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Editorial on the Research Topic
Applications of RNA-seq in cancer and tumor research

Over the past decade, RNA sequencing, commonly referred to as RNA-Seq, has emerged
as a powerful and significant tool, leading to remarkable advancements in the fields of cancer
and tumor research. Presently, RNA-Seq is extensively employed in molecular biology,
playing a pivotal role in enhancing our comprehension of genome functions, particularly
those relevant to cancer research (Stark et al., 2019). Notably, it has become an indispensable
tool for conducting whole-transcriptome analysis, enabling the study of differential gene
expression and differential splicing of mRNAs. Transcript isoform expression and usage, a
key source of variation between healthy and cancerous or diseased tissues in various medical
conditions, can be effectively investigated using this technique (Gonzalez and McGraw,
2009). Undoubtedly, the advent of sequencing technologies, such as next-generation
sequencing (NGS) and nanopore sequencing, has facilitated comprehensive
transcriptome analysis, leading to significant breakthroughs in cancer and tumor
research. These technologies have enabled the examination of single-cell gene
expression, translation, RNA structure, and spatial transcriptomics. Nanopore
sequencing stands out for its ability to deliver full-length transcripts accurately and to
identify and quantify multiple isoforms, making it particularly valuable for cancer research.
This technology has been successfully applied in the study of various cancer types, including
leukaemia, breast cancer, ovarian cancer, and lung cancer (de Jong et al., 2017; Minervini
et al., 2017; Suzuki et al., 2017). Some studies have even suggested that RNA-Seq has the
potential to revolutionize the analysis of eukaryotic transcriptomes (Wang et al., 2009). Its
ability to investigate diverse aspects of RNA biology in cancer and tumors is critical for
developing a functional understanding of the genome, studying development processes, and
identifying molecular dysregulation underlying cancer and other diseases. Consequently,
RNA-Seq has already assumed a vital role in practical clinical applications (Byron et al., 2016;
Haque et al., 2017). In this Research Topic, we have compiled 11 papers that highlight several
frontiers in the role of RNA-Seq in cancer and tumor research.

Du et al. focused on investigating the genomic effects of high-dose single-shot
radiotherapy with the aim of providing a dynamic map for non-small cell lung cancer
(NSCLC). The authors employed whole-transcriptome sequencing to elucidate molecular-
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level changes in A549 and H1299 cell lines exposed to 10 Gy X-rays
at different time points, comparing them to a no radiation group,
and found dynamic changes following radiation therapy within 48 h.
Their findings emphasized key molecules and pathways involved in
NSCLC after high-dose single-shot radiotherapy. This study
contributes to enriching the content of radiobiology in precision
radiation oncology.

Jin et al. utilized a published single-cell transcriptomics profile to
deconvolute the abundance of cell types among paired plasma
samples from colorectal cancer patients who underwent tumor-
ablative surgery. Their objective was to identify the tissue-specific
contributions of circulating cell-free RNA (cfRNA) transcriptomic
profiles. Furthermore, they validated differentially expressed
cfRNAs using RNA-Seq. The authors observed a significant
decrease in the transcriptomic component from intestinal
secretory cells in post-surgical cfRNA samples. They also found
consistent expression of HPGD, PACS1, and TDP2 between cfRNA
and tissue samples, indicating the potential of these markers for
minimal residual disease (MRD) testing, which involves profiling
remnants cancer cells after or during treatment.

Song et al. identified key genes associated with cuproptosis and
ferroptosis (POR, SLC7A5 and STAT3) involved in sepsis-induced
cardiomyopathy (SIC). Additionally, they explored therapeutic drug
candidates. This work holds promise for the development of
treatments for SIC.

Nousiainen et al. conducted RNA-Seq analysis on xenografts
and immortalized cell lines to gain insights into the pathobiology of
hepatoblastoma (HB). Through protein-protein interaction analysis,
they identified ubiquitination as a key dysregulated pathway in HB.
The study also revealed the potential prognostic utility of UBE2C in
HB and highlighted the ubiquitin pathway as a potential therapeutic
target of the disease.

Zhu et al. provided a comprehensive summary of the main
methods for detecting circulating tumor DNA (ctDNA), including
PCR-based sequencing and NGS, along with their respective
advantages and disadvantages. Additionally, the authors reviewed
the significance of ctDNA analysis in guiding adjuvant therapy and
predicting relapse in lung, breast, and colon cancers, among others.
Despite the existing challenges in MRD detection, the feasibility of
ctDNA as a detection method and the revolutionary potential of
ctDNA-based liquid biopsies offer a promising approach to cancer
monitoring.

Xie et al. developed a prognostic risk model and identified immune
ferroptosis-related genes with independent prognostic value using
procedural algorithm analysis. Their findings demonstrated significant
correlations between immune scores, immune checkpoints, and
chemotherapeutic agents with prognostic models. These features were
subsequently considered as independent prognostic factors for predicting
overall survival (OS) and clinical treatment response in breast cancer
patients. This study provides a better understanding of the contribution of
immune ferroptosis-related genes in breast cancer and highlights their
potential as prognostic markers and therapeutic targets.

Wang et al. employed consensus clustering to identify two
disulfidptosis-molecular subtypes in breast cancer, with differing
OS outcomes. Subsequently, the authors developed a prognostic
signature based on differentially expressed genes related to
disulfidptosis, which demonstrated improved predictive
capabilities for patient survival and provided preliminary insights

into the relationship between the risk model and the immune
landscape. This study offers valuable prognostic predictions for
breast cancer patients, with prognostic signatures closely
associated with the tumor microenvironment, potentially
informing clinical treatment decisions.

