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Editorial on the Research Topic

Systems immunology to advance vaccine development
The field of systems immunology has emerged as an essential interdisciplinary

approach for understanding immune responses on a comprehensive, system-wide level.

By integrating high-throughput technologies such as transcriptomics, proteomics, and

computational modeling, systems immunology extends beyond traditional research

methods. Systems immunology enables researchers to explore the intricate interactions

within the immune components and make prediction about vaccine outcomes, accelerating

the development of immunizations against pathogens, including rapidly evolving viruses

like SARS-CoV-2. The studies in this Research Topic reflects these advancements, offering

fresh insights into the molecular and computational aspects of immune system dynamics,

which are crucial for improving vaccine efficacy.

Our Research Topic has brought together 133 authors worldwide, culminating in 16

articles showcasing cutting-edge research. These contributions cover a range of themes,

from immune receptor dynamics and biomarker discovery to computational modeling and

predictive analytics in vaccine responses.
Immune receptor dynamics and
antigen-specific responses

Richardson et al. explored the B cell receptor (BCR) repertoires of 40 participants from

the EBL2001 clinical trial, focusing on responses to the Ad26.ZEBOV/MVA-BN-Filo Ebola

vaccine. Through bulk sequencing and bioinformatic mining, the authors mapped BCR

clonotypes and identified antigen-specific responses, including IGHV3-15 antibodies

targeting Ebola glycoprotein, — underscoring the role of systems immunology in

decoding antibody-mediated immunity. Similarly, Akhmatova et al. investigated a

synthetic disaccharide conjugated to BSA (bovine serum albumin), designed to mimic

Streptococcus pneumoniae serotype 3 polysaccharides. Their study demonstrated

enhanced IL-17A production and gd T cell expansion in mice, highlighting how

synthetic carbohydrate-based vaccines stimulate both innate and adaptive immunity.

Haralambieva et al. explored the transcriptional profiles of B cells after a third MMR

(Measles, Mumps, and Rubella) vaccine dose, identifying genes like IL20RB and BEX2 as
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correlates with measles-specific neutralizing antibody responses.

These findings point to early biomarkers that could predict vaccine

efficacy, advancing personalized vaccinology by supporting tailored

vaccine schedules.

In another study, Costa-Gouvea et al. compared immune

responses elicited by a Plasmodium vivax circumsporozoite

protein malaria vaccine formulated with two different adjuvants:

Poly I:C and Alhydrogel. They demonstrated that Poly I:C induced

broader and stronger humoral and cellular responses, including

higher levels of IgG antibodies and a more diverse IgG isotype

profile, compared to Alhydrogel. The study also revealed enhanced

memory B cell formation, highlighting Poly I:C’s potential to

improve vaccine efficacy for malaria.
Computational models and machine
learning approaches

Several papers in thisResearchTopic explore computationalmodels

for designing and predicting vaccine efficacy. Khan et al. applied

molecular simulations and structure-guided engineering to

enhance the binding affinity of a monoclonal antibody targeting

the aP2 antigen, which is linked to type 2 diabetes. Their engineered

T94M mutant demonstrated superior binding strength, illustrating

how computational models can advance therapeutic antibody

design. Høie et al. developed DiscoTope-3.0, a computational tool

that uses inverse folding latent representations to predict B cell

epitopes. Benchmarked against multiple datasets, DiscoTope-3.0

excelled, particularly in predicting conformational epitopes critical

for vaccine design.

In another study, Parizi et al. introduced PANDORA v2.0, a

software designed to model peptide-MHC class II complexes. Their

study demonstrated that PANDORA’s computational efficiency and

accuracy make it a valuable tool for vaccine design and

immunotherapy, especially for predicting antigenic peptides that

drive immune responses. Together, these studies illustrate the

transformative role of computational models in refining vaccine

candidates, leveraging systems biology to predict immune outcomes

and optimize antigen design.
Biomarker discovery and
vaccine reactogenicity

Carvalho et al. applied machine learning algorithms to identify

baseline gene signatures associated with reactogenicity to the

rVSVDG-ZEBOV-GP Ebola vaccine. By analyzing gene expression

data from cohorts across four countries, the authors identified 22

critical genes associated to adverse events, offering valuable insights

intohowmolecular profilesmight predict vaccine side effects. Building

on this, Martinez-Murillo et al. refined an innate plasma signature

associated with the same Ebola vaccine. They identified 11 additional

biomarkers, including CXCL10 and IL-15, that correlated with

reactogenicity and long-term immune responses, enhancing adverse

event prediction across diverse populations.
Frontiers in Immunology 027
Naidu and Lulu S. investigated the immune responses to enteric

infections in endemic versus non-endemic settings, finding that

GRB2, a key adaptor molecule in T cell receptor (TCR) signaling, as

a major immunomodulatory response in endemic regions,

highlighting the importance of regional immune variations in

vaccine design. This study demonstrates how systems

immunology can inform the development of region-specific

vaccines by identifying immune modulation mechanisms.
T cell dynamics and antigen-
specific responses

Mark et al. investigated the phenomenon of “hidden public”

TCRs, which emerge following acute viral infections like lymphocytic

choriomeningitis virus (LCMV) and SARS-CoV-2. Their analysis

revealed that viral infections drive the expansion of shared TCRs,

particularly in effector T cells, adding a new layer of understanding to

how TCR repertoires function during infections. Mosmann et al.

applied the SWIFT (Scalable Weighted Iterative Flow-clustering

Technique) clustering algorithm to analyze intracellular cytokine

staining data from the HVTN 105 HIV vaccine trial, identifying

novel antigen-specific T cell populations and correlating them with

antibody responses. This work provides a deeper understanding of the

T cell dynamics driving vaccine-induced protection.
Vaccine design and epitope prediction

Ali et al. used reverse vaccinology to design a multi-epitope

vaccine targeting the newly identified Songling virus. By screening the

viral proteome and validating epitopes through molecular docking and

dynamics simulations, they identified a promising vaccine candidate

with broad coverage potential. Farriol-Duran et al. introduced

Brewpitopes, a bioinformatics pipeline that refines B cell epitope

predictions in public health emergencies. Validated with the SARS-

CoV-2 proteome, Brewpitopes achieved a fivefold enrichment in

predicted neutralizing epitopes, demonstrating its potential for real-

time vaccine development.

Dıáz-Dinamarca et al. investigated two protein-based adjuvants,

rSIP from Streptococcus agalactiae and FLH from Fissurella

latimarginata, as Toll-like receptor 4 (TLR4) ligands. Their study

showed that these adjuvants activate both MyD88- and TRIF-

dependent signaling pathways, enhancing antigen cross-presentation

and suggesting their potential as vaccine adjuvants. In another vaccine

design study, Imon et al. used immunoinformatic tools to create amulti-

epitope vaccine againstMerkel cell polyomavirus, the causative agent of

Merkel cell carcinoma.Computational simulationsdemonstrated strong

interactions with TLR4, indicating a robust immune response, though

the vaccine requires further experimental validation.
Conclusion

The collective research presented in this Research Topic

highlights the transformative potential of systems immunology in
frontiersin.org
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advancing vaccine development. By integrating cutting-edge

techniques such as immune receptor profiling, biomarker

discovery, computational modeling, and machine learning, these

studies illustrate how systems immunology can unravel the

complexities of immune responses. The insights gained are

paving the way for more effective, personalized vaccines,

improved strategies for predicting and managing adverse

reactions, and the identification of novel antigenic targets. As

systems immunology continues to evolve, it will remain a

cornerstone in addressing global health challenges, enabling the

development of next-generation vaccines that are more precise,

adaptable, and capable of protecting diverse populations against

both existing and emerging infectious diseases.
Author contributions

JH: Writing – original draft, Writing – review & editing. HN:

Writing – original draft, Writing – review & editing.
Frontiers in Immunology 038
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1527238
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Joe Hou,
Fred Hutchinson Cancer Research Center,
United States

REVIEWED BY

Keyue Ma,
Zai Lab, China
Adriana Tomic,
Boston University, United States

*CORRESPONDENCE

Michal Mark

michal.mark@weizmann.ac.il

Asaf Madi

asafmadi@tauex.tau.ac.il

†These authors have contributed equally to
this work

‡Deceased

RECEIVED 02 April 2023
ACCEPTED 16 May 2023

PUBLISHED 30 May 2023

CITATION

Mark M, Reich-Zeliger S, Greenstein E,
Biram A, Chain B, Friedman N and
Madi A (2023) Viral infection reveals
hidden sharing of TCR CDR3
sequences between individuals.
Front. Immunol. 14:1199064.
doi: 10.3389/fimmu.2023.1199064

COPYRIGHT

© 2023 Mark, Reich-Zeliger, Greenstein,
Biram, Chain, Friedman and Madi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 30 May 2023

DOI 10.3389/fimmu.2023.1199064
Viral infection reveals hidden
sharing of TCR CDR3 sequences
between individuals

Michal Mark1*, Shlomit Reich-Zeliger1, Erez Greenstein1,
Adi Biram1, Benny Chain2, Nir Friedman1†‡ and Asaf Madi3*†

1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel, 2Division of Infection
and Immunity, Department of Computer Science, University College London, London, United
Kingdom, 3Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
The T cell receptor is generated by a process of random and imprecise somatic

recombination. The number of possible T cell receptors which this process can

produce is enormous, greatly exceeding the number of T cells in an individual.

Thus, the likelihood of identical TCRs being observed in multiple individuals

(public TCRs) might be expected to be very low. Nevertheless such public TCRs

have often been reported. In this study we explore the extent of TCR publicity in

the context of acute resolving Lymphocytic choriomeningitis virus (LCMV)

infection in mice. We show that the repertoire of effector T cells following

LCMV infection contains a population of highly shared TCR sequences. This

subset of TCRs has a distribution of naive precursor frequencies, generation

probabilities, and physico-chemical CDR3 properties which lie between those of

classic public TCRs, which are observed in uninfected repertoires, and the

dominant private TCR repertoire. We have named this set of sequences

“hidden public” TCRs, since they are only revealed following infection. A similar

repertoire of hidden public TCRs can be observed in humans after a first

exposure to SARS-COV-2. The presence of hidden public TCRs which rapidly

expand following viral infection may therefore be a general feature of adaptive

immunity, identifying an additional level of inter-individual sharing in the TCR

repertoire which may form an important component of the effector and

memory response.

KEYWORDS

TCR - T cell receptor, LCMV (lymphocytic choriomeningitis virus), epitope-specific T
cell, effector T cells, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
1 Introduction

T cell receptor (TCR) antigen recognition is a key step in cellular immunity. The ability

to recognize a wide range of different pathogens depends on the huge ab TCR repertoire

diversity generated by the stochastic and imprecise recombination of variable, diversity and

joining (VDJ) genes (1). The estimated number of possible TCRs which could be generated

has been estimated as greater than 1014 (2), exceeding by many orders of magnitude the
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number of T cells in the human body. Nevertheless, TCR sequences

shared between many individuals, often referred to as public TCRs,

have been reported in both human (3, 4); and mouse (5, 6).

Although some public sequences have been annotated as specific

to viral or bacterial antigens (7, 8), most studies have focused on

repertoires from healthy individuals, and less is known about the

balance between public and private TCRs in the context of

acute infection.

Lymphocytic choriomeningitis virus (LCMV) offers an

excellent and well-described model in which to study the TCR

repertoire associated with acute infection. The Armstrong strain of

LCMV is cleared by eight days post-infection, which corresponds to

a strong expansion of CD4+ and CD8+ virus-specific T cells (9, 10).

This is followed by a contraction phase, giving rise to a subset of

long-lived memory T cells maintained by antigen-independent

homeostatic proliferation (11). CD4+ memory T cells

subsequently decline slowly, while the CD8+ memory population

remains relatively stable (12). The magnitude of the CD8+ response

is greater than the CD4+ response throughout the response (13).

However, CD4+ T cells are essential for an optimum CD8+

memory response. For example, the TCR signal strength of anti-

viral CD4+ LCMV specific T cells has been shown to be critical to

memory differentiation during the primary response (14, 15).

In C57BL/6 mice infected with LCMV, both CD4+ and CD8+ T

cell epitopes have been identified. These epitopes are derived from

the viral glycoprotein (GP) or nucleoprotein (NP). Some regions of

the viral antigens can stimulate both CD4+ and CD8+ T cells. For

example, the GP 66-77 region is dually restricted by both MHC

class I and II molecules (16). The immunodominance hierarchy of

the epitopes has been characterized in some detail. At the peak of

infection, the CD8+ T cell response is dominated by cells that

recognize NP396-404, a peptide that binds with high affinity with

both H-2Db and H-2Kb (17, 18), followed by the intermediate

epitopes NP205-212 and GP92-101 (19).

In this study, we combine antigen-specific tetramer sorting with

bulk TCR sequencing of different phenotypic populations of T cells

to characterize the T cell receptor (TCR) repertoire at different

phases of the LCMV response. We demonstrate that LCMV

infection drives a convergent CD8+ effector response across mice,

resulting in the detection of emerging shared (public) TCR CDR3

sequences whose publicity cannot be observed in the unimmunized

repertoire. A similar phenomenon of emerging public CDR3s was

observed in humans infected with SARS-COV-2. These “hidden”

public TCRs reveal an under-appreciated level of constraint on the

naive TCR repertoire, with important consequences for our

understanding of the interaction between the T cell repertoire and

viral infection.
2 Materials and methods

2.1 Animals

Female C57BL/6 mice at five weeks old (Envigo) were injected

intravenously with 2X105 PFU of the Armstrong LCMV strain (20).

Mice were collected after 8 or 40 days of infection. Healthy control
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mice were injected with PBS and collected eight days post-

treatment. All animals were handled according to regulations

formulated by The Weizmann Institute’s Animal Care and Use

Committee and maintained in a pathogen-free environment.
2.2 SARS-COV-2 consortium and
study design

We undertook a case control study nested within our COVID

consortium healthcare worker cohort. Participant screening, study

design, sample collection, and sample processing have been

described in detail previously (21). Briefly, healthcare workers

were recruited (between 23rd and 31st March 2020) and

underwent weekly evaluation using a questionnaire and biological

sample collection for up to 16 weeks when fit to attend work at each

visit, with further follow up samples collected at 6 months.

Participants with available blood RNA samples who had PCR-

confirmed SARS-COV-2 infection (Roche cobas® diagnostic test

platform) at any time point were included. A subset of consecutively

recruited participants without evidence of SARS-COV-2 infection

on nasopharyngeal swabs and who remained seronegative by both

Euroimmun anti S1 spike protein and Roche anti-nucleocapsid

protein throughout follow-up were included as uninfected controls.
2.3 Sample preparation and T cell isolation

Spleens were dissociated with a syringe plunger, and single-cell

suspensions were treated with ammonium-chloride potassium lysis

buffer to remove erythrocytes.

Bone marrow cells were extracted from mice femur and tibia

bones and were purified with CD3+ T isolated kit (CD3ϵ
MicroBead Kit, mouse, 130-094-973, Miltenyi Biotec). Splenic

CD4+ and CD8+ cells were purified in two steps: (1) Selection of

CD4+ cells (CD4+ T Cell Isolation Kit, mouse, 130-104-454,

Miltenyi) (2) Unbound cells were purified for CD8+ cells (CD8a+

T Cell Isolation Kit, mouse, 130-104-07, Miltenyi Biotec). For the

tetramers binding reaction, we pooled splenocytes from previously

vaccinated mice (5 mice after 8 days post infection) and purified

their T cells using the untouched isolation kit (Pan T Cell Isolation

Kit II, mouse, 130-095-130, Miltenyi Biotec).
2.4 Flow cytometry analysis and
cell sorting

The following fluorochrome-labeled mouse antibodies were

used according to the manufacturers’ protocols: PB or Percp/

cy5.5 anti -CD4, PB or PreCP/cy5.5 anti- CD8, PE or PE/cy7

anti- CD3, APC anti-CD62L, Fitc or PE/cy7 anti- CD44

(Biolegend). Cells were sorted on a SORP-FACS-AriaII and

analyzed using FACSDiva (BD Biosciences) and FlowJo (Tree

Star) software. Sorted cells were centrifuged (450g for 10 minutes)

before RNA extraction.
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2.5 LCMV -tetramers staining and Flow
cytometry sorting

Four monomers (NIH Tetramer Core Facility) with different

LCMV epitopes were used: MHCII -GP66–77(H-2Bb), MHCI-

NP396-404(H-2Db), MHCI- NP205-212(H-2Kb), MHCI- GP92-101

(H-2Db). Tetramers were constructed via binding Biotinylated

monomers to PE/APC – conjugated- streptavidin (according to the

NIH protocol). Purified T cells were stained with FITC anti-CD4+ and

PB anti-CD8+ and followed by tetramers staining (two tetramers

together), for 30 min at room temperature (0.6ug/ml). CD4+ and

CD8+ epitope-specific cells were sorted from single-positive gates for

one type of tetramer. Using two tetramers together for staining

provided a control for nonspecific binding, in addition to using cells

collected from the unbinding population (SI Figure 1B).
2.6 Library preparation for TCR-sequencing

All libraries in this work were prepared according to the published

method (22), withminor adaptations for mice and an in-house pipeline

for pre-processing of the data. The pipeline introduces unique

molecular identifiers attached to individual cDNA molecules, which

allows correction for sequencing error PCR bias, and provides a

quantitative and reproducible method of library preparation. Full

details pre-processing pipeline are published (23).

We used sequences that were fully annotated (both V and J

segments assigned), in-frame (i.e., they encode for a functional

peptide without stop codons), and with copy number greater than one.
2.7 Analysis

All statistical analysis was performed using R Statistical Software

(version 4.0.0). The Cosine similarity was computed with the package

“coop” (version 0.6-3) (24). With the Olga tool (25) we computed the

generation probability for each CDR3bAA sequence.

T cell repertoires were sub-sampled for equal size (n=1000

CDR3AAb clones in spleen). CDR nucleotide sequences were

replicated according to the UMI count number, and then randomly

sampled. The average Renyi scores for each k (k = 0, 0.25, 0.5, 1, 2, 4)

were calculated from 30 repeats of this random sampling.

The package “vegan” (version 2.5-7) (26) was used to project the

Nonmetric Multidimensional Scaling (27) Epitope-specific TCRs

were filtered based on: 1) top 1,000 sequences, and 2) absence in the

unbinding-tetramer populations and across multiple epitope-

specific types. Only the filtered TCRs were annotated to the to the

bulk samples (SI Table 2).

The five amino acid motifs were computed for each CDR3AA

by locating the center base and driving from it two additional amino

acids from each direction. The amino acids motif sequences logo

and charge were calculated with the packages “ggseqlogo” (28) and

“Peptides” (29), respectively.

The probability of generation (pGen) for each CDR3AA b chain
was commuted using the Olga package (25). The convergent
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recombination was inferred by counting the number of CDR

nucleotide sequences matched V and J segments for each

CDR3AA sequence.

SARS-COV-2 expanded TCRs were defined as any TCR which

changed significantly between any two time points. The significance

boundaries were defined as the maximum TCR abundance which

might be observed at time 2, given its abundance at time 1, given

Poisson distribution of counts with p < 0.0001, to give a false

discovery rate of <1 in 1000. TCR abundances are normalized for

the total number of TCRs sequenced in each sample and expressed

as counts/million. From these maximal values at any time point, we

calculated the expanded TCRb frequency.
2.8 Data availability

All DNA sequences from young and adult mice have been

submitted to the Sequence Read Archive under the identifier

PRJNA954849. https://www.ncbi.nlm.nih.gov/sra/PRJNA954849.
3 Results

3.1 LCMV infection promotes clonal
expansion within the CD8+ and
CD4 + effector and CD8+ central
memory repertoire

We sequenced the TCR repertoire of naive, central memory and

effector memory CD4+ and CD8+ T cells from the spleen and bone

marrow of three to four C57BL/6 mice at 8 - and 40-days post

LCMV infection (summarized in Figure 1A). The library

preparation incorporates molecular identifiers (UMI) for each

cDNA molecule, which allows subsequent correction for PCR bias

and sequencing error, allowing a robust and quantitative annotation

of each sequence in terms of CDR3 sequence and frequency (22, 23,

30); About ~1.89 x106 annotated CDR3 nucleotide beta chains were

obtained, including a varied number of sequences between

compartments, tissues, and infection status (SI Table 1), which

positively correlates with the number of sorted cells (SI Figure 1C).

Our analysis focuses mainly on the amino acid sequence of the TCR

beta complementarity determining region 3 (CDR3bAA), which is

the most diverse region of the TCR molecule and is associated with

antigen epitope recognition (1).

The abundance distribution profile of the repertoires showed the

presence of highly expanded TCRs in the spleen of both CD8+ and

CD4+ effector, and in CD8+ central memory T cells 8 days following

infection (9, 10). After 40 days of infection, clonal expansion could still

be observed in the CD4+ effector, but not the CD8 central memory

populations (SI Figure 1D). Clonal expansion following infection can

also be captured more quantitatively by the set of Renyi diversities,

which are shown in Supplementary Figure 1E.

Overall, the changes in TCR repertoire in memory and effector

populations reflect the known rapid proliferative expansion of memory
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and effector T cells following infection, providing confidence in the

quantitative output of the TCR sequencing pipeline.
3.2 Increased CDR3bAA sharing following
LCMV infection

We were interested in the impact of infection on driving

convergence (increased sharing) versus divergence (decreased

TCR sharing) between repertoires. In order to quantify repertoire
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overlap, while incorporating TCR abundance, we used the pairwise

cosine distance between the abundance vectors for each repertoire

(see M&M in (23)) to create a matrix of similarities between all pairs

of repertoires. We have previously shown that this measure is highly

correlated to the Morisita overlap index. LCMV infection drives

increased similarity (i.e. increased overlap) within CD4+ and CD8+

effector repertoires 8 days post-infection (peak response), which

decreases towards baseline by day 40 (Figure 1B -right). No such

effect was observed in naive or memory populations (Figure 1B

-left). An alternative way to visualize the overall pairwise similarity
B

C

A

FIGURE 1

LCMV infection promotes organized TCRb clonal structure of T cell states, mainly in the expanded CD4+ and CD8+ compartments. (A) The
experimental design: immunizations, T cell isolation, and TCR repertoire sequencing and analysis pipeline. (B) T cell effector repertoires increased
clonal similarity during LCMV Infection. Cosine similarity between CDR3AAb across tissues and mice in each T cell state (effector, central memory
and naive) and condition (healthy vs. mice after 8- or 40-days post infection). Horizontal black lines show the mean. Significant differences between
mice and tissues are denoted in asterisks (p-values: * < 0.01, ****<0.0001 Kruskal-Wallis test, fdr corrections). (C) Non-metric multidimensional
scaling (NMDS) representation of similarity between repertoires of different compartments. Each dot represents a T cell state (effector, central
memory, and naive in black, orange, and blue, respectively), class (CD4+ in circle, CD8+ in triangle) from a single healthy or LCMV-infected mouse.
CDR3AAbs distances between mice, tissues, and compartments were calculated using the cosine similarity index and projected on a plane using
NDMS. The grey ellipses on the NDMS panel were computed using the normal confidence ellipses.
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matrix between all the repertoires is to display the matrix in two-

dimensional space using multi-dimensional scaling (Figure 1C).

While the PBS immunized mice show a disordered pattern,

dominated by highly divergent effector distributions (perhaps

reflecting the heterogeneous previous immunological history of

each mouse), infection drove a strong pattern of repertoire

convergence, with tight segregation between CD4+ and CD8+

repertoires, tightly clustered effector populations furthest away

from naive populations and memory populations in between

naive and effectors. This overall pattern was maintained at 40

days post-infection, reflecting long-term stable changes to the

repertoire organization following infection.

To further validate whether these long-term repertoire

organizational changes are driven by common TCRs, we used the

same measurements described in Figures 1B, C to evaluate the

clonal overlap in mice at different immune states (healthy vs.

infected mice at day 8 vs. infected mice at day 40). Indeed, the

clonal overlap was increased only in CD4+ and CD8+ effector T

cells between day 8 and 40 post-infection and not in the other T cell

states and between PBS and infected mice (Figures 2A, B). Thus, the
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repertoire organizational changes are driven at least in part by

shared effectors TCRs detected upon infection.
3.3 Expansion and increased sharing in
LCMV– specific TCRs

The increased sharing following infection observed in the data

(Figures 1, 2) did not distinguish between antigen-specific or

potential bystander T cells activated by the infection. We,

therefore, identified a set of antigen-specific TCRs, using tetramer

purification and subsequent stringent bioinformatic filtering (see

methods section), resulting in good reproducibility and high

sequence overlap between biological replicates (SI Figure 1F). We

used this pipeline to sort and sequence TCRs specific for 3 CD8+

and 1 CD4+ LCMV epitopes from mice at day 8 post-

infection (Figure 1A).

A summary of the selected annotated epitope-specific TCRs is

presented in Supplemental Table 2. A set of Herpes simplex virus

CD8 specific TCRs (31) served as a control for these analyses.
A

B

FIGURE 2

LCMV infection induces common long-lasting T cell effector clones. (A) Clonal similarity evaluation between infected and uninfected mice in each T cell
compartment. Pairwise cosine similarity scores were projected on the NMDS plane for each T cells compartment (sub-plots), tissue (shape), and a single
mouse in different conditions (colored dots). Healthy-PBS injected mice are marked in grey dots (PBS), mice 8 days post-infection in red dots (LCMV8), and
40 days post-infection in blue dots (LCMV40). The grey ellipses on the NDMS panel of the CD4+ and CD8+ effector subplots are computed using the
normal confidence ellipses. (B) CD4+ and CD8+ effector CDR3AAbs are highly shared between mice at day 8 and day 40 post LCMV infection. Cosine
similarity was computed between effector CDR3AAb across tissues and mice in different conditions; day 8- and 40-days post-infection (red dots), 40 days
post-infection, and PBS control (blue dots), 8 days post-infection and PBS control (grey dots). All the effector sequences are in the left panel, and the effector
epitope-specific clones are in the right panel. The mean is shown in black lines (n=number of paired mice cross treatments and tissues). Significant
differences between mice and tissues are denoted in asterisks (p-value ****<0.0001 Kruskal-Wallis test).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1199064
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mark et al. 10.3389/fimmu.2023.1199064
We then looked for this set of antigen specific TCRs in the bulk

repertories from the different subpopulations of T cells (Figure 3A).

Out of the set of epitope-specific CDR3AAbs, a high fraction was

found in at least one repertoire from LCMV-infected mice (SI

Table 2, out of filtered TCRs: GP66- 43%, GP92- 65%, NP205- 92%,

NP396- 64%). As expected, the maximum enrichment of the

antigen-specific TCR sequences was seen in the day 8 effector and

memory population. At the peak of the infection, day 8, splenic

CD8+ effector and memory repertoires contained a higher fraction

of NP396 and GP92 specific clones (1-2%) than NP205 clones

(~0.5-0.6%), reflecting the known immunodominance hierarchy

(19). We did not observe significant enrichment of CD4+ GP66

epitope-specific T cells in the CD4+ effector population. Similarly,

we did not observe any significant enrichment of Herpes simplex

virus type 1 (HSV1)-specific TCRs in either the effector or memory

compartments. We focused on the splenic effector cells, which
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contained the highest fraction of epitope-specific clones and

plotted the abundance profile of the annotated TCRs (Figure 3B).

Clonal expansion, as evidenced by the presence of TCRs present at

high abundance compared to unimmunized mice was observed for

all epitopes and was especially pronounced at the peak of infection.

No expansion of HSV1 annotated TCR sequences was observed.

We next examined sharing between the epitope specific TCR

repertoires, as described in Figure 1B for the bulk repertoires. We

observed a similar increase in repertoire similarity at day 8 post

infection (Figure 3C) within the effector T cells for all four epitopes,

although the CD4+ changes in the peak of infection were smaller

and did not reach statistical significance (Figure 3C). Infection did

not alter sharing in the control HSV1-annotated TCR set. Overall,

we confirmed that infection induced a concurrent expansion and

convergence of TCR sequences in effector cells, including the

epitope specific repertoire.
A

B

C

FIGURE 3

Epitope-specific CDR3AAs are mainly found in the effector state of mice after eight days of LCMV infection. The epitope-specific CDR3AAbs are
annotated to healthy-PBS injected mice (grey dots and bars), mice at 8 (red dots and bars), or 40 days post LCMV infection (blue dots and bars).
Each epitope-specific group is labeled above or on the X-axis. The control epitope-specific sequences are labeled “Control -HSV1”. (A) The mean
fraction of epitope specific CDR3AAbs in each compartment, tissue, and mice condition. Error bars are SEM (n=mice number). Significant differences
between mice after 8 days of infection and healthy control mice are denoted by asterisks (p-values: * <0.05, Kruskal-Wallis test). (B) The cumulative
frequency of the effector - epitope-specific sequence. The plots show the cumulative proportion of the repertoire (y-axis) made up of TCR
sequences observed once, twice, etc. (x-axis). Significant differences were obtained between 8 days post infection and PBS treated mice, in effector
epitope-specific CD8+ NP396, CD8+ GP92,CD8+ NP205, and CD4+ GP66 cells (p-value=5.4e-9, p-value=6.3e-5, p-value= 1.3e-3, p-value=4.9e-
6, respectively, Kolmogorov-Smirnov test). Significant differences were obtained between 40 days post infection and PBS treated mice, in effector -
epitope-specific CD8+ NP205 and CD4+ GP66 cells (p-value= 5.0e-4,p-value=4.9e-6, respectively, Kolmogorov-Smirnov test). (C) Effector –
epitope-specific sequences are highly shared across LCMV infected mice. Cosine similarity scores were calculated for each type of epitope-specific
repertoire between mice and tissues. The mean is shown in black lines (n= number of paired mice and tissues). Significant differences between mice
and tissues are denoted in asterisks (p-values: * <0.05, **** <0.0001 Kruskal-Wallis test).
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3.4 Acute LCMV infection reveals patterns
of CDR3 sequence sharing, mainly among
the effector T cells of infected mice

We identified 1149 “public” CDR3 sequences which were

shared between most T effector repertoires from LCMV infected

mice (4-9 mice, Figure 4A). We hypothesized that if these TCR

sequences were classical public sequences (6, 32) they would be

frequently observed in repertoires of unimmunized mice. We

therefore searched for these common TCRs in a repertoire

database of 28 uninfected “control” mice investigated previously

(6). 1093 CDR3 sequences were detected in the reference cohort and

showed very variable degrees of sharing. 481 TCR sequences were

shared between 22-28 mice in the reference cohort and defined as

classical public TCRs. As expected, these CDR3s were enriched in

the uninfected control mice in our experiment (grey bars

in Figure 4B).

Out of the shared TCRs (1149) that were not classical public,

668 were defined as “hidden public TCRs”. Interestingly, CDR3s

detected in less than 14 reference repertoires were significantly

enriched in both 8- and 40-days post-infection mice (Figure 4B). A

similar pattern was observed in the subset of the 1149 public CDR3s

which were also identified as LCMV-specific by tetramer staining,

although the number of such CDRs was much smaller (Figure 4B,

lower panel). The proportion of the shared LCMV CDR3s which

bound HLA-tetramer is shown in Figure 4C. Thus, we conclude that

there is a substantial proportion of CDR3s which is highly public

when comparing the effector repertoires of LCMV-infected mice

but have intermediate levels of sharing in unimmunized repertoires.

We refer to these as hidden public CDR3s.

The degree of sharing between repertoires in different

individuals is determined in part by the probability of generating

a particular TCR during somatic recombination (pGen), which can

be inferred from the CDR3 sequence (25). This repertoire bias

results in highly frequent naive populations encoded by many

different CDR nucleotide sequences (convergent recombination

degree - CR). Public CDR3s have been shown to have a much

higher pGen, CR and frequencies distribution and shorter lengths

than private CDR3s, explaining in part how they can be observed in

many independent repertoires. We calculated these measurements

for all the CDR3s shared between all LCMV-infected repertoires

and stratified them according to their publicity within the control

uninfected repertoires (Figures 4D, E). The hidden public CDR3s

had pGen and length distributions which lay between that of private

and public CDR3s (Figure 4D; SI Figure 2B). Hidden public CDR3s

were also detected with intermediate levels of naive frequencies and

CR degrees (Figure 4E), suggesting they hold unique repertoire bias

properties, which can be fully revealed upon viral expansion. To

better understand these dynamic changes, we focused on

overlapped clones from effector cells of infected mice and naive

cells from healthy mice. This allowed us to follow a clone- trajectory

based on the average clonal frequency change from the healthy to

day 8 and 40 post-infection (Figure 4F). While public TCRs were

reduced, hidden public TCRs increased at 8 days post-infection.

After 40 days of infection, the hidden public TCR changed their
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dynamics, CD4+ reduced, and CD8+ maintained high frequency.

We note that private TCRs cannot be linked to this trajectory as

they contained unique CDR3AA sequences in each mouse

(Figure 4F, marked in blue dashed lines). However, private TCRs

can represent a reference, which showed, on average, lower clonal

frequency compared to the shared TCRs. Similar patterns were

observed in both spleen and bone-marrow tissues, and by

computing the repertoire fraction in each public, hidden public,

and private populations (SI Figure 2A). The differences between the

private, hidden public and public CDR3s were further explored via

the physicochemical properties of the CDR3 amino acids.

We visualized the relative contribution of each of the central five

amino acids of the CDR3, the region most likely to contact the

peptide epitope (33). As shown in Figure 4G, serine is over-

represented at the beginning of the sequence in the fully public

CDR3s, while both private and hidden public sequences were more

diverse (Figure 4G). A lower average basic amino acid was observed

in the public and hidden public motifs than in the private

motifs (Figure 4H).
3.5 Hidden public TCRs in the context of
SARS-COV-2 infection

We hypothesized that hidden public TCRs may emerge more

generally as a response to acute infection. We therefore examined

the TCR repertoires of 39 individuals who tested PCR positive for

SARS-COV-2 during the first wave of the pandemic in the UK

(Manisty), as well as 6 individuals who remained PCR negative and

seronegative throughout. As described in detail previously in (21),

we identified a wave of TCRs which expanded within the first few

weeks of infection in most infected individuals.

To compare the level of publicity of these expanding CDR3s

between the COVID-infected individuals, and uninfected

individuals we utilized a reference cohort of 786 healthy

individuals (34), referred to here as the Emerson data set,

Figure 5A) collected several years prior to the SARS-COV-2

pandemic. Most of the expanded SARS-COV-2 CDR3 sequences

were found in the Emerson data set (59.4%, 2794). Within the

expanded set of TCRs we identified a set of classical public TCRb
sequences, which are highly shared across many healthy and SARS-

COV-2 infected individuals (92 TCRs shared in more than 65% of

individuals in both data sets). However, we also identified a set of

CDR3 sequences that are highly shared only among the SARS-

COV-2 infected individuals (21 TCRs found shared in more than

65% of SARS-COV-2 infected individuals and below 5.3% of

healthy individuals) (Figure 5B). This set of TCRs is analogous to

the hidden public TCRs from mice, which were highly shared only

among LCMV infected individuals and not in the 28 reference mice.

The hidden public TCRs were present at a significantly higher

abundance in the repertoires of the SARS-COV-2 infected

individuals (13 per million TCR) than the classical public TCRs

(4 per million TCR, p-value < 2.2e-16, Wilcoxon test).

We further examined the few hidden public-TCRs which were

also detected in the PCR negative individuals and found them to be
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FIGURE 4

Defining properties of LCMV driven- hidden- public clones. (A) The number of CD4+ and CD8+ effector CDR3AAb sequences that overlapped with
most mice after 8 (LCMV8) and 40 (LCMV40) days of infection (4-9 mice, 1149,” LCMV- long-lasing TCRs”). (B) The sharing distribution of LCMV-
long-TCRs, across the 28 mice reference cohort. The frequencies of the CD4+ or CD8+ LCMV- long-lasting CDR3bAA (1149) and the epitope-
specific sequences among them (lower panel) that were undetected (0) or found in a 1-28 mice reference data set (6). Healthy-PBS injected mice
are marked in grey bars (PBS), and mice 8 or 40 days post-infection are marked in red and blue bars, respectively. The frequency was calculated by
normalizing the CDR3AA UMI count from each class (CD4+/CD8+) and immune state (PBS/LCMV8/LCMV40) by the total counts in all mice and
tissues. Presented in the mean frequency in each sharing group (0-6,7-13,14-21,22-25). Error bars are SEM (n=sequences number). (C). LCMV- long-
lasing TCRs (n=1149, A) are divided into two groups according to the sharing hierarchy found in the reference data set: 1) public TCRs shared by 22-
28 mice, 2) hidden public TCRs undetected (0) or found shared by 1-21 mice. CD4+ and CD8+ effector TCRs that are termed private are sequences
that appeared in one mouse from the current dataset and not in the reference cohort. The total (“All”) and the epitope specific TCRs (“ES”) number
and fraction are marked in white text and red color. (D) The probability generation (pGen) scores and CDR3AAb for each CD4+ and CD8+ TCRs
population. (E) CD4+ and CD8+ naïve precursor frequency and convergent recombination (CR) mean number across public, hidden, and private
TCRs population. Error bars are SEM (n=sequences number). (F) Clonal evolution from the naïve state to 8 up to 40 days post-infection. For each
TCRs population (out of 1093 TCRs) in the different immune states, points represent the mean frequency. The connected lines describe the clone
time-based trajectory. Private CDR3AA in each immune state were subsampled (500) to avoid the size variation between the TCRs populations. The
dashed lines represent the private population’s unique CDR3AA sequences in each immune state trajectory. (G) Chemical properties of the five
amino acid motifs from the public, hidden public, and private (indicated by the frame colors). Significant differences were obtained between pGen
distribution of hidden public TCRs and public TCRs and between hidden public TCRs and private TCRs (p-value < 2.2e-16, Kolmogorov-Smirnov
test). (H) Each point represents a basic (H + K + R) amino acid mole percentage in each 5AA motif of the public, hidden public or private TCRs
populations. The mean is shown in (n=number CDR3AAs in each group). Significant differences between public, hidden public and private TCRs are
denoted in asterisks (p-values: ** < 0.01, *** <0.001, **** <0.0001 Kruskal-Wallis test).
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present at significantly lower abundance than in the PCR positive

individuals (7 CDR3AA with frequency means of 17.1 vs. 1.17 PCR

positive vs. negative individuals, p-value < 2.2e-16, Wilcoxon test)(SI

Figure 2C). The increased abundances in the PCR positive individuals

support their association with antigen-driven expansion.

SARS-COV-2 driven hidden public TCR were also found in an

additional higher resolution independent dataset, generated from

39 individuals prior to the SARS-COV-2 pandemic (35). This

dataset has an average 2.2-fold higher number of TCRb per

individual (409519), in comparison to the Emerson data set

(183211). Here as well, the SARS-COV-2 associated hidden
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public sequences showed intermediate abundancy, levels between

public and private TCRs (SI Figure 2D).

The SARS-COV-2- associated hidden public CDR3s were found

to have pGen and length distributions intermediate between the

public and the private CDR3s (Figure 5C), as we observed for the

LCMV hidden public sequences. Lastly, we calculated the central

five amino acids usage and their average percentage of basic amino

acids (Figure 5D). Public CDR3s showed a more constrained amino

acid usage pattern than the private and hidden public CDR3s, and

the public and hidden public motifs showed lower average scores of

basic amino acids than the private motifs (Figure 5E).
B

C

D E

A

FIGURE 5

Hidden public TCRs revealed in SARS-COV-2 patients. (A) An overview of the collected data and analysis design (B) Comparison between the
sharing levels of CDR3 sequences found across individuals from the Covid and the Emerson data sets. The color represents the log 10 median
frequency of all CDR3AAs in each Covid sharing level (high= orange, low = black). Three TCRs populations were defined: 1) Public TCRs highly
shared in both data sets (above 524 and 26 individuals in the Emerson and Covid patients, respectively, 92 CD3AAs). 2) “Hidden public” TCRs which
were highly shared only among the SARS-COV-2 cohort (above 26 and below 50 individuals from the Covid and Emerson cohort, respectively, 21
CD3AAs). 3) Private TCRs exclusively detected in one patient from the Covid data set. (C) The probability generation scores, CDR3AAb length
distributions in reach of the defined population. (D, E) The chemical property of the 5 middle amino acid motifs in each of the defined populations.
(D) Amino acid sequences logo. (E) Each point represents the mole percentage of basic (H + K + R) amino acid in each public, hidden public or
private motifs. The mean is shown in (n=number CDR3AAs in each group). Significant differences between public, hidden public and private TCRs
are denoted in asterisks (p-value *** <0.001 Kruskal-Wallis test).
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Taken together, these results suggest that hidden public CDR3

sequences, with distinct properties from classical public CDR3s can

be observed in different acute viral infections and host species.

Thus, this phenomenon may be a generalized feature of the adaptive

immune system, revealing some unexpected constraints on the

diversity generated by somatic recombination in T cells.
4 Discussion

The well-characterized model of acute LCMV infection allowed

us to probe the reactive T cell repertoire during the peak and

memory phases of the viral infection. We demonstrated that viral

infection drove convergent evolution in the TCR repertoire, which

could be detected in both the total and the antigen-specific effector

compartment. Convergence was driven by the expansion of a set of

shared CDR3 sequences, which could only be detected after the

antigen-specific response. These antigen-dependent shared CDR3s

were seen less often than classical “public” CDR3s in unimmunized

repertoires, consistent with their lower probability of generation.

These observations suggest that the degree of sharing between

individuals is greater than was previously thought, but that many

of the shared sequences are “hidden” by being present at low

abundance in the naive repertoire, and are therefore not observed

in typical sampling of unimmunized mice, which sequence only a

tiny proportion of the total repertoire. Strikingly, hidden public

TCRs were also identified in SARS-COV-2 infected individuals,

supporting the notion that these findings represent a broader and

conserved phenomenon.

We examined in greater detail a subset of shared LCMV-

dependent effector T cells which persisted in the repertoire until

at least day 40 post-immunization. We searched for these TCRs in

an independent cohort of 28 antigen-naïve mice (6). These

persistent shared CDR3s were found in zero to six of these

control repertoires, defining a new intermediate level of publicity.

We hypothesize that the “hidden public” TCRs originate from naive

cells which are generated at a sufficiently high frequency to be

present in many naive repertoires, but are present at low abundance

in the naive repertoire, resulting in them not being detected in

routine TCR sampling. However, following infection, T cells

expressing these shared CDR3 consistently expand and

differentiate into effector cells as a result of exposure to LCMV

peptides. As a consequence, their abundance reaches a critical level

at which they are consistently detected in the repertoire samples we

analyze. Consistent with this hypothesis, we find that the “hidden

public” CDR3s have higher naive precursor frequencies, more

convergent recombination, and higher generation probabilities

than random sets of CDR3s (which are mostly private to a single

mouse and compartment). However, they have lower levels of these

metrics than classical “public” CDR sequences.

The differences between the public and “hidden public” CDR3s

may reflect different functional properties. Indeed, while public

TCRs were shown to be more self-immunity-associated (6), the

hidden public TCRs react to viral infections. Although the

mechanisms remain incompletely understood, increasing levels of

naive precursor T cell frequencies have been shown to drive more
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significant peptide MHC responding capacities (19, 31). The range

of naive precursor frequencies and the phenotype heterogeneity

(36) has yet to be fully determined but might explain the hidden

public pre-exposure antigenic preferences.

The hidden public TCRs appear to be a broader phenomenon

found also in other viral infections and species. The first SARS-

COV-2 pandemic wave offered a good model for a primary viral

infection in humans. We searched the expanded SARS-COV-2

TCRs (37) in a large cohort of healthy humans, and detected a set

of TCRs that were highly shared across SARS-COV-2 infected

individuals but showed less publicity in a cohort of pre-pandemic

TCR repertoires. The detection of sharing even in the genetically

heterogeneous HLA-diverse human setting is interesting, and will

merit further study. Similar to the LCMV hidden public population,

these TCRs had intermediate generation probabilities.

We investigated whether the “hidden public” CDR3s also

showed distinct amino acid composition, which might explain

their more frequent selection in the thymus (38) or their higher

abundance in the naive repertoires. Since these hidden public TCRs

originated from a diverse set of HLA genotype, we focused on the

five amino acid middle of the CDR3AA, a region associated with

binding the peptide within the MHC complex (33). The Covid and

LCMV hidden public motifs showed higher amino acid diversity

than the public motifs. In addition, we found that public and hidden

public motifs tend to include less positively charged amino acids

compared to private motifs, suggesting they hold conserved binding

properties. We can speculate that the hidden public amino acid

constraints might provide an evolutionary cross-reactive advantage,

allowing them to react to foreign and self-antigens (39). However,

further study is required to better understand the developmental

process, driving the generation preference of the hidden

public TCRs.

The study we present here has several limitations. The number

of individuals analyzed and epitope-specific sequences were

relatively small, limiting the amount of robust statistical analysis

that could be carried out. Another limitation is that the analysis of

the post-infection repertoires was limited to two time points. We

also recognize that the effector functional state we defined was based

on a rather simplistic and limited panel of cell surface markers,

which could result in heterogeneous effector memory phenotypic

states, especially at late post-infection time. In addition, the bulk

TCRb chain analysis cannot capture the absolute clonal identity

which comprises paired a and b chains. The TCR a chain is less

diverse and can be expressed twice (Dual TCRa) in virus-specific

CD4+ and CD8+ T cells during acute responses (up to 60%) (40),

highlighting the complexity of using the TCRa chain as a

clone identifier.

This study describes a naive precursor population carrying a

shared set of CDR3s capable of providing a rapid response to viral

infections. We coin the term “hidden public” to describe this

population. Our results suggest that the TCR repertoire may be

more constrained, and hence more similar between individuals, than

current dogma supposes. Deeper understanding of the processes

which shape this repertoire, and determine the level of inter-

individual sharing is important for understanding the antiviral

response and in rational design of next-generation vaccines.
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SUPPLEMENTARY FIGURE 1

(A) Representative sorting gates of CD4+ cells from onemouse in each condition

(PBS/LCMV8/LCMV40). (B) Representative sorting gates from CD8+ T cells
specific for NP205 peptide. From the CD8+ population, 2.86% are positive for

the MHC class I NP205 tetramer (lower right panel) and almost all CD4+ cells are
negative (0.018%, lower left panel). The CD8+ cells that are negative for the

tetramer were also sorted and analyzed. (C) The number of UMIs correlates with

the sorted cell number. Dots correspond to the sum of UMI count versus the
sorted cell number inmice 8 days post LCMV infection. (D)Cumulative frequency

distributions in CD8+ and CD4+ naive central memory and effector repertoires
from spleen and bone marrow. Healthy control, and mice after 8- or 40-days of

infection are marked in colored dots (gray, red and blue dots, respectively).
Significant differences were obtained between day 8 post-infection and PBS

treated mice, in the bone-marrow CD8+ and CD4+ effectors (p-value < 2.2e-16,

p-value=3.1e-6, respectively, Kolmogorov-Smirnov test) and in the following
splenic compartments: CD8+ central memory CD8+ effector, CD4+ effector

(p-value < 2.2e-16, Kolmogorov-Smirnov test). Significant differences were
obtained between day 40 post-infection and PBS treated mice, in splenic and

bone-marrow CD4+ effector (p-value =1.3e-9 and 2.2e-11, respectively,
Kolmogorov-Smirnov test) and bone-marrow CD8+ central memory and CD8

+ effector (p-value =3.7e-11 and 8.9e-4, Kolmogorov-Smirnov test). (E) The Renyi
diversities of order 0, 0.25, 0.5, 1, 2, 4 Renyi valueswere computed from sequence
frequencies at equal sizes (1000 in the spleen and 100 in the bone marrow),

averaging values over 100 repeated samplings. Each color represents one CD4 +
or CD8+ compartment from one mouse in a single condition. See legend for

symbols and color code. (F) NP396 epitope-specific clones from two biological
repetitions are positively correlated in the obtained UMI counts. Each point is the

UMI count of a single CDR3AAb found in the two repetitions (Rep1/Rep2).

SUPPLEMENTARY FIGURE 2

(A) Similar frequencies in spleen and bone marrow tissues of a single mouse,
immune state (PBS/LCMV8/LCMV40), CD4+ or CD8+ class, and TCRs

population. Frequencies are calculated by the sum of UMI counts per TCRs
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population (public/hidden public/private) divided by the total UMI count sum
in each mouse, immune state, tissue, and T cell class. R2 coefficient scores

are marked in each subplot. (B) CDR3AAb length distributions in reach of the

defined population. (C) The frequency of hidden public TCRs found in healthy
individuals (7 CDR3AAs, PCR negative) and SARS-COV-2 infected individuals

(PCR positive). Mean values are marked in black lines. Significant differences
are marked in p value (Wilcoxon test). (D)SARS-COV-2 –associated hidden

public TCRs detected in high resolution pre- SARS-COV-2 pandemic dataset.
The three-populations identified SARS-COV-2 individuals were searched in

the Britanova et al. data set (35). Each bar represents the mean frequency of

SARS-COV-2 associated- public TCRs (all 92 detected, black bar), or hidden
public TCRs (7 out of 21 detected, orange bar) and private TCRs (blue bars).

Error bars are SEM (n=sequences number). Significant differences between
public, hidden public and private TCRs are denoted in asterisks (p-values:

*< 0.05, *** <0.001, Kruskal-Wallis test).
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SUPPLEMENTARY TABLE 1

Number of CDR3NT and CDR3AA sequences, and sum of UMI counts for
each T cell state (“ClassState”), tissue (“Tissue”), and mouse number (“Mice”) in

healthy (“PBS”) or infected conditions (8 or 40 days post- LCMV infection,

LCMV8 and LCMV40, respectively).

SUPPLEMENTARY TABLE 2

Number of CDR3AA sequences and sum of UMIs for each epitope-specific

type during the filtering process. The sequences were obtained from the
tetramer isolation experiment (see Methods section, “All” column). Epitope-

specific TCRs were filtered based on: 1) top 1,000 sequences, and 2) absence

in the unbinding-tetramer populations and across multiple epitope-specific
types (“Filtered”). The number of filtered epitope-specific TCRs found in the

bulk samples (LCMV40, LCMV8, PBS, andmultiple T cell states) is presented in
the “Found in bulk” column.
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Computational formulation
of a multiepitope vaccine
unveils an exceptional
prophylactic candidate against
Merkel cell polyomavirus

Raihan Rahman Imon1,2, Abdus Samad1,2, Rahat Alam1,2,
Ahad Amer Alsaiari3, Md. Enamul Kabir Talukder1,2,
Mazen Almehmadi3, Foysal Ahammad1,4*

and Farhan Mohammad4*

1Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh,
2Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology,
Jashore, Bangladesh, 3Clinical Laboratories Science Department, College of Applied Medical Science,
Taif University, Taif, Saudi Arabia, 4Division of Biological and Biomedical Sciences (BBS), College of
Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
Merkel cell carcinoma (MCC) is a rare neuroendocrine skin malignancy caused by

human Merkel cell polyomavirus (MCV), leading to the most aggressive skin cancer

in humans. MCV has been identified in approximately 43%–100% of MCC cases,

contributing to the highly aggressive nature of primary cutaneous carcinoma and

leading to a notable mortality rate. Currently, no existing vaccines or drug

candidates have shown efficacy in addressing the ailment caused by this specific

pathogen. Therefore, this study aimed to design a novel multiepitope vaccine

candidate against the virus using integrated immunoinformatics and vaccinomics

approaches. Initially, the highest antigenic, immunogenic, and non-allergenic

epitopes of cytotoxic T lymphocytes, helper T lymphocytes, and linear B

lymphocytes corresponding to the virus whole protein sequences were identified

and retrieved for vaccine construction. Subsequently, the selected epitopes were

linked with appropriate linkers and added an adjuvant in front of the construct to

enhance the immunogenicity of the vaccine candidates. Additionally, molecular

docking and dynamics simulations identified strong and stable binding interactions

between vaccine candidates and human Toll-like receptor 4. Furthermore,

computer-aided immune simulation found the real-life-like immune response of

vaccine candidates upon administration to the human body. Finally, codon

optimization was conducted on the vaccine candidates to facilitate the in silico

cloning of the vaccine into the pET28+(a) cloning vector. In conclusion, the vaccine

candidate developed in this study is anticipated to augment the immune response

in humans and effectively combat the virus. Nevertheless, it is imperative to conduct

in vitro and in vivo assays to evaluate the efficacy of these vaccine candidates

thoroughly. These evaluations will provide critical insights into the vaccine’s

effectiveness and potential for further development.

KEYWORDS

Merkel cell polyomavirus (MCV),Merkel cell carcinomas (MCC), immunoinformatics, vaccine
design, multiepitope vaccine, molecular dynamics simulation (MD), molecular docking
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GRAPHICAL ABSTRACT
1 Introduction

Merkel cell polyomavirus (MCV) is one of the seven currently

known human oncoviruses in the human polyomaviruses (HPV)

family. It has drawn massive attention due to its link to rare human

cancer. The virus induces cancer in its natural host and is a primary

agent known to cause Merkel cell carcinoma (MCC) (1, 2). MCV is

a causative agent in approximately 43%–100% of MCCs, leading to

more incidences in aged and immunocompromised patients (3).

MCC, which is an aggressive type of skin cancer, was first described

by Cyril Toker in 1972 (1, 4). He discovered that the development of

neuroendocrine carcinoma of the skin, also referred to as a

“trabecular tumor of the skin,” is associated with MCV infection.

The viral infection triggers an abnormal increase in Merkel cells

(MCs) and skin mechanoreceptor cells, leading to uncontrolled

proliferation (5). The MCs are found deep in the epidermis of the

top layer of the skin as innervated clusters of cells close to the nerve

endings receiving touch and pressure sensations (6). The MCC is

considered the second deadliest form of skin cancer after malignant

melanoma, with a mortality rate of 35% (7). Skin cancer ranks as the

17th most prevalent cancer globally and one of the most diagnosed

cancers worldwide. In the United States alone, an estimated 9,500

new cases of skin cancer are diagnosed daily (8). Particularly, MCC

contributes to approximately 700 annual fatalities (9). However, the

etiology and pathogenesis of MCC remain elusive (10, 11).

MCV is a small, circular, non-enveloped, double-stranded DNA

virus highly prevalent in humans and causes skin malignancy (12).

The virus is classified within the ortho-polyomaviruses family,

which encompasses various mammalian polyomaviruses,

including simian virus (SV40), murine polyomavirus, and the

human BK polyomaviruses and John Cunningham virus (13–16).

The prototype genomic sequence of MCV encodes characteristic

polyomavirus proteins from opposite strands, including early genes

encoding large T antigen and small T antigen and late genes

encoding viral capsid proteins (VP1, VP2, and VP3 genes) (11,

17). MCV viral T antigens are oncoproteins expressed in human

MCC tumors (18). The oncoproteins, namely, large and small T,
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play a pivotal role in the transformation of normal cells into cancer

cells. They exert their influence by activating tumor suppressor

proteins, contributing to the development and progression of

cancer (19). The viral proteins 1, 2, and 3 (VP1, VP2, and VP3)

are expressed by the virus through three open reading frames,

functioning as capsid proteins. The VP1 protein constitutes 70% of

the total virus protein particles, and the protein is a major

immunogenic component found in the host immune system

required for producing pseudo virions (20). MCV causes

abnormalities in the skin’s MCs and transforms normal cells into

cancer cells. In MCC tumors, VP1 is the major viral protein

required to form viral particles and to bind to the site for

infection. Anti-VP1 antibodies in the blood indicate chronic

disease with MCV (21). Vaccines have successfully been

developed against HPV and HBV, targeting the different

structural proteins of the viruses (22, 23). The limited

understanding of MCC etiology has prevented us from achieving

similar successes for MCV, necessitating exploring innovative

approaches and treatments for MCC (24). Developing a

therapeutic vaccine can be considered a success for the disease

that may provide support to enhance the activity of cancer-specific

T cells and promote antitumor immunity. The therapeutic vaccines

will enhance cellular response by activating antigen-specific CD8

+ T cells of patients with MCC-positive tumors.

This study aims to design an efficient multiepitope vaccine

against MCV using computational immunoinformatics approaches

to provide novel treatment options for MCC. The multiepitope

vaccine will generate a more robust immune response to viral

particles and peptides (25, 26). It will produce fewer fatal

consequences than vaccines developed using complete viral

proteins and peptides (27, 28). As MCV T antigens are tumor

suppressors in the human body and form cancer cells by altering

typical MCs, this newly developed vaccine may help prevent the

transformation of MCs to cancer cells in human skin (29). We have

designed a vaccine candidate against MCV that binds to MC’s

receptor site and can potentially fight against MCV in the human

body. Previously, DNA vaccines were developed targeting large and
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small T antigens or VP1. They produced antitumor effects by

inducing cytotoxic and helper T lymphocyte (CTL and HTL)

responses in mice (30–32). In this study, we have used selected

epitopes of capsid proteins (VP1-VP3) and large and small T

antigens and designed multiple epitope vaccine candidates,

showing computationally more robust immune responses.

However, further in vitro and in vivo experiments must be

conducted to confirm the efficacy of the designed multiepitope

vaccines produced using predicted epitopes.
2 Materials and methods

A flow chart of the overall procedure applied in these studies,

initiated from antigenic protein selection to vaccine construction

and evaluation, is illustrated in Figure 1.

Also, we have provided detailed information about the servers

used in the design of MCV vaccine candidates in Table 1. It includes

their functions, parameters, and thresholds, which are crucial for

predicting antigenicity, epitopes, protein structures, and optimized

vaccine design. Table 1 indicates the specific parameters and

thresholds each server uses during its prediction processes. This

valuable information will serve as a comprehensive reference guide,

highlighting essential servers, their functionality, and the

parameters and thresholds used during the computational-based

design process of MCV vaccine candidates.
2.1 Proteome retrieval and
antigenicity prediction

We obtained the protein sequences of MCV from the UniProt

website, a widely accessible database of experimentally
Frontiers in Immunology 0324
characterized protein sequences. UniProt offers comprehensive

information regarding these protein sequences, facilitating our

research and analysis (51). Five protein sequences, including large

T antigen, small T antigen, VP1, VP2, and VP3 of the MCV, were

retrieved from the UniProt (Proteome ID: UP000154903). All

protein sequences were downloaded in the FASTA file format and

submitted to the VaxiJen v2.0 server for antigenicity prediction

(34). We utilized a web-based tool to align independent protein

sequences, enabling the identification of antigens that exhibited

performance based on auto cross-covariance transformation and

aiding in the determination of uniform vectors of equal lengths. We

selected the proteins with the highest antigenicity for subsequent

analysis. The threshold value was 0.5 to predict 12 MHC supertypes,

including supertypes A26 and B39 of MHC. Additionally,

ANTIGENpro was also used to indicate the antigenicity of the

selected proteins (35).
2.2 Epitope identification

2.2.1 Cytotoxic T lymphocyte epitope evaluation
and selection

We submitted the selected antigenic proteins with the highest

antigenicity scores to the NetCTL 1.2 server for CTL epitope

prediction, which has a higher predictive capability and sensitivity

than other available methods (36, 52). We analyzed CTL epitopes

within the 12 HLA-I supertypes (A1, A2, A3, A24, A26, B7, B8, B27,

B39, B44, B58, and B62) to select specific antigenic proteins. The

proteins with the highest NetCTL scores were selected. A default

NetCTL value of 0.75 was used as a cut-off to predict and select a

CTL epitope (53). This method combines the prediction of peptide

major histocompatibility (MHC) class I binding, proteasomal

C_terminal cleavage, and transporter associated with antigen
FIGURE 1

This schematic diagram illustrates the comprehensive workflow employed in the current study for computational multiepitope vaccine design
against Merkel cell polyomavirus (MCV). The workflow utilized vital steps, including target antigen identification, epitope prediction, epitope
selection, design of multiepitope constructs, structural modeling and validation, in silico cloning, and in silico evaluation of immunogenicity and
efficacy. These steps collectively contribute to developing an optimized multiepitope vaccine candidate for MCV.
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processing (TAP_) transport (54). We evaluated selected CTL

epitopes for immunogenic, antigenic, allergenic, and toxicity

properties. The immunogenic response of CTLs is the main

requirement for vaccine construction. First, the selected epitopes

were submitted to the MHC-I immunogenicity tool of the IEDB

website to evaluate immunogenic properties (40). Second, selected

epitopes were analyzed using the VaxiJen 2.0 server for antigenic

evaluation (34). Third, the allergenicity of the selected epitopes was

predicted using the AllergenFP v.1.0 server for CTL epitope

evaluation (37). Finally, the toxicity of CTL epitopes was

evaluated using the ToxinPred server (38). In most cases, we

utilized the default parameters of the server for epitope

evaluations. In this study, we chose CTL epitopes with

immunogenic, antigenic, non-allergenic, and non-toxic properties

for the final vaccine constructs.

2.2.3 Helper T lymphocyte epitope evaluation
and selection

Helper T lymphocyte (HTL) cells play a crucial role in adaptive

immunity, stimulating both humoral and cellular immune

responses against foreign antigens (53). To identify HTL epitopes

of the MCV protein, we utilized the MHC-II binding allele-IEDB

Analysis Resource website as a resource in this study (55). We used

the consensus method of 5% percentile for HTL epitope prediction

and selection, and 15-mer peptide epitopes were selected.
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Subsequently, the chosen HTL epitopes were evaluated based on

interferon-gamma, interleukin-4, interleukin-10, and antigenicity

properties. The interferon-gamma is a type of cytokine critical to

both innate and adaptive immunity that plays an essential role in

vaccine construction. First, selected epitopes were submitted to

the IFNepitope server for interferon-gamma secretion property

analysis, which utilized a hybrid method [support vector machine

(SVM) and motif method] to analyze the properties (41). Second,

the interleukin-4- and interleukin-10-producing ability of the HTL

epitopes were predicted by using the IL4Pred and IL10Pred servers

(56, 57). Based on the induction and non-induction properties,

interleukin-4 and interleukin-10 were selected. Finally, we analyzed

the antigenic properties of the HTL epitopes using the VaxiJen 2.0

server (34). The HTL epitopes selected based on the induction

ability of interferon-gamma, interleukin-4, and interleukin-10 and

antigenicity properties were used for the vaccine constructs.

2.2.3 B-Cell lymphocyte epitope evaluation and
selection

Linear B-cell epitopes are crucial in antibody production and

the construction of peptide-based vaccines (58). To identify linear

B-cell epitopes, we submitted the selected antigenic proteins to the

BepiPred 2.0 web tool (42, 59). This tool successfully identified 12-

mer peptide epitopes corresponding to the MCV protein. The

threshold parameter that has been set was 0.5. The selected B-Cell
TABLE 1 This table provides a comprehensive compilation of servers employed in the design of Merkel cell polyomavirus (MCV) vaccine candidates,
including their functions, parameters, and thresholds.

Server Name Function Parameters Threshold Reference

UniProt Protein sequence retrieval – – (33)

VaxiJen v2.0 Antigenicity prediction Default 0.5 (34)

ANTIGENpro Antigenicity prediction Default – (35)

NetCTL 1.2 CTL epitope predictions Default 0.75 (36)

AllergenFP v.1.0 Allergenicity prediction Default – (37)

ToxinPred Toxicity prediction Default 0.5 (38)

MHC-I immunogenicity Immunogenicity
prediction

Default – (39)

Immune epitope database and analysis resource (IEDB) T-cell epitope prediction Default – (40)

IFNepitope IFN-g inducing epitope prediction Default – (41)

BepiPred 2.0 B-cell epitope prediction Default 0.5 (42)

ProtParam Physicochemical property prediction of a protein Default – (43)

SOLpro Solubility Default – (44)

I-TASSER Protein structure prediction – – (45)

GalaxyRefine Refinement and optimization of protein structures Default – (46)

ProSA Validation of protein structures Default – (47)

Protein Data Bank (PDB) Experimentally determined 3D protein structures – – (48)

ClusPro 2.0 Protein–protein docking Default – (49)

JCat Optimizing codon Default – (50)
f

The servers in the table perform various tasks related to antigenicity prediction, epitope prediction, protein structure prediction, refinement, and optimization.
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lymphocyte (BCL) epitopes were further evaluated based on

antigenicity, allergenicity, and toxicity properties. Finally, the best

BCL epitopes with the highest antigenicity, non-allergenicity, and

non-toxicity properties were selected for vaccine construction.
2.3 Estimation of population coverage

The distribution of human leukocyte antigen (HLA) alleles and

their expression patterns vary country by country and worldwide

according to the differences in genomic regions and ethnicities (60).

In computational vaccine design, population coverage directly

indicates the worldwide effectiveness of the vaccine by evaluating

the prevalence of HLA alleles related to the epitope of interest.

Therefore, the population coverage was calculated using the T-cell

epitopes with their respective HLA-binding alleles. To achieve this,

we submitted the selected epitopes along with their allelic

information to the IEDB population coverage tool. This tool

allows for assessing the coverage provided by the selected epitopes

across different populations (61). Population coverage scores were

calculated using the HLA hit score derived from the relative allele

frequency at a specific locus within a particular population.
2.4 Formulation of multiepitope vaccine

The multiepitope vaccine candidate was formulated by properly

utilizing previously selected CTL, HTL, and LBL epitopes initiated

with a suitable adjuvant linked by a different linker, including

EAAAK, AAY, GPGPG, and KK. In this study, the adjuvant,

linker, and epitope of the protein were ordered in a way that can

elicit maximum immune cell–specific responses and confer

protection against the virus (53, 62). However, the epitopes of the

vaccines were shuffled and appointed in a different order. Based on

the antigenicity and physiochemical properties, the best

confirmation was selected for further evaluation. Initially, an ideal

adjuvant receptor was identified through an advanced literature

search to enhance the immunogenicity of MCV protein fuse with Fc

of human IgG. It has been found that TLR agonists TLR 2, 4, 5, 7,

and 9 play an essential role in the pattern recognition of MCV

protein (63). However, in this study, the TLR4 agonist was used as

an adjuvant due to the maximal rate of synthesis ability and

activating the highest immune responses against the MCV (64).

The TLR4 agonist known as 50S ribosomal protein L7/L12 of

Mycobacterium tuberculosis was retrieved from the UniProtKB

(ID: P9WHE3) and used as the adjuvant to enhance the

immunogenicity of the vaccine candidate (65). Specific linker

molecules were employed to fuse the peptide sequences in the

study. The front of the adjuvant was attached with a bifunctional

linker EAAAK. Subsequently, CTL, HTL, and LBL epitopes were

linked together through AAY, GPGPG, and KK linkers, respectively

(66). Initially, the vaccine adjuvant was attached to the front of the

vaccine using the EAAAK linker, which consists of helix-forming

peptides of various lengths. This linker serves to separate the two

weakly interacting b-domains (67). On the other hand, selected

CTL was linked using Ala-Ala-Tyr (AAY) linkers, while HTL was
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linked with Gly-Pro-Gly-Pro-Gly (GPGPG) linkers. In addition,

LBL has linked to Lys-Lys (KK) linkers (53). The AAY linker, which

is a cleavage site for the proteasome, was used to affect protein

stability, reduce immunoreactivity, and enhance epitope

presentation. The GPGPG linker, known as the glycine–proline

linker, prevents the formation of “junctional epitopes” and

facilitates the immunological process (68). In addition, the bi-

lysine KK linker helps preserve independent immunological

activities during the vaccine formulation (69). The peptides of the

construct were fused with each other using the selected linker due to

their ability to provide support for structure flexibility, improve

protein stability, and play an important role in increasing the

biological activity of the vaccine construct (53, 70).
2.5 Physicochemical and immunological
properties analysis

The efficacy of the vaccine candidate was assessed by evaluating

its physiological, antigenic, immunogenic, allergenic, and soluble

properties. The physicochemical properties of the vaccine construct

were analyzed using the ProtParam tool, enabling a comprehensive

examination of its characteristics (43).. The tool calculated the

physiological properties, including molecular weight, theoretical

pi, and the number of positively charged residues (Arg + Lys).

The chemical formula of the vaccine, the whole number of atoms,

coefficient extinction, in vitro and in vivo, half-life, instability,

aliphatic index, and grand average of hydropathicity (GRAVY)

value were also determined by using the tool. We evaluated the

antigenic, immunogenic, and allergenic properties of the vaccine

constructs by utilizing specific web tools. The VaxiJen 2.0 tool was

employed to assess antigenicity, the MHC-I immunogenicity tool

from the IEDB was used to determine immunogenicity, and the

AllergenFP v.1.0 web tool was utilized to evaluate allergenicity.

These analyses provided valuable insights into the properties of the

vaccine constructs (34, 37, 55). The solubility of the vaccine

construct was also evaluated with the help of the SOLpro web-

based tool (44).
2.6 Vaccine structure prediction,
refinement, and validation

2.6.1 Secondary structure prediction
For analyzing the extended strand, alpha-helix, and random

coils for the secondary structure of the constructed vaccine, the

PSIPRD web-based tool was used in this study (71). The PSIPRED

web-based tool offers a user-friendly interface and employs a

machine-learning approach to analyze protein sequences and

predict their secondary structures. This tool also utilizes a cross-

validation approach to validate its performance (72).

2.6.2 Tertiary structure prediction and refinement
The three-dimensional (3D) structure of the final multiepitope

vaccine construct was predicted by using the Iterative Threading
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ASSEmbly Refinement (I-TASSER) homology modeling server

(45). The initial model of the MCV vaccine identified from the I-

TASSER server was further validated and refined using the

GalaxyRefine web server developed based on a refinement

method that has been successfully implicated and investigated in

CASP10 (46). Schrödinger Maestro (Schrödinger Release 2022-3:

Maestro, Schrödinger, LLC) tools were used to visualize the

obtained initial and refined 3D structure of the vaccine candidate.
2.6.3 Structure validation
Validation of the protein structure that has been predicted

through homology modeling is the core of structural determination

methods. Validation of the protein 3D structure provides a more

extraordinary idea about the compatibility of a structural model

with its amino acid (AA) residues. It helps to determine the missing

AA residues of the protein (73). Therefore, to validate the structural

confirmation of the proposed MCV vaccine, the 3D structure of the

protein was submitted to the ProSA-web server (47). The overall

quality of the protein structure was accessed based on the z-score

value provided by the server. If the z-scores of the anticipated model

fall outside compared to the construction of the native protein, it

indicates an erroneous protein. Additionally, the Ramachandran

plot evaluation of the proposed vaccine candidate was performed by

utilizing the Ramachandran Plot Server developed by ZLab to check

the main-chain conformational tendencies of AA residues (74).
2.7 Molecular docking

Molecular docking is a very commonly used computational

method that simulates the interaction of a ligand with its receptor

and consequently forecasts the energy score generated during the

interaction (75). The technique can determine the binding affinity of

two molecules based on certain scoring functions. For molecular

docking, the desired TLR4 receptor was retrieved from the RCSB

Protein Data Bank (PDB) having a PDB ID: 4G8A. The TLR4

receptor was docked with the vaccine candidates that were defined

as a ligand during the docking simulation. The TLR4 receptor was

prepared by removing water and heteroatom and adding hydrogen

through Schrödinger’s protein preparation wizard (76). To evaluate

the binding affinity, molecular docking was performed by using

ClusPro 2.0 web server (49). The performance of the server was

assessed based on the ability to cluster the lowest energy structure,

rigid body docking, and structural refinement process depending on

energy minimization. The best-docked complex was selected and

retrieved based on the binding affinity between the ligand–receptor

complex. The interaction between the receptor TLR4 and vaccine

construct was visualized by using the PyMOL visualization tool (77).
2.8 Complex structural stability evaluation
through molecular dynamics simulation

The stability of the protein–protein complex refers to stable

protein dynamics (more association and less dissociation of a
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protein–protein complex). The binding strength of the receptor

and ligand (vaccine candidate) complex system and their dynamic

behavior can be evaluated using different computational tools and

animal model systems. To ascertain the constancy of the predicted

vaccine and vaccine–receptor (VR) complex, a computational

molecular dynamics (MD) simulation approach of the refined

vaccine and VR complex was performed using ‘Desmond v6.3

Program’ in Schrödinger (Academic version) under the Linux

operating system. The thermodynamic stability of the vaccine and

VR complex was calculated using this computational approach,

where a predefined TIP3P water model was used to emulate water

molecules using the OPLS3e force field (78). Orthorhombic

periodic boundary conditions were set up to specify the shape

and size of the repetition unit safeguarded at 20 Å distances. To

achieve electrical neutralization, the system was balanced by adding

suitable sodium and chlorine ions, ensuring a minimized charge

within the Desmond module. This process was carried out utilizing

the OPLS3e force field. Molecular dynamic simulations were carried

out with periodic boundary conditions in the constant number of

particles, pressure, and temperature (NPT) ensemble (79). The

temperature and pressure were kept at 300 K and 1 atm using

Nose–Hoover temperature coupling and isotropic scaling (80). The

operation was followed by running the 200 ns simulation and saving

the configurations thus obtained at 200 ps intervals. The vaccine

and vaccine complex stability was further evaluated using statistical

parameters like root mean square deviation (RMSD), root mean

square fluctuation (RMSF), the radius of gyration (rGyr), and

hydrogen bond (HB) values. The superimposition of the vaccine

and VR complexes was also evaluated in this study. The entire

molecular dynamics (MD) simulation was executed in the Linux

(Ubuntu-20.04.1 LTS) operating system and Intel Core i7-10700K

processor CPU, 3200 MHz DDR4 RAM, and RTX 3080 DDR6 8704

CUDA core GPU.
2.9 Immune response simulation

In silico immune simulations were used to estimate the possible

immunogenic profile of multiepitope vaccine candidates in real-life

conditions by using the C-IMMSIM server (81). The output of the

immune responses was salvaged for comprehensive observation.

For ideal vaccine candidates, the minimum recommended interval

between doses 1 and 2 is 3–4 weeks (22). Therefore, a minimum gap

of 30 days between two dosages was taken into consideration in this

study. Three injections of the vaccine candidates were administered

computationally with time steps of 1, 84, and 168, where the one-

time step was considered eight h in real life. The immune simulation

was carried out for a total of 300 steps, and the rest of the simulation

parameters were kept defaults.
2.10 Codon optimization and
in silico cloning

Codon optimization is a gene engineering technique that

employs synonymous codon modifications to enhance protein
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expression (82). Optimization of codon should be performed based

on the specific host organism or expression system because the

expression pattern of a foreign gene depends on the type of host

organisms or expression system (53). To optimize the codon of the

desired vaccine candidate, the JCat tool was used in this study (50).

The tool uses an algorithm to maximize codons based on the codon

adaptation index (CAI) (83). In this study, the widely used E. coli

K12 was considered the host, and based on the expression system,

codon optimization was performed. The following criteria were

skipped during the optimization steps: (i) restriction enzyme (RE)

cleavage sites, (ii) rho-independent termination of transcription,

and (iii) binding sites of the prokaryotic ribosome. The final and

optimized sequence was evaluated based on the CAI value and

guanine–cytosine (GC) content. Finally, the optimized nucleotide

sequence of the vaccine construct was inserted into the pET28a (+)

vector using SnapGene 3.2.1 software.
3 Results of the study

3.1 Proteome retrieval and
antigenicity prediction

The target sequence of MCV was retrieved in FASTA format

from the UniProt database. Five proteins were recovered from the

database: large T-antigen, small T-antigen, VP1, VP2, and VP3. The

VaxiJen 2.0 and ANTIGENpro tools predicted the antigenic

potency of the selected proteins listed in Table 2. All the primary

sequences of the chosen protein have good antigenic properties that

were used for further analysis.
3.2 Epitope evaluation and selection

The selected five antigenic proteins with better antigenicity

scores were submitted to a different server that predicted the

different number of CTL, HTL, and linear BCL epitopes.

Subsequently, the antigenic, immunogenic, toxic, and non-

allergenic properties of the epitope’s candidates were evaluated,

which found a high number of potential epitopes. However, we

selected 30 (10 CTL, 10 HTL, and 10 linear BCL) epitopes for

further evaluation. After considering the antigenic, immunogenic,

and non-toxic properties, the selection process determined the best
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10 epitopes for constructing a multiepitope vaccine against MCV.

In the case of each antigenic protein found in MCV, two CTL

epitopes, two HTL epitopes, and two linear BCL epitopes were

explicitly chosen, listed in Table 3.
3.2.1 Potential cytotoxic T lymphocyte epitopes
Using the NetCTL v1.2 server, unique CTL epitopes (9-mer) were

predicted from the MCV-selected five antigenic proteins. A total of 90

(29, 8, 16, 21, and 16 CTL epitopes from the large T-antigen, small T-

antigen, VP1, VP2, and VP3, respectively) unique epitopes were

identified that were antigenic, immunogenic, non-toxic, and non-

allergenic (Table S1). The best two CTL epitopes for each protein

(total 10) were selected and considered for further evaluation (Table 3).

3.2.2 Potential helper T lymphocyte epitopes
A total of 47 unique HTL epitopes (15-mer) were predicted

using the IEDB MHC-II prediction tool. Among the 47 unique

epitopes, 6, 7, 13, 11, and 10 HTL epitopes were identified from the

large T-antigen, small T-antigen, VP1, VP2, and VP3, respectively

(Table S2). The epitopes were evaluated based on cytokine (IFN-g,
IL-4, and IL-10)-inducing ability and antigenic properties. Based on

the aforementioned properties, a careful analysis was conducted,

leading to the selection of the top two HTL epitopes for each

protein. These epitopes were chosen for further evaluation and are

presented in Table 3.

3.2.3 Potential BCL epitopes
Specific antigenic regions of a protein that ultimately trigger

antibody formation are known as BCL epitopes. The BepiPred 2.0

tool was used to predict linear B-cell (12-mer) epitopes from the

selected proteins. A total of 70 (22, 8, 18, 12, and 10 epitopes from

the large T-antigen, small T-antigen, VP1, VP2, and VP3,

respectively) linear B-cell unique epitopes were identified, which

were antigenic, non-allergenic, and non-toxic (Table S3). Here, we

also selected the top two B-cell epitopes from each protein (total 10)

for further evaluation (Table 3).
3.3 Worldwide population coverage

The worldwide population coverage ability of the vaccine

candidates has been evaluated based on the selected CTL and
TABLE 2 The selected proteins of MCV along with their corresponding antigenicity scores, which were identified using the VaxiJen 2.0 and
ANTIGENpro tools.

NCBI ID Protein Name Antigenicity Score Remark

VaxiJen server AnitgenPro server

B6DVW7 Large T antigen 0.4762 0.889 Selected

B0G0V7 Small T antigen 0.5042 0.761 Selected

B0G0 W3 VP1 0.4374 0.942 Selected

B0G0 W4 VP 2 0.6649 0.697 Selected

A0A0N9DRI5 VP 3 0.5721 0.5 Selected
fron
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HTL epitopes depicted in Figure 2. CTL and HTL epitopes showed a

considerably high percentage (%) of population coverage. The

combined world population coverage found for the CTL and

HTL epitopes was 99.33%, where CTL individually shows a world

coverage of 97.77% and HTL shows a world coverage of 70.14%.

The identified epitopes are also prone to a high number of HLA

alleles originating from different countries, such as Germany,

Europe, the United States, South Asia, and India, with a

combined (CTL and HTL) population coverage of 99.96%,

99.86%, 99.74%, 96.30%, and 95.75%, respectively (Figure 2).

Therefore, the vaccine candidates that have been designed by

utilizing the selected epitopes will cover most of the population

around the world.
3.4 Formulation of multiepitope vaccine

To design multiple epitope vaccine candidates, initially, the 10

best highly antigenic CTL epitopes that were immunogenic, non-
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allergenic, and non-toxic were selected from each of the five (large

T-antigen, small T-antigen, VP1, VP2, and VP3 of MCV) proteins

(Table 3). Based on the cytokine-inducing properties, the best 10

HTL epitopes were selected from five proteins, which were highly

antigenic and had the potential to generate cytokines. At last, the 10

best linear B-cell unique epitopes were identified from the structural

protein of MCV, which were antigenic, non-allergenic, and non-

toxic. The vaccine construct was formulated by using the selected 30

epitopes belonging to three different classes (10 CTL, 10 HTL, and

10 LBL). The vaccine constructs were initially accompanied by the

TLR4 agonist 50S ribosomal protein L7/L12 as an adjuvant,

positioned before the constructs connected to the first CTL

epitope using EAAAK linkers. The selection of 30 epitopes,

comprising 10 CTL, 10 HTL, and 10 BCL epitopes, was joined by

the utilization of AAY, GPGPG, and KK linkers, respectively, to

establish the desired connections between the epitopes. The total

AA residue count in the final vaccine construct was 592. The

sequential arrangement of the different epitopes and their

corresponding linkers is shown in Figure 3.
FIGURE 2

Illustrates a global population coverage map predicted using specific CTL and HTL epitopes. The map showcases the estimated coverage in various regions
worldwide. These predictions rely on the chosen CTL and HTL epitopes, essential for stimulating cellular immune responses. The map offers valuable information
about the potential effectiveness and coverage of the epitopes in diverse populations, assisting in evaluating and optimizing vaccine design strategies.
TABLE 3 The top two selected cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and linear BCL epitopes of MCV, as predicted by the NetCTL
1.2, IEDB MHC-II, and BepiPred 2.0 servers, respectively.

Protein name CD8 epitope CD4 epitope Linear B-cell epitope

Large T antigen LPFELGCAL FKVDFKSRHACELGC PEEPPSSRSSPR

FELEFALDK VIMMELNTLWSKFQQ NKPLLNYEFQEK

Small T antigen TLEETDYCL CFCYQCFILWFGFPP GCMLKQLRDSKC

LNRKEREAL VIMNELNTVFSKFQQ CKLSRQHCSLKT

VP 1 PRYFNVTLR CDTLQMWEAISVKTE GLVLDYQTEYPK

SVAPAAVTF FNVTLRKRWVKNPYP FAIGGEPLDLQG

VP 2 LVNYPASWV AQLGFTAEQFSNFSL GQDIFNSLSPTS

QLGFTAEQF ATTGVTLEAILTGKA LAQLGFTAEQFS

VP 3 LVNRDVSWV RHALMAFSLDPLQWE NSRWVFQTTASQ

QLGCLGEQF VNLILNSRWVFQTTA SLVNRDVSWVGS
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3.5 Physicochemical and immunological
properties of the vaccine

The ProtParam server was used to analyze the physicochemical

properties of the multiepitope vaccine construct (Table 4). It

exhibited an antigenic score of 0.6730, indicating a significant

ability to elicit an immune response and effectively initiate

interactions between antigens and antibodies. Based on the

analysis, the vaccine candidate showed a molecular weight of

64,118.85 Da, which suggests a moderately sized construct. This

size has implications for several important aspects of the vaccine’s

development, including manufacturing, formulation, and stability

(43). The theoretical isoelectric point that represents the pH of the

vaccine was calculated to be 8.72, suggesting alkaline or basic nature

of the construct. The alkaline nature of the construct has significant

implications for various aspects such as its stability, solubility, and

interactions with other molecules or components present in the

formulation. The vaccine shows an instability index (II) of 30.77,

which indicates a good post-expression stability of the construct.

The thermostability of the construct was determined by assessing the

aliphatic index, which yielded a value of 77.55. This range falls

between 70 and 100, indicating that the proteins within the construct

possess a notable degree of thermal stability. The server calculated

the GRAVY as -0.210, which indicates a strong correlation with the

highly hydrophilic nature of the construct. This hydrophilicity is

expected to facilitate significant protein–protein interactions. The
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analysis also revealed that the vaccine had an estimated half-life of

30 h in mammalian reticulocytes in an in vitro setting. In yeast cells,

the vaccine showed a half-life of over 20 h in an in vivo environment.

Similarly, in Escherichia coli, the estimated half-life exceeded 10 h in

an in vivo setting. These results suggest that the vaccine exhibits a

comparatively long-lasting presence and stability across various

biological systems, emphasizing its potential effectiveness and

durability. Evaluation of immunogenicity provided a value of

1.24781. Moreover, the analysis of allergenicity properties shows

the absence of allergenic features in the vaccine candidate.

Additionally, the candidate showed a high solubility rate of

0.98246 as determined by the SOLpro server indicates that the

candidate is expected to have good solubility in aqueous solutions

(44). It implies that the vaccine construct has a high likelihood of

dissolving well and remaining in solution, which is advantageous for

its formulation and administration.
3.6 Vaccine structure prediction,
refinement, and validation

3.6.1 Secondary structure prediction
The secondary structures of the vaccine candidate were

composed of extended strands, alpha helices, and random coils.

The secondary structure of the vaccine construct was estimated via

the PSIPRED 3.2 server. The analysis yielded an average Q3 score of
A

B

FIGURE 3

(A) A visual representation of the MCV vaccine constructs. Different colors are used to denote the adjuvant (purple), cytotoxic T lymphocyte (CTL,
green), helper T lymphocyte (HTL, white), and linear B-cell epitope (linear BCL, blue) epitopes. The adjuvant and CTL epitopes are connected by the
EAAAK linker (indicated in red), while AYY (gold color), GPGPG (gray boxes), and KK (orange boxes) linkers are employed to join the CTL, HTL, and
linear BCL epitopes, respectively. (B) represents the secondary elements, including a-helices (pink), b-strands (yellow), and random coils (blue) of the
MCV vaccine candidate.
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81.6% for the helix, sheet, and loop). The Q3 score serves as a

valuable metric to assess the accuracy of secondary structure

prediction methods like PSIPRED (71). It quantifies the

proportion of correctly predicted secondary structure elements

(helix, sheet, or loop) in relation to the known experimental

structure of a protein. The study obtained a Q3 score of 81.6%,

reflecting a high level of accuracy in predicting the secondary

structure. This score signifies that approximately 81.6% of the

amino acids (AA) in the construct were correctly assigned to

their respective secondary structure elements (helix, sheet, or

loop) by the prediction algorithm. Notably, our observations

revealed a notable prevalence of alpha-helices in the construct,

visualized by the pink color in Figure 3B. Alpha-helices are widely

acknowledged for their remarkable structural stability and often

play a critical role in protein folding and stability. Additionally, the

presence of loops, depicted by the gray color, indicates flexible

regions that contribute to conformational variability and can

actively participate in protein–protein interactions and antigenic

determinants. The construct consisted of 592 AAs in total, and the

a-helix, b-strands, and random coils found in the structure

indicated by pink, yellow, and gray colors, respectively, are

represented in Figure 3B.

3.6.2 Tertiary structure prediction
The vaccine construct’s tertiary structure was generated using

the I-TASSER server. The server provided the top five 3D models of
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the vaccine construct with different C-score values (Table S4). The

C-score is a confidence score for estimating the quality of predicted

models generated by I-TASSER. The study considered the model

with the lowest C-score (–1.37), as recommended by the server and

visualized by Schrodinger Maestro (Figure 4A).

3.6.3 Tertiary structure refinement
The Galaxy Refine server was used to refine the projected

tertiary structure of the final vaccine construct. The initial protein

model retrieved from the I-TASSER was submitted for refinement.

The protein-refining server provided five refined models with the

presence of an increased number of AA residues in the favorable

region listed in Table S5. The study selected the best refined model

based on the Ramachandran favored score. In this study, model-5

(Table S5) shows a highly Ramachandran-favored score of 88.5%

with a GDT-HA score of 0.9396, an RMSD value of 0.451, a

MolProbity score of 2.363, and a clash score of 19 selected for

further evaluation (Table S5). The refined vaccine model was

visualized via Schrodinger Maestro represented in Figure 4A.
3.6.4 Tertiary structure validation
The tertiary structure of the initial vaccine construct (before

refinement) and final vaccine construct (after refinement) were

validated by analyzing the output found from the Ramachandran

Plot Server and ProSA-Web server. Ramachandran plot analysis of

the initial vaccine model found that a total of 86.992% amino acid

residues was in the favorable region of the plot (Figure 4B).

However, after the refinement rampage server generated a

Ramachandran plot, where a total of 94.512% of residues were in

the favorable region of the plot (Figure 4B).

The prose-web server was used to assess the validation quality

and potential errors in a crude tertiary structure model (Table S6).

To validate the final vaccine model, its agreement with experimental

data was assessed using the Z-score. The Z-score is a quantitative

measure that evaluates the alignment between a model and

experimental information. Its range varies depending on factors

like the protein and its size. Generally, Z-scores fall within a range

-4 to +4. When the Z-score approaches zero, it indicates a close

resemblance of the model’s energy to experimentally determined

structures (84). For the initial model, the Z-score was calculated as

-2.75, indicating a moderate deviation from the experimental data.

However, through refinement, the model achieved a slightly

improved Z-score of -2.59 (Figure 4C). This suggests that the

refined model exhibits better alignment with the experimental

data, although the improvement is relatively minor.
3.7 Molecular docking

The binding affinity of the receptor (TLR-4) and ligand (refined

vaccine) was calculated by using the ClusPro 2.0 server. The server

provided a total of nine complex confirmational structures along

with different binding energy scores. The lowest and central energy
TABLE 4 List of the physiochemical parameters, antigenicity,
immunogenicity, allergenicity, and solubility of the final vaccine
candidates.

Parameters Evaluation of
properties

Number of amino acids 592

Molecular weight 64,118.85 Da

Theoretical pi 8.72

Total number of positively charged residues (Arg + Lys) 72

Total number of atoms 9,050

Extinction coefficient (at 280 nm in H2O) 82,570

Estimated half-life (mammalian reticulocytes, in vitro) 30 h

Estimated half-life (yeast cells, in vivo) >20 h

Estimated half-life (Escherichia coli, in vivo) >10 h

Instability index 30.77

Aliphatic index 77.55

Grand average of hydropathicity (GRAVY) -0.210

Antigenicity 0.6730

Immunogenicity 1.24781

Allergenicity Non-allergen

Solubility 0.982460
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of the cluster found for each complex structure is listed in Table S7.

The best complex confirmation structure has been chosen based on

the lowest energy value. In this study, Cluster-7 shows lowest

binding energy value -1122.9 kcal/mol, which was retrieved for

further analysis (Figure 5A). The interaction between the TLR-4

receptor and vaccine construct was analyzed from the VR docking

complex and shown in Figures 5B, C. The interaction residue

participant in the complex formation is also listed in Table S8.
3.8 Molecular dynamics simulation analysis

MD simulation is a convenient way that was used to analysis

the structural stability of the vaccine and VR complex structure.
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The strength of the complex interface was evaluated based on

RMSD, RMSF, Rg, intramolecular HBs (Intra HB), and ligand-

protein contacts.

3.8.1 Root mean square deviation of
vaccine construct

RMSD of the vaccine construct was measured to evaluate the

average change happened due to the displacement of a selected

atoms from the vaccine frame comparing to a reference frame.

During the simulation of the vaccine construct, the highest

fluctuation was 16.162 Å, the lowest was 3.109 Å, and the average

was 11.94 Å (Figure 6A). A minor notch offluctuation was observed

for the vaccine structure after 160 ns dynamic simulation indicating

structural stability of the vaccine construct.
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FIGURE 4

(A) This figure showcases the tertiary structure of the MCV vaccine model. The left side displays the initial model of the vaccine, while the right side
represents the refined vaccine construct. (B) The Ramachandran plot of the final vaccine model, initial vaccine model (right), and refined vaccine
model (left). Highly preferred conformations are represented by black, dark gray, and gray, while preferred conformations are depicted by white with
a black grid. Questionable conformations are shown as white with a gray grid. (C) The validation of the final vaccine model was performed based on
the Z-score. The Z-score for the initial model was -2.75, whereas the refined model attained a Z-score of -2.59.
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3.8.2 Root mean square fluctuation of
vaccine construct

RMSF of the vaccine construct was calculated to examine the

change of structural flexibility occurred due to the displacement of a

specific AA residue in the protein. The RMSF plot of the vaccine

construct showed a fluctuation peak between 95 and 570 AA residual

positions. The highest fluctuation was 19.636 Å observed at GLU122

AA residual position, the second-highest fluctuation found at VAL124,

and the third-highest fluctuation found at LYS123 AA residual position

with an RMSF score of 19.413 and 18.95 Å, respectively, shown in

Figure 6B. These fluctuations indicate regions of the protein that may

have increased mobility or flexibility, potentially influencing its

conformational changes, protein–protein interactions, and overall
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stability. These fluctuations are important for assessing the functional

implications and optimizing the design and performance of the

vaccine construct.

