerTest package.

We ran ANOVA and regression for comparison. The results are comparable across methods (see F00 for detailed outputs). Comparing AICs and BICs, again suggests a better fit of the LMM compared to the regression (AIC: 263499 vs. 270239, BIC: 263621 vs. 270282).

P3b

We next tested the effects of our experimental manipulations, perceptual certainty and deviant position, on P3b amplitude. The model revealed a significant main effect of perceptual certainty, that is P3b amplitude was reduced for blurred compared to intact stimuli. Topographies for blurred and intact stimuli, as well as the difference are displayed in Figure 7 and the time course is visualized in Figure 8. There was no significant main effect of or interaction with deviant position. We therefore reduced the model step-wise, first excluding the non-significant interaction and then excluding deviant position altogether. Model comparison favored the reduced model with perceptual certainty only, Δ[image: image] = 0.79, p = 0.673 (ΔAIC = −3, ΔBIC = −20). However, note that we maintained random slopes for deviant position for participants, as removing this variance component significantly decreased model fit. This indicates that while there is no group level effect of deviant position, there are reliable individual differences in this effect, which might reflect differences in the use of top-down information for decision-making. The reduced model including fixed and random effects estimates is summarized in Table 4.
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FIGURE 7. Topographies in the P3b time window (400–550 ms) for intact and blurred stimuli, as well as the difference topography. ROI electrodes are marked as dots.
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FIGURE 8. ERP images and average ERPs at electrode Pz. (Left and Right) Show color-coded amplitudes for all trials of blurr and intact, respectively. Trials are sorted according to RTs, marked as a black line. (Center) Average ERPs by perceptual certainty.





Table 4. Effects of perceptual certainty and deviant position on P3b amplitude.
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Comparing the results of ANOVA, regression and LMM, all methods converged to the same results. However, comparing fit indices, LMMs again suggested to better account for the data than ordinary regression (AIC: 257536 vs. 275627, BIC: 257641 vs. 275654).

Brain Behavior Relationship

So far, we established that showing blurred vs. intact objects in visual search affects performance, N2, and P3b. Furthermore, N2 and behavior are jointly affected by deviant position in interaction with perceptual certainty. Next, we tested whether behavior varies as a function of N2 and P3b amplitudes.

We tested the joint effects of N2 and P3b on accuracy and RTs, regressing their centered amplitudes, perceptual certainty, and deviant position on accuracy and RTs. For these analyses, we divided all single trial amplitudes by 10, as lme4 suggested rescaling of the variables to support model identifiability. Thus, the estimates from these analyses relate to amplitude changes of 10 μV. For accuracy, the full model including all predictors and their interactions revealed no significant 3-way interactions or 4-way interaction, also, there were no significant interactions of perceptual certainty with deviant position or N2. Exclusion of these interaction terms did not significantly decrease model fit, Δ[image: image] = 2.60, p = 0.920, and fit indices were smaller for the reduced model (ΔAIC = −11, ΔBIC = −73). Model estimates are summarized in Table 5.



Table 5. Joint effects of N2 and P3b amplitude, perceptual certainty and deviant position on performance.
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There was no main effect of N2 on accuracy, but a significant interaction of N2 and deviant position. To follow up on this effect, we computed a nested model to obtain estimates of N2 effects separately for left and right deviant positions. While for the left deviant position, larger N2 amplitudes significantly related to higher detection likelihood (b = −0.13, p = 0.022), for the right deviant position, there was no significant association—if anything, smaller N2 tended to predict higher detection likelihood (b = 0.11, p = 0.086). Accuracy further increased with increasing P3b amplitude. Nested models to follow up the significant interactions of P3b with perceptual certainty and deviant position, respectively, showed significant P3b effects for intact (b = 0.82, p < 0.001) and blurred stimuli (b = 0. 57, p < 0.001), as well as deviants in the left (b = 0.80, p < 0.001) and right visual field (b = 0.59, p < 0.001). The overall effect of P3b amplitude on accuracy and the interaction with perceptual certainty are consistent with previous findings proposing a scaling of P3b amplitude with choice confidence (Boldt and Yeung, 2015) and the interpretation of P3b as reflecting evidence accumulation (Ullsperger et al., 2014; Murphy et al., 2015; Twomey et al., 2015). We further observed a significant interaction of N2 and P3b, that is, accuracy increased more strongly with P3b when N2 was smaller. The logistic regression we ran in comparison obtained similar results overall with the exception that it did not show a significant interaction of P3b and perceptual certainty. Again, fit indices were smaller for the GLMM compared to the logistic regression (AIC: 17454 vs. 19143, BIC: 17638 vs. 19222). We ran additional GLMMs, sequentially omitting random effects per item and random slopes, to see what produces the difference between the two methods. The estimate decreased when omitting the crossed random structure and was no longer significant in the model with random intercept per participants only. Thus this effect was revealed when controlling for variance in effects across participants.

In the full model on RTs we observed no significant 2-way or higher order interactions between perceptual certainty and N2, so we excluded those, which did not significantly reduce model fit, Δ[image: image] = 7.13, p = 0.309, and fit indices were smaller for the reduced model (ΔAIC = −5, ΔBIC = −57). RTs significantly decreased with increasing N2 amplitude. This effect was significant for deviants in the left (b = 16.73, p < 0.001), and the right visual field (b = 9.36, p < 0.001), as revealed with nested models to follow up the interaction of N2 with deviant position. The partial effects of this interaction on RTs, as retrieved using remef (Hohenstein and Kliegl, 2014), are displayed in Figure 9.


[image: image]

FIGURE 9. Relationship between N2 amplitude and reaction time for left and right deviant position. Predicted partial effects were computed with the remef package in R, the regression line is retrieved from a local linear model fit to the data points for illustration.



Moreover, we observed significantly shorter RTs for larger P3b amplitudes. This effect was significant for blurred (b = −35.62, p < 0.001) and intact stimuli (b = −28.84, p < 0.001), as obtained with a nested model to follow up the interaction. This effect is visualized in Figure 10.


[image: image]

FIGURE 10. Relationship between centered P3b amplitude and RTs for blurred and intact stimuli. Predicted partial effects were computed with the remef package in R, the regression line is retrieved from a local linear model fit to the data points for illustration.



In addition to these effects we observed significant interactions of N2 and P3b, as well as a significant 3-way interaction with deviant position. The N2 by P3b interaction suggests a stronger RT decrease with P3b amplitude increase when N2 amplitude is smaller (less negative). This interaction was significant for left (b = −11.59, p < 0.001) and right deviants (b = −4.86, p = 0.015), as revealed by a nested model. These effects, visualized in Figure 11, suggest complementary mechanisms underlying successful performance reflected in N2 and P3b. While both support faster performance, N2 amplitude seems to relate more tightly to the extraction of perceptual information, while P3b appears to relate more to the use or integration of given information for decision-making.


[image: image]

FIGURE 11. Interaction effects on RT. (Left) Interaction of P3b and N2 amplitude on RT. (Right) Interaction of P3b and N2 amplitude on RT by deviant position. In both panels, P3b amplitude is color-coded. Note that ERPs are centered and amplitudes are divided by ten. Random effects and the fixed effect of perceptual certainty were removed using remef.



A regression ran as comparison obtained significant effects for all terms except for the 3-way interaction, in contrast to the LMM, the deviant position effect and the deviant position by P3b Interaction were significant. Moreover, fit indices favored LMM over regression (AIC: 513694 vs. 527163, BIC: 513929 vs. 527258). Again, to follow up the differences between regression and LMM results, we reduced the random structure of the LMM. When omitting crossed random effects, the deviant position effect became significant, as in the regression. Further omitting random slopes per participant rendered the 3-way interaction to a non-significant trend. However, even in the random intercept only model, we did not obtain a significant deviant position by P3b interaction, suggesting that this effect in the regression is produced by random intercept variance (note that even in the regression the estimate is only 3.49, which is very small even though it's twice the size of the LMM estimate).

To summarize, using single trial based LMM analyses, we obtained mostly comparable results to ANOVA and regression. When results differed, LMMs were more sensitive than ANOVAs and both more sensitive and more specific than regressions. The brain behavior analyses were further only applicable with single trial ERPs and hence LMMs and regression. Here, using continuous predictors, as for categorical predictors in the other analyses, LMMs outperformed ordinary regression.




DISCUSSION

The present study illustrates the advantages of single trial based analyses of EEG and behavioral data. As we could show, the ERP components meaningfully and differentially relate to trial-by-trial variations in behavior beyond variability caused by our experimental manipulations. This would not have been revealed using a traditional averaging approach. Therefore, while the present analyses are of exploratory nature, they highlight the flexibility of single-trial-based approaches in general and demonstrate the applicability of our processing pipeline in particular.


(When) Should You Use This Approach?

Why would you use complicated single-trial based LMM analyses of ERP data in simple orthogonal designs? As outlined in the introduction, ERP data often lack equal observations per cell, and individual differences in effect sizes, potentially biasing group estimates, are overlooked in averaging approaches. Further, as is well established in psycholinguistics, different stimuli can vary in characteristics unrelated to the experimental manipulations that might confound the effects of interest. As outlined by Baayen et al. (2008), this is not only true for words, but all naturalistic stimuli randomly drawn from a large population, such as objects, faces, artifacts or scenes. Thus, LMMs with crossed random effects would benefit every study using naturalistic stimuli.

While so far this pipeline has only been used for the analyses of distinct time windows (Frömer et al., 2016a,b; Fröber et al., 2017), the resulting data structure also allows for multiple robust regression on multiple time points to analyze the time course of effects (Hauk et al., 2006, 2009; Fischer and Ullsperger, 2013). However, bear in mind that only LMMs simultaneously account for random effects and might as well be conducted at multiple time points and electrodes. However then, robust estimates of Type I error need to be assessed. Statistical significance for LMMs can also be estimated using Markov chain Monte Carlo (MCMC) sampling, which would be more appropriate for multiple comparisons (Baayen et al., 2008).

Experimenters are encouraged to use parts of this pipeline according to their needs and personal taste. For instance, while we prefer procedures other than ICA for ocular correction and objective thresholds over investigator-dependent subjective data cleaning procedures (that might sometimes be more accurate and sometimes less), others might want to use a different preprocessing routine and only use some of the other parts of the pipeline. The modular way the pipeline is set up allows for flexibly swapping components for other approaches.



Limitations

While the present approach circumvents some of the problems of traditional averaging approaches, it is still subject to others, such as component overlap. Specifically, and a problem of all methods applying statistical tests of multiple variables on local ERP distributions (e.g., mean amplitude at a ROI or peak amplitudes), the statistically observed effects are not necessarily distributed the way the ERP component of interest is. Statistically reliable effects might as well stem from a spatially overlapping different ERP component (C. B. Holroyd, 2015, personal communication). For LMM analyses, a simple proof of principle is to run the final model on all electrodes and to plot the topography of the fixed effects estimates to visually examine whether they show the expected distribution. More sophisticated approaches, in the time domain on a single electrode rather than in the spatial domain at a given time window, have been described by Smith and Kutas (2015b).

While the cluster based permutation approach is not subject to this limitation, its present implementation is only applicable to categorical variables with few factor levels. For screening and determining relevant time windows and recording sites, this problem could be circumvented by constructing median splits for parametric variables of interest and testing the main effects based on those categorical factors. However, as discussed in the introduction, this approach reduces statistical power and assumes linear scaling of the effects under investigation, which experimenters should bear in mind (Cohen, 1983; MacCallum et al., 2002; Baayen, 2004). Further, CBPT as implemented here operates on participant averages and therefore holds the same problems as other approaches aggregating within subjects and conditions first. Therefore, results from CBPT might differ from those obtained using LMMs with a better control of additional sources of variance. Last but not least, the CBPT is rather conservative in some cases, such as small, local effects (Luck and Gaspelin, 2017). However, it can be a valuable tool to objectively narrow down the amount of data to submit to further analyses and thereby decrease investigator degrees of freedom and the risk of Type I errors. An extension of this approach to single-trial based regression (possibly LMM) analyses would be a valuable methodological contribution to robust effect estimation and future research.




CONCLUSION

The present processing pipeline integrates open source toolboxes for EEG data processing, EEGLAB (Delorme and Makeig, 2004) and FieldTrip (Oostenveld et al., 2011), and statistical analyses, lme4 (Bates et al., 2015b). It uses a single-trial regression based approach, circumventing limitations of traditional averaging approaches, while trying to maintain objectivity with regard to what data the analyses are applied to and thereby reducing investigator degrees of freedom. While some limitations remain, we consider this approach a major improvement compared to traditional ERP approaches and a good starting point for the development of even better analysis tools.
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Electroenchephalography (EEG) recordings collected with developmental populations present particular challenges from a data processing perspective. These EEGs have a high degree of artifact contamination and often short recording lengths. As both sample sizes and EEG channel densities increase, traditional processing approaches like manual data rejection are becoming unsustainable. Moreover, such subjective approaches preclude standardized metrics of data quality, despite the heightened importance of such measures for EEGs with high rates of initial artifact contamination. There is presently a paucity of automated resources for processing these EEG data and no consistent reporting of data quality measures. To address these challenges, we propose the Harvard Automated Processing Pipeline for EEG (HAPPE) as a standardized, automated pipeline compatible with EEG recordings of variable lengths and artifact contamination levels, including high-artifact and short EEG recordings from young children or those with neurodevelopmental disorders. HAPPE processes event-related and resting-state EEG data from raw files through a series of filtering, artifact rejection, and re-referencing steps to processed EEG suitable for time-frequency-domain analyses. HAPPE also includes a post-processing report of data quality metrics to facilitate the evaluation and reporting of data quality in a standardized manner. Here, we describe each processing step in HAPPE, perform an example analysis with EEG files we have made freely available, and show that HAPPE outperforms seven alternative, widely-used processing approaches. HAPPE removes more artifact than all alternative approaches while simultaneously preserving greater or equivalent amounts of EEG signal in almost all instances. We also provide distributions of HAPPE's data quality metrics in an 867 file dataset as a reference distribution and in support of HAPPE's performance across EEG data with variable artifact contamination and recording lengths. HAPPE software is freely available under the terms of the GNU General Public License at https://github.com/lcnhappe/happe.
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INTRODUCTION

Electroencephalography (EEG) is a sensitive means to noninvasively capture neurophysiological activity with clinical and basic science utility across a number of fields. However, during acquisition, the EEG signal is contaminated by both experimental artifacts like electrical interference and electrode displacement, and participant-induced artifacts like eye and muscle movements. These artifact signals are in many cases far more prominent than the neurophysiological signal, significantly distorting EEG as a measure of brain function if left uncorrected (Cuevas et al., 2014; Keil et al., 2014). Therefore, a series of post-acquisition processing transformations are typically applied to the EEG signal to address these artifacts and prepare the data for analyses, including filtering, artifact removal, and signal re-referencing (Keil et al., 2014). However, the pipelines and parameters for EEG processing vary across studies with little standardization. For example, one common artifact removal approach is labor and training-intensive researcher selection of uncontaminated EEG data, the criteria for which is partially subjective and therefore inconsistent across individuals. Standardized, automatable EEG processing pipelines thus offer several advantages, including uniform application of artifact removal criteria, efficient workflow with large sample sizes, and the facilitation of data comparisons across studies, labs and sites in multi-institution projects. Accordingly, software tools automating various stages of EEG processing have become a methodological focus (e.g., PREP, Bigdely-Shamlo et al., 2015, FASTER, Nolan et al., 2010, ADJUST, Mognon et al., 2011, TAPEEG, Hatz et al., 2015, ASR, Mullen et al., 2013, MARA, Winkler et al., 2014, SASICA, Chaumon et al., 2015), but they have largely been developed and tested on healthy adult EEG data with low levels of artifact contamination (Nolan et al., 2010; Mognon et al., 2011; Mullen et al., 2013; Bigdely-Shamlo et al., 2015; Chaumon et al., 2015; Hatz et al., 2015).

Notably, EEG data from developmental populations like infants, young children, and people with neurodevelopmental disorders present further challenges to extracting uncontaminated signal. EEG signals from these populations have the highest levels of artifact contamination (e.g., infants cannot follow instructions to refrain from moving their mouth or eyes during data collection), and protocols typically have far shorter EEG collection times than those with healthy adults to accommodate reduced tolerance for testing (Tran et al., 2004; Cuevas et al., 2014). Moreover, additional polygraphic measurements used to identify physiological artifacts, like EOG electrodes, are not typically used during EEG acquisition with developmental populations due to both reduced tolerance of their acquisition and decreased signal quality. These factors combined have made it difficult to directly apply contemporary processing approaches from the adult EEG literature, like independent component analysis (ICA), that require longer recordings to most effectively parse artifact from signal (Makeig et al., 1996; Delorme and Makeig, 2004; Albera et al., 2012; Grandchamp et al., 2012) (although see Zima et al., 2012; Piazza et al., 2016). However, the typical manual artifact rejection approaches used for these developmental EEG data routinely remove the majority of the EEG recording, reducing experimental power and sacrificing the neurophysiologically relevant aspects of EEG also contained within the rejected segments (Tran et al., 2004; Tierney et al., 2012; Cuevas et al., 2014; Gabard-Durnam et al., 2015). Moreover, the emerging focus on collecting larger datasets through repositories and large-scale studies along with the use of higher-density EEG nets make manual data selection increasingly impractical as a processing strategy (Bigdely-Shamlo et al., 2015). Currently, there is an unmet and growing need for automated processing tools suitable for EEG recordings like those generated by these populations.

The purpose of the Harvard Automated Preprocessing Pipeline for EEG (HAPPE) is to provide an automated, standardized approach for processing these classes of EEG data. Specifically, HAPPE is designed for data with high levels of artifact or very short recording length (on the scale of several minutes), although the pipeline may appropriately be used with longer or less-contaminated data. HAPPE integrates Matlab-based (The Mathworks, Inc.) code with freely available academic software, including EEGLAB functions (Delorme and Makeig, 2004), to automatedly batch process resting-state and event-related EEG data from raw format to corrected signal prepared for analyses in the frequency domain. HAPPE comprises both a fully-automated and semi-automated setting so that users may visualize processing performance on individual EEG files at multiple stages in the semi-automated setting, and adjust user inputs if desired, before running the complete dataset through the fully-automated pipeline. The following sections detail each of the proposed HAPPE pipeline's processing steps and post-processing report metrics, demonstrate HAPPE's effectiveness under variable conditions of EEG artifact and recording length by including an analysis of 10 developmental files, and compare HAPPE's performance to that of seven alternative, widely-used processing approaches.



THE HARVARD AUTOMATED PREPROCESSING PIPELINE FOR EEG (HAPPE)


HAPPE EEG Inputs

HAPPE accommodates multiple types of EEG with different acquisition parameters as inputs. HAPPE reads data in from EGI-exported (Electrical Geodesics, Inc.) Matlab files for resting-state EEG, and the data may have differing identifying variable names across files. HAPPE reads EGI-exported simple binary files for event-related EEG presently. However, users can easily modify the importing code to read any file format for any resting-state or event-related EEG that EEGLAB accepts. An individual HAPPE run should include only resting-state data or only event-related data, and users must specify one or the other as the input file type. HAPPE is currently compatible with EEG layouts of 64 and 128 channels. Each run of HAPPE must include files collected with the same channel layout (company and electrode number) and users must specify the appropriate channel layout in a given HAPPE run. Users who wish to include different EEG channel layouts within a single pipeline run can easily do so by accessing HAPPE through the Batch EEG Automated Processing Platform (BEAPP) software, available at https://github.com/lcnbeapp/beapp. HAPPE processes data collected with any sampling rate, and files within a single run of HAPPE may differ in their individual sampling rates. A schematic of HAPPE's processing steps, options, and outputs is provided (Figure 1).


[image: image]

FIGURE 1. Schematic illustrating the HAPPE pipeline's processing steps. The intermediate output EEG files are indicated by the suffix added after that specific processing step in the blue boxes. The user options for segmentation steps and visualizing several steps in HAPPE with the semi-automated setting are also indicated. Independent component analysis is abbreviated to ICA.



HAPPE consists of the following processing steps for EEG data:

1. Filtering

2. EEG channel subset selection

3. Electrical (line) noise removal

4. Bad channel rejection

5. Wavelet-enhanced thresholding (W-ICA)

6. ICA with automated component rejection

7. Automated segment rejection (optional)

a. Segmentation (optional)

b. Interpolation of bad channels for each epoch (optional)

8. Interpolation of bad channels

9. Re-referencing

Below, the implementation of each processing step in HAPPE is described in detail.



Filtering

All files are subject to a 1 Hz high-pass filter. The filter removes non-stationary signal drift across the recording and serves as a pre-processing step for the electrical noise removal and ICA steps that follow (Bigdely-Shamlo et al., 2015; Winkler et al., 2015). ICA has been shown to perform best at separating signals following a 1–2 Hz high-pass filter on the data (Winkler et al., 2015). For files collected with sampling rates equal to or greater than 500 Hz, the 1Hz filter is incorporated into a band-pass filter from 1 to 249 Hz to constrain the signal decomposed by ICA.



Selection of EEG Channel Subset

Users must specify a subset of 19 channels corresponding to the International 10–20 system electrodes (without the Cz reference electrode) for their channel layout (for use later with automated ICA artifact rejection) and any additional channels they wish to be processed in HAPPE. Channels that are not provided in the subset list are removed from subsequent processing and cannot be recovered later. For example, for data from a 128-channel net where the user selects 50 channels, the post-HAPPE processed data will contain only data for those 50 selected channels. Channel subset selection facilitates the use of ICA within the context of short EEG recordings where robust ICA decomposition is unlikely if all of the high-density channels are inputs. Typically, ICA decomposes signal into the same number of signal sources as net channels (assuming no channel interpolation has occurred yet) (Makeig et al., 1996). To generate a robust, stable ICA decomposition and avoid overlearning in the data, there are recommended constraints on how many channels may be decomposed given the length and sampling rate of an EEG recording (Särelä et al., 2003). Specifically, it is presently recommended that an EEG recording have at least 30 * (the number of channels)2 data samples to undergo ICA decomposition (e.g., Onton and Makeig, 2006). For example, an EEG acquired with a 128-channel net and sampling rate of 500 Hz (500 samples/second) would need at least 491,520 samples (30 * 1282 samples), that is, 983.04 s of recording (491,520 samples/500 Hz) to be reliably decomposed with ICA.

However, short EEG recordings, like those usually captured with developmental populations, and especially short EEG recordings made with high-density channel layouts (e.g., 128, 256 channels), do not provide enough data samples for reliable ICA decomposition without data dimension reduction. Therefore, HAPPE implements channel subset selection to improve the robustness of the ICA decomposition for these types of data. The number of channels that can be processed in a single HAPPE run will therefore depend on how long a user's EEG recordings are and the sampling rate during acquisition. For example, selecting 40 out of 128 channels to process abaseline EEG recording with a 250 Hz sampling rate would require 48,000 samples for adequate ICA (30 * 402 = 48,000). A 5-min recording with 75,000 samples would easily provide adequate data samples. The 19 channels from the 10–20 electrodes must be included in the total number of electrodes users select (i.e., in this example, the user may select an additional 21 electrodes from their channel layout to include with the 10–20 electrodes in their channel subset). It should be noted that if the length and sampling rate of the EEG files in a study permit ICA decomposition on the entire number of channels, then the full set of channels may be entered in the user input as the channel “subset.”



Electrical (Line) Noise Removal

HAPPE removes electrical noise (e.g., 60 or 50 Hz artifact signal) from the EEG through the multi-taper regression approach implemented by the CleanLine program (Mullen, 2012). Multi-taper regression can remove electrical noise without sacrificing or distorting the underlying EEG signal in the nearby frequencies, drawbacks of the notch-filtering approach to line-noise removal (Mitra and Pesaran, 1999). Specifically, HAPPE applies CleanLine's multi-taper regression with enabled scanning for exact line-noise frequency near the user-specified frequency ± 2 Hz, a 4-s window with a 1-s step size and a smoothing tau of 100 during the fast Fourier transform, and a significance threshold of p = 0.01 for sinusoid regression coefficients during electrical noise removal. Any remaining line-noise in the data after CleanLine regression is further addressed through the wavelet-thresholding, ICA, and re-referencing (if average re-reference is selected) steps that follow.



Bad Channel Rejection

HAPPE identifies and removes channels, including channels with high impedances or displacement during recording. HAPPE labels such channels as “bad channels,” and their data are not included in further processing or analyses. HAPPE determines bad channels by evaluating the normed joint probability of the average log power from 1 to 125 Hz across the user-specified subset of included channels. Channels whose probability falls more than 3 standard deviations from the mean are removed as bad channels. The bad channel evaluation is performed twice per data file, as channels that would otherwise be manually identified as bad channels (e.g., no signal, displacement visually evident) were found to remain in the data after the initial joint probability evaluation, but were successfully identified during the second evaluation during HAPPE development. Channels removed as bad channels have their data interpolated from nearby channels in a later processing step (after ICA decompositions) to preserve the complete user-selected channel set for post-processing analyses.



Wavelet-Thresholding (W-ICA)

For studies with lower levels of EEG artifact, data segments with obvious artifact contamination, especially non-stereotyped artifact (e.g., signal discontinuity), are commonly rejected before performing ICA as an artifact rejection approach (Grin-Yatsenko et al., 2010; Piazza et al., 2016). The initial data rejection step improves subsequent ICA segregation into artifact and neural components. However, in developmental EEG data files, the high degree of artifact coupled with often brief recording times would lead to inefficient data sacrifice through this segment rejection approach (Cuevas et al., 2014). Therefore, HAPPE implements a wavelet-enhanced ICA (W-ICA) approach described below in detail as a preliminary step to correct for EEG artifact while retaining the entire length of the data file, before performing ICA to reject artifact components. This approach of W-ICA followed by ICA is supported by prior work showing that using wavelet-thresholding approaches before ICA improves the resulting ICA decomposition of the EEG data (Rong-Yi and Zhong, 2005). The W-ICA step removes multiple classes of artifact, including eye and muscle-generated artifacts, high-amplitude artifacts (e.g., blinks), and signal discontinuities (e.g., electrodes losing contact with the scalp).

W-ICA entails first performing an ICA decomposition of the EEG signal into components, after which all of the components' timeseries are subjected to wavelet transform and thresholded to remove artifact before all of the components' timeseries are translated back to EEG channel format (Castellanos and Makarov, 2006). That is, all ICA components are subjected to the wavelet thresholding to remove artifact within each component, but no ICA components are entirely rejected at this stage in the pipeline. Although the initial ICA insufficiently segregates the data into neural and artifact components for optimal ICA component rejection at this stage, artifact is more clustered into specific components compared to the raw channel-wise data. Wavelet-thresholding the ICA-derived components, instead of the raw data, increases the contrast between artifact and neural signal magnitudes to circumvent tuning threshold parameters while also improving W-ICA performance (Castellanos and Makarov, 2006). HAPPE performs the ICA step of W-ICA using the extended Infomax algorithm to increase sensitivity to any remaining electrical noise and other sources with subgaussian or supergaussian activity distributions (Jung et al., 1998). Relative to other ICA algorithms and decomposition methods, the extended Infomax algorithm has been shown to be an optimal approach for decomposing electrophysiological signals like EEG (Delorme et al., 2007).

The wavelet-thresholding step of W-ICA first subjects the component time series to wavelet transform, which produces a series of coefficients to describe the EEG signal. Here, stationary wavelet transform of the complete set of independent components is carried out using a Coiflets (level 5) wavelet. The Coiflets wavelet family was selected because it has been found to provide optimal extraction of neural from artifact signal across both typical and epileptic EEG recordings (Gandhi et al., 2011). HAPPE decomposes data into detail coefficients for frequencies below approximately 125 Hz and above approximately 8 Hz (i.e., the frequency resolution of the wavelet transform; although HAPPE was not tested on EEG data with pathological waveforms, like epileptic EEG, HAPPE should preserve the low-frequency abnormalities like spike-and-slow wave complexes observed in these populations. Further testing on epileptic or other abnormal EEG data should be performed in the future to confirm HAPPE as a robust processing strategy for these cases). The coefficients are then subjected to thresholding, such that coefficients with values smaller than the threshold have their contribution to the data substantially suppressed (similar to Rong-Yi and Zhong, 2005; Jansen, 2012). Thresholding in HAPPE is performed using the Matlab function ddencmp. The global, soft threshold is determined automatically for each file using the signal's variance and length, following the formula:
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where D is the set of detailed coefficients provided by the wavelet transform, and N is the length of the ICA components

This formula is a scaled version of the universal threshold first proposed by Donoho and Johnstone (1994) that also incorporates a robust estimate of the signal variance. Soft-thresholding (Donoho, 1995) has been implemented in prior studies of wavelet-thresholding electrophysiological data for artifact rejection (e.g., Al-Qazzaz et al., 2017). As in prior W-ICA studies, given that the magnitude of artifacts can be far greater than that of neurophysiological signals, the component time series whose amplitudes are large enough to survive the wavelet-thresholding are taken as the artifact timeseries (similar to Castellanos and Makarov, 2006). These artifact time series are then subtracted from the pre-thresholded timeseries to remove those artifacts from the EEG data.



ICA with Automated Component Rejection

After W-ICA removes some of the most severe artifacts, the EEG data is more suitable for ICA decomposition with automated component rejection to address the remaining artifacts. HAPPE implements the ICA extended-Infomax algorithm as before. Automated component rejection is achieved through the Multiple Artifact Rejection Algorithm (MARA), a machine-learning algorithm that evaluates the ICA-derived components (Winkler et al., 2011, 2014). Although other algorithms exist to detect specific categories of artifact automatically (e.g., eye-movement artifact and signal discontinuities, Mognon et al., 2011), MARA has been trained on manual component classifications, and so captures the wide range of artifact that manual rejection detects. MARA has proven especially effective at detecting and removing muscle artifact components (see approach comparisons in section HAPPE Compared to Other Common Processing Approaches below). Specifically, MARA evaluates each component on the 6 algorithm features described below and then assigns the component a probability that it is dominated by artifact signal. This probability may be interpreted as the percent of artifact contamination estimated to be in the component. As in the original applications of MARA, HAPPE automatically rejects any components with artifact probabilities greater than 0.5 (i.e., more than 50% likely to be an artifact component) (Winkler et al., 2011, 2014). Statistics for all retained components' artifact probabilities are used to generate data quality metrics detailed in section Median_Artifact_Probability_of_Kept_ICs Mean_Artifact_Probability_of_Kept_ICs Range_Artifact_ Probability_of_Kept_ICs Min_Artifact_Probability_of_Kept_ICs Max_Artifact_Probability_of_Kept_ICs below.

MARA uses 6 data features based on temporal, spectral, and spatial information to assign artifact probability to an independent component, as briefly described below (and detailed in Winkler et al., 2014).

1. Mean local skewness: The first feature is mean local skewness in the data (a temporal feature calculated over 15 s increments). The local skewness feature identifies components with time series outliers, where higher skewness values indicate likely artifact (e.g., a component capturing blinks, or an electrode losing contact with the scalp).

The next three features all rely on information from the frequency domain.

2. Log alpha power: The second feature is the average log power in the alpha band (defined as 8–13 Hz). Brain-derived components typically manifest robust levels of alpha-band power, whereas artifact-driven components do not (this feature does not flag any specific artifact types, but instead reflects a shared, general feature of artifact components). The application of this feature to developmental data is discussed in detail below.

3. Lambda: The third feature, lambda, captures the degree to which a component's power spectrum deviates from the prototypical 1/f distribution observed in cerebral-derived components. The power for six frequencies across the power spectrum are sampled for each component to generate its spectrum power curve and calculate lambda. This feature is particularly sensitive to muscle artifact, which typically manifests as a power spectrum with very poor fit to the 1/f distribution (including sharply increased power in the higher frequencies like beta and gamma after an initial decrease in power through the lower frequencies).

4. Fit error: Similarly, the fourth feature, fit error, represents the mean squared error of the approximation of the f distribution to each component's distribution specifically in the 8–15 Hz range that captures alpha band power and the transition to beta band power. The fit error feature is nonspecific to artifact types but instead serves as a generalized marker of artifact probability.

The last two features make use of spatial information to detect artifactual components.

5. Range within pattern: Specifically, the fifth feature, range within pattern, takes the (log) difference between the largest and smallest activation magnitudes across the scalp for a component, where artifact components typically exhibit larger range within patterns (e.g., eye artifacts and muscle movement result in concentrated areas of very high magnitude relative to the other electrodes' magnitude, whereas cerebral-derived components tend to have more consistent magnitudes across electrodes, and thus smaller magnitude ranges).

6. Current density norm: The final feature, current density norm, makes use of the 10–20 channel locations input to MARA and reflects the solution to source-modeling the component using a model that was designed to fit cerebral-based activity (the minimum current density norm value reflects the simplest source model that is most-likely to be cerebral activity). Since external artifacts were not meant to be modeled with this approach, artifact-driven components return very high current density norms (reflecting overly complex source models). The current density norm feature is similarly non-specific to certain types of artifact components, but instead captures general artifact probability.

Together, these 6 features address a comprehensive range of artifacts observed in independent components.

MARA was not trained specifically on developmental or patient data, but several findings support its application in these contexts. First, the anatomical correlations of the 10–20 electrodes that MARA uses to calculate its spatial features are highly consistent across infant and adult brains (Kabdebon et al., 2014). That is, comparable information is supplied to MARA's spatial features from the 10–20 electrodes regardless of age. Second, a potential concern during HAPPE development was that one of MARA's spectral features evaluates EEG alpha band power, where very young infants or clinical populations may show a different frequency power peak than the alpha band observed in healthy adults (Stroganova et al., 1999; Lansbergen et al., 2011). However, empirically, even the youngest infants tested (3 months of age) in the present dataset had enough alpha power in the components to make use of this MARA criterion appropriately. Indeed, the 3-month files in the example analysis below had the lowest rates of MARA component rejection in the sample. Variation in the alpha band peaks was also preserved across the developmental datasets and was consistent within individual files before and after MARA component rejection, suggesting alpha peaks were unperturbed during the component rejection algorithm. Lastly, the rates of MARA component rejection for the datasets run through HAPPE were comparable to both the rejection rates for the adult data used to validate MARA (Winkler et al., 2011, 2014) and to rates of manual component rejection with developmental data decomposed with ICA (Piazza et al., 2016). HAPPE therefore includes MARA as a robust evaluation tool for component rejection suitable for developmental and clinical data.



Segmentation (Optional)

HAPPE includes an optional data segmentation step along with several additional artifact rejection steps to further optimize processing. For data with event markers (e.g., event-related EEG data), data can be segmented around events as specified by user inputs. For data without event markers (e.g., resting-state EEG), regularly marked segments of any duration specified by the user are generated from the start of the EEG file for the duration of the recording.

After segmentation, several additional artifact-reduction options are available, although users may also segment their data without applying the following options. Post-segmentation artifact reduction parameters that the user chooses may depend on the number of available segments, as well as the extent of artifact contamination remaining in individual segments after prior preprocessing steps.

Users with relatively short data files, for whom segment rejection would lead to an unacceptably low remaining number of segments for analysis, may choose an optional post-segmentation step involving the interpolation of data for channels determined to be artifact-contaminated within each individual segment, as implemented by FASTER software (Nolan et al., 2010). Each channel in each segment is evaluated on the four FASTER criteria (variance, median gradient, amplitude range, and deviation from mean amplitude), and the Z score (a measure of standard deviation from the mean) for each channel in that segment is generated for each of the four metrics. Any channels with one or more Z scores that are greater than 3 standard deviations from the mean for an individual segment are marked bad for that segment. These criteria may identify segments with residual high-amplitude artifacts (e.g., eye artifacts), electrode discontinuity (e.g., electrode has lost contact with the scalp temporarily), and muscle artifact. Subsequently, for each segment, the bad channels have their data interpolated with spherical splines, as in FASTER. This allows users to maintain the maximum number of available segments, while still maximizing artifact rejection within individual segments.

Alternatively, for users with relatively long data files (for whom some segment rejection is less of a concern), or for users who wish to avoid interpolating data within individual segments, the second optional step is segment rejection based on both amplitude and joint probability criteria. Amplitude-based rejection is useful for high-amplitude artifacts like eye blinks, while joint probability-based rejection catches other classes of artifacts, especially high-frequency artifacts like muscle artifact. Together, these two criteria are an effective and time-efficient combination for determining artifact-contaminated segments. This combination has previously been used with developmental EEG data (Delorme et al., 2007; Piazza et al., 2016). Users specify an artifact amplitude threshold for the amplitude-based rejection step, such that any segment with at least one channel whose amplitude crosses the threshold will be marked for rejection. The HAPPE default for the artifact threshold is 40 microvolts, reflecting the smaller overall signal amplitude that results from the wavelet-thresholding and ICA steps. However, users are encouraged to run the semi-automated HAPPE setting on at least several files to visually check that this default amplitude results in appropriate segment rejection in their own datasets. Next, two joint probabilities are calculated with EEGLAB's pop_jointprob function. The joint probability of an electrode's activity in a segment given that same electrode's activity in all other segments is calculated (single electrode probability), and the joint probability of an electrode's activity in a segment given all other electrodes' activities for that same segment is calculated (electrode group probability). These joint probabilities are evaluated such that any segment is marked for rejection when either (1) a channel's single electrode probability or (2) its electrode group probability is outside of 3 standard deviations from the mean are marked for rejection. This criterion most successfully identified segments with remaining high-frequency artifact during HAPPE development. All segments marked from either the amplitude or joint probability criteria are then rejected simultaneously in a single step.

Notably, this segment rejection step may be runon all user-specified channels, or on asubset of channels for a specific region of interest (ROI). The ROI-channel subset option allows users to tailor segment rejection for a specific ROI analysis if multiple ROIs were included in the channels selected for HAPPE processing.



Interpolation of Bad Channels

For all HAPPE runs (regardless of segmentation options), any channels removed during the bad channel rejection processing step are now subject to spherical interpolation (with Legendre polynomials up to the 7th order) of their signal. Channel interpolation repopulates data for the complete channel subset specified by the user and reduces bias in re-referencing if the average re-reference option is selected. The identity of all interpolated channels, if any, for a file are recorded in HAPPE's processing report for users who wish to monitor the percentage or identity of interpolated channels in their datasets before further analysis.



Rereferencing

HAPPE's final processing step is to re-reference the EEG data. The user may specify either re-referencing using an average across all channels (i.e., average re-reference) or using a channel subset of one or multiple channels. For both re-referencing options, only channels within the user-specified channel set selected for HAPPE processing can be used for re-referencing. Rereferencing also reduces artifact signals that exist consistently across electrodes, including residual line-noise.



HAPPE EEG Outputs

HAPPE generates several folders containing EEG files that are located within the user-specified folder of files for processing. EEG files are saved out after several intermediate processing steps so that users can explore in-depth and visualize how those steps affected the EEG signal in their own datasets. The intermediate files include minimally-processed EEG data, post-wavelet-thresholded data, data post-ICA with the component information intact, post-component rejection EEG data, and if segmentation parameters are selected, files with post-segmentation EEG data. HAPPE outputs fully-processed files that are suitable inputs for further analyses (e.g., time-frequency decomposition) in one of several formats to increase compatibility with other software for data visualizations or statistical analyses. HAPPE also outputs the HAPPE processing report (described below) for the file batch, and, if users ran HAPPE in the semi-automated setting, an image for each EEG file containing the fully-processed EEG's power spectrum.



HAPPE Processing Report

For each run, HAPPE generates a report table of descriptive statistics and data metrics for each EEG file in the batch in a single spreadsheet to aid in quickly and effectively evaluating pipeline performance and data quality across participants within or across studies (see example in Table 1). The report table with all of these metrics is provided as a .csv file in the “processed” folder generated during HAPPE.



Table 1. Example HAPPE processing report for the 10 files in the example dataset.
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The data metrics are each briefly described below. In addition, to inform understanding about the distribution of values for each metric that may be expected in a developmental population, we provide descriptive distributions from a sample of 867 developmental EEGs. This dataset includes EEGs from participants spanning 3 months to 36 months of age, and contains three participant groups as part of a larger, longitudinal study on the emergence of Autism Spectrum Disorder (ASD) (see Tierney et al., 2012) for detailed description of the project). Typically developing infants (“Low Risk/No Autism” group), infants at high risk for ASD by virtue of having an older sibling with an ASD, but who did not go on to receive an ASD diagnosis themselves (“High Risk/no Autism” group), and infants at high risk for ASD who did go on to receive an ASD diagnosis (“High Risk/Autism” group) contribute data to this sample. The project was approved by the Institutional Review Board (the local ethics committee) at Boston University and Boston Children's Hospital (#X06-08-0374), and was carried out with written informed consent from all caregivers prior to their child's participation in the study. For each metric, the distribution of values across this large sample is presented grouped by age, and separately, by clinical risk status. The descriptive statistics for the entire 867 file sample for all metrics are also provided in Table 2. These distributions may aid users in setting thresholds for removing files from further analysis due to poor data quality, and in comparing HAPPE performance in their own data to HAPPE performance with the present sample.



Table 2. Descriptive statistics for data quality metrics in a developmental sample.
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Number_Epochs_Post_Epoch_Rejection

First, if the user selected the segment rejection option in HAPPE, they may evaluate the number of data segments remaining post-rejection for each file to identify any files that cannot contribute enough clean data to be included in further analyses (user discretion). The user may also easily tabulate the descriptive statistics for remaining segments to report in their manuscript's Methods section (e.g., the mean and standard deviation of the number of usable data segments per file in their study).

Percent_Good_Channels_Selected
 Interpolated_Channel_IDs

Next, the percentage of channels contributing uninterpolated data (“good channels”) and the identity of interpolated channels are provided. Users wishing to limit the amount of interpolated data in further analyses can easily identify files for removal using these two metrics. The distributions of the percent of good channels for the developmental sample included here are visualized in Figure 2.
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FIGURE 2. Percent good channels retained. The distribution of the percent of channels retained as good channels during channel rejection is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.



Number_ICs_Rejected
 Percent_ICs_Rejected

The number and percent of the independent components rejected as artifact components by MARA after the post-wavelet-thresholded ICA decomposition are also given. These measures may be useful for evaluating how ICA with MARA performs on the user's data across files, since poor artifact segregation from neural signal would result in MARA rejecting most components consistently across files. The distributions of the percent of components rejected in the developmental sample included here are visualized in Figure 3.
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FIGURE 3. Percent of independent components (ICs) rejected. The distribution of the percent of independent components rejected by MARA after ICA decomposition is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.



Percent_Variance_Kept_of_Post_Waveleted_Data

A complementary metric to the component rejection variables is the measure of variance in the data retained after MARA rejection relative to before MARA rejection of components. Here, the retained variance across all electrodes is calculated using the compvar function (Delorme et al., 2001) in EEGLAB. The amount of variance in the data that each independent component accounts for can be dramatically different across components for a file. Thus, a given percentage of components rejected does not necessarily indicate whether a small part of the EEG signal or even the majority of the EEG signal was removed. This relation is illustrated for the large developmental sample included here (Figure 4). Accordingly, the variance-kept metric may be useful to distinguish how much of the EEG signal was rejected by MARA, although users should take into consideration that artifact signal contributes more than neural signal to the signal variance in the first place. The variance-kept and the rejected component metrics together may be used to set a tolerance threshold (e.g., 20%) for the degree of data rejection with easy identification of files for removal from further analysis. For the distributions of the percent of EEG variance kept in the developmental sample included here, see Figure 5.
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FIGURE 4. Relation between independent component (IC) rejection and the percent of data variance retained. The relation between the percent of variance in the EEG retained after MARA rejection of ICs (x-axis) and the percent of ICs rejected by MARA (y-axis) is shown for a developmental sample. The distributions for each metric in the same sample are shown opposite the labeled axes; top distribution is for percent of variance retained, right distribution is for percent of ICs rejected.
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FIGURE 5. Percent variance retained post-MARA rejection. The distribution of the percent of variance in the EEG signal retained after MARA rejection of independent components is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.



Median_Artifact_Probability_of_Kept_ICs
 Artifact_Probability_of_Kept_ICs
 Range_Artifact_Probability_of_Kept_ICs
 Min_Artifact_Probability_of_Kept_ICs
 Max_Artifact_Probability_of_Kept_ICs

The final set of metrics provided by HAPPE include descriptive statistics for the MARA-generated probabilities that the independent components surviving rejection are artifact-contaminated (artifact probability metrics). It should be noted that these values are derived before any segment rejection or segment-level channel interpolation occurs, so these metrics will overestimate the artifact levels in the fully-processed data if either segment rejection or interpolation options have been selected. Still, the artifact probability metrics, especially the median and mean artifact probabilities, may inform which files remain too artifact-contaminated to contribute to further analyses. Distributions for the median and mean artifact probabilities for the developmental sample included here are provided (Figures 6, 7, respectively).
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FIGURE 6. Median artifact probability of retained EEG. The distribution of the median artifact probability value for retained independent components post-MARA rejection is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.
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FIGURE 7. Mean artifact probability of retained EEG. The distribution of the mean (average) artifact probability value for the retained independent components post-MARA rejection is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.



Through this report table of metrics, HAPPE therefore aims to provide a rich, quantifiable, yet easily accessible way to effectively evaluate data quality for even very large datasets in the context of automated processing. Visual examination of each file is not required, although it is available. Over and above the purposes of rejecting files that no longer meet quality standards for a study and evaluating HAPPE performance on a given dataset, we also hope to encourage more rigorous reporting of data quality metrics in manuscripts by providing these outputs already tabulated and easily transformed into descriptive statistics for inclusion. Users may also wish to include one or several of these metrics as continuous nuisance covariates in statistical analyses to better account for differences in data quality between files, or verify whether there are statistically significant differences in data quality post-processing between study groups of interest. For further guidance about using the processing report metrics to evaluate data, users may consult the HAPPE README file distributed with HAPPE software.




EXAMPLE ANALYSIS WITH HAPPE

In this section, the specifications for and results from one run of HAPPE with 10 developmental EEG files are provided. The EEG files contributing to this example dataset may be freely accessed through Zenodo at: https://zenodo.org/record/998965#.WdBg2BNSxBw. Acquisition parameters for each of the 10 data files are given in Table 3. In accordance with HAPPE's aim to deliver a processing strategy compatible with short EEG recordings, the median length of the 10 sample EEG files is only 3.8 min (with files ranging from 2.4 to 13 min). The HAPPE script with the configurations selected as run in this example is provided in Supplemental Materials (Please note that users will still need to change the path specifying the folder with the downloaded data to match the destination on their own machines). This iteration of HAPPE was implemented with MATLAB version 2017a and EEGLAB version 14.0.0b on an iMac running OS X El Capitan (Version 10.11.6) with one 2.7 GHz Intel Core i5 processor. This example analysis is included to enable users to replicate HAPPE performance independently and to facilitate implementing HAPPE with their own datasets after working through this example.



Table 3. Acquisition parameters for a 10-file example dataset.
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The following is a resting-state analysis of developmental EEG data collected with HydroCel 128-channel Geodesic Sensor Nets (EGI, Eugene, OR). The 39-channel subset selected for preprocessing contains bilateral frontal and temporal channels (in addition to the 10–20 channels), as these locations typically have the most extreme artifact levels, and therefore provide the greatest challenge to HAPPE's performance. To illustrate both the degree of artifact that occurs in these example files, and HAPPE performance for the same EEGs, data during the first 30 s of several EEGs is provided before and after HAPPE processing (Figure 8). HAPPE was run in the semi-automated setting to generate visualizations for each file at multiple steps in the pipeline (these visualizations for each example file are included in Supplemental Materials). Data were segmented into 2-s long segments with the segment rejection option selected, using artifact amplitude thresholds of −40 and 40 microvolts. Data were re-referenced using an average re-reference. It should be noted that during processing, ICA does not return identical results each time it is run on the same data because the decomposition solution searching begins with a randomly-generated weight matrix each time (Onton and Makeig, 2006). Therefore users replicating these analyses on the same data may find small discrepancies between their own set of results and those described here with respect to percent variance accounted for in each component, and MARA artifact probability assigned to each component (and accordingly, the number of components rejected by MARA, the artifact probabilities of remaining components, and the variance kept in the data post-MARA). The HAPPE processing report for this example analysis is presented in Table 1.
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FIGURE 8. EEG signal before and after HAPPE processing. Three files from the example dataset are shown (A-C) with 14 s of data extracted from the first 30 s of the recording. The EEG signal after minimal processing (i.e., filtering, channel subset selection, and average re-referencing) is shown in the left panel. The EEG signal after HAPPE processing as described in the example analysis results section is shown in the right panel. All scales are in microvolts.



Data quality and HAPPE's effectiveness for this dataset are first discussed by way of the HAPPE processing report metrics. The first evaluation point for assessing data quality is the number of channels contributing uninterpolated data to further analysis (i.e., the good channels that weren't rejected during processing). In the present dataset, an average of 88% of the channels from the user-selected channel subset for each file were retained as good channels for further processing. Only one file contained fewer than 80% good channels (79%, baselineEEG11), with most of the bad channels covering the right frontal region of interest (ROI) for that file. This file may merit removal from further analysis depending on the ROI(s) to be examined (i.e., frontal ROIs or temporal ROIs). For this processing example exclusive of specific statistical analyses, baselineEEG11 is retained.

Next, the effectiveness of W-ICA and ICA in segregating and rejecting artifact from the neurophysiological signal are evaluated using the post-MARA data metrics. For this sample of 10 files, on average, 42% of the components were rejected per file during HAPPE, comparable to both the rate of MARA component rejection in adult EEG (Winkler et al., 2014) and the rate of manual component rejection with infant EEG data (Piazza et al., 2016). Moreover, following component rejection, 68% of the EEG variance was retained per file on average, suggesting MARA-based component rejection did not result in an unacceptable level of data loss generally. Only one file (baselineEEG9) retained a minimal amount of variance post-MARA rejection (24% variance retained), meriting further review or visualization of the data to determine whether it should be removed from post-processing analyses. (It was retained in the dataset for this example analysis). Additionally, on average, the median and mean artifact probabilities of the retained components post-MARA rejection was only 0.10 and .13, respectively, suggesting W-ICA and ICA with MARA achieved robust segregation of neurophysiological and artifact signals during the decomposition in the developmental dataset. No individual files post-MARA rejection had average or median artifact probabilities greater than 0.30, or even a more conservative 0.25, therefore no files were considered for removal from further analyses based on residual artifact at this step in the pipeline.

Finally, the number of segments retained after the segment rejection step, if selected, may be evaluated to determine whether any files can no longer contribute sufficient data for further analyses. For the present sample, each EEG file was segmented into 2-s long windows and each segment was evaluated for rejection. For the present sample, an average of 66% of the 2-s segments were retained per EEG file after this step. Post-segment rejection, no individual file had fewer than 20 retained segments (average number of retained segments = 99), a sufficient number of segment samples for calculating power (Cuevas et al., 2014; Gabard-Durnam et al., 2015), so no individual files were considered for removal from post-processing analyses. Therefore, despite initial high levels of artifact contamination in the dataset, all 10 files were successfully processed in HAPPE with the potential for inclusion in further analyses.

Data quality may also be assessed subjectively for these 10 files by examining the EEG power spectrum for each file after each processing step in HAPPE (see Figure 9). Post-HAPPE processing, there is a dramatic reduction in the electrical noise signal (60 Hz spike) across the 10 files, relative to the earliest stages of processing. In several cases (especially baselineEEG06 and baselineEEG07), alpha peaks in power, a normative feature of EEG power spectrums, are revealed post-HAPPE processing relative to the earliest processing steps. Moreover, baselineEEG12 initially contained a very large amount of artifact, visible in the power spectrum for frequencies greater than 20 Hz, that is robustly removed during HAPPE processing. Across the 10 files, the power spectrums post-HAPPE processing appear more uniform in shape and scale than those for the earliest processing steps, where artifact contamination had not yet been addressed. Therefore, through visual inspection of the power spectrums for the 10 example files, no individual file post-HAPPE processing appears to merit removal from further analyses. When HAPPE is run in the semi-automated setting, as in this example analysis, users may monitor these power spectrum features generated post-HAPPE processing for their own files as well.


[image: image]

FIGURE 9. Results from HAPPE processing steps and comparison to alternative approaches. For each file in the example dataset, the EEG power (y-axis, in microvolts squared) across a range of EEG signal frequencies (x-axis) is shown as a function of several processing steps within HAPPE. Power spectrums are generated after the filtering step (filter), after basic preprocessing (filter, CleanLine, bad channel rejection), wavelet-enhanced independent component analysis (wavelet thresholding), independent component analysis with MARA rejection (ICA with MARA rejection), segment rejection for the retained data (segment rejection), and after the final channel interpolation and re-referencing steps (fully-processed) (A). All 8 approaches for artifact rejection are compared in terms of the percent EEG data variance retained (x-axis) and the average artifact level in the retained EEG data (y-axis), where optimal performance would place an approach near the bottom right corner of the chart, retaining most of the EEG variance with low levels of artifact (B).





HAPPE COMPARED TO OTHER COMMON PROCESSING APPROACHES

Here, HAPPE is compared to seven alternative processing approaches for removing experimental and participant-induced artifact with the same 10 developmental files. Of these alternative approaches, one (FASTER) is a comprehensive processing pipeline that, like HAPPE, takes raw EEG files as inputs and produces fully-processed EEG data suitable for analyses. The remaining six alternative approaches consist of artifact-rejection steps. Therefore, for these alternative artifact-rejection approaches, data are processed in HAPPE for all steps besides the alternative rejection steps. Each approach's performance is evaluated using the data quality metrics provided in the HAPPE processing report for consistency across methods (Figure 9B). Specifically, the percent of independent components rejected by each method and the percent of EEG variance retained after component rejection metrics quantify EEG signal preservation in the artifact rejection process (summarized in Table 4), while the mean and median artifact probability metrics of retained components index successful artifact rejection (summarized in Table 5). The most successful approaches should combine high percentages of retained EEG variance and components with low artifact estimates in the retained data, indicating excellent separation and rejection of artifacts from the EEG signal of interest. Alternatively, approaches with either high or low percentages of variance and components retained alongside high levels of retained artifact indicate incomplete artifact rejection. Student's paired sample t-tests were performed on the data metrics for formal comparisons between approaches. The comparison between HAPPE and each alternative approach is provided below (Figure 9B, and see Figure 10 for a summary of each approach's processing steps).



Table 4. Data quality metrics measuring the amount of EEG data that is retained post-processing compared for HAPPE and alternative approaches.
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Table 5. Data quality metrics measuring the amount of artifact retained post-processing in the EEG data compared for HAPPE and alternative approaches.
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FIGURE 10. Schematic illustrating the HAPPE pipeline in relation to seven alternative processing approaches. Processing steps that are consistent across approaches, and implemented in HAPPE, are highlighted in light green. Processing steps that are unique to the alternative approaches are highlighted in light blue. Independent component analysis is abbreviated to ICA. Multiple Artifact Rejection Algorithm is abbreviated to MARA. Wavelet-thresholded ICA is abbreviated to W-ICA. Artifact Subspace Reconstruction is abbreviated to ASR. Fully Automated Statistical Thresholding for EEG artifact Rejection is abbreviated to FASTER. Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal features is abbreviated to ADJUST. SemiAutomated Selection of Independent Components for Artifact Correction in the EEG is abbreviated to SASICA.




Independent Component Analysis (ICA)

The ICA alternative approach remains fully-automatable, and simply removes the wavelet-thresholding step from the processing sequence of HAPPE. That is, data are fed directly into a single ICA decomposition for the purpose of rejecting artifact. Like HAPPE, this alternative approach does not sacrifice any data segments during artifact rejection, an appealing feature for processing short data recordings. Data were processed in HAPPE for the initial steps of filtering, channel subset selection, line noise removal through CCleanLine, and bad channel detection, as these steps may all improve ICA decomposition performance (Winkler et al., 2015). Where the wavelet-thresholding step follows in HAPPE, data were instead extracted from the HAPPE pipeline and input to ICA with the same extended Infomax algorithm settings as in HAPPE. MARA component rejection was then carried out using the same settings as in HAPPE. Data post-MARA processing were then compared to HAPPE post-MARA data (before segment rejection) (see Tables 4, 5).

First, independent component rejection rates and retained variance were compared across approaches as an indicator of how well the ICA segregated artifact from signal. The ICA alternative approach rejected significantly more components (86.3%) compared to HAPPE (42%) [t(9) = 5.31, p = 0.00058, n = 10]. For half of the files (5), only a single component was preserved as neurophysiological signal, an unacceptably low retention rate. The ICA approach also removed a significantly greater amount of the variance from the data than HAPPE [t(9) = 5.48, p = 0.00039, n = 10], leaving only 24.8% of the data's variance on average, barely above the rejection threshold for evaluating HAPPE. Next, to assess the quality of the retained data post-MARA rejection across approaches, the median and mean artifact probability metrics were compared. Despite the higher rates of component rejection, the remaining components after the ICA alternative approach had median and mean artifact probabilities about twice as large as the components after HAPPE processing [median artifact probability: t(9) = 2.52, p = 0.0033, n = 10; mean artifact probability: t(9) = 2.07, p = 0.068, n = 10]. Applying even the more liberal retained-artifact probability threshold of 0.3 used to evaluate HAPPE performance, the ICA approach resulted in 3 files meeting criteria for removal from further analyses, compared to 0 files in HAPPE. Overall, the alternative ICA approach without an artifact rejection step preceding it (like W-ICA in HAPPE) performed much more poorly on the developmental files relative to HAPPE, rejecting far more components but also retaining higher artifact levels in the data.



Manual Segment Rejection with ICA (Manual)

The manual alternative approach reintroduces artifact rejection before the ICA decomposition and MARA rejection steps. However, the manual approach is not automatable and results in data loss from files that already have short lengths. For the manual approach, data files were processed in HAPPE for filtering, channel subset selection, line noise removal, and bad channel detection. Data was then removed from HAPPE and segmented into 2-s segments for manual artifact rejection (by an experimenter with extensive manual EEG processing training who was also blind to the HAPPE results). After manual rejection, each file was input to ICA (as in HAPPE) with MARA component rejection.

HAPPE retained more EEG data than the manual rejection approach across all measures. First, as the manual approach involves segment rejection, the number of retained data segments was compared to the retained segment count after the optional, automated segment rejection step in HAPPE. HAPPE retained a significantly greater number of data segments relative to the manual segment rejection approach [t(9) = 3.11, p = 0.0125, n = 10], preserving 2.9 times the number of segments retained through manual rejection (HAPPE mean segment number: 98.9; manual segment number: 33.6). The manual approach left 3 files with fewer than 20 segments, which may be insufficient for further post-processing analyses. The manual approach also resulted in MARA rejecting significantly more ICA components than HAPPE [t(9) = 3.02, p = 0.0145, n = 10], and retained significantly less data variance after component rejection [t(9) = 3.18, p = 0.0112, n = 10], keeping only about half of the variance retained through HAPPE on average. Indeed, 3 files processed with the manual approach did not retain the minimum of 20% of the data variance to be included in post-processing analyses (criteria set for evaluating HAPPE performance previously). Despite the higher rates of data rejection, the manual approach also had median and mean artifact probabilities more than twice as large as those obtained in HAPPE, [median artifact: t(8) = 3.15, p = 0.0117, n = 9; mean artifact: t(8) = 3.42, p = 0.0070, n = 9]. Accordingly, half of the files had artifact probabilities above the 0.3 threshold for rejection from further analyses. Therefore, in addition to the disadvantage of requiring manual input for each file, the manual approach did not result in either greater retained data or better retained data quality compared with HAPPE.



Artifact Subspace Reconstruction (ASR) with ICA

The ASR approach interpolates artifact-contaminated regions in continuous data, guided by a period of clean data within the same file (here, clean data was determined by the ASR algorithm). Although ASR remains fully-automatable, unlike HAPPE, it is not appropriate for event-related EEG processing. Still, the performance of ASR was compared to HAPPE for processing resting-state EEG data. Data were processed as in HAPPE for filtering, channel selection, and electrical noise removal steps. The ASR approach was then carried out with EEGlab's Clean_rawdata functions adopted from BCILAB (Kothe and Makeig, 2013; Mullen et al., 2015). Clean_rawdata contains bad channel rejection and ASR artifact interpolation steps. Channels were removed if they were flat for more than 10 s or had correlations below 0.8 with the other channels' data. Channels were not removed in the presence of line-noise due to the prior use of CleanLine. ASR was used to interpolate artifact “bursts” with variance more than 5 standard deviations different from the automatedly detected clean data, as in prior work with clinical populations (Grummett et al., 2014). Data segments post-interpolation were removed with a time-window rejection setting of 0.05 (aggressive segment rejection). Data were then submitted to ICA and MARA component rejection (as in HAPPE).

HAPPE retained more EEG data than the ASR approach across all measures. Although ASR was designed for brief “bursts” of artifact in otherwise clean data, due to the high degree of artifact contamination in the developmental data, the ASR approach interpolated an average of 35.7% of the EEG data per file, which may constitute a prohibitively high interpolation rate. Even with the high rate of artifact interpolation, MARA rejected far higher percentages of independent components [t(9) = 4.86, p = 0.001, n = 10] and retained far less EEG data variance [t(9) = 4.02, p = 0.003, n = 10] on the ASR-treated data than in HAPPE. The ASR approach also retained higher mean [t(9) = 3.04, p = 0.014, n = 10] and median [t(9) = 2.55, p = 0.031, n = 10] artifact levels in the data post-component rejection compared to HAPPE. Consequently, the ASR approach resulted in half of the example files meeting either the retained variance or retained artifact criteria for removal from further analyses, Thus, by rejecting more EEG data but also retaining higher levels of artifact, the ASR approach performed less successfully than HAPPE across all measures in the context of developmental resting-state EEG files.



Fully Automated Statistical Thresholding for EEG Artifact (FASTER)

FASTER is a fully-automated pipeline that transforms EEG data from raw files to processed data inputs for analyses, with artifact rejection steps implemented here at the channel, epoch, and independent component levels. For each rejection step, FASTER calculates statistical parameters for the data and rejects channels, epochs, or components with Z-scores above a pre-specified threshold as outliers (here the default settings of Z-scores of 3 were applied). FASTER's single-channel, single-epoch interpolation step was not included in the comparison to HAPPE because this option has been integrated into HAPPE (an optional segment rejection setting) with acknowledgement of FASTER for this capability. FASTER performs optimally with higher numbers of data points and channels, and assumes normal distributions of uncontaminated EEG data, conditions that may not be met with highly-contaminated, short EEG recordings. FASTER also uses information from EOG channels as one means to reject independent components, but EOG channel recordings are not typically performed with developmental populations (including the present data files), which may further impair FASTER performance in this context. Here, data were passed through the channel selection and CleanLine line noise removal steps first as in HAPPE. Data were then input to FASTER, where filtering, channel rejection, segmentation (into regular 2-s epochs as in HAPPE), segment rejection, and ICA with component rejection steps were performed. To generate the retained artifact metrics for FASTER-processed data for comparison across approaches, data were then classified (but not rejected) according to the 6 artifact features in MARA.

The FASTER approach retained more data than HAPPE, but also retained much higher rates of artifact. Specifically, FASTER rejected a lower percentage of independent components [t(9) = −4.79, p = 0.001, n = 10] and retained significantly more EEG data variance [t(9) = 3.07, p = 0.013, n = 10]. However, FASTER also retained far higher mean [t(9) = 17.36, p = 0.000000031, n = 10] and median [t(9) = 16.14, p = 0.00000006, n = 10] artifact levels in the data, with mean artifact levels almost 6 times higher and median artifact levels more than 8 times higher than those found in HAPPE -processed data. Every one of the example files met artifact retention criteria for removal from further analyses post-FASTER processing. This pattern of high levels of retained data together with high levels of retained artifact through FASTER processing is consistent with incomplete artifact segregation and rejection. Thus, in the context of developmental EEG files, HAPPE outperforms FASTER in rejecting EEG artifact.



FASTER with MARA Component Rejection (FASTER-MARA)

Next, we tested whether combining the FASTER approach with MARA independent component rejection would lead to improved artifact rejection for developmental EEG files compared to the combination of W-ICA with MARA rejection in HAPPE. Data were processed as above in FASTER [see section Fully Automated Statistical Thresholding for EEG Artifact (FASTER)] and all retained independent components were then subjected to MARA classification and rejection. The combined FASTER-MARA approach rejected significantly more components [t(9) = 4.4, p = 0.002, n = 10] and retained far less EEG data variance than HAPPE [t(9) = −5.23, p = 0.001, n = 10]. Moreover, the FASTER-MARA approach resulted in higher mean [t(9) = 7.41, p = 0.00018, n = 10] and median [t(9) = 7.41, p = 0.000040, n = 10] artifact levels in the preserved components compared to HAPPE. Indeed, 6 of the 10 example files met either the retained variance or retained artifact criteria for removal from further analyses using the FASTER-MARA approach. Therefore, HAPPE retained EEG data variance while rejecting EEG artifact more successfully than the FASTER-MARA approach for these developmental EEG files.



W-ICA with Automatic EEG Artifact Detection Based on the Joint Use of Spatial and Temporal Features (W-ICA with ADJUST)

ADJUST is a fully-automated algorithm for classifying and rejecting independent components using a combination of spatial and temporal data features optimized for detecting blinks, eye movements, and generic discontinuities. Importantly, ADJUST was not designed to robustly detect other kinds of artifact, including EMG artifact that frequently occurs in developmental and patient populations. Here, filtering, channel selection, electrical noise removal, bad channel rejection, W-ICA, and ICA steps were all performed as in HAPPE to optimize the ICA decomposition classified by ADJUST. Data were then subjected to ADJUST component rejection instead of MARA-based rejection. As with the FASTER approach, retained artifact metrics for comparison across approaches were then generated through the artifact feature classification in MARA (without component rejection).

The ADJUST approach retained somewhat more EEG data variance than HAPPE [t(9) = 2.33, p = 0.044, n = 10], although it did not reject significantly fewer components than HAPPE [t(9) = −1.64, p = 0.14, n = 10]. However, ADJUST retained higher mean [t(9) = 3.48, p = 0.007, n = 10] and median [t(9) = 2.27, p = 0.050, n = 10] artifact levels compared to HAPPE, and half of the example files met the artifact retention criteria for removal from further analysis with the ADJUST approach. Taken together, this pattern of increased data variance retention along with increased artifact levels suggests more incomplete artifact segregation and rejection during ADJUST compared with HAPPE, most likely due to the EMG artifacts that ADJUST was not designed to robustly eliminate.



W-ICA with Semiautomatic Selection of Independent Components for Artifact Correction in EEG (W-ICA with SASICA)

The last approach compared to HAPPE was SASICA, a semi-automated software for classifying and rejecting independent components using a combination of data features and statistical thresholds to guide manual component rejection. SASICA was not designed to be fully-automated, a drawback in processing large datasets. Unfortunately, as in FASTER, SASICA performs optimally when EOG channel information and dipole fit information is present, which is typically not present or reliably calculated for developmental data. Thus, the observed SASICA performance with developmental EEG may not reflect its entire capability with the lower-artifact, adult EEG data on which it was tested. Here, filtering, channel selection, electrical noise removal, bad channel rejection, W-ICA, and ICA steps were all performed as in HAPPE to optimize the ICA decomposition classified by SASICA. Data were then segmented into regular 2-s epochs and subjected to SASICA component classification, with manual rejection of all recommended components. All features that could be calculated with the developmental example files were employed to classify components, including the autocorrelation feature (with automatic correlation threshold with 20 ms lag selected), focal component feature (automatic Z threshold selected), focal trial activity (automatic Z threshold selected), signal to noise ratio feature (with default settings and threshold ratio of 1), and correlation with other channels feature (automatic comparison to other channels and threshold of 4). Retained artifact metrics for comparison across approaches were then generated as before through artifact feature classification in MARA without rejection.

SASICA did not significantly differ from HAPPE in the amount of EEG signal retained post-component rejection by any metric. That is, SASICA did not statistically differ from HAPPE in either the percent of components rejected [t(9) = −1.530, p = 0.160, n = 10] or the amount of EEG variance retained after rejection [t(9) = 1.61, p = 0.143, n = 10]. However, SASICA retained significantly higher mean [t(9) = 3.302, p = 0.009, n = 10] artifact levels after component rejection compared with HAPPE. Indeed, half of the data files met the artifact retention criteria for removal from further analysis with the SASICA approach. There was also a trend-level difference with higher median artifact levels in retained data through SASICA compared with HAPPE [t(9) = 1.96, p = 0.082, n = 10]. Thus, while SASICA retains comparable amounts of EEG variance, the higher level of retained artifact makes it less successful than HAPPE processing developmental data.




DISCUSSION

EEG recordings like those collected with developmental populations present particular challenges from a data processing perspective, as they typically contain a high degree of artifact contamination, can by necessity be shorter than recordings collected in adults, and are often recorded in the absence of polygraphic signals for localizing physiological artifact. Multiple toolboxes and pipelines exist for various steps of EEG processing (e.g., FASTER, SASICA, ADJUST, ASR, TAPEEG), but these softwares are often optimized for conditions that are not met for these EEG classes due to data's constraints. To date, there is a paucity of resources tested with or targeting EEG data with high-artifact levels, short recording lengths, or absent physiological signal co-recordings. As demonstrated above, direct application of contemporary processing strategies used with typically-functioning adults, like ICA, without additional pre-processing considerations are not effective under these short-length, high-noise conditions. However, as fields move toward larger sample sizes with higher-density EEG channel layouts, the traditional manual data rejection approach used in many labs is becoming unsustainable. Moreover, despite the heightened importance of EEG data quality monitoring and reporting in fields with the highest rates of artifact contamination, no standardized metrics are currently systematically referenced in the literature (Cuevas et al., 2014; Keil et al., 2014).

HAPPE addresses each of these challenges as an automated EEG pipeline optimized for short recordings and/or high levels of artifact. HAPPE also encourages standardized reporting of processing performance through its report of data quality metrics and the sample distributions for these metrics from a large developmental dataset for reference. Evaluation with these data quality metrics revealed that HAPPE's combination of W-ICA and ICA with MARA-based component rejection outperformed seven alternative artifact rejection approaches under conditions of high artifact, short EEGs. That is, relative to these other approaches, HAPPE both rejected a greater proportion of artifacts and in almost all cases, simultaneously preserved a greater proportion of the underlying signal. HAPPE also retained more files per dataset with sufficient data for analyses than any of the alternative approaches. This robust performance achieved with the small example dataset is supported by the post-HAPPE data quality metric distributions across a much larger developmental dataset of 867 files. HAPPE thus constitutes a robust approach and pipeline to meet the growing need for automated, accessible pipelines for EEG processing, especially for developmental neuroscience and psychology fields.

There are several limitations to HAPPE that should also be considered. Foremost is that in most cases users must select a subset of channels for processing in HAPPE ashigh-density EEG recordings in developmental samples most likely will not meet the data-length requirements for robust ICA decomposition without a dimension reduction step. An alternative reduction approach to channel subset selection is to perform principal component analysis (PCA) on the entire channel set and then pass a subset of the resulting PCA components to ICA (instead of channel-level data). It should be noted, though, that the PCA approach introduces nonlinearities into the data (a slight corruption of the signal), and through selecting a PCA component subset, some amount of brain-origin signal is discarded with the rejected components (Onton and Makeig, 2006). For these reasons, the current version of HAPPE implements the channel subset approach, ensuring the entirety of the selected channels' data is processed and preserved as native EEG signal. A second limitation is that HAPPE is not currently suitable for preprocessing data intended for Event-related potential (ERP) analyses, due to its utilization of a 1 Hz high-pass filter (Acunzo et al., 2012). A complimentary HAPPE pipeline appropriate for ERP pre-processing is currently being developed and will be made publically available. Lastly, the amplitude of the EEG signal (and thus any EEG power estimates) is often decreased through both W-ICA and ICA approaches. Prior research has also found power spectrum and coherence measure distortions after using ICA. However, these disruptions are improved using the W-ICA approach (although formal statistical comparisons were not reported; Castellanos and Makarov, 2006). To the extent that W-ICA reduces the number of components rejected through subsequent ICA in HAPPE, this potential distortion may be reduced relative to alternative ICA approaches in HAPPE as well. In the present example files, the EEG signal morphology and shape of the EEG power spectrum appear preserved (see also Levin et al., under review, for illustrations of this effect). Still, he magnitude of absolute (raw) power values generated on HAPPE-processed EEG data should not be directly compared to those from data processed without either W-ICA or ICA due to the established differences in signal magnitude.

HAPPE is freely available, covered under the terms of the GNU General Public License (version 3) (Free Software Foundation, 2007). HAPPE can be used as stand-alone software as presented here, and through the Batch EEG Automated Processing Platform (BEAPP) software (see accompanying manuscript submission to this issue). HAPPE and associated files may be accessed at: https://github.com/lcnhappe/happe.
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Existing tools for the preprocessing of EEG data provide a large choice of methods to suitably prepare and analyse a given dataset. Yet it remains a challenge for the average user to integrate methods for batch processing of the increasingly large datasets of modern research, and compare methods to choose an optimal approach across the many possible parameter configurations. Additionally, many tools still require a high degree of manual decision making for, e.g., the classification of artifacts in channels, epochs or segments. This introduces extra subjectivity, is slow, and is not reproducible. Batching and well-designed automation can help to regularize EEG preprocessing, and thus reduce human effort, subjectivity, and consequent error. The Computational Testing for Automated Preprocessing (CTAP) toolbox facilitates: (i) batch processing that is easy for experts and novices alike; (ii) testing and comparison of preprocessing methods. Here we demonstrate the application of CTAP to high-resolution EEG data in three modes of use. First, a linear processing pipeline with mostly default parameters illustrates ease-of-use for naive users. Second, a branching pipeline illustrates CTAP's support for comparison of competing methods. Third, a pipeline with built-in parameter-sweeping illustrates CTAP's capability to support data-driven method parameterization. CTAP extends the existing functions and data structure from the well-known EEGLAB toolbox, based on Matlab, and produces extensive quality control outputs. CTAP is available under MIT open-source licence from https://github.com/bwrc/ctap.
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1. INTRODUCTION

Recording electroencephalography (EEG) data has become more affordable, scalable, and feasible in disparate conditions inside and outside the lab (Cowley et al., 2016, pp. 50–66), with research- and consumer-grade devices (Badcock et al., 2013). Methods and computing power to handle EEG datasets have also grown in complexity and power. It has consequentially become more and more important to manage the scientific data-processing workflow of recording EEG, to achieve best results.

In this regard, EEG research follows a similar trend to other data-intensive disciplines, e.g., bioinformatics (Leipzig, 2016), such that it requires a scientific workflow management system (SWMS) to give standardized, comparable results at scale. The needs of such an SWMS include:

1. enabling basic features for management of analysis pipelines,

2. enabling comparison of outputs between unrelated recording setups/analysis pipelines1,

3. reducing or removing reliance on trial and error for parameter optimization (Holl et al., 2014).

This paper describes a system for managing the pre-processing workflow for EEG recordings: implemented as the Computational Testing for Automated Preprocessing (CTAP) toolbox. CTAP is implemented for Matlab 2016b and above, based on the data-specification and functions from the popular EEGLAB toolbox (Delorme et al., 2011). The basic features of CTAP have previously been described in Cowley et al. (2017); therefore here we have a more practical focus on illustrating the usage of CTAP.

This paper describes three functional analysis pipelines, with separate Methods and Results subsections for each one, demonstrating CTAP's approach to each need 1–3 above. They are available from the CTAP repository at https://github.com/bwrc/ctap, as follows:

• ctap/templates/Frontiers_manuscript_examples/runctap_manu2_basic.m

• ctap/templates/Frontiers_manuscript_examples/runctap_manu2_branch.m

• ctap/templates/Frontiers_manuscript_examples/runctap_manu2_hydra.m

Each pipe processes EEG data obtained from a server hosted by the Schwartz Centre for Computational Neuroscience (SCCN), University of California San Diego. The final output of each pipe is a simple event-related potential (ERP) visualization of the conditions recorded in the dataset; any more complete analysis is assumed to depend on the user's own research question.

First, the management of analyses is illustrated with a basic linear pipeline, which shows the core CTAP structure of processing steps, quality control outputs, and usage options that help with processing management.

Second, comparison of outputs is illustrated with a branching pipeline. A branching tree structure of pipes enables users to extend the core functionality into a configuration that can compare competing processing approaches, while remaining a single project.

Third, parameter optimization is illustrated with a pipeline that utilizes repeated analyses of a given parameter range to discover the best performing value. By embedding a parameter optimization step in their pipe, users can go from testing a single parameter value to sweeping a range or set of values, extending the capability of CTAP to find an optimal analysis approach with controlled and tidy workflow management. The so-called HYDRA method (standing for Handler for sYnthetic Data Repeated Analysis), is still under development, yet to be published but available in the development branch of CTAP repository.

Note that there is considerable overlap between each way of using CTAP, and the three pipelines above focus on distinct themes merely for clarity. The ultimate use of CTAP is envisaged as a branching, parameter optimizing analysis manager, integrating all three themes.

Existing SWMSs tend to operate at a larger and more general scale than CTAP, targeting whole disciplines rather than just a single type of data (Curcin and Ghanem, 2008). Such systems allow automation of the repetitive cycle of configuring data for analysis, launching computations, and managing storage of results (Deelman et al., 2009). SWMSs thus aim to let scientists focus on research, not computation management. Already almost 10 years ago, reviews attempted to create a taxonomy of SWMSs (Curcin and Ghanem, 2008; Deelman et al., 2009), describing most workflow platforms and languages as originating in a particular application domain. On the other hand, the workflows themselves can usually conform to a finite set of patterns or “motifs” (Garijo et al., 2014). This has driven further research on interoperability (Terstyanszky et al., 2014) and search (Starlinger et al., 2016) to help integrate SWMSs; while also implying that separate SWMSs can retain a more intra-disciplinary focus (supported by recent reviews Liu et al., 2015; Leipzig, 2016). A particularly interesting development for EEG-researchers is the investigation of optimization of workflow computation costs (Kougka and Gounaris, 2014), and/or optimization of factors within workflows, e.g., process parameters (Holl et al., 2014).

There are several criteria that an SWMS should meet. Saxena and Dubey (2011) specified four:

1. provide facilities for specifying workflows: inputs/outputs, intermediate steps, and parameters,

2. provide facilities for managing data provenance,

3. provide facilities to monitor the progress of the workflow, include facilities to detect anomalies, isolate faults and provide recovery actions, and

4. manage the execution of the workflow based on specified parameters/configurations.

For ease of reference, we summarize these criteria as (1) replicable, (2) traceable, (3) self-monitoring, (4) configurable/scalable. To these four criteria we add a fifth, based on recent advances in the literature (Holl et al., 2014; Kougka and Gounaris, 2014): (5) data-driven, i.e., providing facilities to adapt/optimize processes with respect to input variability.

We have previously described how CTAP relates to the state of the art for processing EEG, in a recently published open access article (Cowley et al., 2017). This discussion can be summarized as such: CTAP aims to address a niche need in the EEGLAB ecosystem, rather than aim to compete with existing standalone solutions. More recently, a number of contributions have been made following a similar agenda as CTAP, several gathered in this Research Topic. Frömer et al. (2018) present an EEG processing pipeline based on EEGLAB (and other) functions, which aims to support single-trial processing for robust statistical analysis. Gabard-Durnam et al. (2018) describe an automated EEG processing pipeline aimed at high-artifact data. In the realm of magnetoencephalography processing, Andersen (2018) details a pipeline based on the popular MNE-Python software, which aims at reproducible group analysis. At the time of writing, these tools seem to have somewhat similar philosophy yet different motivations. It seems likely that the literature is experiencing a “zeitgeist” of developing support for workflows and automation; thus all these contributions represent functionality that could complement each other, if further developed.

Based on the described state of the art and established SWMS criteria, CTAP can be considered as a highly specific form of SWMS, integrating workflow management and parameter optimization together with the rich existing body of methods and tools in the EEGLAB ecosystem.

In this paper, we will discuss CTAP usage, both as defined in three example pipelines, and also more subtle usage considerations such as how data storage affects use. Thus we focus on how CTAP is used, and leave to other sources (Cowley et al., 2017) the question of how CTAP works. We focus on each pipeline in turn, describing how each one works in the Methods subsections, and their outcomes in the Results subsections. In the Discussion, we describe how each SWMS criterion is met via one or more of the three usage scenarios of CTAP, and point out further capabilities, limitations, and future work.



2. METHODS

In the text below, code elements (including script names) are listed in courier; functions are marked by “()”; scripts are marked by “.m.”


2.1. Materials

Continuous EEG data was obtained from the database of HeadIT (Human Electrophysiology, Anatomic Data and Integrated Tools Resource). The data set is freely and permanently available, is described file-by-file at the source website2, and was chosen due to its simple and classic oddball trial structure. The protocol was an auditory two-choice response task with an ignored feature difference, i.e., participants categorized tones as either long or short, and were told to ignore the slightly higher pitch of the “deviant” ~10% of tones. Data was recorded with a Biosemi amplifier from 254 active-reference electrodes3, at sampling rate 256 Hz and 24-bit A/D resolution. Out of 12 participants, two had multiple recordings due to experiment interruption (subjects three and seven), and these were discarded from analysis in order to simplify the demonstration code.

All data was downloaded to the same directory, and files (which are all named “eeg_recording_1.bdf”) were renamed to the form “sNN_eeg_1.bdf” (where NN is a two digit number from [01.12]), to facilitate programmatic loading. The same procedure was applied to channel location files. This approach enables the simpler form of data loading in CTAP, i.e., programmatically building a Matlab data structure to represent all files with a given extension in a given folder. Another approach is discussed below.

For this paper, CTAP was run on a laboratory PC with Intel Core i7-7700, 3.6Ghz processor, 32GB RAM, Windows 10 Enterprise operating system. Timings of each pipeline are reported in Results.



2.2. The CTAP System

CTAP was introduced in Cowley et al. (2017)4. For this paper, the relevant points are as follows:

• CTAP is based on Matlab (version 2016b or later) and EEGLAB, latest versions preferred.

• CTAP is not compatible with EEGLAB graphical user interface (GUI), and therefore is not found in the EEGLAB list of plugins.

• CTAP is operated via scripts called from the Matlab command line (either with or without the Matlab desktop GUI).

• Example scripts provided are designed to run without editing (i.e., reasonable default parameters are provided), but will always require at least specification of relative data location.

• Despite the above point, it is advised to always tune one's parameters to the task at hand.



2.3. Analysis Management: Basic CTAP Pipeline

The basic pipeline, runctap_manu2_basic.m, is defined to load the HeadIT data and channel locations from a single directory and preprocess it. A post-processing function follows preprocessing, to extract and plot grand average ERPs of the standard and deviant tones in short- and long-tone conditions. An electrode location above the left super-lateral temporal lobe was used to calculate ERPs (A31 in the HeadIT montage, close to T7 in the 10/20 system). ERPs lasted ±1 s around the stimulus onset, were baseline corrected by the mean of the signal within −1…0 s, and smoothed using a moving average of one quarter of the sample rate.

In Cowley et al. (2017), Figure 2 showed a schematic of the generic CTAP pipeline operative flow. Here, Figure 1 shows a similar schema for the basic pipeline. All CTAP pipelines are built around the “step set” structure, which is simply a list of function handles with an identifier string and possibly other control fields (e.g., save = true/false).
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FIGURE 1. The schematic functional structure and data flow in the CTAP basic pipeline, showing the flow of data via arrows between functions (in white boxes) and scripted operations (marked by asterix). The colored, rounded-corner boxes show parts that a user must define (from left to right): (1) “configuration” box represents the main script with global parameters and calls to required functions. (2) the “analysis pipe” is defined in the “sbf_cfg()” subfunction, returning the Cfg structure. (3) the “measurement config” field of the Cfg structure, “Cfg.MC,” is obtained by scanning a given directory using “confilt_meas_dir().” Cfg is then processed by “ctap_auto_config()” and passed to “CTAP_pipeline_looper(),” directing the latter function from where to load and how to preprocess the data. The final output is then created by “oddball_erps().” The dashed-line inset shows a schema of the core operational process of the basic pipeline, consisting of two sequential step sets S1, S2; each containing multiple functions.



In runctap_manu2_basic.m, the first code section (lines 35–52) defines parameters that allow configuration of CTAP itself: usage variations can be obtained by, e.g., electing to overwrite old results, process subsets of subjects, or call subsets of the step sets.

The next section (lines 55–67) calls the necessary functions to create the key data structure Cfg. Initially, Cfg is defined in terms of functional steps, arguments to functions, and important fields such as preferred reference montage (e.g., average), labels of EOG channels to use for artifact detection, etc. Such code is wrapped in a sub-function sbf_cfg() for code readability, but can take any form. The subsequent lines are required to further specify which measurements to process and which steps to run. Finally Cfg is passed to ctap_auto_config() to check it is well-formed and has all required parts, and match arguments to functions.

The next two sections (lines 70–94) call the functional parts of CTAP: CTAP_pipeline_looper() preprocesses the EEG according to the step sets in Cfg; and ctap_manu2_oddball_erps() calculates and plots condition-wise ERPs. The step sets are simple. First, 1_load contains the steps to prepare data: loading, re-referencing, temporal blink classification, highpass filter, and Independent Components (ICs) Analysis (ICA) decomposition. The second step set, 2_artifact_correction, provides detection of ICs related to horizontal saccades (using ADJUST toolbox Mognon et al., 2011), and to blinks (using CTAP's built in method Cowley et al., 2017); then detection of bad channels by variance of the Median Absolute Deviation (MAD—of a channel from the dataset). Each detection routine is followed by a function that either rejects or corrects the bad data, and the bad channels are interpolated.

Step set 2 is sandwiched by taking two “peeks,” or snapshots, of the data state. The peeks serve to assess the state of the data before and after artifacts are removed, providing raw-data plots and statistical moments of segments of data which are synchronized between different points in the pipeline.

In addition to outputs that the user generates specifically via the pipeline (saved mainly as visual diagnostics from each function), CTAP stores the history of all operations and parameters in the EEG data structure. This history is also logged, showing in human-readable format all steps taken and their outcomes. Separate log files record all data rejected/corrected.



2.4. Output Comparison: Branched CTAP Pipeline

The branched pipeline, runctap_manu2_branch.m, presents two alternative approaches to artifact detection (so represents the simplest form of branched tree). The code directly extends the basic pipeline, with the same step 1 and two alternative steps 2. Each step, 1, 2A, 2B, is encoded in a separate subfunction, which can be considered as separate pipes. Thus, pipe 1 is the “trunk” of the tree, and pipes 2A and 2B are two separate branches. These subfunctions are referenced in a cell array of function handles, which is passed to CTAP_pipeline_brancher() to process all requested parts. This brancher function loops through each pipe, and handles path creation and validating the Cfg structure. Figure 2 shows the structure of the branching pipeline.


[image: image]

FIGURE 2. Schema of functions and data flow in CTAP branched pipeline. Scripted configuration has fewer specifications than in basic pipeline, because they are internal to pipe subfunctions. Each pipe subfunction is handled by CTAP_pipeline_brancher(), which configures the relationship to other pipes in terms of ordering and directories, and then invokes CTAP_pipeline_looper(). The same process can be repeated in CTAP_postproc_brancher(), calling a custom post-processing function on each “branch” of preprocessed data. The dashed-line inset again shows the core operational process, this time based on pipes (which here contain a single step set each). Despite the relative (compared to basic pipeline) complexity of the functional schema on the right, the inset shows the simplicity of the branched pipeline's topography.



The steps in pipes 1 and 2A replicate the steps in the basic pipeline. In order to illustrate parameter usage, we experiment with a small tweak of the parameters for bad channel detection in 2A, to try improving the noise rejection. The method “variance” is retained, but the MAD value is tweaked by the parameter “bounds” (a tuple representing lower and higher MAD at [−5;2.5]), and the outcome is constrained to the worst 5% (12) channels. Another pipe, 2B, is added for comparison. 2B attempts to do a general artifact detection over ICs, using methods from the FASTER toolbox (Nolan et al., 2010); and bad channel detection using the spectral method in EEGLAB.

In general usage, the branching approach changes from the linear approach as follows:

• step sets must be defined in subfunctions, so that they can become function handles in the pipe array;

• each pipe (after the trunk) must define one or more source pipes, from which data will be loaded, where source = pipe_ID#step_ID;

• each pipe must itself define the steps to run;

• when multiple calls to a single function are defined in an unbranched pipe, such as CTAP_peek_data() in the basic pipe, then arguments to that function can be declared just once (if they do not change across calls). In contrast, for branched pipes each pipe must declare arguments for its functions separately;

• as in the basic pipe, an ID is needed: here the ID is created inside each pipe, for clarity.

2.4.1. Comparing Branches

The branched pipeline creates similar outputs to the basic pipeline, but also provides the opportunity to compare branches. This can take two forms: comparisons between changes to data, and between data after change.

Comparing data after change is primarily done via the function CTAP_peek_data(). This function provides many options (documented in function help comments, Cowley et al., 2017, and the CTAP wiki) to output visual and statistical summary data from segments of EEG data selected at given or random time points. CTAP_peek_data() can also save the EEG and ICA-activation data within the peek segment (not set by default). Thus peeks can help compare between the outputs of different pipes. For numerical data (statistics or EEG/IC data), this process can be automated using the CTAP_postproc_brancher() function and simply taking the difference between earlier and later outputs. Reduction in range, skewness, kurtosis, for example, would all tend to indicate an improvement in signal to noise ratio (SNR).

In runctap_manu2_branch.m pipes are compared with a single final “peekpipe.” Peekpipe is given multiple source pipes: 1, 2A, and 2B; and will thus create multiple output directories, which are automatically labeled by the concatenated pipe ID and source ID. Peekpipe contains one step set with one function, CTAP_peek_data(). In this case, we set the step set “save” field to false, because the data is not meaningfully changed.

Changes by rejection of bad data are recorded in .mat file format in the pipe's “quality_control” directory, and can therefore be directly compared in Matlab. If changes to the data are of similar kind, e.g., rejection of bad channel artifacts by two separate methods, then the simple principle of parsimony can apply: given final data of similar quality, the method that rejects the least data should be preferred.



2.5. Parameter Optimization: HYDRA Pipeline

The HYDRA pipeline operates exactly as other pipelines, depending on which type it is based on: here, the branched pipeline. What distinguishes HYDRA pipelines is the inclusion of the function CTAP_sweep(), which attempts to find the optimal value from a range, for a given parameter of a target function. It does this by repeatedly testing the data against each value in the given range or set. The optimal value, selected by an objective function, is then passed back to the calling pipe to serve as the parameter value for a later call to the given function. This is all illustrated by the example pipeline runctap_manu2_hydra.m. Figure 3 shows the schematic structure of the HYDRA pipeline.
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FIGURE 3. Schema of functions and data flow in HYDRA parameter-optimization pipe, based on the branched pipe. The branch 2B has been left out, and branch 2 defines a sweep step instead. The function CTAP_sweep() executes a given “mini-pipe” in a separate instance of CTAP_pipeline_looper() for each value in the given parameter range. The consequent range of outcome values (in terms of bad channels, ICs, segments, or epochs) is used to select a final value for the optimized parameter according to a simple criterion function. The dashed-line inset shows the relatively simple sweep process.



In this pipeline, the pipes 1 and 2 are similar to runctap_manu2_branch.m pipes 1 and 2A. Pipe 2 includes one extra function, CTAP_sweep(), placed right before its target function, CTAP_detect_bad_channels(). Thus the sweeping deals with data at that point, right after two types of bad component detection and handling. As well as the name of the function it will target, CTAP_sweep() takes as arguments the target function; the method for detection, variance; the parameter to sweep, “bounds”; and the range of values to sweep. Here, the parameter bounds is in the range 1 to 6 MAD, incrementing by steps of 0.2. This MAD range was chosen by empirical observation, noting that the extreme values result in either very few or very many channels rejected.

CTAP_sweep() also takes a “mini-pipe” parameter, SWPipe, which defines a step set that tests each value. CTAP_sweep(), by default, selects a final parameter value based on an estimate of the inflection point in the curve of outcome values. This point is defined here as the parameter value for which the change in outcome value from step i to i+1 is closest to 1 standard deviation (SD) of the range of outcomes (where i is in [1.n-1], n = size of parameter range). The approach of selecting the parameter value by calculating the inflection point is chosen as a simple way to express a change in the signal which is big enough (i.e., not merely a fluctuation in the “plateau”), but not too big (i.e., following the steepest period of change).

The final value selected by CTAP_sweep() is passed back to pipe 2, becoming the “bounds” parameter for the subsequent call to CTAP_detect_bad_channels().




3. RESULTS

Having run the pipelines on the HeadIT data, the user will be able to access extensive results as follows.


3.1. Basic CTAP Pipeline Outcome

Basic pipe completed preprocessing for each subject/EEG recording in ~40 min, on average. ERP creation then took ~270 s per subject.

The various human- and computer-readable bookkeeping performed by CTAP is documented, in Cowley et al. (2017) and on the repository wiki. The basic pipeline saves informative logs and quality control reports in the output directory. For example, the file logs/all_rejections.txt shows (after extracting suitable comparisons) that artifact routines removed ~11% of bad components, and ~5% of bad channels. The file logs/peek_stats_log.xlsx indicates that the minimum-to-maximum range and SD are both reduced by about 40%, to a between-subjects average value of 3,611 and 33 μV, respectively.

The peek stats included a Kolmogorov-Smirnov test, which indicated that every channel was approximately normally distributed. Thus, we can estimate that ~95% of the data lies within 2 SDs of the mean, which equates to a group average data spread of 136 μV (reasonable for EEG data in an ERP-analysis context).

The 40% reduction in data magnitude suggests that significant artifact removal occurred. The final range (>3.5 V), however, is higher than expected from neural sources, suggesting some artifact remained. The effect of time-locked signal averaging will enhance time-locked activations, diminish non-systematic noise, and reduce amplitude overall. Thus, we can look at ERPs to discover whether systemic noise is reduced to acceptable levels.

The ERPs derived from the basic pipeline are shown below in Figure 4, for the data after step set 1 “initial loading” (top row), and after step set 2 “artifact correction” (bottom row). These ERPs show that little systematic change was induced by artifact correction, i.e., the upper (Figures 4A,B) and lower (Figures 4C,D) panels have the same amplitude ranges and very similar morphology. ERPs show an expected deviant-trial activation difference, especially at peak P300.


[image: image]

FIGURE 4. ERPs from basic pipeline data. (A,B) Show the short and long tone conditions, respectively, for data after step set 1. (C,D) Show short and long tone ERPs after step set 2. In all ERPs, blue colors are standard trials and red colors are deviant trials. Two thick foreground lines show the grand average, while per-subject averages are shown by narrow lines in background, illustrating group variance. Ordinate and abscissa are μVolts and time in seconds, respectively. Zero time marks the stimulus onset. Deviant trials show greater responding at peak P300.



Examining the peek statistics by subject, it is clear that subject 12 is an outlier, with values an order of magnitude greater than any other subject, both before and after artifact correction (nevertheless, correction reduced range and SD by 43%). An experimenter could thus choose to remove this subject and proceed with the remaining data with good confidence. On the other hand, we can also examine this subject's CTAP output in more detail to identify why the data was not cleaned more, and determine how to improve results.

CTAP artifact detection steps illustrate their outcomes with visuals saved subject-by-subject under the quality_control directory. For the basic pipeline, this includes bad IC detection by ADJUST toolbox (Mognon et al., 2011), blink detection by CTAP's template method (Cowley et al., 2017), and bad channel detection by channel variance.

First, a scalp map plot shows at a glance the spatial activations of all the ICs detected by ADJUST: for subject 12 they all appear to be genuine artifacts. Check here:

quality_control/CTAP_detect_bad_comps/set2_fun2/

We can double check this by studying spectra and ERP-image for each IC, under:

quality_control/CTAP_reject_data/set2_fun3-badcomps/s12_eeg_1_session_meas/

Second, a scalp map plot shows spatial activations of any ICs identified as blink related: for subject 12 this appears quite blink–like. Check:

quality_control/CTAP_detect_bad_comps/set2_fun4/

We can then check the spectra and ERP-image of this IC: however the ERP-image (labeled “Continuous data”) does not show the characteristic pattern of a blink IC (short strong bursts of activation in an otherwise quiet signal). See:

quality_control/CTAP_filter_blink_ica/set2_fun5-blinkICs/s12_eeg_1_session_meas/

We can then examine the raw data ERP of vertical EOG and vertex channels, which shows no change from before to after correction (by filtering). Check here:

quality_control/CTAP_filter_blink_ica/set2_fun5-blinkERP/

This suggests that blink–related activations remained in the data which could explain its large final magnitude. Blink-detection visualizations are shown in Figure 5.
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FIGURE 5. Subject 12 blink detection quality-control visuals. (A) The scalp map (top left), power spectrum (top right), and “Continuous data” ERP-image (below) of the IC detected as blink–related. The fact that the ERP-image does not contain blink–like activations especially suggests that selection of this IC (as a blink template) was a false positive. (B) ERP plot of the raw data during identified blink events, for vertical EOG and vertex channels. The ERP is clearly unchanged after correction (and very artifactual besides).



Bad channel detection is the last step to check, starting with a histogram of channel variance values. See:

quality_control/CTAP_detect_bad_channels/set2_fun6-variance/

For subject 12, a subset of channels has variance lying far outside the threshold, while the rest are grouped near the median.

The function CTAP_reject_data() records the bad channels' scalp location and a raw data snapshot. See:

quality_control/CTAP_reject_data/set2_fun7-badchans/s12_eeg_1_session_meas/

The scalp map shows that all bad channels are located in the frontal scalp region, and thus probably dominated by ocular artifacts, which seems supported by the corresponding raw data. The co-located grouping of channels implies that interpolation from neighboring channels cannot provide a solution, and this recording cannot be used or processed further without solving the ocular artifact problem.

From these outputs, we can conclude that the pre-processing of (at least) subject 12 failed, but the failure was due to cascading effects of faulty blink removal, and thus the data might be salvageable with another approach. CTAP's branching functionality helps to more easily compare approaches.



3.2. Branched Pipeline Outcome

For each subject / EEG recording, branched pipe completed pipe 1 in ~25 min; pipe 2A in ~01:45; pipe 2B in ~04:50; and the peek pipe in ~3 min.

ERPs derived from the branched pipeline are shown in Figure 6, for the data after pipes 2A and 2B (data after pipe 1 are identical to basic pipe, step set 1). The outcome of pipe 2A is again similar to basic pipeline steps 1 and 2: the tweak of bad channel parameters had no significant effect, except to raise the channel rejection rate to 7% (bad ICs remained ~11%). The lack of effect might be explained by the observations regarding ocular artifacts in basic pipeline.
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FIGURE 6. ERPs from branch pipeline data. (A–D) Show short and long tone conditions, respectively. (A,B) Show pipe 2A data; (C,D) show 2B. In all ERPs, display settings are as for Figure 4. ERPs show that pipe 2B provides greater noise-reduction than pipe 2A, particularly in the pre-stimulus period.



The outcome of pipe 2B is more productive: both short and long tone conditions show reductions in amplitude of 30 and 33%; while both conditions show greatly reduced variance of subject-wise averages in the pre-stimulus period. This followed data rejection rates of ~10% for bad ICs (by FASTER Nolan et al., 2010) and ~2% for bad channels (by EEGLAB's spectral method). The reduction in channel rejection rates (5 → 2%), while retaining good outcomes, may indicate improved specificity in bad IC detection. In pipe 2B, the FASTER toolbox is the primary means of removing troublesome artifacts that are temporally and spatially limited but still frequent enough to show in an ERP. The outcome of FASTER is visible in the scalp maps of detected bad ICs; see:

quality_control/CTAP_detect_bad_comps/set3_fun1/

Here, subject 12 for example shows at least 10 strongly-activating frontally-located ICs. Examining the spectra and ERP-image plots of rejected ICs, we can see the first four ICs correspond to temporally- and spatially-isolated single-impulse signals of relatively large amplitude. See Figure 7, and compare with the outputs obtained after running the pipeline:
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FIGURE 7. First four artifact ICs detected by FASTER for subject 12, showing scalp map, spectra, and ERP-image plots. The ERP (blue line), shown below the plot labeled “Continuous data,” indicates the temporally-isolated sharp impulse signals. These are likely to originate from non-biological artifact.



quality_control/CTAP_reject_data/set3_fun2_badcomps/s12_eeg_1_session_meas/

These components were not evident in the ICs detected by pipe 2A, probably because (a) the ADJUST toolbox was restricted to look for horizontal saccade-type ICs, and (b) the large activations are not blink–related and so would not be caught by CTAP's blink-template method. Overall, FASTER was programmed to be more liberal by setting the parameter match_logic = @any, meaning the detection function would trigger for any of FASTER's inbuilt metrics. Despite this, less bad ICs were detected for subject 12 using FASTER (25) than using ADJUST + blink-template (32+1).

Finally, no bad channels were detected for subject 12 after rejection of bad ICs detected by FASTER. This does not seem to be a mere failure of the spectral method, because (a) bad channels were detected for all other subjects, proving the method does work for this data; and (b) peek outputs for subject 12 do not show any clearly artifactual channels in either raw data or IC activations. See the peek at:

quality_control/CTAP_peek_data/set4_fun1/s12_eeg_1_session_meas/

This implies that the main problem with subject 12 was neither ocular nor channel artifacts, but strong impulse signals in frontal scalp locations (possibly the subject touched the electrodes).



3.3. HYDRA Pipeline Outcome

For each subject / EEG recording, HYDRA pipe completed pipe 1 in ~24 min; pipe 2 in ~10 min; and the peek pipe again in ~3 min.

ERPs derived from the HYDRA pipeline are shown in Figure 8, for the data after pipe 2. These ERPs are of comparable quality to branched pipe 2B, especially in the pre-stimulus period.
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FIGURE 8. ERPs from HYDRA pipeline data. (A,B) Show short and long tone conditions, respectively. In all ERPs, display settings are as for Figure 4.



The pipeline log logs/all_rejections.txt indicates that 10% of ICs (unchanged from branched pipe 2B) and 21% of channels were marked as bad, which is quite a large proportion. On the other hand, the large number of recorded channels implies that even losing a large fraction of them would not be catastrophic, so long as the bad channels were spatially distributed widely across the scalp. This can be determined from the scalp maps saved when channels are rejected, see:

quality_control/CTAP_reject_data/set2_fun5_badchans/

Unfortunately, the example subject 12 returned 88/~34% bad channels, many clustered around the frontal scalp area. This suggests that (a) bad channel detection by variance may be a non-optimal method in this case; and (b) the method for selecting the final parameter value in the sweeping function may be too greedy.

The sweeps detected a number of artifactual channels which tended to follow an expected exponential decay, as shown in Figure 9. The discovered “inflection points” (shown in Figure 9 as red arrows) mark the MAD value which was then chosen as the final parameter to pass to the pipeline. The selected values tend to be quite low in the range, which seems problematic for cases with rapidly falling numbers of detected channels. More robust methods under development are discussed below.
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FIGURE 9. Sweep outputs for all 10 subjects (one line graph per subject), in terms of number of bad channels classified per each value of MAD in the range 1.0–6.0, in steps of 0.2. Discovered “inflection points,” marked by red arrows, were used to derive the MAD value chosen as the final parameter, indicated with vertical red lines.






4. DISCUSSION

Comparison of all pipeline outputs suggests that branched pipe 2B gives best performance, based on IC detection by FASTER toolbox, and channel detection based on spectral profile. Pipe 2B appears to provide the best distinction between standard and deviant conditions at the key P300 component, for both long and short tones. It is outside the scope of this paper to assess the neurocognitive results themselves; however these ERPs clearly show the morphology we should expect from an oddball task, with the “novelty-processing” P300 strongly responding to the deviant tone.

The strong performance of pipe 2B supports an approach based on bad IC detection via multiple features, as exemplified by the FASTER toolbox (see Figure 6), but it is dependent on the very high-spatial resolution dataset involved. Having many channels implies many ICs and thus it is worth searching across more feature spaces—FASTER by default searches five (Nolan et al., 2010). The outcome is higher sensitivity to artifacts, at the possible cost of specificity, but the cost can be borne due to the large number of ICs. Pipe 2B also compares well with HYDRA pipe 2 (Figure 8), which used FASTER, suggesting that spectral detection of bad channels outperforms variance-based detection, even when the variance threshold is not fixed but selected recording-by-recording 5. The “rejspec” method is also based on a fixed threshold, which could be selected per recording in a data-driven manner; however this approach was not chosen because “rejspec” is very slow.

Indeed, the methods selected were not chosen because they would be optimal, but rather because they complete in a reasonable time on regular computing hardware (not high-performance). Also, we chose well-known and understood methods, to permit the reader to focus on the novel elements we introduce.

The first, basic pipeline shows how CTAP meets the first three SWMS criteria: (1) replicable, (2) traceable, (3) self-monitoring.

First, the pipeline code completely encapsulates the processing: there are no vaguely-defined or manual steps, and configuration and running of the pipe are quite separate, which supports transparency and documentation. In addition, if the base CTAP code against which the pipe is defined should change, the EEG files preprocessed by CTAP will still contain detailed descriptions of the history of operations and complete parameter values. These factors make CTAP workflows replicable, meeting the first criterion of Saxena and Dubey (2011).

Second, the data provenance is encapsulated in the measurement configuration structure. In the demonstrated approach, the measurement structure is built merely by passing the input directory to confilt_meas_dir(). It is also possible to use a more robust (but more effortful) method, by defining a spreadsheet of subjects, recordings, and associated data. Using this approach, data can be stored in any directory structure desired, e.g., users might wish to store EEG recordings alongside clinical data in per-subject directories. The measurement configuration options make CTAP workflows traceable.

Third, the core CTAP looper is designed to allow pipes to experience errors without crashing the batch, i.e., errors will be logged and the currently-executing file will not complete, but later files will be processed as normal. On the other hand, while in development, the combination of debug mode and step sets allows for fine-grained examination of process outputs. A pipe can match steps into sets with any frequency, from one set for all functions, to one set per step. Thus, data can be saved for examination after all functions, after each function, or any combination. Thus, CTAP workflows are to a degree self-monitoring.

Branched CTAP workflows meet the fourth SWMS criterion: they are configurable/scalable. The branched pipeline begins to show the potential of CTAP. Only a single function is required to contain the peekpipe. Yet when applied with every other pipe as a source, the result is a tree of six nodes, which (for minimal programming effort) offers comparison of both parallel and sequential stages. Comparison between parallel nodes can be interesting (i.e., 2A vs. 2B), but it is more interesting to examine the evolution of data, e.g., applying some summary functions to sequential nodes to track data distribution statistics over time. Though the example tree shown in this paper is rather simple, it hints at the many possibilities available. For example, the multi-source feature could allow, not just a single pipe as above, but whole tree to branch off of every node in an existing tree. This could be used, e.g., to generate competing ERP-derivation approaches from multiple levels of preprocessing, testing the effect of increased information removal on ERPs.

Finally, the HYDRA pipeline shows how CTAP meets the data-driven criterion. Obtaining a parameter value from repeated testing of the data at a given point implies that the pipeline becomes tuned to each specific recording from the point of sweeping onwards. Given that it is a completely replicable automated operation, it cannot be considered a case of cherry-picking. Although this part of CTAP is a work in progress (future work is described below), the ability to seamlessly blend parameter sweeping into an EEG processing workflow is novel.

The core structure of the workflow is Cfg, creation of which is one of the most important parts of CTAP, and is a combined effort of the user and CTAP. In the branched approach, users have great flexibility to define Cfg, since it can be generated by one or many functions and/or scripts, which each may contain self-modifying arguments such as source or runSet specification. On the other hand, certain arguments such as pipe ID and source ID (which are usually created inside each pipe for clarity), could alternatively be passed in as arguments. This would require more complex parameterization of various functions, but in return would allow more robust re-configuration of the workflow tree by changing sources.

The ERP function, designed specifically for this dataset, is very simple because showing such visuals is secondary to the main objective of showing workflow management features. In fact, a more comprehensive ERP analysis solution is under development for CTAP, as a package for the R statistics computing platform (R Development Core Team, 2008).

Extraction of features is another capability of CTAP that is of general interest for EEG work. This includes features such as oscillatory band power in predefined segments, and also file-wise meta-data that is normally accessible only when an EEG file is loaded in Matlab, which can be too slow for automated file-management purposes. Such features are not exported in the demonstration pipes for this paper because they are not central to SWMSs, and have been shown elsewhere (Cowley et al., 2017).


4.1. Limitations and Future Work

CTAP is still under development, and as such does not contain all planned/required functionality, nor guarantee stability of code. Indeed the HYDRA functionality is pending publication as a peer-reviewed article, and may undergo considerable change by that time.

For example, the method of selecting final values from a parameter sweep is a matter of on-going work. In the method used, inflection points represent the midway mark between two testing steps for which the difference in number of bad channels is close to 1SD of the whole set of tests. As such, the method is too sensitive to the length of the “tail.” It besides takes no account of important domain-specific considerations. For example for bad channel detection, the spatial distribution is important: channels should not be too clustered or they cannot be interpolated from their neighbors. In development is a method of selecting a final parameter for bad channel detection methods that trades off the number of bad channels with the uniformity of their spatial distribution.

Currently, HYDRA implements just a simple range sweep. Thus the choice of final value is blind, i.e., cannot account for the “ground-truth” of whether detected artifacts are true positives or false positives. An upgrade is in development utilizing synthetic data, extrapolated by auto-regression from the recorded EEG data at the point of sweeping, and injected with synthetic artifacts. This synthetic dataset resembles the original, but contains fully-known ground-truth, such that detection algorithm classifier performance can be assessed in terms of specificity and sensitivity. This upgrade is expected to be published within a year of this writing.

A major problem when aiming to standardize EEG processing is choosing the point of reference. It is well-known that the reference strongly affects both quality and interpretation of the signal. However references are usually chosen according to the custom of the field, as either a particular point on the head or an average of all electrodes, and results thus potentially quite arbitrary. Established techniques exist to standardize the reference electrode: for example Yao's (2001) method sets the reference as a point at infinity, effectively creating zero-reference data, with EEGLAB integration (Dong et al., 2017). The PREP pipeline also provides an approach to reference standardization (Bigdely-Shamlo et al., 2015). CTAP will integrate one or more of these options in the long run.



4.2. Conclusion

We described CTAP, a toolbox to provide the features of a SWMS, aiming to make EEG preprocessing more replicable and scalable in an era when very large EEG datasets are becoming a more routine reality. The article demonstrated processing for a genuine dataset, recorded in an experimental context and freely available online in perpetuity.

Three “modes” of CTAP use were demonstrated, each one building on the one before to expose more functional features that assist the user in managing their EEG workflow. Although many of these features are by themselves quite minor, in combination they provide the basis of a flexible SWMS for EEG preprocessing.

CTAP is currently beta software, but is already used in several research and clinical sites across the Nordic region, processing from tens to tens of thousands of EEG recordings. Development is ongoing, and further integration of CTAP with other functionality from the EEGLAB ecosystem is expected to improve the overall usefulness and usability of all components: the whole becoming greater than the sum of its parts.
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FOOTNOTES

1In this paper we discuss “recording setups” to refer to hardware, protocols and environment with which data was recorded; and “analysis pipelines” to refer to software/hardware the data is processed with.

2The page http://headit.ucsd.edu/studies/9d557882-a236-11e2-9420-0050563f2612 links to data with a complete description of each recording.

3Note, the channel locations DO NOT match the locations of the Biosemi 256 channel cap published on the Biosemi website. Only channel location files found on the HeadIT website should be used. Channel location settings used in this paper have been verified by correspondence with Julie Onton, one of the original experimenters at SCCN.

4And see documentation at http://github.com/bwrc/ctap/wiki – in this paper, the term “wiki” will refer to this URL.

5However, see Limitations below with respect to the method of selection, which is work in progress at the time of writing. In this respect, HYDRA is not currently a strong contribution in terms of computer science; but shows how CTAP provides a frame.
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An important aim of an analysis pipeline for magnetoencephalographic (MEG) data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer his or her questions. The example question being answered here is whether the so-called beta rebound differs between novel and repeated stimulations. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The data analyzed are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. The processing steps covered for the first analysis are MaxFiltering the raw data, defining, preprocessing and epoching the data, cleaning the data, finding and removing independent components related to eye blinks, eye movements and heart beats, calculating participants' individual evoked responses by averaging over epoched data and subsequently removing the average response from single epochs, calculating a time-frequency representation and baselining it with non-stimulation trials and finally calculating a grand average, an across-group sensor space representation. The second analysis starts from the grand average sensor space representation and after identification of the beta rebound the neural origin is imaged using beamformer source reconstruction. This analysis covers reading in co-registered magnetic resonance images, segmenting the data, creating a volume conductor, creating a forward model, cutting out MEG data of interest in the time and frequency domains, getting Fourier transforms and estimating source activity with a beamformer model where power is expressed relative to MEG data measured during periods of non-stimulation. Finally, morphing the source estimates onto a common template and performing group-level statistics on the data are covered. Functions for saving relevant figures in an automated and structured manner are also included. The protocol presented here can be applied to any research protocol where the emphasis is on source reconstruction of induced responses where the underlying sources are not coherent.

Keywords: MEG, analysis pipeline, fieldtrip, beamformer, tactile expectations, group analysis, good practice


INTRODUCTION

Magnetoencephalography (MEG) studies often include questions about how different experimental factors relate to brain activity. To test experimental factors, one can create contrasting conditions to single out the unique contributions of each experimental factor. Single subject studies using MEG would face two limitations in singling out the contributions of experimental factors. Firstly, the MEG signals of interest are mostly too weak to find due to the noise always present in MEG data, and secondly there is an interest in making an inference from one's data to the population as a whole. Group level analyses can circumvent these limitations by increasing the signal-to-noise ratio and by allowing for an inference to the population as a whole. It should be mentioned though that single subject analyses can be meaningful for clinicians trying to diagnose patients. Epilepsy investigations are routinely carried out on single subjects. Despite the fact that most studies rely on group level comparisons to increase the signal-to-noise ratio and for allowing for inferences to the population, almost all tutorials are based on single subject analyses. In the current paper, part of a special issue devoted to group analysis pipelines, I try to remedy this for anyone fancying using the FieldTrip (Oostenveld et al., 2011) analysis package. The data is structured according to the Magnetoencephalography Brain Imaging Data structure (MEG-BIDS) format to ease access to the data (Galan et al., 2017) and it is only dependent on having access to MATLAB (MathWorks: mathworks.com).

The basic idea of the current group pipeline is to set up a structure that allows for:

• Running group analysis at the channel and source levels

• Dividing output files into folders belonging to the respective subjects and recordings

• Applying an operation across a group of subjects

• (Re)starting the analysis at any intermediate point by saving output for each intermediate point

• Plotting the results in a way that allows for changing the figures in a principled, but flexible manner

A structure that allows for all four points will minimize the time that researchers have to spend on (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable.


The Neuroscientific Experiment

Since the focus is on how to conduct a group analysis, the neuroscientific questions answered with the pipeline are not novel. The focus is rather on the pipeline facilitating other experimenters' research, so that they efficiently can answer their own novel and interesting questions. Specifically, the pipeline will be centered around reconstructing induced activity using a beamformer approach. Induced activity is activity that is not phase-locked to a given event, say the stimulation of the finger, but which is related to the event in terms of timing and frequency. For example, the presentation of a stimulus may consistently be followed by an increase of the power of, say, the 10 Hz part of the power spectrum. Because this increase is not phase-locked to the event it would averaged away in a classical evoked analysis, where time-courses are averaged together (Gröchenig, 2013). Using a beamforming approach the origin of the induced responses can be localized (Hillebrand and Barnes, 2005; Hillebrand et al., 2005). Similar approaches have been used successfully to localize induced responses in the visual domain (Muthukumaraswamy and Singh, 2013), induced responses in the sensory-motor domain (Jurkiewicz et al., 2006), induced responses in the auditory domain (Weisz et al., 2014), induced responses related to attentional recruitment (Dalal et al., 2009; Ishii et al., 2014), induced responses related to face processing (Luo et al., 2007), induced responses related to the so-called resting state network (Hillebrand et al., 2012), induced responses related to working memory (van Dijk et al., 2010), induced responses related to mismatch detection (Garrido et al., 2015) and many more. Thus, the pipeline presented is based on a robust and well-tested procedure.

The reserved digital object identifier for the data repository, where data for this experiment and scripts for the pipeline can be freely downloaded is: doi: 10.5281/zenodo.998518. The corresponding URL is: https://zenodo.org/record/998518. The study that the data are taken from is not printed yet. The updated github code can be found at https://github.com/ualsbombe/omission_frontiers.




MATERIALS AND EQUIPMENT


Subjects

Twenty participants volunteered to take part in the experiment (eight males, 12 females, Mean Age: 28.7 y; Minimum Age: 21; Maximum Age: 47). The experiment was approved by the local ethics committee, Regionala etikprövningsnämnden i Stockholm. Both written and oral informed consent were obtained from all subjects.



Paradigm

The paradigm is based on building up tactile expectations by rhythmic tactile stimulations. These tactile expectations are every now and then violated by omitting otherwise expected stimuli (Figure 1). The inter-stimulus interval was 3,000 ms. Around every 25 trials, and always starting after an omission, periods of non-stimulation occurred that would last 15 s. The first 6 s worked as a wash-out period, and the remaining 9 s were cut into three epochs of non-stimulation. There are thus nine trigger values in the data responding to nine different kinds of events (Table 1).


[image: image]

FIGURE 1. An example sequence of the experimental paradigm is shown. The annotations on the bottom show the coding used throughout for the different events of interest. Stimulations happened at a regular pace, every 3 s. When omissions occurred, there were thus 6 s between two consecutive stimulations.





Table 1. Mapping of trigger values and annotated events.
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During the stimulation procedure, participants were watching an unrelated nature programme with sound being fed through sound tubes into the ears of participants at ~65 dB, rendering the tactile stimulation completely inaudible. Participants were instructed to pay full attention to the movie and no attention to the stimulation of their finger. In this way, expectations should be mainly stimulus driven, and thus not cognitively driven or attention driven. Information about the labeling of triggers and numbers of trials can be seen in Table 1.

An analysis of induced responses will be carried out. It is known from many experiments that tactile stimulations are followed by a desynchronization in the alpha and beta bands. The desynchronization is followed by the so-called beta rebound, a subsequent increased synchronization (Salmelin and Hari, 1994; Salmelin et al., 1995). Beamformer source reconstructions will be made based on the beta rebound. For both analyses in sensor and source space, a statistical comparison will be made between Standard 1 and Standard 3. We will explore whether the beta rebound differs between novel (Standard 1) and repeated (Standard 3) stimulations. The specific parameters going into the analysis will become apparent in the analysis steps below.



Preparation of Subjects

In preparation for the MEG-measurement each subject had their head shape digitized using a Polhemus Fastrak. Three fiducial points, the nasion and the left and right pre-auricular points, were digitized along with the positions of four head-position indicator coils (HPI-coils). Furthermore, about 200 extra points, digitizing the head shape of each subject, were acquired.



Acquisition of Data

Data was sampled on an Elekta TRIUX system at a sampling frequency of 1,000 Hz and on-line low-pass and high-pass filtered at 330 and 0.1 Hz, respectively. The data were first MaxFiltered (–v2.2) (Taulu and Simola, 2006), movement corrected and line-band filtered (50 Hz). MaxFiltering was done with setting the coordinate frame to the head coordinates, setting the origin of the head to (0, 0, 40 mm), setting the order of the inside expansion to 8, setting the order of the outside expansion to 3, enabling automatic detection of bad channels and doing a temporal Signal Space Separation (tSSS) with a buffer length of 10 s and a correlation limit of 0.980. Calibration adjustment and cross-talk corrections were based on the most recent calibration adjustment and cross-talk correction performed by the certified Elekta engineers maintaining the system.




ANALYSIS

The analysis pipeline is built up around five scripts for analyzing the relevant MEG and MRI data and four scripts for plotting what comes out of the analysis steps (Table 2). Run the script create_MEG_BIDS_data_structure.m to set up the folder structure that the remaining functions depend on.



Table 2. The 10 scripts that cover all relevant steps of the analysis pipeline.
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Each analysis script begins with three sections: SET PATHS, ADD PATHS, and SUBJECTS AND DATES. In the SET PATHS section, home_dir should be set to the user's own home directory. ADD PATHS adds FieldTrip and the folders that contain the functions for the analysis scripts (in this example sensor space analysis, Code Snippet 1). SUBJECTS AND DATES contains all the subject names and the dates of their recordings (Code Snippet 1). These three sections are followed by sections that are used to apply the actual analysis to the data. See Figure 2 for an overview of the pipeline for each subject. The boxes on the overview each have a function associated with them which can be accessed from the analysis scripts (Table 2). The analyses have been run with FieldTrip-20170906 (ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/).
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FIGURE 2. Cookbook for performing a single subject analysis. Numbers point to the sections below.




Goal of Analysis

The goal of the analysis is to compare beamformer reconstructed activity between novel and repeated stimulations for the beta rebound statistically. To meet this goal, the following are necessary: (1) induced responses from each subject's raw data are extracted (sensor_space_analysis.m, Table 2); (2) Statistics are done on the induced responses for the purpose of identifying when and at what frequency the differences in the beta rebound are statistically significant between novel and repeated stimulations (statistics.m, Table 2) (3) volume conductors and forward models are created based on the individuals MRIs (mr_preprocessing.m, Table 2); (4) beamformer source reconstructions are made on the individual level (source_space_analysis.m, Table 2); (5) statistics are made across the events based on the individual source reconstructions (statistics.m, Table 2). Furthermore, scripts are supplied for plotting all steps and calculating grand averages (Table 2). In these analyses, I will focus on the so-called beta rebound (~15–21 Hz) that manifests as an increase in power from around 500 to 1,400 ms after a tactile stimulation (Gaetz and Cheyne, 2006; Gaetz et al., 2010; Cheyne, 2013).


Code Snippet 1. SET PATHS, ADD PATHS, and SUBJECTS AND DATES sections which are used to set up all analysis scripts.
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Understanding the Pipeline

The function called loop_through_subjects.m (Code Snippet 2) is crucial. This is the function that all pipeline functions below are using. The function is somewhat complicated, but it is very important since it is the one that establishes and maintains the structure and naming of folders and files. The arguments that go into it (Table 3) explicates the idea behind it.



Table 3. Arguments for loop_through_subjects, which structures input and output of all operations done on single subjects.
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Code Snippet 2. The loop_through_subjects function. This function is used to specify input (names), output (names), the function that take the input, the configuration that should be fed to the function. This is applied to all subject recordings in subjects_and_dates. Configurations (cfg) to FieldTrip functions can be used to easily change how the function is applied.
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There is a similar function for doing operations across all subjects at once called apply_across_subjects.m (Table 4, Code Snippet not shown here). loop_through_subjects.m loops through all subjects, applies a function to all of them with a configuration structure, specifies input and output files and controls whether earlier output should be overwritten. All single subject figures shown below are created from subject sub-01. apply_across_subjects.m is intended for operations that need to load data from all subjects before the operation can be performed, e.g., grand averages or operations that are applied to grand averages, dependent on the running_on_grand_average argument (Table 4). In contrast, loop_through_subjects consecutively loops through each subject independently. The application of each of the sub-functions comes with an estimated time for how long it takes to apply, including loading and saving, based on running it on a computer with the following specifications: Memory 126 GiB and 32 processors running at 2.60 GHz.



Table 4. Arguments for apply_across_subjects, which structures input and output of all operations done across subject.
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STEPWISE PROCEDURES


Sensor Space Analysis

The sensor space analysis is dependent on the functions in the sensor_space_analysis_functions folder. These cover steps from reading in raw data to creating a time-frequency representation (Table 5). All functions have a short documentation about what input they take.



Table 5. Functions in the sensor_space_analysis_functions folder and a brief description of what their purposes are.
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Trial Function

This is the function that is used to define trials from the raw data. This defines what parts of the raw data constitute trials and the event codes to be associated with them (Table 1). In Figure 3 the raw data browser can be seen.


[image: image]

FIGURE 3. (Top) The raw data browser for the example subject. (Bottom) A zoom in on some sensors.





Define Trials and Preprocess Data (1)

Code Snippet 3 shows how the definition of trials from raw data and the preprocessing of data. It also serves as an example of how all analysis steps are carried out for all analysis steps. The second line shows which FieldTrip functions are used (here ft_definetrial, ft_preprocessing, etc.). This is always followed by four options that should be set: overwrite (should existing output files be overwritten?), input [name(s) of input file(s) (.mat format only)], output [name(s) of output file(s)] and function_name (name of the function that should be applied). Then a configuration (cfg) is built and the loop_through_subjects function is run to apply the settings to all subjects. The configuration fields preprocessing and trial_definition are fed directly to ft_preprocessing and ft_definetrial, respectively.

In the trial definition, the trigger channel, the time in seconds that should be included around the trigger (pretrigger and posttrigger) and the trial function are entered. In the preprocessing, we only include demeaning based on the duration of the trials. No low-pass filtering is necessary since we are going to do a time-frequency analysis. adjust_timeline is used to adjust the offset of the trigger due to a delay between the trigger and the actual stimulation. downsample_to is used to reduce sampling rate, and effectively the data size, but it also means that we can only consider frequencies at maximum 100 Hz (Nyquist frequency = half the sampling rate).

Applying the function define_trials_and_preprocess_data takes ~5 min per subject.


Code Snippet 3. Code for defining trials from raw data and preprocessing data.
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Clean Data (2)

Clean data sequentially, first magnetometers (MEGMAG) and then gradiometers (MEGGRAD) with graphical aid (Code Snippet 4). High-variance trials should be removed. The indices for the removed trials is written to a tsv-file (tabulator separated values). An example plot of the cleaned epochs can be seen in Figure 4.
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FIGURE 4. (Top) The data browser showing the epoched data. A butterfly plot showing all the magnetometers. Here the first epoch is shown. (Bottom) The data browser showing all the magnetometers from one of the removed bad trials.



How long that the function clean_data takes to apply is dependent on user input.