Niu et al. proposed a microRNA (miRNA) and small molecule
association prediction model, named GCNNMMA, by integrating
graph neural networks and convolutional neural networks. This
model inspired by ensemble learning, demonstrated superior cross-
validation results compared to other comparative models,
suggesting the effectiveness of GCNNMMA in mining the
relationship between small molecule drugs and disease-relevant
miRNAs. GCNNMMA holds promise as a valuable tool for
exploring the associations between small molecules and miRNAs
in disease contexts.

Li et al. developed a novel ensemble model, called autoencoder-
assisted graph convolutional neural network (AE-GCN), that
combined autoencoder and graph convolutional neural network
techniques to identify accurate and fine-grained spatial domains. In
cancer datasets, AE-GCN successfully identified disease-related
spatial domains, revealing more heterogeneity than traditional
histological annotations. Moreover, AE-GCN facilitated the
discovery of novel differentially expressed genes with significant
prognostic relevance. This study demonstrates the ability of AE-
GCN to unveil complex spatial patterns from spatially resolved
transcriptomics data.

Chen et al. addressed the lack of a specialized database focusing
on alternative splicing events (ASEs) in esophageal squamous cell
carcinoma (ESCC) and the underrepresentation of long non-coding
RNAs (lncRNAs) in ESCC molecular mechanisms with the
development of a database, called DASES. DASES provides
comprehensive insights into ASEs in ESCC, encompassing both
lncRNAs and mRNAs, thereby enhancing the understanding of
ESCC molecular mechanisms and serving as a valuable resource for
the ESCC research community.

Su et al. introduced a machine learning-based method, called
LDAenDL, which utilizes an ensemble of deep neural networks and
LightGBM, to detect potential lncRNA biomarkers for lung cancer
and neuroblastoma. The authors demonstrated that LDAenDL
outperformed classical LDA prediction methods, and identified
new potential biomarkers for these diseases. The application of
LDAenDL may facilitate the development of targeted therapies for
lung cancer and neuroblastoma.

In summary, these papers demonstrate the diverse applications
of RNA-Seq in cancer and tumor research. The studies utilize RNA-
Seq to identify differentially expressed genes, explore molecular
mechanisms, and identify potential therapeutic targets in various
types of cancer. The findings contribute to our understanding of
cancer biology and highlight the potential of RNA-Seq in improving
cancer diagnosis, prognosis, and treatment.
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Genome-wide analyses of lung
cancer after single high-dose
radiation at five time points
(2, 6, 12, 24, and 48h)
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Tiankui Qiao1*
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Background: An increasing number of clinicians are experimenting with high-
dose radiation. This study focuses on the genomic effects of high-dose single-
shot radiotherapy and aims to provide a dynamic map for non-small cell lung
cancer (NSCLC).

Methods: We used whole-transcriptome sequencing to understand the
evolution at molecular levels in A549 and H1299 exposed to 10 Gy X-rays
at different times (2, 6, 12, 24, and 48 h) in comparison with the no radiation
group. Ingenuity pathway analysis, ceRNA analysis, enrichment analysis, and
cell cycle experiments are performed for molecular analyses and function
analyses.

Results: Whole-transcriptome sequencing of NSCLC showed a significant
dynamic change after radiotherapy within 48 h. MiR-219-1-3p and miR-221-
3p, miR-503-5p, hsa-miR-455-5p, hsa-miR-29-3p, and hsa-miR-339-5p were
in the core of the ceRNA related to time change. GO and KEGG analyses of the
top 30 mRNA included DNA repair, autophagy, apoptosis, and ferroptosis
pathways. Regulation of the cell cycle-related transcription factor E2F1 might
have a key role in the early stage of radiotherapy (2.6 h) and in the later stage of
autophagy (24 and 48 h). Functions involving different genes/proteins over
multiple periods implied a dose of 10 Gy was related to the kidney and liver
pathway. Radiation-induced cell cycle arrest at the G2/M phase was evident at
24 h. We also observed the increased expression of CCNB1 at 24 h in PCR and
WB experiments.

Conclusion: Our transcriptomic and experimental analyses showed a dynamic
change after radiation therapy in 48 h and highlighted the key molecules and
pathways in NSCLC after high-dose single-shot radiotherapy.

KEYWORDS

whole-transcriptome sequencing, non-small cell lung cancer, radiobiology, precision
radiotherapy, bioinformatics
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1 Introduction

Lung cancer (LC) accounted for the world’s highest mortality
rate and second-highest incidence rate in 2022 (Siegel et al.,
2022). Radiotherapy (RT) can cure about 40% of cancers (De
Ruysscher et al., 2019), which has bright therapeutic prospects for
patients.

Precision radiotherapy aims to optimize outcomes and
minimize toxicity to patients (Joseph and Vijayakumar, 2020).
Most researchers are currently studying the balance of the dose
(Scott et al., 2021) or the spatial depth per fraction to decrease side
effects. By using artificial intelligence, dose distributions can be
predicted based on the anatomy of a patient and calculated more
quickly (Hosny et al., 2018; Huynh et al., 2020; Luk et al., 2022;
Teuwen et al., 2022). In clinical practice, doctors usually adapt 24 h
or 48 h/fraction (fx). For a high dose (such as 10–12 Gy), the total
time of five fractions can range from 1.5 to 2 weeks (Chmura et al.,
2021).The hours of the fraction are not accurate, and few studies
discussed suitable hour of fraction, involving less dynamic changes.

In recent years, precision radiotherapy applied high-dose
therapy (Burkoň et al., 2022; Chairmadurai et al., 2022; DLP
et al., 2022; Milic et al., 2022; Sidaway, 2022; Tadimalla et al.,
2022). Stereotactic body radiotherapy (SBRT) has the
characteristics of high tumor dose distribution in the irradiation
center and a rapid drop of extradural dose. For lung cancers that are
early-stage and inoperable, this is the standard radiation therapy (Lo
et al., 2010; Timmerman et al., 2014). The efficacy and toxicity of
stereotactic body radiotherapy in patients with centrally located
non-small cell lung cancer (10–12 Gy/fraction) were studied
(Chmura et al., 2021).