3.8.3 Radius of gyration of vaccine construct
The distribution of atoms in the vaccine construct around its axis

was measured based on the radius of gyration (Rg) value throughout

the 200 ns simulation run. Analysis of the Rg profile found a higher

deviation between 15 and 200 ns, where the average Rg score of the

construct was 39.25 Å. The Rg score of the study provided information

concerning the compactness of the vaccine. Herein, we found an

average lower score of the Rg value vaccine construct indicating the

tightest packing characteristic of a/b-proteins (Figure 6C).
A

B

C

FIGURE 5

This figure depicts a graphical representation of the molecular interaction between the MCV vaccine candidates and the TLR-4 receptor. The
molecular interaction is presented in three different views: (A) surface view, (B) cartoon view, and (C) specific amino acid interactions. The surface
view in A provides an overall visual representation, while the cartoon view in B offers a simplified depiction. In C, specific amino acid interactions
between the vaccine candidates and the TLR-4 receptor are highlighted.
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FIGURE 6

Representing four dynamic properties of the MCV vaccine construct obtained from a 200 ns molecular dynamics (MD) simulation. (A), the root
mean square deviation (RMSD) plot demonstrates the deviation of the vaccine construct from its initial conformation, indicating any structural
changes or fluctuations during the simulation. (B) The root mean square fluctuation (RMSF) plot, revealing the residue-wise flexibility or fluctuation
of the vaccine construct throughout the simulation. (C) The radius of gyration (Rg) quantifies the compactness or size of the vaccine construct
during the simulation. (D) presents the number of HBs formed within the vaccine construct, highlighting the interactions and stability of the
structure.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1160260
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Imon et al. 10.3389/fimmu.2023.1160260
3.8.4 Number of hydrogen bonds of
vaccine construct

Most of the direct contacts require protein folding, protein

structure, and molecular recognition depends on the HBs of the

structure. The number of HBs in a protein structure can be used to

understand the protein structure and motions. Therefore, to

understand the structure and motion of the vaccine candidate,

the number of HBs found during the 200 ns simulations was

analyzed and represented in Figure 6D. Analysis of the simulation

data found the highest number of HBs between 90 and 200 ns

simulation time. The average number of HBs found in this study

was 457 for 200 ns simulation run indicating the vaccine construct

will maintain active configurations by connecting protein structure

in a fluxional equilibrium.

3.8.5 Root mean square deviation of the
vaccine–receptor complex structure

The highest RMSD value of the VR complex found in this study

was 16.918 Å. The VR complex structure shows the lowest and

average RMSD value of 1.323 Å, and 6.34 Å, respectively during the

200 ns simulation run. The complex structure of the protein shows a

stable and optimum fluctuation after 55 ns represented in

Figure 7A. The RMSD of the vaccine complex structure

(Figure 7A) was lower than the RMSD of the vaccine (Figure 6A)

construct indicating stability of the complex structure.

3.8.6 Root mean square fluctuation of the
vaccine–receptor complex structure

Analysis of the RMSF plot of the VR complex found the most

fluctuation peak between 650 and 800 AA residues represented in

Figure 7B. The vaccine candidate that was in complex with the

receptor showed the highest fluctuation between 700 and 710 AA

residue with an average fluctuation of 20.1 Å. The second highest

RMSF value was 8.57 Å found between 900 and 1,200 AA residual

position, and the rest of the time, the VR complex shows an

optimum fluctuation rate of a complex structure (Figure 7B). A

comprehensive understanding and analysis of these RMSF

fluctuations have played a critical role in the evaluation of the

structural dynamics, ultimately facilitating the optimization of the

MCV vaccine candidate’s design. This knowledge helped us to

enhance the vaccine’s effectiveness and immunogenicity, leading to

improved protective immune responses and potentially increasing

its potential as a prophylactic measure against the MCV.

3.8.7 Rg of vaccine–receptor complex structure
The VR-complex structure shows the average Rg value of 43.78

Å, and a high deviation of the score observed between the range of

5–55 ns simulation run. The lowest and stable Rg value of the VR

complex was observed after 70–200 ns simulation run indicating

tight packaging of the system (Figure 7C).

3.8.4 Number of hydrogen bonds of the
vaccine–receptor complex

The highest number of HBs found for the vaccine and receptor

complex structure was between 0 and 20 ns and 120 and 200 ns

simulation run (Figure 7D). The number of the HBs reduced in this

study during 80–100 ns simulation run. However, throughout the
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200 ns simulation, the complex structure of the protein consistently

maintains an optimal number of hydrogen bonds (HB). This

observation indicates the protein's significant contribution to the

free energies of VR complexes.
3.9 Superimposition of vaccine and
vaccine–receptor complex

Different structural and conformational changes of the vaccine

and VR complex were analyzed from the 200 ns simulation

trajectory as shown in Figure 8. Conformational changes were

observed for each 50 ns time interval during the simulation of the

vaccine (Figure 8A) and the VR complex (Figure 8B). Very low

confirmation change was found from the very beginning to 200 ns

simulation time of the vaccine and VR complex. Therefore, the

vaccine and vaccine complex remained stable in a 200 ns dynamic

simulation trajectory (Figure 8).
3.10 Immune response analysis

The computational immune simulation of the vaccine candidates

found a response similar to the actual immune responses of a human,

as shown in Figure 9. Secondary and tertiary responses generated

during the immune simulation process were higher than the primary

immune response. Analysis of the immune simulation initially

identified higher concentrations of IgM in the case of the primary

immune response, where the secondary and tertiary responses show

higher levels of immunoglobulin activities (i.e., IgG1 + IgG2, IgM,

and IgG + IgM antibodies) with concomitant antigen reduction

represented in Figure 9A. The results found in this study indicate

the ability of the vaccine candidates to form memory T cells. The

immune simulation also found some long-lasting B-cell isotypes that

can help with potential isotype switching, resulting in the formation

of memory cells (Figures 9B, C). In the case of TH (helper) and T.C.

(cytotoxic) cells, a similar elevated response along with the respective

memory development was also observed (Figures 9D, E). This

indicates that the emergence of immune memory results in a high

level of antigen clearance upon subsequent exposure (Figure 9F).

During the exposure time, the immune system showed increased

macrophage activity, with simultaneous proliferating dendritic cells

(Figures 9G, H). High levels of IFN-g and IL-2 were also observed

during exposure, suggesting that it will help to promote the

development of T regulatory cells. This profile suggests immune

memory development and, therefore, natural immune protection

against the virus (Figure 9).
3.11 Codon optimization and
in silico cloning

This study utilized an in silico molecular cloning approach to

analyze and modify the target vaccine sequence for compatibility

with the selected vector. The process involved identifying suitable
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RE recognition sites, optimizing codon usage, and considering

factors that could influence gene expression and protein

production. Initially, the sequences of the vaccine candidate were

optimized by using the codon optimization process to maximize the

expression of the vaccine candidate in the E. coli K12 expression

system. Codon optimization was performed by utilizing the 1,776

(bp) nucleotide sequences retrieved by converting the protein

sequences of the construct. The task was completed by using the

JCat tool and accessed based on the GC content and CAI value. The

GC content found for the vaccine construct was 52. 36% lies

between the normal range of 30%–70%. The CAI value found for

the construct was 0.98, which also lies in the ideal range between 0.8

and 1.0. Based on the content of GC and CAI value, the MCV

vaccine will be expressed highly whenever the E. coli expression
Frontiers in Immunology 1435
system is utilized as a host. Two restriction digestion endonucleases,

the EcoRI and BamHI, were used to cut the vaccine and vector

pET28a (+) vector sequence (Figure 10). Herein, the cloned vaccine

sequence’s absolute length was 7,143 bp after RE digestion and

ligation, shown in Figure 10A. The steps and outcomes of this in

silico molecular cloning process are illustrated in Figure 10B.
4 Discussion

Given the elevated mortality rate associated with MCC, exploring

and advancing preventive measures have become an urgent and

imperative matter (85). In such circumstances, vaccination is the

most effective and suitable strategy for developing immunity against
A

B

FIGURE 8

This figure presents the superimposition frames at different simulation times (0, 50, 100, 150, and 200 ns) for both the MCV vaccine and the vaccine
receptor’s complex structure. (A) The superimposition frames illustrate the alignment and comparison of the MCV vaccine structure at different time
points during the simulation. (B) showcases the superimposition frames of the complex structure formed between the MCV vaccine and its receptor,
providing insights into their conformational changes and interactions over the simulation duration.
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FIGURE 7

This figure illustrates the dynamic properties of the MCV vaccine–receptor (VR) (TLR-4) complex obtained from a 200 ns MD simulation. It examines the
(A) RMSD plot, indicating structural changes and fluctuations in the MCV VR complex during the simulation. (B) displays the RMSF plot, revealing residue-
wise flexibility and fluctuations within the complex. (C) quantifies the complex’s compactness and size using the radius of gyration. (D) highlights the
interactions and stability of the structure through the number of hydrogen bonds (HBs).
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FIGURE 9

Representing the overall immune response of the vaccine candidate act as an antigen: (A) generation of immunoglobulins and B-cell isotypes upon
exposure to an antigen; (B) amount of active B-cell populations per state; (C) amount of plasma B-lymphocytes and their isotypes per state; (D) state of
helper T-cell population; (E) cytotoxic T-cell population per state of antigen exposure; (F) activity of macrophage population; (G) production of cytokine
and interleukins in different states with the Simpson index, and (H) T.H. cell population (cells/mm3).
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FIGURE 10

Schematic representation of the in silico cloning procedure for the MCV vaccine candidate into the pET28a (+) vector. (A) The coding gene sequence of
the designed vaccine is depicted in red, while the vector backbone sequence of the designed vaccine is represented in black. (B) Illustration of the
complete cloning process, encompassing restriction enzyme (RE) digestion and ligation steps.
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viral pathogens (32, 86). However, the conventional approach to

designing and developing vaccines against viruses is financially

demanding and time-consuming (87). It necessitates a complex and

intricate selection process for identifying suitable immunodominant

epitopes, antigens, and efficient delivery systems, presenting

significant challenges and difficulties. With the advent of

immunoinformatics and computational approach formulation of

prophylactic vaccines against a specific disease or pathogens has

become the fastest, easiest, and most cost-effective (70, 88). The

immune system appears to play a critical role in MCC biology, with

increasing evidence of virus-specific cellular and humoral immune

responses that influence the prognosis of MCC patients (89). In recent

decades, many treatment strategies have been applied to treat cancer,

but the specific treatment option for the disease remains elusive (90).

Previously, different peptide vaccines have served as promising

anticancer candidates due to their ability to target tumor cells and

induce specific T-cell responses (91, 92). Therefore, the study aimed to

design a multiepitope peptide vaccine candidate to fight against MCC,

a widely viral-causing skin cancer.

We predicted effective epitopes as antigens and their

correspondence alleles for both B and T cells to generate a sufficient

immune response against MCC-positive tumors (Tables S9 and S10).

The study initially identified and retrieved the sequences of five MCV

proteins: large T antigen, small T antigen, VP1, VP2, and VP3. These

proteins play crucial roles in the MCV infection process and contribute

to the understanding of the virus’ mechanisms (11). All five proteins

(large T-antigen, small T-antigen, VP1, VP2, and VP3) exhibited

notably high antigenicity scores. Consequently, we utilized all of

these proteins to identify the most potent CD8, CD4, and linear B-

cell epitopes, leading to the subsequent construction of a vaccine

candidate targeting the virus. Several linear orders were applied to

construct the multiepitope vaccine, and most potential vaccine

structures were prepared by joining the adjuvant through the linker

with CTL-HTL-BCL epitopes according to their higher to lower

antigenic scores. The constructed vaccine candidate has a molecular

weight of 64118.85 D with a theoretical PI of 8.72, indicating the basic

properties of the protein. The aliphatic index provides insight into the

relative presence of aliphatic side chains, such as alanine, valine,

isoleucine, and leucine, within the protein structure. With a value of

77.55, the aliphatic index indicates a high level of thermal stability for

the protein (87, 93). Additionally, the GRAVY value was determined to

be -0.210, suggesting a hydrophilic nature of the construct and strong

interactions with water molecules (88, 94). Finally, the study identified

linear contiguous AA sequence fragments and confirmed AA

fragments as potential epitopes for BCL that are immunogenic and

antigen in nature and utilized for multiepitope vaccine design.

The 3D tertiary structure of the vaccine candidates was predicted

and validated through different approaches. Subsequently, the vaccine

candidates were refined, and structural validity was checked. The

crude model of the vaccine candidates shows a Ramachandran score

of 86.992% of the AA residues in the favorable region. After the

refinement of the vaccine construct, the Ramachandran plot generated

a better result of 94.512%, which means that most of the AA residues

of the refined vaccine candidates were in the favorable regions. In

addition, the Ramachandran plot shows that 94.512% of residues

clustered tightly in the most favored region with very few residues in
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outliers. A good-quality model would probably exceed 90% in the

most favored regions (95). The Z-score of the refined model was -2.59,

indicating a satisfactory quality of the overall model. The Z-scores of

the anticipated model were outside the scale of the property for local

proteins, which shows the incorrect structure; thus, the MCV vaccine

model is inside the scale property for local proteins (96, 97). Therefore,

the structure of the vaccine candidate was deemed acceptable based on

our evaluation. The length of the vaccine construct was determined to

be 592 AA, acknowledging that the ideal length of a vaccine can vary

based on factors including the target pathogen, desired immune

response, and antigen or epitope characteristics (98). In the case of

MCV, which exhibits genetic diversity and antigenic variability, it is

often necessary to include multiple epitopes or larger antigenic regions

to ensure comprehensive protection against various MCV strains (89).

Incorporating multiple epitopes has the advantage of enhancing

immune recognition, preventing immune evasion, and improving

cross-reactivity and cross-protection (99). Therefore, the use of a

592 AA construct containing multiple epitopes supports an effective

immune response and provides protection against MCV strains.

We also employed molecular docking simulation to determine the

binding affinity between the vaccine candidate and the TLR-4 receptor

(75, 100). We found that the vaccine can properly bind with the

receptor TLR-4 and has the lowest binding energy score. A

comprehensive structural analysis of the vaccine candidate and its

receptor complex was also performed through MD simulation

approaches to determine the binding stability of the complex system

(76, 101). The vaccine conformation showed an average RMSD

change of 11.94 Å, with fluctuations ranging from 3.109 Å to 16.162

Å. RMSF analysis identified peak fluctuations between amino acid

residues 95–570, mainly at GLU122, VAL124, and LYS123. The

compactness of the structure was confirmed by radius of gyration

(Rg) analysis, which yielded an average Rg score of 39.25 Å. Analysis

of HBs revealed a significant increase, peaking between 90 and 200 ns

simulation time. For the vaccine–receptor complex, stable fluctuations

were observed after 55 ns with an RMSD value of 16.918 Å. RMSF

analysis highlights fluctuations between amino acid residues 650–800,

particularly at position 700–710. The Rg analysis shows tight packing

with deviation observed from the 5–55 ns simulation run (102). The

number of hydrogen bonds was observed to fluctuate, with the highest

number observed between 0 and 20 ns and 120 and 200 ns simulation

time. Simulated microscale changes in the protein backbone and mild

fluctuations of the side chain residues were observed in this study,

which altogether confirmed the stability of the vaccine–TLR4

complex. These findings deepen our understanding of the

conformation of the vaccine and the structural dynamics and

interactions within its receptor complex. Stable and fluctuating

regions provide valuable insights into conformational changes and

intermolecular associations, facilitating further optimization and

development of vaccines.

In addition, the immunological response of the vaccine

candidate was also evaluated, which showed higher B- and T-cell

activity, indicating the typical immune response. The evaluation of

the immune response was performed by using the vaccine as an

antigen, where a high level of immunoglobulin and B-cell isotype

formation was observed upon exposure. Upon exposure, the

number of active B-cell populations, plasma B-lymphocytes and
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their isotype, helper T-cell and cytotoxic T-cell population per state;

the number of plasma B-lymphocytes and their isotypes per state;

state of helper T-cell population; and cytotoxic T-cell population,

macrophage population, production of cytokine and interleukins

per state were improved substantially, indicating a better memory

formation ability of the vaccine candidates. In the final stage, the

vaccine candidates underwent computational cloning into the

pET28a (+) plasmid vector. Subsequently, the recombinant

vaccine constructs were subjected to in silico expression within

the E. coli K12 expression systems for subsequent analysis and

evaluation. Before being computationally expressed into the host

system, the vaccine candidate was optimized through the codon

adaptation method (83). The GC content of the sequence was

52.36% in the optimized DNA sequence, indicating the optimal

range (30%–70%) for expression (103). Additionally, the CAI value

of the sequence was 0.98, close to 1.0, which indicates the higher

expression probability of the vaccine candidate in the expression

vector (104). Consequently, adequate adaptation was accomplished

for the large-scale production of vaccine candidates.

Previously, programmed death-1 (PD-1) cell surface receptor

inhibitors have found as a valuable treatment option for MCC,

particularly in cases where cancer has spread or is not responsive to

other therapies. Although Programmed death ligand 1 (PD-L1)

blockade is highly effective, ~50% of infected patients with skin

carcinoma either do not respond to PD-L1 therapy or develop PD-

L1 refractory disease and, thus, do not experience long-term benefit

(105, 106). Few other studies performed in silico analysis and

constructed multiepitope peptide vaccines, although it is known

that Merkel cell polyoma–mediated skin cancer is caused by the

pathogenic proteins including the large T antigen, small T antigen,

and viral capsid proteins (V.P. 1, V.P. 2, and Vp3) and all are

involved in viral pathogenicity (107). However, the previous study

has only either targeted only VP1 or T-antigenic proteins, for the

epitope selection (31, 32). The current study identified and selected

epitopes from all major pathogenic and antigenic proteins that will

increase the efficacy of the vaccine candidates. Eventually, the study

formulated a multiepitope vaccine candidate that will help to fight

against MCV and boost the immune system of humans.
5 Conclusion

Recent groundbreaking developments in immunoinformatics have

introduced novel techniques for disease prevention. Considering past

outbreaks of viral infections in humans, computational approaches

have been embraced to identify swift treatment strategies for diverse

viral diseases. Peptide vaccines currently expressed as the most

successful treatment option for viral infections can be designed by

using either free peptides or peptides coated on dendritic cells. At this

instant, peptide-based vaccines that are being designed by

computational methods can play a critical role in the treatment of

different infectious viral diseases. MCC is an aggressive infectious

disease for which effective vaccine candidates are not available, and

hence, it is necessary to develop an effective vaccine candidate.

Therefore, in this study, we designed and identify a potential peptide

vaccine candidate against MCV by using computational approaches
Frontiers in Immunology 1738
that can be further utilized for subsequent vaccine construction. The

study successfully identified peptide candidates against the virus and

designed a valid multiepitope vaccine construct to fight against the

aggressive MCC caused by MCV. However, further in vitro and in vivo

investigations are suggested to finally determine to ensure the candidate

vaccine’s true potential in combating against MCV.
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and activate MyD88- and TRIF
dependent signaling pathways
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Daniel F. Escobar1, Byron N. Castillo2, Bastián Valdebenito1,
Pablo Dı́az1, Augusto Manubens4, Fabián Salazar2,4,5,
Mayarling F. Troncoso6, Sergio Lavandero6,7, Janepsy Dı́az8,
Marı́a Inés Becker2,4* and Abel E. Vásquez1,9*

1Sección de Biotecnologı́a, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D
+T) y Evaluación de Tecnologı́as Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile,
2Laboratorio de Inmunologı́a, Fundación Ciencia y Tecnologı́a para el Desarrollo (FUCITED),
Santiago, Chile, 3Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile,
Santiago, Chile, 4Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile, 5Medical Research
Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom, 6Advanced
Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quı́micas y Farmacéuticas and Facultad de
Medicina, Universidad de Chile, Santiago, Chile, 7Department of Internal Medicine (Cardiology
Division), University of Texas Southwestern Medical Center, Dallas, TX, United States, 8Departamento
Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de
Chile, Santiago, Chile, 9Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad del Alba,
Santiago, Chile
The development of vaccine adjuvants is of interest for the management of

chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like

receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4

ligand-based adjuvants are the most frequently used adjuvants for human

vaccines. Among TLR family members, TLR4 has unique dual signaling

capabilities due to the recruitment of two adapter proteins, myeloid

differentiation marker 88 (MyD88) and interferon-b adapter inducer containing

the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling

triggers a proinflammatory innate immune response, while TRIF-mediated

signaling leads to an adaptive immune response. Most studies have used

lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however,

although protein-based ligands have been proven advantageous as adjuvants,

their mechanisms of action, including their ability to undergo structural

modifications to achieve optimal immunogenicity, have been explored less

thoroughly. In this work, we characterized the effects of two protein-based

adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As

models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH)

and a recombinant surface immunogenic protein (rSIP) from Streptococcus
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agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and

depending on the protein agonist used, TLR4 has a unique bias toward the TRIF

or MyD88 pathway. Furthermore, when characterizing gene products with

MyD88 and TRIF pathway-dependent expression, differences in TLR4-

associated signaling were observed. rSIP and FLH require MyD88 and TRIF to

activate nuclear factor kappa beta (NF-kB) and interferon regulatory factor (IRF).

However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and

interferon gamma-induced protein 10 (IP-10) secretion associated with

MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen

cross-presentation in a manner dependent on TLR4, MyD88 and TRIF

signaling. However, FLH activates a specific TRIF-dependent signaling

pathway associated with cytokine expression and a pathway dependent on

MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work

supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that

selectively activate TRIF- and MyD88-dependent signaling to drive safe innate

immune responses and vigorous Th1 adaptive immune responses.
KEYWORDS

protein-based adjuvants (PBAs), TLR4 agonist, MyD88, TRIF, antigen-presenting cells,
vaccines, recombinant surface immunological protein from Streptococcus agalactiae
(rSIP), hemocyanin from Fissurella latimarginata (FLH)
1 Introduction

In recent decades, TLR agonists have been investigated as

possible vaccine adjuvants. Most compounds with adjuvant

effects, such as lipopolysaccharide and oligonucleotides, are

nonprotein microbial components. However, many studies have

reported that TLR-dependent immunomodulation can be activated

by numerous xenogeneic proteins in a thymus-dependent manner

(1, 2). However, the potential role of these proteins as adjuvants

requires a deeper understanding of their mechanisms of action to

enable the creation of adjuvants with more powerful and more

specific immunological effects. Among the many known TLR

agonists, TLR4 ligand-based adjuvants are the most commonly

used for developing commercial vaccines (3, 4). However, an

improved understanding of TLR4 receptor−ligand interactions,

signaling pathways, and biological/immunological mechanisms is

needed to develop safe and potent vaccine formulations (5–7).

TLR4 is a transmembrane protein in leukocytes that belongs to

the leucine-rich repeat family of proteins. It is activated by

lipopolysaccharide (LPS), which triggers innate responses against

gram-negative pathogens (8). Interaction of a TLR with its

corresponding ligand agonist results in TLR dimerization, which

triggers the recruitment of adapter proteins to the Toll IL-1 receptor

(TIR) in the cytoplasmic domain of TLR4. This dimerization-based

signaling process is an essential step in TLR4 signaling in which

cytosolic TIR domains are activated to recruit adapter molecules,

such as myeloid differentiation primary response factor 88 (MyD88),

adapter-likeMyD88 (MAL), the TIR domain-containing interferon-b
inducer adapter (TRIF), and TRIF-related adapter molecule (TRAM),

which then facilitate downstream signaling (9–12).
0243
MyD88 signaling is associated with the rapid production of

proinflammatory cytokines and innate immune responses to

infectious threats (13, 14). In contrast, TRIF signaling is

associated with processes that can promote adaptive immune

responses essential for effective vaccination (10, 11, 15).

Considering the roles of TLR4 agonists, most studies have used

LPS-based ligands. However, a growing number of TLR4 protein

agonists that could be used as vaccine adjuvants have been

described (2, 16). Indeed, protein TLR4 agonists have several

unique properties, including the ability to undergo structural

modulation, optimal immunogenicity, and minimal toxicity (2,

16, 17). In this context, we analyzed two protein-based adjuvant

agonists of TLR4 in terms of activation of the MyD88 and TRIF

signaling pathways: one of bacterial origin, namely, the surface

immunogenic protein (SIP) of Group B Streptococcus (GBS), and

the other of molluskan origin, namely, hemocyanin from Fissurella

latimarginata (FLH).

Gastropod hemocyanins are large metallo-glycoproteins of high

molecular weight (approximately 8 to 13 MDa) that possess a

complex quaternary structure and induce humoral and cell-

mediated responses of the Th1 type in mammals, including

humans. Due to this property, hemocyanins are widely used in

biomedicine (17–22). In addition, different mollusk hemocyanins

with immunological effects have also been characterized, such as

FLH from Fissurella latimarginata (23–25). Studies performed in

our laboratory showed that FLH has antitumor effects in murine

melanoma and oral cancer models (20). In addition, FLH binds to

TLR4 and induces the expression and secretion of Th1-type

proinflammatory cytokines (17, 23, 25). A remarkable

characteristic of hemocyanins is their carbohydrate content,
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which is fundamental to their structure and immunological efficacy

(23, 26). Recent work showed that the enzymatic N-deglycosylation

of FLH influences its immunogenic effects on macrophages (23),

leading to a decrease in its binding to C-type lectin receptors, such

as mannose receptor (MR), macrophage galactose lectin receptor

(MGL), DC-specific intracellular adhesion molecule (ICAM)-

grabbing nonintegrin (DC-SIGN), and TLR4 (17, 23, 25).

In contrast to hemocyanins, including the FLH used in this

study, the recombinant surface immunogenic protein (rSIP) from

Group B Streptococcus is a small protein. It was previously

expressed in Escherichia coli and Pichia pastoris and had a

molecular weight of 53 kDa with a b-folded structure and the

ability to form dimers (27). This recombinant protein was analyzed

as a vaccine against GBS in a preclinical trial. It was shown that this

protein has excellent immunogenic capacity, as it binds TLR4 and

induces a Th1-type response against GBS (28–31). Furthermore,

given that SIP less complex structure than hemocyanins, it can

undergo genetic fusion with other protein antigens to ensure joint

antigen–adjuvant delivery (2). Previously, immunization with rSIP

without adjuvant was shown to decrease GBS vaginal colonization

and induce secretion of opsonizing antibodies evaluated by in vitro

opsonophagocytosis (OPA) assays (30). Furthermore, rSIP was

found to promote humoral immunity in a murine model using

ovalbumin (OVA) as an antigen (27). Thus, considering that rSIP

immunogenicity studies are in the advanced preclinical stage, this

protein is a new candidate vaccine adjuvant.

In this work, we focused on characterizing two TLR4 protein

agonists, their associations with MyD88 and TRIF recruitment and

their contributions to antigen cross-presentation to CD8+ T

lymphocytes. Since rSIP and FLH differ in origin, structure, and

size, we hypothesized that MyD88 and TRIF recruitment is important

for generating the TLR4-dependent Th1 effects of these protein-based

adjuvants (PBAs). For this purpose, we studied the role of rSIP and

FLH in the recruitment of MyD88 and TRIF in antigen-presenting

cells (APCs) by characterizing molecular targets involved in TLR4

activation, as well as their adjuvant effects on antigen cross-

presentation in bone marrow-derived dendritic cells (BM-DCs).
2 Materials and methods

2.1 Hemocyanin, rSIP, and
ovalbumin antigen

F. latimarginata hemocyanin (FLH) was provided by Biosonda

SA (Santiago, Chile). This protein was isolated and purified under

sterile, pyrogen-free conditions in phosphate-buffered saline ([PBS]

containing sodium phosphate 0.1 M NaCl), pH 7.2 (24), and Tris

buffer for FLH containing 50 mM Tris, pH 7.4, 5 mM CaCl 2.5 mM

MgCl2, and 0.15 mM NaCl (25). All chemicals were analytical

reagent grade, and solutions were prepared with human irrigation

water (Baxter Healthcare, Charlotte, NC, USA) and filtered through

a 0.2 µm membrane filter (Millipore).

rSIP was obtained according to a procedure previously published

by our group (27, 31). Briefly, rSIP was expressed in E. coli BL21 (DE3)

and transformed into the plasmid pET21a::sip. Then, rSIP was
Frontiers in Immunology 0344
expressed as a soluble protein and purified using nickel-

nitrilotriacetic acid (NI-NTA) resin by low-pressure chromatography

and high-performance liquid chromatography (HPLC) using a

molecular exclusion column. The system consisted of a BioSep-SEC-

s2000 300 x 21.2 mm Preparative Column 00H-2145-P0

(PHENOMENEX) and Smartline UV detector 2520 (Knauer,

WissenschaftlicheGeräte GmbH, Germany). rSIP had a purity > 98%.

rSIP and FLH has endotoxin levels less than 0.5 EU/mL, which

was determined using the ToxinSensor™ Chromogenic LAL

Endotoxin Assay Kit. Additionally, protein concentrations were

determined using the Pierce 660 nm Protein Assay Reagent

(Thermo Scientific , Waltham, MA) according to the

manufacturer’s instructions with a Pierce™ Bovine Serum

Albumin Standard (Thermo Scientific).

Endotoxin-free OVA protein (Invivogen, cat. vac-stova) was

used as the model antigen.

The stimuli and inhibitors used in this work did not induce cell

toxicity in any cells used. Viability was determined with Trypan

Blue and Annexin-V/propidium iodide (data not shown).

Additionally, rSIP and FLH concentrations are reported as molar

concentrations due to their significant differences in size and molar

mass (rSIP ≈ 53 kDa; FLH ≈ 8,000 kDa).
2.2 Experimental animals

Mice of the wild-type C57BL/6 strain, C57BL/6-Tg (TcraTcrb)

1100Mjb/J mice (OT-I), and B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II)

mice were purchased from Jackson Laboratory. In addition, OT-I

and OT-II were supplied by Fundación Ciencia & Vida (Chile). All

mouse experiments followed international ethical standards and

Chilean Animal Protection Law 20380 (2009). The Institutional

Committee reviewed the experimental protocol in accordance with

the Care and Use of Laboratory Animals of the Institute of Public

Health of Chile, codes C110322-01 and C120421-01. The mice were

housed in the Facility of the Laboratory Animal Maintenance and

Experimentation Room (MEAL) of the Biotechnology Section of

ISPCh. The mice were maintained following the regulations

established by the Institutional Committee for the Use and Care

of Animals of the laboratory.
2.3 Acquisition and culture of BM-DCs

BM-DCs were prepared using a modified procedure based on

Lutz et al. (32). Briefly, bone marrow was extracted from the femurs

and tibias of mice, washed with Hanks saline solution (HBSS), and

cultured in BM-DC-specific medium containing Roswell Park

Memorial Institute (RPMI-1640, Cytiva, cat. SH30027.02)

supplemented with 10% inactivated fetal bovine serum (GIBCO,

cat. 26140079), 2 mM L-glutamine, 1 mM sodium pyruvate,

penicillin (50 U/ml), streptomycin (50 mg/ml), 50 mM b-
mercaptoethanol, and 20 ng/ml granulocyte-macrophage colony-

stimulating factor (GM-CSF; Peprotech, Cat. 315-03) to generate

BM-DCs. Cells were seeded in a Petri dish at 2 x 106/mL and

incubated at 37°C. On days 3, 6, and 8, 10 ml of BM-DC medium
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was added to the cultures. On days 6 and 8, 10 ml of BM-DC

medium was removed and replaced with fresh medium. On day 10,

nonadherent BM-DCS were harvested. The BM-DCs were

phenotypically characterized using flow cytometry (FACSVerse)

after reaching > 85% expression of the phenotype CD11c+ CD11b+

MHCII+ CD86low CD80low CD4− CD8- B220− GR1−.
2.4 Cytokine secretion assay

The measurement of cytokines in the supernatant of BM-DCs

cultured with FLH and rSIP was carried out according to Kolb et al.

(12). BM-DCs (1 x 105 per well) were incubated in flat-bottom 96-

well plates for 2 h at 37°C before TLR4 protein agonists (FLH 120

nM and rSIP 40 nM) or PBS (vehicle control) was added. TRIF and

MyD88 inhibition experiments were performed as described by

Chen et al. (33) in which 75 µM Pepinh-TRIF (Humimmu LLC), 75

µM Pepinh-Control (Negative Control, Humimmu LLC), 75 µM

MyD88 peptide control (Novus Biological), and 75 µM

antennapedia control peptide (Novus Biological, negative control)

were added 18 h before the addition of FLH and rSIP.

For the TLR4 signaling inhibitor, TAK242 was used according to

the supplier’s recommendations (34). TAK 242 (10 mg/mL, Invivogen)

was added 2 h before the addition of FLH and rSIP. After 18 hours of

stimulation with FLH and rSIP at 37°C, the supernatants were

collected. The concentrations of IL-6 and IP-10 were measured using

a commercial enzyme-linked immunosorbent assay (ELISA) kit

(Mouse IL-6 ELISA Kit: BMS603-2; Mouse IP-10 ELISA Kit:

BMS6018, Invitrogen) according to the manufacturer’s instructions

and with all necessary controls. The sensitivity of both ELISA kits was

6.5 pg/mL. The assay range for the IL-6 ELISA kit was 31.3-20,000 pg/

mL. The assay range for the IP-10 ELISA kit was 7.8-500 pg/mL.

The inhibitors did not induce cell toxicity in the cells used in

these assays (data not shown).
2.5 Determination of gene expression by
real-time reverse-transcriptase polymerase
chain reaction (RT−qPCR)

The measurement of mRNA from BM-DCs was carried out

according to Kolb et al. (12). BM-DCs (1x105 per well) were

incubated in flat-bottom 96-well plates for 2 hours at 37°C before

TLR4 protein agonists or PBS (vehicle control) were added. MyD88

and TRIF pathway inhibitors were used in the manner described

above. Once stimulated, the cells were washed with cold HBSS. Cell

lysis and total RNA isolation were performed with NucliSENS®
easyMAG equipment; Biomérieux and complementary DNA

(cDNA) were synthesized with SuperScript™ III Reverse

Transcriptase (Invitrogen). Assays were performed using 1 ml of
gDNA template and a Stratagene Mx3000P thermocycler (Agilent

Technologies). Increases in mRNA abundance in treated cells

relative to control cells were calculated using the 2−DDCt method

and normalized to b-actin mRNA. The sequences of primers

and probes used for detecting mRNAs can be found in

Supplemental Table 1.
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2.6 THP-1 Dual cell culture

THP-1 Dual cells (InvivoGen, thpd-nfis), TRIF KO Dual Reporter

THP1 Cells (InvivoGen, thpd-kotrif), THP1-Dual™ KO-MyD cells

(InvivoGen, thpd-komyd), and TLR4 KO Dual Reporter THP- 1 Cells

(InvivoGen thpd-koTLR4) were cultured in RPMI-1640 medium

supplemented with 10% fetal bovine serum (Gibco), L-glutamine,

100 U/ml penicillin, 100 mg/ml streptomycin (Gibco), 100 mg/mL

normocin (InvivoGen, ant-nr-1), 100 mg/mL zeocin (InvivoGen, ant-

zn-1), and 10 mg/mL blasticidin (InvivoGen, ant-bl-1). Dual THP1

cells were incubated at 37°C and 5% CO2.

THP1-Dual™ KO-TLR4, THP1-Dual™ KO-TRIF, and THP1-

Dual™ KO-MyD88 cells were generated from THP1 Dual cells™

via knockout (KO) of TLR4, TRIF and MyD88 (InvivoGen).

Previously, these cells were validated to characterize the

functionality of SEAP and LUCIA expression. The activation of

NF-kB and IRF was previously analyzed using a NOD1 agonist and

TLR3 agonist. The NOD1 ligand generated an increase in SEAP in

all cell lines. For LUCIA, all lines showed activation of IRF in the

presence of the TLR3 agonist (data not shown).
2.7 SEAP and LUCIA assays in THP-1 and
Hek-blue cells

THP-1 cells were seeded in 96-well plates (Corning Costar) at a

density of 100,000 cells per well. First, cells were stimulated for 18 h

with rSIP, FLH, LPS, a NOD 1 ligand (positive control for NF-kB;

C12-iE-DAP, InvivoGen), and a PRR agonist (positive control for

IRF; Poly (dA:dT)/LyoVec™, InvivoGen). The supernatant was

then subjected to a colorimetric enzyme assay to measure alkaline

phosphatase (AP) activity using the commercial QUANTI-Blue™

solution (InvivoGen). The supernatant was then incubated at 37°C

for 3 h, and the optical density was read at 650 nm in an Epoch 2

reader (BioTek). On the other hand, luciferase activity (LUCIA) was

measured using the commercial solution QUANTI-Luc ™

(InvivoGen), which has a coelenterazine substrate and stabilizing

agents for the luciferase reaction. The light signal produced was

then quantified using a Berthold luminometer (Model LB9515), and

the signal was expressed as relative light units (RLUs).

Hek-Blue cells (hkb-mtlr4 and hkb-htlr4, InvivoGen) express

SEAP under the control of promoters containing binding elements

for the NF-kB transcription factor (35). Hek-Blue cells were seeded

in 96-well plates (Corning Costar) at a density of 25,000 cells per

well in HEK-Blue™Detection medium (InvivoGen). Then, the cells

were stimulated for 48 h with rSIP, FLH, and LPS, and SEAP was

quantified using an Epoch 2 reader (Biotek).
2.8 Exogenous antigen presentation assays
in an in vitro model

The presentation of exogenous antigens in an in vitro model

was evaluated as described by Alloatti et al. (36). BM-DCs (1 x 105

per well) were incubated in flat-bottom 96-well plates for 2 h at

37°C before OVA and TLR4 agonists were added. The BM-DCs
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were incubated with OVA, OVA + FLH, OVA +SIP, or PBS. After

24, 48 and 72 h, the BM-DCs were washed three times with a 0.1%

(vol/vol) PBS/BSA solution and then labeled with the 25-D1.16

antibody that detects peptide–major histocompatibility class

(MHC)-I (SIINFEKL: MHC-I) complexes (37).
2.9 Antigen cross-presentation assay

The antigen cross-presentation assay was adopted and modified

from Alloati et al. (36). Following TLR4-induced maturation of

DCs, antigen cross-presentation is first enhanced and then

modulated downstream of antigen internalization and cytosolic

delivery (36, 38). It was previously reported that antigen cross-

presentation capacity increased in the initial hours after TLR4

activation (39). To evaluate antigen cross-presentation, BM-DCs

were seeded at 40 x 103 cells per well in a 96-well plate and then

pulsed with the antigens at different concentrations for 3 h. At the

end of the pulsing period, the cells were washed three times to

remove excess antigen and cocultured with 1 x 105 CD8 T cells

purified from the spleens of OT-I mice using the MojoSort™

Mouse CD8 T-Cell Isolation Kit according to the manufacturer’s

protocol. CD8 T cells from OT-I mice were labeled with CellTrace

Violet™ (Molecular Probes™, ThermoFisher Scientific). Three

days later, the proliferation of CD8 T cells was measured using

flow cytometry. As a proliferation control, OT-I lymphocytes were

cocultured with BM-DCs pulsed with the ovalbumin peptide

SIINFEKL (Invivogen).

For MyD88 and TRIF inhibition, the peptides were added to

BM-DCs 18 hours before pulsing with antigen and adjuvant. TAK-

242 (10 µg/mL, Invivogen) was added 2 hours before washing and

pulsing with more antigen adjuvant. The BM-DCs were cocultured

with 30x104 CD8 T cells, and cell proliferation was characterized as

described above.

A similar approach was used to assess the effect of the

proteasomal, vacuolar, and endoplasmic reticulum trafficking

processes using several inhibitors: (A) Brefeldin A at 1 µM, (B)

Epoxomicin at 5 nM, (C) Leupeptin at 10 µM, (D) Pepstatin A at 40

nM, (E) MG132 at 4 nM, (F) Bafilomycin at 10 nM, and (G)

Simvastatin at 10 nM. All inhibitors were obtained from Enzo. The

inhibitors were added to BM-DCs 1 h before washing, pulsing with

antigen and adjuvant, and coculture with 30 x 104 CD8 T cells (OT-

I) as described above.
2.10 Classical antigen presentation assay

The classical presentation of antigens was evaluated similarly to

antigen cross-presentation, with minor modifications. BM-DCs

were seeded at 40 x 103 cells per well in a 96-well plate and then

pulsed with the antigens at different concentrations for 18 h. At the

end of the pulsing period, the cells were washed three times to

remove excess antigen and cocultured with 1 x 105 CD4 T cells

purified from the spleens of OT-II mice using the MojoSort™

Mouse CD4 T-Cell Isolation Kit according to the manufacturer’s
Frontiers in Immunology 0546
protocol. CD4 T cells from OT-II mice were labeled with CellTrace

Violet™ (Molecular Probes™, ThermoFisher Scientific). Four days

later, the proliferation of CD4 T cells was measured using flow

cytometry. As a proliferation control, OT-II lymphocytes were

cocultured with BM-DCs pulsed with the OVA peptide

ISQAVHAAHAEINEAGR (InvivoGen).
2.11 Immunoblotting

Immunoblotting was performed according to Jiménez et al.,

with modifications (17). BM-DCs (4 × 106) were incubated for

2 h at 37°C in polystyrene tubes and were then exposed to rSIP or

FLH. The cells were lysed at the indicated time points using

RIPA lysis buffer supplemented with protease inhibitor cocktail

(5 mg/mL; Roche). Proteins were separated in polyacrylamide

gels (SDS−PAGE, 10-15%), electrotransferred to nitrocellulose

membranes, and blocked with 5% bovine serum albumin (BSA)

in 0.1% (v/v) TBS-Tween 20 (TBST). Primary antibodies were

dissolved in 5% BSA and incubated with the blocked membranes

overnight at 4°C. After exposure of the membranes to

horseradish peroxidase-conjugated anti-rabbit secondary

antibodies for 1 h in BSA, bands were visualized using the

Odyssey system (Li-Cor Bioscience) detection system, and

band intensities were analyzed with LI-COR Image Studio

Software. SuperSignal West Femto Maximum Sensitivity

Substrate (Thermo Fisher) and EZ-ECL (Biological Industries)

were the chemiluminescent substrates used for developing the

Western blots. The antibodies used for immunoblotting were a

recombinant anti-IRF3 antibody [EPR2418Y] (ab68481), goat

anti-rabbit IgG H&L (HRP) (Abcam, ab205718) and phospho-

IRF-3 (Ser396) (4D4G) rabbit mAb #4947 (Cell Signaling

Technology, Danvers, USA).
2.12 Statistical analysis and determination
of log (EC50) values

The log half maximal effective concentration (EC50) values for

each agonist-induced response were calculated according to Ehlert

et al. (40), generating nonlinear fits for four parameters defined as

the baseline response line (Bottom), maximum response (Top),

slope of the curve (HillSlope), and concentration of protein

agonist that elicited a median response between the baseline and

upper response (EC50). Dose−response data were analyzed

using GraphPad Prism software with the following equation:

Y=Bottom + (X^Hillslope)*(Top-Bottom)/(X^HillSlope

+ EC50^HillSlope).

Differences between log (EC50) values were analyzed using

GraphPad Prism 9 software by applying a two-tailed t test (for

comparisons between two sets of proteins). In addition, the

statistical significance of differences in inhibition by TAK-242,

MyD88, and TRIF inhibitors was evaluated with the one-tailed

Mann–Whitney U test or the Kruskal−Wallis test followed by post

hoc tests for multiple comparisons.
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3 Results

3.1 FLH and rSIP differ in their potency as
TLR4 agonists

Understanding the modulation of TLR4 agonist-mediated

signaling is pivotal for deciphering the immune mechanisms to

develop vaccine adjuvants (41). To gain insight into the mechanism

underlying TLR4 protein agonists, we performed dose−response

analysis of HEK-blue reporter cells expressing either mouse TLR4

(mTLR4) or human TLR4 (hTLR4). Analyses were performed to

evaluate LPS stimulation, including a full TLR4 agonist and PBS as a

negative control. In the raw data, rSIP induced stronger stimulation

than FLH according to the dose−response curve (Figure 1A). rSIP

and FLH were partial agonists of mTLR4 and reached a maximum

activation value of approximately 80% compared to the full agonist

LPS (4), as shown in Figure 1B. Therefore, the half-maximal

effective concentrations of the two proteins were compared to

determine whether a difference in the immunological potency of

these partial agonists could be observed. The findings showed that

rSIP had a lower EC50 than FLH and a mean log (EC50) value of –1,

compared to FLH, which had a mean log (EC50) value of 0.1;

therefore, these agonists stimulated mTLR4 at lower protein

concentrations (Figure 1C).

Different mTLR4 agonists used to characterize preclinical

animal models differ significantly from those observed in human

cell systems (42). In this context, the agonist effects of rSIP and FLH

on Hek-Blue hTLR4 cells was characterized (Supplemental

Figure 1A). Compared to LPS (100% activation), rSIP was found

to be a partial agonist of hTLR4, while FLH acted as a lower efficacy

agonist of hTLR4. This conclusion was confirmed by the

observation that LPS activated HEK-Blue-TLR4 cells at 18 h post-

stimulation, while rSIP and FLH stimulated the cells at 48 h post-

stimulation, with rSIP reaching approximately 90% activation and

FLH reaching 25% activation. The above result suggests that TLR4-

PBAs are ligands of hTLR4, with partial and weak partial agonist

effects for rSIP and FLH, respectively. Although a difference in the

potency of hTLR4 activation was found, these agonists presented

similar log(EC50) values (Supplemental Figure 1B). HEK-Blue
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Null1-v cells, which do not express mTLR4 or hTLR4, were used

as a negative control for the cell line and were not activated in the

presence of FLH or rSIP (data not shown). Notably, both rSIP and

FLH were able to activate NF-kB in the HEK-Blue-TLR4 cell line.

Furthermore, both proteins were able to activate IRF3 in BM-DCs

(Supplemental Figure 1C). Our results show the specificity of

mTLR4 for the protein ligands described above, and we propose

that the structural differences between these ligands, i.e., FLH is very

large and glycosylated, and rSIP is small and not glycosylated, will

allow them to serve as new models to study their contributions to

MyD88 and TRIF signaling.
3.2 TLR4-PBAs show no bias toward
MyD88 or TRIF signaling at minimal
activation doses

To determine whether rSIP and FLH are agonists biased toward

the TRIF or MyD88 pathway, BM-DCs were activated with an

extensive dilution series of rSIP and FLH. The potencies of these

agonists in activating a panel of TRIF-dependent and MyD88- and

TRIF-codependent proteins were measured by calculating the log

(EC50) values. We evaluated IP-10 as a representative TRIF-

dependent protein and IL-6 as a MyD88- and TRIF-codependent

cytokine (12). As expected, based on the log (EC50) value, rSIP was

more active than FLH in inducing the expression of TRIF-

dependent and TRIF-codependent proteins (MyD88 and TRIF)

(Figures 2A–C). rSIP produced mean log (EC50) values of 1.8 and

2.1 for IL-6 and IP-10, respectively, while FLH produced mean log

(EC50) values of 6.8 and 7.1 for IL-6 and IP-10, respectively.

However, no log (EC50) difference for the comparison of IL-6 and

IP-10 expression between rSIP and FLH was found (Figure 2C).

Taken together, these results suggest that at minimal activation

doses, rSIP has a lower Log (EC50) than FLH, which is consistent

with the results presented in Figure 1. No differences in the

preferential activation pathway were found when the log (EC50)

values for IL-6 and IP-10 were compared. FLH generated the same

effect. Therefore, FLH and rSIP induce MyD88- and TRIF-

codependent pathways, as reflected by IL-6 and IP-10 expression.
B CA

FIGURE 1

Partial agonism of mTLR4 by protein-based adjuvants. (A, B) Raw data and determination of the concentrations of protein agonists needed to
activate mTLR4. The HEK-Blue-mTLR4 reporter cell line was exposed to different concentrations of rSIP and FLH. Dose−response curves were
generated for cells exposed to a maximum concentration of 2540 nM rSIP or FLH for 48 h. Data show normalized HEK-Blue mTLR4 cell responses
considering treatment with lipopolysaccharide (LPS) as 100% stimulation; 100% = maximum dose plateau of the LPS agonist. (C) Comparison of the
log EC50 values of protein agonists in the activation of mTLR4. Log (EC50) values for rSIP and FLH were determined according to the relative
abundance of soluble alkaline phosphatase (AP) secreted by Hek-Blue-mTLR4 cells. Individual log (EC50) values and mean values from three
independent experiments are shown. The statistical significance of differences was analyzed using an unpaired t test (**p < 0.01).
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Furthermore, we aimed to characterize other molecules

associated with the recruitment of MyD88 and TRIF. The

MyD88- and TRIF-codependent pathway is characterized by the

gene expression of IL-6, Cox-2, and cluster of differentiation 80

(CD80). Expression of the IP-10, IFIT1, and CD86 mRNAs is

associated with the TRIF-dependent pathway. BM-DCs were

stimulated with EC50 doses of rSIP and FLH, and the mRNAs of

IL-6, cyclooxygenase (COX-2), CD80, IP-10, interferon-induce

protein with tetratricopeptide repeats (IFIT-1), and CD86 were
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evaluated (Figures 2D–I). RT−qPCR revealed that FLH induced

higher expression of CD80, IFIT-1, and CD86 than rSIP. On the

other hand, rSIP induced higher expression of IL-6 than did FLH. In

contrast, COX-2 and IP-10 expression showed no variations

associated with either rSIP or FLH. This result suggests that

different profiles associated with the recruitment of MyD88 and

TRIF could occur for rSIP and FLH at their respective EC50 values.

This fine signaling regulation mediated by TLR4 implies some

cross-regulation of these pathways.
B

C D E

F G H I

A

FIGURE 2

FLH and rSIP induce differential expression patterns for molecules associated with the MyD88 and TRIF pathways. Bone marrow dendritic cells
(BM-DCs) from C57BL/6 mice were treated with the indicated concentrations of rSIP and FLH. (A, B) Analysis of IL-6 and IP-10. After 18 h, the
concentrations of IL-6 and IP-10 were determined using enzyme-linked immunosorbent assay (ELISA). Data are expressed as the means ± standard
deviations (SD) of three independent experiments. (C) Log (EC50) comparison. The log (EC50) values of the indicated rSIP- and FLH-stimulated
changes in interleukin 6/(IL-6/IP-10) expression from experiments A and B were compared. Individual log (EC50) values are shown. Values are the
means of three independent experiments. Statistical differences were analyzed for the data in (C) using the Mann–Whitney U test (**p<0.01;
****p<0.0001; ns, statistically not significant). (D–I) Analysis of MyD88– and TRIF–codependent expression of target genes. Wild-type BM-DCs were
stimulated with rSIP (40 nM) and FLH (120 nM) for 4 h. The mRNA abundances of (D) IL-6, (E) cyclooxygenase 2 (COX-2), (F) cluster of differentiation
80 (CD80), (G) IP-10, (H) IFIT-1, and (I) CD86 were analyzed by RT−qPCR. LPS-stimulated BM-DCs were used as a positive control for each of the
mRNAs analyzed. Data are expressed as the mean fold increase in mRNA abundance in cells stimulated with protein adjuvants compared to cells
treated with PBS. Each dot represents an independent experiment. Data are the means ± SDs of 4 or 5 independent experiments. Statistical
significance was determined using the Mann–Whitney U test (*p<0.05; **p<0.01; ns, statistically not significant).
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3.3 The regulation of FLH– and rSIP−TLR4
activation is associated with MyD88- and
TRIF-dependent genes

Since a preference for the MyD88 or TRIF pathway was not

observed, we decided to further examine the effects of these

pathways on the immune response induced by both adjuvant

proteins. To characterize the contribution of MyD88 to TLR4

activation by rSIP and FLH, BM-DCs were pretreated for 18 h

with the MyD88 inhibitor, an inhibitory peptide that blocks MyD88

signaling, or a control peptide prior to stimulation of BM-DCs for

4 h, and RT−qPCR was performed. Inhibition of MyD88 decreased

IL-6, CD80, CD86, and IFIT1 transcript levels but not COX-2

transcript levels when BM-DCs were stimulated with FLH

(Figure 3). For rSIP, inhibition of MyD88 induced a decrease in

IL-6, CD80, CD86, IFIT1, and COX-2 transcript levels (Figure 3).

On the other hand, no variation in the number of IP-10

transcript levels upon stimulation with rSIP and FLH was found,

suggesting that the TLR4 agonistic effects of rSIP and FLH are

MyD88 dependent.

Similar to the approach used for MyD88 inhibition, we decided

to further examine the effects of TRIF on the immune response

induced by the rSIP and FLH proteins. The BM-DCs were

pretreated for 18 h with Pepinh-TRIF, an inhibitory peptide that

blocks TRIF signaling, or Pepinh-Control, a control peptide, and

then treated with rSIP and FLH. After the cells were stimulated for

4 h, RT−qPCR was performed. TRIF inhibition decreased the

transcription of IL-6, COX-2, and IP-10 after stimulation with
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rSIP (Figure 4). Regarding FLH, TRIF inhibition decreased IL-6,

CD80, IFIT1, and IP-10 expression; however, no effects on CD86

transcript levels in response rSIP and FLH were found. Therefore,

TRIF is required for the activation of IL-6 and IP-10 expression by

FLH and rSIP (Figures 4A, D). These results indicate that TLR4,

MyD88, and TRIF are important for the signaling patterns

associated with TLR4-PBAs in BM-DCs.
3.4 rSIP activates MyD88− and TRIF−
dependent proteins, while FLH activates
TRIF− dependent proteins

After establishing an association between TLR4-PBAs and

genes with MyD88- and TRIF-dependent expression at minimal

activation concentrations, no preference for the TRIF and MyD88

pathways was observed. Therefore, we next sought to address

whether inhibition of MyD88 and TRIF influences IL-6 and IP-10

secretion by BM-DCs. First, we characterized the effects of TLR4 on

cytokine secretion. For this purpose, the cells were treated for 2 h

with TAK-242 or dimethyl sulfoxide (DMSO) as the negative

control. TAK-242 induced complete and partial inhibition of the

IL-6 and IP-10 secretion induced by both rSIP and FLH,

respectively (Figures 5A, B). These results suggest that the effect

of rSIP and FLH on cytokine secretion by BM-DCS is dependent on

TLR4 in BM-DCs. This effect was also reflected by the expression of

CD86 by flow cytometry, which was dependent on TLR4 (data

not shown).
B C

D E F

A

FIGURE 3

MyD88 is required for the activation of signaling pathways by protein-based adjuvants. Wild-type BM-DCs were pretreated with peptide inhibitors of
MyD88 or a peptide control and stimulated with rSIP (40 nM) and FLH (120 nM) for 4 h. (A–F) Quantification of RNA. The mRNA abundances of (A)
IL-6, (B) COX-2, (C) CD80, (D) IP-10, (E) IFIT-1, and (F) CD86 were analyzed by reverse-transcriptase polymerase chain reaction (RT−qPCR). Data are
the mean fold increase in mRNA abundance in cells stimulated with protein adjuvants compared to cells treated with PBS (vehicle control, VC) and
averaged from three independent experiments. The activation of TLR4 by rSIP is dependent on MyD88 recruitment for the activation of (A) IL-6, (B)
COX-2, (C) CD80, (E) IFIT-1, and (F) CD86 expression. On the other hand, the activation of TLR4 by FLH is dependent on the recruitment of MyD88
for the activation of (A) IL-6, (C) CD80, (E) IFIT-1, and (F) CD86 expression, but the activation of (D) IP-10 expression was not dependent on MyD88
after activation by FLH and rSIP. Data are represented as the means ± SDs of three independent experiments. Statistical significance was determined
using the Mann–Whitney U test (*p<0.05; ns: not statistically significant).
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To characterize the effect of MyD88, we used the methods

described above, and we treated BM-DCs for 18 h with a MyD88

inhibitor peptide and then pulsed them with rSIP and FLH.

Inhibition of MyD88 caused dramatic inhibition of IL-6 and IP-10

expression in rSIP-stimulated BM-DCs (Figures 5C, D). Conversely,

IL-6 and IP-10 production induced by FLH was not affected by

inhibition of MyD88 recruitment. Next, to characterize the effect of

TRIF, we used peptides that inhibit the recruitment of TRIF (Pepinh-

TRIF) in BM-DCs. As with the MyD88 inhibition methods, we

pretreated cells with the TRIF-inhibiting peptide for 18 h and pulsed

them with rSIP and FLH. TRIF inhibition, how, had a less dramatic

but significant effect on the expression of IL-6 and IP10 in BM-DCs

stimulated with rSIP and FLH (Figures 5E, F). These data suggest

differential regulation of TLR4 signaling in terms of the recruitment

MyD88 and TRIF by rSIP and FLH. They also highlight a slight

difference in that MyD88 is important for rSIP-induced IL-6 and IP-

10 secretion, whereas TRIF is essential for FLH-induced IL-6 and IP-

10 secretion.
3.5 MyD88 and TRIF are required for NF-
kB- and IRF-associated signaling during
TLR4 activation by FLH and rSIP

To obtain more information in a human model, we used THP1-

Dual™ cells derived from the human THP-1 monocyte cell line to

characterize the NF-kB and IRF pathways. These cells show stable

integration of two inducible reporter constructs that allow the

concurrent study of the NF-kB pathway by monitoring the
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activity of SEAP and the IRF pathway by assessing the activity of

a secreted luciferase (LUCIA). Consistent with our previous data,

the results showed that the two model proteins significantly induced

the secretion of SEAP and LUCIA in the PBS control group

(Figures 6A, B). Additionally, LPS was analyzed in the assay and

stimulated both NF-kB and IRF at levels similar to those seen for

our proteins. In addition, nucleotide-binding oligomerization

domain-containing protein 1 (NOD1/C12-iE-DAP) and TLR3

[poly (I:C)] agonists were used as positive controls for the

secretion of SEAP and LUCIA, respectively. The data suggest that

protein agonists activate the NF-kB and IRF pathways.

To characterize the effects of TLR4 protein agonists on TRIF

and MyD88 recruitment, THP1-Dual™(WT), KO-TRIF, KO-

MyD88, and KO-TLR4 cells were pulsed for 18 h with rSIP and

FLH at 0.02 µM and 2.45 µM, respectively. These concentrations are

the minimum concentrations needed to achieve stimulation of the

THP1 line via the NF-kB and IRF pathways. Then, the supernatants

were used to evaluate the levels of SEAP associated with activation

of the NF-kB pathway (Figures 6C, D) and the levels of LUCIA

(Figures 6E, F) associated with activation of the IRF pathway. SEAP

induction in response to rSIP and FLH were abolished in the THP1

Dual KO-TRIF, KO-MyD88, and KO-TLR4 cells, with levels

approximately 9- and 3-fold lower than those in the WT control,

respectively. Moreover, LUCIA signals in response to rSIP and FLH

were abolished in the THP1 Dual KO-TRIF, KO-MyD88, and KO-

TLR4 cells, with levels approximately 40-fold and 10-fold lower

than those of the WT control, respectively.

Notably, LPS can activate the TRIF-independent NF-kB
pathway and MyD88-independent IRF pathway (38, 43, 44). In
B C
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FIGURE 4

Activation of IP-10 and IL-6 by TLR4-PBAs is dependent on TRIF. Wild-type BM-DCs were pretreated with the TRIF peptide inhibitor or a peptide control
and stimulated with rSIP (40 nM) and FLH (120 nM) for 4 h. (A–F) Quantification of RNA. The mRNA abundances of (A) IL-6, (B) cyclooxygenase 2 (COX-
2), (C) cluster of differentiation 80 (CD80), (D) IP-10, (E) interferon-induced protein with tetratricopeptide repeat 1 (IFIT-1), and (F) CD86 were analyzed
by RT−qPCR. Data are expressed as the mean fold increase in mRNA abundance in cells stimulated with the protein adjuvants compared to cells treated
with PBS (vehicle control, VC) and averaged from three independent experiments. The activation of TLR4 by rSIP is dependent on the recruitment of
TRIF for the activation of (A) IL-6, (B) COX-2 and (D) IP-10 expression. In contrast, the activation of FLH depends on the recruitment of TRIF to activate
(A) IL-6, (C) CD80, (D) IP-10, and (E) IFIT-1 expression. Data are the means ± SDs of three independent experiments. Statistical significance was
determined using the Mann–Whitney U test (*p<0.05; ns, not statistically significant).
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this context, the activation of NF-kB and IRF was compared in the

THP1-Dual KO-TRIF and THP1-Dual KO-MyD88 cell lines, and it

was observed that the rSIP and FLH agonist proteins activate the

NF-kB and IRF pathways (Figures 6G, H). LPS led to a 2.5-fold

increase in SEAP levels compared to the control in the TRIF-KO

THP1 cell line, while rSIP and FLH induced only a 1-fold increase

compared to the control. The similar result obtained for IRF

indicated that LPS activated the MyD88-KO THP1 cell line, with

a 1.9-fold increase compared to the control, while FLH and rSIP

caused only 1- and 0.8-fold activation, respectively, compared to the

control. These results suggest that TLR4-PBAs are equally affected

by the MyD88 and TRIF pathways and that NF-kB and IRF are

essential for rSIP and FLH signaling.
3.6 rSIP and FLH promote antigen cross-
presentation by recruiting MyD88- and
TRIF-dependent proteins

After establishing a pattern associated with the recruitment of

MyD88 and TRIF by rSIP and FLH for signaling, we decided to

characterize the adjuvant effects of these proteins on antigen cross-

presentation. Following TLR4-induced maturation of DCs, antigen
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cross-presentation is first enhanced and then modulated

downstream of antigen internalization and cytosolic delivery (36).

We wanted to investigate whether these two TLR4 ligands exerted

an adjuvant effect on antigen cross-presentation; to this end, we

pulsed BM-DCs for 3 h with OVA, OVA + LPS, OVA + FLH, and

OVA + rSIP formulations. The BM-DCs were washed with PBS and

cocultured for three days with CellTrace Violet (CTV)-labeled naïve

CD8+ T cells (OT-I). Dye dilution in proliferative cells was used to

characterize the activation of naïve CD8 T lymphocytes based on

flow cytometry. FLH and rSIP promoted CD8+ T-cell proliferation

compared to control OVA (Figure 7A). However, FLH generated an

effect at 1 and 0.5 mg/mL, whereas rSIP only did so at 1 mg/mL.

Additionally, enhancement of the antigen-specific response induced

by both PBAs was revealed by the 25D1.16 mAb antibody that

recognizes MHC-I loaded OVA peptide (H-2Kb-SIINFEKL), and at

72 h post-stimulation with rSIP and FLH, there was promoted an

increase in the population of CD11c+ 25D1.16+ cells (data not

shown). Furthermore, rSIP and FLH induced classical MHC-II

presentation to CD4+ T cells from OT-II mice. Their effects were

similar to those observed for antigen cross-presentation, with FLH

and rSIP enhancing T-cell activation compared to that observed

with OVA alone (Supplemental Figure 2). Antigen cross-

presentation is relevant because it confirms that the protein
B C
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FIGURE 5

rSIP and FLH differ in signaling due to the recruitment of MyD88 and TRIF. Wild-type BM-DCs were pretreated with (A, B) TLR4 inhibitors and
peptide inhibitors of (E, F) TRIF and (C, D) MyD88 and stimulated with rSIP (40 nM) and FLH (120 nM) for 18 h. Next, IL-6 and IP-10 were analyzed
using ELISA. Assays were validated using LPS as a positive control and PBS as a negative control. Each dot represents an independent experiment.
Data are the means ± SDs of six independent experiments. Statistical significance was determined using repeated measures one-way analysis of
variance (ANOVA) and the post hoc Sidak test (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not statistically significant).
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ligands had characteristics that were different from each other,

which could be associated with their molecular structures and their

affinities for TLR4.

To determine whether the adjuvant effect of rSIP and FLHwas due

to TLR4, we pretreated BM-DCs with DMSO or TAK242 to inhibit

TLR4 signaling. The results showed that the activation of CD8 T-

lymphocytes was inhibited, from approximately 80% to 20%, for both

proteins (Figures 7B, G). With the recruitment inhibition approach for
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MyD88 and TRIF, both rSIP and FLH decreased CD8 T lymphocyte

proliferation (Figures 7C, D, G). Remarkably, FLH stimulated

approximately 80% activity in the control, and when MyD88 was

inhibited, proliferation fell to approximately 40%. A similar effect was

observed with rSIP, with proliferation decreasing from approximately

80% to 45% after inhibition of MyD88 recruitment (Figures 7C, G).

Similarly, FLH stimulated approximately 40% activity after inhibition

of TRIF recruitment, while the control proliferation was up to
B C

D E F

G H

A

FIGURE 6

MyD88 and TRIF are required for NF-kB- and IRF-associated signaling after TLR4-PBA activation. THP1 Dual (wild-type) cell lines were treated with
rSIP (0.02 µM) and FLH (2.45 µM) for 18 h. (A, B). The activity of (A) secreted alkaline phosphatase (SEAP) and (B) luciferase (LUCIA) was characterized
after stimulation with rSIP, FLH, LPS (10 µg/ml), C12-iE-DAP (1 mg/ml; a nucleotide-binding oligomerization domain-containing protein 1 [NOD1]
ligand), and poly(I:C) (1 mg/ml; a TLR3 ligand). The data are the average of the OD at 600 nm, and the relative light units (RLUs) are the average of
three independent experiments. Statistical significance was determined by one-way analysis of variance (ANOVA) compared to the PBS control
(***p<0.001; ****p<0.0001; ns, statistically not significant). (C–G). The THP1 Dual (wild-type), MyD88-KO, TLR4-KO, and TRIF-KO cell lines were
treated with rSIP and FLH for 18 h. SEAP activity was characterized after stimulation with (C) rSIP and (E) FLH in the THP1 Dual (wild-type), MyD88-
KO, TLR4-KO, and TRIF-KO cell lines. Data are the average increase in SEAP induction compared to the negative control (PBS) and are averaged
from three independent experiments. LUCIA activity in response to (D) rSIP and (F) FLH was then characterized in THP1 Dual (wild-type), MyD88-KO,
TLR4-KO, and TRIF-KO cells. Data are the average increase in LUCIA induction compared to the negative control (PBS) and are averages of three
independent experiments. Statistical significance was determined using one-way ANOVA and the Mann−Whitney U test (**p < 0.01). (G, H). The
THP1-Dual TRIF-KO cell line and the THP1-Dual MyD-KO cell line were pulsed with rSIP (0.02 µM), FLH (2.45 µM), LPS (10 µg/ml), and PBS for 18 h.
Then, SEAP activity and IRF activity were characterized. Data are expressed as the average of the increase compared to the negative control (PBS) for
(G) SEAP induction in the TRIF-KO THP1 cell line and (H) LUCIA luciferase induction in the MyD88-KO THP1 cell line. The results are from three
independent experiments. Statistical significance was determined by one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons tests
(***p<0.001; ****p<0.0001; ns, statistically not significant).
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approximately 80%. An effect similar to that seen for rSIP was

observed, with FLH stimulating up to approximately 80% of control

cells, and inhibition of TRIF recruitment inducing proliferation in 45%

of cells (Figures 7D, G).

Since the adjuvant effect of TLR4 on antigen cross-presentation

depends on vacuolar processes (38), we decided to use two vacuolar
Frontiers in Immunology 1253
inhibitors, simvastatin and bafilomycin. Pretreatment with these

two inhibitors decreased CD8 T lymphocyte proliferation in

response to FLH and rSIP (Figures 7E, G). In the case of FLH,

the DMSO control stimulated proliferation in approximately 80%

of CD8 T lymphocytes, while pretreatment with simvastatin and

bafilomycin generated values of 10%. In the case of rSIP, DMSO
B C

D E F

G

A

FIGURE 7

rSIP and FLH induce antigen cross-presentation dependent on MyD88 and TRIF recruitment. (A) Proliferation induced by OVA. BM-DCs were stimulated
for 3 h with rSIP, FLH, and coadministered increasing concentrations of OVA (1 mg/mL, 0.5 mg/mL, and 0.125 mg/mL). Naïve OT-I CD8 T-cell (1 x 105

cells) proliferation was measured via CellTrace Violet staining after three days of coculture with treated BM-DCs. Data are the means ± SDs of four
independent experiments. Statistical significance was determined using repeated measures one-way analysis of variance (ANOVA) and the post hoc
Sidak test (*p<0.05; **p<0.01; ns, not statistically significant). (B, E, F) Effect of pharmacological inhibitors on FLH and rSIP processing. BM-DCs were
pretreated for 2 h with TAK-242 (10 µg/mL) or for 1 h with bafilomycin (10 nM), simvastatin (10 nM), epoxomicin (5 nM), MG132 (4 nM) or DMSO and
stimulated for three hours with rSIP + OVA (1 mg/mL) and FLH + OVA (1 mg/mL). Naïve OT-I CD8+ T-cell (2.5 x 105 cells) proliferation was measured
via CellTrace Violet (CTV) staining after three days of coculture with treated BM-DCs. For bafilomycin (10 nM), simvastatin (10 nM), epoxomicin (5 nM),
and MG132 (4 nM), the data are the means ± SDs of three independent experiments. For TAK-242, the data are the means ± SDs of seven independent
experiments. Statistical significance was determined using (B) the Mann–Whitney U test and (E, F) repeated measures one-way analysis of variance
(ANOVA) and the post hoc Sidak test (****p<0.0001; ns, not statistically significant). (C, D) Dendritic cells were pretreated for 18 h with Pepinh-TRIF or
Pepinh-MyD and stimulated for three days with rSIP + OVA (1 mg/mL) and FLH + OVA (1 mg/mL). Naïve OT-I CD8+ T-cell proliferation (2.5 x 105 cells)
was measured via CTV staining after three days of coculture with treated BM-DCs. Data are the means ± SDs of seven independent experiments.
Statistical significance was determined using the Mann–Whitney U test (*p<0.05; **p<0.01). (G) Flow cytometry analyses show representative CTV
dilution profiles for the experiments shown in figures (B–D). Representative histograms of CTV dilution in gated CD8+ OT-I cells represent the inhibition
of TAK-242, MyD88 and TRIF. ***p<0.001.
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induced proliferation in approximately 80% of cells, while

pretreatment with simvastatin and bafilomycin generated values

of approximately 16% and 10%, respectively.

Since TRIF is involved in the proteasome pathway associated

with antigen cross-presentation, we decided to characterize the

effects of proteasomal inhibitors (43). As described for

bafilomycin and simvastatin, we pretreated cells with epoximicin

(a proteasome inhibitor) and MG132 (a proteasome inhibitor) for

one hour and pulsed them with rSIP plus OVA and FLH plus OVA.

We characterized antigen cross-presentation through CD8 T

lymphocyte proliferation. The proteasomal inhibitor influenced

antigen cross-presentation stimulated by rSIP and FLH

(Figure 7F). In the case of FLH, the DMSO control stimulated

proliferation in approximately 95% of CD8 T lymphocytes, while

pretreatment with epoxomicin and MG132 generated values of

approximately 45%. In the case of rSIP, DMSO induced

proliferation in ∼80% of cells, while pretreatment with

epoxomicin and MG132 generated values of approximately 38%

and 40%, respectively.

Additionally, given the relevance of vacuolar inhibitors in

reducing crossover, we decided to characterize the influence of

lysosomal proteases and intermediates on endoplasmic reticulum

(ER) to Golgi vesicular transport (44). In this context, similar to

Bafilomycin and Simvastatin, we pretreated cells with Brefeldin A

(an ER-Golgi traffic inhibitor), Leupeptin (a Cathepsin B inhibitor),

and Pepstatin A (a Cathepsin D and E inhibitor) for one hour and

pulsed them with rSIP plus OVA and FLH plus OVA and

characterized antigen cross-presentation through CD8 T

lymphocyte proliferation. Cathepsin D and E inhibitors affected

SIP- and FLH-stimulated antigen cross-presentation (Supplemental

Figure 3). In the case of FLH, the DMSO control stimulated

proliferation in approximately 90% of CD8 T-lymphocytes, while

pretreatment with pepstatin A generated a value of approximately

50%. In the case of rSIP, DMSO induced proliferation in

approximately 80% of cells, while pretreatment with Pepstatin

generated values of approximately 38%. Conversely, in the case of

Cathepsin D, Leupeptin was only significant inhibitor of FLH and

generated OT-I lymphocyte proliferation values of 40%. In the case

of inhibition of traffic from the endoplasmic reticulum (ER) to the

Golgi, Brefeldin A generated CD8 T-lymphocyte proliferation

values of 40% and 50% after stimulation with rSIP and FLH,

respectively. Together, these results suggest that rSIP and FLH

generate an adjuvant effect on antigen cross-presentation and

depend on MyD88 and TRIF recruitment. Moreover, vacuolar

and cytosolic pathways are essential for these effects on antigen

cross-presentation.
4 Discussion

Few adjuvants currently used in licensed vaccines are known to

elicit potent cytotoxic T-lymphocyte (CTL) responses. Thus, the

development of new vaccine adjuvants is considered one of the

slowest processes in the history of medicine (1). Nevertheless, the

results of several studies are consistent with the idea that

modulation of the TLR4 signaling pathway using Lipid A or
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monophosphoryl lipid A (MPL) can be used to dissociate

beneficial immune responses from harmful LPS side effects, which

are attributed to the stronger activation of NF-kB than MPL in

APCs (45–48), leaving a gap in our understanding of how

downstream signaling is affected by different protein agonists of

this receptor. Therefore, elucidating the contributions of TLR4

agonist protein adjuvants that modulate proinflammatory activity

and immunomodulation will help researchers understand the

adjuvant effects of these molecules on the immunological synapse

between APCs and T cells.

The rationale for using two model adjuvant proteins, FLH and

rSIP, whose use as potential adjuvants has been previously

documented through in vivo studies in murine models, is based

on their similarities and differences. Several similarities have been

described: (i) both are TLR4 agonist proteins, (ii) they promote the

maturation of DCs, (iii) a limited understanding of the TLR4-

associated cell signaling pathway exists, (iv) their contributions to

the presentation of exogenous antigens needs to be better

understood, and (v) both induce the development of adaptive

responses of the Th1 type. Among their differences, two are

worth mentioning: (i) species of origin: FLH comes from a

mollusk, while rSIP is bacterial, and (ii) the structure of

hemocyanin is a very large glycosylated oligomeric protein, unlike

rSIP, which is small and lacks oligosaccharides. One of the

advantages of TLR4-PBAs is that they can ensure a shared

antigen–adjuvant load. rSIP can be expressed in a heterologous

system in conjunction with the antigen, while FLH must be

conjugated to the antigen. However, it is unknown how rSIP and

FLH affect the immune system by binding to TLR4, a receptor that

activates multiple signal transduction pathways via MyD88, and

TRIF. In this study, we compared these PBAs of TLR4, revealing

that their immunomodulatory effects are codependent on MyD88

and TRIF in.

Subunit vaccines containing highly purified recombinant

pathogen components are safe; however, they are poorly

immunogenic and thus require the use of adjuvants to increase

their immunogenicity (42). The protection provided by the most

effective vaccines depends on the induction of neutralizing

antibodies. Unfortunately, most currently used adjuvants are

poorly effective in inducing strong cellular immunity (1, 2, 7). For

diseases requiring neutralizing antibodies and T-cell immunity,

such as acquired immunodeficiency syndrome (AIDS), severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

tuberculosis, and malaria, it is essential to incorporate immune

adjuvants that elicit strong T-cell immunity (1, 2, 7). To trigger the

induction of robust CD8 T-cell immunity by vaccines, it is

necessary to engage the antigen processing pathway for cross-

presentation by APCs, as previously described (1, 2, 7). Although

rSIP and FLH activate TLR4 signaling pathways that depend on

MyD88 and TRIF recruitment, both proteins undergo finely tuned

regulation of their adjuvant effects, which is associated with the

intrinsic molecular properties of each protein. Indeed, although

there are no crystallographic data for these proteins, considering the

available published data, it is possible to confirm that they are very

different, as one is a very large, glycosylated protein with a complex

quaternary structure (20), and the other is a small nonglycosylated
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protein without multiple subunits (49). These differences strongly

suggest that the interactions of these proteins with TLR4 could be

different. Indeed, the interaction of FLH with TLR4 occurs due to

the oligosaccharide residues of FLH (as a viral protein) because

when FLH glycosylations are removed, the interaction decreases

significantly (23). In contrast, the binding of rSIP could be

facilitated by CD14 and the contribution of the MD-2 protein

stably associated with the extracellular fragment of the receptor.

The function of DCs stimulated with TLR4 is linked to the

greater abundance of costimulatory molecules on their surface,

cytokines, and receptors in addition to chemokines and promotes

adaptive immunity by activating specific T-lymphocytes. MyD88

signaling is associated with proinflammatory and innate immune

responses (50). In contrast, TRIF signaling is associated with the

development of an adaptive immune response, which is essential for

effective vaccination (10). Although preliminary studies

characterizing MyD88 and TRIF interactions with TLR4-LPS

have been published (12), in this work, we characterized two

protein agonists from different species for the first time.

Furthermore, this study establishes that MyD88 and TRIF are

essential for the adjuvant effects of these proteins. Specifically, one

of the most notable effects is that rSIP and FLH generate IL-6 and

IP-10 transcripts in a manner dependent on MyD88 and TRIF.

However, in terms of IL-6 and IP-10 secretion, only rSIP depends

on MyD88 and TRIF, while FLH is TRIF dependent. These

differences can be explained by the fact that the genome-wide

correlation between mRNA expression levels has an explanatory

power of approximately 40% and can be attributed to other levels of

regulation between the transcript and the protein product (51–53).

TLR4 can interact with other pattern recognition receptors

(PRRs) to mediate intracellular signaling and interactions with C-

type lectin receptors, such as MR and DC-SIGN, to promote, in

some cases, antigen cross-presentation (54–56). Following TLR4

agonist-induced DC maturation, processes associated with antigen

cross-presentation, such as scavenging receptor-mediated

phagocytosis and phagolysosomal fusion, are enhanced during the

initial hours of TLR4 activation, after which a loss of antigen

internalization and the molecular components necessary for

cytosolic delivery of antigen occurs (57). Gupta et al. found that

MHC-I molecules are not derived from the endoplasmic reticulum–

Golgi intermediate compound (ERGIC) upon TLR stimulation

because ERGIC components are recruited to phagosomes

independent of TLR signaling (38). However, stimulation of TLR4

results in the accumulation of MHC class I molecules derived from

the endocytic recycling compartment (ERC; marked by Rab11a and

vesicle-associated membrane proteins 3 and 8 [VAMP3 and 8,

respectively]) in phagosomes (44, 58). In addition, TLR-mediated

MyD88-dependent IKK phosphorylation of synaptosome-

associated protein 23 (SNAP23) mediates endosomal recycling

compartment (ERC)–phagosome fusion (38). Alloatti et al. also

showed that TLR4 activation delays phagosome maturation and

antigen degradation, which induces Rab34-mediated intracellular

perinuclear pool formation (36). On the other hand, concerning the

endosome-to-cytosol pathway, it is known that the activity of the

translocon protein Sec61 in the ER is mediated by TRIF because this

step is essential for translocation from the endosome to the cytosol
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(43). Our results suggest that TLR-based adjuvants likely engage

vacuolar pathways to potentiate effective CD8 T-cell responses.

However, rSIP and FLH may also be involved in the endosome-to-

cytosol pathway via TRIF and the Sec61 protein. This assumption

was supported, given that different proteasome inhibitors decreased

the proliferation of CD8 OT-I lymphocytes.

This work supports the conclusion that rSIP and FLH mediate

TLR4 activation and that this modulation depends on the

recruitment of MyD88 and TRIF because each protein can induce

finely tuned signaling patterns. This characteristic seemed

dependent on the structure of the TLR4 agonist and its potency

because FLH can mediate cytokine secretion independent of

MyD88 recruitment, and FLH can mediate antigen cross-

presentation in a manner dependent on MyD88 recruitment. In

contrast, rSIP is totally dependent onMyD88 and TRIF for cytokine

secretion and antigen cross-presentation. Notably, the TRIF

pathway is essential for rSIP- and FLH-induced secretion of IP-10

and IL-6, and the MyD88 pathway is only essential for rSIP-induced

secretion of IP-10 and IL-6 (Figure 5). However, IL-6 secretion by

FLH was dependent on MyD88 recruitment, which could be

attributed to the stimulation time of FLH in BM-DCs, since FLH

is influenced by the recruitment of MyD88 during the first 4 hours

of stimulation (Figure 3A). However, after prolonged stimulation

times, the inhibition of MyD88 recruitment did not exert a

significant effect on the expression of IL-6 (Figures 5C). Another

explanation is that the MyD88-adapter-like (MAL) protein could be

involved in signaling, as previously described for FLH (17). MAL

could be recruited by TRAF6, suggesting that after longer

stimulation with FLH, the TRAF6 protein would be activated

differently by rSIP, enabling the secretion of IP-10 and IL-6.

Regarding the regulation of TLR4, it was previously shown

using iterative mathematical models that the pathways mediated by

MyD88 and TRIF provide are dependent on the concentrations of

ligands that transmit information about the threat of the pathogen

(59). These changes in signaling are supported by the fact that the

start of TLR4 signaling involves oligomerization, which determines

MyD88 and TRIF signaling (60). This implies that one pattern

recognition receptor is activated by different microenvironmental

cues to generate macrophages with distinct phenotypes linked to a

subset of cytokines and phosphoproteomic signaling patterns (61).

In this context, our results are consistent with this finding because a

lower concentration of rSIP than FLH is needed to activate TLR4.

This difference is directly related to the molecular characteristics of

each protein (Figure 8). Furthermore, this signaling change is

supported by the start of TLR4 signaling during dimerization and

the oligomerization dynamics, which determines MyD88 and TRIF

signaling. Therefore, since rSIP and FLH are partial agonists, their

interaction with TLR4 could also be involved in the oligomerization

dynamics of this receptor.

In conclusion, these results provide further insight into the

nature of TLR4 agonist protein adjuvants and their contributions to

activation of the MyD88 and TRIF signaling pathways. These

results are relevant since they contribute to our knowledge of how

protein-based agonists of TLR4 can act as adjuvants, information

that supports the use of these agonists in the development of future

experimental vaccines for cancer, persistent diseases, or future
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pandemics; an ongoing challenge related to controlling the doses of

vaccine adjuvants, such as the sMLA adjuvant, which is the active

component of the glucopyranosyl lipid adjuvant (GLA), exists (62,

63). Additional studies are needed to establish a preclinical model

and determine the effects of these adjuvants and their contributions

to the MyD88 and TRIF signaling pathways downstream of TLR4.
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FIGURE 8

Modulation of the MyD88 and TRIF signaling pathways and downstream responses by the protein-based adjuvants rSIP and FLH in APCs. (A) FLH
interacts with mannose receptors and activates the TLR4 signaling pathway, which recruits MyD88 and TRIF. FLH activates NF-kB and IRF. MyD88
recruitment is involved in the expression of the IL-6, CD80, IFIT-1, and CD86 mRNAs, while TRIF is involved in the expression of IL-6 and IP-10.
Regarding the secretion of cytokines, only TRIF is involved in the secretion of IL-6 and IP-10. FLH then promotes OVA cross-presentation, and its
effect is dependent on MyD88 and TRIF. (B) rSIP activates the TLR4 signaling pathway, which recruits MyD88 and TRIF. rSIP activates NF-kB and IRF.
MyD88 recruitment is involved in expression of the IL-6, COX-2, CD80, IFIT-1, and CD86 mRNAs, while TRIF is involved in the expression of IL-6,
COX-2, and IP-10. Regarding the secretion of cytokines, both MyD88 and TRIF are involved in the secretion of IL-6 and IP-10. rSIP then promotes
OVA cross-presentation, and its effect is dependent on MyD88 and TRIF.
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SUPPLEMENTARY FIGURE 1

Partial and differential agonism of Toll-like receptors 4 (hTLR4) by protein-
based adjuvants. (A) Determination of the concentrations of protein agonists

needed to activate hTLR4. HEK-Blue-hTLR4 reporter cells were exposed to

different concentrations of protein adjuvants. Dose−response curves were
generated for cells exposed to a maximum concentration of 2,540 nM rSIP

and FLH for 48 h. Data show normalized HEK-Blue mTLR4 cell responses
considering LPS treatment as 100% stimulation; 100% =maximum dose plateau

of the LPS agonist. (B) Comparison of the log EC50 values of protein agonists in
activating mTLR4. Log (EC50) values for rSIP and FLH were determined
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according to the relative abundance of soluble AP secreted by Hek-Blue-
hTLR4 cells. Individual log (EC50) values and mean values from three

independent experiments are shown. The statistical significance of differences

was analyzed using an unpaired t test (ns: not significant). (C) IRF3 activation by
FLH and rSIP in BM-DCs. Phosphorylation of IRF3 induced by FLH and rSIP in

BM-DCs determined by Western blotting. BM-DCs from 6 mice (pool) were
used for analysis of phospho-IRF-3 (Ser396) (4D4G). As a positive control, A549

cells stimulated with poly (I:C) (C+) and without stimulation (C-) were used. The
BM-DCs were stimulated for 0, 1, 2, 7, 10, 13, and 18 hours.

SUPPLEMENTARY FIGURE 2

rSIP and FLH induce classical antigen presentation. BM-DCs were stimulated

for 18 h with rSIP and FLH and coadministered OVA (1 mg/mL). (A) The
percentage and (B) MFI of naïve OT-II CD4+ T-cell (3x105 cells) activation

(CD69+) were measured after 18 h of coculture with treated BM-DCs. Data
are the means ± SDs of three independent experiments. Statistical

significance was determined by one-way analysis of variance (ANOVA) with

Tukey’s multiple comparisons test (*p<0.05; ns: statistically not significant).
(C) Flow cytometry analyses show representative CD4+ CD69+ profiles of

OT-II cells cocultured with stimulated BM-DCs.

SUPPLEMENTARY FIGURE 3

rSIP and FLH induce antigen cross-presentation through cathepsin. BM-DCs

were pretreated for 1 h with DMSO, brefeldin A (1 µM), leupeptin (10 µM), and

pepstatin A (40 nM) and stimulated for three hours with rSIP + OVA (1 mg/mL)
and FLH + OVA (1 mg/mL). Naïve OT-I CD8+ T-cell (2.5x105 cells)

proliferation was measured via CellTrace Violet staining after 3 days of
coculture with treated BM-DCs. Data are the means ± SDs of three

independent experiments. Statistical significance was determined using
repeated measures one-way analysis of variance (ANOVA) and the post hoc

Sidak test (*p<0.05; **p<0.01; ns: statistically not significant).
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learning approach across
multiple cohorts
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Tom H. M. Ottenhoff10, Francesco Santoro7,
Paola Martinez-Murillo11, for VSV-EBOVAC Consortia,
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Introduction: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic

and protective against Ebola. However, the vaccine can cause a broad range of

transient adverse reactions, from headache to arthritis. Identifying baseline

reactogenicity signatures can advance personalized vaccinology and increase

our understanding of the molecular factors associated with such adverse events.

Methods: In this study, we developed a machine learning approach to integrate

prevaccination gene expression data with adverse events that occurred within 14

days post-vaccination.

Results and Discussion: We analyzed the expression of 144 genes across 343

blood samples collected from participants of 4 phase I clinical trial cohorts:
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Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed

22 key genes associated with adverse events such as local reactions, fatigue,

headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights

into potential biological mechanisms linked to vaccine reactogenicity.
KEYWORDS

Ebola, rVSVDG-ZEBOV-GP vaccine, baseline gene signatures, adverse events, vaccine
safety, personalized vaccinology, machine learning, data integration
1 Introduction

Ebola virus disease (EVD) is a severe and fatal infectious disease

(1). rVSVDG-ZEBOV-GP, under the name of Ervebo®, is given as a

single-dose vaccine. It is a recombinant vaccine against the live and

attenuated vesicular stomatitis (VSV) virus, in which the gene

encoding for the VSV envelope glycoprotein has been replaced by

the Ebola strain Zaire virus (ZEBOV-GP) glycoprotein gene (2).

This vaccine is highly immunogenic for at least two years (3).

Live replicating VSV-based vaccines can elicit potent humoral

(4–6) and strong cellular immune responses against viral (7–9).

However, replication-competent vectors are frequently associated

with a higher risk for adverse events (AE) (10). Although rVSVDG-
ZEBOV-GP is safe, immunogenic, and protective in human trials

(11), vaccinees may report transient adverse reactions such as fever,

inflammation, arthritis, dermatitis and vasculitis (11–14). Vaccine

viraemia is common and associated with frequent mild-to-

moderate acute inflammatory reactions and, in some vaccinees,

viral dissemination, leading to arthritis and occasional dermatitis

(13, 15). The occurrence of arthritis, arthralgia and other forms of

joint swellings and tissue infiltration was higher in European and

US vaccinees than in participants from Africa. Arthritis cases have

been reported in approximately 23% (24 – 102) of vaccinees from

Switzerland (11) and 4.5% (19 - 418) from USA (16), whereas a low

incidence of 2.5% (1 - 40) (12) or non-incidence has been reported

in Kenya and Gabon, respectively (12). The cases occurred mainly

in participants aged 40 years and above, and they were self-limiting

with no sequelae (15).

Although these AE did not prevent vaccine uptake (15),

identifying baseline reactogenicity signatures represents an

important step toward the development of personalized

vaccinology and could enhance public confidence in the safety of

vaccines (17). Recent studies have reported baseline predictors of

post-vaccination responses for human influenza virus (18, 19),

hepatitis B virus (20), as well as malaria (21) vaccination.

Nonetheless, few studies focused on reactogenicity (22, 23).

In this study, we report a machine learning (ML) approach to

unravel multicohort baseline transcriptional reactogenicity

signatures to rVSVDG-ZEBOV-GP. We have integrated AE

reported by participants from Switzerland, USA, Gabon and

Kenya clinical trials with the expression of 144 genes before the

administration of rVSVDG-ZEBOV-GP. We have identified an AE

signature in which twenty-two genes and nine adverse events
0260
appear to be associated. Crucially, despite the varying baseline,

the genes contribute to predicting delineated stable baseline

differences across cohorts, raising the prospect of screening for

AE propensity before vaccination.
2 Methods

2.1 Study design and ethics statement

The data was obtained from four clinical trials conducted for

the VSV-EBOVAC and VSV-EBOPLUS Consortia on 3 different

continents: North America (Phase I, randomized, double-blind,

placebo-controlled, dose-response trial in the USA; Registration

number NCT02314923), Europe (Phase I/II, randomized, double-

blind, placebo-controlled, dose-finding trial in Geneva, Switzerland;

Registration number NCT02287480) and Africa (Phase I,

randomized, open-label, dose-escalation trial in Lambaréné,

Gabon, and a phase I, open-label, dose-escalation trial in Kilifi,

Kenya; Registration numbers PACTR201411000919191 and

NCT02296983, respectively).