Code Snippet 4. Code for cleaning the preprocessed data.
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Run Independent Component Analysis (3)

Decompose data into 60 independent components (Code Snippet 5). In these components, it is often possible to identify components related to eye blinks, eye movements, and heart beats. The resultant components can be seen in Figure 5. The number of components chosen, 60, reduces the dimensionality of the data. After MaxFiltering data dimensionality is reduced from 306 dimensions, corresponding to the number of channels, to a range between 60 and 70 independent dimensions. Reducing the data to 60 independent components is thus not reducing the dimensionality much more than the application of MaxFiltering already did. A particular issue that may arise when using ICA is that some components, say the heart beat component, may not be identifiable in all subjects. This would mean that it would not be possible to process all subjects in the same manner. There may be several reasons for this, e.g., the heart beat signal is only very weakly represented in the MEG data, as may happen for subjects where the distance between the heart and the head is great, i.e., tall subjects, or it may simply be that the recording is too noisy to faithfully record the electrocardiogram. The problem of having differently processed subjects is greatest in between-group studies where having different signal-to-noise ratios between groups may bias results. In within-group studies, the problem is thus less severe, since the decreased signal-to-noise ratio will apply to all conditions the given subject participated in, if ICA is run on all conditions collapsed, as is the case here. Alternative strategies for eye blinks and eye movements is to manually or automatically reject trials that contain eye blinks or excessive eye movements. Following the suggestions for good practice by Gross et al. (2013) one should describe the ICA algorithm (runica: Code Snippet 5), the input data to the algorithm (the epoched data: Code Snippet 5), the number of components estimated (60: Code Snippet 5), the number of components removed (two components: Figure 5) and the criteria for removing them [the likeness to eye blink, eye movements, and heart beat templates (Hyvärinen and Oja, 2000; Ikeda and Toyama, 2000; Jung et al., 2000) and seeing activity in the time courses of the components corresponding to what is recorded with electrooculographic and electrocardiographic channels (can be plotted with plot_ica from plot_sensor_space.m)]. It should also be mentioned that one can use semi-automatic procedures as to whether components are likely to be related to eye blinks or heart beats (Andersen, this issue).
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FIGURE 5. The components found from the independent component analysis.



Applying the function run_ica takes ~8 min per subject.


Code Snippet 5. Code for decomposing the data into independent components.
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ICA Components (3)

An example of how the components numbers should be entered into the file, ica_components.tsv, for each subject can be seen in Table 6. These are also the components that were removed from the present data.



Table 6. Components removed for eye blinks, eye movements and heart beats.
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Remove Components (3)

Remove the components entered into ica_components.tsv from the cleaned data (Code Snippet 6) to remove the orthogonal contributions from eye blinks, eye movements, and heart beats.

Applying the function remove_components takes ~2 min per subject.


Code Snippet 6. Code for removing the components entered into ica_components.tsv from the epoched data.
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Timelocked Analysis (4)

Find the averages for each condition (Code Snippet 7). Example topographical plots can be seen in Figure 6.
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FIGURE 6. Magnetometer topographical plots for averages from 50 to 70 ms, showing a dipolar pattern typical for activation of the somatosensory cortex. Scale is the same for all plots.



Applying the function timelocked_analysis takes < ~45 s per subject.


Code Snippet 7. Code for averaging the epochs.
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Untimelocked Analysis (5)

Remove the average response from each trial (Code Snippet 8). This is done to minimize how much the timelocked response is present in the subsequent time-frequency representations.

Applying the function untimelocked_analysis takes ~1.5 min per subject.


Code Snippet 8. Code for removing the averaged response from each epoch.
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Time-Frequency Representation (6)

Calculate the time-frequency representations for all of the conditions (Code Snippet 9). This estimates the power in each frequency for each time point based on a wavelet with width 7.

Applying the function time_frequency_representation takes ~70 min per subject.


Code Snippet 9. Code for calculating the time-frequency representation for each condition.
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Combine Gradiometers (7)

Combine the gradients for each pair of gradiometers for all of the time-frequency representations (Code Snippet 10) into planar gradient magnitudes. The analysis will focus on gradiometers, since magnetometers are normally quite noisy for time-frequency representations.

Applying the function combine_gradiometers takes ~2 min per subject.


Code Snippet 10. Code for combining the gradiometer data in the time-frequency representation.
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Demean Time-Frequency Representations (8)

Demean all time-frequency representations with the non-stimulation time-frequency representation (Code Snippet 11). Power relative to non-stimulation can be seen in Figure 7. Absolute power estimates are hard to interpret, and therefore demeaning by a common condition, non-stimulation, makes the time-frequency representations comparable and thus interpretable.
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FIGURE 7. Power topographical plots for Standards and Omissions (baselined with Non-Stimulation) based on gradiometers averaged over 500 to 900 ms and 15 to 21 Hz (the beta rebound). Scale is the same for all plots.



Applying the function baseline_tfr takes ~1 min per subject.


Code Snippet 11. Code for demeaning the time-frequency representation with the non-stimulation time-frequency representation.
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CREATING AND SAVING FIGURES

Figures can also be created and saved for each subject by using the loop_through_subjects function. As an example, code (Code Snippet 12) is supplied for plotting Figure 7. Scripts for plotting the plots in the manuscript, and several other plots, are all included in the files provided alongside this protocol paper, i.e., plot_sensor_space.m, plot_processed_mr, plot_source_space, and plot_grand_averages. The user can easily extend the number of plotting functions by modeling them based on the example below (Code Snippet 12). All plotting functions also require a field, save_figure, in the configuration (cfg). This is a Boolean indicating whether or not the figure should be saved.


Code Snippet 12. Example code for creating plots of single sensors (not shown here) and topographies (Figure 7) for time-frequency representations. Creating and saving plots for each subject is also done with loop_through_subjects.
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MR-PREPROCESSING

The preprocessing of MR-data is dependent on the functions in the mr_preprocessing_functions folder. The names of these functions and a short description of their applications can be seen in Table 7. These cover all steps from reading in the MR-data, through realigning and segmenting, and finally creating a head model (volume conductor) and a leadfield (forward model) for each subject. Due to reasons of anonymity, the downloadable data will not contain the raw MRI data, such that the first three functions cannot be applied to the downloadable data (Code Snippets 13–16). The functions are included though, so that the user can apply to data of his own. The output of segment_mri.m is included in the downloadable data, so the analysis can be started from there.



Table 7. Functions in the mr_preprocessing_functions folder and a brief description of what their purposes are.
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Read Dicoms (9)

Create an MRI MATLAB structure based on reading in the dicoms with ft_read_mri (Code Snippet 13).


Code Snippet 13. Code for creating an MRI-structure based on reading in the dicoms.
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Realign to Fiducials (10)

Align the MR-image to the fiducials (Code Snippet 14). This is done to make the first alignment to the head shape of the subject that was digitized with a Polhemus Fastrak. The fiducials that the MRI should be aligned to are the nasion and the left and right pre-auricular points, but these may differ depending on the acquisition device used.


Code Snippet 14. Code for opening the interactive alignment tool for aligning MRI with fiducials.
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Realign to Digitization Points (11)

Align the fiducial-aligned MRI to of the head shape digitization points digitized with the Polhemus Fastrak (Code Snippet 15). This is done to further optimize the alignment between the head of the subject and the MR-image recorded. The code below relies on an interactive alignment procedure where the user can displace, rotate and scale the head such that they align with the digitization points. The recommended procedure is to make a rough alignment such that the nose from the head model and the outline of the nose digitized with the Polhemus Fastrak roughly align. Subsequently the iterative closest point procedure (cfg.headshape.ica Code Snippet 15) is used to minimize the distance between the head shape based on the MRI and the head shape based on the digitization points. This realignment should always be checked, which can for example be done by running ft_volumerealign again.


Code Snippet 15. Code for opening the interactive alignment tool for further aligning the fiducial-aligned MRI with the extra head shape digitization points acquired with the Polhemus Fastrak.
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Segment the MRI (12)

Segment the MR-image into brain, skull and scalp using ft_volumesegment (Code Snippet 16). This is necessary since sources giving rise to MEG activity are assumed to only exist in the brain.


Code Snippet 16. Code for segmenting the brain into the three tissue types: brain, skull and scalp.
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Make a Brain Mesh (13)

Make a brain mesh out of the segmented MRI with ft_prepare_mesh (Code Snippet 17). At this point a number of quality control figures can be made using plot_source_space.m (for an example, see Figure 8). The mesh is a triangulation of the brain based on 3,000 vertices.
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FIGURE 8. Quality control figure showing the brain, the digitization points, the sensors and the axes. This figure indicates if the realignment process has gone well. More quality figure checks are included in the pipeline.



Applying the function make_brain_mesh takes ~5 s per subject.


Code Snippet 17. Code for preparing a brain mesh out of the segmented MRI.
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Make a Head Model (14)

Make a head model (volume conductor) out of the prepared mesh with ft_prepare_headmodel (Code Snippet 18). A head model is a volume that specifies how the magnetic fields are conducted through the brain.

Applying the function make_headmodel takes ~1 s per subject.


Code Snippet 18. Code for making a head model (volume conductor) out of the prepared brain mesh.
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Make a Subject-Grid warped Onto a Template Brain (15)

Make a grid where the subject's MRI is warped onto a template brain with ft_prepare_sourcemodel (Code Snippet 19). The points on this grid that are inside the brain are the modeled sources of the source model. The warping means that the source reconstructions based on these source models can be compared across subjects.

Applying the function make_warped_grid takes ~1 min per subject.


Code Snippet 19. Code for making a grid where the subject's MRI is warped onto a template brain.
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Make the Lead Field Based on the Warped Grid (16)

Make the lead field based on the warped grid with ft_prepare_leadfield (Code Snippet 20). The brain mesh in the warped grid can be seen in Figure 9. The lead field models how the sensors will detect sources from any sources on the grid (inside the brain).
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FIGURE 9. The head model (volume conductor) inside the grid that has been warped to a common template.



Applying the function make_leadfield takes ~3 min per subject.


Code Snippet 20. Code for calculating the lead field (forward model) for all the sources of the warped grid that are contained by the brain.
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STATISTICS—SENSOR SPACE

The strategy used here will be to do statistics in the sensor space (Table 8) to find the time period in the beta rebound (~15–21 Hz) where the differences between novel (Standard 1) and repeated (Standard 3) stimulations are the greatest. Subsequently, the beamformer will be done on this time-frequency range. This strategy is one that one should be careful with since it may result in double dipping if anything that is found to be significant is reconstructed. In this example we have mitigated the risk of double dipping, since we specified we would test the beta rebound giving an approximate time range (500–1,400 ms) and frequency range (15–21 Hz), but we did not specify the exact time range and the exact frequency we would reconstruct for the purposes of comparing novel and repeated stimulations. In an ideal hypothesis testing study, both the time range and the frequency range would have been specified exactly beforehand.



Table 8. The function related to sensor space operations in the statistics_functions folder and a brief description of its purpose.
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Statistics, Time-Frequency Representation

To assess which differences in power arise due to differences in signal and which to change, one can run statistical tests on it (Code Snippet 21). Here, a simple mass-univariate test is run without correction. In Figure 10, a sensor plot can be seen where the non-significant changes (t-values < ~-2.09 or t-values > ~2.09) have been masked.
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FIGURE 10. (Top) Grand average multiplot masking the non-significant parts. Color shows where there is more/less power for Standard 1 when compared to Standard 3. Red square indicates the sensor shown below. (Bottom) Difference in the beta rebound. This is chosen for the subsequent beamformer analysis.



Applying the function statistics_tfrs takes ~10 min.


Code Snippet 21. Code for calculating the statistics for the time-frequency representations.
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SOURCE SPACE ANALYSIS

The source space analysis is dependent on the functions in the source_space_analysis_functions folder (Table 9). First, the untimelocked data are cropped to the time period showing the difference in the beta rebound. Secondly, Fourier transformation is done to estimate the power in the beta rebound frequency range. Finally, beamformer contrasts are estimated based on a contrast against source activity in the non-stimulation trials (Table 1). Optionally, the individual beamformer contrasts can be interpolated onto a common template for visualization if wished for.



Table 9. Functions in the sensor_space_analysis_functions folder and a brief description of what their purposes are.
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Crop Data (17)

Crop the data to the time window of interest (Figure 10; Code Snippet 22). The cropped data can be seen in Figure 11. It should be visible that there is no timelocked activity here.


[image: image]

FIGURE 11. The epochs in the beta rebound where they differ between novel and repeated stimulation (800–1,200 ms). It can be seen that there is no clear timelocked activity.



Applying the function crop_data takes ~30 s per subject.


Code Snippet 22. Code for cropping the epoched data into the time window of interest.
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Fourier Transforms (18)

Next step is to make Fourier transforms of the cropped data, focussing on the 18 Hz response (the beta rebound; Code Snippet 23). Estimated power for individual trials can be seen in Figure 12. It can be seen that power in general is higher for stimulations than non-stimulations. Three different transforms are made: one for each of the experimental conditions (Standards and Omissions), one for the Non-Stimulations and one for each of the combinations of each of the experimental conditions and the Non-Stimulations. Thus, 13 Fourier transforms are run for each subject.
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FIGURE 12. Fourier transforms. On the y-axis, power is illustrated, and the x-axis shows the trials. For the Standards (red), it can be seen that the power is greater than for Non-Stimulations (blue).



Applying the function get_fourier_transforms takes ~20 s per subject.


Code Snippet 23. Code for calculating the fourier transforms.
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Beamforming (19)

The actual source reconstruction is done using the non-stimulation trials (Table 1) as a contrast (Code Snippet 24). Beamforming measures the power at each single source point in the brain by applying a spatial filter to each source point to minimize the contribution from all other sources (Gross et al., 2001). The beamforming function (Code Snippet 24) is running three separate beamformers for each experimental condition (Standards and Omissions). First step is to run a beamformer on the Fourier transform based on the combination between the given experimental condition and the Non-Stimulation trials. The spatial filter estimated from the beamforming of that combination is then used for the subsequent beamforming of, second step, the given experimental conditions and, third step, the Non-Stimulation trials. Using a common filter makes the two beamforming results comparable. Finally, the beamformer contrast, i.e., between the beamforming of the given experimental condition and the beamforming of the Non-Stimulation trials is returned. For a given experimental condition, this reflects where sources are localized to that have greater or lesser power than the Non-Stimulation trials do.

Applying the function get_beamformer_contrasts takes ~1.5 h per subject if all events are reconstructed.


Code Snippet 24. Code for calculating the beamformer solutions based on the Fourier transforms and contrasting them against the non-stimulation cross-spectral density.

[image: image]






GRAND AVERAGES

The grand_averages script is dependent on the functions in the grand_averages_functions folder (Table 10). Note that there is one further option variable, running_on_grand_average. This is fed to the new convenience function apply_across_subjects, which is very similar to loop_through_subjects in its structure, but, as the name implies, apply_across_subjects, work on all subjects at the same time. running_on_grand_average is simply a logical variable telling apply_across_subjects whether subject data for each individual subjects needs to be loaded for the function applied. The grand averages are mostly for visualization.



Table 10. Functions in the grand_averages_functions folder and a brief description of what their purposes are.
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Grand Averages, Time-Frequency Representations

Grand averages can be calculated across all subjects (Code Snippet 25). The grand averages can be seen in Figure 13. One thing to keep in mind when doing MEG is that channels will align differently to the head across subject due to fixed positions of the sensor helmet and the different sizes and shapes of subjects' heads. This is in contrast to electroencephalography (EEG), where the EEG-cap is in the same relative place on all subjects. This difference in alignment has the consequence that grand averages should be interpreted with some care. Still the beta rebound is nicely present on all stimulations (Figure 13).


[image: image]

FIGURE 13. Grand average power topographical plots for Standards and Omissions (baselined with Non-Stimulation) based on gradiometers averaged over 500 to 1,400 ms and 15 to 21 Hz (the beta rebound). Scale is the same for all plots.



Applying the function calculate_grand_average_tfr takes ~8 min.


Code Snippet 25. Code for calculating the grand averages for time-frequency representations.
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Grand Averages, Beamformer

Grand averages can also be calculated across subjects since we used warped grids for the leadfield (Code Snippet 26). An example grand average can be seen in Figure 14 (note that interpolation is done before plotting on the common surface).
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FIGURE 14. Grand average beamformer contrast. Color shows where there is more/less power for Standard 3 when compared to Non-Stimulation. (0 means equal power, and 0.2 means 20% more power).



Applying the function calculate_grand_average_beamformer takes ~10 min.


Code Snippet 26. Code for calculating the grand averages for the beamformer source reconstructions.
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Grand Averages, Beamformer Interpolation

To plot statistically thresholded grand averages, it is necessary to interpolate the grand averaged data onto a common template (Code Snippet 27).

Applying the function interpolate_grand_average_beamformer takes ~10 s.


Code Snippet 27. Code for interpolating the beamformer source reconstructions onto a common template.
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STATISTICS—SOURCE SPACE

The statistics script is dependent on the functions in the statistics_functions folder (Table 11). Note that running_on_grand_average and apply_across subjects are also used here, as they are in the grand_averages script. Mass-univariate tests can be run on both time-frequency representations and on the beamformer source reconstructions. In the examples, no corrections are done for multiple comparisons. The code can be easily amended to do more advanced statistical testing, such as cluster analysis (Maris and Oostenveld, 2007). See ft_freqstatistics and ft_sourcestatistics for instructions on how to perform these.



Table 11. Functions related to source space operations in the statistics_functions folder and a brief description of what their purposes are.
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Statistics, Beamformer

Statistical significance can be assessed for the source reconstructed activity (Code Snippet 28) in a manner similar to how it was done for the sensor space activity (Code Snippet 21).

Applying the function statistics_beamformer takes ~9 min.


Code Snippet 28. Code for calculating the statistics for the beamformer source reconstructions.
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Interpolate Beamformer Statistics

The statistical values can also be interpolated onto a common template (Code Snippet 29). In Figure 15 a source plot can be seen where the non-significant changes have been masked. The differences in the beta rebound between novel and repeated stimulations was localized to the somatosensory cortex, the motor cortex, the supplementary motor area and the insula. These results fit well with findings in the literature (Cheyne, 2013).


[image: image]

FIGURE 15. Grand average beamformer interpolated onto a common template and non-significant voxels assigned no color. Colors indicate difference between Standard 1 and Standard 3. The cross-hair is centered on the contralateral motor cortex. Ipsilateral activation is also seen in the motor cortex.



Applying the function interpolate_statistics_beamformer takes ~5 s.


Code Snippet 29. Code for interpolating the beamformer statistics onto a common template.
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Summary of Analysis

On the sensor level we found the differences in the beta rebound bilaterally (Figure 10) across the central sensors, but with maximal power contralaterally (Figures 15). In the source domain the differences in the beta rebound between novel and repeated stimulations was localized to the somatosensory cortex, the motor cortex, the supplementary motor area, and the insula. These results fit well with findings in the literature (Gaetz and Cheyne, 2006; Gaetz et al., 2010; Cheyne, 2013).




DISCUSSION

The presented pipeline allows for covering all steps involved in a FieldTrip pipeline focussing on induced responses and the localization of their neural origin. Furthermore, it also supplies a very flexible framework that users should be able to extend the to meet any further needs that the user may have. For the functions that rely on FieldTrip functions, a user can easily change and add parameters in the normal FieldTrip way by adding and changing fields in the configuration (cfg) structures. To change the frequency to be reconstructed, for example, one can change the foilim field when making the Fourier transform (Code Snippet 23). It is also easy to include further steps in the analysis such as calculating connectivity, doing other kinds of source reconstructions such as Minimum Norm Estimates (Hämäläinen and Ilmoniemi, 1994).


Comparison With Other Type of Pipelines

The presented pipeline is especially use for extracting and imaging neural activity that is not phase-locked to any presented stimulation. When phase-locked activity is of interest, such as the time-locked activity depicted in Figure 6, there are other strategies that may work better, such as dipole fitting (Mauguière et al., 1997; Hari and Puce, 2017) or distributed source reconstructions such as the Minimum Norm Estimates (Hämäläinen and Ilmoniemi, 1994) mentioned above. These strategies work especially well for primary sensory responses that are often tightly phase-locked both within and across subjects. Also when there are distal coherent sources in the brain, beamformer might fail as discussed below.




POSSIBLE PITFALLS AND LIMITATIONS

A major assumption of beamformer approaches is that it is assumed that no two extended sources are correlated with one another on the extent of square millimeters (van Veen and Buckley, 1988; Hillebrand and Barnes, 2005). Linearly correlated sources cannot be imaged faithfully with beamforming approaches. (van Veen et al., 1997) showed that for two highly correlated sources, a beamforming approach reconstructed a single source in between the two sources. Hillebrand and Barnes (2005) argue that beamforming approaches generally work well, however, because neuronal processes are generally locally coherent but globally incoherent. A good example, however, of when this assumption is not met is when auditory stimulation is presented binaurally. The neuronal activity in the two auditory cortices will be coherent because they are phase-locked to the presentation of the stimulus. The paradigm used in this protocol article is likely to meet the assumption of uncorrelated sources since stimulation is presented unilaterally.

What may also be problematic with sensor-space analyses of induced responses is that the calculation of the grand average of sensors (as seen in e.g., Figure 14) rests on the assumption that the sensors measure the same neural activity across subjects. This is not likely to be the case since head shapes vary considerably between subjects. A possible strategy is to transform the head position of each subject to a position shared between subjects such as is possible with the MaxFilter software from Elekta. Another strategy employed here, is to perform the key analyses related to corroborating one's hypothesis in source space thereby eliminating the problem of sensors not measuring the same neural activity across subjects. The problem is not completely eliminated by doing the key analyses in source space, though, since there is a multitude of different time- and frequency-ranges one could choose to source reconstruct with a beamformer approach. Performing all possible source reconstructions for a given data set would cause a massive multiple comparisons problem, therefore statistics on the sensor space data can be used to constrain the number of time- and frequency-ranges one runs one's source reconstructions on. Constraining the number of source reconstructions in this manner, however, makes it clear that the analysis of induced responses is still dependent on the assumption of the sensors measuring the same neural activity across subjects. As long as this assumption is partially met, one might still find robust and statistically significant responses, such as the beta rebound effect found here.
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Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.

Keywords: EEG, source localization, Brainstorm, EEGLAB, auditory N100, auditory processing


INTRODUCTION

Despite strong competition from other imaging techniques, the scalp-recorded electroencephalogram (EEG) is still one of the key sources of information for scientists interested in the study of large-scale human brain function. Due to its high temporal resolution EEG acquisition technology is well suited to capture the essence of neural dynamics of perceptual, cognitive and motor processes. However, complex cognitive operations go hand in hand with complex spatio-temporal neuronal interactions. Even for the processing of very simple sounds several brain areas are involved and information of different brain areas has to be incorporated within tens of millisecond (Shahin et al., 2007). Due to volume conduction (among other reasons) the EEG signal recorded from a single channel is a mixture of contributions from an unknown number of different, even distant neural and non-neural sources (Lopes da Silva, 2013). Consequently, differences between conditions or individuals cannot easily be interpreted with regard to their spatial origin when only sensor level data is considered. Source modeling on the other hand allows to draw inferences about the timing and the location of brain processes of interest and may resolve to some degree the ambiguity we are faced with sensor level analysis (Michel et al., 2004; Lopes da Silva, 2013; Baillet, 2017). Despite the fact that a source level analysis does not solve the inverse problem (Musha and Okamoto, 1999; Grech et al., 2008), high-density EEG in combination with source modeling is considered as an electrical brain imaging tool (Michel and Murray, 2012), which helps to confirm predictions about the likely spatial origin of EEG sensor level features. For instance, we have used source level analysis of 96-channel EEG recordings to study cross-modal processing in the auditory cortex of cochlear implant users (Stropahl et al., 2015; Stropahl and Debener, 2017), and showed that in these individuals, auditory cortex is recruited for the processing of visual stimuli. This pattern has been repeatedly confirmed with EEG source analysis, as well as imaging modalities such as functional near infrared spectroscopy (fNIRS), but could not be easily obtained with functional magnetic resonance imaging (fMRI), which cannot be used for cochlear implant users (Sandmann et al., 2012; Stropahl et al., 2015, 2017; Chen et al., 2016). In other studies we used source level analysis to disentangle left and right auditory cortex activation patterns (Hine and Debener, 2007; Hine et al., 2008; Sandmann et al., 2015) and investigate the temporal evolution of auditory entrainment using 64-channel EEG recordings (Bauer et al., 2018).

There are numerous other examples of successful EEG source modeling. Most researchers agree that volume conduction heavily compromises the validity of sensor level connectivity pattern results (Schoffelen and Gross, 2009). Source modeling can facilitate the analysis by mitigating to some degree disadvantageous effects of volume conduction. Hence, source modeling seems useful for studying resting state EEG (Hipp et al., 2012), spontaneous neural oscillations and their spatial origin (Srinivasan et al., 2006) or to disentangle sub-processes of auditory perception (De Santis et al., 2007; Shahin et al., 2007). In a clinical context, EEG source modeling can be used to identify the epileptic focus in epilepsy patients (Brodbeck et al., 2011).

In the context of magnetoencephalography (MEG) analysis source modeling is well established and widely used (Baillet, 2017). There is an ongoing and recurrent debate on the spatial acuity of EEG and MEG source modeling (Cohen and Cuffin, 1991; Crease, 1991; Barkley, 2004; Baumgartner, 2004; Baillet, 2017). MEG and EEG source modeling do not necessarily yield the same source locations (Scheler et al., 2007), as the sensors have different sensitivities to different sources. EEG source modeling appears to be more sensitive to errors in the forward model (Leahy et al., 1998), but with a sufficient number of sensors, and use of an accurate individual head model with reasonable conductivity values, EEG source localization accuracy may be at par with MEG localization accuracy (Malmivuo, 2012; Klamer et al., 2014).

In the following we will show the joint use of two highly popular open source Matlab toolboxes, EEGLAB (Delorme and Makeig, 2004) and Brainstorm (Tadel et al., 2011) for performing EEG source modeling. While the former has been developed primarily for multi-channel EEG analysis, it provides some capabilities for MEG analysis as well. The opposite is true for Brainstorm, which has been designed for MEG analysis but is also well suited for EEG source modeling.

EEGLAB may currently be the most popular EEG analysis toolbox. Each release initiates thousands of downloads, the reference paper has been cited over 5,000 times, and an increasing number of powerful plugins has expanded its functionality. One reason for the popularity of EEGLAB may be that it offers functionality for Matlab newbies (graphical user interface) and fluent programmers alike. Another reason is that EEGLAB facilitates the use of independent component analysis (ICA), a linear decomposition approach, that, if applied correctly (Winkler et al., 2015), performs very well in the attenuation of various EEG artifacts (Jung et al., 2000a). Denoising EEG signals is not the only virtue of ICA, it can also be used to disentangle otherwise missed contributions from different brain sources (Debener et al., 2010). The focus of EEGLAB lies on sensor level analysis and the modeling of statistical, but not bio-physiological sources. The possibilities of performing and consequently visualizing the results of a dipole analysis are limited with EEGLAB.

Brainstorm on the other hand provides extensive possibilities of source estimation and advanced source level analysis on both, single subject and group level. However, the primary focus of brainstorm is on MEG processing, and not all processing steps are optimal or necessary for EEG data, and may not be overly intuitive for EEGLAB users. Furthermore, source modeling will often be only one step in the signal analysis of an otherwise complete analysis that could be performed with EEGLAB and custom-made Matlab routines.

Here, we demonstrate how a well-established EEGLAB based pre-processing (including ICA artifact attenuation) sensor level analysis can be combined with the source modeling of this pre-processed EEGLAB data in Brainstorm. We present a pipeline for computing single subject as well as group level source activity for EEG data when no individual anatomical data is available, using a standard head model as implemented in Brainstorm. The pipeline provides an easy way to estimate and compare source activity in (pre-defined) regions of interest.



MATERIALS AND EQUIPMENT


Participants

Data was collected from 10 participants with a mean age of μ = 48 years (SD = 13.7 years, age range: 21–68 years; 7 females, 3 males). All participants had normal or corrected-to-normal vision and normal hearing (thresholds <30 dB HL from 0.5 to 4 kHz). None of the participants reported acute neurological or psychiatric conditions. The study was conducted in agreement with the declaration of Helsinki and was approved by the local ethical committee of the University of Oldenburg. Each participant gave written informed consent prior to the experiment.



Experimental Design

The aim of the experiment was to elicit auditory evoked potentials (AEP) to analyse the N100 AEP. Participants therefore listened passively to auditory stimuli presented in a free-field setting. The experiment was conducted in a sound-shielded booth and participants were seated 1.5 m in front of a 24 inch monitor looking at a fixation cross. The auditory stimulus was a narrowband noise with a center-frequency of 1 kHz, a bandwidth of 100 Hz and a sampling frequency of 44.1 kHz. The narrowband noise had a duration of 400 ms and was presented through two high-quality speakers positioned at 45° azimuth in front of the subject. Prior to the experiment, intensity of the stimulus was adjusted individually to a comfortable loudness level in steps of 1 dB; loudness adjustment started at 79 dB(A). In total, 60 trials were presented with a jittered inter-stimulus-interval between 1,500 and 2,000 ms.



EEG Acquisition

Electroencephalography (EEG) data were collected from a 64 Ag/AgCl electrode cap with an equidistant sensor placement (Easycap, Herrsching, Germany) and a BrainAmp EEG amplifier system (BrainProducts, Gilching, Germany). In our experience, equidistant electrode placement based on infra-cerebral spatial sampling facilitates source localization efforts by a better coverage of the head sphere, although systematic comparisons to traditional 10–20 electrode layouts were not conducted (Hine and Debener, 2007; Debener et al., 2008; Hine et al., 2008; Hauthal et al., 2014; Stropahl and Debener, 2017). The nose-tip was used as reference and a central fronto-polar site as ground. To capture eye blinks and eye movements, two electrodes were placed below the eyes. Electrode impedances were kept below 20 kΩ. Sampling rate of EEG recording was 1000 Hz and online filters from 0.016 to 250 Hz were applied. Stimulus presentation was controlled with Presentation software (Neurobehavioral Systems, Albany, CA, USA).



Analysis Pipeline and Data Sharing

The EEG data of the 10 participants and the analysis scripts are available at https://figshare.com/s/48f8d9de715bafa5811b. The scripts and the detailed step-by-step tutorial are also available within the Supplementary Materials. Included is the EEGLAB code for the pre-processing of EEG data, including artifact attenuation using ICA (Bell and Sejnowski, 1995; Jung et al., 2000a,b) and CORRMAP (Viola et al., 2009). Furthermore, the Brainstorm source estimation pipeline was scripted and includes functionality for a group-level analysis. Note that a manual set-up of the Brainstorm database is necessary. A screenshot of the settings for the database used here can be seen in Supplementary Figure S2 (cf. Brainstorm tutorial on creating a new protocol http://neuroimage.usc.edu/brainstorm/Tutorials/CreateProtocol). To use the BEM head model, OpenMEEG has to be installed, which needs an active Internet connection (see Brainstorm Tutorial on head modeling http://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel).

The use of the provided script requires that users have at least basic understanding of Matlab and signal processing, as well as of EEG analysis. The provided scripts are under the MIT license and are provided without warranty of any kind. We do not take any responsibility for the validity of the application or adaptation of this code, or parts thereof, on other datasets.




STEPWISE PROCEDURE

Please download the analysis scripts as well as the EEG raw data here https://figshare.com/s/48f8d9de715bafa5811b (.zip). After unzipping the archive including all necessary files, Matlab needs to be opened and the current Matlab folder should be changed to the/scripts directory.


EEG Data Analysis

Pre-processing of EEG data was performed using custom scripts and EEGLAB 13.6.5b (Delorme and Makeig, 2004) within the Matlab environment (Mathworks). For a schematic illustration of the processing pipeline, see Figure 1.


[image: image]

FIGURE 1. Schematic illustration of the processing pipeline. The dashed line indicates that alternative processing steps are possible, but are not implemented in the current pipeline. EEG pre-processing using EEGLAB is shown on the left, while source analysis implemented in Brainstorm is shown on the right.



Step 1

The EEG raw data files (.vhdr, BrainAmp file format) are transformed to EEGLAB (.set) files. Execute the script ana00_convert_rawdata.m.

Step 2

Raw EEG data was subjected to an independent component analysis (ICA), based on the extended Infomax (Bell and Sejnowski, 1995; Jung et al., 2000a,b), to attenuate stereotypical artifacts such as eye blinks, lateral eye movements and electrical heartbeats (cf. script ana01_ICA.m).

ICA decomposition can be improved by high-pass filtering (Winkler et al., 2015) and by excluding data segments that contain rare and non-stereotypical events (Debener et al., 2010). In order to improve the ICA decomposition quality, data were low-pass filtered (windowed sinc FIR filter, cut-off frequency 40 Hz, filter order 500) and high-pass filtered (windowed sinc FIR filter, cut-off frequency 1 Hz, filter order 100; Widmann and Schröger, 2012; Widmann et al., 2014). To reduce computation time, data were then re-sampled to 250 Hz. In order to identify non-stereotypical events, continuous datasets were segmented into consecutive epochs with a length of 1 s. Epochs with a joint probability larger than three standard deviations (SD) were rejected prior to computing the ICA. The choice of this parameter was based on our lab standard. Please see Step 4 for further explanation of parameter choices for artifact correction. ICA was performed using the option ‘extended’, enabling the algorithm to extract sub-Gaussian and super-Gaussian sources (Lee et al., 1999). In our experience, this option can enhance the representation of noise sources and thereby improve artifact attenuation quality. The option ‘PCA’ reduced the number of components decomposed from 64 to 50. This step is not necessary but reduces computation time. Note that large datasets, and analyses strategies aiming for particular brain signals contributing little variance to the overall recordings, may benefit from decomposition without dimensionality reduction. The resulting ICA weights were then applied to the original, unfiltered, continuous data set, to allow for a paradigm-specific pre-processing (see below).

Step 3

Subsequently, ICA components representing artifacts were identified using the semi-automatic algorithm CORRMAP (Viola et al., 2009; cf. script ana02_corrmap.m). CORRMAP is compatible with EEGLAB and can be used as a plug-in (https://sccn.ucsd.edu/wiki/EEGLAB_Plugins). The algorithm clusters ICA components with a similar topography in all datasets based on a manually selected template component (see Supplementary Figure S3 for an exemplary CORRMAP output). Similarity between all ICA components and the user-selected template component is computed by a correlation of the ICA inverse weights (Viola et al., 2009). Here, the applied threshold criterion for selection was a correlation coefficient of r ≥ 0.8, which is the default value in CORRMAP and which has been proven to reveal accurate results. It is known that physiological processes such as eye blinks can be represented in more than one (but typically <4) ICA components, especially if high-density EEG recordings are used. CORRMAP therefore includes a parameter to define how many components could represent the same artifact (Viola et al., 2009). The maximum number of components that can be selected within one dataset was here set to three. Selected components were removed from each continuous EEG data sets (see Supplementary Figure S4). A more recently developed toolbox named Eye-Catch (Bigdely-Shamlo et al., 2013) seems to perform at par with CORRMAP and provides a fully automatic eye –component detection procedure.

Step 4

After cleaning the continuous data from stereotypical artifacts with ICA, EEG data sets were filtered with a low-pass (windowed sinc FIR filter, cut-off frequency 40 Hz, filter order 100) and a high-pass (windowed sinc FIR filter, cut-off frequency 0.1 Hz, filter order 500; cf. script ana03_preprocesing.m). Data were segmented relative to sound onset into 1s epochs (−200 pre-stimulus onset to 800 ms post-stimulus onset) and all epochs were corrected to a pre-stimulus baseline of 200 ms. Remaining artificial epochs not accounted for by ICA-based artifact attenuation were identified and rejected. We used the method of joint probability, which calculates the probability distribution of values regarding all epochs. Segments that contain artifacts are likely to show a difference in occurrence and can therefore be detected with this method. The parameters are set to a rather conservative threshold of 4 standard deviations to avoid selecting epochs containing useful data (joint probability of >4 SD; see Supplementary Table S1 for rejected epochs). The parameters were set according to our lab standards and the experimental conditions. Be aware that the choice of parameters depends on the quality of your EEG data, the experimental design and the analysis to be performed.



Source Analysis

Step 5

Cortical source activations were estimated using Brainstorm software (Tadel et al., 2011). Brainstorm uses a distributed dipoles model as fitting approach. For the current experiment, the method of dynamic statistical parametric mapping was applied to the data (dSPM, Dale et al., 2000). dSPM tends to localize deeper sources more accurately than standard minimum norm procedures, but the spatial resolution remains low (Lin et al., 2006). The dSPM method uses the minimum-norm inverse maps to estimate the locations of the scalp-recorded electrical activity and works well, in our experience, for modeling auditory cortex sources.

After EEGLAB based pre-processing (artifact attenuation, filtering and epoching, output from ana03_preprocessing.m), the EEG data were imported into Brainstorm (cf. script ana04_brainstorm.m Part 1). Note that in this pipeline no individual anatomies and no individual electrode locations are used. Instead one general electrode location file was used for all participants. For this, the exact positions of all cap electrodes were first digitized (Xensor electrode digitizer, ANT Neuro, The Netherlands) and the measured electrode locations were then visually inspected and manually corrected to fit the default anatomy using the Brainstorm graphical interface.

Single-trial pre-stimulus baseline intervals (−200 to 0 ms) were used to calculate single subject noise covariance matrices and thereby estimate individual noise standard deviations at each location (Hansen et al., 2010). The boundary element method (BEM) as implemented in OpenMEEG and was used as a head model using Brainstorms default parameters. The BEM model provides three realistic layers and representative anatomical information (Gramfort et al., 2010; Stenroos et al., 2014). For source estimation, the option of constrained dipole orientations was selected, which models one dipole, oriented perpendicular to the cortical surface for each vertex (Tadel et al., 2011). EEG data were re-referenced to the common average before source estimation, which is a default pre-processing step in most source analysis software. The main reason for re-referencing to the common average is to fulfill the assumption that a net source activity of zero current flow is achieved to not bias source strength estimates (cf. Michel et al., 2004). The single-trial EEG data is averaged for each participant and the estimate of active sources is performed on the subject average.



Extracting Source Activity Time Series

For the definition of a region-of-interest (ROI), the Destrieux atlas (Destrieux et al., 2010) as implemented in FreeSurfer (http://ftp.nmr.mgh.harvard.edu/fswiki/CorticalParcellation) and available in Brainstorm was used, as no individual anatomies of the participants were available. An auditory ROI was selected, corresponding to the ‘S_temporal_transverse’ scout in the Destrieux atlas. Individual peak activation of the N100 AEP in the auditory ROI were extracted and analyzed on a group level for both the right and left hemisphere (cf. script ana04_brainstorm.m Part 2–3).

Brainstorm offers the possibility to use predefined scouts (atlas based), or to manually define a region of interest either anatomically or functionally (e.g., based on the activation pattern of a localiser task). To illustrate this option, a second ROI was defined based on the source level activity. For this, the source level average group activation was calculated in Brainstorm, and the region around the maximal activity on the auditory cortex was used as center of the ROI (scout). In the current approach, the scout was defined manually by visual inspection. However, there are several options to define a scout. For example a statistical test that differentiates the activation of the baseline and the N100 peak could be applied (using statistical functions in Brainstorm). This approach gives a more objective way of defining the activation region for the N100 component. A similar approach to define a scout can be applied for comparing conditions or groups of subjects. The atlas-based and the manually defined activity-based scouts for the left and right hemisphere, have here a similar size (between for 10 and 15 vertices), which allows better comparison.



Time-Frequency Analysis

Brainstorm gives the option to perform a time-frequency analysis of the estimated source activation (cf. ana04_brainstorm_TF). The first steps are similar to the previously explained pipeline with the difference that time-frequency decomposition is computed on the single trial source estimates for each subject. The parameters for the time-frequency decomposition depend on the experimental design and the default settings in Brainstorm may be a good starting point (cf. Brainstorm tutorial on time-frequency analysis http://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency). For the here presented pipeline, time-frequency decomposition is an optional processing step. Due to experimental constraints, no time-frequency results are shown in this pipeline. Please be aware, that the scripts ana04_brainstorm.m and the one with time-frequency decomposition (ana04_brainstorm_TF.m) should be used in separate brainstorm databases, otherwise the correct functionality could not be guaranteed.



Visualization of Results

Step 6

Calculation and visualization of sensor level group results (EEGLAB) is done based on the pre-processed data (output of ana03_preprocessing.m). ERP time courses and topographies for different latencies are plotted with the help of the EEGLAB gui.

Step 7

Calculation and visualization of source level group results (Brainstorm) is done based on the estimated source activity (output of ana04_brainstorm.m). The grand average source level activity is depicted as well as the grand average time series of the pre-defined regions of interest (scouts).

To reproduce the figures shown in this manuscript follow the steps explained in details in the Supplementary Materials. Additionally, a statistical comparison of the estimated time course of the left and the right scout was performed. Though, this is not the focus of this tutorial the intention was to briefly show this option in brainstorm using the gui (see Supplementary Material Step 7).




RESULTS

In the next section, the results will be presented following the previously explained analysis pipeline.


ICA Decomposition

To show the effect of ICA decomposition on the raw EEG data, one exemplary dataset is illustrated (see Figure 2). The graphic shows 10 s of multi-channel raw EEG data of a subset of 18 channels before (left part of Figure 2) and after removing selected ICA components (right part of Figure 2). Three ICA components representing eye-blinks, eye-movement and heartbeat were identified with the CORRMAP algorithm (middle part of Figure 2).
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FIGURE 2. ICA based artifact attenuation. Left) Original EEG time course, shown for a subset of 18 electrodes and 10 s. Center) ICA topographies representing eye-blinks (Top), lateral eye movements (Middle) and heartbeat (Bottom). Right) EEG data after ICA based artifact attenuation. The EEG time courses were reconstructed excluding the identified artifact components.



The components presented in Figure 2 represent common artifacts that can often be identified by ICA in raw EEG data despite different experimental and electrode set-ups (Debener et al., 2010). These components usually have distinct topographies as well as time courses, which simplifies their identification. Other components, such as event-related components or other less stereotypic artifactual components are often more difficult to distinguish. The removal of artefictual components by back-projection reveals a new, artifact-attenuated EEG data set (see Figure 2, right part), which is suitable for further processing. Note that we provide here a realistic example; ICA artifact correction may outperform other procedures but is not perfect. Hence, residual artifact may remain in the data (cf. Figure 2), or brain-features of interest may be lost during ICA correction. An additional comparison of pre-processed EEG data (grand average ERP of all data sets) with and without ICA artifact correction is shown in the Supplementary Materials.



EEG Analysis

The classical EEG sensor level analysis shows the expected auditory evoked response to the presented auditory stimulus (Figure 3). The morphology of the grand average auditory evoked potential (AEP) shows the characteristic components with prominent peaks at 64 ms (P100), 127 ms (N100), and at 219 ms (P200). The overall morphology is consistent across single subjects (Figure 3, black lines). The topographies obtained at peak latencies are also characteristic for the respective ERP components (Figure 3, top). The P100 is known to correspond to an early sensory response to the auditory stimulus, and is reflected as a positivity over central electrodes. The P1 is often used in specific paradigms to test suppression effects, e.g., in schizophrenic patients (Sur and Sinha, 2009).
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FIGURE 3. Sensor level analysis. Shown is the grand average (Red line) of all subjects as well as single subject AEPs. Additionally, the grand-average topographies for the P100 component and the N100-P200 complex are plotted on top. Figure is made with the Matlab function plot.m and the EEGLAB function topoplot.m.



The N100 is mostly distributed over more fronto-central electrodes, and is known to be mainly generated from primary auditory cortices (Näätänen and Picton, 1987; Zouridakis et al., 1998). The P200 component is reflected as a positive-voltage deflection prominent over the vertex electrode. A recent study provided evidence that N100 and P200 have distinct generators in the auditory cortex (Ross and Tremblay, 2009). The P200 seems to be generated in more anterior regions of the auditory cortices compared with the N100. This might be reflected in the activation shift observed in the topographies. Nevertheless, due to the inverse problem, sensor-based EEG data cannot reveal accurate spatial information with regard to which sources are involved (Lopes da Silva, 2013). EEG source localization is one tool aimed toward overcoming this problem. However, findings of adjacent and overlapping but partly different generator sites for N100 and P200 may be difficult to obtain from EEG and were mainly observed with MEG.



Source Localization

The estimated active sources of the EEG data are shown in Figure 4. Here the peak activation of the N100 of the right and the left hemisphere (top) for an atlas-based ROI (red) and an activity-based ROI (blue) is plotted. The data of cortical activation is shown as absolute values with arbitrary units based on the normalization within the dSPM algorithm. For the left hemisphere, the atlas-based ROI does not fully capture the hotspot of the source level activity. The activity-based ROI is located deeper, adjacent to, but outside of the auditory cortex, pointing toward EEG spatial resolution limitations. However, additional activation in the auditory areas can be readily observed, and the overall activity pattern is compatible with the interpretation of one, or several adjacent, sources in the auditory cortex.
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FIGURE 4. Grand average source level activity for the N100 component. Shown is the activation at the latency of the N100 peak for the left hemisphere (Top) and the right hemisphere (Bottom) for an activity-based ROI (Blue) and a (Destrieux) atlas-based ROI (Red). The middle part of the figure shows a zoomed view of the ROIs for a better visualization. Activation is shown as absolute values with arbitrary units based on the normalization within the dSPM algorithm. Right Colum: Time series of the activation in the atlas-based ROI (Blue) and the activity-based ROI (Blue). Activation is shown as absolute values and in arbitrary units, as provided by the normalization within the dSPM algorithm.



The activation in the atlas-based ROI is, as expected, lower compared with the activity-based ROI (see Figure 4, right column). EEG source localization may have an accuracy of ~2 cm in ideal conditions (i.e., with a large number of electrodes and an individual head model Klamer et al., 2014). Due to missing individual anatomies, interpretation of the exact location of the activity-based ROI should be considered with caution. A similar but smaller pattern of magnitude difference between the atlas- and the activity-based ROI as in the left hemisphere was revealed for the right hemisphere. The activity-based ROI of the right hemisphere is located closer to the atlas-based ROI compared with the left hemisphere (Figure 4, lower part). Due to similar location of the ROIs the magnitude of activity does not differ as much as over the left hemisphere (Figure 4, right column).




DISCUSSION

The analysis pipeline presented here provides the option to process raw EEG recordings with ICA and additional pre-processing steps, to achieve good quality EEG data. The data can be further used to analyse effects on sensor space as well as to estimate the location of active neural sources.

The results obtained on the sensor and the source levels are in line with previous AEP work. AEP morphology and topographic maps of the sensor level data represent the AEPs as known from previous literature (Luck, 2005). Moreover, the AEP N100 is localized here to the supratemporal plane, which is in line with earlier reports for combined EEG/MEG data (Shahin et al., 2007; Gramfort et al., 2013). As generators of neural activity cannot unambiguously be interpreted from sensor EEG data, the transition from sensor to source space may facilitate interpretation of EEG results.


The Analysis Pipeline

The pipeline we propose facilitates EEG source modeling by taking care of the consistent processing of all datasets and by implementing important EEG pre-processing steps. However, we do not claim that the pipeline outperforms other approaches, or is suitable for other paradigms and datasets. We claim, however, that the combination of two well-established Matlab toolboxes, each of them having their specific merits, can be advantageous. EEG pre-processing, including ICA based artifact attenuation, filtering and epoching as well as the sensor level analysis can be easily performed using EEGLAB. EEGLAB is a well-established and widely used EEG analysis toolbox that allows extensive signal processing in sensor and ICA component space. EEGLAB can be used either via a graphical user interface or the command line, and therefore allows easy access for novice users as well as extensive scripting capabilities for advanced users. EEGLAB has also a well-defined interface for implementing and sharing own extensions or plug-ins addressing specific signal processing challenges, such as CORRMAP (Viola et al., 2009) or CIAC (Viola et al., 2012), to name our own contributions.

Regarding EEG source level analysis we prefer using Brainstorm as it provides extensive source modeling capabilities and advanced, high-quality tools for visualization of source-modeled data. The combination of these two toolboxes provides an easy-to-work-with processing pipeline, specifically tailored for the purpose of traditional sensor space and subsequent, advanced source space analyses. With the detailed description and the scripts in the method section it should be fairly easy for the reader to reproduce the obtained results and to adapt the presented pipeline for their specific purpose.

The presented pipeline is flexible in its application. All parameters can be easily adapted to the specific research question. This includes, but is not limited to, the choice of the head model, the definition of scouts (region of interest) as well as subsequent signal analysis steps on source-level data. The source estimation can be computed either on the average over trials (as done here) or subjects, or on individual subject single trial data (as shown in script ana04_brainstorm_TF.m). Single trial source time courses can be subjected to any kind of signal processing, such as basic time domain analysis, time-frequency transformations or phase amplitude coupling.



ICA Artifact Component Identification

EEG data is typically contaminated with non-brain artifacts such as eye movement, heartbeat and muscle activity related artifacts. Some of these artifacts seem to continuously contribute to ongoing EEG signals (see, e.g., Fitzgibbon et al., 2015, for electromyogram contributions to the EEG). Consequently, a simple rejection approach, focusing on the removal of intervals with visible artifact, may not always suffice. Instead of rejecting data segments contaminated by stereotypical artifacts and thus losing a considerable amount of data, eye-related artifacts can be statistically modeled and subsequently removed from the data (Delorme et al., 2007; Viola et al., 2009). ICA separates the recorded data into multiple components, representing neural and non-neural sources. A good-quality decomposition allows identifying non-neural components with some experience. The data can be reconstructed without these components, which leads to an attenuation of unwanted sources. ICA artifact attenuation however requires distinguishing components that represent artifacts from components that contain signal of interest, a far from trivial problem. Here, we used CORRMAP, a semi-automated approach, which requires the manual selection of a single template component only. However, while fully automated identification of artifact components is possible (Bigdely-Shamlo et al., 2013) we recommend a careful visual inspection of the ICA decomposition and the resulting ICA based artifact attenuation.



Source Analysis

We used the ICBM152 anatomy to compute the head model, as no individual anatomies were available. Brainstorm also provides the possibility to use the MNI Colin-27 brain and the FSAverage by default, but every other anatomical model suited for the specific research question or population can be used. The lack of individual anatomical information is common for many EEG studies due to financial or time constrains, but EEG source modeling can be justified without individual anatomical information if the results are interpreted with care (Sandmann et al., 2012; Stropahl et al., 2015; Stropahl and Debener, 2017; Bauer et al., 2018). However, in general it seems beneficial to use individual anatomical information for EEG source modeling. With a large number of electrodes and an accurate head model the localisation accuracy of EEG can be comparable to MEG, but can be several centimeters otherwise (Klamer et al., 2014).

For the definition of the scouts, or anatomical regions of interest, we used the Destrieux surface based anatomical atlas, but other atlases are available as well in Brainstorm. Further, scouts can also be defined based on the activation itself (e.g., based on the activity of an independent localizer task), or by hand for a specific region of interest, either on group level or for each individual. Again, a word of caution is advised when using (pre-defined) scouts. Individual, or default, brain anatomy and functional localisations can differ, as shown in the present example. Specifically, predefined regions of interest may or may not match to a particular individual anatomy. The risk of mismatches between brain structure and estimated functional localization seems more prominent for small regions of interest, such as auditory cortex; for regions known to be characterized by large individual differences in anatomy, and thereby deviations from a default anatomy; for complex source configurations, such as source contributions from adjacent, but opposing patches of cortical sulci; and for regions where head model inaccuracies may be more likely to occur, such as near-by skull openings. As a result, we generally tend to interpret unexpected activation patterns such as insular cortex contribution to the AEPs (Figure 4) as reflecting limitations and possible errors of EEG source modeling, and interpret only expected activation patterns confirming a priori predictions (such as auditory cortex contributions to AEP N100).




CONCLUSION

The aim of this paper was to provide a pre-processing and analysis pipeline for processing raw EEG data, starting from pre-processing to obtain cleaned and high-quality data up to advanced source modeling. While the pre-processing of the EEG data was implemented using the Matlab analysis toolbox EEGLAB, the estimation of source activity was performed with Brainstorm. The current analysis pipeline is neither dependent on individual anatomies nor on individual electrode positions and can be used for single subject or group level analysis. Moreover, the current pipeline is flexible and can be easily adjusted to the specific purpose of various experiments.
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Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α1:α2 and 94% for the iPLV in α2. Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.

Keywords: connectomic biomarker, magnetoencephalography, mild cognitive impairment, virtual source activity, connectome data analysis, multiplexity, cross-frequency-coupling, intrinsic coupling modes


INTRODUCTION

Mild cognitive impairment (MCI) is a brain disease with both anatomical and functional alterations and first episodes of cognitive impairments complementary to other factors like education and age (Petersen et al., 1999). MCI can be seen as a transitional stage between normal aging and dementia where a subject can continue his/her daily activities. There are clear evidences that individuals that are diagnosed as MCI have a high risk to develop dementia in the next 2–5 years compared to age-matched population with non-MCI diagnosis (AD; Shah et al., 2000; Farias et al., 2005). Specifically, MCI subjects with accumulation of intracellular Tau, medial temporal atrophy and amyloid deposition are classified clinically as predementia phase of AD (Albert et al., 2011). All of these pathological biomarkers cause synaptic disruptions (Braak and Braak, 1991). In the literature, quite often AD has been named as a dis-connection syndrome in cellular and macroscale level. This is a wrong term that makes a lot of neuroscientists in any scale of research around AD to believe that some brain areas are completely isolated from the rest of the brain network during AD. Practically, instead of disconnection syndrome one can use the term “functional disruption syndrome” (Delbeuck et al., 2003; Arendt, 2009; Takahashi et al., 2010; Koelewijn et al., 2017). Alterations of anatomical and functional alterations have been reported during the MCI pre-AD stage (Pijnenburg et al., 2004; Koenig et al., 2005; Buldú et al., 2011; Wang et al., 2013).

For a better understanding of how the various anatomical brain areas communicate, functional connectivity (FC) should be explored (Friston, 2011). Many resting-state studies using electroencephalography (EEG) and magnetoencephalography (MEG) have revealed a decrease in FC especially in α and β frequencies in MCI patients compared to healthy controls (Moretti et al., 2008; Gómez et al., 2009; López et al., 2014a; Cuesta et al., 2015). This functional pattern is close to the one reported for AD patients (Stam and van Dijk, 2002; Jeong, 2004; Stam et al., 2006; Koelewijn et al., 2017), although in a few studies an increased functional pattern have been revealed in posterior brain areas (Stam et al., 2006; Alonso et al., 2011).

Deviations of FC from normal have been revealed in MCI within the default mode network (DMN) with similar disruptions in anatomical connections (Garcés et al., 2014; Pineda-Pardo et al., 2014). Only in a few resting-state neuromagnetic studies where different MCI groups were compared, a specific hyper-synchronization pattern was untangled in both α and β frequency bands in MCI subjects that finally transited to AD (López et al., 2014b). Similar results have been presented to subjects with an abnormal concentration of phospho-tau protein in the cerebrospinal fluid (CSF; Canuet et al., 2015). In a recent multi-center study, the profile of hyper-synchronization was proved valuable to build a connectomic biomarker with high classification performance of MCI versus healthy controls (Maestú et al., 2015).

Most studies that attempted to define a reliable connectomic biomarker for the detection of MCI using EEG/MEG FC analyzed functional interactions between brain activities within the same frequency band (intra-frequency interactions). Recently, we designed a novel biomarker based on an EEG-based auditory oddball paradigm building a multi-parametric biomarker based on Pz activity and dynamic reconfiguration of cross-frequency coupling (CFC) (Dimitriadis et al., 2015a). CFC is an integrated mechanism that increases the timing of synchronization between distant brain areas oscillating on slow and fast frequencies and there are many neuroscientific evidences that support its existence in both resting-state and cognition (Canolty and Knight, 2010; Palva and Palva, 2011; Buzsáki and Watson, 2012; Jirsa and Müller, 2013; Dimitriadis et al., 2015b, 2016b). In a recent study, we demonstrated alterations of specific cross-frequency coupling patterns due a mnemonic strategy training protocol in elderly at risk of AD (Dimitriadis et al., 2016d). We revealed alterations of CFC in dyslexia (Dimitriadis et al., 2016a) and in mild traumatic brain injury (Antonakakis et al., 2016, 2017a) using neuromagnetic recordings at resting-state. For that reason, CFC should be explored in conjunction with intra-frequency coupling in a single integrated FC graph (SL-FCG; Dimitriadis et al., 2015b, 2016b; Antonakakis et al., 2016, 2017a; Dimitriadis, 2016a; Dimitriadis and Salis, 2017) and/or in a multi-layer FCG (ML-FCG; Brookes et al., 2016).

A connectomic biomarker can be designed by adopting different strategies focusing on graph theory and network neuroscience. The simplest way is to apply a supervised feature selection algorithm using every possible pair of connections as a single feature and using a number of edges' weights as a multiparametric biomarker to evaluate the performance via a cross-validation procedure such as leave-one-out cross-validation; (LOOCV) or k-fold CV (Maestú et al., 2015). This approach can be used on every intra and cross-frequency version of the FCG and on the multi-layer FCG. Alternatively, the FCG can be treated as a 2D tensor. In that case, proper techniques should be adopted tailored to tensorial learning and classification commonly used in computer vision and image processing (Dimitriadis et al., 2015b, 2016d; Antonakakis et al., 2016, 2017a). In the case of the tensorial treatment of a FCG, in both SL-FCG and ML-FCG formats, two different approaches can be used. The fully-weighted versions of the FCGs and the topological filtered versions using a data-driven technique. Here, we adopted our novel data-driven topological filtering technique called orthogonal minimal spanning trees (OMST; Dimitriadis et al., 2017a,c).

Source reconstruction of neuromagnetic recordings demands the selection of an atlas. The majority of the studies employed AAL-90 atlas in order to define functional ROIs. However, there is no study in the literature to report how the representative ROI time series could affect functional brain networks. Practically, a number of voxel time series constrained by the boundaries of atlas template should be proper analyzed in order to get the characteristic time series per ROI. Here, we tested the most characteristic, the PCA and the centroid.

In this work, we explored alternative ways that will improve the discrimination of MCI from age-matched controls using MEG activity in the source domain. To demonstrate the whole analysis, we estimated static functional brain networks from neuromagnetic resting-state recordings (eyes-open). The strength of functional interactions between two brain sources was estimated using the imaginary part of phase locking value (Dimitriadis et al., 2015a, 2016a,b,c,d; Antonakakis et al., 2016, 2017a; Bruna et al., 2017), the original phase locking value and the amplitude envelope correlation (CorrEnv) (Brookes et al., 2011a,b) as representative estimators of frequency-resolved FC for the phase and the amplitude, respectively. Both estimators have been used to quantify the coupling between every possible pair of sources with the same frequency content (intra-frequency interactions) and CFC (Fitzgerald et al., 2013). Here, we adopted the most characteristic connectivity estimators for both amplitude and phase domain.

The last year, neuroscience community reported the notion of multi-layer functional brain networks as a new tool in network brain science. First preliminary results reported loss of multiplexity in Alzheimer's disease (Guillon et al., 2017) and particularly in hippocampus and posterior hubs (Yu M. et al., 2017). However, in their analysis, they constructed the multi-layer functional brain networks only with intra-frequency coupling functional brain networks. Here, we will test the performance of multi-layer participation coefficient in MCI subjects including also cross-frequency layers. It is important to underline that statistical difference between MPC values doesn't mean a high classification performance while the classification performance in AD is of no clinical value. Our goal must be to design neuroinformatic tools sensitive to prodromal AD stages like MCI.

Significantly, there are two basic functional brain networks that increase their activity during the performance of many cognitive tasks, the fronto-parietal network (FPN) and the cingulo-opercular network (CON) (Dosenbach et al., 2006). In many cases the within-network functional connectivity strength can predict the cognitive performance (Kelly et al., 2008; Song et al., 2008) implicating them as part of the core brain system for task controlling that implies global cognition. Unfolding the key role of both functional brain networks, it has been proved that abnormalities in the control supported by these two networks can lead to mental illness (Cole et al., 2014). We already know that the pathology of AD is distributed in high—order cognitive functions including episodic memory retrieval. Two main networks have been revealed to be linked to episodic memory retrieval, the fronto-parietal and the cingulo-opercular (Dhanjal and Wise, 2014). Complementary, medial temporal lobe activity has been linked to cognitive decline in MCI (Maestú et al., 2006) while incidental emotional memory based on emotional pictures triggers parahippocampal brain areas in a less extent in MCI compared to healthy controls (Parra et al., 2013). DMN is expected also to be disrupted in MCI (Garcés et al., 2014). We hypothesize that FPN, DMN, and CON will contribute to the multivariate connectomic biomarker for MCI based on neuromagnetic recordings at resting-state.

Finally, we will show the benefits of constructing a single-graph by untangling the dominant intrinsic coupling mode per pair of EEG/MEG sensors/sources (FCGDICM; Antonakakis et al., 2016, 2017a; Dimitriadis, 2016a,b; Dimitriadis and Salis, 2017). The same procedure will be followed here for both estimators.

The main goal of this study is to explore the performance of different analytic strategies of single-layer or multi-layer representations of functional brain networks. Additionally, we aim to report how the selection of ROI representation and the connectivity estimator could alter the performance of a functional connectomic biomarker. The analysis focuses on whole-brain static functional brain networks with both intra and cross-frequency interactions employing representative connectivity estimators for both amplitude and phase domain. Our analytics underline the need of further exploration of the preprocessing pipeline for neuromagnetic recordings tailored to the definition of a reliable functional connectomic biomarker for mild cognitive impairment.

The aforementioned different choices in every step of the analysis (from the extraction of the source time series till the construction of a static FCG) are demonstrated using a representative set of healthy controls and MCI subjects. In Materials and Methods section, we described the data acquisition, the beamforming analysis to reconstruct the sources, the MEG analysis, the construction of the various versions of a FCG and the alternative classification approaches. The Results section is devoted to describe the results including classification performance, sensitivity, and specificity of the alternative choices. Finally, the Discussion section includes the discussion of the current research results with future extensions.



MATERIALS AND METHODS


Subjects and Ethics Statement

Data was obtained for 24 subjects diagnosed with mild cognitive impairment (MCI) (11 males, age 72.77 ± 3.31 years old, mean ± SD) and 30 healthy controls (13 males, age 72.37 ± 2.63 years old). The MCI group and the control group were recruited from the Hospital Clínico Universitario San Carlos (Madrid). All subjects were right handed and native Spanish speakers (Oldfield, 1971). Table 1 summarizes the demographic features and mean hippocampal volumes of the subjects in both groups.



Table 1. Mean ± standard deviation of the demographic characteristics of controls and MCIs.
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To explore their cognitive and functional status, all participants were screened by means of a variety of standardized diagnostic instruments and underwent an extensive cognitive assessment, as described in López et al. (2016).

The main criteria for the diagnosis of MCI according to the National Institute of Aging – Alzheimer Association (NIA-AA) criteria (Albert et al., 2011; López et al., 2014a,b) are:

(1) self- or informant-reported cognitive complaint;

(2) objective evidence of cognitive impairment;

(3) preserved independence in functional abilities and

(4) not fulfilling the criteria for dementia (McKhann et al., 2011; López et al., 2014a,b). All of them were categorized as “MCI due to AD intermediate likelihood.” Besides, they all presented hippocampal atrophy (see Table 1), which was measured by magnetic resonance (MRI). According to their cognitive profile, they were classified as amnestic subtype (Petersen et al., 1999).

Methods were carried out in accordance with the approved guidelines and general research practice. The study was approved by the Hospital Clínico Universitario San Carlos (Madrid) ethics committee. All participants or their guardians filled and signed a written informed consent prior to participation.



MEG Acquisition and Preprocessing

Biomagnetic data was acquired using a 306-channel Elekta Vectorview system (Elekta AB, Stockholm, Sweden) placed inside a magnetically shielded room (VacuumSchmelze GmbH, Hanau, Germany) located at the Laboratory of Cognitive and Computational Neuroscience (Madrid, Spain). Signal was recorded while the subjects were awake, sitting comfortably and with their eyes open, while looking at a white fixation cross projected on a screen.

Prior to the MEG recording, two electrodes were placed above and below the left eye, in a bipolar montage, in order to acquire electro-oculographic activity. Four head position indicator (HPI) coils were placed in the head of the subject, two in the forehead and two in the mastoids, in order to online estimate the head position. Position of the three fiducial points, along with the HPI coils and over 200 evenly spaced points of the head shape of the subject, were acquired using a three-dimensional Fastrack digitizer (Polhemus, Colchester, Vermont). The HPI coils were fed during the whole acquisition, allowing for offline estimation of the head position.

Four minutes of resting state activity were acquired from each subject. Data was online filtered between 0.1 and 330 Hz, and digitized using a sampling rate of 1,000 Hz. After the acquisition, recordings were offline processed using the spatiotemporal extension of the signal separation algorithm (tSSS) (Taulu et al., 2004). Parameters for the tSSS were a window length of 10 s and a correlation threshold of 0.9. This algorithm removes the signals whose origin is estimated outside the MEG helmet, while keeping intact the signals coming from inside the head. In addition, the continuous HPI acquisition, combined with the tSSS algorithm, allowed for the continuous movement compensation. As result, the signal used in the next steps comes from a set of virtual sensors whose position remains static respect to the head of the subject. Those subjects whose movement along the recording was larger than 25 mm were discarded, following the recommendations of the manufacturer.

Data was examined using the automatic artifact detection of FieldTrip toolbox (Oostenveld et al., 2011), looking for ocular, muscular, and jump artifacts. The detected artifacts were confirmed by a MEG expert, in order to correct both false positives and negatives. Muscular and jump artifacts were marked as destructive artifacts, and segments containing them were completely discarded. On the remaining segments, a blind source separation algorithm based in second order statistics (SOBI) was used to obtain statistically independent components. SOBI components were labeled as oculographic, cardiographic, noisy components or real data. Artifact-related components were eliminated, and segments containing persistent oculographic artifacts were removed. Last, data was segmented in 4-s epochs of artifact-free data. Subjects with <20 epochs were discarded from the analysis, due to a low signal to noise ratio.



MRI Acquisition and Processing

A T1-weighted MRI was acquired for each subject in a General Electric 1.5 T scanner, using a high-resolution antenna and a PURE filter (Fast Spoiled Gradient Echo sequence, TR = 11.2 ms, TE = 4.2 ms, TI = 450 ms; flip angle of 12°; slice thickness of 1 mm; FOV of 25 cm, 256 × 256 matrix). MRI images were segmented in gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) bone and soft tissue using SPM version 12 (Ashburner and Friston, 2001). A binary mask for the brain was generated using those voxels whose combined probability of WM, GM, and CSF were >0.5. Last, a mesh surface was generated from the defined mask using FieldTrip.



Source Reconstruction

A volumetric grid was generated for the MNI template, using a homogenous separation of 1 cm in each direction, with one source placed in (0, 0, 0) in MNI coordinates. Only sources inside the brain surface (as defined in the previous section) were taking in account, resulting in a source model with 2,459 sources, each consisting in three perpendicular dipoles. Each source was labeled according to the automatic anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The final number of sources considered, as only cortical ones were used, was 1,467.

The defined grid was transformed to subject space using the original T1 image. Both the grid and the brain surface were manually realigned to Neuromag coordinate system using the three fiducials and the head shape as guides. A lead field was calculated using a realistic single shell head (Nolte, 2003) as forward model. The source reconstruction was performed using a Linearly Constrained Minimum Variance (LCMV) beamformer (Van Veen et al., 1997) for broadband. The resulting spatial filters were projected over the maximal radiation direction, getting only one filter per source. Source-space time series were reconstructed and grouped according to the atlas, obtaining one representative time series for area using (1) the PCA of all the sources in the area or (2) the source closest to the centroid of the area (CENT).

The whole process from data collection to the extraction of the filtered time series is briefly depicted in Figures 1A–C.
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FIGURE 1. From MEG recordings to single-layer and multi-layer FCG. (A) Raw MEG time series recordings and T1 MRI image. (B) Atlas-guided beamforming (here AAL-90 template). (C) Virtual sensors time series for each brain rhythm. (D) Estimation of the functional connectivity with the CorrEnv based on the Hilbert envelope and the iPLV based on the Hilbert phase time series. (E) Single-layer FCG: an example from a healthy control subject in the δ frequency band demonstrating both types of ROI representation for contrast. (F) Multi-Layer FCG: in our study, we used 7 intra-frequency intrinsic coupling modes and 21 inter-frequency coupling modes, leading to 28 in total. (G) Flattened Multi-Layer FCG: The dimension of the flattened Multi-Layer FCG equals {Coupling Modes × ROI} × {Coupling Modes × ROI}, where in the main diagonal FCG of intra-frequency coupling modes are inserted while in the off-diagonal FCG of inter-frequency coupling modes are encapsulated. Where Coupling Modes = 28 intra and inter-frequency FCG. PCA, principal component analysis; CENT, centroid; CN, control; MCI, mild cognitive impairment.





MEG Analysis

We selected, per each subject, multiple artifact free trials of 6 s (6,000 samples) after careful visual inspection, giving 32–44 epochs for further analysis. Time-series of neuronal activation were computed for the seven frequency bands: δ (0.5–4 Hz), θ (4–8 Hz), α1 (8–10 Hz), α2 (10–13 Hz), β1 (13–20 Hz), β2 (20–30), γ1 (30–45 Hz) using a third order Butterworth filter with zero-phase using filtfilt.m function from MATLAB (Figure 1C).



Functional Connectivity

Imaginary Part of Phase Locking Value (iPLV)

Phase synchrony between two source time series within a particular frequency band was assessed via the estimates of the instantaneous phase of the signal. In both task and resting-state literature, these measures are computed within each trial and taking average values across all epochs (Lachaux et al., 1999).

The complex analytic representations of each signal z(t) is derived via the Hilbert transform (HT[.]):

[image: image]

Phase consistency between the two signals is measured by means of both the original definition (Lachaux et al., 1999; Mormann et al., 2000; Figure 1D) and the imaginary part of PLV (iPLV), as synchronization indexes to quantify the strength of PAC.

The original PLV is defined as follows:

[image: image]

and the imaginary part of PLV as follows:
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The imaginary part of PLV is less susceptible to volume conduction effects in assessing CFC interactions and was used in all subsequent analyses. iPLV is less affected by volume conduction, it could be sensitive in some cases to alterations in the angle between two time series, which do not necessarily is related to a PLV change. iPLV is only sensitive to non-zero-phase lags and is thus resistant to instantaneous self-interactions associated with volume conductance (Nolte et al., 2004).

iPLV has been used by our group to quantify both intra and cross-frequency interactions namely the phase-to-amplitude coupling (PAC) between the phase of the slower rhythm and the phase of the slower rhythm within the high frequency amplitude (Dimitriadis et al., 2015a, 2016a,b,c,d; Bruna et al., 2017). See below the basic preprocessing steps for the estimation of PAC.

Recent studies demonstrated that imaginary part of PLV (iPLV) can remove artificial interactions but it cannot eliminate spurious interactions if the true coupling has non-zero phase lag (Palva et al., 2018; Wang et al., 2018). They finally suggest that hyperedge bundling can significantly decreases graph noise by minimizing the false-positive to true-positive ratio (Wang et al., 2018).

A revisited study for phase-locking bivariate estimators demonstrated how corrected imaginary part of PLV (ciPLV) can give results robust to volume conduction and how functional connectivity graphs can be estimated faster (Bruna et al., 2017).

PAC Estimation: the Algorithmic Steps

Let x(t), t = 1, 2, …, T is the virtual time series. Based on prefiltered versions of this signal, cross-frequency interactions will be estimated based on form of how the phase of low-frequency (LF) oscillations modulates the amplitude of high-frequency (HF) oscillations. Applying a narrowband filtering with a 3rd order zero-phase Butterworth filter, the two filtered signals xLF(t) and xHF(t) are first extracted. Then, applying Hilbert transform (HT[.]) to both filtered signals, the complex analytic representations zLF(t) and zHF(t) are derived
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The envelope AHF(t) signal of the higher frequency and the instantaneous phase φ(t) signal of the slower oscillation are extracted. Next, the envelope of the higher-frequency oscillations AHF(t) is band-pass filtered within the range of LF oscillations and the resulting signal undergoes an additional step of Hilbert transform so as to isolate its phase-dynamics component φ′(t),
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Equation (5) reflects the modulation of HF-oscillations amplitude by the phase of the LF-oscillations. Finally, the corresponding time-series will be used to estimate PAC, by means of the imaginary part of phase-locking (or synchronization index) technique.
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Phase-locking value PLV ranges between 0 and 1, with higher values indicating stronger PAC interactions. Here, we estimated 21 CFC pairs based on the predefined number of frequencies.

Finally, 28 FCGs have been estimated per subject including the phase coupling of the sources within every frequency and 21 CFC pairs (for further details see Dimitriadis et al., 2016a).

Amplitude Envelope Correlation

We estimated the amplitude coupling between ROIs based on the correlations of the envelopes of signals within the same frequency (Brookes et al., 2012; Hipp et al., 2012) and with different frequency content (Fitzgerald et al., 2013). Here, 28 FCGs have been estimated per subject, including the AEC of the sources within every frequency and 21 CFC pairs (Figure 1D). Here, we used the non-orthogonalized version of AEC.




FEATURE SELECTION AND CROSS-VALIDATION TAILORED TO EACH FCG FORMAT

The different coupling modes (28 in total) of each FCG version can be analyzed as single-layer FCG (SL-FCG), each one with dimension 90 × 90 (Figure 1E), or as a multi-layer FCG (ML-FCG) with dimensions {7 × 90} × {7 × 90} (Figures 1F,G). In the main diagonal of this ML-FCG, blocks of intra-frequency couplings are tabulated, while in the off diagonal the CFC FCG are inserted.


Feature Selection and Cross-Validation Tailored Based on Edge-Weights

Feature Selection

We adopted two different approaches for feature selection strategy. The first one refers to the selection of the edge weights as single features, while the second one is the tensorial treatment of FCG as a 2D matrix. For the former, we adopted the Minimum Redundancy Maximum Relevance (MCFS; Cai et al., 2010) feature selection, using mutual information as implemented in the feature selection toolbox (Roffo, 2016; Roffo and Melzi, 2017; Roffo et al., 2017). MCFS was used independently for each one of the 28 versions of SL-FCG and for the flattened ML-FCG. Feature selection strategy was followed at every fold in the CV phase and prior the training of the model, not prior to CV, in order to prevent overfitting the model and thereby improving the generalization of the proposed connectomic biomarker.

Classification Scheme

For the functional edge feature selection approach, we employed support vector machines (SVM) with RBF kernel as a proper classifier. Here, we used two cross-validation schemes: LOOCV and the 5-fold. Feature selection strategy was followed at every fold on the training set in both CV schemes. Finally, we selected those features that were the most frequent across the folds. In most machine learning approaches, one selects a number of features or a percentage thereof at every fold for the feature selection algorithm and the number of features or its percentage that are more frequent selected across the folds. For example, we can select 100 features ranked with the feature selection algorithm and finally we can select the most 30 frequent across all the folds. This is an important step to first demonstrate the features and afterward to train the model for external blind classification. Here, we selected 15 features ranked with the feature selection algorithm and 15 most common features across the folds. Finally, sensitivity, specificity and classification performance will be reported in both validation schemes and FCG treatment.



Feature Selection and Cross-Validation Tailored Based on Tensors

We proposed an alternative and more natural formulation of FCG, which is a 2D matrix. FCG can be seen and properly handled as tensors. Single-layer FCG (SL-FCG) is naturally a 90 × 90 2D matrix. Multi-layer FCG (ML-FCG) can be flattened to a 630 × 630 ({7 × 90} × {7 × 90}) 2D matrix. In both cases it is natural to deal with the matrices as 2D tensors (Figure 1E).

Feature Extraction

Most brain connectivity studies attempt to classify single-layer frequency-dependent FCG between two conditions or two groups by vectorizing the upper triangular (for undirected connectivity estimators) feature space and treat it as a high-dimensional space (Pollonini et al., 2010; Shen et al., 2010; Richiardi et al., 2011). The main drawback of the vectorized version of a FCG is that destroys the tabular representation of functional interactions among every pair of brain areas. FCG can be seen as a second-order tensor. To overcome the aforementioned limitations, we treated FCGs as tensors adapting tensor subspace analysis (TSA) (He et al., 2005) as a representative feature extraction algorithm. Another popular tensorial treatment of images –FCGs in computer vision area is the multi-linear PCA (ML-PCA; Lu et al., 2008). In our formulation, the tensor has dimensions of (subjects × ROIs × ROIs) as in previous works (Dimitriadis et al., 2013, 2015b,c, 2016b,c; Antonakakis et al., 2016, 2017a). TSA analysis was performed independently for ROI representation (PCA/CENT), connectivity estimator (iPLV, CorrEnv) and intrinsic coupling mode (intra/inter). Figure 2 illustrates the different representation and analytic schemes of the multiplex functional connectivity graph adapted in the present study.
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FIGURE 2. Different Representation and analytic schemes of the multiplex functional connectivity graph (FCG). (A) Edge-weight Feature selection approach of the SL-FCG by first vectorizing each FCG to Nx(N-1)/2 list of functional connections where N denotes the number of ROIs (here N = 90). (B) Edge-weight Feature selection approach of the ML-FCG by first vectorizing each SL-FCG to Nx(N-1)/2 list of functional connections where N denotes the number of ROIs (here N = 90). The dimensions of the vectorized version of the ML-FCG is intra-inter coupling modes × Nx(N-1)/2. (C) Tensorial treatment of each SL-FCG in both intra and inter-coupling modes. (D) Tensorial treatment of the flattened version of ML-FCG where in the main diagonal are tabulated the intra-frequency FCGs and in the off-diagonal the inter-frequency FCGs. The flattened version of ML-FCG has been used for the estimation of comodulograms by filtering with our OMST data-driven topological filtering method. (E) Estimation of MPC from the ML-FCG. SL-FCG, single layer-functional connectivity graph; ML-FCG, multi-layer-functional connectivity graph; MPC, multi-layer participation coefficient.



Topological Filtering of SL-FCG with OMST

Recently, we published a data-driven topological filtering approach for brain networks with the scope to reveal the true network topology from a FCG (Dimitriadis et al., 2017c). Our algorithm samples the functional connections of a FCG by iterative rounds of minimal spanning trees (MSTS; Tewarie et al., 2014) orthogonal to each other (orthogonal minimal spanning trees - OMST) and attempts to maximize the formula of global efficiency (GE) vs. the cost of the surviving selected functional connections by the OMST (Equation 1). At the 1st round the original MST is extracted; at the 2nd round the 2nd MST is estimated, which is orthogonal to the 1st. GE, and the cost of the filtered versions of the FCG is estimated by aggregating the OMST at every round. First, both measures are estimated based on the 1st MST and after that we add the OMST to the OMST of the previous round and both GE and the cost are re-estimated. The curve of GE-Cost vs. Cost is always positive and gets a maximum peak value which is the selected number of OMST rounds.

Equation (3) defines the J function that is maximized in our OMST topological filtering algorithm
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We have demonstrated the effectiveness of the OMST algorithm in large databases of EEG/fMRI recordings (Dimitriadis and Salis, 2017; Dimitriadis et al., 2017c), in a multi-group MEG connectivity analysis (Dimitriadis et al., 2017a) and in diffusion-based structural brain networks (Dimitriadis et al., 2017b). We topologically filtered each SL-FCG with OMST independently for ROI representation and connectivity estimator. We called hereafter the OMST version of each SL-FCG as SL-FCGOMST.

Classification Scheme

For the tensorial treatment of FCG, we used SVM with RBF kernel as classifier, and the same two cross-validation schemes as above, LOOCV and 5-fold. Feature selection strategy was followed at every fold on the training set in both CV schemes. Finally, sensitivity, specificity and classification performance will be reported in both validation schemes and FCG treatment.



Topological Filtering of ML-FCG and Network Analysis

Topological Filtering of ML-FCG Based on OMST

Prior to network analysis over ML-FCG, we topologically filtered each ML-FCG with OMST independently for each combination of ROI representation and connectivity estimator. We called hereafter the OMST version of each ML-FCG as ML-FCGOMST.

Network Analysis on ML-FCG

After topological filtering, the ML-FCG based on OMST, we can extract important network metrics. These network metrics can be the global GE and the cost function of Equation (7), which assesses how efficiently the different layers (intrinsic coupling modes) are communicated in every subject. Here, we constructed the ML-FCG using the 28 single-layer FCG from the 28 different coupling modes. We didn't take into consideration any functional inter-layer relationship. Additionally, nodal GE can be estimated directly on the filtered version of ML-FCG leading to ROIs = 630 values per subject that can enter in a classification scheme as with the edge weights (see previous sections). Here, we estimated the multi-layer version of participation coefficient (MPC), which quantifies the importance of every ROI across the different layers. We adapted the multi-participation coefficient MPCi in order to estimate the importance of every ROI across the ML-FCG (Battiston et al., 2014). Brain ROIs with high MPC i are characteristic central hubs of the ML-FCG. The global MPC is given by the average of the MPC i values:
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where stands [image: image] for node-degree layer proportion, which quantifies the importance of a node in a single-layer or across layers. MPC tends to be 0 when a ROI has more connections within one layer while tends to 1 when a ROI distributes their connections across the layers. Here, we used the OMST filtered versions of the 28 layers (21 intra and 7 inter-frequency FCG).

Comodulograms Derived from the Filtered ML-FCG

The topological filtering of ML-FCG with OMST algorithm (ML-FCGOMST) selects a specific number of connections that maximize Equation (7). These connections belong to specific layers of the ML-FCG that could be either intra or inter-frequency FCG. By counting the number of selected functional connections at every layer and dividing by their total number, we can estimated the so-called comodulograms. These comodulograms tabulate the percentage (probability) of distribution of the OMST-based connections across the different layers (7 for intra and 21 for inter-frequency coupling modes). We estimated the derived comodulograms as group-averaged for both ROI representations and connectivity estimators.



MATLAB Code and Reproducibility of the Results

The MATLAB code (MATHWORKS, R2017a), the raw time series and the .mat files with the static functional networks can be downloaded by the figshare site. We uploaded all the datasets under the project with the following name:

“CONNECTOMIC_BIOMARKER_MCI_MEG” project in the following links:

1. Scripts: https://figshare.com/articles/MATLAB_CODE/6127298
 doi: 10.6084/m9.figshare.6127298

2. Dataset part I (Controls):https://figshare.com/s/71a5fb9043235740a6a7
 doi: 10.6084/m9.figshare.6210158

3. Dataset part II (MCI):https://figshare.com/s/9660b976e4138853d845
 doi: 10.6084/m9.figshare.5858436

4. Pre-computed Intra and Inter-Frequency Functional Brain Networks:

a. Healthy Controls: https://figshare.com/articles/Pre-computed_Functional_Brain_Networks_for_Healthy_Controls/6126866
 doi: 10.6084/m9.figshare.6126866

b. MCI: https://figshare.com/articles/Pre-computed_Functional_Brain_Networks_for_MCI/6127088
 doi: 10.6084/m9.figshare.6127088

There is a memo file in the subfolder

…\code\from_raw_to_sources\data\from_sources_to_fcgs \code

called “memo_how_to_run_the_code.m” where one can follow the instructions step by step tp reproduce Figures 3–14 and Tables 2–7 and also the Supplementary Material based on PLV connectivity estimator. Running the first lines of code, one can regenerate the source time series or can jump up to the next part of the code using the pre-computed functional brain networks. Further instructions are given in the “memo_how_to_run_the_code.m”
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FIGURE 3. Sensitivity, specificity and classification performance of CorrEnv using PCA ROI representation and edge-weights approach of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP for each CV scheme. Sen, sensitivity; Spec, specificity; CP, Classification performance.





Table 2. Sensitivity, Specificity, and Classification Performance of edge-weights in ML-FCGCorrEnv using the two different ROI representations (PCA and CENTroid) and two cross-validation schemes (Leave-one out cross validation and 5-fold).
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RESULTS


Classification Performance Based on Edge–Weights in SL and ML FCG

Classification Performance Based on SL-FCGCorrEnv

Figures 3, 4 illustrate the sensitivity, specificity and classification performance of CorrEnv using PCA and centroid ROI representation, correspondingly. The best performance for PCA representation was succeeded in θ:β2 for LOOCV (64%) and in β1:β2 for the 5-fold CV (72%). For the centroid representation, the best performance for LOOCV was succeeded in δ:θ (70%) and in α1:α2 for the 5-fold CV (98%). Obviously, the ROI representation alters the classification performance favoring the combination of centroid representation for CorrEnv estimator. Additionally, the CV scheme is of paramount importance for the validation of the proposed connectomic biomarker, where higher values were obtained using 5-fold CV.
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FIGURE 4. Sensitivity, specificity, and classification performance of iPLV using centroid ROI representation and edge-weights approach of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP for each CV scheme. Sen, sensitivity; Spec, specificity; CP, classification performance.



Figure 5 illustrates the different network topology of the selected edge-weighted features in β1:β2 / α1:α2 cross-frequency FCG based on both ROI representation schemes for the CorrEnv. Both PCA/Centroid ROI approach reveal frontal, parietal, bilateral parietal connections involving also left precuneus (Figure 5A). Centroid ROI scheme revealed bilateral temporo-parietal hemispheric connections, fronto-parietal, frontal connections involving right precuneus that improved the classification performance between the two groups (Figure 5B).
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FIGURE 5. Network topology of the selected edge-weighted features using the CorrEnv connectivity estimator for β1:β2 and α1:α2. The two network topologies differ on their ROI representation approach. (A) PCA ROI representation for β1:β2. (B) Centroid ROI representation for α1:α2. The 90 ROI are illustrated circularly with 45 per hemisphere (left – right semi-circular distributions).



Classification Performance Based on SL-FCGiPLV

Figures 6, 7 illustrate the sensitivity, specificity and classification performance of iPLV using PCA and centroid ROI representation, respectively. The best performance for PCA representation was found in α2:γ for LOOCV (73%) and in θ:β1 for the 5-fold CV (70%). For the centroid representation, the best performance for LOOCV was in α1:β1 (75%) and in α2 for the 5-fold CV (94%). Obviously, the ROI representation alters the classification performance favoring the combination of centroid representation for iPLV connectivity estimator. Additionally, the CV scheme is of paramount importance for the validation of the proposed connectomic biomarker, where higher values were obtained using 5-fold CV.
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FIGURE 6. Sensitivity, specificity and classification performance of iPLV using PCA ROI representation and edge-weights approach of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP for each CV scheme. Sen, sensitivity; Spec, specificity; CP, classification performance.
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FIGURE 7. Sensitivity, specificity and classification performance of iPLV using centroid ROI representation and edge-weights approach of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. * denotes the best CP for each CV scheme. Sen, sensitivity; Spec, specificity; CP, classification performance.



The classification performance of iPLV outperformed the performance of PLV favoring the use of imaginary part of PLV (see section 2 in Supplementary Material and Figures S1, S2).

Figure 8 illustrates the different network topologies of the selected edge-weighted features in θ:β1 intra-frequency FCG based on PCA ROI representation schemes for the iPLV and in α2 for centroid ROI representation for the iPLV. Bilateral frontal connections, left fronto-temporal, bilateral-occipital, fronto-parietal and bilateral fronto-parahippo connections were revealed in PCA ROI representation (Figure 8A). Bilateral fronto-parietal, left hippo/parahippo connections with occipital brain areas, left middle temporal gyrus with precuneus and right temporo-parietal connections were revealed in centroid ROI representation (Figure 8B).
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FIGURE 8. Network topology of the selected edge-weighted features using the iPLV connectivity estimator for θ:β1 and α2 intra-frequency coupling. The two network topologies differ on their ROI representation approach. (A) PCA ROI representation for θ:β1. (B) Centroid ROI representation for α2. The 90 ROI are illustrated circularly with 45 per hemisphere (left – right semi-circular distributions).



Classification Performance Based on Edge –Weights in ML-FCG

Following the same feature selection and cross-validation scheme in ML-FCG compared to SL-FCG, we extracted the 15 features highly consistent detected across the folds. Tables 2, 3 tabulate the sensitivity, specificity and classification performance of both connectivity estimators in both ROI representations. The classification performance was superior for the iPLV compared to CorrEnv reaching the 87% for the former compared to 55% for the latter which demonstrates the difficulty of merging the edge-weights features from SL-FCG to a ML-FCG. The classification performance of iPLV outperformed the performance of PLV favoring the use of imaginary part of PLV (see section 3 in Supplementary Material and Table S1).



Table 3. Same as in table 2 but for ML-FCGiPLV.
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Classification Performance Based on the Tensorial Treatment of SL-FCG

In both SL-FCG and ML-FCG formats, we extracted 6 features per dimension of the FCG which means 6 × 6 = 36 features per FCG. In both cases, the FCG were first topological filtered via the OMST filtering scheme.

Classification Performance Based on Tensorial Treatment of SL-FCGCorrEnv

Figures 9, 10 illustrate the sensitivity, specificity and classification performance of CorrEnv using PCA and centroid ROI representation, correspondingly. Both ROI representations and CV schemes failed to demonstrate high classification performance in every SL-FCGCorrEnv.
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FIGURE 9. Sensitivity, specificity and classification performance of CorrEnv using PCA ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV and (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity; CP, classification performance.
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FIGURE 10. Sensitivity, specificity and classification performance of CorrEnv using Cent ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity; CP, classification performance.



Classification Performance Based on Tensorial Treatment of SL-FCGiPLV

Figures 11, 12 illustrate the sensitivity, specificity and classification performance of CorrEnv using PCA and centroid ROI representation, correspondingly. Both ROI representations and CV schemes failed to demonstrate high classification performance in every SL-FCGiPLV. Classification performance based on SL-FCGPLV was similar to SL-FCGiPLV(see Supplementary Material in section 4 and Figures S4, S5).


[image: image]

FIGURE 11. Sensitivity, specificity and classification performance of iPLV using PCA ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity; CP, classification performance.
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FIGURE 12. Sensitivity, specificity and classification performance of iPLV using Centroid ROI representation and tensorial treatment of each SL-FCG. (A) Sensitivity, specificity and classification performance for the LOOCV. (B) Sensitivity, specificity and classification performance for the 5-fold CV. Sen, sensitivity; Spec, specificity; CP, classification performance.



Classification Performance Based on the Tensorial Treatment of ML-FCGOMST

We followed the same tensorial feature extraction and cross-validation scheme in ML-FCG as the ones used for each SL-FCG. In both cases, the classification performance were on the level of by chance (50%), which demonstrates the difficulty of merging the edge-weights features from SL-FCG to a ML-FCG. In both estimators (see Tables 4, 5), the classification performance were similar compared to each SL-FCG using the tensorial treatment of the FCG but our results were too low compared to the edge-weights approach. Classification performance based on ML-FCGPLV was similar to ML-FCGiPLV and to ML-FCGCorrEnv (see Supplementary Material in section 5 and Table S1).



Table 4. Sensitivity, specificity and classification performance of the tensorial treatment of ML-FCGCorrEnv using two ROI representation and two cross-validation schemes.
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Table 5. Same as in table 4 but for ML-FCGiPLV.
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Network Analysis and Comodulograms of ML-FCGOMST

Network Analysis of the ML-FCGOMST

We estimated MPC on the ML-FCGOMST based on the degree of each node at every single layer. Across both connectivity estimators, ROI representation and cross-validations schemes, the best performance was above by chance (Tables 6, 7). The common selected feature across ROI representation and cross-validation scheme for iPLV estimator was the left superior frontal gyrus while for CorrEnv were the left inferior parietal lobule, the left paracentral lobule and left temporal superior gyrus. Classification performance and specificity based on MPC extracted from ML-FCGPLV was lower compared to both ML-FCGiPLV and to ML-FCGCorrEnv while sensitivity was higher (see Supplementary Material in section 6.1 and Table S1).



Table 6. Sensitivity, specificity and classification performance of MPL estimated over the ML-FCGCorrEnv using two ROI representation and two cross-validation schemes.
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Table 7. Same as in table 6 but for ML-FCGiPLV.
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Comodulograms of the ML-FCGOMST

Figures 13, 14 illustrate the group-averaged comodulograms for CorrEnv and iPLV correspondingly. Each 2D plots demonstrate the probability distribution of selected edges via the OMST filtering approach across the multi-layer. The in-diagonal cells in comodulograms keep the PD of the functional connections within each layer (intra-frequency coupling) while the off-diagonal cells keep the PD of the functional connections between the layers (cross-frequency couplings). Even though it is not clear from the color-coded, there are on average 8 connections between every pair of δ modulator with the rest of modulated frequencies in every case (ROI representations × connectivity estimators). It is obvious in all cases (ROI representation × connectivity estimators) that the basic modulating frequency is the δ brain rhythm (Figures 13A, 14). δ is the modulating frequency that serves as central hub that connects the multi coupling modes layers of the ML-FCG. PD ROI representation didn't affect the contribution of intra/inter frequency-coupling modes in both CorrEnv and iPLV connectivity estimators.
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FIGURE 13. Group-averaged comodulograms derived from ML-FCGCorrEnv. (A) PCA ROI representation. (B) Centroid ROI representation. PD, probability distribution.
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FIGURE 14. Group-averaged comodulograms derived from ML-FCGiPLV. (A) PCA ROI representation. (B) Centroid ROI representation. PD, probability distribution.






DISCUSSION

Here, we demonstrated a framework to build a highly efficient connectomic biomarker for a brain disease (here, MCI). The whole research is novel and unique, attempting to reveal the difficulties and the pitfalls of analyzing neuroimaging recordings with main scope to build a connectomic biomarker.

The whole analysis focused on a static functional connectivity analysis at the source level after beamforming MEG resting-state activity in healthy controls and MCI subjects. We adopted the well-known AAL template with 90 ROIs that represent the nodes of the FCG. Two different preprocessing choices in ROI representation were used, the PCA and the centroid approach. For functional connectivity estimators, we employed CorrEnv and iPLV. Both estimators were adopted for the construction of intra and inter-frequency coupling modes FCG. Going one step further, the different versions of FCG were analyzed as a SL-FCG and as a ML-FCG. For the construction of a high efficient connectomic biomarker, we followed two different scenarios in both SL-FCG and ML-FCG. Functional connections in the tabulated FCG were further analyzed as single edge-weighted features and the whole FCG as a 2D tensor. In the former case, the original FCG was treated in the fully-weighted versions while in the latter case, we first filter both SL-FCG and ML-FCG via OMST data-driven topological filtering approach (Dimitriadis et al., 2015a, 2017a,b; Dimitriadis and Salis, 2017). Finally, we applied a network analysis on the filtered version of ML-FCGOMST to reveal the patterns of dominant intrinsic coupling modes of each group and the efficiency of the communication across the multi-layers.

The results of the present study can be summarized as follow, based on the classification performance of the 5-fold CV scheme:

1. Edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG

2. Based on CorrEnv, the highest CP (98%) was obtained using centroid ROI representation in α1:α2 FCG

3. Based on iPLV, the highest CP (94%) was obtained using centroid ROI representation in α2 FCG

4. ROI representation affects the topology of the selected edge-weights features in both connectivity estimators (Figures 5, 8)

5. Centroid ROI representation outperforms PCA in both connectivity estimators

6. Edge-weighted feature selection in ML-FCG favors the iPLV estimator over CorrEnv but the CP were too low.

7. Classification performance based on MPC with both connectivity estimators are slightly above by chance (52%)

8. Imaginary part of PLV outperformed PLV in every experiment performed in the current study supporting further its use as a valuable connectivity estimator

The network topology of the edge-weighted feature selection approach revealed different patterns according to the ROI representation and the connectivity estimator. Regarding CorrEnv, the best performance for PCA representation was succeeded in θ:β2 for LOOCV (64%) and in β1:β2 for the 5-fold CV (72%) (Figure 3). For the centroid representation, the best performance for LOOCV was succeeded in δ:θ (70%) and in α1:α2 for the 5-fold CV (98%) (Figure 4).

Figure 5 illustrates the different network topology of the selected edge-weighted features in β1:β2 / α1:α2 cross-frequency FCG based on both ROI representation schemes for the CorrEnv. Both PCA/Centroid ROI approach reveal frontal, parietal, bilateral parietal connections involving also left precuneus (Figure 5A). Centroid ROI scheme revealed bilateral temporo-parietal hemispheric connections, fronto-parietal, frontal connections involving right precuneus that improved the classification performance between the two groups (Figure 5B).

In contrast, the best performance for PCA representation was found in α2:γ for LOOCV (73%) and in θ:β1 for the 5-fold CV (70%) (Figure 6). For the centroid representation, the best performance for LOOCV was in α1:β1 (75%) and in α2 for the 5-fold CV (94%) (Figure 7). Obviously, the ROI representation alters the classification performance favoring the combination of centroid representation for iPLV connectivity estimator. The classification performance of iPLV outperformed the performance of PLV favoring the use of imaginary part of PLV (see section 2 in Supplementary Material and Figures S1, S2).

Figure 8 illustrates the different network topologies of the selected edge-weighted features in θ:β1 intra-frequency FCG based on PCA ROI representation schemes for the iPLV and in α2 for centroid ROI representation for the iPLV. Bilateral frontal connections, left fronto-temporal, bilateral-occipital, fronto-parietal and bilateral fronto-parahippo connections were revealed in PCA ROI representation (Figure 8A). Bilateral fronto-parietal, left hippo/parahippo connections with occipital brain areas, left middle temporal gyrus with precuneus and right temporo-parietal connections were revealed in centroid ROI representation (Figure 8B).

Of paramount important is the connection between left precuneus and left superior occipital pole (Figure 8B). A recent study using fMRI showed the effect of hippocampus' functional connections in episodic memory for MCI subjects (Papma et al., 2017). Both schemes revealed a bilateral parietal connection with the involvement of precuneus with post cingulum (Figure 8A) and with frontal medial orbital (Figure 8B). Another recent study using rs-fMRI recordings and seed-based FC analysis revealed the significant role of precuneus as a hub area where its pattern of connections is altered in MCI and AD subjects (Yu E. et al., 2017).

The proposed multivariate connectomic biomarker for MCI based on beamformed activity at resting-state and the edge-weighted scenario (Figures 5–8) was built with functional connections that are located between and within ROIs part of default-mode, fronto-parietal, and cingulo-opercular network. Our results further support the significant role of these three functional brain networks in both healthy and disease conditions (Cole et al., 2014; Sheffield et al., 2015).

We reported higher classification performance based on iPLV compared to PLV (Supplementary Material). Recent studies demonstrated that imaginary part of PLV (iPLV) can remove artificial interactions bu it cannot eliminate spurious interactions if the true coupling has non-zero phase lag (Palva et al., 2018; Wang et al., 2018). They finally suggest that hyperedge bundling can significantly decreases graph noise by minimizing the false-positive to true-positive ratio (Wang et al., 2018).

A recent study using resting state MEG recordings in controls and AD patients reported the diagnostic power of MPC derived from multi-layer FCG. The multi-layer graph consisted only on intra-frequency coupling modes, while the different layers were artificially linked with connections between homolog rain ROIs. They gave an increased classification accuracy of 74% and a sensitivity of 80% based on iPLV (Guillon et al., 2017). Here using 28 layers of intra and inter-frequency coupling FCG, the best performance for the MPC was obtained using the CorrEnv with both ROI representation reaching the 64% with 83% of sensitivity.

Recently, we introduced the notion of integrated FCG (I-FCG) where at every pair of nodes, we assigned a dominant coupling mode across both intra and inter-frequency couplings. The whole procedure has demonstrated its effectiveness in both static and dynamic M/EEG networks in healthy controls, dyslexia and mild traumatic brain injury (Dimitriadis et al., 2015b, 2016b; Antonakakis et al., 2016, 2017a; Dimitriadis, 2016a; Dimitriadis and Salis, 2017). The whole approach used surrogate analysis and Bonferroni correction in order to uncover the dominant coupling mode per pair of ROI. This I-FCG can be seen as a single-layer version of the ML-FCG where we keep both the weights and the preferred coupling mode. Due to limitations of running the scripts by the reviewers for evaluation, we excluded it for demonstration but we are in preparation of new manuscripts based on the same cohort in order to include I-FCG and surrogate analysis to the whole pipeline.

We estimated for both intra and inter-frequency coupling two well-known estimators: the CorrEnv and iPLV. In the special case of CFC, we estimated the popular PAC using iPLV where the phase of the low frequency rhythm modulates the amplitude of the higher frequency oscillation (Canolty and Knight, 2010; Dimitriadis et al., 2015a, 2016a,d; Antonakakis et al., 2016, 2017a,b; Dimitriadis and Salis, 2017). Human spontaneous activity is shaped by the CFC that coordinates the activity between distant and local brain areas that function on their preferred oscillations (Florin and Baillet, 2015). PAC has been reported in many conditions and for many cross-frequency pairs like in δ:δ (Lakatos et al., 2005), δ:α (Ito et al., 2013), δ:β (Nakatani et al., 2014), δ:γ (Szczepanski et al., 2014), θ:α (Cohen et al., 2009), θ:β (Cohen et al., 2009; Nakatani et al., 2014), θ:γ (Dürschmid et al., 2013; Florin and Baillet, 2015), α:β (Sotero et al., 2015), α:γ (Spaak et al., 2012), and β:γ (de Hemptinne et al., 2013). Although in many experimental studies, authors focused on only one cross-frequency pair, the majority of them can be detected simultaneously in a single condition (Sotero et al., 2015).

By integrated both intra and the various inter-frequency coupling modes into a static and dynamic FCG is of paramount importance. In our previous studies, we demonstrated also how comodulograms of the dominant intrinsic coupling modes can discriminate healthy controls from disease groups in both static and dynamic FCG (Dimitriadis et al., 2010, 2015a, 2016a,d; Antonakakis et al., 2016, 2017a,b; Dimitriadis and Salis, 2017). However, it is significant to analyse intra and PAC interactions via multivariate approach in order to reveal the indirect interactions and the direction of the information transmission between the brain areas. We have already started to work on this approach and we will report our findings on the same open dataset using multivariate information theoretic tools (Lizier et al., 2011).

Multiplexity of human brain dynamics is a recent hot topic in neuroscience. Recent advances in both structural and functional neuroimaging integrated neuroscience, informatics, mathematics and physics into a single goal, how the brain functions in healthy states and how dysfunctions in various diseases. Here, we accessed the multiplexity of human brain via static functional brain networks across various coupling modes. We built multi-layer FCG employing both intra and cross-frequency coupling FCG with main scope to estimate the complexity of human brain activity across spatial and functional scales. We estimated the MPC as a network metric that quantifies the importance of every ROI across the multi-layers. The estimation of MPC based on ML-FCG with no inter-layer connections (Tables 6, 7; Guillon et al., 2017; Yu M. et al., 2017). Complementary, a flattened ML-FCG version has been constructed with connections between the intra-frequency layers the so-called cross-frequency coupling estimates. Using OMST filtering scheme, we selected the significant trend of dominant coupling modes across both spatial and frequency scales illustrated in the comodulograms (Figures 13, 14). Both techniques are important to be added in the alternative network analysis tools for estimating the multiplexity of human brain dynamics.

The aforementioned statement is applicable in analyzing the intra and inter-frequency interactions between the amplitudes of the source time series. Multivariate information theoretic connectivity tools will be applied from our team complementary to the phase interactions. Our attempt was to demonstrate the difference, the commonalities and the complementarity of the basic connectivity estimators in both amplitude and phase domain.

A recent study concluded that the network topology, the CFC and the intra-frequency interactions shaped the PAC generation in a cortical column using a novel neural mass model (Sotero, 2016). Here, in order to reduce the computational time needed to run the pipeline from the reviewers in order to evaluate the whole analysis, we did not run surrogate analysis. Surrogate analysis is important to statistical filter out the spurious connections (Aru et al., 2015) and to reveal the true connections prior to the topological filtering OMST scheme.

Finally, we would like to state that a connectomic biomarker could be build by integrating SL or ML-FCG from different connectivity estimators especially if they estimate functional connectivity in amplitude and phase domains.


Limitations of the Current Analysis

One of the basic limitations of this study is the lack of surrogate analysis. We have already reported that surrogate analysis tailored to each connectivity estimator and interactions (intra and inter) should be reported in every brain connectivity study. In the case of searching the best features—functional weights that increase the classification performance between two groups, we assumed that all the connection exist in every single subject. This is not true, yet there are many studies that report their results under this assumption. Surrogate analysis can be seen as a statistical filtering (pruning) of the whole network, whereby only the significant links at a certain threshold are preserved. After first applying the statistical filtering (surrogates) and topological filtering (e.g., OMST), the true network topology can emerge from each of the subject-specific FCG. This practically means that only a small amount of connections co-exist across our dataset. In that case, two options can be used to design a connectomic biomarker. The first one is to handle the FCG as a tensor, as we demonstrated here, and to estimate nodal network metrics such as global/local efficiency. In the second case, our features will be the nodal network metrics instead of the single-edge weights.

In previous studies, we applied the tensorial extraction algorithm on the original MEG sensor space and we reported significant results. However, here the tensorial treatment of the FCG in both the single and multi-layer options did not work properly. This misclassification of the tensors could be attributed to many pitfalls. Here, we used a fixed anatomical template for every subject in both groups, which is common in functional neuroimaging while the number of ROIs maybe too low to support the computational power of the FCG-based approach. Another interpretation could be the missing of surrogate analysis and the use of bivariate connectivity estimators.

It is important to stress the need to evaluate the proposed algorithmic scheme in a second blind dataset and in a follow—up cohort with MCIs that are either stable or progressed to AD (López et al., 2014b, 2016). Additionally, a reliable connectomic biomarker should be tested across multi-site recordings (Maestú et al., 2015), most desirably including different MEG systems (CTF - ELEKTA).




CONCLUSIONS

We demonstrated how different preprocessing steps in the definition of the representative time series of each ROI, the selection of a connectivity estimator and the formulation of the FC graph could alter the outcome of the design of a connectomic biomarker. We demonstrated two different approaches to study the functional brain network, as a vector of single functional weights or as a unit – 2D matrix, where more tools should be added to our list such as tensorial extraction algorithms. Additionally, it is always important, whenever possible, to evaluate the proposed connectomic biomarkers in a second blind dataset, in order to increase the generalization of the proposed algorithm and to test it across multi-site cohorts with the same or different MEG system. Only under this umbrella of effort, a reliable clinically-usable connectomic biomarker can be proposed in the neuroscience community.

We strongly encouraged the neuroscience MEG community to add on their analysis different ROI representation, connectivity estimators and also both intra and cross-frequency coupling mechanisms should be included. The take home message from this seminar work is that centroid outperformed PCA independently of the connectivity estimator while the treatment of every edge as a unit compared to the tensorial treatment gave better results. We hypothesize that the number of ROIs using the AAL probably are not enough to give good performance for the tensorial treatment of functional brain networks and a more fine-grained parcellation scheme should be incorporated in the pipeline. Finally, we reported results from the famous MPC where two research groups revealed significant differences between healthy controls and AD group. However, the performance of MPC in our case employing also cross-frequency layers was lower than the edge-weighed approach. Finally, dynamic network connectivity analysis could reveal more discriminative profiles of both groups that can better discriminated compared to static connectivity analysis and also validated in external blind datasets across sites and MEG scanners.
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In this paper, we present a multivariate approach to analyze multi-channel event-related potential (ERP) data using randomization statistics1. The MATLAB-based open source toolbox Randomization Graphical User interface (Ragu) provides, among other methods, a test for topographic consistency, a topographic analysis of variance, t-mapping and microstate analyses. Up to two within-subject factors and one between-subject factor, each with an open number of levels, can be defined and analyzed in Ragu. Ragu analyses include all sensor signals and no a-priori models have to be applied during the analyses. Additionally, periods of significant effects can be controlled for multiple testing using global overall statistics over time. Here, we introduce the different alternatives to apply Ragu, based on a step by step analysis of an example study. This example study examined the neural activity in response to semantic unexpected sentence endings in exchange students at the beginning of their stay and after staying in a foreign-language country for 5 months.

Keywords: Ragu, randomization statistics, ERP, N400, EEG, microstates


1. INTRODUCTION

Imagine a team of neuroscientists who want to know how a particular cognitive act is represented in terms of brain activity. They developed a new experimental design, which involved the use of evoked multichannel scalp electromagnetic field potentials, to test this hypothesis. The data has now been collected and processed according to the established standards. They now have single subject averaged event-related potentials. The next step in their analysis is to test their hypotheses statistically. These hypotheses do not allow them to make concise predictions about how their experimental manipulations will affect their recorded data. How should they proceed? Limiting their analyses to the few most plausible hypotheses increases the risk of missing or misrepresenting the “true” effect. On the other hand, examining every point in time and space will result in a very large number of tests, of which an unknown fraction may be significant due to multiple testing. In addition, as the measurements are not independent, results which are significant will be, to a large extent, redundant. Alternatively, the researchers may choose to apply a particular model that reduces the size of the data, but they would have to assume a-priori that the model and model parameters chosen to reduce the data were appropriate. This may be difficult, but nevertheless, results and conclusions will vary depending on the a-priori assumptions.1

A reasonable solution to this problem is to adopt a multivariate approach. This is in line with the fact that scalp electromagnetic field potentials are by nature multivariate. The electromagnetic signals produced by neuronal events in the brain reach the scalp surface through electromagnetic volume conduction. Electromagnetic volume conduction acts as a spatial low-pass filter, such that even a single, and tightly localized event in the brain will lead to scalp potential differences between almost any two scalp positions (Figures 1A,B). Since the scalp fields of several sources are additive (Figure 1C), contrasting scalp fields yields direct evidence for contrasting source configurations (Figures 1D,E). By considering the scalp electromagnetic field (which contains all the information on the differences between all possible pairs of scalp positions) as the basic, multivariate phenomenon to analyze, we do justice to the physical background of the data that we deal with. At the same time, we can thereby avoid problems associated with multiple testing across channels. Thus, procedures that allow statistical inferences based on comparisons of scalp electromagnetic fields are needed.
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FIGURE 1. (A) A single dipole close to the electrode position, Cz, with an orientation perpendicular to the scalp. Upper row: Images of the left (upper left graph) and right (upper right graph) sides of the head. Middle row: Images from the top (middle left graph) and bottom (middle right graph) of the head. Lower row: Images of the front (lower left graph) and back (lower right graph) of the head. Positive values are shown in red while negative values are shown in blue and with dots. (B) A single dipole at the same position as in (A), but the orientation of the dipole has been changed by 90 degrees. The scalp field has drastically changed. (C) Two simultaneously active, symmetrical dipoles in the left and right parietal cortex are simulated. The right section of the figure separately shows the scalp field generated by the red and blue dipoles seen in the left section. The left section also shows the scalp field obtained by combining both dipoles. The resulting scalp field shown on the left is the sum of the two scalp fields shown on the right part of the figure. (D) Additivity and (E) subtractivity of EEG maps. The upper row shows the location of the sources, and the lower row shows the resulting EEG scalp field maps. All graphs were created with the BESA dipole simulator.



The software toolbox “Randomization Graphical User Interface” (Ragu) presented in this paper implements such statistical inferences based on scalp electromagnetic fields. Ragu was primarily developed for the analysis of averaged multichannel event-related potentials (ERPs) involving multiple subjects, and allows for two within-subject (repeated measures) factors and one between-subject factor. The number of levels of each factor is not limited. The following sections will demonstrate typical elements analyzed during an ERP study, and will address the following aims2:

• Importing the Data (section 2.2), ensuring that it is correctly represented (section 2.3.1), and screening for outliers (section 2.3.2)

• Defining the experimental design (section 2.4)

• Testing, time-point by time-point, for evidence of communality of the scalp field data across subjects (section 4.2)

• Testing for topographic differences by time-points, or within pre-selected analysis periods, and eventual corrections for multiple testing across time (section 4.3)

• Testing for differences in latencies of specific, spatially defined ERP components (microstate analysis, section 4.4.1)



2. PREPARING THE ANALYSIS

To introduce how Ragu can be applied, we will use an example data set, collected within a study by Stein et al. (2006). It set out to investigate neuronal plasticity in the language domain by the ERP effects during active German language learning. German sentences were visually presented, and ERPs were recorded in native English-speaking exchange students living in Switzerland. The focus of the present study is on semantic integration implemented in an N400 type experiment, where the last word of the sentence either fit or violated the semantic expectancy created by the preceding parts of the sentence (Kutas and Hillyard, 1980). The sentences presented had either a congruent ending, like “The wheel is round” or an incongruent ending, like “The garden is shy.” We will call this experimental factor “expectancy” because depending on the congruence, the sentence ending was either expected or unexpected by the participants. To assess the effects of language acquisition, the participants underwent the recording of N400 ERP responses at the beginning of their stay in Switzerland and 5 months after the first recording. We will refer to this second factor as “day.” Thus, we have a 2 × 2 design with four conditions, namely “expected day 1,” “unexpected day 1,” “expected day 2,” and “unexpected day 2.”

Sixteen subjects participated in the study3. The subjects were right-handed English-speaking exchange students [mean age: 16.9 years (range 16–18 years); 4 males, 12 females]. None of the participants had made any prior systematic attempts to learn German. They all participated in a German language course during their first three weeks in Switzerland. ERPs were recorded from 74 scalp locations with a 250 Hz sampling rate, from the stimulus onset until 1,000 ms post-stimulus. Artifact rejection and averaging across trials were performed according to standard procedures. The data was recomputed to average reference and band-pass filtered between 1.5 and 30 Hz. For further details on data acquisition, experimental setup and study group, please refer to Stein et al. (2006). The data which was analyzed in this study is available in the Supplementary Material (“Data Sheet 1.zip”).


2.1. Obtaining the Program

Ragu is available for download free of charge. There are pre-compiled versions of the program for Windows and OSX that do not require a MATLAB installation. For MATLAB users, the source code is also available. For these users, it is also possible to access and manipulate Ragu data files directly, as Ragu stores all results in the MATLAB format. The download links can be found on the corresponding author's website.



2.2. Importing the Data

First of all, we need to import the pre-processed ERP data for our example study. Ragu allows users to import the data of all subjects and conditions in a single step. However, since this requires naming of data files in a specific way, the proper way of doing this will be specified subsequently.

2.2.1. Structuring the Raw Data for Import

All data files to be imported need to be in the same folder. A single file is required for each subject and condition. The required format of each data file is ASCII plain text, organized as time × channel matrices, where the positions of the time instances and channels are the same for all files. The names of these files have to follow a particular and standardized scheme. Firstly, a common label at a defined position in the file name must identify all data files associated with a given subject across all conditions, and secondly, a common label at a defined position in the file name must identify all data files associated with a given condition across all subjects. Thus, there is:

1. A unique identifier of the subject. In our data, this is: S01 for subject one; S02 for subject two, etc.

2. A unique identifier of the experimental condition. In our data, C1 represents “expected day 1” and C2 represents “expected day 2.” F1 represents “unexpected day 1” while F2 represents “unexpected day 2.” The “C” in “C1” indicates a correct sentence ending, while the “F” in “F1” represents a false sentence ending.

It is crucial that the chosen labels for the different subjects and conditions, as well as their positions stay the same. However, the order and labels can be chosen differently. According to this convention, the sample data files associated with conditions C1, C2, F1, and F2 of subject one were labeled S01_C1.asc, S01_C2.asc, S01_F1.asc, and S01_F2.asc.

The dialog window for importing data is shown in Figure 2. The user is requested to indicate the folder in which the data files are located. To obtain a list of all subjects, a file search expression that identifies all subjects for one of the conditions needs to be provided (see the left panel in Figure 2). Finally, the user needs to specify the labels for all conditions. When the import is completed, Ragu will indicate the number of frames and channels that have been imported. If these numbers are incorrect because the data was organized as channel × time matrices instead of time × channel matrices, there is a check box in the import dialog window to transpose the data while importing (see Figure 2). It is also possible at this point to re-compute the data to average reference, which is strongly recommended for all ERP analyses in Ragu (Michel et al., 2009).
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FIGURE 2. Left: The Ragu data import dialog window. The defined tags represent the four conditions considered in the study. The search expression enables the identification of all subjects to be imported. Right: The Montage dialog window. The channel coordinates can be visually verified and adjusted if the channel positions are set incorrectly.



2.2.2. Montage

To later visualize the results as spatial maps, Ragu will ask for the so-called montage, which is the location of the channels on the scalp. The user needs to import an ASCII-file with the position information of the channels (“Coordinates.xyz” in the Supplementary Material). Afterwards, the orientation of the maps can be verified and adjusted manually using the dialog window called “Set XYZ-Coordinates” (see the right side of Figure 2).



2.3. Data Tools

2.3.1. Data Inspection

The advantage of importing data as ASCII-files is that there are few compatibility issues, but this increases the possibility of misrepresenting the data after a seemingly successful import. Therefore, Ragu offers a basic functionality to test if the data has been imported correctly. Before starting the analysis of our example data, we check if the data is correctly represented in Ragu. To do so, select “Data Inspection” in the menu option “Data.” To verify that the potential maps and traces are equal to the ones found during pre-processing, select one or multiple subjects and press “Show.” If more than one subject is selected, the mean of all selected cells will be shown. It is possible to obtain a spatial map view by clicking on the resulting butterfly plots.

2.3.2. Outlier Detection


Important basic terms:

• State space representation: The channel x time data matrix is represented in an n-dimensional space, where n is the number of electrodes, and each axis of this space represents the voltage at a given electrode. Each moment in time is thus represented by a point in this n-dimensional space. This high-dimensional data representation can be projected onto lower (e.g. two-dimensional) spaces to permit visualization.

• Multidimensional scaling (MDS): This is a method for visualizing similarities among datasets in a low-dimensional space. Each dataset is represented by a point, and the distances between these points are approximately inversely proportional to the similarity among the corresponding datasets.

• Global Field Power (GFP): This is an index of the overall voltage differences across all channels. It is equivalent to computing the standard deviation across channels.

• Microstates: These are continuous periods of time with quasi-stable spatial configurations of the measured scalp fields.



Our aim is to analyze data from people who represent the general population and to exclude extreme values which cannot be generalized to a larger sample. In the outlier detection step, subjects showing substantial disparity from the mean of all the examined subjects can be detected and eliminated. To visually guide the detection of such outliers, Multi-Dimensional Scaling (MDS) is used. With this method, high-dimensional spaces can be downscaled into lower dimensional ones and are thus easier to interpret. To detect outliers, the data of each subject (i.e., all channels and time points of all conditions) is arranged in a one-dimensional vector, thus yielding one vector per subject. Next, a matrix of correlations is computed for all those vectors. The MDS algorithm then computes, for each subject, a set of coordinates. These coordinates are chosen in such a way that the Euclidean distances between all pairs of coordinates optimally represent the correlation among the ERP data of the corresponding subjects, with higher correlations resulting in smaller distances. The MDS algorithm then computes, for each subject, a set of coordinates, choosing these coordinates in a way that the Euclidean distances between all pairs of these coordinates optimally represent the correlation among the ERP data of the corresponding subjects, with higher correlations resulting in smaller distances.

To access the outlier detection tool in Ragu, click on “Data→Outlier detection.” In the resulting graph, and as explained above, each dot represents, as explained above, one subject, and can be selected and excluded (Figure 3).
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FIGURE 3. MDS output of the correlation matrix including data from all subjects. The middle of the graph (value = 0) indicates the mean value of the data across all subjects and conditions. The closer a dot is to the center, the more the data of that particular subject resembles the mean of the data of all the other subjects, and the further a dot is away from the center, the less it resembles the mean of the data from the other subjects. Outliers can be selected and excluded from subsequent analysis.



The display will then be updated without the eliminated subject. Furthermore, there is an (experimental) option to auto-select outliers. It eliminates potential outliers based on an algorithm proposed by Wilks (1963) that uses the Mahalanobis distance among the displayed points to identify cases that are unlikely to be part of the normal distribution.

In our case, no extreme outliers seem present and the auto-select option did not eliminate any subject. We can therefore continue our analysis without excluding any subject. Note that outlier detection in Ragu is essentially an educated means to obtain a visual overview of the data, but the user determines what should be considered as an outlier. This obviously requires a more detailed inspection of the data from each excluded subject and the judgment of someone familiar with the type of data under analysis.

2.3.3. Additional Tools

Ragu offers the possibility to filter and\or baseline-correct the ERP data. Thus, the user can apply this baseline correction if pre-stimulus information is eliminated from the data. It is also possible to apply IIR high- and low-cut filters, and a notch filter. The processed data can be reviewered using the “Data-inspection” (see section 2.3.1). Data filtering can also be undone after filters are applied. By selecting the option “Filter Specs,” the information on how the data has been filtered and processed can be reviewed. As our example data is already sufficiently pre-processed and does not contain pre-stimulus measurements, we will not use these tools in our example.



2.4. Design

After the data is imported and reviewed, the next step is to define the experimental design. It is possible to define up to two factors for a within-subject design and one factor for a between-subject design. In our example, “expectancy” and “day” are the within-subject factors. If two within-subject factors are set, the levels of these factors have to be orthogonal. If there is only one factor, it can be categorical, rank-order scaled, or interval-scaled.

As our example does not compare distinct groups but factor levels within a group, we define them using the “Design→Within Subject Design” menu. After providing the factor name, the user must click on the “Set” button to define the different factor levels. In our study, factor one is “expectancy” with the factor levels “expected” and “unexpected.” Factor two is “day” with the factor levels “day 1” and “day 2” (see Figure 4). It is also possible to define a between-subject factor in Ragu (menu item “Design→Between Subject Design”). Here, the groups have to be named, and values have to be assigned to the different groups. However, for our example, this is not necessary, and a detailed description will not be provided here. For more details on the between-subject design, see Koenig et al. (2011).
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FIGURE 4. Within-subject design with two orthogonal factors in Ragu. On the upper right side, the two factors and their particular levels (1, 2) are shown. On the bottom, the assignment of conditions to the factor level values is shown. Use “+” and “−” to increase/decrease the assigned factor level.






3. BASIC CONCEPTS

Before we go into a step-by-step demonstration of a typical analysis using Ragu, we will introduce a method for graphically representing both the procedures employed and results obtained using Ragu. We will refer to this as a state-space representation. How it works will be described subsequently.


3.1. State Space Representation

Let us assume that we have measured the EEG at three scalp locations against a common reference electrode (that is by definition, zero), yielding three data channels. A typical way of displaying such data is to plot the voltage of each channel as a function of time, yielding typical pictures of EEG “traces” (Figure 5A). However, instead of one graph per channel, the information can be combined into a single, three-dimensional representation. In this representation, each channel corresponds to one axis of an orthogonal coordinate system. For a given measurement point, the data from the three channels yield three coordinates on the three orthogonal axes and can be plotted as a point in a three-dimensional space (Figure 5B). Thus, each measurement point of the three-channel dataset yields a point, and the entire dataset is consequently represented by a three-dimensional “object.” This representation has a series of properties that will be relevant for the remainder of this article.

• Each point in this state-space representation represents all measured channels at a given time point, and can therefore be represented as a topographical map.

• The origin of the coordinate system is by definition zero, and therefore, corresponds to the recording reference that is also by definition zero. Re-computing the data against another reference thus corresponds to a parallel translation of all points in space that does not affect its shape.

• Re-referencing the data to average reference is equivalent to centering the points to the origin of the coordinate system.

• The distance between a point and the origin is proportional to the overall strength of the observed scalp field. For data referenced against the average reference, this takes us (after a correction for the number of channels) to the definition of the so called Global Field Power (GFP, Equation 1):
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where j is the channel index, vj is the voltage measured at channel j, [image: image] is the mean voltage value across all channels (i.e., the average reference) and n is the number of channels. The GFP is reference free and can be used to quantify the strength of a map across all channels. Mathematically, computing the GFP is equivalent to computing the standard deviation of the voltage values across all channels (Lehmann and Skrandies, 1980).

• The difference vector between any two points A and B in this state-space representation corresponds to the difference map between the two maps represented by A and B. This vector is thus equivalent to the scalp field produced by all observable sources that differed between the two maps represented by A and B.

• The distance between two points A and B, i.e., the GFP of the difference map A-B (see an example in Figure 1E) is proportional to the overall strength of the scalp field produced by those sources that are different between the maps A and B. If maps A and B correspond to different conditions, the GFP of the difference map will provide a global index of the amount of difference in electromagnetic brain activity (see section 4.3).

• We are free to rotate the obtained three-dimensional object to obtain “views” that we find particularly informative.
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FIGURE 5. Simultaneous measurements at three locations expressed in one graphical representation. The red lines mark different time points of measurements (t1–t4), and the black lines indicate the microvolt values at three different channels. On the left (A), the data is displayed as separate traces of each channel. On the right (B), the data is displayed in a state space representation.



EEG recordings usually have more than three channels, which makes the vector-space of the state-space representation more than three-dimensional. However, this does not change the properties of the state-space representations listed above. We can use these properties to deduce important arguments for the analysis and interpretation of our results. In particular, we can use the GFP of difference maps as a global index of difference in brain electrical activity, and we can rotate high-dimensional state-space representations of multichannel data in meaningful ways to obtain visually accessible (usually two-dimensional) and informative representations of their dynamics across time and experimental manipulations.

We will use this form of representation of multiple measurements to introduce different tests performed with the Ragu toolbox, such as the Topographic Consistency Test (section 4.2) and the Topographic Analysis of Variance (section 4.3). The parameters displayed in the state space representation are thus typically rotated versions of the potential values of all channels.



3.2. Randomization Statistics in General

The following section will explain the statistical approach used in the Ragu toolbox. As already indicated in its name, Ragu uses Randomization statistics, meaning that -similar to other statistical methods- it can be used to test results in terms of the plausibility of a competing null hypothesis. In contrast to other statistical methods, randomization statistics can be applied when a theoretical distribution of some extracted variable is not easily accessible and needs to be computationally estimated. Thus, to test for the probability of the null-hypothesis, the comparison of the observed data is performed against results drawn from randomized data, because the randomized data is hypothesized to represent data in which no effect of a systematic variation of some relevant condition is present. Randomization statistics have a similar statistical power as parametric statistics if the distribution of the data meets the requirements for parametric statistics. If the distribution of the data requires the application of non-parametric statistics, randomization statistics typically have a better statistical power than non-parametric statistics (Manly, 2007).