Our study designed groups after radiation for 2, 6, 12, 24, and
48 h to reveal the characteristics of different time periods to discover
the suitable interval time for multi-fractions and explore the
dynamic change of a gene caused by radiation in single-fraction
therapy. Meanwhile, we used the whole-transcriptome sequencing
method to learn radiobiology from the perspective of a genome. This
enriches the radiobiological content of high-dose radiation therapy,
providing biological basics for treatment of SBRT and suggesting
new possible molecular methods for combined targeted therapy and
chemotherapy.

2 Materials and methods

2.1 Ethics statement

The Ethics Committees of Jinshan Hospital of Fudan University
exempted the study because no personal information is included in
the study.

2.2 Transcriptome sequencing sample
preparation

For the present study, NSCLC cells (A549 and H1299) in a six-
well plate at 40% density were divided into no radiation and
radiation groups. The radiation group was split into five time
points, with two repeats per group.

The radiation group was exposed to a single high dose (Trilogy
linear accelerator, 6 MV X-ray radiation, absorption dose rate of
600 cGy/min, once, 10 Gy dose). The cells were washed with PBS
twice. TRIzol was added to lysis cells at 2, 6, 12, 24, and 48 h after
radiation with the no radiation group. The whole transcriptome was
sequenced in a total of 24 samples.

2.3 Cell cycle assays

A549 and H1299 were collected at 2, 6, 12, 24, and 48 h after
radiation and fixed in 70% ethyl alcohol at −20°C overnight together
with the no radiation group. For 15 min, they were incubated in
0.5 mL PI/RNase Staining Buffer (BD Biosciences, Franklin, NJ,
United States) after three washes with PBS. Flow cytometry was used
to analyze the cell fractions (Beckman Coulter or BD Biosciences in
the United States).

2.4 Western blot detection

Cells were washed twice with PBS and lysed at 4°C for 30 min.
Purities were selected by centrifugation at 15,000*g, at 4°C for
20 min, 10% SDS-PAGE was used to separate proteins, and a
nitrocellulose filter was used for transfer. All samples were evenly
transferred and incubated in a closed solution for 2 hours at room
temperature using a stained filter. Anti-CCNB1 was diluted at 1:
1000 for 12 h, washed twice with PBS and TBST, and then exposed
to the filter. The filter was incubated with the secondary antibody, at
1:1000 for 1 h, and then washed with TBST. In addition, anti-β-actin
antibodies were used as an internal reference.

2.5 Real-time fluorescence quantitative
polymerase chain reaction detection

The RNA Purification Kit (Yishan Biotechnology Company,
Shanghai, China) and the 5x Reverse Transcriptase Master Mix
(Takara, Osaka, Japan) were used to obtain cDNA. The primers were
as follows: β-actin, forward 5′-TGACGTGGACATCCGCAAAG-3′,
reverse 5′-CTGGAAGGTGGACAGCGAGG-3′; CCNB1, forward
5′-AATAAGGCGAAGATCAACATGGC-3′, reverse 5′-TTTGTT
ACCAATGTCCCCAAGAG-3′.

2.6 Bioinformatics analysis

2.6.1 Differential mRNA, miRNA, circRNA, and
lncRNA

The original data were standardized. The mRNA, miRNA,
circRNA, and lncRNA of the 2-, 6-, 12-, 24-, and 48-h treatment
groups and the no radiation group were analyzed by the DESeq
package of the R language software. |log2 (fold change) | >1 and p <
0.05 were set as the criteria for intergroup differences.

The no radiation group of A549 and H1299 was also analyzed
with the DESeq package to obtain the differential mRNA, miRNA,
circRNA, and lncRNA, named as NCdiffmRNA, NCdiffmiRNA,
NCdiffcircRNA, and NCdifflncRNA, respectively. |log2 (fold
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change) | >1 and p < 0.05 were set as the criteria. These NCdiffRNAs
(NCdiffmRNA, NCdiffmiRNA, NCdiffcircRNA, and
NCdifflncRNA) represent the difference caused by the cell line.
A549 is an epithelial cell isolated from the lungs of a 58-year-old
white male with carcinoma. H1299 is isolated from the lungs of a 43-
year-old white male patient with carcinoma.

2.6.2 Short Time-series Expression Miner
The analysis samples were analyzed with the Short Time-series

ExpressionMiner (STEM) (Ernst and Bar-Joseph, 2006) in the order
of [“A549_NC”—> “A549_2 h”—> “A549_6 h”—> “A549_
12 h”—> “A549_24 h”—> “A549_48 h”]. The p-value was
corrected by the false discovery rate method, and the significant
modules with p-value less than 0.05 were selected. A total of
16 significant modules of A549 were screened in 50 modules. A
total of 39 significant modules were also screened in the order of
["H1299_NC”—> “H1299_2 h”—> “H1299_6 h”—> “H1299_
12 h”—> “H1299_24 h”—> “H1299_48 h”]. The trend map and

clustering heatmap of the significant module in A549 and
H1299 were drawn (Figure 1B). These mRNAs in significant
modules related to time after radiation were recorded as STEM
genes.

The intersection between the NCdiffmRNA and STEM gene was
taken, named as diffmRNA. DiffmRNA represented differences after
radiation in 48 h caused by the two cell lines. The remaining common
gene was named commonmRNA. CommonmRNA represents
common genes of non-small cell lung cancer, regardless of the
differences caused by the two cell lines after radiation in 48 h. By
applying the same process for NCdiffcircRNA, NCdifflncRNA, and
NCdiffmiRNA, we got commoncircRNA, commonlncRNA, and
commonmiRNA, respectively.