The trial protocols were reviewed and approved by the WHO’s

Ethics Committee as well as by local ethics committees (USA trial:

the Chesapeake Institutional Review Boards (Columbia, MD, USA)

and the Crescent City Institutional Review Board (New Orleans,

LA, USA); Geneva trial: the Geneva Cantonal Ethics Commission

and the Swiss Agency for Therapeutic Products (Swissmedic);

Lambaréné trial: the Scientific Review Committee of Centre de

Recherches Médicales de Lambaréné (CERMEL), the Institutional

Ethics Committee of CERMEL, the National Ethics Committee of

Gabon, and the Institutional Ethics Committee of the

Universitätsklinikum Tübingen; Kilifi trial: Kilifi Ethics

Committee). Placebo recipients received a normal saline injection.

Information about randomization and masking and vaccine

procedures were published elsewhere (16).
2.2 Available data from VSV-EBOVAC
and VSV-EBOPLUS

Reactogenicity data from 782 healthy adult volunteers were

collected: 512 from the United States of America (418 vaccinated

and 94 placebo recipients), 115 from Geneva, Switzerland (102
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vaccinated and 13 placebo recipients), 115 from Lambaréné, Gabon,

and 40 from Kilifi, Kenya.

Peripheral whole blood samples were collected at several time

points for transcriptomic evaluation (115 in Switzerland, 144 in the

USA, 83 in Gabon, and 39 in Kenya). However, since the interest of

this work was to study the host’s aptitude to develop adverse

reactions, we have used only expression data obtained at day 0,

before immunization. Among the adults included in the study, 343/

782 (43.9%) volunteers from the four cohorts had the expression of

144 genes quantified from a multiplex RT-PCR quantitative

platform, which has been amplified using a two-color ligation-

dependent probe called dcRT-MLPA (24), and was previously

published (25).
2.3 Outcomes

We performed a predictive reactogenicity cohort evaluation

within the phase 1 trials from Switzerland (randomized), Gabon

(dose-escalation), Kenya, and USA. The biological and clinical

outcomes of these studies have been reported elsewhere (3, 12,

16, 26).

Reactogenicity data were collected until day 14, day 28 and day

365 in the American, African, and European cohorts, respectively.

For all cohorts (USA, Switzerland, Gabon and Kenya), we have

selected the AEs of grade 1, 2 or 3 (mild, moderate or severe,

respectively) as published previously for our VSV-EBOVAC

consortia partners (3, 12, 16, 26).

Adverse event terms were standardized across all four cohorts. For

the USA cohort, the terms “tenderness” and “pain in extremity” and for

Switzerland, Kenya, and Gabon, the term “pain at site”were considered

“any local AE”. The term pyrexia in the USA and “subjective fever” in

Switzerland, Kenya and Gabon were considered “fever”. AE terms

reported by less than 5% of the participants were removed from the

next analysis. The following is the final list of adverse events in the

order of frequency: “any local AE”, “headache”, “fatigue”, “myalgia”,

“fever”, “chills”, “arthralgia”, “nausea”, “arthritis”. The incidence within

each cohort is shown in Figure 1.
2.4 Gene expression profiling

The human transcriptomic profiles of the response to the

rVSVDG-ZEBOV-GP vaccine were evaluated by the quantitative

multiplex platform RT-PCR, which performs amplification using a

two-color ligation-dependent probe (dcRT-MLPA). PAXgene

blood RNA tubes (PreAnalytiX, Hombrechtikon, Switzerland)

with 2.5 ml venous blood were collected and stored at -80°C.

RNA isolation was performed using the PAXgene blood miRNA

kit (PreAnalytiX) according to the manufacturer’s automated

protocol, including on-column DNase digestion. RNA yield was

quantified using an RNA Broad Range assay Kit (ThermoFisher)

with a Qubit fluorometer (ThermoFisher, Wilmington, DE, USA).

The dcRT-MLPA (MLPA) assay accounts for 144 genes of critical

importance whose involvement in innate and adaptive immune

responses (24) is documented and used to determine the gene
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expression profiles of people vaccinated with rVSVDG-ZEBOV-GP.
The gene expression values thus generated were normalized

according to the expression of the housekeeping gene GAPDH

and transformed to log2, whereas the quality control was performed

as described in previous works (25, 26). The function

removeBatchEffect from limma package in R was used to remove

the batch effect of the dcRT-MLPA plaque within each cohort.
2.5 Statistical analysis

GAPDH-normalized log2-transformed gene expression levels at

baseline for each cohort were used for integrative analysis. Gene

expression comparisons were conducted between volunteers with

and without adverse events within each cohort and when

combining all the cohorts. The non-parametric Wilcoxon test

with Benjamini-Hochberg correction for multiple testing was

applied for statistical significance. An adjusted P-value (q-value)

of less than 0.05 was set as the threshold for identifying significant

genes for the comparison of groups with or without adverse events.

Analyses were performed with R software (version 4.0.4).
2.6 Feature selection machine-learning-
based approach

The expression of the 144 immune-related genes on Day 0

(before immunization) and the information of reactogenicity

obtained after immunization, for the volunteers of each cohort,

were used as input files. Then, our algorithm which is a robust ML-

based feature prioritization tool fully described in Figure 2 was run.

To summarize, our method first performs feature selection

using three different methods: Pearson’s correlation, Kbest and

Recursive Feature Elimination (RFE). After generating a list of

features for each method, a unified list is produced by selecting

features from the intersection of 2 out the 3 methods. From this list,

our approach orders the list using the Mean Decrease Gini Index

(MDGI) obtained with the function ‘feature_importances_’ from

the model trained with the Random Forest algorithm implemented

in scikit-learn as “RandomForestClassifier”. The features with an

importance value equal to 0 are removed. Finally, it assesses the

discriminatory power of the selected features and determine their

effectiveness in classifying the different groups by using models

trained with various machine-learning algorithms such as: Support

Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes

and AdaBoost Classifier. Thereafter, the tool generates as output a

table with the values of F1-score, area under the curve (AUC),

accuracy, and precision, obtained from each model with the selected

features. Using the machine-learning-based approach, we assessed

the importance of genes in classifying volunteer groups with or

without the selected AEs (frequency > 5%), which are “any local

AE”, “headache”, “fatigue”, “myalgia”, “fever”, “chills”, “arthralgia”,

“nausea”, “arthritis”. The Support Vector Machine (SVM), k-

Nearest Neighbors (kNN), Naive Bayes, AdaBoost Classifier and

Random Forest ML algorithms were trained with a 10-fold cross-

validation classification method. All the analyses were performed in
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Python (version 3.8.11). The library scikit-learn 0.24.2 was used for

training the ML algorithms. All the hyperparameters were defined

as default. A more detailed description of the ML-based feature

prioritization tool can be found on the extended methods in the

Supplementary Material.
2.7 Network construction

From the list of ranking of importance (MDGI), the top 50

features from the list were selected (Figure 3A) and their

consistency across the four cohorts were evaluated. The genes

with the same fold-change direction in 100% of the cohorts and

shared by more than 50% of the cohorts (3 out 4, 3 out 3, 2 out 2)

are kept (Figure 3B). Finally, we integrated the genes with the AEs

in a network constructed using Gephi software (27) (Figure 3C).
3 Results

3.1 Reactogenicity was frequent but
generally mild

The vaccine proved to be safe, even if associated with transient

reactogenicity (11). We observed injection-site, systemic

reactogenicity and medication use for 7 days after injection and at
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follow-up timepoints (days 14 and 28). We collected reactogenicity

information from a total of 782 participants: 115 from the Swiss

cohort (102 vaccinated and 13 placebo), 115 from Gabon, and 40

from Kenya. The remaining 512 participants were from the United

States (418 vaccinated and 94 placebo). The participants included

488 males and 355 females, and the median age was 35 years (18-

63), the sex and age median per cohort is shown in the

Supplementary Tables 1 and 2, respectively.

Solicited and unsolicited adverse events were frequent. Majority

of participants reported adverse effects in the first 14 days after

vaccination, mostly mild and moderate. The side effects induced by

rVSVDG-ZEBOV-GP vaccination are self-limiting and relatively

mild (Supplementary Figure 1). The most frequent side effects

observed were any local AE (53.25%), fatigue (49.17%), headache

(46.55%), myalgia (31.27%), fever (28.90%), chills (21.50%),

arthralgia (13.67%), nausea (6.30%) and arthritis (6.39%).

Several people reported AE grade 1, including placebo recipients.

Of the 782 participants, 638 (81.6%) have reported at least one

adverse event, with the majority being mild or moderate. At least one

adverse event (grade 1, 2 or 3) was reported by 328 of 418 (78.47%)

vaccinees from the US cohort and by 96 of 102 (94.1%) from the

Swiss cohort. In African cohorts, 97 of 115 (84.3%) and 37 of 40

(92.5%) participants from Gabon and Kenya, respectively, reported

adverse events. Whilst among the placebo recipients, 69 of 98 (70.4%)

and 11 of 13 (84.6%) participants have reported adverse events in the

US and the Swiss cohorts, respectively. Grade 3 symptoms were
A

B

FIGURE 1

Adverse Events description for the 4 cohorts. (A) The stacked bar plots shows the absolute number and the frequency of the main adverse effects
described in the first 14 days after vaccination with rVSVDG-ZEBOV-GP, in the cohorts. The colored portion of each bar represents the number of
participants who reported each of the adverse events, with the cohorts being represented by the colors purple (USA), yellow (Switzerland), green
(Gabon), pink (Kenya) and light gray (no adverse events reported). (B) Heatmap showing the presence (red) and absence (light gray) of the most
important adverse events. The most frequent AEs are shown at the bottom of the heatmap, and the columns are ordered per dose and cohort, as
shown in the bottom annotation (USA, purple; Switzerland, yellow; Gabon, green and Kenya, pink). The number of AEs per participant is shown in
the bar plot at the top, and the total number of reported adverse events is shown in the bar plot on the right.
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FIGURE 2

Machine-learning-based Algorithm description performed for each adverse effect per cohort. The score measures the ability of a feature to
distinguish the outcome groups. First, considering that the quality of the predictive models depends on the quality of features used, the method
performs the selection of features. The selection is based on the combination of 3 different methods: Pearson’s correlation, Kbest and Recursive
Feature Elimination (RFE). After generating a list of features for each method, a unique list is generated by selecting features from the intersection of
2 out of 3 methods. From this list, the method generates the ranking importance obtained from the Random Forest model and removes features
with an importance value equal to 0. Subsequently, it evaluates the quality of gene list in discriminating the adverse events (AEs) classes in 4 machine
learning models trained with the algorithms Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes and AdaBoost Classifier.
Thereafter, the tool generates a table with the F1-score, Area Under the curve (AUC), the accuracy and precision values obtained from each model
with the selected features, and the median and harmonic mean calculated from all methods and metrics.
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reported by 4 of 40 (10%) vaccinees from Kenya, 23 of 418 (5.5%)

from the USA, and 11 of 102 (10.8%) from Switzerland; none were

reported in Gabon. Arthritis was reported in 24 participants (≃ 23%)

from the Swiss cohorts, 1 (2.5%) from Kenya and 19 (≃ 4.5%) from

the United States.
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The complete information of adverse events, before the

nomenclature combination and filtering, is shown in Supplementary

Figure 1. The onset differs mainly for the grade 3 AEs (Supplementary

Figure 1B). In general, the percentage of vaccinees reporting AE grade 2

or 3 increases in higher doses (Supplementary Figure 1C).
A B

DC

FIGURE 3

Analysis Scheme and Network of selected genes for all 9 Adverse Events. (A) The dcRT-MLPA with the expression of 144 genes per cohort was used
to select the best features for classifying participants with or without each one of the adverse events individually. The machine-learning-based
method was used for feature selection and ordering. (B) Among the selected ordered features, the top 50 from each cohort were chosen, and those
with consistent fold-change signs across all four cohorts and shared by more than 50% of cohorts were kept. (C) Network Adverse Events
description for the 4 cohorts. The adverse events are represented by colored squares, and the genes are represented by Light-grey circles. The
squares representations are as follows: Light-blue - any local AE, Green - headache, Blue - nausea, Dark-Red - arthritis, Dark-green - myalgia,
Light-yellow - chills, Orange - arthralgia, Surfie-Green - fever and Dark-yellow - fatigue. (D) The boxplot shows the log2 transformed expression of
the gene EGF in Arthritis and non-arthritis participants.
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3.2 Associations between gene expression
and adverse events

We collected dcRT-MLPA and reactogenicity data for a total of

343 vaccinees. Supplementary Figure 2 describes the number and

proportion of volunteers who have dcRT-MLPA data (Supplementary

Figure 2A), as well as the number of vaccinees who had reported the

presence or absence of each of the adverse events per cohort

(Supplementary Figure 2B). The percentage of participants with

dcRT-MLPA available per cohort and the comparison of the ranking

and frequency of adverse effects between all participants with

reactogenicity data and the participants with available dcRT-MLPA

data are shown in the Supplementary Tables 3 and 4, respectively.

Considering only participants with available dcRT-MLPA data,

local AE is the most frequent (48.4%), followed by fatigue (48.1%),

headache (47.5%), myalgia (36.7%), fever (34.4%), chills (29.9%),

arthralgia (17.2%), arthritis (8.2%) and nausea (7%).
3.3 Feature selection per cohort and
adverse event using our machine-learning-
based approach

We integrated the reactogenicity data with the available

expression data to understand the propensity of populations to AEs

induced by vaccination with rVSVDG-ZEBOV-GP. For this, we ran
our ML-based feature prioritization tool described in Figure 2.
3.4 Multicohort baseline transcriptional-
reactogenicity network

We kept the top fifty genes selected using our machine-

learning-based approach (Figure 3A), keeping only the genes with

the same fold-change signal across all cohorts. Next, we filtered out

those shared by more than 50% of the cohorts (3 out 4, 3 out 3, 2 out

2) approach (Figure 3B). Finally, we integrated the genes with the

AEs in a network constructed using Gephi software (27). The size of

the nodes represents the degree, which denotes the number of

connections in the network (Figure 3C).

After the integration, we selected a total of 22 genes for 9

adverse events. Interestingly, for six adverse events, only one gene

was selected (Figure 3C). We selected the genes CCL4 and IL7R,

which are regulatory T-cell-associated markers, for local AE and

headache, respectively. Both genes exhibited an increased

expression in volunteers with adverse events, though it was not

statistically significant. Nausea was associated with the gene LYN,

which encodes a tyrosine kinase. For fatigue, we only selected the

geneNLRP1, known to be a key mediator of programmed cell death.

We selected the same gene for fever, but in combination with the

genes TGFB and SEC14L1. Although the expression of the NLRP1

gene increased in participants with both adverse events, the levels of

this gene were significant only in the comparison of participants

with or without fatigue (Adj. p-value = 0.0022). Similarly, we

selected the gene NLRP1 for two adverse events, and the gene

CD3E, a T-cell marker, for chills and myalgia. However, only
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myalgia participants showed a significant increase in CD3E gene

(Figure 3D, Adj. p-value 0.0409).

In the classification of participants with or without arthralgia,

three genes were selected, namely CASP8 (apoptosis-related genes),

CD8A (Marker of lymphocyte subsets) and IFIH1 (innate immune

response related gene). This result was consistent across three

cohorts since no arthralgia cases were reported in the Kenya cohort.

We identified a total of 12 genes that are associated with

arthritis classification. It’s important to note that the relatively

high number of genes may be attributed to the fact that we only

considered cohorts from Switzerland and USA since Gabon and

Kenya had a lack of arthritis cases.

The arthritis-associated genes are BLR, G protein-coupled

receptor; RAB33A, Small GTPases - (Rho) GTPase activating

proteins; the chemokine gene CCL19; the cell growth associated

genes AREG and EGF; the B cell marker gene CD19; the tumor

suppressor gene FLCN1; BPI, which is associated with anti-

microbial activity; SPP1, an epithelial-mesenchymal transition and

Inflammation marker; and innate immune responses related genes,

CXCL13, SOCS1 and TAP1—the first is a myeloid associated gene,

whilst the last two are IFN signaling genes.

Among the arthritis-associated genes AREG, BPI, EGF, FLCN1,

RAB33A, SOCS1, SPP1 and TAP1 have a significant difference

between arthritis and non-arthritis volunteers. Among them,

AREG, BPI and TAP1 genes showed an increased expression in

arthritis participants.
4 Discussion

Although many studies describe the reactogenicity of the

vaccine, only few define reactogenicity signatures. The majority of

them focus on cytokines, as it has long been assumed that vaccine

reactogenicity is reflected in innate responses and inflammation

(28). Moreover, studies describing reactogenicity signatures using

expression data are even rarer (25). To the best of our knowledge,

this is the first method that integrates baseline gene expression data

with several vaccine-induced reactogenicity across 4 cohorts.

The most onerous challenge in baseline data analysis is dealing

with batch effects. In multi-cohort studies, data variability can be

caused by inter-subject variation, technical discrepancies from

sample collection or/and data acquisition and processing. In

addition, the subset of participants with available expression data

may not adequately represent the overall population, which raises

concerns about generalization. Much like the expression data, the

number of adverse events also varies within the cohort. Participants

from Switzerland reported higher rates of adverse events in

comparison with the other sites. Several factors may contribute to

this disparity, including differences in reporting practices and

clinical investigation approaches. These events, often of mild or

moderate severity and not easily attributed to vaccination, may go

unreported. Additionally, variations in host factors that regulate

inflammatory and immune responses, such as age, sex, fitness level,

physical activity, body-mass index, baseline immunity, and human

leukocyte antigen types, likely differ between study populations (11,

26). Associations between vaccine dose, innate responses, and
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reactogenicity was already shown by our collaborators (26). The

frequency of self-reported, vaccine-induced AEs is notably lower in

African settings. This same pattern was reported by Muyanja and

colleagues (2014), when immunizing volunteers from Uganda and

Switzerland with the yellow fever vaccine 17D (YF-17D) (29).

Although self-reported vaccine-induced adverse events are

notably less frequent in African settings, a study from Huttner

and collaborators (2017) reveals that this reduced incidence does

not correlate with weaker innate responses or higher baseline

concentrations of anti-inflammatory cytokines like IL-10. Innate

responses were found to be similar between European and African

volunteers (26). This finding emphasizes the importance of

assessing vaccine safety in the settings where they will be used

(26). This is the reason we have analyzed each cohort individually

before integrating the results for consistency.

Here, a baseline consistent vaccine reactogenicity signature was

found across 4 different cohorts from 3 different continents. The

signatures came from the gene expression analysis of 144 genes at

baseline (before injection) from volunteers who had received

recombinant vesicular stomatitis virus-vectored Zaire Ebola

vaccine. Following which we were able to associate 22 genes with

the following adverse events: any local AE, fatigue, headache,

myalgia, fever, chills, arthralgia, nausea, and arthritis.

Interestingly, regulatory T-cell markers were associated with the

most frequent adverse events. The genes CCL4 and IL7R were

associated with local AE and headache, respectively. CCL4 and

other cytokines, such as CCL2, CCL5 and CCL8, have been

associated with the recruitment of neutrophils, eosinophils, more

monocytes and DCs to the injection site in response to the activation

of myeloid cells after MF59 adjuvant administration (30). The same

marker levels in lymph nodes and in the muscle at the injection site

has strong positive correlation in a study that evaluated mice

immunized with four licensed vaccines (31). Similarly, after

injection of mRNA vaccine, a strong production of chemokines

(including CCL4) at the site of injection was observed by

Kowalczyk and colleagues (2014) (32). Hence, the high volume of

cells in the injection site can be related to local reactions.

Headache was the most frequent adverse event in a Phase Ib

study that evaluated how the blockade of IL-7 would affect immune

cells and relevant clinical responses in patients with type 1 diabetes

(33). Furthermore, headache was reported by 5 of the 18 healthy

volunteers in a study that investigated the safety of GSK2618960, an

IL‐7 receptor‐a subunit (CD127) monoclonal antibody (34),

suggesting that dysregulation in the IL-7 levels could be

associated with headache.

The T-cell marker gene CD3E was associated with myalgia and

chills in our analysis. Curiously, chills was one of the most common

adverse events in participants with cutaneous T-cell lymphoma who

received the Resimmune, which is a second-generation recombinant

immunotoxin composed of the catalytic and translocation domains

of diphtheria toxin fused to two single-chain antibody fragments

reactive with the extracellular domain of CD3ϵ (35). While no direct

association between CD3E gene and myalgia has been found, there is

a strong indication that T cells play a key role not only in the

induction but also in the suppression of pain (36, 37).
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The effectiveness of rVSVDG-ZEBOV-GP (Ervebo®) has been
demonstrated in clinical studies conducted on 15,399 adults in

Europe (11), Africa (AGNANDJI) (12, 13) and North America (16).

In these populations, the vaccine proved to be safe and induced

higher antibody titers sustained for at least 2 years in both European

and African vaccines (3), but it showed transient reactogenicity

(11). For this and other vaccines with similar adverse reactions,

such as the ones against COVID-19 (38–41), the reactogenicity did

not prevent the approval of this vaccine, since the benefits highly

overcome the risks (15). Nevertheless, more studies investigating

the baseline signature of vaccine-induced reactogenicity are

necessary for paving the way towards precision vaccinology. This

will enable us to identify who will benefit the most and who will be

more vulnerable to post-immunization adverse reactions.
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design against Songling virus
through screening its whole
genome encoded proteins

S. Luqman Ali1†, Awais Ali 1†, Abdulaziz Alamri2*,
Aliya Baiduissenova3, Marat Dusmagambetov3

and Aigul Abduldayeva4

1Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan, 2Department of
Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia, 3Department of
Microbiology and Virology, Astana Medical University, Astana, Kazakhstan, 4Preventive Medicine,
Astana Medical University, Astana, Kazakhstan
Songling virus (SGLV), a newly discovered tick-borne orthonairovirus, was recently

identified in human spleen tissue. It exhibits cytopathic effects in human hepatoma

cells and is associated with clinical symptoms including headache, fever,

depression, fatigue, and dizziness, but no treatments or vaccines exist for this

pathogenic virus. In the current study, immunoinformatics techniques were

employed to identify potential vaccine targets within SGLV by comprehensively

analyzing SGLV proteins. Four proteins were chosen based on specific thresholds

to identify B-cell and T-cell epitopes, validated through IFN-g epitopes. Six overlap
MHC-I, MHC-II, and B cell epitopes were chosen to design a comprehensive

vaccine candidate, ensuring 100% global coverage. These structures were paired

with different adjuvants for broader protection against international strains.

Vaccine constructions’ 3D models were high-quality and validated by structural

analysis. After molecular docking, SGLV-V4 was selected for further research due

to its lowest binding energy (-66.26 kcal/mol) and its suitable immunological and

physiochemical properties. The vaccine gene is expressed significantly in E. coli

bacteria through in silico cloning. Immunological research and MD simulations

supported its molecular stability and robust immune response within the host cell.

These findings can potentially be used in designing safer and more effective

experimental SGLV-V4 vaccines.

KEYWORDS

immunoinformatics, Songling virus, reverse vaccinology, molecular docking,
MD simulation
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GRAPHICAL ABSTRACT
1 Introduction

The recent discovered Songling virus (SGLV) in China marked a

significant moment in pathogenic viruses (1). Its genomic

configuration exhibited profound structural homologies with

reputable orthonairoviruses, spanning sequence similarities from

46.5% to 65.7%. Phylogenetic analyses situated SGLV distinctly

within the Tamdy orthonairovirus group, encapsulating its place

within the broader framework of the Nairoviridae family.

Microscopic scrutiny validated SGLV’s morphological congruence

with the hallmark attributes of orthonairoviruses (2). Notably, it’s

essential to mention that SGLV is a single-stranded RNA (ssRNA)

virus, contributing to its classification within this viral group.

Functionally, isolated SGLV strains sourced from patients

exhibited the capacity to induce prominent cytopathic effects in

human hepatoma cells, accentuating its potential for pathogenesis.

Between 2017 and 2018, SGLV’s impact on human health

materialized, materializing as symptoms encompassing headaches,

fever, depression, fatigue, and dizziness. Serological investigations

illuminated a pivotal facet: a significant 69% of patients exhibited

the development of virus-specific antibody responses during the

acute phase (3).

Remarkably, the absence of discernible SGLV viral RNA and the

conspicuous scarcity of specific antibodies within healthy cohorts

underscored its nuanced selectivity in its interaction with human

physiology. Beyond human hosts, SGLV found ecological footing

within ticks such as Ixodes crenulatus, Haemaphysalis longicornis,

Haemaphysalis concinna, and Ixodes persulcatus within the

northeastern precincts of China. Significantly, the viral L

segments of SGLV came to the fore, manifesting in 2.2% of
Frontiers in Immunology 0270
spleen samples from great gerbils. BLASTn alignments divulged a

compelling narrative of genetic resonance, as the SGLV in great

gerbils demonstrated a remarkable alignment of 93.7% (236/252

nucleotides) and 94.0% (78/83 amino acids) with its counterpart

detected in human patients with a history of tick encounters within

the confines of northeastern China (1). This multifaceted interplay

of genetics, ecology, and clinical ramifications has woven a

comprehensive tapestry, enriching our comprehension of SGLV’s

influence on human health within the geographical landscape of

northeastern China (1, 4).

Reverse vaccinology is a cutting-edge strategy that has been

widely applied to the introduction of new vaccinations. The strategy

aims to combine immunogenomics and immunogenetics with

bioinformatics for the development of novel vaccine targets (5).

With the recent advancements in genome or protein sequence

databases, this rapid in silico method has gained significant appeal

(6). An innovative vaccine fuses CTL and HTL segments with

specialized linkers and adjuvants, showcasing high antigenicity,

non-allergenicity, and stability. Molecular docking finds strong

binding energy to TLRs, promising robust immunogenic

responses. Immune simulation employed to simulates a natural

immune response, where the top candidate activates essential

immune components (IgG, IgM, T-cells, B-cells, and cytokines),

promising protection against the Songling virus (7). Further

investigations, including molecular dynamics and computational

cloning for efficient E. coli expression, solidify the vaccine’s

prospects. Vaccine may recognize and boost immunity against

infection in the body. Therefore, predicting allergenicity is a

crucial stage in the creation of a neuropeptide vaccine.

Immunoinformatics techniques and tools were utilized to design
frontiersin.org
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a non-allergic, immunogenic, and thermostable recombinant

vaccine against the Songling virus, and we expect wet lab

researchers to confirm our prediction.
2 Methodology

The systematic methodology employed in this study to design a

multi-epitope vaccine construct targeting the Songling virus

(SGLV) (Figure 1).
Frontiers in Immunology 0371
2.1 Protein sequence retrieval and filtration

Songling virus proteome data was downloaded from the

National Centre for Biotechnology Information (NCBI) database

under reference taxonomy ID: 2795181, and sequences were

verified from Virus Pathogen Resource (ViPR) (8, 9). The protein

sequence data for SGLV was in FASTA format and submitted to

NCBI on May 6, 2023. Different parameters of CD-hit were used for

obtaining 85% sequence similarity and removing redundancy to

acquire non-paralogous sequences of proteins (10). BLASTp of
FIGURE 1

Systematic flow chart of in-silico based multi-epitope vaccine design.
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NCBI was used for sequence homology to human proteins with

thresholds of percent identity < 35, query coverage 75, e-value 10-4,

bit score <100, and others used as defaults (11). For identification of

the allergenicity of SGLV proteins, the AllerTop online server was

used (12). The antigenicity was determined by setting the 0.4

parameter in VaxiJen online server (13). For the identification of

the toxicity of SGLV proteins, the Toxinpred 3.0 online server was

implemented (14).
2.2 Prediction of T-cell and B-cell

MHC-I epitopes were predicted using the IEDB MHC-I

stickiness predictions program (15) accessed on June 23, 2022.

The prediction algorithm used the SMM approach, and sequences

were provided in FASTA format. It has been determined that

humans will be the host species. The output format was set to

XHTML tables, and all other options and parameters were left as

default. Similarly, the IEDB MHC-II binding prediction tool (16)

accessed on June 25, 2023, was used to predict the MHC-II epitopes

by selecting the SMM prediction method. Data was provided in

FASTA format. The HLA-DR was chosen as the species/locus

couple, and then alleles were chosen using the typical length

values associated with each species/locus (17). The other variables

were kept at their default settings, and the final result format was set

to XHTML table.

The B cell is an important element of the body’s defense system.

It is responsible for secreting antibodies that provide long-term

immunity (18). For the detection of a continuously growing 12-mer

long B-cell lymphoid (BCL) for the selected amino acids with a

threshold number of 8.0, ABCPred (http://crdd.osdd.net/raghava/

abcpred/) tool was used for this analysis (18). linear B-Cell and

MHCI & II overlapped epitopes are selected based on

physiochemical properties by employing VaxiJen v2.0, AllerTOP

v.2.0, & ToxinPred 3.0 tools (12, 13, 19).
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2.3 Population coverage

The IEDB population coverage assessment tool (https://

tools.iedb.org/population/) was utilized to check the designed

vaccine had successfully covered the entire world population (20).

Populations research in China, eastern the People’s Republic,

southern the Caribbean, the Southeast Asian region, and the

ocean was conducted to understand the global nature of the

Songling virus pandemic. Default values were used to evaluate

coverage for MHC class I and class II HLA binding alleles (15).

This strategy takes advantage of the worldwide distribution of HLA-

binding genotypes to calculate the abundance of certain epitopes.
2.4 Multi-epitope vaccine construct design

Effective vaccine construct design and proper epitope

separation depend on all candidate epitopes being connected

together through linkers and adjuvants. The B-cell epitope was

linked to the CTL targets using the EAAAK, AAY linkers, and the

HTL epitopes were linked to the CTL targets using the GPGPG

linker (Figure 2). To facilitate future glycosylation with a carrier

protein, a cysteine residue was included in the N-terminal of the

multi-epitope vaccine construct (21). The antigenicity, allergenicity,

toxicities, and physicochemical features of the vaccine construct

were analyzed further using the ProtParam tool (https://

web.expasy.org/protparam/) (19).
2.5 2D and 3D structure modeling
and validation

PDBsum (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/)

was used to determine the secondary structure of the new vaccine

construct, which was then validated through the PSIPRED server
FIGURE 2

Graphical illustration of multi-epitope vaccine construct, showing CTL, and T-cell epitopes joined by appropriate links and Adjuvant.
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(http://bioinf.cs.ucl.ac.uk/psipred/) (22–24). SWISS Model (https://

swissmodel.expasy.org/) was used to model proteins, and then

ProSAweb Server (https://prosa.services.came.sbg.ac.at/prosa.php)

was used to analyze protein structure and validate the model (25,

26). Godard plot analysis utilizing the ERRAT server (https://

servicesn.mbi.ucla.edu/ERRAT/) and RAMPAGE server (http://

mordred.bioc.cam.ac.uk/rapper/rampage.php) (27).
2.6 Molecular docking with TLRs receptors

Employing TLRs alongside their precisely designed synthetic

ligands in vaccines can initiate a potent chain of cytokines, crucial

for robust immune reactions (28). Understanding the pattern of

interactions among design vaccines with TLR3, TLR4, and TLR8

immune cell receptors is crucial for efficiently inducing

immunological responses. The vaccine constructs were docked

into the human TLR3 receptor (PDB ID: 2a0z) (29), TLR4

receptor (PDB ID: 4G8A) and TLR8 receptor [PDB ID: 3w3m

(29–31)], using web servers Hdock (http://hdock.phys.hust.edu.cn/)

and HawkDock (http://cadd.zju.edu.cn/hawkdock/), in order to

evaluate the chemical reactions between immune receptors

(TLR3, TLR4, and TLR8) and vaccine constructs (V1, V2, V3,

and V4) (32). Another webserver HADDOCK (High ambiguity

driven protein–protein Docking server) was utilized to generates

informative visual representations of the docking outcome,

facilitating a comprehensive analysis of the results. These

graphical plots allow for easy comparison of the top-docked

structure with the complete set of generated structures, providing

insights into key parameters such as docking score and RMSD (root

mean square deviation) (33).
2.7 MD simulation

The best docking results for the SGLV-V4-TLR4 molecule were

used to study a chemical dynamics (MD) research simulation. MD

simulations, energy efficiency, and protein flexibility were all

calculated using the iMODS web server (https://imods.iqfr.csic.es/)

(34). iMODS is based on normal mode analysis (NMA) in the

internal (dihedral) coordinates of macromolecules that naturally

reproduce the collective functional movements of biological

macromolecules. Using these modes, iMODS builds pathways for

functional transitions between two proteins with homologous

structures. The server can simulate potential with several coarse-

grained atomic representations and provides an enhanced arrow

model based on an affine model to describe the complicated domain

dynamics of macromolecules. The service analyses the dynamic

molecular structure and the docked protein structure with other

ligands as an amino acid of interest in order to deliver elastic

network-related data according to NMA, which is equal for the

particular instance of deform Eigenvalues, which changes the B-factor

(mobility profiles), along with a variation map. The SGLV-V4-TLR4

complex docked PDB file was uploaded to the iMODS service, and

results were obtained with all parameters set to their default

values (34).
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2.8 Immune simulation

The C-ImmSim webserver (http://www.cbs.dtu.dk/services/C-

ImmSim-10.1/) was used to model computational immunological

simulation of our prioritized vaccine design. This platform employs

a potent combination of predictive modeling techniques, including

Position-Specific Scoring Matrices (PSSM) and a variety of cutting-

edge machine-learning algorithms, to assess and predict the cellular

and humoral responses elicited by our antigenic vaccine candidate

(35). The application leverages antigenic peptide sequences and

lymphocyte receptors to replicate the intricate dynamics of

immunogenic responses. Throughout our investigation, we

precisely observed to a standard clinical protocol, administering

two doses of the vaccine with a four-week interval to assess immune

responses (36). Our focus lay on six specific human leukocyte

antigens: HLA-A0101, HLA-A0201, HLA-B0702, HLA-B3901,

HLA-DRB10101, and HLA-DRB10401, each monitored at time

intervals of 1, 84, and 168 hours. Immune simulation was executed

using the application’s default settings, encompassing 1000 iterative

steps (37).
2.9 Codon optimization

The JAVA Codon optimization Tool (Jcat) (http://www.jcat.de)

was used to optimize the coding and execute a reverse translation of

the sequence of amino acid sequences for the suggested

immunization (38). After that, an E. coli production gene vector

called pET28 was used alongside Snapgene version 5.2 to digitally

clone the genetic code sequence (39).
2.10 Prediction of the vaccine mRNA
secondary structure

The Transcription and Translation web based Tool (http://

biomodel.uah.es/en/lab/cybertory/analysis/trans.htm) was

employed to acquire the mRNA sequence of the vaccine. To

predict the secondary structure of the vaccine mRNA, two web-

based servers, Mfold v2.3 (http://www.unafold.org/mfold/

applications/rna-folding-form-v2.php) (40) and RNAfold (http://

rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) (41), were

utilized. The primary outcome of interest centered on the minimum

free energy (expressed in units of Kcal/mol), with lower values

indicating a greater degree of stability within the mRNA’s

folding structure.
3 Results

3.1 Proteins prediction of SGLV
vaccine candidate

The complete proteome of the SGLV strain, containing 40

proteins from different strains across the world, was extracted from

NCBI in FASTA format (Supplementary File S1). Utilizing CD-hit,
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redundancy was minimized, and human blast yielded four distinct

proteins (Supplementary File S2). Subsequently, we screened these

proteins for allergenicity, antigenicity, and toxicity, identifying

optimal candidates with high antigenicity, non-allergen, and non-

toxic properties for epitope prediction (Supplementary Table 1).
3.2 Prediction of T-cell and B-cell and
population coverage analysis

For further analysis, Four proteins are selected to recognize the

lead epitopes for producing a chimeric vaccine construct against

SGLV. T-cell (major histocompatibility complex class I and class II)

epitopes were determined for the selected proteins using the IEDB

server, with an IC50 threshold of 50 nM. The ABCpred scores

reached greater than 0.8, and the specificities of the estimated

ubiquitous B-cell epitopes were 75%. Vaccines were developed

based on predictions of twelve (13) overlapping lead regions for

each prioritized protein. the top 12 epitopes based on their

antigenicity, IFN positivity, toxicity, and allergenicity (Table 1).

The main goal was to recognize lead epitopes with the potential to

induce humoral and cell-mediated immunogenic responses and

host interferons.

The epitopes chosen exhibited 100% coverage across the global

population (Supplementary Table 2). Analysis from the IEDB

database indicated a notably high population coverage for these

predicted epitopes, particularly in regions significantly impacted by

SGLV, such as east Asia, Europe and south east Asia (Figure 3).
3.3 Multi-epitope vaccine design

To generate a multi-epitope vaccine EAAAK, CTL, HTL, and

GGGS/HEYGAEALERAG linkers and adjuvants were used. When

administered intramuscularly, vaccine containing linkers offer
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superior protection against each epitope (42). Increased

immunogenic responses were achieved by coupling the epitopes

to various adjuvants, such as HBHA protein molecules, beta-

defensin, 50S ribosome enzyme L7/L12 adjuvants, and N-

terminally abbreviated HBHA comparable amino acid sequences.

Immunization strategies have used the PADRE peptide sequence to

protect against difficulties caused by local variations in HLA-DR.

Previous studies have shown that vaccine formulations including

PADRE provide enhanced immune protection and high cytotoxic T

lymphocyte (CTL) responses, as shown in Supplementary Table 3.
3.4 Immunological and
physiochemical properties

Based on their immunological features, none of the

immunization strategies were found to be harmful or allergic.

Each one of the multi-epitope vaccine formulations has a

substantial antigenic property, as demonstrated by antigenicity

scores > 0.8 as estimated by the VaxiJen 2.0 server. Using cross-

validation on the peptide sequence based on established datasets,

VaxiJen 2.0 determines the antigenicity of viral sequences and

identifies their protective properties. Each structure VaxiJen 2.0

score fell between 0.4333 and 0.5197, which is the same as the

default threshold for viruses (13). Using the ProtParam service, we

were able to determine the physiochemical parameters of the

vaccine compositions and found that the molecular weights of

each epitope in these innovations ranged from 30 kDa to 55 kDa.

The selected vaccine designs have GRAVY values around -0.128

and -0.310, indicating that they are hydrophilic. The numerical pI

values fell between 8.87 and 10.07. The thermostability of these

structures was demonstrated by aliphatic index values between

69.09 and 82.50. The stability of these constructs at different

temperatures was projected to be shown by their unpredictability

index values, which ranged between 30.93 and 41.81 (Table 2). The
TABLE 1 IFN-g epitope prediction, investigation of allergenicity and toxicity, and prediction of overlapping T- and B-cell epitopes.

Protein IDs MHC-I IC50 MHC-II B-cell Epitopes
ABCpred
score

IFNepitope
score Allergenicity Toxicity

YP_010840762.1 CAFGAFPVA 17 SDMVCAFGAFPVAEP RICSDMVCAFGAFPVA 387 -0.1401593 non-allergen Non-toxic

WQDQEIVPV 74 WQDQEIVPVEHMLHQ SGWQDQEIVPVEHMLH 444 -0.6228511 non-allergen Non-toxic

KNKGGTSLA 4.3 GSWTKKNKGGTSLAV WGSWTKKNKGGTSLAV 215 2 non-allergen Non-toxic

YP_010840761.1 FAVGPLVPL 10 FAVGPLVPLESAQKV TKFAVGPLVPLESAQK 988 -0.2917396 non-allergen Non-toxic

VAKGLQSSY 42 AIKVEAVAKGLQSSY EEIQQYLNDCSKGLLN 1261 -0.110257 non-allergen Non-toxic

LADSQIETG 28 RNIILADSQIETGTT SEELLAFVDSQYVLTI 307 -0.0578239 non-allergen Non-toxic

YP_010840760.1 YGAGQITAL 69 RPSYGAGQITALLDV GRPSYGAGQITALLDV 1100 -1 non-allergen Non-toxic

IAIFHKTPE 13 IAIFHKTPERDLFDL DIAIFHKTPERDLFDL 963 -0.5001685 non-allergen Non-toxic

TALLDVQGL 53 AGQITALLDVQGLLL GAGQITALLDVQGLLL 1105 -0.1869516 non-allergen Non-toxic

UWI48350.1 TVKSTESIC 9 EDIKWTVKSTESICE FEDIKWTVKSTESICE 44 -1 non-allergen Non-toxic

VEQTKFAVA 51 ADWVEQTKFAVAPLV ADWVEQTKFAVAPLVP 4 -0.394556 non-allergen Non-toxic

CFEDIKWTV 15 CRYRGCFEDIKWTVK ECCRYRGCFEDIKWTV 36 -1 non-allergen Non-toxic
fro
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only real difference among the designs was the adjuvant; therefore,

none of them changed much in terms of their physicochemical

qualities. The vaccine designs’ ability to elicit robust immunogenic

reactions in the human host was deduced from an examination of

their immunogenic and physiochemical properties (43). More

experimental work is needed to confirm the reliability of

these results.
3.5 Structures modeling, validation,
and refinement

Computational approaches that anticipated secondary structure

components were used to analyze the structural characteristics of

the vaccine constructs. The PDBsum server displays proteins in

their residue conservation and 2D structure. It shows which parts of

the protein are not the same (colored blue) and which parts are very

similar (colored red). Figure 4A. Similarly, the PSIPRED 4.0 server,

which uses position-specific scoring matrices (PSSM), was utilized

to predict transmembrane helices and topology within the peptide

sequence, as well as identify fold and domain regions, as shown in
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Supplementary Figure 4. A stable and functional 3D structure of a

vaccine is crucial for studying its molecular interactions with

immune receptor proteins. Figure 4B displays the vaccine

constructions predicted by the homology modeling techniques

implemented in the Swiss Modelling server; these constructs were

further refined by the DeepRefiner web server and submitted to a

physical validation study. The binding energy of the JSmol structure

is shown in Figure 4C. 73.7% of the V1 construct, 82.8% of the V2,

91.5% of the V3, and 97.4% of the V4 acids remained in the plots’

favorable region (Figure 4D), indicating that the vaccine

constructions were highly stable. The improved vaccine designs

had ERRAT quality ratings between 58% and 97%. The ProSA-web

server found that the Z score of all vaccine constructions might

range from -0.88 to -4.71 (Figure 4E). Table 3 displays the 3D

structural validation of vaccine constructs.
3.6 Molecular docking

Molecular docking is used for predicting the suitable binding

between multi-epitope vaccine (MEV) and receptor molecules.
B

A

FIGURE 3

The population coverage was determined using the IEDB webserver, (A) population coverage across the world’s countries and (B) population
coverage across different ethnicities.
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Human surface TLR3, TLR4, and TLR8 immune system receptors

were used to dock MEV with the help of Hdock Server (a blind

docking technique) and Hawkdock Server. In the result, only one

structure is prioritized for each dock based on its high score and

lowest binding energy (Table 4). And the 3D structure of each

docking is shown in Supplementary Figures 1–3. In this study, the

binding energy of the V4 was found to be lower with TLR4 area by a

significant margin (-66.26 kcal/mol) as compared to docking with

TLR3 and TLR8 receptors. The prioritized complex TRL4-V4 was

then assigned to HADDOCK to evaluate various parameters in our

analysis, including HADDOCK scores, cluster size, van der Waals

energy, electrostatic energy, desolvation energy, restraints violation

energy, buried surface area, and Z score (Figure 5). Notably, Cluster

6 exhibited exceptional characteristics with a Z score of -2.0,

HADDOCK scores of -9.5, a cluster size of 7, van der Waals

energy of -26.2, electrostatic energy of -309.1, desolvation energy

of -2.5, restraints violation energy of 2998.6, and a substantial

buried surface area of 1708.2. Consequently, we selected the most

promising structure from Cluster 6 for molecular dynamics

simulation. The docking investigation reveals that the vaccine

designs have strong binding capabilities to the TLR4 protein.
3.7 Molecular dynamic simulation

The TLR4 receptor was chosen due to its lowest binding energy

with the SGLV-V4 construct. To comprehensively evaluate the

stability of proteins and the enthalpy efficiency within SGLV-V4-

TLR4 complexes, molecular dynamics (MD) simulations were

employed. In parallel, the iMODS platform facilitated an in-depth

analysis of atomic and molecular movements within the vaccine’s

biological context, elucidating macromolecular mobility via the

normal mode analysis (NMA) methodology. For a more detailed

understanding, Figure 6 provides a visual representation of the

outcomes stemming fromMD simulations and NMA conducted on

the SGLV-V4 and TLR4 docked complexes. Drawing from the work

of Ichiye and Karplus in 1991 (44), we utilized Equation 2 in

conjunction with C Cartesian coordinates to compute the
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correlation matrix, thereby revealing the intricate interplay of

atoms through an elastic network model. Each point on the graph

symbolizes a spring connecting specific atom pairs, with varying

shades of grey denoting differing levels of stiffness (as seen in

Figure 6A). The complexity of molecular interactions within the

system is further elucidated by the covariance map of the complex.

By utilizing covariance analysis, this map highlights correlated

(red), uncorrelated (white), or anti-correlated (blue) atomic

movements, thus providing valuable insights into the dynamics of

the complex molecule (Figure 6B). Additionally, eigenvalues,

reflecting the stiffness of motion, hold a direct proportionality to

the energy required for structural deformations. A lower eigenvalue

indicates greater ease of deformation for the carbon alpha atoms.

Notably, the SGLV-V4-TLR4 complex exhibited an eigenvalue of

2.395982e-05, signifying its stability (as observed in Figure 6C).

Furthermore, NMA-derived B-factor analysis was instrumental

in portraying the relative amplitude of atomic displacements within

the molecular complex. Figure 6D, displaying the B-factor graph,

illustrates the correlation between the mobility identified in the

docked complex NMA and the PDB scores. In this context, RMSD

minimization based on local and global structure superposition

enabled iterative deformation of the input structure, modeling

potential transitions. Meanwhile, the total atomic displacements

across all modes of residues at individual atomic sites provide an

insightful measure of main-chain deformability. The complex’s

deformability graph, illustrated in Figure 6E, identifies peak

regions representing the protein’s more flexible areas, while

inflexible sections exhibit lower values. Additionally, the variance

graph, inversely linked to the eigenvalue (as demonstrated in

Figure 6F), is connected to each normal mode of the complex,

elucidating both individual and cumulative variances for a

comprehensive depiction of the system’s dynamics.
3.8 Immune response simulation

The focused MEV significantly boosted secondary responses, as

predicted by immune modeling. In principle, this sequence can help
TABLE 2 Physiochemical properties of the vaccine constructs using ProtParam server and JCAT server.

Vaccine con-
structs

No of
Amino
Acids

Molecular
weight
(Da)

Instability
index

Theoretical
PI

Grand
average of
hydropathicity
(GRAVY )*

GC
content

CAI
(0.85-
1.0)

Aliphatic
index

Con#1 adjuvant =
HBHA adjuvant

427 43117 41.32
protein as
stable

10.07 -0.282 52.22 1.0 69.09

Con#2 adjuvant =
Beta definsin
adjuvant

512 51396 35.65
protein as
stable

9.51 -0.128 51.43 1.0 78.07

Con#3 adjuvant=
HBHA conserved
adjuvant

541 55585 41.80
protein as
unstable

9.55 -0.310 53.23 1.0 75.71

Con#4 adjuvant =
Ribosomal protein
adjuvant

292 30649 30.93
protein as
stable

8.87 0.129 52.73 1.0 82.50
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the immune system quickly respond to threats. High levels of IgM

were the prime simulated response. The simulated secondary and

tertiary responses revealed considerable increases in B-cell
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populations as well as high concentrations of IgG1 + IgG2, IgM,

and IgM + IgG antibodies. However, there was a decrease in the

antigen levels (Figures 7A, B). The increased level of memory B-cell

population and isotype switching indicate the formation of

immunological memory in this case. Following the subsequent

exposure to chimeric antigens, this caused a fast antigen

reduction (Figure 7C). After further antigen exposure, it was

hypothesized that both cytotoxic (TC) and helper (TH) cell

subsets would form a similar memory (Figures 7D, E). High

levels of activity in the macrophage, flare cell, and natural killer

cell populations were also sustained during the vaccination period

(Figures 7F–H). Higher levels of cytokines like interleukins IL-2 and

IFN-y were also present (Figure 7I). These results provide support

for the research showing that the anticipated vaccine formulation

induced successful immune reactions against SGLV.
TABLE 3 3D structural validation of vaccine constructs via ERRAT,
PROCHECK (Ramachandran plot favored region), and ProSA-Web Server.

Vaccine
Construct

ERRAT (%) PROCHECK (%) ProSA
(Z-score)

SGLV -V1 58.3333 73.7 -4.71

SGLV -V2 99 82.8 -4.11

SGLV -V3 97.3154 91.5 -0.88

SGLV -V4 93.75 97.4 -4.52
B C

D E

A

FIGURE 4

SGLV-V4 three-dimensional structural analysis, refinement, and validation (A) Protein’s Secondary Structure with Graceful Elements: strands (elegant pink
arrows), helices (royal purple springs), and captivating motifs in shades of red (-hairpins, mesmerizing -turns, and more), (B) The Swiss Model designed a 3D
model of the multi-epitope vaccination using a homology modeling method. (C) Binding energy of the JSmol structure (D) ProSA-web yields a Z-score of
-4.52. (E) Ramachandran plot analysis reveals 90% of the residues, 20% are in the allowed region, and 1% are in the prohibited portion of the plot.
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3.9 Molecular cloning and
codon optimization

Designing a vaccine with an appropriate expression system is

the initial stage in evaluating a vaccination candidate, which

requires a serological study. Prior to in vitro expression, a similar

strategy was employed in earlier experiments for in silico-designed

vaccines. The bacterial cell expresser E. coli was selected. Cloning

and transcription are greatly facilitated by the Java Codon

Adaptation Test (JCAT), which makes the E. coli K12 strain a

great host organism. The estimated GC content of the improved

sequence was 52.7%, which is significantly higher than the value of

50.73 found in E. coli. The modified sequence had a CAI (codon

adaptation index) of 1.0. The multi-epitope vaccine (MEV) vector’s

codon usage curve is shown in Figure 8. Finally, SnapGene software
Frontiers in Immunology 1078
was used to create a recombinant plasmid sequence by inserting the

final vaccine construct V4 modified codon sequence into the

plasmid vector pET28a (+), ensuring heterologous cloning and

expression in the E. coli system (Figure 8).
3.10 Secondary structure of vaccine mRNA

The RNAfold server predicts the vaccine mRNA’s secondary

structure with a minimum free energy of -268.90 kcal/mol

(Figure 9A), while the centroid secondary structure shows -229.37

kcal/mol (Figure 9B). mFold v2.3 server calculates the optimal

secondary structure’s minimum free energy at -283.12 kcal/mol

(Figure 9C). A lower minimal free energy suggests greater stability

for the vaccine mRNA post-expression in vivo.
TABLE 4 Docking scores and Binding energies of multi-epitope vaccine constructs and TLRs.

Constructs

TLR3 (2a0z) TLR4 (4G8A) TLR8 (3w3m)

Docking Score

Binding
Energy

Docking Score

Binding
Energy

Docking score

Binding
EnergyHdock Hawkdock

Hdock
score Hawkdock

Hdock
score Hawkdock

V1 -274.53 -5209.48 -41.79 -298.62 -5097.4 -43.37 -301.63 -4694.39 -43.47

V2 -240.85 -5463.77 -0.26 -200.17 -4634.95 12.82 -240.85 -4098.19 -16.02

V3 -385.59 -4092.04 -0.35 -312.43 -2352.47 -5.81 -368.66 -3037.87 -14.13

V4 -278.24 -4788.78 -35.78 -266.51 -6853.68 -66.26 -274.59 -4318.53 -28.92
B C

D E

F GA

FIGURE 5

(A) The docked complex of TRL4-V4. The TLR4 receptor is depicted in brown, while yellow represents the SGLV-V4 vaccine construct. (B) Haddock score
against a fraction of frequent contacts. (C) Haddock score against ligand RMSD. (D) Electrostatic Solvation Energy (EDESOLV) against Initial-RMSD in
Molecular Simulations (I-RMSD), (E) van der Waals energy against interface I-RMSD, (F) Electrostatic energy (Eelec) of docked molecule against interface-
RMSD, (G) (Ensemble-Averaged Interaction-Reweighted Simulation) EAIR outperforms I-RMSD in predicting the structure of receptor-ligand complexes.
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4 Discussion

In response to the growing concern over the flow of Songling

virus (SGLV) cases worldwide and the absence of available vaccines,

this study investigated the challenge of preventing future Songling

virus epidemics. Employing cutting-edge immunoinformatics

techniques, we embarked on designing innovative multi-epitope

Songling virus vaccine constructs by examining the proteome of the

Songling virus to pinpoint targets for a potential vaccine. Using

strict standards, they forecasted epitopes for B-cells, MHC-I, and

MHC-II. These epitopes play a crucial role by sparking a protective

immune response that blocks viruses and establishes long-term

defense (45).

The overlapped epitopes are prioritized fromMHCI & II, and B-

cell which are highly antigenic, non-allergen, and produce humoral

response, that combats infections by eliminating infected cells or

releasing antiviral substances to establish lasting immunity (46). To

enhance this response, a novel vaccine was created using various

CTL and HTL segments combined with specialized suitable linkers

and adjuvants. Additionally, the vaccine’s design incorporates

EAAAK, AAY, and GPGPG linkers and adjuvants, which improve
Frontiers in Immunology 1179
the structure and stability of the vaccine. Four vaccine constructs

were designed from selected epitopes. These vaccine models

displayed impressive traits: high antigenicity, non-allergenicity, and

non-toxicity. Analysis of the vaccine’s physiochemical characteristics

indicated its robustness, alkaline nature, and hydrophobic

properties, all of which indicate its potential to induce potent and

targeted immunogenic responses in infected individuals.

Molecular docking analysis was then employed to explore the

interaction between the vaccine constructs and the crucial immune

cell receptors, i.e., TLRs. TLRs are known for their pivotal role in

immune cell activation and the recognition of viral peptide

structures (46). The results revealed strong binding affinities of

SGLV-V4 toward TLR4, suggesting that the designed vaccine

constructs have the capacity to generate robust immunogenic

responses upon exposure. The C-ImmSim server, an immune

response evaluation tool, was used to assess a newly designed

vaccine’s ability to induce an immunological response. This

method simulates key components of the mammalian immune

system and tracks how various immune cells respond to the vaccine

(7). The goal is to design a vaccine that not only offers immediate

protection but also triggers a long-lasting immune response,
frontiersin.or
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FIGURE 6

MD simulation results of SGLV-V4 with TLR4 (A) The elastic network model uses springs between atoms, indicated by colored dots for stiffness. (B)
Covariance matrix Shoes paired residue mobility motions, i.e., uncorrelated (white), correlated (red), and anti-correlated (blue). (C) Eigenvalues, (D)
Averaged RMS indicated by B-factor, (E) Deformability, and (F) Shows variances in Colored bars (purple) represent individuals, and cumulative is
represented by green.
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simulating natural immunity. The top-ranked vaccine candidate,

SGLV-V4, activated essential immune components, including

antibodies (IgG and IgM), T-cells, B-cells, and cytokines

(Figure 7) (47). This multi-epitope-based subunit vaccine shows

suitable in protecting against the Songling virus. For further

investigation to assess the stability and biomolecular process of

SGLV-V4, the molecular dynamic simulation and NMA were

performed. To enhance vaccine expression, computational

cloning was performed on a pET28a (+) vector after codon

optimization with the JCAT web service. The optimized codon

adaptation index (CAI) and GC content fall within acceptable

ranges, ensuring efficient expression in E. coli (strain K12). This

optimization is crucial for successful vaccine production.

As we progress toward the next critical steps, we anticipate in

vitro immunological assays to be conducted to confirm and validate

the immunogenicity of the designed vaccine. Subsequently, a

challenge-protection preclinical trial will be initiated, presenting a

crucial opportunity to rigorously evaluate and substantiate the

efficacy and safety of the SGLV-V4-TLR4 vaccine construct.
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These endeavors aim to provide a comprehensive framework to

combat Songling virus infections effectively, potentially mitigating

their impact and safeguarding public health against this evolving

threat. However, to determine the vaccine’s safety and efficacy,

further experimental validation is required, which may involve the

production of vaccine proteins with thorough in vivo and in vitro

tests. However, the current research relies entirely on the results of

computational approaches for technical equipment.
5 Conclusion

In our study on Songling virus (SGLV), a tick-borne pathogen

lacking treatment or vaccines, we employed immunoinformatics to

identify four potential vaccine target proteins. Designing a

comprehensive vaccine candidate with broad global coverage, we

combined B-cell and T-cell epitopes and validated them through

IFN-g epitopes. SGLV-V4, selected for its strong performance in

molecular docking and favorable properties, was efficiently
B C

D E F

G H

A

I

FIGURE 7

The in silico inflamed simulation used by the C-ImmSim Servers allows for an estimation of the SGLV-V4 recombinant peptide vaccination’s
immunological potential. (A) Vaccines cause an increase in immunoglobin antibodies and a decrease in antigen levels. As seen in (B), B-cell numbers
increase and antigen titers fall after immunization. Increased B-cell counts as a result of repeated antigen exposure (C). T-cytotoxic and T-helper
cell counts rise (D, E) after repeated antigen exposure. Dendritic cells, macrophages, and natural killer cells all grew in number during the
vaccination window (F–H). Increased antigen exposure leads to increased cytokine and interleukin (I) production. This danger signal is depicted
alongside leukocytes and the rate of expansion factor IL-2 in the inset graphic.
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B

A

FIGURE 8

(A) Reverse-translated primary DNA sequence of the SGLV-V4, (B) SGLV-V4 cloned specifically into the E. coli expression vector [pET28a(+)].
B CA

FIGURE 9

(A) Optimal secondary structure of the vaccine mRNA (B) Central secondary configuration of the vaccine mRNA (C) thermodynamic ensemble of
mRNA structure, and the centroid structure are vividly depicted in the mountain plot representation. Additionally, the positional entropy plot unveils
the intricacies of each position.
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expressed in E. coli bacteria. Immunological research and

simulations confirmed its stability and robust immune response,

offering a promising avenue for safer and more effective SGLV-V4

vaccine development.
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Brewpitopes: a pipeline to refine
B-cell epitope predictions during
public health emergencies

Roc Farriol-Duran1†, Ruben López-Aladid2,3†,
Eduard Porta-Pardo1,4*‡, Antoni Torres2,3*‡

and Laia Fernández-Barat2,3*‡

1Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2CELLEX Research Laboratories, CibeRes
(Centro de Investigación Biomédica en Red de Enfermedades Respiratorias ,Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, 3Pneumology Department, Hospital
Clı́nic, Barcelona, Spain, 4Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
The application of B-cell epitope identification to develop therapeutic antibodies

and vaccine candidates is well established. However, the validation of epitopes is

time-consuming and resource-intensive. To alleviate this, in recent years,

mult ip le computat ional predictors have been developed in the

immunoinformatics community. Brewpitopes is a pipeline that curates

bioinformatic B-cell epitope predictions obtained by integrating different

state-of-the-art tools. We used additional computational predictors to

account for subcellular location, glycosylation status, and surface accessibility

of the predicted epitopes. The implementation of these sets of rational filters

optimizes in vivo antibody recognition properties of the candidate epitopes. To

validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2

with a particular focus on S protein and its variants of concern. In the S protein,

we obtained a fivefold enrichment in terms of predicted neutralization versus the

epitopes identified by individual tools. We analyzed epitope landscape changes

caused by mutations in the S protein of new viral variants that were linked to

observed immune escape evidence in specific strains. In addition, we identified a

set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB,

R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved

targets for viral neutralization studies. In summary, Brewpitopes is a powerful

pipeline that refines B-cell epitope bioinformatic predictions during public health

emergencies in a high-throughput capacity to facilitate the optimization of

experimental validation of therapeutic antibodies and candidate vaccines.

KEYWORDS

bioinformatics and computational biology, immunology and infectious diseases,
vaccine development, antibody therapeutics, epitope prediction and antigenicity

prediction
Abbreviations: S protein, Spike protein of SARS-CoV-2; VOCs, Variants of Concern from SARS-CoV-2;

RSA, Relative Solvent Accessibility; IEDB, Immune Epitope Database.
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Introduction

Neutralizing antibodies play a major role in the adaptive immune

response against pathogens (1). Hence, the prediction of the protein

regions driving pathogen neutralization is key to guide the

understanding of their mechanism of action (1). These protein

regions, termed neutralizing B-cell epitopes, have the potential to

spread through the entire proteome of the target pathogen. Such a

wide distribution requires high-throughput techniques to unravel the

full epitope landscape. In this context, the bioinformatic prediction of B-

cell epitopes has become a necessary exploration to prioritize which

candidates should be selected for experimental validation (Table 1). For

instance, in the race against the SARS-CoV-2 pandemic, accurate

bioinformatic B-cell epitope predictors significantly contributed to the

success of COVID-19 preventive and therapeutic strategies (22)

(Table 1). For this reason, many groups dedicated their efforts to the

identification of SARS-CoV-2 antibody binding regions using different

bioinformatic approaches as a first step to later characterize neutralizing

antibodies or to design immunogens for vaccines (Table 1) (22, 23).

B-cell epitope predictors recommended by the Immune Epitope

Database (IEDB) (24) such as Bepipred (2), or Discotope (8), and other

existing SOTA methods (Table 1) (5, 7, 9–13) are tools able to identify

candidate continuous and discontinuous B-cell epitopes in a minute

scale. However, even state-of-the-art B-cell epitope prediction tools

frequently output lists of predicted epitopes that are excessively large to

validate experimentally (25). Moreover, many of the predicted epitopes

will not necessarily function in vivo (25). Hence, the development of

new predictive tools that will refine the available computational B-cell

epitope predictions is a priority. Such tools will provide a rapid and

accurate reaction in case of emergency situations such as the COVID-

19 pandemic or the appearance of new variants of concern (VOCs) that

escape the immune response of vaccinated subjects (3, 26).

To this end, we have designed Brewpitopes, a new predictive

pipeline that integrates additional important features of known

epitopes, such as glycosylation or structural accessibility using

specific computational methods. To curate B-cell epitope predictions

for neutralizing antibody recognition, Brewpitopes outputs curated lists

of refined epitopes with an increased likelihood to be functional in vivo.

To validate Brewpitopes, the pipeline was implemented to predict B-

cell epitopes in antibody binding regions on the entire the proteome of

SARS-CoV-2, with a special focus on the S protein and its VOCs.
Materials and methods

All three-dimensional protein figures have been generated with

PyMol 2.5 and Chimera X. All statistical analyses have been

performed using R statistical software (R version 3.6.3). All data

and software can be obtained from public sources for academic use.
Dataset curation

The SARS-CoV-2 proteome in UniprotKB consists of 16

reviewed proteins (27). We used the corresponding FASTA
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sequences as starting data for linear epitope predictions. To perform

structural epitope predictions, when available, we obtained the PDB

structures from the Protein Data Bank database selecting the

structures with the best resolution and more protein sequence

coverage (28). For those proteins with no available structure in

PDB, we used Alphafold2.0 (29) or Modeller (30) to model their

3D structure.
Linear epitope predictions

To predict linear epitopes on protein sequences, we used

ABCpred (31) and Bepipred 2.0 (2). We used ABCpred (31), an

artificial neural network trained on B-cell epitopes from the Bcipep

database (32), to predict linear epitopes given a FASTA sequence.

The identification threshold was set to 0.5 as indicated by default

(accuracy 65.9%) and all the window lengths were used for

prediction (10–20mers). Additionally, we kept the overlapping

filter on. To further augment the specificity of the predictions, we

increased the ABCpred score to 0.8.

In addition, we used Bepipred 2.0 (2), a random forest

algorithm trained on epitopes annotated from antibody–antigen

complexes, as a second source to predict linear epitopes. The

epitope identification threshold was set to ≥0.55 leading to a

specificity of 0.81 and a sensitivity of 0.29 (32).
Structural epitope predictions

We used PDBrenum (33) to map the PDB residue numbers to

their original positions at the UniprotKB FASTA sequence. The

reason behind this step was that factors such as the inclusion of

mutations to stabilize the crystal may lead to discordances between

the residue numbers in the PDB and FASTA sequence from the

same protein.

In order to model those SARS-CoV-2 proteins with missing

structures in PDB, we used Alphafold 2.0 (29). We then refined the

models by restraining our analysis to those regions with a pDLLT

threshold of 0.7 to only assess highly confident regions. The

proteins that required Alphafold modeling were M, NS6, ORF9C,

ORF3D, ORF3C, NS7B, and ORF3B.

To predict conformational or structural B-cell epitopes, we used

Discotope 2.0, a method based on surface accessibility and a novel

epitope propensity score (8). The epitope identification threshold

was set to −3.7, as specified by default, which determined a

sensitivity of 0.47 and a specificity of 0.75.
Epitope extraction and integration

Bepipred 2.0 (2), ABCpred (31), and Discotope 2.0 (8)

predictions resulted in different tabular outputs. To extract and

curate the predicted epitopes, we created a suite of computational

tools in R statistical programming language and Python, available at

https://github.com/rocfd/brewpitopes.
Frontiers in Immunology 0487
Subcellular location predictions

When publicly available, the protein topology information was

retrieved from the subcellular location section in UniprotKB (27).

For those proteins with unavailable topology, we predicted their

extracellular regions using Constrained Consensus TOPology

prediction (CCTOP) (6), a consensus method based on the

integration of HMMTOP (34), Membrain (35), Memsat-SVM

(36), Octopus (37), Philius (38), Phobius (39), Pro and Prodiv

(40), Scampi (41), and TMHMM (42). The.xml output of CCTOP

was parsed using an in-house R script (xml_parser.R) and then the

extracted topology served as reference to select epitopes located in

extracellular regions using the script Epitopology.R.
Glycosylation predictions

To investigate in silico which residues would be glycosylated, we

used NetNGlyc 1.0 (43) for N-glycosylation and Net-O-Glyc 4.0 (44)

for O-glycosylations. NetNglyc uses an artificial neural network to

examine the sequences of human proteins in the context of Asn-Xaa-

Ser/Thr sequons. NetOglyc produces neural network predictions of

mucin type GalNAc O-glycosylation sites in mammalian proteins. We

parsed the corresponding outputs using tailored R scripts and then we

extracted the glycosylated positions to filter out those epitopes

containing glycosylated residues using Epiglycan.py.
Accessibility predictions

To predict the accessibility of epitopes within their parental

protein structure, we computed the relative solvent accessibility

(RSA) values using ICM browser fromMolsoft (45). We used an in-

house IEC browser script (Compute_ASA.icm) to compute RSA

and we considered buried those residues with RSA threshold less

than 0.20. Then, the ICM-browser output was parsed to extract the

buried positions, which then served as a filter to discard epitopes

containing inaccessible or buried residues using Episurf.py.
Variants of concern analysis

The mutations accumulated by the VOCs Alpha, Beta, Delta,

Gamma, and Omicron in the S protein were obtained from the

CoVariants webpage (4), which is empowered by GISAID data (46).

A fasta sequence embedding each variant’s mutations was generated

using fasta_mutator.R.
Results

Brewpitopes, a pipeline to curate B-cell
epitope predictions based on determinant
features for in vivo antibody recognition

While there are some tools available to predict the presence of

B-cell epitopes in a protein sequence or structure, these tools are
frontiersin.org
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mainly based on machine learning methods trained with

experimentally validated epitopes (Table 1). However, these

methods sometimes do not account for other factors that might

affect the antigenicity or the potential of a protein region to be

recognized specifically by antibodies.

Brewpitopes was designed as a streamlined pipeline that

generates a consensus between linear and conformational epitope

predictions and curates them following the in vivo antibody

recognition constraints (Figure 1). To this end, a suite of

computational tools was created to integrate the output of

different SOTA B-cell epitope predictor and to filter the

candidates using predictions of the aforementioned biophysical

features (Figures 1, 2).

In Brewpitopes, we included predictions of linear epitopes,

which are continual stretches of residues located at the surface of

proteins, and predictions of conformational epitopes, which are

discontinuous residues recognized by antibodies due to their

structural disposition. For both cases, state-of-the-art predictors

exist (Table 1). To start with, in Brewpitopes, we have predicted

linear epitopes using Bepipred2.0 (2) and ABCpred (31) and we

have searched for conformational epitopes using Discotope2.0 (8).

Once predicted, we have extracted the epitopes using tailored R

scripts named Epixtractor and then integrated the results

using Epimerger.

Once the predictions are integrated, we propose a set of serial

biophysical filters organized in a pipeline. First, since neutralizing

antibodies only inspect the external surface of cells or viral particles,

we propose that those epitopes predicted in intracellular and

transmembrane regions of viral proteins cannot be targets for

antibody neutralization (Figure 1). Hence, the subcellular location

of an epitope is a recognition constraint (47), which our pipeline

uses to prioritize epitopes located on extracellular protein regions

while discarding those located in intracellular and transmembrane

regions. To predict the subcellular location of a protein region, we

used protein topology information. For some proteins, the topology
Frontiers in Immunology 0588
is already available at UniProtKB (27); however, for some others,

topology is not described. In such cases, the alternative is to predict

the topology of the target protein. In Brewpitopes, there is a

module to upload experimentally described protein topologies.

Complementarily, for undescribed proteins, we used CCTOP to

predict their transmembrane, intracellular, and extracellular regions

(6). Once we had obtained or predicted the extracellular regions, we

labeled the epitopes using Epitopology.

Glycan coverage can limit the surface accessibility of predicted

B-cell epitopes that contain glycosylated residues, thus reducing

their in vivo antibody recognition potential (Figure 1) (48). For this

reason, our pipeline uses in silico tools to predict glycosylated sites

on protein sequences. Concretely, we have used NetNglyc1.0 (43)

and NetOglyc4.0 (44), for the prediction of N-glycosylations and O-

glycosylations, respectively. These methods are based on artificial

neural networks trained on glycosylation patterns by which they

can predict glycosylation sites ab initio given a protein sequence.

With this information, Brewpitopes discards all the epitopes that

include glycosylated residues using Epiglycan.

As the third filter, we include the accessibility of the epitope

within the antigenic protein structure as another antibody

recognition constraint (49) (Figure 1). Accordingly, our pipeline

calculates the relative solvent accessibility (RSA) values of all the

residues in the target protein and filters out those epitopes

containing at least one buried residue (RSA < 0.2). To compute

the RSA values based on crystal structures, we have used Molsoft

(45) and the in-house script compute_asa.icm.

The last step of the Brewpitopes pipeline is Epifilter, which uses

the annotations of the previous steps to filter out those epitopes

predicted as intracellular, glycosylated, or buried. Additionally, a

length filter was used to discard epitopes SHORTER than five

amino acids in length, which were considered unspecific.

Therefore, the final candidates refined using Brewpitopes are

extracellular, non-glycosylated, and accessible, properties that

enhance the antibody recognition in vivo.
B CA

FIGURE 1

Biophysical constraints for in vivo antibody recognition. (A) Recognition of extracellular or extra-viral protein regions. Neutralizing antibodies only
inspect the external surface of viral particles. Therefore, predicted epitopes located in intracellular or transmembrane epitopes will not be
recognized. In Brewpitopes, we used protein topology-annotated information and topology predictors to assess the subcellular location of the
target protein regions with predicted epitopes. Exclusively, candidates located on extracellular protein regions were selected. (B) Glycosylation
coverage prevents in vivo antibody recognition of neutralizing epitopes. Predicted epitopes that contain glycosylation motifs are likely covered by
glycans supporting the selection of predicted epitopes without glycosylated residues. In Brewpitopes, we predicted the glycosylation profiles of
target proteins using Net-N-glyc and Net-O-glyc for N- and O-glycosylations, respectively. Only predicted epitopes without glycosylated residues
pass this filter. (C) Epitope accessibility on parental protein surface. Predicted epitopes that contain buried residues will be less accessible for in vivo
antibody recognition. Left: structure of S protein of SARS-CoV-2 highlighting a fully accessible predicted epitope. Right: structure of the S protein
displaying a highly buried predicted epitope. In Brewpitopes, to assess epitope accessibility, we calculated the Residue Solvent Accessibility (RSA) of
the predicted epitope sequences using crystal or structural models. Once predicted, fully accessible epitopes (all residues RSA ≥ 0.2) were selected
and buried candidates were discarded (at least one residue RSA < 0.2).
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The final list of curated epitopes derives from the different tools

integrated at the initial step of Brewpitopes. Thus, frequently

epitopes with overlapping positions will be encountered. To

prevent the prioritization of different but redundant candidates,

Brewpitopes merges overlapping epitopes into epitope regions with

the aim to generate a consensus between B-cell epitope predictors.

Complementarily, the selection of a short sequence length threshold

was useful to integrate epitopes predicted by different tools into

larger epitope regions. To this end, we designed Epiconsensus, a

tool that not only merges overlapping epitopes but also enables the

scoring of the merged epitope regions, setting a prioritized order of

the initial B-cell epitope predictor scores.
Bioinformatic validation of Brewpitopes in
the proteome of SARS-CoV-2

Brewpitopes can be implemented to any target protein or

organism, but due to the pandemic context and the interest in B-

cell epitopes and neutralizing antibodies against SARS-CoV-2, to

validate the pipeline, we analyzed the proteome of this virus. Within

SARS-CoV-2, we specially focused on the S protein due to its

importance in vaccine and therapeutic antibody design plus the

known role of Spike for immune evasion (50). Our results confirm

the neutralizing potential of the S protein but additionally identify

other SARS-CoV-2 proteins containing epitopes of interest.

Focusing on the S protein, linear epitope predictions resulted in

213 epitopes and structural predictions in 6. Once integrated, 10

epitopes were discarded due to their intraviral location. Next, since
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it had been established that S protein is heavily glycosylated (26), 52

epitopes were filtered out due to their likelihood to include

glycosylated residues. Lastly, 143 epitopes were discarded because

they contained at least one residue buried within the 3D structure of

the S protein. As a result, 14 epitopes derived from S were curated

for optimized antibody recognition (Figure 3). Compared to the

initial state-of-the-art epitope predictions, our results show that

only a 5.5% of the predicted epitopes for the S protein will have high

antibody recognition in vivo potential due to the recognition

constraints analyzed with Brewpitopes (Figure 4). Furthermore, to

generate a consensus between linear and conformational

predictions from different tools, the overlapping epitopes were

merged into epitope regions. In the case of S protein, the 14

candidates were merged into seven epitope regions (Figure 3).

As an external control, the epitope regions identified in the S

protein were cross-validated with the epitopes reported at the IEDB

database (51). Notably, the regions identified in our pipeline were

all encountered among IEDB annotated epitopes, which confirms

the validity of our predictions. However, our epitope regions

represented less than 1% of the epitopes for the S protein listed in

the IEDB. Compared to the initial output from the computational

tools, the final list of prioritized epitopes from our pipeline was

enriched fivefold in validated epitopes from IEDB (p < 2e-4). This

confirms the power of Brewpitopes to refine B-cell epitope

computational predictions to a reduced set of epitopes with

greater probability for in vivo antibody recognition (Figure 3).

To extend our proteome-wide analysis of SARS-CoV-2, we used

Brewpitopes to search for other epitopes and antigenic viral

proteins with antibody recognition potential. Overall, 4/15 of the
FIGURE 2

Brewpitopes pipeline. Linear and conformational epitope predictions are performed using Bepipred2.0, ABCpred, and Discotope2.0. Epitope
extraction is customized in each tool’s output using Epixtractor. Extracted epitopes are standardized using Epimerger. Subsequently, Brewpitopes
implements three in silico predictors of biophysical constraints for in vivo antibody recognition: subcellular location, glycosylation coverage, and
surface accessibility. Protein topology information to determine subcellular location can be uploaded into Brewpitopes using annotated data or via
CCTOP predictions (.xml output) using Epitopology. Predicted epitopes located in extracellular regions are selected. Intracellular and transmembrane
epitopes are discarded. Glycosylation patterns of target proteins are predicted with Net-N-Glyc and Net-O-Glyc and the output is used by Epiglycan
to label all predicted epitopes containing one glycosylated residue as “glycosylated” and candidates not containing glycosylated positions as “non-
glycosylated”. Epitope accessibility on the 3D surface of the parental protein structure is computed via compute_asa.icm (Molsoft - ICM Browser)
and a PDB file obtained from a crystal structure or a computational model. Predicted RSA values are used by Epiaccess to label fully accessible
epitopes as “accessible” (all residues RSA ≥ 0.2) and candidates containing at least one buried residue as “buried” (RSA < 0.2). The filtering of the
candidate epitopes according to the predicted biophysical constraints (labeled as “extracellular”, “non-glycosylated”, and “accessible”) is performed
by Epifilter. Curated candidates predicted by different tools will result in overlapping epitopes that are merged into epitope regions
using Epiconsensus.
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remaining proteins contained candidate epitopes for neutralizing

antibodies (R1AB, R1A, AP3A, and ORF9C) (Table 2). The

remaining proteins (11/15) did not contain epitopes due to their

major intraviral location (NS7A, NS7B, ORF3D, ORF3C, ORF9B,

ORF3B, NS8, NS6, M, E, and N) and the absence of predicted

epitopes in their short extracellular regions.

Within the proteins that contained curated epitopes, R1AB and

R1A stood out, including 479 and 348 epitopes, respectively. The

large numbers of epitopes predicted in these proteins is mainly

explained by their long sequences, 7,096 and 4,405 amino acids,

respectively. Remarkably, R1A corresponds to the N-terminal

region of R1AB explaining the high degree of shared predictions.

R1AB is a complex polyprotein cleaved into 15 chains. In this

analysis, all the chains were analyzed together using the standard

R1AB UniProt sequence. On the other hand, we could also identify
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epitopes located in shorter proteins as ORF9C and AP3A.

Accordingly, these presented a lower number of predicted

candidates. In terms of epitope regions, R1AB contains 62

regions; R1A, 46 regions; ORF9C, 2 regions; and AP3A, 1 region.

Altogether, these results corroborate that four SARS-CoV-2

proteins other than S have at least one candidate epitope region

with in vivo antibody recognition potential.
Analysis of epitope conservation in the S
protein of variants of concern

We studied the effect of mutations accumulated in the S protein

of the VOCs (Alpha, Beta, Delta, Gamma, and Omicron) of SARS-

CoV-2 in the development of immune escape mechanisms
FIGURE 3

Epitope refinement for SARS-CoV-2 Wuhan S protein. The x-axis represents the filtering steps of the pipeline. The y-axis displays the number of
epitopes refined by each filtering step of Brewpitopes.
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implementing Brewpitopes on the S protein sequences of the

different variants (Table S1; Figure 5). We generated tailored

FASTA files including the mutations of each variant and we

retrieved the structures from PDB when available. For the

Omicron variant, we modeled its structure using Modeller (30).

Once we had run Brewpitopes, we compared the final number of

epitopes with neutralizing potential identified in each variant with

the epitopes generated by our analysis of the Wuhan S protein,
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considered the wild type. Concretely, we aimed at identifying

epitope losses due to the presence of mutations, the appearance of

new glycosylation sites and structures changed, leading to new

buried positions. Additionally, we accounted for newly predicted

epitopes generated by unique mutations of each variant. To

compare epitope regions in WT versus those of the VOCs, the

length of these epitope regions was added and divided by the total

length of the S protein to obtain a protein-wide epitope coverage
FIGURE 4

Visualization of predicted epitope location on the 3D structure of SARS-CoV-2 S protein to compare the initially predicted epitopes versus the
epitopes refined by Brewpitopes. This representation depicts the shrinkage of the region to be explored and experimentally validated since unrefined
predictions represent a much larger surface than the epitopes refined by Brewpitopes. Left: Front view of the S protein 3D structure. Right: Top view.
All the epitopes were only labeled on the chain A of the S protein for visualization purposes (blue). The epitope regions 6 and 7 were not displayed
because they escaped the limits of the represented structure. Owing to the large number candidates predicted by ABCpred, only the best scored
candidates of this software were included in the 3D representation.
TABLE 2 Epitope refinement on SARS-CoV-2 proteome.

Protein UniProt ID Predicted Epitopes Curated Epitopes Epitope Refinement (%) Epitopic Regions

Spike P0DTC2 219 12 5.5 7

E-protein P0DTC4 10 0 0 0

N-protein P0DTC9 115 0 0 0

M-protein P0DTC5 22 0 0 0

R1AB P0DTD1 1,111 479 43.1 62

R1A P0DTC1 668 348 52.1 46

AP3A P0DTC3 17 2 11.8 1

NS6 P0DTC6 13 0 0 0

NS7A P0DTC7 15 0 0 0

NS7B P0DTD8 2 0 0 0

NS8 P0DTC8 14 0 0 0

ORF3B P0DTF1 0 0 0 0

ORF3C P0DTG1 1 0 0 0

ORF3D P0DTG0 12 0 0 0

ORF9B P0DTD2 12 0 0 0

ORF9C P0DTD3 9 4 44.44 2
Predicted epitopes correspond to the number of epitopes obtained using individual linear and structural predictors. Curated epitopes refer to refined epitopes obtained using Brewpitopes. Epitope
refinement is the percentage of curated epitopes over the initial number of predicted epitopes obtained using individual state-of-the-art tools. Epitope regions result from the integration of
overlapping predictions by different tools.
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metric. In other words, this metric is the fraction of the protein

sequence that is covered by predicted epitopes. This analysis

predicted an epitope coverage of 9.43% for the WT S variant.

To visualize the accumulation of mutations in the VOC’s S

protein, we calculated the intersections of shared mutations

between variants (Table S1; Figure S1). Accordingly, the UpSet

plot shows how the Omicron variant accumulates the largest

number of mutations (4), of which 28 are exclusive. Gamma

accumulates eight unique mutations; Delta, seven mutations; Beta,

six mutations; and Alpha, four mutations. Also, the degree of shared

mutations between variants is low, with Alpha and Omicron being

the variants that share more mutations, with four. The other VOC’s

pairs share a single mutation while the intersection of all variants

also points to a single foundational mutation. This high diversity in
Frontiers in Immunology 0992
the mutations accumulated in S protein across variants points

towards separate evolutionary paths. This phenomenon can

derive into variant-specific immune evasion mechanisms such as

decreased antibody recognition. The fact that Omicron accumulates

more than three times more mutations at S than the remaining

VOCs indicates a greater potential for epitope disruption.

The accumulation of more variant-specific mutations in the S

protein than shared mutations (Figure S1; Table S1) implies a

potential development of specific epitope landscape in each

variant (Tables 3, 4). Additionally, these variant landscapes are

likely to differ from the patterns observed in the WT Wuhan

variant. Considering epitope region conservation against the wild-

type virus, the Alpha variant loses ER7; the Beta variant loses ER4

and ER7 but gains an epitope region at 828–845; the Gamma
FIGURE 5

Epitope refinement for the S protein of the Omicron variant. The x-axis represents the steps of the Brewpitopes pipeline and the y-axis denotes the
number of epitopes selected by each filtering step of Brewpitopes (Figure 2). Omicron’s epitope yield obtained with Brewpitopes (six epitope
regions) is lower than Wuhan WT’s yield (seven epitope regions).
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variant loses ER2, ER3, and ER4; the Delta variant loses ER3,

ER4, and ER6 but gains ER1, ER5, and ER8; and the Omicron

variant loses ER2, ER3, and ER4 partially and ER7 entirely

(Table 4; Figure 5).

In terms of epitope coverage, the major loss is prediction on

Gamma (4%) and Omicron (2%) variants while Alpha and Beta loss

is less than 1.5%. Differently, Delta gains 0.5% in epitope coverage

in respect to WT due to the prediction of a large epitope. The

differences in variant epitope landscape can be attributed to partial

losses in antibody recognition. However, using Brewpitopes, a core

of epitope regions conserved across variants could be

identified (Table 5).
Discussion

In vivo antibody recognition is constrained by molecular

features not frequently integrated in state-of-the-art B-cell

epitope predictors. These include extracellular location of the

epitope, absence of glycosylation coverage, and surface

acce s s ib i l i t y on the paren ta l pro te in (Tab le 1) . In

Brewpitopes, we have implemented these features as filters to

refine bioinformatic B-cell epitope predictions. Thus,

Brewpitopes optimizes in vivo antibody recognition properties

of predicted epitopes. The proteome-wide SARS-CoV-2

analysis demonstrates the obtainment of a refined set of

epitopes with neutralizing potential in S protein and its

conservation in VOCs (Alpha, Beta, Delta, Gamma, and

Omicron). Additionally, we identified four proteins with

candidate epitope regions for neutralization studies. As

exemplified in this study, Brewpitopes is a ready-to-use tool

to enhance the accuracy and response rates of bioinformatic B-

cell epitope predictions for future public health emergencies

such as the appearance of vaccine-resistant SARS-CoV-2

variants and other pathogenic threads.

Profiling of the B-cell epitope landscape in SARS-CoV-2 has

been a research-intensive topic since the start of the COVID-19

pandemic for its implications in vaccine and therapeutic
Frontiers in Immunology 1093
antibody development (Table 1) (14–22, 52, 53). However,

none of the proposed strategies jointly integrates the

prediction of subcellular location, glycosylation status, or 3D

accessibility of the epitope as factors influencing antibody

recognition. For this reason, Brewpitopes is a first-in-class

pipeline thanks to a streamlined implementation of in silico

predictors of biophysical constraints. Furthermore, the

available methods can only predict linear or conformational

epitopes separately, whereas with Brewpitopes, we propose an

integration of both types of predictions into linear epitope

regions using the Epiconsensus tool.

The filters implemented in Brewpitopes are based on

computational predictions, such as CCTOP for subcellular

location of protein regions or Net-N-glyc and Net-O-glyc for

glycosylations. The usage of bioinformatic tools expands the

applicability of Brewpitopes enabling ab initio predictions on the

proteome of understudied organisms or new pathogens. These tools

preclude the requirement of previous protein topology,

glycosylation, and accessibility of experimental determinations.

Thus, Brewpitopes can be implemented rapidly and without large

resource requirements. However, relying on bioinformatic

predictions inevitably implies at least a minimal degree of

false positives and false negatives among the curated and

discarded candidates.

In the case of glycosylation predictions, the dynamics of

this type of PTM or its effects on neighboring epitopes cannot

be assessed in silico using a sequence-based approach as

Brewpitopes. In terms of structural accessibility, many

candidates predicted by individual tools used in this study

contained buried residues. This can limit the recognition of

the candidates as compared to fully accessible epitopes (47). To

minimize this effect, in Brewpitopes, we discard all epitopes

containing a single buried residue (RSA <0.2). This criterion is

the most stringent filter of the pipeline. In the case of S protein,

it downsized the number of candidates from 137 to 14 (Figure 3;

Table 2). As expected, after the implementation of this stringent

filter, a proportion of epitopes discarded may still have

antigenic activity. Still, since the objective of the pipeline is to
TABLE 3 Epitope refinement on S protein in Wuhan and Alpha, Beta, Delta, Gamma, and Omicron variants.

Variant ID
Predicted
Epitopes

Curated
Epitopes

Epitopic
Regions

Epitope Refine-
ment (%)

Epitope
Conservation
(%)

Epitopic
Region
Conservation
(%)

Wuhan-2 WT 219 12 7 5.5 100 100

Alpha B.1.1.7 206 13 6 6.3 108.3 85.7

Beta B.1.351 225 11 6 4.9 91.7 85.7

Delta P.1 213 15 7 7 125 100

Gamma B.1.617.2 214 6 5 2.8 50 71.4

Omicron B.1.1.529 230 11 6 4.8 91.7 85.7
Predicted epitopes correspond to the number of epitopes obtained using individual linear and structural predictors. Curated epitopes refer to refined epitopes obtained using Brewpitopes. Epitope
refinement is the percentage of curated epitopes over the initial number of predicted epitopes obtained using individual state-of-the-art tools. Epitope regions result from the integration of
overlapping predictions by different tools.
Epitope conservation refers to the percentage of refined epitopes shared between each variant and theWT S protein. Epitope region conservation refers to the percentage of epitope regions shared
between each variant and the WT S protein.
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TABLE 4 Epitope regions identified in the WT S protein using Brewpitopes compared to the epitope regions of the variants of concern.

Mutations Glycosilations Buried

NA NA NA

NA NA NA

NA NA NA

NA NA 472, 475, 487, 488, 491

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

Mutations Glycosilation Buried

NA NA

NA NA 168

NA NA 241*

E484K NA 472, 475, 480, 487, 488, 491

NA NA NA

NA NA NA

NA NA 806*

NA NA NA

NA NA NA

NA NA NA

Mutations Glycosilations Buried

L18F, T20N 17 NA
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Variant Wuhan_2 Alpha

Epitope Region 1 NA NA

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 164-TFEYVSQPFLMDLEGKQGNFK-184

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 248-PGDSSSGWT-256

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA NA

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 620-AIHADQLTPTWRVYSTGSNVFQT-642

Epitope Region 7 809-PSKPS-813 NA

Epitope Region 8 NA 828-AGFIKQYGDCLGDIAARD-845

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176 1152-YFKNHTSPDVDLGDISGINASVVNIQKE-1179

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1192-ESLIDLQELGKYEQYI-1207

Variant Wuhan_2 Beta

Epitope Region 1 NA NA

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 176-LMDLEGKQGNFK-187

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 249-GDSSSGW-255

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA NA

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 620-AIHADQLTPTWRVYSTGSNVFQT-642

Epitope Region 7 809-PSKPS-813 NA

Epitope Region 8 NA 828-AGFIKQYGDCLGDIAARD-845

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176 1152-YFKNHTSPDVDLGDISGINASVVNIQKE-1179

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1192-ESLIDLQELGKYEQYI-1207

Variant Wuhan_2 Gamma

Epitope Region 1 NA NA
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TABLE 4 Continued

Mutations Glycosilations Buried

NA NA 168

NA NA 244, 246, 258

E484K NA
473, 475, 476, 487, 488,

489, 491

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

utations Glycosilations Buried

T19R NA NA

NA NA 173

NA NA NA

T478K NA 478

NA NA NA

NA NA 631

NA NA NA

NA NA NA

NA NA NA

NA NA NA

Muts Glycosilations Buried

NA N17 NA

NA NA 172

(Continued)
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Variant Wuhan_2 Gamma

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 NA

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 NA

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA NA

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 621-PVAIHADQLTPTWRVYSTGS-640

Epitope Region 7 809-PSKPS-813 809-PSKPS-813

Epitope Region 8 NA NA

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176 1141-LQPELD-1146//1155-YFKNHTSPDVDLGDISGINASF-1176

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1195-ESLIDLQELGKYEQYI-1210

Variant Wuhan_2 Delta M

Epitope Region 1 NA 14-QCVNLRTRTQ-23

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 NA

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 243-HRSYLTPGDSSSGWTA-258

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA 496-QPTNG-500

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 NA

Epitope Region 7 809-PSKPS-813 807-PSKPS-811

Epitope Region 8 NA 827-ADAGFIKQYGDCLGDIAA-844

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176
1136-

YDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKN-1190

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1193-ESLIDLQELGKYEQYIKWPW-1212

Variant Wuhan_2 Omicron

Epitope Region 1 NA NA

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 178-QGNFK-182
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obtain the greatest immunogenicity enrichment in the refined

candidates; we consider that this filter strongly serves this

purpose. Complementarily, accessibility predictions depend

on optimal structural resolution, which is difficult to obtain

for highly flexible protein regions. To circumvent this, we

labeled these regions as unmodeled, but due to their high

flexibility, these were included as exposed regions and

epitopes predicted within these passed the accessibility filter.