To illustrate this principle, we use an example of Michel et al. (2009). To test the hypothesis that “stupid farmers have bigger potatoes,” one may pick a smart and a stupid farmer and collect a random bag of potatoes from each of them. Next, the average potato size for the two samples and their difference value is calculated. It may indeed occur that the stupid farmer's potatoes are bigger on the average. However, this result may be due to chance, because the difference in the average potato size may be within the range of differences that one would expect by chance, given the overall variability of potato sizes. To test with randomization statistics whether the difference in potato sizes is significant, the potatoes in both bags are mixed and then randomly reassigned to the bags of the smart and the stupid farmer. Again, the average potato size is calculated for each bag, as well as the difference in average sizes. This procedure (mixing the potatoes in the bags and computing the difference in their average sizes) is then repeated several times, yielding, as a result, a distribution of random average potato size differences. Now the probabilities of obtaining an average potato size difference as the one observed originally and the null-hypothesis being true can be estimated by counting the cases in which the randomly obtained average potato size differences were equal or larger than the observed one.

Thus, to test the informational content of some predictor that is assumed to explain a relevant part of the variance in some measured data, the randomization procedure eliminates any potentially systematic link between the predictor and the data. This yields a distribution of the variance explained by the predictor under the null hypothesis. This distribution then serves to test how likely it is that the variance explained by the predictor in the actually observed data is compatible with the null-hypothesis. Depending on this probability, the null-hypothesis may then eventually be accepted or rejected. For ERP analyses, there are many options for applying randomization statistics. In the subsequent sections, some of them will be presented.




4. ANALYSES


4.1. Randomization Options

Before commencing with the data analyses, some settings can be adjusted according to the needs of the user. The parameters set in this step will be applied to all the subsequent tests. However, it is possible for the user to return to these choices and readjust the settings if necessary.

4.1.1. Data Normalization

Map differences between two conditions can be observed due to different reasons, as illustrated in Figure 6. They can be produced by a proportional change in strength in all active sources (case A1 in Figure 6). Alternatively, they may result from a different spatial distribution of active sources in the brain, which means that the relative contribution, location, or orientation of at least some of the sources differ, and a different spatial configuration of the scalp field is observed (case B1 in Figure 6).
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FIGURE 6. Visualization of data normalization. On the left side, the raw data is shown while the data after normalization is shown on the right side. The differences between A1 and A2 disappear after normalization. In case of B1 and B2, the differences between the two signals are not only due to difference in the strength of the signal, but also because the state-space vectors have a different orientation. Therefore, the difference between the signals remains after normalization.



Data normalization eliminates all differences between the maps which are solely due to scaling of the entire scalp fields. Thus, this scaling factor may differ between conditions, but is, within each condition, the same for all channels. Technically, data normalization is achieved by dividing all potential values of a given map by its GFP.

If the data was normalized before performing further tests such as topographic analysis of variance (TANOVA), significant differences found between the conditions can be attributed to changes in the spatial distribution of the active sources in the brain. This would indicate a change in the relative spatial distribution, location, or orientation of the active sources between the conditions. This is typically interpreted as a change in mental strategies. Significant scalp field differences encountered after normalization are thus sometimes referred to as qualitative differences.

The analysis of normalized data can and should be complemented by analysis of the scaling factor, which is the GFP in this case. In Ragu, this analysis is implemented in a form parallel to the TANOVA and available in the Analysis menu as “GFP/RMS.” If the analysis of the GFP yields significant results in the absence of topographic effects, it is sometimes referred to as a quantitative effect. TANOVAs without prior normalization tend to yield overall results that may contain a mixture of qualitative and quantitative effects. Normalizing the data before computing the TANOVA, and performing additional analysis on the GFP will disentangle these two types of effects.

4.1.2. Randomization Runs

The number of randomization runs defines the number of times a chosen test is repeated with shuffled data in randomization statistics. If more randomization runs are performed, the obtained probability distribution under the null hypothesis becomes more accurate. Referring to the potato example, this option would define the number of times the potato samples from the two farmers are mixed and evaluated. Five thousand randomization runs are publication standard, but one thousand runs are the recommended number for an accurate estimate of significance at the 5% level (Manly, 2007). Note that as the number of randomization runs increases, the computation time increases linearly and may eventually make the analysis of larger datasets time-consuming. For purely exploratory analyses, it is thus often useful to substantially lower the number of randomization runs to save computation time.

4.1.3. P-Threshold

The rejection of the null-hypothesis based on its probability requires that the p-value reaches a critical lower threshold. The failure of p-values to reach this threshold will then be considered as a reason to accept the null-hypothesis. The choice of the p-threshold thus determines how liberal or conservative the significance testing of an analysis will be. In Ragu, the chosen p-threshold is used in all the tests based on randomization statistics. This chosen p-threshold determines which results are marked as significant in some of the displays and plays a role in the performance of some of the overall statistical analyses (see section 4.3.1).



4.2. Topographic Consistency Test

A standard assumption in the group analysis of ERPs is that within a defined experimental group, the subjects activate, at least partially, common processing resources. In neurophysiological terms, this translates into the assumption that the event elicits the activation of a common set of sources. But while this assumption seems to be essential for most of the conclusions typically drawn in group analyses, it is rarely evaluated. Additionally, apart from validating some basic assumption, such a test may facilitate to empirically establish the analysis time window as the period where this assumption factually holds.

The topographic consistency test (TCT) will help us to determine if, for a given moment or period of time, an experimental condition elicited a consistent neural activation across subjects. In our example, we want to know when the subjects reacted similarly to the word stimuli in a particular condition in terms of ERPs. If such consistency across subjects cannot be found in the data, it is impossible to attribute ERP reactions to an experimental manipulation, since there is no evidence that the conditions elicited ERPs in a verifiable way. To determine if there is evidence, for a given time and condition, that there is a set of sources sufficiently common across subjects to be detected on the level of the grand-mean, the TCT is the method of choice.

How does this test work? First, a quantifier that is sensitive to the spatial consistency of ERP maps across subjects has to be specified. This can be found in the GFP of the grand-mean map across those subjects, because the GFP of the grand-mean ERP map (mean map across all subjects at one time point) depends not only on the amplitude of the individual maps, but also on the spatial consistency of these maps across subjects.

If there are more spatially consistent activities across subjects, the GFP of the grand-mean map becomes large (see Figure 7A). If there are a lot of differences in the individual maps, the potential values get canceled out during the computation of the grand-mean map, and consequently, the GFP of the grand-mean map is small (see Figure 7B). We can therefore state that the GFP of the grand-mean ERP map depends systematically on the consistency of active sources across all subjects.
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FIGURE 7. State-space representation of the randomization statistics used for the TCT. In order to visualize the argument, only two channels (E1, E2) are shown. (A) Shows the distribution of data with high consistency. The vectors represent the individual maps. The red dot is the grand-mean map, which has a relatively large GFP. (B) Shows a random distribution of the data. Note that only the orientation of the individual data, but not the length, has been randomized. Thus, the GFP of each vector stays the same. Notice how the grand-mean map moves to the origin in the case of the random data distribution. It becomes obvious that the GFP of the mean ERP map depends not only on the GFP of the individual maps, but also on the spatial consistency across the individual data. This is the reason the GFP of the mean ERP map of one condition can be chosen as a measure of effect size for consistency.



To test if the obtained GFP could be produced by ERP maps that have no consistency across subjects, we need data which reflects the null hypothesis. The null hypothesis states that consistency between subjects is produced by chance and should be relatively small. To produce this random data, the structure of every map can be “destroyed” by shuffling separately for each subject, the measured potentials of each map across channels. By doing so, the mean GFP of each subject remains the same, but the potentials are randomly distributed over the channels. The grand-mean map of this random data is then computed across subjects, followed by the computation of the GFP of this random grand-mean map. The obtained GFP value is thus an instance of a GFP value that is compatible with the GFP values of all given individual maps in the absence of any systematic communality of these maps across subjects. This corresponds to our null-hypothesis.

The shuffling of the data and the computation of the grand-mean GFP is then repeated multiple times, in order to obtain a distribution of the probability of the grand-mean GFP under the null hypothesis. Finally, the probability of the observed GFP can be tested by computing the percentage of cases where the GFP obtained after randomization is equal to or larger than the observed GFP. The TCT, from a set of ERPs recorded in different subjects but in the same condition, produces a time-series of p-values that indicate the probability that the GFP of the grand-mean ERP across subjects is compatible with the null-hypothesis.

To compute the TCT in Ragu, click “Analyses/Results→Topographic Consistency Test.” The resulting graph indicates that—as expected—for all conditions and most of the analysis period, the GFP of the grand-mean ERP map across all subjects is larger than it would be by chance. There is therefore evidence for a significant communality across subjects. However, the results become additionally informative when comparing the conditions (see Figure 8). We observed an earlier onset of a non-significant time period indicating the end of an identifiable “cognitive rule” in C2, as compared to the C1 and F-conditions. Thus, in the F-conditions and in C1, the relevant effect of the stimulus seems to last longer than in the C2-condition. There might be an effect of time between C1 and C2 which could reflect either a learning or interaction effect. However, to test this, further steps for analysis are required because we only have information about the consistency within the conditions, but no information about potential significance of differences or relationships between the conditions.
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FIGURE 8. Ragu output for the TCT. Left: The Global Field Power (shown as the black line) of the mean ERP maps on the y-axis for every time point in ms on the x-axis is shown separately for each condition. The red line indicates the p-threshold (0.05). The gray area marks non-significant time points. The height of the gray area indicates the p-value of the TCT (in the white area p < 0.05). Right: By clicking on the graph, the mean ERP map of a specific time point can be shown, as displayed on the right side of the GFP curves. There is a clear contrast between the moments of high GFP (in the first graph; C1) and small GFP (second graph; C2) displayed by a more intense coloring and narrower contour lines. It is possible to compute t-maps and plot three-dimensional models in this dialog window (see picture on the right).





4.3. Topographic Analysis of Variance

The TCT showed that there was consistent neural activity in the conditions across all subjects most of the time. The next question that arises is if there are significant map differences between the expected and the unexpected sentence endings and/or between day 1 and day 2. To compare map differences between factor levels, a topographic analysis of variance (TANOVA) can be performed. The TANOVA tests for significant differences in the maps between factor levels. This is essentially done by quantifying the strength (i.e., the GFP) of the difference maps between those factor levels. These difference maps are interesting for us because they indicate if different sources were active at the specific factor levels in our experimental design. By analyzing the difference maps, we can draw conclusions about our hypotheses and the success of our experimental manipulation. The difference maps represent the actual physiological outcome of our experimental manipulation.

TANOVA works by averaging the potential maps for each factor level separately, followed by computing the difference maps between factor levels. This can be performed for each factor, and for their interactions. The GFP of the difference maps can then be taken as a global quantifier for the differences between all factor levels (see Equation 2, Michel et al., 2009, p. 177). To ensure that the differences are not just produced by chance, randomization statistics are applied. If there is the need for exploratory data analysis, TANOVAs can be computed for each time-point, eventually followed by corrections for multiple testing across time (see section 4.3.1). If there is a specific time-window of interest, the TANOVA can also be used for producing scalp maps averaged across this time window.
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where c is the number of factor levels (or combinations thereof, if an interaction is to be tested), n is the number of channels, [image: image] is the grand-mean across subjects of the voltage of factor level i at channel j, and [image: image] is the grand-mean across subjects and factor levels of the voltage at channel j. All data are recomputed against the average reference.

Specifically, to sample GFP values of difference maps (dGFP, see Equation 2) under the null hypothesis, factor levels are shuffled within subjects, and the computation of dGFP is repeated (see graphs A and B in Figure 9). This step is repeated multiple times to obtain a distribution of probability for dGFP under the null hypothesis (see section 4.1.2). The observed dGFP of a factor or interaction can thus be evaluated for significance by comparing it with the distribution of dGFP values under the null hypothesis. The probability of the null hypothesis is then defined as the percentage of cases where the dGFP values obtained after randomization are equal to or larger than the dGFP value obtained in the observed data.
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FIGURE 9. Visual representation of the data randomization used to compute a TANOVA. The two colors indicate the data resulting from two different factor levels, e.g., the expected and unexpected sentence endings on the two channels, E1 and E2. The dots represent the means of the factor levels. The length of the black line between the two means indicates the strength of the difference between the factor levels which is equal to the GFP of the difference map. (A) Shows an example of very different factor levels. (B) Shows the same data after randomization between the two factor levels across subjects. Notice that the difference becomes quite small when the data is randomized. This comparison indicates that randomized data should produce difference maps with with relatively small GFP values.



Ragu displays the result of a TANOVA in a set of graphs (Figure 10). The first set of these graphs shows, for all factors and their combination, the obtained p-values as a function of time (Figure 10, left). Clicking on a graph allows the user to select a particular time point and factor or interaction for further visualization (Figure 10, right). In our case, the display shows the p-value of the factors “expectancy” and “day” and the 2 × 2 interaction of the two factors over the entire time course. The right side of the display further disentangles the interaction of the factors at the chosen time point (616 ms).
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FIGURE 10. TANOVA results. Left: P-values (y-axis) for the comparison between the mean ERP maps of each factor level and the interaction for every time point in ms (x-axis). The gray areas mark non-significant time points while the white areas mark periods of significant differences between ERP maps of different factor levels. Right: the four-level interaction (combination of the two main factors) is shown at a significant time point combined in a graph using a state-space representation in order to display the relationships between the factor levels. In this figure, the ERP maps of every single factor level producing an effect are displayed.



In the upper right part of this display, the mean maps across subjects of all factor levels that form the chosen effect are shown. To display the relationship between these maps, the state-space approach is used. In the introduction (section 3.1), we learned that a map can be considered as a vector in an n-dimensional space, where n is the number of channels. Differences within a given set of maps are then represented as differences among those vectors. To optimally visualize map differences on a two-dimensional computer screen, this n-dimensional space is rotated until its projection on a two-dimensional surface is maximally informative about the relationships among all maps to be represented. For this purpose, a principal component analysis (PCA) is computed based on all these maps. The eigenvalues of the first two principal components are displayed on the x- and y-axes of a scatter plot (Figure 10, lower right corner). Additionally, the PCA-eigenvector-maps are shown on the x- and y-axes. The location of the points represents different maps. Conclusions about the relationship between these points can be drawn. If the dots representing two mean maps are close, the maps are considered to be relatively similar, and if the dots are further away, the maps are considered to be different. We can see that in the display, the maps elicited by expected sentence endings differ much more in location compared to those elicited by unexpected sentence endings. The maps on the axes of the graph inform us that this shift in locations is associated with a negativation, predominantly over the midline, central, and parietal regions for expected sentence endings.

In our sample analysis, there is a time period between 250 and 800 ms after the stimulus onset, in which the maps of the correct and false sentence endings were significantly different from one another. For the factor “day,” there is only a small window of significance. In addition, for the interaction effect between the factors “expectancy” and “day,” there is only a short period of significant dissimilarity between all factor levels. This suggests that if the sentence ended as expected, different neural processes were activated during the period between 250 and 800 ms after stimulus onset compared to the cases when the sentence ended in an unexpected way. Furthermore, there seems to be an interaction between the factors “expectancy” and “day” for a neural activation which takes place between 580 and 640 ms after stimulus onset. The state-space display suggests that this interaction is observed because the maps for the false sentence endings do not vary much from day 1 to day 2, but the maps for the correct sentence endings change. This could reflect a learning process for correct German words we already hypothesized after computing the TCT. To investigate this theory more precisely, post-hoc tests are required. However, before we describe such, we need to address the issue of multiple testing in time, which is referred to as “Overall Statistics” in Ragu.

4.3.1. TANOVA Overall Statistics

It is obvious that applying time-point by time-point TANOVAs, as we did in the previous section, creates a problem of multiple testing. This problem is confounded by the fact that among the time-points, there is an a-priori unknown dependence, such that a correction by the full number of tests conducted would be overly conservative. It is, however, unclear what the proper correction factor should be. Ragu has a number of solutions to this problem. It allows correction for multiple tests that are to an unknown degree interdependent, such as our TANOVA results. Note however that these approaches may still be overly conservative in light of pre-existing knowledge about the functional correlates of certain analysis periods.

In Ragu, the options to correct for multiple testing over time are called overall statistics. These options become available after the computation of the TANOVA (Analyses/Results→Tanova Overall Stats).

What is the principle behind these overall statistics? In the TANOVA, a test for significance can be computed for every time point. This yields a distribution of p-values, of which a subset eventually ends up being below a chosen significance threshold by chance alone, and thus constitute false positives. To minimize this problem, we need to test the obtained distribution of p-values against a distribution of p-values that is compatible with the null hypothesis. Ragu allows these tests to be performed for three quantifiers of the distribution of p-values, namely the amount of p-values below a certain threshold, the duration of contiguous periods with sub-threshold p-values, and a combination of all obtained p-values. We will now illustrate this in more detail for the case of the amount of sub-threshold p-values.

To estimate how likely it is that a certain number of sub-threshold p-values are present under the null hypothesis, we can employ a procedure called “Global Count Statistics.” The procedure re-uses previously obtained results of randomization procedures: For the TANOVA, we have already computed GFP values of difference maps among factor levels, both for the original data and after randomizing the assignment to the experimental conditions. These GFP values can now be further used for the overall significance tests. For every randomization run computed during the TANOVA, p-values can be computed by comparing the obtained random differences with those obtained in all other randomization runs. This allows us, in the next step, to extract the number of sub-threshold p-values that we can expect when the null-hypothesis holds. The result is thus an estimate of the distribution of the count of false-positives under the null-hypothesis. Finally, the count of sub-threshold p-values in the observed data can be compared to this distribution of the count of false positives in the random data. Given that we chose a 5% p-threshold for the overall significance, the output of the overall significance test then indicates a count that is larger than 95% of the false positive count obtained in the random data (see Figure 11), and thus expectedly produces an overall 5% false positive rate.
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FIGURE 11. Left: The y-axis shows the number of randomization runs in which a certain number of sub-threshold time points was obtained. On the x-axis, the sampling points in the data are displayed (time: 1,000 ms, sampling rate: 250 Hz, 250 sampling points). The red dot marks the count of sub-threshold time points obtained in the observed data. The dark gray bars mark the amount of randomization runs in which a certain number of sub-threshold time points were obtained with the shuffled data. Right: The distribution of the meta-analyzed results obtained using Fisher's method is shown. The gray bars indicate the results from the randomized data while the red dot marks the observed effect size.



In addition to the count of false positives, it is also possible to combine the set of all obtained p-values (“Global p-AUC Statistics”) using Fisher's method (Fisher, 1925). The resulting summary values are then tested for significance using the same logic as the one employed for the duration and count of significant time points. Finally, one can perform the same type of analysis for the duration of continuous periods with sub-threshold p-values (“Global Duration Statistics”). As output, one obtains a value for the duration of periods with sub-threshold p-values that needs to be exceeded if an effect will be considered significant in the overall analysis (Figure 12).
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FIGURE 12. Left: The global duration statistics for the different factors are shown. The y-axis indicates the p-value; the red line represents the p-threshold (5%). The x-axis represents duration in ms. The curves shown are the distribution of the length of continuous periods with sub-threshold p-values that can be expected under the null hypothesis. The green line and the indicated duration mark the length of succeeding sub-threshold time points in the randomized data which is less likely than the chosen significance level. These duration thresholds are then applied to the TANOVA plots, where periods longer than the estimated duration threshold are marked in green. The only factor for which the observed length of sub-threshold time points is significant is the “expectancy” factor (see the first row). Right: The green area on the right-hand side identifies periods in the TANOVA that meet the extracted duration thresholds (green areas).



In our dataset, only the “expectancy” factor survives any of the overall statistics. However, the overall statistics, as presented and applied here, assumes a situation where one is completely naive about the outcome of our study and has no other information but the data. This is typically not the case. Usually, one starts the experiments with some reasonably founded expectations about, at least, parts of the outcome, and may take this background information into account when weighing the evidence obtained from the data. Thus, the overall statistics may sometimes end up being overly conservative in light of previous knowledge and may also be treated as such. As this paper aims at illustrating typical analysis strategies using Ragu, and not at advancing our empirical knowledge about language learning, we will assume that we have additional background information that makes us reasonably expect a late interaction effect. We thus continue the analysis using post-hoc tests in order to specify this interaction effect, with the sole aim of demonstrating how such interactions can be performed.

4.3.2. Post-hoc Tests (t-Maps)

The TANOVA revealed a period of sub-threshold (<0.05) p-values for the interaction effect between the factors, “expectancy” and “day.” While this interaction did not survive the overall statistics, we assume that based on the literature, we have reasons to believe that the time range of the identified interaction is compatible with existing knowledge about language, semantic integration, and learning, and thus merits attention nevertheless. However, at the current state of analysis, the output of the TANOVA is very general and does not indicate specifically which factor levels primarily account for the effect, and what the topographical characteristics of the effect were. Post-hoc tests and t-maps will help us to access this kind of information.

In Ragu, post-hoc tests and t-maps are computed for a specific contrast of interest, and for the average over a user-defined time period. The dialog window for computing t-maps is accessed through the menu (Analyses/Results→t-Maps & sLoreta). The dialog window permits the user to select specific subject groups and conditions to be contrasted, and define a time window for the averaging across time. Eventual baseline conditions may also be taken into account. The test type (paired vs. unpaired), is set automatically.

In our example, we search for specific information about the time interval in which the TANOVA showed an interaction effect, i.e., between 580 and 640 ms after the stimulus onset. T-maps indicate, for each channel, how much some conditions differ on the average, in comparison with the variance of the differences across observations, and thereby provide a local index of the signal-to-noise ratio on the scalp. T-maps contain information that an educated viewer may use to make some preliminary inferences about the location of the active sources that produced the differences in the conditions, like the gradients and poles of the map. Note, however, that due to volume conduction, the scalp location of large t-values does not necessarily coincide with the location of the brain sources that account for these differences (see also Figure 1). In our example, it is particularly interesting to analyze the time period with the interaction effect.

In our post-hoc analysis for the interaction effect, we test a series of differences between the conditions in the time period between 580 and 640 ms after the stimulus onset. The results of the TANOVA already suggested that there is a relatively large difference between the conditions C1, expected sentence ending on day 1, and C2, expected sentence ending on day 2, while the difference between the F-conditions, i.e., the unexpected sentence endings, is much smaller. A paired t-map, combined with a TANOVA, quantifies the potential learning effect between C1 and C2 in isolation. The resulting t-map can then be compared to the t-map of the F-conditions. As expected, the t-map of the C-conditions shows larger values for the comparison of day 1 and 2 than the t-map of the F-conditions (Figure 13).
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FIGURE 13. Results of t-mapping. Left: the ERP mean maps for the expected sentence endings are displayed for day 1 and 2. The resulting t-map is also shown. Day 1 was subtracted from day 2 to parallel the temporal sequence of the conditions, and thus the learning effect. The dialog window also provides further information, including information on the p-value of the TANOVA, and a table with the t-values for each channel. Right: The ERP maps of day 1 and 2, and the corresponding t-map, are shown for the unexpected sentence endings. The t-map for unexpected sentence endings is much flatter than that for the expected sentence endings, and the TANOVA is not significant.



As a result, we obtain the t-maps of the C- and F-condition for day 1 and 2 (see Figure 13). The output also contains a table with the t-values for each channel. We investigated the time period of the interaction effect that we found in the TANOVA. The values of the t-map for the comparison between the expected sentence endings are much larger than the values of the t-map of the unexpected sentence endings. As expected, the significance values from the TANOVAs shown below the t-maps are also quite different. While the map of the correct sentence endings changed considerably between day 1 and day 2 (p = 0.0022), the maps for the false sentence ending remained nearly the same (p = 0.7130). This is evidence for a selective learning effect in the perception of expected sentence endings, but not in that for the unexpected sentence endings.



4.4. Microstates Analysis

The TANOVA allowed us to test whether the different experimental conditions elicited different brain functional states at a given time point, and provided information which proved to be informative. However, no information was provided concerning the latency differences of particular components. Asking about latency differences in ERP components is similar to asking if, for some defined brain functional states, their observed presence varies systematically as a function of our experimental design. Microstate analyses can help us answer this type of questions. Microstate analysis comprises the examination of brain electromagnetic scalp data in terms of a set of fixed maps, and quantifying the data by the time periods (i.e., microstates) when these maps are predominant (Brandeis et al., 1995). Technically, microstate analyses belong to the broad family of spatial factorization procedures, among which spatial-principal component analysis and mainly the independent component analysis (Makeig et al., 1997) are also important members. All of these procedures decompose a multichannel EEG or ERP time series into a time-varying linear combination of a relatively small set of spatial maps or components, while optimizing this decomposition for certain additional a-priori objectives of independence among the time-courses of components: While spatial principal component analysis aims at linear independence, independent component analysis eliminates also higher order dependencies. Finally, microstate analysis implements independence by excluding any temporal overlap of components, such that there is, for a given time, only one active component (Pascual-Marqui et al., 1995). While the rationale of any of these procedures is certainly debatable, microstate analysis has proven sufficiently to have some justification. A relatively small set of microstates is typically enough to account for a large part of the data, and their quantification often yields results that correspond well with theories that predict e.g., reaction time differences (see e.g., Schiller et al., 2016).

Technically, microstate analysis typically consists of a clustering step, where the scalp field data to be analyzed is submitted to a spatial clustering algorithm that identifies the component/microstate maps, and an assignment step, where the individual time-points and conditions of the data are assigned to the best-fitting cluster, yielding the time-courses of the microstate model (Pascual-Marqui et al., 1995). In Ragu, both of these steps are typically applied to factor level- and group wise averaged grand-mean evoked potential data. A microstate analysis thus yields two types of information. First, there is, for a given dataset, a set of scalp maps that represent the cluster centers, or microstate maps. Second, there is an assignment, for each group and factor level, of each moment in time to one of these microstate maps. This assignment becomes the basis for the subsequent statistical analyses, where a microstate is defined as a continuous period of time that has been assigned to the same microstate map. Different quantifiers of these microstates can then be extracted and statistically tested (see below). Apart from the fact that microstate analysis yields temporally sharp and unequivocal information about the onset and offset of each component, the fact that empirically, microstates often cover extended time periods suggests that there is, within each microstate, a predominant synchronization of the contributing sources (Michel and Koenig, 2017).

As different microstates represent different activations from underlying neural sources, it can be argued that they reflect different types of mental processes (Khanna et al., 2015). Microstate analysis can be used to investigate if certain brain processes differ in their timing between factor levels, i.e., if their length, onset, or offset latency was systematically affected by the experimental manipulation. For the demonstration of microstate analyses in Ragu in our sample data, we will focus on the following two components:

• N400 and ERP microstates: Previous studies showed that if the semantic expectancy of a subject is violated, an ERP effect is produced about 400 ms after the stimulus onset (Kutas and Hillyard, 1980). This ERP component is called N400 and it is accompanied by a negativity over central scalp sites (Brandeis et al., 1995). In our study, we would therefore expect a corresponding difference in the microstate maps between the expected and unexpected sentence endings, about 400 ms after stimulus onset. The unexpected sentence endings should be marked by a microstate which has a central/parietal negativity. This hypothesis is supported by previous findings from Brandeis et al. (1995). In this study, the ERP microstates corresponding to expected or unexpected sentence endings were mapped and a map with posterior negativity around the N400 was found if the sentence ending was unexpected.

• Interaction effect: In the TANOVA, we found a 2 × 2 interaction between the factors “expectancy” and “day” between 580 and 640 ms after stimulus onset. Now we want to specify this effect using microstates, because there may be diverging ways to account for the differences between the ERP maps we observed in the TANOVA. One possibility is that very similar mental processes were activated in all the conditions, but they had different durations. A dissimilarity between the conditions would then be due to a delay in one condition compared to another. Alternatively, different mental processes may have been active in the different conditions, but with a similar timing, which also would yield an effect in the TANOVA. Microstate analyses can help to distinguish these possibilities.

4.4.1. Number of Microstate Classes

At the beginning of any microstates analysis, the number of microstate classes has to be determined in a meaningful way. This can be done a-priori, and based on previous studies, or empirically by cross-validation (Koenig et al., 2014). The cross-validation procedure aims to identify the number of microstate maps that are optimally predictive for new data. For this purpose, the subjects of the dataset are randomly divided into a learning set and a test set. For our example, we will define a learning set and a test set each containing 50% of the subjects. Next, the learning set is used to construct a set of spatio-temporal microstates models that vary in the number of microstate classes. Each of these spatio-temporal models consists of a set of maps and an index that assigns each moment of time of the data to one of these maps. This spatio-temporal model is then projected onto the test set, which yields, for each moment in time, the amount of variance of the test set explained by the microstate model obtained in the learning set. Finally, the overall explained variance across time is computed for the test set. The models are then evaluated based on the explained variance. As expected, in the learning set, the explained variance will increase with every microstate class added. Yet, in the test set, the explained variance will stop increasing after a certain number of classes, which is an indicator of the beginning of over-fitting the data. In a graph, this should be observed as a plateau in the curve of explained variance. The best fitting number of microstate classes for the data is marked by the beginning of this plateau, because adding more microstate classes beyond this point does not add generalizable features to the model.

4.4.2. Randomization Statistics

Once the number of microstate maps has been set, randomization statistics can be computed for the assignment of every microstate class and for all factors and their interactions. The goal of microstate statistics in Ragu is to compare particular microstates and their assignment between the factor levels, and to test eventual differences between groups and factor levels for statistical significance. Ragu does this by extracting different quantifiers for each microstate class. They include the onset latency, offset latency, duration, area under the curve (AUC), center of gravity4, and the mean GFP. The duration, AUC, and mean GFP of the microstates are global measurements of the occurrence of particular microstates, whereas the onset, offset, and center of gravity provide more information about the behavior of the microstates in time. Among the temporal parameters, the center of gravity is the most robust parameter, because it depends on all data points and not solely on the first and last observations of the microstate class.

The randomization statistics for the microstate analysis work as follows: First, the quantifiers described above are computed in the grand-mean ERP maps for every factor level and group, and the variance between factor levels and groups is extracted. Next, individual ERPs are assigned to individually shuffled factor levels, and group labels are also randomly shuffled. New grand-means are then computed based on these shuffled individual ERPs. The same quantifiers are extracted and their variance is computed. By repeating these shuffling, quantification, and comparison steps for a number of times, one can obtain a distribution of the variance between factor levels and groups of each of these quantifiers under the null-hypothesis. The significance of the observed variance between group and factor level means can then be estimated based on the obtained random distributions (Koenig et al., 2014).

4.4.3. Computing and Testing Microstates in Ragu

As explained above, first the microstate maps have to be computed (Analyses/Results→Microstates→Compute Microstate maps). The time interval of interest can be defined. In our example, the whole time window is analyzed. As shown in Figure 14, the microstate dialog window permits the user to choose a cluster-algorithm. Either the atomize and agglomerate hierarchical clustering (AAHC) algorithm (Murray et al., 2008) or the k-means algorithm (Pascual-Marqui et al., 1995) can be chosen. The number of microstate classes can be determined either by a-priori assumptions (the user should then select “fixed”) or alternatively using cross validation (Koenig et al., 2014). In our example, cross-validation is performed by testing a range from 3 to 10 microstate classes. If the option “Smooth labels” is checked, very short microstates are suppressed (Pascual-Marqui et al., 1995).


[image: image]

FIGURE 14. Left: Dialog window for the computation of microstates in Ragu. Right: The result of the cross validation for the optimization of the number of microstate classes. The x-axis shows the number of classes of the different solutions (3–10). On the y-axis, the explained variance (the fit) is displayed. The left plot shows the explained variance in the learning set, which by nature of the analysis increases monotonically. The left plot shows the explained variance in the test set, which stops increasing after a certain number of microstate classes. The red arrow marks the point in the test set where a plateau of explained variance seems to be reached. The best fitting model seems to be the seven-microstate class solution. However, it may be reasonable to also explore other numbers to ensure that the results do not crucially depend on that particular choice.



After the identification of an appropriate number of microstate classes (see Figure 14, right), the next step is to compare the microstate assignment and the resulting parameters between the factor levels. To do so, randomization statistics are computed (Analyses/Results→Microstates→Microstate Fitting Statistics) as described earlier.

4.4.4. Interpretation

As there is a wealth of information resulting from this analysis, we focus on two components that we planned to investigate originally. We had specific hypotheses about microstates corresponding to the N400 effect, and to the interaction effect in the time window 580 and 640 ms after stimulus onset. There may be more information in the data, but rather than becoming speculative, we demonstrate the interpretation of results within the frame of our hypotheses.

4.4.4.1. N400

In the time window around 400 ms after stimulus onset, the predominant microstate class in the unexpected sentence endings differed from that in the expected sentence endings. After 200 ms, this microstate class two (dark green color in Figure 15) was not observed during the expected sentence endings. The results indicate that the mean GFP and area under the curve (AUC) of microstate two are significantly different between the expected and unexpected sentence endings (GFP: p = 0.016; AUC: p = 0.008).
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FIGURE 15. The seven-class solution of the microstate assignment for the four conditions (“expected vs. unexpected x day 1 vs. day 2”). The y-axis indicates the GFP-value while the x-axis indicates time (ms). The different colors stand for specific microstate classes, and the height of the colored areas indicate the GFP explained by the corresponding microstate map. The thin black line indicates the total GFP of the data. Note how well the different microstates explain the overall variance of the data. At the top of the graph, the potential maps of the different microstate classes are shown. The table on the left side shows the results of the selected microstate class fitting statistics, separated for each factor and the interaction effect. The parameters analyzed are the onset latency, offset latency, duration, area under the curve, center of gravity, and mean GFP of each microstate class. Note that in the current analysis, the selected microstate class two appears twice in time, and thus most likely represents two functionally different states with similar maps. To disentangle this, one may limit the analysis window for the microstate statistics to include only a certain period of interest.



Additionally, the map of microstate two has a central negativity, which corresponds with results reported by Brandeis et al. (1995) for the N400 microstate map of incorrect sentence endings. There is also a strong significant effect of expectancy for the microstate class five (pink color in Figure 15) which starts around 240 ms after the stimulus onset in all conditions but ends earlier during unexpected sentence endings (Duration: p = 0.006; Offset: p = 0.02).

4.4.4.2. Interaction effect

The TANOVA revealed an interaction effect in the time window between 580 and 640 ms after stimulus onset. Figure 15 shows that in this time window, the microstate classes seven (dark gray) and six (light green) are present in all the conditions. During the unexpected sentence endings, microstate seven lasted longer and microstate six had a later onset than during the expected sentence endings.

To specify the interaction effect that we found in the TANOVA (see Figure 10) we examine the differences between the expected sentence ending on day 1 and 2 in the interaction effect time window. On day 2, microstate seven is a bit shorter than on day 1. This could reflect a learning process, because there is no such difference between the two measurements of the unexpected sentence endings: they look quite similar. We may interpret this result as a learning effect which accounts only for the expected sentence endings. On day 1, the German words were relatively unfamiliar to the subjects, so microstate seven was nearly as long as that in the unexpected sentence endings. Later, as they improved their language skills, microstate seven became shorter. However, in the present small dataset, the statistics show neither significant differences in microstate six or seven nor significant interaction between the factors on the microstate level, such that this observation remains purely descriptive.




5. DISCUSSION

The aim of this article was to illustrate the analysis of ERP data using randomization statistics as implemented in the MATLAB-based program Ragu, using an example study. It focused on the presentation of the different options and functions integrated in Ragu to familiarize students and more experienced scientists who want to analyze ERP data with a multivariate approach and to help them understand the underlying concepts of the tests and statistics. The discussed example study investigated the effects of language acquisition on the ERP reaction on expected and unexpected sentence endings in a foreign language before and after a 5-month long acquisition period. The results of the different test options of Ragu can now be integrated.

First, we tested if the stimuli employed in the study produced consistent ERP activity in the subjects at both measurement times. To do so, a TCT was computed. The TCT revealed significant consistency for all the conditions from the beginning of the data until almost the end of the analysis period. Interestingly, there was a time-period (after about 600 ms) where the TCT failed to yield evidence for a consistent map across subjects selectively in the expected sentence endings of the second measurement. For the unexpected sentence endings, there seemed to be no such differences between day 1 and 2. Having established that there is a consistent ERP activity in all conditions, it was reasonable to perform further data analysis.

The TANOVA tested for significant topographic differences in all time points of the data by comparing the GFP of difference maps in the different factor levels. We identified a rather long time period where the expected and unexpected sentence endings differed significantly, and also a short moment in time where day 1 and 2 differed significantly. In addition, we found an interaction effect between 580 and 640 ms after stimulus onset. To control for the effects of multiple testing, overall statistics for the count, duration, and Fisher's combined probability values were applied. Their outcome strengthened the validity of the significant result comparing the expected and unexpected sentence endings, but the effect on the day and the interaction effect were not significant in the overall statistics. However, assuming the presence of a pre-existing background information provided an external justification to expect these effects of day and interaction. For demonstration purposes, we continued to analyze the results concerning the interaction effect observed using the TANOVA.

For further interpretation of the late interaction effect, post-hoc tests were applied. The expected sentence endings as well as the unexpected sentence endings were compared between day 1 and 2. The t-maps showed a much stronger result for the comparison of the expected sentence endings between day 1 and 2, whereas the resulting t-map of the unexpected sentence endings was rather flat, indicating small t-values and no substantial difference between the different measurement time points of the unexpected sentence endings. Furthermore, the TANOVA revealed a significant difference when correct sentence endings between day 1 and 2 were compared. However, no significant difference was observed for false sentence endings between day 1 and 2 (see Figure 13). This supports a conclusion that at a rather late stage of processing, the learning effects were driven by the processing of correct sentence endings, which coincides with the observation made based on the TCT analysis.

Finally, we used microstate analysis as an additional analysis method to quantify the latency effects of the experimental manipulations. The difference between the levels of the factor “expectancy,” also visible in the TANOVA, can be interpreted as an N400 effect. In the time window about 400 ms after stimulus onset, we expected to find a microstate showing posterior negativity (Brandeis et al., 1995), which would not occur in the expected sentence endings. Indeed, we found a microstate reflecting the N400 map with a central negativity, and only occurring in the unexpected sentence endings around 300–420 ms after stimulus onset. This is evidence that another mental process was active if the ending of a sentence violated the semantic expectancy of the subjects, as compared to the congruent case. However, no significant result for the interaction effect was found in any of the analyzed microstate classes. Therefore, based on the microstate analyses that we have conducted, we cannot argue in favor of a learning effect between day 1 and 2 regarding the expected sentence endings. However, the advantage is that by using the microstate approach we can gain information on the topographic nature and latency of short duration brain events. Taken together, it becomes apparent that all the results of the different tests in Ragu pointed to a similar story. We already saw differences in the TCT that were buttressed by the TANOVA and post-hoc tests.



6. CONCLUSION

We aimed to demonstrate useful features of Ragu. Ragu implements a series of analysis tools for evaluating experimental ERP data with meaningful and valid statistics, but without being dependent of a-priori models. The user does not have to specify a set of channels, time window, or type of inverse solution to begin with. However, Ragu provides an overall view of the time course and effects of the different groups, and factor levels in the entire data. Similar to other open source programs, Ragu provides a democratic approach for conducting scientific research. It can be used and adapted for specific purposes by a broad range of scientists. We hope that the present article provides an easy-to-grasp guide into the applications of the tool and we look forward to receiving positive feedback on its functionality.
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FOOTNOTES

1This paper was written by students and for students. The emphasis is thus on concrete and hands-on procedures and data-based explications, and not on the more abstract mathematical principles. For more general information about the underlying algorithms, please refer to the methods in the corresponding papers cited in this article.

2Compared to a previous paper demonstrating the usage of the software (Koenig et al., 2011), the present paper additionally covers the outlier detection, the topographic consistency test, post-hoc comparions and the microstate analysis.

3The study was approved by the Ethics Committee of the Canton of Bern, and all participants gave their written informed consent.

4For a set of time-points assigned to a particular microstate class, the AUC is simply defined as the sum of the GFP values of those time-points. The center of gravity is defined as
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where n is the number of time points assigned to the given microstate class, GFPj is the GFP of the j-th time point assigned to the given class, and tj is the latency of the j-th time point assigned to the given class.
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In recent years, time-resolved multivariate pattern analysis (MVPA) has gained much popularity in the analysis of electroencephalography (EEG) and magnetoencephalography (MEG) data. However, MVPA may appear daunting to those who have been applying traditional analyses using event-related potentials (ERPs) or event-related fields (ERFs). To ease this transition, we recently developed the Amsterdam Decoding and Modeling (ADAM) toolbox in MATLAB. ADAM is an entry-level toolbox that allows a direct comparison of ERP/ERF results to MVPA results using any dataset in standard EEGLAB or Fieldtrip format. The toolbox performs and visualizes multiple-comparison corrected group decoding and forward encoding results in a variety of ways, such as classifier performance across time, temporal generalization (time-by-time) matrices of classifier performance, channel tuning functions (CTFs) and topographical maps of (forward-transformed) classifier weights. All analyses can be performed directly on raw data or can be preceded by a time-frequency decomposition of the data in which case the analyses are performed separately on different frequency bands. The figures ADAM produces are publication-ready. In the current manuscript, we provide a cookbook in which we apply a decoding analysis to a publicly available MEG/EEG dataset involving the perception of famous, non-famous and scrambled faces. The manuscript covers the steps involved in single subject analysis and shows how to perform and visualize a subsequent group-level statistical analysis. The processing pipeline covers computation and visualization of group ERPs, ERP difference waves, as well as MVPA decoding results. It ends with a comparison of the differences and similarities between EEG and MEG decoding results. The manuscript has a level of description that allows application of these analyses to any dataset in EEGLAB or Fieldtrip format.

Keywords: MVPA, temporal generalization, decoding, EEG signal processing, time-frequency analysis, ERPs


1. INTRODUCTION

Since Haxby and colleagues popularized MVPA for functional magnetic resonance imaging (fMRI) (Haxby et al., 2001), multivariate approaches have gained widespread popularity. Initially, MVPA was often used as an abbreviation for multivoxel pattern analysis, but in recent years it has become more common to let the acronym denote the generally applicable term multivariate pattern analysis. MVPA can refer to a number of related multivariate analytical techniques but is typically used when referring to the practice of characterizing (decoding) the difference between experimental conditions based on the observed patterns of brain responses in those conditions. Curiously, although the multivariate nature of EEG has long been recognized (e.g., Peters et al., 1998; Mitra and Pesaran, 1999), widespread adoption of MVPA to decode experimental conditions using brain activity has been much slower in EEG and MEG research than in fMRI. In recent years however, MVPA decoding approaches have started to gain popularity in EEG and MEG research too. Multivariate analysis in EEG and MEG offers a number of analytical advantages over univariate time-series analysis, such as the ability to look at temporal generalization to characterize neural dynamics over time (King and Dehaene, 2014), the use of representational similarity analysis to map different physiological measures or anatomical substrates onto each other (Kriegeskorte et al., 2008; Cichy et al., 2014), as well as the ability to establish a common performance measure to map behavioral onto neural data (Fahrenfort et al., 2017b). Moreover, MVPA allows one to quantify experimental effects without a-priori electrode or channel selection, potentially identifying differences between conditions that are harder to detect using conventional analyses (Fahrenfort et al., 2017a). Indeed, many researchers now prefer to use multivariate analyses over traditional ERP/ERF analyses based on signals averaged over epochs (Mostert et al., 2015; Kaiser et al., 2016; Wardle et al., 2016; Contini et al., 2017; Marti and Dehaene, 2017; Turner et al., 2017).

Consequently, some who have been employing traditional univariate ERP analyses may be considering switching to MVPA or extending their analysis pipelines with MVPA. However, although a number of decoding toolboxes exist, this step can appear daunting to those who have been using software packages with graphical user interfaces (GUIs), like EEGLAB or BrainVision Analyzer. For this reason, we developed the ADAM toolbox (from here on simply referred to as ADAM) for the MATLAB platform. ADAM takes EEGLAB or Fieldtrip data formats as input, and performs multivariate analysis using a relatively simple specification of the required parameters. Although ADAM has no GUI, the toolbox requires no programming experience, only rudimentary knowledge of MATLAB such as opening and closing of text files and running commands in the Command Window. ADAM performs standard analysis of raw EEG/MEG data (both ERP averages and decoding results), but also provides a number of additional capabilities. For example, it is able to compute temporal generalization matrices (King and Dehaene, 2014) and it can run a time-frequency analysis prior to decoding. In this case, results are plotted in a time-by-frequency matrix, or temporal generalization matrices for particular frequency bands. Time-frequency analysis can either be based on total power, or on induced power. Furthermore, ADAM can simultaneously run a forward encoding model (FEM) in addition to a backward decoding model (BDM), allowing one to reconstruct patterns of neural activity that were never present during model generation (Brouwer and Heeger, 2009; Fahrenfort et al., 2017a).

The current article does not cover all of these options, but rather takes a subset of them as an entry-level introduction for those who have been doing ERP research and want to explore multivariate analysis. It covers decoding of raw EEG/MEG data and describes an analysis pipeline in which ERPs are compared to decoding results. It also shows how to compute and visualize temporal generalization matrices which allow one to look at the stability of patterns of neural activity over time (King and Dehaene, 2014). Finally, the analysis pipeline compares decoding of EEG to decoding of MEG data. Note that this article is not primarily intended as an explanation of why to perform multivariate decoding analyses (although some advantages of MVPA over ERPs are highlighted), but rather to explain how to perform these analyses. At the end of the article, one should be able to run decoding analyses on any epoched EEG dataset in EEGLAB or Fieldtrip format. Along the way, the article briefly explains basic terminology such as decoding, classes/classification/classifier, temporal generalization, train/test schemes (such as k-fold) in the context in which they are first introduced. For more detailed explanations we refer to introductory texts such as Blankertz et al. (2011), King and Dehaene (2014), and Grootswagers et al. (2017). The article also assumes working MATLAB knowledge. Programming experience is not required, but the reader should be able to open and close files in MATLAB and know how to execute snippets of code in the MATLAB Command window, which is easy to learn even for those who have not used MATLAB before.

The data that we analyze in this manuscript come from a publicly available MEG/EEG/fMRI dataset. This dataset contains event-related responses to famous, non-famous and scrambled face stimuli, and was acquired and made available by Daniel Wakeman and Richard Henson (Wakeman and Henson, 2015). The dataset contains the type of factorial design that is common to many experiments. The manuscript is organized as follows: the methods describe where the sample data can be obtained, where to obtain the toolbox and its dependencies, how to install the toolbox on MATLAB and provides code that shows how to run the first level (single subject) analyses. The results section provides the code to run and plot the results from the group analyses. Although somewhat unorthodox, providing these together in the results section improves coherence. This way, the code that generates the plots can be presented together with the plots themselves. The results section contains group analyses of ERPs, group analyses of decoding results, examples to plot forward transformed classifier weights (equivalent to univariate topomaps, which are interpretable as neural sources) (Haufe et al., 2014), and shows temporal generalization matrices of the EEG and MEG results. It also provides an example of how to plot temporal generalization for a specific time window and ends with a direct comparison of EEG to MEG. The discussion considers the degree to which MVPA analyses can provide extra information over standard univariate analysis, based on the results that were presented.



2. MATERIALS AND METHODS


2.1. Data

The raw data are available at https://openfmri.org/dataset/ds000117. However, due to the size of the original data files in the public repository (which also include fMRI), we have created a slim-sized version of the data in standard Fieldtrip format to facilitate easy reproduction of the analyses as described in this article. These data files can be found on the open science framework by following the following link: https://osf.io/p2k97/files. To replicate the analyses described here, store all files under DATA (20 GB) in a local directory. No pre-processing was applied to the original data other than down-sampling from 1,100 to 275 Hz, and epoching around the target stimuli with an interval between −0.5 and 1.5 s. The MEG data were obtained from an Elekta MEG system, and were processed with MaxFilter 2.2 (Elekta Neuromag) by the original authors (Wakeman and Henson, 2015). To further reduce data overhead, we removed the magnetometers from the original data. Magnetometers have a more diffuse spatial profile with large overlaps between neighboring sensors when compared to planar gradiometers (Gross et al., 2013). Removal of magnetometers after application of a MaxFilter is not uncommon (e.g., see Kloosterman et al., 2015), and a pilot analysis confirmed that this did not substantially affect classification performance. The abovementioned repository includes a MATLAB script under SCRIPTS, that converts the original data as supplied by Wakeman and Henson to the files we posted, but since this step is idiosyncratic to whatever system is used to acquire EEG or MEG data, we did not make it part of the analysis pipeline we describe in the remainder of the text.



2.2. Task

The task employed during the experiment was described in detail by Wakeman and Henson (2015). For ease of reference, we briefly explain the task here. Every trial started with a pre-stimulus period between 400 and 600 ms (randomly jittered) containing a white fixation cross on a black background. Next the target stimulus appeared for a random period between 800 and 1,000 ms. The target stimulus was a cut-out of a photo of a face on a black background, overlaid with a white fixation cross. The face could be either a famous, non-famous, or phase scrambled face. Each image was presented twice, with the second presentation occurring either immediately after the previous one (Immediate Repeats), or after 5–15 intervening stimuli (Delayed Repeats). Each type of repeats occurred in 50% of the trials. Face identity was not task relevant, subjects only had to indicate whether a given stimulus was more or less symmetrical than the average amount of symmetry across all photos. Participants used their left or right index finger to indicate symmetry, counterbalanced across subjects.



2.3. Participants

Data was collected from 19 participants (8 female). Further details can be found in Wakeman and Henson (2015).



2.4. Requirements

ADAM works under a relatively recent version of MATLAB (≥R2012b, older versions might or might not work) with the Signal Processing Toolbox and Statistics Toolbox installed. Further, when running first level (single subject) analyses it depends on a recent version of EEGLAB (Delorme and Makeig, 2004) (≥13, older versions might or might not work) and a recent install of Fieldtrip to perform time-frequency analysis prior to decoding (Oostenveld et al., 2011) (≥2015, older versions might or might not work). Finally, a reasonably modern desktop or laptop computer with standard specifications. More is better (especially RAM), but any computer used for office work should in principle be sufficient. All analyses presented here (three EEG and three MEG comparisons) were executed on a 2013 Macbook Pro with 8GB of memory, using Matlab R2014b, EEGLAB v14_1_1b and Fieldtrip v20170704. The first-level analyses took about 10 h to complete. If one wants to replicate these analyses in a shorter timeframe, it is easy to shorten computation time by lowering cfg.nfolds to 2 instead of 5, which affects the number of folds in the experiment (reducing computation time by 60% to about 4 h). The concept of folds is explained in section 2.9.6 below. Another way to reduce computation time is by lowering the number of subjects in cfg.filenames, e.g., from 19 to 10 (another 50% reduction). Both these changes can be made in the first-level script in section 2.9, and will have little effect on the qualitative patterns of single-subject and group-level results, although some effects may not reach significance. Group-level analyses take very little time and can be executed on the fly.



2.5. ADAM Toolbox

When replicating the analyses in this article, we recommend to download version 1.0.4 of the ADAM toolbox from Github at https://github.com/fahrenfort/ADAM/archive/1.0.4.zip. This is the version of the toolbox that was used to perform the analyses and generate the figures in this article and is therefore guaranteed to work with the scripts that are provided herein. We also provide version 1.0.4 of the toolbox along with a version of EEGLAB and Fieldtrip that are guaranteed to work with the toolbox under TOOLBOXES on the Open Science Framework here: https://osf.io/8vby7/download.

For regular use of the ADAM toolbox, we recommend to download the latest version of the toolbox by going through http://www.fahrenfort.com/ADAM.htm where users can leave their e-mail before being forwarded to the download site on Github. Keeping track of e-mail addresses allows us to contact users if major bugs come to light. A simulated validation dataset is currently being developed and will in the near future be used to continuously validate core functionality of the toolbox.



2.6. Installing

Installing the toolbox and its dependencies is easy. To replicate the analyses in this article, download the file from the repository above and unzip it. This should create a folder called ‘TOOLBOXES' containing all three toolboxes (ADAM, EEGLAB and Fieldtrip). This folder can be placed anywhere (e.g., 'C: TOOLBOXES' on Windows PC, or '/Users/JJF/TOOLBOXES' on a Mac) but do take note of the location. Next, follow the install instructions in the text file “install_instructions.txt” that is contained in that directory. Following these instructions will make sure that MATLAB knows how to find the toolboxes. If all goes well, the following should be displayed in the Command Window (along with some other messages):

FIELDTRIP IS ALIVE

EEGLAB IS ALIVE

ADAM IS ALIVE

When these messages are displayed, all code provided in this article should run smoothly.



2.7. ADAM Architecture and Core Functionality

The ADAM processing pipeline is depicted in Figure 1 (from top to bottom). It involves: (1) Data-import and pre-processing (2) first-level single-subject analysis (3) computing group-level statistics and (4) visualization (plotting) of group statistics. These steps are implemented by a number of main ADAM user functions, all starting with the prefix adam_ (also mentioned in the top left corner of each box in Figure 1):
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FIGURE 1.ADAM processing pipeline, from top to bottom. The top left corner of each box states the ADAM function that performs the transformations that are described in the box. The top right describes the input-output transformation that the function performs. The output of each function serves as input for the function described in the box below it. The adam_MVPA_firstlevel box contains more detailed information about train-test algorithms. Further details about functionality and how to execute functions are provided in the main text.



• adam_MVPA_firstlevel (computes and stores first level / single subject results)

• adam_compute_group_ERP (reads single subject ERPs and computes group statistics which can be plotted using adam_plot_MVPA)

• adam_compute_group_MVPA (reads single subject classification performance and computes group statistics which can be plotted using adam_plot_MVPA)

• adam_compare_MVPA_stats (compares outcomes of group analyses, which can be plotted using adam_plot_MVPA)

• adam_plot_MVPA (plots the outcome of the adam_compute_group_ or the adam_compare_MVPA_stats functions)

• adam_plot_BDM_weights (plots topomaps of the classifier weights or forward transformed weights, the latter of which are equivalent to univariate difference maps and are interpretable as neural sources, see (Haufe et al., 2014).

All ADAM user functions can be called from the MATLAB Command Window using the same syntax: result = adam_somefunction(cfg, input);

In this expression, cfg (short for configuration) is a variable that specifies the parameters that the function needs. The concept of a cfg variable was borrowed from the Fieldtrip toolbox (Oostenveld et al., 2011), but ADAM is not part of Fieldtrip so their functionalities should not be confused. The input variable is not always required. It can either be a variable that contains data, or it can specify a file path to the data. In the remainder of the methods section, we will outline how to use each of the main ADAM functions illustrated in Figure 1 to run a first-level analysis, and how to run and visualize a subsequent group analysis. We will use the Wakeman and Henson dataset (Wakeman and Henson, 2015) as an illustration of how to use the cfg variable to specify analysis and/or plotting parameters at each step of the way.



2.8. Data Structure

We recommend to use a standard folder structure when analyzing experiments using ADAM: at the highest level a container folder for the experiment that is analyzed. Inside that folder, there should be at least three subfolders: (1) DATA: a folder with EEG/MEG input files, such as the epoched EEGLAB or Fieldtrip files that are downloaded from the repository, or the processed EEG/MEG datafiles of a different experiment. (2) SCRIPTS: a folder that contains MATLAB scripts that perform ADAM analyses that are particular to the experiment. Scripts are snippets of code that tell ADAM how to analyse the data (which are distinct from the ADAM toolbox, so one should not put these scripts inside the toolboxes folder). When saving analysis scripts, it is good practice to prepend the names of these scripts with a canonical prefix so they can be easily recognized as scripts (e.g., prepend all scripts with “run_”), such as run_preprocessing.m, or run_RAW_level1.m. It also helps to add further keywords like “RAW” to indicate that the file contains a script to perform a decoding analysis of raw EEG data, or to use a keyword like TFR to indicate it performs a decoding analysis on time-frequency data. Adding a keyword like “level1” can be used to indicate that the script performs an analysis of the single subject data. Example scripts for the analyses that are described in this article are provided in the text but can also be found in the SCRIPTS folder located at https://osf.io/p2k97/files. (3) RESULTS: a folder that contains the outcome of the single subject analyses (these are often referred to as “first level” analyses), for example when classifying from the EEG whether subjects are viewing faces or scrambled faces, or when classifying whether they were viewing famous faces or non-famous faces. Each such analysis will be stored in a separate folder. This folder in turn will contain deeper levels created by ADAM, reflecting electrode selections and/or specific frequencies on which the analysis was performed, and finally a results file for every subject.



2.9. First Level (Single Subject) Analysis

In this manuscript, we describe how to run the first level analyses for three main comparisons, using ADAM:

• non-famous faces vs. scrambled faces

• famous faces vs. scrambled faces

• famous faces vs. non-famous faces

These are performed separately on the EEG and MEG dataset, so six analyses in total. The first script we provide below executes the first of these analyses: non-famous vs. scrambled faces of the EEG data. The script starts by specifying some initial variables (such as the names of the input files and the event codes that belong to the various factors/levels in the experimental design, which are needed to run first-level analyses), and subsequently specifies the cfg parameter settings that determine the settings during a first level analysis. Note that in MATLAB notation, comments are preceded by a percent (%) sign and drawn in green. These comments are used to provide a brief explanation of what a particular line of code does but are not actually executed by MATLAB when the code runs. The last line of the script executes the actual first level analysis using the adam_MVPA_firstlevel function, which computes single subject decoding and/or forward encoding results. ERPs are computed automatically when running adam_MVPA_firstlevel. The outcomes of the single subject analyses are stored as files inside the RESULTS folder, which are subsequently read in during group analysis (see section 2.11). This script can also be found in the SCRIPTS folder on https://osf.io/p2k97/files in the file run_firstlevels.m.
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The script above can simply be copied and pasted/executed directly in the MATLAB Command Window or executed from within a MATLAB Editor window by clicking “Run” in the Editor toolbar. The next sections provide a by step explanation of the script by explaining the parameter settings that are used to run the first level analysis using adam_MVPA_firstlevel.

2.9.1. Input Filenames

The filenames used for the first level analyses are specified using cfg.filenames, the path to these files is specified in cfg.datadir (see example code above). The toolbox is able to work with two file formats: (1) Standard EEGLAB format with “.set” and “.fdt” extensions (Delorme and Makeig, 2004). (2) A standard Fieldtrip struct saved with “.mat” extension (Oostenveld et al., 2011) either in timelock (ERP/ERF) or non-timelock epoched format. All files should be epoched and the event code that specifies the relevant conditions for analysis needs to be numeric and placed at 0 ms in the epoch (for EEGLAB format) or be contained in a trialinfo field with an event code for each trial (for Fieldtrip format).

Both EEGLAB and Fieldtrip have a large number of importing options for many available EEG/MEG data acquisition formats. The file name specification for the ADAM analysis should list all files in a cell array as in the example code above. Do not use extensions in the filename specification. The toolbox will first attempt to locate “.set” (EEGLAB) files, if it cannot find those it will look for “.mat” files containing a Fieldtrip struct. The function file_list_restrict selects files from the full file list based on a part of the file name. This can be useful in cases like this, where separate EEG and MEG files exist, or when files come from different experimental sessions that need to be analyzed separately etc. The example code above creates a separate array of the EEG files and of the MEG files to be able to run separate first level analyses for EEG and MEG.

It is also possible to train the classifier on one input file and test on another input file by separating the two files using a semi-colon (see sections 2.9.3 and 2.9.6 for more information about train-test schemes). That way one can train a classifier on one task, and test on another, or one can even train the classifier on one subject and test on another subject, as long as both files have the same data format (same number of electrodes etcetera).

2.9.2. Class Specifications and Balancing

A decoding analysis tries to discriminate between a fixed set of experimental variables using brain data. The algorithm that performs classification is called the “classifier,” and the experimental conditions it tries to discriminate are called the “classes.” Table 1 shows the factorial design of the experiment that is analyzed in the current manuscript. The numbers in the table are the event codes that were used to denote the various events/conditions in the experiment. It is easy to draw a similar table for most experimental designs.



Table 1. Factorial design of the experiment, numbers denote event codes.
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Once the event codes in the levels of the factors in the design are assigned to variables (see the code on the previous page), it is easy to set up a class definition, which specifies the conditions or groups of conditions (classes) that the analysis should try to discriminate (classify). For example, to compare famous faces to non-famous faces simply write:
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cond_string is an ADAM function that creates string specifications from numbers because ADAM requires string inputs. Thus, the above class definition is effectively the same as:
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By default, ADAM enforces balanced designs. A design is balanced when the trial counts in the different cells of the factorial design (as in Table 1) are equal. Unbalanced designs (asymmetrical trial counts) can have a number of unintended effects on the type of conclusion that can be drawn from the analysis. There are two types of imbalances: within class imbalances and between class imbalances. Within class imbalances occur when event counts within classes are unequally distributed. For example, this occurs if a decoding analysis compares famous faces to non-famous faces (irrespective of the factor stimulus repetition), while at the same time the design contains many more first presentations than immediate or delayed repeats. In such a case, the outcome might be driven more strongly (or even entirely) by the first presentations than by the repeated presentations. This would impact how generalizable the effect of being famous is across the experimental design. Because designs are often unbalanced, ADAM rebalances designs by applying two types of corrections: within class undersampling (throwing out trials) and between class oversampling (duplicating trials). The act of rebalancing unbalanced designs through under- or oversampling has been shown to convey clear performance benefits for linear discriminant analysis and area under the curve (Xue and Hall, 2015), which are the classification algorithm and default performance metric that ADAM uses (see sections 2.9.3 and 2.9.5).

Between class imbalances occur when an entire class is overrepresented in the analysis. An example of such an imbalance would be when performing decoding of famous faces and non-famous faces, while many more famous faces than non-famous faces exist in the dataset. In such cases the classifier can develop a bias by classifying the majority (or even all) trials as famous faces. Classification performance across trials would be higher than chance even if the classifier has in fact no ability to discriminate famous faces from non-famous faces, due to the simple fact that the majority of trials contain famous faces. Therefore, ADAM rebalances classes by default by making use of a special case of oversampling (duplicating trials) in the training set. This is achieved by synthetically generating instances (trials) of the class that has the fewest number of trials (i.e. the minority class). Class instances are generated using a modification of the ADASYN algorithm, which generates instances that maximally drive learning during the training phase (see sections 2.9.3 and 2.9.6) (i.e. by generating synthetic trials that are close to the classifier decision boundary) (He et al., 2008). In the example above, if the class of famous faces contains 150 trials and the class of non-famous faces contains 75 trials, ADAM would generate another 75 synthetic trials of the non-famous faces class so that there are an equal number of trials of both classes in the training set.

Within classes, ADAM applies event balancing by default through undersampling so that all event types contribute equally to a stimulus class. In the example above, if there are 200 first presentations of a famous face (event code 5), but only 50 immediate repeats (event code 6) and 50 delayed repeats (event code 7) of famous faces, ADAM lowers the trial count of the first presentations to match with the others (so the 200 first presentations would be lowered by randomly selecting 50 of those, to match with the immediate and delayed repeats). It is important to be aware of this, as one may lose a lot of trials if the experimental design is heavily unbalanced within classes. ADAM also allows one to specify an idiosyncratic ratio of each trial type in the class definition. For example, to specify two first presentations for every immediate and delayed repeat, use:
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To keep things simple, the analyses that are covered in this article will only classify the first presentation of each stimulus type. The cond_string function makes it easy to create such class definitions by combining levels in the factorial design, as was done in the example code provided. It is also possible to use different class definitions for training and testing, by separating the two using a semi-colon (see sections 2.9.3 and 2.9.6 for more information about train-test procedures).

2.9.3. Model Selection

ADAM is able to run two basic models: a backward decoding model (BDM, default) and/or a forward encoding model (FEM, sometimes also referred to as an inverted encoding model) (Brouwer and Heeger, 2009). BDMs allow one to predict an experimental variable (condition) given an observed pattern of brain activity. The experimental variables that the model attempts to discriminate based on brain data are called the classes (see section 2.9.2). The model that makes these predictions is often referred to as the classifier. The process of making class predictions is often referred to as “classification” or “decoding,” and involves a procedure in which some data is first used to train the classifier (build the model), and a set of independent data is used to evaluate its performance (see sections 2.9.5 and 2.9.6). By default, the BDM in ADAM employs Linear Discriminant Analysis (LDA) to perform decoding, a standard decoding algorithm that has been shown to perform well compared to other algorithms (Grootswagers et al., 2017), and which is able to solve classification problems for two or more classes. All analyses described in the current manuscript use a BDM.

While BDMs employ a categorical relationship between brain data and experimental variables, FEMs describe an invertible continuous relationship between experimental variables and brain data, allowing one to predict patterns of brain activity for arbitrary values of the experimental variable (and vice versa). FEMs are most useful when the relationship between the experimental variable and neural activity is continuous (e.g., color, orientation of a bar, position on a circle). It determines the relationship between such a continuous experimental variable and multivariate brain signals using a Channel Tuning Function (CTF). The CTF allows one to reconstruct patterns of neural activity for stimuli that were never used during model generation and vice versa (Brouwer and Heeger, 2009; Fahrenfort et al., 2017a). FEMs too make use of cross-validation, in which independent datasets are used for fitting the model (training) and validating the model (testing), also see section 2.9.6. FEMs are not relevant to the experimental design of the data that are analyzed and presented here, and therefore outside the scope of this manuscript. However, there is considerable literature available for those who want to know more (Foster et al., 2016, 2017). The cfg.model parameter allows one to specify whether ADAM should run a BDM or a FEM during analysis.

2.9.4. Raw or Time-Frequency

ADAM is able to either perform MVPA analyses on raw EEG/MEG data, or first perform a time-frequency decomposition into frequency bands prior to analysis. In the current manuscript, we only analyze raw data, but ADAM is able to first compute time-frequency representations (TFRs) prior to a BDM or FEM analysis. The cfg.raw_or_tfr parameter specifies whether ADAM should analyze the raw EEG/MEG amplitude over time, or whether it should first compute TFRs by respectively specifying “raw” or “tfr.” It is good practice to store the results from analyses on raw data in a different folder from analyses that are performed on TFR data. When computing TFRs, it is important to realize that the input files for ADAM are always raw data, ADAM will compute the TFRs internally during analysis using Fieldtrip. There are a number of additional options available for TFRs, such as computing induced rather than total power (Klimesch et al., 1998; Pfurtscheller and da Silva, 1999; Fahrenfort et al., 2012). When performing decoding on TFR data, ADAM computes accuracy in a time-by-frequency plot by default, but it can also compute temporal generalization matrices for specific frequency bands when cfg.crossclass is set to 'yes' (see section 2.9.7).

2.9.5. Performance Measures

The performance of a classifier quantifies how accurately it can predict class membership based on measured brain activity. There are many conceivable classifier performance metrics, depending on the research question and goal of the analysis. An often-used performance measure in the literature is “accuracy,” the number of correct classifications averaged across all class instances. When ADAM computes accuracy, it does so for each class separately, and then averages across classes (balanced accuracy). For example, when an analysis targets a classification of faces and scrambled faces, ADAM computes accuracy as:
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This measure should theoretically produce chance accuracy even when the classifier develops a bias and/or when a stimulus class is overrepresented in the data.

A more sensitive measure to compute classifier performance is Area Under the Curve (AUC) (Bradley, 1997). AUC is the default performance measure that ADAM computes. AUC refers to the area under the receiver operating characteristic, a metric derived from signal detection theory (Wickens et al., 2002). It constitutes the total area covered when plotting the cumulative true positive rates against the cumulative false positive rates for a given classification problem and—like balanced accuracy—is insensitive to classifier bias. In a two-class decoding analysis, this is achieved by plotting the cumulative probabilities that the classifier assigns to instances as coming from the same stimulus class (true positives) against the cumulative probabilities that the classifier assigns to instances that come from the other stimulus class (false positives). AUC takes into account the degree of confidence (distance from the decision boundary) that the classifier has about class membership of individual instances, rather than averaging across binary decisions about class membership of individual instances (as happens when computing standard accuracy). In other words, low confidence decisions contribute less to the AUC than instances about which the classifier is very confident, whereas for accuracy all classifications are treated equally. When ADAM computes AUC in multi-class problems, it uses the average AUC across all pairwise comparisons between classes (Hand and Till, 2001). Therefore, chance AUC performance is always 0.5, regardless of the number of classes that the analysis attempts to discriminate. The performance measure that ADAM should compute can be specified using the class_method parameter, e.g., cfg.class_method = 'AUC'. ADAM can also compute a number of other measures derived from signal detection theory, such, d' ('dprime'), hit rate ('hr') and false alarm rate ('far').

2.9.6. Train-Test Procedures, K-fold Cross Validation

A classification analysis usually consists of two steps: one in which a model is fitted to the data (training), and one in which the performance of the model is evaluated (testing). These two steps are usually performed on independent data. If they would be performed on the same data, the performance of the model would not only reflect true differences between stimulus classes, but also differences that occur because of coincidental (noise related) differences between stimulus classes (this is also called “overfitting”). To prevent overfitting from inflating the performance of the model, separate data are used for training the model and testing the model. There are two ways of achieving this goal in ADAM: (1) use two independent data sets, one for training and one for testing or (2) use a single dataset for training and testing using k-fold cross validation. In k-fold cross validation, the trials are split up into k equally sized folds, training on k-1 folds, and testing on the remaining fold that was not used for training. Therefore, the training set is independent from the testing set on that iteration. This procedure is repeated k times until each fold (all data) has been tested exactly once, while on any given iteration the trials used for training are independent from the trials that were used for testing. A graphical illustration of this procedure can be found in Figure 1 in the box that says adam_MVPA_firstlevel. Next, the performance measures obtained at each iteration/fold are averaged to obtain a single performance metric per time point.

In ADAM, the number of folds is specified using the cfg.nfolds parameter. For example, if nfolds is 4, the classifier will train on 75% of the data and test 25% of the data, repeating the process until all data has been tested once. If nfolds is higher than the number of trials in the dataset, ADAM automatically lowers nfolds to a number that implements leave-one-out testing, in which the classifier is trained on all but one trial and then tested on the remaining trial. This would be very time consuming, as the entire process is then repeated equally often as there are trials in the data set. When train and test data are already independent (for example when using different input files for training and testing, or when using different event codes for training and testing), nfolds is disregarded.

2.9.7. Temporal Generalization Using Classification Across Time

ADAM is also able to cross-classify across time. In this case, the classifier is not only trained and tested on the same point in the trial, but every train time point is also tested on all other time points in the trial. This results in a train × test time performance matrix, also called a temporal generalization matrix. If classifier performance for any given train time point is high when testing on other time points, this means that the pattern that was used to train the classifier at that time point generalizes to these other time points. This in turn suggests that (part of) the underlying cortical signal is stable across this time interval. Distinct patterns in the temporal generalization matrix allow one to draw different conclusions about the dynamics underlying neural processing (for details see King and Dehaene, 2014). In ADAM, the cfg.crossclass parameter specifies whether to compute temporal generalization or not. If cfg.crossclass is set to 'yes', ADAM computes a train × test generalization matrix, which can subsequently be statistically analyzed and visualized at the group level. The diagonal of the train × test performance matrix is the same time series that is computed when cfg.crossclass is set to 'no' (this is because for these diagonal time points, the classifier is trained and tested on the same time points). For this reason, training and testing on the same time points is sometimes referred to as “diagonal decoding.” If cfg.crossclass is set to 'yes' when computing the first level (single subject) results, this affords maximal flexibility when performing group level analysis using adam_compute_group_MVPA (see section 2.11 further below). For example, one can either compute the full train × test temporal generalization matrix at the group level, compute only the diagonal at the group level, or average over particular train or test intervals at the group level (also see section 2.12). However, computing temporal generalization does require much more computing time. To save time, one can opt to have ADAM downsample the input signal prior to first level analysis (see section 2.9.8). If cfg.crossclass is set to 'no' computation time is relatively short, but in this case one can only compute and plot statistics at the group level for the diagonal (training and testing on the same time points).

2.9.8. Pre-Processing: Channel Selection, Resampling, Baseline-Correction

ADAM assumes that input files are already pre-processed (e.g., in Fieldtrip or in EEGLAB), but to make life a little easier ADAM is able to perform some basic pre-processing steps. For the analyses discussed here, no pre-processing was applied to the data prior to ADAM analysis other than epoching and down-sampling. ADAM provides four noteworthy internal pre-processing options: electrode/channel selection, resampling, baseline-correction and muscle artifact rejection.

Channel selection is done using cfg.channelpool. This option makes it possible to select electrodes/channels (these are called the “features” in a decoding analysis) prior to computing classification performance. Although classification algorithms already intrinsically up-weigh features that contribute to classification performance and down-weigh features that do not, sometimes a signal is known to be contained in a particular part of the brain. For example, when using a visual task, occipital channels are likely to be most informative. In such cases, classifier accuracy can be boosted by pre-selecting channels. To keep all channels, use 'ALL_NOSELECTION'. More information about channel selection can be found by typing help adam_MVPA_firstlevel and/or help select_channels in the MATLAB Command window. In the current analysis, no electrode/channel selection was applied.

In addition, it is possible to down sample the signal prior to running an analysis by specifying a new sampling rate using cfg.resample. The main advantage of doing this is to save computation time (at the expense of temporal resolution of course). This is of particular importance when running cross classifications to compute temporal generalization matrices, in which the analysis is performed for every train and test time combination (see section 2.9.7). When performing decoding on TFRs, ADAM will use the original sampling rate to compute TFRs, and only perform decoding on time points that belong to the redefined sampling rate after power has been computed. In the current analysis, the data were resampled to 55 Hz.

Third, a very common step in ERP analysis is to apply baseline correction. ADAM can do this automatically by specifying cfg.erp_baseline (in seconds). In the current analysis, a baseline correction between -100 and 0 ms was applied.

Finally, it is possible to remove trials containing muscle artifacts in a certain window of the trial using the cfg.clean_window parameter. This step was not applied in the current analyses. One can pre-process the data using any personal choice prior to using ADAM, as long as the data are epoched. An overview of the effect of various pre-processing steps on classification performance is given by Grootswagers et al. (2017).

2.9.9. Running the First-Level Analyses

When running adam_MVPA_firstlevel using the example code at the start of this section, it will classify the activity across all electrodes for each train-test sample in a trial as either coming from a famous face or from a non-famous face, and compute average classification performance for each of these samples. The result of each subject's analysis will be written to disc. The directory to which the first level results are written is specified using cfg.outputdir. The output directory should contain a name that is specific to a given analysis (see example code). If a directory does not exist, ADAM will create that directory. The resulting data structure will be briefly explained in section 2.10. For the current manuscript, we ran three first level analyses for EEG and the same three for MEG, so a total of six first level analyses. The code above already ran the first analysis. Assuming that the variables from that code (containing the event specifications etc.) are still in MATLAB's workspace, it is easy to run each of the remaining five analyses using the code below.
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2.10. First Level Folder Structure

The results of a first level analysis are stored in a directory path specified in cfg.outputdir. In the example above, the first relevant directory in this path is typically called RESULTS, followed by a directory indicating whether decoding was performed on raw EEG data (EEG_RAW) or raw MEG data (MEG_RAW), but for a time-frequency analysis one might indicate something like EEG_TFR or MEG_TFR. The last folder in the directory structure denotes the comparison in the analysis (e.g., in the example above, decoding famous vs. non-famous faces using EEG data was indicated using EEG_FAM_VS_NONFAMOUS). Inside this folder, ADAM will further automatically create separate folders for analyses based on different channel selections, as specified in cfg.channelpool (see section 2.9.8). If an analysis uses all electrodes/channels as in the current example, this folder will be named ALL_NOSELECTION, but if specifying to only use occipital electrodes, it will create a folder called OCCIP for that analysis. This directory will typically contain .mat data files containing the first level result for each of the individual subjects, or may contain separate folders for each frequency in case it pertains to a decoding analysis of time-frequency data. It is advisable to use a clear and unambiguous naming scheme when specifying cfg.outputdir, as in the example above. If one or more of the directories in cfg.outputdir do not exist, ADAM automatically creates the hierarchy with all the missing directories.



2.11. Group Analysis Workflow

Once the first level analyses have completed, the next step is to perform group analysis and visualization. ADAM has two functions that perform group analysis: adam_compute_group_ERP and adam_compute_group_MVPA. Group statistics on ERPs are computed using adam_compute_group_ERP (ADAM automatically also saves ERPs when running first level analyses), while group statistics on multivariate analysis results are obtained using adam_compute_group_MVPA. Both functions read the results from the first level single subject files that are contained in the RESULTS folder and perform a group analysis on these data. This returns a group stats variable that contains the outcome of one or more analyses (explained in section 2.12 below), which can subsequently be plotted using the adam_plot_MVPA function (explained in section 2.13 below). In keeping with the logic of the adam_MVPA_firstlevel function, both functions have a cfg variable as input. The cfg variable specifies the parameters that can be adjusted when computing group statistics and plotting results. These parameters will be treated in detail in section 3 (Results), so that they are discussed alongside the output that the functions produce.



2.12. Group Statistics and Multiple Comparison Correction

The adam_compute_group_ functions read in the outcome of first level analyses and compute group statistics on them. They return the result in a stats variable. When executing one of the adam_compute_group_ functions, a folder selection dialog will pop up. This dialog allows the user to select a first level directory from which to compute the group stats variable. One can either select a directory referring to a specific analysis (e.g., EEG_FAM_VS_NONFAMOUS in the current example analysis) or select one directory higher up that contains multiple first level analyses (e.g., RAW_EEG in the current example analysis). When selecting a folder that contains multiple analyses, ADAM will compute group-level results for all the analyses contained in the folder and return the group results of these analyses in a stats array. A number of examples of how this works are supplied in section 3 (Results).

The group statistics are computed by applying t-tests across subjects using the metric that was specified during first level analysis (for MVPA the default performance metric is AUC, see section 2.9.5, for ERPs it is μV). The t-tests compare this metric to a reference level for each sample (this reference level is 0.5 chance performance in the case of AUC, or either 0 or a cfg-defined reference condition/channel when computing ERPs). ADAM can constrain the range of tests by pre-selecting a train and/or test time window and/or range of frequency bands. In addition, ADAM can average across any of these time windows or frequency ranges. This is particularly relevant when the first level analyses contain time-frequency results (see section 2.9.4) and/or temporal generalization (see section 2.9.7). Examples of how to constrain the time points that are used in a group-level analysis using the cfg variable are given in the results section, as for example in section 3.8.

The outcome of a group analysis yields a p-value for every sample. Because large numbers of tests result in the well-known multiple comparison problem (Bennett et al., 2009), ADAM has two ways of controlling for multiple comparisons at the group level. One option is to apply cluster-based permutation testing, in which clusters are defined as contiguously significant t-tests. The size of each observed cluster is defined as the sum of the t-values in that cluster. Next, this procedure is repeated many times (1000 by default), each time randomizing the condition labels (e.g. the AUC value and its reference .5 value) for each subject prior to performing the t-tests. These iterations allow one to compute a null distribution of cluster sizes under random permutation against which to compare the actually observed cluster sizes, based on which the p-value for each actually observed cluster can be directly computed (section 5 in Maris and Oostenveld, 2007). This limits the number of hypothesis-related tests to the number of observed clusters, severely limiting the number of relevant statistical comparisons. The standard p-value used to delineate whether a given sample is part of a cluster is 0.05. Alternatively, one can apply multiple comparison correction using the False Discovery Rate (FDR) under dependency (Benjamini and Yekutieli, 2001). FDR correction limits the false positive rate q, such that no more than a fixed percentage of tests (usually 5%) of the total number of significant tests can reasonably be expected to be false positives (type I errors). When either correction is applied, only tests that survive the threshold under that correction are plotted as significant by adam_plot_MVPA. Examples of both correction methods are given in the results section, as for example in section 3.1.

It is also possible to directly compare different first level analyses to each other. This is achieved by the adam_compare_MVPA_stats function. In this case, two first level metrics from different analyses are compared against each other using t-tests. The same multiple comparison corrections can be applied as in the adam_compute_group_ functions. Note that this is usually only sensible when the data come from the same experiment and/or subjects, as different experiments may have different signal to noise ratios, hampering interpretation. An example of this analysis is given in section 3.7 of the results.

Also note that some caution is in order when drawing population level inferences from statistics computed on MVPA metrics. In particular, standard statistical tests of classification performance against chance do not allow population level inference when the train and test set are drawn from the same distribution (i.e., when the when they both come from the same task), as is the case in a k-fold analysis (see section 2.9.6). In this case, the results should be interpreted as fixed- rather than random effects (see Allefeld et al., 2016 for details). This can be resolved by computing information prevalence across the group, but this metric has not yet been implemented in the current version (V1.0.4) of ADAM. Population level inference is not jeopardized when train and test sets are drawn from different distributions, as when the training data are obtained from a different task than the test data, when evaluating off-diagonal classifier performance in a temporal generalization matrix (see section 2.9.7), or when different first level analyses are compared to each other at a group level (as happens when using the adam_compare_MVPA_stats function).



2.13. Plotting Group Results

Group results are plotted using adam_plot_MVPA. This function requires two inputs: a cfg and one or more stats variables produced by the adam_compute_group_ functions. Each stats variable can contain a single analysis but can also contain multiple analyses in an array (see section 2.12). ADAM either visualizes the outcomes of all analyses that it receives in a single figure or plots them as separate figures. Plotting is always constrained by the settings that were applied when computing the group statistic (see section 2.12). As a result of these settings, the plotting function can visualize two types of graphs: either line graphs that plot classifier performance on the y-axis and time on the x-axis, or graphs that plot classifier performance using a color scale. Color scale graphs either have train-time and test-time on the x- and y-axis (in the case of temporal generalization), or frequency on the y-axis and time on the x-axis (when the first level was performed with time-frequency option). Significant time windows in line graphs are indicated by using a thicker line, which is placed on the line graph itself and/or near the time axis. Significant samples in color graphs are indicated using saturated colors. Unsaturated (bland) colors either reflect p-values that do not survive the uncorrected threshold, or are below the multiple-comparison corrected threshold, depending on the settings applied when computing the group-level statistic (section 2.12).

The cfg variable specifies the parameters to adjust the plot, such as tickmarks, y-limits, the order of the plots (in case of multiple analyses), whether to plot the results in a single graph or in multiple graphs (in case of multiple analyses) and so forth. Examples of these options are given in the results section, along with the code that produces the graphs. In addition, the help file of adam_plot_MVPA provides a detailed description of the options.




3. RESULTS


3.1. ERPs and Difference Waves of ERPs

In the first group-level analysis, we compute the group results from the first-level analysis of the comparison between non-famous and scrambled faces. We will compute the raw ERPs of non-famous and scrambled faces, and also their difference, and subsequently plot everything in a single plot. First, we will compute the raw ERPs. When running the code below, a selection dialog will pop up from which a folder can be selected. The first-level analyses that will be plotted are contained in the folder EEG_NONFAM_VS_SCRAMBLED (inside EEG_RAW), so that is the folder to select. Because it is cumbersome to have to navigate to the RESULTS folder for every a particular group result, the user can point the function to the root folder for the first-level analyses using cfg.startdir:
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Two other relevant settings are cfg.mpcompcor_method, which specifies the method used to correct for multiple comparisons (cluster based permutation testing in this case, Maris and Oostenveld, 2007), and cfg.electrode_def, which specifies the electrode(s) to obtain ERPs for. The user can also specify the p-value cut-off values (default: 0.05) and whether to use one-tailed or two-tailed testing (default: two tailed). More information about these and other settings can be found by inspecting the help of adam_compute_group_ERP. Once the function has finished, the erp_stats variable will contain group ERPs of the classes that were specified when running the first level analysis (the first class contained initial presentations of non-famous faces, the second class contained initial presentations of scrambled faces, see the code in the beginning of section 2.9). Next, to compute the difference between these ERPs, the function needs to be executed once more, this time specifying 'subtract' in cfg.condition_method. When running the code below, the selection dialog will pop-up once more, where the user should select the EEG_NONFAM_VS_SCRAMBLED folder as before.
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The snippets of code above will now have produced two variables, one called erp_stats (containing the separate ERPs) and one called erp_stats_dif which contains the difference between these ERPs. ERPs and other stats variables can be plotted using adam_plot_MVPA. This function has two inputs. The first input is a cfg variable, specifying the parameters that are relevant to adjust the plot, the second input contains the stats variable containing the data to plot. Two (or more) stats variables can be plotted using a single adam_plot_MVPA command by enumerating them after the cfg variable while separating them using commas:
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Two cfg parameters of adam_plot_MVPA are noteworthy here. The first is cfg.singleplot. This setting specifies whether all the analyses in the stats variable are plotted together in a single plot, or whether the function produces a different plot for every stats variable. Try setting cfg.singleplot = false (which is the default) to see the effect. The other is the cfg.line_colors setting. ADAM uses default line colors for graphs, which can be changed using the cfg.line_colors parameter. This parameter specifies the RGB colors of the lines that are plotted using a triplet of values between 0 and 1 for every line to denote the contribution red, green and blue respectively (type doc ColorSpec in the MATLAB Command window for more information). In the plot presented here, the colors were changed to make them consistent with the remaining plots in the results section. The snippet of code above produces the plot shown in Figure 2A.
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FIGURE 2. ERPs for the non-familiar (erp1) and scrambled (erp2) condition as well as their difference (subtraction). (A) Thick lines denote p < 0.05 under two-sided cluster-based permutation (Maris and Oostenveld, 2007) (B) Thick lines denote q < 0.05 for dependent observations under FDR correction (Benjamini and Yekutieli, 2001).



The thick parts of the line are parts of the time-series that are statistically significant after applying the correction method that was specified when producing the group stats variable, these are also plotted near the time axis at the bottom. The shaded area around the line is the standard error of the mean across participants. Note that the initial C1 and P100 component of the raw ERPs (erp1 and erp2) do not reach significance despite having a very small standard error. This is due to the fact that cluster-based permutation testing robustly determines clusters (including cluster onsets) but is less sensitive to focal regions of significant activity (as would be the case for the peaks of the C1 and P100 components). If one is interested in small windows of highly significant activity, it might be better to apply an FDR correction (Benjamini and Yekutieli, 2001). In the current example analysis this can easily be achieved by re-running the group-level script above after replacing the line that says cfg.mpcompcor_method = 'cluster_based'; with cfg.mpcompcor_method = 'fdr';. Plotting the result again indeed shows that both the C1 and P100 of erp1 and erp2 reach significance under FDR correction (see Figure 2B). However, the disadvantage of FDR correction is that it is less robust to assessing the onset of large clusters (resulting in later onsets than is observed under cluster-based permutation, a similar detrimental effect of FDR correction on cluster onsets can also be seen in Grootswagers et al., 2017, Figure 14), and less robust to identifying sustained clusters (compare the continuous significance of erp1 in Figure 2A to the interrupted significance line of erp1 in Figure 2B). In the remainder of the manuscript we will consistently be using cluster-based permutation testing but alert the reader to the impact of using different types of multiple comparison correction. We also point out that the adam_plot_MVPA function has many parameter settings, allowing one to specify the tick-marks of the x- and y-axis in the graph, inverting the direction of the y-axis (negative up or negative down) etc. These parameter settings will be treated further down or can be found in the help documentation of the adam_plot_MVPA function (type help adam_plot_MVPA in the MATLAB Command window).



3.2. Difference Waves of ERPs

In the second analysis, we compute the outcome of three ERP subtractions in the experiment: non-famous vs. scrambled faces (as in the first analysis), famous vs. scrambled faces and non-famous vs. famous faces. Below is the code to compute these three group analyses. When running this snippet of code, a selection dialog will pop up. This time, select the EEG_RAW folder (which contains all of these three contrasts, as these were computed in the first level analysis).
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The outcome of this analysis is contained in the erp_stats_dif variable, which is an array containing the outcome of the three analyses.
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Running the snippet of code above produces the plot shown in Figure 3. Two more cfg parameter settings are introduced here. The first is called cfg.plot_order. This parameter specifies the order in which the comparisons inside the EEG_RAW folder (which was selected when computing group results) are plotted. The plot order impacts the order in which the default colors are used for plotting, and accordingly the order of the names in the legend. When omitting this parameter, the plot function will use the order in the stats variable. Another parameter is the acclim parameter, which sets the bounds for the y-axis in line graphs. When omitting this parameter, the function will use default bounds (which are usually fine). Here we adjusted them slightly to remove overlap between the plots and the legend.
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FIGURE 3. ERP difference waves for the three comparisons in the experiment. Thick lines denote p < 0.05 under two-sided cluster-based permutation (Maris and Oostenveld, 2007).



Figure 3 reveals that two out of three ERPs difference waves (subtractions between raw ERPs) result in windows of activity in which the difference is significant (as indicated by thick lines).



3.3. Inspecting the Stats Structure

These temporal windows (their start and stop point in milliseconds and the time at which they peak) can be inspected in the stats structure. For example, to inspect the third stats variable, type:
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This displays the contents of this analysis in the MATLAB Command window:
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The condname field shows that this is the analysis that compares non-familiar faces to scrambled faces. Other analyses can be inspected by putting a different number between the parentheses. The mapping between the number and the analysis that was performed may differ depending on how the operating system orders files. To enforce a particular order, specify cfg.plot_order when calling adam_compute_group_ERP). The stats structure also contains a field called pStruct. This contains the values of the significant clusters in this analysis. The pStruct field can be accessed by typing:
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This will show the following in the Command window:
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The pStruct field contains two fields, one for positive clusters and one for negative clusters. As can be seen from Figure 3, the significant window for EEG_NONFAM_VS_SCRAMBLED is negative (by convention negative is often plotted upwards when plotting ERPs), and indeed the posclusters field is empty, as it is followed by empty square brackets []. To inspect the negative clusters, type:

[image: yes]

The first field is called clusterpval. This is the cluster based p-value after cluster based random permutation (Maris and Oostenveld, 2007). In this case, the value is 0. By default, the cluster-based permutation test in the adam_compute_group_ functions run 1,000 times. The fact that the clusterpval is 0 means that a cluster of the actually observed size was never obtained under random permutation, so that the p-value under permutation is smaller than 1/1000, hence this p-value should thus be reported as p < 0.001. The clustersize field reflects the number of consecutive samples in the time window, the datasize field reflects the total number of samples in the time series, the start_time reflects the onset time in milliseconds of the significant window, the stop_time the offset time in milliseconds, and the peak_time reflects the time point at which the ERP difference was maximal. The same information can also be obtained for decoding analyses, e.g., by inspecting the stats structure that results from running adam_compute_group_MVPA instead of adam_compute_group_ERP.



3.4. Training and Testing on the Same Time Points (Diagonal Decoding)

Next, we cover how to apply a decoding analysis using very similar code as was used to compute ERPs. First, we will run the equivalent of the ERP analyses that were computed in the previous sections, this time using adam_compute_group_MVPA. When running the following code, a selection dialog will pop up again. Select the RAW_EEG folder, after which the group analyses will be performed.
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After running the code above, the decoding results for all analyses contained in the RAW_EEG folder will be contained in the mvpa_stats variable. The only new setting in the above is the cfg.reduce_dims variable. For now, it is sufficient to remember that setting this to 'diag' means that this extracts the decoding analysis in which the classifier was trained and tested on the same points (so without looking at temporal generalization, see section 2.9.7). To plot the decoding results, again very similar code is used as before:
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Running the snippet of code above produces the plot contained in Figure 4. This figure looks comparable to the plot contained in Figure 3, but this time the y-axis denotes classification performance (rather than μV as in the ERP analyses). As can be seen from Figure 4—and perhaps unsurprisingly - decoding produces somewhat similar results as the ERPs in Figure 3. Two out of three decoding results show windows of activity in which accuracy is significant after correcting for multiple comparisons using cluster-based permutation (as indicated by the thick lines). However, there are also some notable differences. For example, decoding of famous vs. scrambled faces is significant for a longer period of time than the ERP subtraction of this comparison at electrode P10. Moreover, the difference between famous and non-famous faces never reaches significance in the ERP, but does reach significance in the decoding analysis. Both differences between decoding results and the ERP at the P10 electrode must be due to the fact that there is information contained in the multivariate pattern of activity across the scalp, which exceeds the information that is contained in the P10 electrode alone. This demonstrates one of the strengths of the decoding technique: MVPA allows one to obtain a measure for the difference between two conditions (stimulus classes) without having to specify a priori in which electrode this difference emerges, while at the same time picking up subtle differences that might not have been noticed had such an a priori electrode selection been made, also see (Fahrenfort et al., 2017a). In section 3.6 further below we explain how to visualize the pattern of activity that underlies classification performance using topographical maps.


[image: image]

FIGURE 4. Classification performance across time for the three comparisons in the experiment. Thick lines denote p < 0.05 under two-sided cluster-based permutation (Maris and Oostenveld, 2007).





3.5. Plotting Single Subject Results

A nice feature of ADAM is that it allows quick visualization of group results (ERPs, classification performance etc.). However, it is unwise to simply compute a group result without also inspecting single subject results. For example, one should typically ascertain whether the group result was caused by only a few participants or whether the effect is present in most of the participants in the sample (Allefeld et al., 2016). Moreover, it may be that some participants show irregularities, for example due to incidental equipment failure, software bugs, or bad signal to noise ratio. It requires only a single line of code to also display single subject results when computing group results, by setting cfg.plotsubjects to true. In the code below, the single subject results for an analysis are plotted. When running the code, select EEG_FAM_VS_SCRAMBLED in the RAW_EEG folder when the selection dialog pops up.
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The result is shown in Figure 5. This figure shows the first level decoding result when comparing famous to scrambled faces. Single subject results are displayed on a grid, with the vertical axes equalized to enable easy comparison. The tick-marks are set on half the maximum classification performance of that subject. This way, one can quickly inspect whether all subjects show approximately the same effect, or whether any subjects show large deviations. Note that the code also specifies a splinefreq parameter in the cfg variable. When specifying this parameter, the data is down-sampled to that frequency, always including the sample that contains the largest peak (or trough) in the data. Subsequently, a spline is fitted through this down-sampled signal. This procedure effectively acts as a low-pass filter that retains the maximum (or minimum) in the signal, while removing high frequency information. This parameter is particularly useful when the results contain lots of high-frequency noise (as is typically the case for individual subjects) and is only applied as a visualization step. Statistical testing is always applied to the unaltered data. The cfg.splinefreq parameter can of course also be applied when plotting at the group level, although we chose not to do so here.
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FIGURE 5. Decoding results of individual subjects for the famous vs. scrambled faces comparison.





3.6. Topographic Maps

As mentioned before, it is often useful to know the pattern of neural activity that gives rise to classification performance. However, weight vectors (the weights that correspond to the features resulting from the training procedure in a decoding analysis, electrodes in this case) are not directly interpretable as neural sources (Haufe et al., 2014). Therefore, ADAM can transform the weight vectors from BDM analyses to weights that would result from a forward model. The procedure for this transformation is simple, and results in activation patterns that are directly interpretable as neural sources, thus allowing one to plot an interpretable topographical map of the activity that underlies the decoding result. The transformation has previously been described by Haufe et al. (2014), and involves taking the product of the classifier weights and the data covariance matrix. The resulting activation patterns are equivalent to the topographical map one would obtain from the univariate difference between the stimulus classes that were entered into the analysis. Yet, it is slightly more elegant to derive them this way because of the direct mapping between the decoding analysis and the topographical maps (at the same time providing a sanity check of the data integrity of the analysis).

Alternatively, one can visualize the correlation/class separability maps that are obtained by taking the product of the classifier weights and the data correlation (instead of covariance) matrix. Correlation/class separability maps visualize activity patterns for which the task-related signal is both strong and highly correlated with the task, while at the same time minimizing the influence of strong artifacts such as eye-blinks (Haufe et al., 2014; Fahrenfort et al., 2017b). The following code visualizes the activation patterns resulting from the product of the forward transformed decoding weights topographical maps, for each of the three main analyses.
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The resulting topographical maps can be found in Figure 6. Interestingly, all three comparisons show clearly significant clusters after cluster-based permutation (Maris and Oostenveld, 2007). This is especially surprising for the famous vs. non-famous comparison, as classification performance was not significantly above chance for this comparison in this time interval (see Figure 4). This could have a number of causes. For example, in Figure 6 we plot topomaps for a particular time window (average between 250 and 400 ms), rather than looking at above chance classification performance across time, so the pre-selection of a temporal window is likely to impact the outcome of the cluster-based test. Relatedly, Figure 6 shows a cluster-based permutation test across electrodes (looking for clusters of contiguous electrodes that remain significant after random permutation), whereas Figure 4 performs a cluster-based permutation test of classification performance across time (looking for clusters of contiguous time samples that remain significant after random permutation). Finally, it is important to realize that a given classifier may not always succeed in extracting the relevant features to achieve above chance classification performance, even when there is potentially relevant information in the data. Selecting a subset of features (electrodes/channels), a different accuracy measure (Bradley, 1997), different pre-processing steps (Grootswagers et al., 2017), or a different train-test algorithm (Cox and Savoy, 2003; Grootswagers et al., 2017) may all impact the degree to which a decoding analysis yields above chance classification performance.
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FIGURE 6. Activation patterns from 250 to 400 ms, spatially normalized (z-scored) for every subject. Thick electrodes denote p < 0.05 under two-sided cluster-based permutation (Maris and Oostenveld, 2007).





3.7. EEG and MEG Temporal Generalization Results

An additional advantage of performing multivariate analysis over ERPs is the ability compute the stability of neural activity over time by inspecting the so-called temporal generalization matrix (King and Dehaene, 2014). Temporal generalization matrices display how well classification performance for a given time sample generalizes to all other time samples. Thus, a classifier is trained for every sample, and each of these classifiers is tested on all samples in the trial. If a classifier that was trained on a given sample yields high classification performance across samples from all other time points, this shows that the neural pattern of activation is stable, otherwise classification performance would not generalize to these other samples. The ability to inspect temporal generalization matrices needs to be specified during first-level analysis by setting cfg.crossclass = 'yes' (which was indeed the case, see section 2.9.7).

In this section, we compute temporal generalization matrices for all three comparisons, separately for the EEG data and for the MEG data. When running the code below, a selection dialog will appear twice. The first time it appears, one should select the EEG_RAW folder, the second time it appears, one should select the MEG_RAW folder.
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The results of the EEG and MEG temporal generalization matrices are now stored in eeg_stats and meg_stats respectively. Importantly, we did not specify cfg.reduce_dims here, as we did when we previously ran adam_compute_group_MVPA. This means that the group analysis is applied to the entire temporal generalization matrix that was computed during the first level analyses. Another thing to note is that we specified cfg.iterations = 250. This lowers the number of iterations that the cluster-based permutation test applies to 250 iterations, rather than the default 1000 iterations. This is merely done to save some computation time; with the only implication that the obtained p-values are slightly less accurate. To obtain more accurate cluster-based p-values keep the default at 1000 or higher. To plot all resulting group temporal generalization matrices, both for EEG and MEG, run the code below.
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The result can be seen in Figure 7. This figure shows the temporal generalization matrices for all three EEG comparisons in the top and for MEG in the bottom row. The eeg_stats and meg_stats variables passed as a comma separated list as before, and the cfg.plot_order parameter specifies the order in which to plot the comparisons, as has also been shown previously. When eyeballing these graphs, there are three notable differences between the EEG and MEG results. The first is the fact that the EEG matrices seem to achieve higher classification performance in the faces vs. scrambled comparisons when compared to MEG, especially along the diagonal where the result is darker red for EEG than for MEG. The second is the observation that the MEG seems to show better temporal generalization than EEG, as the colored portion of the MEG graphs extends further away from the diagonal (i.e., is more “square”) than that for the EEG graphs.
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FIGURE 7. Temporal generalization plots for all six analyses. The plots show the degree to which the classifier when trained on a given time point (on the y-axis), generalizes to other time points in the trial (on the x-axis). Color indicates classifier performance using AUC. The diagonal (from the left bottom to the top right) shows classification performance when the classifier is trained and tested on the same time point. More off-diagonal activity indicates stronger temporal generalization. (top row: EEG, bottom row: MEG).



The third notable observation is that the famous vs. non-famous graph shows significant differences in MEG, but not in EEG.



3.8. EEG and MEG Stability Over Time When Training on 250–400 ms

To understand and visualize these differences more easily, it can be advantageous to pick a training time window and investigate to what extent that window generalizes to other time samples in the trial. For illustrative purposes, we use a training window between 250 and 400 ms, and plot how well the neural pattern observed in that window generalizes to the rest of the trial. When running the code below, as in the previous section, first select the EEG_RAW folder, and then the MEG_RAW folder.
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Two new cfg parameters are important here: cfg.trainlim and cfg.reduce_dims. The trainlim parameter specifies the temporal window in milliseconds to which the training data (vertical axis in Figure 7) should be limited. The parameter cfg.reduce_dims = 'avtrain' averages over the training window, in this case the period between 250 and 400 ms. The resulting stats structures evaluate how that train window generalizes to all other samples in the trial. This can subsequently be plotted using:
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This produces the line graphs in Figure 8, which again show EEG in the top row and MEG in the bottom row. If decoding stays high throughout a line graph, this shows that the neural pattern of cortical activity that occurs between 250-400 ms is stable over time, as it is able to drive classification performance at all other time points. As one can see in Figure 8, this is indeed the case for MEG, where classification performance remains above chance all the way to the end of the trial at 1,500 ms. However, this is not the case for EEG, where classification performance drops off to chance toward the end of the trial period (in the faces vs. scrambled comparisons) or is at chance altogether (in the famous vs. non-famous faces comparison). This seems to confirm the observation that was made in Figure 7 that face-related processing generalizes better in MEG than in EEG. Also confirmed are the observations that initial decoding seems higher for EEG than for MEG and that classification performance for famous faces vs. non-famous faces is only significant for MEG and not for EEG.
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FIGURE 8. Assessing cortical stability in EEG and MEG through generalization across time given a 250–400 ms training window.





3.9. Comparing EEG and MEG Decoding Accuracies Directly

Although seemingly interesting, the differences between EEG and MEG so far have been established by observing significance in one comparison while not observing significance in another comparison and/or eye-balling the data. For example, the famous faces vs. non-famous faces comparison yields significance in MEG, but not in EEG. However, such observations do not allow one to infer that EEG and MEG are differentially sensitive to the famous faces vs. non-famous faces comparison. That inference would require an explicit statistical test (Nieuwenhuis et al., 2011). As long as the data come from the same experiment and the same subjects—decoding analyses provide a common dependent measure to compare the extent to which different methodologies are able to recover differences between experimental conditions. To formally evaluate differences in classification performance across time between MEG and EEG, they can be compared in a statistical test. The adam_compare_MVPA_stats function provides this functionality. Below the code to directly compare the MEG and EEG stats:
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This difference stats variable can subsequently be plotted using the adam_plot_MVPA function as we have been doing all along:
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Interestingly, Figure 9 confirms that initial classification performance during the encoding phase is significantly higher in EEG than in MEG during the famous vs. scrambled faces comparison (left graph, below chance classification performance early on), while temporal generalization is significantly higher in MEG than in EEG (left graph, above chance classification performance toward the end of the trial). The same pattern can be seen in the non-famous vs. scrambled faces comparison, although the difference in the initial encoding phase does not survive multiple comparisons correction when applying cluster-based permutation. Although the MEG comparison of famous vs. non-famous faces was selectively significant in the original analysis, the direct comparison between EEG and MEG is not significant, plausibly due to a lack of power.
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FIGURE 9. Directly testing the difference in temporal generalization between MEG and EEG given the 250–400 ms training window.






4. DISCUSSION

In this article, we have shown how to analyze a publicly available dataset from Wakeman and Henson (2015) using ADAM. The analysis pipeline described here can easily be ported to other datasets by replacing the input filenames in the script and modifying the class definitions using one's own event codes. In the dataset we analyzed, subjects viewed famous, non-famous and scrambled faces. Unsurprisingly, the results show that ERPs can show similar outcomes as decoding analyses, as long as one knows which electrode(s) to select. However, there are a number of notable advantages to MVPA when compared to standard ERP analysis.

For example, MVPA does not require one to select electrodes, as the decoding analysis automatically extracts informational content from the distribution of activity across all electrodes. Although prior feature (electrode) selection can still be beneficial to improve classification performance (for example selecting only occipital electrodes when a given task is visual), in principle this step is covered automatically by the training phase of a decoding analysis. In the analyses described here, the superiority of this approach becomes apparent when comparing Figure 3 (ERPs) to Figure 4 (classification performance). The decoding graph uncovers a significant difference between famous and non-famous faces that the ERP analysis does not identify. The plausible reason is that the decoding analysis automatically extracts information relevant to the difference between these conditions, which in ERPs would require prior knowledge about which electrodes to select, or require some split half procedure (Kriegeskorte et al., 2009). Of course, this information is also present in the univariate ERPs somewhere (or the classification algorithm could not pick up on it), but experimental differences can be much harder to identify or substantiate using traditional ERPs than using MVPA if the locus of the effect is unknown (also see Fahrenfort et al., 2017a).

Another advantage is that decoding analyses allow one to look at the stability of neural activation patterns over time (King and Dehaene, 2014). This advantage is unique to MVPA, as only multivariate analysis allows one to statistically characterize patterns of neural activity. For example, the temporal generalization matrices in Figure 7 reveal the degree to which representations reflecting the encoding of famous and non-famous faces generalize to later time points in a trial. Given the extent of above chance decoding in the far corners of these graphs (the “squareness” of the red-colored region showing above chance decoding performance), these figures suggest that representations of faces during encoding generalize better to other time points when characterizing them using MEG than EEG activity. This suggests that EEG and MEG measurements may be differentially sensitive to stable representations (maintenance) in the face processing network.

To further investigate this, we looked at temporal generalization for a specific time window (between 250 and 400 ms), and subsequently compared this temporal generalization signal between MEG and EEG directly in Figure 9. These graphs reveal that decoding accuracy is better in EEG than in MEG during an early encoding phase, but that MEG generalizes better to points later in time in MEG than in EEG. This interaction in the temporal domain suggests that EEG and MEG tap into different properties of the face processing network: EEG seems to have a higher signal to noise ratio during the fleeting encoding phase, whereas MEG taps into cortical activity that is stable over time, plausibly reflecting maintenance involved in evaluating faces. Together, these analyses reveal a third potential advantage of MVPA. MVPA provides a common measure to directly compare observations obtained from different methodologies, as long as the data are obtained from the same subjects, using the same tasks. In the current manuscript, this was done when comparing EEG decoding accuracies to MEG decoding accuracies, but this methodology in principle also allows one to directly compare neural decoding sensitivity to behavioral sensitivity, as long as the data comes from the same subjects and/or care is taken to properly normalize different dependent measures (Fahrenfort et al., 2017b).

The analysis pipeline described in this article highlights three advantages of MVPA over traditional univariate analysis. A more in depth treatment of the differences between standard univariate approaches and multivariate analysis can be found in Hebart and Baker (2017).

In addition, there are a number of advantages of using ADAM to perform these analyses. ADAM makes it easy to move from ERP, ERF, or TFR-centered research to MVPA analyses, as it enables an easy side-by-side comparison between univariate and multivariate methodologies. This may be particularly helpful for those who have been performing ERP analyses and want to transition to MVPA-centered approaches. ADAM takes EEGLAB or Fieldtrip as input formats, making the switch relatively easy for those who have already been using standard MATLAB analysis toolboxes. To further enable this transition, ADAM takes care of a number of potential confounds that can easily plague an analysis pipeline put together by those not aware of some of the issues. For example, ADAM trades versatility for usability by automatically enforcing balanced designs and by computing AUC rather than overall accuracy. In addition, it allows one to run a multivariate analysis on raw data or automatically perform time-frequency analysis prior to multivariate analysis (not covered in this article), and it easily applies a FEM in addition to a BDM (not covered in this article). Many options are automatically applied by default, or can easily be executed or changed by specifying just one or two parameters in the cfg variable.

Using ADAM also has disadvantages. ADAM is mostly maintained by a single person (the first author of this paper), and for that reason support is limited. ADAM's core functions were initially developed to support standard analyses by the first author, and only later converted into a toolbox to support researchers that are considering a transition from ERP to MVPA analyses. Thus although it aligns with the growing movement to promote open source in cognitive neuroscience (Gleeson et al., 2017), it does not necessarily provide the latest and greatest in multivariate analysis. For those already comfortable with programming and/or multivariate analysis, a number of more versatile alternatives for time-series based MVPA exist which have larger development teams, notably CoSMoMVPA (http://www.cosmomvpa.org, MATLAB) (Oosterhof et al., 2016), the Neural Decoding Toolbox (http://www.readout.info, MATLAB) (Meyers, 2013), the Decision Decoding Toolbox (http://ddtbox.github.io/DDTBOX, MATLAB) (Bode et al., 2018), MNE (http://www.martinos.org/mne/stable/manual/decoding.html, Python) (Gramfort et al., 2014) and the PyMVPA toolbox (http://www.pymvpa.org, Python) (Hanke et al., 2009). Yet, for those wanting to dip their toes into multivariate waters for the first time, ADAM could be a great start.
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Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices–using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.

Keywords: EEG, EEG/MEG, methodology, EEG signal processing, toolbox, topography, multivariate analysis, machine learning


INTRODUCTION

Electroencephalography (EEG) is a suitable non-invasive measure for investigating the temporal dynamics of mental processing because of its high temporal resolution and cost-effectiveness. The event-related potential (ERP) is the most common way to reflect neural response dynamics in the temporal domain. However, ERP analyses are mostly based on responses in individual sensors or an average of a group of selected sensors. This “selecting sensors” analysis method is not optimal, because it faces various challenges (Tian and Huber, 2008; Tian et al., 2011). For example, only relying on data in a few sensors cannot easily differentiate between changes in the distribution of neural sources vs. changes in the magnitude of neural sources. Moreover, selecting sensors may introduce subjective bias during the selection processes, and sometimes data in different sensors may derive inconsistent or even contradicting results. Unless all possible sensor selections have been tested, readers will not know whether the reported effects are robust across sensors or sensor groups. Running statistical tests among multiple (groups of) sensors is subject to multiple comparisons, and hence increases the type I error (false positives) or type II error (false negatives that could be induced by correction methods). Furthermore, the ERP analysis heavily depends on identifying ERP components. However, data in a few sensors cannot fully represent the spatial and temporal features of components, which makes the estimation of components' response magnitude and latency hard and incomplete. Last, individual differences in spatial and temporal characteristics caused by anatomical and functional differences across subjects further complicate the analysis, which makes group-level analysis even more opaque. Therefore, most of the time, it is hard to get a precise and holistic view of temporal dynamics by using “selected sensors” in ERP analyses.

These problems may be solvable by using information from all available sensors. Two approaches can be taken. The first one is to localize neural sources by projecting all sensors information back to the source space (source localization). The advantage is that additional information about source spatial distribution can be estimated together with their temporal dynamics. Numerous source localization methods, such as dipole modeling, Loreta, Beamforming, and MNE (Grech et al., 2008), have been proposed and built in software packages such as BESA, EEGLab, Brainstorm, NutMEG, SPM, Fieldtrip, MNE-Python. However, source localization is an ill-posed problem–infinite solutions can be obtained from the mixture of recordings. Therefore, many assumptions have to be met and sophisticated procedures and careful manipulation have to be followed in order to obtain meaningful source localization results. Moreover, these localization methods work best with magnetoencephalography (MEG) that has better spatial resolution. EEG signals, on the other hand, are highly distorted by the skull. High-density EEG systems and realistic head models that are estimated by individual anatomical MRI scans are required to achieve acceptable results of EEG source localization. However, these high-cost systems and MRI scans may be not feasible for many researchers.

The second approach is to work with all “raw” data in the sensor space. Compared with methods with dependent variable from individual sensors or averages of selected sensors, this approach that relies on information from multiple sensors is called multivariate analysis. Basically, multivariate analysis in EEG uses the topographical patterns of sensors, and try to differentiate response patterns among conditions at each given time point. If differences, either in response magnitude, or topographic patterns, or latency were detected across a timespan, we can infer that different mental processes and their temporal dynamics mediate distinct conditions. This multivariate approach aims to directly test cognitive hypotheses by using data in all sensors (Tian and Huber, 2008; Tian et al., 2011) and by-passing source localization in case that the location information of cortical activities was not the primary research interest of the study. Note that performing the source localization by solving the inverse problem is the only way in EEG and MEG studies to directly address the questions regarding the location in the brain level. Scalp data and topographic patterns reflect the response dynamics at the sensor level and can be used as indicators of modulation by experimental manipulation.

In this paper, we introduce EasyEEG toolbox (https://github.com/ray306/EasyEEG), in which several multivariate analyses are included for processing EEG sensor data and testing cognitive hypotheses. To our knowledge, a few EEG analysis software packages (Delorme et al., 2011; Groppe et al., 2011; Pernet et al., 2011; Gramfort et al., 2013; Gerven et al., 2015) have already included several multivariate analysis methods for data in the sensor space. For example, LIMO EEG (Pernet et al., 2011) aims to test the effects at all sensors and all time points by a set of statistical tools such as ANOVA, ANCOVA and Hierarchical General Linear Model along with multiple comparisons corrections; Mass Univariate ERP Toolbox (Groppe et al., 2011) applies univariate tests (e.g., t-test) in each of all sensors over time points with multiple comparison correction; the Donders Machine Learning Toolbox (Gerven et al., 2015) supports the single-trial analysis on several machine learning methods built in, and MNE-Python (Gramfort et al., 2013) makes use of the a machine learn package named Scikit-Learn (Pedregosa et al., 2011) to see the decoding performance over temporal or spatial domain. Those toolboxes and the new toolbox EasyEEG shares the same goal which is to investigate the temporal neural dynamics using all data in all sensors. The uniqueness of EasyEEG toolbox is that the included multivariate methods are carried on the explicit measures that reflect the topographic patterns across all sensors. It offers a straightforward and intuitive approach to efficiently test cognitive hypotheses.

The designing principle of this toolbox is to be both user-friendly and programmer-friendly. So we separated the procedure of EEG data analysis into several steps, and made each step be an independent module with concise input/output interfaces. In each module, common important but tedious operations that involve complicated programming details have been encapsulated into several simple commands. Various multivariate group analysis methods have been built in with single lines of commands. Users simply need a descriptive dictionary to snip the data and one line of concatenated command to perform all analyses and visualize the results. After knowing only a few commands, all users, regardless of programming experience, could start their analysis within a few minutes. Moreover, the open-source nature of this toolbox enables and supports users to add more algorithms for the EEG data analysis. EasyEEG has encapsulated a lot of APIs for the programmers. The researchers who want to introduce a new analysis method should only pay the attention to the core logic of that method, but leave the trivial details, such as reshaping data and plotting, away from the programming. And even for the deep learning applications for EEG data, EasyEEG also provides a concise interface. In general, it offers a clear way to perform group level statistics tests to directly investigate cognitive hypotheses. We introduce how to use this package in the next section.



WORKFLOW AND METHODS

The general analysis workflow in EasyEEG involves four stages:

1. Import the preprocessed data. EasyEEG currently (0.8.3) supports the epoches data generated from MNE and EEGLAB;

2. Define a dictionary (a Python syntax) to describe the analysis target (e.g., conditions, sensors, temporal durations, and/or any comparison between two groups), then extract the data by a function “extract()” with the definition as the parameter;

3. Apply one of four computation functions [e.g., “tanova()”] introduced in this paper. For algorithms that require long processing time, the computation process can be seen in a process bar showing used time and estimated rest time to finish; The computation function will yield a special data structure named AnalyzedData;

4. Visualize and output the results. AnalyzedData includes the name of analysis (in analysis_name attribute), the result of analysis (in data, annotation or supplement attribute), and the parameters for visualization (in default_plot_params attribute). Researchers can not only examine the p-values or other information, but also customize the visualization parameters for different figures.

You can see more detail in EasyEEG's online documentation (http://easyeeg.readthedocs.io/en/latest/).

We introduce a procedure that includes four multivariate methods for testing cognitive hypotheses using information in topographic patterns. An open dataset of face perception (Wakeman and Henson, 2015) is used to demonstrate this procedure and methods. The first two methods are to combine univariate approaches with topographic information to estimate the spatial extent of experimental effects (distribution of significant sensors) and the overall temporal dynamics of experimental effects (dynamics of global field power, GFP). These analyses can make the connection with common practice of ERP analysis. The next two methods are to implement multivariate analyses, introducing in this paper topographic analysis of variance (TANOVA) and pattern classification that take account of holistic topographic information to perform group-level statistics and investigate the dynamics of response patterns.


Distribution of Significant Sensors

The spatial extent of experimental effects can be estimated by the number and distribution of sensors that are significantly different between conditions. This analysis is done by performing statistical tests, such as paired t-test, on response amplitude between two conditions in each sensor at all given time points or windows, and counting the number of the sensors that have significant results. In this way, we can quantify the spatial difference in terms of response amplitude between two topographies. By examining differences across timepoints, we can estimate the temporal dynamics of underlying neural processes that reflect in topographies.



Dynamics of Global Field Power (GFP)

Global field power (GFP) was introduced by Lehmann and Skrandies (Lehmann and Skrandies, 1980). It is calculated with the following equations (Equation 1):

[image: image]

where n is the number of sensors in the montage; Ui is the measured potential of the ith senosr (for a given condition at a given time point t); is the mean value of all Ui; ui is the average-referenced potential of the ith electrode.

Basically, GFP is a summary statistics of response magnitude from all sensors on a topography, which is in the form of variance of response magnitude and mathematically equals the root mean square (RMS) of all mean-referenced sensor values. GFP reflects the overall energy fluctuation of distributed electric potentials across all sensors at a specific time point. Therefore, it is a good way to summarize and visualize the temporal dynamics of the whole brain activities. Nevertheless, researchers need to be cautious that the essence of GFP is a non-linear transformation. Therefore, when researchers apply GFP to group-averaged ERP, the outcome is not the same as the average of individual GFPs. Variances between subjects have a major effect on group-averaged GFP.

The group-level statistical analysis of GFP can be addressed by many common approaches (time point by time point; area measures, peak measures etc.). We provide one of these approaches in the EasyEEG. For comparison between any two conditions, we take every subject's data from every temporal window with defined duration of interest from both conditions and apply paired t-test. Thus, we get the p-value that suggests the level of significance across all sensors in successive temporal windows.



Topographic Analysis of Variance (TANOVA)

Topographies reflect underlying neural processes. Comparing pattern similarity between topographies in different conditions can reveal distinct mental processes and hence directly test cognitive hypotheses. TANOVA is a statistical analysis on a measure of similarity between topographies. This topographic similarity measure, called “angle measure” (Tian and Huber, 2008), where the topographic pattern similarity is quantified by a high-dimensional angle between two topographies. More specifically, the multivariate topographic patterns across all sensors are represented in high-dimensional vectors [image: image] and [image: image] for two conditions, where the number of dimensions is the number of sensors. The topographic similarity between the two conditions is quantified by the cosine value of the angle θ that can be obtained by the following equation (Equation 2).

[image: image]

The cosine value is an index of spatial similarity between two conditions, where the value of “1” represents identical patterns and value of “−1” represents exact opposite patterns. Moreover, because this index is normalized by response magnitude of both conditions, it has the advantage that it is unaffected by the magnitude of responses.

The statistical analysis of the “angle measure” is a non-parametric statistical test, termed topographic analysis of variance (TANOVA) (Murray et al., 2008; Brunet et al., 2011). The critical step in TANOVA is to generate a null distribution. In EasyEEG (0.8.4.1), we provided three different strategies to generate the null distribution of the angle measure cosine values.

Strategy 1:

(1) Put all subjects' data into one pool regardless of experimental conditions.

(2) Shuffle the pool and randomly re-assign a condition label for each trial (data permutation).

(3) Calculate the group averaged ERPs for each new labeled condition.

(4) Calculate the topographic similarity angle measure (cosine value of angle θ) between the new group-averaged ERPs.

(5) Repeat the former steps (1–4) 1,000 times (suggested by Manly, 2006).

Strategy 2:

(1) Perform data permutation within subject. That is, shuffle and re-label the trials for each subject.

(2) Calculate the group averaged ERPs for each new labeled condition.

(3) Calculate the topographic similarity angle measure (cosine value of angle θ) between the new group-averaged ERPs.

(4) Repeat the former steps (1–3) 1000 times.

Strategy 3:

(1) Calculate the ERPs for each condition and subject.

(2) Perform data permutation at the within-subject level for ERPs. That is, re-label the ERPs for each subject.

(3) Calculate the spatial topographic similarity angle measure (cosine value of angle θ) between for the new group- averaged ERPs.

(4) Repeat the former steps (1–3) 1,000 times.

Strategy 1 is used by many researchers (Murray et al., 2008; Brunet et al., 2011; Lange et al., 2015). However, it loses subject's information by mixing all subjects' data into one pool. In contrast, Strategy 2 permutes the data at the within-subject level. Both Strategy 1, 2 may be time-consuming and computational demanding (about 8 h each strategy, reduced to 60 min when multithreading computation is applied. PC Configuration: CPU: Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20 GHz 32 cores; RAM: 256GB; System: Ubuntu16.04.1). Therefore, Strategy 3 has the advantage of reducing computing complexity and processing duration (can be done within 1–2 min). But Strategy 3 also has limitation that it loses trial information by averaging trials at the first step. Regardless of different procedures, we find out that the results from three strategies are similar and stable when the repetition times are beyond 1000 times (see details in the next section). Thus, we suggest that Strategy 3 can be used as a pilot test to have a quick check of results, and Strategy 2 for further validation.

After determining the null distribution, a comparison is made between the actual topographic similarity angle measure and the null distribution. The p-value is determined by finding the rank position of that actual cosine value in the generated null distribution. It reveals how significant the similarity between two topographic response patterns in different conditions are in a chosen time window.



Pattern Classification

Although TANOVA is good at detecting topographic variance at a given moment, it's insensitive to the fluctuation over time. We introduce a pattern classification method in EasyEEG to capture topographic dynamics. Moreover, pattern classification can collaboratively take advantage of all aspects of information in topographies, compared with GFP and TANOVA that only emphasize response magnitude and energy distribution, respectively.

This pattern classification method is in the framework of supervised machine learning. The collection of magnitudes of all sensors at a time point composes a sample, and the corresponding condition category is the label of the sample. After a classifier is trained by mapping the samples in a dataset to their labels, the classifier is used to infer the labels of samples in a new dataset for testing.

The pattern classification method aims for obtaining topographic differences among conditions at all timepoints to reveal the topographies changes over time. The general procedure work as follows:

1) Data in each condition in a specific time point or window are extracted to form a sample. Samples in the time points or windows of interest from two conditions form a dataset for each subject.

2) The pattern classification is done separately for each subject, so that we can obtain the classification results of all subjects at a given time point or window.

2.1) Each dataset is divided into a training set and a test set. The samples in the training set are used to train the classifier, and then the samples in the test set are used to evaluate the trained classifier (get a classification score).

2.2) Repeat step 2.1 for all time points and average the scores.

2.3) Repeat step 2.1 and step 2.2 for each subject.

3) Compare the classification scores of all subjects with the chance level 0.5 for a two-alternative classification with the permutation test (Pitman, 1937). The p-value can be obtained to indicate whether topographies in two conditions are significantly different at a given time point or window.

4) Repeat the steps 2 and 3 at successive time points or windows, so that dynamics across time can be obtained.

Any supervised machine learning model can be used as a classifier. One should notice, however, that the classifier model determines the capacity of inferring the functional relationship between samples and their labels. The biggest issue for discovering the relationship is the number of available trials in the EEG data. In general, an EEG experiment generates fewer than hundreds of trials. If we attempt to infer a complex functional relationship from only a few hundreds of samples, the result can hardly generalize to other samples (the problem of “overfitting”). One solution is to keep the balance between the trial counts and the complexity of the functional relationship. For example, Logistics Regression (Cox, 1958) is a linear model, which can provide a simple functional relationship without much tuning of hyperparameters. We adopted the Logistics Regression algorithm as the default classifier model. Depending on different situations and needs, users can easily switch to other supervised machine learning algorithms such as Naive Bayes or Support Vector Machine in EasyEEG. Because sometimes the sample size in two labels might be unbalanced, we adopted Area Under Curve (AUC) as the classification score (King et al., 2013). And to make the classification score more robust, the algorithm will be applied to different partitions of the samples for several times (Cross Validation; Arlot and Celisse, 2010).

The simple classifier models can reduce overfitting, but the functional relationship they are able to catch may also be too simple to represent the real relationship. That is, some complicate topographic pattern differences won't be recognized by the model (the problem of “under-fitting”). The solution for under-fitting is to increase the complexity of classifier models which tends to cause overfitting. Therefore, we need to find a fine balance using appropriate regularization model (e.g., Krogh and Hertz, 1992; Prechelt, 1998; Hinton et al., 2012) or a special deep model that is designed for few samples (e.g., Kimura et al., 2018). Should one need to customize, all these extra optimizations can be easily added to the existing function by the programming interface provided in the toolbox.




EXAMPLES AND RESULTS


Data for This Tutorial

Data used for this tutorial are an open dataset of EEG responses to face stimuli (available at https://openfmri.org/dataset/ds000117/) (Wakeman and Henson, 2015). The face stimuli are made of 300 grayscale photographs (half from famous people and half from non-famous people) that are matched and cropped to show only the face. Additional 150 grayscale photographs of scrambled face that are generated by taking the 2D-Fourier transform of either famous or non-famous faces, permuting the phase information, and then inverse-transforming back into the image space. Subjects were required to make the judgment about how symmetric they regard each face stimulus by pressing a key, while EEG signals were recorded. The EEG data was acquired from by 16 healthy subjects at 1100 Hz sampling rate in a light magnetically shielded room using a 70 channel Easycap EEG cap (based on EC80 system: http://www.brainlatam.com/manufacturers/easycap/ec80–185). Full details about the experimental design and data acquisition can be found in Wakeman and Henson (2015)



Processing Pipeline

All raw data were first preprocessed by MNE-Python with a standard script (see Supplementary Code Snippet 1) and saved in the “.h5” format. Epochs were chosen from −200 ms pre-stimulus to 600 ms post-stimulus onset, and were baseline corrected based on the pre-stimulus period and band-pass filtered from 0.1 to 30 Hz. Epochs that contain artifacts were excluded based on a ±100μV rejection criterion.