2.6.3 Ingenuity pathway analysis
CommonmRNA at 2, 6, 12, 24, and 48 h was analyzed by

Ingenuity pathway analysis (IPA, http://www.ingenuity.com). The
setting is shown in Supplementary Materials (S2–S6).

FIGURE 1
(A) Diagram of intersections in different mRNA, miRNA, lncRNA, and circRNA after radiation of A549 and H1299 cells in five time points (2, 6, 12, 24,
and 48 h) compared with non-irradiated cells. (B) Trend chart of mRNA after radiotherapy in A549 and H1299 cells in STEM analyses (a screenshot of the
main interface window of the STEM is found in Figure 1B. In this window, each box corresponds to one of the model temporal expression profiles. The
data were sampled at five time points 2, 6, 12, 24, and 48 h. The number at the top of a profile box is the profile ID number. The colored profiles had a
statistically significant number of genes assigned). (C) Significant ceRNA network related to five time points (2, 6, 12, 24, and 48 h) after radiation therapy in
A549 and H1299 cells: mRNA–miRNA–circRNA network. (D) Significant ceRNA network related to five time points (2, 6, 12, 24, 48 h) after radiation
therapy in A549 and H1299 cells: mRNA–miRNA–lncRNA network.
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2.6.4 CeRNA analysis and enrichment analysis
Pearson r was used to calculate the correlation of 24 samples.

MiRNA–mRNA relationship pairs were screened (the absolute
correlation coefficient value greater than or equal to 0.60, and the
p-value was less than or equal to 0.05). According to the mechanism
of action of miRNA and mRNA, the relationship pairs of negative
regulation were screened, and miRNA–mRNA relationship pairs
were screened. The miRanda program was used to predict the
binding between these miRNA–mRNA sequences, using the
default parameter of miRanda v3.3a. Finally, pairs of
miRNA–mRNA relationships were obtained. Pairs of
miRNA–circRNA relationships were also obtained by the same way.

For these predicted relationships, the MuTaME method was
performed to get a ceRNA score (Tay et al., 2011). At the same time,
the p-value corresponding to the ceRNA relationship was calculated
in combination with the hypergeometric distribution, and the
smaller the p-value, the more significant these miRNAs shared
between the two ceRNAs (mRNA and target).

MRNA–circRNA relationship pairs was screened by Pearson r
(the absolute correlation coefficient value greater than or equal to
0.60, and the p-value was less than or equal to 0.05). According to the
role of mRNA–circRNA in the ceRNA relationship, the relationship
between mRNA and circRNA with positive correlation was
screened, and the results of the ceRNA score were calculated and
the two intersected. Then, the ceRNA results helped build the
ceRNA network.

GO and KEGG pathway analyses were performed on the mRNA
in the ceRNA network. The top 30 mRNAs in the RNA score in the
mRNA–miRNA–circRNA network and the
mRNA–miRNA–lncRNA network are used for pathway
enrichment by GO and KEGG analyses, separately. CeRNA
analysis and enrichment analysis of mRNA gene sets helped
obtain key regulatory network molecules and key pathways that
may be caused by radiation in 48 h.

2.7 Statistical analysis

Line charts and histograms were produced by GraphPad 7.0.
Bioinformatics analysis was carried out using the R language
(Version 4.0.0). The gray value of protein bands was analyzed by
ImageJ software, and statistical analysis was carried out using SPSS
24.0. Also, the comparison of two sets of disordered variables was
t-tested; the categorical variables were chi-squared. The bilateral p <
0.05 was statistically significant.

3 Results

3.1 Whole-transcriptome sequencing of
NSCLC cells

A flowchart is shown in Supplementary Materials S1. The
differential mRNA of the no radiation group of A549 and H1299
(NCdiffmRNA) has 5452 genes, which is related to the intrinsic
difference between the two cell lines. A total of 2755 genes were
upregulated and 2697 downregulated in NCdiffmRNA. The STEM
intersection gene is composed of 5076 genes, which is associated

with time change after radiation within 48 h. Intersecting diffmRNA
has 576 genes, related to the intrinsic difference of two cell lines and time
change after radiation. CommonmRNA has 4509 genes, which is related
to the time change after radiation within 48 h in non-small cell lung
cancer.

The whole-transcriptome sequencing results of A549 and
H1299 showed that the intersections of different mRNA at different
times are 0 compared with non-irradiated cells. The differential mRNAs
at 2, 6, 12, 24, and 48 h of A549, compared with the no radiation group,
are 40 genes, 27 genes, 26 genes, 84 genes, and 509 genes, respectively. The
differential mRNAs at 2, 6, 12, 24, and 48 h of H1299, compared with the
no radiation group, are 15 genes, 14 genes, 15 genes, 109 genes, and
1295 genes, respectively. The results of the intersection of differential
miRNAs, lncRNAs, and circRNAs are 0, suggesting that the genome is in
a significant dynamic change within 48 h after radiation in NSCLC
(Figure 1A).

The differential lncRNAs at 2, 6, 12, 24, and 48 h in A549 are
168 lncRNAs, 80 lncRNAs, 96 lncRNAs, 140 lncRNAs, and
256 lncRNAs, respectively. The differential lncRNAs at 2, 6,
12, 24, and 48 h in H1299 are 123 lncRNAs, 86 lncRNAs,
86 lncRNAs, 143 lncRNAs, and 331 lncRNAs, respectively. The
results of the difference between miRNAs and circRNAs are
shown in Figure 1A.

3.2 The STEM analysis of temporal trends of
mRNAs

A total of 16 significant modules were screened in A549, and
13 significant modules were screened in H1299. We plotted a
meaningful module trend map (Figure 1B) and took the union of
genes in 39 modules. Finally, we got 5076 genes in 39 modules
related to the temporal changes in gene expression after radiation in
NSCLC.