In terms of software flexibility, Brewpitopes is built upon

Discotope2.0, and Bepipred2.0, which, during the pipeline

development and SARS-CoV-2 analysis, were considered state of

the art by the IEDB analysis resource tool (51). ABCpred was also

included in the analysis, but it can no longer be considered a

cutting-edge method. Accordingly, Brewpitopes succeeds in

discarding a major quantity of candidates predicted by this tool.

In addition, Brewpitopes ’ design flexibil i ty enables a

straightforward integration of new state-of-the-art methods and

can be easily maintained to keep up with the fast evolution pace of

the field.

While Brewpitopes can be applied to any protein or organism,

given the wealth of SARS-CoV-2 data and biomedical interest, we

focused on the analysis of this virus. We performed a proteome-

wide analysis of the epitope landscape in SARS-CoV-2 to obtain a

curated list of epitopes with neutralizing potential. To study the

immune evasion mechanisms by SARS-CoV-2, we predicted the

epitope profiles of WT S protein and we assessed how these were

affected by variant-specific mutations. This comparison led to the

discovery of six epitope regions conserved across variants, which

could explain the conserved protection of vaccinated patients

against new variants (54). In this line, the restrictive nature of

Brewpitopes’ filtering criteria led to a significant reduction of

predicted epitopes on the S protein to be validated. This study

serves as an example of the value of the pipeline in terms of

experimental resource optimization.

The identification of potentially neutralizing epitopes in

R1AB, R1A, AP3A, and ORF9C highlights the importance of

studying proteome regions with low variability. Despite the fact

that these proteins are not considered key for viral survival and

cellular entry, the presence of extracellular regions accessible for

antibody recognition supports their neutralizing potential. The
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TABLE 5 Epitope coverage of the WT S protein versus variants
of concern.

Variant Epitope Coverage (%)

Wuhan_2 9.43

Alpha 9.03

Beta 8.17

Delta 10.13

Gamma 5.42

Omicron 7.62
Epitope coverage is the percentage of the total protein sequence (the S protein) that is covered
by curated epitope regions predicted using Brewpitopes. It estimates the antigenicity potential
of a protein. The loss of epitope coverage in variants of concern is a proxy to estimate their
immune escape potential due to the loss of in vivo antibody neutralization.
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restricted viral evolution of these proteins can limit the

advantage of variants in terms of antigen drift and immune

escape while leading to greater vaccine protection rates.

Despite losses in epitope coverage observed in S protein

variants, Brewpitopes could identify several epitope regions

shared across variants. This finding has beneficial implications

for vaccine efficacy versus new VOCs. Brewpitopes reported a

lower epitope coverage loss for Omicron than for the Gamma

variant. The epitope coverage loss predicted in Omicron versus

Wuhan could partially explain the large loss of neutralization

against this variant reported by previous studies (55).

Discordances between neutralization studies (55) and the

results of Brewpitopes can be explained by relevant differences

between in vitro and in silico methods. As aforementioned,

Brewpitopes’ stringency could discard a proportion of truly

antigenic epitopes and thus underrepresent the neutralization

loss observed in Omicron.

Brewpitopes is a pipeline that refines bioinformatic B-cell

epitope predictions straightforwardly for use against any target

protein or organism’s proteome. The integration of multiple

state-of-the-art B-cell epitope algorithms coupled with the

addition of ab initio predictions of important features for in vivo

antibody recognition is a relevant advantage over existing pipelines

and individual predictors. Furthermore, implementing Brewpitopes

to the proteome of SARS-CoV-2 Wuhan WT variant versus VOCs,

we have identified an epitope core in S protein conserved across

variants and new antigenic regions in four SARS-CoV-2 proteins

less prone to immune escape due to lower immune pressure and

antigenic drift rates.

In conclusion, Brewpitopes is a streamlined pipeline that

assesses biophysical properties not accounted for in state-of-the-

art B-cell epitope predictors. The usage of in silico predictors of

subcellular location, glycosylation status, and surface accessibility

has been demonstrated as crucial to enrich the neutralization

potential of predicted epitopes in SARS-CoV-2.
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SUPPLEMENTARY FIGURE 1

Mutations accumulated in the protein S of the Variants of Concern Alpha,

Beta, Delta, Gamma and Omicron. Representation of unique and shared
mutations of each variant. Total mutations per each variant are displayed in

the lower barplot. The accumulation of mutations in the S protein of viral
variants can be linked to a greater potential of immune escape due to the

potential disruption of epitopes caused by changes in the sequence. Omicron

stands out accumulating the 3 times more mutations than other variants.

SUPPLEMENTARY TABLE 1

Amino acid changes and sequence position of mutations in the S protein of

variants of concern.

SUPPLEMENTARY TABLE 2

Comparison of glycosylation sites in S protein determined by MS or predicted
using computational tools. Experimental sources include mass spectrometry

glycosylation studies. In silico glycosylation sites were predicted using
computational tools (Net-N-Glyc and Net-O-Glyc).
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PANDORA v2.0: Benchmarking
peptide-MHC II models and
software improvements

Farzaneh M. Parizi1,2†, Dario F. Marzella1†,
Gayatri Ramakrishnan1, Peter A. C. ‘t Hoen1,
Mohammad Hossein Karimi-Jafari2* and Li C. Xue1*

1Medical BioSciences Department, Radboud University Medical Center, Nijmegen, Netherlands,
2Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran,
Tehran, Iran
T-cell specificity to differentiate between self and non-self relies on T-cell

receptor (TCR) recognit ion of pept ides presented by the Major

Histocompatibility Complex (MHC). Investigations into the three-dimensional

(3D) structures of peptide:MHC (pMHC) complexes have provided valuable

insights of MHC functions. Given the limited availability of experimental pMHC

structures and considerable diversity of peptides and MHC alleles, it calls for the

development of efficient and reliable computational approaches for modeling

pMHC structures. Here we present an update of PANDORA and the systematic

evaluation of its performance in modelling 3D structures of pMHC class II

complexes (pMHC-II), which play a key role in the cancer immune response.

PANDORA is a modelling software that can build low-energy models in a few

minutes by restraining peptide residues inside the MHC-II binding groove. We

benchmarked PANDORA on 136 experimentally determined pMHC-II structures

covering 44 unique ab chain pairs. Our pipeline achieves a median backbone

Ligand-Root Mean Squared Deviation (L-RMSD) of 0.42 Å on the binding core

and 0.88 Å on the whole peptide for the benchmark dataset. We incorporated

software improvements to make PANDORA a pan-allele framework and

improved the user interface and software quality. Its computational efficiency

allows enriching the wealth of pMHC binding affinity andmass spectrometry data

with 3D models. These models can be used as a starting point for molecular

dynamics simulations or structure-boosted deep learning algorithms to identify

MHC-binding peptides. PANDORA is available as a Python package through

Conda or as a source installation at https://github.com/X-lab-3D/PANDORA.
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peptide:MHC, MHC class II, peptide binding, 3D structures, large-scale 3D modelling
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1 Introduction

The ability of T-cells to recognize and eliminate infected or

transformed cells relies on their ability to distinguish between self

and non-self peptides presented by the Major Histocompatibility

Complex (MHC) on the surface of these cells. Upon recognition of a

non-self peptide by T-cell receptors (TCR), T-cells activate and

initiate an immune response. MHC class I (MHC-I) molecules

typically present intracellular antigens to cytotoxic CD8+ T-cells,

which eliminate the cell presenting the antigen. MHC-II molecules

present extracellular antigens to helper CD4+ T-cells, which assist

other immune cells by releasing cytokines and orchestrating the

immune response (1, 2). To unravel the mechanisms of peptide

presentation to T-cells and immune response, it is essential to

investigate how peptides bind to MHC molecules.

Understanding the mechanism of peptide-MHC (pMHC)

binding raises an intriguing research question regarding how

MHC molecules effectively bind to a wide range of peptides while

maintaining strong binding and specificity. Previous research

focusing on the structural aspects of pMHC complexes has

provided valuable insights into our understanding of antigen

presentation specificity (3) and peptide binding dynamics (4, 5).

Allele-specific residues at anchor positions and complementary

pockets in the MHC molecule play a significant role in

determining the promiscuity and specificity of peptide recognition

by MHC molecules (6, 7). Notably, the presence of hydrophobic

anchors and the formation of hydrogen bonds have been discovered

to stabilize the pMHC-II interaction (8, 9). Similarly, in the case of

MHC class I, peptide-dependent stability is achieved through the

establishment of conserved hydrogen bonds at the N and C termini

of peptides, along with anchor residues that fit into pockets of MHC

class I (10, 11). Furthermore, structural investigations have

provided insights into other mechanisms, such as the molecular

basis of autoimmune diseases (10) and T-cell recognition (11, 12).

The knowledge gained from structural studies has also facilitated

the design of novel therapies and can help the development of
Frontiers in Immunology 02101
effective vaccine strategies (13, 14). Therefore, access to structural

information on pMHC is crucial for these advancements.

This work focuses on pMHC-II binding. MHC-II is crucial in

antigen presentation, particularly for extracellular antigens.

Additionally, MHC-II mediated CD4+ T-cell responses are

reported to account for the predominant immune responses

following cancer vaccine treatment (15–18). The MHC-II

complex consists of two membrane-anchored chains: an a- and

b-chain (Figure 1), and it can bind peptides up to 25 residues in

length (20, 21). The binding groove of MHC-II can hold a 9-mer

core (22). The residues outside the groove form the Peptide

Flanking Regions (PFR), namely the left (N-terminus) and right

(C-terminus) PFRs. A peptide is kept in place within the groove by

three or four main conserved binding pockets: Pockets 1, 4, 6, and 9

(Figure 1A, and alongside these, there are smaller auxiliary anchor

pockets (23, 24).

To accommodate a diverse range of antigens within the MHC

groove, the MHC locus stands out as the most polymorphic region

in the human genome (2, 25). With over 10,754 alleles for MHC

class II, there is a significant variation in MHC-II alleles and the

peptides they can bind (26). Unfortunately, only a few pMHC-II

structures have been experimentally resolved [about 240 entries in

the PDB, the Protein Data Bank (27)]. This necessitates the

development of fast, structure-based computational modeling

methods to overcome the scarcity of available pMHC-II

structures. However, only a few modeling methods have been

explicitly developed for pMHC-II complexes.

Most existing pMHC-II modelling methods rely on grid-based

docking, including pDock and EpiDock (28–33). Among them,

pDock has demonstrated improved performance in generating

peptide core conformations bound to MHC-II. The pDock’s

approach involves receptor modeling followed by flexible peptide

docking into the binding groove while retaining its starting

conformation using loose restraints. Current pMHC-II modeling

approaches are often limited in terms of usability due to: 1) long

computation times; 2) the use of closed-source software; 3) limited
BA

FIGURE 1

Overview of the pMHC-II complex (A) Representation of an MHC-II molecule by its accessible surface area, visualized with Protein Imager (19).
MHC-II consists of an a-chain (light blue) and a b-chain (dark blue). Shown are the four characteristic pockets in the binding groove (P1, P4, P6, and
P9), occupied by the corresponding peptide (orange) anchor residues. As modeling restraints (yellow), PANDORA uses the atomic contacts between
the peptide anchor residues and the MHC-II pockets. (B) Cartoon representation of pMHC-II. The peptide binding groove consists of two a-helices
on a floor of b-sheets, in which the peptide resides (PDB ID: 1DLH).
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coverage of diverse MHC alleles; and 4) uncertainty regarding the

quality of PFR conformations. Additionally, structural modelling of

pMHC-II complexes is fraught with challenges. It is not always clear

which region of a peptide forms the core and is directly anchored to

the MHC-II receptors (34, 35). Existing methods, such as

NetMHCIIpan-4.0 (36), can provide reasonably accurate

predictions for the binding core. Furthermore, the flexibility of

PFRs poses additional hurdles. To address these challenges, the

development of fast and pan-allelic pMHC-II modelling software is

required to integrate prediction of the binding core and generation

of plausible conformations for the entire peptide bound to MHC-II.

We present here the utility and performance of our pMHC

modelling software, PANDORA v2.0, for pMHC-II modeling and

its new version updates. We have earlier demonstrated

PANDORA’s reliable performance for modeling pMHC-I

complexes (37, 38). PANDORA leverages two pieces of domain

knowledge: 1) the high conservation of MHC structures and 2) the

anchoring of peptides to the main pockets of MHC molecules

(Figure 2). We benchmarked PANDORA on 136 experimentally

resolved pMHC-II structures, including mouse alleles. When

compared with an existing pMHC-II modelling technique, pDock

(32), and also with AlphaFold (39), we show that PANDORA

outperforms these methods in terms of generated model quality

and computational efficiency. Additionally, we evaluate the

effectiveness of the anchor prediction tool used in our approach

(NetMHCIIpan-4.0). PANDORA’s quality and speed show the

potential for boosting structure-based Deep Learning (DL)
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algorithms, making it a valuable tool in developing effective

vaccine designs. We also discuss the existing limitations of anchor

predictions and propose the integration of a structural and physics-

based anchor predictor as a potential solution. Furthermore,

we highlight the importance of further research in the

modeling of post-translational modifications (PTMs) on peptide-

MHC interactions.
2 Materials and methods

2.1 Structural template set building

Building the template dataset is similar to our previous work

(37) and is expanded to make it suitable for pMHC-II. PANDORA

retrieved structures of pMHC-II complexes from IMGT/

3Dstructure-DB (40) and filters for those with peptides of lengths

between 7 and 25 residues. Structures including the DM chaperone

and the CLIP peptide, both known to affect the MHC-II

conformation, are discarded (21, 41). The MHC-II alpha chain is

renamed as chain “M” and the beta chain is renamed as chain “N”

to make a distinction from MHC-I b2-microglobulin which is

renamed as chain “B”. The peptide chain is renamed as chain

“P”. For the benchmark experiment presented in this work, the

parsing resulted in a total of 136 pMHC-II templates, spanning over

32 a chain alleles, 81 b chain alleles, and a total of 44 unique MHC-

II ab pairs (see details in Supplementary Table S1).
FIGURE 2

Overview of the PANDORA pMHC modelling framework. PANDORA as an integrative modelling protocol, leverages two domain knowledge aspects:
the highly conserved nature of MHC structures and the binding of peptides to MHC pockets with anchor residues. PANDORA takes the sequence
information of a target peptide and MHC as input and selects a template pMHC structure from a template set based on sequence similarity. The
target peptide core is superposed onto the template peptide core. In flexible mode, it applies distance restraints for anchor residues. The framework
performs loop modeling of flexible regions and energy minimization of pMHC-II conformations. Conformations are ranked to select those
resembling the near-native conformation.
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2.2 BLAST databases generation

BLAST (v2.10) is used to assign allele names (needed by

NetMHCIIpan-4.0 for predicting binding cores) to the MHC

sequences provided by the user and, independently, for the

template selection step. The current version of PANDORA uses

two BLAST databases. The first one (BLAST-DB1) is generated

from the manually curated MHC sequences taken from https://

www.ebi.ac.uk/ipd/, and it is used to assign the allele name to any

MHC sequence provided by the user. This allele name will later be

used as input for NetMHCIIpan4.0 to predict the binding core (see

Template selection). The second one (BLAST-DB2) is generated

from the template set sequences extracted by the PDB files retrieved

as described above, and it is used for the template selection step.
2.3 Template selection

The template selection step has been updated from the first

version of PANDORA (which used allele type names to identify

templates) to a BLAST-based template selection. First, the target

MHC sequences are queried against the BLAST-DB2 database with

default parameters, and the results are ranked by percentage

sequence identities. Templates sharing the highest sequence

identity with the target sequences are selected and further ranked

by peptide alignment score. Our peptide alignment method

includes alignment of the binding core of the peptides followed

by the addition of gaps at both their termini to account for different

peptide lengths. The binding cores of the templates are derived from

their corresponding structures. The binding core for the query

peptide is predicted by NetMHCIIpan4.0. The peptides’ alignments

are then scored using a PAM30 substitution matrix. The highest-

ranking template is then selected for modeling.
2.4 Modeling

We perform 3D modeling as described previously. For MHC-II,

we restrain four anchor positions (P1, 4, 6, and 9) while keeping the

peptide flanking regions flexible during the modeling step. In the

default mode for pMHC-II cases, the whole peptide core is kept

fixed as the template conformation. PANDORA v2.0 also supports

restraints-flexible modelling mode for the peptide core, where users

can provide anchors’ restraints standard deviation, thereby

specifying the extent of deviation of restraints from those in the

templates in Angstroms. By default, 20 (adjustable) 3D models are

produced, which are ranked by MODELLER’s (42) internal

molpdf score.
2.5 L-RMSD calculation

The L-RMSD is calculated as described in (43) as the backbone

L-RMSD (including only the backbone atoms N, Ca, C, and O). We

calculate “Core L-RMSD” for the binding core residues of the
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peptide, “Flanking L-RMSD” for the flanking regions of the

peptide (i.e., the residues at the N-terminal of the first anchor and

at the C-terminal of the fourth anchor), and “Whole L-RMSD” for

all the residues of the peptide. The lower the L-RMSD, the better a

model is.
3 Results

3.1 Modeling performance on the
benchmark set

We benchmarked PANDORA’s performance in reproducing X-

ray crystal structures of pMHC-II complexes from the template set

(n = 136). We carried out a leave-one-out validation approach

where we iteratively removed a structure from the template

database and allowed PANDORA to predict the pMHC-II

complex using sequence and anchor information. To rule out the

impact of anchor predictions, the anchor positions provided to

PANDORA in this experiment were obtained from the target

experimental structure to assess the modelling quality (see

discussion on anchor prediction effects in the “NetMHCIIpan’s

anchor prediction” section).

We analyzed the distribution of the best model (i.e, the model

with the lowest L-RMSD) conformations obtained for the whole

and core peptide regions (Figures 3A, C, E; detailed information on

different RMSD values is reported in Supplementary Table S2). The

results demonstrate that for 91.1% (125 out of 136) cases,

PANDORA was able to sample at least one high-quality model

(whole peptide L-RMSD < 2 Å) with an overall mean L-RMSD of

1.11 ± 0.86 Å (i.e, Figure 3B). A small number of cases (11 out of

136) showed a relatively higher whole peptide L-RMSD of > 2 Å (see

Figures 3E, F, and “The PFR Conformation Evaluation” section).

We investigated the distribution of whole and core L-RMSDs over

various peptide lengths, as illustrated in Figure 3A. Our analysis

reveals a correlation between peptide lengths and the L-RMSD

values, with longer peptides exhibiting higher L-RMSD values

(Supplementary Figures S1A, B).

Furthermore, in terms of model ranking, we examined the

performance of PANDORA by reporting L-RMSD for the top-

ranked model (i.e., the conformation ranked as the top model using

molpdf scoring function) (Figures 3D, F; for details, see

Supplementary Figure S2). Our results show that PANDORA

achieved an 85% success rate (L-RMSD < 2 Å) for the top 5

ranked models in the entire template set.
3.2 PANDORA generates low-energy
conformations for the binding core

With four anchor positions in the binding groove, the structure

of pMHC-II is well-suited for a restraint-based modelling approach.

With the default mode (see Modelings in Methods), PANDORA

demonstrates high accuracy in reproducing high-quality core

conformations, with an average core L-RMSD of 0.49 ± 0.27 Å
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(93.38% of the cases having an L-RMSD < 1 Å) (Figures 3C, E). The

fully-flexible mode, which allows for flexibility in the peptides’

binding core, yielded an average core L-RMSD of 0.47 ± 0.2 Å

(Supplementary Figure S3). However, the restraints-flexible mode

increases the computational time by 90%, while marginally

enhancing the overall quality (~ 6.46 min/case in the fully flexible

mode vs. 3.75 min/case in the default mode).
3.3 Comparisons with AlphaFold
and pDock

We compared PANDORA’s performance against existing

approaches, such as pDOCK (32) and AlphaFold (39). To assess

the general performance of the pipeline, we used NetMHCIIpan’s

predicted anchor positions for this comparison.

pDock uses the ICM (Internal Coordinate Mechanics)

algorithm to perform a flexible peptide docking into the MHC

binding groove. During docking, the position of the peptide is only

loosely constrained so that it retains a conformation close to its

initial structure. For comparisons against pDock, we modeled

pMHC-II complexes using PANDORA for the cases reported by
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Khan and Ranganathan (32). We obtained a mean L-RMSD of 0.27

± 0.07 Å for Ca core while pDock achieved 0.59 ± 0.24 Å (Table 1).

pDock retained RMSD estimates by redocking experimental pMHC

X-ray structures; thus, the core residues are referred to as a priori.

PANDORA automatically predicts anchor residues (using

NetMHCIIpan-4.0 (36)) and a suitable template, generating

higher-quality peptide core conformations. We did not use pDock

to perform cross-docking on our template set since pDock is not

publicly available for download and usage.

We also compared PANDORA with one of the best AI methods

available for protein structure predictions, i.e., AlphaFold. AlphaFold

is an advanced deep neural network approach that achieves

unprecedented accuracy in protein folding predictions (44).

However, since AlphaFold relies on sequence conservation

information, it performs poorly on proteins where such

information is absent, such as antibody-antigens and peptides (e.g.,

synthetic peptides or frame-shift mutated peptides) (45). For an

objective comparison, we chose to use a version of AlphaFold that

also uses templates to predict MHC structures (colabfold (44)). Our

comparison shows that not all Alphafold-generated pMHC-II

conformations have the correct anchor positions. Out of four

randomly selected cases (Figures 4A–D), in two cases (PDB ID:
B

C D E F

A

FIGURE 3

Benchmark results on reproducing 136 pMHC-II complexes with X-ray structures. (A) Sampling performance of the PANDORA benchmark
experiment. The conformation with the lowest RMSD was chosen as the best RMSD model. A circular bar plot grouped based on peptide length
(represented by the numbers in the inner circle) reports the lowest backbone L-RMSD (Y-axis) for the whole peptide (navy) and binding core
(yellow). (B) An example of an average-quality 3D model generated by PANDORA. The target peptide (PDB ID: 4I5B) is marked in green; the template
structure (PDB ID: 2OJE) is marked in magenta; and the PANDORA model structure (best conformation among the top 5 ranked) is marked in
darkblue. (C, D) Histogram of the lowest backbone L-RMSD models in the peptide binding core vs. the whole peptide. (E, F) Complete performance
of PANDORA (modeling + scoring). Histogram for the top-ranked models by PANDORA in terms of backbone L-RMSD on the peptide binding core
vs. the whole peptide.
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3C5Z and 6PX6), AlphaFold was unsuccessful in predicting the

peptide’s conformation with the correct anchor residues

(Figures 4A, C). Notably, they were both part of AlphaFold’s

training set. This is mainly because PANDORA correctly identified
Frontiers in Immunology 06105
the binding core for the four cases using NetMHCIIpan binding

core predictions (see “NetMHCIIpan4.0 performance” in the

next section).

Additionally, considering computational cost, PANDORA

outperforms AlphaFold (regarding resources) and pDock.

PANDORA is much more efficient considering template selection,

anchor prediction, and modeling require ~3-4 minutes (from 3.75 to

6.46 minutes per case, depending on the mode, with shorter times for

pMHC-I) on one core from an Intel(R) Xeon(R) Gold 6142 CPU @

2.60 GHz. While pDock reported requiring 10 minutes for modeling

on 2 CPUs 3.20 GHz (without homology modelling). Also, AlphaFold

requires a significant amount of computation power-up to 18 GB of

GPU power and 20 minutes to model a single pMHC case.
3.4 The impacts of binding core prediction
on PANDORA model quality

The interaction between the peptide binding core and the MHC

binding groove directly impacts the quality of a model; therefore,

choosing the correct binding core is critical. In the absence of user-
TABLE 1 Comparison of PANDORA and pDock in pMHC-II modelling.

PDB PANDORA’s best core Ca
L-RMSD (Å)

pDOCK Ca core L-
RMSD(Å)*

1FYT 0.38 0.35

1KLU 0.30 0.59

1T5W 0.24 0.65

1PYW NA 0.32

1SJE 0.21 0.37

1AQD 0.24 1.01
NA, not available. At this stage, PANDORA could not model one case as the peptide sequence
includes two non-canonical residues not handled by MODELLER.
The calculated core Ca L-RMSD (Å) on modeling 5 pMHC-II complexes using integrative
homology modeling and a grid-based docking method. PANDORA’s best model quality is
compared to pDock as no pDock scoring function was disclosed in pDock so it seems that
pDock reported the best RMSDs in their paper. *Data extracted from Khan &
Ranganathan (32).
B

C
D

A

FIGURE 4

Comparison of PANDORA and AlphaFold in reproducing pMHC-II complexes. The peptide conformations are colored as follows: reference PDB in
green, AlphaFold model in magenta, and PANDORA model in blue. The AlphaFold models were generated by Colab-fold using template-based
modelling (default 5 top models generated). The presented model for AlphaFold and PANDORA is the best model (lowest L-RMSD model) among
the top-5 ranked models. Two overviews of the peptide backbone conformation from two different angles are shown for each case (anchor residues
are shown with side-chains). Overall, AlphaFold models have quite good backbone predictions (probably due to the usage of templates), but in 2 out
of 4 cases, the peptide core conformations are shifted. (A) 24-mer peptide binding to H2-AB1*01 (PDB ID: 3C5Z); however, the predicted core
conformation generated by AlphaFold is shifted by 3 residues; (B) 13-mer peptide binding to HLA-DRA*0101, HLA-DRB1*0401 (PDB ID: 1J8H) the
binding core is accurately identified by AlphaFold (C) 12-mer peptide binding to HLA-DQA1*0201, HLA-DQB1*0201 (PDB ID: 6PX6); however, the
predicted AlphaFold binding core conformation is shifted by 4 residues; (D) 13-mer peptide binding to H2-AB1*01 (PDB ID: 4P23) and the binding
core is accurately identified by AlphaFold. Considering that (A, B, D) were already in AlphaFold training, it is noteworthy that A is predicted with an
incorrect binding core.
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defined anchor residues, PANDORA uses NetMHCIIpan to predict

the binding core. Hence, we evaluate NetMHCIIpan’s binding core

prediction accuracy by comparing its predictions to known cores

from experimental PDB structures. Our results show that the

anchors were incorrectly predicted in 33 of the 136 cases in the

benchmark dataset. In most cases, the observed shifts were by one

or two residues (26 of 33), but misalignments of up to 8 residues

were also observed (Supplementary Figure S4).
3.5 PANDORA as a pan-allele
modelling method

Owing to the high structural similarity across MHC-II alleles, it

is possible to model pMHC-II complexes using different MHC-II

alleles as templates. Our results show that even when a template

with the same MHC allele type for either of the chains was not

available in the template set (25% of cases), PANDORA was still

able to provide models with a mean L-RMSD of 0.86 Å for the best-

RMSD models and 1.05 Å for the top 10 ranked models (Figure 5).
3.6 Software improvements

PANDORA v2.0 includes major improvements from the

first release:

Frontend (User side):
Fron
- Capability to use MHC-sequence as input instead of only

allele name, leading to much broader allele coverage than

version 1.0.

- Addition of command-line interface for easier accessibility

and bash integration.

- Addition of restraints-flexible modelling mode to avoid small

clashes caused by rigid restraints (see Materials and Methods).

- Improvements in the python user interface.

- Easier software and database installation.

- Addition of an option to remove or keep beta2-microglobulin

in the generated models, as Beta2-microglobulin can be

crucial or not, depending on what the models will be used

for (MD, AI, manual exploration, etc.).
Backend (internal software side):
- BLAST-based template selection instead of allele-name based

template selection.

- Addition of a reference sequence database for allele names

and MHC sequence automatic retrieval.

- The allele name is now automatically retrieved with BLAST

when only the sequence is provided.

- Improvement in the MHC-II template parsing to prevent

multiple structures from being discarded or from missing

the allele name.

- Addition of parallelization and minor optimization

improvements for the template set generation, drastically

increasing its speed.
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4 Discussion

PANDORA is a 3D modelling software for both pMHC-I and

-II. Here we evaluated the performance of PANDORA on reliably

generating peptide conformations binding to MHC class II

complexes alongside the software improvements. We applied

homology-driven restraint-based modelling to reduce the

computational time during sampling (3.75 min/case on one CPU

core). The proposed method was tested on 136 complexes, making

it the largest modeling effort of pMHC-II complexes to date. Our

results show that PANDORA was able to effectively model these

complexes, achieving an 85% success rate (L-RMSD < 2 Å) for the

top 5 ranked models in the entire template set and generating

particularly high-quality peptide core conformations.

PANDORA outperforms pDock (32) and AlphaFold (39)

regarding computational time and core L-RMSD values. PANDORA

incorporates domain knowledge into the modeling. In contrast,

AlphaFold is a general protein structure prediction method that

relies on sequence conservation information, and conservation on

the peptide side has little or no bearing on this binding. Our

comparison shows that not all AlphaFold-generated pMHC-II

conformations have the correct anchor positions. AlphaFold’s higher

computational cost is a major impediment to model millions of

pMHCs, whereas PANDORA is a more practical choice.

PANDORA has the following unique features: 1) Fast: enabling

high-throughput modeling of 3D pMHC-II complexes; 2) Reliable:

generating low-energy models; 3) Efficient: With the use of anchor

distance restraints, it to work on both MHC-I and MHC-II; 4)

Template availability: providing an extensively cleaned template

database of pMHC complexes, valuable for reliable homology

modeling; 5) Highly Modular: It is easy to customize or extend;

6) Pan-allele: User may include MHCs from different species.

PANDORA has a user-friendly interface allowing users to

incorporate new configurations such as 1) more extensive

sampling (especially with longer peptides); 2) specification of

secondary structure restraints (23% of benchmark cases formed

beta-strand PFR, Supplementary Figure S5D); 3) fully fixed mode

vs. flexible mode for the core conformation; 4) Manually defining

the anchor residues; 5) Possibility of changing to other anchor

predictor software. Its highly modular framework (Supplementary

Figure S7) facilitates future community-wide development.

Knowledge of the peptide binding core is required to generate the

pMHC-II complex structure. When the user doesn’t input the anchor

residues’ position, PANDORA currently relies on NetMHCIIpan-4.0

as an anchor predictor (36). This software has a limited, yet large, set

of available MHC alleles to utilize, and it can sometimes fail to predict

the correct binding core (Supplementary Figure S4). Using an anchor

predictor relying on structural and physics-based data could

overcome these limitations for the pMHC anchor prediction,

allowing for more accurate, pan-allelic anchor predictions.

PFR can influence TCR interactions (46–49); introducing a

modeling program to generate credible PFR conformations is an

important step forward. It is important to note that a singular X-ray

structure exclusively depicts only one snapshot of the complex

conformation. This implies that a method could generate a possible
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PFR conformation that is not currently cataloged in the PDB but

holds biological significance. To address this issue, PANDORA

generates an ensemble of near-native conformations (top N-

ranked conformations).

Further work is needed to model the post-translational

modifications (PTM) in peptides binding to MHC, which have

been shown to modulate antigen presentation and recognition (50,

51) and, moreover, PTMs on peptides increase the vast number of

possible pMHC combinations. PTMs have a structural impact on the

stability of pMHC complexes and the consequent modulations of

immune responses (52). Although it has not yet been extensively

evaluated within our framework, we recognize its potential benefits

for the field and remain committed to conducting additional research

and possibly incorporating this method into our future research.

While PANDORA provides energy scores, its primary focus is

on 3D modeling rather than predicting binding affinity, it might be

possible to utilize the energy scores from PANDORA models or

running molecular dynamics on PANDORA models to gain

insights into MHC binding specificities. In addition, PANDORA

can potentially contribute to advancing our understanding of

cancer biology, particularly in unraveling the impact of peptide

mutations on MHC binding and the exposure of peptide side chains

to T-cells or (see * marked cases in Supplementary Tables S1, S2).

Although not intended for neoantigen identification, PANDORA

was used to evaluate the effects of point mutations on a melanoma

tumor antigen. PANDORA accurately modeled both peptides’ side

chains (see Supplementary Figure S6), resulting in high-affinity

energy scores and a slight improvement in mutant binding.

In conclusion, the ability of PANDORA to generate high-

quality peptide conformations within the MHC-II binding groove

lends great reliability to the models employed for analyzing

molecular interactions at the atomic level. Due to PANDORA’s

computational efficiency, initial conformations for molecular

dynamics simulations can be quickly built.

It is now feasible to enrich the actively accumulating wealth of

pMHC binding affinity and mass spectrometry data with physics-

based PANDORA models and aid structure-boosted artificial

intelligence algorithms in identifying antigenic peptides (for example,
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by training the deep learning framework DeepRank on these 3D

models). As such, it can be leveraged to identify cancer neoantigens or

viral antigenic peptides that hold promise as vaccine candidates. It will

therefore pave the way for developing novel cancer immunotherapies.
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FIGURE 5

The effect of modelling with a different template allele-type and its effect on performance. Given two allele-type for each a- and b-chains of the
template and target pMHC-II, 4 different scenarios are compared in each box-plot column; 1) Both allele-type is the same for template and target
(blue); 2) Only the Alpha allele-type the same (green); 3) Only Beta allele-type the same (orange); and 4) both chain allele-types are different (pink).
(A) Best L-RMSD models and (B) Top-ranked models using scoring.
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Refined innate plasma
signature after rVSVDG-
ZEBOV-GP immunization is
shared among adult cohorts in
Europe and North America
Paola Andrea Martinez-Murillo1*, Angela Huttner2,3,4,5,
Sylvain Lemeille1, Donata Medaglini6, Tom H. M. Ottenhoff7,
Ali M. Harandi8,9, Arnaud M. Didierlaurent1†

and Claire-Anne Siegrist1,2† for the VEBCON, VSV-EBOVAC
and VSV-EBOPLUS Consortia
1Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine,
University of Geneva, Geneva, Switzerland, 2Center for Vaccinology, Geneva University Hospitals,
Geneva, Switzerland, 3Division of Infectious Diseases, Geneva University Hospitals,
Geneva, Switzerland, 4Faculty of Medicine, University of Geneva, Geneva, Switzerland, 5Center
for Clinical Research, Geneva University Hospitals, Geneva, Switzerland, 6Laboratory of Molecular
Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena,
Siena, Italy, 7Department of Infectious Diseases, Leiden University Medical Center,
Leiden, Netherlands, 8Department of Microbiology and Immunology, Sahlgrenska Academy,
University of Gothenburg, Gothenburg, Sweden, 9Vaccine Evaluation Centre, BC Children’s
Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
Background: During the last decade Ebola virus has caused several outbreaks in

Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVDG-
ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We

previously identified the first innate plasma signature response after vaccination

in Geneva as composed of five monocyte-related biomarkers peaking at day 1

post-immunization that correlates with adverse events, biological outcomes

(haematological changes and viremia) and antibody titers. In this follow-up

study, we sought to identify additional biomarkers in the same Geneva cohort

and validate those identified markers in a US cohort.

Methods: Additional biomarkers were identified using multiplexed protein

biomarker platform O-link and confirmed by Luminex. Principal component

analysis (PCA) evaluated if these markers could explain a higher variability of

the vaccine response (and thereby refined the initial signature). Multivariable

and linear regression models evaluated the correlations of the main

components with adverse events, biological outcomes, and antibody titers.

External validation of the refined signature was conducted in a second cohort

of US vaccinees (n=142).

Results: Eleven additional biomarkers peaked at day 1 post-immunization:

MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11, TRAIL, RANKL

and IL15. PCA analysis retained three principal components (PC) that

accounted for 79% of the vaccine response variability. PC1 and PC2 were

very robust and had different biomarkers that contributed to their variability.

PC1 better discriminated different doses, better defined the risk of fever and
frontiersin.org01110

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1279003/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1279003/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1279003/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1279003/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1279003/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1279003&domain=pdf&date_stamp=2024-01-03
mailto:paola.martinez@unige.ch
https://doi.org/10.3389/fimmu.2023.1279003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1279003
https://www.frontiersin.org/journals/immunology


Martinez-Murillo et al. 10.3389/fimmu.2023.1279003

Frontiers in Immunology
myalgia, while PC2 better defined the risk of headache. We also found new

biomarkers that correlated with reactogenicity, including transient arthritis

(MCP-2, CXCL10, CXCL11, CX3CL1, MCSF, IL-15, OSM). Several innate

biomarkers are associated with antibody levels one and six months after

vaccination. Refined PC1 correlated strongly in both data sets (Geneva: r =

0.97, P < 0.001; US: r = 0.99, P< 0.001).

Conclusion: Eleven additional biomarkers refined the previously found 5-

biomarker Geneva signature. The refined signature better discriminated

between different doses, was strongly associated with the risk of adverse

events and with antibody responses and was validated in a separate cohort.
KEYWORDS

innate plasma signature, rVSVDG-ZEBOV-GP, biomarkers, adverse events,
immunogenicity
Introduction

Since the identification of the ebolaviruses in 1976, several

outbreaks of Ebola disease have been identified in sub-Saharan

Africa. Ebola virus disease (EVD) induces a high mortality rate (50-

90%) and can result in uncontrolled epidemics, as witnessed in

2014-16 during the largest Ebola outbreak ever reported (1). The

international response to this outbreak supported international

collaborations to test EVD vaccine candidates. rVSVDG-ZEBOV-
GP, the most advanced candidate at that time, is a live-attenuated

vaccine whose vesicular stomatitis virus glycoprotein-encoding

gene has been deleted (VSVDG) and replaced with the Zaire

Ebola virus (ZEBOV-GP) glycoprotein. This vaccine induced

100% protection against EVD in challenged non-human primates

(NHP) (2–4).

rVSVDG-ZEBOV-GP proved safe and immunogenic in

different clinical trials held in the USA, Europe and Africa (5–11),

but induces transient reactogenicity (12). It was shown to be

effective within days in the ring vaccination trial held in 2015 in

Guinea (10) and during the 2018–19 outbreak in the Democratic

Republic of Congo (13). All these findings supported fast tracked

vaccine licensure, resulting in a prequalification by WHO for

rVSVDG-ZEBOV-GP to be used in countries at high risk in 2019

(14), and to its license under the name of Ervebo® by the FDA (15)

and by the EMA (16).

Although rVSVDG-ZEBOV-GP is highly effective against EVD,

only a few studies have explored its principal innate and adaptive

induced immune mechanisms and its ability to induce early protection.

Studies in NHPmodels have demonstrated that antibodies and CD4+ T-

cells are necessary for rVSV-EBOV-mediated protection against lethal

infection, while CD8+ T-cells play a minor role (17). Interestingly,

rVSVDG-ZEBOV-GP induced partial and total protection in NHP as

early as 3 and 7 days after challenge, in absence of detectable antigen-
02111
specific IgG and low IgM-specific serum antibodies (18), suggesting a

role of innate responses in mediating early protection.

rVSVDG-ZEBOV-GP induces a robust innate immune response

characterized by the mobilization of monocytes and natural killer

(NK) cell in humans, and NK cell activation and CXCL10 levels

correlates with antigen-specific antibody responses (8, 19). Similarly,

other rVSV-based vaccines evaluated in NHPs induce the secretion of

cytokines/chemokines and NK cell activation [VSV-MARV (20, 21)]

and the transcription of genes involved in NK and innate immune

pathways [rVSVDG-LASV-GPC (22)]. We showed in Geneva

vaccinees that this mobilization and activation of circulating NK

cells was rapid and dose-dependent (23). We also identified the first

innate plasma signature response to rVSVDG-ZEBOV-GP in healthy

vaccinees, derived in a European cohort (Geneva, Switzerland) and

validated in an African cohort (Lambaréné, Gabón) (24). Among the

six monocyte-related cytokines/chemokines which peaked at day 1

post-immunization, five (MCP-1, IL-1Ra, TNF-a, IL-10 and IL-6)

defined a signature that was vaccine dose-dependent and correlated

with viremia, biological outcomes and adverse events, including

transient arthritis (24). Here, we aimed to identify additional

markers in Geneva vaccinees that could refine the previous

signature and to validate this refined signature in a US cohort.
Methods

Study design, population, and key
previous outcomes

We used plasma samples obtained from two clinical trials

conducted in Europe (phase 1/2, randomized, double-blind,

placebo-controlled, dose-finding trial in Geneva, Switzerland

[November 2014, to January 2015; NCT02287480]) (12) and in
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North America (phase 1b, randomized, double-blind, placebo-

controlled, dose-response trial in the USA [Dec 5, 2014, to June

23, 2015; NCT02314923]) (25). The trial protocols were reviewed

and approved by the WHO’s Ethics Committee as well as by local

ethics committees (USA trial: the Chesapeake Institutional Review

Boards (Columbia, MD, USA) and the Crescent City Institutional

Review Board (New Orleans, LA, USA); Geneva trial: the Geneva

Cantonal Ethics Commission and the Swiss Agency for Therapeutic

Products (Swissmedic). All participants had provided written

informed consent to participate in those studies (12, 25).

As genetic and environmental factors may influence vaccine

response, we used the Geneva trial as the derivation cohort (n=115)

and the US trial as the validation cohort (see Supplementary

Figure 1). As a wider range of vaccine doses were tested in this

US trial (7, 9), we randomly choose a subset of individuals (n=130)

grouped to best match Geneva low dose (n=48), high dose (n=60)

and placebo (n=22) recipients (Supplementary Figure 1).
Pilot high-throughput screening in plasma
from Geneva vaccinees

O-link (OLINK AB, Uppsala) is a semi-quantitative assay based

on Proximity Extension Assay (PEA) technology with no cross

reactivity. It measures proteins via an antibody-mediated detection

system linked to synthetic DNA. The method has been described

previously (26). Briefly, paired oligonucleotide-coupled antibodies

with overlapping sequences are allowed to bind to proteins in the

sample. When paired antibodies are brought in proximity to one

another through binding to their target, their oligonucleotide

sequences overlap to form a PCR target, which can be semi-

quantified with real-time PCR. We used three O-link panels

(inflammation, immune and metabolic panels, each panel

detecting 92 proteins) to screen for 276 markers. Inflammatory

panel was tested first, and we evaluated days 0, 1, 3 and 7. Immune

and metabolism panels were used later, and we evaluated only day 0

and 1. Following data pre-processing, including quality control, the

relative level (NPX) of each of the 276 proteins was assessed.

Proteins with more than 30% of samples with NPX values below

the limit of detection (n=53) were excluded from further analysis.

In this pilot screening, we selected a subgroup of participants of

the Geneva cohort (n=49), including all participants that reported

transient arthritis and matched the samples by dose, sex and age

(Figure 1A), with the aim to identify potential arthritis-associated

biomarkers. We first assessed the number of markers peaking at D1,

D3 and D7 (Figure 1B). Subsequently, the identified biomarkers

were confirmed and quantified by Luminex in each participant of

the Geneva cohort (n=115).
Quantification of biomarkers by
Luminex assay

A customized Luminex assay (Magnetic Luminex assay, R&D

Systems) was used to measure the plasma concentration of most of
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the markers identified by O-link, as some were not available for

testing with the Luminex technology. Assays were performed

according to the supplier’s instructions using) the Luminex

xMAP Technology (Luminex Corporation) and read on the Bio-

Plex 200 array reader (Bio-Rad Laboratories). Five-parameter

logistic regression curve (Bio-Plex Manager 6.0) was used to

calculate sample concentrations. In addition to previously

reported biomarkers (IL-1Ra, MCP1, IL-6, IL-10, MIP1b, and

TNF-a) (24), additional markers from the O-Link analysis were

MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11,

TRAIL, RANKL and IL15 were measured in both Geneva and US

cohort. All data below thresholds (last point of the standard curve)

were set to half the value of the corresponding threshold.
ZEBOV-GP-binding antibodies

We used the data generated in studies performed in Geneva,

reported in (12) and in the US, reported in (25). For the present

study, we refer to measurements performed at day 28 and 180.

Briefly, quantification of ZEBOV-GP-specific antibodies for the

Geneva cohort was done at the US Army Medical Research

Institute for Infectious Diseases (USAMRIID) in Frederick,

Maryland, USA in the Diagnostic Systems Division using

USAMRIID’s standard operating procedure (SOP AP-03-35;

USAMRIID ELISA) (8, 12, 27) by the Filovirus Animal Non-

Clinical Group (FANG). For the US cohort, ZEBOV-GP-specific

antibodies were tested in Focus Diagnostics, San Juan Capistrano,

CA, based on the assay developed by FANG. The homologous

Zaire–Kikwit strain GP was used as specified in the SOP. The log10

transformed ELISA units per mL was used for correlation analysis

in the present study.
Identification of the Geneva and
US signatures

We applied the same methods as previously (24) to identify

signatures of the vaccine response. PCA was done for all

participants of each cohort and for all 17 identified markers for

which we used the log10 D1/D0 ratio to normalize the data. To

build the model, the normalized data were standardized so that the

means and the SD equalled 0. PCA components with eigen values

greater than 1 were retained. Because of the number of variables

introduced in the PCA (n=17) and the number of vaccinees

(Geneva cohort: n=100; USA cohort: n=113), a risk of overfitting

was suspected, thus a bootstrap procedure was used to check the

robustness of the number of retained principal components. For

this, 50,000 re-samplings with replacements were done: for each

resampling, the same PCA was conducted. Cronbach’s alpha values

were used to indicate whether the variation of markers upregulated

between days 0 and 1 was based on a single trait. The Kaiser-Meyer-

Olkin was used to measure the adequacy of the data to factor

analysis (28). Our validation cohort was the US cohort, and we used

the same approach to calculate the signature by PCA. The score for
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each observation was calculated by applying the equations of each

component, which then was used to evaluate the correlation with

adverse events and biological outcomes.
Statistical methods

Biomarkers were reported by vaccine dose and timepoint

using log10 geometric mean concentrations (GMCs). GMCs

were compared between independent groups using t-tests or

ANOVA (with Scheffe’s correction for multiplicity of tests and

post hoc analyses) and over time using linear regression models

with mixed effects to account for repeated measures. The

association between the signature and biological outcomes/AEs

was assessed using linear and logistic regression models with

adjustment for the dose. The type I error level was 0.05, and all

statistical tests were two-sided. AUCs of the previous and refined

signature were compared by using Delong’s non-parametric test

for paired ROC curves. Analyses were conducted in R 3.2.2

(R Foundation for Statistical Computing, version 2.15.2) and

STATA 14.0 IC (StataCorp LP).
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Results

Identification of additional biomarkers of
innate responses to rVSVDG-ZEBOV

We set up a pilot experiment using an O-link approach that can

measure up to 276 analytes to identify additional plasma markers

associated with the vaccine response compared to our previous study

(Figure 1A). Markers significantly peaked at day 1 in both the high

and low dose groups, but not at day 3 or 7 (Figure 1B). Therefore, we

subsequently only analysed the ratio of D1/D0. In the high-dose

(HD) vaccinees group, 18 new additional proteins from the

inflammatory panel were significantly elevated and one protein

(4EBP1) showed a significant decrease (Figures 1B, C). In the low-

dose (LD) vaccinees group, 18 new proteins were significantly

elevated (16 were shared with HD vaccinees) and one (MMP1) was

significantly decreased (Supplementary Figure 2A). The analysis of

the metabolic and immune panels showed that in the HD group 17

new proteins were significantly increased, and 13 were significantly

decreased on day 1 compared to day 0 (Figure 1D), whereas in the LD

group four new proteins were significantly elevated and eight were
B

C D

A

FIGURE 1

Identification of additional biomarkers by O-link. (A) Schematic of the pilot study samples used to screen for new markers (n=49). In yellow and in
parenthesis number of participants with arthritis. (B) Kinetics of biomarkers from O-link inflammatory panel (96 markers) expressed as the ratio of
the mean at day1, day3 and day7 versus day 0. Each square represents the mean for a single marker and confidence interval is included. Volcano
plots from O-link inflammatory (C) and metabolic panels (D) of the high dose group displaying the log10 fold change (x axis) against the t test-
derived negative log10 statistical P value (y axis) for all proteins differentially secreted between day1 and day0. Thresholds (dotted grey line), p-value
cut-off was fixed at 0.05 (1,3 negative log10) and fold change cut-offs was 1 (0 in the log10 scale). P-value of zero was set up as 0,0000001 (7 neg
log10). Open circles represent all proteins below the p-value and in dark grey all proteins below fold change cut-offs. Proteins above the fold-
change cut off are labelled as orange circles.
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significantly decreased (Supplementary Figure 2B) (no new markers

were shared with HD vaccinees). We observed that all the proteins

identified in our previous study (24) had significantly increased on

day 1, confirming our previous findings, and supporting the use of O-

link as an adequate screening tool. Secreted proteins with a D1/D0

ratio greater than 1 but without statistical significance are shown in

Supplementary Figures 2C, D. We did not find statistically significant

differences in biomarkers levels between arthritis and non-arthritis in

this subset of patients in the inflammatory panel and metabolic panel

analysed (Supplementary Table 1).

In conclusion, use of O-link screening in a subset of the Geneva

cohort (n=49) allowed us to identify 18 additional proteins significantly

secreted at higher levels on day 1 in both high and low dose groups.
Confirmation and quantification of the
biomarker signature

Out of the 18 additional markers found by O-link, eleven were

available for measurement by Luminex and were quantified on days

0, 1, 3, 7 in plasma samples of the entire Geneva cohort (n=115). The

eleven markers included chemokines: monocyte chemoattractant

protein 2 (MCP2/CCL8), monocyte chemoattractant protein 3

(MCP3/CCL7), monocyte chemoattractant protein 4 (MCP4/

CCL13), chemokine C-X3-C motif ligand 1 (CX3CL1/Fractalkine),
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interferon gamma-induced protein 10 (IP10/CXCL10), interferon-

gamma-inducible protein 9 (IP-9/CXCL11); cytokines: Interleukin 15

(IL-15), Oncostatin M (OSM) and macrophage colony-stimulating

factor (M-CSF); and ligands: Tumor necrosis factor ligand

superfamily member 10 (TRAIL/TNFSF10), Tumor necrosis factor

ligand superfamily member 11 (RANKL/TNFSF11).

We calculated the geometric mean concentrations (GMCs) for

each marker and the ratio of D1/D0. As expected, in the placebo

control group, no marker significantly increased with time, except

for CXCL10 that showed a significant decline at day 1 (Table 1). We

confirmed that all eleven additional markers significantly peaked at

day 1 in the Geneva cohort (Figure 2), with the largest fold increases

reported in HD for CXCL11 [21.0 (95% CI, 15.1 to 29.2)], CXCL10

[14.2 (95% CI, 11 to 18.4)] and MCP2 [13.3 (95% CI, 11 to 16.1)]

(Table 1). HD vaccinees showed significantly higher increases in

GMCs than LD vaccinees for all markers except RANKL (Figure 2).

We found that all additional markers except RANKL were

significantly correlated between each other and with the

previously reported markers, irrespective of the vaccine dose

(Supplementary Figure 3) The strongest associations were

observed between CXCL10 and CXCL11 at both doses

(Spearman’s correlation coefficient r = 0.92, p <0.001; r=0.88,

p<0.001) and between MCP1 and MCP2 (Spearman’s correlation

coefficient r = 0.61, p<0.001; r=0.82, p<0.001 at the two doses

respectively) (Supplementary Figure 3).
TABLE 1 Ratio day 1/day 0 of the geometric mean (GM) of the additional identified markers measured in the plasma of Geneva participants.

Placebo (n=13) Low Dose (n=51) High Dose (n=51)

Marker
Ratio
GM

Confidence
Interval

p-
value

Ratio
GM

Confidence
Interval

p-
value

Ratio
GM

Confidence
Interval

p-
value

CXCL11 0,85 (0,68 - 1,07) 0,150 2,65 (1,98 - 3,54) <0,001 21 (15,14 - 29,23) <0,001

CXCL10 0,81 (0,69 - 0,96) 0,019 3,08 (2,39 - 3,97) <0,001 14,2 (10,99 - 18,35) <0,001

MCP2 1,12 (0,89 - 1,41) 0,298 3,95 (2,94 - 5,29) <0,001 13,3 (10,95 - 16,14) <0,001

MCSF 0,95 (0,56 - 1,61) 0,831 2,07 (1,58 - 2,72) <0,001 7,41 (5,59 - 9,82) <0,001

MCP3 1,35 (0,83 - 2,22) 0,207 1,71 (1,27 - 2,3) <0,001 6,18 (4,54 - 8,43) <0,001

OSM 0,93 (0,65- 1,33) 0,660 2,01 (1,72 - 2,34) <0,001 4,78 (3,83 - 5,97) <0,001

TRAIL 0,92 (0,76 - 1,12) 0,368 1,72 (1,5 - 1,98) <0,001 4,15 (3,62 -4,76) <0,001

CX3CL1 0,99 (0,77 - 1,28) 0,925 1,27 (1,12 - 1,44) <0,001 3,83 (2,95 - 4,98) <0,001

IL15 1,34 (0,91 - 1,96) 0,123 1,4 (1,19 - 1,65) <0,001 3,15 (2,64 - 3,77) <0,001

RANKL 1,21 (0,74 - 1,96) 0,415 1,36 (1,2 - 1,54) <0,001 2,13 (1,69 - 2,68) <0,001

MCP4 0,9 (0,73- 1,11) 0,295 1,13 (1,06 - 1,21) <0,001 1,64 (1,48 - 1,82) <0,001

IL1-Ra 0,97 (0,78 - 1,21) 0,81 1,77 (1,39 - 2,26) <0,001 10,6 (8,41 - 13,37) <0,001

IL-6 0,7 (0,35 - 1,38) 0,31 1,82 (1,18 - 2,79) 0,007 13,5 (8,29 - 21,91) <0,001

IL-10 0,74 (0,39 - 1,38) 0,35 2,11 (1,19 - 3,75) 0,011 7,08 (4,68 - 10,70) <0,001

TNF-a 1,3 (0,59 - 2,87) 0,51 1,33 (0,78 - 2,27) 0,3 3,98 (2,43 - 6,51) <0,001

MCP-1 0,89 (0,78 - 1,02) 0,11 1,4 (1,22 - 1,62) 0,011 3,35 (2,97 - 3,78) <0,001

MIP-1b 0,96 (0,81 - 1,15) 0,64 1,33 (1,14 -1,55) 0,011 2,31 (2,09 - 2,56) <0,001
front
Ratio of GM: log10 base ratio Day 1/Day 0. Significant difference between day 1 and day 0 are represented by P-values highlighted in bold. Markers are presented according to the ratio GM levels
in the high dose. Previous signature biomarkers reported in Huttner et al., 2017 (24) are shaded in grey.
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In summary, we found eleven additional markers at day 1 after

vaccination that correlated with the previously identified signature

in the Geneva cohort.
Refinement of the innate plasma signature

PCA was conducted for the 17 markers described above (6

previously reported and the 11 additional reported here). PCA

showed that the new refined signature accounted for 77.8% of the

variability of the day 1 immune response versus baseline and three

components were retained (PC1: 63.2%, PC2 8.5% and PC3 6.1% of

the variance; Figure 3A). The bootstrap analysis confirmed the

robustness of the first three components. The frequency of the

number of retained components (Eigen value > 1) over the 50’000

re-sampling was PC1: n=50000/50000 (100%); PC2: n=49849/

50000 (99.7%); PC3: n=34580/50000 (69.16%); PC4: n=113/50000

(0.23%); PC5: n=0/50000 (0%). Cronbach’s alpha values (LD:0.94,

HD: 0.94) indicated that the variability in the markers induced by

the vaccine was highly reliable and mostly based on a common trait.

The overall measure of adequacy was 0.9, considered by Kaiser et al.

(28) as very robust data for factor analysis.

After normalization and standardization, the equation of the first

component (PC1) was defined by “0.083×IL1RaSTD + 0.067xIL6STD +

0.057xTNFaSTD + 0.06xIL10STD + 0.083xMCP1STD + 0.07xMIP1bSTD

+ 0.076xMCP3STD + 0.086xCXCL10STD + 0.068xOSMSTD +

0.076xMCP4STD + 0.075xCX3CL1STD + 0.075xMCSFSTD

+ 0.088xCXCL11STD + 0.084xTRAILSTD + 0.084xMCP2STD +
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0.03xRANKLSTD + 0.074xIL15 STD”, i.e., 17 biomarkers. PC2

equation is reported in Supplementary Table 2.

The biomarkers contributing to component 1 were all positively

correlated, while the ones contributing to component 2 showed both

a positive and negative correlations (Figure 3A). In the component 1,

eleven biomarkers were above the expected average contribution, six

of them strongly contributing to the component variability (CXCL11,

CXCL10, MCP-2, TRAIL, IL1Ra, MCP-1; Figure 3B), while for the

component 2, four biomarkers strongly contributed to component

variability (IL-10, TNFA, MP1b, IL-6; Figure 3C).

We next found that the refined signature discriminated better

than the previous signature between placebo recipients and LD

vaccinees [AUC: 0.87 (95% CI, 0.75 to 0.99) vs 0.79 (95% CI, 0.69 to

0.91); p=0.37], and between low- and HD vaccinees [0.91 (95% CI,

0.85 to 0.97) vs 0.88 (95% CI, 0.81 to 0.95); p=0.059]. Both

signatures discriminated almost perfectly placebo recipients and

HD vaccinees with area under ROC curves close to 1 (Figure 3D).

Altogether, these results show that the addition of eleven markers

refined the previous plasma signature as it explained a higher

percentage of the variability in the response and improved the

discrimination between the two vaccine doses.
Additional biomarkers are associated with
vaccine-related adverse events

We next performed a multivariable analysis to assess whether the

refined signature was associated with the risk of adverse events
FIGURE 2

Kinetics of newly identified biomarkers measured in the plasma of all Geneva participants. Plasma concentration in pg/ml for each marker measured
by Luminex was plotted at each time point in the different groups: placebo (gray), low dose (green) and high dose (orange). Each dot represents a
participant (n=115). Black lines represent the geometric mean concentrations with the CI. Red dotted lines indicate the limit of detection for each
marker. Samples below the limit of detection were assigned a value corresponding to 50% of the last standard dilution value. P values less than
0.001 are summarized with three asterisks, and P values less than 0.0001 are summarized with four asterisks.
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following vaccination, as previously described (24). Similarly, we

showed that a score higher than one of the Components 1 and 2 of

the refined signature increased the risk of injection-site pain, subjective

fever and chills in HD vaccinees, (Table 2). In contrast to our previous

report, only Component 1 of the refined signature was associated with

a higher risk of objective fever and myalgia, while Component 2 was

associated with higher risk of headache in HD vaccinees. Because

adverse events (AEs) were reported mainly in HD vaccinees (97%),

which corresponds to the vaccine dose used in Ervebo®, we focused on

this group for further analyses. Headache was associated with

significant increase in CXCL10, CXCL11, MCSF, MCP-2 and TNF-

alpha, while fatigue was associated with significant increases in

CXCL10, MCP-4 and TNF-a (Figure 4A). Increase in MCP-2 was

specifically associated with subjective fever and chills, while CX3CL1

and TNF-a were associated with objective fever and myalgia.

In contrast, a significant decrease of the anti-inflammatory cytokine

IL-10 was associated with arthralgia. No identified biomarker was

associated with local pain. Overall, TNF-a and MCP-2 were key

biomarkers associated with most systemic AEs.

Twenty-four percent (24%) of participants reported transient

vaccine-induced arthritis in the Geneva cohort (12), which was

previously associated with lower day 1 signature scores only in HD

vaccinees (24). Here, we report a similar finding, Component 1 was

significantly lower in HD vaccinees with transient arthritis (GM

non-arthritis 0,93 (0,7-0,17) vs GM arthritis 0,34 (-0,05-0,73) p:
Frontiers in Immunology 07116
0,011) and levels of seven innate plasma biomarkers were also

significantly lower (MCP-2, CXCL10, CXCL11, CX3CL1, MCSF,

IL-15, OSM), complementary to the four previous biomarkers

reported (IL-6, TNF-a, MCP-1 and MIP-1b) (Figure 4B).

Of note, the refined signature showed little to no association

with age but was associated with gender (lower scores of

Component 1 in females [−0.22 versus 0.19, p=0.029)],

confirming what was reported for the previous signature (24).

Overall, the refined signature can thus better predict the risk of

objective fever, myalgia and headache and several additional

biomarkers were found to be significantly associated with specific

systemic adverse events including transient arthritis.
The refined signature and the additional
markers are differentially associated with
hematological, virological and
immunological outcomes

rVSVDG-ZEBOV-GP immunization triggers a transient, dose-

dependent viremia and hematological changes (8, 12). We observed a

significant positive association between Component 1 of the refined

signature and viremia mainly in LD vaccinees (Supplementary

Table 3) that was ruled by IL-15, RANKL and MCSF

(Supplementary Table 4). We found a negative correlation for both
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FIGURE 3

Definition of a refined signature by PCA after rVSVDG-ZEBOV-GP vaccination in the Geneva cohort. (A) A variable correlation plot shows the
magnitude (length of the arrow) and direction of the correlations of each marker (n=17) to each of the two principal components. Cos2 values
indicate how well represented the marker is on the principal component and are shown in a gradient of colours shown in the legend. (B, C) Graphs
showing the percentage of the contribution of each marker to the variability on component 1 (B) and component 2 (C). Red dashed line indicates
the average contribution. Blue bars indicate additional markers and bars in black indicate previous markers. (D) Comparison Area Under the Curve
(AUC) between previous signature (black line) and refined signature (grey line).
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doses between component 1 of the refined signature and day 1

lymphopenia and thrombopenia, which was maintained until day 3

only for HD vaccinees. These negative associations of both doses with

lymphopenia were correlated with all additional biomarkers while the

negative correlation with thrombopenia was related to different
Frontiers in Immunology 08117
biomarkers (Supplementary Table 3). Component 1 was differently

associated with neutropenia according to the vaccine dose. Early (day

1) neutropenia was positively associated in HD vaccinees and was

influenced mainly by MCP-3, while delayed neutropenia was

negatively associated with LD vaccination.
TABLE 2 Multivariable analyses of the determinants of clinical outcomes of the refined innate signature in Geneva vaccinees (n=100).

1st component 2nd component

Adverse Event Predictor Adjusted OR (95%CI) p-value Adjusted OR (95%CI) p-value

Objective fever Dose Low dose Ref Ref

High dose 15.99 (2.3 to 331.34) 0,017 16.31 (3.03 to 303.15) 0,009

Signature <0 Ref Ref

>=0 1.05 (0.23 to 5.8) 0,956 0.64 (0.18 to 2.14) 0,472

Subjective fever Dose Low dose Ref Ref

High dose 3.73 (1.36 to 10.78) 0,012 5.07 (2.19 to 12.31) <0.001

Signature <0 Ref Ref

>=0 1.72 (0.6 to 4.78) 0,302 0.69 (0.29 to 1.61) 0,388

Headache Dose Low dose Ref Ref

High dose 2.14 (0.79 to 5.93) 0,133 2.67 (1.19 to 6.14) 0,018

Signature <0 Ref Ref

>=0 1.47 (0.53 to 4.01) 0,446 0.63 (0.28 to 1.43) 0,272

Fatigue Dose Low dose Ref Ref

High dose 1.22 (0.43 to 3.58) 0,706 0.75 (0.33 to 1.7) 0,495

Signature <0 Ref Ref

>=0 0.44 (0.15 to 1.24) 0,129 1 (0.44 to 2.28) 0,996

Myalgia Dose Low dose Ref Ref

High dose 2.81 (1.04 to 7.98) 0,045 3.15 (1.4 to 7.31) 0,006

Signature <0 Ref Ref

>=0 1.22 (0.43 to 3.31) 0,702 0.61 (0.26 to 1.39) 0,242

Chills Dose Low dose Ref Ref

High dose 3.2 (1.15 to 9.63) 0,030 3.1 (1.36 to 7.35) 0,008

Signature <0 Ref Ref

>=0 0.96 (0.32 to 2.69) 0,935 0.85 (0.37 to 1.95) 0,694

Arthralgia Dose Low dose Ref Ref

High dose 0.97 (0.25 to 3.78) 0,960 1.28 (0.44 to 3.88) 0,655

Signature <0 Ref Ref

>=0 1.62 (0.42 to 6.58) 0,486 0.88 (0.3 to 2.6) 0,807

Pain Dose Low dose Ref Ref

High dose 19.64 (5.81 to 91.45) <0.001 17.81 (6.59 to 55.78) <0.001

Signature <0 Ref Ref

>=0 0.62 (0.13 to 2.13) 0,484 2.92 (1.06 to 8.98) 0,046
fro
Multivariable analyses were performed to assess the association between the refine innate signature components 1 and 2, and adverse events (AEs) adjusting for the vaccine dose. Logistic
regression models were used. The reported adjusted odds ratios (ORs) capture the increase in risk of an AE compared with the reference category (denoted “Ref”). In grey, results that were similar
between previous and refined signature.
Significant difference against the reference in the Doses or in the Signature component is represented by P-values highlighted in bold.
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Finally, in this analysis, we found limited correlation of the two

PCs with antibody response except for Component 2 in HD vaccinees

that positively correlated with antibody levels 180 days after

vaccination (Supplementary Table 3). Others have reported

correlation between the antibody levels at day 28 with day 3

CXCL10 levels when considering all vaccinees irrespective of the

vaccine dose (19). A similar univariate analysis grouping the LD and

HD groups showed that the antibody levels at day 28 positively

correlated with the ratio D1/D0 (or actual concentrations at day 1) of

several cytokines and chemokines, including CXCL-10

(Supplementary Figure 4). This correlation was limited to a more

limited set of cytokines at day 3. Antibody response at day 180 was

associated with the D1/D0 ratio of IL-10, MCP-1 and MIP-1b, and in

HD only with IL-10 that drives the positive association found with

Component 2 in HD vaccinees. In line with the multivariate analysis,

there were fewer correlations between the antibody levels at day 28

with innate plasma biomarkers when considering each dose group

separately, limited to positive correlation with D1/D0 ratio of MCP-1
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andMIP-1b levels (LD group) and negative correlation with CXCL10

level (HD group; Supplementary Figure 4).

In summary, component 1 of the refined signature differentially

correlated with LD viremia (positive) and hematological (negative)

outcomes, several innate plasma biomarkers including CXCL10

were associated with antibody titers one month after vaccination

but fewer with long-term specific antibody response.
Validation of the refined signature in an
independent US cohort

The kinetics of the response of the 17 biomarkers in the US

cohort was similar to the ones observed in the Geneva participants,

although some differences were noted in the magnitude of the

response (Supplementary Figure 5). In US HD vaccinees, the largest

fold increases were observed for IL10 [58.1 (95% CI, 43 to 78)],

CXCL10 [57.8 (95% CI, 43 to 79)] and CXL11 [28.6 (95% CI, 20 to
B

A

FIGURE 4

Associations between the refined signature biomarkers with early adverse events (AEs) in Geneva vaccinees receiving high vaccine dose. (A) Each
symbol represents the ratio of geometric mean (log10 of day 1/day 0) for each biomarker. Bars shown mean and 95% CI. Orange arrows shows
significance difference between having or not the indicated AE. (B) Volcano plots from the ratio of the plasma markers measured in those with
arthritis vs those with no-arthritis in log10 fold change (x axis) against the t-test-derived negative log10 statistical P-value (y axis) for the additional
(purple) and previous (grey) biomarkers of the refined signature. Thresholds (dotted grey line): p-value cut-off was fixed at 0.05 (1,3 negative log10)
and fold change cut-offs is 1 (0 in the log10 scale). The two vaccine doses are shown with circles (low dose) or triangles (high dose).
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40)]. Although weaker in magnitude, the same markers including

MCP-2 showed the largest fold increase in LD vaccinees

(Supplementary Table 5). At baseline, most biomarkers were

significantly lower in the US cohort, while the D1/D0 ratio

showed similar responses in both cohorts, CXCL10, CXCL11, IL-

10 and MCP-2 being the biomarkers with the highest ratio in both

cohorts (Table 1; Supplementary Table 5).

To evaluate whether the signature defined using the Geneva cohort

could predict rVSVDG-ZEBOV-GP responses elicited in a different

cohort, we applied an independent PCA to the US data. Similar to what

was found in Geneva, three components explained 75.9% of the

variability of the D1/D0 ratios (PC1 explained 63.6% of the variance,

PC2: 6.4% and PC3: 5.9%) (Figure 5A). The bootstrap showed that the

first three components were robust (PC1: n=50000/50000 (100%), PC2:

n=49333/50000 (98.67%), PC3: n=27657/50000 (55.31%). The overall

measure of adequacy was 0.93. Thus, the PCAmodel in the US samples

was adequate and behaved very similarly as for the Geneva samples.

Comparable to what was observed in Geneva cohort, the first

component also discriminates well between LD and HD

(Supplementary Figure 6) and had a similar equation for

component 1: “0.085×IL1RaSTD + 0.07xIL6STD + 0.08xTNFaSTD +

0.085xIL10STD + 0.078xMCP1STD + 0.064xMIP1bSTD +

0.056xMCP3STD + 0.085xCXCL10STD + 0.077xOSMSTD

+ 0.052xMCP4STD + 0.08xCX3CL1STD + 0.079xMCSFSTD +

0.085xCXCL11STD + 0.078xTRAILSTD + 0.067xMCP2STD +

0.027xRANKLSTD + 0.08xIL15 STD”. Component 2’s equation is

shown in Supplementary Table 2. In addition, biomarkers
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contributing to component 1 were positively correlated, while the

ones contributing to component 2 had both a positive and negative

correlations (Figure 5A). In component 1, eleven biomarkers were

above the expected average contribution with CXCL11, CXCL10, IL-

10 and ILR-a being the highest, while for the component 2, three

biomarkers contributed to the component variability, with RANKL

representing 58% of the contribution (Figure 5B).

We next asked whether applying the Geneva first two components

to the US data and vice versa would generate comparable results. Only

the first component correlated strongly in both data sets, using Geneva

data (r = 0.97, P < 0.001) and using US data (r = 0.99, P=0)

(Figure 5C), and discriminated well the participants receiving the

LD and the HD in both cohorts (Supplementary Figure 6).

The validation confirms that Component 1 of the refined

signature accurately predicts the variability in response to the

rVSVDG-ZEBOV-GP vaccine.
GP-specific antibody levels also correlate
with biomarkers in the US cohort

Similar to Geneva cohort, when considering all vaccinees

irrespective of the vaccine dose the antibody levels at day 28 in all

vaccinees positively correlated with the D1/D0 ratio of several

cytokines, such as IL1RA, IL-10, MCP-1, CXCL10, MIP1b,

CX3CL1, MCSF, CXCL11, TRAIL, IL-15. The correlation was

also mostly lost when considering day 3 cytokine ratio and when
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splitting by dose (Supplementary Figure 4). Unlike in the Geneva

cohort, most of these correlations were maintained until day 180

after vaccination (Supplementary Figure 4).

Overall, US cohort innate plasma signature biomarkers also

correlate with antibody levels at day 28 and 180 after vaccination

with rVSVDG-ZEBOV-GP.
Discussion

We showed that the inclusion of additional biomarkers refined

the first plasma signature identified previously in Geneva. The refined

signature, which now includes 17 markers, better discriminated

between vaccine doses as it performed better at capturing the

variability of the vaccine responses, and better defined the risk of

fever, myalgia and headache. We also found new biomarkers that

correlated with reactogenicity and transient arthritis, and that were

associated with antibody levels one and six months after vaccination.

Finally, the results were cross validated in a separate cohort.

We used O-link to screen for additional markers: of the many

markers screened, only 18 were significantly higher in both HD and

LD vaccinees. These markers are related to monocytes recruitment

as well as to biological processes involved in vaccine responses such

as pro-inflammatory cytokines, chemokine-signaling pathways,

chemotaxis of different immune populations (monocytes,

neutrophils, eosinophils and lymphocytes) and cellular response

to interferon gamma. CXCL10, CXCL11, MCP-2, IL1R-a were the

markers with the highest D1/D0 ratio as well as the ones with the

greatest contribution to the variability of Component 1. CXCL10

and CXCL11 are IFN-dependent cytokines and plays an important

role in the chemotaxis of monocytes, T-cells, NK cells and dendritic

cells. They are secreted by monocytes, endothelial cells and

fibroblasts, and their secretion is enhanced in the presence of

TNF-a (29). This is in line with the positive correlation that we

observed between CXCL10 and CXCL11 with TNF-a. Previous
transcriptomic analysis from blood samples of the same cohorts

have shown that interferon signaling genes (ISGs) were upregulated

at day 1 post-vaccination and, consistent with our results, CXCL10

was upregulated at day 1 (30, 31). Similarly, the replication

incompetent Ebola vaccine Ad26.ZEBOV increases the expression

of IFN-stimulated genes (CXCL9, CXCL11, and CXCL10), and

those associated with monocyte and lymphocyte recruitment such

as CCL2 (MCP-1),CCL8 (MCP-2), and CCL7 (MCP-3) (32).

However, compared to rVSVDG-ZEBOV-GP, Ad26-ZEBOV

combined with MVA-BN-Filo (Zabdeno/Mvabea) as well as

another adenovirus-based Ebola vaccine cAd3-EBOZ is less

immunogenic with less persisting antibody response, requiring

higher doses to reach the same level of immunogenicity (33, 34).

Of note, we did not detect an increase in plasma IFN protein

level (similar to previous reports (19)) but CXCL10 and CXCL11

increase may result from a transient and earlier IFN response before

day 1. This discrepancy between gene expression and the protein

level of IFN in blood might reflect rapid migration of cells to

secondary lymphoid organs (33), rapid kinetics of the IFNs

secretion (32) and/or a sub-optimal sensitivity of the assay used

to detect these proteins. The innate vaccine response induced by the
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live attenuated rVSVDG-ZEBOV-GP it is mainly related to

monocyte recruitment and activation, whereas live-attenuated

yellow fever mainly induces a dendritic-cell (DC) innate signature

(35, 36) and the adjuvanted influenza-H1N vaccine induces a

lymphoid gene-expression signature (37). More recently,

SARSCoV-2 infection as well as mRNA vaccination were shown

to induce a monocyte and DC innate signature with enhanced

serum levels of IFN-a (38) and IFN-gamma, respectively (39).

Compared with the first signature reported previously (24), the

refined signature presented herein explains a higher proportion of the

variability of the D1/D0 ratios. Components 1 and 2 were both very

robust and included different biomarkers that contributed to their

variability, which can explain the different associations observed with

dose, adverse events and biological outcomes. For instance, in

contrast with the previous signature, component 1 was associated

with risk of objective fever and myalgia, while component 2 (which

represented only 8.5% of the variability) was the only one

significantly associated with a risk of headache and with the GP-

specific antibody response six months after vaccination.

Another important distinction with the previous signature was

that several specific biomarkers were associated with the presence of

systemic adverse events in HD vaccinees. Most of these associations

were with single markers, for example high levels of CX3CL1 and

MCP-2 were associated with the presence of objective fever and

subjective fever, respectively. Increase in CX3CL1 plasma level has

been associated with Hanta virus fever (40). CX3CL1 shedding can

be induced by MCP-1 via p38 signaling (41). This is in line with the

positive correlation we saw between plasma levels of CX3CL1 and

MCP-1, suggesting that MCP-1 could induce shedding of CX3CL1.

In addition, the correlation between fatigue and headache with

TNF-a plasma levels found in the previous signature is now

extended to several additional biomarkers including CXCL10.

Similarly, the risk of transient arthritis after vaccination is

associated with the reduction of various additional biomarkers

mainly in HD vaccinees. After rVSVDG-ZEBOV-GP vaccination,

24% of Geneva trial reported transient arthritis and the virus was

isolated in the synovial fluid (12). While in US trial the frequency of

reported transient arthritis was 5%, the cases were dispersed across

multiple doses including placebo (7, 9), likely confounding a direct

comparison. In agreement with the previous signature (24), we found

in Geneva cohort that Component 1 was significantly lower in HD

vaccines who developed arthritis, this was ruled by 12 out of 17

biomarkers constituting the signature that had significantly lower

plasma levels in HD vaccinees with arthritis. The topmost

differentially expressed markers were IL-6, CXCL10, CXCL11, TNF-

a and MCSF. Although the roles of IL-6 and TNF-a in rheumatoid

arthritis (42, 43) and in chronic chikungunya arthritis (44) are well

established, we saw a reduction during the acute phase. However, it is

also well established that a robust cytokine response during the acute

phase of viral infection is vital for clearance and control of viral

dissemination, and prevention of chronic chikungunya arthritis (45).

Our results suggest that individuals who developed arthritis after a HD

vaccine (which in close to the dose currently in use in the field

72x106pfu/dose)had a lower level of inflammatory response and

therefore, we hypothesize have a less effective early control of viral

dissemination, which may in turn leads to viral presence in privileged
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sites such as joints, and thus could enhance the risk of vaccine-induced

viral arthritis (8, 12, 46). The lack of association with bone resorption

markers such as RANKL (47) is in line with the absence of bone

resorption lesions in our arthritis patients (12), in contrast to

chikungunya arthritis (46). Recently, transcriptomic analysis of the

same Geneva cohort identified an early five-gene signature associated

with the risk of arthritis that included T-cell subset genes CD4 and

CCR7, IFN-regulatory sign gene FCGR1A, myeloid-associated gene

IL12A, and Th2-associated gene GATA3 (30). Taken together, we

hypothesized that the loss of T-cell homeostasis, a weak innate

response during the acute phase (in HD vaccinees) and age at the

time of vaccination (in LD vaccinees) are associated with transient

arthritis after rVSVDG-ZEBOV-GP vaccination.

We did not analyze the impact of baseline in the incidence of

the adverse events observed after vaccination, but this was evaluated

using machine learning in other paper by members of the

consortium using the same cohorts as in the present study. In

this study, 22 genes at baseline were associated with fatigue,

headache, myalgia, fever, chills, arthralgia, nausea and arthritis (48).

Others have reported a correlation between the early innate

response and specific-GP antibody levels one month after rVSVDG-
ZEBOV-GP vaccination that involved upregulation of ISGs such as

IFI6 gene at day 7 (30) and CXCL10 protein levels at day 3 (19). We

also found a positive correlation in both cohorts between specific-

GP antibody titers one month after vaccination in all vaccinees and

D1/D0 ratio of several innate plasma signature biomarkers

including CXCL10 and IL-15. IL-15 and IFN-g have been

reported to correlate with antibody response after the second dose

of BTN162b2 mRNA COVID-19 vaccine (49). We also saw that in

US cohort more innate biomarkers correlate with the antibody

levels compared to the Geneva cohort; we can not exclude that this

could be due to a difference in the vaccine dose in the two

countrioes, since for the HD groups participants in the US

received 100x106pfu/dose (n=30) and 20x106pfu/mL (n=30),

while in Geneva, participants received 10x106pfu/dose (n=35)

50x106pfu/dose (n=16).These results highlight the key role of

early activation of interferon-dependent responses at the

transcriptional and protein level in the generation of high

antibody levels, as reported for other vaccines (49–53).

We validated this refined signature in a US cohort. Although

baseline levels of IL-10 were higher in the US than in the Geneva

cohort, the kinetics of the biomarkers as well as the components of

rVSVDG-ZEBOV-GP early response were remarkably comparable.

This implies that innate responses induced after rVSVDG-ZEBOV-GP
vaccination were very robust, likely independent of genetic and

environmental background. The biomarkers that contributed to the

US Component 1 variability were similar to the ones in Geneva’s,

except for IL-10, which was significantly higher for the US Component

1. In contrast, Component 2 in the two cohorts have different sets of

markers that contribute to the variability. For instance, in Geneva IL-

10, TNF-a, MIP-1b and IL-6 are themain contributors, whereas for the

US cohort the main contributors are RANKL, MCP-2 and MCP-3.

The study identified certain markers by O-link, with CLEC4G/4C/

4D/6A showing significant increases in the high-dose (HD) group, while

only CLEC4C increased in the low-dose (LD) group. These markers

belong to C-type lectin ligands receptors (CLRs), recognized as pattern
Frontiers in Immunology 12121
recognition receptors (PRRs) and are crucial for initiating innate

immune responses. CLEC4G, known as LSECtin, serves as an

attachment factor for Ebola and SARS viruses, (54) and plays an

important role in Ebola GP-mediated inflammatory responses in

human DCs by inducing TNF-a and IL-6 secretion (55). CLEC4C is

found exclusively on plasmacytoid dendritic cells (pDCs) and can bind

various cells and viruses, including HIV-1 and hepatitis C virus (56, 57,

Florentin et al., 2011). CLEC6A (Dectin-2) is an FcRg-coupled receptor

on macrophages and dendritic cells, proposed as a potential attachment

factor for Ebola (56). CLEC4D (MCL) is a macrophage C-type lectin

implicated in the upregulation of innate genes post-vaccination.

Altogether, this suggest that CLEC proteins that increased after

rVSVDG-ZEBOV-GP vaccination may have the potential to bind to

the Ebola glycoprotein. This binding could lead to the activation of

monocytes, macrophages, and dendritic cells. However, further research

is required to fully understand the role of these CLEC proteins in the

context of vaccination.Our study has limitations, we were not able to

quantify all themarkers that were found with the initial O-link screening

because they are not available within the Luminex technology, a

technique that we had to use to allow comparison with our previous

study. Binding antibody responses were assessed at different labs on

samples from two different cohorts. This may have also led to some

variability in correlation analysis. It would also be interesting to conduct

in vitro studies to define which cells produce these biomarkers associated

with AEs upon rVSVDG-ZEBOV-GP exposure, in particular cells from

the joint, skin or vascular.

In conclusion, we refined the early plasma innate signature

induced by rVSVDG-ZEBOV-GP vaccine, which now better

correlates with the presence of AEs, hematological changes, viremia

and antibody titer in Geneva cohort. This refined signature was

validated in an independent US cohort and showed strong correlation

between cohorts, demonstrating its robustness and potential for

broad applicability. This innate refined plasma signature highlights

the importance of the innate response, especially of monocytes, in the

development of rVSV-vaccine responses, and its potential role in

controlling vaccine dissemination to prevent arthritis. Altogether,

these results provide new insights into early blood biomarkers of

immunogenicity and reactogenicity of the rVSVDG-ZEBOV-

GP vaccine.
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DiscoTope-3.0: improved B-cell
epitope prediction using inverse
folding latent representations
Magnus Haraldson Høie1, Frederik Steensgaard Gade1,
Julie Maria Johansen1, Charlotte Würtzen1, Ole Winther2,3,4,
Morten Nielsen1*† and Paolo Marcatili 1†

1Department of Health Technology, Section for Bioinformatics, Technical University of Denmark
(DTU), Kgs. Lyngby, Denmark, 2Section for Cognitive Systems, DTU Compute, Technical University of
Denmark (DTU), Kgs. Lyngby, Denmark, 3Center for Genomic Medicine, Rigshospitalet (Copenhagen
University Hospital), Copenhagen, Denmark, 4Department of Biology, Bioinformatics Centre,
University of Copenhagen, Copenhagen, Denmark
Accurate computational identification of B-cell epitopes is crucial for the

development of vaccines, therapies, and diagnostic tools. However, current

structure-based prediction methods face limitations due to the dependency

on experimentally solved structures. Here, we introduce DiscoTope-3.0, a

markedly improved B-cell epitope prediction tool that innovatively employs

inverse folding structure representations and a positive-unlabelled learning

strategy, and is adapted for both solved and predicted structures. Our tool

demonstrates a considerable improvement in performance over existing

methods, accurately predicting linear and conformational epitopes across

multiple independent datasets. Most notably, DiscoTope-3.0 maintains high

predictive performance across solved, relaxed and predicted structures,

alleviating the need for experimental structures and extending the general

applicability of accurate B-cell epitope prediction by 3 orders of magnitude.

DiscoTope-3.0 is made widely accessible on two web servers, processing over

100 structures per submission, and as a downloadable package. In addition, the

servers interface with RCSB and AlphaFoldDB, facilitating large-scale prediction

across over 200million cataloged proteins. DiscoTope-3.0 is available at: https://

services.healthtech.dtu.dk/service.php?DiscoTope-3.0.
KEYWORDS

structure-based, B cell epitope prediction, inverse-folding, antibody epitope prediction,
ESM-IF1, immunogenicity prediction, vaccine design
1 Introduction

A key mechanism in humoral immunity is the precise binding of B-cell receptors and

antibodies to their molecular targets, named antigens. The antigen regions that are involved

in the binding are known as B-cell epitopes. B-cell epitopes are found on the surface of

antigens, and in the case of proteins they can be classified as linear if the epitope residues are
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sequentially arranged along the antigen sequence, or discontinuous if

they are only proximal in the antigen tertiary structure, but not in the

primary structure. Identification of B-cell epitopes has large

biotechnological applications, including rational development of

vaccines and immunotherapeutics. However, experimental mapping

of epitopes remains expensive and resource intensive. Computational

tools for B-cell epitope prediction offer a viable and large-scale

alternative to experiments. However, prediction of B-cell epitopes

remains a challenging problem (1, 2). Historically, in-silico prediction

methods have been either antigen sequence- or structure-based.

Sequence-based methods such as BepiPred-2.0 (3) are attractive

given the high availability of protein sequences. BepiPred-2.0

utilizes a random forest trained on structural features predicted

from the antigen sequence, but has limited accuracy and struggles

to predict conformational or non-linear epitopes (4). In a recent

work, BepiPred-3.0 (5) further improves the method, demonstrating

large gains by exploiting sequence representations from the protein

language model ESM-2 (6). It was shown to outperform previous

sequence based tools, including Seppa-3.0 (7), ElliPro (8), BeTop (9)

and EPSVR/EPMeta (10).

Structure-based methods should benefit from having direct access

to the antigen tertiary structure, and in particular, its surface topology.

DiscoTope-2.0 (11) was published in 2012, and it estimates epitope

propensity from the local geometry of each residue, taking into

consideration both its solvent accessibility and the direction of its

side chain. Older structure-based methods like DiscoTope-2.0 and the

newer epitope3D (12) are still outperformed by the sequence-based

BepiPred-3.0 (5). However novel methods such as the inverse-folding

based SEMA (13) and the geometric deep-learning network ScanNet

(14) have shown promising advances. Recently, ScanNet demonstrated

improved performance by explicitly considering geometric details at

both the resolution of individual atoms and amino-acids. However,

while structure-based prediction tools may demonstrate improved

performance, they are limited by the availability of antigen structures.

Data scarcity affects the accuracy of prediction tools in different

ways. Firstly, they constrain the amount of data on which such tools

can be trained. As of January 2023, less than 5500 antibody

structures in complex with an antigen are available in the

antibody-specific structural database SabDab (15). After filtering

this dataset for redundancy, one may be left with less than 1500

structures for training, which limits the complexity of the models

that can be reliably trained without incurring in overfitting (5).

Secondly, the available data is a biased sampling of the possible

antibody-antigen complexes. We find that most antigens are found

only once in the dataset, while others, likely due to medical or

biological interest, have been resolved in complex with as many as

43 (15) different antibodies. This means that one cannot confidently

annotate negative residues; they might be part of antibody-antigen

complexes yet to be solved.

Lastly, undersampling of epitopes will also result in an

imprecise assessment of the tools’ accuracy; predicted epitopes

that appear as false positives may just be in antibody bound

regions yet to be identified. The last two points (bias and

undersampling) are typical of a class of problems known as

Positive-Unlabeled (PU) learning. In this scenario, we are only

confident of positive epitopes, while all remaining (surface) residues
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should be treated as unlabeled. Several approaches have been

proposed for increasing the accuracy of B-cell epitope prediction

methods and their estimated metrics in such cases (12, 16, 17). A

simple yet effective strategy is to train ensemble predictors based on

bootstrapping of samples in the Unlabelled class (18), also known as

PU bagging, which is the approach that we employ in this work.

With recent advances in protein structure prediction, AlphaFold2

(19) has enabled accurate prediction of protein structures directly

from sequences. Currently, over 200 million pre-computed structures

are available in AlphaFold DB (20), covering every currently

cataloged protein in UniProt (21). The three-dimensional

coordinates of the proteins, together with the local quality reported

as pLDDT scores, are readily accessible from the database.

To truly harness the remarkable progress in generating accurate

structural models, we must develop robust and informative

numerical representations of both predicted and resolved

structures. This is especially crucial for deep-learning methods,

which thrive on such tasks. The ESM-IF1 inverse folding model is

an equivariant graph neural network pre-trained to recover native

protein sequences from protein backbones structures (Ca, C and N

atoms). The structure-based representations which may be

extracted from this model have been shown to outperform

sequence-based representations on tasks such as predicting

binding affinity and change in protein stability (22). Crucially,

ESM-IF1 is explicitly trained on both solved and AlphaFold

predicted structures, enabling large-scale application of its

representations even when solved structures are unavailable.

In this work, we train DiscoTope-3.0, a structure-based B-cell

epitope prediction tool exploiting inverse folding representations

generated from either AlphaFold predicted or solved structures.

DiscoTope-3.0 is trained on both predicted and solved antigen

structures using a positive-unlabelled learning ensemble approach,

enabling large-scale prediction of epitopes even when solved

structures are unavailable. We compare its performance versus

previous tools and the impact in performance when using

predicted structures versus solved structures, in both cases

showing substantially improved accuracy. DiscoTope-3.0 is

implemented as a web server and downloadable package

interfacing with both RCSB and AlphaFoldDB.
2 Results

The positive-unlabelled ensemble training strategy for

DiscoTope-3.0 is shown in Figure 1. First, epitopes from solved

antibody-antigen complexes are mapped onto the antigen

sequences (1). Using sequences as input, antigen structures are

predicted using AlphaFold2 (2). Next, per-residue structural

representations, for both solved and predicted structures, are

extracted using the ESM-IF1 protein inverse folding model (3 and

4). During training, random subsets of epitopes and unlabelled

residues are sampled across the dataset (5), before finally training an

ensemble of XGBoost models on the individual data subsets (6). The

final DiscoTope-3.0 score is given as the average score from the

ensemble models (7). More details on the training procedure are

available below and in the Methods section.
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Here, we present a quick overview of the dataset and feature

pre-processing procedure. DiscoTope-3.0 training and validation is

based on the BepiPred-3.0 dataset of 582 antibody-antigens

complexes, covering a total of 1466 antigen chains IEDB (23).

Epitopes are defined as the set of residues within 4 Å of any

antibody heavy atom (see Methods). The training and

hyperparameter tuning is based on 2 different datasets: Training

and Validation, while evaluation is performed on the Validation

and external test sets. The external test set consists of 24 antigens

collected from SAbDab (15) and PDB (24) on October 20, 2022.

These antigens share at most 20% similarity to both our own,

BepiPred and ScanNet’s training datasets (see Methods).

In addition to using experimentally solved antigens for training,

structures for the individual antigen chains were additionally

predicted using AlphaFold2. Both the solved and predicted chains

were then embedded with ESM-IF1. Further we extract for each

residue its relative surface accessibility (RSA), AlphaFold local quality

score (pLDDT) as well as the antigen length and a one-hot encoding

for the antigen sequence (see Methods and Table 1). These structural

features (or subsets) were used to train an ensemble of XGBoost

models and the ensemble average is used as the final prediction score.

We chose to use XGBoost for our architecture due to their

robustness to outliers and noise, minimal need to adjust model
Frontiers in Immunology 03127
hyperparameters (25), and enabling combination of multiple “weak

learners” in our PU (positive and unlabelled) learning ensemble (26,

27), to produce a robust final prediction.