We demonstrate scripts for applying four analysis methods and their outcomes as follows (the entire script was running in a Jupyter notebook, see: https://github.com/ray306/EasyEEG/blob/master/tests/(Demo)%20Face%20perception.ipynb). The runtime environment for the following examples was based on EasyEEG 0.8.4.1, Python 3.6 64 bit, Ubuntu 16.04.1.



Load Data and Define the Analysis Target

First, we define a dictionary that contains information for further analysis. The descriptive dictionary “target” is composed by two components: conditions and timepoints. To make the comparison between conditions, we add “&” between conditions as the operation symbol and use “X vs X” as the annotation. Because all analyses are based on all sensors, we don't need to define the channels. The duration of each epoch is 0–600 ms.


[image: image]

Code Snippet 1. The data loading and analysis target definition.



The EasyEEG provides a simple and easy way to complete the loading and extraction process by calling the “load_epochs()” and the “extract()” functions. Data is extracted for further analysis by passing the descriptive dictionary “target” to the “extract()” function, and is saved in the variable “e.”



Distribution of Significant Sensors

By applying the function “topography(),” we can perform the distribution of significant sensors analysis. Specifically, we define successive time windows of every 100 ms. The distribution results are saved in the variable “result.” And by calling the function “plot(),” we can visualize the results (Figure 1). Sensors that show significant differences between two conditions are circled in white (Figure 1A). The function “significant_channels_count()” can be used to more clearly illustrate the temporal dynamics by the count of significant sensors. The results are saved in the variable “sig_ch_count” and depicted in Figure 1B that displays the number of significant sensors across time. The color scale represents the number of significant sensors.


[image: image]

FIGURE 1. Results of distribution of significant sensors analysis. (A) Topographies of response differences between conditions across time. Each row contains topographies for a given comparison at different time points. Sensors that show significant response magnitude differences are circled in white. The color on the topography represents the response magnitude differences. The conditions in each comparison is listed on the left. S for scrambled condition, F for famous face condition, and U for unfamiliar face condition. (B) The number of significant sensors across time. The color scale represents the number of significant sensors. The conditions of comparison are listed at the left side of the figure. Labels are the same as in (A). The comparison between face perception conditions (F and U) and scrambled (S) condition is significantly different in sensors above frontal, central, bilateral parietal-occipital areas, starting around 180 ms. The comparison between face perception conditions (F vs. U), however, only shows significant difference at the latencies of 300–400 ms and 500–600 ms. Refer to main text for detailed results.




[image: image]

Code Snippet 2. Apply the Distribution of significant sensors analysis.



Figure 1 shows that the comparison between conditions “Famous” (F) and “Scrambled” (S) as well as the comparison between conditions “Unfamiliar” (U) and “Scrambled” (S) are significantly different in sensors above frontal, central, bilateral parietal-occipital areas. These differences start around 200 ms (180 ms in sensor count results in Figure 1B). The comparison between conditions “Famous” (F) and “Unfamiliar” (U), however, only shows significant difference at the latencies of 300–400 ms and 500–600 ms. From 300 to 400 ms, only about 10 sensors above parietal and right-lateral occipital areas show significant differences. From 500 to 600 ms, around 25 sensors above middle frontal and bilateral occipital areas show significant differences. And these differences are weaker compared the comparisons between face and non-face conditions. See Supplementary Results 1, 2 for the summary of sensor magnitude, p-values, and the count of significant sensors. See supplementary ZIP file for the raw data.



GFP

The function “GFP()” can be used to obtain the GFP. Computation of GFP can be done within a few seconds. We set the “compare” parameter to be “True” to enable statistical analysis between any two conditions. With the function “plot(),” the results of GFP can be visualized.


[image: image]

Code Snippet 3. Apply the GFP analysis.



As shown in Figure 2, the condition “Scrambled” (S) begins significantly different from the condition “Famous” (F)” or Unfamiliar” (U)” around 140 ms. A small significant difference is found between conditions “Scrambled” (S) and “Unfamiliar” (U) at 500–600 ms, whereas the comparison between conditions “Scrambled” (S) and “Famous” (F) shows weak but significant difference at 400–600 ms. For comparison between conditions “Famous” (F) and “Unfamiliar” (U), significant differences are at 220–260 ms (most at 240 ms), 300–400 ms (most at 400 ms), and 500–600 ms (most at 600 ms). See Supplementary Result 3 for the summary of the GFP powers and the p-values over time. See supplementary ZIP file for the raw data.


[image: image]

FIGURE 2. Results of GFP analysis. Each color line represents the GFP of each condition. Condition labels are the same as Figure 1. The shadow areas around each line depict the standard error of the mean. The grayscale vertical bar stands for the results of statistical analysis. Grayscale represents the significant levels, and location represents the latencies of significant effects. (A,B) The condition “Scrambled” (S) begins significantly different from the face perception conditions around 140 ms. Differences are also significant at some later latencies. (C) For comparison between two face perception conditions, significant differences are observed starting around 220 ms, later than those in comparisons between face and non-face conditions in (A,B). Some later significant differences are also observed. Refer to main text for detailed results.





TANOVA

The function “tanova()” is for performing TANOVA analysis. Data was averaged in every 5 ms defined by the parameter “win_size.” The number of repetitions for creating the null distribution was set to 1,000 times as defined by the parameter “shuffle.” Different strategies of creating the null distribution can be defined by the parameter “strategy.” The computation time is about 60 times slower in Strategy 1 and Strategy 2 than that in Strategy 3 (about 1 min using our system). The output of “tanova()” function is the series of p-values. We corrected the p-values by accepting the consecutive significant data points which are longer than 20 ms (Lange et al., 2015) using a command “correct(method = 'cluster').” Users can also use the other solutions for multiple comparisons correction such as FDR Benjamini-Hochberg (Benjamini and Hochberg, 1995) by replacing the value of parameter “method.”


[image: image]

Code Snippet 4. Apply the TANOVA analysis.



The results from Strategy 1 and Strategy 2 are highly similar. The topographic response patterns in condition “Scrambled” starts significantly different from those in the condition “Famous (F)/Unfamiliar (U)” after 170 ms (p < 0.01). For comparison between conditions “Famous” and “Unfamiliar,” most time after 470 ms are significantly different (p < 0.01) except from 530 to 560 ms. The results from Strategy 3 mostly agree with those from Strategy 1 and 2, with one noticeable exception at 180 ms for comparison between two face perception conditions. The results from all three comparisons show significant differences for a short time period around 180 ms (p < 0.01 for comparison “Scrambled vs. Unfamiliar” and comparison “Unfamiliar vs. Famous”; p < 0.05 for comparison “Scrambled vs. Famous”). See Supplementary Result 4 for the summary of the p-values of TANOVA over time. See supplementary ZIP file for the raw data.



Pattern Classification

The function “classification” is for performing pattern classification analysis. The default classifier is a logistic regression classifier. Data was averaged in every 5 ms defined by the parameter “win_size = ′5 ms”. The parameters “test_size = 0.3” and “fold = 25” indicate that the 30% of data were randomly selected as the test set and the rest are in the training set in each fold (data splitting iteration) and the number of folds is 25 in the cross validation.
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Code Snippet 5. Apply the Pattern classification analysis.



Figure 4 depicts the pattern classification results as p-values across time. The condition “Scrambled” starts significantly different from those in condition “Famous (F) or Unfamiliar (U)” after 120 ms. The condition “Unfamiliar” and “Famous“ show sparse differences along time. More specifically, results show that at around 220 ms, 280 ms, 330 ms, 380 ms, 410–450 ms, and 510–600 ms, there are significant differences between these two conditions (p < 0.05). See Supplementary Result 5 for the summary of the scores of the p-values of Pattern classification over time. See supplementary ZIP file for the raw data.

The function “classification()” also allows researchers to use an external model such as a deep learning model (Chollet and Others, 2015; Abadi et al., 2016), see Supplementary Code Snippet 4 for an example.




DISCUSSION

EEG provides high temporal resolution information that reflects cognitive processes. However, common ERP methods using partial information in selected sensors are hard to obtain a precise and comprehensive temporal dynamics across the system. Whereas, source localization may estimate the distribution of neural generators and their dynamics. But sophisticated procedures, various assumptions, as well as high demand on data quality, facility and computational power may make localization methods not practical for some users. In the EasyEEG toolbox, we offer multivariate analyses that use EEG topographical patterns of sensors to obtain holistic system-level dynamic information without projecting back to the source space. Different types of analyses that take from distinct yet related perspectives help users infer different aspects of temporal dynamics by differentiating response patterns and magnitude across time. Main functions and other necessary steps have been packed in this toolbox, so that users can easily use. Moreover, the highly flexible, compatible and expandable design in programming are also ideal for advanced users. Our EasyEEG toolbox offers a practical, efficient and complete pipeline from raw data to publication for EEG research to directly test cognitive hypotheses.

This paper introduces four methods included in EasyEEG, which take information from all sensors of a topography to investigate neural dynamics. These methods yet target at different aspects of information and separately evaluate topographic patterns and response magnitude across time. The first method the distribution of significant sensors analysis can provide the spatial extent of effects by observing the spatial configuration and counting the number of sensors that have significant differences among conditions. The sample results show that greater spatial extent and more number of significant sensors in both face perception conditions, compared with scrambled condition, starting around 180 ms (Figure 1). These results indicate that the distribution of significant sensors can grossly identify the dynamics of neural processing in different conditions. The second method GFP analysis provides an indicator of overall energy variation among all sensors. The sample results show that the face perception conditions start to differ from scrambled condition around 140 ms, whereas response magnitudes differ between face perception conditions (famous vs unfamiliar) starting around 220 ms. These latency differences in response magnitude reveal that the general face perception occurs earlier, and specific face identification occurs later.

The third method the TANOVA analysis provides a way to quantify and statistically test pattern similarity between topographies. The sample results show that the response topographic patterns in face perception conditions start to differ from those in scrambled condition around 170 ms (Figure 3). These results indicate that distinct processes for face perception emerge around 170 ms. Whereas, topographic responses in two face perception conditions remain the same until around 470 ms. These results indicate that similar sensor patterns mediate the perception of famous and unfamiliar faces during the early perceptual processes. The differences start around 470 ms could be because the effects of familiarity induce additional neural processes in famous condition compared with the processes for unfamiliar condition. The fourth method the pattern classification uses self-adaptive algorithms and takes advantage of all information regarding response magnitude and patterns of topographies to investigate neural dynamics. The sample results show that both face perception conditions show differences from the scrambled condition as early as around 120 ms. Differences between two face perception conditions are scattered across the timespan. These results indicate that the pattern classification method can reveal response magnitude and pattern differences as the classification results between two face conditions, as well as can provide additional information such as magnitude and pattern interaction, indicated by the detection of early differences between scrambled and face conditions.
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FIGURE 3. Results of TANOVA analysis. The results are represented as p-values across time. Color represents the significant levels, with darker color for smaller p-values. Conditions labels are the same as in Figure 1. (A–C) The results obtained by applying different strategies of computing null distribution in the non-parametric tests. These results are similar. The topographic response patterns in condition “Scrambled” starts significantly different from those in the face perception conditions after 170 ms and last till the end of epoch. For comparison between face perception conditions (F vs U), significant pattern differences are obtained after 470 ms. Results in Strategy 3 have an exception that all three comparisons show significant differences for a short time period around 180 ms. Refer to main text for detailed results.



These four methods are complementary to each other and can provide information at different levels to overcome limitation of individual methods. Users can use them collaboratively to obtain a comprehensive picture of their data. For example, the distribution of significant sensors was obtained by individually testing response magnitude differences in each sensor. This without correction is subject to multiple comparisons. We use this result to provide a general and direct visualization of data and dynamic results, similar to the common practice in fMRI research that uses “p < 0.05 uncorrected” for visualizing results.

The observed significant sensors distribution differences, as demonstrated in the face perception sample, can be caused either by response magnitude changes or the change of neural generators that is reflected in topographic patterns. We use the GFP and TANOVA to further test the magnitude and pattern differences among conditions, respectively. The GFP results show magnitude differences between two face perception conditions starting around 220 ms, whereas TANOVA results show pattern difference starting until 440 ms. These results from two methods collaboratively suggest that response magnitude in the same neural sources is firstly different between perceiving famous and unfamiliar faces, and later distinct neural generators are involved for processing familiarity. In the comparisons between face and scrambled conditions, both GFP and TANOVA analyses reveal differences start around 170 ms, suggesting both neural generators and their magnitude differ when processing faces or non-faces.

The pattern classification analysis gives the combination of magnitude and topographic differences, and can be used to verify and “double-check” the results in both GFP and TANOVA. In the sample results, the latencies of significant results in the classification agree with the combination of results in GFP and TANOVA in both comparisons between face and non-face conditions, as well as between face perception conditions. Moreover, the pattern classification can provide more information than GFP or TANOVA methods alone. This additional information is likely from the interaction between the response magnitude and patterns. For example, the early differences between face and scrambled conditions is only detected using pattern classification.

Based on the features of four methods and their complementary nature, we recommend the following procedure. User can follow all or partial of this procedure based on their research goals to obtain topographic and response magnitude dynamics.

1) Perform basic pre-processes such as noise reduction, baseline correction, filtering using other available toolboxes such as MNE Python.

2) Load the pre-processed data [EasyEEG.io.load_epochs(“path”)], define conditions and comparisons, and extract the data epochs of interests [extract()].

3) Obtain the distribution of significant sensors [topography()] for an direct and intuitive visualization [plot()] of effects.

4) Test the overall magnitude differences [GFP().plot()].

5) Test the topographic pattern differences [tanova().plot()].

6) Perform pattern classification [classification().plot()] to verify the results from (3) to (5).

By following the above 6 steps, users can visually inspect their data and effects, obtain the statistical results at the group-level regarding response magnitude and topographic patterns, and have a verification of obtained results from another perspective of pattern classification and machine learning. EasyEEG provides the realization of these steps and a complete pipeline from raw EEG data, to generating figures, to statistical testing for publication.

The results obtained by EasyEEG are consistent with those from other analysis approaches. A mass univariate General Linear Model (GLM) was applied on the same face perception dataset (Wakeman and Henson, 2015). Their results suggested that faces and scrambled conditions significantly differed from around 160 ms and last to the end of the epoch (600 ms), with differences in the sensors over fronto-central and lateral parieto-occipital areas, which are very consistent with our results (Figures 1, 2, 4). In the comparison between two face perception conditions, they found a single cluster over mid-frontal electrodes from 520 to 620 ms (Wakeman and Henson, 2015), which also agrees with our TANOVA results (Figure 3). These consistent results obtained by different approaches and toolboxes demonstrate the reliability of our methods and EasyEEG.
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FIGURE 4. Results of Pattern classification analysis. Pattern classification results are represented as p-values across time. Color represents the significant levels. Condition labels are the same as in Figure 1. Both face perception conditions show differences (p < 0.01) from the scrambled condition as early as around 120 ms. Differences between two face perception conditions are scattered across the timespan. Refer to the main text for detailed results.



Besides the reliability, EasyEEG can obtain additional results and provide more insights. The most important one is separating response magnitude effects from topographic pattern changes. As in our results, GFP and TANOVA analyses reveal differences in response magnitude but not in topographic patterns between two face perception conditions, whereas both magnitude and patterns differ between face and scrambled conditions. These results highlight the advantage and capacity of EasyEEG on testing different aspects of hypotheses. Moreover, EasyEEG provides an unbiased omnibus measure using information of all sensors in topographies, which overcomes individual spatial and temporal differences and facilitates group-level analyses.

EasyEEG shares some attributes with other existing toolboxes of multivariate analyses, yet has distinct features. For instances, Mass Univariate ERP Toolbox applies the univariate test at each of all sensors, and reduces the multiple comparison pollution by different correction methods (Groppe et al., 2011); Whereas EasyEEG takes the topographical pattern of sensors directly with multivariate approaches, so that it can better avoid the multiple comparison problems than the univariate tests. LIMO EEG utilizes the hierarchical general linear model for multivariate data (Pernet et al., 2011), Donders Machine Learning Toolbox (Gerven et al., 2015) and MNE-Python offers an interface to Scikit-Learn for retrieving the classification score (Gramfort et al., 2013) a complete pipeline from the data loading and preprocessing to the statistical testing and results visualization.

EasyEEG offers great convenience and outstanding compatibility. The most common difficulty of using various software packages is how to get your own EEG data working in that toolbox. EasyEEG has a solution by reducing programming demands for customized algorithms. First, the complicated and tedious data extraction operations are replaced by calling built-in extraction function with descriptive dictionary. Researchers are only required to understand the structure of extracted EEG data. Second, EasyEEG makes extraction and combination of data in multiple sections/blocks automatic. In this way, users avoid the tedious and error-prone repetitive steps. Third, the proposed multivariate analysis methods have been implemented in simple command lines. Users can specify the intended analysis and parameters in one place and obtain the final results. Thus, researchers can focus more on their experiments and selection of core algorithms and methods, and obtain quick results to test their hypotheses.

EasyEEG also provides great flexibility and expandability for advanced users. Should researchers want to examine different aspects of data or to apply some other customized algorithms, they only need to modify a small portion of the current scripts to quickly create new computational or visualization algorithms based on a resilient data structure and a number of well-written application programming interfaces (APIs).

Besides the introduced multivariate analysis methods, we aim to include more analysis methods in EasyEEG to investigate neural dynamics, and increase the reliability of these methods. More specifically, we plan to integrate more machine learning models for EEG data analysis and pattern classification methods. Moreover, we aim to increase the efficiency and expandability of EasyEEG by designing more programming APIs for the developers.

There are several limitations of current version of our toolbox. First, methods included in our toolbox work best with the activation widely distributed among all sensors. However, if the effects are focused in several electrodes, the effect size could be reduced by the summary of topography, especially in the GFP analysis. Second, the multivariate methods rely on the topographies in the sensor space to infer the relation between neural sources of different conditions. The mapping between sources and topographies could be complicated. For example, two different neural sources, in theory, could generate the same pattern. If this situation occurred, our toolbox would derive incorrect results, although it is highly unlikely. Moreover, the topography-based analysis can find differences of neural sources between conditions. But it cannot further separate whether the differences are induced by the changing of source location or the orientation of the same source. All these limitations are induced by the cost-effectiveness tradeoff. While methods in our toolbox can offer direct and easy ways to test psychological and neuroscience, we sacrifice the ability to precisely testing aspects of underlying neural sources. Therefore, users should choose different methods based on their own questions and needs. Third, only four multivariate methods are built in the current version of toolbox. We are aiming to integrate more features in the future, such as deep learning techniques, to increase the power of our toolbox, meet broader requirement of users and provide solutions to wider ranges of questions.

In summary, EasyEEG provides simple, flexible and powerful methods that can be used to directly test cognitive hypotheses based on topographic responses. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics without sophisticated localization. Python based algorithms provide concise and extendable features of EasyEEG. Users of all levels can benefit from EasyEEG and obtain a straightforward solution to efficiently handle and process EEG data and a complete pipeline from raw data to publication.
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Cognitive neuroscience questions are commonly tested with experiments that involve a cohort of subjects. The cohort can consist of a handful of subjects for small studies to hundreds or thousands of subjects in open datasets. While there exist various online resources to get started with the analysis of magnetoencephalography (MEG) or electroencephalography (EEG) data, such educational materials are usually restricted to the analysis of a single subject. This is in part because data from larger group studies are harder to share, but also analyses of such data often require subject-specific decisions which are hard to document. This work presents the results obtained by the reanalysis of an open dataset from Wakeman and Henson (2015) using the MNE software package. The analysis covers preprocessing steps, quality assurance steps, sensor space analysis of evoked responses, source localization, and statistics in both sensor and source space. Results with possible alternative strategies are presented and discussed at different stages such as the use of high-pass filtering versus baseline correction, tSSS vs. SSS, the use of a minimum norm inverse vs. LCMV beamformer, and the use of univariate or multivariate statistics. This aims to provide a comparative study of different stages of M/EEG analysis pipeline on the same dataset, with open access to all of the scripts necessary to reproduce this analysis.

Keywords: electroencephalography (EEG), magnetoencephalography (MEG), neuroimaging, software, Python, open-source


1. OVERVIEW

Magnetoencephalography and electroencephalography (M/EEG) are neuroimaging technologies with a high temporal resolution, which provide non-invasive access to population-level neuronal dynamics on virtually any temporal scale currently considered relevant to cognition. While MEG can recover spatial patterns at a higher signal-to-noise ratio (SNR) and enjoys a more selective cortical resolution than EEG (Baillet, 2017), EEG is more portable and less expensive, and thus supports the study of cognition in a wider range of situations. Processing M/EEG recordings, however, is inherently challenging due to the multi-dimensional nature of the data, the low SNR of brain-related M/EEG signals, and the differences in sensitivity of these measurement techniques. This can give rise to complex sequences of data processing steps which demand a high degree of organization from the investigator.

In an effort to address reproducibility issues recently shown to affect neuroimaging studies (Ioannidis, 2005; Carp, 2012a,b; Button et al., 2013), a number of community-led efforts have begun developing data sharing (Poldrack and Gorgolewski, 2017) and data organization (Gorgolewski et al., 2016; Niso et al., 2018) projects. These efforts are necessary first steps, but are not sufficient to solve the problem—they must be complemented by educational tools and guidelines that establish good practices for M/EEG analysis (Gross et al., 2013). However, putting guidelines into practice is not always straightforward, as researchers in the M/EEG community rely on several software packages (Delorme and Makeig, 2004; Dalal et al., 2011; Delorme et al., 2011; Litvak et al., 2011; Oostenveld et al., 2011; Tadel et al., 2011), each of which is different. Even though these packages provide tutorials for single subject data analysis, it is typically left up to the investigator to coordinate and implement multi-subject analyses. Here, we try to address this gap by demonstrating a principled approach to the assembly of group analysis pipelines with publicly available code1 and extensive documentation.

As members and maintainers within the MNE community, we will present analyses that make use of the MNE software suite (Gramfort et al., 2014). Historically, MNE was designed to calculate minimum-norm estimates from M/EEG data, and consisted in a collection of C-routines interfaced through bash shell scripts. Today, the MNE software has been reimplemented in Gramfort et al. (2013a) and transformed into a general purpose toolbox for processing electrophysiology data. Built on top of a rich scientific ecosystem that is open source and free, the MNE software now offers state-of-the-art inverse solvers and tools for preprocessing, time-frequency analysis, machine learning (decoding and encoding), connectivity analysis, statistics, and advanced data visualization. The MNE software, moreover, has become a hub for researchers who use it as a platform to collaboratively develop novel methods or implement and disseminate the latest algorithms from the M/EEG community (Maris and Oostenveld, 2007; Kriegeskorte et al., 2008; Rivet et al., 2009; Gramfort et al., 2010, 2013b; Hauk et al., 2011; Khan and Cohen, 2013; Larson and Lee, 2013; Schurger et al., 2013; Haufe et al., 2014; King and Dehaene, 2014; Engemann and Gramfort, 2015; Smith and Kutas, 2015a,b). With this work, we not only share good practices to facilitate reproducibility, but also present these latest advances in the MNE community which enable automation and quality assessment.

Here, we demonstrate how to use MNE to reanalyze the OpenfMRI dataset ds000117 by Wakeman and Henson (2015). This requires setting the objectives for the data analysis, breaking them down into separate steps and taking a series of decisions on how to handle the data at each of those steps. While there may be several interesting scientific questions that have not yet been addressed on this dataset, here we confine ourselves to the analysis of well-studied time-locked event-related M/EEG components, i.e., event-related fields (ERF) and event-related potentials (ERP). This is motivated by educational purposes to help facilitate comparisons between software packages and address reproducibility concerns. To this end, we will lay out all essential steps from single subject raw M/EEG recordings to group level statistics. Importantly, we will highlight the essential options, motivate our choices and point out important quality control objectives to evaluate the success of the analysis at every step.

We will first analyze the data in sensor space. We will discuss good practices for selecting filter parameters, marking bad data segments, suppressing artifacts, epoching data into time windows of interest, averaging, and doing baseline correction. Next, we turn our attention to source localization: the various steps involved in the process starting from defining a head conductivity model, source space, coregistration of coordinate frames, data whitening, lead field computation, inverse solvers, and transformation of source-space data to a common space. Along the way, we will present various diagnostic visualization techniques that assist quality control at each processing step, such as channel-wise power spectral density (PSD), butterfly plots with spatial colors to facilitate readability, topographic maps, and whitening plots. Finally, we will attempt to distill from our analysis, guiding principles that should facilitate successfully designing other reproducible analyses rather than blindly copying the recipes presented here.



2. PRELIMINARIES

In this work, we describe a full pipeline using MNE to analyze the OpenfMRI dataset ds000117 by Wakeman and Henson (2015). The data consist of simultaneous M/EEG recordings from 19 healthy participants performing a visual recognition task. Subjects were presented images of famous, unfamiliar and scrambled faces. The dataset provides a rich context to study different neuroscientific and cognitive questions, such as: Which brain dynamics are characteristic of recognizing familiar as compared to unfamiliar faces? How do commonly studied face-responsive brain regions such as the Superior Temporal Sulcus (STS), the Fusiform Face Area (FFA), and the Occipital Face Area (OFA) interact when processing the familiarity of the face? At the same time, it presents a well-studied paradigm which can be particularly beneficial for the development of methods related to connectivity and source localization.


2.1. Data Description

The subjects participated in 6 runs, each 7.5 min in duration. In the original study, three subjects were discarded due to excessive artifacts in the data. To produce comparable results, the same subjects are also discarded from the group results in this study. The data were acquired with an Elekta Neuromag Vectorview 306 system consisting of 102 magnetometers and 204 planar gradiometers. In addition, a 70 channel Easycap EEG system was used for recording EEG data simultaneously.



2.2. Reading Data

MNE supports multiple file formats written by M/EEG hardware vendors. Apart from Neuromag FIF files, which are the default storage format, MNE can natively read multiple other formats ranging for MEG data including 4D Neuroimaging BTI, KIT, and CTF, and for EEG data B/EDF, EGI, and EEGLAB set2. Despite this heterogeneity of systems, MNE offers a coherent interface to the metadata of the recordings using the so-called measurement info3. Regardless of the input format, all processed files can be saved as FIF files or in the HDF5 format4.

MNE can handle multimodal data containing different channel types, the most common being magnetometer, gradiometer, EEG, electrooculogram (EOG), electrocardiogram (ECG), and stimulus trigger channels that encode the stimulation paradigm. MNE also supports electromyogram (EMG), stereotactic EEG (sEEG), and electrocorticography (ECoG), functional near-infrared spectroscopy (fNIRS) or miscellaneous (misc) channel types. Declaring and renaming channel types is a common step in the preparation of M/EEG datasets before analysis. In our case, once the files were read in, some of the channels needed to be renamed and their channel types corrected in the measurement info (see Wakeman and Henson, 2015): the EEG061 and EEG062 electrodes were set as EOG, EEG063 was set as ECG, and EEG064 was set as a miscellaneous channel type as it was a free-floating electrode. If this step is omitted, some preprocessing functions may fall back to potentially less optimal defaults, for example, using the average of the magnetometers instead of the ECG channel when searching for cardiac events.




3. MEG AND EEG DATA PREPROCESSING


3.1. Maxwell Filtering (SSS)

Neuromag MEG recordings are often preprocessed first using the Signal Space Separation (SSS) method (Taulu, 2006), otherwise known as Maxwell filtering. SSS decomposes the data using multipole moments based on spherical harmonics and removes the component of magnetic field originating from outside the MEG helmet. SSS is therefore useful for removing environmental artifacts, and can also be used to compensate for head movements during the recording. In this study, movement compensation is not strictly necessary as the participants managed to stay predominantly still.

The data provided by OpenfMRI (Poldrack and Gorgolewski, 2017) already contain files processed using the proprietary Elekta software MaxFilter, which is what we use in our analysis for the sake of reproducibility. However, MNE offers an open source reimplementation and extension of SSS as well. Before running SSS, it is crucial that bad channels are marked, as otherwise SSS may spread the artifacts from the bad channels to all other MEG channels in the data. This step is preferably done manually with visual inspection. When using the MNE implementation of Maxwell filtering, we reused the list of bad channels available from the Elekta MaxFilter logs in the dataset.

Results comparing raw data, data processed by Elekta MaxFilter, and data processed by the MNE maxwell_filter function are provided in Figure 1. While the unprocessed data do not show a clear evoked response, the Maxwell filtered data do exhibit clear event-related fields with a clear peak around 100 ms post-stimulus. Note that the results obtained with Elekta implementation and the MNE implementation have minimal differences due to slight differences in computation of component regularization parameters.
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FIGURE 1. Evoked responses (filtered between 1 and 40 Hz) in the magnetometer channels from (A) unprocessed data, (B) data processed with maxwell_filter in MNE, and (C) the difference between data processed using maxwell_filter and Elekta MaxFilter (TM). The colors show the sensor position, with (x, y, z) sensor coordinates converted to (R, G, B) values, respectively.



3.1.1. Alternatives

In principle, SSS can be applied to data acquired with any MEG system providing it has comprehensive sampling (more than about 150 channels). However, so far it has not been tested extensively with other than the 306-channel Neuromag systems. SSS requires relatively high calibration accuracy, and the Neuromag systems are thus carefully calibrated for this purpose. If SSS is not an option, for example due to the lack of fine-calibration information, reasonable noise reduction can be readily obtained from Signal Space Projections (SSP) (Uusitalo and Ilmoniemi, 1997). This intuitively amounts to projecting out spatial patterns of the empty room data covariance matrix using Principal Component Analysis (PCA). In practice, depending on the shielding of the room, the MEG vendor tunes the system so that the raw data file produced contain already some SSP vectors that are meant to be used for removing environmental noise. This number of SSP can vary between installations and go up to a dozen of vectors, especially for magnetometers. Another option in systems containing reference channels (for example, CTF), is to regress out the noise, using so-called “gradient compensation.” Indeed, SSS is not so necessary in these systems for suppressing environmental artifacts. However, if the aim is to perform grand averaging, one could still benefit from SSS-based movement compensation to transform the data to a common coordinate space.

3.1.2. Caveats

It is important to highlight that after SSS, the magnetometer and gradiometer data are projected from a common lower dimensional SSS coordinate system that typically spans between 64 and 80 dimensions. As a result, both sensor types contain highly similar information, which also modifies the inter-channel correlation structure. This is the reason why MNE will treat them as a single sensor type in many of the analyses that follow.



3.2. Power Spectral Density (PSD)

The power spectral density (PSD) estimates for all available data channels provide a convenient way to check for spectral artifacts and, in some cases, bad channels. MNE computes the PSD of raw data using the standard Welch's method (Welch, 1967; Percival and Walden, 1993), whereby the signal for each channel is analyzed over consecutive time segments, with eventually some overlap. Each segment is windowed and then the power of the discrete Fourier transform (DFT) coefficients is computed and averaged over all segments. By making the assumption that each of these segments provides a realization of a stationary process, the averaging procedure produces an unbiased estimate of the PSD with reduced noise.

We recommend to visualize channel-wise PSD plots rather than an average across 150 channels, as this facilitates spotting outlier channels. In Figure 2, we show the PSD for the EEG channels in one run for one subject. We use windows of length 8192 samples (about 7.4 s given the 1.1 kHz sampling rate) with no overlap. Using a power of 2 for the length and no overlap accelerates computations. Using a logarithmic frequency-axis scaling for the PSD enables quality control by facilitating screening for bad channels. In fact, we found that some potentially bad channels (e.g., EEG024 in subject 14 for run 01) were omitted by the authors of Wakeman and Henson (2015), although they are clearly visible in such plots. Concretely we see a few channels with strongly increased low-frequency power below 1 Hz. On the other hand, using a linear frequency-axis scaling, we can convince ourselves easily that the data is unfiltered, as it contains clear peaks from power line at harmonics of 50 Hz, as well as the five Head Position Indicator (HPI) coils used to monitor the head position of the subject, at frequencies of 293, 307, 314, 321, and 328 Hz.
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FIGURE 2. Power spectral density per channel for subject 10, run 02. (A) Log scale for the x axis accentuates low frequency drifts in the data. The red lines show the PSD for the bad channels marked manually and provided to us by Wakeman and Henson (2015). (B) The same data with a linear x-axis scale. Five peaks corresponding to HPI coils around 300 Hz are visible and marked in gray dotted lines alongside the power line frequency (50 Hz).



3.2.1. Alternatives

The same could have been achieved with the multitaper method (Slepian, 1978; Percival and Walden, 1993), where the data is multiplied element-wise by orthogonal data tapers. However, this method can be an order of magnitude slower than the Welch method for long continuous recordings. The multitaper method is indeed recommended for short data segments. Here we are interested in the PSD for diagnostic purposes on the raw continuous data, and we therefore use the Welch method, a.k.a. averaged periodogram method.



3.3. Temporal Filtering

In this study, we focused on event-related brain signals below 40 Hz. We used a zero-phase finite impulse response (FIR) filter using the window design method (“firwin” in SciPy5; Hamming window) to achieve a lowpass with 40 Hz corner frequency and transition bandwidth of 10 Hz using a filter length of 363 samples (0.330 s). Such a filter does not affect ERP signals of interest, attenuates the line frequency of 50 Hz and all HPI coil frequencies. It also limits the effects of temporal ringing thanks to a wide transition band. Because the low-pass was sufficiently low, we did not employ a notch filter separately. Note that such a choice of filters is not necessarily a good default for all studies of event-related brain responses, as ERFs or ERPs can contain rather high frequencies (see for example Götz et al., 2015).

When filtering, it is important to take into account the frequency response and impulse response of the filter. The default filter used adapts the filter length and transition band size based on the cutoff frequencies, as done in the EEGLAB software (Parks and Burrus, 1987; Ifeachor and Jervis, 2002; Widmann et al., 2015)6 Although no default parameters will fit all analysis requirements, MNE chooses parameters that aim to achieve reasonable stop-band attenuation without excessive filter ringing. To illustrate this point, we compare filters across MNE versions using frequency response and impulse response plots in Figure 3. The stop-band attenuation and transition bandwidth in Figures 3A,B are less restricted in the newer versions, which results in less steep attenuation but also less temporal ringing in the impulse response (see Figures 3C,D). It can be seen that the previous default parameters gave rise to stronger filtering artifacts as indicated by higher impulse response amplitudes across the time window.
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FIGURE 3. Comparison of filters between new (0.16) and old (0.12) MNE versions: (A) The frequency response of the highpass filter; (B) The frequency response of the lowpass filter; (C) The impulse response of the highpass filter; (D) The impulse response of the lowpass filter. The filters in MNE are now adaptive with trade-offs between frequency attenuation and time domain artifacts that by default adapt based on the chosen low-pass and high-pass frequencies.



3.3.1. Alternatives and Caveats

If the signal quality is satisfactory, filtering may not be necessary. In the context of this study, we decided to baseline correct our signals rather than high-pass filter them, keeping in mind the ongoing discussion in the community on this topic (Acunzo et al., 2012; Rousselet, 2012; Widmann and Schröger, 2012; Tanner et al., 2015; Maess et al., 2016). Our choice will be motivated in Section 3.7 on baseline correction. Note that the group delay due to filtering would lead to a shift in ERP latency. In the case of linear-phase FIR filters, this can be compensated for. However, in the case of IIR filters with non-linear phase, this is not possible. However, this can be mitigated by using the so-called forward-backward filtering which involves using the same filter twice: first, with the original signal, and then, with a reversed version of the signal. Another option is to use a peak-preserving filter such as the Savitzky Golay filter. Regardless of the compensation procedure used, it can still affect latencies in time decoding results as discussed in Ramkumar et al. (2013). In this situation, it might be preferable to use filters with shorter impulse response or perform decoding on the unfiltered data.



3.4. Marking Bad Segments and Channels

The next step in the pipeline is to remove bad data segments and bad channels. As data have been processed with Maxwell filter, there are no more bad MEG channel at this stage. For the bad EEG channels, we use the ones provided by the original authors.

To remove bad data segments and bad epochs due to transient artifacts, it is possible in MNE to use the epochs plotter interactively, or to do it via scripting. Either way, the indices of all epochs that are removed from further analysis are logged in the drop log attribute of the epochs objects (see online documentation of the Epochs class7).

As we are building a reproducible pipeline, here we prefer the scripting route. In MNE, this can be achieved by removing trials whose peak-to-peak amplitude exceeds a certain rejection threshold. Even though this works reasonably well for single subject analysis, it would likely need to be tuned for individual subjects in group studies. Therefore, instead of specifying the thresholds manually, we learn it from the data using the autoreject (global) (Jas et al., 2017) algorithm. Autoreject is an unsupervised algorithm which minimizes the cross-validation error, measured by the Frobenius norm between the average signal of the training set and the median signal of the validation set. Autoreject not only removes trials containing transient jumps in isolated MEG or EEG channels, but also eyeblink artifacts affecting groups of channels in the frontal area. Since we are dealing with visual stimuli, it is preferable to remove the eyeblink trials altogether using the EOG rejection threshold over the stimulus presentation interval rather than suppressing the artifact using a spatial filter such as ICA or SSP. Given the large number of trials at our disposal, we can afford to remove some without affecting the results very much.

For the purpose of group averaging, the bad EEG channels were repaired by spherical spline interpolation (Perrin et al., 1989) so as to have the same set of channels for each subject.



3.5. Independent Component Analysis (ICA)

Bad channel or segment removal can correct for spatially and temporally isolated artifacts. However, it does not work well for systematic physiological artifacts that affect multiple sensors. For this purpose, ICA is commonly used (Jung et al., 1998). ICA is a blind source separation technique that maximizes the statistical independence between the components. While PCA only requires orthogonal components, ICA looks for independence for example by looking at higher statistical moments beyond (co)variance. In the context of MEG and EEG analysis, common physiological artifacts have skewed and peaky distributions, hence are easily captured by ICA methods that look for non-Gaussian sources. ICA is therefore popular for removing eye blinks and heart beats, which manifest themselves with prototypical spatial patterns on the sensor array.

In the present study, we use FastICA (Hyvarinen, 1999) to decompose the signal into maximally independent components. We estimate the ICA decomposition on band-pass filtered (1 Hz highpass with 1 Hz transition band, 40 Hz lowpass with 10 Hz transition band) data that has been decimated. In practice, to improve the quality of ICA solution, high-pass filtering is often helpful as it can help to minimize violations of the stationarity assumption made by ICA. Likewise, it is recommended to exclude data segments containing environmental artifacts with amplitudes higher than the artifacts of interest. Finally, generous decimation can save computation time and memory without affecting the quality of the ICA solution, at least, when it comes to separating physiological artifacts from brain signals. Both measures can be implemented using the reject and decim parameters provided by the ICA fitting routine in MNE. Here we decimated the data by a factor of 11, and excluded time segments exceeding amplitude ranges of 4000 × 10-13 fT cm−1 and 4 × 10−12 fT on the magnetometers and gradiometers, respectively.

The ICA component corresponding to ECG activity is then identified using cross-trial phase statistics (CTPS) (Dammers et al., 2008) using the default threshold of 0.8 on the Kuiper statistic. Pearson correlations are used to find EOG related components. As ICA is a linear model, the solution can be estimated on continuous raw data and subsequently used to remove the bad components from the epochs or evoked data.

3.5.1. Alternatives

MNE also implements CORRMAP (Viola et al., 2009) which is particularly useful when no ECG or EOG channels are available. This approach uses pattern matching of ICA spatial components. Once templates have been manually defined for one subject, similar patterns can be found for the remaining subjects. If ICA is not an option, SSP projections provide a simple and fast alternative. Here, they can be computed from time segments contaminated by the EOG and ECG artifacts and commonly the first 1 to 2 components are projected out. In our experience, SSP is less precise in separating artifacts from brain components than ICA for the reasons mentioned above, yet, often good enough for a wide class of data analysis scenarios. For analysis of single EEG sensors, multivariate methods cannot be applied. Computing the residuals of a linear regression from the ECG sensor on the EEG is an option in this case.

3.5.2. Caveats

Before blindly applying ICA, it is recommended to estimate the amount of contamination of the MEG and EEG signals. This can be easily achieved by detecting artifact events and epoching and averaging the data accordingly. If, for example, the amplitude range of the average ECG artifact is close to the amplitude range of the brain signals and only few events occur, chances are low to estimate clear cut ECG components using ICA. However, in this case the contamination by ECG is low and therefore no advanced artifact suppression is needed. Second, there is a trade-off between processing time and accuracy. For many analyses, mitigating the artifact contamination by a significant proportion is sufficient and methods like SSP are a reasonable choice. In certain decoding analyses, such preprocessing considerations may have little relevance if any for the final classification results. Indeed, the combination of supervised and multivariate decoding algorithms allows to extract the signals of interest directly in one step.



3.6. Epoching

In event-related M/EEG studies, a trigger channel (in this data STI101) contains binary-coded trigger pulses to mark the onset/offset of events. These pulses can be automatically extracted from the data during analysis and the values on the trigger channel are mapped to the event IDs. MNE offers the possibility to extract events when the signal in the trigger channel increases, decreases, or both. It also allows the construction of binary masks to facilitate selecting only the desired events. We masked out the higher order bits in the trigger channel when extracting the events as these corresponded to key presses. After extraction, events can be freely manipulated or created as necessary by the user, as they only require (i) the sample number, and (ii) some integer code relevant for the experiment or analysis.

As a next step, we extracted segments of data from the continuous recording around these events and stored them as single trials, which are also called epochs, in MNE. The Epochs object can store data for multiple events and the user can select a subset of these as epochs[event_id]8. Moreover, MNE offers the possibility for the user to define a hierarchy of events by using tags (similar in flavor to hierarchical event descriptors by Bigdely-Shamlo et al., 2013). This is done using event_id which is a dictionary of key-value pairs with keys being the tags separated by a forward slash (/) and values being the trigger codes9. For the paradigm used in this study we used:
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At the highest level of hierarchy are “face” and “scrambled.” A “face” can be “famous” or “unfamiliar.” And a famous face can be “first,” “immediate,” or “long” (This distinction between the three categories of famous faces was not used in our analysis). Later on, accessing all the epochs related to the “face” condition is straightforward, as one only needs to use epochs['face'] and MNE internally pools all the sub-conditions together. Finally, the epochs were constructed starting 200 ms before stimulus onset and ending 2900 ms after (the earliest possible time of the next stimulus onset).



3.7. Baseline Correction

It is common practice to use baseline correction so that any constant offsets in the baseline are removed. High-pass filtering achieves similar results by eliminating the low-frequency components in the data. However, when using baseline correction, the low frequency drifts present in the data are not attenuated. Thus it is useful to examine long time-courses of the data, if possible, to determine if low-frequency drifts are present. The difference between the two approaches can be seen in Figure 4. The evoked responses in the figure are across-trial averages for the famous face condition. If a maximum time of approximately one second were used, a simple baseline correction would appear to produce an undesired “fanning" in the later responses. Indeed one can observe in Figure 4A that at one second post-stimulus, the channels still significantly deviate from zero. However, by extending the time window much longer (here to 2.9 s) we can see that the signals do mostly return to the baseline level.
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FIGURE 4. (A) Evoked response in magnetometers for subject 3 with baseline correction. Note how signals tend toward the baseline late in the epochs (where the rightmost time point, 2.9 s, is the earliest possible start time for the next stimulus). (B) The highpass filtered version of the signal and (C) the signal processed with temporal SSS (tSSS). Both reduce the magnitude of the slow and late sustained responses shown in (A).



3.7.1. Caveats and Alternatives

With highpass filter at 1 Hz (and 1 Hz transition band), the signal returns to the baseline level much sooner. Note also the similarities between Figures 4B,C, illustrating how using temporal version of the SSS algorithm (tSSS) acts implicitly as a high-pass filter. For tSSS, we use a buffer size of length 1 s and a correlation limit of 0.95 to reject overlapping inner/outer signals. However, these high-passing effects come at the expense of distorting the sustained responses. We will thus focus on analyses that utilize the baseline-corrected data here.




4. SENSOR SPACE ANALYSIS

An important step in analyzing data at single-subject and group levels is sensor-space analysis. Here we show how several different techniques can be employed to understand the data.


4.1. Group Average

A classical step in group studies is known as “grand averaging” (Delorme et al., 2015). It is particularly common for EEG studies and it consists in averaging ERPs across all subjects in the study. As not all subjects have generally the same good channels, this step is commonly preceded by an interpolation step to make sure data are available for all channels and for all subjects. Note that grand averaging is more common for EEG than for MEG, as MEG tends to produce more spatially resolved topographies that may not survive averaging due to signal cancelations.

The grand average of the 16 subjects for one EEG sensor (EEG065) is presented in Figure 5. We selected this channel to compare with the figure proposed by Wakeman and Henson (2015). We present the grand average for the “scrambled,” “famous,” and “unfamiliar” conditions using a high-pass filter (cf. Section 3.7), and baseline corrected using prestimulus data. This figure replicates the results in (Wakeman and Henson, 2015). We can see the early difference between faces, familiar or unfamiliar, and scrambled faces around 170 ms. We can also notice a difference in the late responses between the two conditions “unfamiliar” and “famous.” However, the effect is smaller when using high-pass filtering, as it corrects for the slow drifts.
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FIGURE 5. Grand averaged evoked response across 16 subjects for channel EEG065. (A) No highpass filter. (B) Highpass filtered at 1.0 Hz. Note that, similar to (A), the results reported by Wakeman and Henson (2015) (dashed line at 800 ms indicates where their plot stopped) show large drifts, but these return to near-baseline levels toward the end of a sufficiently long interval (here, 2.9 s) even without applying a highpass filter.



4.1.1. Caveats

For MEG, the grand average may wash out effects or induce spurious patterns due to misalignment between head positions. SSS can be used to align subjects in one common coordinate systems.



4.2. Contrasting Conditions

In this study, we consider pairs of conditions. At the group level, the statistical test will consider the subjects as observations. For each subject, before the group level test, we need to compute the contrast between conditions. In the sensor space analyses, we obtain these contrasts by subtracting the evoked responses of each condition, e.g., subtracting the average of the faces epochs to the average of the scrambled face epochs. In source space (see Section 5 if unfamiliar with source space analysis), we compute the difference between the source estimates (which take the norm on a vertex-by-vertex basis). Such differences do not take into account the number of trials used to compute the evoked responses—in other words, each condition is weighted equally. In the following we compare not only “faces” against “scrambled faces,” but also “famous faces” against “unfamiliar faces.”

4.2.1. Caveats

Although it is quite standard in EEG pipelines to subtract conditions without taking into account the number of trials, this needs to be carefully thought through. When subtracting two evoked responses with substantially different number of trials, one evoked response will be more noisy, and therefore the subtraction will have a noise level that should be properly estimated. This computation of adjusted SNR and noise variance is done by the mne.combine_evoked function, which was used in this study with the option weights='equal'. By using this option, if one considers a dataset with 100 trials in condition A and 10 trials in condition B, by weighting the averages across each condition equally, a single trial from condition A is effectively weighted 10 times less than a single trial from condition B. This has the effect of amplifying noise from condition B but maintaining the amplitude of the underlying signal. However, this function can also be used with option weights='nave'. In that case, the number of trials averaged together will be taken into account in the contrast so that each trial, in either condition, will have the same weight. In this case, with the above example, the individual trials from the first condition will effectively be weighted the same way as trials from the second condition, which means that any underlying responses in condition A will be 10 times larger than those in condition B. This has been historically recommended by the MNE software for source estimation, but can be problematic when working with certain experimental protocols (for example, oddball tasks) which, by design, produce many more trials for one condition than for the other.



4.3. Cluster Statistics

To compare our conditions of interest, here we use a non-parametric clustering statistical procedure as described by Maris and Oostenveld (2007). This method works by combining neighboring values that are likely to be correlated (e.g., neighboring time instants or spatial locations) to reduce the problem of multiple comparisons. For each feature, a t-statistic is first computed, these are thresholded, and combined based on sufficient proximity to form clusters. The t-values for each cluster are then summed (or number of spatio-temporal points counted) to compute the mass (or size) of each cluster, which serves as the cluster-level statistic. Next, we need to know if the distribution of data in our two conditions—here measured using cluster masses—differ from one another significantly more than what would be obtained by chance. For this purpose, we generate a null distribution from the data by randomly swapping our conditions for each subject according to exchangeability under our null hypothesis. In our paired contrast, this exchangeability is equivalent to changing the sign of the subtracted evoked data. For each permutation, clusters are formed and only the maximal cluster mass is retained. The distribution of these maximal cluster masses gives us our null data distribution, from which we can compute the probability of observing each cluster under the null hypothesis. This gives us a control of the family-wise error rate (FWER), a.k.a. type 1 error, when reporting a significant cluster in our comparison of two conditions.

Running this nonparametric permutation test on the single sensor EEG065 (also used by Wakeman and Henson, 2015) allowed us to reject our null hypothesis (p < 0.01) due to two temporal clusters (cf. Figure 6). To threshold the original t-values and estimate the candidate clusters, we used an initial threshold corresponding to a probability of 0.001 with a two-sided paired t-test. A first cluster appears around the same time as the evoked response, and the other captures the late effects. Running another statistical test, this time incorporating the spatial distribution of the sensors into the clustering procedure, yields one spatiotemporal cluster (p < 0.05) as shown in Figure 7.
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FIGURE 6. Sensor space statistics. (A) A single sensor (EEG065) with temporal clustering statistics. The clustering is based on selecting consecutive time samples that have exceeded the initial paired t-test threshold (0.001), and finding clusters that exceed the mass expected by chance according to exchangability under the null hypothesis (p < 0.01, shaded areas). (B) Cross-validation score of time-by-time decoding. As opposed to a cluster statistic, time decoding is a multivariate method which pools together the signal from different sensors to find discriminative time points between two conditions.
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FIGURE 7. Spatiotemporal cluster statistics on the EEG sensors. (A) Topographic map of the t-statistic. (B) Average over the sensors that were part of the significant cluster.



4.3.1. Alternatives and Caveats

It is important to note that this clustering permutation test does not provide feature-wise (vertex, sensor, time point, etc.) but cluster-level inference. This is because the test statistic is the cluster mass. When inspecting a significant cluster, no conclusion can be drawn on which time point or location was more important. A computationally more expensive alternative is the so-called threshold-free cluster enhancement (TFCE) method which provides feature-level inference and, moreover, mitigates the problem of having to set the initial threshold on the t-values to define clusters (Smith and Nichols, 2009). When strong a priori hypotheses exist considering few regions of interest in either time, frequency or space can be a viable alternative. In that case, the multiple comparisons problem may be readily alleviated by more conventional measures, such as false discovery rates (FDR) (Genovese et al., 2002).



4.4. Time Decoding–Multivariate Analysis

As an alternative to mass-univariate analysis, a event-related brain dynamics can studied using a multivariate decoding approach (Ramkumar et al., 2013; King and Dehaene, 2014). Here, a pattern classifier, often a linear model (e.g., logistic regression) is trained to discriminate between two conditions: “face” vs. “scrambled,” and also “famous faces” vs. “unfamiliar faces.” The classifier is trained on single trials, time-point by time-point on MEG data for all the available 306 sensors except those marked as bad. The prediction success can then be assessed with cross-validation at every instant, yielding an intuitive display of the temporal evolution of discrimination success. In Figure 6B, we display such cross-validation time-series averaged across the 16 subjects. As anticipated, discriminating between faces and scrambled faces is much easier than discriminating between “famous” and “unfamiliar” faces, based on information in early components in the first second after stimulus-onset.

For performance evaluation, we use is area under the receiver operating characteristic curve (ROC-AUC), as it is a metric that is insensitive to class imbalance (i.e., differing numbers of trials) therefore allowing us to average across subjects, and also to compare the two classification problems (faces vs. scrambled and familiar vs. unfamiliar). Results on the faces vs. scrambled conditions show that time-resolved decoding reveals decoding accuracy greater than chance around the same time intervals as the non-parametric cluster statistic. The effect although appears here quite sustained over time. Results on familiar vs. unfamiliar conditions are also above chance from 200 to 300 ms, however the best decoding performance emerges later for this contrast. This more subtle effect even peaks after 800 ms, which exceeds the time window investigated in the original study.

4.4.1. Caveats

Often, it is the case that classification performance is not affected by the presence of artifacts. However, in the case of systematic biases in the artifacts, it is worth noting that a good classification performance can result from two different reasons. Ideally of course, the classifier is able to project away the artifacts and find discriminating directions orthogonal to the artifact space. However, sometimes the artifacts may be predictive themselves (e.g., eye blinks in a visual detection paradigm) and thus be correlated with the discriminative brain signals. In this case, while there is not much that can be done to prevent artifacts from contributing to the classification, it is instructive to check the information maps to understand what features drove the classification (Haufe et al., 2014). This way, one can rule out classification performance being a result of artifacts such as eye-blinks rather than neural activity.




5. SOURCE RECONSTRUCTION

The MNE software relies on the FreeSurfer package (Dale et al., 1999; Fischl et al., 1999) for the processing of anatomical MRI images. This automatic procedure is run using the command recon-all on the T1 MRI of each subject. This provides many useful pieces of information, but the most critical here are the cortical reconstruction (a high resolution triangulation of the interface between the white and the gray matter) and the inner skull surface.

For inverse source reconstruction and beamforming, we must first compute the forward solution, often called a gain or lead field matrix (Mosher et al., 1999). Computing the gain matrix, which is a linear operator, requires having a so-called source space of dipole locations, a conductor model for the head, and the sensor locations relative to those dipoles. This latter requirement in practice means putting in the same coordinate system the MRI (where the source space and conductor model are defined), the head (where the EEG electrodes are digitized), and the MEG device (where the MEG sensors are defined). This step is commonly referred to as coregistration. We will cover each of these steps below.


5.1. Source Space

As we expect most of our activations of interest to be due to cortical currents (Dale et al., 2000), we position the candidate dipoles on the cortical mantel. It is worth noting that for certain datasets, this assumption may not necessarily be true. For instance, in the case of brainstem or cerebellum activations one could add these structures to the model as proposed by the MNE software. We chose a cortical source space obtained by recursively subdividing the faces of an octahedron six times (oct6) for both the left and right hemispheres. This leads, for each subject, to a total of 8196 dipoles evenly spaced on the cortical surface (See Figure 6 in Gramfort et al., 2014).



5.2. Head Conductivity Model

MNE can use simple spherical conductor models but when the MRI of subjects are available, the recommended approach is to use a piecewise-constant conductivity model of the head. Tissue conductivities are defined for each region inside and between the segmented interfaces forming the inner skull, outer skull and the outer skin. It corresponds to a so-called three layer model, however a single layer is possible when using only MEG data. The default electrical conductivities used by MNE are 0.3 S/m for the brain and the scalp, and 0.006 S/m for the skull, i.e., the conductivity of the skull is assumed to be 1/50 of that of the brain and the scalp. With such a head model, Maxwell equations are solved with a boundary element model (BEM).

In addition to the T1 MRI image, fast low-angle shot (FLASH) images are provided in the present dataset. Such MRI images allow to automatically extract precise surfaces for the inner skull and outer skull. Note that in the absence of FLASH images, MNE offers a somewhat less accurate solution based on the watershed algorithm. One output of the MNE automatic BEM surface extraction is presented in Figure 8. It contains the three surfaces needed for the computation of the EEG gain matrix. In our results shown here, we used only the MEG data for source reconstruction, and consequently only made use of the inner skull surface in a one-layer model. As MRIs shared here are defaced, outer skull and scalp surfaces are anyway quite wrong, so we considered it satisfactory to only use the inner skull surface.
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FIGURE 8. BEM surfaces on flash MRI images. The inner skull, outer skull, and outer skin are outlined in color.



Quality insurance at this stage consists in checking that the three surfaces do not intersect with each other and that they follow the interfaces between the brain, the skull and the skin. A slice-by-slice visual inspection of approximate alignment is best and is conveniently proposed by MNE BEM plotting function that outputs a figure as presented in Figure 8.

Here, as the MRIs shared in this dataset were anonymized, the outer skin surface obtained automatically using Freesurfer intersected with the outer skull surface for most subjects. However, this is rarely observed with non defaced T1 MRI images.



5.3. Coregistration

In order to compute the gain matrix, the sensor locations (and normals), head model, and source space must be defined in the same coordinate system. In practice, this means that the BEM surfaces and source space (which are defined in MRI coordinates) must be coregistered with the EEG sensors, which are digitized in the Neuromag head coordinate frame (defined by the digitized nasion, LPA, and RPA). The MEG sensor locations and normals are defined in the MEG device coordinate frame. Typically, the MEG-to-head transformation is determined during acquisition using head position indicator (HPI) coils (or redefined using head position transformation using Maxwell filtering), so MEG sensors can be easily transformed to head coordinates. The transformation between the MRI and head coordinate frames is typically estimated by identifying corresponding points in the head and MRI coordinate systems, and then aligning them.

The most common points used to provide an initial alignment are the fiducial landmarks that define the Neuromag head coordinate frame. They consist of the nasion and two pre-auricular points which are digitized during acquisition, and are then also identified by offline visual inspection on the MRI images. Additional digitization points on the head surface can also be used to better adjust the coregistration. In this study, on average, 135 digitization points were available per subject. The transformation, which consists of a rotation matrix and a translation vector, is then typically saved to a small file, also called trans file, and later used to compute the forward solution.

For quality insurance, MNE offers a simple function to visualize the result of the coregistration. Figure 9 shows one example obtained with this function with the defaced, low-resolution MRI head surface. As here the MRI were defaced, many important digitization points close to the nose where useless. To reduce the risk of bad coregistration due to defaced MRI images, we used the trans files kindly provided by the original authors.
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FIGURE 9. The result of head-to-MRI (and MEG-to-head) transformations with inner skull and outer skin surfaces for one subject. Note that the MEG helmet is well-aligned with the digitization points. The digitized fiducial points are shown with large dots, EEG electrodes with small pink dots, and extra head digitization points with small gray dots. Note that the anonymization of the MRI produces a mismatch between digitized points and outer skin surface at the front of the head.





5.4. Covariance Estimation and Whitening

As inverse solvers typically assume Gaussian noise distribution on the sensors with an identity covariance matrix, a whitening step is first necessary (Engemann and Gramfort, 2015). M/EEG signals are indeed highly spatially correlated. Whitening also allows integration of data from different channel types that can have different units and signal amplitudes which differ by orders of magnitudes (cf. planar gradiometers, axial magnetometers, and EEG electrodes). To whiten the data, one must provide an estimate of the spatial noise covariance matrix. This can be computed from empty-room recordings for MEG or pre-stimulus periods (Gramfort et al., 2014). Here, we followed the approach proposed by Engemann and Gramfort (2015), which consists in picking the best model and estimating the best regularization parameters by computing the Gaussian log-likelihood of left-out data (i.e., a cross-validation procedure). Such an approach has been shown to be particularly robust for scenarios where a limited number of samples is available for covariance estimation.

In this analysis, the noise covariance is estimated from the 200 ms of data before stimulus presentation. During this period, only a fixation color is visible at the center of the screen. Given this covariance matrix and the gain matrix, one can assemble the inverse operator to compute the MNE or dSPM solutions (Dale et al., 2000).

The quality of the covariance estimation and whitening can have a significant impact on the source localization results. The rank-adjusted global field power (GFP) has been proposed by Engemann and Gramfort (2015) as a measure that can be used to check the quality of the whitening. It is defined as [image: image] where P is the rank of the data and xi is the signal in the ith sensor at a time instant. The GFP being a normalized sum of Gaussian random variables with an identity covariance matrix, it follows a χ2 distribution with an expected value of 1. What is not captured by our noise model, e.g., actual brain signals, thereof will pop out in the whitened domain. To understand this better, we show some whitened data and the GFP in Figure 10. If the Gaussian assumption has not been violated, we expect the whitened data to contain 95% of the signal within the range of –1.96 and 1.96, which we mark in dotted red lines. The baseline period, where we estimated our noise covariance from, appears to satisfy this assumption. Consequently, the GFP is also 1 during this period. One can observe a strong increase in the GFP just after the stimulus onset, and that it returns slowly to 1 at the end of the time interval. Such a diagnostic plot can in fact be considered essential for quality assurance before computing source estimates. This has as consequence that what appears in the source estimates depends on our noise model. For instance, using a noise covariance obtained from empty room recordings would suggest the presence of “interesting” signals, simply because it contains brain signals that are fundamentally different from the empty room noise.
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FIGURE 10. Whitened MEG data for subject 4 and the global field power (GFP) which follows a χ2 distribution if the data is assumed Gaussian. The dotted horizontal red lines represent the expected GFP during the baseline for Gaussian data. Here the data slowly return to baseline at the end of the epoch.



For the LCMV beamformer, we also need to estimate a signal covariance. For this we use the 30 ms to 300 ms window after the stimulus onset. The data covariance is again regularized automatically following (Engemann and Gramfort, 2015) and is motivated by the results from Woolrich et al. (2011) and Engemann et al. (2015).

5.4.1. Caveats

If empty-room data are used to whiten processed signals, one must make sure that the obtained noise covariance matrix corresponds to the processed data rather than to the original empty-room data. This is done by processing the empty-room data with exactly the same algorithm and the same parameters as the actual data to be analyzed. For example if SSS, SSP, or ICA are applied on processed data, it should be applied to empty room data before estimating the noise covariance. Concretely, SSP vectors and ICA components projected out from the data of interest should also be projected out from the empty room data. SSS should be performed with identical parameters. Also note that magnetometers and gradiometers are whitened jointly. Moreover, if SSS was applied, the display of whitening treats magnetometers and gradiometers as one channel-type. For proper assessment of whitening, a correct assessment of the spatial degrees of freedom is necessary. The number of SSS dimensions is commonly a good estimate for the degrees of freedom. When movement compensation was applied, the estimated data rank maybe unreliable and suggest too many independent dimensions in the data. Even the actual number of SSS components can be misleading in such circumstances. It is then advisable to inspect the eigenvalue spectrum of the covariance matrix manually and specify the degrees of freedom manually using the rank parameter.



5.5. Inverse Solvers and Beamforming

The goal of an inverse solver is to estimate the locations and the time courses of the sources that have produced the data. While the data M can be expressed linearly from the sources X given the gain matrix G, M ≈ GX, the problem is ill-posed. Indeed G has many more columns than rows. This means that there are more unknown variables (brain sources) than the number of measured values (M/EEG sensors) at each time point. This also implies that the solution of the inverse problem is not unique.

For this reason, many inverse solvers have been proposed in the past ranging from dipole fits (Scherg and Von Cramon, 1985; Mosher et al., 1992), minimum norm estimates (MNE) (Hämäläinen and Ilmoniemi, 1984), and scanning methods such as RAP-MUSIC or beamformers such as LCMV and DICS (Van Veen et al., 1997; Gross et al., 2001; Sekihara et al., 2005). There is therefore no absolute perfect inverse solver, although some are more adapted than others depending on the data. Certain solvers are adapted to evoked data for which one can assume a few set of focal sources. Certain methods also provide source amplitudes in a proper unit, which is nAm for electrical current dipoles, such as MNE, MxNE Gramfort et al. (2013b) or dipole fits. Other methods yield spatially normalized statistical maps such as dSPM (Dale et al., 2000) or LCMV combined with neural activation index (NAI) filter normalization (Van Veen et al., 1997).

Given the important usage of dSPM and the LCMV beamformer in the cognitive neuroscience literature, we wanted to investigate how much using one of these two most commonly used methods was affecting the source localization results. The dSPM solution was computed with MNE default values: loose orientation of 0.2, depth weighting (Lin et al., 2006) of 0.8, and SNR value of 3. The LCMV used was a vector beamformer with unit-noise-gain normalization (Sekihara et al., 2005) as implemented in MNE 0.15. No specific regularization was used in the beamformer filter estimation.



5.6. Group Source Reconstruction

To analyze data at the group level, some form of data normalization is necessary, whereby data from all subjects is transformed to a common space in a manner that helps compensate for inter-subject differences. This procedure, called morphing by the MNE software, exploits the FreeSurfer spherical coordinate system defined for each hemisphere (Dale et al., 1999; Fischl et al., 1999). In our analysis, the data are morphed to the standard FreeSurfer average subject named fsaverage. The morphing procedure is performed in three steps. First, the subsampled data defined on the high resolution surface are spread to neighboring vertices using an isotropic diffusion process. Next, registration is used to interpolate the data on the average surface. And finally, the data defined on the average surface is subsampled to yield the same number of source locations in all subjects (here, 10242 locations per hemisphere). Once the morphing is complete, the data is simply averaged.

What is presented in Figure 11 is the group average of the dSPM and LCMV beamformer solutions on contrast between faces and scrambled at 170 ms post-stimulus.
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FIGURE 11. Group average on source reconstruction with dSPM (Left) and LCMV (Right). Here, we have the ventral view of an inflated surface with the anterior-posterior line going from the bottom to top of the image. Right hemisphere is on the right side.



Looking at these results, one can observe that both methods highlight a peak of activation on the right ventral visual cortex known to be involved in face processing (Grill-Spector et al., 2004, 2017; Wakeman and Henson, 2015). To discuss the agreement between these seemingly different methods, we would like to point to Mosher et al. (2003). While LCMV uses an empirical estimate of the data covariance to compute linear spatial filters, MNE postulates it. It is therefore totally possible that the both inverse methods offer comparable activations on a specific dataset. Note however that we do observe here that the dSPM peak is slightly more anterior.



5.7. Source-Space Statistics

Just as we did for the sensor time courses, we can subject the source time courses (here for dSPM only) to a cluster-based permutation test. The null hypothesis is again that there is no significant difference between the data distributions (here measured using cluster size) for faces versus scrambled (paired). Under each permutation, we do a paired t-test across subjects for the difference between the (absolute value of the) faces and scrambled values for each source space vertex and time point. These are clustered, and maximal cluster size for each permutation is selected to form the null distribution. Cluster sizes from the actual data are compared to this null; in this case we find three clusters that lead us to reject the null with p < 0.05 (see Figure 12).
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FIGURE 12. Spatio-temporal source space clusters obtained by nonparametric permutation test that allowed rejection of the null hypothesis that the distribution of data for the “faces” condition was the same as that of “scrambled.” The clusters here are collapsed across time such that vertex colors indicate the duration that each vertex was included in its cluster (each cluster here occurring with FWER corrected p < 0.05). Hot colors indicate durations for vertices in clusters where response for faces > scrambled (cool colors would be used for scrambled > faces, but no such clusters were found).



5.7.1. Alternatives

When strong hypotheses exist with regard to spatial, temporal and spectral regions of interest, it may be preferable to test the experimental hypotheses on fewer well-chosen signals. In the context of a group analysis, a linear multilevel modeling approach may provide an interesting option for obtaining joint inference at the single subject and group level (Gelman, 2006; Baayen et al., 2008; Dowding and Haufe, 2017). However, such methods are not yet available in MNE and were therefore not considered in our present analysis. We however, consider that by providing all our analysis code online, such methods could easily be tested and advertised by modifying very little code. Eventually, we hope that such a method will be implemented by an existing or a new MNE contributor.




6. DISCUSSION AND CONCLUSION

Analyzing M/EEG requires successive operations and transformations on the data. At each analysis stage, the different processing choices can affect the final result in different ways. While this situation encourages tailoring data analysis strategies to the specific demands of the scientific problem, this flexibility comes at a cost and can lead to spurious findings when not handled appropriately (Ioannidis, 2005; Simmons et al., 2011; Carp, 2012a). In the absence of fully automated data analysis pipelines that can optimize the choice of processing steps and parameters, it is crucial to develop principled approaches to planning, conducting, and evaluating M/EEG data analysis.

The present study makes the effort to elucidate common elements and pitfalls of M/EEG analysis. It presents a fully reproducible group analysis of the publicly available dataset from Wakeman and Henson (2015). All code and results are publicly accessible http://mne-tools.github.io/mne-biomag-group-demo/. The study provides contextualized in-depth discussion of all major steps of the analysis with regard to alternative options, caveats, and quality control measures. As a rare contribution to the M/EEG literature, this study illustrates in comparative figures, the experimental results obtained when changing essential options at different steps in the analysis. In the following, we want to share some insights that we obtained from working together on this study.


6.1. Collaborative Data Analysis

In our experience, high-level planning and hands-on data analysis are commonly divided between, e.g., masters or doctoral students, post-docs, and senior researchers. As a consequence, the results are typically appreciated from figures produced without connection to the research code that generated them. In this study, several authors contributed repeatedly to the code, analyses were repeated on different computers, and results were inspected in an ongoing fashion by many authors. This experience has had as consequence that incoherences, model violations, and other quality concerns were perhaps detected more often than usual, which has greatly contributed to the overall quality of the data analysis. While it is perhaps too extreme or onerous to recommend adopting social interaction habits from open source software development—such as peer review, pair or extreme programming—in scientific data analysis, we believe that data analysis should not be done in isolation. In order to enable full-blown collaborative data analysis in research, analysis must be repeatable, hence, scripted, and a minimum of code organization and readability must be enforced. On the other hand, the best coding efforts will have limited impact if there are not multiple authors with fresh and active data analysis habits. We hope that the example stated by this paper, together with the open source tools and the community it is built upon, can stimulate more collaborative approaches in M/EEG research.



6.2. The Costs of Reproducibility

It is a commonly neglected reality that reproducibility comes at a price. Making an analysis strictly reproducible not only requires intensified social interactions, hence more time, but also demands more computational resources. It is a combinatorially hard problem if one were to consider all the potential sources of variability. For example, analyses have to be repeated on different computers with different architectures and performance resources. This sometimes reveals differences in results depending on the hardware, operating system, and software packages used. As observed in the past by Glatard et al. (2015), we noticed that some steps in our pipeline such as ICA are more sensitive to these changes, eventually leading to small differences at the end of the pipeline, which is in our case are cluster-level statistics in the source space. Of course, differences due to these changes are harder to control and enforce in the context of today's fast technological progress. Indeed, what we manage to achieve is reproducibility, as opposed to the pure replicability which would be the case if the same results could be achieved even when the computer hardware and software packages were changed.

Also, when code is developed on large desktop computers which is common in many laboratory settings, replication efforts with lower-performance workstations may incur high costs in terms of human processing time. The analysis not only runs slower but may crash, for example due to differences in computer memory resources. We therefore emphasize the responsibility of software developers in providing scalable performance control and the responsibility of hands-on data analysts to design the analysis bearing performance and social constraints in mind. In other words, consider that code needs to run on someone else's computer.



6.3. When to Stop?

Obviously, in the light of the current replication crisis, clear rules need to be established on when to stop improving the data analysis (Simmons et al., 2011; Szucs and Ioannidis, 2017). A particular risk is emanating from the possibility of modifying the analysis code to eventually confirm the preferred hypothesis. This would invalidate inference by not acknowledging all the analysis options explored. Similarly, power analysis should be done before conducting the experiment, not afterwards to justify the results (Hoenig and Heisey, 2001). To the best of our knowledge there is no work addressing the estimation of statistical power in the context of MEG/EEG source imaging. This could be an interesting direction for future work. Apart from commonly recommended preregistration practices and clean hold out data systems, we want to emphasize the importance of quality criteria for developing the analysis. The bulk of M/EEG preprocessing tasks are either implicitly or explicitly model-based, as shown by the rich battery of quality control visualizations presented in this manuscript. Such plots allow to assess if M/EEG analysis outputs can be considered good signals. Consequently, analysis should be stopped when no further improvement on quality control metrics is to be expected, within a reasonable time investment. In other words, not research hypotheses (and statistical significance of results) but rather signal quality metrics are the criterion for constructing M/EEG analyses. Ideally, only when quality control is done, should the contrast(s) of interest be investigated.

With these broader insights in mind, we will make an attempt to extract from our analysis practical recommendations that should facilitate future M/EEG analyses. We encourage the reader not to take the analysis presented here as a direct justifications for parameter choices used in their analyses, but instead learn the principles underlying the choices made in our examples. The general rule is: assess your options and chose the optimal measure at each processing step, then visualize and automate as much as you can.

Practical recommendations:

1. Know your I/O. Make sure to have a clear idea about the meta-data available in your recordings and that the software package knows about relevant auxiliary channels, e.g, stim, EOG, ECG. Use custom MNE functions and other libraries to add quick reading support if I/O for a file-type is not readily supported.

2. Understand the origin of the noise. Inspect your raw data and power spectra to see if and how much denoising is necessary. When using methods such as SSS, SSP, ICA, or reference-channel correction, be aware of their implications for later processing. Remember also to process your empty room data the same way. The interpretation of sensor types may change. Denoising may implicitly act as a high-pass filter (cf. tSSS). High-pass filtering or baselining may not be ideal, depending on the paradigm. For calibrating your inverse solution, think of what is an appropriate noise model, it may be intrinsically linked to your hypothesis.

3. Mind signals of non-interest. Detect and visualize your physiological artifacts, e.g. ECG, EOG, prior to attempting to mitigate them. Choose an option that is precise enough for your data. There is no absolute removal, only changes in signal-to-noise ratio. Not explicitly suppressing any artifacts may also be a viable option in some situations, whereas a downstream method (e.g., temporal decoding) will not benefit from them. When employing an artifact removal technique, visualize how much of your signal of interest is discarded.

4. Visually inspect at multiple stages. Use diagnostic visualizations often to get a sense of signal characteristics, from noise sources, to potential signals of interest. Utilize knowledge of paradigms (e.g., existence of an N100 response) to validate steps. Visual inspection of data quality and SNR is recommended even if the processing is automated. When using the an anatomical pipeline, look at your coregistration and head models to make sure they are satisfactory. Small errors can propagate and induce spurious results. Check for model violations when working with inverse solvers and understand them. Inappropriate noise models will distort your estimated sources in simple or complex ways and may give rise to spurious effects.

5. Apply statistics in a planned way. Averaging data is a type of statistical transformation. Make sure that what you average is actually comparable. To handle the multiple-comparisons problem, different options exist. Non-parametric hypothesis-tests with clustering and multivariate decoding are two such options, and they are not mutually exclusive. Keep in mind that MEEG is primarily about time, not space. A whole-brain approach may or may not be the best thing to pursue in your situation. Anatomical labels may provide an effective way of reducing the statistical search space.

6. Be mindful of non-deterministic steps. To maximize reproducibility, make sure to fix the random initialization of non-deterministic algorithms such as ICA. Not only does it ensure reproducibility, debugging is also easier when the code is deterministic. Prefer automated scripts as opposed to interactive or manual pipelines wherever possible.

7. Keep software versions fixed. In an ideal world, software (and hardware) versions would not matter, as each operation necessary for data analysis should be tested against known results to ensure consistency across platforms and versions. However, this ideal cannot always be met in practice. To limit difficulties, do not change software versions, hardware or operating system versions in the middle of your analysis. Keep in mind that MNE is based on several other pieces of software. Updating them can have an impact on the outcome of MNE routines. Once data analysis is complete, cross-checking on different platforms or with different software versions can be useful for community feedback and identifying fragile or problematic steps.

Finally, we would like to emphasize once more that there is no single recipe for all data. Indeed, this approach can be dangerous and lead to surprising results. In that sense, there might be other equally valid pipelines recommended by other academic softwares (Brunet et al., 2011; Dalal et al., 2011; Litvak et al., 2011; Oostenveld et al., 2011; Tadel et al., 2011). The aim of this paper is to help the reader assess the right alternative at each stage of the analysis rather than recommend a single pipeline.

In order to facilitate the reproduction of all the results presented in this manuscript, all the code used to make the figures in this paper, but also much more, is available at http://mne-tools.github.io/mne-biomag-group-demo/.
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Electroencephalography (EEG) offers information about brain function relevant to a variety of neurologic and neuropsychiatric disorders. EEG contains complex, high-temporal-resolution information, and computational assessment maximizes our potential to glean insight from this information. Here we present the Batch EEG Automated Processing Platform (BEAPP), an automated, flexible EEG processing platform incorporating freely available software tools for batch processing of multiple EEG files across multiple processing steps. BEAPP does not prescribe a specified EEG processing pipeline; instead, it allows users to choose from a menu of options for EEG processing, including steps to manage EEG files collected across multiple acquisition setups (e.g., for multisite studies), minimize artifact, segment continuous and/or event-related EEG, and perform basic analyses. Overall, BEAPP aims to streamline batch EEG processing, improve accessibility to computational EEG assessment, and increase reproducibility of results.
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INTRODUCTION

Electroencephalography (EEG) offers tremendous opportunities as a window into brain function. It offers potential in understanding large-scale neural network activity, and thus serves as a bridge between neurons and behavior. It is translatable, providing opportunities to bridge between animals and humans. It can be used in a variety of ages without requiring sedation, and in both typical and clinical populations, facilitating data acquisition in populations (such as young infants) who cannot follow instructions and have a limited behavioral repertoire. Its portability and relative affordability allow it to be easily used for multisite studies, which is of particular utility when studying rare diseases or acquiring large datasets.

Often the most productive research combines knowledge from two or more previously disparate fields. EEG is of particular interest to researchers in fields such as neuroscience, psychology, and development, given its ability to measure and thus enhance understanding of brain activity across a wide variety of ages, settings, and disease states. Engineers, mathematicians, and computer scientists have developed numerous signal processing techniques and tools applicable to the large amount of EEG data even a short recording session can produce. In order to bridge these fields, and thus maximize the insights that can be obtained from EEG data, brain researchers must be able to access procedures and code created by experienced signal processors.

Open source toolboxes such as EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld et al., 2011) with SPM integrated (Litvak et al., 2011), Brainstorm (Tadel et al., 2011), MNE (Gramfort et al., 2014) with MNE-Python (Gramfort, 2013), and NUTMEG (Tannous and Teng, 2011) offer myriad opportunities in this regard. All of these toolboxes offer multiple advanced options for EEG (as well as magnetoencephalography, MEG) signal processing, with options to create analysis scripts for batch processing across multiple processing steps and analyses, for multiple EEG files.

Despite these important advances, accessibility of integrated analyses remains limited in some cases. For users without coding experience, creating an analysis script or pipeline may be a daunting process. For users comfortable creating such scripts, keeping track of the inputs, outputs, and specific settings in various steps of an analysis can be challenging. This is particularly a concern for users evaluating large multisite or longitudinal datasets, in which native EEG format, sampling rates, electrode layouts during acquisition, variable names, and even line noise frequencies (for international studies) may differ across files.

Additionally, reproducibility of analyses remains limited. Among automated analyses, the computer code that researchers use to generate data may link multiple software packages, set parameters that are only partially reported in a “Materials and Methods” section, and may not necessarily be saved or shared (Peng, 2011). Furthermore, “hand-editing” of EEG data further contributes to this concern, due to difficulties with human error and judgment discrepancies. Allowing reviewers or other researchers to exactly repeat prior analyses and review the details thereof would help address this concern.

The Batch EEG Automated Processing Platform (BEAPP) thus aims to aid accessibility and reproducibility by building upon preexisting EEG analysis toolboxes to provide a flexible structure for automated batch processing of EEG datasets. Beginning with raw or partially preprocessed data, BEAPP offers a series of automated steps to manage EEGs collected across multiple acquisitions setups, minimize artifact, perform several types of re-referencing, segment continuous and/or event-related EEG, and conduct basic time-frequency analyses. User inputs are determined in a single scripted user interface or in a graphical user interface (GUI) that can be saved as a template for future users, allowing users to determine their analyses and parameters without writing their own code. BEAPP tracks the output and parameters of each step of the analysis, allowing users to review prior steps or re-run a portion of the analysis with new parameters when needed.

The remainder of this manuscript provides an overview of the BEAPP format and current options, along with a series of sample analyses of publicly available data. This manuscript is intended to be used in conjunction with the BEAPP software package, user manual, and new module creation starter guide, available as described below.



MATERIALS AND METHODS

BEAPP is modular, MATLAB-based software, with user inputs entered via a GUI or a script, and with functions in script format. BEAPP is freely available, covered under the terms of the GNU General Public License (version 3) (Free Software Foundation, 2007). The BEAPP software package, user manual, and new module creation starter guide are available at: https://github.com/lcnbeapp/beapp. BEAPP is hosted on GitHub, with the intention that users adding new functionality will build upon the basic BEAPP structure, ultimately providing shared functionality for EEG analysis across a variety of laboratories and research studies. BEAPP integrates code from several other EEG analysis toolboxes and pipelines, including EEGLAB (Delorme and Makeig, 2004), the PREP pipeline (Bigdely-Shamlo et al., 2015), the CSD toolbox (Kayser and Tenke, 2006a,b), REST (Dong et al., 2017), Cleanline (Mullen, 2012), FieldTrip (Oostenveld et al., 2011), MARA (Winkler et al., 2014), and HAPPE (Gabard-Durnam et al., 2018).

BEAPP is divided into four main steps, based on the format of input and output data (Figure 1). Step 1 involves converting native data into BEAPP format. Step 2 involves preprocessing of continuous data, for minimization of experimentally generated artifacts and standardization across acquisition setups. Step 3 involves dividing continuous data into segments for further analysis. Step 4 includes several options for analyses themselves, particularly those based on spectral decomposition. If users wish to input pre-segmented native data, they may skip steps 2 and 3 and proceed directly to analysis. Of note, while steps 1 and 2 are conceptually separate and thus described separately in the manuscript, within the GUI these steps are combined under the “Format and Preprocessing” option.
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FIGURE 1. Flowchart of BEAPP steps and modules. This figure provides an overview of BEAPP. Each step is divided into modules, which contain user-defined parameters. Modules are indicated by individual cells. Cell body color indicates module input format, and cell outline color indicates module output format. Green = native file format; Blue = EEG in continuous array; Purple = EEG in segmented 3D array; Red = Output measure. For each module, sample parameters are outlined in black.



Within each step, the user can select any series of modules. Within modules, further customizable options and parameters are available. The user inputs offer a script-based or GUI-based menu to determine whether to include each given module, choose which options and parameters being used for that module, and decide whether to save the output of that module. Default parameters are offered to guide a beginning user, and as an example of parameter input format. Outputs include EEG data produced in that module, along with file-specific and group-level information intended to allow a user to easily keep track of how raw data have been altered, while avoiding unnecessary redundancy that may lead to excessively large file sizes.

The user guide contains detailed information about how to prepare EEG data to be run through BEAPP, including a “Start-Up Guide” for preparing an initial data run. This includes information on ensuring a user has the software necessary for running BEAPP, preparing the EEG files that will be analyzed (in a format recognizable by BEAPP), specifying any additional file-specific information not contained within the original EEG files themselves (e.g., line noise frequency), and setting the modules (and the options and parameters within these modules) to be run on the data. There is also a BEAPP “Module Creation Starter Guide” provided with the BEAPP software, to help users add new functionality.

Step 1: Formatting Data for BEAPP

Prior to running any processing, segmenting, or analysis modules, BEAPP converts data from its native file format into BEAPP file format. BEAPP can handle several native file formats; details about how to prepare native files are included in the user guide. BEAPP format includes a cell array labeled eeg, which contains one matrix per recording period with the relevant EEG data. Each row of the matrix contains the amplitude of the EEG tracing for a particular channel, and each column contains the amplitude of the EEG tracing at a particular timepoint. For example, data obtained from an EEG with 129 channels over 60 s, sampled at 500 Hz, would be a 129 × 30,000 matrix. BEAPP format also includes a variable labeled file_proc_info, which contains key information specific to a particular EEG, including electrode layout, event timing, and sampling rate. As each file runs through the BEAPP platform, details of what processing steps the EEG has undergone are also included in file_proc_info. Of note, files in BEAPP format can be converted to and from EEGLAB file format as needed, using the batch_beapp2eeglab.m and batch_eeglab2beapp.m functions, respectively.

Native continuous (unsegmented) EEG data, with tags defining any events for later segmentation if necessary, provides the greatest flexibility in terms of which modules can be run in BEAPP. However, if users wish to provide preprocessed, pre-segmented data to BEAPP for analysis, this can be accommodated as well.

The formatting module requires users to provide BEAPP with the native EEG data and additional necessary information, including information about data type (baseline, event-tagged, or conditioned baseline). For our purposes, “baseline” refers to data that is continuously collected and not tied to any particular stimulus or time point. (If any event tags happen to exist in data marked as “baseline,” these tags will be ignored in the analysis and will not determine how the data are segmented). For many users, resting-state data may fit these criteria. “Event-tagged” refers to data that, while perhaps continuously collected, contains tags that specify a particular stimulus or time point around which segmentation should occur. This can be used for event-related potential (ERP) paradigms, for example. “Conditioned baseline” refers to a hybrid of baseline and event-tagged data, in which baseline data occurs between event tags; this includes alternating or recurring sections of baseline data. Resting data in which the eyes are intermittently opened and closed, sleep stages, or data containing intermittent epileptiform activity would often be of this data type. There is also an option to specify whether particular “recording periods” of data should be analyzed. In BEAPP, “recording periods” refer to sections of continuous data in a non-continuous data file. For example, if an EEG file contains one minute of continuous data, followed by a break during which no EEG was recorded, and then another minute of continuous data, then each of these one-minute runs of continuous data would be considered a recording period, and outputs would be reported separately for each recording period. Additionally, users provide information about electrode layout(s), line noise frequency, sampling rate(s), event tag name(s), and event tag offset(s), all of which may differ across EEGs within a single dataset.

Step 2: Preprocessing of Continuous Data

In step 2 (preprocessing of continuous data), each module involves input of a continuous EEG signal, and output of another continuous EEG signal after modification by that module. The first module the user selects utilizes the user-provided EEG as its input, and each successive module that the user selects builds upon changes to the EEG made in the prior module. As above, the user can determine which modules to use, and which to turn off.

PREP Pipeline

In step 2, the first module offered is the PREP pipeline (Bigdely-Shamlo et al., 2015). The PREP pipeline is offered first because it was developed as a standardized early-stage preprocessing pipeline, including line noise removal using the cleanline method (Mullen, 2012), and robust average referencing with detection and interpolation of bad channels relative to this reference. Because line noise frequency varies by region (60 Hz in most of North America, 50 Hz in most of Europe, Africa, and Australia, and either 50 or 60 Hz in parts of South America and Asia), the BEAPP user is offered the opportunity to specify expected line noise frequency for their dataset in the formatting module, and this is altered accordingly in PREP. For users who may wish to evaluate data from multiple countries with potentially different line noise frequencies, users also have the option to define line noise frequency separately for each individual file. Since PREP is intended to be a standardized pipeline, optional input parameters for PREP through BEAPP are otherwise intentionally limited, although an advanced user could manually make changes directly within PREP as needed. Outputs include information about a variety of variables determined by the PREP pipeline, including whether any errors were encountered, and which channels PREP interpolated.

Filtering

Users may next use the filter module to apply their choice of high pass, low pass, and/or notch filtering steps, and can set the frequency parameters for each of these. BEAPP currently uses the EEGLAB eegfiltnew function for the high pass, low pass, and notch filters in this module, pulling in file-specific EEG data and sampling rate. Cleanline (Mullen, 2012) is also available for line noise removal.

Several checks are included in this module. First, since the user is offered the opportunity to later resample after filtering, BEAPP verifies that the minimum allowed sampling rate (after resampling) will not be less than twice the maximum frequency of the low pass filter, in order to avoid aliasing during resampling. (Of note, given imperfections in a typical filter, we would in fact recommend that the low pass filter be set below, rather than at, the Nyquist frequency of the resampling rate). Alternatively, if data in a particular file is sampled at a rate lower than the maximum good frequency in the low pass filter, filtering is skipped for that file. User notifications are generated in both of these cases, although the pipeline will continue running.

Typically a user will opt to remove line noise using either a notch filter or cleanline, but not both. Of note, cleanline is applied in both the PREP pipeline and the HAPPE pipeline (part of the ICA module, and described in companion paper; Gabard-Durnam et al., 2018); therefore, users applying PREP or HAPPE to their data will likely opt to turn both notch filtering and cleanline steps off in this module. By default, if the notch filter or cleanline are turned on, they will target frequency components in the range of the user-defined line noise.

Resampling

The next module offered is resampling. Users are currently offered the option to resample using interpolation via the MATLAB interp1 function. While resampling can be used for any number of reasons, in BEAPP its primary utility is likely to standardize sampling rates across multiple acquisition setups (and hence potentially multiple acquisition sampling rates), by downsampling those EEGs collected at higher sampling rates to match the EEGS collected at lower sampling rates.

Independent Components Analysis (ICA)

BEAPP includes an ICA module, which provides three options for applying ICA to a dataset. One option is ICA alone, which decomposes the data from selected channels into a series of components maximizing temporal independence from one another. BEAPP employs the extended infomax ICA algorithm (with pre-whitening) to account for sources with subgaussian or supergaussian activity distributions (Lee et al., 1999). Relative to other ICA algorithms and decomposition methods, this ICA algorithm has been shown to be useful for decomposing electrophysiological signals like EEG (Delorme et al., 2007). If the user chooses this option, the EEG run through the remainder of BEAPP will include these components in place of channels, although the format (and variable names) will otherwise remain unchanged. Users may choose this option if they wish to analyze a particular component or series of components.

As a second option, if users wish to use ICA for artifact rejection, they may choose the option for ICA with a multiple artifact rejection algorithm (MARA). While details of MARA are described elsewhere (Winkler et al., 2011, 2014), it is worth noting that MARA has been shown to identify multiple types of artifact (including that from muscle and eye movements) for rejection in an automated manner, and can be applied to different electrode placements. While other options for automated artifact detection could be added in the future, we began with MARA because of its fully automated approach, its generalizability across participants and EEG acquisitions, and its ability to detect multiple classes of artifacts (rather than being restricted to a single artifact type). For users who wish to visualize the components that MARA selects for rejection, or manually select alternative components for rejection, a visualization option is provided; however, users should note that this addition of a manual step may decrease reproducibility of the otherwise automated EEG processing in BEAPP.

Of note, although there is still much empirical research to be done on processing steps and data parameters to optimize ICA performance (e.g., filtering settings, data quality, downsampling), ICA works best under several conditions. ICA performs optimally when data has been high pass filtered to remove non-stationary signal, and low-pass filtered to remove frequencies outside the range of biological sources (e.g., 250 Hz by some accounts) (Winkler et al., 2014). To avoid sensitivity to slow drift, high pass filtering at 0.5 Hz, or up to a maximum 2 Hz, is also recommended. While empirical testing is limited, it is also often recommended that for a given number of channels c and number of data samples s:
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where x is a minimum of 20–30. This is to avoid overlearning and generate a robust, stable ICA signal decomposition (Särelä and Vigário, 2003). Users should take into account any down-sampling from the raw data when calculating their (effective) data samples. A large number of data samples and seconds of EEG data are necessary but not sufficient to guarantee robust ICA decomposition; therefore, these may serve as preliminary guidelines in combination with the abovementioned parameters.

MARA works best with epochs that are at least 15 s long, and suboptimal results may occur if data is high pass filtered at frequencies greater than 2 Hz or low pass filtered at frequencies less than 39 Hz. MARA calculates several metrics as part of its artifact detection algorithm that use spatial information from the 10–20 electrodes (or their equivalents), so users wishing to apply MARA should have channel locations with known 10–20 channel equivalents. Accordingly, within BEAPP, ICA/MARA currently runs on any channels in the acquisition layout whose placement corresponds to an electrode in the 10–20 system, and on any additional channels defined by the user to achieve the relationship between channels and samples as described above.

As a third option (and, if the user chooses, as an alternative to the other modules in step 2), the user also has the opportunity to run the HAPPE pipeline within BEAPP. HAPPE is described in a companion manuscript to this one (Gabard-Durnam et al., 2018), and is targeted toward artifact removal for EEG data collected from young children, those with neurodevelopmental disorders, or other EEG data with short recording lengths or high levels of artifact contamination. HAPPE includes highpass filtering at 1 Hz (bandpass filtering 1–249 Hz for EEGs sampled at 500 Hz or higher), cleanline for line noise removal, automated bad channel detection and removal, wavelet-enhanced ICA (W-ICA) and ICA with MARA component rejection for artifact removal, interpolation of bad channels, and referencing to average or single-channel or channel subset references. In the segmentation step of BEAPP, HAPPE also offers specific segmentation options, including automated segment rejection. HAPPE produces a single summary report across all EEGs of data quality metrics for each EEG to facilitate evaluation of files for inclusion in further analysis and to assess HAPPE performance on the data. For further details, see the companion paper on HAPPE (Gabard-Durnam et al., 2018).

Re-referencing

BEAPP then offers several options for re-referencing data. One referencing option is the infinity reference obtained by the reference electrode standardization technique (REST) (Yao, 2001, Yao et al., 2005; Dong et al., 2017), which is provided since multiple studies have recently found performance of REST to be superior to other referencing techniques (Chella et al., 2017; Huang et al., 2017; Lei and Liao, 2017; Liang et al., 2017).

If users prefer, data can be referenced to average at this stage. (Of note, average referencing does not need to be repeated at this stage if native data was average referenced, or if either PREP or HAPPE were already run on a dataset, because these pipelines output average referenced data). Data can also be referenced to a single channel or user-defined channel subset. Alternatively, data can be Laplacian referenced, using the CSD toolbox (Kayser and Tenke, 2006a). The Laplacian transform is well-regarded by many signal processors for its ability to help counteract the negative effects of volume conduction and recording reference (Kayser and Tenke, 2015) as well as muscle artifact (Fitzgibbon et al., 2013); additionally, Laplacian and average referencing can provide complementary information, as these techniques allow for targeted analysis of localized and widespread activity, respectively (Levin et al., 2017b).

There is a complex relationship between referencing and channel interpolation. A channel with poor signal quality (e.g., an electrode that was not appropriately attached to the head) can significantly alter the appearance not only of its own tracing, but also the tracing of any channels referenced to it. Therefore, such channels are often interpolated prior to re-referencing. However, interpolation itself depends on data in the surrounding channels; if more than one channel has poor signal quality, signal in an interpolated channel may have persistently poor quality. Additionally, determination of which channels have poor signal quality may differ depending upon the reference type being used.

To address this concern, BEAPP offers several options. As one option, users may opt to use the PREP pipeline (Bigdely-Shamlo et al., 2015), which includes a robust re-referencing procedure. This procedure involves iterative estimation of the average referenced signal, identification and interpolation of bad channels relative to this average referenced signal, and then re-estimation of the average referenced signal. This process is continued until iteratively alternating between these two processes no longer changes which channels are identified as requiring interpolation. Alternatively, users may opt to use ICA with MARA or HAPPE prior to re-referencing; in both of these options, for high-density EEG only a subset of the original channels are typically maintained (given limitations on the relationship between number of channels, which informs the number of ICA components, and number of data samples) (Makeig and Onton, 2011). Within this subset of channels, HAPPE identifies channels with poor signal quality and removes them before running ICA. ICA with MARA (either on its own or as part of HAPPE) then essentially acts upon remaining channels in the user-defined subset to minimize artifact while maintaining underlying signal. Any channels within the subset that had been removed earlier in processing are then interpolated. After PREP, ICA with MARA, or HAPPE, users can choose either to maintain any interpolated channels as they are, or remove any interpolated channels (substituting their data with NaN) so that they are not included in re-referencing and further steps.

Detrending

The final module currently offered in the preprocessing step of BEAPP is a detrending option. Currently users may choose mean, linear, or Kalman detrending. While mean or linear detrending will likely suffice for most users, Kalman detrending has been used for removal of artifact from transcranial magnetic stimulation (Morbidi et al., 2008) and ballistocardiogram (In et al., 2006), as well as epileptic spike detection (Tzallas et al., 2006). Kalman filtering works within a Bayesian framework, uses surrounding information to estimate the state of a process, and thus estimate the noise to be removed from the signal. (Kalman, 1960). Notably, “detrending” in this module refers to processing of the continuous EEG. A separate option for detrending within individual segments is also available in step 3.

Step 3: Division of Data Into Segments

In step 3 (division of data into segments), the input is a continuous EEG signal. This is typically the last EEG signal output from step 2 after preprocessing is complete, although users who have preprocessed their data outside of BEAPP may choose to proceed directly to step 3 after formatting. The output is a series of EEG segments, which are ready for the analyses offered in step 4.

During the segmentation step, users may specify whether to treat data as baseline data, event-related data, or conditioned baseline data and whether any additional processing (e.g., within-segment detrending) takes place. Additionally, this step allows the user to provide rejection criteria for each segment.

Event-Related Data

For event-related EEG, the data segments created are time-locked to a stimulus or other marked event (hereafter “stimulus” will refer to all cases of an event). The user can define the event code for this stimulus of interest, and specify segment start and end times in relation to the stimulus. Start and end times can be negative or positive, for situations in which the user would like segments to include data before or after stimulus offset, respectively. If the timing of the event code is offset from the true stimulus delivery time (e.g., due to transmission delays in the stimulus presentation setup), the user can define this offset in the formatting module. If offsets are not uniform across the dataset, the user can provide a table that defines the offset for each individual file. Once segments are created, the user can choose whether to run a within-segment linear detrend. “Bad” segments can be rejected if data in any channel crosses an amplitude threshold set by the user, or using rejection criteria defined in HAPPE, which includes both amplitude thresholding and assessment of segment likelihood (where artifact-contaminated segments should be less likely than good segments) using joint probability calculations (both across segments for a single channel and across channels for a single segment).

Of note, this initial creation of segments is used primarily for within-segment preprocessing, and for determining which segments to reject. The user is not obligated to analyze all of the data within a segment once a segment has been created, however. In the analysis step (described below), the user can choose a sub-segment upon which to focus their analyses. This may be particularly useful for users who wish to baseline correct event-related data to a pre-stimulus baseline, or users who wish to run separate analyses on a series of sub-segments (e.g., early and late responses to a stimulus).

Baseline Data

For baseline data, the user defines the length of segments to be created, and BEAPP creates a series of non-overlapping segments from the available data. Amplitude thresholding or HAPPE-based thresholding for segment rejection can occur after BEAPP divides the full EEG into segments, in a manner identical to event-related segment rejection (Figure 2A). Alternatively, BEAPP offers an option to use amplitude thresholding to first identify segments of unusable data within the continuous EEG, and then create segments from the remaining data. For this purpose, BEAPP’s definition of unusable data is intended to closely match common hand-editing practices, which aim to identify high-amplitude data and its surrounding rise and fall. Upon identifying any data point that is above threshold, BEAPP determines the nearest zero-crossing before and after that data point. Above-threshold segments are then defined as beginning and ending at the nearest zero-crossings, rather than only including the narrower windows of time where data is suprathreshold. BEAPP creates a mask marking segments of data in which any channel is above threshold (as defined by the zero-crossing start and end points), and then creates segments from the remaining data (Figure 2B).
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FIGURE 2. Segmentation and amplitude thresholding. Channels are arranged vertically, with horizontal channel reference lines in cyan. For clarity, only those channels that are part of the 10–20 system, and those channels that cross the amplitude threshold in this portion of the EEG, are shown here. EEG tracings for each channel are in black. Reference lines are spaced by 100 μV, equal to amplitude threshold, so that above-amplitude portions of tracing cross another channel’s reference line. Dark blue vertical lines indicate segment boundaries; in this example, 1 s segments are created from continuous data. Sample data here are from baselineEEG08.mat, samples 13,250:15,750, after PREP, filtering (1 Hz high pass, 100 Hz low pass), and mean detrending. (A) Amplitude thresholding after segmentation. Pink patches demonstrate segments rejected because at least one channel crosses the artifact threshold. Portions of the EEG tracing that are above the amplitude threshold (and thus lead a segment to be rejected) are in red. Blue patches demonstrate good segments to be analyzed. (B) Amplitude thresholding before segmentation. Pink patches demonstrate segments rejected because at least one channel crosses the artifact threshold; length of segment spans from zero-crossing before the segment crosses the artifact threshold to zero-crossing after the segment crosses the artifact threshold. Portions of the EEG tracing that are above the amplitude threshold, extending out to the zero-crossing on either side (thus determining the boundaries for rejected segments) are in red. Blue patches demonstrate good segments to be analyzed. White patches demonstrate remaining segments of good data that are too short for analysis.



Regardless of whether segment rejection occurs before or after segmentation, non-continuous data are not concatenated in any way, given concerns about data integrity with concatenation. Data is divided into the maximum possible number of segments of user-specified length, but any remaining data at the end of each useable segment, if it is too short to create its own segment, is excluded from analysis.

Conditioned Baseline Data

As described above, conditioned baseline data is essentially a hybrid of baseline and event-tagged data, in which baseline data occurs between event tags. The user specifies the event tags that signify onset and offset of conditioned baseline periods. Then, as for baseline data, the user defines the length of segments to be created, and BEAPP segments the data between event tags accordingly.

Further Processing of Segments

Once segments have been created, BEAPP also offers an option for within-segment detrending. All of the analyses described below can then be run on a segment in its entirety, or on a sub-segment. For event-related data, users have the option to baseline correct one portion of the segment (typically a post-stimulus portion) to another portion of the segment (typically a pre-stimulus portion) prior to running analyses on a sub-segment.

Step 4: Analyses

In step 4 (analyses), the inputs are the segmented EEG. Outputs are the results of analyses themselves. For each file, detailed outputs are reported in MATLAB, for users who wish to run further analyses on their own. Additionally, several summary outputs are output into a .csv file, for users who do not desire any further post-processing. Several basic analyses are currently offered in BEAPP. Users may also use the preprocessed data output from step 2 or segmented data output from step 3 as a basis for performing other analyses outside of BEAPP, if they prefer.

Power Spectrum

Spectral power is initially calculated on each segment or sub-segment created as above. Several options are offered for a how a power spectrum is calculated.

If the user opts to use a rectangular window or Hanning window, power is calculated by Fast Fourier Transform, using the fft function (Frigo and Johnson, 1998) in MATLAB. Each segment is zero-padded with trailing zeros to the nearest power of 2, as recommended by MATLAB to increase the performance of fft when the number of samples in a given segment is not a power of 2. This creates a double-sided power spectrum, with complex fft values. For a single side of this spectrum eeg_wf, absolute power eeg_wfp is then calculated for each segment, for given sampling rate sr and segment length (in samples) l, as follows:
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If the user opts to use a multitaper method (Thomson, 1982) to calculate the power spectrum, they can choose the number of tapers to apply. The power spectrum is then calculated using the MATLAB pmtm function.

Inter-Trial Phase Coherence

Inter-trial phase coherence (ITPC), a measure of the extent to which an EEG signal is phase-locked to repeated time-locked events (Makeig et al., 2004), can be calculated across segments as well. This calculation uses the EEGLAB newtimef.m function. For each event condition and each channel, phase coherence is calculated across all segments, across relevant spectral time windows (determined by user-defined subwindow length) and frequency bins. Outputs of this module are complex numbers, which include information about ITPC magnitude (absolute value of the complex number) and phase (angle of the complex number).

Summary Outputs

After each run of one or more files across one or more modules, BEAPP creates a folder called “out,” which contains detailed information summarizing the run. This includes a MATLAB structure specifying the user inputs and run settings that were common to all files included in a given run; of note, maintaining this information in its own file, rather than repeated within each individual EEG file, helps with management of data size (see below). There is also a file detailing the text output from the command window. Summary information is included in this folder for certain modules as well. For example, a .csv file contains summary information about files run through PREP, including whether any errors occurred and how many bad channels PREP detected. A separate .csv file contains summary information generated through HAPPE.

The output folder also includes summary information about analyses conducted. For analyses in the frequency domain, data can be binned into any number of frequency bands defined by the user. For power analyses, optional outputs in .csv format include mean power across all segments in each channel at each frequency band, as well as absolute power, normalized power, natural log of power, and log10 of power. For ITPC analyses, .csv outputs can include the maximum and/or mean ITPC magnitude for each channel. Analysis-generated .csv outputs also include general information relevant to interpretation of these outputs, such as the original EEG’s net type (EEG electrode layout), original sampling rate, current sampling rate (for resampled data), information about recording periods run (for original EEGs that included multiple recording periods), information about channels marked bad, and number of data segments analyzed.

Management of Data Size

When running large EEG datasets and saving outputs at multiple processing modules, the amount of data being generated may rapidly become a burden. BEAPP addresses this concern in several ways. First, users are given the option of whether to save output of each module. If a user does not intend to review outputs of a specific module, or if outputs of a given module can be rapidly reproduced if needed in the future, users may choose to have BEAPP automatically delete these outputs. Outputs aim to strike a balance between maintaining adequate information to allow a user to easily keep track of how raw data have been altered and avoid unnecessary redundancy that may lead to excessively large file sizes.

Sample Data Files

The specific examples in this manuscript come from application of BEAPP to EEG data collected through the Infant Sibling Project (ISP), a prospective investigation examining infants at high versus low familial risk for autism spectrum disorder over the first 3 years of life. This dataset was chosen because the longitudinal nature of the study led to data collection with different sampling rates (250 and 500 Hz) and acquisition setups (64-channel Geodesic Sensor Net v2.0, and 128-channel HydroCel Geodesic Sensor Net, both from Electrical Geodesics, Inc., Eugene, OR, United States). Additionally, because young children cannot follow instructions to “rest” or remain still, EEG in these children typically contains greater amounts of artifact than EEG in typical adults. Baseline EEG data was collected while a young child sat in a parent’s lap watching a research assistant blow bubbles or show toys (Levin et al., 2017b). Event-related EEG data was collected using an auditory double oddball paradigm, in which a stream of consonant-vowel stimuli was presented. Stimuli included a “Standard” /aaada/ sound 80% of the time, “Native” /ta/ sound 10% of the time, and “Non-Native” /da/ sound 10% of the time (Seery et al., 2014). To demonstrate applications of BEAPP to analysis of group data, a subset of the full ISP dataset, containing 10 baseline EEGs and 10 event-related EEGs, is available at zenodo.org (Levin et al., 2017a) Details regarding the baseline EEGs are provided in Table 1, and details regarding the event-related EEGs are provided in Table 2. Data were collected in the United States, with 60 Hz line noise. This study was carried out in accordance with the recommendations of the Institutional Review Board at Boston University and Boston Children’s Hospital, with written informed consent from all caregivers prior to their child’s participation in the study.

TABLE 1. Baseline EEG information.
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TABLE 2. Event-tagged EEG information.
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RESULTS

Data were run on a standard iMac (late 2015, 4 GHz Intel Core i7 processor, macOS X El Capitan version 10.11.6). BEAPP was initially created and tested in MATLAB 2016a, although data here were run using MATLAB 2017b.

Testing BEAPP on a Sample Dataset: Baseline DATA, Power Spectrum

We ran BEAPP on a sample dataset of 10 baseline EEGs, as described above. Data ran through BEAPP for a variety of module combinations. A Supplementary File 1 describing the exact settings for each of these analyses is included with this manuscript. Of note, the formatting and PREP modules were only run once each; the order of runs described above and in the table allowed subsequent runs to take advantage of these modules from prior runs.

Power spectra generated with each of these configurations are shown in Figure 3. Power from the “Raw” data (after segmentation into 1 s segments without artifact rejection) is shown in black. After the PREP pipeline, which involves cleanline and robust average referencing, 60 Hz line noise is reduced (though not fully eliminated), and power is reduced across frequencies (red). After the “Filt” run (green), there is a reduction in power below 4 Hz with some extension into higher frequencies, due to the 4 Hz high pass filter. There is a reduction in power above 80 Hz, due to the 80 Hz low pass filter. There is a reduction in power at and near 60 Hz, due to the 60 Hz notch filter. After the HAPPE run (dark blue), there is a significant reduction in power across all frequencies as is expected with HAPPE preprocessing (Gabard-Durnam et al., 2018), reduction in 60 Hz line noise power (since HAPPE includes cleanline), and some reduction in power just above 1 Hz and just below 100 Hz, due to high and low pass filters respectively occurring at these frequencies. With CSD rereferencing (pink) after the PREP pipeline and 1–100 Hz filtering, the power spectrum takes on the shape expected from these preprocessing steps, but with increased power across frequencies overall. (Of note, power units for CSD are μV2/mm2, whereas power units are otherwise in μV2). MskArt (light blue) and RejPostSeg (purple), with artifact thresholding taking place before and after segmentation respectively, give relatively similar results to one another; REST (orange) also gives similar results.


[image: image]

FIGURE 3. Power spectra generated by various preprocessing pipelines. Power spectra for each continuous EEG are shown on a log10-log10 scale. Power units are in μV2, except CSD (pink) which is in μV2/mm2. Each line shows the mean power spectrum generated across all channels. After specified processing, data were segmented into 1 s windows. No additional artifact rejection occurred prior to power analysis, unless otherwise specified. Black: Raw data. Red: PREP pipeline. Green: “Filt.” (Filtering 4 Hz high pass, 80 Hz low pass, 60 Hz notch). Dark blue: HAPPE pipeline (Filtering 1–100 Hz, resampling to 250 Hz, HAPPE pipeline with associated segment rejection). Pink: CSD (PREP pipeline, filtering 1–100 Hz, CSD rereferencing, mean detrending, artifact thresholding at 3,000 μV2/mm2 prior to segmentation). Orange: REST (PREP pipeline, filtering 1–100 Hz, REST rereferencing, mean detrending, artifact thresholding at 100 μV2 prior to segmentation). Light blue: MskArt (PREP pipeline, filtering 1–100 Hz, resampling to 250 Hz, mean detrending, artifact thresholding at 100 μV2 prior to segmentation). Purple: Same settings as MskArt, but with artifact thresholding after segmentation.



While the exact amount of time each step requires will depend on multiple factors (e.g., file size, computer specifications, etc.), approximate benchmarks for the computer described above are provided here for transparency. On average for each file, modules took the following amounts of time: Format <10 s, PREP 1.5 min, filter <10 s, resample <10 s, HAPPE 3.5 min, CSD 30 s, REST <10 s, detrend <10 s, segment <10 s, PSD <10 s.

Testing BEAPP on a Sample Dataset: Event-Tagged Data, ITPC

We next ran BEAPP on the sample dataset of 10 event-tagged EEGs. Processing steps after formatting included the PREP pipeline, filtering 1–100 Hz, resampling to 250 Hz, CSD rereferencing, mean detrending, segmenting from -100 to 800 ms in relationship to the event tag for each “Standard” stimulus (taking into account system offsets, which had not been accounted for in the original event tags), and evaluation ITPC across multiple overlapping windows of 256 ms each, and across multiple frequency bands. On average, the ITPC module took 30 s per file. Figure 4 plots the outcome of this analysis for the frontocentral channel demonstrating maximum ITPC in each EEG. There is a peak in ITPC in the 150–300 ms time windows, across multiple frequencies, for most of the sample EEGs. Of note, this finding overlaps exactly with the time windows in which one expects a positive-going P150 component in event-related potential (ERP) analyses of young children (Seery et al., 2014).
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FIGURE 4. Inter-trial phase coherence for event-tagged data. ITPC for each event-tagged EEG is shown on a surface plot. Color demonstrates magnitude of ITPC at each time window, for each frequency band. ITPC for the frontocentral channel demonstrating maximum ITPC (across all time windows centered 100–300 ms after stimulus onset, and across all frequency bands) is plotted for each EEG; thus each plot contains data from only one channel.





DISCUSSION

BEAPP automates batch EEG processing and analyses across multiple EEGs (including those collected across multiple acquisition setups) and multiple processing steps. Rather than prescribing a specified set of processing steps, BEAPP allows users to choose from a menu of options that meet their needs.

BEAPP has two primary goals. The first is accessibility. BEAPP aims to provide a bridge, allowing researchers studying the brain to more easily access some of the most useful tools that experienced signal processors have created, by replicating others’ analysis pipelines or creating their own. To this end, BEAPP aims to strike a balance between assuming only a basic level of MATLAB and EEG signal processing experience, while also offering a flexible menu of opportunities for more advanced users.

The second primary goal is reproducibility. By allowing improved accessibility of methods and workflows across execution environments, BEAPP aims to improve reproducibility within experiments, replicability across experiments, and collaboration across laboratories.

Several limitations of BEAPP merit discussion. First, while BEAPP provides flexibility for running a variety of modules with a variety of user-specified parameters, BEAPP does not prevent an inexperienced user from running incorrect sequences of analyses, or setting meaningless parameters. For example, a user running the PREP or HAPPE pipelines within BEAPP will need to have adequate knowledge of these pipelines (either through reading their companion manuscripts, or through the BEAPP user guide) to know that these pipelines include cleanline and average referencing; therefore, such steps do not need to be run separately in other modules. As another example, running ITPC on baseline data would produce outputs, but the meaning of such results (since data segments would not be tied to any particular stimulus) would be questionable. In many cases, tips to avoid such errors are included in the user guide, or within the user inputs themselves. BEAPP also contains flags to help avoid certain errors (such as unintentionally overwriting previously generated data when running modules with a new set of parameters). However, as is often the case with customizable software, such errors are not fully avoidable.

BEAPP is currently also limited in the scope of processing techniques that it offers. The processing algorithms contained in other software packages are numerous and tremendously useful, and BEAPP incorporates only a small subset of the tools available. In its current form, BEAPP therefore acts predominantly as a basic structure for EEG data analysis and tracking, upon which other parameters, modules, and options can be added in the future. Future additions to BEAPP would likely include additional options for managing a wider variety of native file types, compatibility with the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016), improved efficiency through parallel processing, additional analysis options (e.g., coherence, phase lag index, and phase amplitude coupling), and display options (e.g., topoplots). Rather than a fixed pipeline, BEAPP is intended to offer a framework that a beginning user can use for batch EEG data processing, and upon which a more advanced user can build in additional options for preprocessing and analysis.

Overall, BEAPP aims to provide a structure to streamline batch processing of EEG across multiple preprocessing and analysis steps, and across multiple EEGs in a dataset (including EEGs with differing acquisition setups). Long term goals of this structure include improved accessibility to EEG analysis across fields, and improved reproducibility thereof.
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BrainWave is an easy-to-use Matlab toolbox for the analysis of magnetoencephalography data. It provides a graphical user interface for performing minimum-variance beamforming analysis with rapid and interactive visualization of evoked and induced brain activity. This article provides an overview of the main features of BrainWave with a step-by-step demonstration of how to proceed from raw experimental data to group source images and time series analyses. This includes data selection and pre-processing, magnetic resonance image co-registration and normalization procedures, and the generation of volumetric (whole-brain) or cortical surface based source images, and corresponding source time series as virtual sensor waveforms and their time-frequency representations. We illustrate these steps using example data from a recently published study on response inhibition (Isabella et al., 2015) using the sustained attention to response task paradigm in 12 healthy adult participants. In this task participants were required to press a button with their right index finger to a rapidly presented series of numerical digits and withhold their response to an infrequently presented target digit. This paradigm elicited movement-locked brain responses, as well as task-related modulation of brain rhythmic activity in different frequency bands (e.g., theta, beta, and gamma), and is used to illustrate two different types of source reconstruction implemented in the BrainWave toolbox: (1) event-related beamforming of averaged brain responses and (2) beamformer analysis of modulation of rhythmic brain activity using the synthetic aperture magnetometry algorithm. We also demonstrate the ability to generate group contrast images between different response types, using the example of frontal theta activation patterns during error responses (failure to withhold on target trials). BrainWave is free academic software available for download at http://cheynelab.utoronto.ca/brainwave along with supporting software and documentation. The development of the BrainWave toolbox was supported by grants from the Canadian Institutes of Health Research, the National Research and Engineering Research Council of Canada, and the Ontario Brain Institute.
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INTRODUCTION

Magnetoencephalography (MEG) involves the measurement of the magnetic fields generated by the electrical currents that flow in activated neuronal circuits of the brain (Hämäläinen et al., 1993; Cheyne and Papanicolaou, 2013). A major advantage of MEG over other brain imaging methods is the ability to estimate location, strength, and time courses of these neuronal currents by using inverse modeling of electrical brain sources and co-registering such sources to a participant’s own anatomical magnetic resonance image (MRI) – a technique referred to as magnetic source imaging (Cheyne and Papanicolaou, 2013). In addition to providing a neuroanatomical interpretation to the estimated neural activity, the use of source-space analysis of brain activity also overcomes the problem of the superposition, or ‘mixing,’ of activity from multiple neural sources (and other magnetic sources such as muscle activity) at the sensors outside of the head, thereby increasing the ability to separate and identify the underlying neural generators (Baillet, 2017). This requires a solution to the so-called inverse problem, which states there is no unique configuration of sources for an externally measured field pattern (Helmholtz, 1853). For simple source configurations, standard parametric models (e.g., equivalent current dipoles) can be fitted to the data. However, this becomes a highly underdetermined mathematical problem for complex and distributed configurations of multiple sources, such as those associated with higher cognitive function or sources embedded within noise from magnetic artifacts, requiring more advanced source estimation methods.

A variety of methods have been applied to the MEG source estimation problem (Hämäläinen et al., 1993; Darvas et al., 2004; Hillebrand and Barnes, 2005; Cheyne and Papanicolaou, 2013; Baillet, 2017). An increasingly popular approach over the last decade is the signal processing technique known as minimum-variance beamforming, a spatial filtering method that utilizes the coincident detection of signals at multiple sensors to selectively enhance or suppress signals arising from different spatial locations, allowing for the simultaneous separation of multiple brain and external noise sources. Beamforming thus has an advantage over other inverse methods in that it provides a means for the extraction (un-mixing) of multiple sources of neural activity embedded within noisy data, often without the need for artifact removal or denoising of the raw data (Cheyne et al., 2006). Various beamforming methods have been introduced for source reconstruction of brain activity using MEG data (Van Veen et al., 1997; Robinson and Vrba, 1999; Gross et al., 2001; Sekihara et al., 2001; Cheyne et al., 2007). One popular implementation, termed synthetic aperture magnetometry (SAM), uses a minimum-variance beamformer algorithm to estimate whole-brain images of source power with user-defined frequency ranges and time windows. It also introduced metrics for estimating changes in source power between time windows or experimental conditions (Robinson and Vrba, 1999). The beamforming method can also be applied to the modeling of averaged phase-locked event-related brain activity (i.e., evoked responses), which we term “event-related” beamforming or ERB (Bardouille et al., 2004; Cheyne et al., 2006, 2007). The theoretical and computational bases of SAM and ERB are described in detail in numerous previous publications (Robinson and Vrba, 1999; Hillebrand and Barnes, 2005; Sekihara et al., 2005; Cheyne et al., 2006) as well as in the BrainWave documentation and are not repeated here. Both methods have been implemented in BrainWave to provide a common preprocessing and visualization platform, and to allow for the analysis and direct comparison of both evoked and induced brain activity within one toolbox.

At the time of this publication, BrainWave version 3.5 was the latest available software release. Using data collected from our previously published study on response inhibition (Isabella et al., 2015) we will demonstrate a standard workflow in bringing raw MEG data to a publishable group analyses (a copy of these data have been provided for download here https://figshare.com/s/2e1c6559cadae29429bc). In doing so, we will highlight the use of the two beamformer algorithms available in this toolbox, illustrating the localization of transient evoked motor responses (using ERB beamformer), and task-related narrow-band oscillatory modulations of induced brain rhythmic activity (using the SAM beamformer). In addition, the high error rates in the example data allow us to demonstrate the identification of oscillatory changes associated with error processing using a built-in module for computing between-condition contrast images, along with time-frequency analysis of source waveforms from group averaged source activity. We also illustrate the ability to create source images volumetrically (using predefined whole-brain volumes with variable spatial resolution), which can be aligned to standard template (MNI) brain space with automatic labeling using brain atlases. Alternatively, source activity can be computed on extracted cortical surfaces (Lin et al., 2006) imported from either the Freesurfer or CIVET software packages (example surfaces are provided with the demonstration data, with the additional steps described at the end of the tutorial).

The following sections will provide a basic step-by-step workflow example to bring a typical raw MEG dataset to the group plots of source images and time series analyses. It should be noted that most, but not all features will be demonstrated, and that additional details and suggestions for parameter selection can be found in the documentation provided with the BrainWave toolbox, both available at http://cheynelab.utoronto.ca/brainwave.



DEMONSTRATION DATASETS

The example MEG datasets were collected on a 151-channel CTF system (1200 Samples/s) within a Vacuumschmelze magnetically shielded room (Ak3b) with continuous head localization (CHL) enabled. Data was acquired in 12 healthy adults (five females, range: 21–35 years, all right-hand dominant) with informed consent in accordance with the Declaration of Helsinki from all participants as per The Hospital for Sick Children Research Ethics Board policies.

Participants were recorded in the seated position, and visual stimuli presented on a back-projection visual display. In the original study, two separate tasks were performed in a counterbalanced order across participants: (1) a standard “Go/No-go” version of the sustained attention to response task (SART) (Robertson et al., 1997) that involved withholding button press responses to an infrequently presented target stimulus within a rapidly presented stream of “Go” stimuli, and (2) a “Go/Switch” variation of the SART task that was identical to the Go/No-go task except that participants were instructed to switch response hands, rather than withhold responses, to target trials (Cheyne et al., 2012).

Each experimental trial in the withhold task presented a single numerical digit (the numbers ‘1’ to ‘9’) for 400 ms duration, immediately followed by a stimulus mask (the letter ‘X’) that remained for a variable duration inter-stimulus interval of 1800–2200 ms. Participants were instructed to press a button with their dominant (right) index finger when a number appeared, as quickly and accurately as possible. When the target stimulus appeared (the number ‘3,’ presented at a 20% probability rate), participants were instead instructed to withhold their response. Further details of the experimental setup and design can be found in Isabella et al. (2015).

To reduce the file size of the example data, we include only the Go/No-go (withhold) data for demonstration purposes and have downsampled the datasets to 600 Samples per second using BrainWave’s downsampling feature (not described here). In addition, event markers have been sorted by the experimenter to identify trial types and reduce the very large number of correct default (‘Go’) trials to aid in computation time on some computers. No other preprocessing has been applied to the MEG data. However, some preprocessing was required for the use of participant MRIs. Due to research ethics requirements on data sharing, MRIs have been de-identified offline using a de-facing tool (Bischoff-Grethe et al., 2007) that had rendered some BrainWave features unusable for this demonstration. For example, BrainWave is designed to work with FMRIB Software Library (FSL, version 5 or newer) (Smith, 2002; Jenkinson et al., 2012) Brain Extraction Tool (BET2) to generate segmented MRI surfaces for spherical model fitting, which requires access to facial features of the MRI to accurately model the brain’s surface. Because of this, the placement of MEG head localization coil positions located between the eyes, and adjacent to each ear (required for the co-registration or alignment of MEG to MRI data) is not possible in defaced images. For this reason we provide fully pre-processed MRI files in the sample data, with preselected co-registration information (i.e., head localization coils), as well as pre-computed FSL surfaces and a high-resolution pial cortical surface mesh using the CIVET (Ad-Dab’bagh et al., 2005) software package. While the steps to create FSL or CIVET surfaces will not be described in full, Section “Preparing MRI Data” will instruct the use of the pre-computed components for the generation of a spherical head model calculation (from FSL surfaces), and the use of high-resolution (CIVET) cortical surfaces for surface-constraint beamforming and 3D rendering of individual subject or template brain surfaces using BrainWave.

For demonstration purposes, we describe below the steps necessary to re-analyze these data using the most recent version of the BrainWave toolbox in a subset of the responses described above (i.e., correct default – the correct button press response to a non-target stimulus – and error withhold – the incorrect button press response to target trials or failure to ‘withhold’). This tutorial will illustrate how to analyze movement-locked evoked responses using the ERB algorithm and modulation of narrow-band oscillatory analysis of induced brain activity using the SAM beamformer algorithm, including frontal theta band (4–8 Hz) oscillations elicited on errors trials, and modulation of sensorimotor beta band (15–30 Hz) activity preceding and following motor responses. Source activity will be aligned to anatomical locations after co-registering (aligning) the MEG sensor data with the participant’s own anatomical T1 MRI images (Siemens 3T, MPRAGE) collected on the same day.



BRAINWAVE SOFTWARE

Compatible Data Formats and System Requirements

MEG Data Formats

BrainWave uses the native CTF MEG4 data format for reading and writing MEG data files, which are directories containing all files for a single data collection ending with a .ds extension. This allows for inter-operability of any MEG dataset with the CTF MEG4 tools or BrainWave, as well as any other software packages compatible with the CTF format. Other compatible MEG manufacturers, Elekta/Neuromag1 and KIT/Yokogawa2 may also be imported into BrainWave using the Import MEG feature and are converted into a CTF dataset format. Using a common dataset format allows for a standardized cross-platform approach for MEG source analysis. Once converted, subsequent processing and analyses will remain identical to CTF datasets. Importantly, these conversion programs can be run from within the BrainWave toolbox, in which case event markers (e.g., Elekta/Neuromag stimulus channel events) will be automatically converted to CTF MarkerFile format events. While the examples shown here involve the use of data recorded from a CTF MEG system, BrainWave has been tested with data from both Elekta and KIT MEG systems. For this purpose, we include options for selecting sensor types (magnetometers or gradiometers) as well as covariance matrix regularization for data that has been transformed using software-denoising schemes (e.g., signal space separation or ICA). These options are discussed in more detail in corresponding sections.

MRI Data Formats

Anatomical (T1) MRI data can be imported from Neuroimaging Informatics Technology Initiative (NIfTI,.nii), CTF (.mri) and raw DICOM3 (e.g., .ima or .dcm) formats, and are reformatted and saved into a standardized (RAS) NIfTI format within BrainWave. Tri-linear interpolation will automatically convert non-isotropic MRI data to the smallest equal voxel dimension to fit within a 256 × 256 × 256 voxel volume.

System Requirements

Hardware

BrainWave integrates high-level algorithms for beamformer source analysis with minimal user set up to bring raw data to interpretable results. Integrated compiled C-mex functions written in C++ offer efficient handling of MEG data, and uses multi-threaded libraries for rapid computation of beamformer images – ideally suited for multi-core processors with a minimum of 4 GB RAM. Mex-files are currently provided for Linux (64-bit), Windows (64-bit, Windows 10 recommended), and Mac OS (64-bit, version 10.6 or newer).