3.3 CeRNA analyses and enrichment
analyses

The ceRNA score is used to obtain the
mRNA–miRNA–lncRNA network (Figure 1C), and hsa-miR-
503-5p, hsa-miR-455-5p, hsa-miR-29c-3p, and hsa-miR-339-
5p are located at the core of ceRNA. GO analysis showed that
evident biological processes include DNA repair, negative
regulation of G2/M transition of the mitotic cell cycle,
protein polyubiquitination, ER to Golgi vesicle-mediated
transport, and intracellular protein transport. KEGG analyses
showed that evident pathways include autophagy, ferroptosis,
endocytosis, purine metabolism, neurotrophin signaling
pathway, and insulin signaling pathway (Figures 2A, B).
Similarly, in the mRNA–miRNA–circRNA network
(Figure 1D), miR-219-1-3p and miR-221-3p are in the core.
GO analysis showed that evident biological processes include
the intra-Golgi vesicle-mediated transport, positive regulation
of the canonical Wnt signaling pathway, negative regulation of
Arp2/3 complex-mediated actin nucleation, the SCF-dependent
proteasomal ubiquitin-dependent protein catabolic process,
and regulation of the Arp2/3 complex-mediated actin
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nucleation. KEGG analyses showed evident pathways including
SNARE interactions in vesicular transport, ferroptosis,
autophagy in animals, and apoptosis (Figures 2C, D).

3.4 Ingenuity pathway analysis

A graphical summary (Figure 3) showed that E2F1 regulation
occupies a key position at 2 h after radiation, damage repair of DNA
at 6 h accounts for the core, and autophagy occupies the core at 12–48 h
in A549. In H1299, E2F1 regulation within 2–6 h after radiation occupies
the core position, and cellular changes within 12–24 h are mainly related
to metabolism; autophagy occupies the core position at 48 h.

The analysis of causal pathways (Figure 4A) shows evident
pathways and significant changes caused by radiation including
CREB signaling in neurons and synaptogenesis signaling pathway,
cardiac hypertrophy signaling (enhanced), insulin secretion
signaling pathway, G-protein coupled receptor signaling, hepatic
fibrosis signaling pathway, and pulmonary fibrosis idiopathic
signaling pathway.

Multi-time analysis of toxic pathways (Tox functions) is shown
in Figure 4B. The results show that evident pathways are cell death of
kidney cell lines, cell death of kidney cells, apoptosis of kidney cell
lines, inflammation of the liver, increased activation of alkaline
phosphatase, cell proliferation of kidney cell lines, proliferation of
hepatic stellate cells, and apoptosis of hepatocytes, which suggests

liver and kidney death, or the damage caused by radiation with
10 Gy is more evident.

Diseases/biological functions involving different genes/proteins
over multiple periods are shown in Table 1. The top 10 pathways are
infection of cells, transport of molecules, viral infection, migration of
cells and cell movement, infection of tumor cell lines, metabolism of
carbohydrate, synthesis of carbohydrate, infection by the RNA virus,
and protein kinase cascade.

At 2 h after radiotherapy, the top canonical pathways in
NSCLC mainly include the BAG2 signaling pathway, the
FAT10 signaling pathway, and inhibition of ARE-mediated
mRNAs. Top diseases and biofunctions mainly include
cancer, organismal injury and abnormalities, endocrine
system disorders, and gastrointestinal diseases. Molecular
and cellular functions focus on DNA replication,
recombination and repair, and cell death and survival
(Supplementary Materials S2). At 6 h after radiotherapy, top
canonical pathways in NSCLC mainly include the
BAG2 signaling pathway and the FAT10 signaling pathway.
The results of diseases and biofunctions and molecular and
cellular functions are similar with those of NSCLC at 2 h
(Supplementary Materials S3).

At 12 h after radiotherapy, top canonical pathways in NSCLC
mainly include the CLEAR signaling pathway and melatonin
signaling. Top canonical pathways in NSCLC include
neurological diseases, compared with the results at 2 h and 6 h.

FIGURE 2
Dot plots of the top 30mRNAs in the ceRNA network. (A) Significantly different pathways from GO analysis in the mRNA–miRNA–circRNA network.
(B) Significantly different pathways from KEGG analyses in the mRNA–miRNA–circRNA network. (C) Significantly different pathways from GO analysis in
the mRNA–miRNA–lncRNA network. (D) Significantly different pathways from KEGG analysis in the mRNA–miRNA–lncRNA network.
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Molecular and cellular functions focus on cellular assembly and
organization, cell cycle, and carbohydrate metabolism
(Supplementary Materials S4).

At 24 h after radiotherapy, top canonical pathways in
NSCLC mainly include the super pathway of cholesterol

biosynthesis, cholesterol biosynthesis I, and cholesterol
biosynthesis II (via 24,25-dihydrolanosterol). Top canonical
pathways are the same with the pathways at 12 h. Molecular
and cellular functions mainly focus on the metabolism
(Supplementary Materials S5).

FIGURE 3
Summary of IPA functions for radiotherapy of A549 and H1299 cells at five time points (2, 6, 12, 24, and 48 h).
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At 48 h, top canonical pathways in NSCLC mainly include the
CLEAR signaling pathway. Top canonical pathways are the same
with the pathways at 12 and 24 h. Molecular and cellular functions
mainly focus on the metabolism (Supplementary Materials S6).

3.5 Cell cycle analysis

The proportion of each cycle phase is shown in A, B, and C in
Figure 5. Compared with the non-radiation group, the G2/M
stage arrest of post-radiation NSCLC gradually worsened,

peaking at 24 h, and decreased progressively at 48 h. Changes
in cyclin B1 (CCNB1) showed a similar trend. The PCR results
show a maximum value was reached at 24 h, see Figure 5D, and
the WB results also show the expression of CCNB1 reached a
maximum at 24 h (Figures 5E, F).

4 Discussion

Precision medicine is becoming a new direction for cancer
treatment.