Structure-based representations have been shown to be a

powerful representation in different downstream tasks. To see if

this is also the case for B-cell epitope prediction, we evaluated the

results obtained using different feature encoding schemes on our

validation set of AlphaFold structures (for details on this dataset

refer to Methods and Table 1). First, we assess whether training a

single XGBoost model using structure representations from

predicted structures outperforms a similar model based on the

sequence representations from ESM-2 (Figure 2). Here, we observe

a marginal but consistent epitope prediction performance using the

structure (AUC-ROC 0.767 ± 0.003) vs sequence representations

(AUC-ROC 0.751 ± 0.003) (p < 0:0001).

As explained in the introduction, the B-cell epitope prediction

problem can be categorized in the broad class of PU training.

Incorrectly labeled negative examples can negatively affect the

training, by introducing frustration in the learning process (28).

We can observe that, by using an ensemble learning strategy with a

dataset bagging approach based on previous works (28–30) (see

Methods), we can further improve performance (AUC-ROC 0.791

± 0.001) and generalization.
FIGURE 1

Overview of the DiscoTope-3.0 method. 1) Antigen sequences are extracted from solved antibody-antigen complexes with mapped epitopes. 2)
Antigen structures are either provided as solved, or predicted with AlphaFold2. 3) Structures are embedded with ESM-IF1. 4) Per-reside features are
extracted. 5) Labelled epitope residues and non-labelled residues are extracted. 6) An XGBoost ensemble is trained on the resulting dataset. 7) The
final model predicts epitope-propensity on input solved or predicted structures. Created with BioRender.com.
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2.1 Effect of using predicted versus
solved structures

One of the risks in training models on either exclusively solved

or AlphaFold structures is that the methods might over-specialize to

one source and perform worse on the other, or even be affected by

data leakage. For example, a model may overfit on conformational

changes present in the side chains of epitope residues in solved

antibody-antigen complexes.

By training on both predicted and solved structures, we obtain a

final model which performs well on both structure types, with an AUC-

ROC 0.799 ± 0.001 for predicted structures (Figure 2), and 0.807 ±

0.001 when predicting solved structures (Supplementary Figure S1).

We note that training separate models, namely using only solved or

only predicted structures, does indeed improve performance slightly

when tested on the same class (AUC-ROC 0.813 and 0.805

respectively), but comes at added complexity. To simplify
Frontiers in Immunology 04128
comparison with other tools, we therefore chose the DiscoTope-3.0

version trained on both structure types for further analysis.
2.2 Benchmark comparison to state-of-
the-art methods

To further test the effect of using predicted versus solved

structures, we used the external test set of 24 antigens. These

antigens share at most 20% sequence similarity to both our own,

BepiPred and ScanNet’s training datasets (see Methods). We

benchmark against the structure-based tools ScanNet and SEMA,

while including BepiPred-3.0, as a purely sequence-based and

independent of the different structural variations, and a naïve

predictor using relative surface accessibility as a score. We note

that all benchmarked tools use the same definition for epitope

residues, thus ensuring a fair comparison.

The precision and recall scores of the tools were calculated on this

test set. The results of this evaluation are displayed in Figure 3. Here,

DiscoTope-3.0 outperforms all other tools, for both predicted (AUC-PR

0.232 ± 0.02 vs closest 0.177 ± 0.02 BepiPred-3.0) and solved structures

(0.223 ± 0.02 vs closest 0.185 ± 0.02 SEMA) (see Supplementary Figure

S2 and Table 2 formore performancemetrics).We note that DiscoTope-

3.0 here strongly outperforms BepiPred-3.0, and point to the BepiPred-

3.0 publication for an extensive benchmark demonstrating BepiPred-3.0

again outperforming epitope3D, Seppa-3.0, Ellipro and the previous

version of DiscoTope-2.0.

We introduce a novel metric, the epitope rank score, primarily due

to the need for a fair and normalized comparison among different tools,

that operate with varying score scales. To put it simply, to calculate the

epitope rank scores, we rank-normalize the scores for a given antigen,

then find the mean rank for all observed epitopes in that antigen. For

instance, a mean epitope rank score of 70% signifies that, on average,

epitopes score in the upper 70th percentile of residue scores (see
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FIGURE 2

Effects of inverse folding and bagging. Ablation results on the validation set of AlphaFold predicted structures, with less than 50% sequence similarity
to the training set. The plot reports the AUC-ROC for a single XGboost model trained on representations based on ESM-2 650M parameter (blue)
and on ESM-IF1 (orange), for an ensemble of 20 XGboost models based on bootstraps of ESM-IF1 representations (purple), for models where
additional structural features are included (see Methods) tested on both AlphaFold models (green) and on the corresponding solved structures (red)
(see Methods). Error bars indicate 95% confidence interval.
TABLE 1 Feature overview.

Feature Dimensions Description

ESM-
IF1 embeddings

512 Inverse folding representations from
input antigen structures

Antigen sequence 20 Amino-acid sequence, one-
hot encoded

Antigen length 1 Length of sequence

AlphaFold
quality score

1 Residue pLDDT score, as predicted
by AlphaFold2

Relative
surface

accessibility

1 Calculated by Shrake-
Rupley algorithm

Total: 535 L x 535
Input features for the XGBoost model architecture.
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Methods). A typical real-case scenario for this metric, would be for

users to submit individual antigens, and then to analyze the top scoring

epitope residues, regardless of their specific scores. Using this metric,

DiscoTope-3.0 consistently outperforms ScanNet, SEMA and

BepiPred-3.0 in the case of predicted structures, and is only matched

in performance by ScanNet on solved structures (Supplementary

Figure S3).
2.3 Robustness to relaxation and
predicted structures

We note that DiscoTope-3.0’s performance is largely unaffected

by the type of structures used for prediction. To further test the

robustness of the tools to minor differences in the antigen

structures, we performed an energy minimization on the solved

structures using the software FoldX (31). This minimization only

impacts the side chain, thus leaving the backbone of the native

structure unaltered. The ESM-IF model does not use the side chain

atoms in its structure representations, and consequently

DiscoTope-3.0 should not be affected by the relaxation process.

We observe that after side-chain relaxation in solved structures,

ScanNet’s epitope rank scores are reduced by ∼ 3.1 percentile

points, while swapping solved for predicted structures leads to a loss

of ∼ 7.5 percentile points (see Methods). In contrast to this,

DiscoTope-3.0 only loses ∼ 0.1 and ∼ 0.6 percentile points

respectively, again indicating robustness to the modeling process

(Supplementary Figure S4).

These observations can be attributed to the different ways the

two models process structural features. ScanNet uses side-chain
Frontiers in Immunology 05129
atomic coordinates explicitly, whereas DiscoTope-3.0 relies solely

on the accuracy of backbone modeling. This difference suggests that

some models, like ScanNet, might overfit to the specific orientations

of side-chains present only in bound antibody-antigen complexes,

information which would not be useful in predicting novel epitopes.

By training models on both predicted and relaxed, solved structures,

we can potentially avoid this overfitting and increase the

generalizability of the models.
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FIGURE 3

Improved performance on solved and predicted structures. AUC-PR curve plots on the external test set of 24 antigen chains, at most 20% similar to
the training set of all models. Structures provided as AlphaFold predicted, experimentally solved, or sequence in the case of BepiPred-3.0. Standard
deviation calculated from bootstrapping 1000 times (see Methods). See Supplementary Figure S2 and Table 2 for additional performance metrics.
Please see BepiPred-3.0 publication (5) for its improved performance versus DiscoTope-2.0, epitope3D, Seppa-3.0 and ElliPro.
TABLE 2 Performance on benchmarking datasets.

Metric Dataset

Lysozyme
(AlphaFold)

External
test set

(AlphaFold)

External
test set
(Solved)

AUC-PR 0.722 0.232 0.223

AUC-ROC 0.809 0.783 0.795

MCC 0.521 0.227 0.214

Total residues 129 6788 6788

Observed
epitope residues

55 (223
before

collapsing)

436 436

#
antigen structures

1 (12
before

collapsing)

24 24
Overview of external test set and lysozyme test sets for solved and AlphaFold predicted
antigens. Matthew correlation coefficient (MCC) calculated at optimal sensitivity-specificity
threshold using the Youden-index.
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2.4 Improved prediction on exposed and
non-linear epitopes

We also investigated if the structural information available to

DiscoTope-3.0, ScanNet and SEMA affects the prediction of

different types of epitopes. To this aim, epitopes were split into

different sub-categories (Exposed, Buried, Linear and Non-linear).

Exposed and Buried epitope residues are defined depending on

whether their relative surface accessibility was above or below 20%,

respectively. Linear epitopes are defined as any group of 3 or more

epitope residues found sequentially along the antigen sequence,

allowing for a possible gap of up to 1 unlabeled residue in between.

Finally non-linear epitopes were defined as epitopes not satisfying

the conditions of the linear group.

The result of this performance evaluation in the external test set

reveals improved performance of DiscoTope-3.0 across all epitope

subsets (Figure 4). DiscoTope-3.0 performance is remarkably good

for non-linear epitopes. In the case of buried epitopes (relative

surface accessibility < 20%), all models score poorly in the 30-37th

percentile (not shown). This low performance is likely an artifact of

the epitope labeling definition (shared between all tools), where

inaccessible residues in proximity to the bound antibody are

included in an epitope patch, despite not directly being involved

in molecular interactions with the antibody.
2.5 Effect of predicted structural quality

Next, we investigate how the quality of the AlphaFold predicted

structures affects the prediction of exposed epitopes. Overall, lower

structural quality leads to small decrease in predictive performance
Frontiers in Immunology 06130
(Figure 5), with high quality structures (pLDDT 95-100) having amean

epitope rank score of 84.2%, and moderate quality structures (pLDDT

85-95) having a non-significant decrease in mean epitope rank score of

81.2%. Only the group of antigens in the lowest quality pLDDT 60-85

group ($\sim$ 9% of antigens) perform significantly worse, with a

score of 75.5% (p < 0:005). Fitting a linear model, the epitope rank

score on average lowers by about 5 percentile points for every 10 point

decrease in structural quality or pLDDT score (Figure 5B).
2.6 Calibrating scores for antigen length
and surface area

We note that DiscoTope, BepiPred and SEMA exhibit a bias

towards lower scores for longer antigen lengths (Pearson

correlation -0.74, -0.71 and -0.51 respectively on external test set,

not shown). If using a fixed threshold for binary epitope prediction,

this results in most residues in shorter antigens being assigned as

positives, while longer antigens may have all residues assigned

as negatives.

To correct for this length bias, we calibrate antigen scores based

on a predicted m and standard deviation value, calculated from the

antigen length and its mean surface score (see Methods and

Supplementary Figure S8). The calibrated scores demonstrate

independence towards the antigen length, and clear separation of

buried and exposed residues across antigens in the validation set S6.

Furthermore, we find that calibrating the scores enables setting a

fixed threshold that provides reliable epitope recall across shorter

and longer antigens. For example, if we choose the 50th percentile

calibrated score for exposed epitopes (in the validation set), and use

this for binary epitope prediction on the lysozyme case study (see
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FIGURE 4

Improved performance on linear and non-linear epitopes. Mean epitope rank scores across antigens in the external test set, for the following
epitope subsets: All labeled epitopes, Exposed (relative surface accessibility < 20%), Exposed Linear epitopes and exposed Non-linear epitopes (see
text and Methods). Mean values calculated after bootstrapping 1000 times, with whiskers showing 95% distribution range.
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next section), we achieve an expected ∼ 50% epitope recall (see

Methods and Supplementary Figure S7).
2.7 Lysozyme case study with
collapsed epitopes

As a noteworthy test case, we evaluate the performance of

DiscoTope-3.0 on lysozyme, a well-studied antigen extensively

mapped against different antibodies. First, we identified 12

lysozyme chains with mapped epitopes at 90% similarity to the

chain C of the PDB structure 1A2Y. Next, DiscoTope-3.0 was re-

trained excluding these chains. Next, we calculated an antibody hit

rate, a ratio of on the number of times a given epitope residue was

observed as an epitope across all of the 12 structures. Here, a score

of 90% means the same residue was observed as an epitope in 11 out

of 12 of the chains, which is the case for 5 out of 129 residues.

Overall, we find that calibrated DiscoTope-3.0 scores correlate with

the observed epitope count or antibody hit rate with a Spearman
Frontiers in Immunology 07131
correlation of 0.58 (Figure 6). Fitting a linear model, we find that a 0.20

point increase in calibrated scores on average leads to a 10% increase in

the antibody hit rate (p < 0:0001, Supplementary Figure S5).

We note that the residues at positions ∼ 30-40 (Figure 6) score

highly in DiscoTope but lacked observed epitopes. Upon further

investigation into the IEDB database, we found this region to be part

of a discontinuous epitope patch (including K31, R32, G34, D36, G37,

G40…) bound by a camelid antibody deposited under the PDB id 4I0C.
2.8 DiscoTope-3.0 web server

Finally, we deployed a DiscoTope-3.0 web server, which enables

rapidly predicting epitopes on either solved or predicted structures

(Figure 7). The web server currently accepts batches of up to 50

PDB files at a time, with any number of chains. Users may upload

structures directly as PDB files, or automatically fetch existing

structures submitted as a set of RCSB or AlphaFoldDB IDs.

Output predictions are easily visualized through an interactive 3D
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view directly on the web server using Molstar (32), and predictions

may be downloaded in both a CSV and PDB format.
3 Discussion

In this work, we present DiscoTope-3.0, a tool for improved B-cell

epitope prediction. Our method exploits structure representations

extracted from the ESM-IF1 inverse folding model. Extensive

benchmarking of the tool demonstrated state of the art performance

on both solved and predicted structures. Importantly the performance,
Frontiers in Immunology 08132
in contrast to earlier proposed structure-based models, was found to be

maintained when shifting to predicted and relaxed structures. This

observation is of critical importance since it alleviates the need for

experimentally solved structures imposed in current structure-based

models, and allows for predicted structures to be applied for accurate

B-cell epitope predictions. This extends the applicability of the tool by 3

orders of magnitude, from ∼ 200K solved structures in the PDB (24),

to ∼ 200M predicted structures available in the AlphaFoldDB (20).

We note that other structure-based tools perform worse than

the sequence-based BepiPred-3.0 in cases where only predicted

structures and their sequences are available. This may arise from
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FIGURE 6

DiscoTope-3.0 score significantly correlates with antibody hit rate. Lysozyme epitope propensity as predicted by DiscoTope-3.0, excluding all
lysozyme antigens from training. (A) PDB antibody hit rate mapped AlphaFold predicted structure (chain 1a2y_C), with increasing epitope propensity
shown in red. (B) DiscoTope-3.0 score. (C) Epitope propensity visualized across the antigen sequence. Calibrated DiscoTope-3.0 score and antibody
hit rate (epitope counts) shown, as measured from aligning the 12 epitope mapped lysozyme sequences (Spearman R = 0.58). Additional
performance metrics available in Table 2.
FIGURE 7

DiscoTope-3.0 web server interface. The web server provides an interactive 3D view for each predicted protein structure. DiscoTope-3.0 score on
an example PDB, with increasing epitope propensity from blue to red. DiscoTope-3.0 is accessible at: https://services.healthtech.dtu.dk/service.php?
DiscoTope-3.0, https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0.
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sensitivity to the quality of predicted structures, or relying on

signals only present in solved or unrelaxed structures. DiscoTope-

3.0’s use of structure representations based on the protein backbone

makes it robust to the predicted structural quality, and remarkably,

able to perform similarly across solved, predicted and relaxed

structures. It is, to the best of our knowledge, the first tool that

presents highly accurate results on protein structural models.

We also find that other DiscoTope-like B-cell epitope prediction

tools demonstrate a bias towards lower scores for longer antigens.

After calibrating DiscoTope-3.0 scores for antigen length and

surface residue scores, we provide calibrated score thresholds

which provides the user with consistent expected epitope recall

rates across shorter and longer antigens.

Finally, DiscoTope-3.0 interfaces with AlphaFoldDB and RCSB,

enabling rapid batch processing across all currently cataloged

proteins in UniProt and deposited solved structures. The web

server is made freely available for academic use, accepting up to

50 input structures at a time, with any number of chains.

Our tool has been trained and evaluated on individual antigen

chains. One could envision that, for multimeric antigen structures,

it would be possible to further increase the tool performance by

training and testing on the antigen complex. At this time,

AlphaFold2 modeling accuracy for complexes is not yet on par

with its accuracy on individual chains, and predicted complexes are

not yet available in the AlphaFoldDB. As the science and technology

behind the structural modeling progresses, it will be likely possible

to further improve B-cell epitope predictions.

On the other hand, the positive-unlabelled learning strategy

based on ensemble models and dataset bagging we use displays a

remarkable boost in performance. We can imagine that, given the

large dimension of the potential antibody space, the large gap

between potential and observed epitopes will not be easily filled.

An alternative strategy, that could circumvent this problem and

provide valuable information to users, would be to perform

antibody-specific epitope predictions. This approach has been

tested by us and others in the past (33, 34), but the results are yet

to provide a significant improvement in accuracy.

In summary, DiscoTope-3.0 is the first structure-based B-cell

epitope prediction model that accepts and maintains state-of-the-

art predictive power across solved, relaxed and predicted antigen

structures. We believe this advance will serve as an important aid

for the community in the quest for novel rational methods for the

design of novel immunotherapeutics.
4 Methods

4.1 Training and evaluation of
DiscoTope-3.0

The antigen training dataset as presented in BepiPred-3.0 was

used as the starting point for our work. The dataset consists of 582

AbAg crystal structures from the PDB, filtered for a minimum

resolution of 3.0 Å and R-factor 0.3. Epitopes are defined as any

antigen residue containing at least 1 heavy atom within 4 Å of an

antibody heavy atom. From this dataset, using the tool MMseqs2,
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we first remove any sequences with more than 20% sequence

identity to the BepiPred-3.0 test set, resulting in 1406 chains.

Next, the antigen sequences are clustered at 50% sequence

identity. Each cluster has then been selected to be part of the

validation (281 chains) or the training set (1125 chains).

In the ablation study, single XGBoost models (25) with default

parameters were trained using representations from either the

predicted structure or antigen sequence respectively. When

testing feature combinations, ensemble size and effect of training

on solved and predicted structures, error bars were estimated from

re-training 20 times.

We manually adjusted three XGBoost hyperparameters from

their defaults, guided by suggestions in the XGBoost documentation

(??, xgb) and after observing improved performance on the

validation set. Specifically, decision-tree max_depth was adjusted

from 6 to 4, and the training data subsampling ratio subsample from

1.00 to 0.50 to reduce overfitting. n_estimators was adjusted from

100 to 200 trees after observing a plateauing improvement in the

validation set AUC-ROC. The gpu_hist method was used to enable

faster training on a GPU.
4.2 Dataset bagging and ensemble training

When sampling residues for each model in the ensemble, we

randomly select 70% of available observed epitopes (positives)

across the training dataset, then sample unlabelled residues

(negatives) with a ratio of 5:2. When using both predicted and

solved structures, these were sampled at a 1:1 ratio.

Ensembles were constructed by iteratively training independently

trained XGBoost models on the randomly sampled datasets. When

training an ensemble, we set a different random seed each time.
4.3 ESM-IF1 and ESM-2 representations

To generate per-residue ESM-IF1 structure representations,

antigen structures were first split into single chains, and these

inputted into ESM-IF1 following the instructions as listed on the

official repository (Research, 35).
1. import esm.inverse_folding.

2 . s t r u c t u r e =

esm.inverse_folding.util.load_structure(fpath,

chain_id).

3 . c o o r d s , s e q =
esm.inverse_folding.util.extract_coords_from_structure

(structure).

4. rep = esm.inverse_folding.util.get_encoder_output

(model, alphabet, coords).

For per-residue ESM-2 sequence representations, sequences

were first extracted from all antigen chains and stored in a

FASTA format. Next, the FASTA file was provided as input to
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the official extract.py script (Research, 35) using the pre-trained

ESM-2 650M parameter model.
Fron
./extract.py ––model_location esm2_t33_650M_UR50D \

––fasta_file sequences.fasta \

––include per_tok \

––output_dir output/
4.4 Feature calculation and data filtering

Each isolated chain was processed as a single PDB file with

ESM-IF1, extracting for each residue its latent representation from

the ESM-IF1 encoder output. pLDDT values were either extracted

from the PDB files in the case of AlphaFold structures, or set to 100

for solved structures. In the case of training on both solved and

predicted structures, we include a binary input feature set to 1 if the

input is an AlphaFold2 model, and 0 for solved structures.

Residue solvent accessible surface area was calculated using the

Shrake-Rupley algorithm using Biotite (36), with default settings,

and converted to relative surface accessibility using the Sander and

Rost 1994 (37) scale as available in Biopython (38).

When training DiscoTope-3.0, we removed any antigen with

less than 5 or more than 75 epitope residues, as well as PDBs with a

mean pLDDT score below 85 or residues with a pLDDT below 70.

No data filtering was performed during evaluation on the validation

and external test datasets.
4.5 Calibration of DiscoTope-3.0 scores

When using calibrated scores, each antigen’s DiscoTope-3.0

scores are normalized using the following formula:

Calibrated   score =
score − m

std

The values for m and std are calculated for each antigen, using

two separate linear generative additive models (GAMs) (39) fitted

on the validation set. The length to μ model is fitted on antigen

length versus mean score of antigen surface residues (RSA > 20%),

while the surface mean to std model is fitted on antigen mean

surface residue score versus standard deviation of the same scores

(Supplementary Figure S8).
4.6 External test set generation
and evaluation

The external test set, used for comparing our tool to ScanNet

and BepiPred-3.0, consists of solved antibody-antigen complexes

deposited in either SAbDab and the PDB after April 2021

(collection date June 2022). Any antigen with more than 20%

sequence identity to the training datasets used in this work, in

ScanNet, or in BepiPred-3.0 were removed using MMseqs2. We
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annotated epitopes using the same approach as in BepiPred-3.0,

which is common to all the tools.

We submitted either solved or AlphaFold2 predicted structures

to the ScanNet web server (40), using the antibody-antigen binding

mode and otherwise default parameters. BepiPred-3.0 predictions

were generated from its online web server (5) using the antigen

sequence and default parameters.

When evaluating DiscoTope-3.0 on the external test set, we

retrained the final model with an ensemble size of 100, on the full

training and validation set.
4.7 AlphaFold2 modeling and
structural relaxation

Sequences for each antigen chain containing at least 1 epitope

were extracted and modeled with the ColabFold implementation of

AlphaFold2 at default settings. We picked the top ranking PDB after

5 independent iterations of 3 recycles, as ranked by AlphaFold2’s

internal quality measure.

For relaxation of the solved structures we used the foldx_20221231

version of FoldX, with the RepairPDB command for relaxing residues

with bad torsion angles, van der Waals clashes or high total energy.
4.8 Data analysis

To calculate the mean epitope rank score, the predicted residue

scores for an antigen were first ranked in ascending order. Next, we

calculated the average of the rank scores for all epitope residues.

Exposed epitopes were defined as all epitopes with a relative

surface accessibility exceeding 20%, while the remaining epitopes

were defined as buried.

When reported, significance testing was performed with a one-

sided paired t-test using scipy.stats.ttest_rel (41). The linear model

on the mean antigen pLDDT vs mean epitope rank scores was fitted

using a linear least-squares regression model (scipy.stats.linregress)

with two-sided alternative hypothesis testing.

For confidence estimation with bootstrapping, the dataset was

sampled fully with replacement 1000 times, with the bootstrapped

datasets used to calculate means, epitope rank scores and standard

deviation values.
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SUPPLEMENTARY FIGURE 1

Validation set performance up to ensemble size 20. Validation set gain in
AUC-ROC from ensembling the full-feature model. Performance graphs are

shown for training on either experimentally solved, AlphaFold predicted or

both structures, and then evaluated on either the solved or predicted
structure validation set.

SUPPLEMENTARY FIGURE 2

External test set AUC-ROC. Test set AUC-ROC, as evaluated on 24 antigens
modeled with AlphaFold. For AUC-PR see.

SUPPLEMENTARY FIGURE 3

External test set PDB performances. Evaluation on 24 antigens modeled with

AlphaFold (left) or experimentally solved structures (right). BepiPred-3.0
performances on antigen sequences only.

SUPPLEMENTARY FIGURE 4

DiscoTope-3.0 is robust towards modeling and relaxation. External test set

change in mean epitope rank scores across PDBs, when (A) swapping
predicted structures with their original solved structure or (B) solved

structures with the same structure after FoldX relaxation (see Methods).
Mean performance loss shown in percent.

SUPPLEMENTARY FIGURE 5

DiscoTope-3.0 score significantly correlates with antibody hit rate. Lysozyme

case study on 1a2y_C, showing PDB antibody hit rate (ratio of times an
epitope residue is observed across all 12 lysozyme chains) versus calibrated

DiscoTope-3.0 scores. Model is trained excluding all lysozyme structures
from training (see Methods).

SUPPLEMENTARY FIGURE 6

DiscoTope-3.0 calibrates for antigen length and surface area. Uncalibrated

DiscoTope-3.0 surface scores are biased towards the antigen length, which
may cause all residues to be assigned as positives/negatives for some

antigens, if using a fixed, binary threshold. (A) Validations set DiscoTope-3.0
score distributionsbefore normalization and (B) after correcting for antigen

length and surface scores (see Methods). (C) Calibrated score distributions in
the validation set, for buried residues, exposed residues (relative surface

accessibility > 20%) and exposed epitopes. The top 70th, 50th and 30th

percentile scores for exposed epitopes are shown in red dashed lines (A, B), as
suggestive thresholds for binary epitope prediction.

SUPPLEMENTARY FIGURE 7

Benchmarking calibrated score thresholds on Lysozyme. Binary epitope
prediction performance on the collapsed lyzosyme dataset, for different

calibrated score thresholds. Recall of total observed epitopes shown in

blue, with precision for any observed epitopes above the threshold. Green
line shows the median epitope count per residue for residues above the given

threshold (maximum 12). Red lines shown for the previously mentioned top
70th, 50th and 30th exposed epitope percentile scores from the validation set

(Figure S6).

SUPPLEMENTARY FIGURE 8

Fitted GAMmodels for calibrating scores. Length to m and surface to std fitted
GAM models on the validation set, used for calibrating DiscoTope-3.0 scores

(see Methods).
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Systems and computational
analysis of gene expression
datasets reveals GRB-2
suppression as an acute
immunomodulatory response
against enteric infections in
endemic settings
Akshayata Naidu and Sajitha Lulu S. *

Integrative Multi-omics Lab, Department of Biotechnology, Vellore Institute of Technology, Vellore,
Tamil Nadu, India
Introduction: Enteric infections are a major cause of under-5 (age) mortality in

low/middle-income countries. Although vaccines against these infections have

already been licensed, unwavering efforts are required to boost

suboptimalefficacy and effectiveness in regions that are highly endemic to

enteric pathogens. The role of baseline immunological profiles in influencing

vaccine-induced immune responses is increasingly becoming clearer for several

vaccines. Hence, for the development of advanced and region-specific enteric

vaccines, insights into differences in immune responses to perturbations in

endemic and non-endemic settings become crucial.

Materials and methods: For this reason, we employed a two-tiered system and

computational pipeline (i) to study the variations in differentially expressed genes

(DEGs) associated with immune responses to enteric infections in endemic and

non-endemic study groups, and (ii) to derive features (genes) of importance that

keenly distinguish between these two groups using unsupervised machine

learning algorithms on an aggregated gene expression dataset. The derived

genes were further curated using topological analysis of the constructed

STRING networks. The findings from these two tiers are validated using

multilayer perceptron classifier and were further explored using correlation

and regression analysis for the retrieval of associated gene regulatory modules.

Results: Our analysis reveals aggressive suppression of GRB-2, an adaptor

molecule integral for TCR signaling, as a primary immunomodulatory response

against S. typhi infection in endemic settings. Moreover, using retrieved

correlation modules and multivariant regression models, we found a positive

association between regulators of activated T cells and mediators of Hedgehog

signaling in the endemic population, which indicates the initiation of an effector

(involving differentiation and homing) rather than an inductive response upon

infection. On further exploration, we found STAT3 to be instrumental in

designating T-cell functions upon early responses to enteric infections in

endemic settings.
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Conclusion:Overall, through a systems and computational biology approach, we

characterized distinct molecular players involved in immune responses to enteric

infections in endemic settings in the process, contributing to the mounting

evidence of endemicity being a major determiner of pathogen/vaccine-induced

immune responses. The gained insights will have important implications in the

design and development of region/endemicity-specific vaccines.
KEYWORDS

immune response, enteric infection, gene expression data analysis, network biology,
machine learning methods, gene regulatory networks
1 Introduction

Enteric infections pose major challenges to global health as

diarrheal diseases remain one of the major causes of under-5 (years)

mortality in Sub-Saharan Africa and South Asia (1–3). In areas of

high endemicity, the suboptimal vaccine efficacy/effectiveness of

oral vaccines against enteric pathogens has been quite puzzling and

concerning (4–6). Several second- and third-generation enteric

vaccines are under development and evaluation and can greatly

benefit from the establishment of reliable correlates of protection

(CoP) and/or correlates of risk (CoR) (7, 8) during the phase of

clinical testing. Since the advent of high-throughput technologies,

many studies have aimed at establishing gene/molecular-level

signatures to induced protective immune responses against

multiple vaccines (9–11) and infections instead of solely relying

on antibody titers as a protective biomarker. In the course of

advancements in the field quite recently, the focus has shifted

towards developing and assigning gene modules (functionally

associated group of genes) to vaccine-induced immunological

protection against several infections (12, 13).

Particularly for enteric infections, given that endemicity plays

an important role in defining vaccine-induced immune responses

(14), understanding the molecular mechanisms that are underplay

in endemic settings after perturbation becomes absolutely essential

(15). Hence, the objective of the study was to delineate these

molecular mechanisms to distinguish between immune responses

in endemic and non-endemic settings (against enteric pathogens).

For this purpose, we employed a robust computational and network

biology pipeline for the analysis of post-infection gene expression

datasets (of the host) singularly and comprehensively. Through the

analysis, we expect to exhibit meaningful insight and credible

molecular signatures/regulatory modules that can distinguish

immune responses in these two different settings with varied

pathogen prevalence. In the process, we also put forward the used

pipeline as an exploratory tool for future studies that involve meta-

analysis of gene expression datasets and that particularly focus on

studying immune responses to pathogens.
02138
2 Materials and methods

2.1 Data collection and
conceptual framework

Microarray and RNASeq datasets linked to host responses to

prevalent enteric pathogens—S. typhi, ETEC, Vibrio cholera, and

rotavirus infections—were collected from NCBI (GEO) and EMBL-

EBI (ArrayExpress) databases using the following keywords:

[“Salmonella” AND “Homo Sapiens”], [“Typhoid” AND “Homo

Sapiens”], [“E. coli” AND “Homo Sapiens”], and [“Rotavirus” AND

“Homo Sapiens”]. A total of 125 gene expression studies were retrieved.

These studies were further filtered by excluding in vitro studies and

only clinical studies were included with infected/challenged and control

groups. Supplementary Figure S1 illustrates the detailed exclusion and

inclusion criterion used for data screening and identification for the

study for both endemic and non-endemic settings. The obtained gene

expression datasets were segregated based on the study location and

were labeled as “endemic” or “non-endemic” based on the pathogen

prevalence as described in the literature. The two-tiered computational

pipeline followed for the study is illustrated in Figure 1.
2.2 Data integration

For meta-dataset construction, gene expression datasets

corresponding to acute stages of infection were derived from each

of the studies and were integrated, and batch effect was corrected

using the “sva” package’s ComBat function in R (16).
2.3 Differential expression analysis

Differentially expressed genes (DEGs) for each of the dataset were

obtained using the “GEOquery” (17) and “limma” package (18).

Briefly, gene expression datasets were retrieved for each of the

studies using the “fData” function, and rows with missing values
frontiersin.org
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were omitted. Samples corresponding to acute responses to infections

and controls were only considered for further analysis (Supplementary

Figure 1). The four datasets were normalized using log2 transformation

prior to the calculation of DEGs, which were corrected for false

positives using the Benjamini & Hochberg method. The retrieved

DEGs for the four tables were further filtered using logFC value (>1 and

<−1) and p-values (0.05) and were visualized using volcano plots

developed using the “ggplot2” package (19), and common and distinct

DEGs were visualized using the “Venn diagram”. Missing gene

symbols from these datasets were obtained using the “biomaRt”

package for further analysis (20). Supplementary File 1 provides the

list of DEGs obtained for each of the cohorts in tabular format.

2.4 Functional enrichment analysis

The Gene Ontology database (Gene Ontology Resource) was used to

prepare amaster list of “biological processes” that are involved in immune

responses against pathogens (Supplementary File 2) using the QuickGO

interface (https://www.ebi.ac.uk/QuickGO/). A total of 248 biological

processes were identified and used as a reference list. DEGs derived

from the four datasets were individually fed to the DAVID database

(https://david.ncifcrf.gov/) to derive enriched biological processes. The

acquired lists (4) were manually curated to select "only" immune

response-associated gene ontology terms using the drafted master list

and were taken further for the analysis. Pathway enrichment analysis for

all the four sets of DEGs was performed using the KEGG [KEGG

PATHWAYDatabase (genome.jp)] (release 106.0) and Reactome (Home

- Reactome Pathway Database) database (V86). Individual gene functions

and associated pathways were derived from the GeneCards database

(GeneCards - Human Genes | Gene Database | Gene Search).
2.5 Network analysis

Protein–protein interaction (PPI) networks were constructed

using the STRING database [STRING: functional protein

association networks (string-db.org)] and visualized and analyzed
Frontiers in Immunology 03139
using Cytoscape (Cytoscape: An Open Source Platform for

Complex Network Analysis and Visualization) plugins. The nodes

of the network represent proteins and the edges represent the

functional or physical associations the nodes have with each other

as determined through text mining or experimental evidence and

are represented and curated based on confidence scores. PPI

networks were extended for up to 30 interacting partners per

node (with 90% confidence score) to get a comprehensive

functional understanding of the DEGs.

2.5.1 Topological network analysis
Hub nodes/genes in a network can be defined as the most

influential nodes in terms of connectivity and influence and were

calculated using the cytohubba plugin (21). For the four constructed

network, hub genes were identified using three different algorithms.

While the Maximum Clique Centrality (MCC) and Density of

Maximum Neighborhood Compartment (DMNC) algorithms

revealed nodes with maximum connectivity that were relevant in

understanding influential proteins for each of the networks, the

Bottleneck algorithm was especially important in extracting nodes

that connected different subnetworks. The employed algorithms are

detailed as follows:
• MCC is a local-based method for topological analysis where

the MCC score for a node or MCC(v) is defined as MCC(v)

=∑C∈S(v)(|C|−1)!, where S(v) is the collection of maximal

cliques that contain v, and (|C|−1)! is the product of all

positive integers less than |C|.

• DMNC is also a local-based method for topological analysis

where the DMNC score or DMNC(v) of a particular node is

defined as DMNC(v) = |E(MC(v))|/|V(MC(v))|e, where e =

1.7,MC(v) is a maximum connected component of the G[N

(v)], and G[N(v)] is the induced subgraph of G by N(v)

(total set of nodes). V is a collection of nodes and E is a

collection of edges.

• The Bottleneck algorithm, on the other hand, is a global-

based method for topological analysis where the Bottleneck
FIGURE 1

Study workflow of the analysis. The study was performed in two tiers. The first tier focused on the retrieval and topological network analysis of
differentially expressed genes (at the acute stage) while the second tier focused on integration of all the infected samples in the form of a meta-
dataset. The meta-dataset was used for feature selection using PCA and Random Forest Algorithm. The features/hub genes derived from the two
tiers were further analyzed using correlation and multivariant regression analysis, and molecular signatures designating immune responses in
endemic and non-endemic settings was derived using multilayer perceptron-based classification.
frontiersin.org

http://geneontology.org/
https://www.ebi.ac.uk/QuickGO/
https://david.ncifcrf.gov/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://reactome.org/
https://reactome.org/
https://www.genecards.org/
https://string-db.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
https://doi.org/10.3389/fimmu.2024.1285785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Naidu and Lulu S. 10.3389/fimmu.2024.1285785

Fron
score BN(v) is defined as BN(v)=∑s∈Vps(v), where ps (v) = 1

if more than |V(Ts)|/4 paths from node s to other nodes in

Ts meet at the vertex v; otherwise, ps(v) = 0.
The PPI network clusters were detected using the MCODE

algorithm available in the ClusterViz plugin in Cytoscape (22). The

algorithmmaps highly interconnected subnetworks of a network. In

this algorithm, seed vertices are expanded based on the local

neighborhood density and the density of the prospective cluster.
2.6 Feature selection through unsupervised
machine learning algorithm

Firstly, principal component analysis (PCA) was performed on

the constructed meta-dataset (section 2.2) to characterize the

variance of gene expression profile in endemic and non-endemic

settings. PCA is a dimension reduction technique used to derive key

insights into big datasets based on the covariance of the variables

involved based on the derived eigenvectors and values.

Mathematically, covariance between two variables is defined as:

Cor(x, y)  =  Sum ððxi – x*Þ ðyi – y*ÞÞ=N
where x and y represent two variables, x* and y* represent their

respective means, and N represents the total sample size of the

study. PCA is generally used as a preliminary step to observe the

underlining patterns of the large datasets and how these patterns are

correlated with the phenotype/outcomes under consideration. The

analysis was performed using the “prcomp” function in R.

Secondly, feature selection was performed using the Random

Forest algorithm-based wrapper method that distinguished between

gene expression profiles (with common 6,543 genes) from endemic

and non-endemic settings using the “Boruta” package (23).

Random Forest belongs to the family of decision trees where,

based on numerical estimates, independent decision trees are

constructed and evaluated for optimal classification performance.

The importance of a variable is calculated based on the loss in

accuracy in classification when the variable is dropped in a series of

random permutations. The importance of each variable is

determined using the Z score in the Boruta package.

Mathematically, the Z score in the Boruta package can be defined

as the average of the difference in real and predicted values of a

variable (or the loss of accuracy) divided by the standard deviation.

The higher the loss of accuracy computed for a variable, the poorer

it seemed to have performed, and vice versa. The parameters used in

the algorithms are optimized based on trial and error and are hence

auto-optimized or auto-tuned.

Thirdly, hybrid clustering (using components of both k-means

and hierarchical clustering algorithms) was performed on the logFC

values of common genes between the four cohorts using the

“FactoMineR” package (24). In hybrid clustering, small clusters

are initially formed using the k-means algorithm (centroid-based

clustering), which are later clustered on a larger scale based on the

maximal distance between the formed clusters and come under
tiers in Immunology 04140
hierarchical or connectivity-based clustering. Mathematically, k-

means clustering relies on the calculation of Euclidean distance

between two variables in order to assign variables to specific

centroids. The Euclidean distance between two variables is

computed as:

d2 x, yÞ  =  ðx1 – y1ð Þ2+ ðx2 – y2Þ2 +  ðxn − ynÞ2

where x and y represent the two variables (their values) in a

plane and n represents the number of samples. On the other hand,

maximal distance between two clusters in hierarchical clustering is

computed as:

d(p, q)  = Tpq=Np + Nq

where p and q represent the two clusters, T represents the sum

of the pairwise distances between the two clusters, and N represents

the number of variables in the respective clusters.

The features/attributes/genes derived from the two algorithms

(clustering and Random Forest) were used for the construction of

the PPI network using the STRING database, and hub genes were

retrieved through topological network analysis performed using the

cytohubba plugin (Figure 1).
2.7 Machine learning based classification

Hub genes derived through the methods described in sections

2.5 and 2.6 specifically were used for the construction of

classification models using the meta-dataset to distinguish

between the endemic and non-endemic (infected) groups using

the multilayer perceptron (MLP) algorithm on the WEKA platform

with threefold cross-validation. Neural networks, specifically MLP,

are well documented in the literature as good classifiers when gene

expression datasets are used as input (25, 26). MLP is a deep

machine learning algorithm that consists of an input layer, an

output layer, and a hidden layer, and the neural network is trained

using a feed-forward pathway. The activation function used for

training was a sigmoid logistic function represented as:

F(x)  =  1=ð1  +  e− xÞ

which is a nonlinear function and represents an input variable

in the range of 0 to 1. Activation functions are used to gauge and

legitimize specific neurons or nodes of the neural network during

training based on the weight and bias they hold for the

classification. Thereafter, confusion matrices representing the

performance of the classification were computed and visualized.

The confusion matrix summarizes true positive (TP), false positive

(FP), false negative (FN), and true negative (TN) values predicted

by the model. The confusion matrix is used to compute Accuracy

and Recall of the built classifier, where

Accuracy  =  TP  +  TN=(TP  +  TN  +  FP  +  FN)

Recall  =  TP=TP  +  FN
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Accuracy represents the instances (out of total) where the

classification predictions were correct, while Recall represents

instances where the predictions were correct as compared to total

positives (TP + FN). Genes were ranked based on the accuracy score

of their respective models.
2.8 Correlation analysis

Correlation modules were retrieved using the “azolling/

EBmodules” package (https://github.com/azolling/EBmodules)

from the constructed meta-dataset, and modules with high-

performing genes from the section above were identified (27).

The algorithm behind the package combines gene–gene

correlation matrices derived from different sets of microarray

datasets with the sample-gene architecture using the Fischer

transformation. From this constructed common correlation

matrix, highly correlated genes or modules are derived using

hierarchical clustering algorithm. The optimal number of

modules to be derived from the correlation matrix is decided

using the Gap statistical method that is discussed in detail

elsewhere (https://joey711.github.io/phyloseq/gap-statistic.html),

and for each cluster, Gap(k) is computed using:

Gap(k)  = (1=B) sum(log(W*)  –  log ðWkÞ
2.9 Multiple regression analysis

Genes correlated to high-performing genes (based on MLP

classification) (or part of shared network clusters from section

2.5) and retrieved transcriptional factors for each of these genes

were used for the construction of multivariant regression (MVR)

models in R. MVR involves the prediction of a dependent variable

based on a set of independent variables (instead of a single variable

that is used in the single-variant regression analysis).

Mathematically, regression models can be defined as:

Y = b0 + b1xi + ϵi

where Y represents the dependent variable under investigation

and x represents independent variables, while b0 and b1
represent the intercept and parameter of the model,

respectively, and ϵ represents standard error. “i” indicates the

number of independent variables being tested for the prediction

of Y. For the highly influential genes derived from the steps

above, MVR models were retrieved using a combinatorial

approach where genes found to be correlated or associated with

these genes of interest (throughout the analysis) were treated as

independent variables to derive the best-performing model that

could predict the pattern of expression of these influential genes.

The aim of the analysis was to gain a deeper understanding of the

underlying molecular mechanisms for the construction of robust

gene regulatory modules associated with identified molecular

signatures. MVR has been recently suggested as a robust
Frontiers in Immunology 05141
method for deriving gene regulatory networks from gene

expression datasets (28). The analysis was performed using the

“lm” function in R.
2.10 Regulatory network inference

MVR models constructed in the above step with R2 value > 0.50

were used for the inference of gene regulatory modules.
3 Results

Based on the criteria discussed in section 2.1, four gene

expression studies—GSE7000, GSE112959, GSE2729, and

GSE95104—were selected for the analysis. Here, GSE7000 study

datasets were retrieved from subjects in Vietnam (a country

endemic to S. typhi infection), whereas the latter three were from

non-endemic settings. GSE112958 study datasets were derived from

S. typhi-challenged adults in a controlled study conducted in Oxford

(UK). GSE2729 datasets were retrieved from rotavirus-infected

children from the USA and GSE95104 datasets were derived from

ETEC-infected subjects from the USA (Table 1). Datasets from the

earliest time points (post-symptom onset) for each of the four studies

were used for the retrieval of DEGs and for the construction of the

meta-dataset (Supplementary Figure 1). An integrated dataset (meta-

dataset) with 6,543 common genes was constructed, and the batch

effect was corrected for a total of 208 samples (all infected samples

from the four datasets) (Supplementary Files 5 and 6) for meta-

analysis of gene expression datasets. An online accessible processed

dataset with 20 samples from GSE69529 (RNASeq) was reserved for

validation (Supplementary File 7 and Supplementary Figure S1).
3.1 Retrieved differentially expressed genes,
enriched pathways, and modules

At the early stage of infection, in the S. typhi cohort, there were 887

upregulated genes while there were 1,249 downregulated genes. For the

S. typhi (Oxford) cohort, there were 258 upregulated genes and 34

downregulated genes. For the Rotavirus cohort, there were 139

upregulated genes and 207 downregulated genes. For the ETEC

cohort, there were 80 upregulated genes and no genes were

downregulated based on the set criterion (Supplementary Table S1).

The retrieved DEGs from the four cohorts were illustrated as Volcano

plots (Figure 2A). Briefly, for the S. typhi (Vietnam) cohort, there was

upregulation of markers of activated lymphocytes and mediators of the

NOTCH signaling pathways, and downregulation of mediators

involved in acute inflammatory responses. For the S. typhi (Oxford)

cohort, highly upregulated genes were inferred to an interferon-

mediated inflammatory response along with the mediation of T-cell

chemotaxis. For the Rotavirus cohort, we found upregulation of

inflammatory cytokines, and for the ETEC cohort, we found

upregulation of mediators involved in early stages of inflammation.
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In terms of numbers, we found the least number of DEGs in the ETEC

cohort and the highest number of DEGs in the S. typhi (Vietnam

cohort). While the S. typhi (Vietnam) cohort had 59 DEGs in common

with the Rotavirus cohort, there were only 34 DEGs common with the

S. typhi (Oxford) cohort (Figure 2B).

Functional enrichment analysis was performed to gain biological

insight into acute responses to pathogen in endemic and non-

endemic cohorts. Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis on the DEGs acquired for the S. typhi

(Vietnam) cohort revealed significant enrichment of multiple

intracellular signaling pathways, top among which were the cGMP-

PKG signaling pathway and the Calcium signaling pathway

(Supplementary Table S2). Interestingly, pathway enriched analysis

of “both” up-and downregulated genes separately for this cohort

revealed enrichment of T-cell receptor signaling (at the acute state of

infection). While CD40L, PI3K, SOS, HRAS, and PLC genes were

upregulated, LCK and GRB2 were downregulated (Supplementary

Figure S2) along with the downregulation of major signaling

pathways conventionally associated with acute inflammatory

responses (toll-like receptor signaling and cytokine/chemokine

signaling pathway) (Supplementary Figure S3). For the S. typhi

(Oxford) cohort, sensory signaling pathways—NOD-like receptor

signaling pathways and the Cytosolic DNA-sensing signaling

pathway—along with intracellular pathways involved in antigen

processing and presentation were significantly enriched. On the

other hand, in the Rotavirus cohort, enrichment of major

inflammatory signaling pathways was observed upon KEGG

pathway enrichment analysis. Importantly, pathways associated

with PRR signaling and TCR/BCR signaling were also significantly

enriched for this cohort. For the ETEC cohort, given the low number

of DEGs derived for this cohort, no enriched KEGG signaling

pathways were detected (Supplementary Table S2).

Enrichment and curation of GO biological processes based on the

master list (section 2.4) yielded a total of 91 immune response-

associated modules for the S. typhi (Vietnam) cohort, 117 modules
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for the S. typhi (Oxford) cohort, 118 modules for the Rotavirus cohort,

and 6 modules for the ETEC cohort. The top curated enriched terms

for the S. typhi (Vietnam) cohort were “inflammatory response”,

“positive regulation of cell migration”, “cell surface receptor signaling

pathways”, “response to xenobiotic stimulus”, and “neutrophil

chemotaxis”. Curated terms for S. typhi (Oxford) were “defense

response to virus”, “innate immune response”, “response to virus”,

“negative regulation of viral genome replication”, and “positive

regulation of interferon beta production”. For the Rotavirus cohort,

the top enriched biological processes (after curation) were “chemokine-

mediated signaling pathway”, “cellular response to lipopolysaccharide”,

“negative regulation of MAPK cascade”, “cytokine mediated signaling

pathway”, and “negative regulation of type 2 immune response”. For

the ETEC cohort, the top enriched (curated) terms were “regulation of

phosphatidylinositol 3-kinase signaling”, “positive regulation of innate

immune response”, “immune response”, “acute-phase response”,

“regulation of immune system process”, and “T-cell activation”.

Genes associated with curated GO terms were taken ahead for PPI

network construction and analysis (Figure 3).

Overall, through the KEGG enrichment analysis, we found

peculiar dysregulation of the TCR receptor signaling pathway in

the endemic cohort as compared to the non-endemic cohort

(Supplementary Figures S2 and S3). Furthermore, although all the

four cohorts showed enrichment of biological processes involved in

host responses to the pathogen and acute inflammatory responses,

we observed specific enrichment of modules associated with cell

migration in the endemic cohort.
3.2 Hub genes and network clusters

The list of genes derived for each of the cohorts after module

screening and identification (Supplementary File 3) was used as

input for the construction of PPI networks (as described in section

3.1) to retrieve genes of high influence or connectivity (hub genes)
TABLE 1 GEO Accession ID with description of the four microarray datasets used in the study along with a rnaseq dataset used for validation.

GEO
Accession
ID

Microarray
platforms

Pathogen No.
of
samples

Study
population

Location Reference

GSE2729 Affymetrix Human
Genome U95
Version 2 Array

Rotavirus 23 Children, infected USA (29)

GSE95104 Affymetrix Human
Genome U133A
2.0 Array

ETEC 72 Adults, challenged
with unattenuated
ETEC strain

USA (30)

GSE7000 Stanford Human
cDNA Microarray

S. typhi 183 Adults, INFECTED Vietnam (31)

(GLP4858)

GSE112958 Illumina
HumanHT-12 V4.0
expression
bead chip

S. typhi 178 Adults, challenged
with S. typhi
Quailes strain

UK (Diagnostic Host Gene Signature for Distinguishing
Enteric Fever from Other Febrile Diseases—EMBO

Molecular Medicine, 2019)

GSE69529 Illumina HiSeq 2500 Multiple 204 Children, infected
with
multiple pathogens

Mexico (32)
*RNA was extracted from PBMC samples in the first three studies and from the whole blood samples in the fourth study.
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in immunologically relevant gene ontologies (for the four cohorts).

Although PPI networks were constructed using a curated set of

genes with high immunological relevance, for the S. typhi (Vietnam)

cohort, topological analysis of the network did not derive any hub

genes conventionally associated with immune responses. In fact,

majority of the hub genes derived from the three topological

algorithms were associated with cell cycle signaling (SOS1, HRAS,

and KRAS), EGFR receptor-associated (EGFR and SRC), and

MAPK/Erk (MAPK6/14) signaling pathways (Supplementary

Table S3 and Figure 3A). For immune responses in the S. typhi

(Oxford) cohort, hub genes using the MCC and DMNC algorithm

were IRF1, IFIT1/3/4, and IFI35, and IRF1/4, IFIT5, and IFITM1/3,

respectively. Both of these sets of genes are essential components of

interferon-mediated signaling pathways (Supplementary Table S3

and Figure 3B). For the Rotavirus cohort, major inflammatory

mediators—RELA, JUN, STAT3, CREBBP, IL6R, CXCL3/8, TNF,

and STAT1—were revealed as hub genes of the constructed

network (Supplementary Table S3 and Figure 3C). In the ETEC

cohort, degree-based topological algorithms (MCC and DMNC)

revealed adaptors and receptors involved in TCR (CD28, CD2,

CD28, and CD247) and BCR (CD79A/B) signaling pathways as

essential hub genes in the elicited immune response

(Supplementary Table S3 and Figure 3D).
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Network clusters derived from the four pathogen-specific

PPI networks were filtered based on their clustering scores (>5

score); three clusters were retrieved from the S. typhi (Vietnam)

cohort and one cluster (with a score of 40.55) was retrieved from

the S. typhi (Oxford) cohort. From the Rotavirus cohort, three

clusters were retrieved and two clusters were retrieved from the

ETEC cohort. Fully annotated clusters are illustrated and

described in Supplementary Figure S2 and Supplementary

Table S4, respectively. Briefly, the highest-performing network

cluster from the Vietnam cohort was enriched with genes

belonging to the growth receptor signaling pathway (EGF,

EGFR, MAPK, RHOA, KRAS, HRAS, GRB2, SHC, and

PTPN11) and T-cell receptor signaling pathway (GRB2, LCK,

SRC, MAPK, and HRAS). The highest-performing cluster in the

S. typhi (Oxford) cohort was enriched with genes belonging to

interferon-induced mediators, that in the Rotavirus cohort was

enriched with cytokines and chemokines, and that with the

ETEC cohort was enriched in surface mediators of lymphocyte

signaling. Considering that the functional enrichment analysis

pointed towards a dysregulated TCR signaling specifically in the

S. typhi cohort, the highest performing cluster from the S. typhi

(Vietnam) cohort (which was enriched with genes from tcr and

growth factor receptor signalling) was considered as a
B

A

FIGURE 2

EXTRACTION OF DIFFERENTIALLY expressed genes (DEGs) (Tier 1). (A) Volcano plots depicting upregulated and downregulated genes derived from
GSE7000, GSE112958, GSE95104, and GSE2729 (clockwise). (B) Venn diagram representing common and specific genes between the cohorts.
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distinguishing and peculiar feature of acute immune responses in

the endemic cohort.
3.3 Features distinguishing immune
responses in endemic and non-
endemic settings

PCA of the integrated gene expression dataset (meta-dataset)

revealed a high degree of variance in PC1 and PC2 and was

performed to gauge covariances/eigenvectors corresponding to the

four cohorts. While variance in component 1 was attributable to

the differences in the gene expression profile between an adult

cohort and a child cohort, variance in component 2 can be

attributed to gene expression profiles triggered upon pathogen

exposure in endemic versus non-endemic settings (Figure 4).

Further analyses (by the employment of unsupervised ML

algorithms) were performed to delineate gene expression profiles

based on endemicity. For hybrid clustering (check method

section) based on logFC values, the optimal number of clusters

was pinned down to be six (based on the calculations of the “total

with sum of square” values) (Supplementary Figure S5). Among

the derived six clusters, cluster 2 was negatively associated with

the S. typhi (Vietnam) cohort while cluster 4 was positively

associated with this cohort. Figure 5A illustrates distinct gene

expression patterns as observed in clusters 2 and 4, which

distinguishes the S. typhi (Vietnam) cohort from the other three

cohorts. Network construction and topological analysis of cluster
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4 revealed ribosomal proteins (RPL22, RPS9, and RPS15) and

genes associated with Hedgehog (JAG1, WNT2B, and ADAM17)

signaling to be high-ranking hub genes as per the MCC and

DMNC algorithm (Figure 5B). For cluster 2 (downregulated in the

endemic cohort), the derived hub genes were mainly involved with

growth factor receptor signaling (PTPN1, PTPN11, ERBB2, GRB2,

FGF12, and PDGFRA), cell cycle signaling (WT1), and regulation

of interferon signaling (SOCS1 and SOCS3). The findings of

clustering analysis indicated upregulation of the Hedgehog

signaling pathway and downregulation of growth factor receptor

signaling to be specific attributes of the endemic cohort that

distinguishes it from the other cohorts.

For deriving more reliable features, Random Forest-based

feature selection was used on the meta-dataset to derive highly

influential determiners (features/genes) in characterizing host

responses to enteric pathogens in endemic and non-endemic

settings. Network construction and analysis of the derived

features revealed hub genes associated with growth factor receptor

and PI3K/Akt signaling (ERBB2, ERBB3, FGFR2, PIK3CB, PIK3R1,

PIK3CD, and PTPN11) and genes associated with the cell cycle

(CCND1 and RET) (Figure 6). All the three groups of features were

characterized via functional enrichment analysis using the reactome

database, and their key regulators were then retrieved from the

TRRUST database (Table 2). Interestingly, the Random Forest-

based feature selection again pointed out towards growth factor

receptor signaling as an integral distinguishing feature of the

endemic cohort compared to the non-endemic cohort, further

validating the findings of the clustering analysis.
B

C D

A

FIGURE 3

Protein–protein interaction (PPI) network with interacting partners (IPs) (Tier 1). (A) S. typhi (Vietnam) cohort—MCC hub genes and Bottleneck hub
genes. (B) S. typhi (Oxford) cohort—MCC hub genes, DMNC hub genes, and Bottleneck hub genes. (C) Rotavirus cohort—MCC hub genes, DMNC
hub genes, and Bottleneck hub genes. (D) ETEC cohort—MCC hub genes, DMNC hub genes, and Bottleneck hub genes (confidence score: 0.90).
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Based on the findings of the two unsupervised machine learning

algorithms, the negative regulation of components of the growth

factor receptor signaling pathways and the positive regulation of the

Hedgehog/WNT signaling pathway were determined to be associated

with immune responses in endemic settings. To investigate further if

these mediators can act as primary determiners of differences in

immune responses between endemic and non-endemic settings, we

used neural network-based classification (MLP classifier).
3.4 Identification of highly influential genes
using ML-based classification

Machine learning-based classification was performed on hub

genes derived in sections 3.2 and 3.3, which were categorized as

being “responsive” or “housekeeping” genes using the HRT Atlas

(https://housekeeping.unicamp.br/) (Table 3). The “responsive”

genes were then evaluated for their potential to act as a classifier

of immune responses for the endemic cohort compared to the non-

endemic cohort using multiple supervised machine learning

algorithms. Neural network-based classification algorithms were

used for the analysis because of their documented compatibility to

accommodate, analyze, and evaluate gene expression data (26).
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The performance of the classifiers was evaluated after the

derivation of confusion matrices (based on the performed threefold

classification). Based on accuracy and ROC, the genes were ranked

based on their significance in differentiating immune responses in

endemic and non-endemic settings grb2, an adaptor of tcr signalling

was found to have the best performing score in classifying infected

cohort from endemic and non-endemic setting (Table 4).

3.4.1 Validation of GRB2 as a classifier
To validate GRB2 as a high-performing classifier, two other

machine learning algorithms were built to construct the classification

model, where, again, GRB2 was classified with high accuracy

(Supplementary Figure S7). To validate GRB2 suppression at the

acute stage upon vaccination, the ImmuneSpace database was

screened for trials that have reported GRB2 downregulation in the

first 7 days after immunization. The findings of the survey are tabulated

in Supplementary Table S7 where we found four clinical trials with

indications of GRB2 suppresion at the acute stage post immunisation.

3.5 Correlation between TCR and
Hedgehog/NOTCH signaling pathways

Based on the hypothesis generated in sections 3.2, 3.3 and 3.4, to

derive the relationship between the two signaling pathways (TCR
FIGURE 4

PCA plot illustrating variance in gene expression profiles (Tier 2) before and after batch correction. While PCA plots in the upper panel are labeled to
indicate samples from different experiments/cohorts/batches, PCA plots from the lower panel are labeled with different study groups (infected and
control). Here, Batch 1 = S. typhi (Viet) cohort (endemic); batch 2 = Rotavirus cohort; batch 3 = S. typhi (Oxf) cohort; batch 4 = ETEC cohort.
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and Hedgehog), correlation studies were performed. A total of 20

correlation modules (group of genes) were identified in the

integrated datasets. These modules were characterized using

functional enrichment analysis and were filtered using the master

list (Supplementary File 2) to derive immunologically relevant

submodules (Supplementary Table S7). We found the curated

submodule retrieved from module 3 to contain components of

both TCR signaling (NFATC4 and NFATC1) and Hedgehog

signaling (WNT2B, TLE4, MAFF, and ROR2) and to be highly

correlated. NFATC1/4 are transcription factors associated with

activated T cells, and their positive correlation with the

components of the Hedgehog signaling pathway indicates

activation of the latter in activated T cells. We also found CCL17,

a known chemotactic agent of T cells, to be correlated with

NFATC1/4 transcription factors (Figure 7).
3.6 Multivariant regression models to
determine predictors of highly
influential genes

For MVR analysis, housekeeping genes identified as highly

influential genes in sections 3.2, 3.3 and 3.5 were taken as

predictor variables and genes associated with effector functions
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(or are “responsive” to external stimuli) were taken ahead for the

analysis as the response variables—GRB2, LCK, GLI (TF for

WNT2B receptor) (Table 3). Potential predictor variables for

these four genes were also retrieved from correlation modules in

section 3.5. The MVR model for GRB2 yielded a high R2 value of

0.7616 and its components/predictors were retrieved from network

cluster 1 (Supplementary Figure S2). While other predictors showed

a positive association with the target gene GRB2, LCK, MYB (TF of

LCK), and HRAS showed a strong negative relation and were

upregulated in the endemic cohort while the GRB2 was

downregulated. The multiple regression model against GLI2 (a

transcription factor for WNT2B) involving TLE4, BCL10, FOS,

NRAS, PIK3R1, LCK, TNFRSF11A, ROR2, and CCL17 yielded an

R2 value of 0.708, and these predictors were retrieved from

correlation module 3 (Figure 8). To investigate if there are

common transcription factors that regulate both TCR signaling

and the Hedgehog signaling pathway, univariate regression studies

were performed for the mediators of the two signaling pathways.

Although we did not find any single transcription factor as a

common regulator of GRB2 and other mediators of Hedgehog

signaling, we did find STAT3 to be negatively associated with LCK

(another prominent adaptor in TCR signaling) and to be positively

associated with GLI2 expression. Based on these findings, we

inferred STAT3 to be a balancing transcription factor that, on
BA

FIGURE 5

(A) Heatmap illustrating Cluster 2 and Cluster 4 derived from hybrid clustering (Tier 1) where yellow depicts logFC >2 and violet depicts logFC< −4.
(B) STRING network and derived hub genes for Cluster 4. (C) STRING network and derived hub genes for Cluster 2 where light blue color nodes
depict members of Cluster 4 and Cluster 2, respectively. For both clusters, hub genes were identified using MCC (up) and DMNC (down) algorithms
where red-orange-yellow-colored nodes depict hub genes with high scores as calculated by respective algorithms with red- colored nodes
depicting the highest scoring genes.
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one hand, regulates TCR signaling while promoting the induction

of Hedgehog signaling on the other hand (Figure 8C).
3.7 Retrieved gene regulatory modules

Gene regulatory module 1 (GRM1) was inferred from the

GRB2 multivariant model wherein, based on literature, the central

role of GRB2 in TCR signaling was identified and key regulatory

elements found in this study were integrated (Supplementary

Figure S2). Several relevant findings from the obtained results

were considered for module construction: (i) Genes involved in

TCR signaling were both up- and downregulated upon KEGG

pathway enrichment analysis (GRB2 being downregulated)

(Supplementary Figures S3 and S4), (ii) downregulation of a

cluster of genes (with GRB2 being a hub gene) involved in

growth factor receptor signaling (Figure 5 and Table 2), (iii)

GRB2 being one of the hub genes in the network obtained

through Random Forest-based feature selection (Figure 6), and

(iv) GRB2 performing perfectly as a classifier of immune

responses in endemic and non-endemic settings (Table 4 and

Supplementary Figure S7). Based on these findings, we

hypothesize that GRB2 might play an integral role in

downregulating growth factor receptor signaling and in

negatively regulating downstream TCR signaling in the endemic

cohort. Moreover, the MVR model derived for GRB2 (through a

combinatorial approach) suggests that while PIK3R1, TP53, FYN,

and RELA (from the model in Figure 8), which act downstream of

TCR signaling (Supplementary Figures S3 and S4), would be
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affected by GRB2 suppression, other downstream mediators

might actually act as negative regulators (HRAS, MYB, and LCK).

The second gene regulatory module (GRM2) was inferred using

the MVR model for GLI2. Interactions of GLI2 with transcription

factors and other mediators of TCR signaling and extracellular

mediators involved in chemotaxis of lymphocytes were closely

studied (Table 3). Through GRM2, we propose Hedgehog signaling

pathways as primary differentiators of matured lymphocytes as

compared to lymphocytes being freshly induced. Based on the results

obtained from hybrid clustering (Figure 5), we propose them to be

closely involved in T-cell function in endemic settings upon infection.

The third gene regulatory module (GRM3) was specially retrieved

based on the regulatory dynamics observed for STAT3 in two different

regression models (Figure 8C). Based on our observations, we propose

STAT3 as a primary determinant responsible for state switching of T

cells upon infection by, on one hand, directly/indirectly negatively

regulating TCR induction and, on the other hand, nudging towards

Hedgehog signaling. Regulatory modules of GRB2 suppression and the

negative association between STAT3 and LCK as derived from the

meta-analysis were validated via the RNASeq dataset using a regression

model (with an R2 value of 0.5441) (Figure 9). The culmination of the

key findings (which distinguish acute immune responses in endemic

and non-endemic settings) from the study is illustrated in the form of a

model in Figure 9. For the development of this model, established

molecular interactions in TCR signaling were retrieved from

literature (33).

Supplementary File 7 provides a more detailed rationale used for

the construction of gene regulatory modules while Supplementary

Figure S6 provides an illustrative summary of the entire study.
FIGURE 6

STRING network with derived hub genes of feature derived from the Random Forest algorithm distinguishing immune responses in endemic and
non-endemic settings derived using the Boruta package.
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4 Discussion

Enteric vaccines have been reported to show low efficacy in

regions that are highly endemic to pathogens (4–6). Apart from

enteric infections, vaccines against other infectious diseases have

also shown similar tendencies. For example, in a study, the YF-17D,

the yellow fever vaccine, showed low vaccine efficacy in an African

cohort, which the author attributed to an “activated”

microenvironment in the study population— including

“differentiated T and B cells and pro-inflammatory cytokine

secreting monocytes” (34). On similar lines, recently, it has been

observed that infection with SARS-CoV-2 with its different variants

generates cross-reactive T cells, which are not necessarily protective,

but had a direct impact on vaccine effectiveness (35, 36). These

findings imply that pre-existing immunity against specific

pathogens can have a direct impact on immune responses to

subsequent immunization attempts. With SARS-CoV-2 becoming

endemic worldwide, the design and development of the next

generation of COVID-19 vaccines and advanced vaccines against

other endemic infections would require keen consideration to pre-

existing protective/semi-protective/non-protective immunity

against these pathogens in the target population.

Hence, understanding the immunological dynamics of re-

infection in general and the possible impact of immunization in a

chronically exposed population becomes absolutely essential for the

development of future vaccines that are region- and population-

specific (15, 37). In this regard, several studies have investigated

immune responses against malaria and other helminth infection in

a previously exposed population. One of these studies reported

acute upregulation of co-stimulatory molecules (like CD40, CD80,

and CD86) upon stimulation of dendritic cells in experienced (38).
TABLE 2 Enriched reactome pathways derived using different
methodologies specific for endemic settings along with their key
regulators (FDR< 0.05, strength > 0.90, top 10).

Methodology
Enriched
reactome
pathways

Regulators

Network
Topological
Analysis of DEGs

•Signaling by FGFR3
fusions in cancer (HSA-
8853334)
•Signaling by PDGFRA
transmembrane, juxta-
membrane, and kinase
domain mutants (HSA-
9673767)
•Activated NTRK2
signals through RAS
(HSA-9026519) Signaling
by FGFR4 in disease
(HSA-5655291)
•Constitutive signaling by
overexpressed ERBB2
(HSA-9634285)
Constitutive signaling by
EGFRvIII (HSA-
5637810)
•MET activates PI3K/
AKT signaling
(HSA- 8851907)

MYB, SP1

Hybrid Clustering
based on LogFC
values (Cluster 2)

•Regulation of IFNG
signaling (HSA-877312)
•Signaling by CSF3 (G-
CSF) (HSA-9674555)
•Spry regulation of FGF
signaling (HSA-1295596)
•Regulation of KIT
signaling (HSA-1433559)
•Inactivation of CSF3 (G-
CSF) signaling (HSA-
9705462)
•Regulation of IFNA/
IFNB signaling (HSA-
912694)
•CTLA4 inhibitory
signaling (HSA-389513)
•Growth hormone
receptor signaling (HSA-
982772)
•Signaling by PTK6
(HSA-8848021)
•Signaling by SCF-KIT
(HSA-1433557)

MYB, SP1, SP3, SMARCA4,
HIF1A, ETS1, GLI1,
CTTNB1, PAX2, STAT5B,
ETS2, RELA, NFKB1,
NR2C1, SP4, STAT1, YY1,
AR, HOXA10, ATF3,
DDIT3, GLI2, EP300,
ELK1, KLF6, NR1H4, E2F4,
ATF1, HDAC3, PGR,
TCF4, HDAC1, TFAP2A,
CTCF, STAT3, JUND,
RUNX1, TP53, VDR, USF2,
CEBPA, IRF1, BRCA1,
GATA1, CEBPB, EGR1,
CREB1, MYC

Hybrid Clustering
based on LogFC
values (Cluster 4)

•Hedgehog ligand
biogenesis (HSA-
5358346)
•TP53 regulates
transcription of cell death
genes (HSA-5633008)
•Release of Hh-Np from
the secreting cell (HSA-
5362798)
•Activation,
translocation, and
oligomerization of BAX
(HSA-114294)
•Nonsense mediated
decay (NMD)
independent of the Exon

SP1, SMAD4, RELA, CTCF,
ABL1, SNAI1, JUND,
NR3C1, CREB5, E2F3,
STAT5A, ZEB1, HIF1A,
SNAI1, STAT1, FOSL2,

BCL6, FOXO3, FOS, WT1,
SOX9, SP3, FOXO1,

NFKB1, PARP1, LEF1,
CIITA, REST, ETS1, ATF,
STAT3, JUN, EZH2, VDR,
MYCN, BRCA1, SPI1,
PPARG, HDAC1, ESR1,
CREB1, AR, E2F1, TP53

(Continued)
TABLE 2 Continued

Methodology
Enriched
reactome
pathways

Regulators

Junction Complex (EJC)
(HSA-975956)

Features from
Wrapper
Algorithm with
Random Forest

•SHC1 events in ERBB2
signaling (HAS-1250196)
•PI3K events in ERBB2
signaling (HAS-1963642)
•ERBB2 activates PTK6
signaling (HAS-8847993)
•MET activates PI3K/
AKT signaling (HAS-
8851907)
•Activated NTRK2
signals through PI3K
(HAS- 9028335)
•GRB7 events in ERBB2
signaling (HSA-1306955)
•GRB2 events in ERBB2
signaling (HSA-1963640)
•ERBB2 regulates cell
motility (HSA-6785631)
•CD28-dependent Vav1
pathway (HSA-389359)

RELA, NFKB1, SP1,
FOXA1, STAT1, TFAP2A,
AR, NCOS, TRERF1,
CUX1, SP3, BTF2,
TFAP2C, IRF7, HIF1A,
CREB1, NR4A1, FOXA2,
NFKBIA, PML, ELK1,
CEBPB, ETV4, ATF1, SRF,
SAMD4, YBX1, SMAD3,
YY1, PPARA, TP53, USF2,
IRF1, EP300, SPI1, USF1,
PPARG1, STAT3, JUN.
ESR1, ETS1, E2F1
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TABLE 3 List of hub genes specific for the endemic cohort derived using different methodologies along with their corresponding functional roles and
regulators (as identified from TRRUST database).

Source Hub
genes*

Biological process Role Key regulators

Network
Topological Analysis
of DEGs

HRAS GO:0000165:
MAPK cascade

Housekeeping N/A

SOS1 GO:0002260:
Lymphocyte homeostasis

Housekeeping N/A

KRAS GO:0000165:
MAPK cascade

Housekeeping N/A

SRC GO:0002376:
Immune system processes

Responsive SP1, TAF1

EGFR GO:0038134:
ERBB2- EGFR signaling

Responsive AR, BCL3 BRAC1, CREBBP, EGR1, ESR1, HDAC1/3,
HOXB7, JUN, JUNB, KLF10, LRRFIP1, MTA1, NFKB1,
NR3C2, PGR, PML, PPARG, RELA, SP1

MAPK1 GO:0000165: MAPK cascade Housekeeping N/A

MAPK14 GO:0000165:
MAPK cascade

Housekeeping N/A

PTK2 GO:0001932:
Regulation of protein phosphorylation

Responsive N/A

UBB GO:0016567:
Protein ubiquitination

Housekeeping N/A

Hybrid Clustering based on
LogFC values (Cluster 2)

GRB2 GO:0007173: EGFR signaling Responsive N/A

ERBB2 GO:0004714:
Transmembrane receptor protein
tyrosine kinase activity

Responsive AR, ATF, CREB1, DENND4A, ELF1, EP300, ETV4, FOXP3,
GATA4, JUND, MYB, NCOA3, PAX2, PGR, PURA, SP1,
TFAP2A, VDR, XRCC5, YBX1, YY1

PTPN11 GO:0000077: DNA damage checkpoint
signaling

Housekeeping N/A

SOCS1 GO:001817: Regulation of
cytokine production

Responsive GL1/2, HIF1A,IRF1, SP1, STAT3/6

PIK3CD GO:0002250: Adaptive immune
response

Responsive
RUNX1

SOCS3 GO:001817:
Regulation of cytokine
production GO:0000082:

Responsive CEBPA, NFKB1, RELA, SP3, STAT1/3/4

CCND1 G1/S transition mitotic cell cycle Housekeeping N/A

PDGFRA GO:0001775:
Cell activation

Housekeeping N/A

CSF3R HSA:9674555: Signaling by CSF3 Responsive CEBPA, ETS1, MYB, SPI1

LCK HAS:389356: CD28 co-stimulation Responsive MYB

FGF13 GO:0000165:
MAPK cascade

Housekeeping N/A

WT1 HAS:9675108: Nervous system
development

Responsive CTCF, EP300, ETS1, GATA1/2,
HDAC4/5, HOXA10, IFI6, MYB, NFKB1, PAX2/8, RELA,
SP1, TFCP2

PHGDH GO0006541:
Glutamine metabolic
process GO:0033209:

Responsive HOXA10, SP1

KRT18 Tumor necrosis
Factor-mediated signaling pathway

Responsive BRCA1, CTBP1, SP1

PTPN1 HAS:163615:
PKA activation

Housekeeping N/A

(Continued)
F
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Another study indicated the important role of gd T cells in

secondary immune responses to malaria in endemic settings (39).

Moreover, an immunomodulatory effect of chronic exposure to

parasitic infections has also been reported against parasitic

infections (40). Such studies are still lagging behind for enteric

infections in endemic settings. Using an intensive systems and

computational pipeline, we have designated molecular signatures

and transcriptional regulatory networks that delineate acute

immune responses in endemic settings in comparison to those

induced in non-endemic settings, taking enteric infections as a case

study. Importantly, we show that (i) there is a negative feedback
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regulation of downstream signaling pathway associated with T-cell

activation through GRB2 downregulation (GRM1), (ii) WNT

receptor expression in activated T cells is under the influence of

CCL17 (GRM2), and (iii) STAT3 mediated the state change of

act ivated T cel ls through the upregulat ion of WNT

receptor (GRM3).

To elaborate on the first regulatory module (GRM1), GRB2 is

an adaptor molecule assembled and recruited near the intracellular

chains of growth factor receptors involved in the activation of RAS,

which unleashes the downstream signaling pathways. GRB2 also

plays an essential role in TCR signaling by propagating activation/
TABLE 3 Continued

Source Hub
genes*

Biological process Role Key regulators

Hybrid Clustering
based on LogFC values
(Cluster 4)

RPS16 GO:0006364:
rRNA processing

Housekeeping N/A

RPL6 Same as above Housekeeping N/A

RPS9 Same as above Housekeeping N/A

RPL22 Same as above Housekeeping N/A

RPS15 Same as above Housekeeping N/A

ETF1 GO:0006415:
Translational Termination

Housekeeping N/A

SOX2 HAS-452271: Signaling by WNT Responsive ID4, KDM2A, POU5F1

FN1 GO:0006953:
Acute-phase response

Responsive AR, ATF2, CEBPA, EGR1, KLF8, NFKB1, PARP1,
RELA, SNAI1, SOX17, TWIST1/2

HSP90AA1 GO:0002218:
Activation of innate immune response

Housekeeping N/A

EEF1D GO:0009299: Translational elongation Housekeeping N/A

WNT2B HAS:3238698: WNT ligand biogenesis
and trafficking

Responsive GLI2

JAG1 HAS:2979096:NOTCH2 activation and
transcriptional signal to the Nucleus

Responsive KDM4C, PPARG, RUNX3, SNAI2

TLR6 Responsive HIF1A

Features from Wrapper
Algorithm with
Random Forest

GRB2 GO:0007173: EGFR signaling Responsive

ERBB2 See above Responsive See above

ERBB4 GO: 0006916: Apoptotic process Responsive WWP1

ERBB3 GO:0007162: Negative regulation of
cell adhesion

Responsive AR, TWIST1/2, YBX1

PIK3R1 GO:0002687: Positive regulation of
leukocyte migration

Responsive N/A

RET GO:0000165: MAPK cascade Responsive ESR1, FOXA1, SOX10, NKX2-1, TFAP2C

TXK GO0001819:
Positive regulation of
cytokine production

Housekeeping N/A

MST1R GO:0002376: Immune
system processes

Responsive N/A
Functional roles identified from: https://housekeeping.unicamp.br/.
N/A, Not Available.
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proliferation signals intracellularly after synapse formation of the

TCR complex with the peptide–MHC complex through the

activation of MAPK signaling pathway. Upon TCR/co-receptor

stimulation of LCK, an SRC family tyrosine kinase,* gets activated

and, through a short series of phosphorylation, recruits ZAP-70,

which, in turn, facilitates the assembly of downstream scaffolds that

includes the Linker Activator of T-cells (LAT). LAT provides a

platform for GRB2 (and for other adaptor molecules) assembly

where GRB2 relays the received signals through RAS activation

(41). Because of its early involvement in signaling events, GRB2 has

been designated as a rate-limiting and essential component of the

TCR-induced MAPK/ERK signaling pathway, which is essential for

lymphocyte selection, proliferation, and differentiation (42–44).

Owing to the constitutive and ubiquitous nature of the MAPK

pathway and risk associated with its overexpression, several negative

regulatory circuits have evolved throughout the signaling pathway

downstream of TCR activation (45). Broadly, there are two channels

of negative regulation that involve the phosphorylation-based

functional inactivation of upstream mediators by activated ERK

and, secondly, the transcriptional regulation of upstream mediators.

In terms of GRB2 suppression, phosphorylation of LAT, which leads

to its disassociation with GRB2, has been previously reported, which
Frontiers in Immunology 15151
is an example of the former, and induction of SPRY protein (through

ERK pathway activation) that binds and disables GRB2 action can be

considered as an example of the latter (41, 46). Although post-

translational regulation of GRB2 is well documented (46, 47),

transcriptional regulation of GRB2 expression remains quite elusive

in the literature.

Our study, particularly MVR analysis focusing on GRB2

expression using the gene expression dataset, indicates that high

expression levels of HRAS, MYB (downstream mediators of growth

factor receptor signaling), and LCK (adaptor for the TCR receptor)

negatively affect GRB2 expression upon perturbation (antigenic

exposure), which might negatively impact T-cell activation and

proliferation. This observation is further validated by the fact that

GRB2 was peculiarly downregulated at the acute stage of infection

in an endemic setting and the fact that the TCR signaling pathway

was also seen to be downregulated in this endemic cohort

(Supplementary Figure 8). The molecular and transcriptional

mechanism for suppression of GRB2 expression needs further

investigation. Although MIR200a and microRNA have been

reported to suppress the expression of GRB2, consequently

negatively regulating the MAPK signaling pathway (48), its

relevance in this particular setting is not known.
TABLE 4 MLP classification evaluation of the identified hub genes based on threefold classification.

Gene_LIST Accuracy Precision Recall F-measure ROC area

GRB2 100% 1 1 1 1

PIK3R1 98.86% 1 0.952 0.976 0.973

ERBB3 97.72% 0.952 0.952 0.952 0.971

ERBB4 97.72% 0.952 0.952 0.952 0.999

RET 95.45% 0.947 0.857 0.9 0.925

ERBB2 94.31% 0.86 0.905 0.884 0.99

TLR6 92.04% 0.889 0.763 0.821 0.902

SOX2 90.90% 0.741 0.952 0.833 0.942

EGFR 89.77% 0.8 0.762 0.78 0.979

PTK2 88.63% 1 0.524 0.688 0.728

SOCS1 88.63% 0.824 0.667 0.737 0.841

PIK3CD 87.50% 0.917 0.524 0.667 0.781

PHGDH 85.22% 0.682 0.714 0.698 0.84

CSF3R 78.40% 0.583 0.333 0.424 0.768

KRT18 77.27% 0.667 0.095 0.167 0.569

FN1 77.27% 0.52 0.619 0.565 0.741

WNT2B 76.13% NA NA NA 0.599

JAG1 76.13% NA NA NA 0.482

SOCS3 76.13% 0.5 0.238 0.323 0.841

LCK 75% 0 0 0 0.385

WT1 72.72% 0.385 0.238 0.294 0.731
Model construction and evaluation were performed using the WEKA software.
N/A, Not Available.
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To further explore if the described phenomenon occurs upon

vaccination as well, investigation of GRB2 expression levels in other

vaccine clinical trials in the ImmuneSpace database was conducted.

We found that clinical trials with ImmunPort accession IDs SDY299,

SDY1328, SDY1276, and SDY180 (out of 47 studies reporting GRB2

expression levels) also report GRB2 downregulation at early time

points of vaccination (Supplementary Table S7), validating GRB2

suppression as an acute immunomodulatory response in certain

conditions. Gene expression datasets (post vaccination) from

endemic settings were not available in the ImmuneSpace database

(Supplementary Figure S8).

The outcomes of our analysis specifically might have profound

implications in the vaccine design and development of endemicity/

region-specific vaccines as it would provide explanation to

previously ambiguous vaccine trial outcomes where unexpectedly

suboptimal T-cell responses were observed (as discussed above).

Importantly, as baseline-heightened immunological profile in the

endemic cohorts is very well documented, we hypothesize that

further perturbation/exposure/attack of pathogen might push TCR

signaling into an auto-regulatory loop. This would imply that

suboptimal vaccine efficacy observed in these regions would be

the inherent characteristic of the vaccinees, and hence, increasing
Frontiers in Immunology 16152
the dosage of a vaccine or using high adjuvanticity might not have

the expected result and might actually disrupt the biological “sea-

saw” or balance put in place to check for immune hyperactivity or

even autoimmunity. This is worth considering particularly because

several autoinflammatory and autoimmune diseases have been

attributed to GRB2-linked molecular assemblies (41, 49). In the

same line, in mice, it has been demonstrated that GRB2-induced

MAPK/Erk signaling pathway might switch to hyperactivity if

not negatively regulated by LCK (50) (negative association of

LCK and GRB2 was demonstrated through our analysis) (Figures

8 and 9).

While GRB2 suppression solely would have indicated a

regulatory immune response to infection in these settings, the

observed GRM2 indicates a more multidimensional effector

function of T cells. Overall, these findings suggest a biphasic

transformative nature of T cells, which is dependent on the

pathogenic load of the environment. In this regard, we propose

STAT3 to be a key determiner of biphasic T-cell function in

endemic settings based on its negative association with LCK

expression and positive association with GLI2 (transcription

factor for WNT2B receptor expression). Our findings are

validated by the fact that STAT3 has been reported to dampen
FIGURE 7

Curated submodule derived from module 3 correlation module derived from the EBModules package that shows the positive associations of positive
regulators of T-cell activation with mediators of the Hedgehog signaling pathways. Here, red bricks indicate a high correlation coefficient of 1, blue
bricks indicate a correlation coefficient of 0, and yellow bricks indicate intermediate correlation coefficient.
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immune responses, which, in this case, can be a result of frequent

exposure to enteric pathogens in pathogen-prevalent regions.

STAT3 has also been reported to promote the activation of

regulatory T-cell responses (51). Besides this, a strong indication

of theWNT signaling pathway being involved in immune responses

in endemic settings is an intriguing finding. Recently, WNT

signaling has been reported to be activated in the local mucosa in

subjects affected by environmental enteropathy, which is prominent

in regions with endemicity of enteric infections (52). WNT

signaling pathways have been reported to play an integral role in

the differentiation and functioning of mature T cells particularly in

the context of cell-to-cell communication and in cell migration/

homing (53, 54). Given this, activation of these signaling pathways

could mediate the induction of regulatory T cells (differentiation) as

an immunomodulatory response to re-infection. These signaling

pathways, especially the WNT signaling pathway, can also be

involved in T-cell trafficking towards infected mucosa under the

influence of activated leukocytes and, resultantly, cytokine

secretion. Through our work, we also established positive

associations between the induction of these pathways and the

chemokine ligand CCL17, which is an established lymphocyte

chemoattractant (GRM2) (55, 56).

Although the robust computational pipeline provides novel

insights into the key molecular mechanisms that might be

peculiar to endemic settings, the study is restricted by the sample
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size secured for the endemic population due to the unavailability/

inaccessibility of immune response-linked gene expression datasets

from these settings even after the systemic screening of public

repositories. Another major limitation of the study is the loss of

genes to a mere 6,543 genes in the meta-dataset, which could be

considered as a “cost-of-merger” of heterogeneous gene expression

datasets. We suspect that, like GRB2, we might come across other

key molecular mediators that play an essential role in distinguishing

immune responses in endemic and non-endemic populations that

can only be uncovered by multicohort studies (from endemic and

non-endemic settings) where pre- and post-infection/vaccination

RNASeq data are retrieved for all the study groups.

Despite the mentioned limitations, in conclusion, through a

novel methodical analytical pipeline, we demonstrate that gene

expression datasets provide an unprecedented opportunity to

understand variations in gene regulatory modules involved in

immune responses to pathogens in different environmental

settings (with a different pathogenic load). We used an

amalgamation of systems (in the form of STRING networks) and

advanced computational approaches (hybrid clustering, wrapper

method for feature selection, MLP classification, correlation, and

MVR analysis) to delineate immune responses specific to the

endemic cohort of the study. Based on the findings of the study,

we propose that perhaps the basal immune system and subsequent

post-infection/vaccination immune responses diverge upon varying
BA

C

FIGURE 8

(A) Multivariant regression model for GRB2 (R2 = 0.76). While the rest of the predictors showed a positive association with GRB2, HRAS, MYB (TF for
LCK), and LCK demonstrated a negative association. (B) Multivariant regression model for GLI2 (TF for WNT2B) (R2 = 0.70). The model demonstrated
positive associations of GL2 with key mediators of TCR signaling: BCL10, PIK3R1, LCK, and TNFRSF11A. (C) Regression model predicting the
association of LCK and GLI2 with STAT3.
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levels of previous exposures. Consequently, detailed insight into the

reasons and principles behind these divergences should form the

basis for the design and development of the “next-gen” precise

vaccines. We put forward acute GRB2 suppression as a divergent

(immunomodulatory) path the immune system evolves to take in

endemic settings as one of the divergent paths the immune system

evolves to take. While these observations are specific for S. typhi

(intracellular bacterial) infection that attacks the enteric mucosa,

further studies that look into the induction of the discussed

regulatory molecules in other mucosal infections (possibly other

enteric infections) can be an exciting start towards the development

of endemicity-specific vaccines. From a global health standpoint,

these studies should also include infections induced in the lung

mucosa because of seasonal or perennial prevalence by pathogens

like the influenza virus and quite recently by SARS CoV-2.
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FIGURE 9

(A) Multivariant regression model for GRB2 suppression with R2 = 0.54 derived from RNASeq data (validation). (B) Scatter plot depicting a negative
association between LCK and STAT3 derived using RNASeq data (validation). (C) Proposed model of TCR signaling upon acute infection in endemic
settings. The known/established regulatory associations in TCR signaling are depicted with black arrows. The negative regulation of GRB2 (depicted
with red inhibitory arrows) is inferred from gene regulatory module 1. The induction of GLI2 by the transcription factors associated with activated T
cells and through CCL17-based signaling (blue arrow) is inferred from gene regulatory module 2. STAT3-mediated inhibition of MYB (transcription
factor for LCK) (red arrow) and the positive regulation of GLI2 (blue arrow) are inferred from the findings of gene regulatory module 3. The three
gene regulatory modules are described in detail in the Supplementary File 8.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1285785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Naidu and Lulu S. 10.3389/fimmu.2024.1285785
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 19155
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1285785/full#supplementary-material
References
1. Child mortality and causes of death. Available at: https://www.who.int/data/gho/
data/themes/topics/topic-details/GHO/child-mortality-and-causes-of-death.

2. Diarrhoea - UNICEF DATA. Available at: https://data.unicef.org/topic/child-
health/diarrhoeal-disease/.

3. Alam MM, Aktar A, Afrin S, Rahman MA, Aktar S, Uddin T, et al. Antigen-
specific memory B-cell responses to enterotoxigenic escherichia coli infection in
Bangladeshi adults. PloS Negl Trop Dis (2014) 8(4). doi: 10.1371/journal.pntd.0002822

4. Lopman BA, Pitzer VE, Sarkar R, Gladstone B, Patel M, Glasser J, et al.
Understanding reduced rotavirus vaccine efficacy in low socio-economic settings.
PloS One (2012) 7(8). doi: 10.1371/journal.pone.0041720

5. Naylor C, Lu M, Haque R, Mondal D, Buonomo E, Nayak U, et al. Environmental
enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh.
EBioMedicine (2015) 2(11):1759–66. doi: 10.1016/J.EBIOM.2015.09.036

6. Weekly epidemiological record Relevé épidémiologique hebdomadaire. (2017).
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for adaptive immune response
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2 diabetes
Abbas Khan1, Muhammad Ammar Zahid1, Anwar Mohammad2
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Introduction: Diabetes mellitus (DM) is recognized as one of the oldest chronic

diseases and has become a significant public health issue, necessitating

innovative therapeutic strategies to enhance patient outcomes. Traditional

treatments have provided limited success, highlighting the need for novel

approaches in managing this complex disease.

Methods: In our study, we employed graph signature-based methodologies in

conjunction with molecular simulation and free energy calculations. The

objective was to engineer the CA33 monoclonal antibody for effective

targeting of the aP2 antigen, aiming to elicit a potent immune response. This

approach involved screening a mutational landscape comprising 57 mutants to

identify modifications that yield significant enhancements in binding efficacy

and stability.

Results: Analysis of the mutational landscape revealed that only five substitutions

resulted in noteworthy improvements. Among these, mutations T94M, A96E,

A96Q, and T94W were identified through molecular docking experiments to

exhibit higher docking scores compared to the wild-type. Further validation was

provided by calculating the dissociation constant (KD), which showed a similar

trend in favor of these mutations. Molecular simulation analyses highlighted

T94M as the most stable complex, with reduced internal fluctuations upon

binding. Principal components analysis (PCA) indicated that both the wild-type

and T94Mmutant displayed similar patterns of constrained and restricted motion

across principal components. The free energy landscape analysis underscored a

single metastable state for all complexes, indicating limited structural variability

and potential for high therapeutic efficacy against aP2. Total binding free energy

(TBE) calculations further supported the superior performance of the T94M

mutation, with TBE values demonstrating the enhanced binding affinity of

selected mutants over the wild-type.
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Discussion: Our findings suggest that the T94M substitution, along with other

identifiedmutations, significantly enhances the therapeutic potential of the CA33

antibody against DM by improving its binding affinity and stability. These results

not only contribute to a deeper understanding of antibody-antigen interactions

in the context of DM but also provide a valuable framework for the rational design

of antibodies aimed at targeting this disease more effectively.
KEYWORDS

AP2, CA33, antibody, structural engineering, docking, simulation, free
energy calculation
1 Introduction

Diabetes mellitus (DM) is considered the oldest chronic disease

that is characterized by high glucose levels in the blood. It mainly

occurs due to the scarcity of insulin production and can be classified

into two types: type 1 (T1DM) and type 2 (T2DM) DM (1, 2). The

condition arises from the destruction of pancreatic beta-cells which

consequently cannot produce insulin. In T2DM, insulin production

is decreased but not completely abolished. The delay in diagnosis or

management of diabetes may lead to serious complications such as

diabetic neuropathy, retinopathy, diabetic foot ulcer, and

cardiovascular diseases. DM is also considered as a socioeconomic

burden and recent data revealed that by 2049, there will be 629

million people suffering from DM worldwide (3). The major

contributing risk factors in the development of this condition

include genetic predisposition, obesity, and a sedentary lifestyle.