Software

No custom Matlab toolboxes are required to run BrainWave. For spatial normalization and group imaging, BrainWave can automatically warp source images to MNI template space, which requires the installation of Statistical Parametric Mapping (SPM8 and SPM12 currently supported) (Friston et al., 2007), and includes optional scaling to Talairach coordinates with an integrated brain atlas3 for automatic labeling of brain regions.

BrainWave is designed to work with two additional software packages for advanced head modeling and 3D cortical surface based source construction. The FMRIB Software Library (FSL, version 5 or newer) (Smith, 2002; Jenkinson et al., 2012) toolbox can be used to segment cortical surfaces from MRI images for the purpose of creating spherical conductor head models fit to individual brain anatomy (e.g., the inner skull surface). BrainWave also provides the option to use surface based source reconstruction by importing high-resolution cortical meshes from both the CIVET (Ad-Dab’bagh et al., 2005) and FreeSurfer (Fischl, 2012) software packages. In cases where FSL is not available (e.g., via Windows OS), a brain hull can be generated from these cortical surface meshes for the calculation of spherical head models, thus not requiring the use of FSL or SPM software.

While BrainWave has been tested extensively on all supported OS platforms and with various screen resolutions and versions of Matlab (version 2013b is recommended), we are aware that different OS/Matlab combinations can also introduce display issues, particularly font incompatibilities. Version compatibility and other platform support issues can be reported to the BrainWave support website which also provides an FAQ page for known issues.

Data Organization, Installation, and Launch of BrainWave

BrainWave requires a fixed organization of MEG and MRI data files to minimize the need to search for files and to automatically link participant’s MEG and MRI data. Once imported and epoched, the organization of pre-processed study files is required to ensure seamless automation of certain BrainWave routines, such as group analysis where specific files are expected to reside within respective MRI or MEG dataset folders. In particular, all epoched datasets and converted MRI folders from all subjects must be saved within the same study folder hierarchy tier. Figure 1 illustrates the required study folder hierarchy of condition-specific (∗.ds) datasets with respective subject-specific MRI folders. Due to upload size limitations to figshare, we provide a customized Matlab script to simplify this setup by automatically unzipping and reorganizing the demo datasets into the required format seen in Figure 1.
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FIGURE 1. Data structure. MEG dataset and MRI directory file structure used by BrainWave.



•  Download and install the latest version of the BrainWave toolbox (available at our University of Toronto website (cheynelab.utoronto.ca/brainwave). Download the demonstration package4, containing a customized file reorganization Matlab-script (reorganize.m), and 12 sets of MEG and MRI data folders. Unzip the package to a study folder (preferably located on a local drive). Twelve zip files should now be visible (subjectNumber_raw.zip).

•  Open Matlab (version 7.5 or newer), and ensure the study folder is set as the current directory. Type ’reorganize’ into the Matlab Command Window to initiate the automated file unzip and reorganization script.

•  For the spatial normalization to MRI coordinates and/or group analyses, you will also require a copy of the Statistical Parametric Mapping (SPM8 and SPM12 currently supported) (Friston et al., 2007) and FSL (version 5.0.0 or newer) for the calculation of head models. Download SPM software to the designated software folder, and install FSL as instructed on their website. In the Matlab Command Window, add the path locations to each program (BrainWave, SPM, and FSL). Note that additional environment set up for Matlab use may be required for FSL (see the FSL website for more information on how to do this), and is not compatible with Windows operating systems.

•  To launch the BrainWave Main Menu, type ‘brainwave’ into the Matlab Command Window. Figure 2 shows the basic schematic layout of the BrainWave software in the typical order of processing steps as presented in this article.
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FIGURE 2. BrainWave. The main menu can be used to launch the main analysis modules in BrainWave, including (1) the import and preprocessing of raw MEG data, (2) MRI preparation for MEG co-registration, (3) single subject beamformer analysis for exploratory and/or single patient data analysis, (4) group beamformer analysis, and (5) an additional module for time course plotting and time-frequency decomposition from arbitrary or pre-selected brain locations.



Preparing MEG Files

Import Raw MEG Data

Begin by ensuring that your demo datasets are unzipped, and that your study folder is the current Matlab directory. Note that preprocessing and epoching time, particularly when scanning for bad trials or head motion, will be significantly reduced if raw data files are stored on a local internal drive. When importing multiple datasets within the same study, the “batch” feature can be useful to avoid having to repeat all the same preprocessing steps many times over. Here, we will describe how to pre-process all raw datasets with the same parameters for two conditions as a single batch: (1) erroneous button presses to ‘withhold’ instructional cues and (2) correct default button presses. Note that BrainWave requires ‘raw’ data to consist of a single continuously recorded trial.

•  Open Import MEG from the BrainWave main menu window.

•  Enable batch processing by selecting Open new batch… from the Batch dropdown menu.

•  As the demonstration data is already in CTF format, we select the raw (continuously recorded) datasets using the File →Load CTF Datasets5 dropdown.

•  Multi-select (hold-command key on MacOS or control key on Windows) all MEG datasets (folders ending in.ds) from the study folder.

•  All successfully loaded datasets will appear in the Dataset dropdown list within the Data Parameters panel. A preview of the data, along with some details of the dataset collection, including acquisition parameters and fiducial coordinates, will also load to their respective fields.

Selecting Data Events and Epoch Parameters

•  Each dataset has been recorded with unique and case sensitive marker names for each event6. Select Use Event File from the Epoch Selection panel, and click the Load Event File button.

•  Open the MarkerFile.mrk file then select correctDef_4th from the event dropdown list which corresponds to the time of the button press for every 4th correct default (Go) trial. Since there are a very large number of default go trials relative to target trials (800 versus 200 trials, respectively), this event marker is provided to reduce computation time, and to make signal-to-noise levels more comparable across trial types. All event latencies will appear in the Epoch Latencies column list for the currently selected subject. Note that this list of latencies will update by selecting a different subject from the Dataset dropdown list.

•  Input Epoch Window start value at -2 second (s) and end value at 2 s. Notice that the first latency in the Epoch Latencies column is invalid. This is due to the suggested epoch size exceeding the time prior to the first event (i.e., a trial will be rejected if the first event occurs at 1.5 s into an experiment, which does not meet the epoch start window requirement of 2 s). The next valid trial will be displayed in the Preview window.

•  Bandpass filtering or powerline frequency notch filtering may also be applied at this time (Filter Data and Filter powerline in Pre-processing panel, respectively). The latter will remove the selected (50 or 60 Hz) powerline frequency and harmonics (notch width = 7 Hz). It is generally recommended to use minimal pre-filtering at this step as bandpass filtering will be applied to the epoched data during image generation. If Use expanded filter window option is selected the preprocessing filter will be applied to a time segment 50% greater than the epoch duration to avoid filter artifacts at trial boundaries. Powerline notch filtering is also optional, and not necessary for the demonstration data as this is CTF data with synthetic third-order gradient noise reduction applied.

•  Once epoch parameters are selected, verify that you have a unique output file naming convention. BrainWave automatically creates dataset names based on the information provided within the raw dataset name (and header information, if present). The option to deselect checked auto-fill boxes is available as needed, as well as the option to change (or add) details using the Subject ID and Label boxes for a customized dataset name. Recall that it is important that the subject ID appears first and prior to the first underscore. Anything else may follow the underscore from the Label field, but it is highly recommended to use a simplified name describing the epoched event type or condition name, while ensuring that the created datasets will have unique filenames. For the example data, keep all default auto-fill options enabled (i.e., Subject ID, Run ID, and Event Name). The final dataset name will appear in the Save As field as ∗_WH_correctDef_4th.ds, where ∗ is the subject ID number.

Setting Channel Selection and Trial Rejection (Optional)

Epoched trials and channels can be edited manually, or automatically excluded via predefined thresholds. Manual editing of epochs may be done by scrolling through the epoch latencies in the Epoch Latencies list, pre-viewing the epochs in the Preview plot window and using the Delete Events button to remove the currently selected trial. Editing channels using the Edit Channels button opens a dialog that can be used to manually remove channels or subsets of channels with pre-defined “channel sets” selected from a drop-down menu (e.g., use only channels over left hemisphere, or by channel type e.g., use only gradiometer or only magnetometer channels). Custom channel set lists can be created to exclude noisy or malfunctioning channels. Note that the selected channel set will be applied to all datasets in any batch processing, and all datasets must contain the same number of MEG sensor channels. Datasets that contain a different number of MEG channels than the rest of the datasets in the current batch must therefore be epoched separately.

To avoid the time consuming and subjective process of manual data editing, BrainWave provides epoch rejection features that are automatically applied during single trial or batch epoching. The following sections describe the automated trial rejection features and how to apply them to the demonstration dataset.

Automatically exclude trials exceeding amplitude thresholds

Trials containing artifacts larger than a chosen amplitude threshold can be achieved by enabling Peak-to-Peak Amplitude Exceeds… in the Epoch Rejection panel. For the demonstration data, conservatively set this value to a 3 picoTesla (pT). When using this option, it is necessary to enable the Filter Data option in the Pre-Processing panel and set the bandpass to, e.g., 1 to 100 Hz in the Preview panel to avoid rejecting trials with large DC drifts. This will exclude individual trials where the difference between the minimum and maximum peak amplitude exceeds three pT, or is equal to zero for the entire epoch (i.e., will also detect trials with flat channels).

Automatically exclude trials with resets

This feature works similarly to the amplitude threshold, with the exception that the threshold must be exceeded within one-time sample, resulting in only detecting amplitude steps (e.g., flux jumps). Since the CTF demonstration data contain no flux jumps this option can be left disabled.

Automatically exclude noisy channels

This can be used in combination with the amplitude threshold to exclude channels that cause an excessive number of trials to be rejected. In the demonstration data, Subject 07 contains several noisy channels that require this option to be selected. Click on Exclude channels where number of rejected trials exceeds… and set to a threshold of 90% (default). This will automatically add channels causing more than 90% of trials to be rejected to the “excluded” channel list and rescan the data. In non-batch mode, the excluded channels can be pre-viewed and edited, or saved as a custom channel set. Note that for Elekta/Neuromag data, this option can be used to automatically remove disabled channels that have been set to zero (flat channels).

Automatically remove trials based on excessive head motion (CTF data only)

If CTF CHL data are available, it is possible to exclude trials with excessive head motion by enabling the Mean sensor motion exceeds… option from the Epoch Rejection panel. For this example, we use the default 0.5 cm threshold. This will exclude any trial where mean MEG sensor motion (computed over all sensors or selected sensors if this option is selected) exceeds 0.5 cm. Motion is computed relative to the head, as defined by the fiducial coils position in device coordinates stored with the raw data, or the mean head position if this option has been selected. Information regarding the amount and range of sensor motion is displayed in the command window. This will noticeably increase processing time as it requires calculating the MEG sensor positions relative to the head at every time sample for all valid epochs.

Use mean head position (CTF data only)

If CTF CHL is available, the sensor geometry can be adjusted to reflect the mean head position for the epochs being analyzed by selecting Use mean head position from the Pre-Processing panel. For source localization, BrainWave defines the position and orientation of the MEG sensors (e.g., gradiometers) in a head-based frame of reference – identical to that used by the CTF software (i.e., the coordinate system defined by the three fiducial coil positions: nasion, left ear, and right ear). For raw CTF data, this is normally determined by the “head localization” measurements done at the beginning and end of each data acquisition, using by default, the mean of the two head positions. That is, even if CHL is enabled, the continuous head position data is not utilized. If CHL data is available, BrainWave will optionally allow you to use this data by averaging head position over only selected epochs during the epoching procedure. This provides a head position that reflects the actual head position for the data being analyzed, i.e., will exclude any large head movements between trials, or that may have occurred during the pre and post-head localization recordings. The adjusted sensor geometry (i.e., gradiometer position and orientations) are saved in the.res4 file and the mean fiducial locations (in dewar coordinates) are saved in the.hc file of the epoched dataset. The “Update” button can be used to preview the calculated mean fiducial locations (displayed in red font) for the currently selected dataset and parameters prior to epoching. Head position will be updated prior to epoching, and recalculated following trial rejection. If available, this option is recommended for an improved estimate of the true head position relative to the sensors, even if not rejecting trials for head motion. The updated overall head motion statistics after this adjustment are printed to the command window.

If you wish to immediately see the effects of the selected epoch rejection parameters, the Scan Epochs button can be used to preview which trials and channels will be removed for the currently selected dataset. After scanning, excluded trials or channels will appear as red in the Preview window and will be indicated with an asterisk (∗) in the channel and latency lists. This step can be repeated to determine the optimal parameters and thresholds prior to batch processing.

Adding New Conditions to Batch

The following is described to demonstrate the use of the batching process, but may be done in separate processes entirely.

•  Click Add to Batch and select Yes from the pop-up window asking to add 12 datasets with current epoching parameters to batch.

•  With the Import MEG dialog still open, click Load Event File button and choose errorWH from the MarkerFile.mrk file to epoch to a new condition in the same group of subjects. Select Replace from the pop-up to only epoch to errorWH event latencies.

•  Click Add to Batch to include the errorWH condition to the epoching queue. Again, select Yes from the pop-up window asking to add 12 datasets to batch.

Close and Run Batch Mode

•  The number of batch jobs should now appear in the Batch dropdown menu [“Close Batch (2 jobs)”]. Run both batch jobs by first selecting Close Batch (2 jobs). Respond Yes when prompted whether to execute the batch process. The epoching process will start running during which time you will not be able to execute other Matlab commands. If you respond No you can run the batch process later by selecting Run Batch…. from the Batch dropdown menu. Note any non-executed batch settings will be lost if you close the group analysis window.

•  You can monitor progress in the Matlab command window, which is also a useful source of information should an error occur. The entire process will take about one half hour or longer, depending on processor and hard drive/network speed (e.g., this should approximately take 12 min on a Macbook Pro with a 2.6 GHz i7 processor, 16 GB RAM and 256 GB SSD). If batch processing completes successfully, two epoched datasets will have been created for each subject: ∗_WH_correctDef_4th.ds and ∗_WH_errorWH.ds, where ∗ indicates each subject’s ID number.

Preparing MRI Data

The preparation of MRI data includes the identification of fiducial placement required for the co-registration of MEG to MRI anatomy, as well as the need for spherical head models, which are used in the beamformer source localization calculation (see next section for more details). However, as mentioned in the introduction, the provided MRIs have undergone a de-identification process (i.e., a defacing tool that removes a large portion of the face). As such, much of the following preprocessing steps have already been carried out (including fiducial placement and the generation of FSL and CIVET cortical surface extractions) with the output files saved in the demonstration data package. Instead, this section will briefly discuss the generation of custom spherical head models using the provided pre-processed files generated with FSL (version 5.0.9). More options to create the necessary spherical models are available, particularly if FSL is not available (e.g., Windows users). See section III below or the user manual for more details.

Importing MRI Files

An anatomical MRI scan, typically a T1-weighted image, is required by BrainWave for the accurate co-registration of localized MEG activity to individual anatomy and subsequent template warping (using SPM) for group averaging. In the sample datasets provided, open the already converted DICOM to NIfTI file of each subject.

•  Open MRI Viewer from the BrainWave Main Menu and under File → Open MRI file…, navigate to the MRI folder (e.g., 001_MRI) and load the NIfTI file named 001.nii.

•  Use the brightness adjustment bar at the bottom of the window if the image appears too dark.

Fiducial Placement

•  View each fiducial position using the View Na, View LE and View RE buttons.

•  In the sample datasets, notice that such positions align to the three MEG head localization coil positions as marked to the center of each donut-shaped radiological marker7. Clicking anywhere within each view will move the orange crosshairs and subsequent position within the MRI volume. Saving new positions will update the fiducial position file (001.mat), but not necessary for this demonstration as the fiducials have already been optimally placed prior to de-identification. More details on how to set and save fiducials may be found in the user documentation.

Creating Customized Spherical Head Models Using FSL Surface Extractions

Single-sphere (and multi-sphere) head models are spherical conductor models of the head that are utilized in the simplification of the forward calculation of the brain’s magnetic field (Lalancette et al., 2011). To select optimal parameters (origin and radius) for these head models, the brain and three skull surfaces (inner skull, outer skull, and skin) are first extracted using FSL, if installed, from within the MRIViewer module. Alternatively, a convex hull describing the brain shape derived from third party software (e.g., CIVET and FreeSurfer) may also be used. Each surface type serves the purpose of optimally accounting for volume currents of a sphere, by fitting to the preferred inner skull surface (Hämäläinen et al., 1993), or aligned to the brain outer surface. The chosen surface will then be saved as the required surface shape (∗.shape) file for the head model calculation. Note that in MRIViewer shape data are in head or fiducial based coordinates (in cm), while surface data are in MRI voxel coordinates. The following steps perform the conversion between MRI voxel coordinates from the FSL.off file into CTF head coordinates and saved as the required CTF.shape format. However, other shape files can be loaded into BrainWave using the Head Models → Load Shape file menu option. In addition to shape files, this file options menu can be used to select KIT digitized head data (surface point files,.sfp), Polhemus data in a generic format (∗.pos files), or 3D data in GifTI format (.gii) for example to examine the accuracy of co-registration to digitized head surfaces, or use those surfaces to fit single or multi-sphere models. Here, we demonstrate the use of the FSL extracted inner skull surface (default option).

•  With the current MRI loaded (001.nii), go to Segmentation → Load FSL Surface… and select bet_inskull_mesh.off to load the inner skull brain surface.

•  Save this file as the required.shape file for the spherical head model calculation under Segmentation → Save FSL surface as shape… Name the file with an intuitive name (e.g., 001_innerSkull_FSL.shape).

•  Finally, load the saved shape file (001_innerSkull_FSL.shape) under Head Models → Load Shape File….

•  Go to the Head Models dropdown and select Create Single Sphere Head Model, then multi-select all epoched MEG datasets for that subject only. E.g., if 001.nii is loaded with the 001_innerSkull_FSL.shape file, select 001_WH_correctDef_4th.ds and 001_WH_errorWH.ds. Note that multisphere head models depend on the relationship between the head position and sensors, so it is necessary to independently compute and save the models for each individual dataset. However, single-sphere models do not have this limitation and can be copied to other conditions using the Copy Head Models option in the Group Analysis dialog.

•  Click Save to write a file called singleSphere.hdm to each dataset.

•  A preview of the calculated sphere will appear (Figure 3).

•  Repeat this Section “Creating Customized Spherical Head Models Using FSL Surface Extractions” for each subject. Ensure each epoched dataset per subject (e.g., 001_WH_correctDef_4th.ds and 001_WH_errorWH.ds) contains one file named singleSphere.hdm.
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FIGURE 3. FSL Surface Extraction. Example of the inner skull surface extraction using FSL for subject 001 (red dots), with an overlaid single sphere head model (blue circle).



Group Analysis

With datasets now prepared, the following sections will demonstrate the basic features of the toolbox. Section I describes how to setup the group analysis and conditions. Section II demonstrates group ERB analysis of time-locked (averaged) motor responses for two different conditions using common beamformer weights. Sections III to V demonstrate various options for viewing ERB images and time-courses and generate time-frequency plots. Sections VI and VII demonstrate the use of the SAM beamformer to image oscillatory motor activity and apply permutation thresholds. Finally, in section VIII, we demonstrate the ability to create a contrast SAM image between two conditions. For all examples, we provide recommended filtering and covariance parameters based on the initial analyses reported in Isabella et al. (2015). For a more detailed discussion of how to optimize parameter selection for beamformer methods, see (Brookes et al., 2008).

Prepare Study and Add Conditions

•  Open the Group Image Analysis module from the Main Menu.

•  Start a new study (File [image: image] New Study…), and save it as demo_STUDY.mat.

•  Go to File [image: image] Add Condition… and select all epoched datasets labeled ∗_WH_correctDef_4th.ds, where ∗ represents each of the subject ID’s. When prompted, name this condition correctDefault. Repeat to add errorWH datasets as a second condition. It is recommended to save changes frequently (File [image: image] Save Study) to avoid having to repeat these steps if you make an error.

Generate Group ERB Images With Common Beamformer Weights

It is important to note that the number of trials in the default condition is significantly greater than those in the error condition, and that the low number of trials in some subjects for the error condition can possibly result in unstable matrix inversions (Brookes et al., 2008). To avoid differences between conditions that might be biased by differences in the computed beamformer weights, BrainWave provides an option to automatically combine datasets across conditions for a covariance computation that should provide a less biased comparison of source amplitude changes.

•  To enable this option, under the Condition 1 dropdown menu, select correctDefault from the condition’s list and errorWH in the Condition 2 dropdown menu.

•  Choose the option for beamformer weight computation labeled Conditions 1 and 2 (common weights). This will create a concatenated dataset of conditions 1 and 2 (e.g., 001_WH_correctDef_4th+001_WH_errorWH.ds) to be used for the beamformer weight calculation.

•  Select the ERB: radio button, and set Latency Range window size from -0.3 to 0.3 s with the default 0.005 s step size window. Press Save.

•  Select Volume (MNI Coordinates) from the Image Type panel. Other image parameters such as Imaging Volume dimensions and voxel Step Size resolution (default is 4 mm) can be selected in the Image Options button pop-out dialog. Other options include using custom MRI templates for normalization, or applying a brain mask to the images (e.g., the inner_skull_mask.nii generated by FSL during creation of the head models). For most cases the default parameters are recommended.

•  Finally, set the data bandpass and covariance parameters using the Data Parameters button. In this example, we have selected a time window and filter settings that are optimal for observing the transient brain responses (movement related fields) and associated frequency modulations that occur before and after movement onset as shown in previous studies (Cheyne et al., 2006). Set High Pass to 1 Hz and Low Pass to 30 Hz, change covariance window (ERB/VS Covariance) from -0.5 to 1 s, and load singleSphere.hdm into the custom head model. Note that a small amount of diagonal regularization (10 fT RMS) of the covariance matrix (applied prior to computation of beamformer weights) is set by default. This amount can be adjusted depending on the data. For robust data (large amounts of trials) no regularization may be necessary. Conversely, for data that may have been modified during denoising procedures such as ICA artifact removal or signal-space separation methods resulting in rank deficient covariance, regularization may need to be increased until a stable image is obtained.

•  Go to File →Save Study to save all current parameters.

•  Clicking Generate Group Images will prompt for a group analysis image name (in this case, an ERB for the condition listed in the Condition 1 dropdown menu using the new combined datasets in the weight calculation). Choose a name for this group analysis on the condition selected under the Condition 1 dropdown menu (example: group_default_ERB). A progress bar will appear and detailed messages indicating each step will be output to the Matlab command window. When processing is completed, the new combined datasets will be created which will be displayed in the group ERB image 4D Image Viewer, normalized to the SPM template MRI (as specified in the Image Options dialog). This step will automatically generate combined datasets for common weight calculation, and run SPM to generate and apply the MNI template normalization parameters for each subject and may take several minutes or longer depending on processor speed.

•  Finally, with the group analysis window still open, select Condition 2 from the Generate Images for: panel to compute an ERB of the errorWH condition, using the same combined datasets in the common weight calculation. Keep all other parameters the same and click Generate Images to create a group ERB of the erroneous condition (recommended name: group_errorWH_ERB). Note that this analysis takes less time since we are using the same combined conditions and bounding box and both the covariance data and SPM normalization parameters have been computed in the previous step.

•  If the image set window is accidentally closed, or you exit BrainWave, all previously created group analysis images can be quickly retrieved from the Main Menu (File → Open ImageSet…, then navigate to the group image folder and open the ∗_VOLUME_IMAGES.mat file). Similarly, any previously generated group analysis, including all processing parameters, can be retrieved from the Group Analysis module ImageSets dropdown menu.

Navigating Images for Peak Source Activations

•  Using the scrollbar at the bottom of each group beamformer glass brain 4D image, view peak information by selecting the Show Peaks (avoid setting threshold to less than 10% of the maximum value when using this feature as this will significantly slow updating of the list). Highlighting a peak from the list will display crosshairs at the respective position.

•  In the present case, we are looking for a sensorimotor response where time zero is the button press. Keep scrolling until the peak reaches maximum strength of the motor field (Figure 4A). In the case of the correct default condition, magnitude strength will be located at a latency of approximately -50 ms (lower the threshold to ∼1.7 units), and the maximum peak location should read L Precentral Gyrus, BA 4 [Talairach Coordinates -38, -21, 54]. Repeat for the erroneous withhold condition where you will find peak latency at -70 ms (lower the threshold to ∼1.77 units) at L Precentral Gyrus, BA 4 [Talairach Coordinates -34, -25, 51].

•  You can optionally view individual subject ERB images using the Data dropdown menu of the group image window.


[image: image]

FIGURE 4. Viewing options. Examples of viewing options for source images. (A) Individual subject results can be overlaid onto their own MRI in the MRIViewer module. This example shows evoked activity (ERB) response of subject 002, overlaid onto their own MRI. Single subject or group images can also be viewed on a built-in template brain surface [FreeSurfer extracted pial surface from the Colin-27 (CH2.nii) average brain] or an averaged extracted pial surface from CIVET. (B) Shows an example synthetic aperture magnetometry (SAM) group analysis of a beta band (15–30 Hz) rebound peak, constrained to a CIVET extracted surface.



Optional Viewing Features

In addition to the default glass brain images, source peaks may be presented in various ways. One way is to render the source localizations onto a rendered three-dimensional brain surface image, or as a “heat map” onto the individual’s own MRI (see Figure 4).

Heat map overlay

The traditional “heat map” of an individual’s result on one’s own MRI is also possible within BrainWave (Figure 4A).

•  In the group ERB image, the Data dropdown menu will list the images of each subject analyzed for the current group image.

•  For demonstration purposes, select the beamformer results for subject 001_WH_correctDef.ds and navigate to the peak of interest at -50 ms. Under File, select Overlay Image on MRI…. This will open the individual’s own MRI within the BrainWave’s MRI Viewer, and will overlay the current thresholded peak in “heat map” form onto the MRI.

•  Adjust the threshold of the overlay using the Overlay Threshold scroll bar at the bottom of the window. The cross-hair cursor will automatically align to the largest peak.

•  If needed, click Find Peak button (also located at the bottom of the window) to re-locate this position.

Plot 3D

•  Within the group image for the correctDef condition, click the button labeled Plot 3D in the top right corner of the image window. This will generate a 3D rendered image (using 3D linear interpolation) of the group beamformer source volume of the current latency onto the Freesurfer extracted brain surface of the Colin-27 (CH2.nii) average brain8.

•  One may also generate beamformer images constrained to each individual subject’s cortical surface with sources placed at each vertex of the cortical mesh, with the option to constrain source orientation to be normal to the cortical surface (Figure 4B). To demonstrate this option, high-resolution CIVET surface extractions have been provided for all subjects.

•  To utilize surfaces for surface constrained beamformer analyses, change the Image Type by selecting Surface instead of Volume within the group (or single subject) analysis window.

•  Click Select, then choose from the CIVET files provided (e.g., CIVET_pial_SURFACE.mat). These files contain pre-calculated whole brain meshes co-registered to the subject’s MRI volume and the MEG head coordinates, along with associated data needed for surface imaging all saved in a ∗_SURFACE.mat file for each subject. Step by step instructions on the generation of these MAT files are provided in the BrainWave documentation and not repeated here.

•  You may optionally preview the surface by using the View dialog.

•  Set up your ERB or SAM analyses as usual. Select the Use surface normal constraints checkbox in Image Options if you wish to constrain the source orientation to be normal to the surface at each vertex. This option assumes co-registration errors are small. If not selected, the optimal orientation at each vertex is computed similarly to the scalar beamformer option for volumetric images.

•  Press Save, then click Generate Images to create a 3D plot rendering of all subject results (see Figure 4B for example beta rebound SAM result).

•  Various options for displaying inflated surfaces, rotating and peak finding within the 3D window are described in detail within the BrainWave user’s manual.

Generate Frequency Specific Time Course Plots From Peak Sources

BrainWave has been integrated with two options that illustrate various frequency-specific time-course plots for the selected source peaks. The BrainWave dropdown menu in each contains tools to adjust parameters specific to the calculated result, and are described in detail within the user documentation. All other editing options (e.g., line thickness, overlaying plots, adding legends, etc.) may be found under standard Matlab menu capabilities.

Virtual sensor (VS)

Compute peak source activity time courses of specific frequency ranges with a VS plot.

•  In the beamformer image, highlight a peak from the peak list and click Plot Group VS. The selected peak location will be converted to MEG head coordinates for each subject (unwarped) prior to computing the time series.

•  Choose Find largest peak within 10 mm search radius and click OK. This option attempts to use the closest peak location in each individual subject’s source image rather than the group mean, generating more accurate amplitude measures.

•  In this window, we can select our frequency range independent of what was calculated for the beamformer image using the Data Parameters pop-up. For now, we will keep these settings the same and close the Data Parameters window.

•  As some individuals may show varying dipole polarity differences, we are able to force all polarities into a single direction. In these example data, we have a known evoked motor field peak around the -50 ms time point for the correctDefault condition. Enable the Make Polarity Positive options under the Virtual Sensor Plot panel on the left, then enter -0.05 to force all peaks at this time point to display in the positive direction.

•  Click the Plot VS button to generate a group averaged time course.

•  Repeat this for both conditions (correct default and error withhold) where time zero is the button press. A combination of options in the BrainWave menu and standard Matlab editing tools (e.g., copy and paste) can be used to further customize figures, such as that shown in Figure 5 overlaying the VS time courses and their standard error for two conditions.
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FIGURE 5. Virtual sensors (VS). Illustrated here are the averaged VS plots calculated from the ERB peak of each condition. Correct default (in blue) and error withhold (in red) plots are displayed with shaded standard error bars using BrainWave tools, then edited to a single plot using Matlab’s figure editing tools (e.g., overlay, add legend, text size, etc.).



Time-frequency representation (TFR)

It is also possible to view the VS time-series data as a time-frequency representation plot, or TFR. This is useful for guiding the time-frequency analysis, and selecting time windows for SAM beamformers (as shown in the example shown).

•  In the beamformer plot, highlight the peak again within the plot list and click Plot Group VS then select Find largest peak within 10 mm search radius and click OK.

•  In this window, open Data Parameters and set the frequency range from 1 to 90 Hz. Click Save to exit the Data Parameters window.

•  In the Time-Frequency Plot panel on the bottom left, select the type of time-frequency transformation and parameters to be used. In this case we will use default settings: select Morlet wavelet transformation (recommended) with 1 Hz frequency bin size and a time-frequency resolution (approximate number of cycles per wavelet) of 7 [For details on the Morlet wavelet algorithm and choice of wavelet number see (Tallon-Baudry and Bertrand, 1999)].

•  Click on the Plot TFR button.

•  Repeat this for both conditions (correct default and error withhold) where time zero is the button press.

•  Note, phase-locked evoked responses can be removed from the TFR by selecting Power-Average from the BrainWave [image: image] Plot dropdown option (Figure 6).
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FIGURE 6. Time-frequency representations (TFR). TFR plots are useful as an aid in the identification of appropriate baseline and active windows for SAM beamformer analyses. Here, we demonstrate the chosen baseline window (red) and active window (black) within the beta band frequency (15–30 Hz), as well as suggested windows for theta band frequency (4–8 Hz), for a group SAM motor peak analyses. Time zero indicates button press. Note that removing the averaged evoked activity (power-average dropdown option within BrainWave) shows only non-phase locked activity, resulting in reduced power in both beta and theta bands. However, larger reductions are found in theta and remains higher in the error condition.



Generate Group SAM Beamformer (Beta Band – 15–30 Hz)

Determining optimal time and frequency windows of baseline and peak activity/rebound responses can be done using the TFR generated from the ERB image (Figure 4A) in guiding active and baseline time window selections (see Figure 6).

•  Open the group study window (Group Image Analysis button from the Main Menu) load the study (demo_STUDY.mat) under File [image: image] Open Study.

•  Set your Data Parameters to view beta bandpass with a high pass of 15 Hz to a low pass of 30 Hz, and ensure that singleSphere.hdm is selected.

•  Note that in this case, the covariance window only applies to computation of VSs as the SAM algorithm uses the baseline and active windows periods only to compute the weights for the pseudo-T images. Thus, we make no changes to the covariance window.

•  Choose the correctDef condition from the Condition 1 dropdown menu, errorWH in the Condition 2 dropdown menu, and select the customized beamformer weight computation called Conditions 1 and 2 (common weights), and Condition 1 from the Generate Images for option to create a group image for correct default condition, using common weights between conditions.

•  Select the Synthetic Aperture Magnetometery (or SAM) radio button, Pseudo-T and set the baseline window to -0.7 s (start) and -0.4 s (end), then set the active window from 0.4 to 0.7 s. Sliding windows are ideal in searching for peaks. However, for demonstration purposes, we describe the generation of a SAM image for the rebound peak (based on the beta windows found in Figure 6 TFR). Refer to the user documentation for more information on how to perform sliding window analyses.

•  Click Generate Group Images then save the group name as correctDef_beta_SAM when prompted. After several minutes, this will create a new glass brain beamformer within the beta band range (e.g., Figure 7A).

•  Unlike ERB images, SAM images are not rectified and can be displayed as positive or negative values (increases or decreases in power relative to baseline in the pseudo-T and pseudo-F images, respectively). Since the glass brain display can only show one polarity at a time, the Negative image data can be viewed using the Show Negative radio button.

•  In this example, to find the (positive) beta rebound peak, ensure the Show Positive radio button is enabled. Peak beta rebound location should be -30, -17, 51 L Precentral Gyrus, BA 4. In the next section, we will run a statistical permutation to determine the significance of this peak.

•  Repeat these same steps for error withhold, using the same active and baseline windows for comparable results between error withhold and correct data.
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FIGURE 7. Permuted Beta Suppression Peak. (A) Significant beta rebound peak with all voxels shown with a significance of P > 0.05 or higher. (B) The significance cut-off was determined using a permutation distribution plot which calculated all significant values to the right of the red vertical line.



Thresholding Using Permutation Tests

To statistically threshold source images, BrainWave includes a simple non-parametric permutation test (Nichols and Holmes, 2002; Chau et al., 2004; Lin et al., 2006) that can be applied to group volumetric images (with ROI options) or surface images that contain both positive and negative values (e.g., SAM pseudo-T images or any contrast image).

•  To view an example of this option, navigate to the beta rebound image from the previous analysis for the 0.4 to 0.7 s active window. Under the Data dropdown menu, click Permute Images to open the Permutation Test parameter selection.

•  Set Alpha to 0.05, select Corrected (omnibus) and Use ROI Xmin = -75, Xmax = 75, Ymin = -112, Ymax = 75, Zmin = -50, Zmax = 85. The Number of Permutations is set automatically based on the number of subjects provided. For 12 subjects, this number should read 2048 – the maximum number of iterations based on 2N, where N is the number of subjects. In BrainWave, the number of iterations has been optimized for about 11 subjects, with limitations on groups less than 8 (Chau et al., 2004). Optionally, you may select Plot Distribution to view the resulting permutation distribution histogram.

•  Click Run.

•  The resulting image will show all significant peaks (Figure 7A) at and above the significance threshold as indicated by the red vertical significance ‘cut-off’ line in the permutation distribution plot (Figure 7B). In the provided data, the beta rebound peak of interest appears as most significant. Selecting the confirmed significant peak from the Show Peaks window is now available for further waveform analyses as described earlier (e.g., VS or TFR). For more details see (Chau et al., 2004).

Generate Group Contrast Beamformer (Theta Band – 4–8 Hz)

Contrast images are also possible in BrainWave. Here, we will demonstrate the analysis of increased frontal theta (4–8 Hz) oscillations on error trials by creating an error minus correct (error > default) contrast image, with the use of common weights and creating a Pseudo-T SAM image subtraction.

•  In the Group Image Analysis window, open the Data Parameters window. Set bandpass to a low pass of 8 Hz and high pass of 4 Hz; covariance window to -2 to 2 s (to capture low frequency activity), and keep the same head model as above (singleSphere.hdm). Click Save to close Data Parameters.

•  In the Beamformer Parameters panel of the group image analysis window, set baseline from -1.5 to -0.5 s, and change the active window to -0.5 to 0.5 s.

•  Create a contrasted image by first setting Condition 1 dropdown to errorWH and Condition 2 dropdown to correctDef, then enable Condition 1 minus Condition 2 and select Conditions 1 and 2 (common weights) from the Compute beamformer weights using: panel.

•  Click Generate Images to run the test. Input a save name, e.g., theta_err-def.

•  The resulting image should show strong theta peaks in frontal brain regions (left medial frontal gyrus and right anterior cingulate).

•  To see VS timecourse differences of theta activation between both contrasted conditions, select the R Anterior Cingulate from the 4D image peak list, and click Plot Group VS.

•  For contrast images, VS and TFR plots will be automatically generated for both conditions unless otherwise selected from the dropdown list within the Time-Frequency Plot panel of the Virtual Sensor Analysis window. Ensure this is set to Plot Conditions 1 and 2 to generate both TFR plots for comparison. Set Data Parameter bandpass to 1 Hz high pass and 90 Hz low pass. Click Plot TFR.

•  In each TFR plot, change the plot mode to Power-Average (power minus average) using BrainWave [image: image] Plot dropdown menu to remove phase-locked evoked signal from the TFR. This will remove any low frequency power that might reflect the power in the evoked response rather than induced (non-phase locked) theta oscillations. The resulting TFR plots should appear similar to those as shown in Figure 6.

•  To view only theta oscillations in the form of a narrow-band time course plot, repeat the above steps to select a peak and generate a TFR, but change the low pass to 8 Hz and high pass to 4 Hz.

•  Remove phase-locked signal (Power-Average), then select BrainWave [image: image] Show Timecourse.

•  We can correct for signal averaging edge effects by setting the same baseline for each condition. To do this, go to Brainwave [image: image] Plot Parameters, then save Baseline as -1.5 s start time and 0 s end time in each figure.

•  Finally, set error bars (the standard error of all subjects at each time interval chosen) and color options from the BrainWave dropdown menu prior to overlaying plots using in-built Matlab figure tools.

•  The resulting image (after manually setting identical colorbar ranges for each plot using Matlab tools) is found in Figure 8. Note that the errorWH condition shows a large induced theta burst around time zero, while correctDef TFR shows little or no increase in theta activity at the same time.
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FIGURE 8. Theta. Time-frequency representations are shown for the R Anterior Cingulate peak (top) generated from a contrasted (error withhold > correct default) group theta band (4–8 Hz) beamformer as described. Note that the theta band power remains present in error peaks when phase-locked activity is removed (power minus average). A time course of the theta band TFR is represented (bottom) with shaded error bars for each condition described.





DISCUSSION

BrainWave offers a simple graphical interface Matlab toolbox for performing minimum-variance beamforming analysis of MEG data, with rapid and interactive visualization of evoked and induced brain activity. As demonstrated here, the latest implementation includes a group analysis module with automated processing steps to allow the computation and display of group averaged source images and time courses with minimal user intervention. The GUI interface simplifies setup time and eliminates the need to write customized Matlab code, yet can rapidly generate a four-dimensional source image dataset in several seconds through the use of compiled library routines on most notebook or inexpensive desktop computers.

Default options are provided to allow the rapid generation of source images and waveforms for exploratory analyses, while maintaining flexibility in the choice of preprocessing and modeling parameters. For example, we demonstrated here the ability to utilize data covariance from multiple conditions (“common weights”) to reduce spurious differences due to variations in the beamformer weights, as well as increased stability of the covariance matrix inverse for weight calculation (Brookes et al., 2008).

For brevity, only the basic steps to proceed from raw data to a group analysis using a simple Go/No-go task are described. More detailed tutorials with additional background information and examples of customizable options not covered in this tutorial, can be found in the software user’s documentation. Additional content includes the ability to use “surrogate” MRIs [using adult or child MRI templates (Holmes et al., 1998; Fonov et al., 2010)] if MRI data is not available; options for creating and viewing source time courses, including difference waveforms, and the ability to export source images and time courses to other software platforms for additional statistical analyses.

Although the current tutorial focused on group analysis, BrainWave also includes a separate module for single subject analysis. This is particularly useful for clinical applications where group averages are not performed. For example, importing externally selected epileptiform spike latencies to compute event-related ERB images around only those time points (Mohamed et al., 2013). These images can then be evaluated outside the toolbox for averaging or individual inspection. All image generation and display options described for group analyses are available in the single subject module, in addition to the ability to view source images in the non-normalized CTF coordinate system.

Human neuroimaging with MEG increasingly relies on the combination of structural and functional images to study the time-resolved activation of neural circuits distributed throughout the brain. This requires the integration of many different, and often complex, computational techniques to collect, organize and integrate large amounts of functional and anatomical data. Accordingly, the intended purpose of the BrainWave toolbox is not to provide an exhaustive library of signal processing and source reconstruction algorithms, but to integrate commonly used approaches to beamformer source analysis into a single platform for analysis and visualization. An important design philosophy for BrainWave is to provide a fast and interactive platform that is ideal for exploratory analysis of MEG data. This provides immediate visualization of localized sources and their time courses, with built-in peak finding and anatomical labeling, rather than a ‘black-box’ pipeline that requires the use of anatomical templates and separate tools or script building for data visualization.

BrainWave has been used in a number of published studies from our lab and others (Mohamed et al., 2013; Cheyne et al., 2014; Dockstader et al., 2014; Mersov et al., 2016; Pu et al., 2017) and has a growing user base. Enhancements and additions to the BrainWave toolbox with semi-annual releases are communicated to our user base and announced on our website. Future additions will include, but are not limited to: support for additional import and export file formats including new MEG vendor formats, as well as future standardized MEG data formats such as MEG-BIDS (Niso et al., 2018); improved methods for MEG-MRI co-registration and fiducial placement; an integrated equivalent current dipole fitting module; the implementation of PCA/ICA methods for extracting patterns of source activity; and additional statistical tests for group images and time-frequency analyses [e.g., waveform comparison analyses for multiple conditions (Guthrie and Buchwald, 1991)]. Other planned additions include more streamlined integration of the output of BrainWave with other analysis toolboxes that can perform secondary analyses, for example correlational or connectivity analysis (Granger causality, phase-amplitude coupling) between source time courses. We believe this approach will avoid unnecessary duplication of methods, and improve standardization of MEG analysis techniques based on beamformer source reconstruction.

Currently, BrainWave does require a dedicated processing machine with high demands for memory and graphics resources and is not suited for running parallel processes. Although the current version of BrainWave is not directly scriptable, Linux and Mac OS compatible command-line programs that can perform some of the core BrainWave functions are available on our website9 and can be used to build stand-alone scripts to generate images and waveforms. These are based on the same C++ library subroutines and the resulting output files are compatible with BrainWave with future potential for generating more efficient pipelines for large group analyses, while maintaining the visualization options available in the Matlab toolbox.
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FOOTNOTES

1 The fiff2ctf conversion program compilation (required for converting Elekta/Neuromag datasets into CTF format) is currently available for Linux distributions only. A Macintosh version is planned for future release.

2 KIT/Yokogawa users must first export their data using the BESA export feature.

3 http://talairach.org

4 https://figshare.com/s/2e1c6559cadae29429bc

5 Data from other manufacturers (e.g., .fif or .con files) must be imported using, File → Import MEG data…, which then converts each to the CTF .ds format in a single step.

6 Event marker labels: NewLightFiltered, the filtered photodiode light trigger of each visually presented stimulus; rightIndex, indicates a right index finger button press; nonTarget, event label of a non-target trial; Target, event label of a target trial (i.e., the number 3); errorWH, an incorrect withhold trial time-locked to the button press; correctDef, a correct non-target trial time-locked to the button press; correctDef_4th, every fourth trial of correctDef.

7 Fiducials are the identified positions of each MEG head localization coil. In this experiment, the nasion (Na) will roughly align to the bridge of the nose at the level of the middle of the eye, while the left (LE) ear and right (RE) ear positions will align to just anterior to the tragus of the ear.

8 http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27

9 http://cheynelab.utoronto.ca/commands
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Complex thought and behavior arise through dynamic recruitment of large-scale brain networks. The signatures of this process may be observable in electrophysiological data; yet robust modeling of rapidly changing functional network structure on rapid cognitive timescales remains a considerable challenge. Here, we present one potential solution using Hidden Markov Models (HMMs), which are able to identify brain states characterized by engaging distinct functional networks that reoccur over time. We show how the HMM can be inferred on continuous, parcellated source-space Magnetoencephalography (MEG) task data in an unsupervised manner, without any knowledge of the task timings. We apply this to a freely available MEG dataset in which participants completed a face perception task, and reveal task-dependent HMM states that represent whole-brain dynamic networks transiently bursting at millisecond time scales as cognition unfolds. The analysis pipeline demonstrates a general way in which the HMM can be used to do a statistically valid whole-brain, group-level task analysis on MEG task data, which could be readily adapted to a wide range of task-based studies.
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INTRODUCTION

It is likely that the brain supports complex thought and behavior by dynamic recruitment of whole-brain networks across millisecond time-scales. The signatures of these dynamics may be observable in M/EEG data, although robust modeling of the evolution of functional connectivity on rapid cognitive timescales remains a challenge (O’Neill et al., 2017a). Network dynamics are observable using sliding time-window approaches on both resting state (de Pasquale et al., 2010, 2012) and task data (O’Neill et al., 2017b). Yet the temporal resolution of sliding window approaches is limited, as each window requires relatively large amounts of data, typically several seconds in length. In particular, a short window length will give poor estimation of the graphical networks, while a long window length limits the visibility of fast time-scale in the sliding window analysis.

Alternatively, Hidden Markov Modeling can be used to segment observed data into a set of discrete functional states that reoccur over time. Hidden Markov Models (HMMs) do not require pre-specification of sliding window length, instead the relevant time-scales are learnt directly form the data. The HMM estimates adaptive state visits or ‘windows’ in a data driven manner. State-wise functional connectivity can be robustly estimated by pooling data across all visits to each state, though each individual visit may only last for tens or hundreds of milliseconds. The result is that the HMM is capable of identifying dynamic re-organization of whole brain networks on fast, milliseconds time-scales. Previous applications of HMMs to source MEG data have shown state switching between large-scale networks on the order of 100 ms (Baker et al., 2014).

The HMM can be used to flexibly characterize dynamic states across a range of data modalities and has been applied to an increasing number of tasks and datasets. This includes time-varying oscillations during finger tapping in source reconstructed MEG signals (Vidaurre et al., 2016), identifying processing stages during cognitive tasks in EEG (Borst and Anderson, 2015), and finding state sequences associated with perception and recall of narrative structure in fMRI (Baldassano et al., 2017). These examples show the ability of the HMM to represent behaviourally relevant dynamics within its states and state time-courses. This approach can be extended to explore the relationship between states and cognition in very large datasets using Stochastic Inference (Vidaurre et al., 2017a). For example, HMM states inferred on 820 fMRI datasets from the Human Connectome Project revealed a hierarchical temporal structure, where the switching and rate of occurrence of brain states was shown to be both heritable and predicative of psychological traits (Vidaurre et al., 2017c).

Here we present a group-level HMM analysis of source-space MEG data during a face processing task collected by (Wakeman and Henson, 2015). This demonstrates a general way in which the HMM can be used to do a statistically valid whole-brain, group-level task analysis on MEG task data, which could be readily adapted to a wide-range of task studies. This approach reveals task dependent whole-brain dynamics at millisecond time-scales as cognitive processes unfold. Two different HMM models are fitted to the data. Firstly we use an HMM on the broadband power envelope of source MEG signals, which is able to identify states with distinct networks of power, similar to the approach used on resting state MEG data in (Baker et al., 2014). Secondly, we use a time-delay embedded HMM on the raw source MEG signals, which is able to identify states with distinct multi-region spectral properties and phase locking networks, similar to the approach used on resting state MEG data in (Vidaurre et al., 2017b). The intention is not to statistically compare these two approaches but to provide some insight into their use and the information they provide. These two HMM variants provide an alternative representation of frequency domain task-responses as fast transient events of distinct multi-region spectral patterns. Each event on a single trial may only burst for tens of milliseconds, but following averaging across many trials can lead to an apparently sustained response in a similar manner to the work in (Shin et al., 2017).

We demonstrate the use of the HMM for the analysis of task data on a freely available MEG dataset in which subjects are viewing Face or Scrambled Face stimuli, while making a subjective decision about the symmetry of the image and responding with a button press (Wakeman and Henson, 2015). Completion of this task is expected to recruit visual perception, decision-making and motor processes in rapid succession over the course of a trial (∼1.5 s). The HMM provides a means to interrogate the dynamic recruitment of networks as these processes unfold within the brain on fast sub-second time-scales.



MATERIALS AND METHODS

Hidden Markov Models

Here, we summarize the Hidden Markov Model and its use for describing source-space MEG data. A detailed introduction to the general theory of Hidden Markov Modeling can be found in (Rabiner and Juang, 1986) whilst more detail on the specific implementation for MEG data can be found in (Rezek and Roberts, 2005; Baker et al., 2014; Vidaurre et al., 2016, 2017a)

A Hidden Markov Model (HMM) can represent dynamics in the brain as a system moving through a set of discrete states. The states are mutually exclusive, in that only one may occur at any one point in time (although this assumption is relaxed by the use of soft, probabilistic inference) and Markovian, in that the next state is only dependent on the current state. Critically, the states are abstract (hidden) and not directly observable from the data. The link between these hidden states and our observed data comes from an observation model (also known as emission probabilities or output probabilities). Each state has its own observation model defining a probability distribution from which our observed data is drawn whilst our system is in that state (see Figure 1A). This separation between the underlying state dynamics and the form of the observation models make the HMM a highly flexible framework. We may tune the observation model to suit a range of modalities or datasets whilst keeping the HMM inference and wider statistical framework constant.
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FIGURE 1. (A) A schematic of a Hidden Markov Model. Each sample at a given time point t is described as one of a set of discrete hidden states denoted by Xt. Each state has an observation model Y which characterized the distributions of the observed data whilst state X is ‘on’. (B) An illustration of a two node system moving through three HMM states. The observation model for each node is shown in the line plots to the left. Each state has a distribution for each node describing the observed values whilst that state is ‘on’. The time-series to the top right show the observed data for each node. The values are color-coded according to which state is on at each time point. Note that at each point in time the observed values are drawn from the distribution of the appropriate observation for that sample. The bottom row shows the true state time-course for the system.



In neuroimaging applications, the HMM observation model can be set up to match existing approaches in static functional connectivity estimation. For instance, a Gaussian Graphical Model can be estimated to provide a probabilistic description of functional brain data with a joint-multivariate normal distribution across brain regions. Such models are completely characterized by their covariance matrix (Bishop, 2006), which describes the functional connectivity within the network. This approach has been widely adopted for static functional-connectivity estimation in fMRI (Marrelec et al., 2006; Varoquaux et al., 2010) and MEG (Colclough et al., 2017). The HMM provides a temporal extension to this approach by tuning the observation model of each state to describe a distinct multivariate-normal distribution. In other words, each state’s observation model takes the same distributional form as a static functional connectivity estimate. The switching between states then describes switching between large-scale undirected Gaussian Graphical Models, each containing a description of the functional activity within the network (Baker et al., 2014). The observation model may be further tuned depending upon the specific needs of a dataset or modality, making the HMM a highly flexible framework. For instance, (Vidaurre et al., 2016) observes a multivariate autoregressive model describing the raw MEG time-courses.

When looking to characterize the spatial and temporal properties of the brain, the HMM uses a full network graph across N nodes, i.e., a [N × N] multivariate Gaussian process is specified at each time-point. The dynamics of this network over time (T) is described by the transitions between states in the state-time course. In contrast, models such as ICA (Brookes et al., 2011) or micro-states (Lehmann and Skrandies, 1984; Koenig et al., 2005) seek to decompose neural data into sets of activation patterns and their temporal evolution. The spatial component of these models are often referred to as “networks” despite the fact that they are not full network graphs and correspond to spatial maps defined by [N × 1] vectors; this is in contrast to the full [N × N] graphical networks used in the HMM.

As an illustration, Figure 1B shows how the HMM can be used to describe a simulated bivariate time-series. Here the observed data are generated using known Gaussian observation models and state time-courses from three states. For real data analysis, we would start with the raw data and the inference would estimate the parameters of the observation models and state time-courses. In our simulation, each states observation model generates data with different mean values for the two nodes summarized by the distributions on the left hand side of Figure 1B. The first state has a mean of zero in the first time-series and a mean of one in the second. The second state has a mean of -1 in both nodes and the third state has a mean of one in times-series one, and zero in time-series two. The observed data at each time point is randomly drawn from the distribution of the currently active state as defined by the state time-course.

Formally, the HMM requires us to pre-specify the number of hidden states (K) and the form of the observation models. The number of states (K) is important to explore when fitting a HMM to a new dataset. This is to confirm that the number of states is sufficient to provide a useful description of the dataset whilst ensuring that key results are robust to changing the number of states inferred. A number of approaches may be useful in exploring this. Firstly the final Free Energy in the HMM inference is an approximation to the model evidence and may be used to formally compare models. If we explore a set of HMMs with different values of K, we would prefer to take the model with the lowest value of free energy as this represents the model which best fits the data with the fewest parameters. In practice, the Free Energy is likely to monotonically decrease with increasing values of K making objective choice of the ‘best’ model difficult. A more subjective approach is to ensure that the results are valid across HMMs with different numbers of states. The HMM may be estimated with different values of K and compared. This approach is used in (Baker et al., 2014, Figure 2-figure supplement 1) to show that changing K did not change the topographies of the most prominent states. Finally, the inference in the HMM-MAR toolbox is adaptive to some extent, such that if K is higher than is supported by the data, then the variational inference scheme can prune out the excess of states. From a purely quantitative point of view, a more optimal estimation of the number of states would require the use of the so-called infinite Hidden Markov model (Beal et al., 2002), which is however less practical to apply on electrophysiological data due to its high computational cost (Nielsen et al., 2017).
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FIGURE 2. (A) A schematic for the preprocessing pipeline used prior to HMM analysis. (B) An illustration of the HMM definition, preprocessing and post-stats.



Software

All analyses are performed using freely available tools in MATLAB. The code carrying out the analysis in this paper can be found here: https://github.com/OHBA-analysis/Quinn2018_TaskHMM. This analysis depends on a number of other toolboxes and software packages. The preprocessing and source-space parcellation analyses are performed using the OHBA Software Library (OSL1). This builds upon Fieldtrip, SPM and FSL to provide a range of useful tools for M/EEG analyses. The HMM is inferred using the HMM-MAR toolbox2. All the software and scripts to carry out the analyses can be downloaded from the project hosted on the Open Science Framework (Quinn et al., 20183). The HMM analyses can be very computationally intensive even on a modern computer system. The analyses in this paper were computed on a Linux workstation with an Intel Xeon E5 CPU clocked at 1.90 GHz and 32 Gb of RAM. The analysis can be adapted to work on computers with less RAM by changing the Stochastic Inference Batch settings in the Stochastic Inference section.

Details on installation and setup of the dependencies can be found in the README.md file in the main study repository. In brief, the OSL and HMM-MAR toolboxes must be on the MATLAB path and initialised. Please note, that all file paths specified here are relative to the location of the download accompanying this paper, ie the paths assume that the top-level of the download is your present working directory. Firstly, the paths in scripts/+utils/get_studyinfo.m should be edited to specify the location of the downloaded toolboxes and data as well as the directory to save generated analyses into. utils.get_studyinfo returns a config structure storing these paths in and is routinely used within the other analysis scripts. Finally, the path to the downloaded scripts should be added add the top of scripts/hmm_0_initialise.m. Running this script adds all the relevant paths and toolboxes to the MATLAB path ready for subsequent analyses. The analyses depend on the use of SPM12 and FSL 5.0.9 on a unix-type system.

The following sections describe the pre-processing stages performed prior to Hidden Markov Modeling. These steps process the continuous data after Maxfilter processing through to source-space parcellated time-series. The descriptions are annotated with specific function calls where appropriate. More details can be found in the accompanying script hmm_1_prepreocessing.m in the “scripts” directory.

Data Acquisition and Experimental Design

Analysis was carried out on MEG data (acquired on a Elekta Neuromag Vectorview 306) in a freely available dataset in which 19 participants completed a simple visual perception task using pictures of faces (Wakeman and Henson, 20154; Revision 0.1.1). Each participant completed six scans in which they viewed sets of famous, unfamiliar or scrambled faces whilst making a perceptual judgment on the symmetry of the faces. Each trial begins with a fixation cross onset between 400 and 600 ms before a target stimulus appears. The target is either the face or scrambled face stimulus, and remains onscreen for between 800 and 1000 ms. Further details of the data acquisition and experimental design can be found in (Wakeman and Henson, 2015).

Data Preprocessing

A summary of the data preprocessing pipeline can be seen in Figure 2A. All the code for the preprocessing can be found in script hmm_1_preprocessing.m.

Maxfilter

The analysis starts with the MEG and structural MRI data downloaded from Revision 0.1.1 of (Wakeman and Henson, 2015)4. The online dataset includes both raw MEG datasets (eg., run_01_raw.fif) and MEG datasets that have undergone Maxfilter processing (eg., run_01_sss.fif). Maxfilter is a method for separating which parts of the recorded MEG signal arise from neuronal activity within the brain, and which come from external noise sources. In the interest of reproducibility, our analysis begins with the continuous MEG data that have already been processed with Maxfilter as described in (Wakeman and Henson, 2015).

Data Import

The first stage of hmm_1_preprocessing.m runs a short check to ensure that the maxfilter preprocessed data can be found in the location specified in the get_studyinfo datadir variable. The data are then converted to SPM12 format and copied into a spm_sss directory within the specified analysis directory. The import is performed using osl_import.m and the copy with spm_eeg_copy.m.

Coregistration

Registration between structural MRI and the MEG data was carried out using RHINO (Registration of Headshapes Including Nose in OSL). This uses scalp extraction tools in FSL and is designed to make full use of Polhemus head shape points, including those on the nose, during coregistration. In this case, the data provided by (Wakeman and Henson, 2015) has been de-faced to ensure participant anonymity in this publicly available dataset. As such, here we perform the coregistration using only the Fiducial landmarks, but generally recommend using a large number of Polhemous headshape points across the scalp, forehead and nose to ensure a high quality registration. The coregistration is performed using osl_headmodel.m.

The importing and coregistration steps process file structure and meta-data, and do not impact the MEG data itself. The following analysis stages all involve manipulation and denoising of the MEG data within the SPM12 objects in the spm_sss directory.

Downsampling and Filtering

The MEG data were down sampled to 250 Hz to reduce computational demands and the amount of disk space consumed by the analyses. Secondly, a band pass filter was applied from 1–45 Hz, to remove very slow trends and high frequencies in the dataset.

These steps are implemented using spm_eeg_downsample.m and osl_filter.m (a wrapper around spm_eeg_filter.m).

Bad Segment Detection

Time segments containing artifacts were detected using an automatic algorithm to ensure reproducibility and avoid user bias that may be introduced by manual artifact detection. Bad segments were rejected by identifying outliers in the standard deviation of the signal computed across all sensors in 1s non-overlapping windows. Outliers were identified using the generalized extreme Studentized deviate method (Rosner, 1983) at a significance level of a 0.05 and with the maximum number of outliers limited to 20% of the data set. The windows corresponding to the outliers were then marked as bad samples in the continuous dataset and excluded from subsequent preprocessing and analysis. The bad segment detection is performed using osl_detect_artifacts.m which returns an SPM object with any identified bad segments marked as artifact events.

Independent Component Analysis

Further de-noising was applied using temporal Independent Components Analysis (ICA) across the sensors using the FastICA algorithm (Hyvarinen, 1999) on only the ‘good’ time-samples remaining after Bad Segment Detection, and was run separately on each session of data. ICA separates a signal into a set of additive non-Gaussian subcomponents that are statistically independent from one another. These components may be inspected to identify components that describe ‘noise’ sources in the data. These noise components may then be removed from the analysis. Importantly, each Independent Component is the length of the whole recording and as such its removal will have some effect on every sample. Therefore, if a component identifies a short-lived artifact, its subtraction will still have an affect on the rest of the dataset. Given this, we use ICA to identify artifacts that reoccur regularly throughout the entire dataset such as eye movement and the heartbeat. Any short-lived artifacts or periods of high variance should be removed in the bad segment detection stage. If the ICA yields components with large brief artifacts, we recommend returning to the bad segment detection and ensuring that the duration of the artifact is marked as bad, before re-estimating the ICA on the remaining data.

The ICA components were correlated with the Electrooculogram (EOG) and Electrocardiogram (ECG) artifact channels to identify likely ‘noise’ components. Any components with a correlation greater than r = 0.5 were removed by subtraction of those spatio-temporal components from the decomposition. The results were checked by hand if: a) the session had zero or greater than four noise components, or b) if no candidate noise component was found for the EOG or ECG. On average, 2–3 components were rejected across the 114 scan sessions. The ICA is performed using osl_africa.m which performs the ICA estimation, automatic bad component detection and reconstruction of the data from the good components. This returns an SPM object with the ICA reconstructed data included as an online-montage.

Sensor Normalization

The Elekta Neuromag system contains both Magnetometers and Planar-Gradiometers. These sensor-types have variances on different orders of magnitude and so do not equally contribute to the covariance matrix calculation during beamformer estimation. To reduce this disparity, the two sensor-types were normalized prior to beamforming. An eigenvalue decomposition was computed across sensors within each coil type, and the data divided by the smallest eigenvalue within each (Woolrich et al., 2011). This was carried out separately on each session of data. This is performed using the normalize_sensor_data.m function within OSL.

Source Localisation

The continuous sensor data were projected onto an 8 mm grid in source space using a Linearly Constrained Minimum Variance (LCMV) vector beamformer (Veen and Buckley, 1988; Woolrich et al., 2011) carried out separately on each session of data.

The beamformer weights were estimated across an 8 mm grid cast within the inner-skull of the MNI152 brain. Defining the grid in MNI space ensures that we have the same number of grid points in each dataset and that the location of these points is comparable across participants. This is particularly relevant when applying the parcellation in the next section.

A covariance matrix was computed across the whole time-course and was regularized to 50 dimensions using PCA rank reduction. Note that Maxfilter reduces the dimensionality of MEG data to ∼64. Regularizing the covariance estimation to 50 dimensions removes the influence of the smaller components in the dataset and preserves the contribution from the largest components. A reduction to 50 dimensions was chosen as the SSS Maxfilter reduces dimensionality to ∼64, which ICA further reduces to ∼62 (an average of two ICA components were removed per dataset). A rank of 50 is conservatively below this upper limit on the dimensionality. The source localisation is performed using osl_inverse_model.m.

Parcellation and Leakage Reduction

Parcel-wise time courses were estimated and orthogonalised following the methods in (Colclough et al., 2015, 2016). A weighted (non-binary) parcellation with 39 cortical regions was applied. A single time-course was estimated per node from the first principle component across voxels, with voxel contributions weighted by the parcellation. Parcellation is performed using the ROInets.get_node_tcs function within the ROInets module of OSL.

Spatial leakage is a major confound when considering network connectivity estimates in MEG source space. This arises from the blurring of sources from their true locations into neighboring regions. To attenuate these effects, symmetric multivariate leakage correction was applied across the whole network (Colclough et al., 2015). This is a multivariate extension of previous orthogonalisation methods that identifies the set of orthogonal time-courses that are least displaced from the original, unmodified time-series. This is a conservative approach that removes all zero-lag correlation from the dataset, and could potentially be removing true neuronal functional connections at, or close to, zero-lag. One interesting alternative is the “innovations” approach, which looks to remove only the spurious zero-lag interactions, by effectively estimating the required orthogonalisation on the residuals of a multivariate autoregressive processes (Pascual-Marqui et al., 2017). However, this does require the choice of an appropriate model order for the multivariate autoregressive process; and in practice on real MEG data we have observed little difference between the “innovations” and “symmetric” leakage correction approaches. Another alternative is to build in models of the cross-talk functions into the spatial leakage correction (Hauk and Stenroos, 2014).

Orthogonalisation is performed in the first stage of hmm_2_envelope_estimation.m and hmm_3_embedded_ estimation.m as the two HMM variants are processed slightly differently immediately prior to inference.

Epoching

Epochs were defined based on the trigger channel in each session. Nine conditions were extracted. There are three repeat conditions (First, Immediate and Last) of each of three Face conditions (Famous, Unfamiliar and Scrambled). A trial structure containing the start and end samples for each epoch and the corresponding condition label was saved for each session for later use on the HMM state time-course. Crucially, the epoching was not applied to the MEG data used for the HMM inference, rather, the continuous MEG data is used without knowledge of the task structure or timings. For simplicity, HMM analyses use contrasts between the three Face conditions across all repeat conditions. Differences between the three repeat levels are not estimated in this analysis.

Epoching is performed using spm_eeg_definetrial.m within hmm_1_preprocessing.m.

Hidden Markov Model Inference

Two variants of the HMM were estimated. Firstly, an Amplitude Envelope HMM (AE-HMM) was estimated to describe broadband power following the methods in (Baker et al., 2014). Secondly, we estimated a Time-Delay Embedded HMM (TDE-HMM) to characterize spectrally resolved networks characterized by Power-spectral densities and phase-locking. We did not apply the HMM with Multivariate Autoregressive observations (Vidaurre et al., 2016) due to the number of channels (parcels) in this data, it is only effective at modeling a smaller number of signals. Both the AE-HMM and TDE-HMM are appropriate for application to large-scale brain networks inferred from parcellated source-space MEG data. A summary of the HMM definition, inference and post-statistics is shown in Figure 2.

Both the Amplitude Envelope HMM and Time-Delay Embedded HMM are specified through an options structure that is passed with the data to the hmmmar.m function. This structure specifies a wide range of options including the number of states to infer, the type of observation model, the nature of the inference and some optional preprocessing. More details of the range of options that can be specified here can be found on the HMM-MAR wiki page5.

The hmmmar.m function computes the inference of the HMM parameters and returns several key variables. Firstly, the hmm struct is the HMM-MAR object containing a range of details about the state estimates, training options and priors. More details can be found here6. Secondly, the Gamma and vpath variables contain the inferred state time-courses. Gamma contains the full a-posteriori probability of each state at each time point, whilst the vpath contains the hard state assignment for each time point (known as the Viterbi path) following a Viterbi Decoding.

Amplitude Envelope HMM

The Amplitude Envelope (AE-HMM) was used as described in (Baker et al., 2014). The AE-HMM infers a multivariate Gaussian model on the amplitude envelopes of the source time-series. This section accompanies the code in hmm_2_envelope_estimation.m.

Data processing

The source time-courses were band-pass filtered between 2–40 Hz and symmetrically orthogonalised (see section “Parcellation and Leakage Reduction”) before the amplitude envelope was computed using the Hilbert Transform. The envelopes were then smoothed with a 100 ms moving average filter and normalized to have zero mean and standard deviation of one. Bad segments that had been set to zero prior to ICA were removed from the dataset and the continuous ‘good segments’ concatenated. The locations of the discontinuities between the good segments were passed to, and accounted for, in the HMM inference. This is important, in order to ensure that the HMM does not try to explain temporally separated data samples; for instance, the final sample in one good segment being used to predict the first sample of the next. Finally, the normalized envelope data were temporally concatenated across participants. The resulting input to the HMM is a matrix whose first dimension is the total number of ‘good’ samples across all participants after concatenation and the second dimension is the number of parcels.

Observation model

The observation model for each of the K states is a multivariate normal distribution defined across N nodes. An N×1 vector of mean values, and an N×N covariance matrix are specified.

Time Delay Embedded HMM

The Time Delay Embedded HMM (TDE-HMM) was used as described in (Vidaurre et al., 2017b). The TDE-HMM infers a multivariate Gaussian distribution describing a delay-embedding of the source time-courses. This section accompanies the code within hmm_3_embedded_estimation.m.

Data processing

The source time-courses were orthogonalised using Multivariate Symmetric orthogonalisation (see section “Parcellation and Leakage Reduction”). Bad segments were removed using the same procedure as the preprocessing for the AE-HMM. The sign ambiguity in the beamforming process means that data from the same parcel from different sessions may have arbitrarily opposite signs. Across a group-level dataset this can lead to suppression between group-level phase relations between nodes. To reduce this effect we applied the sign-flipping algorithm described in (Vidaurre et al., 2017b).

The source-reconstructed time-courses for each parcel were then time delay embedded using L lags. Here we set L to be 15, with values between -7 and 7. At 250 Hz this specifies a 30 ms lag in both directions. Increasing this window will increase sensitivity to lower rather than higher frequencies. The embedding creates a large NLxS matrix where S is the number of time samples in the dataset. The first dimension of this matrix containing the spatial and lag information was reduced by projecting the matrix onto the first 4N components of a PCA. This resulted in a final data matrix of size 4NxS, which was then used in the HMM inference.

Note that the number of PCA components retained across the time-delay embedding in the previous step affects the range of frequencies visible to the HMM. In general, fewer PCA components will bias the HMM towards lower frequencies due to the fact that lower frequencies tend to explain more variance in the data. A choice of 2N recommended as the minimum value, though in this case we chose 4N to ensure that the model can observe higher frequency content such as beta band dynamics (15–30 Hz).

Observation model

Similar to the AE-HMM, the observation model for each of the 6-states is defined as a multivariate normal distribution. This analysis is designed to emphasize the oscillatory signals within the MEG source space data, as such we only model the 4Nx4N covariance matrix within each state. The mean is not modeled in this case, as we expect oscillatory signals to be zero-mean after filtering and normalization.

Stochastic Inference

Once the data has been pre-processed and the observation model defined, the inference is the same for the AE- and TDE- HMMs, and makes use of the stochastic variational inference described in (Vidaurre et al., 2017a). The options for stochastic variational inference are selected by the variables starting with BIG in the hmmar options structure (e.g., options.BIG∗). Critically, the options.BIGinitbatch and options.BIGbatch specify the size of batches to use in the inference. This must be shorter than the number of elements in the T variable (i.e., the number of continuous data segments). As a general rule, making the batch size closer to numel(T) will make the inference slower and closer to the standard, non-stochastic variational estimation. In contrast, making the batch size smaller will make the inference faster and less memory intensive, but potentially noisier. Here we select a batch size of 15, meaning that the inference will consider 15 continuous segments at each iteration. A batch size of 10 or 5 is recommended for computers running on less than 32 Gb of RAM. The Stochastic Inference will try to use the parallel processing pool in MATLAB by default. On a very high performance computer, or for ease of debugging, this can be turned off by setting options.parallel = 0. This method is tractable for very large datasets and allows for a fully Bayesian estimation, providing full posterior distributions for each HMM parameter.

Run-to-Run Variability

It is crucial to ensure that the HMM results is stable across multiple runs of the inference. This step can be assess by running the HMM multiple times and qualitatively comparing the results of each iteration. A single run can be selected from amongst the alternatives by taking the inference with the lowest value of free-energy at the end of the inference. The free-energy is an approximation to the model evidence and as such, the model with the lowest free-energy can be taken as the one which best explains the data without becoming too complex. Here, the HMM inference was repeated ten times and analysis proceeds with the iteration with the lowest free-energy.

HMM Global Temporal Statistics

Once the HMM has been inferred we can estimate a range of statistics reflecting the properties of the HMM states. The HMM inference returns a time course of posterior probabilities, Gamma, representing the probability that a state is on at each time point, and vpath, a Viterbi Path (Bishop, 2006) containing the mutually exclusive state allocations. Global statistics about the HMM dynamics were estimated from the Gamma time-course, as the posterior probabilities they represent are not mutually exclusive and are potentially more sensitive to cases where two or more states are approximately equally probable. First, the average life-time (also known as the dwell-time) of each state was computed as the average time elapsed between entering and exiting a state. Second, the fractional occupancy was computed across all time within a single participant’s dataset as the proportion of time spent in each state. Finally, the interval length was computed as the time elapsed between visits to a state. These metrics were computed in the same way for both variants of the HMM.

Example code can be found in the Temporal Statistics section of hmm_4_envelope_results.m and hmm_5_embedded_results.m, the computation uses the functions getFractional Occupancy.m, getStateLifeTimes.m and getStateInterval Times.m.

HMM Validation

The HMM is highly sensitive to differences in variance; whether they arise from dynamics in underlying neuronal behaviour, biological artifacts (such as eye or head motion), acquisition artifacts (such as sensor jumps, periods of flat data or zeros), or differences between scan sessions (sensor noise or gain). Ideally, the HMM should only represent biologically relevant differences with a neuronal origin, so particular care must be taken during data pre-processing and normalizing. Artifacts or differences in noise that we might normally expect to “average-out” across trials or sessions may still lead to considerable distortion in the HMM inference; if a state is describing an artifact, it cannot contribute to the description of the neuronal dynamics.

The following practical checks are performed on the temporal statistics of the of the HMM to identify whether we are describing data artifacts or between session/subject variance:

1. States describing artifacts or session specific noise are likely to exhibit unusual temporal statistics. If the overall fractional occupancy or lifetimes for one or more states are very different to the other states, then they may describe artifacts. This can be confirmed by manual inspection of the raw time-series during periods for which the state is on.

2. Similarly, the temporal statistics for the states should be relatively consistent across sessions and participants. If a single session (or participant) is described by a single state, it is likely that a session specific difference in gain or noise is driving the state time-course. If this is the case, then we should check that the data are appropriately normalized within sessions prior to concatenation.

In practice, these checks should be completed once the HMM has been inferred on a new dataset, to identify any remaining artifacts which may then be removed and the HMM re-inferred. Once this process is complete, we can be confident that the HMM is focused on relevant dynamics rather than spurious noise sources. In the present dataset, these checks were used iterate tuning of the parameters used in the automatic bad-segment and ICA component rejection.

HMM Task-Evoked Temporal Statistics

To see if the HMM state time-course, which has been inferred in an unsupervised manner with no knowledge of the task timings, shows task dependencies, we perform an analysis similar to an event-related potential/field on the Gamma time-course (i.e., the posterior probability of each state at each time-point). Specifically, the continuous time courses of the posterior probability, representing the probability that a state is on at each time point, were epoched around the presentation of the stimulus, and then averaged across trials within each participant. The resulting evoked fractional occupancy represents the proportion of trials in which the HMM was in a given state for each time-point within the epoch.

The evoked fractional occupancy was normalized by the baseline period (-130 to -30 ms before object onset), and the post-stimulus evoked fractional occupancy was passed into a two-level GLM. The first level GLM fits the evoked fractional occupancy across trials at each time-point for each participant using a trial-wise design matrix, and the second level computes the effect across participants at the group level, while modeling the between-subject variance as a random effect.

The first-level GLM has a design matrix with four regressors: a constant vector representing a mean-term and three regressors representing each trial-type by selecting the trials of each trial type from the famous face, unfamiliar face and scrambled faces conditions. The three condition regressors were demeaned prior to fitting the GLM. The parameter estimates for these predictors are summarized with three Contrasts Of Parameter Estimates (COPEs). One mean COPE and two differential contrasts are computed from the resulting parameter estimates. One contrast between faces and scrambled faces, and a second between the famous and unfamiliar faces.

The first-level estimates were carried forward to the group level, where the mean of each of the first level COPEs were fitted across participants with the first-level VARCOPEs included as a mixed-effects term. Statistical significance at the group-level was assessed using non-parametric permutations by sign-flipping (Nichols and Holmes, 2002; Winkler et al., 2014). One thousand permutations were computed with a maximum statistic taken across time and states to correct for multiple comparisons. A time-point was considered to be significantly different from baseline if its group level cope exceeded the 95th percentile of the null distribution. These statistical procedures represent a test again the null hypothesis that the distribution of first level COPEs for each contrast has a zero mean. This is a standard approach for group-level statistics in neuroimaging (Winkler et al., 2014; O’Neill et al., 2015, 2017a). Other established statistical approaches could also be applied to the epoched Gamma time-courses, such as Fieldtrip’s timelock statistics7.

Spatial Maps and Connectivity

The spatial distribution of power or connectivity can be estimated directly from the fitted state-specific distributions in the observation model. For example, if we have a Multivariate Normal observation model fitting the mean and covariance of power envelopes, we may take the expectation of those distributions as the characteristic power and functional connectivity (in the form of power correlations). This provides an absolute value for each dimension of the observation model that highlights the features driving the inference. This method was applied to the results of the AE-HMM to generate state-wise mean activation maps directly from the values in the observation model. More specifically, the spatial maps from the AE-HMM are computed directly from the observation model by taking the expectation of the posterior distribution of the mean envelope value for each state and parcel. The inferred parameters of these distributions are contained within hmm.state. Example computation can be found in the Mean Activation Maps section of hmm_4_envelope_results.m.

We may also estimate a state’s characteristics post hoc by computing metrics across all time points when a particular state is being visited. This is more computationally intensive than direct description via the observation model, but allows for a wide range of state descriptors to be used beyond the information directly available in the observation model. This approach was used to estimate state-wise Power and Cross Spectral Densities from the results of the Embedded HMM. A state-wise multi-taper was used to estimate power and phase-locking coherence from the raw data weighted by each state’s posterior probability following the method in (Vidaurre et al., 2016, 2017b). This was repeated for each state and each parcel and was used as the basis of a whole-brain power map or Coherence (Nunez et al., 1997) network analysis.

The state-specific spectra are computed for the TDE-HMM analysis in the Statewise Spectra section of hmm_3_embedded_estimation.m. This makes use of the hmmspectramt function to compute the multitaper spectrum for each parcel and state separately for each participant. These are visualized in hmm_5_embedded_results.m.

Spectral Modes

The Power and Cross Spectral Density across the parcellation was computed from the spectral range of 1–40 Hz for each state. To aid visualization, Spectral modes are then computed by computing a Non-Negative Matrix Factorisation (NNMF) across the PSD estimates. The factorisation is carried out across all nodes, connections, states and participants. This was computed across 500 replicates of the Alternating Least Squares algorithm implemented in the MATLAB Statistics Toolbox (Berry et al., 2007). This is a data driven approach for spectral factorization and avoids setting arbitrary frequency bands of interest. The NNMF computes a low-rank approximation to the full solution. As this model is not unambiguously defined, the results can vary on repeated runs. Therefore, to ensure that the resulting spectral modes are interpretable as separate frequency bands, the NNMF was repeated twenty times an the results whose spectra was best approximated by single Gaussian distributions selected as the final result. This ensures that a factorisation with approximately unimodal spectra is used to visualize the HMM states. The four spectral modes approximately correspond to theta, alpha, beta and low gamma bands (see the central column in Figure 5). State-wise spatial maps and coherence networks were then estimated for each spectral factor and also thresholded for visualization using the GMM approach described above.

The NNMF is computed in the Spectral Mode NNMF section of hmm_5_embedded_results.m using the utils.run_nnmf.m function.

The NNMF is an optional step that avoids the specification of a priori frequency bands, however the user can choose to work within specific frequency bands if preferred. This is achieved by indexing into the frequency dimension in the psd or coh variables created by the multi-taper estimation in hmm_3_embedded_estimation.m. This approach is applied to generate the ‘broadband’ (1–30 Hz) network plots in Figure 4.

The phase-locking Coherence networks were thresholded for visualization using a Gaussian Mixture Model (GMM), as described in (Vidaurre et al., 2017b). This takes the distribution of all connection strengths, and models it as a mixture of two Gaussians, corresponding to one population of with typical connection strengths, and population with connection strengths that have unusually high values. Only the connections that are more probable to have been drawn from the Gaussian representing the high-valued population of connections (with the higher mean) are shown in the results. If the distribution is well described with a single Gaussian, we do not show any connections. This is implemented in the teh_graph_gmm_fit.m and used at the end of the Spectral Mode NNMF section of hmm_5_embedded_results.m.



RESULTS

Amplitude Envelope HMM

The Amplitude Envelope HMM is inferred on the amplitude time-courses, and can identify states characterized as having distinct multi-region spatial patterns of amplitude and/or amplitude correlations.

Global Temporal Statistics

The global temporal properties of the HMM are inspected through the state time-courses and posterior probabilities. The fractional occupancies, average lifetimes and interval times are summarized in Figures 3A–C. By inspection, we can see that the temporal properties of the states are relatively consistent. The average lifetime is around 100 ms and the mean interval is around 500–1000 ms, both consistent with previous literature (Baker et al., 2014). One exception is State 1, which has a much longer interval time of around 2.5 s, consistent with its lower occupancy.
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FIGURE 3. Results summary for the Amplitude Envelope HMM. The right column shows the overall temporal statistics estimated from the continuous data without considering task structure. The fractional occupancy (A), Lifetimes (B) and Interval times (C) are shown. The middle column shows the group level results of the GLM analysis computed from the task-evoked fractional occupancies. (D) Shows the mean change in occupancy across all trials relative to baseline. Periods of significant change are indicated by a solid line at the bottom of the plot color-coded to state. (E) The result of the differential contrast between the Face and Scrambled Face stimuli. (F) The results of the differential contrast between the Famous and Unfamiliar face stimuli. (G) The mean activation maps for the six states extracted from the HMM observation models. The activation in each state is z-transformed.



Although all of the HMM inferences were blind to any knowledge of the task timings or structure in the data, the state dynamics may still have captured task relevant changes. These may be recovered by epoching the posterior probabilities of each state and averaging across trials for each time point in the epoch, to create the task-evoked fractional occupancy. Task-evoked analysis can then proceed on a state-by-state basis with the epoched posterior probability of each state. The results for the two-level GLM analysis of the trial-wise posterior probabilities of the HMM state time-courses can be seen in Figures 3D–F. The horizontal bars indicate periods of time which show significant increases in probability after sign-flipping permutations with maximum statistic multiple comparisons correction. All the states show some degree of modulation in their occupancy after the stimulus onset. We focus on the states whose occupancy increases. As the probability of each state must sum to one at any time point, an increase in the probability of one state will lead to a decrease in one or more of the others.

Figure 3G shows a spatial map of the mean amplitude envelope across all parcels in each state, this is taken as the expectation of the posterior distribution of envelope mean in the observation model. As with the previous application of the envelope HMM (Baker et al., 2014), these spatial maps reveal an interpretable set of networks. As the networks in this study come from data within a task context, they do not show an exact correspondence with the resting state networks as seen in (Baker et al., 2014). Instead, they reflect networks that are associated with the processing demands imposed by the visual decision-making task incorporating a motor response.

Next, we focus on individual states showing significant increases in occupancy relative to the pre-stimulus period.

Early occipital response

State 4 shows the earliest increase in task-evoked occupancy, peaking around 150 ms after stimulus onset with an increased occupancy of around 13% (Figure 3D). Neither of the condition contrasts between Faces and scrambled faces show a significant change in occupancy (Figures 3E,F) though the Faces>scrambled faces contrast shows a slight increase during the same time-window. This state is characterized by high values in the mean amplitude envelope across occipital cortex relative to the other states (Figure 3G). Given the timings and spatial distribution of the power of this state, it is likely to reflect the early visual processing of the stimuli.

Frontal response

State 5 has a sustained increase in occupancy during the latter part of the epoch, between 350 and 800 ms (Figure 3D). The increase reaches significance around 100 ms after the peak of state 4 and has dropped below threshold by the time of the average response at 932 ms. The contrast between Faces and Scrambled faces shows that the face stimuli have a larger occupancy than scrambled faces between 500 and 700 ms after stimulus onset (Figure 3E). In addition, the contrast between Famous and Unfamiliar faces reveals that famous faces lead to a greater occupancy in state 5 than unfamiliar faces during the same time-window as the previous contrasts, though the magnitude of the effect is much smaller. State 5 is characterized by high values in the mean envelope amplitudes in the frontal lobe relative to other states (Figure 3G).

Non-task responsive states

While not showing any significant changes in occupancy when locked to stimulus onset, the remaining states still characterize meaningful networks related to overall brain dynamics independent of the task of interest. State 2 is associated with high envelopes in the occipital and frontal lobes; and shows a small, non-significant increase in occupancy around 100 ms after stimulus onset. State 3 shows a left-hemisphere-lateralized fronto-temporal network whose task-evoked occupancy is similar to State 5.

Time-Delay Embedded HMM

The Time Delay Embedded HMM is used on the raw time courses, rather than on the envelope time courses as is the case with the Amplitude Envelope HMM. Furthermore, it has the potential to identify states that have distinct multi-region spectra and/or phase locking networks.

Global Temporal Statistics

As with the Amplitude Envelope HMM we can inspect the state time-courses to characterize their global dynamics (Figures 4A–C). All six states have similar fractional occupancies of around 15–20%, with state 2 occurring less than the other five states. The lifetimes of the Time Delay Embedded HMM states average between 50 and 100 ms, slightly faster than the Amplitude Envelope HMM. This is a reflection of the faster dynamics within the raw time-courses that are lost when computing the amplitude/power envelopes. The interval times average around 500 ms, with the exception of state 2 that takes around 1–2 s to reoccur, consistent with its lower global occupancy.
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FIGURE 4. Results summary for the Time-Delay Embedded HMM, Note that these results are independently estimated from the results in Figure 3. The right column shows the overall temporal statistics estimated from the continuous data without considering task structure. The fractional occupancy (A), Lifetimes (B) and Interval times (C) are shown. The middle column shows the group level results of the GLM analysis computed from the task-evoked fractional occupancies. (D) shows the mean change in occupancy across all trials relative to baseline. Periods of significant change are indicated by a solid line at the bottom of the plot color-coded to state. (E) the result of the differential contrast between the Face and Scrambled Face stimuli. (F) the results of the differential contrast between the Famous and Unfamiliar face stimuli. (G) The mean activation maps and Coherence networks for the six states extracted from the post hoc multi taper estimation. These results reflect wideband activation in each state and are z-scored across parcels.



As with the Amplitude Envelope HMM, the state-wise task dynamics are recovered by epoching the posterior-probabilities of each state time-course and computing two first-level GLM fits, the first isolating the grand mean and the second computing contrasts between the Face and Scrambled face stimuli and the Famous and Unfamiliar Face stimuli. These results can be seen in (Figures 4D–F). In contrast to the Amplitude Envelope HMM, here we describe the states in full frequency resolution by computing the Power and Cross Spectral Densities using a multitaper on the raw data weighted by the posterior state probabilities. The wideband Power Spectral Density maps can be seen in Figure 4G.

Next we describe individual states that show significant task responses.

Early occipital response

State 1 has a significant increase in occupancy across trials around 150 ms after stimulus onset (Figure 4D), this increase is larger for the Faces than the Scrambled Faces stimuli (Figure 4E), but does not significantly differ for the Famous and Unfamiliar Faces (Figure 4F). The PSD shows that state 1 has relatively large broadband PSDs and coherences within the occipital lobes. This state is generally similar to State 4 in the envelope HMM, but we are now able to resolve coherence and a significant difference between the stimulus conditions.

Fronto-temporal response

Shortly after the occipital response, State 5 shows an increase in task-evoked occupancy. This increased probability is sustained from just before 200 to around 800 ms (Figure 4D), the increase is significantly larger for Faces than Scrambled Faces stimuli around 190 ms after stimulus onset (Figure 4E), this difference is very short-lived compared to the sustained increase in the mean across conditions, suggesting that the onset of State 5 might be earlier for Face stimuli. There is no significant difference between the Famous and Unfamiliar faces (Figure 4F). State 5 is characterized by a fronto-temporal power distribution with a peak in the Right Hemisphere temporal pole (Figure 4G). There is not an equivalent state in the envelope HMM, which only shows the occipital response within 200 ms of stimulus onset.

Frontal response

State 3 shows a sustained increase in task-evoked occupancy between 300 and 800 ms (Figure 4D). The occupancy of this state is larger for Face than Scrambled Face stimuli between 550–700 ms (Figure 4E) and briefly larger for Famous than Unfamiliar faces around 750–800 ms (Figure 4F). The power distribution of this state localizes it to within the frontal lobes. This state is similar to State 5 in the Amplitude Envelope HMM.

Post-movement motor response

Finally, State 6 has an increased occupancy starting from 1300 ms after stimulus onset (Figure 4D). Crucially, this occurs around 400 ms after the average response time from the button press, coinciding with the expected timing of the post-movement beta rebound. The power distributions of State 6 show power in left hemisphere motor cortex and right hemisphere parietal lobe (Figure 4G). This response shows no significant difference for either of the condition contrasts.

Non-task responsive states: State 2 and 4 do not show any significant changes in task-evoked occupancy (Figure 4D), or in either of the condition contrasts (Figures 4E,F). They correspond to a lateral occipital and a motor state respectively.

Frequency Resolved State Description

We have only considered the wideband spectral content of the HMM states up to this point, yet the power correlations and coherence in MEG networks are known to differ across frequency (Hipp et al., 2012). Next, we breakdown the task responsive states to describe their frequency content as a complement to the results in Figure 4. A NNMF is used to identify modes within the power spectra across all participants and nodes. As this factorization is not uniquely identifiable, it was run several times until the resulting modes were unimodal to ensure that the results are readily interpretable, effectively imposing the prior assumption that we wanted to identify modes that were indeed unimodal. Figure 5 gives a summary of the power and phase-locking of the task-responsive states from the Time-Delay Embedded HMM across the three identified NNMF modes, which broadly correspond to low-frequency, alpha and beta bands.
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FIGURE 5. The spectrally resolved power maps and network coherence plots for the four task responsive states in the Time-Delay Embedded HMM. A shows the band-limited power for state 1, which showed an early increase in task-evoked occupancy. The top, middle and bottom rows show the power and connectivity for the low, alpha and beta bands respectively. (B–D) show the responses for the three other task responsive states with the same layout as (A). (B,C) show that the majority of the power and connectivity in states 3 and 5 reside in the low frequencies in frontal cortex. Finally, (D) shows that the later responding motor state 6 is characterized by high power in the motor cortex.



The power and coherence in State 1 reside almost exclusively in the alpha band (Figure 5A). In contrast, States 3 and 5 are characterized by low-frequency power and coherence in the frontal lobes (Figures 5B,C). Finally, the motor activation in State 6 is strongest within the beta band (Figure 5D).

HMM Reconstructed Time-Frequency Responses

As the Time Delay Embedded HMM provides us with a time-course and a spectrum for each state, we can use this to construct an alternative to task evoked standard time-frequency plots. Figure 6 shows a summary of the TF response estimated by a 5-cycle wavelet transform and by the sum of the state-wise outer product of the task-evoked occupancy and the state PSD. The HMM-reconstructed TF response can be thought of as a regularized (or low-rank approximation) of the full TF plot and reflects the dynamics as represented by the HMM. Note that the task-evoked occupancy is the same for each parcel, the difference between parcels is carried by the spectrum, which is estimated for each parcel and state using a multi-taper.
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FIGURE 6. The time-frequency responses from two parcels estimated by Wavelet transform or constructed by the task-evoked state occupancies and state-wise power spectra. (A) A 5-cycle wavelet and the HMM constructed Time-frequency plot for the Occipital Pole parcel time-course. The state-wise spectra are shown in the left-hand subplot and the task-evoked occupancies in the bottom subplot. The overall time-frequency response is constructed from the outer product of these vectors summed across states. (B) A 5-cycle wavelet transform and HMM constructed Time-Frequency plot for a Motor cortex parcel.



The HMM-reconstructed TF responses are able to reconstruct the most prominent features of the wavelet plots. Figure 6A shows the response within the Occipital Pole. The HMM plot is able to characterize an early increase in alpha, followed by a desynchronisation and rebound around 1300 ms after stimulus onset (Figure 6B). This is primarily carried by the alpha power and early task-evoked occupancy change within State 1. In contrast, the response in parietal cortex does not show a strong evoked response (Figure 6C). Instead it is characterized by a more sustained increase in low-frequency or Theta power between stimulus onset and the button press followed by a rebound in Beta power. The HMM is able to reconstruct these patterns of activity using States 5, which is associated with low-frequency power in this parcel; and State 6, which shows a beta peak (Figure 6D).



DISCUSSION

Hidden Markov Models can describe the switching dynamics of large-scale brain networks on short, cognitively relevant time-scales. Here, we outline how a HMM can provide a framework for describing trial averaged induced power changes in task MEG data. Crucially, the HMM is able to describe dynamics arising from either sustained increases in oscillatory power or increase in the rate or amplitude of transient bursting activity. This rich description of rapid network dynamics in brain networks is tractable at both fast time-scales and across large-scale brain networks. The present results show that rapid switching between large brain networks estimated without knowledge of any task structure can carry pertinent task structure and provide a rich description of how the brain solves a task by dynamic reorganization of large-scale brain networks. The AE-HMM and TDE-HMMs yield broadly consistent results, though the TDE-HMM – working on the raw time-series rather than collapsing by broad-band enveloping – is directly sensitive to spectral content and is able to resolve a richer description of the task structure at higher temporal resolution including phase relationships among multiple regions.

Statistical Assessment

Statistical testing of dynamic networks can lead to combinatorial explosion of tests across connections, time and experimental conditions. In electrophysiological data, frequency often becomes an essential additional dimension. This leads to both difficulty in establishing and summarizing the most salient effects in the data and ensuring that multiple-comparisons correction is carried out appropriately. The HMM aids in both of these issues. The state observation models naturally provide high-level summaries of the data and statistics can be performed on a limited number of state time-courses rather than across individual parcels, connections and frequencies. As such, the HMM is able to describe complex, dynamic networks in a tractable, interpretable and statistically both valid and efficient way.

Transient States and Bursting Oscillations

The task-evoked structure within this paper arises from epoching the HMM state time-courses after inferring state time-courses without knowledge of task events or timings. The resulting task-evoked occupancies are smooth and often imply sustained changes in occupancy throughout the task epoch, yet they are constructed from transient states that are discrete at the single trial level. For instance, state 5 in the TDE-HMM shows a sustained increase in task-evoked fractional occupancy lasting around 600 ms starting from 175 ms after stimulus onset. Yet, the average lifetime of each state visit for state 5 is around 80 ms. This result is in line with recent work which suggests that task-evoked time-frequency responses occur from brief bursts of oscillation which only appear to be sustained once we average across trials (Shin et al., 2017). This bursting perspective suggests that some neuronal oscillations arise from transient events that may be better characterized by their rate or duration rather than absolute power. Indeed, such parameters are cognitively relevant across a range of data modalities (Shin et al., 2017). In addition, deep brain stimulation selectively targeted at transient bursts in beta power outperforms tonic stimulation in reducing motor impairment in Parkinson’s Disease (Tinkhauser et al., 2017). In that respect, HMM – by its discrete nature on single-trial level - might help to uncover mechanisms such as oscillatory bursting that so far have been buried in the averages performed by conventional time-frequency analysis.

HMM in Relation to Sliding Windows and ICA

Hidden Markov Modeling addresses some of the limitations of sliding window approaches for estimating dynamic functional connectivity (O’Neill et al., 2017a). Whilst sliding window methods estimate connectivity within short, uniform data segments spanning the continuous time-series, the HMM decomposes the data efficiently and unsupervised by inferring adaptive data segments for each state and estimating the connectivity across all visits to that state. This removes the necessity of pre-specifying window length and the need for windows to be sufficiently long to robustly estimate a large-scale functional connectome. Instead, the features of these windows (such as distribution of life-times etc.) become interesting properties in themselves; they are accessible to analysis and might carry functional significance.

While we are proposing that the HMM helps to overcome some of the limitations of sliding window approaches, clearly sliding-window approaches are still important and useful. This includes when working at slow time-scales, for which the requirement of using longer windows is not prohibitive; and when working with metrics of functional connectivity that cannot be straightforwardly represented as a generative model in the HMM.

Another alternative approach to network dynamics is temporal ICA estimation, which identifies components within a dataset based on their temporal independence. A shortcoming of ICA is that standard ICA components are based exclusively on spatial features. HMM states, instead, are probability distributions that can capture rich spectral properties in the data, including information of power and phase. This is the case of the embedded HMM and the HMM-MAR. The HMM thus provides a more powerful approach for characterizing spectrally-defined networks in electrophysiological data.

Limitations

The choice of parcellation is an important preprocessing stage; parcellation is a spatial dimensionality reduction that makes the HMM network modeling more tractable and robust to small spatial variations across participants. The choice of atlas is crucial; it defines the sampling across space and will ideally reflect the effective resolution of the underlying source solution. Here, we have used a cortical parcellation from (Colclough et al., 2015). This 39 region parcellation has been previously used to reliably estimate large-scale static functional connectivity networks in MEG (Colclough et al., 2017, 2016). The use of such a relatively coarse parcellation is consistent with evidence that the effective dimensionality in MEG source space (following Maxfiltering) is approximately 64 (Taulu and Simola, 2006), and with the findings from an adaptive parcellation approach (Farahibozorg et al., 2018). Nonetheless, exploring the definition of ‘optimal’ functional parcellations is an active field of research in both fMRI and MEG (Glasser et al., 2016; Farahibozorg et al., 2018). Note that the pre-processing code can easily make use of a different parcellation by inputting a different nifti file into the ROInets.get_node_tcs call in hmm_1_preprocessing.m. However, it should be noted that the number of parcels should be less than the rank of the data (which in our case was ∼60 following Maxfilter and ICA denoising) in order for the spatial leakage correction to work, and which is clearly a sensible constraint to apply regardless.

The HMM makes a number of assumptions to ensure that the inference is tractable. Firstly, we assume a fixed number of states (K). The objective is not to establish the ‘correct’ number of states, but to identify a number that provides a description of the dataset at a useful granularity. This is analogous to the choice of the number of components in an ICA decomposition. Nonetheless, as in ICA, care must be taken to ensure that the results are reasonably robust to the choice of K. Here we followed the approach in (Baker et al., 2014) who explored the network maps from a range of choices of K. Increasing K above 6 did not change the topologies of the most prominent states or their task profiles. For simplicity in this tutorial paper, this test was performed on the envelope HMM and applied to both the AE-HMM and TDE-HMM.

Another core assumption in the HMM is that the states are mutually exclusive, in that only a single state may be active at a single time-point. This may be potentially undesirable in descriptions of brain dynamics in which multiple networks are often though to operate in parallel. However, the Bayesian implementation of the HMM inference used here provides the posterior probabilities of each state at each time point are also returned in the variable Gamma. These posterior probabilities are not mutually exclusive and may identify times in which two or more states are equally probable. Further, it is worth noting that network multiplexing can also be realized at slower time scales, for example, through temporal correlation of the rate of occurrence of state fractional occupancies at slower time scales. Addressing the information contained in the state time courses at multiple time scales is an important area for future investigations.

Future Work With HMMs

The HMMs presented in this paper are designed to explore whole brain states during continuous data recordings that are then interrogated to explore state-wise task dynamics. As such, the results focus on the large-scale trends in power and functional connectivity during the task leading to networks describing effects such as an early alpha response in occipital cortex or a post-movement beta rebound in motor cortex. More subtle effects within the data could be probed with hypothesis driven design choices when setting up the HMM. For instance, the HMM could be inferred on a parcellation restricted to occipital cortex to further explore the states involved in visual processing. Similarly, the HMM inference could be restricted in time to infer states only from epochs of interest within the task.

We may also adapt the constraints on the HMMs observation model or state time-courses to explore a specific question. These analyses may require additional code and analysis steps not detailed here, but are potentially of interest to a range of cognitive and clinical applications. For example, a HMM may be inferred on one dataset to identify a set of observation models defining states. These states can then be fixed and state-time courses inferred from a second dataset. Another alternative is to constrain the order of state visits and only allow the duration to vary. This approach was applied in (Baldassano et al., 2017) to identify individual variance in event structure when viewing or recalling video sequences. Finally, the HMM inferred in this manuscript is unsupervised with respect to task and condition structure, however the inference may be tuned to perform supervised learning. We may infer a HMM whose states allow the maximum decoding of task conditions or behavioral performance.

To summarize, we have presented a pipeline for the analysis of rapid dynamics in large-scale brain networks using HMMs. The HMM is a flexible framework for describing the induced power changes in electrophysiological datasets and provides insight into how smooth trial-averaged responses can be constructed from transient bursting events. The utility of the HMM framework in task data is demonstrated in the very rapid task-evoked and condition sensitive changes in fractional occupancy of the states; representing dynamic functional connectivity on cognitive time-scales.
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Communication between brain regions is thought to be facilitated by the synchronization of oscillatory activity. Hence, large-scale functional networks within the brain may be estimated by measuring synchronicity between regions. Neurophysiological recordings, such as magnetoencephalography (MEG) and electroencephalography (EEG), provide a direct measure of oscillatory neural activity with millisecond temporal resolution. In this paper, we describe a full data analysis pipeline for functional connectivity analysis based on dynamic imaging of coherent sources (DICS) of MEG data. DICS is a beamforming technique in the frequency-domain that enables the study of the cortical sources of oscillatory activity and synchronization between brain regions. All the analysis steps, starting from the raw MEG data up to publication-ready group-level statistics and visualization, are discussed in depth, including methodological considerations, rules of thumb and tradeoffs. We start by computing cross-spectral density (CSD) matrices using a wavelet approach in several frequency bands (alpha, theta, beta, gamma). We then provide a way to create comparable source spaces across subjects and discuss the cortical mapping of spectral power. For connectivity analysis, we present a canonical computation of coherence that facilitates a stable estimation of all-to-all connectivity. Finally, we use group-level statistics to limit the network to cortical regions for which significant differences between experimental conditions are detected and produce vertex- and parcel-level visualizations of the different brain networks. Code examples using the MNE-Python package are provided at each step, guiding the reader through a complete analysis of the freely available openfMRI ds000117 “familiar vs. unfamiliar vs. scrambled faces” dataset. The goal is to educate both novice and experienced data analysts with the “tricks of the trade” necessary to successfully perform this type of analysis on their own data.

Keywords: DICS, MEG, coherence, brain rhythms, workflow, tutorial


1. INTRODUCTION

In this paper, we demonstrate the application of dynamic imaging of coherent sources (DICS), a spatial filtering technique for magneto/electro-encephalography (MEG/EEG) data originally proposed by Gross et al. (2001). Spatial filters, or beamformers, are constructed to pass the activity originating at a specific location, while suppressing activity from other locations using a weighted sum of the sensor signals (Van Veen et al., 1997). DICS is a linearly constrained minimum variance beamformer in the frequency domain, which can be used to calculate oscillatory power at any given location in the brain and coherence between any two given locations (Gross et al., 2001; Kujala et al., 2008). This enables us to create cortical “power maps” and to perform functional connectivity analysis.

Interacting large-scale functional networks in the brain are thought to support cognition and behavior. Dynamic changes in connectivity are of increasing interest, as recent results have shown that functional connectivity between brain regions changes in a time-resolved and task-dependent manner (Betti et al., 2013; Liljeström et al., 2015a; Gonzalez-Castillo and Bandettini, 2017; Liljeström et al., 2018) and hence provides information that is complementary to the analysis of evoked responses (Salmelin and Kujala, 2006; Laaksonen et al., 2012). Magnetoencephalography (MEG) recordings provide a direct measure of neural activity with excellent time resolution. MEG enables non-invasive estimation of connectivity between brain regions with a cortex-wide spatial coverage that cannot be attained with, for example, intracranial recordings.

There are different ways to define and quantify functional connectivity (Schoffelen and Gross, 2009). In general, two regions are assumed to interact when certain aspects of the recorded brain activity over these regions are consistent. In this paper, we focus on coherence, which quantifies the cortico-cortical synchrony of oscillatory activity, as a connectivity measure (Gross et al., 2001). Oscillatory activity in neuronal populations is a principal feature of brain activation and synchronization, or coherence, of such oscillating activity across brain regions is thought to promote efficient communication within large-scale neural networks (Bressler and Kelso, 2001; Fries, 2005). Coherence is thus a neurophysiologically well motivated measure of functional connectivity. Previous studies have suggested that oscillatory activity/interaction within specific frequency bands may have different functional roles (Buffalo et al., 2011; Donner and Siegel, 2011; Hipp et al., 2012; Liljeström et al., 2015a). Using coherence as a measure of connectivity enables a direct mapping of connectivity at different frequencies, without the need to estimate time series at the level of cortical sources (Kujala et al., 2008).

Recently, we developed a pipeline for estimating all-to-all functional connectivity (Liljeström et al., 2015a; Saarinen et al., 2015) for MEG network analysis, which utilizes the DICS spatial filter combined with a wavelet approach to achieve a high temporal resolution (Laaksonen, 2012). With this approach, we have demonstrated that a transient reorganization of the large-scale functional networks that support language takes place before onset of speech (Liljeström et al., 2015a,b).

For the current paper, we have made a new implementation of our pipeline and integrated it with the MNE-python package (Gramfort et al., 2013). We will demonstrate it using the freely available MEG dataset collected by Wakeman and Henson (2015), for which we have chosen to compare changes in oscillatory activity and functional connectivity between processing faces and scrambled images, as described in section 1.1. We will go over all the steps of the analysis and provide examples of how to implement them using MNE-Python.

The preprocessing of the MEG data is briefly outlined in 2. In the DICS beamformer, a cross-spectral density (CSD) matrix is used to represent the measured oscillatory activity and their dependencies. In 3, we describe estimation of the CSD matrices, the mathematical formulation, and its implementation using the python code. For group-level comparisons it is important to obtain comparable source-points and connections across subjects. For this purpose, we have chosen to create a surface-based cortical grid in a template brain and transform the source locations to each individual subject. In Listing 4, we outline how this is implemented.

While the current pipeline was primarily developed for the purpose of all-to-all connectivity analysis, it can also be used for estimation of oscillatory activity, (i.e., “power mapping”), which we discuss in Listing 5. In Listing 6, we introduce a “canonical” computation of coherence between brain regions, which facilitates the stable estimation of all-to-all connectivity (Saarinen et al., 2015). In this approach, the source orientation configuration for each cortico-cortical connection is determined by identifying the orientation combination that maximizes coherence between the two sources.

Neurophysiological recordings are inherently sensitive to spatial blurring of the signal due to field spread, thus complicating the estimation of functional connectivity between brain regions (Schoffelen and Gross, 2009). Hence, we focus on connections that span long distances (>4 cm). To further suppress effects related to field spread, the current approach is based on identifying statistically significant differences in functional connectivity between power-matched experimental conditions, rather than absolute coherence values. This analysis step is described in Listing 7.

Importantly, this approach identifies changes in connectivity between brain regions that can be linked to the specific task manipulation, rather than the entire underlying network. For visualization of the identified networks, we use a combination of a cortical-level degree map which shows the total number of connections for each source point, and a circular connectogram that summarizes the number of connections between brain regions at a cortical parcellation level. This is presented in Listing 8.

Finally, we discuss benefits and limitations of the present approach in Listing 9, and present several methodological considerations related to functional connectivity analysis with MEG.


1.1. Example Dataset

Throughout this paper, we will demonstrate the application of our pipeline to an example dataset. For this purpose, we use the data collected by Wakeman and Henson (2015). This subsection will provide a brief description of the characteristics of the data that are most salient to the present paper. For further details on the dataset, see Wakeman and Henson (2015).

The dataset consists of simultaneous MEG and EEG recordings, collected from 19 participants who were viewing images of either faces or scrambled versions of the face stimuli. The original study excluded data from 3 participants due to the presence of artifacts in the data (Wakeman and Henson, 2015); we also excluded those data from our analysis. The data was recorded by an Elekta Neuromag Vectorview 306 system that has 204 planar gradiometers. Only the gradiometer MEG data was used in our example.

The stimuli consisted of 300 grayscale photographs, half from famous people (known to the participants) and half from people unknown to participants, and 150 images of scrambled versions of either famous or unknown faces. Each stimulus was presented twice, for a total of 2 × (300+150) = 900 trials, with the second repetition occurring either immediately after the first, or with an interval of 5–15 intervening stimuli. In our example analysis, we focus on the distinction between faces vs. scrambled images, regardless of whether the faces were known or unknown to the participant.

Each trial began with the presentation of a fixation cross for a random duration of 400–600 ms, followed by presentation of the stimulus for a random duration of 800 to 1,000 ms, after which a white circle was presented for 1,700 ms. The task for the participants was to press one of two buttons depending on whether they judged the image to be “more” or “less” symmetric than average.



1.2. Data and Code Availability

The multi-subject, multi-modal human neuroimaging dataset (Wakeman and Henson, 2015) that we use in this study can be found at: https://openfmri.org/dataset/ds000117.

The code repository related to this project is at: https://github.com/wmvanvliet/conpy. This currently includes the ConPy project code (in the conpy/ folder), the analysis scripts to process the Wakeman and Henson (2015) dataset (in the scripts/ folder), the scripts to produce the figures in this paper (also in the scripts/ folder), the code examples included in this paper (in the paper/code_snippets/ folder), and the [image: yes] code to produce the final pdf (in the paper/ folder). Further instructions on how to run the pipeline are provided in the README.md file.




2. PREPROCESSING

DICS based power analysis and functional connectivity can be investigated for multiple kinds of experimental designs, ranging from ones consisting of isolated events (Laaksonen et al., 2008) to ones with continuous naturalistic stimulation (Saarinen et al., 2015; Alexandrou et al., 2017). The present analysis pipeline focuses on data representing neural processes related to external stimuli or events whose timing can be determined exactly. For this type of analysis, an important preprocessing step is to cut up the continuous MEG recording into fragments of data surrounding the onset of such events. These fragments are referred to as “epochs.”

The process of going from raw data to epochs is not specific to DICS analysis, but are the first steps shared by many analysis pipelines. A sister paper, Jas et al. (2018), discusses the many parameters and trade-offs involved in these important preprocessing steps and provides code examples, using the same dataset as in this paper. Therefore, to keep the topic of the current paper focused on estimating cortical power and connectivity analysis, and to avoid duplication of effort, we refer the reader to Jas et al. (2018) for a detailed description of the preprocessing steps, which we will only summarize below.

Construction of the source space and forward model (see Listing 4) depends on a 3D model of the subject's head that is created from a structural magnetic resonance imaging (MRI) scan, which is done in our analysis pipeline using the FreeSurfer (Dale et al., 1999) package.

The MEG data is processed with the maxfilter program, developed by Electa and also implemented in MNE-Python, to eliminate noise sources that originate outside the MEG helmet. Furthermore, the program uses the head coils that are attached to the participant's head to track the head position during the recording, and projects the data such that the influence of head movements is minimized.

To remove the signals produced by the head coils, the MEG signal must be low-pass filtered to at least below 150 Hz. Additionally, the signal should be high-pass filtered above at least 1 Hz when performing independent component analysis (ICA).

To reduce the contamination of the MEG signal by artifacts caused by eye blinks and heart beats, ICA components are estimated on the continuous data. However, no actual data decomposition is performed yet. Next, an automated detection algorithm is applied to detect the onset of blinks and heart beats, and segments of data surrounding each onset are created and averaged, yielding an “average blink” segment and average “heart beat” segment. The average blink and average heart beat segments are then decomposed along the ICA components and the correlation between the electro-oculography (EOG) and electro-cardiography (ECG) sensors and each signal component is computed. The ICA components for which the corresponding signal components correlate strongly with the EOG or ECG signal are flagged as “bad” and will be removed in the next step.

The continuous data is cut up into segments in a short time window relative to the onset of the presentation of each stimulus. These segments are referred to as “epochs.” The data of each epoch is decomposed along the ICA components that were computed in the previous step, the components flagged as “bad” are dropped, and the signal is recomposed. Finally, epochs where the signal amplitude of one or more channels exceeds a predefined threshold, signifying the presence of an artifact (for example such as those caused by movements and biting) that contaminates the data segment beyond repair, are removed.


2.1. Application to the Example Dataset

For our analysis of the Wakeman and Henson (2015) dataset, we mostly follow the preprocessing pipeline of Jas et al. (2018), which implementation can be found at https://github.com/mne-tools/mne-biomag-group-demo. However, there are some key differences between our pipeline and the one used by Jas et al. (2018):

1. Since our pipeline operates on MEG data, we restrict our preprocessing pipeline to only use the gradiometer and magnetometer channels, whereas Jas et al. (2018) also include EEG data.

2. Since we are analyzing oscillatory activity rather than evoked potentials, we high-pass filter the data above 1 Hz, whereas Jas et al. (2018) perform no high-pass filtering other than the one performed by the recording hardware.

3. We do not make use of the autoreject package for dynamically determining thresholds when rejecting epochs which have a too large signal amplitude, but rather use a fixed, more lenient, threshold. This is because since our analysis of oscillatory activity is less sensitive to isolated signal spikes than the analysis of evoked potentials performed in Jas et al. (2018).

The preprocessing pipeline is implemented in the following scripts:


[image: image]



From this point on, the analysis pipeline becomes specific to DICS analysis and will be described in more detail.




3. ESTIMATING CROSS-SPECTRAL DENSITY (CSD) MATRICES

Estimating the cortical origins of oscillatory activity (we refer to this as “power mapping”) and estimating connectivity between cortical sources (we refer to this as “connectivity analysis”) both start with the computation of one or more cross-spectral density (CSD) matrices. The CSD is the covariance between the two signals, in our case the activity recorded at two sensors, in the frequency domain. A CSD matrix defines the CSD between all sensor-pairs and is similar in nature to a covariance matrix.

Commonly, both the analysis of oscillatory power and connectivity are conducted in multiple frequency bands, time windows, and/or experimental conditions. For each of these, a separate CSD matrix needs to be computed.

Because we wish to compute CSD matrices for specific frequency bands and time windows, we choose to transform the signal to the time-frequency domain using a wavelet transform. We follow the method outlined in Tallon-Baudry et al. (1997), which offers a better tradeoff between time and frequency resolution than a standard Fourier transform.


3.1. Mathematical Formulation

For each frequency f (in Hertz) we want to include in the analysis, we construct the corresponding Morlet wavelet [image: image], which has a Gaussian shape both in the temporal and frequency domain. The standard deviation of this Gaussian shape in the time domain, σt, is an important parameter that determines the tradeoff between temporal and frequency resolution of the resulting time-frequency decomposition. A common tactic is to use a large σt at low frequencies, increasing the frequency resolution at the cost of temporal resolution, and use increasingly smaller values at higher frequencies, trading frequency resolution for temporal resolution. A convenient way to achieve this is to define no as the number of oscillations the Morlet wavelet completes. Then,
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A Morlet wavelet of the desired length can then be constructed as follows:
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where [image: image] are the time points at which the Morlet function is evaluated and fs is the sampling frequency of the MEG signal. The transformation to the time-frequency domain is performed by convolution of the Morlet wavelet for each frequency with the MEG signal:
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where (∗) denotes linear convolution. The resulting vectors [image: image] and [image: image] contain the complex time courses of the signals [image: image] and [image: image] filtered at frequency f. Finally, we compute the CSD between the signals by taking the dot product of [image: image] and the complex conjugate of [image: image] for all the frequencies and time points we wish to include in the analysis and by averaging the result:

[image: image]

where Nf is the number of frequencies, Nt the number of time points, (·) denotes the dot product between two vectors, the superscript (*) the complex conjugate operation and e(f)(t) the signal at frequency f and time t. Since the frequency domain is described using complex numbers, c will be a complex number as well when the computations are done for distinct signals [image: image] and [image: image].

To compute the full CSD matrix, 6 is repeated for each pair of channels. Each element C(i, j) of the resulting CSD matrix C ∈ ℂNs×Ns holds the CSD between sensors i and j. The matrix is Hermitian, so C(i, j) and C(j, i) are complex conjugates of each other, and the diagonal elements hold the mean power-spectral density (PSD) for each sensor. The CSD matrices are computed for each epoch separately and then averaged to produce a single CSD matrix per experimental condition.



3.2. Code Example

The following code example will compute the CSD matrix over the time range from 0 s to 0.4 s relative to the stimulus onset, for two frequency ranges:

# Import required Python modules

import numpy as np, mne

# Read epochs from FIFF file

epochs = mne.read_epochs('sub002-epo.fif')

# Select the experimental condition

epochs = epochs['face']

# Specify frequencies to use

frequencies = np.linspace(7, 17, num=11)

# Compute the CSD

csd = mne.time_frequency.csd_morlet(

      epochs, frequencies, tmin=0, tmax=0.4,

      n_cycles=7, decim=20)

# CSD for alpha band: 7-13 Hz

csd_alpha = csd.mean(7, 13)

# CSD for beta band: 13-17 Hz

csd_beta = csd.mean(13, 17)

As discrete wavelet transforms are used in the CSD computation, the frequencies are specified as a list, rather than a range. These frequencies should evenly span the desired frequency range. Their suitable spacing depends on the frequency resolution of the wavelets.

The n_cycles parameters of the csd_epochs function controls no, thus controling the tradeoff between frequency and time resolution of the wavelet transform. It can either be set to a fixed value (as in the example), which means the wavelets get shorter as the frequency increases (increasing the temporal resolution and decreasing the frequency resolution). Alternatively, one may specify a list of values, one for each frequency, to have precise control over the time/frequency resolution tradeoff.

The decim parameter of the csd_epochs function controls the spacing of the time points t that are used in Equation (6), enabling more efficient computation of the CSD matrix. The time resolution of the signals following the wavelet transform (4) is generally much lower than the sampling rate of the original signals. In these cases we can safely pick every nth time point without losing information.

The wavelet convolution method assumes that the data across time has an approximate mean of zero. In our pipeline, we choose to remove the signal offset for each epoch. Another good option is to first apply a highpass filter to the data, in which case further detrending is not necessary.



3.3. Application to the Example Dataset

For our analysis of the Wakeman and Henson (2015) dataset, we computed CSD matrices for the following frequency bands (following Liljeström et al., 2015a):
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We choose to use a fixed no = 7, and the width of our chosen frequency bands reflect the resulting time/frequency resolution tradeoff. There is no golden standard for which frequency bands to use and you may have to adapt the frequency ranges to fit your dataset and research question. For example, frequencies higher than 40 Hz may be of interest as well.

The CSD matrices were computed for both the time window from 0 to 0.4 s, and during the “baseline” period from −0.2 to 0 s, relative to the onset of the stimulus. We will later compare the cortical sources of oscillatory activity before and after the presentation of a stimulus. This analysis step is implemented in script 05_csd.py and an example of the resulting CSD matrices is presented in Figure 1.
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FIGURE 1. CSD matrices computed for different frequency bands. The CSD matrices were computed across all the epochs where a face stimulus was presented to subject 2, in the time window from 0 to 0.4 s relative to the presentation of the stimulus. Each row and column corresponds to one of the 204 gradiometers. Note that each row has a separate color scale.






4. SOURCE SPACE AND FORWARD MODEL

The DICS beamformer will, given a CSD matrix and forward modeling of neural currents, estimate the power of the oscillatory activity originating from one specific point on the cortex. DICS uses a spatial filter to determine the activity at the given point on the cortex while suppressing contributions from all other sources. By creating a grid of regularly spaced points along the cortex and computing spatial filters for each point, a complete picture of brain-wide activity emerges. This grid is referred to as the “source space” (Figure 2, left). The DICS power estimates are also used during connectivity analysis, where the source space is used for defining the start and end point of possible connections.
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FIGURE 2. The source space and forward model used in connectivity analysis. (Left) The white matter surface, as reconstructed by FreeSurfer. The source space is defined as a grid of points along this surface, shown in yellow. All points further than 7 cm from the closest MEG sensor (shown as blue squares in the background) have been discarded. (Right) The forward model defines two dipoles at each source point. The orientation of the dipoles is tangential to a sphere with its origin at the center of the brain.



To create the source space, we first need a 3D-model of the subject's brain. Here, we obtain it by performing a structural MRI scan on the subject and processing the data with FreeSurfer (Dale et al., 1999). The details are explained in Jas et al. (2018) and the implementation can be found in the script 01-run_anatomy.ipy accompanying that paper. The FreeSurfer analysis results in several 3D meshes, corresponding to different brain tissues, of which the white matter surface serves as the basis for our source space.

For group-level analysis, it is important that connections between the points within source spaces can be compared across subjects. This is feasible if the same connections exist for each subject, which, in turn, means that the same source points must be defined for each subject. To facilitate this, we first define the source space on the “fsaverage” brain: a template brain model, provided by FreeSurfer, constructed by averaging the MRI scans of 40 subjects (Fischl et al., 1999). The resulting source space is then morphed to each individual subject, transforming the source points to corresponding locations on the cortex (Fischl et al., 1999). Note that the morphed source space will generally be only approximately evenly spaced. For creating power maps, we advice to create evenly spaced source spaces for each individual subject and morph the estimated power map to the average brain, as explained in Jas et al. (2018).

In our analysis pipeline, we compute all-to-all connectivity between the source points. To keep the number of connections manageable, only a limited number of source points can be used. Partly, this is facilitated by placing the sources at slightly larger spatial intervals than is common in studies focusing on cortical activity. In addition, we place sources only in areas that can be reliably measured using MEG, rather than in “deep sources” that do not generate signals that would be readily detectable with MEG sensors.

We start out with a regularly spaced grid of 5,124 points covering the entire surface of the cortex, yielding an average distance of 2.6 mm between neighboring points. To limit the number of source points, all points that are further than 7 cm from the nearest MEG sensor are discarded. For this dataset, a cutoff distance of 7 cm provides a good tradeoff between the number of source points and coverage across the cortex, but this value may need to be adjusted for other datasets. Close visual inspection of the result is required, see Figure 2 (left). To ensure that the same source points are defined for each subject, the distance from source points to the closest sensor is determined in one subject, and the resulting set of points is then used for all subjects. Since the distance from the source points to the sensors is dependent on the position of the subject's head in the MEG helmet, it is important to ensure that the initial distance computations are done for a subject whose head was in an approximately average position across subjects with respect to the helmet.

The resulting restricted source spaces are only used during connectivity analysis. For computing power maps, the number of source points is less of an issue and therefore we always use the full source space.

Given the source space, we construct a forward model that models how the magnetic field, produced by a current at each source point, travels through the various tissues of the brain and head, resulting in activity recorded at the MEG sensors. For this computation, we employ a boundary element method (BEM) model (Hämäläinen et al., 1993) that uses the FreeSurfer meshes of the brain tissues, assuming homogeneous conductivity within each mesh. For MEG datasets, we only include the inner skull meshes, resulting in a single-layer BEM model.

The neural currents at the source points are modeled as equivalent current dipoles (ECDs) that represent the dominant component of the local current as a vector that has both a magnitude and a direction. The forward model represents the ECD at each source point using three separate dipoles, arranged in three orthogonal orientations, representing the magnitude of the current in the x-, y-, and z-directions. We will refer to these orthogonal dipoles, which are merely mathematical constructs, simply as “dipoles,” while we will refer to the source dipole that is formed by combining the three orthogonal dipoles, as “the ECD.”

During the connectivity computation, we reduce the number of dipoles for computational efficiency reasons (section 6.1) and use only two orthogonal dipoles instead of three; specifically, we use two orthogonal dipoles that are tangential to a spherical approximation of the head shape (Figure 2, right) and that generate stronger magnetic fields than radial sources (Hämäläinen et al., 1993). For computing power maps, we prefer to use three orthogonal dipoles at each source point.


4.1. Code Example

The following code example will construct a forward model for a single subject, suitable for connectivity analysis, following all the steps outlined above:

import conpy, mne

# Define source space on average brain

src_avg = mne.setup_source_space(

    'fsaverage', spacing='ico4')

# Morph source space to individual subject

src_sub = mne.morph_source_spaces(

    src_avg, subject='sub002')

# Discard deep sources

info = mne.io.read_info('sub002-epo.fif')

verts = conpy.select_vertices_in_sensor_range(

    src_sub, dist=0.07, info=info)

src_sub = conpy.restrict_src_to_vertices(

    src_sub, verts)

# Create a one-layer BEM model

bem_model = mne.make_bem_model(

    'sub002', ico=4, conductivity=(0.3,))

bem = mne.make_bem_solution(bem_model)

# File containing the MRI<->Head transformation

trans = 'sub002-trans.fif'

# Make the forward model

fwd = mne.make_forward_solution(

    info, trans, src_sub, bem, meg=True, eeg=False)

# Only retain orientations tangential to a sphere

# approximation of the head

fwd = conpy.forward_to_tangential(fwd)

For group-level analyzes, it is important to note that MNE-Python stores the source points as vertex indices of the original FreeSurfer mesh and that these indices are always stored in sequential order. Thus, when we morph the source space defined on the “fsaverage” brain to an individual subject, the ordering of the source points is not preserved. For example, the first source point of subject 1 can correspond to the fourth source point of subject 2. To account for this, we always store vertex indices in the order defined in the “fsaverage” source space. To re-order the individual-level source-points correctly, we first determine the changes in the ordering of the vertices using the conpy.utils.get_morph_src_mapping function and modify the vertex indices accordingly. This process is implemented in script 07_forward.py.



4.2. Application to the Example Dataset

In the example dataset, the source space was first defined on the “fsaverage” brain and then morphed to each subject. For each subject, three orthogonal dipoles were placed at each source point and the white matter and skull FreeSurfer meshes were used to compute the forward model. The construction of the source spaces for the “fsaverage” brain is implemented in script 06_fsaverage_src.py and the morphing of the source space to the brains of the individual subjects and subsequent computation of the forward models are implemented in script 07_forward.py.

While power mapping was done using all the source points, connectivity analysis used a restricted source space where all source points further than 7 cm from the closest MEG gradiometer were discarded. This distance measurement was performed on the first subject and then used for all other subjects. This process is implemented in script 08_select_vertices.py. In connectivity analysis, the forward models that define three dipoles at each source point were transformed into “tangential” models that define two dipoles at each point. This step is implemented in script 10_connectivity.py.




5. POWER MAPPING

The DICS beamformer can be used to estimate the cortical sources of oscillatory activity within a given frequency band. As explained in Listing 4, a grid of source points is defined along the cortex. At each source point, three current dipoles are defined that are arranged to have orthogonal orientations. A whole-brain estimate of the oscillatory power is produced by computing, for each dipole, a spatial filter that passes activity that can be attributed to the dipole, while reducing activity originating from other sources (Van Veen et al., 1997).

Other than the various parameters involved in computing the CSD matrix and the forward model, the “regularization” parameter is an important parameter governing the creation of the spatial filters. In practice, the regularization parameter represents a tradeoff between the amount of detail in the power maps and their sensitivity to noise. If the amount of regularization is too small, it may result in the estimates being driven by noise factors, yielding sub-optimal results. If too much regularization is used, relevant details may be obscured and the power map will be dominated by the strongest sources. Typical values are in the range 0.01–0.1, scaled by the mean singular values of the CSD matrix.

The resulting cortical power maps define, at each source point, the power in all orientations. Typically, for each source point, only the power corresponding to the orientation that maximizes the power is reported.