FIGURE 4
(A) Heatmap of the classical pathway trend of A549 and H1299 cells at five time points (2, 6, 12, 24, and 48 h) in radiotherapy predicted by IPA. (B)
Heatmap of the toxicity pathway trend of A549 and H1299 cells at five time points (2, 6, 12, 24, and 48 h) in radiotherapy predicted by IPA.
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Personalized and precise management relies heavily on
developing new technologies for next-generation sequencing
and data processing of radiobiological information (Yang et al.,
2020).

In this study, whole-transcriptome sequencing was used to
comprehensively detect molecular changes of NSCLC in different
periods after radiation, providing a dynamic molecular process map
for precision radiotherapy.

TABLE 1 Top 30 diseases and functions with the most significant changes at five time points (2, 6, 12, 24, and 48 h) after radiation in NSCLC.

Diseases and
biofunctions

A549
2 h

H1299
2 h

A549
6 h

H1299
6 h

A549
12 h

H1299
12 h

A549
24 h

H1299
24 h

A549
48 h

H1299
48 h

Infection of cells 10.645 N/A 11.243 N/A N/A N/A 9.581 N/A 8.77 N/A

Transport of molecules 5.234 2.422 N/A 3.109 5.675 3.297 5.069 3.144 5.302 3.683

Viral infection 11.546 N/A N/A N/A N/A N/A 9.767 N/A 9.214 N/A

Migration of cells N/A 4.655 N/A 3.543 N/A 5.121 N/A 5.455 N/A 5.818

Cell movement N/A 4.822 N/A N/A N/A 5.644 N/A 5.904 N/A 6.204

Infection of tumor cell lines N/A N/A N/A N/A 7.873 N/A 7.721 N/A 6.915 N/A

Metabolism of carbohydrate 4.247 N/A 4.093 N/A 4.419 1.067 4.081 N/A 4.316 N/A

Synthesis of carbohydrate 4.292 N/A 4.141 N/A 4.464 N/A 4.129 N/A 4.362 N/A

Infection by the RNA virus 10.769 N/A N/A N/A N/A N/A 10.216 N/A N/A N/A

Protein kinase cascade 4.53 2 N/A N/A 4.199 N/A 4.222 N/A 4.721 N/A

Fatty acid metabolism N/A 2.923 N/A 3.088 N/A 3.508 N/A 3.508 3.36 3.232

Synthesis of lipids N/A 1.387 N/A 2.402 4.985 2.013 4.047 N/A 4.555 N/A

Invasion of cells N/A 3.745 N/A N/A N/A 5.101 N/A 4.972 N/A 5.376

Cell movement of tumor
cell lines

N/A 4.09 N/A N/A N/A 4.446 N/A 4.549 N/A 4.982

Migration of tumor cell
lines

N/A 4.356 N/A N/A N/A 4.159 N/A 4.266 N/A 4.859

Extracranial solid tumors 2.991 −1.342 2.104 −1.067 1.918 −1.633 2.217 −1.134 1.453 −1.195

Migration of endothelial
cells

N/A 2.722 N/A 2.926 N/A 3.223 N/A 3.505 N/A 3.74

Oxidation of lipids N/A N/A N/A N/A 3.404 2.407 3.112 2.407 3.101 N/A

Invasion of tumor cell lines N/A 3.732 N/A N/A N/A 5.013 N/A N/A N/A 5.315

Cell proliferation of tumor
cell lines

6.878 N/A N/A N/A N/A 2.362 N/A 2.064 N/A 2.314

Malignant solid tumors 1.787 −1.195 1.28 −1.698 1.295 −1.195 1.143 −1.195 1.058 −1.51

Autophagy 3.156 N/A 1.378 N/A 2.22 N/A 2.942 N/A 3.067 N/A

Metabolism of
polyunsaturated fatty acids

N/A 2.582 N/A 2.433 N/A 2.582 N/A 2.582 N/A 2.582

Organization of the
cytoplasm

N/A N/A N/A N/A 3.967 N/A 3.911 N/A 3.949 N/A

Cellular homeostasis 3.896 N/A N/A N/A N/A N/A 3.96 N/A 3.62 N/A

Solid tumors 2.954 N/A 1.883 N/A 1.967 N/A 2.191 N/A 2.151 N/A

Cell death of tumor cell lines −4.481 −1.916 N/A N/A N/A −1.469 N/A −1.442 N/A −1.77

Metabolism of membrane
lipid derivatives

2.564 N/A N/A N/A 2.947 N/A 2.641 N/A 2.918 N/A

Replication of Influenza A
virus

N/A N/A N/A N/A N/A N/A 5.534 N/A 5.439 N/A

Synthesis of polysaccharides 2.596 N/A N/A N/A 2.578 N/A 2.377 1 2.399 N/A
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FIGURE 5
Cell cycle and cell cycle-related protein expression after radiation in NSCLC cells. *p < 0.05, **p < 0.01, and ***p < 0.001. (A) Cell cycle analysis of
A549 at 2, 6, 12, 24, and 48 h after radiation. (B)Cell cycle analysis of H1299 at 2, 6, 12, 24, and 48 h after radiation. (C) Statistical analysis of different phases
of the cell cycle at 2, 6, 12, 24, and 48 h after radiation in A549 and H1299 cell lines. (D) PCR statistical results of CCNB1 at 2, 6, 12, 24, and 48 h after
radiation in A549 and H1299 cell lines. (E) Western blot statistical results of cyclin B1 at 2, 6, 12, 24, and 48 h after radiation in A549 and H1299 cell
lines (quantitative data are shown as means). (F) Western blot results of cyclin B1 at 2, 6, 12, 24, and 48 h after radiation in A549 and H1299 cell lines,
compared with the non-radiation control group.
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Data from short time-series expressions can be analyzed using
two methods. The first employs methods that do not take advantage
of the sequential information in time-series data. The second
method was primarily designed for a longer time series, ignoring
the temporal dependency among successive time points. The Short
Time-series Expression Miner was designed for short time-series
microarray gene expression data. It also has the advantage of
visualization capabilities and integration with GO (Ernst and
Bar-Joseph, 2006).