The distorted metabolic functioning and regulation of the adipose

tissue are also considered another important aspect contributing to

the pathophysiology of DM (4, 5).

Adipose tissue is an endocrine organ that maintains the

homeostasis of various other tissues such as the brain, pancreas,

and liver (6). Adipocytes respond to metabolic and immune cues by

mobilizing their fat stores through lipolysis and by secreting a

variety of hormones known as adipokines (7). Such signals interact

with the target tissues to regulate several important processes such

as glucose or insulin production. Integration of systematic

metabolic regulation with adipocytes is primarily controlled by a

(FAPB4) fatty acid binding protein 4 or aP2 (8). Since its discovery,

the role of aP2 has been depicted in lipid metabolism and the

pathogenesis of several metabolic diseases such as atherosclerosis,

fatty liver, and diabetes (9–11). Improved liver function, increased

sensitivity to insulin, and reduced fatty liver have been reported in

mice deficient with aP2 protein thus showing the essential role of

this protein in chronic metabolic disorders. The connection

between aP2 and T2DM is further corroborated by genetic

investigation studies conducted in diverse populations (12). These

studies have shown that individuals with a rare haplo-sufficiency

mutation in the aP2 gene experience metabolic and cardiovascular

advantages (13). This finding further confirms the involvement of
02158
aP2 in the pathogenesis of metabolic diseases. Being an intracellular

protein, aP2 also acts as an active adipokine, a peptide that is

secreted by adipose tissue that regulates hepatic glucose production

and systematic glucose homeostasis. It has also been reported that

aP2 contributes to insulin resistance as its serum levels are

significantly elevated in obese mice and T2DM (14). In human-

based investigations, the role of aP2 was observed in metabolic and

cardiovascular disorders. Nonetheless, in a population-based study,

reduced expression of aP2 was found to protect against

cardiovascular disease and diabetes. Taken together, these

findings underline that the biological and hormonal roles of aP2

are evolutionarily conserved and hold relevance in the context of

human pathophysiology. Furthermore, the presence of secreted aP2

indicates a robust and promising therapeutic target for the

development of therapeutics for diabetes (10, 15). Additionally,

this paradigm-shifting evidence about aP2 biology underscores the

potential for designing novel therapeutics based on anti-aP2

monoclonal antibodies (mAb) and offers potential solutions to

the existing challenges in diabetes treatment (16).

Targeting aP2 therapeutically is a formidable task; however,

Burak et al. identified a mAb, CA33, specifically targeting aP2 that

was reported to improve glucose metabolism, increase insulin

sensitivity, reduce fat mass, and ameliorate liver steatosis in obese

mouse models (16). They reported that the novel mAb, CA33, binds

to the aP2 through a direct interaction with the light chain and an

indirect interaction with the heavy chain. Improving the specificity

and binding of CA33 may yield better therapeutic outcomes and

elicit stronger immune response. Therefore, using state-of-the-art

computational methods is a promising approach to engineer

therapeutic proteins for improved bindings. In silico saturation,

mutagenesis offers a faster and more accurate way to improve the

binding by inducing specific mutations. For instance, such methods

have been used to engineer different proteins in different diseases

such as stomach ulcers, cancer, and SARS-CoV-2 (17–20).

Computational methods have greatly accelerated the

identification and development of therapeutic agents against

various diseases (21, 22). As proof of the principle of this

therapeutic direction, the current study uses in silico mutagenesis

approaches by employing the graph signature-based algorithm to
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determine the impact of novel substitutions on the binding of CA33

with aP2. We resolved the mutated structures by using Chimera

software and the interaction of the mutated CA33 with aP2 was

predicted through the HADDOCK algorithm. A mutational

landscape of 57 mutants was constructed which revealed that

only 4 substitutions were able to improve the binding. The

mutations designed to enhance affinity were subsequently

examined through the utilization of dissociation constant

calculations and molecular simulations. These analyses have

confirmed the efficacy of the four most prominent mutants,

namely T94M, T94W, A96Q, and A96GE, in their ability to

enhance the binding affinity of CA33 with aP2. These mutant

variants may be deemed suitable for experimental verification in

the context of therapeutic applications.
2 Materials and methods

2.1 Structure retrieval, preparation, and
interface analysis

The crystallographic coordinates of the aP2-CA33 complex were

retrieved from the Protein Databank (RCSB) using the accession

number 5C0N. the native structure contains three chains including

the aP2 which comes in direct contact with the light (L) chain of the

antibody and a heavy (H) chain of the antibody which interacts

indirectly with the aP2 (23). The structures were assessed before

further processing and the L chain has some missing residues so

Modeler was used to model the missing loops. The structure was

minimized and prepared in Chimera using the Conjugate gradients

and steepest descent algorithms to relax the contacts and address

deformity (24). The final prepared structure was submitted to

PDBsum and analyzed for the contacts using PyMOL visualization

software. The interface residues were retrieved using the PDBsum

and PyMOL consensually (25, 26).
2.2 Graph-based signature algorithm for
antibodies modeling

For the flexible and robust recognition and binding of the CA33

antibody by aP2, we employed a computational algorithm, graph-

based signatures, available as mCSM-Ab2 (http://structure.

bioc.cam.ac.uk/mcsm_ab) which uses experimental data to predict

the impact of a particular mutation on the binding of antigen and

antibody (27). The interface residues were scanned for predicting

the essential contacts which revealed three residues important for

recognition while the other three contacts are supplementary. We

generated a mutational landscape of 57 mutants by replacing the

Glu27, Thr94, and Ala96 with the remaining 19 amino acids to

understand the impact on stability and binding affinity. The two

contacts Tyr92 and Asp28 were kept the same as they are required

for the recognition of the antigen. Among the 57 mutants only top

mutations that affect the overall binding (increase) were selected for

subsequent analysis. The top-scoring residues that increase the

binding of the antibody were modeled in Chimera using the
Frontiers in Immunology 03159
Dunbrack rotamers library based on the proper sidechain torsion

(chi) and probability value (24). For optimization purposes,

rotamer sampling and side-chain flexibility were applied.
2.3 Antigen-Ab docking using HADDOCK

To model the biomolecular complexes of the antigen (aP2) and

antibodies, we used a high ambiguity-driven protein-protein

docking (HADDOCK) algorithm. This approach utilized the

biophysical and biochemical data to model the interactions and

gives the results based on chemical shift perturbation data obtained

from NMR titration experiments of mutagenesis data. The obtained

information is then incorporated into the docking process such as

Ambiguous interaction Restraints (AIRs). An AIR is specifically

characterized as an uncertain distance constraint involving all

residues that have been identified as participants in the

interaction. For docking the protonation states were set as default

(“authohis = true”). The Z-positioning restraints were also set to

default as experimental restraints. The surface contact restraint was

set as “surfrest = true” while the dihedral angles were also set as

default. The top-scoring complexes based on the HADDOCK

docking score and Z-scores were retrieved analyzed and subjected

to interactions and subsequent analysis (28). The residues Glu27,

Asp28, Tyr92, Thr94, and Ala96 were selected as the interface

residues for the heavy and light chain of CA33 while the residues

Lys9, Leu10, Val11, Lys37, and Glu129 were selected as the active

residues for aP2 interaction.
2.4 Determination of the binding strength
through dissociation constant prediction

The dissociation constant is an essential aspect of determining

the pharmacological potential of antigen-antibodies complexes

modeling and the results provide essential insights into the

impact of a particular mutation on the recognition and binding.

We used PRODIGY, a contact-based predictor, for modeling the

binding strength of the native and mutated CA33 antibody with aP2

(29). The Prodigy server is the most widely and highly accurate

server used for predicting the dissociation constant of a

macromolecular complex. The server uses the interatomic

contacts with 5.5Å and combines them with the non-interacting

surface (NIS) to derive essential knowledge regarding the binding

strength of KD.
2.5 All-atoms molecular simulation
and analysis

We assessed the dynamic characteristics of the wild-type,

T94M, T94W, A96Q, and A96E complexes in conjunction with

E4R using the AMBER 21 software. To prepare the system, we

employed the “tleap” module from AmberTools to generate

topology and coordinate files. Missing atoms and hydrogens

were added via the LEaP builder tool. To achieve charge
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neutrality, we introduced counterions using the AddToBox

module, and for solvation, we incorporated an optimal point

charge (OPC) model of the water box using the SolvateBox

module. Initially, we conducted an energy minimization of the

system, employing both the steepest descent and conjugate

gradient algorithms. This minimization process ran for 10,000

and 8,000 steps or until the energy change became less than 0.1

kcal/mol. Subsequently, we subjected the system to a 10 ns

equilibration period. During the initial 100 ps of equilibration,

we applied Langevin dynamics with a collision frequency of 1.0 ps-

1 to raise the system’s temperature from 0K to 300 K. Following

this, we maintained a constant pressure of 1 atm using the

Parrinello-Rahman barostat for 1 ns. This was succeeded by

sustaining a constant temperature of 300K through Langevin

dynamics for an additional 1 ns. Finally, a 7 ns equilibration

simulation was performed utilizing an NPT ensemble with PME

electrostatics and a non-bonded cutoff of 10 Å. After achieving

equilibration, we conducted a 300 ns production simulation under

the same parameters used during equilibration. To accelerate the

simulation, we employed PMEMD.CUDA and saved the

coordinates every 10 ps for subsequent analysis.
2.6 Essential dynamics

To understand the dynamics variation and atomic motion of

the whole trajectories the similar conformations were clustered and

presented as Principal components by using the principal

component analysis approach (30). This approach clusters the

simulation trajectories and has been widely used in large-scale

data analysis. To further understand the stable and metastable

states the two principal components i.e., PC1 and PC2 were used

to determine the free energy landscape (FEL). It has been widely

used to determine the lowest conformational state and variations as

compared to the native conformation. For this purpose, CPPTRAJ

was used and the g_sham module of Gromacs was used for the

PC’s construction.
2.7 Calculation of binding free energies

The strength of a protein interacting with its biologically

significant ligand/protein, or a small inhibitor significantly

impacts the drug discovery and understanding of protein

coupling mechanisms (31, 32). For protein-protein and protein-

ligand complexes, this property is frequently represented by the

binding free energies (BFE). In this work, it is calculated as the

difference between the free energies of the bound aP2-CA33

complex (Gcomplex, solvated) and the unbound states of aP2 (GaP2,

solvated) and CA33 (GCA33, solvated), as shown in equation (i). For each

complex, the hydrogen bonding and distances with energetic

contribution were calculated from a relaxed structure. The

following equation was used to calculate each term:

DGbind =  G(complex,    solvated) −  G(aP2,    solvated) −  G(CA33,    solvated) (i)
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This equation can be used to determine the contribution of

interaction in the complex and can be expressed as equation (ii):

G =   EMolecular  Mechanics −  Gsolvated −  TS (ii)

This equation can be further restructured to calculate the

specific energy term.

DGbind =  DEMolecular  Mechanics +  DGsolvated −  DTS

=  DGvaccum   + DGsolvated   (iii)

DEMolecular  Mechanics =  DEint +  DEelectrostatic   + DEvdW (iv)

DGsolvated =  DGGeneralized   born + DGsurface   area (v)

DGsurface   area =   g : SASA + b (vi)

DGvaccum =  DEMolecular  Mechanics − TDS (vii)

Specifically, we represent the free energy associated with the total

binding of proteins as DGbind (iii, v, vii). This encompasses the

cumulative gas phase energy, which consists of DEinternal,

DEelectrostatic, and DEvdW, and is denoted as DEMM (iv). The

combined contributions from the polar (DGPB/GB) and nonpolar

(DGSA) components of solvation are expressed as DGsol (v). The

conformational binding entropy, typically evaluated through normal-

mode analysis, is denoted as -TDS. The internal energy, resulting

from various bonds, angles, and dihedrals in the molecular mechanics

(MM) force field, is encapsulated in DEinternal. Notably, in calculations
involving MM/PBSA andMM/GBSA, this value remains consistently

zero, as observed in the single trajectory of a complex calculation.

DEelectrostatic and DEvdW represent the electrostatic and van der Waals

energies, respectively, computed using MM. Meanwhile, DGPB/GB
signifies the polar contribution to the solvation-free energy,

computed employing Poisson–Boltzmann (PB) or generalized Born

(GB) methods. Lastly, DGSA quantifies the nonpolar solvation-free

energy, usually determined using a linear function based on solvent-

accessible surface area (SASA) (vi). It’s worth noting that the

calculation of conformational entropy is often omitted due to its

computational expense and susceptibility to inaccuracies.
3 Results and discussion

3.1 CA33 mutants prediction and docking
with aP2

Structural engineering of a protein has always been a great tool

to increase the binding affinity and specificity for therapeutic

purposes. Using graph-based signatures we generated the

structural mutant of the L chain of the CA33 antibody. The

complex as depicted in Figures 1A, B (cartoon and surface

presentation) shows the binding of aP2 with the L and H chains

of CA33. It was observed that the L chain only interacts directly

with the binding residues of aP2 while the H chain comes in indirect
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contact with aP2 through non-bonded contacts. Before modeling

the novel mutants, we analyzed the binding interface which revealed

that the residues Lys9, Leu10, Val11, Thr56, Glu129, and Lys37 are

involved in interaction with the aP2. Among these six hydrogen

bonds were formed by Lys9-Thr94 (2.72Å), Lys9-Thr94 (3.26Å),

Leu10-Tyr92 (2.26Å), Val11-Asp28 (2.89Å) and Glu129-Thr94

(2.55Å). The only salt bridge was reported between Lys37-Glu27

with a bonding distance of 3.41 Å. Considering this interaction

paradigm we mutated the selected residues in the L chain of the

antibody. We observed that mutating Tyr92 and Asp28 abolish the

interactions while the others Glu27, Thr94, and Ala96 are non-

essential contacts and favorable for substitutions that could result in

higher binding affinity than the native complex. Among the

predicted mutants 30 mutants were predicted to increase the

binding affinity while the rest were predicted to decrease

the binding affinity. We set a threshold of Predicted DDG>1 that

will be considered while the others should be considered as non-

essential substitutions. Using this criterion, Thr94Met was observed
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to increase the binding affinity with the predicted DDG of 1.24 to be

the highest among all. The Ala96Gln replacement reported an

affinity change in the predicted DDG of 1.09 while the Ala96Thr,

and Ala96Ile, Ala96Glu reported DDG of 1.035, 1.202 and 1.02

respectively. The Thr94Trp substitution reported DDG of 1.022

respectively. These top-scoring mutants were generated by using

Chimera software and subjected to aP2-antibody docking using

HADDOCK. The interaction pattern for the wild-type CA33 and

aP2 is illustrated in Figure 1C while the predicted affinity change for

top residues with RSA (accessible surface area) is provided in

Figures 2A, B. The predicted Ramachandran plot (Clash Score,

Ramachandran Favored/Outliers, rotamer Outliers) for dihedral

angle analysis, and MolProbity Scores are summarized in

Supplementary Table S1.

Next, we generated the mutants (Figure 2) that increase the

binding affinity and modeled by using Modeler software embedded

Chimera tool. To obtain the docking scores for the wild-type we

submitted the native complex to the HADDOCK server and used a
BA

FIGURE 2

The predicted top mutants increase the binding affinity upon the substitution. (A) shows the relative surface area change in percent while (B) shows
the affinity change due to each substitution.
B

CA

FIGURE 1

(A) Cartoon presentation of the aP2-CA33 complex. The aP2 antigen is shown in cyan color, the heavy chain of CA33 is shown in pomegranate
color while the light chain is given in light green color. (B) shows the surface representation of the aP2-CA33 complex. (C) represents the interaction
pattern for the aP2-CA33 complex, where the green color represents the L chain, magenta represents the H chain and the yellow represents aP2.
The hydrogen bonding interactions are given in blue dashes with the bonding distances.
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refinement option to get the results for the wild-type and use as a

comparison for the further mutant’s selection. The HADDOCK

server predicted the docking score for the wild-type of -364.90 ± 3.0

kcal/mol with the vdW (Van DerWaals) score of -184.70 ± 4.0 kcal/

mol and the electrostatic energy of -498.00 ± 28.2 kcal/mol. The

other parameters are provided in Table 1. Considering the total

docking score of the wild-type (-364.90 ± 3.0 kcal/mol) the top-

scoring mutants were selected based on this threshold. Among the

selected mutants the two i.e., Ala96Leu reported a docking score of -

363.50 ± 2.0 kcal/mol and Ala96Thr reported a docking score of -

361.70 ± 5.3 kcal/mol which is a higher than the control (wild-type)

and were excluded from the further analysis. The mutant Thr94Met

predicted the best docking score among all. The docking score for

the Thr94Met was calculated to be -372.00 ± 3.7 kcal/mol with ten

hydrogen bonds and 2 salt bridges. A total of 51 non-bonded

contacts were reported in this complex. In this complex Tyr103

established a hydrogen bond with Lys9 (2.8 Å) from the H chain

while the L chain established the remaining nine hydrogen bonding

contacts. Among these Glu27-Lys37 (2.8 Å), Asp28-Lys37 (2.7 Å),

Ser30-Lys37 (3.5 Å), Ser30-Thr56 (3.5 Å), Tyr92-Leu10 (2.7 Å),

Met94-Lys9 (2.99 Å), Ala96-Leu10 (2.9 Å) and Ala96-Val11

(2.9 Å) respectively. The only salt bridge was established between

Lys37-Glu27 with a bonding distance of 2.70 Å. Interestingly the

mutated residues Met94 directly interact with the aP2 and

additional contacts have been established such as Ser30

interaction with Lys37 and Thr56. The interaction paradigm for

the Thr94Met is shown in Figure 3A. For this complex the vdW was

estimated to be -194.40 ± 6.1 kcal/mol while the electrostatic energy

was calculated to be -459.7 ± 18.1 kcal/mol. In contrast to the native

complex, this mutant presented a better vdW energy that

particularly contributed to the robust binding of this mutant than

the wild-type. On the other hand, the Ala96Glu with a docking

score of -371.4 ± 1.9 was ranked as the second-best mutant that has
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a lower docking score than the wild-type. The rationale behind the

increase in the docking is that this complex involved the highest

number of non-bonded contacts with additional hydrogen bonds and

the conserved salt bridge. The hydrogen bonding paradigm reported

eight hydrogen bonds Lys9-Thr94 (2.83 Å), Leu10-Tyr92 (2.93 Å),

Val11-Glu96 (2.79 Å), Lys37-Asp28 (3.17 Å), Lys37-Glu27 (2.85 Å),

Lys37-Asp28 (2.84 Å) and Thr56-Asp28 (2.75 Å) respectively. The

only salt bridge was established between Lys37-Glu27 with a bonding

distance of 2.80 Å. Additionally, a hydrogen bond was also reported

between the heavy chain Tyr103 and Lys9 residue of aP2. These

additional hydrogen bonding contacts consequently increase the

binding and neutralization of aP2 antigen through the recognition

of essential immune epitopes. The vdW and electrostatic energies for

this complex were calculated to be -192.30 ± 4.7 and -471.10 ± 17.8

kcal/mol respectively which are lower than the control native aP2-

CA33 complex thus inducing stronger binding and neutralization.

The interaction paradigm for the Ala96Glu is shown in Figure 3B.

The docking scores and other parameters for these mutants are

provided in Table 1.

We further evaluated the binding patterns of T94W and A96Q

mutants with aP2. The T94W with the docking score of -366.1 ± 2.0

kcal/mol reported eight hydrogen bonds involving Glu27-Lys37 (2.7

Å), Asp28-Lys37 (2.7 Å), Asp28-Thr56 (3.3 Å), Ser30-Lys37 (3.1 Å),

Tyr92-Leu10 (2.8 Å), Tyr103-Lys9 (2.8 Å) and Tyr103-Glu129 (3.4

Å) respectively. Interestingly the heavy chain established two direct

hydrogen bonds with the two residues of aP2 thus showing

differential binding of this mutant. Moreover, the Ala96 interaction

with Val11 was observed to be demolished while the extra contacts by

the Ser30 can be seen in the complex. The Lys37-Glu27 (2.74 Å) salt

bridge remained conserved here too. The vdW energy for this

complex was observed to be -192.9 ± 4.4 kcal/mol while the

electrostatic energy was -437.0 ± 26.8 kcal/mol respectively. The

interaction pattern of T94W is shown in Figure 4A. On the other
BA

FIGURE 3

3D interaction paradigm for the T94M and A96E mutants in complex with aP2. (A) represent the interaction pattern of T94M with aP2. In this panel,
the yellow sticks represent aP2, the blue sticks represent the L chain, and the green stick represents the H chain. (B) represents the interaction
pattern of A96E with aP2. In this panel, the yellow sticks represent aP2, the blue sticks represent the L chain, and the cyan stick represents the
H chain.
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TABLE 1 The predicted docking score for each substitution using HADDOCK. The bonding residues and distances for each complex.

Parameters
Wild-

type-aP2
T94M-aP2 A96E-aP2 A96Q-aP2 T94W-aP2

A96L-
aP2

A96T-
aP2

HADDOCK
score

-364.9 ± 3.0 -372.0 ± 3.7 -371.4 ± 1.9 -369.2 ± 2.3 -366.1 ± 2.0
-363.5
± 2.0

-361.7
± 5.3

Cluster size 20 20 20 20 20 20 20

RMSd from the
overall lowest-

energy
structure

0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 0.5 ± 0.3 0.5 ± 0.3

Van der
Waals energy

-184.7 ± 4.0 -194.4 ± 6.1 -192.3 ± 4.7 -190.9 ± 1.5 -192.9 ± 4.4
-189.3
± 4.5

-185.7
± 5.0

Electrostatic
energy

-498.0 ± 28.2 -459.7 ± 18.1 -471.1 ± 17.8 472.8 ± 16.5 -437.0 ± 26.8
-432.3
± 22.9

-495.6
± 25.5

Desolvation
energy

-80.7 ± 3.6 -85.6 ± 1.1 -84.9 ± 2.8 -83.8 ± 1.5 -85.8 ± 3.6
-87.8
± 1.4

-76.9
± 4.4

Restraint’s
violation
energy

0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.3 ± 0.3 0.2 ± 0.2 0.2 ± 0.1 0.3 ± 0.2

Buried
Surface Area

4748.5 ± 44.2 4694.9 ± 49.8 4776.0 ± 48.2 4774.2 ± 67.2 4686.1 ± 32.8
4722.5
± 62.5

4668.1
± 76.5

Z-Score 0 0 0 0 0 0 0

Dissociation
constant (KD)

1.2E-8 0.9E-10 1.1E-9 1.1E-9 1.2E-6 – –

Hydrogen
Bonds

Lys9-Thr94
(2.72Å), Lys9-
Thr94 (3.26Å),
Leu10-Tyr92
(2.26Å),

Val11-Asp28
(2.89Å) and
Glu129-

Thr94 (2.55Å)

Glu27-Lys37 (2.8 Å),
Asp28-Lys37 (2.7 Å),
Ser30-Lys37 (3.5 Å),
Ser30-Thr56 (3.5 Å),
Tyr92-Leu10 (2.7 Å),
Met94-Lys9 (2.99 Å),
Ala96-Leu10 (2.9 Å)
and Ala96-Val11

(2.9 Å)

Lys9-Thr94 (2.83 Å),
Leu10-Tyr92 (2.93
Å), Val11-Glu96
(2.79 Å), Lys37-
Asp28 (3.17 Å),

Lys37-Glu27 (2.85
Å), Lys37-Asp28

(2.84 Å) and Thr56-
Asp28 (2.75 Å)

Lys9-Thr94 (3.10 Å),
Leu10-Tyr92 (3.23 Å),
Val11-Gln96 (2.97 Å),
Lys37-Asp28 (3.30 Å),
Lys37-Asp28 (2.68 Å),
Thr56-Asp28 (2.71 Å),
Lys37-Asp28 (3.00 Å),

Glu129-Thr94 (2.69 Å), and
Glu129-Tyr103 (3.10 Å)

Glu27-Lys37 (2.7 Å),
Asp28-Lys37 (2.7
Å), Asp28-Thr56

(3.3 Å), Ser30-Lys37
(3.1 Å), Tyr92-
Leu10 (2.8 Å),

Tyr103-Lys9 (2.8 Å)
and Tyr103-Glu129

(3.4 Å)

– –

Salt bridges
Lys37-Glu27
(3.41 Å)

Lys37-Glu27 (3.41 Å) Lys37-Glu27 (2.80 Å) Lys37-Glu27 (2.74 Å) Lys37-Glu27
(2.74 Å)

– –
F
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FIGURE 4

3D interaction paradigm for the T94W and A96Q mutants in complex with aP2. (A) represent the interaction pattern of T94W with aP2. In this panel, the
yellow sticks represent aP2, the blue sticks represent the L chain, and the green sticks represent the H chain. (B) represents the interaction pattern of A96Q
with aP2. In this panel, the yellow sticks represent aP2, the blue sticks represent the L chain, and the green sticks represent the H chain.
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hand, the Ala96Gln reported a docking score of -369.2 ± 2.3 kcal/mol,

vdW of -190.9 ± 1.5, and electrostatic energy of -472.8 ± 16.5 kcal/

mol respectively. Investigation of the binding pattern revealed ten

hydrogen bonds among which 2 were established by the H chain and

the remaining 8 by the L chain. The other differences include the

direct interaction of the H chain with the aP2. Among the hydrogen

bonds Lys9-Thr94 (3.10 Å), Leu10-Tyr92 (3.23 Å), Val11-Gln96

(2.97 Å), Lys37-Asp28 (3.30 Å), Lys37-Asp28 (2.68 Å), Thr56-Asp28

(2.71 Å), Lys37-Asp28 (3.00 Å), Glu129-Thr94 (2.69 Å), and Glu129-

Tyr103 (3.10 Å) respectively. The Lys37-Glu27 (2.74 Å) salt bridge

remained conserved here too. The interaction pattern of A96Q is

depicted in Figure 4B. The docking scores and other parameters for

these mutants are summarized in Table 1. Overall, the current

findings show that both the vdW and electrostatic energy terms are

increased which consequently causes the robust binding of CA33 to

the aP2. The current findings highlight the importance of protein

engineering in the design of novel and effective therapeutics for the

development of specific antibodies against T2DM.
3.2 Calculation of binding strength
through KD

The binding strength was further validated by using the

dissociation constant calculation based on the AI-powered algorithm

trained with the experimental data. The results demonstrated that the

KD value for the wild-type was 1.2E-8 while for the T94M, the KD was

estimated to be 0.9E-10. For the T94W the KD was estimated to be 1.1E-

9, for the A96Q the KD was computed to be 1.1E-9 and for the A96E the

KD was computed to be 1.2E-6. This shows the higher binding strength

for the mutants except A96E and therefore demonstrates a robust

immune response by interacting with aP2.
3.3 Dynamic stability assessment of the
wild-type and mutant complexes

Determining complex stability during simulation is an essential

step towards the understanding of the pharmacological efficiency of a
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therapeutic molecule. It is considered as important for stable binding

and therefore is necessary to estimate the system’s stability.

Considering the importance of dynamic stability, we calculated root

mean square deviation (RMSd) as a function of time using the

simulation trajectory. As shown in Figure 5A, the wild-type antibody

stabilized at 3.0 Å at 75ns. The complex initially demonstrated a higher

RMSd with minor deviations, it stabilized and maintained the same

level until the end of the simulation. An average RMSd for the wild-

type was calculated to be 2.74 Å. On the other hand, the T94M

stabilized at 2.25 Å at 37ns. The complex reported no significant

perturbation and the average RMSd for this complex was calculated to

be 2.40 Å. This indicates that the introduction of this mutant causes

structural stabilization and thus the binding is further stabilized. Hence,

this mutation is more favorable for enhancing the binding and

instigation of a stronger immune response against aP2. Moreover,

the T94Wmutant reported a comparatively destabilized behavior than

the T9M but was more stable than the wild-type at the end of the

simulation. The trajectory started from 0 and reached 4.3 Å at 40ns.

The complex then exhibited a stable behavior but after reaching 75ns

the RMSd increased again and maintained the same level till 175ns. An

abrupt rise in RMSd at 180ns was followed by a subsequent decline.

After 190ns, the complex attained stability and maintained a uniform

level until the end of the simulation. An average RMSd for this complex

was calculated to be 2.95 Å. The RMSd results for the T94W are shown

in Figure 5B. Interestingly, the A96Q and A96E substitutions were

found to show dynamically unstable behavior with a reported RMSd

higher than the wild-type and T94M/W mutants. For instance, the

RMSd pattern for the A96Q reported significant structural

perturbations with a higher RMSd level of 6.2 Å. The structure

started with 1.5 Å until 50ns and then an abrupt increase/decrease

was experienced. An average RMSd for the A96Q complex was

estimated to be 3.24 Å. The A96E complex was observed to be the

most destabilized complex with a reported RMSd of 6.5 Å. With

significant structural perturbation, this complex maintained a higher

RMSd level than all the complexes, with an average RMSd (4.58 Å)

being observed. The RMSd graphs for the A96Q are shown in

Figure 5C while the RMSd graph for the A96E is depicted in

Figure 5D. It can be observed that the T94M is the most stable

substitution which increases the binding stability throughout the
B
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FIGURE 5

Dynamic stability assessment of the wild-type and mutants. (A) shows the RMSd graphs for the wild-type and T94M, (B) shows the RMSd graphs for
the wild-type and T94W, (C) shows the RMSd graphs for the wild-type and A96Q while (D) shows the RMSd graphs for the wild-type and A96E.
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simulation while the T94W also exhibited comparatively a dynamically

stable behavior. The superimposed structures of each complex retrieved

at different time intervals were further compared with the native to

understand the structural variations. As shown in Supplementary

Figure S1, it can be noted that the interface in all the complexes

remains intact while the tail of the L chain folds and unfolds inward

and outward to cause deviation from the native structure. Moreover,

the flipping of the beta sheets in the aP2 also causes deviation from the

native structure. This shows that the aP2-CA33 remains bound during

simulation however the movement of some secondary structural

elements causes the drift in the RMSd pattern. In sum, these two

substitutions are more favorable for the enhanced and stabilized

binding of the CA33 antibody than the A96E and A96Q and

therefore should be further investigated for clinical purposes.
3.4 Structural compactness assessment

Calculation of the structural compactness by using a radius of

gyration (Rg) over the simulation time is an important parameter that

determines the binding and unbinding events during the simulation.

It is an essential step to determine the pharmacological potential of a

therapeutic molecule. Considering the application of Rg in

determining structural stability and compactness, we also calculated

Rg using the simulation trajectory. Interestingly, the Rg results for the

wild-type aligned with the RMSd results. The Rg started from 29.80 Å

and steadily decreased over time. The highest Rg value was observed

at 70ns and then a continuous decline in the Rg value was observed.

An average Rg for the wild-type was calculated to be 29.85 Å. On the

other hand, the Rg for T94M mutant started at 30.0 Å and continued

to decrease till 26.8Å at 50ns. The complex then reported a uniform

straight graph for Rg values and no deviation was observed. This

indicates that the complex maintained a rigid and stabilized compact

structure and therefore had minimal unbinding events during the

simulation. The Rg results strongly align with the RMSd results, with

stability maintained throughout the simulation. An average Rg for the

T94M complex was estimated to be 27.0 Å as shown in Figure 6A.

The T94W initially reported a lower Rg (30.0 Å) behavior by keeping

the Rg at 30.0 Å up to 75ns. The Rg then gradually increased and
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continued to report a similar behavior until 225ns. Like the RMSd

results, the Rg also maintained a stable and lower level during the last

part of the simulation. The increase in the Rg pattern determines the

unwinding of the tail of the CA3which causes a significant increase in

the protein size. The Rg for the T94W is shown in Figure 6B.

Interestingly, the A96Q comparatively reported a stabilized protein

size during the first 75ns and then gradually increased up to 32.0 Å.

This Rg level was maintained for the remaining simulation time

showing the unwinding of the CA33 tail and then rewind. An average

Rg for the A96Q was calculated to be 31.5 Å (Figure 6C). The Rg

results for the A96E also reported a similar behavior to the findings of

RMSd. The Rg remained higher than all the complexes. This complex

maintained an Rg level of ~34.50 Å throughout the simulation. An

average Rg for the A96E was calculated to be 34.45Å (Figure 6D).

Overall, these findings strongly corroborate with the RMSd and show

that T94M and T94W are the most favorable that not only increase

the binding but also increase the stability. Interestingly, the higher

binding mutant remained the most compact avoiding the unbinding

events while the three other substitutions i.e., T94W, A96Q, and

A96E caused structural instability. Thus, substitutions that increase

the structural stability increase the binding significantly.
3.5 Hydrogen bonding analysis

Hydrogen bonding calculation is one of the key assessments

that help in determining the pharmacological potential of a drug or

inhibitor. It is an essential approach to reveal the potency and

binding strength of the interacting molecules. This approach has

been widely applied to understand the pharmacological mechanism

of a particular drug, and the interaction mechanism of two or more

proteins to reveal the mechanism of a disease or bio-catalytic

process (33–37). Considering the essential role of this approach,

we used a similar approach to calculate the total number of

hydrogen bonds in each complex. The average number of

hydrogen bonds in each complex was calculated to be 231 in the

wild-type, 236 in the T94M, 229 in the T94W, 232 in the A96Q, and

231 in A96E. It can be observed that the hydrogen bonds in the

predicted mutants are more than the wild-type thus implying that
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FIGURE 6

Structural compactness assessment of the wild-type and mutants. (A) shows the Rg graphs for the wild-type and T94M, (B) shows the Rg graphs for
the wild-type and T94W, (C) shows the Rg graphs for the wild-type and A96Q while (D) shows the Rg graphs for the wild-type and A96E.
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these mutants increase the binding. Although the number of bonds

is increased in the three mutants T94M is the more favorable

substitution that increases the binding stability with the number of

hydrogen bonds. The hydrogen bonding results for all the

complexes are presented in Figures 7A–D. Additional information

about the hydrogen bonding, distances, and half-life information

are summarized in Supplementary Table S2.
3.6 Root mean square
fluctuation calculation

Residue fluctuation indexing is an essential factor in determining

the role of particular residues in molecular recognition, protein

inhibition, ligand recognition, and opening and closing switches. For

instance, this approach has been widely used to determine the impact

of different mutations on the binding and internal fluctuation of

different receptors (38). Herein, we also calculated residual flexibility

using the simulation trajectory. The RMSF results presented in

Figure 8A demonstrate that the internal fluctuation of the aP2 has

been stabilized and thus minimal fluctuations are produced by the

wild-type and T94M complexes while the other complexes have

produced higher fluctuations. The regions 35-225 and 230-335

determined major fluctuations in the T94W, A96Q, and A96E. We

further dissected the RMSF profiles of each mutated residue in each

complex. The results shown in Figure 8B indicate that the mutated

residues demonstrated higher fluctuation than the wild-type and

therefore result in better conformational optimization for enhanced

binding. Interestingly, the RMSF results also corroborate with the

binding results and indicate that wild-type and T94M are better

immune response-provoking agents than the other mutants.
3.7 Principal component analysis for
trajectories motions clustering

The analysis of data distribution within the component space

yields valuable insights into the fundamental dynamics of the

underlying system. Notably, both the wild-type and T94M had
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comparable patterns of constraint and restricted motion across each

principal component. It further shows that these two systems are

more stable and controlled in these dimensions. The

conformational space is divided into two states i.e., the pink color

which is separated by the purple color (transition state) from the

blue color. On the other hand, the T94W, A96Q, and A96E

determined differential trajectories clustering and therefore

presented an unstable state for each complex. This indicates that

mutant T94M behaves more like the wild-type but presents

favorable variations that cause more robust binding of T94M

than the control. These findings also corroborate the residues’

flexibility and docking results. The PCA graphs are presented in

Figures 9A–E.
3.8 Free energy landscape analysis

In the context of molecular mechanics and simulation, the free

energy landscape is used to understand and visualize the energy

landscape of each system. It provides a visual presentation of the

relationship between the potential energy and its collective

variables. It determines the possible lowest energy configuration

state and determines the protein folding. All the complexes

presented a single metastable (lowest energy state) during the

simulation which indicates that the system does not readily

transit through multiple conformations. This demonstrates

limited structural variability and underscores the therapeutic

antibody’s efficacy against aP2. The FEL graphs are presented in

Figures 10A–E.
3.9 Binding free energy analysis

We calculated the binding free energy for each complex which

revealed that vdW values of -160.82 kcal/mol, -173.49 kcal/mol,

-165.69 kcal/mol, -170.83 kcal/mol, -168.67 kcal/mol were

calculated for wild-type, and T94M, A96Q, and A96E mutants,

respectively. This indicates that the rise in the number of hydrogen

bonds leads to a corresponding increase in the vdW energy within
B

C D

A

FIGURE 7

Hydrogen bonding analysis of the wild-type and mutants. (A) shows the H-bonds graphs for the wild-type and T94M, (B) shows the H-bonds graphs
for the wild-type and T94W, (C) shows the H-bonds graphs for the wild-type and A96Q while (D) shows the H-bonds graphs for the wild-type
and A96E.
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each complex, causing the binding affinity to strengthen. On the

other hand, the electrostatic energy calculations showed Elec values

of -20.36 kcal/mol, -19.27 kcal/mol, -18.39 kcal/mol, -19.35 kcal/

mol, -18.48 kcal/mol for wild-type, T94M, T94W, A96Q, and A96E

mutant, respectively. To provide conclusive evidence on the role of

the introduced mutations and their impact on the binding, we

calculated the total binding free energy for each complex to

accurately evaluate the binding strength of each complex. The

results strongly corroborate with the docking scores and

dissociation constant (KD) results. The TBE for the wild-type was
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computed to be -279.84 kcal/mol, for the T94M the highest binding

free energy was estimated to be -295.22 kcal/mol. For the T94W, the

binding free energy was computed to be -281.67 kcal/mol, and for

the A96Q the TBE was -289.44 kcal/mol while for the A96E the TBE

was estimated to be -277.29 kcal/mol. This shows that the predicted

substitutions strongly corroborate with the hypothesis of affinity-

increasing mutants that consequently cause an enhanced binding of

the CA33-engineered antibody to the aP2 antigen. The binding free

energy results for each complex are shown in Figure 11. The specific

energy contribution is summarized in Supplementary Table S2.
B C

D E

A

FIGURE 9

Trajectories clustering and motion using principal component analysis (PCA). (A) represents the trajectory distribution for the wild-type complex in X
and Y dimensions given as PC1 and PC2. (B) represents the trajectory distribution for the T94M complex in X and Y dimensions given as PC1 and
PC2. (C) represents the trajectory distribution for the T94W complex in X and Y dimensions given as PC1 and PC2. (D) represents the trajectory
distribution for the A96Q complex in X and Y dimensions given as PC1 and PC2. (E) represents the trajectory distribution for the A96E complex in X
and Y dimensions given as PC1 and PC2.
B

A

FIGURE 8

(A) Residue’s flexibility analysis of the wild-type and mutants. All the complexes are differently colored. (B) shows the RMSF pattern for the mutated
residues in each complex.
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4 Conclusions

The current study utilized structure-guided engineering

strategies to enhance the CA33 antibody, leveraging graph-

signature-based algorithms for rationale antibody design. The

mutational landscape was subjected to a thorough examination,

which revealed the presence of only four substitutions that were

found to be significant. These alterations include T94M, T94W,

A96Q, and A96E. Additional validation was conducted using post-

prediction molecular simulations, which confirmed that the T94M

substitution was the most favorable. Significantly, this change not

only enhanced the docking score but also demonstrated exceptional

stability throughout the simulation. To bolster the robustness of our

results, we employed KD estimates to quantify the binding affinity,

introducing an additional level of validation to our investigation.
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Future directions for this research involve investigating similar

antibodies and exploring diverse diabetes-related biotargets.

Analyzing additional antibodies using similar structurally guided

engineering approaches promises a more thorough understanding

of potential improvements. Expanding the study with a broader

range of mutations and rigorous experimental validation can

address the limitations and enhance the robustness of the

findings. A comprehensive exploration of various diabetes-related

biotargets will contribute to a holistic approach to antibody design.

Although the findings of this study have the potential to offer

significant insights into the strategic design of diabetes-targeting

antibodies, collaborative efforts with experimentalists for in vitro

and in vivo validations are anticipated, paving the way

for the translation of these insights into clinical trials and

practical applications.
FIGURE 11

Total binding free energy results for each complex using the MM-GBSA approach. All the energies are given in kcal/mol.
B C

D E

A

FIGURE 10

Free energy landscape (FEL) analysis of the wild-type and the designed mutated antibodies. (A) represents the FEL for the wild-type complex in X
and Y dimensions given as PC1 and PC2. (B) represents the FEL for the T94M complex in X and Y dimensions given as PC1 and PC2. (C) represents
the FEL for the T94W complex in X and Y dimensions given as PC1 and PC2. (D) represents the FEL for the A96Q complex in X and Y dimensions
given as PC1 and PC2. (E) represents the FEL for the A96E complex in X and Y dimensions given as PC1 and PC2. Each graph represents the only
conformational state attained by each complex.
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Early B cell transcriptomic
markers of measles-specific
humoral immunity following a
3rd dose of MMR vaccine
Iana H. Haralambieva1, Jun Chen2, Huy Quang Quach1,
Tamar Ratishvili 1, Nathaniel D. Warner2, Inna G. Ovsyannikova1,
Gregory A. Poland1 and Richard B. Kennedy1*

1Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester,
MN, United States, 2Department of Quantitative Health Sciences, Mayo Clinic, Rochester,
MN, United States
B cell transcriptomic signatures hold promise for the early prediction of vaccine-

induced humoral immunity and vaccine protective efficacy. We performed a

longitudinal study in 232 healthy adult participants before/after a 3rd dose of MMR

(MMR3) vaccine. We assessed baseline and early transcriptional patterns in

purified B cells and their association with measles-specific humoral immunity

after MMR vaccination using two analytical methods (“per gene” linear models

and joint analysis). Our study identified distinct early transcriptional signatures/

genes following MMR3 that were associated with measles-specific neutralizing

antibody titer and/or binding antibody titer. The most significant genes included:

the interleukin 20 receptor subunit beta/IL20RB gene (a subunit receptor for IL-

24, a cytokine involved in the germinal center B cell maturation/response); the

phorbol-12-myristate-13-acetate-induced protein 1/PMAIP1, the brain

expressed X-linked 2/BEX2 gene and the B cell Fas apoptotic inhibitory

molecule/FAIM, involved in the selection of high-affinity B cell clones and

apoptosis/regulation of apoptosis; as well as IL16 (encoding the B lymphocyte-

derived IL-16 ligand of CD4), involved in the crosstalk between B cells, dendritic

cells and helper T cells. Significantly enriched pathways included B cell signaling,

apoptosis/regulation of apoptosis, metabolic pathways, cell cycle-related

pathways, and pathways associated with viral infections, among others. In

conclusion, our study identified genes/pathways linked to antigen-induced B

cell proliferation, differentiation, apoptosis, and clonal selection, that are

associated with, and impact measles virus-specific humoral immunity after

MMR vaccination.
KEYWORDS

MMR vaccine, measles vaccine, measles virus, humoral immunity, gene expression,
B cells
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1 Introduction

Omics and systems biology studies in vaccinology investigate

how immune parameters are perturbed after vaccination at the whole

systems level, and endeavor to identify transcriptomic/omics markers

and models that can serve as immune response “signatures”

correlated with or predictive of outcomes such as vaccine

immunogenicity and/or protective efficacy (1–5). Most of these

studies focus on humoral immune responses, as they are crucial for

protection against many viral pathogens. Humoral immunity is

conferred by antibodies (Ab) and the B lymphocytes/plasma cells

that produce them, with the important contribution of CD4+ T cell

help (6). Both the initial plasmablast response and the generated

pools of long-lived plasma cells and memory B cells have significant

role in protection, in maintaining Ab responses, and in carrying out

the anamnestic response upon subsequent viral exposure.

Measles virus (MV) is part of the live attenuated MMR vaccine

containing measles, mumps, and rubella, which has been effective in

reducing the morbidity and mortality associated with these three

pathogens, although with differing degrees of success (1, 2). A third

dose of MMR vaccine (MMR3) is administered in outbreak settings

to control mumps, and more rarely during measles outbreaks (7).

Here in this study, we used MMR vaccine as a probe and a model

system to study transcriptomic signatures of the recall B cell

response in individuals known to be high and low antibody

responders to the measles component of the vaccine. We

comprehensively investigated early transcriptional events in

purified B cells of 232 study participants and their impact/

association with humoral immunity after MMR vaccination. Our

results demonstrate distinct transcriptional patterns after receipt of

MMR3, which are correlated with, and may explain the observed

inter-individual differences in, measles vaccine-induced

humoral immunity.
2 Materials and methods

The described methods are similar or identical to the ones in

our previously published studies (8–13). Our study design/

workflow and analysis methodology are outlined in Figure 1.
2.1 Study participants

The study cohort has been previously described in detail (11, 13).

It is comprised of 232 healthy subjects from Olmsted County (MN,

USA) with two prior documented doses of MMR vaccine. Study

subjects provided blood samples prior to the receipt of MMR3

vaccine (Day 0, baseline) and at Day 8 and Day 28 following

vaccination. Demographic and clinical variables were collected,

including age, sex, race, ethnicity, and MMR vaccination history, as

described in our previous study (13). The study was approved by The

Mayo Clinic Institutional Review Board. All enrolled participants for

the study provided written informed consent.
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2.2 Measles virus-specific binding antibody
and avidity

MV-specific IgG antibody titer was measured using the Zeus

ELISA Measles IgG Test System (Zeus Scientific, Inc., Branchburg,

NJ), and results are presented as sample index (SI), as previously

described (13). Per the kit’s instructions, a sample index greater than

1.1 indicates a seropositive sample. The assay had an intra-assay

coefficient of variability (CV) of 6.7% and inter-assay CV of 7.2% in

our laboratory.

MV-specific IgG avidity was measured using the Zeus ELISA

Measles IgG Test System as previously described (13). Avidity was

calculated as the percentage of the absorbance value with and

without diethylamine (DEA) in washing buffer. Low avidity

(below 30%) and moderate/high avidity (above 30%) were defined

arbitrarily using a previously established avidity threshold (11).
2.3 Measles virus-specific
neutralizing antibody

Neutralizing antibodies were measured using an optimized MV

Edmonston-specific fluorescence-based plaque reduction

microneutralization assay, as previously described (8, 10). The

50% neutralizing dose (ND50) was calculated using Karber’s

formula, and the ND50 titer was converted to mIU/mL using the

3rd anti-measles serum international standard (NIBSC code No. 97/

648) (8, 10). The assay had a CV of 5.7% and a limit of detection of

15 mIU/mL in our laboratory.
2.4 mRNA sequencing

Next-generation mRNA sequencing was performed in purified B

cells as previously described (12). B cells were first isolated from

PBMCs via negative selection using the Miltenyi Biotec’s B cell

isolation kit and MidiMACS™ Separator. This process yielded B

cells with an average cell viability (measured by Trypan blue

exclusion test) of 98% and average B cell purity (assessed by flow

cytometry) of 93%. Total RNA was extracted from the isolated bulk B

cells using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA), and

evaluated for quality/concentration on an Agilent 2010 Bioanalyzer

(Agilent, Palo Alto, CA).

cDNA libraries were generated at the Mayo Clinic’s Gene

Sequencing Core according to the manufacturer’s protocol using

the TruSeq® Stranded mRNA Library Prep v2 kit (Illumina, San

Diego, CA). Illumina’s NovaSeq 6000 S2 Reagent Kit (100 cycles) was

used to perform paired-end read sequencing on the Illumina

NovaSeq 6000 Instrument. The MAP-RSeq version 3.0 pipeline

was applied to align reads using STAR to the hg38 human

reference genome, and gene expression counts were obtained using

featureCounts utilizing the gene definition files from Ensembl

v78 (14). Conditional Quantile Regression was used for

normalization (15).
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2.5 Statistical analysis

Genes with low abundance or less variability were filtered out

(median count <16 at each timepoint or <20th percentile of CV), and a

total of 10,174 genes were included in the analyses. The analysis was

performed separately for the Baseline and Day 8 gene expression data.

The immune outcome was defined as the difference between Day 28

immune outcome and baseline (i.e., Day 28 –Day 0 difference/change
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on the linear scale). The immune outcomes assessed included: change

in MV-specific binding Ab (anti-MV IgG) presented as sample index

(SI), change in MV-specific IgG avidity calculated as the percentage/

ratio of the ELISA absorbance value with and without the chaotropic

agent/DEA (avidity index/AI) and change in anti-MV nAb in mIU/

mL (Neut. Ab mIU/ml), as previously described (13).

Our analysis approach is summarized in Figure 1B. It consisted

of two major steps. In the first step, we focused on the “per gene”
B

A

FIGURE 1

Study design and analysis approach. The workflow of our study is illustrated in (A). Our two-pronged analysis approach in summarized in (B) and
consists of two major steps: 1. “per gene” analysis, and 2. joint analysis. 1. In the "Per gene" analysis model, a linear regression model is fitted for each
immune outcome and each gene, with the immune outcome as the dependent variable and the gene expression as the independent variable,
adjusting for other covariates. Group-adaptive false discovery rate control (FDR) using the CAMT procedure is then performed based on these
individual association P-values. Genes with FDR-adjusted P-values less than 0.1 are considered significant (highlighted in red). 2. In the joint analysis
model, the three immune outcomes and all gene expressions are analyzed together, promoting the selection of genes associated with multiple
humoral immune outcomes. This analysis proceeds in two steps. Firstly, sparse canonical correlation analysis (SCCA) is applied to select a subset of
genes (highlighted in red) whose expressions are most correlated with the three immune outcomes through latent factors. Secondly, lasso sparse
regression is applied for each immune outcome based on the SCCA-selected genes from the previous step. The result of this second step is a
detailed association network between the three immune outcomes and the associated genes. This figure was created with BioRender.com.
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model since this statistical approach is standard and commonly

applied. The advantage of this approach is the maturity of the

statistical method (linear regression), the explicit error control (false

discovery rate control) and the ability to retrieve correlated genes

(thus facilitating enrichment analysis), while the disadvantage is

reduction of statistical power (discussed below and in Results). In

the second step of our analysis, we applied the joint analysis

approach, which addresses some of the limitations of the “per

gene” analysis and applies a selection of a sparse subset of genes,

which jointly have the highest correlation with the overall vaccine-

induced immunity (the three humoral immune outcomes).

“Per gene”model was fitted using multiple linear regression with

each immune outcome as the response, and the gene expression as

the predictor, controlling for batch, age, and gender effects. Linear

model-based t-test was used to calculate “per gene” p-values, followed

by multiple testing correction using group-adaptive false discovery

rate (FDR) control based on the Covariate Adaptive Multiple Testing/

CAMT procedure (16, 17). Here, the group structure is specified by

the immune outcome the p-values come from. FDR-corrected p-

value or q-value less than 0.1 was used as the significance cutoff.

Enriched gene pathways were identified using the Gene Set

Enrichment Analysis method (GSEA, (18)), as implemented in the

“gseKEGG” (GSEA of KEGG) function of the R Bioconductor

package “clusterProfiler” v4.6.2 (19). In comparison to the over-

representation test based on the significant genes only, GSEA

examines the ranks of the effect sizes (e.g., log2 fold change) for all

genes in a specific pathway, and if the rank is overall higher or lower

than what would be expected from a random distribution, it indicates

that the pathway is activated or suppressed. In our gene expression

dataset, Entrez Gene IDs were available for 9,479 of the 10,174

analyzed genes, which were then used in the GSEA. Gene coefficient

estimates from the “per gene” models were used as the effect size.

FDR control (Benjamini-Hochberg procedure) was performed based

on the enrichment p-values (20) to correct for multiple testing.

To complement the “per gene” modeling results, we performed

joint analysis of all genes and the three immune outcomes together

with the goal to reveal additional biological insights into the influence

of gene expression on vaccine-induced immune response outcomes

(21). Since the same gene could simultaneously be associated with

multiple immune outcomes, joint analysis of all the three immune

outcomes could increase the statistical power to identify such co-

associated genes. To do this, we first used sparse canonical correlation

analysis (SCCA) (22), which selects a sparse subset of genes that

explains the most correlation between the gene expression data from a

specific timepoint (baseline or Day 8) and the three humoral immune

outcomes (using the R “PMA” package v1.2-2). Permutation test was

used to select the sparsity tuning parameter as implemented in the

“cca.permute” function of the R “PMA” package. Since SCCA does not

associate the genes to a specific humoral immune outcome, we further

proceeded to identify the genes associated with each of the specific

humoral immune outcomes. We applied the least absolute shrinkage

and selection operator/lasso regression model to the SCCA-selected

genes (all selected genes or the top 500 genes based on the largest

SCCA coefficients, if more than 500 genes were selected) for each

humoral immune outcome (R “glmnet” package 4.1-8) (23). To

account for covariates, linear regression was used to control for
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confounding variables (effects of batch, gender and age), and

the residuals were used in the SCCA. Cross-validation was used to

select the sparsity tuning parameter as implemented in the

“cv.glmnet” function of the R “glmnet” package. All the

statistical analyses were performed in R 4.1.2.

3 Results

3.1 Characteristics of the study cohort and
humoral immune response outcomes
after MMR3

The study cohort has been previously described in detail and is

comprised of two subcohorts as previously described (13). The

demographic characteristics of our study cohort was reflective of

the demographics of the Olmsted County, MN population (U.S.).

According to their racial characteristics the study participants were

mostly White (96.5%), and their ethnicity was mostly non-Hispanics

or Latino (95.3%). The study cohort included 62.9% females, the

median age at enrollment was 35.95 years (IQR 31.95, 40.9) and the

study participants’median body mass index (BMI) was 27.9. Median

ages at the first dose and second dose of MMR were 15.59 months

(IQR 15, 17.71), and 12.5 years (IQR 11.43, 17.15), respectively. In

1998, the American Academy of Pediatrics recommended the current

MMR vaccine schedule (2nd dose at 4-6 years of age). A significant

portion of our cohort was older than 4-6 years of age at the time of

these recommendations and therefore received the ‘catch-up’ dose

(second dose of MMR vaccine) upon entering their next school

(middle school/junior high or high school). In the course of this study

participants received a third MMR vaccine dose approximately 23

years (median 23.45 years) after their second MMR vaccine dose

(Figure 1). The immune outcomes for the study cohort are

summarized in Supplementary Figure 1. All humoral immune

outcomes increased significantly from baseline to Day 28 following

MMR3 vaccination (p < 2.3E-08 for all immune outcomes), indicating

a significant boost of measles-specific humoral immunity, as

previously described (13). At baseline the median nAb titer for the

study cohort was 535mIU/mL (IQR: 260, 1250), and at the peak (Day

28) of antibody response after MMR3, the median of nAb titer was

845 mIU/mL (IQR: 421, 1694). The median Day 28 sample index was

3.47 (IQR: 2.55, 4.21) and the median Ab avidity was 42.8% (IQR:

33.74, 55.43), as previously described (13). Importantly, considerable

variation in each humoral immune outcome was observed in our

study cohort (13) – providing an ideal scenario for evaluating the

potential role of MMR3-induced transcriptional changes in B cells in

association with such immune response variability.

Of the study cohort, 198 participants had gene expression data

on Day 0 and Day 8 (see Figure 1), as well as neutralizing antibody

measure (Day 0 and Day 28) and were used in the transcriptomic

association analysis (with neutralizing Ab). Of the subjects with

gene expression data, MV-specific binding Ab (SI) and Avidity

measures were available for 191 subjects at Day 0 and for 194

subjects at Day 28, and therefore the transcriptomic association

analysis with these immune measures was performed in 191

subjects. The Day 0 (baseline) and Day 8 gene expression

patterns (heatmaps) across covariates (sex, age, subcohort) and
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MV-specific immune response outcomes (neutralizing Ab, binding

Ab and avidity) are displayed in Supplementary Figures 2, 3.
3.2 Baseline B cell transcriptomic markers
associated with MV-specific humoral
immune response following MMR
vaccination ("per gene" linear models)

For our analyses, the humoral immune response to vaccination

(MV-specific binding IgG Ab, IgG avidity, and neutralizing Ab) was

defined as the difference/change of Day 28 immune outcome with

respect to baseline (i.e., Day 28 – Day 0 defined as a difference).

3.2.1 Results of “per gene” linear model analysis
reveal the impact of B cell Day 0/baseline gene
expression on MV-specific humoral immunity
after MMR vaccination

First, we assessed the “per gene” associations between baseline/

Day 0 gene expression and the Day 28 – Day 0 humoral immune

response outcomes. The “per gene” linear model was fitted for each

humoral immune response outcome separately. We identified 1,152

B-cell genes displaying significant associations (q-value < 0.1) with

measures of MV-specific vaccine-induced humoral immunity,

although their individual effect (see Coefficient, Table 1) on the

immune response was relatively small (Table 1; Figures 2A, B). Of

the most statistically significant genes, several (e.g., B cell linker/

BLNK, interferon regulatory factor 5/IRF5, phosphatidylinositol-5-

phosphate 4-kinase type 2 alpha/PIP4K2A, all with q-value =

0.0185) are known to impact various B cell activities and functions.

3.2.2 Pathway enrichment analysis on Day 0
gene expression

From a systems biology point of view, pathways and even seemingly

unrelated “pools” of different genes may be collectively important. To

untangle the biological processes behind our “per gene” models we

performed pathway enrichment analysis on the Day 0 genes associated

with anti-MV binding or neutralizing antibody titer after MMR

vaccination, as described in Statistical analysis. Our assessment

confirmed the enrichment of genes involved in metabolic pathways

and basic cellular/organelle functions (lysosome, phagosome), as well as

signal transduction pathway genes linked to inflammation/

autoimmunity (e.g., NOD-like receptor signaling pathway) and/or

host innate and adaptive immune response, including the B cell

receptor signaling pathway (Figures 2C, D; Supplementary Table 1).
3.3 Early/Day 8 B-cell transcriptomic
markers associated with MV-specific
humoral immune response following MMR
vaccination (“per gene” linear models)

3.3.1 Results of “per gene” linear model analysis
reveal the impact of early B cell gene expression
on MV-specific humoral immunity after
MMR vaccination

The early transcriptional events in B cells upon antigenic

stimulation are of critical importance for the generation and
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maintenance of humoral immunity. Since other studies have

reported associations between plasmablast transcriptional response

(peaking at Day 7-8) and antibody titers following vaccination, our

study sought to identify early (Day 8, plasmablast) transcriptional

signatures in B cells that are highly correlated with vaccine-induced

humoral immune outcomes (24–27). To achieve this, we fit linear

models for each gene with the Day 8 gene expression as the covariate.

While this “per gene” analysis yielded a smaller number of significantly

associated genes (n=318, Day 8 genes with statistically significant

associations at q-value < 0.1), compared to baseline genes, their

individual gene effects/weights (reported as an estimated effect of

each gene/Coefficient, Table 2; Figures 3A, B) on the immune

response outcome were relatively large, which is consistent with the

substantial contribution of specific Day 8 B-cell genes to the measured

immune outcome. Of note, among the top 30 most significant findings

we identified interleukin 20 receptor subunit beta/IL20RB, phorbol-12-

myristate-13-acetate-induced protein 1/PMAIP1 and brain expressed

X-linked 2/BEX2 gene involved in apoptosis, proteasome 26S subunit,

non-ATPase 12/PSMD12, involved in ubiquitination and replication of

influenza virus, and other genes linked to antigen-induced

proliferation, differentiation, apoptosis, commitment to different B

cell lineages and clonal selection (Table 2; Figure 3).

3.3.2 Pathway enrichment analysis on Day 8
gene expression

This assessment identified 29 significantly enriched pathways

(q<0.05) among the genes associated with MV-specific binding

antibody and 9 significantly enriched pathways among the genes

associated with MV-specific nAb. We observed a moderate overlap

with the enriched Day 0 gene expression pathways/Figure 3C;

Supplementary Table 2) consisting of basic metabolic and cellular

function-related pathways. Among the identified enriched

pathways, there were also five pathways associated with different

viral infections (measles virus, herpes simplex virus, Kaposi

sarcoma-associated herpesvirus, human T cell leukemia virus 1

and Epstein-Barr virus) and multiple pathways related to

metabolism, basic cellular functions, signaling pathways and

lymphocyte immune activity (Figure 3C; Supplementary Table 2).
3.4 Results from joint analysis of B-cell
transcriptomic markers associated with
MV-specific humoral immune response
following MMR vaccination

“Per gene” model tests one gene at a time and requires multiple

testing correction that may result in reduced statistical power. In

addition, the “per gene” model aggregates the effects of other

relevant genes into the error term, thus increasing the variance of the

error term and reducing the statistical power to identify genes with

moderate effects. If a gene is associated with multiple immune

outcomes, the “per gene” model is not able to use such information,

leading to further loss of statistical power. “Per gene” model also does

not account for correlations among genes, and highly correlated genes

tend to be selected together. Thus, it has limited ability to identify

genes, whose associations are independent of other genes. Joint analysis

of gene expression, on the other hand, could address some of the listed
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limitations and reveal additional biological insights. To achieve this, we

performed a sparse canonical correlation analysis (SCCA) to first select

genes jointly impacting the three MV-specific humoral immune

outcomes (neutralizing Ab, binding Ab/SI and avidity/AI). Since the

same gene could simultaneously be associated with multiple immune

outcomes, joint analysis of all the three immune outcomes could

increase the statistical power to identify these co-associated genes.

We then performed lasso regression analysis on the SCCA-selected

genes to identify genes associated with a specific humoral immune

outcome (see Statistical analysis).
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3.4.1 Results from joint gene expression analysis
of the impact of baseline B-cell gene expression
on MV-specific humoral immunity
after vaccination

The SCCA analysis on the baseline B cell gene expression

resulted in the selection of 172 genes simultaneously associated

with all three measures of MV-specific humoral immunity (nAb,

binding Ab, and antibody avidity Figure 4A). The lasso regression

analysis of these genes resulted in the identification of 40 genes

associated with MV-specific neutralizing antibody, 31 genes
TABLE 1 “Per gene” linear model analysis for Day 0 gene expression in B cells and Day 28 – Day 0 humoral immune response outcomes.

Gene Symbol Description Outcome p-value q-value Coefficient*

DIRC2 solute carrier family 49 member 4 SI- ELISA binding Ab 3.25E-07 0.0185 0.386

INTS8 integrator complex subunit 8 SI- ELISA binding Ab 2.75E-06 0.0185 -0.361

MORC3 MORC family CW-type zinc finger 3 SI- ELISA binding Ab 3.52E-06 0.0185 -0.357

RPS6KA1 ribosomal protein S6 kinase A1 SI- ELISA binding Ab 3.60E-06 0.0185 -0.372

WDR48 WD repeat domain 48 SI- ELISA binding Ab 4.92E-06 0.0185 0.364

SNX9 sorting nexin 9 SI- ELISA binding Ab 8.64E-06 0.0185 0.334

CRTAP cartilage associated protein SI- ELISA binding Ab 8.94E-06 0.0185 -0.331

MPC1 mitochondrial pyruvate carrier 1 SI- ELISA binding Ab 1.04E-05 0.0185 0.324

SYNRG synergin gamma SI- ELISA binding Ab 1.14E-05 0.0185 -0.352

TCOF1 treacle ribosome biogenesis factor 1 SI- ELISA binding Ab 1.90E-05 0.0185 -0.322

CASZ1 castor zinc finger 1 SI- ELISA binding Ab 2.34E-05 0.0185 0.326

BLNK B cell linker SI- ELISA binding Ab 2.40E-05 0.0185 -0.334

GLT8D1 glycosyltransferase 8 domain containing 1 SI- ELISA binding Ab 3.07E-05 0.0185 -0.316

ACADM acyl-CoA dehydrogenase medium chain SI- ELISA binding Ab 3.15E-05 0.0185 -0.318

PIP4K2A phosphatidylinositol-5-phosphate 4-kinase type 2 alpha SI- ELISA binding Ab 3.55E-05 0.0185 -0.333

C4orf46 chromosome 4 open reading frame 46 SI- ELISA binding Ab 3.76E-05 0.0185 0.315

METTL7A methyltransferase like 7A SI- ELISA binding Ab 3.76E-05 0.0185 -0.336

MAPRE1 microtubule associated protein RP/EB family member 1 SI- ELISA binding Ab 3.92E-05 0.0185 0.304

CYSLTR1 cysteinyl leukotriene receptor 1 SI- ELISA binding Ab 3.94E-05 0.0185 -0.333

ZNF106 zinc finger protein 106 SI- ELISA binding Ab 4.21E-05 0.0185 -0.339

IPPK inositol-pentakisphosphate 2-kinase SI- ELISA binding Ab 5.16E-05 0.0185 0.305

SLC15A3 solute carrier family 15 member 3 SI- ELISA binding Ab 6.03E-05 0.0185 -0.301

APEH acylaminoacyl-peptide hydrolase SI- ELISA binding Ab 6.33E-05 0.0185 -0.313

C11orf73 heat shock protein nuclear import factor hikeshi SI- ELISA binding Ab 6.99E-05 0.0185 -0.310

MTMR9 myotubularin related protein 9 SI- ELISA binding Ab 7.16E-05 0.0185 0.309

PLD4 phospholipase D family member 4 SI- ELISA binding Ab 7.51E-05 0.0185 -0.341

CHRAC1 chromatin accessibility complex subunit 1 SI- ELISA binding Ab 7.73E-05 0.0185 0.309

IRF5 interferon regulatory factor 5 SI- ELISA binding Ab 7.92E-05 0.0185 -0.288

CAPG capping actin protein, gelsolin like SI- ELISA binding Ab 8.09E-05 0.0185 -0.298

C1orf198 chromosome 1 open reading frame 198 SI- ELISA binding Ab 8.48E-05 0.0185 0.319
The top 30 displayed genes/findings with significant associations are genes associated with SI/anti-MV IgG as an immune outcome (see Statistical analysis).
*Coefficient can be interpreted as the change of the immune outcome measurement in response to one standard deviation change of the gene expression.
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associated with MV-specific binding antibody and 22 genes

associated with antibody avidity, including predominantly

metabolic genes and genes involved in different cell signaling

cascades (Supplementary Table 3).

3.4.2 Results from joint gene expression analysis
of the impact of early/Day 8 B-cell gene
expression on MV-specific humoral immunity
after vaccination

The SCCA assessment on the Day 8 B-cell gene expression led

to the selection of many genes associated with the three measures of
Frontiers in Immunology 07177
MV-specific humoral immunity (n=7,716). Although it is possible

that a large number of genes are associated with the activation of B

cells, each with weak effects, we recognize that the large number of

genes selected could also be due to the limitation of the lasso

sparsity penalty used in SCCA, where it tends to produce a denser

model in order to retain those truly associated genes. Thus, we

focused our further analysis on the top 500 genes with largest SCCA

coefficients (Figure 4B). Focusing on the top 500 selected genes, the

lasso regression analysis identified 94 genes associated with MV-

specific neutralizing antibody and 66 genes associated with MV-

specific binding antibody (Supplementary Table 4). Of note,
B
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FIGURE 2

Baseline transcriptomic markers associated with MV-specific humoral immunity. (A, B) The volcano plots illustrate the association of baseline (Day 0)
gene expression with neutralizing Ab (A) and MV-specific binding Ab (B). The effect size represents the coefficient from the “per gene” linear
regression analysis. The top 30 significant genes are designated with their gene symbols. (C) Pathway enrichment analysis/GSEA plots of hallmark
pathways for Day 0 gene associations with MV-specific humoral immunity (binding Ab/pink or neutralizing Ab/blue). NES was calculated based on
the coefficients from “per gene” analysis. (D) Normalized gene expression box plots of the top (most significant) 30 Day 0 (baseline) genes
associated with MV-specific humoral immunity across two timepoints (Day 0 and Day 8).
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although the analytical approaches we used were different, we

observed a reasonable number of overlapping results with the

identified genes via “per gene” linear models. For example, of the

94 genes associated with MV-specific nAb (identified via the joint

analysis approach), 6 genes (PUS7, TDG, PTBP2, BEX2, CRTAP,

INO80D) were among the 30 top genes (representing 20% of the top

genes associated with MV-specific humoral immunity) that were

identified via “per gene” linear models (see Table 2). Thirty one of
Frontiers in Immunology 08178
the 94 genes (approximately 33%) overlapped with the list of the

318 significantly associated genes (q <0.1) with humoral immunity

via “per gene” linear models. Among these overlapping genes, most

had an unknown link to B cells and/or the generation/maintenance

of humoral immunity, however a few were known apoptotic genes

(e.g., BEX2, involved in the regulation of mitochondrial apoptosis,

as well as the Fas apoptotic inhibitory molecule/FAIM,

Supplementary Table 4) that may have implications on the
TABLE 2 “Per gene” linear model results for Day 8 B-cell gene expression and Day 28 – Day 0 humoral immune outcomes.

Gene
Symbol Description Outcome p-value q-value *Coefficient

ATAD2 ATPase family AAA domain containing 2 Neut. Ab miu/ml 1.51E-06 0.053 263.35

C1orf162 chromosome 1 open reading frame 162 Neut. Ab miu/ml 3.23E-06 0.053 -255.78

CA2 carbonic anhydrase 2 SI ELISA binding Ab 5.71E-06 0.053 0.34

WHAMM
WASP homolog associated with actin, golgi membranes
and microtubules SI ELISA binding Ab 8.44E-06 0.053 0.35

BEX2 brain expressed X-linked 2 Neut. Ab miu/ml 1.26E-05 0.053 228.33

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 SI ELISA binding Ab 1.44E-05 0.053 0.33

SMIM15 small integral membrane protein 15 Neut. Ab miu/ml 2.37E-05 0.053 229.99

TDG thymine DNA glycosylase Neut. Ab miu/ml 2.56E-05 0.053 219.91

DDIT3 DNA damage inducible transcript 3 SI ELISA binding Ab 2.91E-05 0.053 0.31

C4orf46 chromosome 4 open reading frame 46 SI ELISA binding Ab 3.26E-05 0.053 0.32

INO80D INO80 complex subunit D SI ELISA binding Ab 3.48E-05 0.053 0.31

CRTAP cartilage associated protein SI ELISA binding Ab 3.69E-05 0.053 -0.30

PUS7 pseudouridine synthase 7 Neut. Ab miu/ml 4.47E-05 0.053 -213.79

TMEM14A transmembrane protein 14A SI ELISA binding Ab 5.57E-05 0.053 -0.34

GORAB golgin, RAB6 interacting Neut. Ab miu/ml 6.10E-05 0.053 218.02

PTBP2 polypyrimidine tract binding protein 2 SI ELISA binding Ab 6.11E-05 0.053 0.32

AGPAT1 1-acylglycerol-3-phosphate O-acyltransferase 1 Neut. Ab miu/ml 6.58E-05 0.053 -216.29

PSMD12 proteasome 26S subunit, non-ATPase 12 Neut. Ab miu/ml 7.07E-05 0.053 227.86

TMEM39A transmembrane protein 39A Neut. Ab miu/ml 7.23E-05 0.053 218.20

RHEBL1 RHEB like 1 SI ELISA binding Ab 7.51E-05 0.053 0.33

LACTB2 lactamase beta 2 SI ELISA binding Ab 7.88E-05 0.053 -0.33

CGRRF1 cell growth regulator with ring finger domain 1 Neut. Ab miu/ml 8.26E-05 0.053 211.89

MCPH1 microcephalin 1 SI ELISA binding Ab 8.57E-05 0.053 0.31

CHMP2B charged multivesicular body protein 2B Neut. Ab miu/ml 8.71E-05 0.053 208.85

VPS26A VPS26, retromer complex component A Neut. Ab miu/ml 8.78E-05 0.053 213.23

IL20RB interleukin 20 receptor subunit beta Neut. Ab miu/ml 9.84E-05 0.053 201.08

KLF7 Kruppel like factor 7 SI ELISA binding Ab 9.99E-05 0.053 0.29

C1GALT1C1 C1GALT1 specific chaperone 1 SI ELISA binding Ab 0.0001 0.053 -0.30

TMEM123 transmembrane protein 123 SI ELISA binding Ab 0.0001 0.053 0.28

RND1 Rho family GTPase 1 SI ELISA binding Ab 0.0001 0.053 0.29
Top 30 genes/findings included associations with SI/anti-MV IgG and neutralizing Ab (see Statistical analysis).
*Coefficient can be interpreted as the change of the immune outcome measurement in response to one standard deviation change of the gene expression.
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process of apoptosis in the B cell lineage. Finally, the joint analysis

approach identified also many non-shared (with the results from

the linear models) genes, among those the interleukin 16/IL16 gene

associated with the nAb titer (Supplementary Table 4).
4 Discussion

The discovery of genes/genetic signatures or other “omics”

measurements associated with and/or predictive of immune
Frontiers in Immunology 09179
response after vaccination has been the goal and the subject of

cutting-edge systems-level vaccine research for over a decade

(3–5, 28).

The current study identified multiple key biomarkers/factors

and pathways that contribute to and shape inherent B cell activity

and functions necessary for generating and/or maintaining optimal

vaccine-induced humoral immunity. We focused our study design

on the B cell compartment in order to identify intrinsic B cell factors

driving the recall immune response to vaccination and highly

associated with MV-specific humoral immunity. We acknowledge
B

C

D

A

FIGURE 3

Early/Day 8 transcriptomic markers associated with MV-specific humoral immunity. (A, B) The volcano plots illustrate the association of Day 8 gene
expression with neutralizing Ab (A) and MV-specific binding Ab (B). The effect size represents the coefficient from the “per gene” linear regression
analysis. The top 30 significant genes are designated with their gene symbols. (C) Pathway enrichment analysis/GSEA plots of hallmark pathways for
Day 8 gene associations with MV-specific humoral immunity (binding Ab/pink or neutralizing Ab/blue). NES was calculated based on the coefficients
from “per gene” analysis. (D) Normalized gene expression box plots of the top (most significant) 30 Day 8 genes associated with MV-specific
humoral immunity across two timepoints (Day 0 and Day 8).
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that our study design (i.e., measuring gene expression in purified B

cells) supported the identification of B cell-specific genes, even so

this study identified a range of distinct early transcriptional

activities (transcriptional factors) and specific molecular/cellular

processes, that influence recall measles-specific humoral immunity.

One of our most important findings is the discovery of IL20RB gene

(encoding a cytokine receptor subunit of the heterodimeric complex

required for IL-19, IL-20 and IL-24 binding and activity) as an early

transcriptional biomarker in B cells that was highly associated with

MV-specific nAb titer. The interleukin/IL-20 subfamily consists of

IL-19, IL-20, IL-22, IL-24 and IL-26, and its members are involved

in inflammatory and innate immune (including antiviral) activity,

tissue repair/homeostasis, cell communication, proliferation and

differentiation, and oncogenesis (29). Of the known cytokines using

this receptor/subunit, IL-24 has been described as a pivotal B cell

immunoregulatory cytokine, directly involved in the processes of

germinal center B cell maturation (30). This multifunctional

cytokine signals through two heterodimeric receptors IL-20RA/

IL-20RB and IL-20RB/IL22RA1 (both include the subunit encoded

by IL20RB) and is known to mediate inflammatory and

autoimmune responses, as well as to regulate a variety of immune

cell functions (including in B cells, T cells, NK cells, and

macrophages) (29). Although not specifically linked to vaccine-

induced immunity, IL20RB and the associated signaling pathway

have been identified as critical in the protection and host defense

against mucosal pathogens (31). It has been postulated that BCR
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activation/CD40 engagement (CD40-CD40L ligation) in follicular B

cells (in particular CD27+ memory B cells and CD5+ B cells) is

associated with high expression of IL-24, which plays an important

role in supporting germinal center T-dependent antigen B cell

proliferation (30). The ligand IL-24 has been shown to hinder

plasma cell/terminal B cell differentiation and antibody production

by favoring the maturation of memory B cells (30). Interestingly, we

previously identified IL-24 (IL24) along with CD93 as markers of

differential MV-specific transcriptional response (in PBMCs) in 15

high vs. 15 low antibody responders to measles vaccination (32).

Hence, it is likely that the differential expression of IL-24 receptor

and/or IL-24 by specific B cell subsets during B cell activation (early

post-measles vaccine), physiologically “fine-tunes” the balance

between plasma cell and MBC commitment, thus affecting

antigen-specific plasmablast/plasma cell response and antibody

production. We speculate that further investigation in this

direction can potentially lead to the development of improved

vaccine candidates by modulating the production of IL-24 via:

incorporating an adjuvant that stimulates IL-24 production;

incorporating a recombinant IL-24 lacking apoptosis-inducing

properties (33); or generating a recombinant virus, expressing IL-

24 or a factor silencing IL-24 for testing in future studies. Another

interesting early B cell transcriptional marker associated with

antibody response is the phorbol-12-myristate-13-acetate-induced

protein 1/PMAIP1 (Noxa), encoding a pro-apoptotic member of the

BCL-2 protein family with significant involvement in the selection
BA

FIGURE 4

Correlation heatmap between SCCA-selected genes and MV-specific humoral immune response outcomes. The heatmaps illustrate the Spearman
correlations (rs) between the SCCA-selected genes and the three immune response outcomes (neutralizing Ab/NeutAb, binding antibody sample
index/SI and avidity index/AI). ‘-’ denotes the genes selected by the Lasso regression analysis as associated with each immune outcome.
(A) illustrates the Spearman correlations with immune outcomes for the Day 0 (baseline) genes. (B) illustrates the Spearman correlations with
immune outcomes for the Day 8 genes. As shown, many genes are co-associated with multiple immune outcomes.
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of high-affinity B cell clones upon antigenic stimulation (34, 35).

The ablation of the encoded protein leads to increased survival of

low-affinity clones at the expense of high-affinity clones in vivo, in a

mouse model following influenza vaccination (34–36).

The two analytical approaches (linear models and joint

analysis) used in our study have discovered that approximately

20-30% of the identified genes overlap and are associated with

immune outcome/nAb titer, which builds confidence in our

findings. Both approaches identified genes involved in the

apoptosis/regulation of apoptosis. For example, the BEX2 gene is

a known regulator of mitochondrial apoptosis and G1 cell cycle,

while FAIM (cloned as an inhibitor/regulator of Fas-mediated

apoptosis in B cells) has a significant role in the regulation of

germinal center B cell response and the plasma cell compartment

response (37–39). Another important gene, IL16 (encoding the B

lymphocyte-derived IL-16 ligand of CD4), identified via the joint

analysis approach, has been demonstrated to play a significant role

in the crosstalk and attraction/recruitment of dendritic cells and

helper T cells to initiate and achieve an optimal humoral immune

response (40, 41). A vaccine study in solid organ transplant patients,

found that IL-16 levels (among other cytokines) were significantly

lower in subjects with very low antibody response to mRNA-based

COVID-19 vaccine compared to subjects with normal immune

response, suggesting that this cytokine is associated with the

optimal development of humoral immunity after COVID-19

vaccination (42).

Another highlighted finding in our study has been identified as a

novel virus-specific host factor. The proteasome 26S subunit, non-

ATPase 12/PSMD12, has been previously implicated in regulation of

the replication/budding of influenza virus through K63-specific

ubiquitination of the matrix/M1 viral structural protein (43). It is

plausible that it may impact the budding/replication of other

enveloped RNA viruses, and thus affect antigenic abundance/host

response. Factors associated with anti-vital immunity, such as IRF5

(identified in our study) were found to be part of a molecular

signature induced by LAIV influenza vaccination (44, 45). In

agreement with the identified genes/cellular functions, our pathway

enrichment analysis of Day 0 and Day 8 genes/gene expression

pointed to enriched pathways associated with different viral

infections, as well as to multiple cytokines and immune/B cell

signaling pathways, apoptosis/regulation of apoptosis, metabolic

pathways and cell cycle-related pathways, among others. As

expected, we found pathways and gene expression patterns that

have been previously identified with other viral vaccines and

immune response studies. A member of the B cell signaling

pathway triggered upon B cell activation (TNFRSF17, a receptor

for BLyS-BAFF) was identified as a key predictive factor for

neutralizing antibody response to yellow fever vaccination (24). B

cell signaling modules were also identified as important for the

optimal response to influenza vaccination (46). Other identified

pathways in our study (apoptosis/regulation of apoptosis) have also

been found to impact immune response to vaccination by others.

Furman et al., identified the regulation of apoptosis as an essential

pathway prognostic of responsiveness to influenza vaccine (47).

Vaccine adjuvants and vaccine components, conversely, were
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demonstrated to induce damage-associated molecular patterns

(DAMPs) and cell death-associated signaling pathways, that were

found to be important for augmenting immunogenicity after

vaccination (48, 49). As separate studies found associations

between genes regulating apoptosis and immune response to

vaccination, it is likely that apoptosis and its regulation may play a

role (perhaps through increased survival of antibody producing cells)

in vaccine-induced immunity. This warrants further investigation.

The strengths of our study include the relatively large (for

transcriptomic studies) sample size, the acquisition of high-quality

transcriptomic information/data from purified B cells before/after

MMR vaccination and the use of two different analytical approaches

to identify biologically relevant gene signatures. An important

limitation is the possibility of false positive findings, which is

alleviated with the reporting of FDR-adjusted p-values or q-values

and the implementation of the joint analysis. Using the FDR

control, the percentage of false positives is controlled in the “per

gene” analysis. While the joint analysis method does not offer

explicit FDR control, by jointly analyzing the immune outcomes

and the genes together, the method promotes the selection of genes

associated with multiple outcomes, thus pooling association

evidence across immune outcomes. The two steps of our analysis

(“per gene” model and joint analysis) are complementary rather

than competitive. Together, the results they produce provide a

better understanding of the important transcriptional factors

underlying measles vaccine-induced humoral immunity. Another

important point to mention is the confounding effect of

simultaneous immune stimulation during MMR vaccination

(measles, mumps, and rubella). In this regard, it will be important

to study the effect of the identified genes on rubella virus and

mumps virus-specific immune outcomes. It is also important to

note, that although our goal was to study Day 8 (plasmablast)

transcriptional response in terms of association with humoral

immunity, the assessment of earlier transcriptional programs in B

cells (collected at earlier timepoints) could provide additional

valuable insights into the generation of recall immune response

after vaccination. Validation of our major findings through

functional studies is necessary to determine the contribution of

specific gene/genes (e.g., IL20RB) to MV-specific humoral

immunity. Another avenue to explore is the assessment of

transcriptional patterns (including the identified genes of high

interest and other genes) in different B cell subsets at different

timepoints following vaccination, which will help to better

understand the gene expression dynamics in the B cell

compartment and its contribution to humoral immunity.

In summary, our study identified important early B

lymphocyte-derived transcriptomic signatures (IL20RB, PMAIP1,

BEX2, FAIM, and IL16) associated with functional immunity/MV-

specific neutralizing antibody response and other measures of

humoral immunity following MMR vaccination. We suggest that

such molecular signatures can serve as early biomarkers of optimal

vaccine immunogenicity and hold promise for (potentially)

improving vaccine-induced immunity through providing useful

information for the development of next-generation vaccine

candidates (3, 46, 50, 51).
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SUPPLEMENTARY FIGURE 1

Immune response summary of the study subjects. Box plots summarizing: (A)
Day 0 and Day 28 binding antibody sample index/SI; (B) Day 0 and Day 28
antibody avidity index; and (C) Day 0 and Day 28 Neutralizing Ab. The line

indicates the median of the immune response measure in our cohort, while
the whiskers indicate 25% and 75% IQR. The p-values (Wilcoxon signed rank

test) demostrate the significant upregulation of Day 28 immune outcomes

(post MMR3) compared to baseline (Day 0) immune outcomes.

SUPPLEMENTARY FIGURE 2

Heatmap of Day 0 gene expression patterns. Heatmap of Day 0 (baseline)

gene expression patterns of the significant genes (FDR < 0.1) from “per gene”
analysis across covariates (sex, age, subcohort) and MV-specific immune

response outcomes (Day 28 – Day 0 difference): Neutralizing Ab (Naut.Ab),SI

(Sample Index/Binding Ab) and AI (Avidity Index).

SUPPLEMENTARY FIGURE 3

Heatmap of Day 8 gene expression patterns. Heatmap of Day 8 gene

expression patterns of the significant genes (FDR < 0.1) from “per gene”
analysis across covariates (sex, age, subcohort) and MV-specific immune

response outcomes (Day 28 – Day 0 difference): Neutralizing Ab (Naut.Ab),SI

(Sample Index/Binding Ab) and AI (Avidity Index).
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Poly I:C elicits broader and
stronger humoral and cellular
responses to a Plasmodium vivax
circumsporozoite protein malaria
vaccine than Alhydrogel in mice
Tiffany B. L. Costa-Gouvea1, Katia S. Françoso1†,
Rodolfo F. Marques1†, Alba Marina Gimenez1, Ana C. M. Faria1,
Leonardo M. Cariste2, Mariana R. Dominguez1,
José Ronnie C. Vasconcelos2, Helder I. Nakaya1,3,4,
Eduardo L. V. Silveira1*‡ and Irene S. Soares1*‡

1Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of
São Paulo, São Paulo, Brazil, 2Laboratório de Vacinas Recombinantes, Departamento de Biociências,
Universidade Federal de São Paulo, Santos, Brazil, 3Institut Pasteur São Paulo, São Paulo, Brazil,
4Hospital Israelita Albert Einstein, São Paulo, Brazil
Malaria remains a global health challenge, necessitating the development of

effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf)

malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we

evaluated the murine immunogenicity of a recombinant PvCSP incorporating

prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both

formulations induced prolonged IgG responses, with IgG1 dominance by the

Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart.

Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-

differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-

combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed

an antibody-secreting cell- and MBC-differentiating gene expression profile.

Biological processes such as antibody folding and secretion were highlighted by

the Poly I:C-adjuvanted vaccination. These findings underscore the potential of

Poly I:C to strengthen immune responses against Pv malaria.
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1 Introduction

Malaria continues to exert a substantial global health burden in

tropical and subtropical regions worldwide. According to theWorld

Health Organization (WHO), this disease affected an alarming 3.2

billion individuals in 84 countries in 2021, highlighting that 40% of

the world population live in areas at risk of infection. Nearly,

620,000 individuals were killed, especially children, by this illness

in the African sub-Saharan region. Among the Plasmodium

parasites capable of transmitting malaria to humans, five species

stand out: Plasmodium falciparum (Pf), Plasmodium vivax (Pv),

Plasmodium ovale, Plasmodium malariae, and Plasmodium

knowlesi. Pf, the deadliest of these species, commands attention,

but Pv, with its wide distribution and status as the second most

prevalent species, presents unique challenges. Contrary to historical

perceptions of Pv malaria as benign, recent observations reveal

severe symptoms, including cerebral damage, acute kidney injury,

anemia, and respiratory complications in afflicted individuals (1).

Notably, data from the WHO indicate 4.9 million Pv infections

diagnosed annually in Asia, the Western Pacific, the Mediterranean,

Central, and South America (2). Adding complexity to the Pv

malaria landscape, the parasite can establish dormant hypnozoites

in the liver, which may reactivate and lead to recurrent malaria

episodes (3).

Malaria elimination and, ultimately, eradication require a

multifaceted approach. While vector management and timely

diagnostics and treatment remain pivotal, the development of a

protective and universally effective malaria vaccine stands as a

critical objective long pursued by the scientific community. The

circumsporozoite protein (CSP), expressed abundantly on

Plasmodium sporozoites during the pre-erythrocytic stage of

infection, has emerged as a leading vaccine candidate (4). Its

central-repeat portion, the most immunogenic region, has

demonstrated the ability to generate antibodies capable of

neutralizing sporozoites, thereby inhibiting hepatocyte invasion

and preventing subsequent morbidity and mortality. Due to the

antigen density in the blood-stage of infection and ability to evade

infection, residents of malaria-endemic regions tend to develop an

increased frequency of antibody-secreting cells (ASCs) and memory

B cells (MBCs) specific to non-CSP targets over CSP (reviewed by

5). To overcome this issue, the RTS,S vaccine was conceived. This

AS01 adjuvanted-vaccine comprises virus-like particles (VLP),

encoded by the hepatitis B virus antigen, expressing different

portions of the Pf circumsporozoite protein (CSP): the central-

repeat domain and the C-terminal region containing T-cell

epitopes. While the full RTS,S vaccination displayed variable

efficacy depending on the local parasitic transmission levels, its

protection proved to be of limited duration (6). Importantly, high

antibody titers specific to the central-repeat region of CSP have

been considered RTS,S-derived correlates of protection against Pf

malaria (7). Notably, children aged 5-17 months exhibited higher

anti-PfCSP IgG titers and protection following a full RTS,S

vaccination regimen compared to their 6-12 week-old

counterparts (8). Hence, the WHO has approved the

implementation of RTS,S vaccination in malaria endemic areas of

the African sub-Saharan region (9). However, the central-repeat
Frontiers in Immunology 02186
region of PvCSP has a particularity relative to its Pf counterpart.

While Pf sporozoites display a conserved central-repeat region of

CSP, polymorphisms have been associated with the Pv sporozoite

origin (10–12). Despite this diversity, neutralizing antibody-specific

epitopes have been identified within the PvCSP central-repeat

region (13, 14), further emphasizing the need for a universal

vaccine against Pv malaria.

In the pursuit of a malaria vivax vaccine, two distinct

approaches have been explored: PvCSP-derived peptides and

virus-like particles (VLPs). The former has demonstrated safety

and immunogenicity, stimulating both humoral and cellular

responses in a naive population (15). Additionally, the Qb-
peptide platform has induced robust humoral responses and

protection against minimal PvCSP peptides (16). On the other

hand, VLPs consist of a vector system to display foreign antigens as

viral to the host immune system. This strategy has been extensively

evaluated, being remarkably effective in generating protection in

numerous animal models of infections, including malarial Pv

sporozoites. In the latter, immunization with VLP-expressing

Rv21 provided a high degree of protection against virulent Pv

sporozoite challenges in mice, with Rv21-specific IgG2a

antibodies associated with protection, even in the absence of

PvCSP-specific T cell responses (17). Moreover, our group

revealed that the Poly I:C-adjuvanted immunization with a

recombinant PvCSP, encoding its central-repeat region composed

by sequences of the 3 major alleles (VK210, VK247, and P. vivax-

like) and the C-terminal region, elicited high and long-lasting IgG

responses against all alleles in mice (18). Overall, this immunization

conferred partial protection against parasitic challenges with

transgenic P. berghei (Pb) sporozoites expressing VK210 or

VK247 or P. vivax-like PvCSP alleles in their central-repeat

region (18–20). Also, the fusion of these 3 PvCSP alleles with the

mumps viral nucleocapsid protein formed stable nucleocapsid-like

particles (NLP) and protected mice against a malarial challenge

with transgenic Pb sporozoites expressing VK210 when combined

with Poly I:C (21). However, the precise mechanisms of protection

associated with these vaccines remain elusive.