5.1. Mathematical Formulation

The regularization parameter α arises from the need to compute the inverse of the CSD matrix. Since this matrix is often rank deficient, its inverse cannot be directly computed, but a pseudo-inverse needs to be approximated. This estimation is more stable when a small value is added to the diagonal (diagonal loading):
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We use the Moore–Penrose pseudoinverse to compute (C+λI)−1.

Initially, the power maps will be biased toward superficial sources, since they have a larger effect on the MEG sensors. To counter this, the leadfields can be normalized before computing the spatial filters:
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where [image: image] is a row vector containing the leadfield connecting dipole r to each sensor, |·| denotes the norm of the vector and [image: image] is the normalized leadfield.

The DICS beamformer is a linearly constrained minimum variance (LCMV) beamformer, computed using and applied to a (time-)frequency transformation of the original signals. We deviate slightly from Gross et al. (2001) by computing the filter for each dipole separately:

[image: image]

where [image: image] is a vector of weights that constitutes a linear spatial filter that attempts to isolate the signal power for the dipole from the rest of the signal. In our approach, we treat dipoles with different orientations as separate sources, even if their locations are the same, and consequently compute the beamformer filter for each dipole individually. In this case, [image: image] reduces to a scalar value, which avoids having to compute the inverse of another rank deficient matrix. We obtain an estimate of the power at a source point by multiplying the filters for all dipoles defined at the location with the CSD matrix:

[image: image]

where [image: image] is a matrix whose rows contain the filters for all dipoles [image: image] defined at the source point and [image: image] is the resulting power estimate. The power estimate contains, along the diagonal, the square of the power at each dipole, and the off-diagonal elements contain the cross-power estimates between dipoles.

Common methods of summarizing [image: image] are:

1. choosing the direction that maximizes the power, i.e., the first singular value of [image: image]

2. the sum of the squared power for each dipole, i.e., [image: image]

3. the squared power in the direction that is orthogonal to the surface of the cortex.



5.2. Code Example

In the following example, we compute the cortical power maps for oscillatory activity in the range from 7 to 13 Hz for the epochs corresponding to trials where a face stimulus was presented:

import mne

# Read info, forward solution and CSD matrix

info = mne.io.read_info('sub002-epo.h5')

fwd = mne.read_forward_solution('sub002-fwd.fif')

csd = mne.time_frequency.read_csd('sub002-csd.h5')

# Obtain CSD for frequency band 7-13 Hz.

csd = csd.mean(fmin=7, fmax=13)

# Compute DICS beamformer filters

filters = mne.beamformer.make_dics(

     info, fwd, csd, reg=0.05, pick_ori='max-power')

# Compute the power map

stc = mne.beamformer.apply_dics_csd(csd, filters)

The regularization parameter reg is set here to 0.05, which is generally a good tradeoff between the level of spatial detail and sensitivity to noise. It is good practice to experiment with different values to see how the power maps behave: if the power estimates change substantially for small increments of the reg parameter, it may be set too low. The pick_ori parameter selects the method with which to summarize the power at each source point. In this case, for each source point, the power is computed along the direction which maximizes the power.

When comparing the power maps from different subjects, the stc objects can be morphed to the “fsaverage” brain with the stc.morph(to_subject) method. The morphed stc objects can then be straightforwardly averaged and analyzed using the statistical functions in the same manner as for other types of source estimates (Jas et al., 2018).



5.3. Application to the Example Dataset

The scripts 09_power.py and 11_grand_average_power.py implement the full analysis on the example dataset. Script figure_power.py produces Figure 3.
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FIGURE 3. DICS grand average power maps. Cortical activity is visualized on an “inflated” version of the cortex, so as not to hide activity within the sulci. (Top) Estimation of cortical origins of oscillatory activity in the alpha band. In this case, the inflated view makes it seem there are three sources of alpha power, but in reality, these sources are adjacent on the original white matter surface. (Bottom) Contrasts between faces and scrambled images for all frequency bands. Warm colors indicate sources with more activity for faces than scrambled images and cold colors indicate sources with less.



It is common for the power maps to be dominated by alpha and/or beta activity, as is the case for our example dataset as well (Figure 3, top row). The alpha rhythm is typically generated in the parieto-occipital cortex. The beamformer localizes the alpha activity over the entire 0 to 0.4 s time window as a single, somewhat deep source (Ciulla et al., 1999).

More interesting effects are revealed by contrasting two experimental conditions. In the case of the example dataset, these are the presentation of faces vs. scrambled images. Furthermore, we are interested in the changes in oscillatory power caused by the presentation of the stimuli, relative to the baseline period. Accordingly, our final power maps are computed as “(faces−scrambled pictures)/baseline” (Figure 3, bottom row).

The experimental paradigm used in the example dataset was designed to produce strong evoked potentials (EPs). Although DICS aims to capture oscillatory activity, the power maps are dominated by the EPs, especially in the lower frequency bands. In our case, all frequency bands highlight the primary visual cortex, where there is a strong EP following shortly after the presentation of a visual stimulus. The upper frequency bands only shows some very slight increases in activity, which is why we chose to perform the connectivity analysis for the low gamma band, since large differences in power between conditions will severely bias an all-to-all connectivity estimate.

For better interpretation of these results, one can proceed with statistical analysis of the power maps in a similar fashion as done with source estimates of evoked data, as detailed in Jas et al. (2018).




6. CONNECTIVITY ANALYSIS

In addition to analysis of oscillatory power, DICS is commonly used to investigate connectivity between cortical areas. The DICS beamformer is well suited for estimating cortical connectivity, as coherence between brain regions can be determined based on the sensor-level CSD matrices, without the need to first estimate the time courses for the regions of interest, as required for most other connectivity metrics. The coherence metric quantifies the level of synchronicity between the oscillatory activity of different areas, on a scale from 0 (no synchronization) to 1 (perfectly synchronized). Coherence is thought to be indicative of inter-areal communication (Fries, 2005).

Ideally, one would compute coherence between all source points in the source space. However, in practice, this is currently computationally intractable, so several thresholds will be applied to prune the number of connections. In Listing 4, the first threshold was applied, namely that deep sources were eliminated from the source space. This has the effect of only considering source locations where the MEG signals are the most reliable. The second threshold we apply is a distance criterion. Due to the inherent field spread of the MEG signal (Hämäläinen et al., 1993), source points that are close together will always exhibit strong coherence. While this effect is alleviated by considering a contrast between two conditions, long-range connections (Salmelin and Kujala, 2006) can be estimated more reliably than short-range ones. For this reason, all connections between source points which are closer than a distance threshold (e.g., ≤ 4 cm) are removed from further analysis. The distance threshold is a parameter that needs to be chosen with care and in consideration with the research question of the study. When interpreting the result, one should always remember that there may be additional short-range connections present, but hidden from view due to the distance threshold.

In order to perform group-level analysis, coherence must be computed for the same connections in each subject. Therefore, the distance threshold based pruning is first applied to the connectivity pairs in a single subject, and the selection is subsequently carried over to the other subjects. In Listing 7, connections are further pruned based on a contrast between the experimental conditions.


6.1. Canonical Computation of Coherence

The connectivity computation is complicated somewhat by the fact that, generally, the forward model defines currents with both a magnitude and an orientation, represented through the use of multiple dipoles at each source point. For example, our connectivity pipeline employs a “tangential” forward model that defines two orthogonal dipoles tangential to a sphere (see Listing 4). As mentioned in the section on power mapping (Listing 5), there are several ways to summarize the information at each source point. One way would be to only use the orientation that maximizes source power (Gross et al., 2001). However, simulations that were performed as part of the study by Saarinen et al. (2015) have shown that this strategy tends to produce spurious increases in coherence between unsynchronized sources. A better strategy may be to use, for each connection, orientations that maximize the coherence between the two source points. This involves going through all the possible orientation combinations for the two source points, and choosing the orientation pair that maximizes the coherence. We refer to this strategy as “canonical computation of coherence” and it is the default strategy implemented in the ConPy package.



6.2. Mathematical Formulation

Given a CSD matrix C, it is straightforward to compute coherence between sensors (and later between cortical regions). The coherence m between sensors i and j is:
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To compute coherence between source points, the CSD matrix is first run through the DICS beamformer to obtain power estimates at each source point. In our canonical coherence pipeline, we deviate from Gross et al. (2001) and replace the CSD matrix C in Equation (11) by the regularized version [image: image]. This results in an approximation of the power that is much faster to compute, as the equation simplifies to:
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where [image: image] is an approximation of the power estimate for dipole r. Similarly, the cross-power between two dipoles (r1, r2) is approximated by [image: image].

In the canonical computation of coherence, coherence is estimated by optimizing the orientation of the ECDs at both source points for each connection. Here, we employ a tangential forward model, which defines two orthogonal dipoles at each source point to encode information about the leadfield in different orientations. Using the tangential source orientation plane, we denote the leadfield for an ECD with orientation θ as:
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where r1 and r2 are the two dipoles defined at the source point and [image: image].

Canonical coherence between two source points [image: image] is computed as follows:

[image: image]

where [image: image] are the two dipoles defined at the first source point and [image: image] are the dipoles defined at the second source point, and θ1 is the orientation of the ECD at the first source point and θ2 the orientation of the ECD at the second source point.

The computation maxθ1,θ2 is conducted by performing a search over all possible ECD orientation combinations and using the maximum coherence value encountered during the search. In practice, ca. 50 different orientations are evaluated at both locations, spanning the tangential orientation plane at discrete intervals.



6.3. Code Example

In the following example, we compute connectivity between all combinations of source pairs that are at least 4 cm apart. For each connection, we compute the coherence between ECDs that are oriented in such a manner that the coherence between them is maximized (canonical computation of coherence). To reduce the search space for the optimal orientation, we convert the forward model from one with three dipoles at each source point, to a tangential model with two (Figure 2, right), which limits the orientations to the tangential plane:

import conpy, mne # Import required Python modules

# Read and convert a forward model to one that

# defines two orthogonal dipoles at each source,

# that are tangential to a sphere.

fwd = mne.read_forward_solution('sub002-fwd.fif')

fwd_tan = conpy.forward_to_tangential(fwd)

# Pairs for which to compute connectivity.

# Use a distance threshold of 4 cm.

pairs = conpy.all_to_all_connectivity_pairs(

    fwd_tan, min_dist=0.04)

# Load CSD matrix for 'face' condition

csd = conpy.read_csd('sub002-csd-face.h5')

# Obtain CSD for frequency band 31-40 Hz.

csd = csd.mean(fmin=31, fmax=40)

# Compute source connectivity using DICS. Try 50

# orientations for each source point to find the

# orientation that maximizes coherence.

con = conpy.dics_connectivity(

    pairs, fwd_tan, csd, reg=0.05, n_angles=50)

When performing group-level analysis, it is important that connectivity is evaluated between the same pairs of source points in the same order across subjects. However, as we saw in section 4.1, by default, the ordering of the source points differs between subjects. Therefore, before comparing coherence values across subjects, the connectivity estimates need to be transformed to define the source points in the same order, e.g., the order of the “fsaverage” brain, with the con.to_original_src method.



6.4. Application to the Example Dataset

For the example dataset, connectivity was estimated for the low gamma frequency band (31–40 Hz) in each subject. The connectivity pairs were computed for the first subject and then carried over to the other subjects. This computation is implemented in script 08_select_vertices.py. The connectivity computations are implemented in script 10_connectivity.py. The visualization of the connectivity results is performed after computing group-level statistics.




7. GROUP-LEVEL STATISTICS

Our analysis pipeline is designed for studying changes in cortico-cortical connectivity between different experimental conditions (as opposed to resting state analysis which studies the naturally occurring network while the subject is “at rest” in the scanner, Rosazza and Minati, 2011). Thus, instead of attempting to map the entire network, we focus on the parts of the network where connectivity changes between experimental conditions. This means that the experimental design plays a vital role in our analysis pipeline, as experimental conditions must be designed so that contrasting them will reveal the sub-network of interest and are power-matched to minimize the effects of field spread.

All-to-all connectivity results can give an overwhelming amount of information that can be difficult to interpret. One way to manage the complexity is to compute connectivity between parcels, rather than source points. However, in this paper we will demonstrate an alternative approach that focuses on pruning connections until a manageable number remains. The procedure is an adaptation of the non-parametric cluster-permutation test by Maris and Oostenveld (2007), where the difference is in the way the data is clustered.

Starting from the initial all-to-all connectivity estimate, we prune connections that do not show a reliable difference between the experimental conditions. To this end, we perform a paired t-test for each connection, comparing the coherence values for all subjects between the conditions. All connections with an associated absolute t-value below a given threshold are pruned, while the surviving connections are grouped into “bundles.” A “bundle” means in this context a group of connections whose start and end points are in close proximity to each other. Bundles can be found by constructing a six-dimensional space, where each connection is assigned a position based on the Cartesian (xyz) coordinates of its starting and end points, and performing a hierarchical clustering in this space. This clustering procedure is performed separately on connections with positive vs. negative t-values, to assure that a bundle only contains connections that have an experimental effect in the same direction. Each bundle is assigned a “bundle-t-value” by summing the absolute t-values of the connections inside the bundle.

To determine which bundles show a significant effect, we repeat the above procedure many times with randomly permuted data to model the distribution of bundle-t-values we may expect from random data. Random data was produced by flipping the condition labels for a random number of subjects, choosing a new random set of subjects for each permutation. Importantly, for each random permutation, only the maximum bundle-t-value is appended to the list of randomly observed t-values. This is an effective way to manage type-I errors (Maris and Oostenveld, 2007). Any bundle with a bundle-t-value that is higher than at least 95 % of the randomly obtained bundle-t-values, is deemed significant (p ≤ 0.05).

This procedure has two important parameters: the initial t-value threshold (cluster_threshold) for pruning connections and the maximum distance between connections to be considered part of the same bundle (max_spread). Both parameters have an effect on the size of the bundles and hence the sensitivity of the test. Since the bundle-t-values are the sum of the t-values of the individual connections, large bundles will usually have a large bundle-t-value, making them more likely to survive the statistical threshold. However, the cluster-permutation test only tells whether a bundle as a whole is significant, not which connections inside a bundle drive this significance. This means that a bundle that was flagged as significant could contain many connections that show little difference between experimental conditions, as long as it also contains connections that do show a salient difference.

In practice, we advise choosing cluster_threshold such that a manageable number of connections remain (up to a few thousand) and max_spread such that a reasonable number of connections (tens to hundreds) are assigned to each bundle. When choosing these parameters, it may help to visualize the selected connections (see Listing 8) before performing the permutation test.


7.1. Code Example

The following example reads in the connectivity objects for all subjects and all conditions and prunes the connections using the statistical thresholds outlined above.

import conpy, mne

from operator import add

from functools import reduce

# Connectivity objects are morphed back to the

# fsaverage brain

fsaverage = mne.read_source_spaces(

    'fsaverage-src.fif')

# For each of the subjects, read connectivity for

# different conditions. Re-order the vertices to be

# in the order of the fsaverage brain.

face = []

scrambled = []

contrast = []

subjects = ['sub002', 'sub003', 'sub004', 'sub006',

            'sub007', 'sub008', 'sub009', 'sub010',

            'sub011', 'sub012', 'sub013', 'sub014',

            'sub015', 'sub017', 'sub018', 'sub019']

for subject in subjects:

    con_face = conpy.read_connectivity(

        '%s-face-con.h5' % subject)

    con_face = con_face.to_original_src(fsaverage)

    con_scram = conpy.read_connectivity(

        '%s-scrambled-con.h5' % subject)

    con_scram = con_scram.to_original_src(fsaverage)

    face.append(con_face)

    # Create contrast

    contrast.append(con_face - con_scram)

# Compute the grand-average contrast

contrast = reduce(add, contrast) / len(subjects)

# Perform a permutation test to only retain

# connections that are part of a significant bundle.

connection_indices = conpy.cluster_permutation_test(

    face, scrambled, cluster_threshold=5,

    max_spread=0.01, src=fsaverage,

    n_permutations=1000, alpha=0.05)

# Prune the contrast connectivity to only contain

# connections that are part of significant bundles.

contrast = contrast[connection_indices]



7.2. Application to the Example Dataset

In the connectivity analysis of the example data, we focus on a selection of connections that show the most reliable difference between the experimental conditions. The pruning of the all-to-all connectivity results is implemented in script 12_connectivity_stats.py.

In our analysis of the example dataset, we applied an initial t-value threshold of 5 to the connections, retaining 1,028 out of the total of 4,781,057 connections. During the clustering step, connections with start and end points within 1 cm were grouped, resulting in 162 bundles. The above thresholds were chosen such that there remained a manageable subset of the full all-to-all connectivity network, which shows the most robust differences between the processing of faces vs. scrambled images. The permutation test revealed two bundles that show a significant difference in coherence between the processing of faces vs. scrambled images (p < 0.05), containing a total of 270 connections.




8. VISUALIZATION

Depending on the statistical threshold, there may be hundreds or thousands of connections that survive the pruning step. In order to visualize this many connections, we use a combination of a circular connectogram that summarizes connectivity between parcels (i.e., predefined cortical regions based on a brain atlas), and a “degree map” that shows, for each source point, the total number of connections from and to the point. In this framework, we may use the circular connectogram to assess global connectivity patterns between parcels and use the degree map to see which specific parts of the cortex contain the start and end points of the connections.

To create a connectivity object that defines connectivity between parcels, rather than source points, we use brain atlases, such as the ones provided by the FreeSurfer package. These atlases provide a list of parcels (also referred to as “labels”) and a list of vertices of the cortical mesh belonging to each parcel. Using this information, we can determine which source points belong to which parcel and make a parcel-wise summary.

In our pipeline, we choose to summarize the connection between two parcels by counting the total number of connections between them that survived the statistical thresholding (i.e., the degree). The summary can then be visualized using a circular connectogram. In general, large parcels that contain many source points will have more connections and thus a larger degree. Therefore, if the intention is for the circular connectogram to represent the overall connectivity between parcels, this “degree bias” could lead to misinterpretation of the result and it may be appropriate to remove this bias. This can be done by dividing the sum by the total number of possible connections from and to the parcel.

The cortical degree map is created by counting the number of connections that survived the statistical threshold from and to each source point. This degree map suffers from a similar bias as the circular connectogram, so it may be appropriate to divide the initial summary of each source point by the total number of possible connections from and to the point to remove this bias.


8.1. Code Example

The following example will parcellate a connection object according to the “aparc” brain atlas (Fischl et al., 2004), create a circular connectogram and a cortical degree map:

import conpy, mne

con = conpy.read_connectivity('contrast-con.h5')

# Get parcels from atlas

l = mne.read_labels_from_annot('fsaverage', 'aparc')

del l[-1] # Drop the last parcel (unknown-lh)

# Parcellate the connectivity object and correct for

# the degree bias

con_parc = con.parcellate(l, summary='degree',

                          weight_by_degree=True)

# Plot a circle diagram showing connectivity

con_parc.plot()

# Plot a vertex-wise degree map and connect for the

# degree bias

brain = con.make_stc(

    'degree', weight_by_degree=True

).plot(hemi='split')

# Draw the 'aparc' atlas on the degree-map

brain.add_annotation('aparc')

The above example results in a very basic circular connectogram. For optimal clarity, some care needs to be put into the order and organization of the parcels along the circle. For example, it may be useful to dedicate the left half of the circle to parcels in the left hemisphere and the right half to the right hemisphere. Script figure_connectivity.py contains a more elaborate example of a circular connectogram.



8.2. Application to the Example Dataset

The visualization of the pruned all-to-all connectivity of the example dataset is implemented in script figure_connectivity.py and presented in Figure 4.


[image: image]

FIGURE 4. The subnetwork of the all-to-all connectivity network that shows the most robust changes across the experimental conditions. (Left) Degree map showing, for each source point, the percentage of connections, out of all possible connections, that survived the statistical threshold and clustering operations. (Right) Circular connectogram showing the number of connections between each parcel. Parcels were defined using the “aparc” anatomical brain atlas, provided by FreeSurfer.



The intended interpretation of Figure 4 is to first, using the degree map, identify the main areas where connectivity changes between faces vs. scrambled images and then see which parcels overlap with these areas. Then, using the circular connectogram (Figure 4, right), we can determine which connections between these areas are influenced by the experimental manipulation.

In our example dataset, the pruning of the all-to-all connectivity network resulted in a subnetwork that highlights a bundle of connections from the right middle temporal gyrus to the left superior frontal cortex and a bundle from the left motor cortex to the left oribitofrontal cortex (Figure 4, top-left). Since the obtained connectome is so sparse, we opted not to compensate for the degree bias in the degree map and circular connectogram and simply report the number of connections.

The start and end points of the connection bundles do not always line up well with the parcels that are defined by the “aparc” brain atlas, which makes it less obvious in the circular connectogram that we are looking at two bundles of connections. However, when the circular connectogram is interpreted alongside the degree map, the two bundles become clear.




9. DISCUSSION

The presented analysis pipeline facilitates mapping of cortico-cortical coherence, specifically its modulation between experimental conditions, in an all-to-all manner based on whole-head MEG data. The original estimation of coupling is conducted at the level of a detailed grid of source points covering the entire cortex, but statistical testing and visualization of the results can be conducted both at this level and at the level of a coarser cortical parcels. In addition to the estimation of connectivity, the pipeline provides source estimates of oscillatory activity (“power mapping”) at the same spatial scales as used in the coherence analysis. The analysis pipeline consists of several steps that involve choices regarding how connectivity can be estimated, some of which are general considerations that are relevant also for other pipelines than the one presented here. In this section, we discuss the effects and possible developments regarding some of these choices for the most critical analysis steps.


9.1. Estimation of the Cross Spectral Density Matrix

In the present manuscript, we considered cortico-cortical connectivity for event-related experimental paradigms where the cross spectral density matrix, which represents the mutual dependencies of neural signals at the sensor-level, needs to be estimated in a time-resolved manner. This type of analysis is useful as it allows the use of event-related paradigms where experimental manipulation is generally more straightforward than in continuous and more naturalistic experiments. Moreover, the approach readily allows limiting the analysis to an artifact-free time window of the experiment (e.g., in speech production). The original DICS was developed for continuous data (Gross et al., 2001) where the CSD estimation is based on Fourier transformations. In the present analysis, as well as in previous work using event-related DICS (Kujala et al., 2012, 2014; Liljeström et al., 2015a), wavelet-based analysis was used to obtain the time-frequency CSD. In the time-frequency domain, wavelets provide an optimal compromise between time and frequency resolution. However, the time-resolved estimation could equally well be conducted using short-term Fourier transformation, especially if appropriate windowing functions are used. More importantly, while the present analysis focused on the event-related estimation of cortico-cortical coupling, the pipeline can directly be applied also to continuous data by replacing the CSD estimation step with Fourier transformation based computations, as was done in Gross et al. (2001).



9.2. Definition of the Source Space

In general, reliable evaluation of cortico-cortical connectivity requires a group-level description of neural interactions. This, in turn, necessitates the estimation of the neural connectivity patterns in the same locations across subjects. This can be achieved both at the level of detailed grids of source points and cortical parcellations. Parcellations have been used more commonly for all-to-all type connectivity estimation (Palva et al., 2010; Saarinen et al., 2015; Schoffelen et al., 2017) as they reduce the computational load of the estimation and the amount of statistical testing. The present analysis pipeline facilitates both using a grid of source points and parcel-level estimation. An effective group-level estimation of connectivity between source points is achieved by generating a grid of points along the cortex of a reference brain (e.g., FreeSurfer's “fsaverage” brain) and transforming this grid to each individual's anatomy. As a consequence, the same connections are estimated in every subject, allowing direct estimation of the group-level statistics. A parcel-level description can then also by readily obtained as it is sufficient to assign each point-level connection to a parcel-pair in the common brain instead of doing the assignments separately in each subject. For the parcel-level estimation it would be almost equally straightforward to use individually defined grids of source points. However, when one aims to evaluate more detailed spatial aspects of connectivity, the chosen approach eliminates the need for massive interpolation operations that would be required if individual-level grids of source points were used.



9.3. Choice of the Interaction Metric

Here, we chose to apply a DICS based estimation of cortical connectivity that allows a direct mapping of the mutual dependencies of the sensor-level signals to a cortical space without the need for estimation of cortical-level time-series of activity. As the present connectivity estimation is dependent on the use of a CSD matrix, coherence is the only interaction metric that can be estimated straightforwardly in this manner. Notably, similar approaches that map the sensor level interaction patterns to the source level without the time-series estimation step have also been developed for metrics such as partial directed coherence (Michalareas et al., 2013) or imaginary coherence (Drakesmith et al., 2013).

Since interactions due to field spread exhibit zero phase lag, using an interaction measure that is sensitive only to non-zero phase lag, such as imaginary coherence (Nolte et al., 2004; Drakesmith et al., 2013), may reduce the detection of spurious interactions. However, there is good indication that not all zero-phase-lag connections are spurious (Gollo et al., 2014), so methods focusing solely on imaginary coherence should be used with care.

As theoretical models of neural interactions propose that neuronal coherence mechanistically subserves neuronal communication (Fries, 2005), the choice of coherence as an interaction metric factor does not necessarily represent a limitation of the approach. However, if the goal is to use some other metric to quantify neural interactions the analysis pipeline would need to be adjusted. Within the framework of transforming sensor-level dependency patterns to the source level, it would be possible to utilize, e.g., weighted phase-lag index (Vinck et al., 2011) by transforming single-trial (as opposed to average) CSD matrices to the source level. Most metrics would, however, require that one would first estimate cortical-level time-series of activity. This would be readily possible by using the DICS spatial filter for weighing the sensor-level time-series. Within this framework, however, the use of a detailed grid of source points would no longer be computationally tractable and it would be better to construct parcel-level time-series before the metric-dependent quantification of neural interactions.



9.4. Considerations Regarding Field Spread and Source Orientations

In the presented analysis we focused on estimating connectivity in an all-to-all manner without the need for a priori seed regions or constraining of the analysis to connections between preselected brain areas. The field spread based confounding factors in connectivity estimation are particularly critical for this type of analysis (Schoffelen and Gross, 2009) where it is difficult, e.g., to visually evaluate whether the observed changes in patterns of neural interactions truly represent modulation of coupling as opposed to modulation of field spread between experimental conditions. To minimize the effects of field spread, we focused only on long range (≥4 cm) connections and examined coherence modulations for conditions for which the amount of neural activity/oscillatory power are closely matched. However, the exact degree of matching that is required for contrasting canonical coherence, or any other type of coherence estimates, remains an open question.

Most of the neural signals detected by MEG and EEG originate from sources that are approximately orthogonal to the surface of the cortex (Hämäläinen et al., 1993). So, one may restrict the source space by defining only ECDs that point in the orthogonal direction, by for example leveraging the surface normals of the 3D-mesh produced by FreeSurfer (Dale and Sereno, 1993). However, in practice, each source grid-point represents the signal for a patch of cortical surface which, due to the folding of the cortex, includes locations with different surface normals. Especially when using a large spacing between grid-points, as we do in our pipeline, the source within each patch that drives the activity at the grid-point does not necessarily have the same orientation as the average surface normal of the patch as a whole. This is why it is recommended to allow for some flexibility regarding dipole orientation whenever possible (Lin et al., 2006). Whether this is possible in practice depends on the computational costs of performing the source estimates for multiple orientations and whether the SNR is good enough to produce a reliable estimate of the optimal orientation.

In the current pipeline we exclusively used a canonical estimation of coherence (Saarinen et al., 2015; Liljeström et al., 2015a,b) where, for each connection, the orientations of the source ECDs at both sides of the connection are selected such that they maximize coherence. To make this computationally feasible, we restrict the number of possible orientations by leveraging the fact that MEG is less sensitive to “radial” sources, due to the properties of the magnetic field (Hämäläinen et al., 1993). By choosing a tangential source space (see Figure 2, right), coherence values are only computed for those ECD orientations that yield the largest signal on the MEG sensors. This canonical estimation of coherence yields a maximally stable estimate of coherence and it is well suited for investigating modulation of coherence between experimental conditions. The estimates are, however, relatively smooth. For estimating absolute coherence values for short-range connections, especially when the expected coherence values are small, other criteria for defining the source orientations could be more appropriate.

For the connectivity analysis, we chose to design separate sets of DICS beamformer filters for each condition, instead of designing one set of filters to apply to both conditions. Accordingly, the estimation of coherence and optimization of the source orientations was also performed separately for each condition. This approach allows for subtle differences in optimal source orientations between the conditions and avoids biasing the solution toward the condition with better SNR. If the goal were to ensure that field spread effects are be maximally canceled out by contrasting two conditions, it would be beneficial to conduct the orientation optimization and weight estimation using a joint CSD across the conditions. The optimal choice between the alternatives depends on the research question and properties of the data.



9.5. Statistical Testing and Visualization

In the final stage of connectivity analysis one also needs to consider both what type of statistical testing and what spatial scales are optimal. As stated above, the present analysis pipeline has been designed for examining coherence modulations between experimental conditions. Moreover, to minimize confounding effects resulting from substantial power differences between conditions, the pipeline is aimed at contrasting different tasks as opposed to contrasting a single task to resting baseline levels of neural interaction. It is also possible to contrast a single task to a task-average (Saarinen et al., 2015) to highlight how the connectivity changes in a specific task with respect to multiple different tasks. Notably, the analysis pipeline does not provide a full connectome, that is, a complete description of the underlying networks. Instead, it yields a snapshot of a specific part of the network where cortico-cortical coupling has changed from one experimental condition to another. By introducing a battery of control conditions and comparisons between different conditions, the pipeline would thus allow the identification of different subnetworks that are critical for different aspects of neural processing in performing the tasks.

The present analysis pipeline enables the evaluation of the above aspects both at the level of detailed grids of source points and coarser parcellations. An effective visualization combines a connectogram that shows the connectivity at the parcel level, with a visualization of the grid-level connectivity on the cortex. This makes it possible to evaluate whether the patterns of neural connectivity evaluated at the grid-level are faithfully represented also at the level of a parcellated cortex. This, in turn, allows the fine tuning of the parcellation schemes, which are generally based on anatomical division, to better suit MEG data.




10. CONCLUSION

We have presented an analysis pipeline that facilitates the cortical mapping of oscillatory activity and estimation of all-to-all type cortico-cortical coherence. Combined with Jas et al. (2018), all the necessary steps of the analysis of a real experiment are described: starting from the processing of raw MEG data to the statistical group analysis of the networks and visualization of the results using connectograms, as one would use in a publication. We have developed a new python package called ConPy, which integrates with MNE-python (Gramfort et al., 2013) to offer a clean interface to all required software routines to reproduce the analysis. It is our hope that our example analysis will serve as a strong foundation for others who seek to implement their own DICS analysis pipelines.
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Predictive coding postulates that we make (top-down) predictions about the world and that we continuously compare incoming (bottom-up) sensory information with these predictions, in order to update our models and perception so as to better reflect reality. That is, our so-called “Bayesian brains” continuously create and update generative models of the world, inferring (hidden) causes from (sensory) consequences. Neuroimaging datasets enable the detailed investigation of such modeling and updating processes, and these datasets can themselves be analyzed with Bayesian approaches. These offer methodological advantages over classical statistics. Specifically, any number of models can be compared, the models need not be nested, and the “null model” can be accepted (rather than only failing to be rejected as in frequentist inference). This methodological paper explains how to construct posterior probability maps (PPMs) for Bayesian Model Selection (BMS) at the group level using electroencephalography (EEG) or magnetoencephalography (MEG) data. The method has only recently been used for EEG data, after originally being developed and applied in the context of functional magnetic resonance imaging (fMRI) analysis. Here, we describe how this method can be adapted for EEG using the Statistical Parametric Mapping (SPM) software package for MATLAB. The method enables the comparison of an arbitrary number of hypotheses (or explanations for observed responses), at each and every voxel in the brain (source level) and/or in the scalp-time volume (scalp level), both within participants and at the group level. The method is illustrated here using mismatch negativity (MMN) data from a group of participants performing an audio-spatial oddball attention task. All data and code are provided in keeping with the Open Science movement. In doing so, we hope to enable others in the field of M/EEG to implement our methods so as to address their own questions of interest.

Keywords: EEG, MEG, Bayes, PPMs, BMS, code:matlab, code:spm


INTRODUCTION

The statistical testing of hypotheses originated with Thomas Bayes (Neyman and Pearson, 1933), whose famous eponymous theorem (Bayes and Price, 1763) can be written in terms of probability densities as follows:

[image: image]

where θ denotes unobserved parameters, y denotes observed quantities, and p(θ|y) denotes the probability p of the unknown parameters θ, given (“|”) the set of observed quantities y. More generally, p(event|knowledge) denotes the probability of an event given existing knowledge. In other words, Bayes conceptualizes statistics as simply the plausibility of a hypothesis given the knowledge available (Meinert, 2012).

Bayes’ theorem allows one to update one’s knowledge of the previously estimated (or “prior”) probability of causes, to a new estimate, the “posterior” probability of possible causes. This process can be repeated indefinitely, with the prior being recursively updated to the new posterior each time. This gives rise to multiple intuitive and useful data analysis methods, one of which is the explained in detail in this paper.

Even when it first appeared, Bayes’ theorem was recognized as an expression of “common sense,” a “foundation for all reasonings concerning past facts,” (Bayes and Price, 1763). Centuries later, neuroscientific evidence suggests that Bayes’ theorem may not only explain our “common sense” and internal reasoning processes, but may be common to all our senses: it can actually explain the way in which we use our various senses to perceive the world. That is, Bayesian statistics can be used to accurately model and predict the ways in which our own brains process information (Dayan et al., 1995; Feldman and Friston, 2010; Friston, 2012; Hohwy, 2013). This has given rise to the concepts of predictive coding and the Bayesian brain. In this context, it is unsurprising that Bayesian approaches to statistics have high face validity (Friston and Penny, 2003). This allows for intuitive descriptions of probability and enables experimental results to be relatively easily understood and communicated both within and between scientific communities, as well as to the general public (Dunson, 2001).

Despite the intuitiveness of Bayesian approaches, however, the mainstay of hypothesis-testing since the 20th century (Vallverdú, 2008) has instead been classical or frequentist statistics, which conceptualizes probability as a “long-run frequency” of events, and which has dominated most approaches to neuroimaging analysis to date (Penny et al., 2003). For example, creating statistical parametric maps (SPMs), which is a popular method of analyzing neuroimaging data, mainly involves frequentist approaches (Friston and Penny, 2003).

In frequentist statistics, the null hypothesis (that there is no relationship between the causes and the data) is compared with one alternative hypothesis; the null is then either rejected in favor of the alternative hypothesis, or it fails to be rejected – it can never be directly “supported.” Rejection of the null depends on the somewhat unintuitive p-value, which communicates how likely it is that the effect (of at least the size seen in the experiment), would be seen in the absence of a true effect, if the experiment were repeated many times. This is a more complex and counterintuitive way of communicating results compared to Bayesian statistics (where the probability of the hypothesis in question is what is being estimated and communicated).

Also, unfortunately, multiple different models cannot be compared at once, and either the null and the alternative models need to be nested, or specific modifications need to be made (Horn, 1987; McAleer, 1995), for frequentist statistical tests to be feasible (Rosa et al., 2010). These features cause frequentist statistics to be less useful in certain contexts, compared to the approaches enabled by Bayesian statistics.

In recent decades, Bayesian approaches are becoming increasingly recognized for their superior utility for addressing certain questions and in specific data analysis situations, as explained below (Beal, 2003; Rosa et al., 2010; Penny and Ridgway, 2013). Importantly, with Bayesian approaches to data analysis, any number of models can be compared, the models need not be nested, and the “null model” can be accepted (Rosa et al., 2010). The fact that Bayesian hypothesis-testing also allows researchers to evaluate the likelihood of the null hypothesis is crucially important in light of the replication crisis in psychology and neuroscience (Hartshorne, 2012; Larson and Carbine, 2017; Szucs et al., 2017). Importantly, results supporting the null hypothesis are equally noteworthy or reportable as other results within Bayesian statistics. The use of Bayesian statistics may also ameliorate some statistical power-related problems documented in the literature (Dienes, 2016).

Even though Bayesian statistics has gained popularity in the context of “accepting the null,” its strength lies beyond this, in the sense that it enables the relative quantification of any number of alternative models (or hypotheses). In Bayesian Model Selection (BMS), models are compared based on the probability of observing a particular dataset given each model’s parameters. The probability of obtaining observed data, y, given model m, p(y|m), is known as the model evidence. In BMS, an approximation of the model evidence is calculated for multiple models; the model evidences are then compared to determine which model returns the highest probability of generating the particular dataset in question (Rosa et al., 2010).

A computationally efficient and relatively accurate (Stephan et al., 2009) method of approximating the model evidence is to use variational Bayes (VB). If each participant in the dataset is assumed to have the same model explaining their data, then this is called a fixed effects (FFX) approach. If, on the other hand, every participant is permitted to have their own (potentially different) model, this is called a random effects (RFX) approach.

An elegant approach to succinctly communicating results is to use Posterior Probability Maps (PPMs), which provide a visual depiction of the spatial and/or temporal locations in which a particular model is more probable than the alternatives considered, given the experimental data in question. The development of PPMs is essentially the Bayesian alternative to the creation of SPMs (Friston and Penny, 2003). PPMs may display the posterior probability of the models (the probability that a model explains the data), or, alternatively, they may be displayed as Exceedance Probability Maps (EPMs), which are maps of the probabilities that a model (say k) is more likely compared to all other (K) models considered (Rosa et al., 2010). (EPMs will be identical to PPMs in cases where there are only two models being considered, as in this study.) EPMs are useful in that they allow us to directly quantify which model is more probable than the other/s considered.

The data analysis method that forms the focus of this paper is Posterior Probability Mapping with an RFX approach to VB. First introduced (Rosa et al., 2010) for functional magnetic resonance imaging (fMRI), the method has recently been adapted for inference using electroencephalography (EEG) data (Garrido et al., 2018). In their study, Garrido et al. (2018) used VB to approximate the log of the model evidence for each voxel (in space and time) in every participant, in order to construct PPMs at the group level. They did this in the context of comparing between two computational models describing the relationship between attention and prediction in auditory processing. While that paper focused on using this Bayesian methodology to address an important neuroscientific question, the precise way in which Rosa and colleagues’ (2010) methods were adapted for use with EEG data, has not been formally described to date – leading to the purpose of this paper.

Here, we describe in a tutorial-like manner how to build and compare PPMs for EEG and/or magnetoencephalography (MEG) data (M/EEG), using an RFX approach to VB. This approach provides useful ways of displaying the probabilities of different models at different times and brain locations, given any set of neuroimaging data [as done in Garrido et al. (2018)] using the Statistical Parametric Mapping (SPM) software package for MATLAB. Furthermore, in keeping with the Open Science movement, we provide the full EEG dataset1 and the code2 to facilitate future use of the method. In doing so, we hope that this paper and its associated scripts will enable others in the field of M/EEG to implement our methods to address their own questions of interest.



THEORY

In frequentist hypothesis testing, what is actually being tested is the null hypothesis (i.e., that there is no relationship between the variables of interest; Friston and Penny, 2007). If it is assumed that there is a linear relationship between the causes and data, then the relationship between the causes (x) and data (y) can be represented as below (Friston and Penny, 2007):
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where y denotes data, x denotes causes and 𝜀 is an error term. The null hypothesis is that the relationship between the causes and data does not exist, that is, θ = 0. The null hypothesis is compared to one alternative hypothesis; the null is then either rejected in favor of the alternative hypothesis, or it fails to be rejected – it can never be directly “supported.”

Using the frequentist framework, one cannot test multiple models at once (unlike what can be done when using Bayesian approaches). (In this setting, a model corresponds to a particular mixture of explanatory variables in the design matrix x.) Even if one only wishes to test one model against the null, however, frequentist statistics still gives rise to problems unless the null and alternate models are nested. When the variables in one model cannot be expressed as a linear combination of the variables in another model, the two models are said to be non-nested (McAleer, 1995). Non-nested models usually arise when model specifications are subject to differences in their auxiliary assumptions or in their theoretical approaches, and can still be dealt with by making specific modifications to frequentist approaches (Horn, 1987; McAleer, 1995). However, there are many situations where Bayesian approaches are more appropriate for non-nested models than adapted frequentist inference (Rosa et al., 2010). Indeed, Penny et al. (2007a), showed that fMRI haemodynamic basis sets are best compared using Bayesian approaches to non-nested models.

Furthermore, Bayesian approaches to statistics have long been recognized for their relative advantages outside of the realm of neuroimaging. In clinical trials, Bayesian experimental design techniques and interim analyses have been found to improve trials’ statistical power, cost-effectiveness and clinical outcomes (e.g., Trippa et al., 2012; Connor et al., 2013), compared to when classical approaches are used alone. Bayesian statistics are also especially useful in the worlds of computational physics (Mohammad-Djafari, 2002) and biology (Needham et al., 2007), and in machine learning (Lappalainen and Miskin, 2000).

The aim of BMS is to adjudicate between models using each one’s model evidence. Also written as p(y|m), the model evidence is defined as the probability (p) of obtaining observed data (denoted y) given the model (denoted m). It is given by the following integral (Rosa et al., 2010):
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This integral is usually intractable, so numerous methods have been developed to approximate it. As Blei et al. (2017) succinctly summarize, there are two main ways to solve the problem of approximating the integral above. One is to sample a Markov chain (Blei et al., 2017), and the other is to use optimisation. The conversion of an integration problem into an optimisation problem is due to Richard Feynman, who introduced variational free energy in the setting of path integral problems in quantum electrodynamics (Feynman and Brown, 1942; Feynman et al., 2010). By inducing a bound on the integral above – through an approximate posterior density (please see below) – one converts an intractable integration problem into a relatively straightforward optimisation problem, that can be solved using gradient descent.

Some of the specific approximation methods that have been used to date include Annealed Importance Sampling (AIS; Neal, 1998; Penny and Sengupta, 2016), Bayesian Information Criterion (BIC) measures (Rissanen, 1978; Schwarz, 1978; Penny, 2012), Akaike Information Criterion (AIC) measures (Akaike, 1980; Penny, 2012), and finally, the variational Free Energy (F), which was first applied to the analysis of functional neuroimaging time series by Penny et al. (2003) and which is explained in this paper (Rosa et al., 2010). These methods have varying degrees of accuracy and computational complexity, and have been studied in detail elsewhere (Beal and Ghahramani, 2003; Penny et al., 2004; Penny, 2012). The variational Free Energy provides a relatively high level of accuracy, without a great computational cost (Rosa et al., 2010), and so it is unsurprising that it is widely used in neuroimaging (Rosa et al., 2010). The Free Energy formula is (Penny et al., 2003):
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where q(θ|y) is an (initially) arbitrary distribution of the parameters θ given the data at each voxel y, p(y,θ) denotes the joint probability of the data and the parameters occurring, and dθ simply denotes that the integral given by F is with respect to the model parameters θ.

The “variational” term in variational Free Energy, and in VB, refers to the branch of calculus (the calculus of variations) that deals with maximizing or minimizing functionals, or integrals. The utility of variational calculus in neuroimaging analysis has been reviewed in numerous other papers (Friston K.J. et al., 2008). In brief, the aim in VB is to maximize the functional given by the equation above. The reason for doing this is that it provides information about the model evidence. More specifically, the Free Energy relates to the log of the model evidence (or log-model evidence) as described by the following equation (Rosa et al., 2010), known as the fundamental equation (Penny et al., 2003) of Variational Bayes:
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where log p(y|m) is the log-model evidence, F is the variational Free Energy, and KL(q(θ)||p(θ|y,m)) is the Kullback–Leibler divergence (Kullback and Leibler, 1951), or relative information, with respect to the approximate distribution q(θ) and the distribution that is diverging from it, namely the true distribution, p(θ|y,m), as further described below.

The reason why Free Energy can be used as an approximation of the model evidence is better understood in light of the meaning of the second term in the fundamental VB equation, the Kullback–Leibler (KL) divergence (Penny et al., 2003). The equation for this is:
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where all terms listed here have the same meanings as defined in earlier paragraphs. The KL divergence is also known as KL information, and this is because it is a measure of the information “difference” or divergence between two distributions. It can be derived by considering the so-called cross-entropy and entropy of the two distributions, respectively, as outlined below (Carter, 2007). The concept of “relative entropy” is essentially “average information,” with “information” being defined as Shannon (1948/2001) originally introduced:
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where I(p) is the information given by observation of an event of probability p, and logb (1/p) is the logarithm (in base b) of the inverse of the probability of that event. The formula above is used to derive the “average information,” also sometimes referred to as relative entropy, from a set of events. A related concept is the “cross entropy” between two distributions (see Carter, 2007); and the difference between the cross entropy and the entropy of the original/true distribution is equivalent to the KL divergence. Being a measure of information, the KL divergence has the property that it is non-negative; consequently, the lowest value it can take is zero.

The KL divergence between two distributions is zero only if the two distributions are equivalent. The closer KL is to zero, the less dissimilar the two distributions are. Thus, minimizing KL is equivalent to maximizing F, and F is said to provide a lower bound on the log-evidence. The aim of VB learning is to maximize F so that the approximate posterior thereby becomes as close as possible to the true posterior (Penny et al., 2007a).

If (and only if) the KL divergence is zero, then F is equal to the log-model evidence. The free energy thus provides a lower bound on the log-evidence of the model, which is why iteratively optimizing it allows us to proceed with BMS using F as an approximation of the log-model evidence (Penny et al., 2007a). As the KL divergence is minimized by an iterative process of optimisation, F becomes an increasingly “tighter” lower bound on the desired (actual) log-model evidence; owing to this, BMS can proceed using F as a “surrogate” for the log-model evidence (Rosa et al., 2010). The iterations continue until improvements in F are very small (below some desired threshold). This method of estimating the log-model evidence is implemented in the second script described in the Implementation section (“BMS2_ModelSpec_VB.m”).

Although it has been summarized here, it is also worth noting that VB is further fleshed out in multiple other research papers (Penny et al., 2003, 2007a; Friston et al., 2007) and tutorials (Lappalainen and Miskin, 2000). In Statistical Parametric Mapping, Friston (2007) provides the mathematical derivations for the fundamental equation of VB, and his colleagues provide a full explanation of its application to BMS (Penny et al., 2007b).

The application of VB in the context of fMRI analysis has been described in detail elsewhere (Penny et al., 2007a; Stephan et al., 2009; Rosa et al., 2010). Penny et al. (2007a) used Bayesian spatiotemporal models of within-subject log-model evidence maps for fMRI data, in order to make voxel-wise comparison of these maps and thereby to make inferences about regionally specific effects. Rosa et al. (2010) developed their approach by combining the methods described by Penny et al. (2007a) with those of Stephan et al. (2009), who used an RFX approach to VB, as described below.

After the log-model evidence has been estimated as described above, given uniform priors over models, one can then estimate posterior model probabilities by comparing model-evidences between models. The ratio between model evidences, or Bayes factor (BF), can be used to estimate posterior model probabilities. A BF greater than 20 is equivalent to a posterior model probability greater than 0.95 (Kass and Raftery, 1995), which is reminiscent of the typical p-value smaller than 0.05. The product of Bayes factors over all subjects is called the Group Bayes Factor (GBF), and it gives the relative probability that one model (relative to another) applies to the entire group of subjects. That is, it rests on the assumption that the data were generated by the same model for all participants, and that data are conditionally independent over subjects. This is known as fixed effects (FFX) inference, and it is not as robust to outliers as RFX inference, which does not assume that the data were necessarily generated by the same model for each participant (Stephan et al., 2009).

Stephan et al. (2009) developed a novel VB approach for group level methods of Bayesian model comparison that used RFX instead of fixed effects analysis at the group level. They did this by treating models as random variables whose probabilities can be described by a Dirichlet distribution (which is conjugate to the multinomial distribution) with parameters that are estimated using the log-model evidences over all models and subjects (as described below). Once the optimal Dirichlet parameters have been estimated, they can be used to calculate posterior probabilities or exceedance probabilities of a given model for a randomly selected participant. This is what is done in the third script (“BMS3_PPMs.m,” described in the Implementation section below), and the underlying mathematics is explained briefly below.

In the RFX approach introduced by Stephan et al. (2009), we assume that the probabilities of the different models (or hypotheses) are described by the following Dirichlet distribution:
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where r represents the probabilities r = [r1, …., rK] of K different models (or hypotheses), and α = [α1, …., αk] are related to unobserved “occurrences” of models in the population. This distribution is part of a hierarchical model: the next level depends on model probabilities, r, which are described by the Dirichlet distribution.

In the next level of the hierarchical model, we assume that the probability that a particular model generated the data of a particular subject, is given by a multinomial variable mn whose probability distribution is as follows:
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where mn is the multinomial variable that describes the probability that model k generated the data of subject n given the probabilities r.

Finally, in the lowest level of this hierarchical model, the probability of the data in the nth subject, given model k, over all parameters (ϑ) of the selected model (i.e., the marginal likelihood of the data in the nth subject, obtained by integrating over the parameters of the model) is given by:
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The goal is to invert this hierarchical model, that is, work backward from data (yn) to find the parameters of the Dirichlet distribution (which then allows the calculation of the expected posterior probability of obtaining the kth model for any randomly selected subject, as shown below). This model inversion is done using a VB approach in which the Dirichlet distribution is approximated with a conditional density, q(r)= Dir(r, α). Stephan et al. (2009) show that the following algorithm yields the optimal parameters of the conditional density q(r)= Dir(r, α):
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Until convergence
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where α are “occurrences” of models in the population; α0 is the Dirichlet prior, which, on the assumption that no models have been “seen” a priori, is set as α0 = [1,...,1] so that all models are equally probable to begin with; unk is the non-normalized belief that model k generated the data yn for subject n (for the derivation of this line, please see Stephan et al., 2009); ψ is the digamma function [image: image]; βk is the expected number of subjects whose data are believed to be generated by model k (so-called “data counts”); and the last line, α = α0 + β essentially obtains the parameters of the Dirichlet distribution by starting with the Dirichlet prior α0 and adding on “data counts” β (Stephan et al., 2009).

Once the Dirichlet parameters have been optimized as per the algorithm above, this can be used for model comparisons at the group level. One way of comparing models is to simply compare the parameter estimates, α. Another way is to calculate the multinomial parameters, 〈rk〉, that encode the posterior probability of model k being selected for a randomly chosen subject in the group:
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where rk is the probability of the model; the numerator of the fraction, αk, is the “occurrence” of model k; and the denominator (α1 + … + αk) is the sum of all model “occurrences.” This was how the PPMs were generated in the third script (“BMS3_PPMs.m”) below.

Another option for comparing models after the optimal Dirichlet parameters have been found, is to calculate the exceedance probability for a given model, as follows (Rosa et al., 2010):
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where φk is the exceedance probability for model k, that is, the probability that it is more likely than any of the other models considered; rk is the probability of model k; rj is the probability of all other models considered; Y represents the data from all subjects and α represents the Dirichlet parameters.

Having introduced this RFX approach to VB, Stephan et al. (2009) then used both simulated and empirical data to demonstrate that when groups are heterogeneous, fixed effects analyses fail to remain sufficiently robust. Crucially, they also showed that RFX is robust to outliers, which can confound inference under FFX assumptions, when those assumptions are violated. Stephan et al. thus concluded that although RFX is more conservative than FFX, it is still the best method for selecting among competing neurocomputational models.



MATERIALS AND METHODS

Experimental Design

This experiment is a direct replication of that performed by Garrido et al. (2018), apart from the omission of a “divided attention” condition. As they describe in greater detail in their paper, Garrido et al. (2018) utilized a novel audio-spatial attention task during which attention and prediction were orthogonally manipulated; this was done to evaluate the effect of surprise and attention in auditory processing (Garrido et al., 2018). The authors compared two models (shown in Figure 1) which may explain the effect attention has on the neural responses elicited by predicted and unpredicted events.


[image: image]

FIGURE 1. The two competing models that were evaluated using BMS. Reprinted with permission from Garrido et al. (2018) DOI: 10.1093/cercor/bhx087. Figure Published by Oxford University Press. All rights reserved. Available online at: https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx087/3571164?searchresult=1">https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx087/3571164?searchresult=1. This figure is not covered by the Open-Access license of this publication. For permissions contact Journals.permissions@OUP.com.



The original study supported the model in which attention boosts neural responses to both predicted and unpredicted stimuli, called the Opposition Model (Garrido et al., 2018). Prediction attenuates neural activity, while attention enhances this activity. Since these effects occur in opposite directions or have opposing effects, the researchers named the model (describing these effects) the Opposition Model. According to this model, attention improves the accuracy of predictions by precision weighting prediction errors more heavily. Thus, in light of this model, attention and prediction work together (in opposite directions) to improve our ability to make more accurate representations of the sensorium.

Our current study attempted to replicate the above-mentioned study with an independent dataset and employing the Bayesian methods that resembled the original study as closely as possible. The only difference was that the divided-attention condition was not administered because it was not required for the implementation and description of the BMS steps. It is hoped that the detailed description of our methods, adapted from those originally developed for fMRI by Rosa et al. (2010), prove to be useful for other EEG and/or MEG researchers. Furthermore, a replication study such as this one has the additional benefit of being responsive to the persisting replication crisis that continues to pose a significant problem for neuroscience and psychology (Hartshorne, 2012; Larson and Carbine, 2017; Szucs et al., 2017).

To this end we employed BMS to adjudicate between two competing hypotheses (see Figure 1), namely:

(1)   Attention increases (boosts) neural responses to both predicted and unpredicted stimuli. This is formalized in the Methods section and is then called Model One – the Opposition Model.

(2)   Attention boosts neural responses to predicted stimuli more than it boosts responses to unpredicted stimuli. This causes predicted attended stimuli to generate the highest neural responses, followed by attended unpredicted stimuli. This is formalized in the Methods section and is then called Model Two – the Interaction Model.

Participants

Twenty-one healthy adults (aged between 19–64 years, M = 25.00 years, SD = 9.83, nine females) were recruited via the University of Queensland’s Psychology Research Participation Scheme (SONA). Exclusion criteria included any history of mental or neurological disease, any previous head injury resulting in unconsciousness, or an age outside the prescribed range (18–65 years). All participants gave both written and verbal informed consent to both the study and to having their de-identified data made available in publicly distributed databases. Participants completed practice blocks of stimulus presentation prior to undergoing the EEG recording, in order to enable them to withdraw if they found the task unpleasant or excessively challenging. (No participants wished to withdraw.) Participants were monetarily compensated for their time. This study was approved by the University of Queensland Human Research Ethics Committee.

Task Description

Participants wore earphones with inner-ear buds (Etymotic, ER3) and were asked to follow instructions on a computer screen. Participants were asked to pay attention to the sound stream in either the left or the right ear (ignoring the sounds that were being played in the other ear). Gaussian white noise was played to both ears and an oddball sequence was played to one of the ears. During a given block, participants were tasked with listening carefully for gaps in the white noise on the side to which they had been asked to attend. They were asked to press a “1” on the numbered keyboard when they heard a single gap (lasting 90 ms) in the white noise, and a “2” when they heard a double gap (two 90 ms gaps separated by 30 ms of white noise). They were asked to ignore any tones played on both the attended and the opposite ear. This task is described in further detail, including pictorial representations, in Garrido et al. (2018).

Participants listened to eight different blocks, each 190 s in duration. Each block contained a total of 30 targets (15 single gaps and 15 double gaps, randomly distributed across the block, but never occurring within 2.5 s of each other and never occurring at the same time as a tone). Throughout each block there were also 50-ms-long pure tones being played in one of the ears, with a 450 ms inter-stimulus interval. In each block there were two tones: the standard tone (either 500 Hz or 550 Hz counterbalanced between blocks) that occurred 85% of the time, and the deviant (either 550 Hz or 500 Hz, the opposite of the standard tone and counterbalanced across blocks) that occurred 15% of the time. All sound files were created using MATLAB (RRID:SCR_001622; The MathWorks3, Inc.) with sound recordings done using Audacity® (Audacity: Free Audio Editor and Recorder, RRID:SCR_007198) as previously described by Garrido et al. (2018). The order was counterbalanced such that no two participants received the same order of blocks.

Prior to and during the practice block/s, the volume of sound delivery was adjusted until the participant stated that they were able to hear the white noise well enough to complete the task. For each participant, an accuracy level was calculated, consisting of the percentage of white noise gaps that were correctly identified (as single or double) and responded to promptly (i.e., within 2 s of the gap/s). This was calculated separately for the practice block, which was repeated if a participant did not achieve at least 50% accuracy. Once participants achieved above 50% accuracy, they were invited to participate in the rest of the experiment. At the end of the experiment each participant’s accuracy was again calculated to ensure their accuracy level remained at least 50% (otherwise they were excluded from the study). This was to ensure that participants were attending to the task as instructed.

EEG Data Acquisition

Using a standardized nylon head cap fitted tightly and comfortably over the scalp, 64 silver/silver chloride (Ag/AgCl) scalp electrodes were placed according to the international 10–10 system for electrode placement. As is usual for this system, electrodes were placed above and below the left eye and just lateral to the outer canthi of both left and right eyes, to generate the vertical electrooculogram (VEOG) and horizontal electrooculogram (HEOG) recordings, respectively. Continuous EEG data were recorded using a Biosemi Active Two system at a sampling rate of 1024 Hz. The onset of targets, standards and deviants were recorded with unique trigger codes at the time of delivery to the participant. Within each block, the target triggers were used for accuracy calculations, while the standard and deviant triggers were kept as the time points around which to epoch the data at a later stage.

EEG Preprocessing

Following the collection of the raw EEG data, preprocessing was completed using SPM software (SPM12, RRID:SCR_007037; Wellcome Trust Center for Neuroimaging, London4). EEG data preprocessing included referencing data to the common average of all electrodes; downsampling to 200 Hz; bandpass filtering (between 0.5 to 40 Hz); eyeblink correction to remove trials marked with eyeblink artifacts (measured with the VEOG and HEOG channels); epoching using a peri-stimulus window of -100 to 400 ms and artifact rejection (with 100 uV cut-off).

Source Reconstruction

For source BMS, SPM12 software was used to obtain source estimates on the cortex by reconstructing the scalp activity using a single-shell head model. The forward model was then inverted with multiple sparse priors (MSP) assumptions for the variance components (Friston K. et al., 2008) under group constraints (Litvak and Friston, 2008). The entire time window of 0 to 400 ms was used to infer the most likely cortical regions that generated the data observed during this time. Images for each participant and each condition were obtained from the source reconstructions and were smoothed at full width at half maximum (FWHM) 12 × 12 × 12 mm. This source reconstruction step is available as an online script (named “BMS1_Source_ImCreate.m” and available online5).

Bayesian Model Selection Maps: Implementation for M/EEG

For all data analysis steps (Table 1), we used SPM12 software package for MATLAB. We wrote in-house MATLAB scripts, integrated with SPM12 and now available online6 Copies of the scripts are also given in the Supplementary Material. The online scripts are divided into three BMS scripts. In the first script (BMS1_ST_ImCreate.m for spatiotemporal BMS and BMS1_Source_ImCreate.m for source BMS), we call the preprocessed EEG data and then create images for every trial, for every condition, and for every participant. The second script (BMS2_ModelSpec_VB.m) specifies the hypotheses and implements VB (as described in the Theory section). The last script (BMS3_PPMs.m) then creates PPMs.

TABLE 1. Step-by-step summary of method.
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In the model specification and VB script (BMS2_ModelSpec_VB.m), we changed individual participants’ data file structures in order to match the format that SPM typically requires to read fMRI data. This is done by first loading the relevant file path and then changing the file structure. Once these newly structured files had been saved, we next specified the models to be compared: this was done by assigning covariate weights to describe both models (please see the instructions contained within BMS2_ModelSpec_VB.m on Github). The Opposition Model was assigned weights of [1, 2, 2, and 3] for the unattended predicted, attended predicted and unattended unpredicted, and attended unpredicted, respectively. The Interaction Model was assigned weights of [1, 4, 2, and 3] for the same conditions.

These covariate weights essentially describe the assumed relationship between the different conditions according to a given model. For example, using [1, 2, 2, and 3] as employed in the Opposition Model, means that according to the Opposition Model, the unattended predicted condition (the first condition with an assigned weight of 1) evokes the smallest activity, whereas the attended unpredicted (the fourth condition with a weight of 3) has the greater activity, and both attended predicted and unattended unpredicted (second and third conditions with an equal weight of 2) are in between the former two conditions and indistinguishable in magnitude from each other.

We then created log-evidence images, representing the log-model evidences, for both models (separately), for every participant (individually) at every voxel. In the case of spatiotemporal (scalp-level) BMS, each voxel was representative of a specific spatiotemporal location within the peristimulus time window (0 to 400 ms) and topologically across the scalp, such that the first two dimensions of the voxel refer to the space across the scalp and the third dimension is time (as shown in Figure 2). Conversely, in the source BMS (which began with the source reconstruction steps described above), each voxel was representative of an inferred location in three-dimensional source space. Once log-evidence images had been created, these were smoothed with a 1 mm half-width Gaussian kernel.
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FIGURE 2. Scalp Posterior Probability Maps of the two competing models over space and time. (The scalp images include the participant’s nose, pointing upward, and ears, visible as if viewed from above.) These maps display all posterior probabilities exceeding 75% over space and time for both models. The left sides of both panels (A,C) both depict the temporal information, showing the model probabilities at each point in time from 0 ms (when the tone was played, at the top of the diagrams) to 400 ms after the stimulus presentation (at the bottom of the diagram), across the surface of the scalp (which traverses the width of the panels). The right sides (B,D) show the spatial locations of the probability clusters which exceeded the threshold of 75% probability. Panels (B) and (D) were generated using the spatiotemporal visualization tools developed by Jeremy Taylor. These tools are available at: https://github.com/JeremyATaylor/Porthole.



In summary, one can create PPMs or log evidence maps in sensor or source space. In sensor space, this involves creating a two-dimensional image over the scalp surface and equipping the space with a peristimulus time dimension. This creates PPMs over the scalp surface and peristimulus time, enabling one to identify regionally and temporally specific effects due to a particular model, relative to other contrasts. Alternatively, one can create three-dimensional PPMs in source space, following source reconstruction.

The core SPM script that allows VB to be used on fMRI data is named spm_spm_vb.m and is found in the SPM12 package, downloadable from the SPM site. This core script was edited in order to adapt the VB method for EEG, as follows. Changes were made such that different data structures could be read in the same way that fMRI data would usually be read. Furthermore, high-pass filtering steps were removed as these only apply to low-frequency drifts associated with fMRI data. The specific changes made between the original script and the altered one to be used for spatiotemporal BMS areaccessible online (goo.gl/ZVhPT7). For the source BMS steps, the same changes were left in place as outlined above, and in addition, the required minimum cluster size was changed from 16 to 0 voxels to allow for visualization of all clusters of any size. The specific differences between the original and source BMS versions of the spm_spm_vb script are accessible online (goo.gl/WXAo67).

In the final step (BMS3_PPMs.m), the SPM Batch Editor was used to apply a RFX approach to the group model evidence data in a voxel-wise manner, thus translating the log-evidence images from the previous step into PPMs (similar to how Rosa et al. (2010) have produced PPMs previously for fMRI data). The maps, displayed in the Figures 2–4, were generated by selecting threshold probabilities of 75% for the spatiotemporal maps (Figure 2) and 50% for the source maps (Figures 3 and 4). This threshold can be adjusted by the user. EPMs can also be displayed by selecting the relevant setting in the final script (please see the instructions on Github).
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FIGURE 3. Source Posterior Probability Map for the Opposition Model (that is, reconstructed images representing the model inference at the group level for this model), thresholded at > 50% posterior probability. (A) View from the left side. (B) View from the left side, from the posterior (back) end. (C) View from the right side. (D) View from above.
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FIGURE 4. Source Posterior Probability Map for the Interaction Model (that is, reconstructed images representing the model inference at the group level for this model), thresholded at > 50% posterior probability. (A) View from the left side. (B) View from the left side, from the posterior (back) end. (C) View from the right side. (D) View from above.





RESULTS

The raw dataset for this study can be found; on Figshare (EEG_Auditory_Oddball_Raw_Data repository7; Harris et al., 2018a).

The preprocessed dataset for this study can also be found on Figshare (EEG_Auditory_Oddball_Preprocessed_Data repository8; Harris et al., 2018b).

Scalp – Spatiotemporal

Figure 2 shows scalp (spatiotemporal) PPMs of the two competing models over space and time. These maps display all posterior probabilities exceeding 75% over space and time for both models. As can be seen in the figure, spatiotemporal BMS results revealed that Model One (the Opposition Model) was by and large the superior model. The Opposition Model had model probabilities exceeding 75% across the majority of later time points (with most significant clusters between 225–360 ms), and over most frontocentral and bilateral channel locations, as shown in (A). On the other hand, as shown in (C), the Interaction Model did have over 75% model probability centrally between 175–185 ms, which is within the mismatch negativity (MMN) time window. These findings replicate those of Garrido et al. (2018), and strongly support the implications discussed in great depth in that paper.

Source

As shown in Figures 3, 4, and 5, source BMS results also favored the Opposition Model, with higher model probability over the left supramarginal gyrus (with 91% model probability over a relatively large cluster, KE = 6115), the right superior temporal gyrus (with 87% model probability over a cluster with KE = 5749) as well as over parts of the left inferior parietal lobe, right inferior parietal lobe and left postcentral gyrus. Having said this, the Interaction Model also had two large clusters, albeit with lower model probabilities compared to the Opposition Model’s highest-probability clusters: specifically, the Interaction Model had a cluster of size KE = 6346 over the left inferior parietal lobe and a cluster of size KE = 5353 over the right inferior parietal lobe (with 74% model probability in both places).

Figures 3 and 4 show that different brain regions are likely to perform different computations best described by the Opposition and Interaction Models, respectively. Furthermore, Figure 5 compares the magnitude of the calculated posterior probabilities, at the locations of the highest probability cluster for both models. The possible functional reasons for the different anatomical locations that emerge for the two different models may be an interesting subject for future study, but fall outside the scope of this methods paper. In any case, the usefulness of this probability mapping approach illustrated in Figures 2, 3, and 4, lies in the ability to pinpoint where and when given computations are likely to be performed in the brain.


[image: image]

FIGURE 5. Comparison of the posterior probabilities for the two models at the location of the highest-probability cluster of the Opposition Model (left) and the location of the highest-probability cluster of the Interaction Model (right). The left supramarginal gyrus cluster, which was the highest probability cluster for the Opposition Model (left), was located at Montreal Neurological Institute (MNI) coordinates (62, –42, 30), while the left inferior parietal lobe cluster, which was the highest probability cluster for the Interaction Model, was located at MNI coordinates (–54, –32, 46).





DISCUSSION

This paper shows how to use RFX BMS mapping methods for M/EEG data analysis. This method was originally developed for fMRI by Rosa et al. (2010), and provides a way of displaying the probabilities of different cognitive models at different timepoints and brain locations, given a neuroimaging dataset. We aimed to provide an in-depth explanation, written in a didactical manner, of the BMS and posterior probability mapping steps that were successfully used by Garrido et al. (2018) in their recent EEG paper.

Being a Bayesian approach to hypothesis-testing, the method described here provides multiple advantages over frequentist inference methods. The first of these advantages is that VB allows for comparisons between non-nested models. Consequently, it is especially useful in the context of model-based neuroimaging (Montague et al., 2004; O’Doherty et al., 2007; Rosa et al., 2010; Garrido et al., 2018). Another advantage is that the probability of the null hypothesis itself can be assessed (instead of simply being, or failing to be, rejected). A final advantage is that, although only two models were compared here, the same method can also be applied to any arbitrary number of models. For example, the analyses described here could proceed slightly differently, based on the same data but introducing another (or multiple other) model/s against which to compare the Opposition and Interaction Models. Potentially, any number of theoretically motivated models could be considered. Considering all of these advantages, the method described here should prove useful in a wide variety of M/EEG experiments.

In summary, we have shown here how to adapt BMS maps, originally developed for fMRI data by Rosa et al. (2010), to M/EEG data analysis. It is hoped that the reporting of analytical methods such as these, as well as the availability of all the code and dataset, will not only contribute to the Open Science movement, but may also encourage other researchers to adopt this novel M/EEG data analysis method in a way that is useful for addressing their own neuroscience questions. We postulate that the use of this Bayesian model mapping of M/EEG data to adjudicate between competing computational models in the brain, both at the scalp and source level, will be a significant advancement in the field of M/EEG neuroimaging and may provide new insights in cognitive neuroscience.
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The auditory steady state evoked response (ASSR) is a robust and frequently utilized phenomenon in psychophysiological research. It reflects the auditory cortical response to an amplitude-modulated constant carrier frequency signal. The present report provides a concrete example of a group analysis of the EEG data from 29 healthy human participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we demonstrate sensor-level analysis in the time domain, allowing for a description of the event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency analysis is applied to describe the spectral characteristics of the ASSR, followed by group level statistical analysis in the frequency domain. Third, we show how time- and frequency-domain analysis approaches can be combined in order to describe the temporal and spectral development of the ASSR. Finally, we demonstrate source reconstruction techniques to characterize the primary neural generators of the ASSR. Throughout, we pay special attention to explaining the design of the analysis pipeline for single subjects and for the group level analysis. The pipeline presented here can be adjusted to accommodate other experimental paradigms and may serve as a template for similar analyses.
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INTRODUCTION

Multi-subject clinical or cognitive studies that require the group analysis of large amounts of electrophysiological data may be challenging for the researcher involved, for several reasons. For instance, although many software packages for electrophysiological analysis have well documented functionality for individual subject analysis, the possibilities for group analysis are limited, requiring the researcher to export single subject values into a generic statistical package such as SPSS. In addition, many EEG system specific software packages (e.g., BrainVision Analyzer and Neuroscan Scan), as well as many commercially available generic packages (e.g., ASA, BESA, and Curry), require the user to interact with the data through a graphical user interface (GUI). Although the GUI allows for easy visualization and interaction with the data, the execution of error free, consistent (across subjects), and reproducible analysis protocols requires the researcher to be meticulous during the interaction with the GUI. Also, GUI-based software does not provide an easy way to re-evaluate group-level effects after making changes to the analysis parameters. Finally, by nature of the graphical user interface, the researcher’s documentation of the analysis pipeline is often inadequate for robust reproducibility; in the best case the pipeline documentation comprises a descriptive recipe of which buttons to press, but often it only outlines the general idea of the analysis without sufficient details required to reproduce it.

Software tools that allow for researcher-data interactions by means of scripts provide some advantages to purely GUI-based software, with respect to the ease with which important aspects of the data analysis protocol can be addressed. Consistent single-subject analysis is ensured by (re-)using the exact same sequence of commands across subjects. Pipelines can be easily rerun, which facilitates the evaluation of parameter choices. Also, reproducibility of analysis results can be enhanced by publishing or sharing the scripts. FieldTrip (Oostenveld et al., 2011) is a well-established open source MATLAB toolbox for script-based electrophysiological data analysis. FieldTrip does not have a GUI and requires some programming proficiency from its users in order to write and evaluate scripts; this may deter researchers from using it for their data analysis, despite the advantages from script-based analysis as outlined above.

In this study we demonstrate how to perform group analysis of electroencephalographic data, from raw EEG to publishable visualization of results, using FieldTrip. It is primarily aimed at researchers with (yet) little technical know-how and demonstrates that such an analysis comprises a relatively limited amount of computer code to implement a meaningful pipeline. We provide step-by-step recipes, each of which implements a conceptual analysis step. The execution time of the whole sequence of analysis steps (e.g., resulting in Figure 1) is less than 30 min on a typical computer (MacBook Pro, 2.8 GHz, 16 GB RAM), and the organization of the code allows for fast re-computation and evaluation of results after changing some specific parameters. Documentation of the analysis pipeline is straightforward, since the scripts fully reflect the pipeline, thus fostering efficient re-evaluation of analysis protocols, reproducibility of findings and exchange between colleagues and research groups.
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FIGURE 1. Time-domain analysis. (A) Grand average of the ASSR across multiple electrodes. (B) ASSR averaged across central electrodes. Time is depicted on the abscissa and amplitude on the ordinate. (C) Scalp topography of the N1 top (170–230 ms) and P2 bottom (250–300) components of the grand averaged ASSR. (D) Difference between pre and post-stimulus activity across multiple electrodes expressed as units of t-values. Shaded areas at electrode clusters reflect time clusters motivating the rejection of the null hypothesis. (E) Time course of the difference between pre and post-stimulus activity expressed in units of t-values. Gray areas highlight the time clusters of significant condition differences. Time is depicted on the x-axis and difference strength on the y-axis. (F) Similar to (C), but in units of t-values.



The data used in this study comes from an experiment that used the auditory steady state evoked response (ASSR), a robust and replicable phenomenon in psychophysiological research (Stapells et al., 1984). In a representative application, the amplitude of a carrier sinusoidal sound wave (e.g., at 500 Hz) is modulated by a periodically varying envelope (e.g., at 40 Hz). This amplitude-modulated (AM) stimulus evokes a clear 40 Hz auditory evoked potential in the electroencephalogram (EEG) or auditory evoked field in the magnetoencephalogram (MEG) (Legget et al., 2017). ASSR-paradigms have a widespread adoption in clinical studies (Korczak et al., 2012; O’Donnell et al., 2013), in patients with tinnitus (Wienbruch et al., 2006; Schlee et al., 2008; Diesch et al., 2010; Sereda et al., 2013), schizophrenia (Spencer et al., 2008; Krishnan et al., 2009; Rass et al., 2012), major depressive disorder (Chen et al., 2016; Isomura et al., 2016), and autism (Wilson et al., 2007; Edgar et al., 2016; Rojas et al., 2011). ASSR-paradigms are also used as a diagnostic tool to estimate normal and abnormal hearing sensitivity (Korczak et al., 2012). In cognitive studies, ASSR-paradigms have for example been used to demonstrate the functional tonotopic organization of the human auditory cortex (Pantev et al., 1996), and as means of evaluating the effects of top-down attention on early sensory processes (Ross et al., 2004; Muller et al., 2009; Weisz et al., 2012).

We provide step-by-step analysis for group level analysis, using the open source MATLAB toolbox FieldTrip. All scripts and data are available at https://doi.org/11633/di.dccn.DSC_3015000.00_810 to allow readers to reproduce the analyses in details. The first part will be focused on analysis in the time domain and focuses on the group-level characteristics of the stimulus-onset related ERP. In the second part, we will analyze the ERPs in the frequency domain, quantifying the steady-state response. We conclude the analysis pipeline by applying a spatial filtering algorithm to the time and frequency domain data in order to identify the cortical generators of the auditory evoked response.



MATERIALS AND METHODS

Participants

Twenty-nine healthy individuals (11 female) participated in the study. The mean age was 28 years, ranging from 21 to 36 years. All participants gave written informed consent in accordance with the declaration of Helsinki. The study design and protocol were approved by the local Ethics Committee of the University of Konstanz. Inclusion criteria were: normal intellectual abilities, no history of psychiatric or neurological disorders with loss of consciousness and no substance abuse. Prior to experiment participants were screened with the Mini International Neuropsychiatric Interview (Sheehan et al., 1998). All but two participants were right handed as confirmed by the Edinburgh Handedness Inventory (Oldfield, 1971). Following participation, all subjects were compensated with 20 Euros.

Stimuli and Experimental Task

Stimuli were similar to previous reports (Muller et al., 2009). We used a composite signal consisting of 500 Hz carrier sine wave modulated by a 40 Hz sinusoidal signal. This composite signal was presented with a sampling rate of 44.100 Hz and a modulation depth of 100%. At stimulus onset and offset we used a 50 ms fade in and fade out period, in order to avoid these to be audible as a clicking noise. A total of 120 epochs of 2 s were acquired with a 1 s inter-trial interval (ITI). All stimuli were applied via headphones to the left ear only, thus engaging predominantly right auditory cortical areas.

Data Acquisition

EEG was acquired while the subjects were seated in an acoustically shielded room, using a high-density, 256-channel EGI system with a HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc., Eugene, OR, United States). Data was filtered with 0.1 Hz high-pass and 400 Hz low-pass hardware filters and sampled at 1 KHz. The vertex (Cz) electrode served as reference during data recording. In line with EGI acquisition guidelines, the electrode impedances were kept below 30 kΩ. All of the reported analyses were performed on a MacBook Pro with a 2.8 GHz processor, 16 GB 1600 MHz DDR3 RAM and using MATLAB version 2017b (MathWorks, Natick, MA, United States).

Data Epoching and General Preprocessing

In general, an analysis pipeline implemented using the FieldTrip toolbox consists of a sequence of calls to specific functions from the toolbox. Each of these functions reflect a conceptual analysis step and produce as an output a data object. The input to these functions is always a so-called configuration (cfg) structure, which specifies the options and algorithmic parameters used by the function, and usually the data is passed as second input argument. Here, the first step of our analysis pipeline consisted of the specification of occurrence of epochs-of-interest (trials) in the raw data file, based on the timing information of the stimulus onset triggers that were recorded along with the continuous data. This first step was followed by the reading in of the epochs-of-interest, followed by the application of a bandpass filter and rereferencing to the average reference. In FieldTrip, the extraction of the epochs is achieved with a call to the ft_definetrial function. Reading the data from disk and basic preprocessing is achieved with a call to the function ft_preprocessing.

Ft_definetrial is a function that extracts the event structure from a raw data file, for instance by reading a digital trigger channel, or by extracting timestamps of relevant events or annotations from the metadata. Next, the event structure is interpreted to define the onsets and offsets of epochs-of-interest. This requires the specification of the event values of interest, which in this specific dataset are the triggers ‘DIN3’ and ‘DIN5.’ Also, the cfg needs to contain information with respect to the length of the requested epochs, defined in seconds. In this case, we specified cfg.trialdef.prestim = 1; and cfg.trialdef.poststim = 3, i.e., 1 s before and 3 s after stimulus onset, to allow for a sufficient length for artifact-free digital filtering. Subsequently, using the epoch definition as obtained from ft_definetrial, the function ft_preprocessing was used to read in the data from a specified set of channels, apply offline re-referencing to the average reference, and a digital bandpass filter. The relevant options specified were: (1) cfg.channel = egi256customlay.label, for the channel selection (egi256customlay is a MATLAB structure, the label field contains a list with the names of all EEG channels), (2) cfg.reref = ‘yes,’ together with cfg.refchannel = ‘all’ for the rereferencing, and (3) cfg.bpfilter = ‘yes’; cfg.bpfreq = [1 48]; cfg.bpfilttype = ‘firws,’ for the filtering [a filter type of firws uses a windowed-sinc finite impulse response filter (Widmann et al., 2015)]. These analysis steps are documented in the analysis script ASSR_timedomain.m from line 1 to line 53. The required time to run this step was 19 min.

Computation of Event-Related Potentials and of the Group Average

To compute the event-related potentials (ERPs) per subject, the epoched time series is averaged with the ft_timelockanalysis function. The grand mean ERP is obtained by including all individual subjects’ ERP data structures as an input argument to the ft_timelockgrandaverage function. In addition to computing an average ERP, these functions allow for the selection of specific latency windows and/or subsets of channels for subsequent analysis. Here, we used cfg.latency = [-0.5 2]; and cfg.channel = [‘all’ ‘-E30’ ‘-E192’]; to do a selection of the latency window, and to discard 2 bad electrodes. The computation of individual ERPs and the grand mean ERP took 8 min and is documented in ASSR_timedomain.m lines 58–84.

Visualization of the Group Average ERP

FieldTrip contains several functions to visualize the spatiotemporal structure of EEG data. Here, we demonstrate the use of ft_multiplotER, ft_singleplotER, and ft_topoplotER, which display ERP-data, as a set of ERP time courses on a channel layout, an average time course across a set of specified channels, and a spatial topography in a specified latency window, respectively. This set of functions allows for interactive exploration of the data by making iterative selections (by dragging a square in the figure panel) of subsets of channels or latency windows for displaying time courses and topographies.

These functions require a layout of a 2-dimensional projection of the electrode positions on the computer screen. Most EEG recording systems do not represent electrode positions in the subjects’ data files; a generic way to deal with this is to specify a template layout in the cfg.layout field. The prerequisite here is that the electrode names in the layout file match the electrode names in the data structure’s channel-field. For these data, we have created a custom layout ‘egi256customlay.mat,’ which excludes the neck and cheek electrodes from the electrode array. Further information about the construction and design of custom layouts can be found in the layout tutorial and information about the available template layouts can be found in the template documentation1.

The call to the ft_multiplotER function will produce the illustration in Figure 1A (in ASSR_timedomain.m, lines 90–95). The auditory event related potential over fronto-central electrodes can be visualized using the function ft_singleplotER with the additional configuration options specifying the desired channels in cfg.channel and controlling the ordinate range between -1 and 1 mV in cfg.ylim. The color of the line is specified with cfg.graphcolor and the linewidth is controlled with cfg.linewidth (in ASSR_timedomain.m, lines 96–104). It is often useful to illustrate the level of variation across participants. This can be achieved by specifying cfg.keepindividual = ‘yes’; during the call to ft_timelockgrandaverage. The activity of one or a group of electrodes can be selected and averaged using the function ft_selectdata and the configuration options cfg.channel and cfg.avgoverchan. Finally, using the MATLAB functions ‘patch’ and ‘line’ an averaged response together with its corresponding standard deviation can be visualized. This is illustrated in Figure 1B (in ‘ASSR_timedomain.m,’ lines 117–141).

A topographic illustration of the data is provided using the function ft_topoplotER focusing of the N100 (170 to 230 ms post-stimulus onset) and P200 (250 to 300 ms post-stimulus onset) components. The latency specification is provided by the configuration option cfg.xlim. The other configuration options pertain to the particular illustration style and depend on the taste of the user. Typing ‘help ft_topoplotER’ in the MATLAB command window gives a detailed overview of the various configuration alternatives. Lines 144–168 in ASSR_timedomain.m reproduce Figure 1C.

Statistical Evaluation of Stimulus Onset Evoked Activity

In FieldTrip, statistical decisions can be done using non-parametric statistical tests using spatiotemporal clustering to address the family-wise error rate (Maris and Oostenveld, 2007). The general idea is that real neurophysiological effects have specific structure in the spatiotemporal data matrix, which can be exploited in order to maximize statistical sensitivity. Due to the temporal and spatial structure in the EEG signal, neighboring time-points and electrodes are likely to reflect the same neural phenomena; aggregating these spatiotemporal neighbors into clusters pools the evidence for an effect being present. The spatiotemporal clustering is combined with a permutation framework to generate a distribution of expected cluster-based test statistics under the null-hypothesis of exchangeability of the data across conditions or experimental groups. In this way, a large number of statistical evaluations, which is custom in a mass univariate context, is reduced to just a single statistical evaluation, thus elegantly providing control for the family-wise error rate. Cluster-based statistical testing provides a powerful approach to EEG and MEG data. We recommend this detailed overview with accessible examples for further reading2.

In order to be able to form clusters across the spatial dimension, a so-called neighborhood structure needs to be created. This structure contains information about the spatial distribution of the electrodes, and which electrodes are considered to be neighbors. For this purpose, we use the function ft_prepare_neighbours and store the output in a variable called ‘neighbors’ (in ASSR_timedomain.m, lines 174–181). In many EEG setups the exact geometrical information about the 3-D spatial distribution of the electrodes is not directly available from the data. To address this, FieldTrip’s template directory contains a collection of common electrode geometries. Here we read in the standard 3D template file of EGI’s 256 electrode net, using the function ft_read_sens; the position of all electrodes is subsequently used to determine the spatial neighbors of each electrode.

In a typical experimental context, statistical inference is done on a contrast between experimental conditions or groups. To illustrate a group-level statistical evaluation in the data presented here, where we just have a single condition, we will compare the early post-stimulus-induced signals with the pre-stimulus baseline window, where the length of the windows is matched. To this end, we first split the single participant ERP data into 2 data structures, representing the baseline and the post-stimulus onset segments, respectively. This can be achieved with the function ft_selectdata, where the cfg.latency option specifies the latency window of the data that is to be cut out from the longer segments. The length of the data in both ‘conditions’ is kept equal, i.e., 500 ms to facilitate subsequent comparison (in ASSR_timedomain.m, lines 184–193). This step in our pipeline results in two variables ‘act’ and ‘bl,’ which are arrays that contain the single participant ERP data for the selected time segments. The statistical evaluation is performed by calling the function ft_timelockstatistics, using a somewhat elaborate configuration in order to specify the exact details of the statistical evaluation procedure. For instance, it is also possible to perform regular parametric mass-univariate statistical inference, or to specify other multiple comparison correction schemes. Here, in order to apply non-parametric permutation based inference, we need to specify cfg.method = ‘montecarlo.’ As a consequence, the function will provide a Monte Carlo approximation of the randomization distribution for a chosen test statistic, which is specified to be a dependent samples T-statistics (cfg.statistic = ‘ft_statfun_depsamplesT’). In order to exploit the spatiotemporal clustering scheme for multiple comparisons correction, we specify cfg.correctm = ‘cluster.’ Once it is decided to use the clustering scheme for multiple comparison correction, a channel neighborhood structure needs to be provided, as indicated above, in the cfg.neighbours field. The sample specific T-statistic, 1000 samples of which as defined by cfg.numrandomization = 1000; are produced and form the randomization distribution of the test statistic. The probability of falsely rejecting the null hypothesis is defined by cfg.alpha = 0.025; corresponding to a false alarm rate of 0.05 divided by 2 in a two-sided test.

The final important piece of information that needs to be provided, is cfg.design, which is a FieldTrip style ‘design matrix’ that specifies how the individual input data objects relate to the experimental subjects and conditions. The code for the statistical evaluation is documented in ASSR_timedomain.m lines 197 to 222.

To visualize the output of the statistical evaluation, we can use the same functionality as for the visualization of the grand average ERP, as described above. With ft_multiplotER, in combination with cfg.parameter = ‘stat’ we can obtain a figure that displays the test-statistic as a function of time and electrode, in this case it shows t-values. We can also specify a cfg.maskparameter, which is the fieldname of the numeric data in the input structure that can be used to highlight specific spatiotemporal features in the data. In this case we used the ‘mask’-field, which highlights the time points that constitute the cluster of spatiotemporally contiguous data points, on the basis of which the null hypothesis is rejected. Lines 225 to 232 in ASSR_timedomain.m reproduces Figure 1D.

Using the function ft_singleplotER the time-course of condition differences can be illustrated for the set of fronto-central electrodes described above. Lines 235–249 in ASSR_timedomain.m generate the illustration in Figure 1E.

Finally, a topographic representation of the observed effect is visualized in the same manner as the topography of the N1 and P2 components, yet instead of scalp distribution of amplitude differences, a scalp distribution of condition difference expressed in t-values is shown in Figure 1F and lines 252–275 in ASSR_timedomain.m. The entire statistical evaluation and visualization of the outcome took 1 min and 45 s.

Frequency Domain Analysis

Frequency analysis was performed on the individual ERP data and is documented in the analysis script ‘ASSR_freqdomain.m.’ This part of the pipeline aims to quantify the electrophysiological response to the actual steady-state stimulation. To this end, the trial-averaged ERP is spectrally decomposed, while focusing on a post-stimulus onset latency window, after the stimulus transients have subsided. This approach, i.e., performing a spectral analysis on trial-averaged time courses, is only optimal in situations where the phase of the carrier wave signal is identical across trials. If this is not the case, trial-based averaging in the time domain leads to cancelation effects, and thus to suboptimal estimates of the steady-state response if the spectral analysis is performed on these averages. As an alternative, inter-trial coherence (ITC) can be also computed. Individual ERP’s are loaded and data of equal length (1 sec) during baseline and post-stimulus onset was extracted (lines 34 to 39 in ASSR_freqdomain.m).

Subsequently, for each individual and condition (‘bl’ and ‘act’) power spectra were computed, based on fast Fourier transformation (FFT) of the segmented data after the application of a Hanning taper. This was done using the function ft_freqanalysis, with cfg.method = ‘mtmfft,’ and cfg.taper = ‘hanning.’ Frequencies of interest can be defined by the configuration option cfg.foilim and were specified in the range from 0 to 45 Hz (in ASSR_freqdomain.m, lines 42–48). A detailed overview of the various spectral decomposition methods, the rationale behind them as well as their application is documented in an online tutorial3.

Following spectral decomposition, a grand averaged frequency domain activity per condition was computed using the function ft_freqgrandaverage.

Visualization of the grand averaged spectra can be illustrated with the function ft_mulitplotER, much in the same way as for the time domain data. Lines 60 to 66 in ASSR_freqdomain.m reproduce the illustration in Figure 2A. Ft_singleplotER can be used to visualize the spectrum, averaged across sets of electrodes. Note that in contrast to the time domain illustration above, two input arguments are used. In this way, the spectral content of the data during the baseline and the stimulation activity can be visualized in a single figure (Figure 2B, lines 69–78 in ASSR_freqdomain.m). The total duration of frequency analysis is 30 s.
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FIGURE 2. Frequency domain analysis. (A) Grand average power spectrum for the pre- (black) and post-stimulus (red) ASSR across multiple electrodes. (B) Grand average power spectrum averaged across central electrodes. Line color identical to (A). (C) Scalp topography of the condition difference in 40 Hz power expressed in units of t-values. Electrode clusters on the basis of which the null hypothesis was rejected are highlighted with asterisks.



Statistical Evaluation of Frequency Domain Data

Statistical evaluation of the difference in spectral power between conditions can be examined using the function ft_freqstatistics. The configuration options remain largely the same, as compared to the time domain comparison described above. Because the research question pertains to a particular frequency (i.e., 40 Hz response) the statistical evaluation is constrained to a ±1 Hz around this frequency by the configuration options cfg.frequency and cfg.avgoverfreq. For didactical reasons we constrain the threshold of cfg.clusteralpha.

The outcome of the statistical evaluation can again be illustrated with the function ft_topoplotER. The electrodes contributing to the spatial cluster on the basis of which significant condition differences were found can be visualized by the option cfg.highlight in combination with cfg.highlightchannel. These channels were defined using the binary mask provided in the structure ‘statfreq.’ Lines 93 to 138 in ‘ASSR_freqdomain.m’ reproduce Figure 2C. Duration of statistical evaluation of frequency domain data is 16 s.

Time-Frequency Domain Analyses

In a typical application, spectral analysis techniques are used to obtain a time-frequency representation (TFR) of the signals. In FieldTrip, this decomposition is done with the function ft_freqanalysis, specifying one of the supported time-frequency decomposition algorithms in cfg.method. Here, we demonstrate this functionality in the analysis script ‘ASSR_timefreqdomain,’ using the method ‘mtmconvol,’ which implements a sliding window FFT. A window of 500 ms was used that slid over the data with increments of 50 ms. The desired output of this analysis was spectral power thus cfg.output = ‘pow,’ using convolution in the frequency domain specified by cfg.method = ‘mtmconvol.’ The frequency bins of interest are defined by cfg.foi and the time points of interest by the option cfg.toi. The length of the time window per frequency of interest is defined by cfg.t_ftimwin. Here, we used as input signals the individual trial-averaged ERPs. Note that in typical applications where the induced activity is time-locked but not phase-locked to the onset of an event, single trial data should be entered in the analysis. Following grand averaging using the ft_freqgrandaverage the output can be visualized using the function ft_multiplotTFR. Lines 24–64 in ASSR_timefreqdomain.m reproduce Figure 3A and require 140 s computing time.
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FIGURE 3. Time-frequency analysis. (A) Grand averaged time-frequency representation of power (TFR) across multiple electrodes. (B) TFR averaged across central electrodes. Time is depicted on the x and frequency on the y axis. Warm colors reflect increase of oscillatory power. (C) TFR of the difference between pre and post-stimulus activity. Axis are identical to (B); warm colors correspond to an increase and cold colors to a decrease in power during post-relative to pre-stimulus. The observed time-frequency cluster on the basis of which the null hypothesis is rejected is highlighted by the black line.



The average of the time-frequency representation of power (TFR) over the fronto-central electrodes can be illustrated using the function ft_singleplotTFR lines 68–75 in ASSR_timefreqdomain.m.

Statistical Evaluation of Time-Frequency Data

Similar to time and frequency domain data, statistical evaluation of time-frequency data can be achieved by the function ft_freqstatistics. This is documented in lines 91–155 in ASSR_timefreqdomain.m and is computed within 57 s.

Reconstruction of Evoked Potentials and the Steady-State Response With Beamforming

Time Domain Beamforming

Source reconstruction of neuronal activity can be performed using various algorithmic approaches. FieldTrip contains functionality for parametric dipole modeling (using the function ft_dipolefitting), distributed source modeling (minimum-norm estimation), and beamformers (using the function ft_sourceanalysis). Here, we demonstrate source reconstruction with beamformers. First, we used a linearly constrained minimum variance (LCMV) beamformer (Van Veen et al., 1997), to reconstruct the ERP at the cortical level. Beamformer methods use the data covariance matrix and forward models that are specific to the locations-of-interest to construct spatial filters optimized for these locations. Beamformers are often applied by scanning the whole brain, computing the spatial filter for each location. Ideally, forward models are computed using volume conduction models based on individual participants’ anatomical information, yet this information is often not available for participants to EEG studies. In that case, forward models can be computed using template volume conduction models, in combination with a specification of the electrode positions, coregistered to the conduction model. Here, the forward model was calculated using a realistically shaped three-layer boundary-element volume conduction model, on a 3-dimensional grid of dipole locations with equidistant spacing of 8 mm.

The procedures are documented in the analysis script ‘ASSR_lcmv.m.’ This analysis in source space is focused on the stimulus onset response, and particularly the N1 latency window from 170 to 230 ms post-stimulus onset (see above). First, the leadfield, the volume conduction model of the head (i.e., the headmodel), as well as the position of the electrodes are loaded into memory and visualized (lines 28–40, in ‘ASSR_lcmv.m’). Subsequently, for each subject the epoched data is loaded where the preparation of the sensor-level data largely follows the same recipe as the ERP analysis. The most important difference with the earlier procedure is that the source analysis requires an estimate of the sensor covariance matrix of the epoched (yet unaveraged) data. Bad electrodes are excluded using ft_selectdata and the data is bandpass filtered between 1 and 40 Hz using ft_preprocessing. The data covariance is estimated using the function ft_timelockanalysis (lines 63–67 in ‘ASSR_lcmv.m’). The data consists of fewer channels than the precomputed leadfield. The section in ASSR_lcmv.m (lines 71–80) prunes the leadfields as pre channels present in the data.

Source analysis is performed using the function ft_sourceanalysis. The desired reconstruction method is defined by the option cfg.method = ‘lcmv’; in combination with a specification of the electrodes (cfg.channel), leadfield (cfg.grid) and headmodel (cfg.headmodel). Additional options, specific to the lcmv method, can be defined by cfg.lcmv.xxx. Here, we included the preservation of the spatial filters in the output structure (cfg.lcmv.keepfilter), a fixed dipole orientation (cfg.lcmv.fixedori), weights normalization accounting for the center of the head bias (cfg.lcmv.weightnorm) together with (cfg.lcmv.projectnoise), and regularization parameter (cfg.lcmv.lambda). This is documented in ‘ASSR_lcmv.m’ lines 83–110.

A more detailed description of source analysis strategies and their implementation can be found in a series of online tutorials4. The total duration of source analysis in the time–domain is 16 min.

To visualize the outcome of the source analysis, the individual source reconstructions are loaded and averaged across subjects, to obtain the grand-average of brain activity during the N1 latency window (Figure 4 top row). This is done by the function ft_sourcegrandaverage and the result can be interpolated onto a template anatomical MRI using ft_sourceinterpolate (lines 127–135, in ASSR_lcmv.m). A volumetric atlas according to Automated Anatomical Labeling (AAL) scheme (Tzourio-Mazoyer et al., 2002) can be read with the function ft_read_atlas (line 138 in ASSR_lcmv.m). Finally, the interpolated grand-average is visualized using the function ft_sourceplot, where the anatomical information about activity at a given location is specified by the cfg.atlas = aal; option. In addition, a thresholding mask is created to highlight 98% of maximum activity. This mask is applied during the plotting if the cfg.maskparameter option has been specified (lines 139–148 in ASSR_lcmv.m). The computational time of grand averaging and visualization is 2 min.
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FIGURE 4. Source reconstruction. Top- Coronal, transversal and axial slices of reconstructed N1 activity in neurological convention. The blue cross hairs correspond to the maximal activation within the right Heschl’s gyrus. Bottom- same as top but utilizing dynamic imaging of coherent sources (DICS) as source reconstruction method. Color code represents the increase in coherence with a surrogate 40 Hz signal during the post-stimulation period as compared to the pre-stimulus baseline.



Frequency Domain Beamforming

Rather then focusing on a particular latency, it is also possible to reconstruct activity for a given frequency of interest. The utilized stimulation frequency of 40 Hz appears an appropriate target for frequency domain beamforming. Here, we demonstrate the use of Dynamic Imaging of Coherent Sources (DICS) (Gross et al., 2001), and source reconstruct the cortical response that is phase-locked to the 40 Hz modulation signal by means of the coherence coefficient. In the current context of steady-state auditory stimulation, this procedure turns out to be a bit more involved than a straightforward sequence of FieldTrip functions in their standard application, and requires some additional manipulations to the data to work. The reason for this is that steady-state auditory stimulation induces a high SNR signal that leads to (near) simultaneous (i.e., zero-lag correlated) activation in bilateral auditory areas. Consequently, traditional beamformers (which scan the brain using a single equivalent current dipole as the underlying source model) will fail to yield reliable results, because of the violation of the underlying assumption that for any source-of-interest there are no other temporally correlated sources. To address this issue, more sophisticated beamformer source models can be used (Dalal et al., 2008; Schoffelen and Gross, 2009). In this case, we implemented the beamformer to scan through the brain volume, and reconstruct the activity of pairs of dipoles, where left/right symmetric dipole pairs were used as a source model.

The procedures are documented in the analysis script ‘ASSR_dics.m’ and are largely similar to the ones described above. The symmetric dipole source model is created on lines 41–50 in ASSR_dics.m. FieldTrip allows for the creation of symmetric dipole-pair source models in the function ft_prepare_sourcemodel, but in the current example we bypass this functionality, because we are working with precomputed leadfields. Alternatively, in the example script we create compound leadfields directly, by concatenating for each grid position, the corresponding dipole’s forward model, with the forward model in the opposite hemisphere. In addition, we create a ‘dummy’ signal that represents the 40 Hz modulation signal, which is needed for the coherence computation. The frequency domain beamformer relies on the cross-spectral density matrics. This is calculated for pre and post-stimulus onset data, as well as both data segments together (lines 87–95 in ‘ASSR_dics.m’). The latter approach is required for the computation of ‘common’ spatial filters than can be subsequently applied to the pre- and post-stimulus data separately. This effectively minimizes the possibility of condition differences leading to biased filter estimates. Source analysis is applied from lines 111–136 in ASSR_dics.m. One thing to note is that the common spatial filters, computed using the ‘dics’-method, are applied to the individual conditions with the ‘pcc’-method [an acronym for Partial and Canonical Correlation (Schoffelen and Gross, 2009)]. This change of method is needed because we used dipole pairs as source models. Although the ‘dics’ and ‘pcc’ methods implement the exact same mathematical algorithm for the computation of the beamformer spatial filters, the methods differ in their flexibility with which the source reconstructed data can be represented. The data representation of the ‘dics’ methods sticks closely to the description in the original paper (Gross et al., 2001). In the present example, where we express the functional data as a grid point specific coherence coefficient, this would result in each point estimate to reflect the modulation signal phase-locked activity of two dipoles at once, which is difficult to interpret. The ‘pcc’ method allows for more fine-grained post-processing of the source reconstructed activities. More specifically, here it is used to separate at each grid point the ‘scanning dipole’-of-interest’s from the ‘suppression dipole’-of-no-interest’s activity, before the computation of the coherence coefficient between the scanning dipole and the modulation signal.

The source analysis outcome is illustrated in Figure 4 bottom row. Instead of visualizing N1 source power, the largest coherence value with a surrogate 40 Hz signal during the ASSR stimulation period (1–2 s) relative to pre-stimulation baseline (-10) is illustrated. For comparison purposes the hairlines are kept at the same coordinates for both source visualizations (e.g., N1 and 40 Hz coherence). Loading, grand averaging and visualization are performed on lines 166–197 in ASSR_dics.m and require 17 s to compute.

Data Access

The complete dataset, including raw and preprocessed data, as well as all analysis scripts are published and available for download on https://doi.org/11633/di.dccn.DSC_3015000.00_810.



RESULTS

Analysis in the time-domain revealed a reliable mid-latency ERP components (N1/P2) followed by steady evoked activity (Figures 1A,B). The scalp topography of the N1/P2 components shows an extremum at central electrodes, which reversed its polarity between the N1 and P2 component. Both are commonly observed and frequently reported manifestation of evoked activity in the EEG, elicited by the onset of an auditory stimulus.

There was significant difference between pre- and post-stimulus brain activity (Figures 1D–F), as confirmed by the cluster-based permutation procedure controlling for multiple comparisons across the spatial (i.e., electrodes) and temporal dimensions. Besides plotting the raw effect size in mV, the scalp topography of the N1 and P2 effect size can be visualized as t-values. This allows the strength of the observed effect to be transferred to and expressed as a Cohen’s d of 1.85 for t-values of 55. Furthermore, time and electrode clusters are visualized reflecting the latencies/electrodes on the basis of which the null hypothesis pertaining to the exchangeability of the pre and post-stimulus data is rejected (Figures 1D,E).

Analysis in the frequency domain revealed a prominent 40 Hz peak in the spectrum of the ERP, in accordance with the stimulation frequency (Figures 2A,B). Statistical evaluation in the frequency domain confirmed a significant difference in 40 Hz response (Figure 2C) with similar effect size as compared to the time domain evaluation.

Combined time and frequency analysis confirmed the steady increase in 40 Hz power, lasting throughout the entire stimulation interval (Figure 3). There was a significant difference in 40 Hz power between pre and post-stimulus activation (Figure 3C) when controlling for multiple comparisons across the time, frequency and space dimensions.

Finally, source space analysis confirmed the primary generators of the N1 auditory evoked response in the right auditory cortex. This is in line with the experimental condition of left-ear stimulation, reflecting a stronger contra lateral auditory cortex response.



DISCUSSION

In the present work we build up and document a FieldTrip-based analysis pipeline, starting from single subject and continuing with various types of group-level analyses. To this end, we analyzed EEG data, which was recorded during a common paradigm, the auditory stead state evoked response (ASSR).

The time-domain analysis at the electrode level focused on various aspects of descriptive data evaluation, in time and space (Figures 1A–C). This was followed by an inferential statistical procedure, within the framework of a non-parametric permutation test that controls the family-wise error rate using clusters (Figures 1D–F), where we evaluated the N1/P2 components in the ERP, relative to a pre-stimulus baseline. Next, a frequency domain analysis revealed a reliable 40 Hz ASSR response (Figures 2A,B), which was significantly increased with respect to baseline (Figure 2C). Combining time and frequency domains it is also possible to demonstrate how the spectral aspects of the data evolve over time (Figure 3). In the example experimental manipulation and dataset these analyses are somewhat redundant, but we included them here for completeness. Typically, the analysis strategy is predominantly motivated by the research question at hand. Thus, in the present case it would suffice to reject the null hypothesis of the exchangeability of the brain responses during pre and post-stimulus periods. However, frequency-domain analyses are inappropriate for the evaluation of mid latencies evoked potentials, as are time-domain analyses when spectral changes over time are anticipated. Here we demonstrated analysis strategies addressing both temporal and spectral aspects of the data.

It should be noted that the statistical control using the probability distribution of a cluster-based test statistic, obtained with a randomization approach does not allow strong statistically motivated inferences about specific temporal, spectral or spatial properties of the data. This inferential procedure tests a null hypothesis of exchangeability of the data, and not a null hypothesis about some specific temporal, spectral or spatial parameter of the data. Instead, these temporal, spectral or spatial properties can be described on the basis of prior knowledge and/or after statistical evaluation using visual inspection of the observed difference in the data. Furthermore, source analysis can be used to estimate the difference in the distribution of the underlying neural generators (Figure 4).

In summary, group analyses in time frequency, electrode and source space are readily accessible using the MATLAB-based FieldTrip toolbox. All of the reported analyses are available in various other experimental contexts and are documented on the wiki. Detailed information about getting started with the toolbox is documented here: http://www.fieldtriptoolbox.org/getting_started. Extensive treatment and preprocessing of time domain data can be found here http://www.fieldtriptoolbox.org/tutorial#preprocessing and plethora of frequency and time frequency analyses on scalp level are documented6. Decisions under uncertainty in the context of psychophysiological research are covered in several dedicated statistic tutorials http://www.fieldtriptoolbox.org/tutorial#statistics. Preparation and analysis steps during source reconstruction are addressed in extensive detail (see text footnote 4).
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FOOTNOTES

1 http://www.fieldtriptoolbox.org/tutorial/layout

2 http://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock

3 http://www.fieldtriptoolbox.org/tutorial/timefrequencyanalysis

4 http://www.fieldtriptoolbox.org/tutorial#source_reconstruction

5 Cohen’s d is calculated using the formula d = (t∗2)/(sqrt(df)).

6 http://www.fieldtriptoolbox.org/tutorial#sensor-level_analyses
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The major advantage of MEG/EEG over other neuroimaging methods is its high temporal resolution. Examining the latency of well-studied components can provide a window into the dynamics of cognitive operations beyond traditional response-time (RT) measurements. While RTs reflect the cumulative duration of all time-consuming cognitive operations involved in a task, component latencies can partition this time into cognitively meaningful sub-steps. Surprisingly, most MEG/EEG studies neglect this advantage and restrict analyses to component amplitudes without considering latencies. The major reasons for this neglect might be that, first, the most easily accessible latency measure (peak latency) is often unreliable and that, second, more complex measures are difficult to conceive, implement, and parametrize. The present article illustrates the key advantages and disadvantages of the three main types of latency-measures (peak latency, onset latency, and percent-area latency), introduces a MATLAB function that extracts all these measures and is compatible with common analysis tools, discusses the most important parameter choices for different research questions and components of interest, and demonstrates its use by various group analyses on one planar gradiometer pair of the publicly available Wakeman and Henson (2015) data. The introduced function can extract from group data not only single-subject latencies, but also grand-average and jackknife latencies. Furthermore, it gives the choice between different approaches to automatically set baselines and anchor points for latency estimation, approaches that were partly developed by me and that capitalize on the informational richness of MEG/EEG data. Although the function comes with a wide range of customization parameters, the default parameters are set so that even beginners get reasonable results. Graphical depictions of latency estimates, baselines, and anchor points overlaid on individual averages further support learning, understanding and trouble-shooting. Once extracted, latency estimates can be submitted to any analysis also available for (averaged) RTs, including tests for mean differences, correlational approaches and cognitive modeling.

Keywords: magnetoencephalography (MEG), electroencephalography (EEG), component latency, mental chronometry, event-related potential/field (ERP/ERF)


ESTIMATING THE TIMING OF COGNITIVE OPERATIONS WITH MEG/EEG LATENCY MEASURES

Remember the last time you picked apples at the grocery store? First, you had to find the shelf with the apples, then decide on the type of apple you want, then to attend to one of the apples and estimate its quality, to store this information in working memory and compare it to the alternative apples in the box; finally you had to program and execute a reaching movement etc. – this is, of course, a ridiculously coarse description of the multitude of cognitive processes involved in picking apples. Beyond any doubt, any cognitive task can be subdivided into a virtually endless number of sub-processes that unfold over time. The goal of cognitive science is to understand these sub-processes and their interplay in detail (e.g., Meyer et al., 1988). A major piece to this puzzle is the timing of sub-processes – for example, if sub-process B emerges after process A, B cannot be the cause of A.

The research tradition focusing on the timing of sub-processes is termed mental chronometry (Posner, 1978). Using thoughtful experimental designs, researchers were able to disentangle many of the sub-processes giving rise to performance in cognitive tasks (Meyer et al., 1988; Medina et al., 2015). Another, complementary, approach is to estimate the timing of cognitive processes via the timing of their (probable) neuronal correlates (Meyer et al., 1988; Coles, 1989; for recent examples, see Hyun et al., 2009; Töllner et al., 2012; Fortier-Gauthier et al., 2013; Ruhnau et al., 2013; Liesefeld et al., 2014; Dell’Acqua et al., 2015; Drisdelle et al., 2016; Grubert and Eimer, 2016; Liesefeld et al., 2017; Ruhnau et al., 2017; Xie and Zhang, 2018). The validity of this latter approach, of course, crucially depends on whether the examined component is indeed a valid correlate of the cognitive process of interest and the amount and quality of evidence supporting this validity varies strongly between components and interpretations of these components.

For example, the N2pc component of the event-related potential is a negativity at posterior MEG/EEG recording sites contralateral to an attended object. Whether it reflects the allocation of attention toward this object, the suppression of objects on the other side of the display or a general bias in attentional resources are heavily discussed questions (Luck and Hillyard, 1994a,b; Eimer, 1996; Hopf et al., 2000; Luck, 2012). Nevertheless, most contestants in this discussion would agree that the N2pc is somehow related to attentional dynamics and interpreting the timing of the N2pc to reflect the timing of attention shifts is therefore relatively save. N2pc timing can thus be used to measure how long it takes until certain objects draw spatial attention, which becomes particularly interesting if a task induces multiple shifts of attention (Woodman and Luck, 1999; Hickey et al., 2006; Grubert and Eimer, 2016; Liesefeld et al., 2017). Relatedly, the time at which motor-cortex activity contralateral to the responding hand rises from baseline (lateralized readiness potential, LRP) is a quite uncontroversial marker of the timing of motor preparation (e.g., Coles, 1989; Osman et al., 1992; Miller et al., 1998; Töllner et al., 2012).

Analogous points can be made for many event-related potential/event-related field (ERP/ERF) components (e.g., Verleger et al., 2005; Ruhnau et al., 2013, 2017; Liesefeld et al., 2016; Xie and Zhang, 2018). For ease of reading, the present article refers to ERP/ERFs throughout, but the latency-extraction methods are applicable to any temporally resolved correlate of cognitive processes, including other data like pupillary light response (Mathôt and Van der Stigchel, 2015) and fNIRS (Ferrari and Quaresima, 2012) and results of other preprocessing techniques of MEG/EEG data like decomposition techniques (independent component analysis, source localization, etc.), time–frequency analysis (Cohen, 2014), machine learning, and combinations thereof (Fahrenfort et al., 2017, 2018; Foster et al., 2017).



THREE CLASSES OF LATENCY MEASURES

Given the strong interest of cognitive psychologists in the timing of cognitive events and the obvious advantages of taking the timing of established neuronal markers into account, it is surprising that most research has focused on the amplitude of components instead of their latency. One reason for this issue might be that the easiest and most widely used measure of component latency – the time when a component reaches its maximum (peak latency) – is easily corrupted by neuronal and measurement noise (Luck, 2005; Kiesel et al., 2008). An algorithm looking for the time point with the maximal value will often pick a high-frequency noise deflection riding on top of the actual component. This noise deflection may or may not coincide with the true peak of the component; in fact, with broad components it can be far off. This is the case in Figure 1, where the peak latency of the later, blue, component is clearly an overestimation of the component latency. This is less of a problem for amplitude measures: once a reasonable temporal range of activity (e.g., ±5 ms around peak) is taken into account, high-frequency noise averages out. The quality of peak latency depends on the shape of the component – peak detection in a more transient component (with a peakier shape, like the earlier, red, component in Figure 1) is less likely to be confounded by high-frequency noise. Later components are typically broader and noise will therefore more likely influence peak latency.


[image: image]

FIGURE 1. Extraction of several latency measures (peak latency, 30%-amplitude [on-/offset] latency, and 50%-area latency) from a representative individual average of the Wakeman and Henson (2015) data (famous faces at the planar gradiometer pair MEG0712 + 713 of Subject 2). An early, transient component is marked in red and a later, broad component is marked in blue. The time windows in which the peaks were searched and that confine the areas are indicated in light red and light blue; the component areas are indicated in darker red and blue. Close inspection of the graphs reveals that all latency measures incur the risk of being confounded by noise or other components (but see below for some strategies to ameliorate these potential confounds). Note that the ERF was baseline corrected.



A measure that is robust to high-frequency noise is percent-area latency. This is the time point when the component has reached a predefined percentage of its area under the curve (typically 50%). Finally, onset latency is the time when the component has reached some pre-defined percentage of its amplitude (e.g., 30%) and its reliability lies somewhere in between percent-area and peak latency. Offset latency can be defined correspondingly as the time where the component has fallen back to the pre-defined percentage, and on- and offset latency will be referred to collectively as percent-amplitude latency. Further latency measures that were developed for specific components are not treated here (e.g., Osman et al., 1992).

For percent-area latency the definition of area is not necessarily straight forward: The simplest possibility is to take all activity into account that goes into the component’s direction within a predefined time window (as all activity going into the opposite direction is ignored, this is more specifically also referred to as ‘signed area’). According to this definition, area is confined by the time window, the x-axis (usually determined by the pre-stimulus baseline) and the ERP/ERF. To avoid missing some of the activity in some components of some individuals one would have to pick a rather broad window. This, however, incurs the risk of including activity from adjacent components or noise into the calculation and thus – depending on the data – to introduce a bias to the estimate (Figure 2A). Furthermore, components might (in contrast to the example in Figure 1) be far detached from the pre-stimulus baseline (especially if they occur rather late) and therefore much of the lower part of the area defined in this way would usually not be considered part of the component. Including this activity biases area latency toward the mean of the area window. This happens when the ERP/ERF drifts away from the pre-trial baseline into the same direction as the component (see Figure 2B).
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FIGURE 2. Potential issues with percent-area latency. (A) The time window that worked well for Figure 1 includes part of the preceding component (individual average of subject 8, unfamiliar faces); (B) the ERF is quite detached from baseline and thus, much of the area would typically not be considered part of the ERF (individual average of subject 3, unfamiliar faces). Note that all ERFs were baseline corrected.



Liesefeld et al. (2016) developed several techniques to make area latency (and on-/offset latency) more robust by taking more information from the data into account: To avoid contamination by low-amplitude activity and adjacent components, one can raise/lower the baseline that constitutes the lower/upper boundary of the area (e.g., to 30% of the component amplitude; Figure 3B; see also Kiesel et al., 2008). Another useful baseline is the activity at a certain percentage in between the peak amplitude of the component of interest and an immediately adjacent component (Figure 3C). For high signal-to-noise ratios (as in the example in Figures 3A–C), these different approaches yield only slightly different estimates of component timing (Figure 3D). Adjusting the baseline will not help avoiding contamination by adjacent components of similar strength (Figure 3E); to include only the component of interest in such cases, Liesefeld et al. (2016) confined the area by the points where the component crosses the percentage-amplitude baseline for the first time before and after the peak (on- and offsets; Figure 3F). One problem with the latter approach can be that high-frequency noise crosses the baseline before the ‘real’ offset of the component. To avoid that such noise determines the end of the area window, on- and offset amplitudes can be calculated as a running average across several time points so that noise peaks are averaged with surrounding activity (an appropriately designed low-pass filter would also fulfill this function). This strongly decreases the probability that on- or offsets are determined by noise peaks (Figure 3F).
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FIGURE 3. Several approaches to determine 50%-area latency, differing in the definition of component area (dark blue). (A) All positive values within the pre-determined interval (light blue) are added up; (B) only values larger than 30% of the peak amplitude are added up; (C) only values larger than 30% of the peak-to-peak amplitude distance above the preceding negative peak are added up, (D) a comparison of approaches (A–C) shows that latency estimates differ only little for ERFs with high signal-to-noise ratios (such as subject 15, unfamiliar faces, in A–D). (E) Same as (C) for another, noisier individual average (subject 8, unfamiliar faces); (F) same as (E) but with the area’s temporal boundaries set to the on- and offset of the component instead of the pre-defined analysis window. Note that toward the end of the component area there are some noise peaks crossing the 30% baseline (marked in green). These are ignored for the calculation of component offset (and therefore do not set the temporal boundaries of the area) by averaging across adjacent time points as explained in the text. Note that all ERFs were baseline corrected.



According to anecdotal evidence1, these techniques are robust against noise and avoid confounds with adjacent components while still taking into account the whole component, even if it is subject to substantial interindividual variability. In particular, the Liesefeld et al. (2016) method was developed to hedge against low-frequency noise (by adapting the baseline), high-frequency noise (by employing an area-latency approach and averaging amplitudes across several sampling points) and confounds by other components (by confining the area by on- and offsets). It thus holds promise to yield stable estimates of component latency even under difficult (i.e., noisy) conditions. The disadvantage of this measure lies in the number of parameters the researcher has to set; this will become more evident below where the parameters are explained in detail (some strategies will be outlined to arrive at reasonable decisions). Also note that the Liesefeld et al. (2016) adaptations of area latency (and on-/offset latency) were developed for the analysis of ERPs and that their suitability for other types of data (e.g., fNIRS) and other analysis techniques (e.g., time–frequency analysis) should be validated separately.



COMPLEMENTARY APPROACHES TO HANDLE NOISE

Problems related to high- and low-frequency noise can often be ameliorated by respective filtering before extraction of the latency measure. However, filters (especially on segmented data) might introduce artifacts and often not only decrease the noise level, but also the signal (i.e., the component of interest; Luck, 2005). Furthermore, designing the right filter also comes with many decisions on setting parameters (for an overview, see Widmann et al., 2014) and requires considerable experience with filter design. Thus, filter-free approaches might be preferred by some (for insightful discussions on the pros and cons of filtering and how potential pitfalls might be avoided (also in the particular case of latency estimates), see Maess et al., 2016a,b vs. Tanner et al., 2015, and VanRullen, 2011, or Tanner et al., 2016, with responses from Rousselet, 2012, and Widmann and Schröger, 2012). In general, it is of high importance to carefully extract the component of interest (i.e., improve the signal-to-noise ratio) without distorting it by applying adequate pre-processing steps – such as baseline corrections, averaging, calculating difference waves (between conditions or electrodes), time–frequency decomposition, decomposition into spatio-(spectro-)temporal clusters and many more – before attempting to estimate its timing. What is adequate depends on various characteristics of the component of interest, quality of the data, and state of the art regarding the targeted component and cognitive function and is therefore not detailed here (see Luck, 2005, 2014, and Cohen, 2014 for excellent general introductions; see many other articles in this Special Issue for step-by-step guides on various techniques).

Jackknifing is another approach to handle noise (Miller et al., 1998; Ulrich and Miller, 2001; Stahl and Gibbons, 2004; Brisson and Jolicoeur, 2008; Kiesel et al., 2008; Smulders, 2010): Even though individual averages are likely contaminated by high- and low-frequency noise, the grand average across all subjects is less so. Thus, the best estimate of a component’s latency would be based on the grand average ERP/ERF. However, getting rid of all interindividual variability also means that no statistical tests can be employed to test for latency differences, e.g., between conditions. Jackknifing provides the best of both worlds: averages are created across all but one of the n individual data sets with each data set being left out once. Latencies are then extracted from each of the n leave-one-out grand averages. Given that much more data contributes to each of these averages (n – 1 times the data of individual averages, typically), any latency estimate is much less influenced by noise. Still the variance between the leave-one-out averages provides some indication of the error variance (interindividual variance in latencies) and (appropriately adjusted) statistical tests can be performed (Miller et al., 1998; Ulrich and Miller, 2001).

An obvious disadvantage of jackknifing is that there are no individual estimates of component timing and that appropriate tests must be developed for each statistical test (e.g., Miller et al., 1998; Ulrich and Miller, 2001; Stahl and Gibbons, 2004), rendering the technique rather inflexible. This problem can be resolved using a technique to restore such individual estimates from jackknife estimates (Brisson and Jolicoeur, 2008; Smulders, 2010).



latency.m: A MATLAB FUNCTION FOR LATENCY EXTRACTION

The following, will demonstrate how all these latency estimates (and versions thereof) are extracted from group data, using the MATLAB (The Mathworks, Natick, MA, United States) function latency.m (the most current version is available here2), so that they can be submitted to statistical tests.3 This function can be used with output from common MATLAB-based analysis toolboxes (EEGlab, Delorme and Makeig, 2004; Fieldtrip, Oostenveld et al., 2011) or data converted to MATLAB (e.g., from BrainVision Analyzer, BrainProducts, Munich, Germany). It requires the Signal Processing Toolbox (The Mathworks, Natick, MA, United States). All of the following examples will be done on publicly available MEG data collected by Wakeman and Henson (2015) as preprocessed by Robert Oostenveld4. In particular, the examples make use the event-related averages in timelock_x_cmb.mat (where x stands for faces, famous, scrambled, and unfamiliar). All code needed to generate raw versions of the figures shown above and the example analyses described below from the Wakeman-and-Henson data is deposited at figshare5. Note that the purpose of this article is not to introduce or validate any new method, but to provide a tutorial example of how to extract latency estimates for running group analyses from already preprocessed data, including statistical tests of latency differences between conditions.

Basic Input and Output

The following describes the various input parameters (see Table 1 for a summary) and resulting outputs of latency.m. A list of all parameters with a short description, including the default values, as well as all possible outputs is contained in the MATLAB function and displayed using help latency. The function expects two input arguments: the individual, preprocessed averages (avgs) and a configuration structure6 (cfg; similar to Fieldtrip, Oostenveld et al., 2011). So, a valid call to the function is res = latency(cfg, avgs). The input avgs is a Subjects × Channels × Time matrix with the individual averages or a structure that contains such a matrix as the fields ‘data’ (EEGlab) or ‘individual’ (Fieldtrip); one can also specify the name of the data field via cfg.datafield. The function also recognizes a cell array of structures (one structure for each subject) with the data stored in the field ‘avg’ (such as those produced by the Oostenveld script). The only parameter that must be specified is the sign of the component by setting cfg.sign to either ‘1’ or ‘-1’ (or to ‘pos’/‘neg,’ alternatively). One should additionally indicate which type of latency estimate to extract, for example, cfg.extract = ‘peakLat’. With these settings, latency.m returns the latency of the local maximum in the indicated direction (peak latency) with data averaged across all channels. Usually, one would like to restrict the temporal search space by setting cfg.peakWin according to the temporal extent of the component (with some leeway to account for individual differences). Channels of interest are selected via cfg.chans. Indicate either multiple channels if an unweighted average across these channels is desired (which is less likely for ERF than for ERP analyses) or only one channel (that may contain a weighted combination of original channels, e.g., the result of a decomposition). To include only specific subjects, select them via cfg.subs. Time points, channels, and subjects are by default addressed by their positions in the matrix (indices); cfg.peakWin expects start and end points, cfg.chans and cfg.subs expect all indices (to allow for choosing non-adjacent channels and subjects, which would not usually make sense for cfg.peakWin). Alternatively, subjects can be addressed by their designation in the experiment if, additionally, a list of subject numbers is provided as cfg.subNum (array of integers). The same is possible for channels by specifying cfg.chanNames (cell array of strings) and times by specifying cfg.times (array of numbers). Notably, if cfg.times is specified, all parameters specifying times are interpreted as and latency estimate(s) are returned in the units of cfg.times (ms or s) instead of sampling points. cfg.subNum, cfg.chanNames and cfg.times must be the same order as in the Subjects × Channels × Time data matrix.

TABLE 1. Fields of the configuration structure (cfg). See the text for details.

[image: image]

If cfg.extract is not set, latency.m will extract everything it can, using default parameters where applicable. It is, however, recommended to choose one (or a few) latency measure(s) a priori by setting cfg.extract. Use tilted brackets to submit a list of desired output measures, separated by commas. Possible latency measures are peak latency (‘peakLat’), percent-amplitude latency before (‘onset’) or after (‘offset’) the peak, and percent-area latency (‘areaLat’). In addition it is possible to extract other measures that are created along the way or might be useful for other analyses or quality checks, namely mean amplitude (‘mean’), peak amplitude (‘peakAmp’), total area under the curve (‘area’), width of the component (offset – onset; ‘width’), difference in peak amplitude between the component of interest and an adjacent component of opposite polarity (‘peak2peak’), and the new baseline for the area boundary (‘baseline’). ‘counterAmp’ and ‘counterLat’ are the amplitude and the latency of the preceding (cfg.cWinWidth < 0) or following (cfg.cWinWidth > 0) adjacent peak (referred to as counter peak here). Furthermore, there are several Booleans that indicate for each subject whether a local peak was found (‘foundLocal’)7, whether on- and offsets were found (‘foundOn,’ ‘foundOff’) and whether a point dividing the area into the desired percentage (area latency) was found (‘foundArea’). When a single output measure is requested, the output res is a vector with one value for each participant, otherwise res is a structure with the respective fields for each output measure. An additional output can be requested (cfgNew), which contains all information on the final settings, including parameters that were not set at call and were filled with default values, and the field ann, which contains some in depth information on the extracted measures that might be useful for understanding and reporting the results.

Peak latency (peakLat) is extracted from the desired spatiotemporal analysis window without any additional parameters. Percent-amplitude latency (onset and offset) and percent-area latency (areaLat) require some parametrizing, which will be detailed right away.

Percent-Amplitude Latency (On- and Offset)

Percent-amplitude latency is the time point at which the component has reached a certain percentage of its peak amplitude (typically 50%). This percentage is set via cfg.percAmp. The point before the peak, where activity has reached this threshold is called onset and the point after the peak can analogously be referred to as offset. Peak amplitude (peakAmp; which is calculated as an intermediate step) should be an average across several sampling points to avoid contamination by high-frequency noise. Thus, a second parameter that determines the width of this averaging window is necessary. cfg.peakWidth is the number of sampling points to the left and right of the peak latency that is averaged and defaults to 5 sampling points or ∼5 ms (i.e., 11 sampling points or ∼11 ms are averaged). The same number of sampling points is also averaged for determining the amplitude at on- and offset (which is used for the decision whether the desired percentage of the amplitude has been reached), so that percent-amplitude latency is not contaminated by high-frequency noise (see Figure 3F). If no averaging across sampling points is desired, (e.g., because an appropriately designed low-pass filtered has already removed high-frequency noise), set cfg.peakWidth = 0.