Time trend analysis obtained significant dynamic changes in
mRNA, miRNA, lncRNA, and circRNA gene sets. According to the
ceRNA analysis of RNAs related to time, we found the main regulatory
networks and key molecules of post-radiation in NSCLC. These can
provide new ideas for post-radiation molecular regulation mechanism
research and seeking to target molecular therapies for NSCLC. For
example, in the ceRNA network, miR-219-1-3p, which occupies the
core, negatively regulates MUC4 and has a tumor-suppressive effect in
pancreatic cancer (Chae et al., 2017). Related studies have found that
miR-219-1-3p inhibits proliferation and weakens cell migration
(Lahdaoui et al., 2015). MiR-221-3p downregulates the proto-
oncogene MDM2, reversing paclitaxel resistance in non-small cell
carcinoma and inducing apoptosis (Ni et al., 2021).

The results of GO and KEGG include DNA repair, negative
regulation of G2/M transition of mitotic cell cycle, regulation of the
autophagosome assembly, DNA replication, autophagy, ferroptosis,
apoptosis, glucose metabolism, and insulin pathways. It broadens
the content of radiobiology and the study of intersecting fields,
providing new insights for combining radiation and drugs to
improve radiotherapy efficacy.

IPA implies NSCLC cells startedDNAdamage and repairmainly in
the early phase (2–6 h) after radiation, and E2F1may play an important
role in this early response phase. The cells started autophagy mainly in
the later stages (24–48 h). These findings significantly enrich the
content of radiobiology at various periods and help us get the key
molecular or pathway or function to respond to radiotherapy at a
specific time slot. Additionally, the molecules we are familiar with may
regulate other pathways under radiotherapy conditions, which open up
our perspective of molecular biology. For example, it is acknowledged
that E2F1 is related to the cell cycle (Schuldt, 2011). In recent years, RB/
E2F1 has been themain regulator of cancer cell metabolism in advanced
diseases. It promotes the synthesis of antioxidant glutathione after RB
loss, regulates redox metabolism, and reveals the protective effect of
therapeutic intervention on reactive oxygen species (Mandigo et al.,
2021). E2F1 may also be associated with the metabolism after
radiotherapy by combining IPA, GO, and KEGG results, but it
needs to be verified experimentally.

Toxic pathways after radiation mainly focus on hepatic and renal
pathways. The in-depth understanding of the molecular and
pathophysiology of radiation organs needs further study (Wang
and Tepper, 2021).

The G2-phase arrest plays a role in cell survival after irradiation
(Hwang andMuschel, 1998). Cells at this stage are sensitive to radiation
therapy. Some studies discuss the potential use of G2/M cell cycle
checkpoint inhibitors to enhance tumor control rates (Hellmann and
Rhomberg, 1991; Löbrich and Jeggo, 2007; Dillon et al., 2014). Our
results suggest that 24 h is proper for radiation therapy to maximize the
effect of killing tumor cells. Some studies showed that A549 under dose
2 Gy at G2 / M phase arrest the most at 72 h (Yang et al., 2015). Our

results suggest that 24 h may be best for radiation therapy in larger
doses (10 Gy), guiding the practice of clinical radiation, combination
chemotherapeutic drugs, and radiotherapy sensitizers.

There are few papers that compare the changes in transcriptome
induced by low-dose radiation with those induced by high-dose SBRT
radiation. Research about chronic low-dose radiation exposure in a
zebrafish model found that radiation exposure resulted in
transcriptomic perturbations in wound healing, immune response,
lipid metabolism and absorption, and fibrogenic pathways (Cahill
et al., 2023). Genomic and transcriptomic results of SBRT showed
that in patients with renal cell carcinoma, pathways including G2/M
checkpoint, mitotic spindle, and E2F targets were significant (Zengin
et al., 2023). These results are consistent with our results.

Tumor treating fields (TTFields) is a new modality of cancer
treatment. The treatment is based on transdermally transmitting
alternating current (AC) electric fields at 100–400 kHz to tumors
with two orthogonal transducer arrays (Moser et al., 2022). It can
cause DNA damage and replication stress (Karanam et al., 2020).
Our results can be combined with those of tumor treating fields to
provide a biological basis for the timing of tumor treating fields after
SBRT for non-small cell lung cancer. Compared with a low dose, our
results would provide more economical ways to apply to the TTF. At
the same time, our research further screens and models the common
non-small cell lung cancer genes, which can achieve individualized
treatment for patients with high matching genes with our gene set.

There were some flaws in the experiment. Our selection of genes
common to non-small cell lung cancer needs to be verified. The genes
and networks that change in each period need to be further explored.
We did not perform animal experiments and lacked clinical samples of
radiation therapy to verify whether the results we found were related to
radiation. Further research is needed in the future.

5 Conclusion

Our transcriptomic and experimental analyses provide the
dynamic change of radiation therapy in NSCLC, enriching the
content of radiobiology in precision radiation oncology.
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A novel signature combing
cuproptosis- and
ferroptosis-related genes in
sepsis-induced cardiomyopathy
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Objective: Cardiac dysfunction caused by sepsis, usually termed sepsis-induced
cardiomyopathy (SIC), is one of the most serious complications of sepsis, and
ferroptosis can play a key role in this disease. In this study, we identified key
cuproptosis- and ferroptosis-related genes involved in SIC and further explored
drug candidates for the treatment of SIC.