The adjuvant selection is a critical step in vaccine development,

with multiple adjuvants described, some advancing to clinical trials,

and a few approved for human use. Among them, aluminum salts

are widely used adjuvants, comprising amorphous aluminum

hydroxyphosphate sulfate, aluminum phosphate, potassium

aluminum sulfate, and aluminum hydroxide (including

Alhydrogel). Regarding their adjuvant properties, aluminum salts

were initially thought to present a slow and continuous antigen

release (depot effect) to recruit antigen-presenting cells (22) and

eosinophils to the inoculum site (23). Nowadays, it is accepted that

their mechanism of action is linked to the activation of NLRP3

inflammasome (24). More specifically, aluminum salts are

phagocyted by dendritic cells (DCs) at the injection site, leading

to their lysosome blockade and necrosis. Monosodium urate

derived from a damage-associated molecular pattern, such as uric

acid, can also inhibit DC lysosomes, facilitating the release of

antigens and cathepsin B in those necrotic cells. Finally, cathepsin

B stimulates the potassium flux that triggers the NLRP3

inflammasome (25–27). Another promising adjuvant is the Poly
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I:C, a synthetic double-stranded RNA molecule recognized by Toll-

like receptor 3 (28, 29) and the cytoplasmic melanoma

differentiation-associated protein-5 (MDA-5) (30). This adjuvant

stimulates the production of IL-12 and type I IFN, intensifying the

innate immunity (31) and vaccine-derived immune responses (32,

33). After interaction, TLR3 dimers cluster along Poly I:C, enabling

TRIF recruitment (34, 35) and assembly for the proper downstream

signaling through TRAF (36). Furthermore, adjuvants based on the

Poly I:C structure have reached clinical trials in humans (37).

In this context, we embark on a comparative analysis,

examining the humoral and cellular immune responses elicited by

immunizations with yPvCSP-AllCT epitopes combined with Poly I:

C or Alhydrogel. In addition, we conduct transcriptomic analysis on

splenocytes from mice vaccinated with yPvCSP-AllCT epitopes or

yNLP-PvCSPCT adjuvanted with Poly I:C, or Poly I:C alone,

shedding light on the mechanisms underlying these B-cell

responses. These findings hold the potential to enhance the

development of efficient malaria vivax vaccine formulations and

bring us closer to the ultimate goal of malaria eradication.
2 Materials and methods

2.1 Animals

Six to eight-week-old female C57Bl/6 mice were purchased

from the mouse facility at the School of Medicine at the

University of São Paulo (USP). The animals were housed under

specific pathogen-free conditions at the animal facility of the School

of Pharmaceutical Sciences and Biochemistry Institute, USP, with

unrestricted access to water and food. All experiments and

procedures were performed in accordance with guidelines

approved by the local ethics committee (CEUA/FCF 055.2019-

P594 and CEUA/FCF 74.2016-P531).
2.2 Production of the vaccine antigen

The yPvCSP-AllCT epitopes recombinant protein was expressed

and purified from Pichia pastoris yeast (y) as previously described

(18), following good laboratory practices by The Biological Process

Development Facility, The College of Engineering at the University

of Nebraska (USA).
2.3 Immunizations and sampling

To evaluate both humoral and cellular responses, C57Bl/6 mice

underwent three intramuscular (i.m.) immunizations with a 2-week

interval between each dose. Each vaccine dose consisted of 10

micrograms of yPvCSP-AllCT epitopes adjuvanted with 50

micrograms of Poly I:C HMW (Invivogen) or a 1:1 volume of

Alhydrogel (Invivogen), totaling 100 microliters. Half of this

volume was administered into each thigh muscle. Plasma samples

were collected from immunized animals one day before each

vaccination dose through submandibular vein puncture. To
Frontiers in Immunology 03187
investigate the Poly I:C effect on the splenic transcriptome of

vaccinees, C57Bl/6 mice were immunized three times, two-weeks

apart, with 10 micrograms of recombinant protein (yPvCSP-AllCT
epitopes or yNLP-PvCSPCT) adjuvanted with 50 micrograms of

Poly I:C HMW (Invivogen) in both cases via the subcutaneous (s.c.)

route (38). Spleens were excised after different time points after the

2nd or 3rd vaccine doses for the analysis of cellular responses

or transcriptome.
2.4 ELISA

Enzyme-linked immunosorbent assays (ELISAs) were

conducted to determine titers of plasma IgG antibodies and their

isotypes (IgG1, IgG2b, IgG2c, and IgG3) specific to the vaccine

antigen (yPvCSP-AllCT epitopes). These assays followed a standard

operating procedure (SOP) developed by the Clinic Parasitology

Laboratory staff (led by Dr. Irene Soares, School of Pharmaceutical

Sciences at USP) with modifications. Briefly, ELISA plate wells

(Costar high-binding - REF 3590) were coated with 1µg/mL of the

recombinant protein used in immunization (yPvCSP-AllCT
epitopes). Following overnight incubation at 4°C, plate wells were

washed four times with PBS and four times with PBS containing

0.5% Tween 20 (0.5% PBS-T20). Subsequently, they were blocked

with a 2-hour incubation in blocking solution (PBS supplemented

with 10% FBS) at room temperature. Plasma serial dilutions from

immunized mice, ranging from 1:100 in blocking solution, were

individually added to each plate well and incubated for 90 minutes

at room temperature. Plate wells were washed four times with 0.5%

PBS-T20, followed by a 90-minute incubation with anti-mouse IgG,

IgG1, IgG2b, IgG2c, or IgG3 antibodies conjugated with peroxidase

(Southern Technologies, Chattanooga, TN, USA) diluted 1:3,000 in

blocking solution at room temperature and in the dark. The final

washing steps included four washes with 0.5% PBS-T20 and four

washes with PBS. Revelation was carried out using 1mg/mL of O-

phenylenediamine (OPD) diluted in phosphate-citrate buffer (pH

5.0) containing 0.03% hydrogen peroxide. The addition of 4N

sulfuric acid to each plate well halted the reaction. Plates were

immediately read in an ELISA reader (Awareness Technology,

model Stat Fax 3200, USA) at an optical density of 492 nm. We

considered the end-point titer of a tested sample when its respective

dilution presented an optical density (OD) value equal or higher

than three-times the blank counterpart.

To estimate the avidity of vaccine-derived antibodies, we

conducted an ELISA as described above with the following

modifications. After the 90-minute incubation with selected

dilutions of day 90-derived plasma samples that generated optical

density ratios (450nm/630nm) nearly 1.0, plate wells were washed

twice with 0.5% PBS-T20, followed by two washing steps with PBS.

Different urea concentrations (6 M, 2 M, and 0.66 M), diluted in

PBS, were individually added to each plate well and incubated for 30

minutes at room temperature. Plate wells were washed twice with

PBS, followed by the incubation with peroxidase-conjugated anti-

mouse IgG antibodies as described above. Values corresponding to

the plate wells incubated with no urea represented maximum

antibody avidity.
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2.5 Measuring spleen areas

To estimate the size of the spleen areas, we used the ImageJ

software and performed the following steps: 1) A picture of a

murine spleen was always taken with a ruler on its side; 2) Image

was duplicated, gray-scale transformed (8-bit images), and had its

scale adjusted to cm2 with the aid of a line of known length; 3)

Image was cropped, had its defective region segmented through a

manual-adjusting threshold, and the respective remaining area

was measured.
2.6 ELISPOT

To enumerate antibody-secreting cells specific to the yPvCSP-

AllCT epitopes recombinant protein used in immunization, the

enzyme-linked immunosorbent spot (ELISPOT) assay was

employed, following a previously described protocol (39) with

modifications. Briefly, 10 µg/mL of the vaccine antigen (yPvCSP-

AllCT epitopes) were diluted in PBS to coat individual wells of

ELISPOT plates (Millipore - cat. MSHAN4B50). After overnight

incubation at 4°C, plate wells were washed four times with PBS

containing 0.05% Tween 20 (0.05% PBS-T20), followed by four

washes with PBS. Plate wells were blocked for 2 hours with RPMI

1640 cell culture medium supplemented with 10% FBS (blocking

solution) in a 5% CO2 incubator at 37°C. After blocking, the

solution was removed, and 106 splenocytes from each immunized

mouse were diluted in blocking solution and added to the first-row

wells of the ELISPOT plates. Serial cell dilutions, with a 3-fold

factor, were performed across the remaining rows, and the plates

were incubated overnight at 37°C in a 5% CO2 incubator.

Subsequently, cells were removed from the ELISPOT plates, and

wells were washed four times with 0.05% PBS-T20. An anti-mouse

IgG secondary antibody conjugated with biotin (Thermo Fisher

Scientific - Cat. B2763), diluted 1:1,000 in PBS containing 0.05%

Tween 20 and 2% FBS, was added to the plate wells and incubated

for 90 minutes at room temperature. Plate wells were washed four

times with 0.05% PBS-T20 and incubated with Avidin-D-HRP

(Vector labs), diluted 1:1,000 in 1X PBS containing 0.05% Tween

20 and 2% FBS, for 3 hours in the dark at room temperature.

Following incubation, plate wells were washed four times with

0.05% PBS-T20 and four times with PBS. Revelation was carried

out by adding the 3-amino-9-ethyl carbazole (AEC) substrate (BD

Cat. # 551015) to the plate wells as recommended by the

manufacturer. Plate wells were washed with running water and

dried before images were obtained using an AID ELISPOT plate

reader (KS ELISPOT, Zeiss, Oberkochen, Germany).
2.7 Cell staining

After anesthesia and euthanasia, the spleens were removed and

macerated in PBS. Red blood cells (RBCs) were eliminated after a 5-
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minute incubation with the Ack lysis buffer (Lonza) at room

temperature. The remaining splenocytes were washed twice with

PBS supplemented with 2% FBS (PBS-2% FBS) before staining for

distinct B cell subsets. An antibody cocktail was added to the

samples for 30 minutes in the dark at 4°C, including anti-B220-

APC-Cy7 (clone RA3-6B2 - BD), anti-CD3-FITC (clone 17A2 -

Biolegend), anti-F4/80-FITC (clone BM8 - Biolegend), anti-CD138-

PE (clone 281.2 - Biolegend), and anti-CD38-APC (clone 90 -

eBioscience). Stained cells were washed twice with PBS-2% FBS and

fixed with a 4% paraformaldehyde solution. Event acquisition was

performed using a FACSCelesta (BD), and data analysis was

conducted with FlowJo software.
2.8 RNA extraction, cDNA library
preparation, and sequencing

Mice immunized with yPvCSP-AllCT epitopes or yNLP-

PvCSPCT adjuvanted with Poly I:C, or Poly I:C alone had their

spleens excised two weeks after the immunization regimen as well as

naive mice. Splenic B-cells were purified using MagniSort ™Mouse

B cell Enrichment (ThermoFisher Scientific), resuspended in

RNAlater solution (ThermoFisher Scientific), and stored at -80°C

until use. Total RNA was extracted using the Quick - RNA

Miniprep kit (Zymo Research, USA) following the manufacturer’s

instructions. RNA integrity was verified for each sample using the

Agilent 2100 BioAnalyzer and Agilent RNA 6000 Nano Chips

(Agilent). mRNA preparation was performed using the rRNA

depletion technique with the Agilent DNA 1000 kit and Agilent

2100 BioAnalyzer equipment. cDNA library preparation and

sequencing were conducted by Quick Biology Inc (Pasadena, CA,

USA) using the HiSeq 4000 equipment, generating approximately

24 million reads.
2.9 Systems biology analysis

Differentially expressed genes (DEGs) were identified using the

edgeR program (40). A gene was considered differentially expressed

when the p-value was < 0.05 and the fold change (FC) was > 1.5

times compared to naive mice. Functional enrichment analysis

utilized the Reactome database (41) through the EnrichR tool

(http://amp.pharm.mssm.edu/Enrichr/), with an adjusted

p-value < 0.05 indicating statistically significant enrichment.

Protein-protein interaction networks were constructed using the

NetworkAnalyst 3.0 platform (42) with IMEX interactome curated

from the InnateDB database (43), considering only experimental

evidence and a 900 confidence-score cutoff. Transcription factor-

DEG interaction networks were also defined using the

NetworkAnalyst 3.0 platform with the ENCODE ChIP-seq data

package following set-up: peak intensity signal <500 and predicted

regulatory potential score <1 (through the BETAMinus algorithm).

Based on particular parameters, such as degree and betweenness

centrality, the resulting networks were visualized with Cytoscape
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version 3.7.2 (44), and the subnetworks illustrated only immunity-

related pathways. DEGs exclusively detected in mice immunized

with yPvCSP-AllCT epitopes + Poly I:C were highlighted in red,

while DEG-associated transcription factors or DEG-relative

protein-associated proteins were represented in purple or

yellow, respectively.
2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism for

Windows, version 6.0 (GraphPad Software, Inc., La Jolla, CA, USA)

using a Two-way ANOVA with multiple comparisons through

Sidak’s test, computing confidence interval and significance. A p-

value (p<0.05) indicated a significant difference between the two

groups evaluated.
3 Results

3.1 Poly I:C-adjuvanted vaccination
induced a balanced and durable IgG
response compared to Alhydrogel

To assess the immunogenicity of a malaria vaccine targeting

PvCSP (yPvCSP-AllCT epitopes) with different adjuvants, we

conducted a comprehensive study involving 12 C57Bl/6 mice

immunized via intramuscular injection with three doses
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administered at 14-day intervals. The vaccine formulations were

combined with either Poly I:C or Alhydrogel as adjuvants. We

closely monitored the immune responses of these mice for nearly

500 consecutive days. Plasma samples were collected at various time

points before, during, and after vaccination to measure total IgG

titers specific to the vaccine antigen using ELISA (Figure 1A).

As expected, we observed a significant increase in IgG titers

after each vaccination, regardless of the adjuvant used. Interestingly,

the presence of Poly I:C as an adjuvant resulted in a slightly faster

onset of the vaccine-induced humoral response compared to

Alhydrogel. Specifically, Poly I:C-adjuvanted vaccination led to

the peak of IgG titers at day 42, maintaining this elevated level

until day 120. In contrast, the group that received Alhydrogel had a

delayed peak in antibody titers, occurring at day 90 (Figure 1B).

Importantly, both adjuvants induced IgG antibodies with similar

avidity against the vaccine antigen (yPvCSP-AllCT epitopes)

(Supplementary Figure 1A). Antigen-specific IgG titers declined

significantly by day 150 but were maintained at a certain level until

day 495 for both adjuvants. This suggests that vaccination with

either adjuvant can induce durable humoral responses in

mice (Figure 1B).
3.2 IgG isotype profile highlights
differential immune responses

The vaccine formulations elicited distinct IgG isotype profiles,

shedding light on the nature of the immune response induced by
B

A

FIGURE 1

Adjuvanted-malaria vaccine specific to P. vivax circumsporozoite protein elicits long-lasting IgG responses in mice. (A) Outline of the blood draws
and intramuscular vaccination with the recombinant yPvCSP-AllCT epitopes protein combined with Poly I:C (n=6) or Alhydrogel (n=6). (B) IgG titers
specific to the vaccine antigen were measured before, during and after vaccination in plasma samples through ELISA. Dots and columns represent
individual values detected for each mouse and median, respectively. Red and blue colors indicate animals immunized with yPvCSP-AllCT epitopes +
Poly I:C or Alhydrogel, respectively. *p<0.05; **p<0.01; ****p<0.0005.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1331474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Costa-Gouvea et al. 10.3389/fimmu.2024.1331474
each adjuvant. Notably, IgG1 dominated the humoral response in

Alhydrogel-adjuvanted vaccinees, with significantly higher titers

observed at day 42 compared to those in the Poly I:C-adjuvanted

group (Figure 2A). In contrast, while IgG1 displayed the highest

titer among the IgG isotypes in Poly I:C-adjuvanted vaccinees,

IgG2c, IgG2b, and IgG3 titers followed a hierarchical pattern,

peaking also at day 42, with higher magnitudes and a more

balanced IgG1/IgG2c ratio (Th1/Th2 profile) compared to
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Alhydrogel counterparts (Supplementary Figure 1B). These

antibody titers significantly declined by day 150 (IgG1) or day

180 (IgG2b, IgG2c, and IgG3), becoming undetectable at day 495

(IgG3) in the Poly I:C-adjuvanted group. In contrast, Alhydrogel-

adjuvanted vaccinees initiated the decline a bit earlier (day 90) for

IgG1, but their remaining IgG isotypes maintained low titers, as

observed at day 42, except for IgG3, which was undetected by day

495 (Figures 2B–D).
B

C

D

A

FIGURE 2

Poly I:C-adjuvanted malaria vaccine triggers a broader isotypic diversification of IgG responses via the intramuscular route in comparison to the
Alhydrogel counterpart. Mice were immunized via intramuscular with the recombinant yPvCSP-AllCT epitopes protein combined with Poly I:C (n=6)
or Alhydrogel (n=6). (A) IgG1; (B) IgG2b; (C) IgG2c; (D) IgG3) titers specific to the vaccine antigen were measured before, during and after
vaccination in plasma samples through ELISA. Red and blue colors indicate animals immunized with yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel,
respectively. Dots and columns represent individual values detected for each mouse and median, respectively. *p<0.05; **p<0.01; ****p<0.0005.
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3.3 Poly I:C-adjuvanted vaccination
enhances the frequency of antibody-
secreting cells and memory B cells

To investigate the impact of adjuvants on the spleen cellularity

and on the frequency of B cell subsets, 18 animals were immunized

with half receiving each adjuvant (Figure 3A). Disregarding the

adjuvant used, spleen areas tended to increase from 2nd to final
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vaccination (day 5). Five days later, those organs returned to initial

measures (Supplementary Figures 2A, B). Since B cells, involved with

antibody responses, are the most abundant immune cells in murine

spleens (45), we quantified the frequency and absolute number of

several B-cell subsets at various time points following immunization

with Poly I:C or Alhydrogel using flow cytometry (Supplementary

Figure 3). Short-lived plasmablasts (PBs) typically follow specific

kinetics upon immunization in different mammals (46–49). In this
B

C D

E F

A

FIGURE 3

Poly I:C-adjuvanted malaria vaccine induces a more potent antibody-secreting cell response in the mouse spleen via the intramuscular route than
the Alhydrogel counterpart. (A) Outline of intramuscular vaccination with the recombinant yPvCSP-AllCT epitopes protein combined with Poly I:C
(red - n=9) or Alhydrogel (blue - n=9) and tissue sampling (n=3 per group per time point). (B) Sequential gating strategy to enumerate plasma cells
(PCs) through flow cytometry. (C) Percentage and (D) absolute number of splenic PCs at different time points upon vaccination through flow
cytometry. (E) Representative images of the ELISPOT results for PvCSP-specific IgG-secreting cells at day 10 of the third vaccine dose (left panel).
The numbers on top of each image indicate the quantity of spot-forming cells enumerated per well plated with 0.66 × 106 mouse splenocytes. (F)
Magnitude of PvCSP-specific IgG-secreting cells per spleen of immunized mice (right panel). Dots and bars represent the totality of splenic PvCSP-
specific IgG-secreting cells individually detected for each mouse and median, respectively. *p<0.05
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study, both B cells (B220+) and PBs (B220+ CD138int CD38+)

tended to increase in the spleens of mice vaccinated with Poly I:C

compared to those receiving Alhydrogel, particularly after boosters

(Supplementary Figures 4A–D). In contrast, Poly I:C-adjuvanted

vaccinees maintained a similar percentage and count of long-lived

plasma cells (PCs) at the same period, while Alhydrogel-adjuvanted

vaccinees exhibited a significant decrease in both parameters at day 5

after the third immunization (Figures 3B, C). To address the

specificity of these splenic antibody-secreting cells (ASCs), we

enumerated IgG-secreting cells specific to the vaccine antigen at

day 10 after the third vaccination using ELISPOT. The Poly I:C-

adjuvanted vaccine induced a higher, though not statistically

significant, number of IgG-secreting cells specific to the vaccine

antigen compared to the Alhydrogel group (Figures 3D, E).

The secretion of IgG antibodies relies on the activation and

differentiation of follicular B cells, which participate in germinal
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center (GC) reactions with follicular T cells (TFh) (reviewed by 50),

into ASCs. We measured the frequency of important GC players

and observed increasing trends in the percentage and absolute

numbers of FoBs (B220+ CD23+), GC-Bs (B220+ CD138- CD38-

GL7+) and TFh (GC-TFh (CD3+ CD4+ GL7+ CD40L+ CXCR5+)

and non-GC TFh (CD3+ CD4+ GL7- CD40L+ CXCR5+)) with the

last booster for both adjuvants (Supplementary Figures 3, 4E–H, 5),

although without statistical significance.

Critical for the durability of vaccine-derived responses and

protection, we also evaluated the frequency of memory B cell

(MBC) precursors (B220+ CD138- CD38+ GL7+) and terminally-

differentiated MBCs (B220+ CD138- CD38+ GL7-) in the spleens of

vaccinees. A significantly lower percentage and absolute number of

MBC precursors and MBCs were observed in Alhydrogel-

adjuvanted vaccinees after the third vaccine dose compared to

their Poly I:C-adjuvanted counterparts (Figures 4A–D).
B C

D E

A

FIGURE 4

Poly I:C-adjuvanted malaria vaccine induces a stronger memory B-cell response via the intramuscular route relative to the Alhydrogel counterpart.
(A) Sequential gating strategy to enumerate follicular B cells and memory B cells through flow cytometry. Percentage (B, D) absolute number of cells
(C, E) detected in the spleen of mice at different time points upon vaccination through flow cytometry. Red and blue colors indicate animals
immunized with yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel, respectively. Dots and columns represent individual values detected for each
mouse and median, respectively. * p<0.05
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3.4 Poly I:C-adjuvanted vaccination
modulates the expression of genes
associated with antibody-secreting cells
and memory B cells

Subcutaneous vaccination with yPvCSP-AllCT epitopes

combined with Poly I:C demonstrated similar immunogenicity to

that obtained via the intramuscular route (data not shown) and

protection against transgenic P. berghei sporozoites expressing

PvCSP alleles (VK210, VK247, or P. vivax-like) (18–20).

Additionally, a vaccine formulation based on the fusion of the

mumps viral nucleocapsid and yPvCSP-AllCT epitopes (yNLP-

PvCSPCTCT) protected mice against parasitic challenges (21). To

gain insights into the molecular mechanisms underlying these

responses, we compared the splenic B-cell transcriptome of mice

vaccinated with yPvCSP-AllCT epitopes + Poly I:C, yNLP-

PvCSPCTCT + Poly I:C, or Poly I:C alone (Figure 5A). This

analysis identified nearly 120 differentially expressed genes

(DEGs) that were either exclusive to each group or shared among

groups (Figure 5B; Supplementary Tables 1–3). Among the 33

exclusive DEGs derived from animals immunized with yPvCSP-

AllCT epitopes + Poly I:C, 16 were upregulated, and 17 were

downregulated (Figure 5C). Of these exclusive DEGs, 6 were

associated with facilitating B-cell differentiation into ASCs

(Col18a1, Hspa2, Pstk, S100a8, Zfp457, and Tubb4a), while

others were linked to MBC generation (Gpr3, Hmgb1-rs17, and

Igsf23) (Figure 5D). Gene ontology analysis indicated that these 33

exclusive DEGs were involved in processes related to cell

localization, protein secretion, wound response, and cation

homeostasis (Figure 5E). At the molecular level, the activities of

protein dimerization and transmembrane transport were associated

with these DEGs (Figure 5F). Gene networks revealed interactions

between some of these DEGs, transcription factors (IRF4 and

S100a8), or proteins (CamK2a and Cdk1) respectively critical for

B-cell differentiation into ASCs or MBCs (Figures 5G, H).
4 Discussion

The durability of vaccine-induced immune responses is a

critical factor in assessing the long-term protective efficacy of

vaccination and the potential need for booster doses. Our study

demonstrates that both Poly I:C and Alhydrogel adjuvants can elicit

robust and long-lasting humoral responses following immunization

with the yPvCSP-AllCT epitopes formulation. Notably, anti-PvCSP

IgG titers persisted for extended periods, declining only after 120

days post-vaccination and remaining stable for almost 350 days

thereafter for both adjuvants (Figures 1, 2). This suggests that the

number of antibody-secreting cells (ASCs), particularly plasma cells

(PCs), generated by yPvCSP-AllCT epitopes vaccination with Poly I:

C or Alhydrogel does not significantly decrease in the bone marrow

of vaccinated individuals within the first year, a phenomenon

observed in humans vaccinated against influenza (51).

Furthermore, it is plausible that PCs originating from both Poly I:
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C- and Alhydrogel-adjuvanted vaccinations maintain similar levels

of the ZBT720 transcription factor, which is known to sustain

humoral responses (52).

Different than the concern raised by the excessive amount of

serum anti-CSP antibodies induced by RTS,S vaccination before

completing the entire regimen, which hinder the increase of the

humoral response (53), all booster doses of yPvCSP-AllCT epitopes

+ Poly I:C or Alhydrogel triggered an enhancement of anti-PvCSP

IgG titers (Figure 1B). Interestingly, each adjuvant induced a

distinct IgG profile specific to PvCSP. The Poly I:C-adjuvanted

vaccine triggered a balanced production of PvCSP-specific IgG1 and

IgG2c, along with a notable IgG2b response, whereas the

Alhydrogel-adjuvanted vaccine was dominated by IgG1

(Figure 2). This suggests a potential Th1/Th2 immune profile,

which may be advantageous for protection against PvCSP. In

comparison to the PfCSP-specific response, the RTS,S vaccination

stimulates higher secretion of IgG1, and some IgG3 and IgG2 in

humans, being protective when specific to the central-repeat or C-

terminal region of the PfCSP. However, these antibody titers

significantly wane in less than 8 months and continue to

gradually decline in subsequent years. IgG2 and IgG4 have been

associated with increased Pf malaria risk and are detected at lower

magnitudes than IgG1 and IgG3 (54–56). Regarding the IgG

subclasses induced by another malaria vaccine formulation to be

implemented (R21 + Matrix-M), they remain elusive in humans. In

mice, this latter vaccine elicited higher humoral and cellular

responses, culminating with higher protection against transgenic

sporozoites compared to R21 + Alhydrogel (57) or R21 alone (58).

In this case, the non-protective R21 alone triggered an IgG1-

dominated profile (Th2 type) (58) as well as our immunization

with yPvCSP-AllCT epitopes + Alhydrogel. When other adjuvants,

such as SQ or LMQ, were combined with R21, they protected Balb/c

mice against a malaria challenge. While the humoral response

induced by R21 + SQ was dominated by IgG1 (Th2 profile), the

R21+LMQ immunization resulted in comparable titers of IgG2a,

IgG1, and IgG3 (balanced Th1/Th2 profile) (58). Notably, our

immunization with yPvCSP-AllCT epitopes + Poly I:C elicited a

similar humoral response, Th profile, and ability to protect against a

malaria challenge (18, 19) as R21+LMQ does. Considering that

human IgG1 and IgG3 and murine IgG2 are cytophilic, fix

complement (59) and interact with Fcg-receptors on phagocytes,

adjuvants capable of triggering distinct Th profiles can eventually

facilitate protection against Pv malaria. Moreover, these functional

properties of anti-PvCSP antibodies have not been explored yet.

Serum anti-CSP antibodies derived from individuals living in

malaria-endemic regions or those immunized with different

formulations have been shown to possess neutralizing capabilities

against Pf sporozoites (reviewed by 5, 60), reduce the hypnozoite

burden, and delay the onset of blood-stage Pv infection (61). Recent

molecular dynamics simulations and crystallography analyses

suggest that anti-PvCSP neutralizing antibodies efficiently interact

with their epitopes, despite the structural disorder of the central-

repeat portion of PvCSP (62). However, a non-neutralizing anti-

PfCSP monoclonal antibody, isolated from immunized mice, was
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recently demonstrated to abrogate protection against Pf

sporozoites, even in the presence of neutralizing counterparts

(63). Given that previous subcutaneous immunizations with

yPvCSP-AllCT epitopes combined with Poly I:C provided only
Frontiers in Immunology 10194
partial protection in mice exposed to transgenic PvCSP-

expressing sporozoites (18–21), it remains unclear whether the

vaccine-induced humoral response specific to yPvCSP-AllCT
epitopes includes non-neutralizing anti-PvCSP antibodies.
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FIGURE 5

Poly I:C-adjuvanted malaria vaccine elicits modifications in the transcriptome of splenic B cells, enhancing their differentiation into antibody-
secreting or/and memory B cells. (A) Subcutaneous immunization with yPvCSP-AllCT epitopes + Poly I:C, yNLP-PvCSPCT + Poly I:C, or Poly I:C
alone, number of doses and their intervals, and euthanasia time for spleen excision, B-cell isolation and freezing for further RNA extraction. (B) Log
fold-change (FC) of differential expressed genes (DEGs) exclusively induced by the yPvCSP-AllCT epitopes + Poly I:C vaccination or mutually induced
by yPvCSP-AllCT epitopes + Poly I:C and one of the remaining immunizations. (C) Number of DEGs exclusively detected in splenic B cells of mice
vaccinated with yPvCSP-AllCT epitopes + Poly I:C. (D) LogFC of DEGs associated with B-cell differentiation into antibody-secreting cells (PB/PC) or
memory B cells (MBC) detected upon yPvCSP-AllCT epitopes + Poly I:C vaccination. (E) Major biological processes and (F) molecular functions of
splenic B-cell DEGs derived from mice vaccinated with yPvCSP-AllCT epitopes + Poly I:C through Gene Ontology analyses. Interaction networks
between B-cell-derived DEGs (red dots) elicited upon yPvCSP-AllCT epitopes + Poly I:C vaccination with transcription factors (G) and DEG-encoding
protein with proteins (H). Dotted lines represent LogFC values ≥ -2 and ≤ 2. .
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Another crucial mechanism of malaria immunity is the

opsonization of sporozoites mediated by anti-CSP antibodies.

Human anti-PfCSP IgG1 and IgG3 have been shown to interact

with neutrophils via FcRIIa and FcRIII, as well as to a lesser extent

with monocytes and NK cells, facilitating parasite clearance (64).

Antibody-dependent complement activation and fixation are also

vital components of effective immunity. Human IgG1 and IgG3

specific to the N-terminal, central-repeat, and C-terminal regions of

PfCSP have been demonstrated to fix complement (65). However, it

remains unexplored whether anti-PvCSP antibodies induced by

yPvCSP-AllCT epitopes immunizations can execute these functions,

regardless of the adjuvant employed.

Despite the observed discrepancies in IgG responses with the

two tested adjuvants, PvCSP vaccination did not result in

differences in splenic sizes (Supplementary Figure 2). B cells are

the most prevalent immune cells within this organ in mice, and

various B cell subsets may have their frequencies altered following

infection or vaccination. To elicit protective immunity against

malaria, a combination of multiple B cell subsets is required. For

instance, immunization with irradiated sporozoites (IrSpz), which

have CSP as the immunodominant antigen (4), provides protection

to several murine models of disease and humans. In mice, the

IrSpz-derived response triggers an increased number of CSP-

specific plasmablasts and long-lasting germinal center (GC) B

cells. The functionality of that cellular response seems to be

dependent on T cells, as CD28 KO mice displayed reduced

numbers of GC B cells and plasmablasts, and an ensuing higher

susceptibility to wild-type (WT) Spz infection (66). The blood stage

of malaria is another parameter known to alter the composition of

B cell subsets, increasing susceptibility to infection. Mice infected

with WT Spz present reduced anti-CSP antibody titers upon the

establishment of the blood stage due to an inhibition of the CSP-

specific GC B cell response (67). Straight infection with infected

red-blood cells also elicits a detrimental GC B cell response (68).

Consequently, plasmablasts show a faster decline and only a

reduced number of memory B cells (MBCs) are maintained. If

mice are treated with atovaquone during the blood-stage of the

infection, parasitemia is cleared and animals present a subsequent

enhancement in the number of splenic B cells, GC B cells,

plasmablasts and anti-CSP antibody titers as observed with

IrSPz-immunized mice (67). Notably, a fine tuning for

metabolites between plasmablasts and GC B cells seems to occur

for prompting protection against malaria. During the blood stage of

infection in mice, plasmablasts rapidly proliferate, diminishing

levels of blood L-glutamine. Somehow, this scenario delays the

proliferation of GC B cells, resulting in reduced numbers of MBCs

and plasma cells, and higher-peak parasitemia. On the other hand,

if plasmablast depletion or an L-glutamine treatment is done

during the beginning of the blood stage of infection, it triggers an

effective proliferation of GC B cells and follicular helper T cells,

culminating with increased numbers of MBCs and plasma cells,

and lower parasitemia peak (69). In this study, Poly I:C-adjuvanted

vaccinees displayed significantly higher absolute numbers of PCs,

follicular B cells, and terminally-differentiated MBCs compared to
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Alhydrogel counterparts (Figures 3, 4). Regarding PCs, both

qualitative (flow cytometry) and quantitative assays (ELISPOT)

exhibited similar kinetics (Figure 3), parallel to what has been

observed in vaccinated macaques (47) and humans (49). However,

the specificities of follicular B cells and terminally-differentiated

MBCs induced by our vaccination require further investigation.

Moreover, the study sheds light on the cellular aspects of immunity,

indicating that Poly I:C may enhance the generation of higher-

affinity memory and long-lasting protection against PvCSP relative

to Alhydrogel.

The differences in the gene expression profiles of B cells between

the two adjuvant groups provide valuable insights into the

mechanisms underlying the observed immune responses. Beyond

the DEGs identified as B-cell markers in the EMBL-EBI public data

repository (Figure 5D; https://www.ebi.ac.uk/), several others were

exclusively found in splenic B-cells derived from mice of the Poly I:

C group, reflecting the robust B-cell response elicited by this

adjuvant when compared to Alhydrogel. The enhanced and

sustained humoral responses in Poly I:C-adjuvanted vaccinees

may be associated with the downregulation of Syn1, which

reduces its interaction with CamK2a (Figure 5H). This may

hinder the transmission of calcium ions within B cells, impacting

the regulation of B-cell activation and differentiation (reviewed by

70, 71). Additionally, the downregulation of Hmgb1-rs17 may

contribute to the accumulation of splenic PCs and MBCs

(Figures 3, 4) by inhibiting B-cell egress from lymphoid tissues,

such as Peyer’s patches (72). The regulation of vaccine-derived

responses by regulatory T cells (Tregs) could also be affected, as

indicated by the downregulation of Gm10408 and Gm14391

(Supplementary Table 1), potentially limiting their frequency or

functionality in the spleens of Poly I:C-adjuvanted vaccinees

(Supplementary Table 1). Other downregulated DEGs in Poly I:

C-adjuvanted vaccinees represent long non-coding RNAs

(Gm6297, 1110002L01Rik, 5830416I19Rik, 6330409D20Rik, and

A430093F15Rik), which are more highly expressed in T cells than

in B lymphocytes (https://www.ebi.ac.uk/). About the upregulated

DEGs, Lilrb4 has been associated with attenuated PRDM1

expression and antibody production. It is possible that the

recognition of Poly I:C by TLR3 or MDA5 may maintain Lilrb4

expression at a dysfunctional level. Additionally, Hspa2, which

interacts with Cdk1 (Figure 5H), is essential for the

transcriptional regulation of PC function (73). The positive

expression of Col18a1 suggests signaling toward PB formation,

particularly when compared to MBCs and naive B cells. Notably,

this DEG also interacts with DENV proteins based on disease

severity, a condition that leads to a massive PB expansion (74).

Phlda1 is a transcription factor with hierarchical expression in naive

B cells, followed by MBCs and PBs, and complexes with the IRF4

transcription factor (Figure 5G), a fundamental marker for ASC

differentiation. S100a8 is highly expressed on the surface of B cells

in patients with systemic lupus erythematosus, with its expression

decreasing upon disease treatment (75). However, S100a8 displays

lower expression in splenic ASCs than in bone marrow counterparts

(76). Therefore, the downregulation of genes associated with B-cell
frontiersin.or
g

https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
https://doi.org/10.3389/fimmu.2024.1331474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Costa-Gouvea et al. 10.3389/fimmu.2024.1331474
activation, calcium ion transmission, and B-cell egress, as well as the

upregulation of genes involved in PC formation and ASC

differentiation in the Poly I:C group, contribute to our

understanding of the enhanced humoral and cellular responses

elicited by this adjuvant.

The administration of several vaccine adjuvants, such as

products from aluminum hydroxide, has demonstrated to be safe

in humans. However, their immunogenicity is long-away off the

levels displayed by other adjuvants. For instance, Poly I:C activates

immune responses through TLR3 signaling that result in the IFN-a
and MDA-5 production (30). In our model, this adjuvant clearly

enhances humoral and cellular responses against PvCSP in such

levels that immunized mice are protected from malaria challenges

(18, 19). Toxicological studies have also supported our vaccination

regimen as a safe immunogen (data not shown). However, analogs

of Poly I:C have been preferred in clinical trials, such as Hiltonol

(also called Poly I:C/L:C), due to its higher stability against serum

nucleases present in the plasma of primates, and higher

immunogenicity than Poly I:C (77). Thus, the establishment of a

clinical trial in which individuals from P. vivax-endemic or non-

endemic areas be vaccinated with yPvCSP-AllCT epitopes +

Hiltonol seems to be a critical and subsequent step. An important

question to answer is whether the vaccinees would develop high

titers of IgG against all repeat domains contained within the

yPvCSP-AllCT epitopes as observed in mice (18, 19),

characteristics that attribute the universality aspect and protection

to our vaccine formulation.

In conclusion, our murine model of PvCSP vaccination presents

compelling evidence that Poly I:C surpasses Alhydrogel as an

adjuvant, eliciting a more balanced and long-lasting humoral

response, as well as a more robust cellular memory and an

effective response. This provides a strong rationale for further

investigation and optimization of adjuvant formulations in the

pursuit of a potent and effective vaccine against P. vivax malaria.

We believe that the insights gained from this comprehensive and

longitudinal study will contribute to the accelerated development of

a much-needed protective vaccine, ultimately reducing the burden

of P. vivax malaria in endemic regions and improving global

health outcomes.
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SUPPLEMENTARY FIGURE 1

Similar IgG avidity against the P. vivax circumsporozoite protein and

differential T-helper (Th) cytokine response patterns triggered by Poly I:C-
or Alhydrogel-adjuvanted vaccination. Red and blue colors indicate animals

immunized with yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel, respectively.
Plasma samples (Day 42 (A) and Day 90 (B)) frommice vaccinated with Poly I:

C- or Alhydrogel-adjuvanted malaria vaccine were evaluated for (A) IgG and

(B) IgG1 and IgG2c binding to the vaccine antigen in the presence of different
concentrations of urea through ELISA. (A) Dots and error bars represent

average ± SEM, respectively. (B)Dots and columns represent individual values
detected for each mouse and their median, respectively. ** p<0.01.

SUPPLEMENTARY FIGURE 2

Similar spleen area in mice immunized with a P. vivax circumsporozoite

protein-specific malaria vaccine adjuvanted with Poly I:C or Alhydrogel.
Red and blue colors indicate animals immunized with yPvCSP-AllCT

epitopes + Poly I:C or Alhydrogel, respectively. (A) Representative images
of murine spleens collected upon first or second boosters. (B) Dots and
Frontiers in Immunology 13197
columns represent individual values detected for each mouse and their
median, respectively.

SUPPLEMENTARY FIGURE 3

Sequential gating strategy to enrich distinct splenic murine B-cell subsets: (1)

lymphocytes and monocytes; (2 and 3) singlets; (4) B220+ and B220- cells;
(5a) Plasma cells (PCs - B220- CD138hi); (5b) B220+ MZBs (CD23-) and FoBs

(CD23+); (5c) B220+ cells (CD138- and CD138int); (6a) B220+ CD138-
lymphocytes (GCs (GL7+ CD38-), MBC precursors (GL7+ CD38+), and

MBCs (GL7- CD38+); and (6b) Plasmablasts (PBs - CD138int CD38+).

SUPPLEMENTARY FIGURE 4

Similar increasing trend for B cells (A), plasmablasts (B), follicular B cells (C),
and germinal center B cells (D) in mice immunized with a P. vivax

circumsporozoite protein-specific malaria vaccine adjuvanted with Poly I:C
or Alhydrogel. Red and blue colors indicate the frequency (A, C, E, G) and
absolute number (B, D, F, H) of cells derived from animals immunized with

yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel, respectively. Dots and
columns represent individual values detected for each mouse and their

median, respectively. * p<0.05; ** p<0.01.

SUPPLEMENTARY FIGURE 5

Similar increasing trend for follicular helper T cells in mice immunized with a

P. vivax circumsporozoite protein-specific malaria vaccine adjuvanted with

Poly I:C or Alhydrogel. (A) Sequential gating strategy to enrich distinct splenic
murine B-cell subsets: (1) lymphocytes and monocytes; (2 and 3) singlets; (4)

T lymphocytes (CD3+ CD4+); 5) Activated CD4+ T cells (CD40L+ GL7- and
CD40L+ GL7+); 6a) Non-germinal center follicular helper T cells (CXCR5+

GL7-); and 6B) germinal center follicular helper T cells (CXCR5+ GL7+). Red
and blue colors indicate the frequency (B, D) and absolute number (C, E) of
cells derived from animals immunized with yPvCSP-AllCT epitopes + Poly I:C

or Alhydrogel, respectively. Dots and columns represent individual values
detected for each mouse and their median, respectively.

SUPPLEMENTARY TABLE 1

Exclusive differential expressed genes and their respective log fold-change
(FC) values detected in splenic B cells upon distinct immunizations.

SUPPLEMENTARY TABLE 2

Similar differential expressed genes and their respective log fold-change (FC)

values mutually detected in splenic B cells upon distinct immunizations. (A)
yPvCSP-AllCT epitopes + Poly I:C and yNLP-PvCSPCT + Poly I:C. (B) yPvCSP-
AllCT epitopes + Poly I:C and Poly I:C alone. (C) yNLP-PvCSPCT + Poly I:C and
Poly I:C alone.

SUPPLEMENTARY TABLE 3

Similar differential expressed genes and their respective log fold-change (FC)

values detected in splenic B cells upon distinct immunizations.
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K, Françoso KS, et al. Prime-boost vaccination with recombinant protein and
adenovirus-vector expressing Plasmodium vivax circumsporozoite protein (CSP)
partially protects mice against Pb/Pv sporozoite challenge. Sci Rep. (2018) 8:1–14.
doi: 10.1038/s41598-017-19063-6

20. Gimenez AM, Salman AM, Marques RF, López-Camacho C, Harrison K, Kim
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Synthetic BSA-conjugated
disaccharide related to the
Streptococcus pneumoniae
serotype 3 capsular
polysaccharide increases
IL-17A Levels, gd T cells,
and B1 cells in mice
Nelli K. Akhmatova1, Ekaterina A. Kurbatova1*,
Anton E. Zaytsev1, Elina A. Akhmatova2, Natalya E. Yastrebova1,
Elena V. Sukhova2, Dmitriy V. Yashunsky2, Yury E. Tsvetkov2

and Nikolay E. Nifantiev2*

1Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera,
Moscow, Russia, 2Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic
Chemistry, Russian Academy of Science, Moscow, Russia
The disaccharide (b-D-glucopyranosyluronic acid)-(1→4)-b-D-glucopyranoside
represents a repeating unit of the capsular polysaccharide of Streptococcus

pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA

conjugate) adjuvanted with aluminum hydroxide induced — in contrast to the

non-adjuvanted conjugate — IgG1 antibody production and protected mice

against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost

immunization. Adjuvanted and non-adjuvanted conjugates induced production

of Th1 (IFNg, TNFa); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/

Th17 cytokines (IL-21) after immunization. The concentration of cytokines in

mice sera was higher in response to the adjuvanted conjugate, with the highest

level of IL-17A production after the prime and boost immunizations. In contrast,

the non-adjuvanted conjugate elicited only weak production of IL-17A, which

gradually decreased after the second immunization. After boost immunization of

mice with the adjuvanted di-BSA conjugate, there was a significant increase in

the number of CD45+/CD19+ B cells, TCR+ gd T cell, CD5+ В1 cells, and

activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR

+ gd T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal

infection, but can also contribute to autoimmune diseases. Immunization with

the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit

autoantibodies against double-stranded DNA targeting cell nuclei in mice.
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Thus, the molecular and cellular markers associated with antibody production

and protective activity in response to immunization with the di-BSA conjugate

adjuvanted with aluminum hydroxide are IL-17A, TCR+ gd T cells, and CD5+ В1
cells against the background of increasing MHC II+ expression.
KEYWORDS

Streptococcus pneumoniae serotype 3, synthetic disaccharide, cytokine, gd T cells, B1
Cells, interleukin 17A, antibody, mice immunoprotection
1 Introduction

Streptococcus pneumoniae (pneumococcus) cause pneumonia,

bacteremia, septic arthritis, meningitis, sinusitis, otitis media and

some other diseases in humans (1, 2). The incidence of community-

acquired pneumonia is one per one thousand adults. The mortality

rate for pneumococcal pneumonia among hospitalized patients is

5–7% (3–7). Symptoms of pneumococcal infection depend on the

localization of the infection. These may include fever, cough, chest

pain, a stiff neck, chills, ear pain and others.

Pneumococcal polysaccharide and conjugate vaccines, which

contain capsular polysaccharides (CPs) from clinically significant S.

pneumoniae serotypes, are available (8). S. pneumoniae serotype 3 is

predominant among other serotypes in various countries (9–12).

Epidemiological data suggests a high incidence of disease caused by

S. pneumoniae serotype 3 (13–15). However, the widespread use of

pneumococcal vaccines should help to reduce the incidence of this

disease (16–19). Improving the quality of S. pneumoniae type 3 in

the composition of pneumococcal vaccines is essential.

Bacterial CPs contain a diverse mixture of oligosaccharides with

varying chain lengths and frame shifts (20). Although their

chemical preparation is practically possible (see, for example

(21),), synthetic oligosaccharide derivatives represent more

convenient antigenic components for the design of conjugate

carbohydrate vaccines (22–25). Currently, a number of

semisynthetic vaccines are under development, including those

against Staphylococcus, Clostridium, Klebsiella, Shigella, and

Enterococcus (25–33). The semi-synthetic glycoconjugate vaccine,

Quimi-Hib, for the prevention of H. influenzae type b infection is

licensed for use in Cuba (34). Optimization of the composition of

pneumococcal vaccines using synthetic oligosaccharides conjugated

with a protein carrier is a priority in contemporary vaccinology (25,

35–38).
lbumin; CP, capsular

unite; IL, interleukin;

I-TOF, matrix assisted

ajor histocompatibility

l killer T cells; TCR, T
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Moreover, synthetic oligosaccharides with precisely defined

chemical structures enable the study of the effect of bacterial

antigens (39, 40), yielding a better understanding of the innate

and cellular immunity, the antibody (Ab) response, and protective

activity of CPs.

Immunization with glycoconjugate vaccines partially mimics

the development of natural infection without actually causing the

disease. In a mouse model, gd T cells and natural killer T cells

(NKT) have been shown to play a crucial role in anti-pneumococcal

immunity by producing Th1 and/or Th17-related cytokines (41).

The ability of semisynthetic glycoconjugates to stimulate cytokine

production in vivo and their influence on the activation of cellular

immunity remain unknown. Here, we report on the effect of a

conjugate of the synthetic disaccharide, which represents a

repeating unit of S. pneumoniae serotype 3 (42), on production of

Th1/Th2/Th17 cytokines in mice, changes in expression of surface

molecules on splenocytes, antibody response, and protection

against S. pneumoniae infection. We also investigated the

production of autoantibodies against double-stranded (ds) DNA.
2 Materials and methods

2.1 The synthetic disaccharide and
its conjugate

The synthetic disaccharide (35, 43) was coupled to BSA (Sigma-

Aldrich, St. Louis, MO, USA), as previously described (35, 44). The

structure of the conjugate is illustrated in Figure 1. BSA is often used
FIGURE 1

The structure of the BSA conjugate with the disaccharide that
corresponds to a repeating unit of the CP from S. pneumoniae
serotype 3.
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as a protein carrier in engineered immunogenic glycoconjugates

and other biological systems (45). Previous studies using MALDI-

TOF mass spectrometry have shown that the di-BSA conjugate

contains, on average, 19 oligosaccharide ligands per protein

molecule, which corresponds to a 9% carbohydrate content by

weight (43, 44). The lyophilized di-BSA conjugate remains stable at

+4°C, with no decrease in activity, for at least three years (i.e.,

observation period).
2.2 Bacterial capsular polysaccharide

Bacterial CP was isolated from the S. pneumoniae type 3

laboratory strain, #10196, which was isolated on June 30, 2011,

from the blood culture of a child suffering from bacteremia in the

microbiology department of the “Scientific Center for Children’s

Health” in Moscow, Russia. The strain had been grown in a semi-

synthetic growth medium. The isolation process for CP has been

previously described elsewhere (46). The presence of CP in the

preparation was confirmed by NMR spectrometry.
2.3 Animals

BALB/c male mice, aged 6–8 weeks (n=162), were purchased

from the Scientific and Production Centre for Biomedical

Technologies in Moscow, Russia, and kept in the vivarium at the

Mechnikov Institute for Vaccines and Sera. Housing, breeding,

blood collection, and euthanasia conditions followed European

Union guidelines for laboratory animal care and use.

Experimental designs were reviewed and approved (Protocol No.

2, dated February 12th, 2019) by the Ethics Committee at

the Institute.
2.4 Conjugated disaccharide-induced
cytokine production

Quantitative determination of cytokines was performed as

previously described (46). Male BALB/c mice (n=6) were

sacrificed, and serum was collected and stored at –20°C until

further quantification of cytokine levels. Using the Flow Cytomix

Mouse Th1/Th2 10-plex test system, cytokine levels were measured

by adding beads coated with monoclonal antibodies to IL-1a, IL-1b,
IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-17A, IL-21 and IL-

22, as well as IFNg and TNFa, following the manufacturer’s

instructions (eBioscience, San Diego, USA) using a Cytomix FC-

500 flow cytometer (Beckman Coulter, Brea, USA).
2.5 Immunization

Mice were intraperitoneally immunized with the di-BSA

conjugate, either adjuvanted or not, with aluminum hydroxide

(Sigma-Aldrich). The amount of carbohydrate in 0.5 mL of the
Frontiers in Immunology 03202
experimental semisynthetic vaccine was 20 mg, BSA ~200 mg;
aluminum hydroxide, as an adjuvant, standardized for aluminum,

was added in an amount of 250 mg. The single immunizing dose per

mice was 0.5 mL of the di-BSA conjugate. Animals were given the

vaccine twice, on days 0 and 14 of the study.

Similar immunization schedules were used for the

pneumococcal conjugate vaccine Prevnar 13 (Pfizer, New York,

NY, USA), which contains aluminum phosphate as an adjuvant. A

0.5 mL dose contains 2.2 mg of polysaccharides from serotypes 1, 3,

4, 5, 6A, 7F, 9V, 14, 18C, 19A, 19F, and 23F, as well as 4.4 mg of the
polysaccharide from serotype 6B. The vaccine also contains 32 mg of
the carrier protein, CRM197, and 125 mg of aluminum as aluminum

phosphate. Mice were immunized twice with a single dose of 1.1 mg
of CP from S. pneumoniae type 3 per inoculation (equivalent to half

of the recommended human dose). Control mice were injected

with saline.
2.6 Content of bacterial endotoxins
in glycoconjugates

Detection of bacterial endotoxin impurities in the di-BSA

conjugate was performed using the Limulus amebocyte lysate

ENDOCHROME ™ (Charles River Endosafe Div. of Charles

River Laboratories, Inc., Charleston, US) test obtained from the

Collective Usage Center of the Mechnikov Research Institute for

Vaccine and Sera (Moscow, Russia), in accordance with the

manufacturer’s instructions. The di-BSA conjugate contained

0.08–0.11 EU/mL of endotoxin (LAL-Center, Moscow, Russia).
2.7 Measurement of antibody response to
the disaccharide conjugate

Antibody titers for CP in post-immunization sera were

measured using ELISA. Briefly, plates coated with S. pneumoniae

type 3 CP were incubated with antisera from 6 immunized mice

(42). Wells were washed and secondary antibody was added,

followed by incubation and washing. The results were then

analyzed. Enzyme substrate aliquots (100 mL) were added,

followed by incubation for 20 minutes at 22°C. The reactions

were quenched with 1 M H2SO4. Optical densities (ODs) were

determined using an iMark microplate absorbance reader (Bio-Rad,

Osaka, Japan) at a wavelength of 450 nm. Antibody titers are

expressed as the dilution of serum in which the antibody

was detected.
2.8 Expression of surface molecules on
splenic mononuclear cells

Splenocytes were isolated from mice that had been vaccinated

with the glyconjugate either in the absence of or in the presence of

aluminum hydroxide, one and seven days after primary and booster

immunizations. Single-cell suspensions of splenocytes were
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prepared by manually mashing the spleens using the plunger from a

disposable syringe. The ground spleen was then passed through a

nylon mesh and the cells were suspended in PBS. Splenic single-cell

suspensions were then stained with antibodies conjugated to

phycoerythrin (PE) or fluorescein isothiocyanate (FITC) to detect

specific proteins in the cells: CD3e-FITC (clone 145–2C11), CD4-

FITC (clone GK1.5), CD8a-FITC (clone 53–6.7), CD19-FITC

(eBio1D3), CD5-PE (clone 53–7.3), NK.1.1 (clone PK136), CD3/

CD16/CD32 (NKT), CD25-PE (PC61.5), CD4/CD25/Foxp3 (Treg),

gdT (clone gd TCR-PE, eBioGL3), and MHCII-PE (I-EK) (clone

14–4-45). Treg cells were stained with CD4-FITC (clone GK1.5),

together with CD25-PE (PC61.5), and after fixation with the

fixation/permeabilization buffer, with Foxp3- APC (clone FJK-

16s). Splenocytes were incubated with 50 µL of appropriate

monoclonal antibodies (eBioscience, US) at 4°C for 30 minutes.

Erythrocytes were then lysed using red blood cell lysis buffer

(BioLegend, US). After washing with phosphate-buffered saline

(PBS), the samples were fixed using a fixation solution

(BioLegend, US) and analyzed by flow cytometry (Cytomix FC-

500, Beckman Coulter, USA, with the CXP software). The cell

population gate was determined based on forward and side scatter

and cell size. 10,000 cells were recorded per gate.
2.9 Di-BSA-induced active protection in
immunized mice

BALB/c mice were intraperitoneally immunized with the di-

BSA conjugate adsorbed or non-adsorbed on aluminum hydroxide

on days 0 and 14 (twenty animals per conjugate). The same animals

were intraperitoneally challenged after 2 weeks with 105 colony-

forming units of S. pneumoniae type 3/0.5 mL. Non-immunized

control mice (twenty animals per conjugate) were also exposed to

the bacteria. Mortality rates were determined at seven days

post-infection.
2.10 Antibodies against double-
stranded DNA

The analysis of antibodies against ds DNA in the immune sera

of mice was conducted using ELISA. Salmon sperm DNA

(Behringer GmbH, Germany), dissolved in a carbohydrate buffer

solution at a concentration of 20 g/mL, was adsorbed onto the

bottom of the wells. The plates were incubated for 2 hours at 37°C

and then for additional 18 hours at 6°C. The serums were analyzed

using dilutions of 1:10 to 1:1280. As secondary antibodies,

secondary rabbit anti-mouse peroxidase conjugated IgG

(Rockland Immunochemicals Inc., Pottstown, PA) was utilized

(100 mL). After adding tetramethylbenzidine for 15 minutes, the

reaction was terminated with 1 M sulfuric acid. Results were

obtained utilizing a multi-channel automatic photometer

(TiterTek Multiscan MC from Flow Laboratories, England), with

excitation at 490nm. Serums from non-immunized mice, as well as

mice immunized with either Prevnar-13 or BSA adjuvanted or non-

adjuvanted with aluminum hydroxide, were used as controls.
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2.11 Statistical analysis

Between-group comparisons were performed using Mann-

Whitney rank sum tests for independent samples. Fisher exact

tests were conducted to evaluate survival of mice after

pneumococcal challenge. P values ≤0.05 were considered to

indicate statistical significance. Statistical analyses were performed

using the Statistical data analysis software system version 10

(StatSoft Inc., Tulsa, OK, USA).
3 Results

3.1 Antibodies induced by the di-
BSA conjugate

Although the di-BSA conjugate adjuvanted with aluminum

hydroxide was found to be less immunogenic than adjuvanted tri-

and tetra-BSA conjugates, it was still able to induce the production

of opsonizing antibodies and was sufficient for the development of

serotype 3-protective immunity in mice (42).

In this study, we explored the ability of the di-BSA conjugate to

induce antibodies capable of binding to the CP of S. pneumoniae

serotype 3 in ELISA after primary and booster immunization with

and without the adjuvant (Figure 2). The di-BSA conjugate without

adjuvant did not induce Ab production after the prime and boost

immunizations and no difference was observed relative to the control.

The glycoconjugate adjuvanted with aluminum hydroxide induced

no Ab production after prime immunization; however, after booster

injection, the level of Abs increased in seven days (21 d) and was

significantly elevated up to 28 d (14 d after boost). Prevnar 13 (1.1 µg/
FIGURE 2

IgG1 antibody production induced by the adjuvanted and non-
adjuvanted di-BSA conjugate. BALB/c mice (n = 6 per conjugate)
were intraperitoneally injected with the di-BSA conjugate (20 µg/
dose of carbohydrate) adjuvanted and non-adjuvanted with
aluminum hydroxide, on days 0 and 14. The IgG1 Ab titer in the
blood of mice was determined on days 0 (before prime
immunization), days 7, 14, 21, and 28 (7 and 14 days after booster
immunization, respectively), by ELISA, using CP of S. pneumoniae
serotype 3 as the well-coating antigen. Mice (n=6) injected with
saline at the same time served as a control group. AL - aluminum
hydroxide. The data are presented as mean ± standard deviation (M
± SD). The Mann–Whitney rank sum test was used to determine
significance, *P < 0.05.
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dose of carbohydrate of CP of S. pneumoniae serotype 3) induced IgG

Ab production on day 14 after boost immunization (the time of the

study) at a titer of 1:800 (data not shown).
3.2 Active protection upon challenge of
mice immunized with the di-BSA conjugate

Mice immunized with the di-BSA conjugate and di-BSA

conjugate adjuvanted with aluminum hydroxide were challenged

with S. pneumoniae serotype 3 on day 28 (14 d after booster

immunization). All control mice injected with saline and 18 out

of 20 mice immunized with the non-adjuvanted di-BSA conjugate

died on the second day after the challenge (Figure 3).

The non-adjuvanted di-BSA conjugate that failed to induce Ab

production also did not elicit any protection against challenge with S.

pneumoniae serotype 3. However, the same conjugate administered

to mice with aluminum hydroxide induced protection against S.

pneumoniae serotype 3. Thus, aluminum hydroxide is indispensable

for inducing protective immunity to the disaccharide conjugate.

Prevnar 13 (1.1 µg/dose of carbohydrate of CP of S. pneumoniae

serotype 3) protected all mice (n = 6) from the challenge (42).
3.3 Cytokine production in mice

To evaluate cytokine production, mice were intraperitoneally

injected with the di-BSA conjugate adjuvanted or non-adjuvanted

with aluminum hydroxide at a single dose of 20 µg (carbohydrate

content). Serum cytokine levels were determined before injection of

the glycoconjugate (d 0) and on days 1, 7, 15, and 21 (1 and 7 days

after boost immunization, respectively) (Figure 4).

After prime immunization, the non-adjuvanted di-BSA conjugate

induced an increase in the levels of IL-1a, IL-1b, IL-6, IL-13, IL-17A,
IL-21, IFNg, and TNFa compared with that in the control (0 d). After
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booster immunization with the conjugate, IL-5, IL-10, and IL-22

production was induced in addition to these cytokines. The

concentration of IL-4 did not increase in any of the study periods.

After prime immunization, the di-BSA conjugate adjuvanted

with aluminum hydroxide stimulated higher production of IL-1a,
IL-1b, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-21, IL-22, IFNg, and
TNFa compared with the conjugate without the adjuvant. After

booster immunization, all cytokines were found to be produced at

high levels. When the conjugate was administered with the

adjuvant, a very high level of IL-17A production was noted at all

time points. In contrast, when mice were immunized with the

conjugate without the adjuvant, the IL-17A level gradually

decreased even after booster immunization. Regardless of the

presence of the adjuvant, the levels of IL-2 and IL-12p70 did not

increase during all follow-up periods. Free CP of S. pneumoniae

serotype 3 (5 µg/mouse) elevated only the level of IFNg (from 23.1

to 50.8 pg) after double immunization (data not shown). CP-

CRM197 (Prevnar 13) is able to induce the production of IL-1, IL-

2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, IFNg, and TNFa (47, 48).

Free aluminum hydroxide did not elicit cytokine production when

administered at the same time points (data not shown).
3.4 Expression of cell-surface molecules
on splenic mononuclear cells

After first immunization with the di-BSA conjugate adjuvanted

and non-adjuvanted with aluminum hydroxide, the number of

CD45+/CD3+ T cells and CD45+/CD4+ T helper cells increased

compared with that in the control. After booster immunization,

regardless of the presence of adjuvant, there was no difference

relative to the control (Figure 5).

After primary and booster immunization with the adjuvanted

di-BSA conjugate, the number of CD45+/CD8+ cytotoxic T cells

(CTLs) increased compared with that in the control. The non-

adjuvanted conjugate did not induce any change in the number of

CTLs during the entire observation period. An interesting result

was revealed in relation to gd T cells. One day after prime

immunization of mice with the adjuvanted and non-adjuvanted

di-BSA conjugate, the number of gd T cells increased compared

with that in the control and decreased to the initial levels on day 7.

However, after booster immunization with the adjuvanted

conjugate, the number of TCR+ gd T cells increased on day 15

(1 d after boost), reaching high values on day 21 (7 d after boost).

In contrast, in the absence of aluminum hydroxide, their values

did not differ from the control level. After booster immunization

with the di-BSA conjugate, the number of CD45+/CD19+ B cells

increased only following booster immunization in the presence of

aluminum hydroxide. After injection of the non-adjuvanted

conjugate, the level of CD45+/CD19+ B cells did not differ from

that in the control. The number of CD5+ B1 increased on day 1

after the first immunization with adjuvanted and non-adjuvanted

conjugate compared with that in the control and then decreased

on day 7. Booster immunization with the adjuvanted di-BSA

conjugate led to an increase of number of CD5+ B1 cells on day

15 (1 d after boost) compared with that in the control, and on day
FIGURE 3

Protective activity of the adjuvanted and non-adjuvanted di-BSA
conjugate. BALB/c mice (n = 20 per conjugate and control group)
intraperitoneally injected with the di-BSA conjugate (20 µg/dose of
carbohydrate) adjuvanted and non-adjuvanted with aluminum
hydroxide on days 0 and 14 were challenged with 105 colony-
forming units of S. pneumoniae serotype 3 on day 28. Mice injected
with saline were used as a control. AL - aluminum hydroxide. The
results of two experiments are summarized. The difference between
mice immunized with the adjuvanted di-BSA conjugate and non-
adjuvanted/non-immunized mice (control) is shown. Fisher exact
test; ***P < 0.001.
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21 (7 d after boost) relative to the non-adjuvanted conjugate.

The administration of the adjuvanted and non-adjuvanted

conjugate increased the number of CD16+/CD32+ natural killer

cells (NK) and CD3+/CD16+/CD32+ natural killer T cells (NKT)

after primary and booster immunization. The adjuvanted and

non-adjuvanted di-BSA conjugate led to increase in the number of

cells expressing CD25+ and the IL-2 receptor and CD4+/CD25+/

Foxp3+ T regulatory cells (Treg). The number of cells expressing

MHC II+ increased only after booster immunization—to a greater

extent on day 21 (7 d after boost)—and was higher than that in the

case of conjugate administration without aluminum hydroxide.

Prevnar 13, containing a CRM197-CP of S. pneumoniae serotype

3 conjugate, induced similar changes on day 28 (14 d after booster

immunization) in the number of cells expressing cell-surface

molecules. Specifically, there was an increased number of (TCR+)

gd T cells, CD45+/CD8+ CTLs, CD5+ B1 cells, CD45+/CD19+ B

cells, CD4+/CD25+/Foxp3+ Tregs, cells expressing CD25+, and cells

expressing MHC II+. The number of NK- and NKT-cells did not

differ from that in the control.

An elevation in Ab production and protection against S.

pneumoniae serotype 3 was detected only after double

immunization with the adjuvanted di-BSA conjugate. This finding

suggests that the cells whose number showed a large increase after

booster immunization (TCR+ gdT cells and CD5+ B1 cells), against
Frontiers in Immunology 06205
the background of an increase in the number of activated cells

expressing MHC II+, play a crucial role in the protective activity of

the conjugate.
3.5 Antibodies against
double-stranded DNA

No difference was observed in the level of Abs against ds DNA

relative to the control at the dilution of 1:80 in sera of mice

immunized with the di-BSA conjugate adsorbed and non-

adsorbed on aluminum hydroxide, Prevnar 13, BSA, and free

aluminum hydroxide (Figure 6).
4 Discussion

In contrast to the conjugate without adjuvant, the di-BSA

conjugate adjuvanted with aluminum hydroxide, induced

production of IgG1 antibodies and protected mice against S.

pneumoniae serotype 3 after prime-boost immunization. The role

of adjuvants in enhancing the adaptive immune response to

antigens, including semisynthetic glycoconjugates corresponds to

the data of other authors (49–51).
FIGURE 4

Cytokine production in mice induced by the adjuvanted and non-adjuvanted di-BSA conjugate. BALB/c mice were immunized with the di-BSA
conjugate (20 mg of carbohydrate per mouse) adjuvanted or non-adjuvanted with aluminum hydroxide (n = 24 for each conjugate). Control mice (n = 6)
were injected with saline 24 hours before the start of immunization (0 d). Serum was collected from mice (n=6 for each time point) after immunization.
Cytokine levels were analyzed using flow cytometry. No increase in IL-2 or IL-12 p70 levels was observed in any of the time points (data not shown).
The data is presented as the mean ± SD. Mann-Whitney rank sum tests were used to determine significant differences between control and other
experimental groups; *P <0.05.
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The concentrations of IL-1a, IL-1b, IL-4, IL-5, IL-6, IL-10, IL-
13, IL-17A, IL-21, IL-22, IFNg, and TNFa in mice sera in response
Frontiers in Immunology 07206
to the di-BSA conjugate adjuvanted with aluminum hydroxide were

higher compared with those in response to the non-adjuvanted

glycoconjugate. Free aluminum hydroxide is known to stimulate the

production of IL-1b and IL-18, and, when administered with

antigens, the spectrum of cytokines expands (52–58). IFNg, IL-
17A, and IL-22 (a member of the Th17 cytokine family) plays a role

in the early stages of controlling S. pneumoniae infections (59–67).

IL-17 has an important function in protecting against bacterial

carriage and lung infection (59, 65, 68–71). The di-BSA conjugate

adjuvanted with aluminum hydroxide induced a very high level of

IL-17A after the prime and boost immunizations, while the

conjugate without adjuvant caused a weak production of IL-17A

that gradually decreased after the booster injection. A high level of

Th2 cytokines (IL-4 and IL-5) was revealed in mice immunized with

the adjuvanted di-BSA conjugate. Th2 cytokines promote switching

from IgM to IgG, which is associated with high production of IgG1

antibodies (72). The conjugate without adjuvant did not elicit IL-4

production, only weakly stimulated the production of IL-5 even

after boost immunization, and did not induce the antibody

response. Prevnar 13 is known to induce the production of Th1/
FIGURE 6

IgG antibodies to double-stranded DNA in immunized mice,
analyzed by ELISA. ds DNA was used as the well-coating antigen.
Sera to each conjugate, BSA, aluminum hydroxide, and control
(non-immunized mice) (n = 6 for each antigen) was added to each
well in dilutions from 1:10 to 1:1280. AL - aluminum hydroxide;
control - mice injected with saline. After prime-boost immunization,
autoantibodies to ds DNA, which target the cell nuclei, were
not detected.
FIGURE 5

The number of splenocytes expressing membrane molecules in mice immunized with the di-BSA conjugate with and without adjuvant. BALB/c mice
were immunized with the di-BSA conjugate (20 mg/dose of carbohydrate per mouse) adjuvanted or non-adjuvanted with aluminum hydroxide and with
Prevnar 13 (1.1 mg/dose of carbohydrate of CP S. pneumoniae serotype 3 per mouse) adjuvanted with aluminum phosphate. Splenocytes were isolated
from mice (n = 6 for each conjugate and each time point) on the indicated days after immunization. Control mice (n = 6) were injected with saline 24
hours before the start of immunization (0 d). Spleen cell suspensions were stained using antibodies against mouse CD3e-FITC (clone 145–2C11), CD4-
FITC (clone GK1.5), CD8a-FITC (clone 53–6.7), gdT (clone gd TCR-PE, eBioGL3), CD19-FITC (eBio1D3), CD5-PE (clone 53–7.3), NK.1.1 (clone PK136)
CD25-PE (PC61.5), and MHCII-PE (I-EK) (clone 14–4-45). Treg: FITC anti-mouse CD4 (clone GK1.5). Staining with anti-Foxp3-APCconjugated Ab (clone
FJK-16s) was performed according to the manufacturer’s protocol. The results were determined using flow cytometry. The data are shown as the mean
± SD. Mann-Whitney rank sum tests were used to calculate significant differences between control and other experimental groups; *P < 0.05.
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Th2 and Th17 cytokines (47, 48). In our previous studies, we have

shown that Prevnar 13 induced anti-CP S. pneumoniae type 3 IgG1-

antibodies and protected immunized mice from the challenge with

S. pneumoniae type 3 (42).

The di-BSA conjugate and CPs, including that of S. pneumoniae

serotype 3, are not Toll-like receptor (TLR) ligands (46). Purified

CP from S. pneumoniae can bind to macrophages through the

carbohydrate-recognition domains on the mannose receptor,

leading to the production of proinflammatory cytokines such as

IL-1, IL-6, and TNFa, as well as chemokines (73). Another receptor,

the C-type lectin, also known as carbohydrate-binding protein,

SIGN-R1, is expressed by macrophages, particularly in the

marginal zone of the mouse spleen. This receptor is able to bind

carbohydrates from several different serotypes of S. pneumoniae

(73). Other carbohydrate-recognition receptors of macrophages

remain to be identified (74). It is likely that macrophages play a

significant role in the initial stage of the immune response to the di-

BSA conjugate (36, 59, 74–77).

Regardless of the presence of the adjuvant, the number of CD4+

T helper cells involved in the adaptive immune response to the

antigen increased only after the first immunization with the di-BSA

conjugate. The number of CD4+ T cells after booster immunization

with the BSA-conjugated synthetic hexasaccharide related to S.

pneumoniae serotype 14 CP adsorbed on aluminum hydroxide did

not differ from that in the control either (46). However, the number

of CD4+ T helper cells increased on day 14 after booster

immunization in mice immunized with CP of S. pneumoniae

serotype 3 conjugated to CRM197 and adsorbed on aluminum

phosphate (Prevnar 13). This result may be attributable to the

multicomponent composition of the vaccine and the presence of a

small amount of bacterial impurities remaining even after

purification of CPs. The number of CD8+ cytotoxic cells (CTL) in

response to the disaccharide conjugate and Prevnar 13 increased.

Both the adjuvanted di-BSA conjugate and Prevnar 13 significantly

increased the number of (TCR+) gd T cells among the splenocytes after

booster immunization. gd T cells play a crucial role in prevention of

pneumococcal infection owing to their ability to recognize unprocessed

non-peptide antigens (41). A large number of gd T cell ligands remain

unknown to date (78, 79). In mice, most gd T cells are found in the

body’s barrier tissues, with a small proportion in the blood and spleen

(46, 80–83). The activation of gd T cells through TCRs can be mediated

by non-classical MHC molecules (e.g., T10/T22 and members of the

CD1 family) and MHC-unrelated molecules (e.g., viral glycoproteins

and butyrophilin 3A1) (79, 84–87). Putatively, gd T cells bind the

oligosaccharide portion of the glycoconjugate without processing in

antigen-presenting cells (APCs) in combination with MHC-like

molecules activate cytokine production. gd T cells produce a large

variety of cytokines and exhibit potent cytotoxic activity against

pathogens through apoptosis-inducing receptors (FAS and TRAIL),

as well as cytolytic proteins such as perforin and granzyme (88, 89).

Furthermore, gd T cells can function as professional APCs that require

surface interactions with opsonized cells (90). The di-BSA conjugate

has been shown to induce the formation of opsonizing antibodies (42).

Certain subsets of gdT cells express CD4. These cells have a Th1 or Th2

phenotype and produce IL-2, IL-4, IL-17A, IFNg, and TNF (70). The
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di-BSA conjugate induced the production of IFNg and TNFa (Th1

cytokines); IL-4, IL-5, and IL-13 (Th2 cytokines); IL-17A (Th17

cytokines); IL-21 (Th2 and Th17 subsets); and IL-22 (Th1 and Th17

subsets). gd T cells play a crucial role in immune protection against

extracellular respiratory bacteria (41, 91, 92). The potential role of gd T
cells in pneumococcal infection has only been investigated in animal

models using S. pneumoniae serotype 3 (41). During infection, the

number of gd T cells can significantly increase, accounting for up to

50% of all peripheral lymphocytes (93, 94). In the mouse model, gd T
cells accumulate and become activated in the lungs during S.

pneumoniae infection (95, 96). Mice with a lack of gd T cells exhibit

a higher bacterial load in their lungs and lower survival rates compared

to control mice (66, 95, 97). The absence of gd T cells is associated with

impaired secretion of MIP-2, TNFa, and IL-17, as well as a poor

recruitment of neutrophils (66, 95, 97). In addition, gd T cells produce

IFNg during S. pneumoniae infections of serotypes 3 and 1. Along with

their early role in defense against S. pneumoniae, gd T cells participate

in the resolution stage of pneumococcal pneumonia, eliminating

inflammatory mononuclear phagocytes (98). Therefore, gd T cells are

essential for the host’s defense against S. pneumoniae (66, 95).

The di-BSA conjugate adjuvanted with aluminum hydroxide

and Prevnar 13 adsorbed on aluminum phosphate induced a

significant increase CD5+ B1 cells after booster immunization.

CD5+ B1 cells are mainly located in the peritoneal and pleural

cavities, but very small amounts were also found in the spleen (99,

100). CD5+ В1 cells are activated primarily by T-independent

antigens (101, 102) and play an important role in protecting

against pneumococcal infections (103) This role may be

attributed to their production of natural antibodies as well as

possible participation in the T-dependent immune response (102,

104–109). The B cell receptor (BCR) is involved in the phagocytosis

of bacteria by B1 cells (110). CD5+ B1, isolated from the spleens of

mice, primarily induce IL-17 production by T cells (111). B1 cells

present antigen to antigen-specific T cells and induce more efficient

proliferation than conventional CD19+ B cells (107, 108). After

immunization with the di-BSA conjugate, the number of CD19+ B

cells in the blood increased, regardless the presence of the adjuvant.

The number of CD19+ B cells increased during all observation

periods. Ovalbumin-presenting B1 cells were found to express a

higher level of MHC class II compared to naïve B1 cells.

Immunization with either the adjuvanted or the non-

adjuvanted di-BSA conjugate increases the number of natural

killer (NK) cells and natural killer T (NKT) cells. NK cells,

through the production of IFNg, participate in the early immune

response to pulmonary S. pneumoniae infection. NKT cells have a

key role in protecting against pneumococcal infection. When mice

lacking NKT cells were infected with S. pneumoniae serotype 3, they

exhibited a higher mortality rate and bacterial load in their lungs

compared to wild-type mice. It has been suggested that IFNg
derived from NKT cells has a critical function in protecting mice

against pneumococcal pneumonia. Using S. pneumoniae serotype 1,

it has also been found that NKT cells are an important innate

immune effector in clearing pneumococci from the body. NKT cells

can indirectly or directly assist B cells in mounting antibody

responses and have a crucial role in the production of antibodies
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against pneumococcus and in the switch of classes in response to

the administration of pneumococcal vaccines (112–114).

IL-17A, gd T, and CD5+ В1 cells can also contribute to

autoimmune diseases (115). In response to infection or

immunization, autoreactive clones of B1 cells can be produced in

the body’s own tissues (109, 116–118). The expansion of

autoreactive clones of B cells is controlled by IL-10, leaving the

BCR in a state of anergy. After booster immunization, there was an

increase in the number of CD4+/CD25+/FoxP3+ T regulatory cells

(Tregs) on the background of interleukin-10 (IL-10) production,

which regulates the development of the immune response. After

prime-boost immunization with the di-BSA conjugate or Prevnar

13, no formation of autoantibodies against ds DNA targeting cell

nuclei was detected.

5 Conclusion

The key effectors of the immune response in mice following

immunization with aluminum hydroxide adjuvanted di-BSA

conjugate, associated with antibody response and protection from

infection by S. pneumoniae serotype 3, were IL-17A, gd T, and CD5+

B1 cells, with an increase in the number of MHC II-expressing cells

after booster immunization. The roles of non-conventional gd T

cells, B1 cells, and production of IL-17A upon pneumococcal

immunization with the semisynthetic glycoconjugate may provide

an in-depth understanding of post-vaccination defense

mechanisms, enabling the development of novel efficient therapies

and improvement of existing vaccine formulations.
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SWIFT clustering analysis of
intracellular cytokine staining
flow cytometry data of the HVTN
105 vaccine trial reveals high
frequencies of HIV-specific
CD4+ T cell responses and
associations with
humoral responses
Tim R. Mosmann1*, Jonathan A. Rebhahn1,
Stephen C. De Rosa2, Michael C. Keefer3, M. Juliana McElrath2,
Nadine G. Rouphael4, Giuseppe Pantaleo5,6, Peter B. Gilbert2,
Lawrence Corey2, James J. Kobie7 and Juilee Thakar8

1David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center,
Rochester, NY, United States, 2Vaccine and Infectious Disease Division, Fred Hutchinson Cancer
Center, Seattle, WA, United States, 3Department of Medicine, University of Rochester School of
Medicine & Dentistry, Rochester, NY, United States, 4Hope Clinic of the Emory Vaccine Center,
Division of Infectious Diseases, Emory University, Atlanta, GA, United States, 5Service of Immunology
and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne,
Lausanne, Switzerland, 6Swiss Vaccine Research Institute, Lausanne University Hospital and University
of Lausanne, Lausanne, Switzerland, 7Department of Medicine, University of Alabama at Birmingham,
Birmingham, AL, United States, 8Department of Microbiology and Immunology, University of
Rochester Medical Center, Rochester, NY, United States
Introduction: The HVTN 105 vaccine clinical trial tested four combinations of

two immunogens - the DNA vaccine DNA-HIV-PT123, and the protein vaccine

AIDSVAX B/E. All combinations induced substantial antibody and CD4+ T cell

responses in many participants. We have now re-examined the intracellular

cytokine staining flow cytometry data using the high-resolution SWIFT

clustering algorithm, which is very effective for enumerating rare populations

such as antigen-responsive T cells, and also determined correlations between

the antibody and T cell responses.

Methods: Flow cytometry samples across all the analysis batches were registered

using the swiftReg registration tool, which reduces batch variation without

compromising biological variation. Registered data were clustered using the

SWIFT algorithm, and cluster template competition was used to identify clusters

of antigen-responsive T cells and to separate these from constitutive cytokine

producing cell clusters.

Results: Registration strongly reduced batch variation among batches analyzed

across several months. This in-depth clustering analysis identified a greater

proportion of responders than the original analysis. A subset of antigen-

responsive clusters producing IL-21 was identified. The cytokine patterns in
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each vaccine groupwere related to the type of vaccine– protein antigens tended

to inducemore cells producing IL-2 but not IFN-g, whereas DNA vaccines tended

to induce more IL-2+ IFN-g+ CD4 T cells. Several significant correlations were

identified between specific antibody responses and antigen-responsive T cell

clusters. The best correlations were not necessarily observed with the strongest

antibody or T cell responses.

Conclusion: In the complex HVTN105 dataset, alternative analysis methods

increased sensitivity of the detection of antigen-specific T cells; increased the

number of identified vaccine responders; identified a small IL-21-producing

T cell population; and demonstrated significant correlations between specific

T cell populations and serum antibody responses. Multiple analysis strategies may

be valuable for extracting the most information from large, complex studies.
KEYWORDS

HIV - human immunodeficiency virus, vaccine trial, reanalysis, algorithmic flow
cytometry analysis, T cell response, T cell antibody correlation
Introduction

The HIV Vaccine Trials Network (HVTN) 105 phase I trial

(ClinicalTrials.gov NCT02207920) was designed to build on the

encouraging results of the RV144 “Thai Trial” HIV vaccine efficacy

trial which demonstrated modest protection from HIV infection

(1). RV144 immunization included AIDSVAX B/E consisting of

clade B MN gp120 and clade E A244 gp120 proteins in alum given

following priming immunizations with a canarypox vector vaccine.

HVTN 105 investigated the preventative vaccine strategy of

priming with DNA-HIV-PT123 which consisted of 3 plasmids

encoding clade C ZM96 gag, clade C ZM96 gp140, and clade C

CN54 pol-nef followed by boosting with AIDSVAX B/E in four

treatment groups of healthy HIV-1 negative individuals at low risk

of HIV acquisition to determine which strategy would best elicit

favorable HIV-specific antibody and T cell responses (2). DNA

vaccines are thermostable, are relatively straightforward to

manufacture, and provide more flexibility for vaccine design

through formulation of multiple plasmids containing different

HIV components and/or adjuvants in a single injection.

The HVTN 105 trial administered intramuscular injections at 0,

1, 3, and 6 months (M). T1 received protein at M0 and M1 and

DNA at M3 andM6; T2 received DNA at M0 andM1 and protein at

M3 and M6; T3 received DNA at M0, M1, M3, and M6 with protein

co-administered at M3 and M6; and T4 received protein and DNA

co-administered at each vaccination visit (Figure 1).

The primary immunogenicity analysis was conducted 2 weeks

following the final vaccination and evaluation of durability of the

immune response was conducted at 6 months following the final

vaccination. The previous analysis of humoral responses showed

the groups receiving protein at M0 and M1, T1 and T4 had a >85%

IgG response rate for ZM96.C and A244.AE after the second
02213
vaccination, however, the response rate for T1 was not sustained

after subsequent vaccinations, likely a consequence of boosting with

DNA only (2). After the final vaccination there was an 80%

response rate for T2 and 100% for T3 and T4. Importantly, 2

weeks following the final vaccination, binding-IgG responses to the

HIV V1V2 antigens that were identified as potential inverse

correlates of risk (A244.AE V1V2 and 1086.C V1V2) from

RV144 (3) were observed in 96% or more vaccinees in groups T2,

T3, and T4. Over time geometric mean response magnitudes were

similar across HIV antigens (vaccine-matched vs. consensus HIV

envelopes, V1V2 antigens).
FIGURE 1

HVTN105 protocol. 26 participants per group were immunized with
the indicated vaccines in the left (upper) and right (lower) deltoid
muscles, at each of the time points indicated. Black arrows indicate
PBMC sampling times.
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HIV-1–specific CD4+ and CD8+ T cell responses were

examined by flow cytometry, using a validated 17-color

intracellular cytokine staining (ICS) assay, two weeks after each

boost as well as 12 months after enrollment. The peptide pools

evaluated were vaccine matched (ZM96 gp140-Env1, ZM96 gp140-

Env2, 92TH023-Env, and ZM96 Gag), covering Env and Gag. In the

previous analysis, which was done with rigorous manual templated

gating of the T cell populations, vaccine-induced CD4+ T cell

responses were detected in all groups. There were minimal

differences found across groups, although a trend of higher CD4+

responses in T3 was observed. However, this trend of higher CD4+

responses was significant when the polyfunctionality score was

assessed (4). The two prominent polyfunctional CD4+

populations were the four-function IFN-g+IL-2+TNF-a+CD40L+

and the three function IL-2+TNF-a+CD40L+.

The massive size and dimensionality of flow cytometry data is

challenging for comprehensive manual analysis approaches,

including its subjective and time-consuming nature, and the

concern that novel and overlapping cell populations may be

underappreciated with a priori gating strategies. Even at peak,

there was an overall modest CD4+ T cell response rate to HIV

Env (36%-60%) and low response to HIV Gag (0%-40%). We

therefore re-analyzed the HVTN flow cytometry data, using the

high-resolution SWIFT clustering algorithm (5, 6) that was

originally developed to resolve rare cytokine-producing T cell

subsets. We included batch registration (7) to reduce differences

between batches that might obscure biological differences. Our goal

was to increase the resolution of the heterogeneity of the T cell

response, and to define responders more clearly.

It is anticipated that an effective HIV vaccine will require both

optimal T cell and humoral immunity to confer protection. Given

the inter-dependence of CD4+ T cell and antibody responses, we

conducted correlative analysis of the clustered antigen-responsive T

cell subsets with existing plasma antibody data sets to identify

possible novel associations.

The re-analysis of flow data was consistent with the previous

analysis, but yielded further discoveries of increased frequencies of

participants with T cell responses; T cell sub-populations expressing

IL-21; qualitatively different responses induced by DNA vs protein

vaccines; and correlations between particular T cell subsets and

subsequent antibody responses.

Methods

Data source

FCS files and de-identified metadata from intracellular cytokine

staining (ICS) analysis of CD4+ and CD8+ T cell responses was

provided from the HVTN from HVTN 105 a Phase 1 preventative

vaccine trial (ClinicalTrials.gov NCT02207920). Primary ICS

analysis was previously reported (2). Details regarding the study

design, participants, sample and data acquisition are included in the

primary study manuscript (2). Briefly, participants were randomly

assigned to 1 of 4 groups with an allocation ratio of 1:1:1:1

(Figure 1). Participants received different combinations of
Frontiers in Immunology 03214
AIDSVAX B/E, DNA-HIV-PT123, and placebo, administered

intramuscularly. AIDSVAX B/E consisted of 300 mg of subtype B

(MN) HIV gp120 glycoprotein and 300 mg of subtype A/E (A244)

HIV gp120 glycoprotein adsorbed onto aluminum hydroxide gel

adjuvant and administered into the right deltoid muscle. DNA-

HIV-PT123 contained a mixture of 3 DNA plasmids: (a) clade C

ZM96 gag, (b) clade C ZM96 gp140, and (c) clade C CN54 pol-nef,

delivered at a total dose of 4 mg administered into the deltoid

muscle via needle and syringe. Serum for humoral assays was

obtained from serum-separating tubes (SSTs) and frozen at –80°C.

Peripheral blood mononuclear cells (PBMCs) for cellular assays were

isolated and cryopreserved from within 6 hours of venipuncture, as

described previously (8). Flow cytometry was used to examine HIV-

1–specific T cell responses using a validated intracellular cytokine

staining (ICS) assay. The peptide pools evaluated were vaccine

matched (ZM96 gp140-Env1, ZM96 gp140-Env2, 92TH023-Env,

and ZM96 Gag), covering Env and Gag. Previously cryopreserved

PBMCs were stimulated with the synthetic peptide pools. As a

negative control, cells were not stimulated. Serum HIV-1–specific

IgG, IgG3, IgG4, and IgA responses were measured with a custom

HIV-1–binding antibody multiplex assay (BAMA) as previously

described (9, 10) using gp120 proteins and V1V2 antigens detailed

previously (11).
Data transformation

The set of fluorescent dimensions F in zC were transformed

using the “log-like” inverse hyperbolic sine, sinh-1, in conjunction

with a set of F-dimensional cofactors [a1, a2,…,aF] for each

dimension j ∈ F . Each vector zCj was div ided by i t s

corresponding cofactor aj prior to transformation, which

effectively removed the artifactual bimodality introduced by the

raw sinh-1 transformation.

To determine a suitable set of cofactors, each vector zCj was first

transformed by sinh-1 (Equation 1) and its intensity histogram was

examined.

sinh−1 zCj = ln zCj +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + zCj 2

q� �
(1)

Each aj was defined as the hyperbolic sine, sinh, of half the

magnitude of the distance between the positive P+ and negative P-

peaks (Equation 2) nearest zero in the intensity histogram of each

sinh−1 zCj ,

aT
j = P+−P−

2 + 1

aj = sinh  aT
j = e

aT
j −e

−aT
j

2

(2)

and because P+ and P- were defined in the transformed space, sinh

was required to convert values back to the raw data space. The

cofactors were then applied as follows (Equation 3),

zT = ln
zCij
aj

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + (

zCij
aj

)2

s0
@

1
A (3)
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Note that scatter dimensions are typically not sinh-1

transformed, but for convenience we refer to the full data (scatter

included) after sinh-1 transformation simply as zT .
Removal of saturated events

To identify saturated events, all raw data vectors Zj were

transformed by (Equation 3) with aj = 100 to yield zTj . Then each

zTj was allocated to 1024 uniformly-spaced bins, denoted s_bin.

Each minimum bin was defined by (Equation 4),

s _ bin1j = sinh−1
−2½log2 Rj

2 + 2�
100

 !
(4)

and each maximum bin was defined by (Equation 5),

s _ bin1024j = sinh−1
Rj

80

� �
(5)

where Rj was the channel-specific keyword-value range parameter

($PnR) from the TEXT section of the FCS file. To determine the

saturated event threshold hj, we first examined a window wj of the

top-most 61 bins (Equation 6),

wj = s _ bin½964,965,…,1024�j (6)

Then the median and robust standard deviation of the

differences between consecutive bins were used to identify bins

that contained extreme differences (Equation 7),

wD
j = diff (wj)

wM
j = median(wD

j )

ws
j = 1:4826�median( ∣wD

j − wM
j ∣ )

wX
j = wD

j > (wM
j + 2ws

j )

(7)

where wD was the difference between consecutive bins wb – wb-1 for

b ∈ 2, 3,…, 61f g, wM was the median difference, ws was the robust

standard deviation of differences, and wX was a vector of 1’s and 0’s

that indicated the presence or absence (respectively) of extreme

differences. If no extreme differences were found, the examination

window was shifted by -1 bin, w = s_bin[963,964,…,1023], and re-

examined. This process was performed iteratively until at least 1

extreme difference was found. Then the lowest s_binXj that

contained an extreme difference was identified by (Equation 8),

Xj = min(argmax(wD
j ∘wX

j )) (8)

and its corresponding histogram value vTj was inverse-transformed

back to a raw intensity by (Equation 9),

vTj = histogram _ value(s _ binXj)

vj = 100� sinh vTj
(9)

The saturated event threshold hj was set to the raw intensity vj
(or 80% of the maximum data range, whichever was higher) as

follows (Equation 10),
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hj = max(vj,   0:8� Rj) (10)

Finally, all events with raw intensities above the saturated event

threshold were removed.
Removal of time defects

To identify time defect events, corrected fluorescence data were

sorted by time. Then each zCj was allocated to B non-uniformly-

spaced bins, denoted t_bin, and each contained the same bin_size

number of events as follows (Equation 11),

bin _ size =

1000,  N < 100, 000

10, 000,  N > 1, 000, 000  

N
100 ,   otherwise

8>><
>>:
B = ½ N

bin _ size�

(11)

Then the median event value m was determined for each bin.

The vector of bin median event values within each dimension j were

Z-score standardized by (Equation 12),

~mj =
1
BoB

b=1mbj

ms
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B−1oB
b=1 ∣mbj − ~mj ∣

q
mZ

j =
mj−~mj

ms
j

(12)

Then any bins containing time defects were defined by

(Equation 13),

Dj = mZ
j

�� �� > 3 (13)

and all events within each t _ binDj were removed.
Censored saturated events and
time defects

The censoring process (described above) identified and removed:

1. raw fluorescent events that saturated above the limits of

detection (saturated events).