As discussed above (and displayed in Figure 3) later components often do not cross the pre-stimulus baseline due to slow-wave activity or low-frequency noise, thus sometimes introducing a bias toward earlier time points in onset latency (e.g., Figure 3A). Liesefeld et al. (2016) devised a way to handle these drifts. Instead of defining percent-amplitude latency with respect to the pre-stimulus baseline, they defined it with respect to a certain percentage of the peak-to-peak amplitude difference between the component of interest and an adjacent component. This can be done in latency.m by setting cfg.cWinWidth. This parameter indicates how much before (negative values) or after (positive values) the search-window border (cfg.cWinStart = ‘peakWin’; default) or the peak of the component of interest (cfg.cWinStart = ‘peak’) the algorithm should look for the peak of the adjacent component. If cfg.cWinWidth is set, cfg.percAmp no longer refers to the percentage of component amplitude relative to the pre-stimulus baseline, but to the percentage of the peak-to-peak amplitude (e.g., cfg.percAmp = 0.5, will result in the time where the amplitude is in between that of the two peaks; values > 0.5 will result in times closer to the peak of interest).

cfg.ampLatBound is used to control the temporal extent in which the algorithm searches for percent-amplitude latencies. cfg.ampLatBound = ‘peakWin’ restricts this search to the search interval used to determine the component’s peak; ‘fullRange’ (default) does not restrict the search range. If cfg.cWinWidth is set and cfg.cBound is true (default), the peak of the other component determines one temporal boundary. Alternatively, cfg.ampLatBound can be set by hand by providing start and end times.

Percent-Area Latency

Percent-area latency is the time point where a component has reached a certain percentage of its area (set via cfg.percArea; typically 50%). As discussed above, the crux is the definition of area. In the simplest (default) case, the area is confined in amplitude space by the ERP/ERF and the pre-stimulus baseline (cfg.areaBase = ‘zero’). If cfg.areaBase is set to ‘percAmp’ the desired percentage of the peak amplitude (cfg.percAmp) serves as a boundary in amplitude space; in a way, the baseline is moved toward the peak of the component (thus decreasing the area; see also Kiesel et al., 2008). In time, the area is confined by the indicated time window (cfg.areaWin, which defaults to cfg.peakWin, but can also be set by hand) or by the on- and offsets (cfg.areaWin = ‘ampLat’).

Extracting Jackknife and Grand-Average Latencies

The default output of latency.m is one latency estimate per subject. The function can also return jackknife estimates for any output measure by setting cfg.aggregation = ‘jackMiller.’ For sample size n, the output will contain n jackknife estimates plus the respective grand average estimate as the last entry. These must then be analyzed with appropriate statistical tests (Miller et al., 1998; Ulrich and Miller, 2001; Stahl and Gibbons, 2004). For paired t-tests, the figshare folder (see footnote 5) contains a small function called jackT.m implementing the Miller et al. (1998) formula. Alternatively, the method of Smulders (2010) can be used by setting cfg.aggregation = ‘jackSmulders.’ If latencies of the grand average are needed, set cfg.aggregation = ‘GA.’



DECIDING ON PARAMETER SETTINGS

There is quite some flexibility in choosing parameters, incurring the risk of arriving at sub-optimal solutions or bogus effects (Simmons et al., 2011; Luck and Gaspelin, 2017). However, (a) under high signal-to-noise conditions most (reasonable) settings should typically converge to the same conclusions (see Figure 3D), (b) the validity of individual latency estimates can be easily verified using an in-built graphical representation (set cfg.fig = true), and (c) the descriptions of the various latency measures above and the further advice and the examples below point to quite a few principles that can be used to considerably restrict the parameter space a priori. Furthermore, using on- and offsets to constrain the area (as suggested by Liesefeld et al., 2016) will make percent-area-latency estimates quite robust against the choice of the analysis window (see Luck and Gaspelin, 2017, for advantages of analysis-window independency); that is, the increase in parameters fed into the function is likely (more than) balanced by a reduction in the arbitrariness of the choice of analysis window. In general, to avoid analyst-induced biases, suitable parameters should be identified based on data averaged across conditions where the analyst is blind to any condition differences (Luck and Gaspelin, 2017).

Choice of Latency Estimates and Parameter Settings

Choosing the appropriate latency measure and deciding on parameter settings is a matter of expertise and depends on the data set and research question at hand. Nevertheless, a few general recommendations apply to ERP/ERFs: Due to its low reliability, peak latency should usually be avoided. It can give reasonable results for very transient components under high signal-to-noise-ratio conditions, though. Even then applying a relatively strict low-pass filter (considerably attenuating all frequencies above 30 Hz) before the peak detection is typically necessary (see also Luck, 2005). Percent-amplitude latency should be used when the hypotheses relate to the onset (or offset) of the component. A fairly low percentage of the component amplitude, e.g., 10%, would reflect the true on- or offset of the component. On the downside, a low percentage makes percent-amplitude latency prone to noise so that higher percentages are often advisable (e.g., 30%). Also note that onset latency is always biased toward the earliest component onsets (across trials and, for jackknife or grand average latencies, additionally across subjects), because these determine when the individual averages deviate from the baseline. Likewise the offset is biased by the latest component offsets. Furthermore, with slowly rising components and moderate levels of high-frequency noise, onset latency will be relatively unreliable. In most cases, 50%-area amplitude is the best choice, because it provides a reliable estimate of the median component latency (Luck, 2005). Lower or higher area percentages can be used to capture more the on- or offset of the component.

If the component of interest occurs relatively late and there is contamination with low-frequency noise or slow-wave activity, the baseline adaptation of Liesefeld et al. (2016) should be used. In most cases, using the adjacent peak as an anchor point and bounding the area by on- and offsets as suggested by Liesefeld et al. (2016), should improve the results of percent-amplitude latency and percent-area latency, because it increases the robustness against slow-wave activity and low-frequency noise and it reduces confounds with the area of other (close) components (see Figure 3). Furthermore, as it allows using more generous windows, interindividual differences in component timing are less likely to push (part of) the component out of the window for some subjects. Where to search for the adjacent peak (i.e., the specific values for cfg.cWinStart and cfg.cWinWidth) heavily depends on the observed data pattern and can likely not be fully determined a priori, but must be based on an inspection of the grand average across conditions (see previous section). Baseline adaptation and adjacent-peak anchor are typically unnecessary if the component of interest is well isolated during preprocessing (e.g., when the contaminating slow-wave activity is subtracted out to a large extent by calculating differences between conditions or hemispheres).

Troubleshooting

A good way to get used to the function is to set cfg.sign according to the direction of the component, run [res, cfgNew] = latency(cfg, avgs), read the warning messages and inspect the contents of cfgNew, which will tell you about the default parameters. This should already provide quite some clues on which parameters one would like to change. Warnings can be turned off by setting cfg.warnings = false.

One common problem is that no local peak is found and the algorithm returns one of the boundaries of the search interval (cfg.peakWin) instead. If this happens too often (for more than half the participants), the algorithm returns a warning. This typically indicates that the search interval is set too narrowly and, thus, increasing cfg.peakWin often helps. The output res.foundLocal indicates for each subject whether a local peak was found or not and, thus, helps to identify anomalous individual averages (e.g., not showing the component of interest or containing a high level of low-frequency noise).

Percent-amplitude latency is corrupted when the ERP/ERF does not cross the baseline before or after the peak. This is the case when the indicated percentage of the component amplitude is already reached before the onset of the search interval or activity does not fall sufficiently again after the component’s peak. The algorithm than sets the on- or offset estimate to the respective search boundary (determined by cfg.ampLatWin). If this happens too often (for more than half of the participants), the algorithm returns a warning. One reason might be that a slow-wave component overlays the component of interest. In this case, using the adjacent peak as an anchor point and changing the baseline as described above holds promise to considerably improve the results. If this occurs for only a few participants, their individual averages might be too noisy and should be rejected. Inspect ‘res.foundOn’ and ‘res.foundOff’ to identify such corrupted data sets.

A more general troubleshooting strategy is to set cfg.fig = true. This will produce a figure for each subject with a graphical depiction of the various extracted measures, baselines, and anchor points. Visual inspection of these figures will often help to identify issues with the parameters or individual averages. These figures will also help understanding what exactly the function is doing, so that inspecting them is advisable whenever there is any uncertainty regarding the latency-extraction procedure.



EXAMPLE ANALYSIS OF GROUP DATA

Example Data and Parameter Settings

As a practical example, the usage of latency.m will be demonstrated on the planar gradiometer pair MEG0712 + 713 of the freely available MEG data set of Wakeman and Henson (2015) as preprocessed by Robert Oostenveld (see footnote 4), which was already used in the examples above (all code and the preprocessed data are at figshare; see footnote 5). These data were collected from observers looking at scrambled or intact faces, whereby faces were either famous persons or unfamiliar to the observer (see Wakeman and Henson, 2015, for details). Inspection of the grand average across all individuals and conditions (Figure 4A) indicates that there are two prominent components: an early transient positivity and a later broad positivity. Inspection of Figure 4B indicates that the peak and median latency, but not the onset, of the latter component differs for intact and scrambled faces and that this effect is absent in the earlier component. For illustrative purposes, let us assume that these are well-characterized components, that pre-processing was adequate for extracting them, and that this is the predicted pattern of results, so that we can test them for significance using latency.m. For reasons outlined above, this example uses 50%-area latency with area bound by the on- and offset of the component (cfg.areaWin = ‘ampLat’), which are defined as 30% of the peak amplitude (cfg.percAmp = 0.3) relative to the adjacent negative peak. With regard to the shape of the overall ERF displayed in Figure 4A and in order to definitely include the peak of the component, but avoid the peak of the respective other component, the algorithm is set to search in the time windows 140–240 ms (cfg.peakWin = [0.14, 0.24]) and 400–1,000 ms (cfg.peakWin = [0.4, 1]) for the peak of the early and late component, respectively. The adjacent peak is searched starting 200 ms before the search window for the late component (cfg.cWinWidth = -0.2) and until 100 ms after the search window for the early component (cfg.cWinWidth = 0.1).
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FIGURE 4. Baseline-corrected grand averages at the planar gradiometer pair MEG0712 + 713 of the Wakeman and Henson (2015) data. (A) Average across all conditions with peak-search windows for the early (red) and the late component (blue), and (B) the conditional averages with the extracted latency estimates.



Classical t-Tests

Indeed, confirming the initial observation, the 50%-area latency of the late component differed between intact and scrambled faces (mean difference, [image: image] = 90.2 ms), t(15) = 3.39, p = 0.004, but not between famous and unfamiliar faces, t(15) = 1.24, p = 0.234, [image: image] = 13.1 ms. Notably, this was not due to a difference in onset latency, t(15) = 1.20, p = 0.249, [image: image] = 36.7 ms, and t(15) = 0.50, p = 0.627, [image: image] = 6.7 ms, respectively. An analysis of peak latencies confirmed the area-latency results, t(15) = 3.51, p = 0.003, [image: image] = 125.8 ms, and t(15) = 0.15, p = 0.885, [image: image] = 3.8 ms, respectively. An analysis of the earlier component’s area latency with the same parameters (except for the time windows) showed no significant differences in latency between intact and scrambled faces, t(15) = 1.58, p = 0.135, [image: image] = 11.3 ms, or between famous and unfamiliar faces, t(15) = 0.35, p = 0.734, [image: image] = 2.0 ms.

Jackknife t-Tests

Surprisingly, jackknife analyses of the late component’s peak latency did not confirm the pattern, t(15) = 1.06, p = 0.306, [image: image] = 77.3 ms, and t(15) = 0.01, p = 0.991, [image: image] = 0.9 ms, respectively, for the Miller et al. (1998) method, and t(15) = 0.94, p = 0.364, [image: image] = 68.2 ms, and t(15) = 0.06, p = 0.956, [image: image] = 4.4 ms, respectively, for the Smulders (2010) method. Without overstraining this serendipitous finding here, this might indicate that under certain conditions (probably with high signal-to-noise ratios and components without a clear singular peak, see Figure 4) jackknife estimates of peak latency can be inferior for detecting existing differences compared to individual peak-latency estimates. Using jackknife estimates of 50%-area latency, recovered the pattern, t(15) = 3.43, p = 0.004, [image: image] = 79.1 ms, and t(15) = 0.55, p = 0.591, [image: image] = 16.4 ms, for intact vs. scrambled and famous vs. unfamiliar faces, respectively, for the Miller et al. (1998) method, and t(15) = 3.36, p = 0.004, [image: image] = 77.6 ms, and t(15) = 0.48, p = 0.639, [image: image] = 14.3 ms, respectively, for the Smulders (2010) method.

Reliability and Interrelation of Latency Measures

These analyses indicate that latency does not differ depending on whether the face is famous or unfamiliar. This opens the interesting possibility to use the correlation between the late component’s latencies for famous and unfamiliar faces as an index of the reliability of the various measures. This estimate of reliability was highest for area latency, r = 0.94, p < 0.001, second for onset latency, r = 0.86, p < 0.001, and worst (although still acceptable) for peak latency, r = 0.70, p = 0.002. Furthermore, the inter-correlations of the various measures of the late component’s latency might serve to gauge in how far these measures capture the same aspects of the underlying process. Area latency correlated highly with peak latency, r = 0.84 (corrected for attenuation, rcorr = 1), p < 0.001, and weaker with onset latency, r = 0.50 (rcorr = 0.56), p = 0.048, but the correlation between onset and peak latency did not reach significance, r = 0.21 (rcorr = 0.27), p = 0.436. As makes intuitive sense, area latency and peak latency pick up the same variance, which is different though somewhat related to onset latency.



CONCLUDING REMARKS

The present article illustrated the importance of component-latency measures for cognitive theories, introduced the three most common latency measures and variants thereof and discussed their strength and weaknesses. Furthermore, it described a function that can extract all these measures from group data (latency.m) and applied this function to an MEG data set (Wakeman and Henson, 2015). An accompanying figshare folder (see footnote 5) contains the version of latency.m used here, a function for performing paired t-tests on jackknife data, and a MATLAB script and all dependencies for reproducing raw versions of all figures as well as all results of the example analyses. The most current version of latency.m can be downloaded from https://github.com/Liesefeld/latency.
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FOOTNOTES

1 A formal validation using surrogate data where the true timing of components is known is beyond the scope of this tutorial introduction and must await further dedicated research. Yet, versions of this technique have arguably provided compelling results in Liesefeld et al. (2016, 2017) as well as in the examples provided here.

2 https://github.com/Liesefeld/latency

3 See the ERP Measurement Tool (available from https://github.com/lucklab/erplab/wiki/ERP-Measurement-Tool) for an alternative that provides a user interface. The main differences to the present function are that it is integrated into a particular toolbox (ERPLAB) and that the modifications of on-/offset latency and area latency suggested by Liesefeld et al. (2016) as well as jackknife estimates are not implemented.

4 https://github.com/robertoostenveld/Wakeman-and-Henson-2015

5 https://figshare.com/projects/MEG_EEG_latency/39068

6 A structure is a MATLAB data type that groups data containers called ‘fields’ (and potentially subfields), each of which can hold any type of data (see MATLAB/Language Fundamentals/Data Types/Structures in the online MATLAB documentation). This approach is preferable to differentiating parameters by their input order, because it is less prone to confusion or omission errors (switching the position of two parameters or accidentally omitting one parameter so that all following parameters are interpreted incorrectly by the function). One (among others) advantage the configuration structure has in comparison to the key + value input method [e.g., latency(avgs,‘sign,’1)] is its re-usability in several calls to the function, e.g., for applying the exact same parameters to several datasets (conditions) or changing single parameter values per call such as the analyzed (cluster of) channel(s) in cfg.chans (see Table 1).

7 Usually a local peak (the sample with the highest [or lowest] value that has samples with smaller [or higher] values on both sides) is returned, a global peak (one border of the analysis window that contains the highest [or lowest] value) is only returned in the rare cases that no local peak is found. See the section “Troubleshooting” below.
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Brainstorm is a free, open-source Matlab and Java application for multimodal electrophysiology data analytics and source imaging [primarily MEG, EEG and depth recordings, and integration with MRI and functional near infrared spectroscopy (fNIRS)]. We also provide a free, platform-independent executable version to users without a commercial Matlab license. Brainstorm has a rich and intuitive graphical user interface, which facilitates learning and augments productivity for a wider range of neuroscience users with little or no knowledge of scientific coding and scripting. Yet, it can also be used as a powerful scripting tool for reproducible and shareable batch processing of (large) data volumes. This article describes these Brainstorm interactive and scripted features via illustration through the complete analysis of group data from 16 participants in a MEG vision study.
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INTRODUCTION

Magnetoencephalography (MEG)/EEG data analysis requires translating neuropsychology and cognitive neuroscience questions into electrophysiology hypotheses. This in turn requires the design of an analytical workflow for signal extraction and analysis, possibly involving source imaging and model estimation (Baillet, 2017). With Brainstorm, we deploy tools and solutions for this purpose for use by a broad cross-section of neuroscience researchers (Tadel et al., 2011). We provide extensive online documentation and user support, with large collections of web tutorials for MEG, EEG, depth recordings and various types of study design. Brainstorm also embodies the philosophy that even sophisticated data analysis in electrophysiology benefits from a level of interactive visual assessment of data quality and of the spatio-temporal characteristics of possible effects within/between experimental conditions. Therefore, Brainstorm produces a variety of graphical and quantitative reports, for both point-and-click user interactions and automated data processing pipelines. All together, we believe these elements make Brainstorm a comprehensive yet accessible application for sophisticated and reproducible neuroscience research. Here we emphasize these unique software features in the context of a typical group data analysis workflow.

We used simultaneous MEG/EEG recordings from 16 participants performing a simple visual recognition task from presentations of familiar (from celebrities), unfamiliar and scrambled faces. The original data was published by Wakeman and Henson (2015) and is also featured in the SPM tutorial “Multimodal, multisubject data fusion”1. We used the version of this dataset organized according to the new MEG-Brain Imaging Data Structure (BIDS2) (Gorgolewski et al., 2016; Niso et al., 2018).

We feature two specific aspects of data analysis with Brainstorm: We first describe the interactive processing for one typical subject, from preprocessing of raw data to the extraction of event-related responses, the production of time-frequency decompositions and source modeling. We then describe how to transfer this analysis to the full group of 16 participants and derive group-level inferential statistics. Reproducing the analyses presented here can be done by following the new online tutorials created as online complements to this paper3. Users new to Brainstorm will also benefit from our comprehensive introductory tutorials4.



DATA

The original study concerned the identification of brain responses specific to faces and their familiarity to participants. Subjects were presented series of still images from three categories: familiar faces, unfamiliar faces, phase-scrambled faces. Familiar faces were from celebrities known to all participants. They were asked to rate a feature of no interest after each stimulus presentation, namely the left–right symmetry of the presented image. Six 10-min acquisition runs were collected from each participant, for a total of about 300 trials per stimulus category. As our goal here is to demonstrate software practicalities, we report solely on the early visual brain response within the first 300 ms post-stimulus, with an emphasis on the specific aspects of responses to faces vs. scrambled images (familiarity was not a factor of interest in the present analysis); see (Wakeman and Henson, 2015) for a complete report on all aspects of the study.

The data were recorded in 16 healthy participants with an Elekta Neuromag VectorView MEG system (102 magnetometers, 204 planar gradiometers), simultaneously with 70 scalp EEG electrodes with nose reference. The sampling rate was 1,100 Hz. Three fiducial points and the scalp surface were 3-D digitized for registration with M/EEG channel locations and structural MRI.

To replicate the results presented in the original article, we imported the version of the data corresponding to recordings processed with Elekta’s MaxFilter: they are available from the “derivatives” folder of the MEG-BIDS distribution of the data. MaxFilter was used to attenuate environmental noise with signal space separation (SSS), detect bad channels, apply a notch filter to reduce powerline artifacts, compensate for head movements and align the data across runs to match the head position at the start of the fourth run; see (Wakeman and Henson, 2015) for details. For noise modeling purposes, we used empty-room MEG noise recordings acquired between 0 and 6 days from acquisition of subject data: they were also processed with MaxFilter, in an identical manner as the participants MEG data.

Structural MRI data was acquired on a 3T Siemens TIM Trio (1 mm × 1 mm × 1 mm, T1-weighted). The MR data volumes were de-faced for further subject de-identification. The MEG-BIDS data repository includes the anatomical segmentation produced by FreeSurfer 5.35 (Dale et al., 1999).



DOWNLOAD AND INSTALLATION OF DATA AND SOFTWARE

All the files featured in this communication are available from openneuro.org, https://openneuro.org/datasets/ds000117. The full analysis requires a total of 400Gb of available disk space. To reproduce the analyses presented here readers should download and install Brainstorm6.

The interactive environment of Brainstorm can be run without a Matlab license. However, users without a Matlab license cannot execute Matlab scripts and therefore cannot run the automated scripts that reproduce the analyses presented here. Brainstorm scripting requires Matlab 2008a or later.



SINGLE-SUBJECT, SINGLE-RUN DATA ANALYSIS

We first present analyses performed on one data run from one of the participants. We then show how the resulting pipeline can be extended to other runs and other participants, prior to group statistical inference.

At the core of Brainstorm’s architecture and user experience is a data manager tool, which facilitates data organization and sorting by experimental conditions and groups of participants. Brainstorm exploits the principled data organization of MEG-BIDS: all data volumes (raw and FreeSurfer processed MRI, MEG/EEG) can be readily registered at once to the Brainstorm database following the menu “File > Load protocol > Import BIDS dataset”7. However, here we describe the steps necessary to import multimodal data into Brainstorm so that the analysis described below can be extended to new data sets. If data are not organized using the MEG-BIDS structure, these operations need to be repeated for all runs and participants.

Structural MRI: T1 Volume and Derivatives

We created a new study or protocol in the software database named “Frontiers2018Single,” to which we added a new subject with “sub-01” as coded ID. By right-clicking on the subject folder and selecting “Import anatomy folder” in the contextual menu, we loaded all the MRI data from the FreeSurfer folder of the downloaded dataset “derivatives/freesurfer/sub-01/ses-mri/anat.” These included the individual structural MRI, the tessellated cortical surfaces and anatomical atlases registered to the individual anatomy8. The scalp surface was reconstructed automatically by Brainstorm from the T1 volume data. Figure 1 shows a screen capture of typical Brainstorm structural (surface and volume data) MRI displays.
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FIGURE 1. Brainstorm screenshot after importing anatomical MRI data and FreeSurfer derivatives. From (left) to (right): Brainstorm database explorer, 3-D rendering of head and pial surface meshes (the scalp surface and MRI volume were de-faced for anonymization purposes), orthogonal views of T1 MRI volume and anatomical fiducials, FreeSurfer/Mindboggle cortical parcellation, FreeSurfer/ASEG volume atlas of subcortical and cerebellar structures.



Brainstorm computes a 4 × 4 affine transformation that registers the subject’s T1 MRI to the MNI coordinate system using the spm_maff8 function (included in Brainstorm’s distribution) from SPM12 (Ashburner and Friston, 2005). Brainstorm also sets default coordinates for anatomical fiducials (NAS = nasion, LPA = left ear, RPA = right ear) for registration with MEG coordinates. These approximate points are based on standard MNI coordinates. The actual individual locations of these reference points are also available from the MEG data file and are used to initialize MEG/MRI coregistration. In principle, as few as three points are sufficient for registration but more robust alignment can be readily achieved using the individual digitized head shape (see next section), as with the present dataset9. When the individual head shape is not available or has poor quality, the positions of the NAS/LPA/RPA fiducials must be defined manually using Brainstorm’s MRI Viewer.

Alternatives to FreeSurfer can be used to import MR derivative data into Brainstorm: BrainVISA (Rivière et al., 2003), BrainSuite (Shattuck and Leahy, 2002) and CIVET (Ad-Dab’bagh et al., 2006). All of the above generate cortical surface meshes, yet only FreeSurfer and BrainSuite readily provide registration of individual data to atlases, which eventually facilitates the projection of MEG/EEG individual source maps to a common anatomical template across the group.

MEG/EEG and Registration With Structural MRI

Raw MEG/EEG Files

The continuous FIF file from the first MEG acquisition run of sub-0110 was added to the Brainstorm database using the “Review raw file” contextual menu over the subject entry. This operation creates a link to the original raw data file, whose contents can be reviewed and manipulated without requiring Brainstorm to duplicate the raw data file11. The product of most of the following pre-processing steps is efficiently saved in this link file without changing the contents of the original raw data file.

We ignored two options offered interactively while linking the recordings to the database: automatic registration with MRI and importation of stimulus triggers. We describe below how to proceed with these issues manually.

A channel file is created next to the link to the raw recordings: this database entry describes the data channels available (names, types, 3D positions). For clarification, we manually edited the types of some channels, using Brainstorm’s channel editor: EEG062 was changed to EOG (electro-oculogram), EEG063 to ECG (electrocardiogram), EEG061 and EEG064 to NOSIG (no signal) (Figure 2).
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FIGURE 2. (Top row) Manual editing of channel types, removal of digitized head points below the nasion, and fit of remaining points to the scalp surface; (bottom row) projection of EEG electrodes onto scalp surface. Green dots: digitized head points, white dots: EEG electrodes, gray surface: scalp surface extracted from MRI, yellow surface: inner surface of MEG helmet.



Registration With Structural MRI

The registration of MEG sensors with structural MRI data was initialized with the alignment of the NAS/LPA/RPA fiducial points as identified from the MRI MNI coordinates and their digitized locations in the MEG file. Brainstorm can refine this geometrical alignment by estimating an optimal rigid-body transformation that fits multiple digitized head points (expressed in the same referential frame as the MEG sensors) to the scalp surface (automatically extracted from T1 MRI by Brainstorm). Note that the MRI data was de-faced, so head points below the nasion were discarded by selecting the popup menu item “Digitized head points > Remove points below nasion.” We then used the menu item “MRI registration > Refine using head points” to fit the digitized scalp points, augmented with the EEG electrode locations, to the head surface, using an iterative closest point algorithm (ICP).

One last step consisted of projecting the EEG electrodes onto the scalp, thereby removing any distance between their 3-D digitized locations and the subject’s actual scalp surface. This step is important for accuracy of the EEG forward model. This projection is obtained via the menu item “MRI registration > EEG: Edit,” followed by “Project electrodes on surface.”

We recommend visual inspection of the registration outcome for MEG and EEG sensors, especially before subsequent source estimation, as incorrect coregistration negatively affects the accuracy of source modeling (Figure 2).

Definition of Experimental Events

A stimulus trigger signal marked the presentation times of stimulus images on the screen, with different codes for the three experimental categories. These signals were recorded on channel STI101 in the present data. There was a known, constant delay of 34.5 ms between each trigger pulse in STI101 and the actual presentation of the stimulus image. The following binary event codes were used at the time of data acquisition (bit number 3 coded for face, bit 4 for unfamiliarity, and bit 5 for the scrambled stimulus): Familiar faces: 5 (00101), 6 (00110), 7 (00111); Unfamiliar faces: 13 (01101), 14 (01110), 15 (01111); Scrambled images: 17 (10001), 18 (10010), 19 (10011). There are other event codes available in the recordings, but they are not described in the README file distributed with this dataset.

The read-out of these markers can be performed via the interactive menu item “File > Read events from channel” in the Record tab12. Here, we illustrate the features of Brainstorm’s pipeline editor to achieve the same purpose. Note that the resulting pipeline operation can be applied at once as a batch procedure on all runs and participants.

After dragging and dropping the link to the continuous file in the Process1 panel at the bottom of the main Brainstorm window, we clicked on the Run button to open the pipeline editor. We then selected “Events > Read from channel” with the option “Bit: detect the changes for each bit independently” from the list of available process operations. This created one event for each bit of the integer value recorded on channel STI101.

We considered three stimulus categories with values: bit 3 = face, bit 4 = unfamiliar, bit 5 = scrambled. We created the categories “Unfamiliar” (bit 3 = 1, bit 4 = 1, bit 5 = 0), “Familiar” (bit 3 = 1, bit 4 = 0, bit 5 = 0), and “Scrambled” (bit 5 = 1). We discarded all other event categories originally in the data, for clarity. This step was performed via Brainstorm’s pipeline editor, by combining the processes “Events > Group by name,” “Rename event,” and “Delete events,” in that order.

Finally, we adjusted the timing of all detected events to compensate for the 34.5-ms presentation delay, with process “Events > Add time offset” (Figure 3).
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FIGURE 3. (Top) Selection of files in Process1 and pipeline editor; (bottom) reviewing the data traces around the event markers created for the three categories of visual stimuli (familiar, unfamiliar, and scrambled).



Pre-processing and Data Review

Power Spectrum Estimation

We recommend estimating and reviewing power spectra of MEG/EEG sensor traces for basic quality control. Bad channels, episodes of major signal alterations, artifacts (breathing, dental work, muscle, and eye movements) and environmental noise (stimulation devices, power lines, head localization coils) can readily be identified by a trained user13.

To obtain an estimate of the power spectrum density (PSD) on all channels, we dropped the raw-data link in Process1 and selected process “Frequency > Power spectrum density (Welch)” (window duration 3 s with 50% overlap). The PSD estimates were saved in a separate file attached to the original data and can be readily reviewed for all channel types (Figure 4).
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FIGURE 4. Power spectrum density, log-scaled. (Top) Estimated from the full recordings; (Bottom) after excluding the cHPI transition, applying the notch filters, excluding bad channel EEG016 and re-referencing the EEG. Each type of sensor has a different range of amplitude, creating three blocks of channels in these Figures – from top to bottom: EEG, MEG gradiometers, MEG magnetometers.



We noted the presence of large side lobes around about 310 Hz in the spectrum of all MEG channels, which points to signal discontinuities in the recordings. Indeed, while continuous head tracking was used in this acquisition, it was only activated at the time of the stimulation. The file starts at time 226 s, with inactive Head Position Indicator coils (HPI). At 248 s, the HPI coils were turned on, yielding an abrupt, step transition of high-amplitude sinewave signals. Shortly after, MaxFilter started filtering out the HPI signals and correcting for head movements, yielding a second step in the MEG recordings. Such abrupt transitions create large distortions of the power spectra. We therefore marked the first 22 s as a bad data segment with the process “Events > Detect cHPI activity (Elekta)” and recomputed the power spectra from clean portions of the recordings only.

Figure 4 (lower) shows the power spectra of this truncated data. Physiological peaks can be observed at 10 Hz (alpha rhythm), 50 Hz and harmonics (powerline contamination in United Kingdom) and peaks at 293, 307, 314, 321, and 328 Hz (from Elekta electronics, including residuals of HPI signaling) and an unknown source at 103.4 Hz. We also noticed that channel EEG016 was noisy, with a power spectrum oddly standing above the other EEG channels’. We therefore inspected the traces from this electrode when reviewing the recordings (see below) and the channel was ultimately excluded from further analysis.

Frequency Filters

Power line contamination can easily be removed with notch filters centered at 50 Hz and harmonics (100 Hz, 150 Hz, and higher). We restricted our analyses to that of event-related stimulus responses below 32 Hz, the frequency range analyzed by Wakeman and Henson (2015). Since this is below 50 Hz, notch filtering is not required. In addition, powerline contamination is greatly reduced by stim-locked averaging because of the random phase of the interference from trial to trial. We did perform notch-filtering for the sake of generalizability of the pipeline presented here. Note also that more advanced data analysis based on single-trial measures, including that of specific and/or faster oscillatory components, may require more thorough artifact correction.

Frequency filters need to be applied depending on data quality and the signal components of interest to meet the scientific aims of a given study. High-pass filters (HPFs) remove the arbitrary DC offset and slow baseline drifts of MEG sensors (<0.2 Hz), physiological artifacts due to breathing and slow eye movements. The cutoff frequency must be selected carefully, especially when relevant slow brain responses are expected, e.g., in working memory retention periods. Low-pass filters (LPFs) remove high-frequency contaminants such as muscle artifacts and physiological stimulators. LPFs also restrict the useful frequency range that can be analyzed.

It is important to be aware that filters can generate transient effects at the beginning and end of each signal trace. The length of this transient depends on multiple factors, with narrow-band filters and very low frequency cut-off HPFs inducing longer edge effects. For this reason, it is preferable to apply frequency filters directly on continuous signal traces, before shorter epochs of interest are extracted14.

Here we applied notch filters on the continuous recording by dropping its file link into the Process1 panel and ran “Pre-process > Notch filter” at 50, 100, 150, and 200 Hz. Brainstorm applies 4th order IIR notch filters with zero-phase lag. The process creates a filtered version of the continuous file with suffix “_notch” saved in Brainstorm format. Other filter types (band-pass, low-pass, high-pass, and band-stop) can be applied following the same procedure.

Bad Channel Identification

The PSD plots revealed that EEG016 had poor signal quality. Bad-channel labeling can be performed interactively15: we displayed the EEG traces by right-clicking on the filtered file and selected the EEG/Display time series contextual menu item. We then selected channel EEG016 from the display and marked it as bad after another right click (Figure 5). Note that keyboard shortcuts are available for this and many other procedures in Brainstorm.
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FIGURE 5. Data cleaning. (Top) Bad channels are visualized, marked as red traces and discarded in further processing steps. (Middle) Eye blink detection in EOG traces (green), with corresponding artifact in MEG traces (black). (Bottom) SSP components corresponding to heartbeat events and corresponding magnetometers (left) and gradiometers (right) surface topography.



Bad channels need to be marked before running further cleaning procedures that combine values from multiple channels, such as those described in the sections below.

EEG Referencing

After removing EEG016 and for visualization purposes, we re-referenced the EEG traces with respect to the instantaneous average across all remaining EEG signals. This was done via the montage menu in Brainstorm by selecting the “Average reference” entry16. Note that montages are for display only: they do not alter the signals stored in the file. Permanent alteration of EEG referencing is via process “Standardize > Re-reference EEG,” which simply applies a linear re-referencing operator to the original data, for data storage efficiency. The list of linear operators applied to a file can be retrieved selecting the menu item in the file viewer “Artifacts > Select active projectors” from the “Record” panel. The original EEG referencing can be recovered by simply deleting the “EEG reference: AVERAGE” entry from the list displayed.

Removal of Eye Blinks

Brainstorm features solutions for detecting eye blinks via the process “Events > Detect eye blinks,” which creates event markers at local maxima of EOG traces caused by eye blinks. The MEG/EEG artifacts can then be removed by designing specific SSP signal projectors from the signal statistics of blink events. In the present study, the focus was on brain responses related to visual stimulus presentations. Therefore, we opted to exclude rather than correct the epochs where blinks were detected.

We opened the EOG traces by right-clicking on the MEG/EEG file and selected the contextual menu item “EOG > Display time series.” We reviewed the signal traces from EEG062 to define the amplitude threshold for the detection of blinks. We chose 100 μV for sub-01 and ran process “Events > Detect events above threshold” on EEG062, in the frequency band 0.3–20 Hz, to automatically mark blink data segment labeled “blink_bad.” Note that with Brainstorm, all event with label names that include the tag “bad” are automatically excluded from further analysis (Figure 5).

Correction of Heartbeat Artifacts

Heartbeats are another common source of artifacts in MEG and EEG recordings. Although their contribution to event-related average signals can be small, their removal is considered a good practice (Gross et al., 2013). We selected the filtered continuous file from Brainstorm’s data manager and ran the process “Events > Detect heartbeats” on ECG channel EEG063. The built-in detection algorithm identified R-peaks in the electrocardiogram trace, which are synchronized to the MEG artifacts17.

We derived signal space projectors from the signal statistics about heartbeat events (Uusitalo and Ilmoniemi, 1997). The technique is based on the principal component analysis (PCA) of MEG traces contaminated by heartbeat sources, and orthogonal projections away from the corresponding spatial patterns. We opted for SSP instead of independent component analysis (ICA, also available in Brainstorm, Makeig et al., 1996), because it is faster and more specific of the source of artifacts18.

We ran the Brainstorm process “Artifacts > SSP: Heartbeats” first on MEG magnetometers (“MEG MAG” channel type), then on MEG gradiometers (“MEG GRAD”). The orthogonal projectors produced can be reviewed and selected interactively (“Select active projectors”). Another benefit of SSP is that PCA components are ordered according to their contribution to signal variance. Brainstorm features a dedicated graphical user interface (GUI) to review and select the SSP components of contaminants: we selected “Display component topography” in that GUI (Figure 5), to review the effect of removing the first SSP component from MEG traces. We verified visually that by doing so, it efficiently removed heartbeat artifacts without obviously affecting signal traces away from ECG events. This is best verified by visualizing lateral MEG sensors and toggling the application of SSP projectors back and forth. We selected the first SSP component for the magnetometers and gradiometers decompositions for sub-01/run-01 for the further processing steps.

Marking of Additional Bad Segments

Segments of MEG/EEG traces can be spoiled by other sources of nuisance: Body and head movements, transient flux jumps from SQUID sensors, and uncontrolled environmental sources (building vibrations, elevators, cars, or trains, etc.)

We recommend that traces are systematically reviewed for visual detection of obvious episodes of signal contamination. Brainstorm features rapid browsing capacity of virtual pages of customizable duration (typically 20–30 s) and sensor selections. Further automatic processes help expedite such quality control: The process “Artifacts > Detect other artifacts” identifies time segments that contain typical artifacts from eye and head/body movements or muscle contractions in pre-determined frequency bands, where such signal contamination is the most commonly observed (1–7 Hz for body movements, eye movements and dental work; 40–240 Hz for muscle contractions, etc.; Gross et al., 2013). This process creates new event markers to expedite subsequent visual inspection and validation.

Another estimation of the sensor traces’ PSD after pre-processing confirms that all the cleaning steps worked as expected (Figure 4, bottom).

Event-Related Epoching

We performed the temporal segmentation of continuous data about each event of interest (i.e., visual stimulus presentations) by selecting “Import in database” from the contextual menu over the filtered version of the continuous file19 (epoching is also available from the process “Import recordings > Import MEG/EEG: Events”). We selected the Familiar, Unfamiliar, and Scrambled event categories from the list displayed, and defined the epoch as [-500, 1200] ms about each event. This epoch duration is long enough to capture all event-related brain responses of interest and to define a pre-stimulus baseline for subsequent standardization procedures. It also provides additional temporal padding to absorb further filtering edge effects when applied to single trial data segments (as with low-pass filtering, time-frequency decomposition and connectivity analysis). Yet, it is also short enough not to overlap with brain responses of interest from previous or subsequent trials.

As we import these epochs, we also apply a correction for the arbitrary DC offset observed in the MEG sensors. In MEG, the sensors record variations around an arbitrary level, therefore this operation is always needed, unless it was already applied during one of the pre-processing steps (e.g., a high-pass filter can efficiently replace this DC correction). We corrected the DC offset of every sensor at each trial by selecting the option “Remove DC offset: Time range = [-500, -0.9] ms” at the time of epoching. This can also be achieved as a pipeline step, choosing the process “Pre-process > Remove DC offset” with the same baseline definition. We applied such baseline correction to MEG and EEG traces, as specified in the “Sensor types” field of the related processes.

The single trials for all 3 experimental conditions were imported in the database, each trial data being stored in a separate file. If a trial co-occurred with a “bad” event or segment, Brainstorm marked it as bad, which de facto excluded it from further analysis. We found in sub-01/run-01 that most bad trials were toward the end of the run, with more occurrences of eye blinks and body movements, likely due to subject fatigue. Note that trials can be toggled as good or bad via the database explorer, selecting the menu item “Reject trial” or “Accept trial” interactively (Figure 6). Single trials can be rapidly inspected visually, browsing through files using convenient keyboard shortcuts. Additionally, Brainstorm offers several visualization features for groups of trials, such as sensor-specific raster and cluster plots (Figure 6).
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FIGURE 6. (Left) Accepting or rejecting single trials using the database explorer. (Right) Single-trial traces for electrode EEG065 superimposed as cluster (top) and raster (bottom) plots over 40 good trials from the Familiar condition, with a low-pass filter below 32 Hz applied for display purposes only.



Trial Averaging

We produced trial averages to obtain MEG event-related fields (ERFs) and EEG event-related potentials (ERPs) for each stimulus category for sub-01/run-01. Averaging across runs requires further attention as MEG sensor locations can vary between runs, because of head motion relative to the helmet. We discuss this aspect below in the context of group analyses.

We selected all imported epochs and ran process “Average > Average files: By trial groups (folder average).” This created one event-related average data file per stimulus category (Familiar, Unfamiliar, and Scrambled). Brainstorm features a great variety of display options for event-related data: time series, several types of 2D/3D sensor topography plots, with interactive frequency filtering, etc. Several figures can be opened simultaneously, for different conditions and different modalities, and are synchronized: changing the time or sensor selection in one figure updates the other displays (Figure 7). The figure popup menu “Snapshot” lists several options to export Brainstorm figures to picture files and animations20.
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FIGURE 7. Examples of display of the average of 40 trials of the Familiar condition, 113 ms after the presentation of the visual stimulus, with an online low-pass filter at 32 Hz (subject 01, run 01) for display purposes only. The top row shows the recordings of the MEG magnetometers: (a) signal time series from 100 ms before to 600 ms after the stimulus; (b) 2D sensor topography at 113 ms; (c) 3D topography; (d) 2D Layout display showing the local shape of the signals around 113 ms. The middle row shows the MEG gradiometers: (e) time series, (f) 2D topography, (g) 2D topography projected on a disk. The bottom row shows the EEG recordings: (h) time series, (i) 2D topography, (j) EEG electrodes represented on the head surface with values recorded at 113 ms; (k) 2D topography zoomed around selected electrode EEG065, (l) values recorded by electrode EEG065 between –100 and 600 ms for the three conditions Familiar (green), Unfamiliar (red), and Scrambled (blue).



Source Modeling

We next obtained image models of the cerebral currents from the preprocessed MEG/EEG sensor time series. Brainstorm’s online tutorials describe in detail the forward and inverse modeling steps required21; see also (Baillet et al., 2001; Baillet, 2017) for reviews.

We emphasize that not all neuroscience questions require source modeling: differential sensor topographies and/or event-related component latencies, or more recent multidimensional classification techniques (Cichy et al., 2014) between experimental conditions may suffice to test neuroscientific hypotheses. But here we wish to verify whether the visual ventral pathway was more strongly activated in response to faces, especially in the fusiform area, within the first 200 ms after stimulus presentation (Schweinberger and Neumann, 2016).

We elected to use a distributed source imaging model rather than fitting an equivalent current dipole (ECD) model. The rationale was that we expected multiple brain regions to be activated simultaneously within the 0–200-ms time window of interest, which is challenging to the non-linear optimization problem of ECD dipole fitting (Baillet et al., 2001).

There are multiple options to distributed source modeling. We opted for constraining the positions and orientations of elemental current dipoles to the individual cortical surface of participants. We used 15,000 cortical elemental dipoles to cover the entire cortical surface – a number sufficiently large to sample the folded details of cortical anatomy. Brainstorm also features a range of simpler (equivalent moving dipole fits, unconstrained 3-D dipole grids in skull volume) and more sophisticated source models (including cortical and subcortical structures based on anatomical atlases of basal ganglia adjusted to individual anatomy22). In principle, the most complete anatomical model shall be preferred as the source space. However, adding more detailed structures also adds signal dimensions, increasing the ill-posedness of the inverse problem. It also increases the complexity and practical aspects of handling, storing, visualizing and interpreting the source models produced. For most studies, we find the cortically constrained model to be a reasonable tradeoff between completeness and complexity. Note that when the individual’s structural MRI data is not available, Brainstorm features anatomical templates that can be adjusted to the participant’s digitized scalp points or electrode locations23.

Magnetoencephalography and EEG forward models in Brainstorm include both Boundary Element Models (BEMs) based on individual tessellations of segmented head compartments24 and fast, analytical approximations of the head geometry with multiple nested spheres, where these spheres can also be locally fitted separately to each sensor (Leahy et al., 1998; Huang et al., 1999).

For the MEG forward model, we used the locally fitted sphere model while we used the BEM computed from the individual head compartments for the EEG forward model. In principle, because they represent true head shape, BEM models are superior to the spherical approximations. However, the latter can be more robust as they are not sensitive to issues that can limit BEM accuracy such as the effect of large triangle sizes in surface tessellations or proximity of a source to one of the mesh vertices. Generally, EEG source modeling is more sensitive than MEG to approximations of the head shape (Baillet, 2017) which in part motivated the different choices for MEG and EEG here.

Brainstorm’s BEM engine uses OpenMEEG (Gramfort et al., 2010). We produced the surface envelopes for scalp, inner skull and outer skull within Brainstorm, via a right-click selection of the “Generate BEM surfaces” contextual menu item over the Subject data folder. OpenMEEG developers recommend using dense meshes (e.g., 1922 vertices per layer), however, due to BEM memory requirements, we reduced the number of surface nodes of all tissue envelopes down to 1082 vertices for scalp, and 642 for outer and inner skull (Figure 8, center).
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FIGURE 8. Source estimation. From (left) to (right): BEM layers (scalp, outer skull, and inner skull) and cortex, forward model basic options, inverse model basic options.



We then produced the actual EEG forward model by right-clicking on the channel file in the imported data folder and selecting the contextual menu item “Compute head model” (Figure 8, right). This generated the BEM model of the forward fields for 45,000 dipole triplets distributed on the cortex surface. Note that the final number of dipole sources in the model will be 15,000: Brainstorm’s forward modeling computes a generic forward field subspace at each of the 15,000 locations using triplets of orthogonal elementary dipoles (3 orientations × 15,000 vertices = 45,000); the orientation constraint is applied later at the moment of source modeling in the pipeline.

The forward model depends on the location of the sources with respect to sensors, which changes between MEG runs as participants move. In this study, MEG recordings were pre-processed using MaxFilter, which realigns all session runs to a common head position. Therefore, we assumed the MEG forward model was the same for all session runs of a subject. We therefore computed the model only once then duplicated it across all runs for that subject.

Estimation of Noise Statistics From Empty-Room Recording (MEG)

Explicit inclusion of noise characteristics can benefit source estimation. For instance, minimum-norm estimators can include second-order sample statistics of sensor noise in the linear amplitude estimation of distributed sources. These statistics are summarized in an estimate of noise covariance between sensors, which takes the shape of a matrix. Brainstorm’s online documentation describes how this matrix can be estimated from EEG and MEG data. Here we estimated the MEG noise covariance from the empty-room measurements provided in the dataset. For EEG, we used the pre-stimulus baseline segments from all epochs.

For consistency, we preprocessed the empty-room recordings in an identical manner to the task data. We therefore applied the same notch filter before estimating the noise covariance matrix. We created a new subject called “sub-emptyroom” and linked all the empty-room data from folder derivatives/meg_derivatives/sub-emptyroom with menu “Review raw file” (preprocessed with MaxFilter/SSS). We then applied the same notch filters at 50, 100, 150, and 200 Hz. The estimation of the noise covariance for each session was obtained via a simple right-click over the filtered version of the empty-room data by selecting “Noise covariance > Compute from recordings.”

The noise environment outside the MEG and the state of the MEG sensors may change over time, it is therefore recommended to use empty-room data recorded just before or after the experimental recording itself, or at least from the same day (Gross et al., 2013). In this dataset, empty-room measurements were available for 8 different dates between April and December 2009. For each subject MEG session, we copied the noise covariance estimated from the closest empty-room recordings, as documented in the BIDS metadata (field “AssociatedEmptyRoom” associated to each acquisition run), i.e., for subject sub-01 we used empty-room ses-20090409 from April 9th, 2009.

Estimation of Noise Statistics From Pre-stimulus Baseline Data (EEG)

Empty-room recordings are not possible with EEG as electrodes need to be affixed to the scalp to pick up a signal. Noise covariance statistics also depend of the quality of each contact and therefore are specific to a given set of recordings. In the present study, our scientific hypothesis did not concern the possible role of pre-stimulus ongoing activity in task performance. Therefore, we considered these pre-stimulus data samples as noise and estimated their sample covariance across all trials. To do this we used time segments [-500, -0.9] ms concatenated across trials of the pre-processed, notch-filtered version of the data (Figure 8, left).

Weighted Minimum-Norm Estimation of Source Amplitudes

We used Brainstorm’s implementation of the weighted minimum-norm estimation (WMNE) of the amplitude of distributed sources, with default parameter settings suggested for regularization and source depth weighting. For technical details, please refer to (Baillet et al., 2001) and the online documentation25. WMNE has multiple options in selection of the source model (e.g., cortically constrained or volumetric), treatment of noise covariance and control of the regularizer that ensures a stable inverse solution. However, Brainstorm is configured with default values that take a conservative approach to source estimation and can safely be used with many if not most studies. Note that Brainstorm also features two other families of methods widely used in MEG/EEG: beamformers and equivalent dipole modeling but use of these is beyond the scope of the present manuscript. Imaging estimators such as WMNE provide well-studied solutions for subsequent statistical inference across participants and tend to be less user-dependent than equivalent dipole models. They are also computationally efficient as they can be implemented via the instantaneous linear combination of MEG/EEG sensor traces with a pre-computed kernel.

Weighted minimum-norm estimation maps can show bias with reduced source amplitude for radial source orientations in MEG and with increasing depth. This is partially addressed through the use of a depth-weighting (the Brainstorm default) but some bias remains. It is therefore common to standardize the WMNE current density estimates using information from the noise or data covariance, such as with dSPM (Dale et al., 1999) or sLORETA (Pascual-Marqui, 2002). These standardizations replace the current density estimate with a dimensionless statistic which can be used as the basis for hypothesis testing. Here we applied a simple standardization procedure based on the sample statistics of each source time series over the pre-stimulus baseline. In short, a z-score transformation was applied to each cortical source trace with respect to its pre-stimulus mean and standard deviation across time. We applied this transformation after trial averaging across runs, for each condition, and for each subject separately (see below).

Magnetoencephalography and EEG sensor data can be processed jointly to produce combined source estimates. Joint processing presents unique challenges because EEG and MEG use head models that exhibit differing sensitivities to modeling errors, which can in turn lead to inconsistencies between EEG and MEG with respect to the (common) source model. In practice joint processing is relatively rare (Baillet et al., 1999). However, these data are complementary, which means that joint processing can potentially yield insights that cannot be seen with either modality alone. For example, in the evoked responses in the data set used here, the first peak over the occipital areas is observed in MEG (90 ms) slightly before EEG (110 ms). This delay is too large to be caused by acquisition imprecisions. This indicates that we are not capturing the same brain processes with the two modalities, possibly because the orientation and type of activity in the underlying cortical sources is different. MEG and EEG have different sensitivities to source orientation and depth. Given the challenges of joint processing, our advice is to first look at the source reconstructions for the two modalities separately before trying to use any type of fusion technique. In the following, since our goal is to illustrate an end-to-end processing pipeline rather than comprehensively demonstrate all of Brainstorm’s features, we restrict our inverse results to MEG-only processing and do not present results either for EEG alone or joint MEG/EEG processing.

We used WMNE source mapping from “Compute sources [2018]” in Brainstorm, with the options: minimum-norm imaging, current density map, constrained normal to cortex, MEG MAG + MEG GRAD, and left all the advanced parameters values unchanged.

Time-Frequency Decompositions

We computed the time-frequency decomposition of broadband MEG sensor data from each trial using Morlet wavelets. We then averaged the modulus of Morlet coefficients across trials for each condition and each run (Bertrand and Tallon-Baudry, 2000; Pantazis et al., 2005b). This operation was restricted to MEG magnetometers and EEG channels. The trials for the Familiar condition in run-01 were moved to the Process1 tab and the process “Frequency > Time-frequency (Morlet wavelets)”: with restriction to sensor types = MEG MAG, EEG was applied. Other parameters for the process were: not normalized, Frequency = log(6:20:60), which specifies that 20 frequency bins logarithmically spaced between 6 and 20 Hz are to be used, Measure = Power, Save average26. We repeated this procedure for the two other conditions (“Unfamiliar,” “Scrambled”).

To avoid misinterpretation of power time-frequency decomposition values contaminated by signal edge effects, we selected the display option “Hide edge effects.” This latter revealed that time-frequency decompositions were reliable between -200 and +900 ms (Figure 9). In Process1, we selected these time-frequency results and ran process “Extract > Extract time,” with the option to overwrite input files. This latter step produced time-frequency decomposition data with interpretable values away from edge-effect contamination. Note that as shown in Figure 9 there is very little power present at frequencies above 15 Hz. Higher frequencies are typically of lower power, so that they are visible only after performing a frequency-dependent normalization as we describe below.
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FIGURE 9. Time-frequency decomposition (Morlet wavelets) for channel EEG070, averaged over trials from the “Familiar” condition. The figure shows the outcome of the decomposition before (top) and after (bottom) removing signal edge effects. The TF plots for the other two conditions (“unfamiliar,” scrambled”) were visually indistinguishable from the one shown.





AUTOMATION: SCRIPTING AND REPORTING OF ANALYSIS PIPELINES

Using the GUI is a convenient solution to explore options for data analysis on a subset of the data. We describe here how scripting can be used to reproduce efficiently an identical analysis pipeline on all runs and participants.

The Brainstorm pipeline editor automatically generates Matlab code from the “Generate.m script” menu item. The resulting script reproduces exactly the processing steps of the interactive GUI version of Brainstorm. “For” loops can be added to the script to batch the analysis across additional data runs, other participants or studies. We provide multiple online examples of such scripts, which can further help users assemble their own custom pipelines. Online recommendations and examples for editing Brainstorm scripts are available27.

One practical recommendation for Brainstorm scripting is to split data analysis pipelines in blocks. For instance, importing anatomical data and raw MEG/EEG files, frequency filtering, power spectrum estimation, artifact detection and cleaning do not require user interaction, and can all be processed at once from one single script. Interventions are required from users for reviewing raw files, marking/confirming bad channels and data segments, selecting SSP or ICA components, etc. Another batch script can then be generated for epoching and averaging data, producing source models and extracting measures of interest (e.g., time-frequency decompositions and connectivity metrics).

The outputs of executed scripts are consigned to a log, for verification of proper execution and debugging. Screen captures are added to this execution log via the “File > Save snapshot” menu item. Our recommendation is to add snapshots after the following key analytical steps: MEG/EEG-MRI registration, power spectrum density estimation, sensor topographies of selected SSP components, average event-related responses in all experimental conditions, sensor topography at the peak of the strongest primary visual response (≃110 ms).

Manual data processing steps are user dependent and therefore detrimental to the strict reproducibility of data analyses. However, fully automated pipelines have their own shortcomings when used blindly on rich, complex data. Manual data cleaning processes tend to be more specific than automated procedures, resulting in lesser amounts of data being rejected. For this reason, they remain the preferred approach for typical study designs in MEG/EEG research that involve relatively small cohorts of participants. We note, however, that big-data repositories are emerging in the field (e.g., OMEGA, MEG-HCP, and Cam-Can), which require more automated procedures, but put less emphasis on qualifying as much of the initial data volume as possible to subsequent analyses (Van Essen et al., 2012; Niso et al., 2016; Taylor et al., 2017).

Analysis pipelines that involve manual steps can be replicated, with additional care and documentation. For instance, the user-selected bad channels, bad segments and rejected spatial components need to be clearly documented. Following this idea, we provide a script that reports the rejected data segments for all 16 participants to the present study dataset28. The bad channels were identified manually; the bad segments were detected automatically, confirmed manually, then exported as text and copied at the end of this script. All process calls (via bst_process.m) used to produce the results shown here were generated with the pipeline editor, with few manual coding additions restricted to loops, bad channel identification and data file names. This script produced separate reports for each participant data; for illustration, we provide online the report produced by this script for subject sub-0129.



SUBJECT-LEVEL SUMMARY STATISTICS

Subject-level (i.e., across data runs) averages were obtained for event-related MEG responses, source maps and time-frequency decompositions, in each experimental condition separately30. As mentioned above, all data runs provided had been registered to a common head position with MaxFilter. This minimized the effect of different positions between runs in within-subject MEG sensor averages.

Unlike forward head models, source models were computed for each of the 6 runs separately before producing subject-level averages and other statistics. The reason for this is that source models consider effects of the SSP projectors applied and bad-channel selection that are typically specific to each data run.

Condition-Specific Average Responses

For each experimental condition (Familiar, Unfamiliar, and Scrambled) and each subject, we derived event-related MEG signal averages. The subject-level average across all 6 runs was obtained by weighting each run-specific average by the number of good trials in each run. This approach reduces the influence of noisy runs, with a smaller number of good trials, on the subject-level average. For each data type (sensor data, source maps, and time-frequency decompositions), we used the Process1 panel after selecting all subject data from all runs. We then used process: “Average > Average files,” with the options: “By trial group (subject average), Weighted.” This produced three event-related averages (one per condition), for each subject, saved in their respective “intra-subject” folders in the Brainstorm database. Subject-level averages of MEG across runs were obtained separately.

Event-Related Responses to Faces (Familiar and Unfamiliar)

Subject-level average responses to faces were generated for each data type (sensor data, source maps, and time-frequency decompositions) by averaging across the Familiar and Unfamiliar conditions, also using a weighted average approach. We used the Process2 tab to obtain these statistics for all subjects at once; this tab works similarly to Process1 except that it allows the user to specify two series of input files for processes that require two distinct data entries to operate. We selected all Familiar subject-level averages for the FilesA panel, and the Unfamiliar averages for the FilesB panel, following the same subject order for both file selections. We ran process “Other > Average A&B: Weighted” and added process “File > Set comment:” with option “WAvg: Avg: Faces,” to obtain the subject-level average data in response to the presentation of Faces.

Note that manual selection of many files from the database is difficult and prone to human errors. Brainstorm scripts can be used for the purpose of such database queries31.

Contrasting Subject-Level Source Models

Special attention needs to be brought to contrasting source models. The reason is that they produce estimates of current amplitudes along elemental current dipoles, where the polarity reflects both the directionality of impressed current flow and possibly cross-talk contributions by more strongly active neighbor regions. Depending on whether the actual sign of dipole currents is of interest to the neuroscience question, two contrast measures between conditions A and B are commonly used in the field: the magnitude differences (|A|-|B|, agnostic to the current polarity), and amplitude differences [(A-B), which takes current polarity into consideration].

Magnitude Differences (|A|-|B| )

This measure highlights the difference in absolute current strengths between conditions, regardless of their polarity. The premise to this option is that polarity is of no interest to the scientific question and that source currents can be simply interpreted as brain activation. For instance, this option can be selected in the present case when testing whether responses to faces induce a greater activation in fusiform cortical regions than control images.

Amplitude Differences (A-B)

This measure should be used if the polarity of dipolar currents is relevant to the neuroscience question. For instance, this option can be selected when testing whether any oscillatory signal component can differentiate between responses to faces vs. control images. The interpretation of an A-B contrast with signed values is more ambiguous than with rectified measures, e.g., for identifying the experimental condition that produced the largest absolute brain response. For example, both (A,B) = (-10,-5) and (A,B) = (5,10) yield A-B = -5, we detect an effect but cannot identify which condition, from A and B, has produced the strongest response. On the other hand, dipoles with opposite directions are easy to detect with this difference, e.g., if (A,B) = (-10,10), |A-B| = 20, while |A| -|B| = 0. We provide online further discussion on these two alternative contrasts32.

To test when and where the amplitude of brain activity differed between the presentation of faces vs. scrambled images, we used the Process2 tab to obtain the difference between subject-level average source data for the MEG data. We dropped all the Faces subject averages in FilesA, and all the Scrambled averages in FilesB. We selected the process “Difference > Difference A-B: Do not use absolute values” and added the process “File > Set comment: “Faces – Scrambled|MEG””. We repeated the same procedure to obtain the difference between the Familiar and Unfamiliar conditions for each subject.

Low-Pass Filtering

To reproduce the approach of Wakeman and Henson (2015) we low-pass filtered the trial-averaged sensor data and source maps below 32 Hz. To evaluate the duration of filter transients with respect to epoch duration, we visualized the filter impulse response from the GUI option of Brainstorm’s “Band-pass filter” process (Figure 10, and online resource33). The procedure indicates the full duration of the filter transients (here 1135 ms) and the duration containing 99% of the energy of the filter response (here 91 ms). We decided to crop 300 ms at the beginning and end of each epoch (original epoch: -500 to 1200 ms), which does not concern the signal latencies of interest to the present study. As mentioned above, ideally, decisions concerning temporal filters derive from the hypotheses to be tested with the data. Hence filtering may be advantageously performed on the ongoing data before epoching, which produces edge effects at the beginning and end of the recording, not of each epoch.
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FIGURE 10. (Left) Options user interface for process “Band-pass filter”. (Right) Time-frequency decomposition of channel EEG070 for the Familiar condition, before (top) and after (bottom) baseline normalization.



We used the Process1 tab to select all the intra-subject folders from all participants. These folders contain the condition and subject specific averages. For each data type (sensor data and source maps), we ran the process “Pre-process > Band-pass filter” with options passband: 0–32 Hz, data types: MEG, EEG, 60 dB attenuation, and file Overwrite, followed by “Extract > Extract time” with option [-200, 900] ms - this latter to remove filter edge effects, as explained above.

Inter-Individual and Cross-Frequency Standardization

In the same experimental conditions, and with similar behavioral performances, the intensity of neural currents vary between individuals because of anatomical and physiological differences that are of no primary interest to the study. Also, for MEG source maps, estimated current strengths are weaker where signal sensitivity drops, for instance for radial or deeper sources. If time-frequency decompositions are to be analyzed, cross-frequency standardization of magnitude changes is also required, to compensate for the typical 1/f decrease in electrophysiology signal amplitude.

Standardization procedures with respect to baseline levels lessen the influence of these factors of no interest. We therefore applied a Z-transformation on source time series with respect to pre-stimulus baseline activity. We selected all subject-level source map averages in Process1 and ran the process “Standardize > Baseline normalization” with options Baseline = [-200,-5] ms, Z-score, Overwrite. We also standardized the magnitude of time-frequency decompositions for each subject and condition with event-related synchronization/desynchronization (ERS/ERD) scaling. This procedure centers and normalizes the modulus of wavelet coefficients for each frequency bin, with respect to their sample mean over baseline, as shown in Figure 10.

We distribute a Brainstorm database that contains the outputs of all analyses described so far (Frontiers2018Group.zip, 14 Gb, available from Brainstorm’s download page34). These outputs can be reproduced by running the Matlab scripts tutorial_frontiers2018_single.m35 and tutorial_frontiers2018_copy.m36, distributed with Brainstorm. The entire multisubject data volume can readily be imported into Brainstorm via the “File > Load protocol > Load from zip file” menu selection. For bandwidth considerations, the distributed files were downsampled to 275 Hz.



GROUP ANALYSES

We derived inferential statistics for two contrasts of interest: Faces vs. Scrambled and Familiar vs. Unfamiliar faces. According to Wakeman and Henson (2015), we expected to observe stronger bilateral event-related responses in occipital visual cortex (V1) and occipital face and fusiform face areas (OFA and FFA) within 170 ms in response to stimuli containing faces vs. the scrambled data; we also anticipated augmented activation over the right superior temporal sulcus region (STS) in the Familiar vs. Unfamiliar condition around a 250-ms latency. These procedures are reproducible automatically using the function tutorial_frontiers2018_group.m37.

Group-Level Sensor Data

Grand Averages Across Participants

We produced grand arithmetic averages of sensor data across participants for the Faces, Scrambled, Familiar, and Unfamiliar conditions. We selected in Process1 all the MEG/EEG subject-level average files from the participant-specific “Intra-subject” folders in the Brainstorm database. We then ran the process “Average > Average files” with options “By trial group (grand average), Not weighted.”

As anticipated, we observed in EEG a greater negative component around 170 ms for Faces vs. Scrambled, and sustained signal differences after 250 ms between the Familiar and Unfamiliar conditions (Figure 11).
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FIGURE 11. Grand averages for the three experimental conditions for both EEG (μV) and MEG (fT), and for a single parieto-occipital electrode (EEG065). Sensor topography maps show grand-average (group-level) MEG and EEG data at selected latencies: 50, 100, 150, 200, 250, and 300 ms. Bottom-right panel emphasizes signal differences at electrode EEG065 between conditions. Subsequent group-level inferential statistics will test for significant differences between experimental conditions.



We computed the differences of grand averages between conditions of interest using the Process2 tab for selecting the grand averages for Faces (FilesA) and Scrambled (FilesB). We then ran the process “Other > Difference A–B”. The same procedure was repeated for Familiar vs. Unfamiliar.

We observed signal differences in both contrasts: after 160 ms for Faces vs. Scrambled, and after 200 ms for Familiar vs. Unfamiliar. We then performed statistical inference on the significance of these differences, using parametric and non-parametric approaches. We chose a type-I error rate of α = 5% with correction from multiple comparisons by adjustment of the false discovery rate (FDR).

Non-parametric Statistical Inference

Brainstorm features a toolkit for parametric and non-parametric inferential statistical testing38 . Here we present the application of a non-parametric procedure using permutation testing. Although more computationally demanding, it is a more robust approach than parametric tests (Pantazis et al., 2005a). We selected in Process2 the 16 subject averages for Faces (FilesA) and Scrambled (FilesB) and ran process “Test > Permutation test” with options “Paired: t-test and “1000 randomizations.” We repeated the procedure for Familiar vs. Unfamiliar (Figure 12).
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FIGURE 12. Sensor-level contrasts Faces vs. Scrambled (top) and Familiar vs. Unfamiliar (bottom). The output of non-parametric t-tests are t-value traces that are set to 0 at every channel and time point where p > 0.05 (FDR-corrected). The non-zero values from the cluster-based permutation test results revealed a difference in spatiotemporal adjacency of the sensor data between the two tested conditions.



For completeness of the illustration of possible workflows produced with Brainstorm, we also applied cluster correction to sensor data contrasts (Maris and Oostenveld, 2007). We used Brainstorm’s capacity to execute code from the FieldTrip toolbox (Oostenveld et al., 2011). Brainstorm structures are converted dynamically to FieldTrip structures, the FieldTrip code is executed, and the returned structures are converted into Brainstorm database entries.

Group-Level Source Maps

We now describe the procedure to produce inferential statistics on source maps for the Faces vs. Scrambled contrast (same approach would apply to Familiar vs. Unfamiliar).

Anatomical Standardization Between Participants

We mapped all individual source maps to the MNI/ICBM152 brain template (Fonov et al., 2009)39, available in the “default anatomy” folder of the Brainstorm protocol. Brainstorm uses the surface-based registration approach from FreeSurfer, based on a spherical representation of the cortex topology. Note that this feature is available in Brainstorm when the imported MRI data is processed with FreeSurfer40 (Figure 13). A similar approach is available for data processed with BrainSuite.
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FIGURE 13. Surface-based coregistration procedure by alignment of curvature maps in spherical topology.



We aligned the individual source maps consisting of the absolute values of current amplitudes to assess differential effects in brain activation between experimental conditions (see above).

We selected in Process1 all 16 intra-subject folders and ran process “Pre-process > Absolute values” followed by process “Sources > Project on default anatomy.” The projected source maps were automatically regrouped in a single Brainstorm folder labeled “Group analysis/Intra-subject.” Note that new folders can be created by users for customized data organization, e.g., with one folder per experimental condition.

Spatial Smoothing

To reduce noise and ameliorate the impact of individual variations in functional specialization relative to cortical anatomy, we applied spatial smoothing of the resulting source maps to further reduce inter-individual variability across the group. Smoothing is performed using a Gaussian kernel scaled to the size of edges on the cortical mesh. We selected in Process1 all the projected source maps and ran process “Sources > Spatial smoothing” with options “FWHM = 3 mm” (FWHM = Full Width Half maximum) and “Overwrite”. This process relies on the function ‘SurfStatSmooth,’ implemented in SurfStat (Worsley et al., 2009).

Contrasting Group-Level Source Maps

Contrast maps of z-scored cortical sources in the Faces vs. Scrambled face conditions showed enhanced responses for Faces in occipital and ventral stream regions, including in the fusiform face area (FFA; Figure 14). The analysis used both the amplitude difference approach (Figure 14, top) and the magnitude difference approach (Figure 14, bottom). Stronger activity for Faces in the most posterior regions was initiated before FFA, with contrast activations in all ROIs peaking around 155 ms.
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FIGURE 14. Various measures associated to the contrast (Faces-Scrambled) for MEG sources. (Top) Average of within-subject differences, normalized source maps at various latencies from 50 to 400 ms for Z > 3, and time series extracted from three ROIs of the ventral visual stream. (Bottom) Difference of grand averages, source maps and ROI time series.





CONCLUSION

Brainstorm provides interactive and user-friendly tools to design automated and standardized processing pipelines, with an emphasis on quality control and verification of data integrity. The application features convenient tools to perform visual inspection of the outcome of all steps of a data analysis pipeline via execution reports. The analyses presented here are entirely reproducible via the following procedure:

(1) Download the data in tutorial_dir (170 Gb): https://openneuro.org/datasets/ds000117.

(2) Note that getting the data from a web browser as a single zip file did not work well at time of submission, another more reliable solution using the Amazon AWS CLI software is described on the online tutorials41.

(3) In this analysis, we used only the “derivatives” folder (85 Gb), all the other folders can be safely deleted if disk space is an issue.

(4) The execution of the pipeline scripts requires a Matlab license: you may use any Matlab version from 2008b to 2018b, except for 2018a because of a bug in Matlab’s svd function.

(5) Download and install Brainstorm42. In general, we recommend getting the most up-to-date version available from the Brainstorm website, however, for the strict reproducibility of the results presented in this article, we uploaded a development snapshot from November 11th, 2018, on the Zenodo website43.

(6) For cluster-based statistics, we used functions from the FieldTrip toolbox. Download FieldTrip44 and add it to the Matlab path. If you are using the Brainstorm version from Zenodo, the repository also includes the FieldTrip version we used for the computation (December 17, 2017).

(7) Start Brainstorm, set the database folder as instructed in the installation instructions.

(8) In the Brainstorm window, select menu File > Edit preferences: Edit the paths to the temporary folder (if you have limited space in your user’s home folder) and to the FieldTrip toolbox.

(9) Close Brainstorm.

(10) Create an empty folder to store the execution reports, outside of any of the Brainstorm folders (reports_dir).

(11) The total size of the Brainstorm database after processing will be around 130 Gb, make sure enough space is available on the hard drive.

(12) In your Matlab command window, type: tutorial_frontiers2018(tutorial_dir, reports_dir). This will run all the scripts mentioned in this article: tutorial_frontiers2018_single.m, tutorial_frontiers2018_copy.m, tutorial_frontiers2018_group.m. All these scripts are located in the folder brainstorm3/toolbox/script, which is created and added to the user Matlab path after starting Brainstorm. Execution time is typically between 10 and 30 h, depending on hardware. For detailed execution times on the reader’s system, please refer to the reports saved in reports_dir; examples for the execution on a Dell XPS 2016 laptop are available from the online tutorials45.

(13) For keeping the execution time reasonable, some processes described in this article that have no or very little impact on the final results have been commented out, identified with the label “SHORT VERSION” in the scripts. The skipped steps are the following: import of the FreeSurfer ASEG atlas, notch filtering, EEG BEM forward model with OpenMEEG, individual source snapshots in the execution reports, time-frequency analysis. To enable a step, delete the comment marker “%” at the beginning of all the lines in the code section. Additionally, the recordings and source results have been downsampled to 275 Hz before group analysis.
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FOOTNOTES

1 ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/Publications/SPM12_manual_chapter.pdf

2 http://bids.neuroimaging.io

3 See online tutorials MEG visual: single subject (Elekta/BIDS) and MEG visual: group study (Elekta/BIDS).

4 Introduction in 28 parts for new Brainstorm users: http://neuroimage.usc.edu/brainstorm/Tutorials#Get_started

5 http://surfer.nmr.mgh.harvard.edu

6 Installation instructions: http://neuroimage.usc.edu/brainstorm/Installation.

7 See online tutorial MEG resting state and OMEGA database.

8 See online tutorial Using FreeSurfer for more information and software capabilities.

9 See online tutorial MEG-MRI coregistration, and Section “Registration With Structural MRI.”

10 derivatives/meg-derivatives/sub-01/ses-meg/meg/sub-01_ses-meg_task-facerecognition_run-01_proc-sss_meg.fif

11 See online tutorial Review continuous recordings.

12 See online tutorials Event markers and Select files and run processes.

13 See online tutorial: Power spectrum and frequency filters.

14 See online tutorial Power spectrum and frequency filters.

15 See online tutorial Bad channels.

16 See online tutorial Montage editor for alternative approaches.

17 See online tutorial Artifact detection.

18 See online tutorial Artifact cleaning with SSP.

19 See online tutorial Import epochs.

20 See online tutorials Average response, Visual exploration, Colormaps, and Clusters of sensors.

21 See online tutorials Head modeling, Noise covariance, Source estimation, Dipole scanning, and Dipole fitting.

22 See online tutorial Deep cerebral structures.

23 See online tutorials “Volume source estimation” (https://neuroimage.usc.edu/brainstorm/Tutorials/TutVolSource) and “Warping the anatomy templates” (https://neuroimage.usc.edu/brainstorm/Tutorials/TutWarping)

24 See online tutorial Realistic head model: BEM with OpenMEEG.

25 See online tutorial Source estimation.

26 See online tutorial Time-frequency.

27 See online tutorial Scripting.

28 https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/tutorial_frontiers2018_single.m

29 https://neuroimage.usc.edu/bst/examples/report_Frontiers2018Single_sub-01.html

30 See online tutorial Workflows.

31 Processes “File > Select files”, documented in online tutorial Scripting.

32 See online tutorials Difference and Workflows.

33 See section View filter response in tutorial “Power spectrum and frequency filters.”

34 http://neuroimage.usc.edu/bst/download.php

35 https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/tutorial_frontiers2018_single.m

36 https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/tutorial_frontiers2018_copy.m

37 https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/tutorial_frontiers2018_group.m

38 See online tutorial Statistics.

39 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

40 See online tutorial Group analysis: Subject coregistration.

41 https://neuroimage.usc.edu/brainstorm/Tutorials/VisualSingle#Download_and_installation

42 http://neuroimage.usc.edu/brainstorm/Installation

43 https://zenodo.org/record/1479794

44 http://www.fieldtriptoolbox.org/download

45 https://neuroimage.usc.edu/bst/examples/report_Frontiers2018Single_sub-01.html,

https://neuroimage.usc.edu/bst/examples/report_TutorialGroup_2snapshots.html,

https://neuroimage.usc.edu/bst/examples/report_TutorialGroup_3meeg.html,

https://neuroimage.usc.edu/bst/examples/report_TutorialGroup_4sources.html



REFERENCES

Ad-Dab’bagh, Y., Einarson, D., Lyttelton, O., Muehlboeck, J.-S., Mok, K., Ivanov, O., et al. (2006). “The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research,” in Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping, Florence.

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. NeuroImage 26, 839–851. doi: 10.1016/j.neuroimage.2005.02.018

Baillet, S. (2017). “Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 20:327. doi: 10.1038/nn.4504

Baillet, S., Garnero, L., Marin, G., and Hugonin, J. P. (1999). “Combined MEG and EEG source imaging by minimization of mutual information. IEEE Trans. Biomed. Eng. 46, 522–534. doi: 10.1109/10.759053

Baillet, S., Mosher, J. C., and Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal Proc. Mag. 18, 14–30. doi: 10.1109/79.962275

Bertrand, O., and Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: a possible role for object representation. Int. J. Psychophysiol. 38, 211–223. doi: 10.1016/S0167-8760(00)00166-5

Cichy, R. M., Pantazis, D., and Oliva, A. (2014). “Resolving human object recognition in space and time. Nat. Neurosci. 17:455. doi: 10.1038/nn.3635

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and Surface Reconstruction. NeuroImage 9, 179–194. doi: 10.1006/nimg.1998.0395

Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R., and Collins, D. L. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47(Suppl. 1):S102. doi: 10.1016/S1053-8119(09)70884-5

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3:160044. doi: 10.1038/sdata.2016.44

Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M. (2010). OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9:45. doi: 10.1186/1475-925X-9-45

Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., et al. (2013). Good practice for conducting and reporting MEG research. NeuroImage 65, 349–363. doi: 10.1016/j.neuroimage.2012.10.001

Huang, M. X., Mosher, J. C., and Leahy, R. M. (1999). “A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys. Med. Biol. 44, 423–440. doi: 10.1088/0031-9155/44/2/010

Leahy, R. M., Mosher, J. C., Spencer, M. E., Huang, M. X., and Lewine, J. D. (1998). A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr. Clin. Neurophysiol. 107, 159–173. doi: 10.1016/S0013-4694(98)00057-1

Makeig, S., Bell, A. J., Jung, T. P., and Sejnowski, T. J. (1996). “Independent component analysis of electroencephalographic data,” in Advances in Neural Information Processing Systems. Vol. 8, eds D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Cambridge, MA: MIT Press), 145–151.

Maris, E., and Oostenveld, R. (2007). “Nonparametric statistical testing of EEG- and MEG-Data. J. Neurosci. Methods 164, 177–190. doi: 10.1016/j.jneumeth.2007.03.024

Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., et al. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Sci. Data 5:180110. doi: 10.1038/sdata.2018.110

Niso, G., Rogers, C., Moreau, J. T., Chen, L. Y., Madjar, C., Das, S., et al. (2016). OMEGA: the open MEG archive. NeuroImage 124(Pt B), 1182–1187. doi: 10.1016/j.neuroimage.2015.04.028

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/2011/156869

Pantazis, D., Nichols, T. E., Baillet, S., and Leahy, R. M. (2005a). A comparison of random field theory and permutation methods for the statistical analysis of MEG data. NeuroImage 25, 383–394. doi: 10.1016/j.neuroimage.2004.09.040

Pantazis, D., Weber, D. L., Dale, C. L., Nichols, T. E., Simpson, G. V., and Leahy, R. M. (2005b). “Imaging of oscillatory behavior in event-related MEG studies,” in Proceedings of SPIE, Computational Imaging III, Vol. 5674, eds C. Bouman and E. Miller (San Jose, CA: SPIE), 55–64. doi: 10.1117/12.600607

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (SLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl. D), 5–12.

Rivière, D., Régis, J., Cointepas, Y., Papadopoulos-Orfanos, D., Cachia, A., and Mangin, J.-F. (2003). “A freely available anatomist/brainVISA package for structural morphometry of the cortical sulci,” in Proceedings of the 9th HBM, Neuroimage, Vol. 19, New York, NY.

Schweinberger, S. R., and Neumann, M. F. (2016). Repetition effects in human ERPs to faces. Cortex 80, 141–153. doi: 10.1016/j.cortex.2015.11.001

Shattuck, D. W., and Leahy, R. M. (2002). Brainsuite: an automated cortical surface identification tool. Med. Image Anal. 6, 129–142. doi: 10.1016/S1361-8415(02)00054-3

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011:879716. doi: 10.1155/2011/879716

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., et al. (2017). The cambridge centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. NeuroImage 144, 262–269. doi: 10.1016/j.neuroimage.2015.09.018

Uusitalo, M. A., and Ilmoniemi, R. J. (1997). Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput. 35, 135–140. doi: 10.1007/BF02534144

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., et al. (2012). The human connectome project: a data acquisition perspective. NeuroImage 62, 2222–2231. doi: 10.1016/j.neuroimage.2012.02.018

Wakeman, D. G., and Henson, R. N. (2015). A multi-subject, multi-modal human neuroimaging dataset. Sci. Data 2:150001. doi: 10.1038/sdata.2015.1

Worsley, K. J., Taylor, J. E., Carbonell, F., Chung, M. K., Duerden, E., Bernhardt, B., et al. (2009). SurfStat: A Matlab Toolbox for the Statistical Analysis of Univariate and Multivariate Surface and Volumetric Data Using Linear Mixed Effects Models and Random Field Theory OHBM poster. Available at: https://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Tadel, Bock, Niso, Mosher, Cousineau, Pantazis, Leahy and Baillet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	TECHNOLOGY REPORT
published: 22 March 2019
doi: 10.3389/fnins.2019.00241






[image: image2]

MEG Source Imaging and Group Analysis Using VBMEG


Yusuke Takeda1*, Keita Suzuki1, Mitsuo Kawato2 and Okito Yamashita1


1ATR Neural Information Analysis Laboratories, Kyoto, Japan

2ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan

Edited by:
Arnaud Delorme, UMR5549 Centre de Recherche Cerveau et Cognition (CerCo), France

Reviewed by:
Christos Papadelis, Harvard Medical School, United States
 Giovanni Pellegrino, Montreal Neurological Institute and Hospital, McGill University, Canada
 Roberto Santana, University of the Basque Country, Spain

* Correspondence: Yusuke Takeda, takeda@atr.jp

Specialty section: This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

Received: 05 October 2018
 Accepted: 01 March 2019
 Published: 22 March 2019

Citation: Takeda Y, Suzuki K, Kawato M and Yamashita O (2019) MEG Source Imaging and Group Analysis Using VBMEG. Front. Neurosci. 13:241. doi: 10.3389/fnins.2019.00241



Variational Bayesian Multimodal EncephaloGraphy (VBMEG) is a MATLAB toolbox that estimates distributed source currents from magnetoencephalography (MEG)/electroencephalography (EEG) data by integrating functional MRI (fMRI) (https://vbmeg.atr.jp/). VBMEG also estimates whole-brain connectome dynamics using anatomical connectivity derived from a diffusion MRI (dMRI). In this paper, we introduce the VBMEG toolbox and demonstrate its usefulness. By collaborating with VBMEG's tutorial page (https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html), we show its full pipeline using an open dataset recorded by Wakeman and Henson (2015). We import the MEG data and preprocess them to estimate the source currents. From the estimated source currents, we perform a group analysis and examine the differences of current amplitudes between conditions by controlling the false discovery rate (FDR), which yields results consistent with previous studies. We highlight VBMEG's characteristics by comparing these results with those obtained by other source imaging methods: weighted minimum norm estimate (wMNE), dynamic statistical parametric mapping (dSPM), and linearly constrained minimum variance (LCMV) beamformer. We also estimate source currents from the EEG data and the whole-brain connectome dynamics from the MEG data and dMRI. The observed results indicate the reliability, characteristics, and usefulness of VBMEG.

Keywords: VBMEG, MEG, EEG, fMRI, source imaging, source reconstruction, Bayes


1. INTRODUCTION

Both magnetoencephalography (MEG) and electroencephalography (EEG) measure electrical neural activities and have excellent temporal resolution on the millisecond order. However, estimating source currents from them is an ill-posed problem because the number of sensors is insufficient to precisely reconstruct the source currents. We cannot identify from them a unique source current that only generates MEG/EEG data. To solve this problem, prior information about the source current is necessary to reduce the solution space. Several prior assumptions have been used, such as the minimum norm method (Hämäläinen et al., 1993; Hämäläinen and Ilmoniemi, 1994) and the maximum smoothness method (Pascual-Marqui et al., 1994). However, their prior assumptions are insufficient to reconstruct the source current with high spatial resolution. An alternative is to obtain prior information from other modalities, such as functional MRI (fMRI), which measures hemodynamic responses to neural activities. Although it has low temporal resolution owing to slow hemodynamic responses, it has high spatial resolution on the millimeter order. Therefore, using fMRI activity as prior information provides a source current with high spatiotemporal resolution. Generally, integrating multimodal measurements effectively alleviates the ill-posed nature of MEG/EEG source imaging and provides reliable and informative knowledge of human brain activities.

Variational Bayesian Multimodal EncephaloGraphy (VBMEG), which is a Matlab toolbox, estimates distributed source currents and connectome dynamics from MEG and/or EEG data by integrating such multimodal measurements as fMRI. VBMEG was originally developed to perform a hierarchical Bayesian source current estimation proposed by Sato et al. (2004), and the first version was released in 2011 (https://vbmeg.atr.jp/). Its reliability was confirmed in various studies by our group (Yoshioka et al., 2008; Callan et al., 2010; Aihara et al., 2012; Takeda et al., 2014) and others (Toda et al., 2011; Yoshimura et al., 2012, 2017; Yamagishi and Anderson, 2013; Morioka et al., 2014; Callan et al., 2016; Ohata et al., 2016; Yanagisawa et al., 2016; Fukuma et al., 2018; Mejia et al., 2018; Sato et al., 2018). Recently, VBMEG was extended to perform a connectome dynamics estimation proposed by Fukushima et al. (2015), and its second version was released in 2017. Its usefulness was also confirmed by Filatova et al. (2018).

VBMEG's main advantage is its ability to integrate multimodal measurements for improving estimation accuracies. In estimating source currents, VBMEG can integrate fMRI activity for improved source localization accuracy (Sato et al., 2004). Dynamic statistical parametric mapping (dSPM) can also integrate fMRI activity (Liu et al., 1998; Dale et al., 2000). This method uses fMRI activity as prior information on the source current variance. In contrast, VBMEG uses fMRI activity as prior information on the variance distribution rather than the variance itself to produce a soft constraint on the variance. Because of this, VBMEG is also robust to inaccurate fMRI activities (Sato et al., 2004; Aihara et al., 2012). In estimating connectome dynamics, VBMEG uses anatomical connectivity derived from a diffusion MRI (dMRI). Without assuming region of interests (ROIs), it estimates a whole-brain linear dynamics model by only assuming connectivity coefficients between anatomically connected regions. This drastically reduces the connectivity coefficients to estimate and suppress false positive connectivities (Filatova et al., 2018).

Although VBMEG's algorithms (Sato et al., 2004; Fukushima et al., 2015) and their application results have been published, VBMEG itself has not been introduced yet. In this paper, we introduce the VBMEG toolbox and demonstrate its usefulness. In collaboration with VBMEG's tutorial page (https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html), we show its full pipeline using an open dataset recorded by Wakeman and Henson (2015). We import the MEG data and preprocess them to estimate source currents. From the estimated source currents, we perform a group analysis and examine the differences of current amplitudes between conditions by controlling the false discovery rate (FDR), which yields results consistent with previous studies. To highlight VBMEG's characteristics, we compared these results with those obtained by other source imaging methods: weighted minimum norm estimate (wMNE), dSPM (Liu et al., 1998; Dale et al., 2000) and linearly constrained minimum variance (LCMV) beamformer (Van Veen et al., 1997). We also estimate the source currents from the EEG data and the whole-brain connectome dynamics from the MEG data and dMRI. The observed results indicate the reliability, characteristics, and usefulness of VBMEG.



2. GENERAL INFORMATION


2.1. VBMEG's Aim

VBMEG was developed to achieve accurate source imaging by integrating multimodal measurements (Figure 1). From MEG and/or EEG data, VBMEG estimates source currents using fMRI activity as prior information on current variance distribution (Sato et al., 2004). VBMEG also estimates whole-brain connectome dynamics using anatomical connectivity derived from a dMRI (Fukushima et al., 2015). The estimated dynamics are visualized by a movie that displays signal flows (https://vbmeg.atr.jp/gallery/ for example movies).


[image: image]

FIGURE 1. Two main VBMEG functions. (A) From MEG and/or EEG data, VBMEG estimates source currents by integrating fMRI activity. (B) It also estimates whole-brain connectome dynamics by integrating anatomical connectivity derived from a dMRI.





2.2. Starting VBMEG

To start VBMEG, go to its web page (https://vbmeg.atr.jp/), which provides an introduction and a download link.

Several VBMEG usages can also be learned through tutorials (https://vbmeg.atr.jp/document/). Using actual experimental data, they describe step-by-step procedures from importing raw data to visualizing the estimation results of source currents and connectome dynamics using a graphical user interface (GUI) or batch scripts.



2.3. System Requirements

2.3.1. Operating System

A GNU Linux is strongly recommended because VBMEG is usually developed and tested on Linux. Its use on Microsoft Windows 7/10 and Apple OS X hasn't been satisfactorily tested yet.

2.3.2. Software

VBMEG works on MATLAB (version 7 [R14] to 8.3 [R2014a]). Signal Processing Toolbox is needed to process MEG/EEG data. FreeSurfer4.2 or newer (http://surfer.nmr.mgh.harvard.edu/) is needed to extract cortical surfaces from T1 images. SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) is also needed to process the T1 images and fMRIs. For estimating connectome dynamics, MRtrix 0.2.1x (https://www.nitrc.org/projects/mrtrix/) and FSL 4.1 or newer (http://www.fmrib.ox.ac.uk/fsl) are also needed for processing dMRIs.




3. TUTORIAL

By collaborating with VBMEG's tutorial page, we introduce its pipeline. We import the open MEG dataset recorded by Wakeman and Henson (2015) and preprocess it to estimate the source currents. For each subject, we assume 10,004 current dipoles perpendicular to the cortical surface and estimate their currents by integrating the fMRI activity. Then from the estimated source currents of all the subjects, we examine the differences of the current amplitudes between conditions. Furthermore, we estimate the source currents from the EEG data and the whole-brain connectome dynamics from the MEG data and dMRI.

This tutorial was developed using MATLAB 2013b with a Signal Processing Toolbox on Linux where MRtrix 0.2.10 and FSL 4.1 had been installed.


3.1. Starting Tutorial

We analyze the multi-subject, multi-modal neuroimaging dataset for face processing (OpenNEURO ds000117-v1.0.1) created by Wakeman and Henson (2015). This dataset contains the evoked responses of 16 subjects to three types of face stimuli: famous, unfamiliar, and scrambled. MEG, EEG, electro-oculograms (EOGs), and electro-cardiograms (ECGs) were simultaneously recorded at 1,100 Hz with an Elekta Neuromag Vectorview 306 system (Helsinki). T1 images and fMRIs were also collected with a Siemens 3T TIM TRIO (Siemens, Erlangen, Germany). These data are stored in the Brain Imaging Data Structure (BIDS) format (http://bids.neuroimaging.io/).

VBMEG defines the current sources on the cortical surfaces based on the FreeSurfer's results, which we prepared in advance because obtaining them is time-consuming. We also prepared the fMRI activities for estimating the current variances by analyzing the fMRI data using SPM8.

To highlight VBMEG's characteristics, we compared its results with those estimated by other source imaging methods: wMNE, dSPM, and LCMV beamformer. They were performed using the functions from the Brainstorm software (Tadel et al., 2011).

This tutorial is started by downloading these data and the software from the following links:

VBMEG

https://vbmeg.atr.jp/download2/

SPM8

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/

Brainstorm

https://neuroimage.usc.edu/brainstorm/

MEG data (OpenNEURO ds000117-v1.0.1)

https://openneuro.org/datasets/ds000117/versions/1.0.1/

Tutorial programs, FreeSurfer's results, and fMRI activities

https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html

See the above tutorial page for program-level descriptions. This page also presents the resultant figures and movie that serve as Supplementary Material.



3.2. Modeling Brain

VBMEG defines the current sources on each subject's cortical surface, the boundary between the gray and white matter, and stores them as a brain model.

To construct a brain model, we first import the T1 image (.nii) by converting its coordinate system to that of VBMEG, where the orientation is RAS and the origin is the center of the image. The coordinates of the fiducials (left and right pulmonary arteries [LPA and RPA] and the nasion) are also converted from voxels to the VBMEG coordinate system. Because current sources are defined in this coordinate system, the following analyses (including the SPM analysis of the fMRI data) need to be conducted using the imported T1 image.

From the imported T1 image, we construct a polygon model of the cortical surface using FreeSurfer. From the constructed polygon model, we select 10,004 vertices as the current sources based on the predefined sources in a standard brain (MNI-ICBM152). As a result, the sources of different subjects correspond to the same location on the standard brain. For example, the 7975th source is always located at the right fusiform face area (FFA) corresponding to x = 38, y = −62, and z = −18 mm in the Montreal Neurological Institute (MNI) coordinate. This allows a simple comparison of the estimated source currents across subjects for each source. Therefore, we can proceed to group analyses on the source currents without any transformation. The positions of the current sources and their normal directions to the cortical surface are stored as a brain model (.brain.mat). A constructed brain model of sub-08 is shown in Figure 2.


[image: image]

FIGURE 2. Constructed brain model (sub-08). Current sources are plotted on T1 image by yellow dots.





3.3. Importing fMRI Activity

VBMEG imports the statistical results of fMRI data generated by SPM8 by mapping voxel t-values and percent signal changes to the cortical surface using an inverse-distance weighted interpolation method. We import the statistical results generated by contrasting all the stimuli (famous, unfamiliar, and scrambled) against a baseline. Figure 3 shows the imported fMRI activity of sub-08 plotted on the standard brain. By default, VBMEG plots individual subjects' brain activities on the standard brain.


[image: image]

FIGURE 3. Imported fMRI activity contrasting all stimuli against baseline (sub-08). T-values over 0.1 of their maximum value are shown.





3.4. Preprocessing MEG Data

We preprocess the MEG data for source current estimation.

3.4.1. Importing the MEG Data

VBMEG can import MEG data recorded by Yokogawa and Neuromag systems and EEG data recorded by Biosemi and Brainamp.

Next we import the Neuromag MEG data (.fif) by reading the .fif files using the functions from the MNE software (http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_register/index.php) and converting them to the VBMEG format (.meg.mat). We also convert the sensor coordinates to the VBMEG coordinate system by aligning the fiducials and head points recorded in the MEG experiment to the fiducials and the head surface in the VBMEG coordinate system (Figure 4). The head surface is extracted from the T1 image.


[image: image]

FIGURE 4. MEG sensor coordinates converted into VBMEG coordinate system (sub-08).



After importing the MEG data, we modify the trigger signals (STI101) based on the event files (*_events.tsv). This is because Wakeman and Henson (2015) identified a fixed 34-ms delay between the appearance of a trigger in an MEG file (on channel STI101) and the stimulus's appearance on the screen. We read the stimulus onsets from the event files and make the values of trigger signals 1 and 2 for the face (famous and unfamiliar) and the scrambled conditions 1 s after the stimulus onsets.

3.4.2. Denoising MEG Data

The MEG data include such environmental noises as line and biological noises from eye movements and heartbeats. To remove them, for each channel, we apply a lowpass filter at 40 Hz and a highpass filter at 1 Hz and regress out the EOG and ECG components. We also resample the MEG data at 100 Hz to reduce the computational cost.

3.4.3. Making Trial Data

We detect the stimulus onsets from the trigger signal (STI101) and segment the continuous data into 1.5-s epochs 0.5 s before and 1 s after the stimulus onset.

3.4.4. Combining Trials Across Runs

To handle all the trials collectively, we virtually combine them into one info file (.info.mat). We can load the data of all the trials from the info file using “vb_load_meg_data.m.”

3.4.5. Rejecting Channels and Trials

The info file includes structure array “fileinfo” with “ActiveChannel” and “ActiveTrial” fields. By editing these fields, we can control the channels and the trials to be loaded. We reject the bad channels and the trials by editing them.

This completes the preprocessing of the MEG data. Figure 5 shows the preprocessed MEG data of sub-08 in the face condition.


[image: image]

FIGURE 5. Stimulus-triggered average of preprocessed MEG data in face condition (sub-08). Its time series (top) and spatial maps at 0.16 s (bottom) are shown.





3.5. Estimating Source Current From MEG Data

We next estimate the source currents from the preprocessed MEG data.

3.5.1. Preparing Leadfield

VBMEG can respectively construct 1-shell (cerebrospinal fluid [CSF]) and 3-shell (CSF, skull, and scalp) head conductivity models for MEG and EEG source imaging from the cortical surface model obtained by FreeSurfer and the gray matter file obtained by SPM8. Here we construct a 1-shell head conductivity model for MEG source imaging. Based on the model, we make a leadfield matrix by solving the Maxwell equations with a boundary element method (BEM). VBMEG supports three types of dipoles for each source: a one-dimensional dipole perpendicular to the cortical surface, a two-dimensional dipole tangential to the cortical surface, and a three-dimensional dipole parallel to the three axes (x, y, z). Here we assume a one-dimensional dipole.

3.5.2. Estimating the Source Current

In VBMEG, source currents are estimated in two steps: first the current variance and then the source currents.

The current variance is estimated by the hierarchical Bayesian method proposed by Sato et al. (2004). This method is an extension of automatic relevance determination (ARD) (Neal, 1996) in which fMRI activity is incorporated into the hierarchical prior distribution (prior distribution of the relevance parameters). Following the original idea of the sparse promoting nature of ARD, a sparse current is obtained when fMRI activity is unavailable. Indeed, such sparse currents have been estimated by several methods (Matsuura and Okabe, 1995; Uutela et al., 1999; Wipf et al., 2010; Chang et al., 2013; Khan et al., 2014; Bekhti et al., 2018). Here we estimate the current variance by setting a confidence parameter, “bayes_parm.prior_weight,” to 0.3. This parameter controls the confidence in the fMRI prior relative to the amount of data samples (ranging from 0 to 1), where a larger value makes the current variance more closely resemble the fMRI prior.

Using the estimated current variance, we make an inverse filter, which is a transformation matrix from the MEG data to the source currents, and estimate the source currents using it. Figure 6 shows the source currents of sub-08 estimated from the MEG data in the face condition.


[image: image]

FIGURE 6. Stimulus-triggered average of source currents estimated from MEG data in face condition (sub-08). Its time series (top) and amplitudes averaged within 0–0.3 s (bottom) are shown. In bottom figures, activities over 0.3 of their maximum value are shown.



To highlight VBMEG's characteristics, we compared the source currents estimated by VBMEG with those estimated by other source imaging methods. From the same MEG data and the leadfield matrix used in the above analyses, we estimated the source currents by wMNE, dSPM, and LCMV beamformer using the Brainstorm functions. In applying dSPM, the fMRI activity was not used as prior information on the source current variance because the Brainstorm functions do not support it. Figure 7 shows the source currents estimated by these methods. Compared to wMNE, dSPM, and LCMV beamformer, VBMEG exhibits localized activities around the areas with large fMRI activity (Figures 3, 7).


[image: image]

FIGURE 7. Source currents estimated by VBMEG, wMNE, dSPM, and LCMV beamformer. Stimulus-triggered averages of source currents estimated from MEG data in face condition (sub-08) were calculated, and their amplitudes averaged within 0–0.3 s are shown. For each method, activities over 0.3 of their maximum value are shown.





3.6. Group Analyses

Using all the subjects' source currents estimated from the MEG data by VBMEG, we conducted a group analysis and examined the differences of the current amplitudes between the face and scrambled conditions.

For each subject, condition, and source, we calculated the stimulus-triggered average of the source currents estimated from the MEG data, normalized it so that its baseline period (–0.3 to 0 s) has mean 0 and standard deviation 1, and calculated its amplitude. Then for each source and time, we compared the 16 subjects' current amplitudes between the face and scrambled conditions by a paired t-test. From the differences of the current amplitudes between the conditions, we calculated the t- and p-values based on Student's t-distribution under a null hypothesis where the current amplitudes were not different between the conditions. This procedure produced a total of 586,515 p-values (9,615 sources × 61 time points).

We solved this multiple comparison problem by controlling the FDR, which manages the expected proportion of false positive findings among all the rejected null hypotheses (Benjamini and Hochberg, 1995). We estimated the q-values by Storey and Tibshirani's method (2003). From the distribution of the 586,515 p-values, we first estimated the proportion of the null p-values π0, and based on π0 we converted the p-values to q-values. The FDRs were controlled at 0.05. This group analysis was performed by “examine_diff_between_conds.m” in the tutorial programs.

Figure 8 shows the detected differences between the face and scrambled conditions. At 0.17 s, the largest difference was observed at the right FFA. This result is consistent with previous studies that reported that this area exhibits face-selective responses (Grill-Spector et al., 2004, 2017; Wakeman and Henson, 2015; Jas et al., 2018; Rossion et al., 2018).
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FIGURE 8. Differences of current amplitudes between face and scrambled conditions. Top figure shows number of sources exhibiting significant differences (q < 0.05). Bottom figures show significant t-values at 0.17 s.



We also compared this group analysis result with those obtained by wMNE, dSPM, and LCMV beamformer. Using the source currents estimated by these methods (Figure 7), we examined the differences of the current amplitudes between the face and scrambled conditions by the same procedure described above. Figure 9 shows the detected differences between the conditions at 0.17 s. Compared with VBMEG, wMNE and dSPM exhibited significant differences in the broader areas, including the right FFA, the right insula, and the left temporal pole. LCMV beamformer did not exhibit a significant difference at that time.
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FIGURE 9. Differences of current amplitudes between face and scrambled conditions obtained by VBMEG, wMNE, dSPM, and LCMV beamformer. Significant t-values at 0.17 s are shown (q < 0.05).





3.7. Estimating Source Current From EEG Data

Here we estimate the source currents from the EEG data.

We import and preprocess them in the same way as the MEG data (section 3.4). Additionally, we take a common average reference and make the averages of the EEG data across the channels to 0.

We construct a 3-shell (CSF, skull, and scalp) head conductivity model. The conductivities are respectively set to 0.62, 0.03, and 0.62 S/m for the brain, the skull, and the scalp. Based on the model, we make a leadfield matrix with the common average reference. From the leadfield matrix and the preprocessed EEG data, we estimate the source currents in the same way as the MEG data (section 3.5). Figure 10 shows the source currents of sub-08 estimated from the EEG data in the face condition.


[image: image]

FIGURE 10. Stimulus-triggered average of source currents estimated from EEG data in face condition (sub-08). Its time series (top) and amplitudes averaged within 0–0.3 s (bottom) are shown. In bottom figures, activities over 0.3 of their maximum value are shown.





3.8. Estimating Source Current From Both MEG and EEG Data

VBMEG can also estimate the source currents from both MEG and EEG data. Because MEG and EEG have different sensitivities to source currents, integrating them further alleviates the ill-posed nature of MEG/EEG source imaging, providing a reliable estimate.

We first match the trials between the MEG and EEG data so that identical trials remain. Then from the matched MEG/EEG data and their leadfield matrices, we estimate the source currents. To accommodate the different scales between the MEG and EEG data, the data and leadfield matrices are normalized by the leadfield norms (Henson et al., 2011). The normalized MEG and EEG data and the leadfield matrices are concatenated together. The hierarchical Bayesian method (Sato et al., 2004) is applied to the concatenated data and the leadfield matrices. Figure 11 shows the source currents of sub-08 estimated from both the MEG and EEG data in the face condition.
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FIGURE 11. Stimulus-triggered average of source currents estimated from both MEG and EEG data in face condition (sub-08). Its time series (top) and amplitudes averaged within 0–0.3 s (bottom) are shown. In bottom figures, activities over 0.3 of their maximum value are shown.





3.9. Estimating Whole-Brain Connectome Dynamics

Finally, we estimate the whole-brain connectome dynamics from the source currents estimated from the MEG data in the face condition. Its procedure consists of two steps: first estimating the anatomical connectivity and then the dynamics model.

The anatomical connectivity is estimated from the dMRI using FSL and MRtrix. We correct the subject motion during the dMRI acquisition by FSL. To obtain ROIs for fiber tracking, we cluster the cortical surfaces into 1,998 parcels. Based on a six-dimensional fiber orientation distribution, the fibers are probabilistically tracked from each ROI using MRtrix. We quantify the strength of the connectivity based on the fiber counts and binarized it using a threshold. The binarized connections are used for specifying pairs of anatomically connected ROIs. Furthermore, from the inter-ROI fiber lengths, we calculate the time lags between the ROIs assuming a fixed conduction velocity at 6 m/s.

Using the anatomical connectivity, we estimate the whole-brain connectome dynamics. We generate the ROI current by averaging the source currents across the trials and the sources within each ROI. From the ROI current, we estimate a linear dynamics model constrained by the anatomical connectivity. In this model, only the anatomically connected pairs of ROIs have connectivity coefficients at the anatomically determined time lags. This drastically reduces the connectivity coefficients to estimate and suppress the false positive connectivities (Filatova et al., 2018). The estimated dynamics model is visualized by a movie showing the signal flows between the ROIs. The created signal flow movie of sub-01 can be seen on the tutorial page.




4. DISCUSSION

In this paper, using the open dataset recorded by Wakeman and Henson (2015), we introduced the VBMEG toolbox and demonstrated its practical usage by showing its full pipeline. We imported the MEG data and preprocessed them to estimate the source currents. From the estimated source currents of all the subjects, we performed a group analysis where the face-selective responses were detected by controlling the FDRs. Our results are consistent with previous studies (Grill-Spector et al., 2004, 2017; Wakeman and Henson, 2015; Jas et al., 2018; Rossion et al., 2018), indicating VBMEG's ability to extract reliable knowledge through group analyses.


4.1. VBMEG's Advantages

VBMEG's main advantage is its ability to integrate fMRI activity for estimating source currents from MEG/EEG data. Due to this advantage, its estimated source currents tend to be localized around areas with large fMRI activity, and as a result false positive activities are effectively suppressed (Figures 3, 7).

This advantage might also suppress the false positive detection of face-selective responses (Figure 9). So far, face-selective responses have been observed at the ventral occipitotemporal cortex (VOTC) (Grill-Spector et al., 2004, 2017; Wakeman and Henson, 2015; Jas et al., 2018; Rossion et al., 2018). Consistent with these observations, VBMEG, wMNE, and dSPM exhibited face-selective responses at VOTC (Figure 9). However, they also exhibited them outside VOTC, such as insula. This may be due to signal leakage (Brookes et al., 2012; Colclough et al., 2015; Palva et al., 2018; Sato et al., 2018); the face-selective responses at VOTC leaked out in the estimated source currents. Outside VOTC, VBMEG exhibited face-selective responses in narrower areas than wMNE and dSPM (Figure 9), suggesting that integrating the fMRI activity suppressed the signal leakage and the false positive detection.

dSPM can also integrate fMRI activity (Liu et al., 1998; Dale et al., 2000). This method uses fMRI activity as prior information on the current variance, which is computed only from fMRI activity. In contrast, VBMEG uses fMRI activity as prior information on the variance distribution rather than the variance itself, which is computed from both the fMRI activity and the MEG/EEG data. Therefore, VBMEG is also robust to inaccurate fMRI activities (Sato et al., 2004; Aihara et al., 2012).

VBMEG's other advantage is its ability to construct a connectome dynamics model for event-related brain activity. SPM can also construct a dynamics model by dynamic causal modeling (DCM), which constructs a nonlinear dynamics model based on a few predetermined ROIs. In contrast, since VBMEG constructs a linear dynamics model of the whole-brain without assuming such ROIs, it is suitable for revealing whole-brain dynamics in a data-driven way.



4.2. VBMEG's Limitations

Currently, VBMEG relies on a few old versions of the software, such as MATLAB (version 7 [R14] to 8.3 [R2014a]) and SPM8. This situation is complicated for young researchers who are interested in trying VBMEG. We plan to extend VBMEG so that it works on more recent versions.

VBMEG supports the importing of MEG data recorded by Yokogawa (.con) and Neuromag (.fif) systems and EEG data recorded by Biosemi (.bdf) and Brainamp (.vhdr, .vmrk, and .eeg). Other formats, such as the European data format (EDF), are currently not supported. We plan to extend the supported formats.

VBMEG does not have a framework to import data processed by other software, such as Brainstorm. To do so, the data must be converted to the VBMEG format. On the other hand, it may be easier to use other software's functions in the VBMEG pipeline. Indeed, VBMEG uses several functions from other free software, such as EEGLAB (Delorme and Makeig, 2004) (https://sccn.ucsd.edu/eeglab/index.php), MRIcron (Rorden et al., 2007) (http://people.cas.sc.edu/rorden/mricron/index.html), and Tools for NIfTI and ANALYZE image (https://jp.mathworks.com/matlabcentral/fileexchange/8797), which are included in the “external/” directory of our toolbox. Furthermore, this tutorial used the Brainstorm functions to estimate the source currents by wMNE, dSPM, and LCMV beamformer.

VBMEG can construct a whole-brain connectome dynamics model. However, since the model is very high-dimensional, it is too complicated to interpret. Further analysis and statistical tests are necessary to extract physiological knowledge from it. They are now under development.



4.3. Alternatives to fMRI

VBMEG estimates source currents from MEG/EEG data using fMRI activity as prior information on the current variance distribution. However, measuring fMRIs requires expensive equipment that is not always available. In such cases, we can choose from among several alternatives.

We can use uniform distribution as prior information with very small confidence. In this case, the estimated current variances tend to be sparse due to the effect of ARD (Neal, 1996). Although the estimation accuracy obtained by the uniform prior is worse than that obtained by the fMRI prior, it still outperforms a minimum norm method if the source currents are sparse (Sato et al., 2004).

We can also use near-infrared spectroscopies (NIRSs), which measure hemodynamic responses to neural activities like with fMRIs. NIRS activities mapped to the sources can be used as prior information. The efficacy of this method was validated by Aihara et al. (2012) and Morioka et al. (2014).

On the other hand, obtaining the meta-analysis results of fMRI studies from Neurosynth.org (http://neurosynth.org/) and using them as prior information is another possibility. We are now testing the efficacy of this approach.



4.4. Other VBMEG Usages

In this paper, we demonstrated VBMEG usage by analyzing the MEG/EEG data during the face recognition. VBMEG's performances for other experiences have been validated, such as a visual experiment with checkerboard patterns (Yoshioka et al., 2008), a somatosensory experiment with electric stimuli (Filatova et al., 2018), and several motor experiments (Callan et al., 2010, 2016; Toda et al., 2011; Takeda et al., 2014; Yoshimura et al., 2017). Furthermore, its performance can be tested for MEG/EEG data during simple auditory, somatosensory, and visual stimuli through the following tutorial page: https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_advanced.html.
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We present a simple, reproducible analysis pipeline applied to resting-state magnetoencephalography (MEG) data from the Open MEG Archive (OMEGA). The data workflow was implemented with Brainstorm, which like OMEGA is free and openly accessible. The proposed pipeline produces group maps of ongoing brain activity decomposed in the typical frequency bands of electrophysiology. The procedure is presented as a technical proof of concept for streamlining a broader range and more sophisticated studies of resting-state electrophysiological data. It also features the recently introduced extension of the brain imaging data structure (BIDS) to MEG data, highlighting the scalability and generalizability of Brainstorm analytical pipelines to other, and potentially larger data volumes.
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INTRODUCTION

There is growing scientific interest in studying resting-state brain activity, where subjects do not perform a directed task or are not exposed to external stimuli. One of the many objectives of such studies is to understand the nature of regional brain activity and the mechanisms of network integration across the brain that are expressed in these task-free paradigms: e.g., resting state networks in fMRI (Damoiseaux et al., 2006), fMRI/EEG combined (Mantini et al., 2007), fMRI and MEG (de Pasquale et al., 2010), MEG (Brookes et al., 2011; Hillebrand et al., 2012; Florin and Baillet, 2015), resting-state activity alterations in diseases, such as mild cognitive impairments, Alzheimer’s disease (Fernández et al., 2006; Montez et al., 2009) and Parkinson’s Disease (Bosboom et al., 2006).

Here we provide the proof of technical concept for a basic data analysis pipeline designed with Brainstorm (Tadel et al., 2011) to extract group frequency-specific power analysis of regional source activity estimated with MEG, of healthy participants in the resting-state. We propose this pipeline as foundation to more sophisticated approaches and derivations, such as the extraction of resting-state network activity (e.g., Florin and Baillet, 2015). Brainstorm is a free, open-source application developed in Matlab and Java for multimodal electrophysiology and imaging. The resting-state MEG data was obtained from the Open MEG Archive, OMEGA, a free repository of MEG data (Niso et al., 2016). OMEGA is organized according to MEG-BIDS, a recent extension of the Brain Imaging Data Structure [BIDS1; (Niso et al., 2018)]. Brainstorm can directly import data from BIDS-organized data volumes. OMEGA contains multimodal data from 220 participants, for a total of 300 resting-state MEG recordings: 182 from healthy controls, 38 from patient volunteers (ADHD, chronic pain, etc.) as well as the anatomical T1-weighted MRI (T1w-MRI) volumes of all participants.

The present software pipeline is to demonstrate feasibility and reproducibility of the approach on the entirety of OMEGA, with generalizability to any other BIDS-organized data repository [see other MEG-BIDS data resources listed by Niso et al. (2018)]. The procedure produces maps of the regional power distribution of spontaneous brain activity in the typical frequency bands of electrophysiology: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), gamma1 (30–80 Hz), and gamma2 (80–150 Hz).

We provide detailed descriptions of the main pipeline steps, with corresponding Matlab scripts distributed openly at GitHub as companions to this article, for easy replication (and extension) of the presented analyses and results2.

We refer the interested reader to (Tadel et al., 2011) for a detailed description of Brainstorm. Comprehensive tutorials for the application are available online3.



MATERIALS AND METHODS

The software, data and derivatives hereby produced require 22GB of disk space, on a conventional workstation or laptop. Brainstorm is freely available from http://neuroimage.usc.edu/brainstorm, with detailed installation instructions. Note that a Matlab license is not required, except for custom user scripting, which is not necessary to reproduce the analyses reported here.

MEG and MRI Data From the Open MEG Archive

The OMEGA (Niso et al., 2016)4 is a collaborative effort to build and share a free MEG data repository. A unique aspect of OMEGA is that the resource is open-ended in the sense that its framework is designed for continued data aggregation, from interested investigators across the MEG community. In addition to MEG and T1w-MRI, OMEGA features demographic and questionnaire data. Basic demographic information include age, gender, handedness, and education. Additional non-identifying demographic characteristics include spoken languages, general health, alcohol consumption and smoking habits, sleep quality, chronic pain, and years of musical education and practice. For demonstration purposes, we used a subset of the data from 5 OMEGA healthy participants (2 females, 27+/- 5 y.o.), which is directly available from the open neuroimaging repository OpenNeuro.org5 10.5 GB. To demonstrate generalizability beyond MEG-BIDS organized data, we also provide supplementary online material in the form of the same pipeline applied to MEG data from the Human Connectome Project (Larson-Prior et al., 2013); see Brainstorm tutorial6.

The 5 individual MEG datasets were collected from participants sitting upright, keeping their eyes open on a fixation cross for 5 min. No task instructions were provided except to refrain from producing eye movements and to remain awake. The data was acquired with a CTF MEG system at a single site (Montreal Neurological Institute, McGill University), after approval from the institutional research ethics board and from participants consenting to have their anonymized data shared via OMEGA. The MEG sensor array consisted of 275 axial gradiometers with 26 MEG reference sensors, located in a 3-layer magnetically shielded room. Sampling rate was 2400 Hz with a hardware anti-aliasing low-pass filter at 600 Hz. CTF 3rd-order gradient compensation was also applied. Bipolar electrocardiogram (ECG) and vertical and horizontal electrooculogram (EOG) data was collected on all subjects. Empty-room recordings (2-min duration or more) collected around each individual sessions were also retrieved from OMEGA to estimate the empirical noise statistics used in source modeling.

The individual head shapes, anatomical landmarks and fiducial points were collected during sessions and retrieved from the OMEGA sample dataset (∗.pos files). Fiducial points marked the location of three head position indicator (HPI) coils placed on the subject’s head: one on the forehead, one on the right, and the left mastoids. HPI coils are to track head position under the MEG helmet. Anatomical landmarks consisted of nasion and left/right preauricular points (NAS, LPA, and RPA, respectively) marked to facilitate geometrical co-registration between MEG sensor locations and structural MRI data. Finally, the locations of about 100 scalp points on hard parts of the head (away from soft tissues such as neck, cheeks, and mouth) were also digitized. They were used to refine cross-modal MEG/MRI co-registration, as explained below. All digitized points were collected using a Polhemus Fastrak device, driven by Brainstorm.

For anonymization purposes, T1w MRI images were defaced using free, open-source software (Face Masking7; Milchenko and Marcus, 2013). Scalp and cortical components were segmented and their envelopes were triangulated with Freesurfer 5.3 (Fischl, 2012), with default parameters. The co-registration procedure was facilitated by the convenient feature of BIDS that stores the anatomical landmarks and fiducials in a .json (JavaScript Object Notation) sidecar file of T1w MRI volumes. This information was read directly by Brainstorm and made the MEG/MRI co-registration process entirely automatic.

A Note on MEG-BIDS

BIDS is a community-driven emerging standard for the organization of neuroimaging data. It was designed originally for structural and functional MRI (fMRI) (Gorgolewski et al., 2016). BIDS is based on a principled hierarchical folder structure, where folders contain data and extracted metadata of key study parameters documented in text-based human and machine readable formats.

We and collaborators recently contributed an extension of BIDS to MEG (Niso et al., 2018). Similar efforts are being pursued for scalp EEG and basic electrophysiology. MEG-BIDS facilitates data management and the design, sharing and transfer of analysis pipelines with well-distributed and -documented software applications [e.g., Brainstorm (Tadel et al., 2011), FieldTrip (Oostenveld et al., 2011), MNE (Gramfort et al., 2014), and SPM (Litvak et al., 2011)].

Brainstorm automatically imports (potentially large) MEG-BIDS datasets into its data management system, with the following folder/file organization for the OMEGA sample used in the present report:

ds000247/

• sub-000X/: Raw data for subject with ID code 000X.

[image: image]  ses-0001/: Here, only one session per subject.

[image: image]  sub-000X_ses-0001_scans.tsv: tab-separated text file listing the MEG recordings and corresponding acquisition dates.

[image: image]  anat/: Anatomical MRI scans for subject 000X (not used if /derivatives/freesurfer/sub-000X/ses-0001 is available).

[image: image]  sub-000X_T1w.nii.gz: compressed T1w MRI data in Nifti format.

[image: image]  meg: Raw MEG recordings.

[image: image]  sub-000X_ses-0001_task-rest_run-01_meg.ds: Single run of MEG data.

• derivatives: Contains elements not considered as raw data.

[image: image]  freesurfer: Output of the FreeSurfer segmentation pipeline for all participants.

[image: image]sub-000X/ses-0001: Output of FreeSurfer pipeline for subject 000X (session 0001).

• sub-emptyroom/: Empty-room recordings around the individual session dates.

[image: image]  ses-XXX/: Session of noise recordings (matched by date with the subjects’ recordings using the ∗_scans.tsv file).

[image: image]  sub-emptyroom_ses-XXX_scans.tsv: tab-separated text file listing the MEG recordings and corresponding acquisition dates.

[image: image]  meg/: Raw MEG empty-room recordings.

[image: image]  sub-000X_ses-XXX_task-noise_run-01_meg.ds.

A (MEG-)BIDS validator is available online8 and is a convenient tool for verifying the integrity of a (MEG-)BIDS data distribution.

Step 1: Import and Registration of Multimodal Data

We created a new protocol (study) in Brainstorm selecting the menu item “File > Create new protocol” and named it “TutorialOmega” with the options: “No, use individual anatomy,” and “No, use one channel file per condition.” We then proceeded to importing the MEG-BIDS dataset directly, by selecting the menu item “File > Load protocol > Import BIDS dataset > Select the folder sample_omega.” We acknowledged all suggested default values during the import process e.g., the decimation of FreeSurfer cortical surface down to 15,000 vertices. Once this step was completed, the OMEGA sample of 5 participants was directly imported into Brainstorm’s data management system, including the associated empty-room recordings (Figure 1).


[image: image]

FIGURE 1. Brainstorm database entry created from the OMEGA sample dataset (ds000247). Left, one-step automatic importation of the MEG-BIDS OMEGA sample; Center, view of anatomy files; Right, view of MEG data files.



The coordinates of the NAS/LPA/RPA anatomical landmarks are contained in the MEG-BIDS data package, in both MEG and MRI spaces (∗_T1w.json files). Brainstorm uses these coordinates and the digitized head shape to automatically refine MEG-MRI co-registration using rigid-body transformations that minimize the distance of these points to the scalp surface automatically extracted from the structural MRI data by Brainstorm. This is performed during multimodal data importation and registration into Brainstorm’s database. Note that the MRI defacing procedure preserved the location of all fiducials points and of the scalp geometry. It is key to ascertain that the subjects’ head was well aligned under the MEG sensor array. To that purpose, we dragged and dropped the recordings from all subjects (excluding sub-emptyroom) into Brainstorm’s Process1 box, and clicked on the “Run” button. We then selected from the process menu “Import anatomy > Remove head points, Z = 0.” Finally, we added another process “Import anatomy > Refine registration.” To verify the quality of the registration procedure, we right-clicked on “CTF channels > MRI registration > Check” for each of the 5 participants.

Step 2: Pre-processing of MEG Data

Some online signal processing was applied at the time of MEG acquisition (i.e., anti-aliasing low-pass filter below 600 Hz, CTF 3rd-order gradient compensation). Participant specific ∗_meg.json and ∗_channels.tsv files contain the details specific to each session and subject. Signal contamination from the environment (e.g., powerline, mechanical vibrations, etc.) or caused by participants (head and body movements, including breathing, eye blinks and saccades, heartbeats, muscle tension, and ferromagnetic prostheses) was evaluated and attenuated via the following good-practice preprocessing procedures (Gross et al., 2013).

We first reviewed the frequency contents of raw signals with power spectral density (PSD) estimates of MEG sensor signals. To do so, we switched to the functional view of the protocol (second button above Brainstorm’s database explorer). We then dragged and dropped all the data (including sub-emptyroom) into the Process1 box, and clicked on the “Run” button. Since CTF raw data are not usually saved as time-continuous but trial based, we selected the process “Import recordings > Convert to continuous: Continuous.” Then we estimated PSDs with “Frequency > Power spectrum density (Welch): All file, 4s, 50% overlap, Individual.” We followed the recommendations from Brainstorm’s online documentation to interpret PSD plots for assessing data quality9.

Next, we applied notch filters to eliminate powerline signal contamination at 60Hz and harmonics up to 300 Hz. We also applied a high-pass filter with a cutoff at 0.3 Hz to remove low-frequency fluctuations of no interest to the study. We verified the proper application of the frequency filters with a new set of PSDs. We processed the above files via the Process1 file selector and clicked on the “Run” button. We selected the process “Pre-process > Notch filter: 60 120 180 240 300 Hz, Process the entire file at once.” We added the process “Pre-process > Band-pass filter: High-pass filter at 0.3 Hz, 60 dB, Process entire file,” and added the process “Frequency > Power spectrum density (Welch): Same options as before” to the pipeline, before executing it by clicking “Run.”

Most physiological signal contaminants are transient and potentially span a fairly large frequency range that overlaps with the frequency bands of interest to the study. We applied Signal-Space Projectors, SSPs (Gross et al., 2013) designed to attenuate physiological artifacts selectively. An SSP is produced by a principal component analysis of MEG traces around occurrences of signal artifacts of a given category (e.g., eye blinks, heartbeats). We used ECG and EOG traces to mark events of eye movements, blinks, and heartbeats. We then extracted epochs about these events to design the SSPs (see Figure 2). To this aim, we applied Brainstorm’s automatic processes for detecting and attenuating heartbeat and eye-blink signal contamination (for more details, please refer to Brainstorm’s tutorials10). This was performed automatically by dragging all recordings (from all subjects, excluding sub-emptyroom) into the Process1 box, and selecting the processes “Events > Detect heartbeats: ECG, All file, cardiac” and “Events > Detect eye blinks: VEOG, All file, blink.” We excluded signal portions where artifactual events of different categories occurred less than 250 ms from each other in time. This was derived automatically by selecting the process “Events > Remove simultaneous: cardiac, when to close to blink, 250 ms.” Then, we added the processes “Artifacts > SSP: Heartbeats: cardiac, MEG, Use existing SSP” and “Artifacts > SSP: Eye Blinks: blink, MEG, Use existing SSP” to this pipeline portion. To produce quality-control report logs of the analyses, we added the processes “File > Snapshot: Sensor/MRI registration” and “File > Snapshot: SSP projectors.”


[image: image]

FIGURE 2. Removal of cardiac and blink artifacts. (A) Raw data from MEG sensors (8 s, subset of right temporal sensors, sub-0004, green dots indicating the detected heartbeats). (B) Processed data after artifacts removal. (C) ECG and VEO signals and their respectives SSP signals and topographies.



We then reviewed the sensor topography of the selected SSPs and the MEG signal traces for all subjects to ascertain that the application of SSPs captured most of the MEG signal variance specific to heartbeat and blink contaminations (Figure 2). Heartbeats artifacts were correctly removed for all subjects using only the first SSP component (SSP1). Blink contamination was also properly removed for all subjects with the corresponding SSP1 component, except for sub-0003 and sub-0007. For these two subjects, additional blink SSPs were computed, after deleting the previous ones, this time using the “Artifacts > SSP generic: All file, -200, 200 ms, 1.5–15 Hz, Use existing SSP, Average: One component only” option. That way, instead of performing PCA over signal portions containing the detected blink events, a time-locked average of all blink events was computed to produce the corresponding SSP component. Other types of artifacts were also reviewed: we did not detect major contamination from saccades, except in sub-0002. For this latter participant, data contamination from eye saccades was attenuated using independent component analysis: we used the Brainstorm process “Artifacts > ICA components: All file, 0 ms, 1–7Hz, 20 ICA components, HEOG, Use existing SSP, Infomax: EEGLAB/RunICA” and selected the first ICA component to be removed from this participant’s recording. Muscle contamination was prominent in subject sub-0004: it was corrected using “Artifacts > SSP generic: All file, 0 ms, 40–300 Hz, Use existing SSP, PCA,” with selection of SSP1 and SSP2. We reviewed the first 100 s of data for detecting bad segments in all subjects, with no further data rejection performed.

The SSP/ICA cleaning procedure described here is an example designed for this specific dataset, with an emphasis on removing eye- and heart-related artifacts. For other types of experiments, acquisition devices, noise configurations or scientific questions, it might require adaptations (Gross et al., 2013). No preprocessing is a valid option: e.g., if the 1–4 Hz frequency band is of no interest in a study, correcting for eye blinks might not be necessary.

Step 3: MEG Source Modeling

This section describes noise, head and source modeling to produce time-resolved maps of cortical currents in all participants (Baillet, 2017).

We first estimated empirical covariance statistics from the empty-room recordings, to characterize instrument and environmental noise. The noise covariance estimates were used for subsequent inclusion into the imaging estimator of distributed cortical currents (Baillet et al., 2001). In the Process1 box, we selected all the noise recordings (all the recordings in sub-emptyroom folder) and ran process “Sources > Compute covariance: All file, Noise covariance, Copy to other folders, Copy to other subjects, Match by acquisition date.”

This latter option (“Match noise and subject recordings by acquisition date”) reads the date of the session from the MEG-BIDS ∗_scans.tsv files to associate the noise covariance estimate to the participant data collected on the nearest session date.