2. corrected fluorescent events that contributed to inconsistent

signals over time (time defects).

Following the removal of saturated events and time defects, new

FCS files were generated from the remaining data. Supplementary

Figure 1 shows the number of cells per sample before and after

censoring for all samples.
New compensation matrices

The quality of compensation matrices was assessed in FlowJo,

and any sub-optimal compensation values were manually corrected.

The optimized compensation matrices were inserted into the

FCS files.
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Modified channel names

All marker-fluor combinations were consistent across the entire

dataset. However, some FCS files contained channel names that did

not match other files. Any mismatched channel names were

corrected, and new FCS files were generated.
Batch registration

To remove variation due to experimental batches, while

maintaining as much biological variation as possible, swiftReg (7)

was used to register batches. This approach first registered each

batch separately to the same reference batch, then applied the

resulting batch-specific shifts to all individual samples in that batch.

To do this, first a SWIFT cluster template was produced from a

concatenate of antigen-stimulated samples from a single reference

batch, and similar concatenates from each of the other batches were

registered by NDCR to the reference template. The resulting batch

registration template contained batch-specific maps of cluster

movement vectors that specify the value-adjustments necessary to

bring that batch’s clusters into alignment with reference clusters. All

individual samples in each batch were then registered using these

batch-specific cluster movement vectors. This process generated

new batch-registered FCS files.
Debris removal

To enhance detection of rare, biologically-significant

populations and reduce computational burden, all batch-

registered samples were randomly sub-sampled and combined

into a single concatenated FCS file that was then clustered by

SWIFT. The resulting SWIFT cluster template was used to identify

debris clusters in FSC-A and SSC-A, as well as non-CD4 T cells.

New FCS files were generated from non-debris CD4+ events.
Expanded select channel data

Detection of positive markers was selectively enhanced by

smoothly increasing intensity values about a user-specified

inflection point. The smooth increase was achieved by

multiplying intensity values within a channel by a sigmoid

function (Supplementary Figure 2) as follows (Equation 14),

r = ½−3:00, −3:01,−3:02,…, 3:00�

x = (r + 1)� L

y = normcdf 6
P r
� 	

� (10w − 1) + 1

sj = interp1(x, y, zCj , option)

zEj = sj ∘ zCj

(14)

where r was a 1×601 vector of values between -3.00 and 3.00 with

intervals of size 0.01, P was the degree of overlap in the expanded

region (default P = 0.5), L was the user-specified inflection point
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where expansion occurred in that channel,W was the width of the

expanded region in decades (default W = 1), sj was a vector of

scaling values that were multiplied with zCj element-wise to

produce expanded data zEj , normcdf is a MATLAB function that

returned a cumulative standard normal distribution, and interp1

is a MATLAB function that returned interpolated values of the

function y = f(x) at specific query points zCj by spline interpolation

(option = 'spline').
Aggregation of data

Because the Env-1-ZM96 and Env-2-ZM96 peptide pools

constituted the non-overlapping peptides covering the Env-ZM96

Env sequence, the total Env-ZM96 response for each sample was

calculated by combining Env-1-ZM96 + Env-2-ZM96 and

subtracting negctrl1. Note that Negctrl1 was subtracted here once

to account for the additional background contribution of

combining raw Env-1-ZM96 + Env-2-ZM96 counts. The

92TH023-ENV samples were stimulated with peptides covering

the whole 92TH023-ENV sequence (2).

The cell counts for AnyEnvNeg1 were then defined as the

maximum of the cell counts for 92TH023-ENV or Env-ZM96 +

Env-2-ZM96, minus the background from negctrl1. Because the

92TH023-ENV and ZM96 ENV sequences have some homology, it

is very likely that some peptides, presented by the MHC alleles of

some participants, will be cross-reactive between the two ENV

peptide sets. However, the extent of cross-reaction cannot be

estimated from this dataset, and so we used a conservative

definition of the “Any-Env” response as the larger of the response

against either ENV sequence. This uses the conservative assumption

that all T cells cross-reacted, and therefore the total response is

revealed by the higher of the two anti-Env responses.

The number of CD4+ T cells producing IL-2+ and/or IFNg+
was expressed as a percentage of the total live cells in the

corresponding sample. Percentages below 0.005 were thresholded

to a minimum of 0.005.
Identification of responders

To identify responders, the variance of cell counts was first

stabilized across clusters. Cluster-specific scaling factors were

defined as half the median of cell counts across all negctrl

samples for each cluster, with low scaling factors thresholded to a

minimum of 10. All counts were then transformed by inverse

hyperbolic sine (asinh) after division by the cluster-specific

scaling factor. Transformed stimulated counts (TSC) were

obtained by subtracting each cluster’s transformed background

count from its pairwise transformed stimulated count (for values

above the threshold, this is analogous to a log ratio).

For each sample group defined by Treatment, Stimulation,

Visit, and Cluster, the standardized pairwise background

variances (SPBV) between Negctrl1 and Negctrl2 were defined as

the square root of the sample-mean of the squares of their

pairwise differences.
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Then for each sample, the p-values (with a Null hypothesis of

“no difference”) were determined by applying the normal

distribution survival function (https://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.norm.html) to the ratio of TSC

over SPBV. This was performed separately for the stimulated

sample with each background (Neg1 or Neg2). The final reported

probability of a sample being a responder was then 1 minus the

mean of its two p-values. All samples with a final probability of

≥98% were considered to be responders.
Evaluation of antibody responses
associated with T cell responses

Antibody levels measured by binding antibody multiplex assay

(BAMA) for HVTN 105 were obtained from HVTN. To compare

the CD4 responses to related antibody levels, the Spearman

correlation coefficients were calculated for related antigens using

log transformed antibody abundances. Specifically, CD4 responses

upon ZM96 gp140-Env1 and ZM96 gp140-Env2 stimulations were

compared with antibody responses to 96ZM651.D11gp120.avi,

gp41, gp70–96ZM651.02 V1v2 antigens. CD4 responses to

92TH023-Env were correlated with antibody response to A244

gp120 gDneg/293F/mon, AE.A244 V1V2 Tags/293F and gp41

antigens. Finally, CD4 responses to ZM96 gag were compared

with antibody responses to p24.
Results

Sample pre-processing

The HVTN 105 dataset comprised 3,200 .FCS files representing

24 batches, with accompanying compensation matrices for each

batch. In general, the Visit 5 (V5), V7 and V9 PBMC samples for

one participant were all analyzed in the same batch, whereas the

V11 PBMC samples were analyzed in separate sets of batches. As

described previously (2), if PBMC samples did not meet quality

control criteria, those samples were re-analyzed in a subsequent

batch, resulting in duplicate analyses. After curation according to

these rules, the complete dataset potentially comprised four vaccine

groups each containing 26 participants, eight in vitro antigen

stimulations, and four time points, for a total of 3,328 flow

cytometry samples. The study design did not include a placebo

group receiving no HIV antigens, and the T cell data did not include

a baseline sample, i.e. before vaccination. Therefore the important

negative controls are the pairs of “negctrl” samples that did not

receive in vitro stimulation with any antigens. Our re-analysis

focused on six of the eight antigen stimulations: two negative

control samples (negctrl2 and negctrl2); E92TH023_ENV;

Env_1_ZM96; Env_2_ZM96; and Gag_ZM96. This resulted in a

total of 2,496 potential samples. Due to some dropouts and missing

negctrl replicates, the final number offlow cytometry samples in our

re-analysis was 2,393. The samples, batches, repeated samples and

final analyzed samples are shown in detail in Supplementary

Figure S3.
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A consensus .FCS file was produced by concatenating sub-

samples of all HIV Ag-stimulated samples from all batches at the V9

time point. V9 was chosen because Visit 9 was the pre-determined

immunogenicity time point for the HVTN105 trial, and for most

groups and antigen stimulations in vitro, this was also the strongest

response (see below). V9 samples were therefore enriched for the

rare, activated T cells, facilitating capture of these cell populations in

the cluster template. Because this concatenate included samples

representing all HIV antigen stimulations, this is an objective way to

include potential cell phenotypes induced by any of the HIV

antigens in any treatment group.

This concatenate was clustered using SWIFT to establish a high-

resolution cluster template of all cell sub-populations. All samples

were assigned to the resulting cluster template, establishing the

number of cells in each cluster, in each sample. All cluster

membership information was then condensed to two dimensions

using UMAP (Uniform Manifold Approximation and Projection)

(12). The results in Figure 2A show batches encoded by colors,

stimulations by symbols, and visit number by symbol size. The

strongest contribution to diversity was clearly the batch - most

members of each batch are clustered together, and the batches are

substantially resolved. This is particularly true for the V11 batches

on the right, that were analyzed in a different set of batches from V5,

V7 and V9. The presence of batch effects is not surprising in

samples analyzed over a period of months - we have seen batch

effects in all such datasets that we have examined. The HVTN105

batch effects were relatively minor, and so registration could be used

to reduce batch effects and improve the comparison of the

vaccine groups.
Batch registration

We have previously developed swiftReg (7), an automated

registration tool that builds on the SWIFT clustering algorithm to

perform high-resolution alignment of samples at the single-cluster

level. The HVTN 105 batches were registered by producing a

SWIFT cluster template from Batch 2204, producing consensus

samples from each batch, and then registering each batch consensus

sample to the Batch 2204 consensus cluster template. This

generated, for each batch, a map of registration shifts that were

then applied to each individual sample in the respective batch. This

procedure registers the overall batch trends, without altering the

differences between individual samples within each batch that

might carry biological information.

A new SWIFT cluster template was generated from a consensus

of all registered V9 HIV antigen-stimulated samples. After

assignment of all registered samples to the resulting cluster

template, the cell numbers per cluster were reduced to two

dimensions by UMAP, and Figure 2B shows that the registered

batches were intermingled. ‘Micro-aggregates’ of samples from the

same batch were still visible - focusing on just 15 participants for

clarity, each micro-aggregate comprised samples from a single

participant (including different stimulations and time points).

These tended to group in close proximity on the UMAP

projection (Figure 2C), even though the Visit 11 samples were
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analyzed in different batches from the Visit 5, 7, 9 samples. Overall,

the samples included time points spanning 18 months. Thus, most

individuals are sufficiently diverse for SWIFT analysis of flow

cytometry data to identify a unique ‘fingerprint’ of cell

populations in different participants. We have observed this

pattern in other studies (unpublished). The proximity of the

registered V11 data points to the V5, V7 and V9 points from the

same participant reinforces the interpretation that the HVTN 105

batch effects have been substantially reduced by the registration

process. Examination of individual parameters by the same

approach identified parameters, e.g., CD4 and CD8, that

contributed to these batch differences (Figures 2D–G). Interestingly,

the groupings of similar batches were variable between different

parameters (Figure 2; Supplementary Figure 4).
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Further pre-processing

We then used the model-based SWIFT multidimensional

clustering algorithm (5, 6) to generate an unbiased cluster map

from a sample constructed by concatenating a random subset of

events from samples across all batches. The SWIFT algorithm is

particularly useful for detecting rare populations (13), possibly

because these were the type of samples used during SWIFT

development (5, 6). Preliminary analysis of the cluster map

indicated that the antigen-specific responses in many samples

were small, consistent with the previous analysis (2). To

maximize the sensitivity of detecting all cytokine producing sub-

populations, we produced a new SWIFT cluster template from a

concatenate of random subset of events from all antigen-stimulated
B C

D E

F G

A

FIGURE 2

Registration minimizes batch variation and emphasizes individual stability. PBMC from the HVTN 105 vaccine trial from V5, V7, V9 and V11 (42, 98,
182 and 364 days) were analyzed by antigen stimulation, intracellular cytokine staining, and flow cytometry. A SWIFT cluster template was produced
from a concatenate of HIV antigen-stimulated V9 (182 days) samples, then all individual samples were assigned to this template. All batches were
then registered using swiftReg, and the registered samples were similarly analyzed by SWIFT clustering and individual sample assignment. For each
of the original and registered datasets, all cluster information (sizes or MFI of individual parameters) was then condensed to two dimensions by
UMAP. Each symbol represents one sample (one participant, one time point, one stimulation). Symbols: Circles, negctrl; triangles,E92TH023_ENV;
stars, Env_1_ZM96; squares, Env_2_ZM96; and diamonds, Gag_ZM96. Symbol size, in increasing order, V5, V7, V9, V11. (A-C) UMAP plots represent
all the numbers of cells/cluster information condensed down to two dimensions. (A) Unregistered, cluster sizes, batches colored. (B) Registered,
cluster sizes, batches colored. (C) Registered, cluster sizes, 15 participants colored. (D-G) UMAP plots represent the UMAP condensation of the mean
fluorescence intensities for each cluster of a specified marker. (D, E) CD4. (F, G) CD8. (D, F) Non-registered. (E, G): Registered.
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samples, using only the scatter, live/dead, and CD4 parameters. All

samples were assigned to the resulting template. As described

previously (2), the non-replicating vaccines induced almost no

CD8 T cell responses, and so further analysis focused on CD4 T

cells. Clusters containing CD4 T cells were selected, and all the

events in this set of clusters were saved, for each flow cytometry

sample, as reduced-size .FCS files for further analysis. This “cluster

gating” (6) allowed subsequent analysis to focus more clearly on the

cells of interest, because clustering could then be performed on a full

concatenate of the entire dataset. The resulting .FCS files are more

amenable to analysis by SWIFT, other automated algorithms, and

manual analysis.
High-resolution clustering

A large concatenate was then produced from all cluster-gated

events in all samples stimulated with HIV antigens (Env, Gag), from

all groups at Visit 9, which was the time point that showed the

highest responses overall. A second concatenate was produced from

the corresponding negative control samples. SWIFT cluster

templates were created from each of these two large concatenates,

using all parameters for high-resolution clustering. The two

resulting cluster templates were combined, and all individual

samples from all groups, all visits, all stimulations were assigned

to the resulting combined template (total clusters 2,246). This

cluster competition approach (7) sharpens the differences between

the two groups represented by the two templates, in this case

stimulated and unstimulated cell populations. Note that each

concatenate included samples from all vaccine groups, so the

competition process should not affect the resolution or statistical

analysis of any study group differences.

Cluster gating (6) was then used to narrow down the cell

populations of interest. During cluster gating, all cells are

assigned their cluster medians in all dimensions, so that the two-

dimensional gating shown in Figure 3A takes advantage of all the

information in all dimensions. Activated CD4 T cell clusters were

identified as live, singlet, CD3+ CD4+ CD154+ TNF+ clusters

(Figure 3A). Additional marker intensities for all parameters are

shown in Supplementary Figure S5. These activated CD4 T cell

clusters were then examined by testing the significance of

differences between antigen-stimulated and negative control

clusters in all participants at visit 9. A Wilcoxon test was followed

by the Benjamini-Hochberg correction for multiple measurements,

because of the number of clusters examined. Figure 3B shows the

ratios and magnitudes of differences between antigen-stimulated

and negative control cultures in a volcano plot. All clusters that

were significantly increased in the antigen-stimulated samples

(green shaded area) were chosen for further analysis. To facilitate

comparisons with previous analysis (2), the SWIFT clusters were

aggregated into four groups: IL-2+IFN-g+, +/-, -/+ and -/- cells (15,

5, 3 and 4 clusters, respectively). The heatmaps (Figure 3C) show

the marker characteristics of each cluster.
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Identification of vaccine responders

The samples showing significant responses to each antigen, at

each time point, were then evaluated as described in Methods, using

the aggregated cluster data for all clusters producing IL-2 and/or

IFN-g. Figure 4 shows the results for each time point, each vaccine

treatment, and five antigen stimulations, or combinations of

stimulations: AnyEnv (Env92 or Env1/2), Env92 (Env92TH023

only), Env1/2 (Env1 plus Env2), GAG-ZM96, and the negctrl2.

Background values (negctrl1) were subtracted from all antigen-

stimulated values (similar conclusions were obtained if the negative

controls were reversed). All samples with >98% probability of being

genuine responders are shown in red. As expected, very few negctrl

samples were evaluated as responders (at a confidence level of 98%,

a small number of false positives are expected). As Gag antigen was

only included in the DNA vaccine, Treatment 1 uniquely lacks

immunization with Gag for the first blood sample evaluated, at Visit

5. Consistent with this, only Treatment group 1 lacks a response to

Gag at Visit 5. At a very high confidence level of 99.9%, there were

still high rates of responders (up to 88%) but no responders in any

negative controls (Supplementary Figure S6). Supplementary Figure

S7 shows an alternative layout of the responder data to emphasize

the time course within each group.

Several combinations of vaccine treatments and times induced

responses in the great majority of participants, particularly in

Treatment group 3 at Visits 7 and 9. The numbers of responders

were generally higher than evaluated previously (2), possibly

because the extensive pre-processing and the competitive cluster

templates used in our analysis provided sharper distinction between

antigen-stimulated versus background cells producing cytokines.

The magnitude of the net anti-HIV T cell responses was well-

correlated between the original analysis and the re-analysis

(Supplementary Figure S8). There is a general trend towards

higher magnitudes detected by SWIFT (compared to the 1:1

reference line), possibly due to the effectiveness of high-

dimensional definition of populations, as well as the sharper

signal:noise discrimination by focusing on the clusters that were

significantly increased by antigen stimulation.
Qualitatively different responses are
associated with different
vaccine modalities

The quality of the cytokine response to protein or DNA-derived

immunogens was assessed between the different vaccine treatments

by comparing the ratio of T cells producing IFN-g vs. T cells

producing IL-2 but not IFN-g. The anti-Gag response is easiest to

interpret, as this is induced only by the DNA vaccine. Figure 5A

shows that this response is biased towards IFN-g production,

consistent with a previous report (14). The response to the ZM96

clade C peptides, primed by DNA, also showed a tendency towards

an IFN-g-biased response. In contrast, the response to clade E
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92TH023 protein immunization was biased more towards IL-2-only

responses, consistent with our previous demonstration (15) that

viral infections tend to induce more Th1/IFNg responses, whereas
protein vaccines tend to produce responses biased towards IL-2-

producing central memory (16) cells. Figure 5B summarizes these

results, including the results for the minority IL-2- IFN-g- and IL-2-
IFN-g+ responses.
Minority cytokine responses

The flow cytometry panel included several cytokines, including

IL-21 (produced by Tfh and some other cells) and IL-4 (produced

by Th2 cells). Manual examination of the concatenated results

suggested that antigen stimulation appeared to induce a small IL-

21 response in a relatively low number of TNFa+ IL-2+ CD4 T cells.
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However, the IL-21 staining was weak, and did not result in a clearly

separated sub-population of positive cells. As the SWIFT clustering

algorithm uses a criterion of multidimensional unimodality to

define individual sub-populations (6), the putative IL-21+ cells

were initially difficult to identify by clustering. We therefore used

a ‘stretching’ modification that slightly broadened the cell

distribution across the expected junction between IL-21- and IL-

21+ cells. Clustering the resulting data in SWIFT allowed the

reproducible detection of IL-21+ clusters (Figure 6). In contrast,

applying the same stretching modification to the IL-4 channel did

not result in the detection of IL-4+ clusters, consistent with the

manual examination of the IL-4 data (Figure 6). The IL-21+ clusters

were activated memory CD4 T cells (CD154+ CD45RAlo CD4+),

but interestingly, did not express the CXCR5 chemokine receptor

that is characteristic of circulating T follicular helper (Tfh) cells

(Figure 6), perhaps due to down-regulation of CXCR5 on the in
B

C

A

FIGURE 3

Cluster gating of cytokine-producing antigen-specific T cells. SWIFT cluster templates were produced from concatenates of antigen-stimulated
samples, and control samples, and the two templates combined for competitive cluster assignment. All individual samples were assigned to the
combined template. (A) All cells were plotted at their cluster medians in each parameter for cluster gating on bivariate plots, to identify activated
CD4 T cells expressing CD154 and TNF. (B) For each cluster, the number of cells in a concatenate of ENV92-stimulated visit 9 samples was
compared by Wilcoxon to the matched negative control sample. Each symbol indicates one cluster, and the size of the symbol is proportional to the
mean number of cells per cluster. P values were adjusted according to the Benjamini-Hochberg method for multiple measures. The green shaded
area indicates the clusters that were significantly increased in size by antigen stimulation. (C) The heatmap shows the median fluorescence intensity
in each parameter (Z-scores) of the 27 significantly induced clusters from B (shaded area).
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B

A

FIGURE 4

Increased numbers of vaccine responders identified by detailed analysis pipeline. (A) For all V5, V7, V9 and V11 samples, responders were identified
as described in Methods, calculating the responses separately for 92TH023 Env; ZM96 pool 1 + pool 2 Env; ZM96 Gag; the negative control
negctrl2; and Any Env (the larger of the responses to either 92TH023 or ZM96 Env1 + Env2). The values from negctrl1 were subtracted from each of
these values. Red circles and blue triangles indicate responders and non-responders, respectively, and horizontal black bars indicate medians of all
samples in each treatment group. The percentage of positive responses is shown above each graph. Values less than 0.005% were plotted at
0.005%. (B) Responder rates from the present study compared to the equivalent responder rates from the original analysis (2).
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B

A

FIGURE 5

Different cytokine response patterns associated with DNA or protein vaccination. (A) IL-2+IFNg+ responses were compared with IL-2+IFNg-
responses in all participants, all visits and for ZM-96-Gag, ZM96-Env and 92TH023-Env. Dark symbols indicate samples with positive responses
(using the values for IL-2 and/or IFNg from Figure 4) and pale symbols indicate non-responders. P values indicate the significance of the deviation
from the 1:1 correlation line, with colors matching the data points. (B) The heatmap indicates the average number of antigen-responsive CD4 T cells
per million total live CD4 T cells, for each vaccination group. Each response is divided into all combinations of IL-2 and IFNg expression.
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vitro activated cells as we have observed previously (S. De Rosa,

unpublished). In contrast to the IL-2+ IFN-g+ versus IL-2+ IFN-g-
skewing described above, the IL-21+ cells were observed in all

treatment groups, and did not show obvious biases towards

particular antigens or immunization strategies (Figure 7).
Correlations of SWIFT CD4+ T cell
clusters with HIV-specific plasma
antibody responses

Binding antibody (Ab) responses were the major correlates of

risk (CoR) identified in the RV144 Trial (3). Subsequently, at V9, 2

weeks after the final immunization we assessed the relationship of

IL-2/IFN-g and IL-21 defined clusters with the contemporary HIV-

specific plasma Abs (Figure 8). Overall T1 (Figures 8E, J) had low

antibody responses at this timepoint compared to the other groups

as expected due to the boosting immunizations with DNA alone. T2

overall exhibited the greatest number of significant correlations
Frontiers in Immunology 12223
with the IgG response, primarily associated with responses to

AE.A244 (Figure 8B) which most closely matches the protein

component of the vaccine regimen. T3 and T4 overall had

significant associations relatively balanced between AE.A244

(Figures 8C, D) and 96ZM651 (Figure 8H) Ab responses which

most closely matches the DNA component of the vaccine regimen,

and is consistent with T3 and T4 receiving 4 doses of DNA. T3 had

the greatest number of significant correlations between IL-21+ and

Ab responses (Figures 8C, H), consistent with T3 having the overall

greatest IL-21+ response. Supplementary Figure S9 shows the

magnitude of IgG responses for the T cell responders identified

by the original analysis or the new SWIFT analysis.

Both total IgG specific for the V1V2 region of gp120 and IgG3

specific for V1V2 were inverse CoR in RV144 (3). IL-2-IFN-g+ cells

were significantly correlated with IgG AE.A244 V1V2 in T4

(Figure 8D), with IL-2+IFN-g+ and IL-2-IFN-g also significantly

correlating with IgG AE.A244 V1V2 in T2 (Figure 8B). IL-2+IFN-

g+ also, and IL-21+ also significantly correlated with IgG gp70–

96ZM51 V1V2 in T3 (Figure 8H). V1V2 responses of the specific
FIGURE 6

IL-21 responses after vaccination. A concatenate (10 million cells) of random samples of all HIV antigen stimulated samples at V9 was assigned to
the cluster template used in Figure 3, and cluster gating was used to identify all CD4+ CD154+ TNF+ T cells (center panel). Cluster gating was used
to further identify IL-2+ IL-4+ and IL-2+ IL-4- clusters (second row, left) and IL-2+ IL-21+ and IL-2+ IL-21- clusters (second row, right). In the top
and middle panels, each dot represents one cluster. The bottom row shows plots of individual cells in the four sets of clusters.
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IgG subclass, IgG3 which is known to be a potent mediator of Fc-

effector functions such as antibody dependent cellular cytotoxicity

were inverse CoR in RV144, and only IL-2+IFN-g+ in T1 was

significantly correlated with IgG3 gp70–96ZM51 V1V2 (Figure 8F).

IgA specific for gp120 overall as well as the V1V2 region was a CoR

in RV144, suggested to compete with the binding of protective IgG3

(3, 17). Only T2 and T3 had measurable IgA responses to AE.A244

gp120 or AE.A244 V1V2 (Figure 8E), with IL-2-IFN-g- in T2

significantly correlating with IgA AE.A244 gp120 and IgA

AE.A244V1V2 (Figure 8B). IL-21+ in T3 was significantly

correlated with both IgA AE.A244 gp120 and IgA AE.A244V1V2

(Figure 8C). Overall these results indicate subtleties in the
Frontiers in Immunology 13224
association of CD4+ T cell responses and plasma Ab responses,

that are impacted by vaccine regimen and may provide insight into

efficacy outcomes.
Discussion

A substantial preventative vaccine trial such as HVTN 105

generates a large dataset of immunological results, which provides a

valuable resource for continued analysis using different approaches.

This trial was chosen for analysis, although a phase I trial, because it

reiterated the general prime-boost approach of the only preventive
FIGURE 7

IL-21 responses to different immunogens. CD4 T cells producing IL-2 (with or without IFN g) were compared with IL-21+ responses in all
participants, all visits and for ZM-96-Gag, ZM96-Env and 92TH023-Env antigen stimulations. Dark symbols indicate samples with positive responses
(using the values for IL-2 and/or IFNg from Figure 4) and pale symbols indicate non-responders.
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vaccine trial to show any degree of efficacy, RV144 (“The Thai

Trial”), but with priming by a more flexible DNA vaccine platform.

We have re-analyzed the flow cytometry T cell response data using a

detailed clustering approach, and also evaluated the correlations

between different T cell responses and the levels of different isotypes

and specificities of antibodies. This resulted in the detection of

higher numbers of responders; revealed preferential induction of

central versus effector T cell responses by different immunogens;

and showed that the best correlations between T cell and antibody

responses did not necessarily match the strongest responses.

The SWIFT clustering algorithm is highly effective for detecting

small cell sub-populations in flow cytometry data (6, 18). This

sensitivity may be related to the extensive use of antigen-stimulated

PBMC datasets during SWIFT development, resulting in an

algorithm that is well-suited to the detection of small cytokine-

producing T cell responses of human PBMC, e.g., in the HVTN

105 dataset.

An additional advantage of the SWIFT analysis pipeline is the

registration tool swiftReg (7), which can register batches of data to

minimize batch effects while preserving biological variation and

group differences. The HVTN 105 trial was large, and the flow

cytometry data analysis was performed in many batches. Although

stringent protocols ensured that the batch variation was smaller

than in many other studies, it is almost impossible to completely

prevent batch effects in experiments conducted over several

months, and so the swiftReg tool was helpful in minimizing batch

variation to allow the analysis to focus more sharply on the vaccine

group differences. As swiftReg produces new .FCS files containing

registered data, registration can also be a useful step in data

processing pipelines using alternate clustering approaches.

Compared to the initial analysis (2) the high-resolution SWIFT

analysis detected substantially higher numbers of responding

participants for all antigens. A major contribution to this increase

may have been due to our sharpened discrimination of responders

from non-responders using competitive template assignment (19).

In this approach, SWIFT cluster templates were produced from two

concatenates, of antigen-stimulated and negative control samples.

These two templates were then combined and all samples assigned

to the joint template. Some cytokine-secreting clusters preferentially

captured background responses, so by focusing only on clusters that

were significantly higher in antigen-stimulated samples, we were

able to sharpen the identification of antigen-responding cells and

improve signal:noise ratios. This probably contributed to the higher

number of responders detected, while the overall pattern of the

response was similar, e.g., group T3 had higher responder

frequencies in both analyses.

Several issues have to be considered for the potential T cell

cross-reactions between different antigens used in the HVTN105

study. The predictions for anti-Gag responses are relatively

straightforward, because Gag antigens were encoded by the DNA

vaccine, but not included in the protein vaccine. Thus Gag

responses should be attributable only to Gag-ZM96 priming and

boosting. Consistent with this prediction, significant numbers of

Gag responders were only observed in groups that had received the

DNA vaccine prior to the sample draw. In addition, Gag responses
Frontiers in Immunology 15226
are simpler to interpret because the immunogen and the in vitro

challenge peptides were fully matched.

In contrast, three different Env sequences were included in the

vaccines. The DNA vaccine expressed the clade C ZM96 gp140

protein, whereas the protein AIDSVAX vaccine contained both the

clade B gp120 MN and clade E gp120 A244 proteins. Thus, the

DNA and protein vaccines should stimulate partially overlapping T

cell repertoires specific for Env, and a second immunization with

the other vaccine type (protein to DNA, or DNA to protein) should

induce a mixture of memory responses to cross-reactive epitopes,

and naïve responses to non-cross-reactive epitopes.

In vitro testing of T cell anti-Env responses was performed with

three peptide pools: Two vaccine-matched peptide pools covered

the N-terminal and C-terminal regions of the ZM96 clade C

gp140 protein, and a third pool contained peptides of the clade E

92TH023 protein, i.e. the same clade as the AIDSVAX clade E Env

A244 protein, but with only about 90% homology between the

protein sequences. However, the two proteins contain long stretches

of completely homologous sequences, so there should be substantial

but not complete cross-reaction between the immunizing and

testing clade E Env epitopes. Responses to the immunizing clade

B MN env protein would be expected to have lower cross-reactivity

to either the clade C or Clade E test antigens, and so may not have

contributed significantly to the overall in vitro T cell results. Because

the extent of cross-reaction between the clade C- and clade E-

specific T cells in this study was unknown, we made the

conservative assumption that the “any env” response was taken as

the maximum of the ZM96 and 92TH023 responses, i.e., assuming

complete cross-reaction, as in the previous analysis (2).

The quality of the T cell response, i.e. the cytokine patterns

produced by antigen-specific T cells, was influenced by the type of

vaccine. In line with previous studies (14, 15) the AIDSVAX protein

vaccine preferentially induced CD4 T cells producing IL-2 but not

IFNg, whereas the DNA vaccine induced more IL-2+ IFNg+ T cells.

The IL-2+ cells may be central memory T cells (Tcm) (16) that have

high proliferative potential and can differentiate into effector cells

(16, 20), whereas the IL-2+ IFN-g+ T cells are effector memory cells.

While both T cell populations are potentially valuable for future

protection, the Tcm may have higher potential over longer

times (21).

In addition to the evaluation of the major cytokines TNF, IFN-g
and IL-2, the flow cytometry analysis also measured IL-21-

producing cells. Although the staining for IL-21 was not strong,

there appeared to be an IL-21+ population that expressed high

levels of TNF and IL-2, and variable amounts of IFN-g. IL-21 is

produced commonly, although not exclusively, by CXCR5+ Tfh

cells in lymph nodes (22, 23). However, the IL-21+ cells in the

HVTN105 study were generally CXCR5-. Although this might

suggest that these were not circulating Tfh-like cells (24, 25) it is

also possible that CXCR5 expression was lost during in

vitro stimulation.

Assessment of the SWIFT-defined CD4+ T cell clusters’

association with the plasma Ab response to HVTN 105, revealed

that although polyfunctional TNF-alpha+ IL-2+ IFN-g+ effector

memory cells dominated the CD4+ T cell response in T3 and T4, a
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subdominant IFN-g producing population, IFN-g+IL-2- cells in T3

and T4 correlated with IgG AE.A244 V1V2 (an inverse CoR in

RV144), suggesting that the magnitude of a specific CD4+ T cell

cluster is not the sole determinant of correlation with the Env-

specific Ab response. The consequences of associations between

CD4+ T cell cytokine producing subsets and protective antibody

responses to HIV remain uncertain, however intriguing findings

regarding this relationship continue to emerge.

A limitation of this study was that although HVTN 105 used the

same protein immunogen as RV144, AIDSVAX B/E, unlike RV144,

HVTN 105 was not an efficacy trial. Subsequently, the differences

observed in response rates or phenotypes of CD4+ T cells observed

between groups in HVTN 105 either in this re-analysis or the

primary analysis (2) cannot infer association with vaccine efficacy.

The recent HVTN 702 efficacy trial conducted in South Africa,

which was an iteration of RV144 with Clade C immunogens consisting

of priming with a canarypox-based env/gag/pro immunogen and

boosting with the addition of a Env protein immunogen,

unfortunately resulted in similar infection rates in placebo and

vaccine recipients (26). Post-hoc analysis revealed that among

individuals that had high IgG AE.A244V1V2 responses, CD4+ T cell

polyfunctional score was associated with lower risk of HIV acquisition.

And conversely, among individuals that had low IgG AE.A244V1V2

responses, the CD4+ T cell polyfunctional score was associated with a

higher risk of HIV acquisition. These findings highlight the increasing

need to better define and monitor the nuanced relationship between

the CD4+ T cell response to HIV vaccines and the protection that may

be conferred by antibody responses, and we suggest that advanced flow

cytometry analysis approaches, such as SWIFT, can enhance resolution

of the HIV-specific T cell response.
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Computational mining of B cell
receptor repertoires reveals
antigen-specific and convergent
responses to Ebola vaccination
Eve Richardson1,2,3, Sagida Bibi2, Florence McLean2,
Lisa Schimanski4, Pramila Rijal4, Marie Ghraichy5,
Valentin von Niederhäusern5, Johannes Trück5,
Elizabeth A. Clutterbuck2, Daniel O’Connor2, Kerstin Luhn6,
Alain Townsend4, Bjoern Peters3, Andrew J. Pollard2,
Charlotte M. Deane1 and Dominic F. Kelly2,7*

1Department of Statistics, University of Oxford, Oxford, United Kingdom, 2Oxford Vaccine Group,
Department of Pediatrics, University of Oxford, Oxford, United Kingdom, 3La Jolla Institute for
Immunology, La Jolla, CA, United States, 4Weatherall Institute for Molecular Medicine, University of
Oxford, Oxford, United Kingdom, 5Divisions of Allergy and Immunology, University Children’s Hospital
and Children’s Research Center, University of Zurich (UZH), Zurich, Switzerland, 6Janssen Vaccines
and Prevention, Leiden, Netherlands, 7NIHR Oxford Biomedical Research Centre, Oxford University
Hospitals NHS Foundation Trust, Oxford, United Kingdom
Outbreaks of Ebolaviruses, such as Sudanvirus (SUDV) in Uganda in 2022,

demonstrate that species other than the Zaire ebolavirus (EBOV), which is

currently the sole virus represented in current licensed vaccines, remain a

major threat to global health. There is a pressing need to develop effective

pan-species vaccines and novel monoclonal antibody-based therapeutics for

Ebolavirus disease. In response to recent outbreaks, the two dose, heterologous

Ad26.ZEBOV/MVA-BN-Filo vaccine regimen was developed and was tested in a

large phase II clinical trial (EBL2001) as part of the EBOVAC2 consortium. Here,

we perform bulk sequencing of the variable heavy chain (VH) of B cell receptors

(BCR) in forty participants from the EBL2001 trial in order to characterize the BCR

repertoire in response to vaccination with Ad26.ZEBOV/MVA-BN-Filo. We

develop a comprehensive database, EBOV-AbDab, of publicly available

Ebolavirus-specific antibody sequences. We then use our database to predict

the antigen-specific component of the vaccinee repertoires. Our results show

striking convergence in VH germline gene usage across participants following

the MVA-BN-Filo dose, and provide further evidence of the role of IGHV3–15 and

IGHV3–13 antibodies in the B cell response to Ebolavirus glycoprotein.

Furthermore, we found that previously described Ebola-specific mAb

sequences present in EBOV-AbDab were sufficient to describe at least one of

the ten most expanded BCR clonotypes in more than two thirds of our cohort of

vaccinees following the boost, providing proof of principle for the utility of

computational mining of immune repertoires.
KEYWORDS

vaccination, BCR - B cell receptor, BCR-Seq, Ebola (EBOV), monoclonal abs,
prediction model
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GRAPHICAL ABSTRACT
Introduction

Ebolaviruses are highly infectious zoonotic filoviruses which

can cause severe hemorrhagic fever in humans, referred to as

Ebolavirus disease (EVD). EVD can have mortality rates of up to

90% (1). There are six species currently classified within the

Ebolavirus genus: Zaire ebolavirus (EBOV), Sudan ebolavirus

(SUDV), Bundibugyo ebolavirus (BDBV), Tai Forest ebolavirus

(TFV), Reston virus (RESTV) and the most recently described

Bombali ebolavirus (BOMV). All but Reston and Bombali virus

have been associated with severe disease in humans (2, 3). Only

three species (EBOV, SUDV, BDBV) have caused outbreaks, with

EBOV and SUDV in particular responsible for tens of thousands of

deaths in over thirty separate outbreaks in West and equatorial

Africa since 1976 (4, 5). Outbreaks continue to occur with

regularity, and there have been three distinct Ebolavirus

outbreaks in the Democratic Republic of Congo (DRC) between

May 2018 and November 2020, an outbreak in Guinea in 2021, and

again in the DRC between April and June of 2022. The most recent

outbreak was in Uganda from September 2022 to January of 2023.

The 2013–16 Ebola virus outbreak in the DRC was the largest to

date, causing in excess of 28,000 cases and 11,000 deaths (6). This

epidemic expedited human safety and efficacy testing of Ebola vaccine

candidates (7, 8) and the first Ebola virus vaccine, ERVEBO, was

approved for use in 2019. ERVEBO is a replication-competent

vesicular stomatitis virus (rVSV) based vaccine, and is currently the

only FDA-approved vaccine used to immunize at-risk individuals

during active outbreaks. ERVEBO is monovalent, only containing

the surface glycoprotein of Zaire ebolavirus, and efficacy has only

been demonstrated for this species. In addition to ERVEBO, a

heterologous two-dose vaccination regimen using an adenovirus viral

vector expressing Zaire ebolavirus glycoprotein (Ad26.ZEBOV) and an

Ankara vector based vaccine expressing the Zaire, Ebola and Sudan

ebolavirus glycoproteins along with Tai Forest virus nucleoprotein
Frontiers in Immunology 02230
(MVA-BN-Filo), showed safety and immunogenicity in clinical trials

and was licensed for prophylactic use in the European Union in 2020

(9–14). Both vaccines are licensed as monovalent vaccines against

Zaire ebolavirus.

B cells isolated from convalescent human participants and vaccinees

(with both ERVEBO and ChAD3.EBOV/MVA-BN-Filo) have been an

important source of therapeutic monoclonals for Ebolavirus. Two

monoclonal antibody (mAb)-based immunotherapeutics, Inmazeb

and Ebanga/mAb114, are currently FDA approved for the treatment

of EVD, however, these only confer moderate protection (15–17).

Ebanga/mAb114 was discovered in memory B cells of a survivor of

the 1995 Kikwit EVD outbreak (18) and the two component mAbs of

MBP134AF were discovered in a survivor of the 2014 EVD outbreak

(19, 20). ThesemAbs are among hundreds discovered in EVD survivors

(18, 19, 21–29). Most recently, Chen and colleagues conducted a large-

scale sequencing study of a survivor of the 2014 EVD outbreak in

Nigeria, estimating over 20,000 EBOV GP-specific clonal lineages

within the memory B cell repertoire in just this single participant

(30). Among antibody discovery efforts in vaccinees, Rjial and

colleagues identified 82 anti-EBOV GP monoclonals from the

memory B cells and plasmablasts of participants vaccinated with the

ChAD3.EBOV/MVA-BN-Filo vaccine in 2019, while Ehrhardt and

colleagues identified 94 anti-EBOV GP monoclonals from rVSV

vaccinees (31, 32). As part of the Viral Hemorrhagic Fever

Immunotherapeutics Consortium, Saphire and colleagues studied 171

mAbs (of which 102 were human-derived) in the context of the epitopes

targeted, neutralization and protection in amousemodel (33). Survivor-

derived mAbs and derivatives thereof currently constitute the majority

of current immunotherapies for Ebolavirus. While several vaccinee-

derived mAbs have demonstrated protection in mice and NHPs, none

are currently in the clinic.

In addition to acting as a source of monoclonal antibodies, B

cells and their receptor repertoires provide an important window

into the response to Ebolavirus infection and vaccination. A
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recurrent theme in B cell receptor (BCR) repertoire studies in

Ebolavirus and in infectious disease more generally, is the concept

of public clonotypes, i.e., groups of related BCR sequences observed

in multiple independent participants. Studies of the BCR repertoire

in convalescence, and of EBOV-GP specific monoclonal antibodies

have highlighted a number of public responses, including usage of

IGHV3–13 in antibodies which target the GP1 region of the

glycoprotein, IGHV3–15/IGLV1–40-encoded antibodies which

target the receptor binding region (RBR), and IGHV1–69 and

IGHV1–2 antibodies, which may be important in the early

antiviral response (25, 30). Sequencing of four individuals

vaccinated with ERVEBO identified a number of public

clonotypes shared between the four vaccinees (32). Recently,

Chen et al. curated a database of EBOV-specific antibodies from

12 either vaccinated or infected individuals across five studies (30).

However, there are currently no publicly available databases where

these sequences are compiled.

In the present work, we examined the B cell receptor repertoire

response of participants in the Ad26.ZEBOV/MVA-BN-Filo trial.

We generated bulk BCR repertoires from forty-five individuals

enrolled in the trial, split into three groups according to timing of

dose 2 administration, at baseline, after the monovalent dose 1 and

the multivalent dose 2. We used our database to computationally

annotate the likely antigen-specific component of these repertoires.
Materials and methods

Compilation of EBOV-AbDab

Publications describing Ebolavirus specific monoclonal

antibodies were identified from the Immune Epitope database (a

database of experimental B and T-cell epitope data by searching for

B cell assay data with Ebolavirus as the Epitope Organism. EBOV-

specific sequences from patents were retrieved from PLAbDab via

searching for the word Ebolavirus (34, 35). Germline gene

assignment and identification of CDR3s for the identified

antibodies were calculated using IgBLAST and the appropriate

IMGT database (human, mouse or macaque) (36–38). In the

absence of available nucleotide sequence data, we curated amino

acid sequence and used IgBLAST-aa to assign IGV genes and

ANARCI to assign IGJ genes (36, 39). In the absence of

nucleotide or amino acid sequences, germline genes and CDRH3

and CDRL3 sequences were collected as reported in the original

publications. Binding data and neutralization data was collected

where available for each antibody as well as, if available, binding to

sGP. To create a non-Ebolavirus specific baseline for our antibody

specificity predictions, we used two databases: Human CoV-AbDab,

filtering for human antibodies based on the Heavy V Gene attribute

(dated 13/6/23) and the IEDB (dated 13/6/23), after removing

Ebolavirus-specific mAb sequences (34, 40). This resulted in

10,741 and 2,022 entries respectively. We also compared IGHV

and IGKLV gene frequencies to a database of HIV antibodies,

CATNAP (41). We filtered for IGHV and IGKLV genes and

CDRH3s resulting in 394 entries.
Frontiers in Immunology 03231
Isolation of mAbs from plasmablasts

Antibodies were isolated by FACS sorting, PCR and antibody

variable gene cloning of a single B cell plasmablast from six

vaccinated human individuals using the previously described

methods (Rijal et al., 2019). Briefly, PBMC were incubated with a

cocktail of antibodies to CD3 (PB; UCHT1; BD PharMingen),

CD20 (APC-H7; 2H7; BD PharMingen), CD19 (FITC; H1B19;

BD PharMingen), CD27 (PE-Cy7, M-T271; BD PharMingen),

CD38 (PE-Cy5, HIT2; BD PharMingen) and IgG (BV605, G18–

145; BD PharMingen). For some sorts, Ebola GP protein (10 mg/
mL) and a known biotin-labeled anti-MLD antibody (10 mg/mL)

were used to sort antigen specific B cell plasmablasts. Single cells

with the phenotype of CD3- CD20-/low, CD19+, CD27++, CD38++,

IgG+ were sorted on a FACS Aria III cell sorter (BD Biosciences).

Single cells were sorted into 96-well PCR plates containing lysis

buffer followed by single cell RT-PCR. Nested PCR was slightly

modified to existing methods. Overlapping bases (approx. 20

nucleotides) were added on to existing 5′ and 3′ primers without

interfering the restriction sites, which could be used as a back-up, to

enable digestion free Gibson cloning. PCR products were purified in

a QIAGEN 96-well system and the inserts were assembled with

restriction enzyme-digested plasmids in the Gibson mix (NEB).

Two mL of assembled product was used to transform 10 mL DH5a
E. Coli (NEB, C2987) in 96-well plates. Three colonies for each

heavy and light chain were grown in a 96-well plate format and

purified using QIAGEN Turbo 96 miniprep kit. Plasmids were

eluted using 100 mL TE buffer.
Expression and purification of antibody

Antibodies were expressed in ExpiCHO cells (Thermo Fisher)

by co-transfection with heavy and light plasmids. Antibodies were

purified from harvested cell supernatant using MabSelect SuRe (GE

Healthcare, 17–5438-01). The column was washed with Tris

buffered saline (TBS) and eluted with sodium citrate buffer pH

3.0 – 3.4. Elution pools were neutralized with 2 M Tris/HCl pH 8.0

and absorbance read at 280 nm. Samples were then buffer

exchanged into PBS pH 7.4 using 10ml Zeba spin desalting

columns, 7K MWCO (Thermo Fisher 89893).
EBL2001 vaccine trial

EBL2001 was a heterologous two-dose randomized, double-

blind, placebo-controlled, phase 2 trial of a new Ebolavirus vaccine,

performed by the EBOVAC2 consortium (9, 10, 12). Dose 1 of the

vaccination regimen is a replication-deficient adenovirus type 26

vector-based vaccine (Ad26.ZEBOV), encoding Zaire Ebola virus

glycoprotein, and the dose 2 vaccination is a non-replicating,

recombinant, modified Vaccinia ankara (MVA) vector-based

vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan

virus, and Marburg virus, and nucleoprotein from the Tai Forest

virus. Four hundred twenty three participants were enrolled and
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randomly assigned to the three different regimes (Groups 1, 2 and

3). Dose 1 administration consisted of either Ad26.ZEBOV or

placebo, then this was followed by either MVA-BN-Filo or

placebo as dose 2 at 28 (group 1), 56 (group 2), or 84 (group 3)

days later.
Samples for BCR sequencing

Peripheral blood was taken from 45 participants enrolled in the

EBL2001 trial. Forty participants received the Ad26.ZEBOV dose 1

and MVA-BN-Filo dose 2, while five had received a placebo at both

doses. Subjects were selected according to sample availability.

Thirteen participants were from interval regimen group 1, 15

from interval regimen group 2, and 12 from interval regimen

group 3. Samples were taken prior to vaccination, referred to as

Baseline, 11 days following dose 1 referred to as Post-dose 1, and

7 days post-dose 2 referred to as Post-dose 2. 42 of these 45

participants (38/40 vaccinees; 4/5 control participants) were

white, with the remainder of Asian (1), mixed (1) or Unknown

ethnicity. Twenty-five participants were female and 20 were male.

The average age was 42.5, 39, 37.4 and 36.6 years in Group 1, 2, 3

and the Placebo cohort each.
BCR sequencing

PBMCs were isolated via Ficoll-Paque density centrifugation.

RNA was extracted using Qiagen RNeasy kit. RT-PCR was

performed separately with either IgG, IgA and IgE (all 45

participants) or IgM and IgD primers (21 participants),

incorporating unique molecular identifiers (UMIs). VH cDNA

was amplified using a mix of IGHV region primers and Illumina

adapter primers as per previous work (42). Samples were

multiplexed via combinatorial dual indexing.
Processing of BCR-seq data

BCR-seq data was processed using the Immcantation toolkit (v.

4.4.0) (43, 44). Samples were demultiplexed using the i5 and i7

Illumina indices. A quality filter was applied using FilterSeq with a

quality cut-off of 30; paired-end reads were joined and merged, and

consensuses built according to their UMIs. IgBlast was used to

perform germline gene assignment using the AssignGenes wrapper

with a standard IMGT human germline database, and isotype

subtype annotated was performed using stampy (36, 45).

Sequences were grouped into clonotypes within participant and

time points, across time points within the same participant using

the DefineClones module, with a junctional amino acid identity

threshold of 90%. There are multiple clonotype definitions in use:

we selected 90% as intermediate in the common range of 80 – 100%.

To combat possible index hopping despite dual indexing, the

presented analyses consider only UMIs supported by at least two

reads or sequences supported by at least two reads. Where sequence
Frontiers in Immunology 04232
or clone abundance is mentioned, this refers to the number of

unique UMIs. Without the sequence count filter, we obtained on

average 19,257.1 ± 2,832.9 and 99,781.5 ± 10,607.4 sequences per

sample; applying this filter resulted in 5,404.2 ± 623.5 sequences

per sample and 40,670.8 ± 3,616.7 unique sequences per

sample respectively.
Participant EBOV-GP IgG titers

Humoral immunogenicity assessments were carried out with

serum from participants and Total IgG Ebola virus glycoprotein-

specific binding antibody concentrations were measured by use of an

Ebola virus glycoprotein Filovirus Animal Non-Clinical Group ELISA

at Q2 Solutions Laboratories (San Juan Capistrano, CA, USA). Data

andmethods previously published in Pollard et al. (2021) (9). IgG titers

for EBOV GP were measured at baseline and 21 days post-dose 2 for

42/45 participants (37 vaccinee and 5 control).
Competition ELISA

mAb114 and mAb040 which bind non-overlapping epitopes on

the Ebola glycoprotein, (the receptor binding region and the glycan

cap respectively), were biotinylated using the EZ-Link™ Sulfo-

NHS-Biotinylation Kit Biotin-labeled mAb was mixed with

unconjugated blocker mAb in a 50-fold excess and they were let

to compete for binding to the EBOV-GP on the cell surface. The

binding by the biotin-labelled mAb was detected using streptavidin-

HRP and TMB peroxidase substrate (Seracare, Cat No. 5120–0076).

The reaction was stopped with 1M H2SO4 and the absorbance at

450 nm was read using the CLARIOstar plate reader. The data is

shown as a percentage of biotinylated mAb binding compared to

maximal binding (non-overlapping mAb blocker).
Calculation of immune
repertoire parameters

Custom Python scripts were used to calculate parameters such

as Gini index, median IGHV identity (% nucleotide identity to

the assigned IGHV allele) and to identify expanded and convergent

clonotypes. The formula for Gini index is as per Formula 1.

For IGHV fold changes, fold changes are calculated with a

pseudocount of 1.

G =o
n

i=1
(2i − n − 1)xi=no

n

i=1
xi

Formula 1: Gini index
Statistical methods

Non-parametric methods are used, i.e. for paired tests,

Wilcoxon rank-sum test (implemented with scipy.stats.wilcoxon),
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and for non-paired tests, Mann-Whitney U-test (implemented with

scipy.stats.mannwhitneyu) (46). Multiple testing correction is

performed via the Benjamini-Hochberg method within

statsmodels.multitests.multipletests (47). For the IGHV gene

comparison to reduce the number of tests performed, repeated

measures ANOVA is used prior to post-hoc Mann-Whitney U-

testing (using statsmodels.stats.anova.AnovaRM). For the

correlation analysis, Spearman’s rank correlation coefficient was

calculated with scipy.stats.spearmanr, and ordinary least squares

regression was performed on log-transformed variables with

statsmodels.formula.api’s ols function.
Antigen-specificity prediction

We predicted Ebolavirus-specificity of EBL2001 participant VH

sequences via shared IGHV and amino acid identity over length-

matched CDRH3. In the main text, we used a 70% CDRH3 amino

acid identity threshold but explore 80% or 90% CDRH3 identity

thresholds in Supplementary Materials. Using clonal relatives of

known antibodies to predict antigen specificity is a common

approach and was validated previously in a transgenic model

(48). This method was implemented in Python and is published

as a Python package, clone_search_ab.
Frontiers in Immunology 05233
Results

Compilation of a database of anti-EBOV
antibody and nanobody sequences

To collate current knowledge on antibodies against Ebolavirus

antigens, we compiled a reference database of antibodies with

known specificity for Ebolavirus proteins, collected from

academic publications and patents which were identified using

the Immune Epitope Database (IEDB) and the Patent/Literature

Antibody Database (PLAbDab) (34, 49). In addition, we included

the sequences of 29 previously unpublished mAbs (Rijal et al, in

prep). These novel mAbs were generated from plasmablasts sorted

on EBOV-GP from six participants in the same trial who had

received an Ad26.ZEBOV dose 1 and a MVA-BN-Filo Ebola dose 2.

Altogether, this resulted in a database of 1,019 antibodies and 6

nanobodies, with the encoding IGHV or IGKLV gene and CDRH3

or CDRL3 sequences provided as a minimum. The workflow for our

database curation can be seen in Figure 1A.

The majority of the antibodies and nanobodies (939/1,025)

targeted the glycoprotein (GP), with 13 targeting the nucleoprotein

(NP), 11 targeting the matrix protein VP40, and a single antibody

each targeting VP35 and VP30. The majority of the database was of

human origin (981/1,025) with the remainder of antibodies of
B C D E

A

FIGURE 1

Curation of publicly-available Ebolavirus antibody sequences reveals common gene combinations. We manually curated a database of Ebolavirus-
binding mAbs (N = 1,025) and Nbs (nanobodies, N = 6) from the workflow described in panel (A) Curated and annotated sequence information from
the literature with labels such as viral species, protein and epitope, were combined with 29 novel mAbs derived from six Ad26.ZEBOV/MVA-BN-Filo
vaccines post-dose 2 to produce a comprehensive database. We curated viral species (B); among the human subset of the data, we identified 122
entries which displayed binding to more than one Ebolavirus. While we are careful to compare these broadly reactive mAbs with mAbs which only
have one Ebolavirus label as the absence of data is not equivalent to negative data, we noted a significantly longer CDRH3 length in the broadly
reactive subset (p = 0.03) (C). We then analyzed the database to identify public antibodies with respect to IGHV/IGKLV gene pairings (D) and noted
exceptional publicity of the IGHV3–15/IGLV1–40 lineage of antibodies. To put these frequencies into the context of independent viral antibody
databases, we compared clonotype frequency within the database to CoV-AbDab and CATNAP (a database of HIV antibodies), and note that
IGHV3–15/IGLV1–40 antibodies are rare in other anti-viral antibodies being 174x more common in EBOV-AbDab than CoV-AbDab, and not
observed among HIV antibodies (E).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1383753
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Richardson et al. 10.3389/fimmu.2024.1383753
murine (36) and macaque (2) origin and all nanobodies derived

from llamas (6).

One of the information fields we collected was the Ebolavirus

species known to be targeted by each mAb (EBOV, TFV, BDBV,

SUDV, as well as non-Ebolavirus MARV). We curated this

information if it was available, but do not distinguish absence vs.

negative (i.e., if a mAb is labeled as “EBOV”, this does not mean that

it does not bind to BDBV, simply that this has not been observed).

Focusing on the human subset of the data, we identified 122 entries

which bind to at least two Ebolaviruses, which we refer to as broadly

reactive (Figure 1B). We are careful not to draw too firm

conclusions with respect to this label, however we do note that

the average CDRH3 length among clonotypes within this “broadly

reactive” category is significantly greater than in antibodies with

confirmed binding to a single species (p = 0.03, Mann-Whitney U-

test) (Figure 1C).

As we are beginning to understand the role of particular IGV

genes in determining immunodominance, and since much of the

Ebolavirus mAb literature is understood within the context of these

genes, e.g. IGHV1–69 and the mucin-like domain (MLD) or

IGHV3–15/IGLV1–40 mAbs and the RBR (25, 50, 51) we

analyzed our database with respect to these IGV gene pairings. As

we collected author-reported donor labels (e.g., EVD5 or Subject

45), we looked at howmany donors each gene pairing was identified

in. IGHV3–15/IGLV1–40 mAbs were discovered in fifteen

participants with the next most public pairing being observed in

six participants (IGHV1–69/IGKV3–20, IGHV3–23/IGKV1–5 and

IGHV1–18/IGKV3–20) (Figure 1D). We then calculated the

frequency of these pairings based on unique clonotypes (IGHV/

IGKLV and 90% amino acid identity in the CDRH3) and compared

this frequency to that observed in a much larger, independent viral

antibody database (CoV-AbDab) (Figure 1E). While IGHV3–15/

IGLV1–40 mAbs constitute around 5% of clonotypes within

EBOV-AbDab, they constitute just 0.03% of CoV-AbDab, i.e. are

174x more frequent in EBOV-AbDab than CoV-AbDab. There are

a further 55 IGHV/IGKLV gene pairings which are at least 10x

more frequent in EBOV-AbDab than CoV-AbDab. The differential

frequency of IGHV3–15/IGLV1–40 mAbs is primarily driven by

the frequency of IGHV3–15 (being 4.9x more frequent vs IGLV1–

40 being 1.2 more frequent).
A novel lineage of IGHV3–15/IGLV1–40
mAbs and rediscovery of a known one

We generated 29 novel mAbs from memory B cells of

Ad26.ZEBOV/MVA-BN-Filo vaccinees. We noted the frequency

of IGHV3–15/IGLV1–40 mAbs (eight mAbs in four clonotypes,

two clonotypes in each donor). We examined two lineages of

IGHV3–15/IGLV1–40 antibodies from one donor (Donor 58;

EBO-1 and EBO2–5) and a single mAb from Donor 35 (EBO11).

We measured the competition of these mAbs with mAbs114 (RBR)

and mAb040 (GC). These mAbs competed for binding to EBOV GP

with mAb114 making it probable that all three lineages target the

RBR (Figure 2A). The EBO2–5 lineage is visualized via

dendrograms in Figure 2B (VH) and Figure 2C (VL). All six
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tested mAbs are shown aligned via IMGT numbering in

Figure 2D, alongside two separate independent IGHV3–15/

IGLV1–40 mAb lineages from the literature - 6666 and 6662

derived from ChAdOx.ZEBOV/MVA-BN-Filo vaccinees and

5T0180 derived from rVSV vaccinees (31, 32). As described by

Cohen-Dvashi and colleagues, there is evidence of relative

conservation of germline-encoded paratope residues in both the

VH and VL, but significant diversity in the CDRH3 (50).

We wanted to contextualize our novel mAbs within our broader

database of IGHV3–15/IGLV1–40 antibodies. Given the

conservation of the CDRL3, we focused on the non-conserved

CDRH3 (Figure 2F). Hierarchical clustering of non-length

matched CDRH3 amino acid identity reveals two subclusters: one

is the lineage we describe here (represented by EBO-2–5) which has

maximally 62% CDRH3 identity to any previously described

IGHV3–15/IGLV1–40 mAb thus representing a novel lineage

which we refer to as the Donor 58 lineage. The second subcluster

shows CDRH3 homology to mAbs isolated from rVSV vaccinees

(3T0245 and to a lesser extent 3T0253) and ChAdOx.ZEBOV/

MVA-BN-Filo vaccinees (6662 and 6666). We refer to this as the

6666-like clonotype (as the 6666 CDRH3 is the central CDRH3 in

terms of sequence identity).
BCR repertoire sequencing suggests the
proliferation of B cells carrying non-
mutated IgG BCRs following the
monovalent dose 1, with evidence for
increasingly mutated BCRs with increasing
dose 1-dose 2 interval

When B cells are activated by an antigen stimulus, AID is

switched on and the B cell undergoes class switching from IgM/IgD

to IgG, A and E and B cell clones responding to the antigen stimulus

will accumulate mutations in the variable region of the BCR as the

evolve to have higher affinity binding for their epitope.

Furthermore, B cells that take on the plasmablast (PB) phenotype

rapidly proliferate in a process known as clonal expansion. Finding

clonally-related, class-switched or mutated BCR sequences is

indicative of antigen exposure.

Following dose 1, we noted a significant increase in the

proportion of the IgG repertoire that was unmutated from an

average of 1.0 ± 0.4% at baseline to 3.5 ± 0.9% post-prime in the

non-placebo group (p<< 0.001, Wilcoxon test) (Figure 3A)

suggesting an increase in frequency of class-switched but non-

affinity matured BCRs. Following dose 2, the Group 1 participants

still had elevated non-mutated BCRs (3.3 ± 1.4%) relative to both

the placebo and Group 2 and Group 3 participants (0.7 ± 0.2%) at

this time point (p = 0.001 and 0.002 for Group 1 vs. Group 2 and 3

respectively). For the Group 2 and Group 3 participants, the

proportion of the repertoire that was non-mutated decreased to

comparable levels to baseline and the placebo group (average 1.6 ±

0.6% in the non-placebo, vs. 1.7 ± 3.8% in the placebo) (Figure 3B).

Group 1 had the shortest interval regimen of 4 weeks (vs. 8 and 12

weeks respectively). In the longer interval groups, the significant

reduction in the proportion of the IgG repertoire that is non-
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mutated relative to post-dose 1 for Groups 2 and 3 is consistent with

circulating B cells being generated from memory B cells (MBCs)

that have had longer to undergo the process of affinity maturation

and selection within the germinal center (>8 weeks for groups 2/3

versus 4 weeks for group 1).
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To focus on the somatically-mutated, responding clonotypes that

were likely to have undergone clonal expansion, we examined the 100

largest, somatically-mutated clonotypes in each repertoire. Measuring

IGHV identity (percentage identity to the assigned IGHV allele) in this

mutated subset provides a separate insight into how mutated an
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FIGURE 2

Novel IGHV3–15/IGLV1–40 mAbs fall into two groups according to their CDRH3s, the Donor 58 lineage and 6666-like clonotype eight IGHV3–15
mAbs were recovered from two subjects, five from a single subject. We tested six mAbs, EBO-01 to EBO-05, from one subject, and EBO-11 from the
other subject, for competition with mAb114, which binds the RBR, and mAb040 which binds a non-overlapping epitope on the glycan cap, on EBOV
GP. All six IGHV4-15 mAbs competed with mAb114 suggesting an epitope on the RBR (A). EBO-02 to EBO-05 likely derived from the same clonal
expansion: UPGMA dendrograms calculated based on the nucleotide sequences are shown for the VH (B) and VL (C) with the originating IGHV3–
15*01 and IGLV1–40*01 as the outgroup. Panels (D, E) show the IMGT-gapped amino acid sequence alignments; red bars on the bottom indicate
the paratope residues which are conserved across all three structures solved by Cohen-Dvashi et al. (2020). 5T0180, one of these mAbs, is also
included, as are 6666 and 6662 which are RBR-binding mAbs discovered in ChAd.ZEBOV/MVA-BN-Filo vaccinees. Amino acid identity across the
IGHV-encoded region is displayed. Germline D61 (IMGT) in CDRH2 which is reported to be a paratope residue is substituted for asparagine in EBO-
02, -03 and -04 mAbs while K57 is retained. The new lineage lacks the S113R substitution observed in 5T0180, 6666 and EBO-11. We examined the
CDRH3s of our IGHV3–15/IGLV1–40 mAbs within the context of all IGHV3–15/IGLV1–40 mAbs within EBOV-AbDab, with the novel mAbs
highlighted in red (F). One subset of our novel mAbs represent one subcluster with 100% CDRH3 identity and maximally 55% CDRH3 identity to any
previously described mAb (Donor 58 lineage). We identify a separate subcluster which we refer to as the 6666-like lineage (as 6666’s CDRH3 is
central) with greater CDRH3 homology.
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average responding BCR is, vs. the total repertoire. There was a

significant increase in the median IGHV identity for the Groups 1–3

combined after both dose 1 and dose 2 (p<< 0.001) compared to

baseline, with significantly higher median IGHV identities than the

placebo at these time points (p = 0.003 and 0.003 respectively)

(Supplementary Figure 1A). There was no significant difference in

median IGHV identity for the 100 largest clonotypes between post-dose

1 and post-dose 2 with an average IGHV identity of 94.4 ± 0.7% and

94.6 ± 0.7% respectively (p = 0.72). There was a small but significant

difference (p = 0.04) between Group 1 and Group 2 in the average

IGHV identity in the 100 largest clonotypes post-boost, with Group 1

having a slightly higher average IGHV identity (95.2 ± 1.7%, vs. 94.5 ±

1.2% in Group 2) (Supplementary Figure 1B). In summary, these

results suggest a post-dose 1 repertoire dominated by recently

generated B cells with low or absent SHM. The total post-dose 2

repertoire has a comparable frequency of predicted memory BCRs to

baseline, but with lower median IGHV identity; Group 1, with the

shortest boost interval, has significantly more non-mutated sequences

post-boost than Group 2 or Group 3, and mutated sequences tend to

have slightly higher IGHV identity, suggesting that boost interval

affects the nature of the B cell memory recall.

We next assessed repertoire polarity via the Gini index which is the

area under the curve relating rank and cumulative abundance, averaged
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over 100 subsamples to the minimum repertoire size in the comparison

(Figures 3C, E). In the IgG repertoires, we noted that while there was a

significant increase in Gini index (repertoire polarity) from baseline to

post-dose 1 (from 0.52 ± 0.03 to 0.60 ± 0.03), there was a significant

decrease from post-dose 1 to post-dose 2 (0.51 ± 0.03, p<< 0.001) such

that the expansion was comparable to baseline and the placebo at this

time point (0.48 ± 0.03, p = 0.61).Wewould expect to find a comparable

if not greater degree of clonal expansion post-dose 2 than post-dose 1,

given that the post-dose 1 time point is at the tail end of the expected PB

peak. We speculate that this could indicate a more polyclonal response

engendered by the multivalent dose 2 than the monovalent dose 1.

In a subset of our cohort (N = 21), we performed IgM/IgD

sequencing in addition to IgG sequencing. This is intended to

provide a window into the naive repertoire, which is the non-

mutated subset of the IgM/IgD repertoire, as well as IgM memory.

We noted a small but significant reduction in the naive repertoire (non-

mutated IgM/IgD) following dose 1, but not dose 2, from 26.3 ± 4.6%

to 19.4 ± 4.6% (p = 0.01 and 0.91 respectively) (Figure 3D), however

this was not significant relative to the placebo group (24.2 ± 15.3%) (p

= 0.7). We noted a significant increase in the repertoire clonality from

both baseline to post-dose 1 and to post-dose 2 (Figure 3E).

We looked into the longitudinal persistence of clones observed at

baseline, post-dose 1 and post-dose 2. We first noted that on average
B C
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FIGURE 3

The IgG and IgM repertoires exhibit features of antigen exposure following vaccination We noted a significant increase in the proportion of the
sequenced IgG repertoire that was non-mutated, defined over the IGHV region (A), post-dose 1 relative to baseline, resulting in a significantly higher
proportion of non-mutated sequences in the vaccinees than the placebo group. There was no significant increase post-dose 2 when grouping all
boost interval cohorts, however we found that the proportion of the repertoire that was non-mutated was significantly higher in Group 1, which had
the shortest dose 1-dose 2 interval of 4 weeks, than in Group 2 (8 weeks), Group 3 (12 weeks) or the Placebo group (B). We next looked at the
repertoire polarity in terms of the Gini index (higher Gini indices reflect increased polarization) averaged over 100 subsamples to the minimal
number of sequences in the comparison, and noted a significant increase in Gini index from baseline to post-dose 1 in the IgG repertoires followed
by a significant decline post-dose 2 to comparable polarization as observed at baseline (C). In IGHM repertoires (with a reduced cohort of 21
subjects with 17 vaccines and four placebo), we noted a small but significant decrease in the proportion of the non-mutated repertoire post-dose 1,
however the values were not significantly lower than observed in the placebo group (D). The Gini index was significantly higher than at baseline in
the IgM repertoires at both time points (E), however the values observed in the vaccinee repertoires were again not significantly elevated in
comparison to the Placebo group. (*, **, ***, ns: significant at the 5%, 1% and 0.01% level, and p ≥ 0.05).
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the clonal overlap between baseline and post-vaccination repertoires

was slightly lower than observed in the placebo group, but not

significantly so. Focusing on the post-dose 2 repertoire, we found

that there was a comparable proportion of clonotypes retained from

post-dose 1 in the post-dose 2 repertoires of Group 1, 2 and 3

participants to one another and the placebo group. In the light of the

higher abundance of non-mutated IgG sequences at post-dose 2 in

Group 1, we specifically focused on the naive to mutated clonotype

transition and found that while this appeared to be slightly greater in

Group 1 than Group 2 or Group 3, the effect was not statistically

significant. There was also no significant difference in the proportion of

IgM clonotypes at a prior time point that were observed class-switched

at the following time point.

On analyzing the relative proportions of isotype subtype

frequencies among the IgG repertoires we found that the proportion

of the repertoire occupied by IgG1 increased significantly post-dose 1,

from amean of 50.6 ± 4.2% to 64.8 ± 3.7%, and then again at post-dose

2 to 72.4 ± 3.4%. There were compensatory decreases in IgG2 (39.4 ±

4.3% to 24.0 ± 3.4% to 19.4 ± 2.8%) and IgG4 (1.6 ± 0.6% to 0.8 ± 0.3%

to 0.6 ± 0.3%). The vast majority of clonotypes in this post-prime IgG1

increase were novel, in that they did not appear prior to vaccination

(96.2 ± 1.1%). There were no significant changes in the isotype subtype

frequencies in control participants.

We examined IGHV gene frequencies and while we noted several

IGHV genes with significant changes in frequency throughout the

course of vaccination among vaccinees in IgG and IgM repertoires, none

of these changes were significant relative to those observed in the

placebo group, post correction for multiple testing (Supplementary

Figures 2, 3). While the IGHV frequencies in IgM/IgD and IgG

repertoires within participants at the same time point were reasonably

well correlated, with average Spearman correlation coefficients of 0.95 ±

0.01, 0.94 ± 0.01 and 0.95 ± 0.01 at baseline, post-dose 1 and post-dose 2

respectively, the changes in IGHV genes observed in the IgG repertoire

were not mirrored in the IgM repertoires (Supplementary Figure 3B).

IgG and IgM repertoires were least correlated at post-prime, indicating

divergence in the repertoires coincident with the aforementioned

predicted PB peak (Supplementary Figure 3C).

These observations suggest an antigen-specific response in

vaccinees both post-dose 1 and post-dose 2. While clonal

expansion is a reliable marker for antigen-specificity, we decided

to use computational immune repertoire mining to refine our

prediction of the antigen-specific component of the response.
A database method for the prediction of
the EBOV GP-specific IgG repertoire

In order to predict the component of the repertoire that is likely to

bind to one of the vaccine antigens, we used our database of Ebolavirus

sequences to search for clonal relatives likely to share the same

specificity. Clonal relatives were defined as sharing the same IGHV

and 70% amino acid identity across the length-matched CDRH3.

Predicted Ebolavirus-binding heavy chain sequences are referred to

as “Ebolavirus hit sequences’’. As a control, we compared these results

to clonotype predictions using a non-Ebolavirus antibody database
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built from the non-Ebolavirus-specific, human subset of the Immune

Epitope Database (IEDB), as well as the human subset of a separate

Coronavirus database (CoV-AbDab). The trial occurred prior to the

COVID-19 pandemic, so there is not expected to be any systematic

increase in the hit rate to the Coronavirus database. Furthermore, the

vaccinees are UK-based and all lacked any IgG titer to the Ebolavirus

GP antigen at baseline, therefore there is not expected to be an

appreciable hit rate to the Ebolavirus antibody database at baseline.

We measured the proportion of sequences in the repertoire that

were hits to the database, which is a function of both the number of hit

clonotypes and their abundance. In line with our expectations, we

observed a significant increase in the proportion of IgG Ebolavirus hit

sequences in the vaccinees’ repertoires post-dose 2 (Figure 4A): at

baseline, a mean of 0.06± 0.04% of sequences, and maximally 0.68%,

were predicted to bind to Ebolavirus. There was a significant increase

to 0.51 ± 0.25% post-dose 1 (maximally 4.1%) followed by a significant

increase to 3.6 ± 1.2% (maximally 16.6%) post-dose 2. We did not

observe any significant changes in the proportion of sequences

predicted to bind to non-Ebolavirus antigens (Figures 4B, C). There

was no signal in the placebo group, with a mean of 0.07 ± 0.05%, and

0.08 ± 0.11% and 0.03 ± 0.04%, and maximum of 0.10%, 0.18% and

0.06% of IgG sequences predicted to be EBOV-reactive, at baseline,

post-dose 1 and post-dose 2 respectively (Figure 4A). There were no

significant differences between the different dose 1-dose 2 interval

groups in the proportion of the repertoire mapping to the database

(Figures 4D–F). We note the same significance intervals, though with

hit rates on average 3.6 or 36.0 times lower, using CDRH3 amino acid

identity thresholds of 80% and 90% in addition to the 70% threshold

used in the main figures (Supplementary Figure 4). We did not

observe this signal in the IgM repertoires, with comparably very low

hit rates and no significant difference in the proportion of IgM

Ebolavirus hit sequences in the vaccinees repertoires post-dose 1 or

post-dose 2 compared to baseline (Supplementary Figure 5).

We next looked at the diversity of these predicted hit sequences

by looking at the originating clonotypes. We found a significant

increase in the number of unique hit clonotypes post-dose 1 and

post-dose 2 from on average 1.6 ± 0.6 at baseline to 6.1 ± 2.0 post-

prime, and 23.3 ± 5.9 post-boost (Supplementary Figure 6). We

found that 45% of clonotypes post-prime were also found within the

same participant post-boost, i.e., these predicted antigen-specific

sequences that arose during the first vaccination were also observed

following the multivalent dose 2. By contrast, only 17.5% of hit

clonotypes post-dose 2 were found at the preceding time point, i.e.,

the majority of post-dose 2 clonotypes were derived from lineages

absent at the post-dose 1 time point in the same participant.

To examine whether these novel clonotypes arose through

somatic hypermutation of existing hit antibodies, we looked at

the hits on the basis of IGHV origin (Figure 5). On average, hit

sequences derived from 5.4 ± 0.9 different IGHV genes prior to

vaccination, 7.3 ± 1.2 post-dose 1, and 10.1 ± 1.1 post-dose 2,

revealing significant diversification in the genetic origins of the

predicted antigen-specific component of the BCR repertoire within

participants following the multivalent dose 2. Our sequences

mapped to 166 mAbs within the EBOV-AbDab database (out of

981 human mAbs); these were encoded by 31 and 36 IGHV genes
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post-prime and post-boost respectively with the majority of IGHV

genes observed at both time points (29).

Finally, we looked at the hits in the context of the breadth of

reactivity to different Ebolavirus species in our database. Of 121

human mAbs with the “broadly reactive” label, there were hits to 27

in the post-dose 1 and post-dose 2 repertoires combined. There were

hits to 13 mAbs post-dose 1 and 25 post-dose 2 of which 11 were

shared (Figure 5D) indicating that the significant diversification of hit

sequences observed post-dose 2 results in more sequences predicted

to be broadly reactive appearing in the vaccinee repertoires.
Predicted EBOV-specific sequences are
found within expanded and public clones

Ebolavirus hit sequences post-dose 2 were on average found in

larger clonotypes than the repertoire average: the mean size of a

clonotype containing a hit sequence post-dose 2 had 73.8 ± 27.5

members, in contrast with the repertoire-wide mean of 18.6 ± 3.7.

For 35 of 40 vaccinees, the mean clonotype size was larger for hit

sequences than the repertoire-wide mean, while for 24 of 40

participants at least one of the ten largest clonotypes contained

hit sequences (including 12 participants for which the largest
Frontiers in Immunology 10238
clonotype mapped to the database): for ⅔ of our cohort of

vaccinees, our database approach was sufficiently powerful to be

able to map at least one of the ten most expanded IgG clonotypes

post-dose 2 to characterized mAbs. In one participant, four of the

ten largest clonotypes had a hit to our database. Our coverage of the

vaccinees’ most expanded clonotypes post-dose 2 demonstrates the

strength of database-based specificity prediction.

These hit clonotypes were also exceptional with regards to their

publicity (Figure 6). Focusing on the 100 largest clonotypes per

subject at each time point, we noted 50 clonotypes that were found

in more than one subject post-dose 1 or post-dose 2 (bars in blue).

Of these 50 public clonotypes, 6 post-dose 1 and 14 post-dose 2

mapped back to our EBOV-specific database (bars in gray)

(Figures 6A–C). Post-dose 1, the most public clonotype which

was observed in 20 participants, was an IGHV1–2/IGHJ4

clonotype that did not match to our EBOV-AbDab database nor

to any antibody in the IEDB or CoV-AbDab. This post-dose 1

clonotype significantly reduced in frequency post-dose 2

(Figure 6D). The second most public clonotype post-dose 1 was

observed in 12 participants, corresponding to an IGHV3–15/IGHJ6

clonotype with hits to the 6666-like clonotype mAbs that we

highlighted in EBOV-AbDab. This clonotype significantly

increased in both publicity (Figure 6C) and within-participant
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FIGURE 4

Predicted Ebolavirus-specific antibody sequences significantly increase in frequency post-dose 1 and post-dose 2 from baseline, while predicted
Coronavirus and other antigen-specific sequences do not significantly change in frequency We used either our curated Ebolavirus antibody
database, EBOV-AbDab (A), a Coronavirus-specific antibody database (CoV-AbDab) (B) or a non-Ebolavirus database of antibodies to diverse
antigens (IEDB) (C) to predict the subset of the IgG repertoire that is specific to an antigen in question, and found a significant increase in the
percentage of sequences mapping to EBOV-AbDab (referred to as “hits”) throughout the course of vaccination, particularly post-dose 2, while there
was no significant change in the percentage of sequences mapping to CoV-AbDab or the IEDB. This indicates that these are likely antigen-specific
BCRs. For statistical testing, black bars show paired tests between time points (A-C), while red bars show tests between vaccinees and the control
group, and blue bars between groups of vaccinees (D-F). There was no significant difference between the placebo group and Ad26.EBOV/MVA-BN-
Filo vaccinees prior to vaccination (Mann-Whitney U-test; p = 0.25; red bar in panel (D). Following dose 1, there was a significant increase in the
proportion of EBOV-AbDab hits (p<< 0.001), and a further significant increase from post-dose 1 to post-dose 2 (p<< 0.001; black bars in panel (A),
resulting in significantly higher percentages of EBOV-AbDab hit sequences in the Ad26.EBOV/MVA-BN-Filo vaccinees vs. the placebo group post-
dose 1 (p = 0.03) and post-dose 2 (p<< 0.001) (red bars, (E, F). There were no significant differences between the different dose interval groups at
any time point (blue bars, (D-F). There were no significant differences in the hit rates to any database in the IgM/IgD repertoires (Supplementary
Figure 5). (*, ***, ns: significant at the 5%, 1% and 0.01% level, and p ≥ 0.05).
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frequency post-dose 2 (Figure 6E), being observed within the 100

largest clonotypes of 32 participants in our cohort of 40 vaccinees.

Focusing on this lineage, we noted lower IGHV identities post-dose

2; interestingly, the Group 1 participants had significantly fewer

mutations in this lineage (Figure 6E). Permutation test on a per-

participant basis on the subset of subjects which had the lineage

both post-dose 1 and post-dose 2, revealed a significant decrease in

IGHV identity within the majority of participants (Figure 6F).

Figure 6G shows the presence/absence of each hit present in

public (in top 100) clonotypes in each participant with any

predicted hits post-dose 1; the most public clonotype is clearly

the 6666-like clonotype, which is present at a greater frequency than

the other set of mAbs we highlighted, our novel lineage discovered

within Donor 58 (Figure 6H). Figures 6J, K show the same results

post-dose 2, where the number of public clonotypes can be seen to

be larger, with again the 6666-like clonotype standing out for its

frequency and the number of participants in which it is observed.
The proportion of predicted Ebolavirus-
specific sequences correlates with fold-
change in anti-EBOV IgG titer

We found a significant correlation between the proportion of

Ebolavirus hit sequences in the repertoire 7 days post-boost and the

anti-EBOV IgG titer 21 days post-dose 2, after adjusting for an
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established group effect (p = 0.001, R2 = 0.51) (Figure 7). The total

Spearman’s rho coefficient, not accounting for the different groups,

was 0.54 (p = 0.0006). There was no significant correlation with the

proportion of Ebolavirus hit sequences at the post-dose 1 time point

(p = 0.56) nor with the Gini index at either time point (p = 0.86 and

0.12 for post-dose 1 and post-dose 2 time points respectively)

(Supplementary Figure 7).
Discussion

Vaccine development is supported by improvements in our

understanding of the humoral immune response to both natural

infection and vaccination. This includes gaining insights into

epitope immunodominance, the genetic composition of the BCRs

targeting those epitopes, how vaccine-induced immunity may

generalize to novel variants, and how particular populations

respond differently (52). Repertoire sequencing’s utility in this

context is its view of the repertoire in depth, particularly in the

case of bulk VH sequencing where tens to hundreds of thousands of

cells can be sequenced. A limitation, in comparison to the wealth of

possible single-cell assays, is the loss of the native pairing

information which would allow expression and testing of BCRs of

interest, as well as the loss of transcriptional or cell surface marker

information which would inform on B cell phenotype. Monoclonal

antibodies from sorted cells provide information about antigen-
B C

D E

A

FIGURE 5

predicted hit sequences derive from diverse IGHV origins, and more predicted broadly reactive sequences appear following the second dose EBOV-
AbDab hits derive from 38 IGHV genes (A), the majority of which are seen at both time points (B). There are 1.5x as many unique CDRH3s found
among post-dose 2 hits than post-dose 1 hits (C). We note that there are hits to twice as many broadly reactive mAbs post-boost than at post-dose
1, indicating that the dose interval may be conducive to developing broadly neutralizing mAbs (D). The broadly neutralizing mAbs derive from 15
IGHV genes (E).
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FIGURE 6

Many of the most public clonotypes are predicted to be antigen-specific by our method, with the most notable being the 6666-like lineage which
increases in frequency and has reduced IGHV identity post-boost we explored convergence among the 100 largest clonotypes in each IgG
repertoire. We noted limited convergence at baseline with the exception of an IGHV3–7 lineage found in ten subjects (A). Post-dose 1, there were
50 clonotypes which were seen in at least two subjects of which six (20%) contained hits to EBOV-AbDab. Unfortunately, the most public clonotype
observed in 20 subjects was not a hit to our database (referred to as the uncharacterized IGHV1–24/IGHJ4 clonotype), however the next most
public clonotype was a 6666-like clonotype which we had already noted for its publicity within the database itself (B). Post-dose 2, there were also
50 public clonotypes, of which 14 (28%) were hits to the database; most notably, the 6666-like clonotype was observed within the 100 most
abundant clonotypes of 32/40 vaccinees (C). The uncharacterized IGHV1–24/IGHJ4 clonotype is not only public post-dose 1 but significantly
increases in frequency, decreasing again post-dose 2 to comparable levels as at baseline (D). By contrast, the 6666-like clonotype significantly
increases from baseline to post-dose 2 (p<< 0.001) but is not significantly increased in frequency post-dose 1 (p = 0.11) (E). We focused on this
6666-like clonotype to look for evidence of somatic hypermutation. Interestingly, we found post-dose 2 that this clonotype was significantly less
mutated in Group 1, with the shortest boost interval (F). We looked at this lineage on a per-subject basis in the eleven subjects in which there were
hit sequences at both post-vaccination timepoints; using a permutation test, we identified four subjects for which there was sufficient evidence that
sequences were more mutated post-dose 2 (G). Focusing further on the convergent hit clonotypes, it can be seen that at both post-dose 1 (H) and
post-dose 2 (J) the 6666-like lineage is the most public hit clonotype (red labels correspond to broadly neutralizing antibodies; black boxes indicate
presence of the lineage within the 100 largest clonotypes). Of the two lineages we noted in Figure 2, the 6666-like lineage is significantly higher
frequency after both dose 1 (I) and dose 2 (K), and more public than the Donor 58 lineage. (*, **, ***, ns: significant at the 5%, 1% and 0.01% level,
and p ≥ 0.05).
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specificity and functionality, but offer a limited window into the

diversity of the immune response. Here, computational immune

repertoire mining allowed us to somewhat combine the strengths of

these two techniques. This database-based technique, validated in a

transgenic model system in previous work, has been used in

previous studies as validation of antigen-specificity of public

clonotypes, for example in the study by Galson and colleagues in

which the Coronavirus antibody database (CoV-AbDab) was used

to provide evidence of antigen-specificity of convergent clonotypes

(48, 53). With the ongoing expansion of available immune

repertoire sequence data and monoclonal antibody discovery, we

envisage that this approach will become increasingly useful.

In EBL2001 vaccinees we found repertoire polarization

following dose 1 in both the IgG and IgM repertoires, a

significant increase in the proportion of non-mutated IgG

sequences and decrease in the proportion of non-mutated IgM

sequences. Among the IgG repertoires, we noted a significant

increase in the frequency of the IGHG1 subclass and

compensatory decrease in the frequency of the IGHG2 and

IGHG4 subclasses. The post-dose 1 B-cell repertoire signature is

indicative of clonal expansion and class switching consistent with a

plasmablast peak. There was a notable lack of these signatures

following the MVA-BN-Filo dose 2, which is consistent with

transcriptomic data in which genes related to B cell activation

that are clearly upregulated seven days after the Ad26.ZEBOV dose

1 are not significantly upregulated (relative to baseline) following

the MVA-BN-Filo dose 2 (54).
Frontiers in Immunology 13241
The most notable property of the post-dose 2 IgG repertoires

was the significantly elevated proportion of sequences predicted to

bind to the Ebolavirus glycoprotein according to our database

method, which were found disproportionately in expanded and

public clonotypes. The most exceptional publicity we observed was

in the 6666-like lineage, which was within the 100 largest clonotype

post-boost in 32 participants, and which we had already noted as

the most public lineage of antibodies in our reference database. An

increase in IGHV3–15 frequency was observed by BCR-seq in

primary vaccination with ERVEBO by Erhardt and colleagues

(32) as well as via RNA-seq by Blengio and colleagues (54).

IGHV3–15 thus plays a clear role in the B cell response to

Ebolavirus vaccination, from its abundance in monoclonals

isolated from at least fifteen EVD survivors and vaccinees, to its

appearance in bulk BCR-seq data in both our own Ad26.ZEBOV/

MVA-BN-Filo cohort and Erhardt and colleague’s ERVEBO cohort,

and finally in bulk RNA-seq data.

However, it is not clear that the role this class of antibody plays

is equal in both infection and vaccination. Davis and colleagues

performed bulk BCR sequencing in a number of EVD survivors and

IGHV3–15 was not noteworthy; rather, IGHV3–13 was identified

as appearing convergently in their monoclonals isolated from two

EVD survivors (55). In Chen and colleagues’ 2023 study, IGHV1–

69 and IGHV1–2 were the highest frequency among ~10,000 EBOV

GP specific clonal lineages sequenced in a single EVD survivor (30).

The simplest hypothesis for this discrepancy is that the EVD

survivor B cells tend to be from the memory population and

collected months post-infection, vs. the plasmablast sequences

that we are most likely sampling eleven- and seven days post-

prime and post-boost, and maximally 3 months after primary

vaccination. The presence of IGHV3–15 among MBC-derived

mAbs, as well as the reappearance of more somatically-mutated

IGHV3–15 lineages post-boost, indicates that cells expressing this

lineage of antibody do indeed enter the memory compartment.

There are further more complex differences among these studies

that lie in the broader immunological context of vaccination vs.

infection. There is clearly a major role for IGHV1–69 and IGHV1–2

in antiviral B-cell responses more generally to influenza, HIV and

hepatitis C virus which could indicate that there is some induction

method for these genes that is secondary in vaccination (56).

Alternatively, this discrepancy could be immunogenetic. Our

Ad26.ZEBOV/MVA-BN-Filo cohort is primarily Caucasian, while

Ebolavirus is endemic to West Africa. The role of immunogenetics

in the expressed repertoire is only now beginning to be understood

due to historic difficulties in resolving the immunoglobulin locus at

high-throughput (57–59).

We identified a correlation between the proportion of the

repertoire that is predicted to bind to Ebolavirus post-boost and

the anti-EBOV IgG titer, however we did not sequence the serum

antibodies via Ab/Ig-seq to verify that there was any overlap with

the sequences we predicted as antigen-specific. Some have reported

little overlap between BCR-seq and the serum, and this was found to

be true of the MBC repertoire and serum antibodyome in an

Ebolavirus survivor (30, 60, 61). However, the repertoire and
FIGURE 7

The percentage of sequences related to EBOV-AbDab post-dose 2
correlates positively with the fold change in anti-EBOV GP titer from
baseline to 21 days post-dose 2 the percentage of sequences
related to EBOV-AbDab is positively correlated with the fold-change
in anti-EBOV GP IgG titer 21 days post-dose 2, with a Spearman’s
correlation coefficient of 0.54, p<< 0.001. Given that the fold
change is higher on average for Group 2 and Group 3 than Group 1,
we added Group as another variable in an OLS regression on the
log-transformed values; the total regression had an R2 of 0.51 with
the hit rate variable positively associated with a correlation
coefficient of 0.43 and p-value of 0.001. There was no significant
correlation with hit rate post-dose 1 (Supplementary Figure 7).
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serum overlap should be sensitive to when the two experiments

(cellular vs. serum) are performed, as well as to the immunological

context – we identified a correlation between the BCR repertoire at

seven (cellular) and 21 days (serum) post-boost, in the context of

four protein antigens in a non-replication competent viral vector.

We would not expect findings in the context of natural infection,

with significantly longer or shorter intervals between the two

experiments, to generalize to our own findings. Jackson and

colleagues found a positive correlation between change in

clonality index (comparable to Gini index) and fold-change in

anti-HA titer following influenza vaccination (62). With a cohort

of just five participants, Trück and colleagues identified a

correlation between predicted Hib (Haemophilis influenzae)-

specific CDR3 sequences and anti-Hib avidity index (63). Our

cohort of 45 participants provides stronger statistical evidence

that BCR repertoire features can correlate with IgG titer. Whether

our predicted antigen-specific antibodies contribute to humoral

immunity is a key question that could be addressed via Ab/Ig-seq.

Given the extremely large possible combinatorial diversity of

the antibody response, it was surprising to us that existing Ebola-

specific mAb sequences were sufficient to describe at least one of

the ten most expanded clonotypes post-dose 2 in more than 2/3 of

our cohort of vaccinees. Public clonotypes have been identified in

BCR-seq data from diverse infection and vaccination contexts

(influenza, dengue, HIV-1, coronavirus, Hepatitis C) (30, 62, 64–

69) and appear to be the rule rather than the exception, mediated

by common physicochemical motifs encoded by both the

germline genes and shared somatic hypermutation (70, 71). We

observed significantly more public clonotypes following the

secondary immunization – we do not yet know whether this is

a common feature of the BCR repertoire in primary vs. secondary

exposure, or a result of the different viral vectors. Given the

ubiquity of public clonotypes, BCR repertoire data should be

understood within the context of previously described antibodies

to antigens of interest. It would be interesting to consider how

large a database of monoclonals would need to be to completely

cover the most expanded clonotypes in a cohort of a given size.

Continued antibody discovery efforts combined with

standardization and deposition of antibody sequence and

epitope data in public databases will be critical to the success of

these methods.
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