We obtained an MEG forward model with the overlapping-spheres approach (Huang et al., 1999), automatically adjusted by Brainstorm to the participants’ scalp surface: we selected all resting-state recordings (all subjects, excluding sub-emptyroom) in Process1 box and ran the process “Sources > Compute head model: Cortex surface, MEG = Overlapping spheres.”

We then computed the imaging kernel of Brainstorm’s depth-weighted dynamic statistical parametric mapping constrained to the individual cortical surface of participants dSPM (Dale et al., 2000), running the process “Sources > Compute sources [2018]: Kernel only, one per file, dSPM, constrained.” When linearly applied to sensor data, this latter produces time-series estimates of cortical currents at each vertex location of the gray matter surface extracted from the individual MRI.

Step 4: Frequency-Specific Brain Maps

We estimated the power of ongoing cortical activity in the typical frequency bands of electrophysiology: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), gamma1 (30–80 Hz), and gamma2 (80–150 Hz). The present pipeline can be generalized to any other frequency band(s) of interest.

We computed the PSD of all source time series for each participant. We then scaled the PSD values at each frequency bin relatively to the total power across the entire frequency spectrum: RelativePSD(f) = PSD(f)/Σi[Total PSD(fi)], where fi’s are the individual frequencies from the original (absolute) PSD (Figure 3). This procedure is to standardize PSD values across brain regions and participants.


[image: image]

FIGURE 3. Absolute and relative PSD. Relative PSD values range between 0 and 1, indicating the contribution of the current frequency band to the total power in the signal.



We used Welch’s method for estimating PSDs over the first 100 s of each MEG recording, with 4-s sliding Hamming windows overlapping at 50%. We dragged all resting-state recordings (i.e., recordings which include ∗_task-rest in their names) in the Process1 box, and clicked the “Process sources” button to select the process “Frequency > Power spectrum density (Welch): [0,100 s], Window = 4 s, 50% overlap, Group in frequency bands (use the default frequency bands), Save individual PSD values.” This latter process regroups PSD in frequency bands, averaging PSD bins within each band of interest. We then added the processing step “Standardize > Spectrum normalization: Relative power (divide by total power),” which derives at each source location and for each frequency band the ratio of how much the signal in the frequency band contributes to the total power of the source signal.

To produce a group-average PSD map, we projected individual results onto a common brain template MNI ICBM152 (Fonov et al., 2009). Brainstorm template projection aligns the cortical curvature maps in spherical topology, following the approach implemented in FreeSurfer (Tadel et al., 2019). We then applied a surface smoothing kernel on each original map, by assembling together the individual processes “Sources > Project on default anatomy: Cortex” and “Sources > Spatial smoothing: FWHM = 3 mm, Overwrite.” This latter step was to smooth individual cortical maps using a circularly symmetric Gaussian surface kernel with a full width half maximum (FWHM) size of 3 mm. This process relies on the function ‘SurfStatSmooth’, implemented in SurfStat (Worsley et al., 2009). Finally, we produced the group average of PSD maps, dropping all the projected individual files from the Group analysis folder in Process1 box, and clicking on the button “Process time-freq” to run the process “Average > Average files: Everything, Arithmetic average, Do not match signals.” The results can be displayed by double-clicking on the average result file entry in the Brainstorm data tree. To generate Figure 4, we right-clicked on the figure and selected “Snapshot > Frequency contact sheet.”
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FIGURE 4. Group average of relative PSD maps for all tested frequency bands. (A) Top View. (B) Left view. Values range between 0 and 1, indicating the power of cortical signals relatively to the total signal power across the frequency spectrum.



A similar analysis can be performed at the sensor level: We first computed the total and relative PSD by frequency band of the continuous recordings for each subject. We dragged all recordings (task-rest) in the Process1 box, and clicked the “Process signals” button to select the process “Frequency > Power spectrum density (Welch): [0,100 s], Window = 4 s, 50% overlap, Group in frequency bands (use the default frequency bands), Save individual PSD values” and added the process “Standardize > Spectrum normalization: Relative power (divide by total power).” We then computed the group average of the resulting individual PSD sensor data. We dropped the individual results for each subject in the Group analysis folder in Process1 box, and clicked on the button “Process time-freq” to run the process “Average > Average files: Everything, Arithmetic average, Do not match signals.” The results can also be displayed by double-clicking on the average result file entry in the Brainstorm data tree, and to produce Figure 6, we right-clicked on the figure and selected “Snapshot > Frequency contact sheet.”



RESULTS

We obtained brain maps of relative power for each source and each frequency band of interest (Figure 4). At each vertex of the cortical surface, the value reported represents the fraction (between 0 and 1) of signal power in current frequency band with respect to the entire PSD across the frequency spectrum.

The healthy population PSD maps obtained are consistent with results previously reported by Niso et al. (2016) and in the literature, mainly reported at the sensor level (Ishii et al., 1999), alpha-gamma coupling (Roux et al., 2013). We found stronger activity in the delta band over the frontorobital regions and anterior temporal poles. Theta band activity was distributed bilaterally over the frontal lobe. Alpha activity was dominant over parieto-occipital regions, and beta-band relative power was stronger over the pre and post-central lobules. Finally, low and high gamma ongoing activity was dominant over pre-frontal and occipital regions.

We questioned whether the observed concentrations of delta and low/high gamma activity could be of artifactual origins, still remaining after the signal corrections applied. For instance, residual contamination from large eye movements and blinks would explain stronger delta activity around the eye sockets. Similarly, the inferior occipital regions where gamma activity was the strongest could be related to muscular tension in the neck.

To clarify these aspects, we derived another source model of the data, using a uniform (not cortically constrained) 3-D dipole grid across the entire head volume (see online tutorial11). The new model confirmed some concentration of delta and gamma power over the eye sockets and upper neck muscles, although not critical (Figure 5). This rapid quality control procedure is to encourage users to proceed with caution when interpreting source maps and highlights the importance of careful artifact rejection to ascertain the neural origins of the signals.
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FIGURE 5. Group average of relative signal power using a 3-D grid source model in full head volume. (A) Relative signal power in the delta band. (B) Relative signal power in the gamma1 band.



Similar derivations can be produced at the sensor level. There are caveats to averaging sensor data between participants: in source space, individual data was registered to a common brain template, and differences in individual head positions across participants was accounted for by source modeling. With sensor data though, individual head positions are not systematically accounted for with respect to the rigid MEG sensor array. Hence, the same sensor does not necessarily pick up equivalent brain regions across participants. For this reason, the sensor results shown Figure 6 are essentially illustrative and to qualitatively assess consistency with source maps.
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FIGURE 6. Group average of relative PSD of sensor data for the frequency bands. Top sensor view. Values range between 0 and 1, indicating the power of cortical signals relatively to the total signal power across the frequency spectrum.





CONCLUSION

We reported a simple, reproducible analysis pipeline, with Brainstorm operating on resting-state MEG BIDS data retrieved from the OMEGA. We illustrated the approach with 5 data volumes hosted on OpenNeuro.org. The pipeline details the group analysis performed, including basic steps for preprocessing, source reconstruction and the estimation of brain, and sensor distributed relative PSD group statistics in the typical frequency bands of electrophysiology.

The analysis pipeline presented here is fully reproducible via the following steps. Importantly, we provide a Matlab script as part of the standard Brainstorm distribution (tutorial_omega.m12) that runs all steps at once automatically.

(1) Download the data13, and unzip it in a folder (let the directory be BidsDir); it requires about 10.5GB of free storage space.

(2) Note that getting the data from a web browser as a single zip file did not work well at time of submission, another more reliable solution using the Amazon AWS CLI software is described on the Brainstorm online tutorials14.

(3) Download and install Brainstorm15. In general, we recommend getting the most up-to-date version available from the Brainstorm website, however, for the strict reproducibility of the results presented in this article, we uploaded a development snapshot from November 15th, 2018, on the Zenodo website16.

(4) Launch Brainstorm, set the software’s database folder as explained in Brainstorm’s installation instructions.

(5) Close Brainstorm.

(6) In the Matlab command window, type: tutorial_omega (BidsDir).

(7) This will run the full pipeline on the downloaded data, which requires another 11.5GB of additional free storage space.

(8) Execution time is typically up to 5 h on a conventional workstation.

This pipeline can be applied to other datasets, for instance with EEG data or with other source modeling approaches, as long as the original data is BIDS-organised.
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4https://www.mcgill.ca/bic/resources/omega

5https://openneuro.org/datasets/ds000247/
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7http://nrg.wustl.edu/software/face-masking/

8http://bids-standard.github.io/bids-validator/

9http://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsFilter#Interpretation_of_the_PSD
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11http://neuroimage.usc.edu/brainstorm/Tutorials/CoregisterSubjects#Volume_source_model

12https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/tutorial_omega.m
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14https://neuroimage.usc.edu/brainstorm/Tutorials/VisualSingle#Download_and_installation
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We describe the steps involved in analysis of multi-modal, multi-subject human neuroimaging data using the SPM12 free and open source software (https://www.fil.ion.ucl.ac.uk/spm/) and a publically-available dataset organized according to the Brain Imaging Data Structure (BIDS) format (https://openneuro.org/datasets/ds000117/). The dataset contains electroencephalographic (EEG), magnetoencephalographic (MEG), and functional and structural magnetic resonance imaging (MRI) data from 16 subjects who undertook multiple runs of a simple task performed on a large number of famous, unfamiliar and scrambled faces. We demonstrate: (1) batching and scripting of preprocessing of multiple runs/subjects of combined MEG and EEG data, (2) creation of trial-averaged evoked responses, (3) source-reconstruction of the power (induced and evoked) across trials within a time-frequency window around the “N/M170” evoked component, using structural MRI for forward modeling and simultaneous inversion (fusion) of MEG and EEG data, (4) group-based optimisation of spatial priors during M/EEG source reconstruction using fMRI data on the same paradigm, and (5) statistical mapping across subjects of cortical source power increases for faces vs. scrambled faces.

Keywords: MEG, EEG, fMRI, multimodal, fusion, SPM, inversion, faces


INTRODUCTION

As part of this Special Research Topic on how to perform MEG/EEG group analysis with free academic software, we describe practical steps using the SPM12 software package (https://www.fil.ion.ucl.ac.uk/spm/) and a publically-available multimodal dataset. We describe SPM's graphical user interface (GUI), its “batch” interface for linear pipeline creation and finally “scripting” in MATLAB for (parallelised) loops across subjects.

The paper is organized into sections with a brief theoretical background followed by a detailed step-by-step walkthrough. The background is only brief because we refer to previous published papers, many of which are available from the SPM website: https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/. We do not provide a full tour of all the available options in SPM for M/EEG, which is already present in Litvak et al. (2011). Rather, we focus on a single, typical pipeline for creating event-related responses, localizing those responses in the brain and performing statistics on the results. Our experience with teaching SPM is that students appreciate having a concrete example, which they can then adjust to their own needs1.

For an overview of the dataset see, Wakeman and Henson (2015). The data are in BIDS format, both MRI (Gorgolewski et al., 2016) and MEG (Niso et al., 2017), on the OpenNeuro platform: https://openneuro.org/datasets/ds000117/versions/1.0.22.

The MEG data consist of 102 magnetometers and 204 planar gradiometers from an Elekta VectorView system. The same system was used to simultaneously record EEG data from 70 electrodes (using a nose reference), which are stored in the same “FIF” format file (as well as bipolar horizontal and vertical electro-oculograms, HEOG/VEOG, and bipolar electro-cardiogram, ECG). The data include a raw FIF file for each run/subject, but also a second FIF file (see below) in which the MEG data have been cleaned using Signal-Space Separation (Taulu et al., 2004) as implemented in MaxFilter 2.1 (Elekta Neuromag; https://accessgudid.nlm.nih.gov/devices/06430056480046). We use the latter here. A Polhemus digitizer was used to digitize three fiducial points and a large number of other points across the scalp, which can be used to coregister the M/EEG data with the structural MRI image. Six runs of ~10 min were acquired for each subject, while they judged the left-right symmetry of each stimulus, leading to nearly 300 trials in total for each of the 3 conditions (famous face, unfamiliar face, scrambled face).

The MRI data were acquired on a 3T Siemens TIM Trio, and include a 1 × 1 × 1 mm T1-weighted structural MRI (sMRI) as well as a large number of 3 × 3 × ~4 mm T2*-weighted functional MRI (fMRI) EPI volumes acquired during 9 runs of the same task (performed by same subjects with different set of stimuli on a separate visit). Note that the T1 images have had the face removed to protect the identity of the subjects (non-de-faced images, e.g., for more accurate head-modeling, are available from a subset of subjects on request to rik.henson@mrc-cbu.cam.ac.uk). Other data on the same subjects, such as ME-FLASH and Diffusion-Weighted images, plus empty-room MEG data, are available on the OpenNeuro site, which could be used for improved head modeling and source localization, but are not used here.

Each analysis step is a separate SPM batch module. The batch interface is a generic GUI in SPM that allows configuring and running complex analyses without programming. This interface can be used to thread together multiple modules to create a linear pipeline. When we want to repeat that pipeline across multiple runs or multiple subjects, we can save it as a batch script, and use some simple MATLAB commands to loop over runs/subjects, just by changing the input files to the pipeline. Finally, for the more advanced user (familiar with the MATLAB syntax), we also provide a script (see below) that runs the full analysis from start to finish by direct calls to SPM12 MATLAB functions (without necessarily using the batch interface).

It should be noted that the pipeline described below is just one possible sequence of processing steps, designed to illustrate many of the options available in SPM12. It is not necessarily the optimal preprocessing sequence, which really depends on the question being asked of the data.



GETTING STARTED

Download the data in BIDS format from OpenNeuro, e.g., to /yourpath (we will call this the “rawpth”)3. The entire dataset is around 170GB so we suggest to have at least 300GB available for the entire analysis pipeline. If you need to save space, you can delete all the sub-*/ses-mri/anat/*FLASH.nii.gz and sub-*/ses-mri/dwi/*_dwi.nii.gz files, as we do not use them here.

The analyses described below require SPM12, a free and open source software developed at the Wellcome Center for Human Neuroimaging and available for download at:

https://www.fil.ion.ucl.ac.uk/spm/software/download/

It runs under MATLAB and is compatible with all versions between R2007a and R2019a, on Linux, Windows and macOS. Installing SPM12 only requires unzipping the archive and adding the main directory to the MATLAB path4. For the analyses here, we use SPM12 r7487 released in November 2018.

Next, you should create a sub-directory called “code” within /yourpath, into which you should unzip all the scripts and batch files downloadable from Figshare:

https://figshare.com/collections/Multimodal_integration_of_M_EEG_and_f_MRI_data_in_SPM12/4367120.

This code directory includes two sub-directories: (1) one called “manual”, which contains copies of all the SPM batch job files that will be created below (as well as a master script to link them together called “batch_master_script.m”), and (2) another called “scripted”, which contains a “master_script.m” that illustrates instead direct calls to spm*.m functions (bypassing the batch system, except for a few exceptions), which can be run to reproduce all the results in this paper, including the figures, which can be reproduced by the additional script “create_figures.m”.

First, you also need to create a directory for SPM's output, which we will call “outpth”, e.g.:

/yourpath/derivatives/SPM12

You can then create sub-directories for all subjects using some SPM/MATLAB code like:

[image: yes]

Finally, you will also need to copy and unzip all the raw MEG and sMRI files to outpth (since this is where SPM will write all files derived from them), which you can do with the following code (this code is also present at the start of the master_script.m):

[image: yes]

Note that if you want to run the fMRI analysis (e.g., following Supplementary Appendix 2, or using the master_script.m), you will need to uncomment the last section of code above. However, in case you want to save time and disk space, we also provide the results of that fMRI analysis (which is needed for the fMRI-informed source-localization of M/EEG data described in section Group and fMRI Optimized Source Reconstruction) on the above Figshare link.

Finally, open the SPM12 graphical interface by typing “spm eeg” at the MATLAB prompt, which should open three windows (including that in Figure 1A). Then open the batch editor window by pressing “Batch” from the SPM: Menu window, which should open the window in Figure 1B. (Later we will press the “3D Source Reconstruction” button to get the window in Figure 1C).


[image: image]

FIGURE 1. Screenshot of SPM figures (A) SPM main menu, (B) SPM batch interface, (C) Source localization (reconstruction) interface.





PREPROCESSING M/EEG DATA


Motivation and Background

The first aim of pre-processing is to transform the data from the format originally recorded in the scanner (which varies across scanner types) to a common format used by SPM (and closely related to that used by FieldTrip). A second aim is to perform some basic operations on the data like filtering, epoching and removal of non-interesting artifacts. The resulting “cleaned” data can then form the input to advanced analyses in SPM, such as statistical parametric mapping, source reconstruction and Dynamic Causal Modeling (though the latter is not discussed in the present paper). In principle, pre-processing in SPM is not different from that in other academic and commercial M/EEG analysis software packages. Therefore, data could also be fully or partially pre-processed outside of SPM as long as the results are converted to SPM format. Here we show full pre-processing in SPM with the exception of Signal Space Separation, which is done in manufacturer's software as previously mentioned.

The order of steps shown here is just one of many possibilities. Depending on the specifics of your own data, you might choose to arrange the steps differently. However, the following are some points to remember when designing a preprocessing pipeline in SPM:

• In the present example, we will convert the data as a continuous timeseries, though it is possible to “cut out” time windows (epochs) around the trial onsets during the conversion step, e.g., if you wanted to save disk space and processing time.

• Digital filtering might create artifacts (ringing) where there are discontinuities in the data, particularly at the edges. It is, therefore, better to filter continuous data prior to epoching to avoid filter ringing artifacts in every trial. Alternatively the epochs of interest can be padded with more data and then cropped after filtering.

• Since the ringing depends on the amplitude of the discontinuity, it is better to do high-pass filtering or baseline correction before other filtering steps.

• It is convenient to put downsampling early in the pipeline to make the subsequent steps faster.

• SPM only filters channels with physiological data. So the channel types should be set correctly before filtering.

• Some artifacts (e.g., discontinuous jumps or saturations) are more difficult to detect after filtering. In SPM, there is an option to mark artifacts in continuous data and use this information later in the pipeline e.g., for trial rejection, but we do not consider that here.

• One common distinction is whether analyses are performed over time (e.g., evoked response amplitudes), over frequency (e.g., power and/or phase after Fourier transform), or time-and-frequency (e.g., using wavelets). Below we illustrate a typical time-based analysis of evoked responses, i.e., event-related potentials (ERP) from EEG and event-related fields (ERF) from MEG. In Supplementary Appendix 1, we also illustrate an alternative analysis using wavelets to capture both evoked and induced power.



Tutorial Walkthrough

We will start by creating pipelines (using SPM's batch interface) for preprocessing the M/EEG data for a single subject, and then scripting these pipelines to repeat over multiple subjects. We will start with Subject 15, in whom the data are particularly clean. The full preprocessing pipeline is shown in Figure 2.


[image: image]

FIGURE 2. Full pipeline. The MATLAB filenames at the top of each box refer to the batch files (in the “manual” directory) used for each step.



Convert

The first step is to convert raw M/EEG data from its native format (which depends on the acquisition system) to the MATLAB format used by SPM.

In the batch editor, select SPM on the top toolbar, and from the dropdown menu select M/EEG. At the top of the new dropdown menu, select “Conversion”. Once selected, the Module List on the left of the batch editor window will now list Conversion as the first (and only) step. Within the main, Current Module window will list several variables. The first variable listed is File Name. On the right hand side of this pane, you will see “<-X”; this indicates that you need to update this field. To do so, click on File Name, which will then open up your current working directory. Select the file named “sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.fif” in the “outpth/sub-15/meg” directory and press “done”.

Many variables in the Current Module window have default values, but we need to change some of them. For example, we do not want to epoch during conversion, leave the default “continuous” option; we can epoch the data later using another SPM module.

Another change to the defaults is that we do not want to convert all channels in the original file (since many are extraneous), so will select a subset by their type. We first need to delete the default option to convert all channels. To do this, click “channel selection”, and scroll down until you can select the “Delete All(1)” option. Then click the “channel selection” again, but this time choose the option “New: Select channels by type”. This will add “Select channels by type” to the Current Module, and you will see “<-X” on the right hand side of this, indicating the need for user input. Click the “<-X” and then select “EEG” from the “Current Item” section. Repeat this process to additionally include the “MEG” and “MEGPLANAR” channels.

Finally, we want to read in the stimulus trigger channel, which for this dataset is called “STI101”. Note that you do not need to read in this channel when you use the event definitions provided by BIDS (we will use these BIDS definitions later). But to illustrate first how you could define those events yourself based on a trigger channel, we will include this channel. Click the “channel selection” again, but this time choose the option “New: Custom channel”. Select the new “<-X” that appears and specify “STI101” as the value.

The remaining options for conversion can be left with their default values (which includes the output filename, which defaults to the input filename, prepended with “spmeeg_”). Once all variables are specified, the play button on the top toolbar will turn green and the batch could be run. However, for this example, we will continue to use the current batch editor window, so do not press the play button yet.

Prepare (Define Channels)

The next step in the current pipeline is to update some other properties of the data using the “Prepare” module. This is a general-purpose “housekeeping” module that includes options like re-defining channel names, types, locations, etc. as specific to the particular laboratory set-up. In our case, some of the channels currently labeled EEG were in fact used to record EOG.

Select “Prepare”, from the preprocessing menu. Highlight “Prepare” in the Module list; this will open up the variables in the current module window. Again we need to complete those variables indicated by “<-X”. If we had already run the previous conversion stage, we could select the new “spmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” file produced by that stage as the input for this stage. Here however, we will create a pipeline in which all stages are run in one go, in which case we need to tell SPM that the output of the conversion step, even though not yet created, will be the input of this preparation step. You can do this by selecting the “Dependency” button located further down the window. This will open up a new window, listing all the processing steps up to this point. So far this is just one: the conversion step. Highlight this step and select “OK”.

The next variable to define is the “Select task(s)”. Clicking this variable will display a variety of options in the “current item” box. Within this, select “New: Set channel types from BIDS”, and then select the file “task-facerecognition_channels.tsv” in the main BIDS directory. This file contains meta-information about channels, including the fact that, for the specific MEG laboratory from which these data were acquired, channel EEG061 was actually HEOG, channel EEG062 was VEOG, channel EEG063 was ECG and channel EEG064 was unused (free-floating, so should be ignored).

Now create a second “Prepare” module, but this time select the “New: Set bad channels from BIDS” task, and again select the channel file “task-facerecognition_channels.tsv”. Then select the previous “Prepare” module as the dependency for input. This will update the data with those channels that were marked as “bad.” Actually, there were no bad channels marked for this dataset, but we include this step for a more generic pipeline, e.g., you could create a separate “*channels.tsv” file for each subject and mark channels that you think are bad. Note also that there are many other ways that bad channels can be defined automatically by SPM (or other MATLAB toolboxes such as those from FieldTrip), but these options are not explored here.

Define Trials

The onset of trials (events) are normally defined by codes sent from a stimulus machine to the MEG device, which are recorded in a trigger channel (which is channel STI101 in the present data). SPM has some ability to define trials from that channel, which we will illustrate in a brief digression. But for the main pipeline, we will read the trial definitions from a BIDS file instead, because in some subjects and runs, the trigger channel had a complex mixture of stimulus and key codes, and more generally, a trial-type may be defined by complex rules involving a combination of multiple triggers (e.g., when “correct trials” are defined as a specific stimulus code followed by a specific key code). Such complex and bespoke rules are beyond SPM's capabilities, so require the experimenter to define the trial onsets themselves.

Defining trials from trigger channel

If you want to try defining trials from the trigger channel, then you would add a new “Epoching” module. Select the output from the last “Prepare” module as the input dependency, and specify “Define trial” under the next “How to define trials” option. For “Time window”, enter [−100 500], for the start of prestimulus period and end of epoch (in ms). Then under “Trial definitions”, select “New: Trial” and enter “Famous” as the “Condition label”, “STI101_up” as the “Event type”, [5 6 7] as the “Event value” and “34” as the “Shift”. These choices tell SPM that the onset of Famous trials start when the trigger channel first reaches a value of 5, 6, or 7 (usually from a baseline value of 0)—since the trigger is often a top-hat pulse that lasts several samples. The trigger values are arbitrary, and defined by the experimenter. The 34 ms shift is because there is a delay of 2 screen refreshes at 60 Hz between the trigger pulse from the stimulus machine and when the visual projector actually presented the stimulus to the subject (this will depend on the MEG lab, and can be calibrated with a light diode).

Then select the “Replicate: Trial(1)” twice, and for the second “Trial”, change the “Condition label” to “Unfamiliar” and “Event” values to [13 14 15], and for the third “Trial”, change the “Condition label” to “Scrambled” and the “Event” values to [17 18 19].

Defining trials from BIDS file

For the main batch below, we will read the trials from a BIDS file, rather than the trigger channel, which we can do via yet another “Prepare” module. This will update the trial information within SPM's data structure, which will be used when the “Epoching” module is called later (in section Epoch, after downsampling and filtering, which are operations best done on continuous rather than epoched data).

In the new “Prepare” module, select the output from the last “Prepare” module as the input dependency, select the task “Load events from BIDS tsv file”, and then select the file “sub-15_ses-meg_task-facerecognition_run-01_events.tsv” (keep the default option of replacing previous trial definitions in file with these new BIDS ones). Now we can proceed to downsampling the continuous data.

Downsample

The data were sampled at 1,100 Hz, but for the analyses below, we rarely care about frequencies above 100 Hz. So to save processing time and disk space, we can downsample the data to 200 Hz (which includes a lowpass filtering to avoid aliasing). Select “Downsample” from the module list, click on “File Name”, select “Dependency” and in the pop-up window, select the prepared datafile at the bottom of the list. Next, set the downsampling rate by clicking the “New sampling rate” variable within the current module box. Type “200” into the pop-up window that appears and use “OK” to set this value. The output file of this stage will be prepended with a “d”.

If you want to review the continuous data in SPM, you can execute the steps so far by pressing the play button, and when it has finished, press “Display” on the main SPM menu, select “M/EEG”, then select the file “dspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat”. SPM's Graphics window should show the “Info” tab describing the steps done so far, the channels etc. If you select the “EEG” tab on the left, then you should see the EEG channels as in Figure 3 (which you can scroll through using slider at the bottom and change the scale etc. using icons at the top, and you might need to change the data scaling, e.g. press the fourth “downscale” button on top right of window, to exactly match Figure 3 below). Once you have finished reviewing the data, go back to the batch window so we can add some further processing steps (modules) that need to be performed on each run, before we explain how to script a loop over runs.
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FIGURE 3. Continuous EEG recordings in SPM graphics window.



Filter

Next, we want to remove low-frequency noise in the data by using a high-pass filter. Go to SPM->M/EEG->Preprocessing and add the “Filter” Module. Then from the current Module window, use “Dependency” to add the output of the previous, downsample module, leave “Type” as the default “Butterworth,” and change the “Band” to “Highpass”. For the “Cutoff(s)”, enter 1 (Hz) and leave the “Direction” variable as “Zero phase” and the “Order” as 5. Note that “Zero phase” in this case means that the 5th order filter is applied in a two-pass manner, resulting in an attenuation that corresponds to what would have been achieved using a one-pass filter with double the order (i.e., 10). The output file of this stage will be prepended with an “f”. We will additionally low-pass filter the data, to remove high-frequency noise (for event-related analyses)5. To do this, right click on the “Filter” in the Module List and select “replicate”. Change “Band” to “Lowpass” and enter 40 (Hz) for the “Cutoff(s)”, leave everything else as the default, except to update the input dependency to now be the output of the previous filter module above. This will prepend a second “f”. The filter type and order used here are the defaults in SPM. They normally work well for cases when there is no special concern about preserving the shape or latency of response peaks. The main advantage of Butterworth filters is that they have relatively little passband and stopband ripple. So noise close to the cut-off frequency cannot inadvertently be amplified by the filter. We refer the interested reader to Widmann et al. (2015) for a detailed discussion of filter design for electrophysiological data.

Epoch

In section Define Trials, we inserted the trial onsets and types from the BIDS events file into the SPM object. We now need to use these definitions to cut the continuous data into a number of epochs, one per trial. Select the filtered file from the previous step as the dependency for the input, and then press “Define Trial” for “How to define trials”. For the “Time window”, enter [−100 500], which corresponds to an epoch that starts 100 ms before the stimulus onset and stops 500 ms after. Then on “Trial definitions”, select “New:Trial” and enter “Famous” as the “Condition label”, “BIDS” as the “Event type” and “‘Famous”' as the “Event value”. Note the single quotes around the event value (to match the value given by the BIDS events file). Leave the “Shift” as 0 (because the times in the BIDS file have already been corrected for the 34 ms delay between trigger and stimulus appearing on screen described in section Define Trials).

Then select the “Replicate: Trial(1)” twice, and for the second trial, change the “Condition label” to “Unfamiliar” and “Event value” to “‘Unfamiliar',” and for the third trial, change the “Condition label” to “Scrambled” and the “Event value” to “‘Scrambled”' (not forgetting the single quotes). For the “Baseline correction” option, select “No.” This is because the high-pass filtering above will remove most of the signal drifts that baseline correction is normally used for. Note, however, that there is still a lively debate about whether baseline correction or high-pass filtering is a better method. The output from this step will be prepended with “e”.

Delete Intermediate Steps (Optional)

The four steps (modules) described above create a preprocessing pipeline for the data. If this pipeline is run straight away, there will be four new files output. If you are short of disk space, you might want to delete some of the intermediate files. To do this, select “SPM” from the top toolbar of the batch editor window and choose “M/EEG –> Other –> Delete” several times. Then you will need to specify the File Names to delete. Highlight each “Delete” module and set the File Name as the output of the “Prepare” step using the “Dependency” button to delete any output from the conversion/prepare step onward. However, do not delete the most recent step (epoching), which we need below, nor should you delete the downsampled file, because that will be the starting point for the alternative time-frequency analysis in Supplementary Appendix 1.

Create a script for combining pipelines within a subject

Once you have created a linear pipeline, you might want to repeat it on multiple runs (sessions) within a subject, or even across multiple subjects. In the present case, there were 6 independent MEG runs (separated only by a short period to give the subjects a rest), which can all be processed identically. One option would be to save the batch file, manually alter the “File Name” that is initially loaded into the batch editor, run it, and repeat this process separately for each run. A more powerful approach is to create a script.

To do this, we first need to remove the files specific to Run 01 above. In the batch window, select the “Conversion” task, then right-mouse on “File Name” and choose “Clear Value” (and the “<-X” should return). Repeat this right-mouse clearing of values on three remaining inputs: the “Set channel types from BIDS tsv” in the second and third “Prepare” modules, and the “Load events from BIDS tsv file” input in the fourth module6.

Now select File from the Batch Editor window, and select “Save Batch and Script”. This will produce two files: a batch file (same as that created when you save a batch) and also a MATLAB script that calls that batch file. So if you call the batch file “batch_er_convert_epoch”, you will get a batch file called “batch_er_convert_epoch_job.m” and a script file called “batch_er_convert_epoch.m” (see prepared examples in “manual” sub-directory that you downloaded into the “code” directory earlier).

The script file “batch_er_convert_epoch.m” will automatically be loaded into the MATLAB editor window, and should appear something like this:

[image: yes]

At the top of this script is listed the variable “nrun = X;”. Replace X with 6 for the six runs you wish to convert. You also need to complete the missing MATLAB code needed for each run: (1) the raw input *.fif file to convert for that run, (2) the BIDS *.tsv channel file (for the channel types), (3) the BIDS *.tsv channel file (for the bad channels), and (4) the BIDS *.tsv events file for that run. In order to automate selection of these files, you need to know some basic MATLAB. For example, because the BIDS files are named systematically, we can complete the relevant lines of the above script with:

[image: yes]

This completes the first part of the preprocessing pipeline. You can then run this script by selecting the green play button on the upper toolbar of the script MATLAB Editor window. The results will be 6 files labeled “effdspmeeg_sub-15_ses-meg_task-facere cognition_run-%02d_proc-sss_meg.mat”, where %02d refers to the run number 1–6 (with 0 in front). If you want to view any of these output files, press Display on the main SPM menu pane, select “M/EEG”, then select one of these files. You will be able to review the preprocessing steps as a pipeline from the “History” section of the “Info” tab, and can view single trials by selecting one of the EEG, MEG (magnetometer) or MPLANAR (gradiometer) tabs.

Merge (Concatenate Runs)

To analyse the data as one file, the six runs need to be merged. To do this, select “Merging” from “SPM –> M/EEG –> Preprocessing –> Merging”, select “File Names”, “specify”, and select the 6 file names “effdspmeeg_sub-15_ses-meg_task-facerecogn ition_run-%02d_proc-sss_meg.mat.” If you were to run this stage now, the output file would match the first input file, but be pre-pended with a “c”, i.e., “ceffdspmeeg_sub-15_ses-meg_task-facerecogn ition_run-01_proc-sss_meg.mat”. However, we will wait to add some more modules before running, as below. At this stage, you could also add “Delete” modules to delete all the previous individual run files (since the concatenated file will contain all trials from all runs, i.e., contain the same data).

Prepare (Montage for EEG Re-referencing)

First, we want to re-reference the EEG data to the average across channels (as is sometimes conventional for ERP analyses; note the MEG data have no reference). We can do this with the “Montage” module below, which is a general purpose module for creating new channel data from linear combinations of existing channel data. However, we first need to create a montage file, which includes a matrix that, when multiplied by the existing data, creates the new channel data. There is another sub-function (task) of the Prepare module that does this, so add another “Prepare” module, select the dependency on the previous merged file as the FileName, but for the “task”, select “Create average reference montage” and enter “avref_montage.mat” as the output filename. (If you want to look at this montage, you can run this module, load “avref_montage.mat” into MATLAB and look at the “montage.tra” matrix, where you can see that each new EEG channel is equal to the old EEG channel minus the average of all other EEG channels).

Montage

Now we have the montage file, we can apply it, in order to re-reference the EEG data to the average. Select “Montage” from the Preprocessing menu, and specify the “File Name” as being dependent on the output of the “Merge” module above. For the “Montage file name”, choose a different dependency, namely the output of the “Prepare” module above. Next, highlight “keep other channels” and select “yes” in the “Current Item” box, in order to keep all the MEG channels (which are unchanged). All other default values can remain the same. The output file will be prepended with “M”.

Artifact Detection

There are many ways to define artifacts (including special toolboxes; see other SPM manual chapters). Here we focus on just one simple means of detecting blinks by thresholding the EOG channels. Select “Artifact detection” from the “SPM –> M/EEG –> Preprocessing” menu. For the input file, select a dependency on the output of the previous step. Next, select “New: Method” from the box titled “Current Item: How to look for artifacts”. Back in the “Current Module” window, highlight “Channel selection” to list more options, choose “Select channels by type” and select EOG. Then do not forget to also delete the default “All” option! Then press the <-X to select “threshold channels”, click the “Specify” button and set this to 200 (in units of microvolts). The result of this thresholding will be to mark a number of trials as “bad” (these can be reviewed after the pipeline is run if you like). Bad trials are not deleted from the data, but marked so they will be excluded from averaging below. The output file will be prepended with the letter “a”.

Sort Conditions

At this point, we can also do one more bit of house-keeping within the same “Prepare” module, which is simply to re-order the condition labels. This only matters for the final stage of “Contrasting conditions” below, where the contrast weights assume a certain order of the conditions. The current order of conditions is based purely on the order they appear in the raw data (e.g., if the first few trials of the first run were: “Scrambled, Unfamiliar, Unfamiliar, Scrambled, Familiar…,” then the condition labels will be ordered “Scrambled-Unfamiliar-Familiar”), and this may vary across subjects. To set the condition order to be invariant across subjects, add a new task by selecting the “Sort conditions” task, then “Specify conditions lists” add three “New: Condition labels”, and name them “Famous,” “Unfamiliar” and “Scrambled” (in that order). Note that this operation does not physically reorder the trials at this stage, but just defines the order that will be used where required at later steps.

Combine Planar Gradiometers

The next step is only necessary for scalp-level analyses on planar gradiometers, but we include for completeness (see https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#Chap:data:multi for example of scalp-time statistics). Neuromag's planar gradiometers measure two orthogonal directions of the magnetic gradient at each location, so these need to be combined into one value for a scalar (rather than vector) topographic representation. The simplest way to do this is to take the Root Mean Square (RMS) of the two gradiometers at each location (i.e., estimate the 2D vector length). In SPM, this will create a new sensor type called MCOMB. Note that this step is NOT necessary for source reconstruction (where the forward model captures both gradiometers). Note also that the RMS is a non-linear operation, which means that zero-mean additive noise will no longer cancel by averaging across trials, in turn meaning that it is difficult to compare conditions that differ in the number of trials. To take the RMS, select “Combine Planar” from the “SPM –> M/EEG –> Preprocessing menu”, highlight “FileName”, select the “Dependency” button, and choose the Artifact-corrected file above. Change the “copying mode” to “Append planar”. The file produced will be prepended with “P.”

Average Trials

To average the data across trials, select “SPM –> M/EEG –> Averaging –> Averaging”, and again define the input as dependent on the output of the “Combine Planar” module above. Keep the remaining options as the default values. (If you like, you could change the type of averaging from “Standard” to “Robust”. Robust averaging is a more sophisticated version of normal averaging, where each timepoint in each trial is weighted according to how different it is from the median across trials. This can be a nice feature of SPM, which makes averaging more robust to atypical trials, though in fact it does not make much difference for the present data, particularly given the large numbers of trials, and we do not choose it here simply because it takes much longer than conventional averaging.) Once completed, this file will have a prefix of “m”.

Contrast Conditions

We can also take contrasts of our trial-averaged data, e.g., to create a differential evoked response (ER) between faces and scrambled faces. This is sometimes helpful to see condition effects, and plot their topography. These contrasts are just linear combinations of the original conditions, and so correspond to vectors with 3 elements (for the 3 conditions here). Select “SPM –> M/EEG –> Averaging –> Contrast over epochs”, and select the output of averaging above as in the dependent input. You can then select “New Contrast” and enter as many contrasts as you like. The resulting output file is prepended with “w”. For example, to create an ER that is the difference between faces (averaged across Famous and Unfamiliar) and scrambled faces, enter the vector [0.5 0.5 −1] (assuming conditions are ordered Famous-Unfamiliar-Scrambled; see comment earlier in “Prepare” module), and give it a name via the “New condition” label. Or to create the differential ER between Famous and Unfamiliar faces, enter the vector [1 −1 0]. Sometimes it is worth repeating the conditions from the previous averaging step by entering, in this case, three contrasts: [1 0 0], [0 1 0], and [0 0 1], for Famous, Unfamiliar and Scrambled conditions, respectively. These will be exactly the same as in the averaged file above, but now we can examine them, as well as the differential responses, within the same file (i.e., same graphics window when we review that file), and so can also delete the previous “m” file.

As with the previous pipeline, if you are short of disk space (particularly if you later run all 16 subjects), the outputs produced from the intermediate stages can be deleted using the “SPM –> M/EEG –> Other –> Delete” function (see earlier).

Save batch and review

At this point, you can save the script again. The resulting batch file should look like the “batch_er_merge_contrast_job.m” example you downloaded into in the “code/manual” directory. We will start by looking at the trial-averaged ERs to each of the three conditions. Select the “Display” button on the SPM Menu and select the file “wmPaMceffdspmeeg_sub-15_ses-meg_task-facere cognition_run-01_proc-sss_meg.mat”. Then select, for example, the EEG tab, and you will see each channel as a row (“strip” or “standard view”) for the mean ER for Famous faces. If you press “scalp” instead, the channels will be flat-projected based on their scalp position (nose upwards). You can now display multiple conditions at once by holding the shift-key and selecting Trials 2 and 3 (Unfamiliar and Scrambled) as well. If you press the expand y-axis button (top left) a few times to up-scale the data, you should see something like in Figure 4. You can see the biggest evoked potentials (relative to average over channels) at the back of the head.
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FIGURE 4. Trial-averaged ERPs for each condition over all EEG channel positions on the scalp.



If you press the magnifying glass icon, then with the cross-hairs select Channel 70 (in bottom right quadrant of display), you will get a new figure like in Figure 5A that shows the ERPs for that channel in more detail (and which can be adjusted using the usual MATLAB figure controls). You can see that faces (blue and red lines) show a more negative deflection around 170 ms than do scrambled faces (yellow line), the so-called “N170” component believed to index one of the earliest stages of face processing.
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FIGURE 5. (A) Single-channel ERP for each condition, (B) Topography for differential ERP for faces minus scrambled faces.



To see the topography of this differential N170 component, select instead the fourth trial (contrast) labeled “Faces—Scrambled”. Then press the colored topography icon, and you will get a new figure with the distribution over the scalp of the face-scrambled difference. If you shift the time-slider on the bottom of that window to the leftmost position, and then repeatedly click on the right arrow, you will see the evolution of the face effect, with no consistent difference during the prestimulus period, or until about 155 ms, at which point a clear dipolar field pattern should emerge (Figure 5B).

You can of course explore the other sensor-types (magnetometers, MEG) and combined gradiometers (MCOMB), which will show an analogous “M170”. You can also examine the EOG and ECG channels, which appear under the OTHER tab. (Note that the VEOG channel contains a hint of an evoked response: this is not due to eye-movements, but due to the fact that bipolar channels still pick up a bit of brain activity too. The important thing is that there is no obvious EOG artifact associated with the difference between conditions, such as differential blinks).




SOURCE RECONSTRUCTION


Motivation and Background

The aim of the source reconstruction step is to estimate the distribution of cortical sources that give rise to the MEG/EEG signals observed at the sensor level. This is a non-trivial inverse problem because, for any pattern of sensor values, there could be infinitely many source distributions that would all fit it perfectly (in the same way that infinitely many possible 3D objects produce the same 2D shadow). To arrive at a unique solution, additional constraints (regularization terms or priors) must be introduced, and depending on the nature of these constraints, different solutions could be obtained for the same data. Here we will focus on the “imaging” or “distributed” solution to the inverse problem, specifically two approaches that minimize the L2-norm of the data fit and regularization term(s), either with a uniform prior on the variance of source activities (similar to the classical Minimum-Norm Estimate, MNE), or with multiple, localized regularization terms that encourage a sparse solution (called “MSP” in SPM for “Multiple Sparse Priors”). Note that SPM does offer other inverse solutions, such as a Bayesian implementation of Equivalent Current Dipoles (Kiebel et al., 2008), and also Dynamic Causal Modeling (DCM; David et al., 2006), which can be viewed as a type of inverse solution.

The imaging solution assumes that the sensor-level activity is a result of summation of a large number of dipolar sources distributed over the cortical sheet. These sources have fixed locations and orientations, and the only unknown quantity is their amplitude. The extent to which each sensor sees each source is given by the so-called “lead-field”. This is a vector that can be computed using models rooted in the known physics of electromagnetic fields (more precisely in approximations to Maxwell's equations). These models are called “forward models” because they solve the opposite of the inverse problem—computing the sensor-level signals when the source distribution is known. The forward problem is linear in the source amplitudes meaning that the combined effect of all the sources can be computed by summing their lead-field vectors multiplied by the corresponding source amplitudes. Mathematically this is represented as a matrix multiplication of a lead-field (or gain) matrix L, with the dimensions of number of sensors by number of cortical mesh vertices, and a vector of source current densities J.
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Y here is the sensor data and ε is random sensor noise. To compute the matrix L it is necessary to provide information about the head geometry, sensor locations and head tissue conductivities. The latter are especially important for EEG. There can be different ways of doing the forward computation which make different simplifying assumptions and achieve different degree of accuracy. In SPM one can use for EEG either a 3-shell spherical model (Cuffin and Cohen, 1979) or a Boundary Element Model (BEM) (Waberski et al., 1998). For MEG there is a choice between a single sphere model, local spheres (Huang et al., 1999) and a single shell model (Nolte, 2003). The latter was shown to perform well in relation to more elaborate BEM models for MEG (Stenroos et al., 2014) and we will use it here. The anatomical information for forward models in SPM can be obtained from the subject's individual structural MRI or from a scaled template head model. Here we will use the former option as we have individual structural images for all the subjects. SPM uses its sophisticated computational neuroanatomy toolkit (Ashburner and Friston, 2005) to obtain individual head and cortical meshes by inverse normalization of template meshes (Mattout et al., 2007). This works much faster than the commonly used FreeSurfer pipeline (Dale et al., 1999) and is robust also for low quality images. An additional advantage is the ability to easily map between individual and canonical anatomy via the use of isomorphic cortical mesh. This ability is important for group inversion and statistical analysis on meshes described below.

The SPM approach to the inverse modeling in the Parametric Empirical Bayes (PEB) framework has been described in several previous publications. Friston et al. (2008) describe the mathematical details of the approach. A more accessible tutorial introduction to the same ideas is given by López et al. (2014). Since the original publication, there have been several extensions of the method, such as introducing group constraints across subjects (Litvak and Friston, 2008), combining different MEG sensor types and EEG in the same inversion (Henson et al., 2009b), using priors derived from fMRI (Henson et al., 2010) and adding a beamforming-like approach to the framework (Belardinelli et al., 2012). A detailed description of the theoretical underpinnings of the analyses shown here is available in Henson et al. (2011).

In brief, it can be shown that assuming that the source activities vector J is sampled from a multivariate normal distribution with zero mean, knowing the covariance matrix of this distribution gives a unique solution for any particular sensor topography. The problem then comes down to estimating this covariance matrix and this is done by representing it as a weighted sum of a relatively small (compared to the number of sources) number of covariance components. Each of these components represents particular assumptions about the source distribution. For instance, an identity matrix component represents the assumption of independent and identically distributed sources that gives a solution equivalent to the classical minimum norm estimate, as noted above (Hämäläinen and Ilmoniemi, 1994). In a similar way it is possible to represent a smoothness constraint similar to that of the Low Resolution Electromagnetic Tomography (LORETA) (Pascual-Marqui et al., 1994). Finally, it is possible to also add components representing activated “patches” on the cortical surface which can be unilateral or bilaterally symmetric. This is the “Multiple Sparse Priors” approach (Friston et al., 2008). Each combination of weights of the covariance components gives a unique inverse solution and can be evaluated in the Bayesian framework by its variational free energy, a cost function combining in a principled way the accuracy (goodness of fit) and complexity of the solution. Computing the inverse solution, therefore, comes down to using a computational optimisation scheme to find the weights of the covariance components that maximize the free energy. There can be different variants of the optimisation scheme and the two currently implemented are called Greedy Search (GS) and Automatic Relevance Determination (ARD). To make the scheme computationally efficient, SPM uses several methods for data reduction and as a consequence it does not work on single topographies but on time windows, and reconstructs the changes in activity within the time window rather than activity per se. This is different from traditional implementations of inverse solutions used in most other toolboxes, and means that the inverse operator is data-dependent.



Tutorial Walkthrough

To estimate the cortical sources that give rise to the EEG and MEG data, we will continue to use Subject 15, in order to demonstrate forward and inverse modeling. We need to use the structural MRI of the subject to create a “head model” (that defines the cortex, skull and scalp in terms of meshes) and then a “forward model” (that uses a conductor model to simulate the signal at each sensor predicted by a dipolar source at each point in the cortical mesh).

You can view the structural (T1-weighted) MRI of Subject 15 by displaying the NIfTI file “sub-15_ses-mri_acq-mprage_T1w.nii” in the BIDS “outpth/sub-15/anat” sub-directory. The approximate position of 3 fiducials within this MRI space—the nasion, and the left and right pre-auricular points—are stored in the file “sub-15_ses-mri_acq-mprage_T1w.json” in the same directory (you can type them into SPM's display window when reviewing the MRI to see where they are—note they refer to indices of voxels within the image matrix, not coordinates in real-space). These were identified manually (based on anatomy, and before the face was removed from the MRI images) and are used to define the MRI space relative to the EEG and MEG spaces, which need to be coregistered (see below).

To estimate total power (evoked and induced) of the cortical sources, we need to have the original data for each individual trial. Therefore, our input file will be “aMceffdspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” (we could select the trial-averaged file if we just wanted to localize evoked effects). Note that one cannot localize RMS data from combined gradiometers (nor can one localize power or phase data directly).

Create Head Model

Select the source reconstruction option in the batch window, and select “Head model specification”. Select the file “aMceffdspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” as the “M/EEG datasets”, and the “inversion index” as “1” (this index can track different types of forward models and inverse solutions, for example if you want to compare them in terms of log-evidence, e.g., Henson et al., 2009a). Additional comments relating to each index can be inserted if “comments” is selected.

The next step is to specify the meshes. Highlight “meshes” and select “mesh source”. From here select “Individual structural image” and select the “sub-15_ses-mri_acq-mprage_T1w.nii” file in the BIDS “outpth/sub-15/anat” sub-directory. The mesh resolution can be kept as normal (approximately 4,000 vertices per hemisphere). Note that the cortical mesh (and scalp and skull meshes) are created by warping template meshes from a brain in MNI space, based on normalizing this subject's MRI image to that MNI brain (Mattout et al., 2007).

To coregister the MRI and MEEG data, we need to first specify the three fiducials points. You could type each point's 3D coordinates by hand, or more simply, select the option “Coregistration based on BIDS json file”, and then select the “sub-15_ses-mri_acq-mprage_T1w.json” file in the “outpth/sub-15/anat” sub-directory mentioned above. As well as the fiducials, a number of head-points across the scalp were digitized. These were read from the FIF file and stored in the SPM MEEG file. These can help coregistration, by fitting them to the scalp surface mesh (though sometimes they can distort coregistration, e.g., if the end of the nose is digitized, since the nose does not always appear on the scalp mesh, often because it has poor contrast on T1-weighted MRI images, or because face has been removed, as here). If you keep “yes” for the “use headshape points” option, these points will be used, but you will notice that alignment of the fiducials is not as good (as if you don't use the headshape points), most likely because the nose points are pulling it too far forward. So here we will say “no” to the “use headshape points” option, so as to rely on the fiducials alone, and trust the anatomical skills of the experimenter. (Alternatively, you could edit the headpoints via the command line or a script so as to remove inappropriate ones).

Finally, for the forward model itself, select EEG head model, and specify this as “EEG BEM”; select MEG head model and specify this as “Single Shell”. This can then be run. Note that the model parameters are saved, but the gain matrix itself is not estimated until inversion.

Save batch and review

You can now save this inversion batch file (it should look like the “batch_forward_model_job.m” file in the “code/manual” directory). Once you have run it, you can explore the forward model by pressing the “3D Source Reconstruction” button within the SPM Menu window (Figure 1A). This will create a new window (Figure 1C), in which you can select “Load” and choose the “aMceffdspmeeg_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” file. On the left hand side of the source localization window, select the “display” button below the “MRI” button. This will bring up the scalp (orange), inner and outer skull (red) and cortical (blue) meshes of Subject 15's brain, like in Figure 6A (after rotating slightly with MATLAB's 3D tool). Note that the fiducials are shown by cyan disks.


[image: image]

FIGURE 6. Coregistration of meshes with MRI (A) and meshes with EEG and MEG (B,C) and surfaces used for forward model (D).



Next, select the “display” button beneath “Co-register” and then select “EEG” when asked what to display. The graphics window should then display an image like in Figure 6B that displays the electrode locations in black disks, the digitized headpoints in small red dots, the fiducials in the EEG data as purple diamonds, and the MRI fiducials as cyan disks again. The overlap between the EEG fiducials and MRI fiducials indicates how well the data have been coregistered (assuming no error in marking these anatomical features). If you select the “display” button beneath “Forward Model” and choose EEG or MEG, you should see an image displaying the sensors relative to the surfaces used for the forward model (Figures 6C,D).

Model Inversion

We will compare two approaches to inverting the above forward model (both within a Parametric Empirical Bayesian framework). The first one corresponds to a L2-minimum norm, i.e., fitting the data at the same time as minimizing the total energy of the sources. This is called “MNM” (for “Minimum Norm”) or “IID” (for “Independent and Identically-Distributed”) in SPM because it corresponds to assuming that the prior probability of each source being active is independent and identically distributed (i.e., an identity matrix for the prior covariance), but conceptually it is very similar to classical MNE, except that the degree of regularization is estimated as part of the overall model evidence.

Go back to the batch editor, and select “M/EEG - Source reconstruction – Source Inversion”. Select the same input file “aMceffds pmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat”, and set the inversion index to 1. Highlight “what conditions to include” and select “All”. Next highlight inversion parameters, choose “custom” and set the inversion type to “IID”. Then enter the time window of interest as “[−100 500]”. Set the frequency window of interest to “[6 40]”. Select “yes” for the “PST Hanning window” but do not select any file for source priors (we will add fMRI priors later). Keep all the remaining parameters at their defaults, including the “Modalities” as “All” (which will simultaneously invert, or “fuse,” the data from the EEG, magnetometers and gradiometers; Henson et al., 2009b).

The second type of inversion we will examine is unique to SPM, and is called “Multiple Sparse Priors”, which corresponds to a sparse prior on the sources, namely that only a few are active. Go back to the batch editor, add another “M/EEG - Source reconstruction – Source Inversion” module, and select the same input files as before (“aMceffdspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat”), but this time set the inversion index to 2. Set the inversion parameters to “custom”, but the inversion type to be “GS”. This is one of several fitting algorithms for optimizing the MSP approach: Greedy Search (GS), Automatic Relevance Detection (ARD) and GS+ARD. We choose GS here because it is quickest and works well for these data. The remaining parameters should be made to match the MNM (IID) inversion above.

Time-Frequency Contrasts

Here we are inverting the whole epoch from −100 to +500 ms (and all frequencies), which will produce a timecourse for every single source. If we want to localize an effect within the cortical mesh, we need to summarize these 4D data by averaging power across a particular time-frequency window. To do this, select “M/EEG - Source reconstruction – Inversion Results”. Specify the input as dependent on the output of the source inversion, and set the inversion index to 1. Here we will define the time window of interest to “[100 250]” and the frequency window of interest to “[10 20]”, based on the results of the group sensor-level time-frequency analyses in Supplementary Appendix 1. For the contrast type, select “evoked” from the current item window, and the output space as “MNI”. Then replicate this module to produce a second “inversion results” module, simply changing the index from 1 to 2 (i.e., to write out the time-frequency contrast for the MNM (IID) as well as MSP (GS) solution).

Now the source power can be written in one of two ways: 1) either as a volumetric NIfTI “Image,” or as 2) a surface-based GIfTI “Mesh”. We will chose “Mesh” here to write out GifTI surfaces, keeping the default cortical smoothing of 8.

Save batch and review

You can now save this inversion batch file (it should look like the “batch_localise_meeg_job.m” file in “code/scripted”). It will take a while to run (because it has to create the gain matrix for the first time), after which you can review the inverse results from within the same “3D Source Reconstruction” interface that you used to examine the forward model above. You have to re-“Load” the “aMceffdspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” file. The latest inversion index will be shown (2 in this case), but if you enter 1 for the inversion index, you can see the results of the MNM (IID) inversion. Press the “mip” button below the “Invert” button, and you should see something like Figure 7. The top plot shows the evoked responses for the three conditions from the peak vertex (at +53 −57 −11, i.e., right fusiform) at 165 ms, with the red line being the currently selected condition, here “1” for Famous faces (press the “condition” button to toggle through the other conditions). If you press “display” under the “Window” button, you can see a MIP for the time-frequency contrast limited to the 100–250 ms, 10–20 Hz specified above, or if you press the “display” under the “Image” button, you will see a rendered version.


[image: image]

FIGURE 7. Source solution example MIPs for EEG Modality in subject 15.



If you press the “next” button to select index 2, you can select the MSP inversion. Press the “mip” button again, and you should see results that are sparser and deeper inside the brain, in medial and anterior temporal cortex. One important innovation of SPM's source reconstruction code is the ability to compare different model assumptions (e.g. MNM vs. MSP) in terms of their Bayesian model evidence. In this case, this MSP solution has a higher model evidence, so is more likely to have generated the data. We will compare these two inverse solutions in a different way when we do group statistics below.

If you like, you can also explore other inversion options, either with batch or with this reconstruction window (e.g., creating new inversion indices, though keep in mind that the associated “aMceffdspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” file can get very large).

Create a script for analysis across subjects

Now that we have created a pipeline for forward and inverse modeling, we can script it to run on the remaining 15 subjects. An example is given in the “batch_master_script.m” in the “code/manual” directory:

[image: yes]

Once you have run this script, we can do statistics on the source power GIfTI images created for each subject.




GROUP AND FMRI OPTIMIZED SOURCE RECONSTRUCTION


Motivation and Background

Because of the indeterminacy of the inverse problem, it is helpful to provide as many constraints as possible. One constraint is to assume that every subject has the same underlying source generators, that are simply seen differently at the sensors owing to different anatomy (head models) and different positions with respect to the sensors (forward models). In the Parametric Empirical Bayes (PEB) framework, this corresponds to assuming the same set of source priors across subjects (allowing for different sensor-level noise; see Litvak and Friston, 2008). This group-based inversion can be implemented in SPM simply by selecting multiple input files to the inversion routine.

A second constraint is to use prior spatial information, i.e., significant clusters from the group fMRI analysis of the same subjects (see Supplementary Appendix 2). This corresponds to an asymmetric integration of multiple modalities, because the significant fMRI clusters are used as priors for the group-optimized source reconstruction of the fused MEG and EEG data (rather than the fMRI data being simultaneously fit in a symmetric integration; see Henson et al., 2011, for further discussion of symmetric vs. asymmetric integration of fMRI and M/EEG). Below, each fMRI cluster will become a separate prior, allowing for the fact that activity in those clusters may occur at different times relative to the time window being localized (which cannot be distinguished by the poor temporal resolution of fMRI). Because SPM's inversion algorithm estimates the weighting (hyperparameter) for each cluster separately, and because there are hyperpriors on those weightings that tend to shrink them to zero, priors that are not helpful in maximizing the variational free energy become discounted, i.e., the fMRI clusters are “soft” priors, allowing a form of “automatic relevance detection”. Henson et al. (2010) confirmed this behavior in practice: when added to a minimum-norm inversion, invalid fMRI priors were generally discounted, but valid priors were kept, and increased the variational free energy (model log-evidence).



Tutorial Walkthrough

We will use an image of suprathreshold clusters for the contrast of “faces > scrambled” faces from the group fMRI analysis described in Supplementary Appendix 2. This image contains three clusters (left and right occipital face areas and right fusiform face area), each of which will become a separate source prior. This image is stored in the “spmT_0002_05cor.nii” file available from the Figshare link provided earlier.

We can combine group-based optimisation of fMRI priors using code like below:

[image: yes]

In each subject's “aMceffdspmeeg_sub-15_ses-meg_task-facerecognition_run-01_proc-sss_meg.mat” file, these group-optimized reconstructions using fMRI-priors will be indexed as 3 and 4, so you can compare with the previous MNM and MSP reconstructions indexed as 1 and 2 (by pressing the index button after loading this file via the “3D Source Reconstruction” window described above). You can compare the model log-evidences to see which set of constraints is most likely to have generated the sensor data (for a given subject). Below, we will compare group statistics for the four different reconstructions.




GROUP STATISTICS ON SOURCE RECONSTRUCTIONS


Motivation and Background

Neuroimaging data analyses in most cases produce results in the form of signals (e.g., single channel evoked response), 2D images (e.g., time-frequency image of an induced response), 3D volumes (e.g., source reconstruction result) or multidimensional arrays (e.g., a series of source images for adjacent windows in peri-stimulus time). We will refer to all of these as “images” here. When applying statistical analyses to images, it is important to note that in most cases they are inherently smooth e.g., the values for adjacent time points in an evoked response or for adjacent voxels in a functional brain image are correlated across different realizations of the image (e.g., across subjects or trials). A classical statistical test applied to an image will produce an image of the test statistics (e.g., T or F) and a corresponding image of p-values. When using a threshold α for the control of false positive rate (e.g., p < 0.05), it is expected that under the null hypothesis (when there is no true effect in the data), for a fraction of tests corresponding to α, we will reject the null hypothesis falsely by chance. Therefore, when each test looks at an image of values with often thousands or more pixels or voxels, it is guaranteed that many of them will be deemed significant unless a correction for multiple comparisons is applied. One way to perform this kind of correction is to control the family-wise error rate (FWER): the probability of rejecting the null hypothesis for any voxel over the whole image. For independent observations, the FWER scales with the number of observations, such that a simple method for controlling FWER is the Bonferroni correction. However, this procedure is rarely adopted in neuroimaging because neighboring observations are often correlated, i.e., for smooth data, Bonferroni correction is too conservative.

SPM uses a different kind of correction based on Random Field Theory (RFT) (Worsley et al., 1992). It is based on mathematical insights into the properties of noise images of certain smoothness. These insights make it possible to quantify the likelihood of an excursion of a certain amplitude in these images. The threshold for an excursion can then be analytically computed to set the probability of crossing it anywhere in the image to α. Excursions exceeding the threshold are treated as significant effects. This approach is often referred to as “peak-level” correction and has been shown to be robust under a wide range of circumstances. RFT can also be applied to predict the probability of excursions based on their spatial extent rather than amplitude (Friston et al., 1994b). This approach is called “cluster-level” correction. It requires defining a “cluster forming threshold” which is an extra parameter in the analysis that alters the sensitivity of the test to large excursions of small amplitude vs. small excursions of large amplitude. Concerns have recently been raised about the cluster-level correction not controlling the FWER at the stated level (Eklund et al., 2016). The underlying issue has to do with the fact that the cluster-level procedure relies on additional assumptions compared to peak-level, and these assumptions only hold for sufficiently high cluster-forming thresholds (Flandin and Friston, 2017). The default uncorrected threshold in SPM of p < 0.001 is suitable for cluster-level inference, but popular less conservative thresholds such as p < 0.01 and p < 0.05 are not.

The statistical parametric mapping approach that gave its name to the SPM toolbox combines RFT with the use of the General Linear Model (GLM). GLM is a generic statistical framework that includes, as particular cases, many commonly used univariate statistical designs, such as dependent and independent samples t-tests, Analysis of Variance (ANOVA) and multiple regression. An essential element of the GLM is the design matrix, which is often shown as an image in reports generated by SPM. The rows in this matrix correspond to the images in the test (e.g., for each subject or trial), while the columns represent the independent variables specified by the experimenter to explain the data. These variables can be binary indicators (e.g., whether an image belongs to group A or group B) or real numbers (e.g., age or reaction time). The model is fit to each voxel in the data (this is called a “mass-univariate” approach) and the result is a set of coefficients for each column of the design matrix that minimize the residual not explained by the model in the least squares sense. These coefficients can also be represented as an image of the same type and dimensions as the inputs.

The outputs of GLM fitting can be interrogated by specifying contrasts. T-contrasts test whether any linear combination of column coefficients is either positive or negative. This is useful, for example, to ask whether the signal in group A is higher than in group B. F-contrasts test whether some part of the design (which can be specified as a combination of T-like contrasts or a set of columns in the design matrix) explain significant amount of variance in the data. Each T- or F-contrast generates a corresponding statistical image of T- or F- statistic, respectively, and these are the images to which RFT can be applied to identify significant effects. The GLM can also be applied in a hierarchical fashion using the summary statistic approach. For example, the images of coefficients for linear regression across trials in each subject can be subjected to an independent-samples t-test at the between-subject level to compare patients and controls.

A detailed description of the GLM is outside the scope of the present paper and the interested reader is referred to the original paper that introduced GLM to neuroimaging (Friston et al., 1994a) as well as the more recent discussion of the application of this approach to MEG/EEG (Kilner and Friston, 2010).



Tutorial Walkthrough

Model Specification

Open a new batch, select “Factorial design specification” under “Stats” on the “SPM” toolbar at the top of the batch editor window. We will show here how to set up a statistical analysis on meshes for the individual MNM inversions. The other analyses are analogous and will be set-up automatically with a script.

The first thing is to specify the output directory where the SPM stats files will be saved. So first create such a directory “outpth/meg/IndMNMStats”. Highlight “Design” and from the current item window, select “One-way ANOVA–within subject” (somewhat confusingly, this is not an analysis within one subject, but an analysis in which multiple measures come from “within” each subject, also called a “repeated-measures ANOVA”). Highlight “Subjects” and create a “New:subject”. In the “scans” field, you can now select 3 source power GIfTI images for the first subject that have been created in the “sub-01/meg/” folder and enter the “Conditions” as “[1 2 3]”. It is important for the contrasts below that you select the files in the order Famous-Unfamiliar-Scrambled. You can then select “Replicate: Subject” under the “Subjects” item, keeping the “Conditions” unchanged, but changing the “Scans” to those in “sub-02/meg/”. You can then repeat these steps for the remaining subjects. Or if you prefer (as it is cumbersome with the GUI), you can create 16 blank “Subject” items, save the batch script, and then populate the “Scans” field (and “Conditions” field) via a MATLAB script. Finally, set the “Variance” to “Unequal” and the “Independence” to “No” (to model the error correlation, i.e., non-sphericity, Friston et al., 2002). Keep all the remaining defaults.

This now completes the GLM specification, but before running it, we will add two more modules.

Model Estimation

The next step within this pipeline is to estimate the above model. Add a module for “Model estimation” from the “Stats” option on the SPM toolbar and define the file name as being dependent on the results of the factorial design specification output. Leave the other options with their default value.

Setting Up Contrasts

The final step is to add a module for creating contrasts from “SPM->Stats->Contrast Manager”. Define the file name as dependent on the model estimation. The first contrast will be a generic one that tests whether significant variance is captured by the first 3 regressors. This corresponds to an F-contrast based on a 3 × 3 identity matrix. Highlight “Contrast sessions” and select a “new F-contrast”, using the current item module. Name this contrast “All Effects”. Then define the weights matrix by typing in “eye(3) ones(3,16)/16” (which is MATLAB for a 3 × 3 identity matrix, followed by 1/16 for each of the 16 subject effects; the latter being necessary if one wants to see absolute changes in power vs. baseline). You can use this contrast to plot the parameter estimates for the 3 conditions for a given voxel, if you want.

More interestingly perhaps, we can also define a contrast that compares faces against scrambled faces. So this time make a T-contrast, name this one “Faces (Fam+ Unf)> Scrambled”, and type in the weights “[0.5 0.5–1]”. (If you want to look at power decreases, you can create another T-contrast and reverse the sign of these contrast weights).

Save batch and review

Once you have added all the contrasts you want, you can save this batch file (it should look like the “batch_stats_rmANOVA_job.m” file in the code/manual directory, though that example also includes some additional contrasts that might be of interest, but which we have not created here).

Now we want to repeat this ANOVA on the remaining three inversions, i.e. four in total, crossing MSP vs. MNM inversion, with group inversion with vs. without fMRI priors. We can script this, like below:

[image: yes]

(where the “Ind” prefix in the output directories refers to “individual” source reconstructions and “fMRIGrp” to group-optimized inversions with fMRI priors).

Viewing results

The results of the above ANOVAs (GLMs) can be viewed by selecting “Results” from the SPM Menu window. Start by selecting the “SPM.mat” file in the “STStats/meg/IndMNMStats” directory, and from the new Contrast Manager window, select the pre-specified contrast “Faces (Fam+Unf)>Scrambled”. Within the “Stats: Results” bar window, which will appear on the left hand side, select the following: “Apply Maskings” “None”, “P value adjustment to control” “FWE”, keep the threshold at 0.05, “extent threshold {voxels}” 0; “Data Type” “Volumetric 2D/3D”. The top of the Graphics window should then show the maximal intensity projection (MIP) of the suprathreshold voxels, as in Figure 8A (after having right-clicked on the rendered mesh, selecting “View” and then “x-y view (bottom)”, in order to reveal the underside of the cortex). Note the broad right fusiform cluster, with additional clusters on left and more anteriorly on right. You can compare this to the fMRI group results in Supplementary Figure A2.1, which are similar, but much more focal.


[image: image]

FIGURE 8. Group SPM for Faces vs. Scrambled power on cortical mesh between 10 and 20 Hz and 100 and 250 ms across all 16 subjects at p < 0.05 FWE corrected for MNM (A) and MSP (B).



You can also look at the results of the MSP inversion by selecting the “SPM.mat” file in the “MEEG/IndMSPStats” directory (Figure 8B). This reveals much more focal clusters in right fusiform face area (FFA) and left and right occipital face area (OFA), more like the fMRI (see Supplementary Figure A2.1).

To examine the results of inversions with group optimisation and fMRI priors, select the “SPM.mat” files from “fMRIGrpMNMStats” and “fMRIGrpMSPStats”, and choose the same corrected threshold. You should see results like in Figure 9A, where the group-optimized fMRI priors have focused the suprathreshold clusters to the right FFA and OFA (cf. Figure 8A). For the MSP inversion however, the addition of fMRI priors does not help much, with nothing surviving a corrected threshold. Lowering the threshold to p < 0.001 uncorrected reveals a right OFA and left anterior temporal region (Figure 9B). For further, more formal comparisons of fMRI priors (see Henson et al., 2010).


[image: image]

FIGURE 9. Group SPM for Faces vs. Scrambled power on cortical mesh between 10 and 20 Hz and 100 and 250 ms across all 16 subjects using group-optimisation of MNM (A) and MSP (B) together with fMRI priors. (A) is thresholded at p < 0.05 FWE corrected, (B) at p < 0.001 uncorrected.



This concludes this demonstration of SPM12 multimodal integration of MEG, EEG and fMRI, but feel free to explore yet further options in the software (in conjunction with Litvak et al., 2011).




AUTHOR CONTRIBUTIONS

RH provided the data, designed, and performed the analysis, and wrote the paper. HA tested the analysis and helped write the paper. GF helped format the data, helped with the SPM software, checked the analysis, and helped write the paper. VL is lead developer of the SPM software for M/EEG, helped with the analysis, and helped write the paper.



FUNDING

This work was supported by MRC programme grant to RH (SUAG/010 RG91365). GF and VL are supported by core funding from the Wellcome Trust (203147/Z/16/Z). The work was also part of the UK MEG community supported by Medical Research Council grant MR/K005464/1.



ACKNOWLEDGMENTS

We thank Rebecca Beresford for her help preparing the paper, two reviewers for their comments, and Joe Wexler, Krzysztof Gorgolewski, and Guiomar Niso for help with the BIDS format. We also thank Sung-Mu Lee and Delshad Vaghari for working through the examples and making a number of suggestions and corrections to the paper.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2019.00300/full#supplementary-material



FOOTNOTES

1Note that these results are from a subset of the analyses reported in Chapter 42 of the SPM12 manual, which is available online at https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#Chap:data:multi, but has not previously been published in a peer-reviewed journal.

2A non-BIDS version of the same dataset can be found here: ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn.

3If the download from a browser fails due to the size of the file, you can use the AWS Command Line Interface (https://aws.amazon.com/cli) with: aws s3 synch –no-sign-request s3://openneuro.org/ds000117/yourpath.

4Detailed instructions for installation are available at https://www.wikibooks.org/wiki/SPM#Installation.

5In MATLAB, a bandpass filter is not equivalent to the combination of the corresponding high- and low-pass filters. A bandpass filter is more suitable for narrow bands, and bandpass filters with the lower edge very close to zero, such as [0.1 30], can become unstable. When doing low- and high- pass filtering separately it is recommended to start with the high-pass because it removes the DC offset that could create ringing artifacts at the data edges. This is particularly important for filtering epoched data but depending on the magnitude of the DC offset, could also be relevant for continuous data.

6The channel definitions and bad channels do not actually depend on run in this dataset, so could be left as is. However, in general they might (e.g., if channels did go bad between runs).
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Neurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography (NUTMEG) is an open-source MATLAB-based toolbox for the analysis and reconstruction of magnetoencephalography/electroencephalography data in source space. NUTMEG includes a variety of options for the user in data import, preprocessing, source reconstruction, and functional connectivity. A group analysis toolbox allows the user to run a variety of inferential statistics on their data in an easy-to-use GUI-driven format. Importantly, NUTMEG features an interactive five-dimensional data visualization platform. A key feature of NUTMEG is the availability of a large menu of interference cancelation and source reconstruction algorithms. Each NUTMEG operation acts as a stand-alone MATLAB function, allowing the package to be easily adaptable and scripted for the more advanced user for interoperability with other software toolboxes. Therefore, NUTMEG enables a wide range of users access to a complete “sensor-to- source-statistics” analysis pipeline.
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INTRODUCTION

Over the past several decades, magnetoencephalography (MEG) has emerged as an efficient technique to study brain function non-invasively with a high temporal resolution. As a result of this utility, a series of software packages have emerged over the same period of time that allow users to analyze this data [most notably FieldTrip (Oostenveld et al., 2011), minimum-norm estimation (MNE; Gramfort et al., 2013), and Brainstorm (Tadel et al., 2011)] and extensions of existing functional neuroimaging toolboxes in order to include MEG analyzes (such as SPM) have been developed. While popular, many of these toolboxes and approaches adapt existing techniques used for the analysis of electroencephalography (EEG) sensor data and apply them to the analysis of MEG data. While this approach is theoretically sound, it can be limiting, often restricting the user to techniques like sensor averaging, dipole fitting, magnetic field topography, and frequency decomposition at the sensor timeseries level.

More recently, adaptive spatial filtering (e.g., “beamforming”) analytic techniques have been developed in order to capitalize on the exquisite temporal resolution of MEG by providing an ability to localize where changes in MEG sensor data originate along the cortical mantle. These “source space” reconstruction techniques include a variety of spatial scanning estimates (such as minimum-variance adaptive beamforming (MVAB; Sekihara and Nagarajan, 2008), and synthetic aperture magnetometry (SAM; Vrba and Robinson, 2001), and tomographic reconstruction techniques including MNE (Hamalainen and Ilmoniemi, 1984), and standardized low-resolution brain electromagnetic tomography (sLORETA; Pascual-Marqui, 2002). While each of these inverse solutions are validated, robust techniques for source estimation, many data analysis packages implement only a few of these modeling techniques, and do not embed the ability to compare and contrast between different techniques.

Our goal is to provide a data analysis “workbench” that allows the user to compare and contrast different source modeling methods that may be the most appropriate for their dataset. In order to meet this demand for a flexible, easy-to-use, inverse-method inclusive MEG data analysis package we developed the Neurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography (NUTMEG; Dalal et al., 2004) at the UC San Francisco Biomagnetic Imaging Lab. Originally released in 2003 and now on its fourth version, NUTMEG is an open-source, freely available MATLAB (Mathworks, Natick, MA, United States) based toolbox designed for M/EEG data analysis distributed for non-commercial use under a BSD-style license (The Open Source Initiative, 2004). It stands as a start-to-finish (or, “sensor-to-statistics”) pipeline of data analysis, capable of importing raw sensor data to running group-level statistics and functional connectivity (FC) analyzes. Each function in NUTMEG is a stand-alone command line function (akin to other software packages such as FieldTrip) allowing for easy batch scripting and custom pipeline development. In complement to that, these functions are assembled in a series of easy-to-use GUI interfaces that allow a more introductory user (e.g., technicians, clinicians, and students) to analyze full MEG studies with little necessary knowledge of command-line scripting. Visualization based on the SPM engine allows for ready navigation of source-space reconstructions. As the mission of NUTMEG development is to provide a variety of inverse method solutions to users across all levels of experience, it remains unique as a workbench given its vast array of source imaging methods available to the end user. The NUTMEG workbench ranges from gold-standard methods of source reconstruction (e.g., MNE, sLORETA, and beamforming) to more novel inverse methods developed in our lab [e.g., Champage, SAKETINI, and Covariance Optimization Garnering Noise for Active Cancelation (COGNAC)]. This separates NUTMEG from other workbenches given its unique ability to readily switch between different methods for all users to choose which inverse method is appropriate for their own unique studies. Our philosophy is to build a complete, stand-alone data analysis package for M/EEG data that appeals to a wide range of users with little dependency on outside software for running a scientific study.

Since the original version of NUTMEG and publications promoting its release, there have been substantial changes to the analysis workbench that provide more options to the user along the lines of source reconstruction, statistics, and FC analyzes. Our goal in the following article is two-fold. First, we outline some of the existing and additional, newer features of the workbench. Our focus is to provide new users an overview of how the NUTMEG process operates, from the pipeline itself to the MATLAB machinery “under the hood,” in a framework that allows both new and experienced users of M/EEG data analysis to utilize in a straightforward manner. Second, we present NUTMEG in a “how-to” format explaining how the standard NUTMEG data analysis pipeline is executed, from data import to analysis, using specific examples. We will go over the wide variety of options available in NUTMEG for both the introductory and advanced user, from the types of preprocessing steps available to inverse method solutions to choices of statistical tests.



GETTING STARTED

Neurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography is available for download at the NeuroImaging Tools and Resources Collaboratory (NITRC) website1. NUTMEG is primarily written in MATLAB and has few dependencies on secondary software packages. NUTMEG has been tested on and currently operates efficiently in the most recent versions of MATLAB (at the time of this article: R2018a) although previous versions of NUTMEG are available for download at the NITRC website for compatibility with previous MATLAB versions. For digital filtering operations, the MATLAB Signal Processing Toolbox is required, and the Image Processing Toolbox is optionally needed for volume-of-interest (VOI) definition (described in Section Step 2. NUTMEG uses the SPM8 engine for visualization purposes2. Import of data formats from other software packages (such as FieldTrip) require installation of that software in the user’s MATLAB environment. Optional, third-party toolboxes are also available across the web by other developers that allow for automated artifact detection and rejection, boundary element modeling approaches, and others (Dalal et al., 2011).



WORKFLOW

A schematic of the typical data analysis pipeline implemented in NUTMEG is shown in Figure 1. Briefly, raw sensor data (or sensor data pre-processed elsewhere) is read into the MATLAB environment and constructed into the NUTMEG variable structure. Following data import, a series of preprocessing steps (including channel selection and bandpass filtering) are available in NUTMEG for the user to prepare the raw data for source analysis. In parallel, a subject-specific head model is imported from the proprietary software associated with the MEG acquisition for lead field/gain matrix generation (spatial filter weights) necessary for source reconstruction, and an anatomical MRI brain template (generally a T1-weighted anatomical MRI specific to the subject) is imported for visualization purposes.


[image: image]

FIGURE 1. Outline of the standard NUTMEG data analysis pipeline for a single subject. Figure adapted from Dalal et al. (2011).


Once the MEG data and associated structural elements are imported, a variety of time-series analysis, time-frequency analysis, and FC source estimation options are available for the user (see Table 1). Following source space estimation and reconstruction, their result is saved out as a separate file for visualization on the MRI template. In the case of studies with large (n > 5) samples, a statistical workbench within NUTMEG is available for both looking at within-group/session effects as well as comparisons between pre-defined independent variables using voxelwise statistics. Options for visualizing both individual and group results on either canonical MNI templates or brain renderings are available within NUTMEG, as well as options for the user to export the data in different formats (Cartool, ANALYZE) for the purposes of overlay and rendering in the user’s visualization tool of choice (e.g., mri3dX, MRICro, and BrainnetViewer).


TABLE 1. List of denoising and inverse modeling methods available in NUTMEG.

[image: Table 1]


GUI ENVIRONMENT

As mentioned earlier, the organization of NUTMEG as a series of stand-alone command-line functions not only make it ideal for the custom user who desires batch scripting and construction of analysis pipelines, but allows it to be easily built into a GUI-based environment where each function can be selected in point-and-click format. An example of this environment is shown in Figure 2. Here, we can see that all of the options laid out in the workflow (Figure 1) are selectable. The main NUTMEG GUI interface consists of three primary windows: the Main Command Window (Figure 2A), the NUTMEG Results Viewer (Figure 2B), and the SPM8 Visualization Engine (Figure 2C). From this point forward, we will present the series of steps necessary for the GUI-based user to execute a standard NUTMEG analysis.


[image: image]

FIGURE 2. NUTMEG graphical user interface (GUI). (A) NUTMEG Main Command Window, (B) NUTMEG Results Viewer. (C) SPM Visualization Engine.




DATA IMPORT

Neurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography has the capability to import raw data types from a variety of several major MEG manufacturers. This is demonstrated in the menu generated from the first analysis step, selection of the “Load MEG/EEG Data” button in the Main Command Window (Figure 2A). Here, we see options for CTF, 4D/BTi, KIT/Yokogawa/RICOH, and Elekta Neuromag data formats. These options will call one of the specific functions that are in standard use for MEG data import of these types (such as the ctf_read.m function for CTF datasets). Datasets can be either single- or multi-trial, and either raw or pre-processed (such as epoched and artifact-rejected) data in any of these formats can be imported into the toolbox. Datasets which have been cleaned in other software packages prior to data import (e.g., CTF DataEditor, ICA in EEGLab) are importable as well. In addition, several other options are available for import, including reading in data from FieldTrip file structure from EEG/MEG datasets. This converts the FieldTrip fileio data structure (Oostenveld et al., 2011) into the variable structure necessary for MATLAB to perform analyzes.



ANATOMICAL MRI AND FIDUCIAL IMPORT, VOI DEFINITION

For purposes of source space imaging, the user is required to import a structural MRI and its associated head model information using the “Coregister MRI…” button on the Main Command Window (Figure 2A). This brings up the Coregistration GUI in a separate window (Figure 3). Through SPM8, NUTMEG is able to load both ANALYZE (∗.hdr/∗.img) and NIFTI (∗.nii) file formats for coregistration. The option of loading an additional, spatially normalized MRI associated with the individual allows for the computation of MNI coordinates for inter-subject comparison later in the analysis pipeline. To align the M/EEG sensor array with the structural MRI image, fiducials can be manually marked on the imported MRI within either the acquisition software (e.g., MRIViewer in CTF, MRILab in Neuromag), or NUTMEG itself, then co-registered with MEG coil positions imported from saved text files or the head model file created using menu options within the proprietary MEG acquisition software (i.e., MRIViewer, MRILab) or command line functions, such as localSpheres in CTF.
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FIGURE 3. Preprocessing Toolbox GUIs. (A) Coregistration Toolbox GUI. Options include loading of the single-subject MRI, normalized MRI, fiducial assignment, importation of surface mesh, or headshape points. (B) Marker selection tool.


By default, the inverse solutions implemented in NUTMEG localize source activity across the whole brain volume, defined through a back transformation of labeled points in brain space in the spatially normalized structural MRI. However, it is also possible for the user to define an a priori VOI restricting source localization to a specific region of the anatomical volume. This is done from the “Manual VOI” drop-down in the main NUTMEG GUI, which allows the user to manually draw a three-dimensional polygon across the three anatomical orientations in the MRI. This VOI could include a specific sub-region of the brain (e.g., perilesional tumor tissue), a single hemisphere or restrict source localization to brain regions exclusively. One practical application of this is through the coherent source suppression approach detailed in Dalal et al. (2006), where in the case of highly temporally correlated sources (primary auditory cortex, localized through the M100 auditory evoked field) suppression of a single hemisphere permits more accurate source localization in the hemisphere of interest. VOIs defined through these custom definitions can then be saved out in the GUI for future reference.



PRE-PROCESSING AND CHANNEL SELECTION

With both the MRI and MEG data loaded into the MATLAB environment, the user now has the option to visualize the MEG sensor data by selecting the “View/Select MEG Channels…” button on the Main Command Window, which brings up the Channel Selection interface in a separate window (Figure 4). Several options are available at this pre-processing step for the user to assess data quality prior to source imaging. Options for channel selection (inclusion/exclusion of channels in the analysis) are available in the dataset, and various filtering options (bandpass/notch filtering). Following selection of a time window of interest, the root mean square (RMS) value of the sensors selected will be displayed on a 2D sensor map.
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FIGURE 4. Sensor Preprocessing GUI. On the left, sensor overlay of the averaged dataset is visible. Over the right, RMS distribution over a selected time window is displayed. Options for channel selection, filtering, and denoising are available as well.


Regularization and denoising techniques are available to remove artifacts prior to source localization in time-series/frequency analyzes. These include both approaches based off of ICA (SEFA-based ICA). Bayesian factor analysis (Nagarajan et al., 2007) algorithms are implemented in NUTMEG, when selected these can identify artifact components present in a control condition so that they can be removed from a condition of interest in the sensor data; this de-noised sensor data may then be input to beamformer or minimum-norm inverse methods. A full list of denoising options are listed in Table 1.

Dual signal subspace projection (DSSP) One novel advanced denoising method developed in our lab is now available as part of the workbench in the newest releases of NUTMEG. This approach, DSSP (Sekihara et al., 2016) acts by defining a signals in both the space domain as well as the time domain (Sekihara et al., 2016). By generating these two data matrices, DSSP projects the data matrix onto the subspace that is orthogonal to the interference subspace, and removes this interference signal with a constant presence in the data matrix. We have validated this algorithm using both simulated and real data (Cai et al., 2019) and have shown superior artifact rejection in the sensor data through DSSP when benchmarked against other methods, such as signal subspace projection (tSSS). We now provide this option for cleaning the data for both time-series and time-frequency analyzes in the latest release of the workbench.



COMPUTATION OF FORWARD MODEL

Once the sensor data is preprocessed, the user has the option to generate lead fields from sensors loaded in from the dataset, using a forward model and information from the individual brain structure and MEG channel locations (and therefore generating a gain matrix), through selection of the “Obtain Lead Field” button. NUTMEG provides several options to the user for defining the forward model, and built-in support for computation of sensor lead fields and the gain matrix based on single sphere and multisphere head models. The sphere center can either be specified manually, or loaded from a head model file created from CTF’s localSpheres command line function. The current iteration of NUTMEG permits source localization across the whole brain volume, although calculation of lead fields using more computationally intensive boundary element method (BEM) head models is provided via integration between NUTMEG and either the Helsinki BEM (Stenroos et al., 2007) or the OpenMEEG (Gramfort et al., 2010) toolboxes. NUTMEG includes functions for importing tissue surface meshes from either BrainSuite or BrainVisa MRI segmenting software, thereby presenting the user with a complete BEM pipeline.

For EEG datasets, a multisphere model can be generated using a NUTMEG function that adjusts sphere centers to minimize the difference between the forward potentials generated for a few sparsely sampled points using the multisphere method and those derived using the BEM.



INVERSE METHODS: TIME-SERIES (EVOKED) SOURCE ANALYSIS

One option available to the user in NUTMEG for source analysis is the ability to localize evoked magnetic fields (e.g., AEF, SEF, and VEF) generated from averaging of sensor data using a variety of inverse methods. This is selected via the “Source Analysis: Time Series” button in the Main Command window. This brings up the Beamformer Tool GUI (Figure 5) that allows for an interactive and GUI-driven method for users to define their desired baseline period and assign the type of inverse solution to be used.
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FIGURE 5. Time-series source estimation GUI. On the left, sensor overlay of the averaged dataset is visible. On the right, parameters for source space reconstruction (in this case, eigenvalues plotted for the eigenspace vector beamformer). Filtering options, time window selection, method of source inversion, other denoising methods, sensor covariance regularization are also selectable.


Many variants of popular inverse methods for source localization of M/EEG data are included in NUTMEG: beamformer, minimum norm, and Bayesian. Furthermore, NUTMEG is stylized to allow easy drop-in and incorporation of newly-developed inverse methods into the associated menu choices. The use of the time-domain LCMV beamformer (Similar to SAM, Vrba and Robinson, 2001) for localizing both the oscillatory power changes over many time-frequency windows as well as evoked responses (ERF/ERPs) is well supported in NUTMEG. Minimum-norm methods that are supported include sLORETA (Pascual-Marqui, 2002) and dSPM (Dale et al., 2000). Several Bayesian methods have been developed by our group to improve source estimation and allow denoising of data, including Champagne (Owen et al., 2012a, b), SAKETINI (Zumer et al., 2007), and NSEFALoc (Zumer et al., 2008). Bayesian methods denoise and localize data in one step, resulting in improved spatial specificity and reduced sensitivity to correlated sources. A full list of the inverse methods available for evoked source analysis can be found in Table 1B and are explained in detail in our previous publications (Dalal et al., 2011).

Covariance Optimization Garnering Noise for Active Cancelation One of the philosophies of NUTMEG is to make a constellation of inverse methods for source solutions available to the user, and in our lab we have developed several such tools (NSEFALoc, SAKETINI, et cetera) that we have readily implemented into the workbench. One major revision to the NUTMEG 4. + release of the software is the inclusion of several novel approaches, including scanning algorithms for source reconstruction. COGNAC (Cai et al., 2018a) has been readily applied and tested to simulated, MEG, and EEG datasets and is now available in the latest release of the software. Here, probabilistic generative modeling is used to describe the sensor data, which partitions source contributions in the sensor data from a given location from contributions to that point in space from neighboring locations, enabling learning of sensor noise without the need for baseline or pre-stimulus data. We find application of COGNAC to several datasets to be superior to more gold-standard means of source localization (beamforming, sLORETA). Given the high utility of this tool in source imaging, we now include it in our latest releases of the NUTMEG workbench.

Smooth Champagne One popular beamformer available in NUTMEG is champagne, which uses an empirical Bayesian framework to yield sparse source solutions to the inverse problem (Owen et al., 2012b). Recent developments in our lab have acted to improve the fidelity of this technique, and are now available in the NUTMEG workbench. One of these, which introduces kernel smoothing and hyperparameter tilting into the source solution we refer to as Smooth Champagne (Cai et al., 2018b). We demonstrate that Smooth Champagne is highly robust to noise, interference, and the resolution of highly temporally correlated brain sources for both MEG and EEG. Like COGNAC, this tool is now available in the most up-to-date releases of NUTMEG for users to apply.

Once the particular inverse solution method parameters are assigned by the user, the source analysis is run and a results file (s_beam∗.mat) is generated that can be opened by the user in the Visualization Tool interface (see below).



INVERSE METHODS: TIME FREQUENCY (INDUCED) SOURCE ANALYSIS

As an alternative (or complementary analysis) to evoked activity, NUTMEG provides the option to reconstruct data in the time-frequency domain to evaluate induced (e.g., non-phase locked) changes in oscillatory dynamics using both GUI and command line functions. Selection of the “Source Analysis: Time Frequency” button in the Main Command Window brings up the Time-Frequency Beamformer GUI (Figure 6), an interactive way to define beamformers for source reconstruction in the NUTMEG toolbox. User options for customized time-window definition (length, duration, and overlap), frequency band (e.g., 8–12Hz, 12–30Hz), filtering techniques [e.g., finite-impulse response (FIR), Butterworth], and beamformer method (e.g., SAM, sLORETA) are available, with options to import custom filters/beamformers if the user chooses to do so. The NUTMEG time-frequency pipeline proceeds in three steps (described in more detail in Dalal et al., 2011). First, sensor data is passed through a series of filter banks and partitioned into frequency bands (e.g., alpha 8–12Hz, beta 12–30Hz) and overlapping time windows (e.g., 250 ms windows with 50 ms overlap), pre-defined by the user in the associated GUI inputs or via user-created variables in Matlab files that can be selected within the GUI. From these windows a covariance matrix and source weights are used to estimate power changes in oscillatory activity in each window, which are then finally assembled into a single file (s_beam_timef∗.mat) for results visualization. Interrogation of the time-frequency reconstruction by the user can be visualized at the single subject level or as group averages. A full list of the inverse methods currently available for time-frequency optimized source analysis can be found in Table 1C, and each of these processes is explained in more detail below in the visualization and statistics sections, respectively.
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FIGURE 6. Time-Frequency Beamformer GUI. Specification of time-windows, frequency band, filtering, and source reconstruction algorithms are all available.




FUNCTIONAL CONNECTIVITY ANALYSIS

Finally, as an alternative to examining evoked or induced changes in oscillatory power, NUTMEG offers a functional connectivity map (FCM) workbench that enables the localization of FC among brain areas from EEG and MEG recordings. NUTMEG computes FC by combining source localization algorithms with measures of FC between those sources. First, the user undertakes an estimate of oscillations across networks at each voxel by calculating the linear combination of the sensor data matrix with a spatial weighting matrix obtained with the solutions and steps outlined in 5B. Next, the user can enable, or select, the “FCM” button on the Main Command Window, which brings up the FCM GUI interface (Figure 7).
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FIGURE 7. Functional Connectivity GUI. Allows for the selection of the type of connectivity metric, frequency band of interest, and regions of interest.


In the FCM GUI, the user can then set the desired configuration parameters for the FC analysis. The current instantiation of NUTMEG’s FCM tool relies on “bivariate” measures of FC, which requires the user to define both a “seed” and the “target” (or “connection”) regions in the configuration tool. These seeds may be defined voxelwise and then averaged across every target in the grid (what is called “Global Connectivity”; see Guggisberg et al., 2008; Hinkley et al., 2011), or can be selected as a pre-defined Region of Interest (ROI) by manually drawing the VOI on a template brain or using labels from an anatomical atlas (such as the AAL atlas; Tzourio-Mazoyer et al., 2002) or, at an even more coarser level, across an entire cerebral hemisphere.

Functional connectivity estimates can be run on both task-based (e.g., event-locked multi-trial data) and “resting-state” datasets where no significant event occurs (e.g., Dubovik et al., 2012, continuous single-trial data). NUTMEG includes a variety of FC measures out of the box, including imaginary coherence (Nolte et al., 2004), magnitude squared coherence, phase lag index (Stam et al., 2007), amplitude envelope correlations (Brookes et al., 2011), and general lagged coherence (Pascual-Marqui et al., 2011). These algorithms are efficient enough to run on a local workstation, but also may be distributed across a parallel computing grid. Output images can then be visualized in the NUTMEG viewer at a single-subject level, or piped into the NUTMEG statistics interface for group analysis.



STATISTICS

In studies with considerable sample size (n > 5), NUTMEG provides the user with the option to run a variety of voxelwise descriptive and inferential statistics using the Statistics Tool, selected through the Main Command Window (Figure 8). Here, the user selects the normalized s_beam reconstructions, or a “pointer” file that specifies path and filenames of a group of normalized reconstructions generated in a prior step within the visualization tool (see next section), to assess statistical significance across subjects. Once the individual subject files are selected, conditions and groups can be specified and the desired statistical test selected. NUTMEG currently uses statistical non-parametric mapping (SnPM; Singh et al., 2003), which does not depend on an assumption of having normally-distributed data, and is robust for as few as 5 subjects (though having more subjects will allow detection of weaker effects). Current statistical tests available in NUTMEG include grand-mean averaging, one- and two-sample (paired and unpaired) t-tests, correlations between power change/FC values with extrinsic (e.g., behavioral) variables, and multi-level ANOVAS. The NUTMEG statistical tool also provides GUI selection options for collapsing across or correcting for significant frequency bands (as in Guggisberg et al., 2010) and time windows.
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FIGURE 8. Time-Frequency Statistics Tool, showing various options for calculating statistical significance across subjects for source time-frequency maps.


Since variance estimates can be noisy, variance maps are smoothed with a 3D Gaussian kernel (generally 2 cm). A distribution of pseudo-t statistics is created from 2^N permutations of the original N subjects by inverting the polarity of the power change values for some subjects (2^N possible negations) and then finding the current maximum pseudo-t value among all voxels and time windows for each frequency band. The significance of each pseudo-t value is calculated from its position from a distribution of these maximally permuted pseudo-t values. Computed statistical probabilities are formulated as tomographic statistical maps that can be displayed in the NUTMEG visualization tool, and can be thresholded in a variety of different ways to allow for statistical exploration of data. Automatic correction for multiple comparisons across voxels and time-windows is saved in the result file and includes family-wise error rate (FWER), false discovery rate (FDR), and a spatial cluster correction. These thresholds can then be applied to the tomographic statistical map, and changed dynamically using drop-down selections, within the visualization tool to reflect both level of correction for multiple comparisons. Additionally, the desired alpha error rate and related statistical value (e.g., T-statistic, r-score) can be changed dynamically in the visualization tool for both positive and negative tails of the distribution.



VISUALIZATION OF RESULTS

Both visualization of single-subject (FC, power change) and multi-subject (group statistics) data can be viewed using the NUTMEG Results Viewer (Figure 2B) accessible through the Main Command Window. Loading up an s_beam∗.mat file will produce a tomographic map overlaid on either the native-space MRI (in the case of single-subject data) or a canonical anatomical brain (for spatially normalized and group data) using the SPM visualization engine. Using this orthogonal-slice navigator, the researcher can explore the source reconstructed dataset or statistical map in 3D space, while an extra, integrated GUI allows the user to explore the dataset over time by displaying the virtual sensor time course for the voxel selected on the SPM navigator. For time-frequency analysis the virtual sensor data plot is replaced by a time-frequency image of the power for the selected voxel. Additionally, the Results Viewer allows the user to spatially normalize a source-space map by taking the transformation matrix from the subject’s T1-wieghted anatomical MRI and apply it to the source-space volume, using SPM normalization functions (Dalal et al., 2008). Normalized source-space map activations can then be displayed on a normalized rendered brain surface. This is performed by selecting the “normalize functional data” in the lower right panel of the timeseries viewer (left side). Once normalized, data from multiple subjects can be loaded into the MATLAB workspace (“File Browser” sub-menu) and their file locations, conditions and group designations can be made and saved to a single MATLAB “pointer” file for subsequent analyzes in the statistics tool.

An example of NUTMEG’s visualization of a group analysis (one-sample t-test, thresholded at p < 0.0005 uncorrected) is shown in Figure 9. Here, a group of subjects viewed faces projected onto a screen. The activation pattern overlay on top of a MRI in the SPM8 Visualization Engine is on the right, and a time-frequency map is presented on the left. The crosshair over the MRI and statistical/tomographic map indicates the voxel in which the time-frequency decomposition is displayed.
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FIGURE 9. NUTMEG Result Viewer for a time-frequency group analysis (one-sample t-test) thresholded at p < 0.0005 uncorrected. Time-frequency spectrogram for the voxel highlighted by the crosshairs in the MRI viewer are displayed on the left.


Thresholding of the statistical map can be done in a variety of ways in the results viewer. For a single subject, contrast ratios (raw Power for time-series analysis, or a pseudo-F ratio contrasting activation and baseline in a time-frequency reconstruction) are selectable from a drop-down window, with the user manually defining the type of threshold to use in a type-in box. These intensity values can be normalized from a scale of 0–1000, and both abscissa and ordinate scales on the time-frequency plots can be adjusted manually to focus on specific portions of the data period. For group (statistical) maps, the drop-down threshold window expands to options where raw scores (T-value, F-value, et cetera), uncorrected p-values or corrected p-values (FWE/FDR) can be selected, with the cut-off alpha level adjusted by the user for both positive and negative test values as desired. This aids in exploring the statistical map not over space and time, but also across levels of significance.

Neural activity can also be projected on a 3D brain surface imported from BrainSuite from within the results viewer. There are a number of options to for exporting the data in a format that can be viewed in third-party packages. Export into ANALYZE format which can be then further manipulated in CarTool, mri3dX3, DataViewer3D (Gouws et al., 2009), and MRICro (mricro.com) are available. Extensions of the code from the MATLAB to Python language are in place and support additional viewing tools via Xipy4.

We will now provide demonstrate these steps in practice on three datasets collected on a 275-channel CTF biomagnetometer.



NUTMEG IN PRACTICE

In closing, we present two tutorials outlining the step-by-step process for: (1) how to generate source reconstruction maps of evoked fields in NUTMEG, and (2) how to reconstruct induced, non-phase locked sources in the time frequency domain in NUTMEG. Specific examples will use the same dataset (described below) and follow the workflow outlined in the beginning of this article.

Datasets used in this tutorial are available for public download in both raw and reconstructed (for group analysis purposes) format at the NUTMEG NITRC website5. A dataset consisting of MRI (individual subject T1-weighted MRI) and MEG (single run of face/no-face paradigm, see below) were collected from 39 healthy control subjects. MRI data was collected on a Siemens 3.0T scanner using standard anatomical MRI protocols (Hinkley et al., 2019). MEG data was collected using a 275-channel CTF MEG biomagnetometer. In brief, randomized trials of both face and non-face stimuli were presented foveally on a black background (subtending 12 and 9 degrees of vertical and horizontal visual angle, respectively) requiring the subjects to respond to either “face” or “scrambled face” via button press. 100 neutral face stimuli (Chadick and Gazzaley, 2011) were equated for gender and transformed to gray scale while 100 non-face stimuli were created by randomly shuffling locations of 25 × 25 pixel regions within each face image in MATLAB (200 trials total). A black oval layer masked both face and non-face stimuli to obscure regions around hairline and ears. Stimulus duration (700 to 1100 ms) and inter-stimulus-onset (1.75 s to 2.15 s) were randomized for each trial.

Datasets were pre-processed outside of NUTMEG using CTF software in order to meet the following pre-processing criteria: removal of bad channels and trials with excessive movement (<5 mm in run) or noise (signal > 1.5 pT), 3rd order gradiometer correction, bandpass filtered (3–117 Hz), and create a multiple spheres head model prior to source analysis. Correctly-responded trials were then equated for each stimulus type in a movement- and artifact-free epoched dataset. These steps were performed prior to the source analysis outlined below. For both examples, MATLAB paths were set to contain the recent NUTMEG release and SPM8 toolboxes. We begin both examples following opening the main NUTMEG: Neurodynamic Utility Toolbox for MEG and SPM8 visualization windows (Figure 2A). Specific buttons for the GUI are presented in italicized parentheses for each example.


NUTMEG in Practice, Example 1: Source Localization of Visual Evoked Fields in a Single Subject Using Champagne

In order to localize visual evoked fields from this dataset, we first average the dataset using CTF tools prior to analysis in NUTMEG. Beginning with Step Two (above) we import the subject-specific native space MRI, normalized space MRI and fiducial markers (via headshape) using the Coregistration Tool (Coregister MRI) in Nutmeg. Following data import (Load MEG/EEG Data) we then check to make sure the averaged sensor data looks reasonable (View/Select MEG Channels) and generation of lead fields from the sensor data loaded in (Obtain Lead Field) we then import the dataset’s marker file (Special→Import Markerfile) to load and select the triggers for this dataset. The timeseries source analysis tool is then selected from the main GUI (Source Analysis: Time Series) where several options for beamforming reconstruction become available. We select the default settings for the Champagne beamformer (Owen et al., 2012a, b) and apply a 1–100 Hz bandpass filter to data. Selecting the Proceed button allows us to generate the image, which is saved out in a s_beam∗ file that can be loaded up in the Nutmeg results viewer.

A single-subject VEF is shown in Figure 10. Here, we are able to localize three visual evoked fields following stimulus presentation. The first, at 92 ms post-stimulus, localizes to the lingual gyrus of primary visual cortex (V1) coincident with the visual evoked response (Figure 10A) around 100 ms. The second responses, localizing to the left (151 ms, Figure 10A), and right (147 ms, Figure 10B) middle occipital gyrus (MOG), correspond to a later, M150 response identifiable in higher order visual and extrastriate fields. These results illustrate that the time-series beamformers implemented in NUTMEG, including Champagne, can reliably localize responses in primary sensory cortices.
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FIGURE 10. Results from a single-subject reconstruction using the Champagne beamformer in NUTMEG for response to visual stimuli (Nutmeg In-Practice, Example 1). Localized fields for both primary visual cortex (∼92 ms, A) and higher-order visual fields (142 ms, B) are both shown.




NUTMEG in Practice, Example 2: Source Localization of Induced Changes in Visual Cortices Using a Time-Frequency Optimized Beamformer and Group Statistics

Similar steps for data import and preprocessing used in the first example (evoked fields) are used for the reconstruction of induced, non-phase locked sources in the time-frequency domain. Here, instead of using averaged data, single-trial (non-averaged) data is used for the time-frequency optimized beamformer.

We follow Step 1 (as above) to import individual MRI and normalized images (Figure 3) and load the associated MEG dataset, automatically reading fiducial coordinates from the multiple spheres head model located within the MEG file directory. MRI data was normalized using functions within the SPM8 toolbox prior to import. Fiducial locations were visually inspected after re-selecting “Coregister MRI.” Steps 3 and 4 were followed to inspect the sensor data and, as both structural and functional data are available for an individual, create the forward model based on position of the sensor montage relative to MRI landmarks.

As the current study requires comparison of two visually-presented conditions, both trial types are included in the epoched CTF MEG dataset. For this example, we compare our experimental (Face), and control (Non-face) conditions over each time window, localizing brain regions that are specific to face identification and not simple visual processing. Trial types are identified using their stimulus markers via the “Import CTF marker file” drop down option in the “Special” menu (Figure 3B). The individual’s structural and functional data, lead field calculation for each sensor, and the specification of “active” or “control” marker type in the beamforming calculation was then saved (via “save session”) to utilize in source localization and for the convenience of returning to an already-associated dataset if other analyzes are desired in the future. Because the contrast of interest is the differential response to two stimuli, our time windows of interest for active and control are identical — spanning stimulus presentation through end of trial. Had our aim been simple sensory response activation (as in Example 1), active and control stimulus markers would be identical, with active time window through post-stimulus trial duration and the control as a static, pre-stimulus time period. Window lengths and frequency band(s) can be custom-defined in the time-frequency dependent on the sampling rate of the dataset acquired, using the Nyquist limit as a guideline. To initiate the induced time-frequency beamforming analysis, we select the lower “Source Analysis: time-frequency.” option which brings up the time-frequency GUI (Figure 6). Here, we specify our Active (i.e., experimental) and Control window length, time window overlap, beamformer algorithm and frequency band(s) of interest (Figure 6).

In the example study, source localization of 39 participants’ data was batched via NUTMEG command line functions, and run over 5 frequency bands of interest across sliding time windows that covered the trial period, the size of which varied according to bandwidth. Once source localization completed, creating multiple files for each subject, these were consolidated into one result file per individual (“Assemble multiple outputs” selection in the source localization GUI).

After the consolidated result file was created for a single subject, the “View Results” selection within the main NUTMEG menu visualizes the single subject result across the time and frequency bands analyzed, and also provides a mechanism to read in multiple subjects’ localized data into the NUTMEG workspace by indexing the subsequent subject number and corresponding condition and selecting “Load” in the File Browser portion of the viewer. After reading in each of the 39 participants in this section, a pointer file was created and saved that included all subjects’ filenames, paths, subject numbers, and condition information associated with each individual source localization result file. This pointer file is used in the group analysis run via the “Statistics” button on the main NUTMEG window.

After reconstruction of all 39 subjects, this pointer file is imported into the NUTMEG Statistical GUI for within-group results of the Face > Non-face contrast. This creates a single file (∗ttest1.mat) which can be loaded in the NUTMEG results viewer (Figure 11). The group analysis produces an average activation map for the active (Face) relative to the control (Non-face) condition for the group using a one sample, two-tailed, SnPM t-test, with a statistical threshold of p < 0.05 under an FDR correction for multiple time windows. This group result reveals significant induced response in high gamma band activity, Faces > Non-faces, in right fusiform gyrus.
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FIGURE 11. Results from the group analysis using the time-frequency optimized beamformer comparing face to non-face conditions (Nutmeg In-Practice, Example 2). An early increase in high-gamma power (63–117 Hz) localized to the right fusiform is greater in the face condition around 187.5 ms following stimulus presentation.




Discussion

The M/EEG community is rapidly shifting and expanding, and as NUTMEG now is well into its fourth version, a large focus of our development is centered on being able to incorporate and integrate advanced functionality to meet these needs. A prime example of this is making sure that NUTMEG integrates and interfaces with many of the other software packages available to analyze M/EEG data, allowing the user to seamlessly move datasets and analyzes between the platforms to benefit the most from the strengths of each. With resurgence in both EEG and ECOG research for the purpose of performing source analysis, much work is being done to integrate these types of data into the analysis framework of NUTMEG. While pipelines exist to import more sophisticated head models (like BEM) for source localization in NUTMEG, we are currently working on options for the user to apply these methods directly in the workbench, as well as options for both volume and surface-based source reconstructions. Our own lab and others continually refine and improve inverse methods for the purposes of improving source localization, and our developers are continually at work to include these types of novel techniques available to the NUTMEG user. In the same vein, statistical metrics (including corrections for multiple comparisons at the voxelwise level) and functional connectivity methods continue to evolve and will be added in future versions of the software. Expanded options for multimodal data integration (for example, voxel-based morphometry, and diffusion tensor imaging) will be available in future versions of the software. We also plan to expand the options available for the user at early stages of data preparation, including trial selection for both artifact rejection and trial-by-trial analyzes. Furthermore, the integration of multiple sensor types (e.g., magnetometers and planar gradiometers) in a way that would add value to the robustness of the source solution is another area of robust research in MEG (see Gramfort et al., 2013; Engemann and Gramfort, 2015), and could potentially be integrated into next-generation releases versions of NUTMEG.

Many of the programming environments used for the analysis of neuroimaging data (including NUTMEG) are proprietary extensions of existing computing environments (in our case, MATLAB) optimal for applied mathematics and not imaging analysis per se. While MATLAB is the most popular computing platform in neuroscience, it is becoming increasingly clear that newer programming environments may additionally serve data analytics. In order to expand NUTMEG into a true open-source environment, there is a need for future generations of the workbench to be coded in programming languages that are more accessible. Python6 is a logical choice for next-generation software development in neuroimaging, as it is high-level, object-oriented and interactive. As software development in Python has proven fruitful in other M/EEG analysis software packages (most notably MNE-Python). we plan to produce versions of NUTMEG in this programming language, further providing access to the software.

On a final note, MEG is entering a modern “renaissance” at the hardware level. Not only are new biomagnetometer manufacturers (such as RICOH of Japan) entering the scene, but exciting developments in so-called “helium-free” or “room-temp” magnetometers (including the HyQUID system offered by York Instruments and the optically-pumped magnetometers outlined in Boto et al., 2017) provide new potential avenues of data integration for NUTMEG. While this may introduce a unique set of challenges for the regular imaging scientist, as part of our mission, we will ensure that NUTMEG is accessible for every MEG user, regardless of hardware. We welcome and encourage collaborators and developers who wish to contribute to this endeavor.
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FOOTNOTES

1https://www.nitrc.org/projects/nutmeg

2https://www.fil.ion.ucl.ac.uk/spm/software/spm8

3www.cubric.cf.ac.uk/Documentation/mri3dX

4https://github.com/miketrumpis/xipy

5https://www.nitrc.org/projects/nutmeg

6www.python.org
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Reproducibility is a cornerstone of scientific communication without which one cannot build upon each other’s work. Because modern human brain imaging relies on many integrated steps with a variety of possible algorithms, it has, however, become impossible to report every detail of a data processing workflow. In response to this analytical complexity, community recommendations are to share data analysis pipelines (scripts that implement workflows). Here we show that this can easily be done using EEGLAB and tools built around it. BIDS tools allow importing all the necessary information and create a study from electroencephalography (EEG)-Brain Imaging Data Structure compliant data. From there preprocessing can be carried out in only a few steps using EEGLAB and statistical analyses performed using the LIMO EEG plug-in. Using Wakeman and Henson (2015) face dataset, we illustrate how to prepare data and build different statistical models, a standard factorial design (faces ∗ repetition), and a more modern trial-based regression approach for the stimulus repetition effect, all in a few reproducible command lines.

Keywords: brain imaging data structure, preprocessing algorithm, linear models, reproducibility and tools, EEGLAB toolbox, LIMO EEG


INTRODUCTION

As data analyses become more and more complex, it has been advocated that clear workflows and all of the parameters used in their implementation should be reported in order to increase reproducibility (Pernet et al., 2020). It is, however, difficult to concisely report a workflow and maybe even impossible given hidden parameters built into the algorithms we use. One solution is to report in detail the workflow and share the corresponding pipelines—thus only having to communicate key algorithm details. Such pipelines and/or tools to build pipelines have been developed in recent years (see, e.g., Bigdely-Shamlo et al., 2015; Andersen, 2018; Jas et al., 2018; Niso et al., 2019; Meunier et al., 2020) and here we describe tools developed around EEGLAB (Delorme and Makeig, 2004) which also allow creating a fully reproducible pipeline from raw data to group results, with an example to sensor space analysis.

New data formatting conventions and public repositories for electroencephalography (EEG) data have recently been developed and made available to the science community. In particular, the Brain Imaging Data Structure (Gorgolewski et al., 2016) and its EEG extension (Pernet et al., 2019) allow defining important EEG metadata information, such as additional event information, electrode positions, and experimental conditions. This makes data aggregation from different experiments and analysis automation using standardized pipelines easier. Here we present a fully reproducible workflow (Figure 1) from raw data to group results using open data and we document and share the pipeline.


[image: image]

FIGURE 1. Workflow overview for data processing with EEGLAB.


EEGLAB (Delorme and Makeig, 2004) is the most commonly used platform for EEG data analysis (Hanke and Halchenko, 2011; Martínez-Cancino et al., 2020) and all steps proposed can also be reproduced from the user interface. We refer to the extensive EEGLAB online user manual for GUI operations, and simply point that functions called by interface operations in EEGLAB are saved into the EEG.history field, thus allowing to copy/paste the underlying code to build a different pipeline than the one proposed here. EEGLAB is used here in conjunction with newly developed EEG-BIDS1 tools which allow automatically importing and create a STUDY (see Figure 1) for data that follow the EEG-Brain Imaging Data Structure and with the LIMO-EEG toolbox which allows statistical analyses using robust hierarchical linear models (Pernet et al., 2011). The overarching goal of this analysis is to show that it is possible to use a simple pipeline to process “raw” data and perform complex statistical analyses using EEGLAB and LIMO.



METHODS


Open Data

The pipeline was executed using the EEG data from the multimodal face dataset (Wakeman and Henson, 2015). EEG (70 channel Easycap2) and ECG data were extracted from the binary MEG.fif files that combined MEG, EEG, ECG channels, event markers were time corrected (−34 ms) and electrode positions re-oriented to fit the head coordinate system. Out of the 19 participants, participant 1 was removed because of channels digitization errors leading to 18 participants. Data were then organized using EEG-BIDS and archived for download at https://openneuro.org/datasets/ds002718. This dataset is thus a modified and simplified version of the original dataset, with a subset of this original dataset itself made available by authors at https://openneuro.org/datasets/ds000117. In the original data, there were multiple runs for each subject, so we have merged them to make it simpler for users. We have also formatted scanned electrode positions so they are available within the BIDS dataset. We have corrected event latencies, renamed some events, and added information on events and stimulus repetition. We also resampled the data to 250 Hz so it is not as large and can be used for tutorials. All modifications to the original data documented in the readme file of BIDS ds002718 and conversion script are also made available.

The experiment consisted of the presentation of 300 grayscale photographs of familiar and unfamiliar faces, along with their scrambled versions, all repeated twice. Trials started by a fixation cross lasting 400–600 ms, followed by stimuli lasting from 800 to 1000 ms and the repetition of the images occurred either immediately or after 5 or 15 stimuli, leading to a range of time intervals between repeats. Participants had to perform an orthogonal symmetry judgment task ensuring attention to each stimulus.



Software

Analyses are performed using Matlab 2020a (The Mathworks, Inc.3) on Windows or Mac OSx with the Statistical and Machine Learning Toolbox installed, along with EEGLAB4 (v2020.0) and its BIDS tool5 (v3.5) and LIMO EEG6 (v3) plugins—both of them available through the EEGLAB plugin manager.



BIDS-Import

The EEGLAB BIDS plugin allows importing BIDS datasets as EEGLAB studies. The plugin allows overwriting events and channel information contained in the raw EEG data—we are using both of these options here. This allows, for example, to define more precise events and channel information—such as channel locations derived from scanned Polhemus positions. The plugin also allows selecting specific fields in the BIDS event file (in this case we used “trial_type” to be mapped to the EEGLAB “type” field). This is reflected in the call to pop_importbids.m function in Figure 2.


[image: image]

FIGURE 2. Code used for importing and preprocessing. The region highlighted in red must be changed by the user to point to the location of the data on his/her hard drive. A version of this code that can be copied and pasted is available in the LIMO MEEG repository: https://github.com/LIMO-EEG-Toolbox/limo_ meeg/tree/master/resources/from_bids2stats.m. Note that this part of code was automatically generated from EEGLAB and EEGLAB plugins menus by using the command history function eegh- and then edited for clarity.




Fully Automated Preprocessing

We present here a workflow with minimal preprocessing (Figure 2), which is a set of steps that removes common artifacts without trying to optimize any particular data features, using fully automated methods. Note that, as mentioned earlier, the goal is to present a fully reproducible workflow of ERP analyses with EEGLAB, and not to reproduce or replicate Wakeman and Henson (2015). As such, our preprocessing differs from Wakeman and Hensons’ workflow which, in any case, was primarily designed for the associated MEG data, starting with Signal Space Separation for noise removal (Taulu and Simola, 2006), then bad channel removal, and notch filtering.

As explained above, the code underlying the different steps can be obtained from EEG.history when using the GUI to process subjects. First, bad channels are removed and data filtered at 0.5 Hz using clean_rawdata plugin of EEGLAB (v2.2) and the pop_clean_rawdata.m function (transition band [0.25 0.75], bad channels defined as a channel exhibiting a flat line of at least 5 s and/or correlation to their robust estimate based on other channels below 0.8). Second, data are re-referenced to the average (pop_reref.m) and submitted to an independent component analysis (pop_runica.m using the runica algorithm and a reduction in rank to the number of channels −1 to account for average reference). Third, each component is automatically labeled using ICLabel (Pion-Tonachini et al., 2019), rejecting components labeled as eye movements and muscle activity above 80% probability. Finally, continuous data are further cleaned if their power deviated too much from the rest of the data using Artifact Subspace Reconstruction (ASR) algorithm and a 20 burst detection criteria threshold (Kothe and Jung, 2016; Chang et al., 2018) thus taking care of remaining (e.g., line noise, trends) artifacts (pop_clean_rawdata.m, burst criterion 20). Note that the data are not corrected by ASR as we only use here the portion of the algorithm detecting bad portions of data and remove them. Also, there is no low-pass filtering since power-line noise is removed via ASR, leaving possible higher frequencies in the otherwise low frequency of visual the ERPs. All parameters are indicated in Figure 3.
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FIGURE 3. Code snippet for the two statistical models proposed. In both cases, only three steps are necessary: (1) create a statistical design (std_makedesign.m), (2) compute model parameters for each subject (pop_limo.m), and (3) perform the group level analysis (limo_random_select.m). Additional contrasts and figures/plots shown in the results section are also available in command lines, see https://github.com/LIMO-EEG-Toolbox/limo_meeg/tree/master/resources/from_bids2stats.m for details.




Statistical Modeling

From the clean continuous data, epochs are created by extracting data snippets time-locked (from −500 ms to 1 s) to the face presentation events (pop_epoch.m) and designs created within the EEGLAB STUDY. A STUDY in EEGLAB is a structure that contains all the information about the data and metadata allowing to create any experimental designs. Here, we made two designs (std_makedesigns.m): one that recreates the faces vs. scrambled effect described by Wakeman and Henson (2015) and one that tests if the time between repetitions of the same stimuli influences the event-related potentials (ERPs—see section “Results” for more details on the statistical models). From first level estimates, repeated measures ANOVA were computed at the group level (limo_random_select.m). The goal is to illustrate the flexibility of linear models as implemented in LIMO EEG and ease to create such models using EEGLAB STUDY (Figure 3).



RESULTS


Model 1: Coding Conditions Across Trials

At the first level, data from each participant were modeled with nine experimental conditions: famous faces, famous faces repeated immediately, famous faces repeated late, scrambled faces, scrambled faces repeated immediately, scrambled faces repeated late, unfamiliar faces, unfamiliar faces repeated immediately, unfamiliar faces repeated late, and a weighted least squares solution was used to obtain parameter estimates of each condition. At the second level, a repeated measure ANOVA (generalized Hotelling T2) was conducted on beta estimates with “faces” and “repetition” as factors. Statistical significance was assessed using spatial–temporal clustering (Maris and Oostenveld, 2007; C.R. Pernet et al., 2015).

Results (Figure 4) revealed a significant effect of face type with two clusters (cluster 1 starts at 140 ms and ends at 424 ms, maximum F values 64.1281 at 280 ms on channel EEG017, corrected p-value 0.002; cluster 2 starts at 440 ms and ends at 648 ms, maximum F value 17.6071 at 616 ms on channel EEG057, corrected p-value 0.032) and a significant repetition effect with one cluster (cluster starts at 232 ms and ends at 648 ms, maximum F value 51.3596 at 612 ms channel EEG045, corrected p-value 0.001). No significant interaction was observed. As such, the main effect of faces replicates Wakeman and Henson (2015) results who observed “a negative deflection peaking around 170 ms (“N170” component) larger for faces than scrambled faces, which does not differ for familiar and unfamiliar faces. Around 250 ms, a slower potential shift distinguishes familiar and unfamiliar faces until the end of the epoch.” Here we observed higher response at 140 ms (P1 component) for familiar and unfamiliar faces than scrambled faces not previously reported, followed by the same N170 effect—although weaker than reported (from their Figure 1, the face effect is around ∼4 μV while we observed a difference of ∼1.5 μV), likely due to differences in preprocessing (see section “Fully Automated Preprocessing”) and processing (i.e., LIMO EEG used a hierarchical linear model with weighted least squares parameter estimate per subjects while Wakeman and Henson averaged trials per subjects). From 250 ms, we also observed a slow potential separating familiar from unfamiliar faces.
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FIGURE 4. Results from the 2*2 ANOVA analysis. At the top are the main effects for faces and repetition, computed over the whole sensor space. In the middle is the topographical representation of F-values for each significant cluster. At the bottom are displayed the ERP (the mean of the participants weighted means) at channel 50 for faces illustrating the negative face component peaking here at 180 ms and at channel 45 for the repetition effect.




Model 2: Regressing the Time Between Stimulus Presentation From Trial to Trial

At the first level, data from each participant were modeled with three experimental conditions (famous faces, scrambled faces, and unfamiliar faces) along with the time between the repetition of each stimulus (Figure 5) and a weighted least squares solution used to obtain parameter estimates of each condition. At the second level, a repeated measure ANOVA (generalized Hotelling T2) was conducted on beta estimates of the time regressors with “faces” as factors, and a post hoc contrast computed, testing if the effect of time for famous faces differed from other stimuli. Statistical significance was again assessed using spatial–temporal clustering.


[image: image]

FIGURE 5. Illustration of 1st level modeling and results from the group level analysis. The design matrix (left) is set up automatically for each participant from EEGLAB study coding here the face types and for each face type, the time delay between repeats of the same stimulus. Results (middle and right) show a late modulation mostly over central electrodes.


The post hoc contrast revealed a significantly stronger modulation of ERP as time passed between famous faces than for other stimuli (Figure 5—cluster 1 starts at 536 ms and ends at 576 ms, maximum 15.1112 at 556 ms channel EEG039, corrected p-value 0.031; cluster 2 starts at 548 ms and ends at 584 ms, maximum 9.58689 at 572 ms channel EEG055, corrected p-value 0.033). This suggests that there is an interaction face type by repetition such as late ERPs vary as a function of time between the first/second and third repetition for famous faces but not unfamiliar or scrambled faces.



DISCUSSION

Following community guidelines (Pernet et al., 2020), we have implemented necessary changes and new tools allowing to create fully reproducible workflows with EEGLAB. The pipeline for the presented analysis is available at https://github.com/LIMO-EEG-Toolbox/limo_meeg/tree/master/resources/from_bids2stats.m and further designs presented on the LIMO MEEG GitHub website (via the user interface and command-line alike https://github.com/LIMO-EEG-Toolbox/limo_tools/wiki).

A key development for EEG reproducibility is the recent development of EEG-BIDS (Pernet et al., 2019) which not only structures how data are organized and shared but also populates many of the metadata necessary for data analysis. The newly developed BIDS tools7 used here allow to import such data and create automatically an EEGLAB STUDY with the different experimental conditions. Note that from raw data imported into EEGLAB, those tools allow just as easy to export in the BIDS compliant format. While raw EEG data files often define channel labels, EEG-BIDS defines channel properties and associated labels (channels.tsv) corresponding to the electrodes for which locations are defined (electrodes.tsv) given a reference coordinate system (coordsystem.json). BIDS-Matlab-tools will always check for consistency between the data and BIDS meta-data and users have the choice on which information to use (in Figure 2, pop_import_bids parameter “bidschanlocs”). Similarly, raw EEG data files typically contain behavioral and experimental events; these are also defined in BIDS with separate text files (events.tsv). Sometimes the BIDS event files contain different information than the raw EEG data file and users have options to choose which one of the two types of event information to import (in Figure 2, pop_import_bids parameter “bidsevent”). Here, when preparing the BIDS dataset with EEG data only, events.tsv file was prepared as to include the nine experimental conditions but also the repetition order, distance, and time between repetitions which allowed to create the proposed design automatically.

Data preprocessing is performed here by first cleaning the raw data using the clean_rawdata EEGLAB plugin (v2.2), then by running the Infomax Independent Component Analysis algorithm (runica function of EEGLAB 2020.0) and performing automated ICA component labeling (ICLabel v1.2.6). EEGLAB includes a variety of algorithms and other approaches can be implemented to preprocess data automatically. One key development for reproducible EEG artifact reduction is the use of the ICLabel EEGLAB plugin which labels independent brain and non-brain components automatically thus allowing to remove artifactual components in a consistent manner (Pion-Tonachini et al., 2019). After preprocessing, various designs can be created from a STUDY (depending upon the type and quantity of events) and LIMO tools are called to run first level analyses automatically from which group-level analyses can be performed.

The current analysis focused on ERPs for sensor space, but EEGLAB-LIMO tools can be used similarly for spectral and time-frequency analyses. Analyses may also be applied to source resolved EEG data. LIMO tools already allow using ICA components as input, since ICA components have been shown to represent activity within localized patches of cortex (Delorme et al., 2012) and future versions will also allow automatic source space analyses. Source resolved activity calculated using eLoreta, and summarized using principal component analysis within regions of interest (ROI) is also possible with the ROIconnect plugin8 which allows exporting activity in ROI defined in standard atlases to EEGLAB native EEG linear decomposition matrix activity (usually used for ICA activity), therefore, enabling their use in LIMO EEG.
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FOOTNOTES

1https://github.com/sccn/bids-matlab-tools

2https://www.easycap.de/

3https://uk.mathworks.com/products/matlab.html

4https://sccn.ucsd.edu/eeglab

5https://github.com/sccn/bids-matlab-tools

6https://github.com/LIMO-EEG-Toolbox/limo_tools

7https://github.com/sccn/bids-matlab-tools

8https://github.com/arnodelorme/roiconnect
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