Methods: The GSE79962 gene expression profile of SIC patients was downloaded
from the Gene Expression Omnibus database (GEO). The data was used to identify
differentially expressed genes (DEGs) and to perform weighted correlation
network analysis (WGCNA). Furthermore, Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Then,
gene set enrichment analysis (GSEA) was applied to further analyze pathway
regulation, with an adjusted p-value <0.05 and a false discovery rate
(FDR) <0.25. Ferroptosis-related genes were obtained from the FerrDb
V2 database, and cuproptosis-related genes were obtained from the literature.
We constructed a novel signature (CRF) by combing cuproptosis-related genes
with ferroptosis-related genes using the STRINGwebsite. The SIC hub genes were
obtained by overlapping DEGs, WGCNA-based hub genes and CRF genes, and
receiver operating characteristic (ROC) curve analysis was used to determine the
diagnostic value of hub genes. A transcription factor-microRNA-hub gene
network was also constructed based on the miRnet database. Finally, potential
therapeutic compounds for SIC were predicted based on the Drug Gene
Interaction Database.

Results: We identified 173 DEGs in SIC patients. Four hub modules and 411 hub
genes were identified by WGCNA. A total of 144 genes were found in the CRF.
Then, POR, SLC7A5 and STAT3 were identified as intersecting hub genes and their
diagnostic values were confirmed with ROC curves. Drug screening identified
15 candidates for SIC treatment.

Conclusion: We revealed that the cuproptosis- and ferroptosis-related genes,
POR, SLC7A5 and STAT3, were significantly correlated with SIC and we also
predicted therapeutic drugs for these targets. The findings from this study will
make contributions to the development of treatments for SIC.
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Introduction

Sepsis is a dysregulated host response to infection that can cause life-
threatening organ dysfunction (Singer et al., 2016). It is a leading cause of
mortality and critical illness worldwide. A recent study estimated that the
number of sepsis cases and deaths is twice as high as previously thought
(Rudd et al., 2020). Sepsis-induced cardiomyopathy (SIC) is a common
and well-elucidated complication of sepsis and is associated with higher
mortality rates in patients with sepsis (Hanumanthu et al., 2021).
Myocardial dysfunction is characterized by cellular abnormalities,
circulating mediators and instrumental parameters. However, the lack
of a consensus definition and uncertainties of the pathophysiology of SIC
make it difficult to identify and validate biomarkers of the disease. In
Addition, the cytokine storm also makes it difficult to identify cytokine
biomarkers of SIC. Bioinformatic analyses have the potential to decipher
these complex signals. Tumor necrosis factor, Jak-signal transducer and
activator of transcription (STAT), and hypoxia-inducible transcription
factor-1, and their interactions are increasingly recognized as main
factors in sepsis cardiomyopathy (Chen et al., 2020).

Ferroptosis is a newly identified iron-dependent form of cell death
that is different from other forms of cell death (Yan et al., 2021) and is
involved in the development of cardiomyopathy. Downregulating HO-
1 expression and iron concentration can reduce ferroptosis, thereby
attenuating myocardial cell injury in sepsis (Wang et al., 2020).
Ferritinophagy-mediated ferroptosis is a critical mechanism
contributing to sepsis-induced cardiac injury (Ning et al., 2020) and
targeting ferroptosis in cardiomyocytes may be a therapeutic strategy
for preventing sepsis. We therefore aimed to use bioinformatic
technology to quickly identify ferroptosis-related genes in SIC. This
information can then be used for the early diagnosis of SIC and the
development of new treatments of the disease.

Similar to iron, copper is also an essential micronutrient. Cells
exhibit cytotoxicity when the intracellular concentration of copper
ions exceeds the homeostatic threshold. Copper induces cell death
by targeting lipoylated TCA cycle proteins. This leads to the
aggregation of fatty acylated proteins and the loss of iron-sulfur
cluster proteins, which in turn triggers proteotoxic stress and
ultimately cell death (Tsvetkov et al., 2022). Cuproptosis is
associated with various disease conditions, including Wilson’s
disease, neurodegenerative diseases, cancer (Li et al., 2022) and
heart diseases (Chen et al., 2022). Copper levels are also closely
related to the morbidity and mortality of cardiovascular diseases
(Cui et al., 2022; Liu and Miao, 2022).

Cuproptosis- and ferroptosis-related regulatory mechanisms are
expected to be novel targets for SIC treatment. However, whether
cuproptosis-related genes combined with ferroptosis-related genes can
be used for diagnosis and to predict responses to immunotherapy and
drug sensitivity in SIC have not been addressed. This study analyzed the
difference in gene expression between non-failing hearts and SIC hearts
in GEO database, and also performed WGCNA. Then, the function of
DEGs was determined using GO and KEGG analysis. In addition,
GSEA was applied to further analyze pathway regulation. In addition,
we constructed a novel signature (CRF) by combing cuproptosis-related
genes with ferroptosis-related genes using the STRING website for
predicting diagnosis. Besides, SIC hub genes were obtained by
overlapping DEGs, WGCNA-based hub genes and CRF genes, and
receiver operating characteristic (ROC) curve analysis was used to
determine the diagnostic value of hub genes. A transcription factor-

microRNA-hub gene network was also constructed based on the
miRnet database. Finally, potential therapeutic compounds for SIC
were predicted based on the Drug Gene Interaction Database, which
provided a theoretical basis for clinical treatment of SIC.

Materials and methods

Data resource

The GSE79962 gene expression profile was downloaded from
the GEO database (http://www.ncbi.nih.gov/geo) using the
GEOquery package of R software (version 4.2.1). The chip
platform for GSE79962 was GPL6244 (Affymetrix Human Gene
1.0 ST Array), which consists of 20 SIC human heart tissue samples
and 11 healthy human heart tissue samples. The ferroptosis-related
genes were obtained from the GeneCards database (https://www.
genecards.org/). All data are publicly available.

Identification of differentially expressed
genes

Raw data were downloaded as MINiML files from the Gene
Expression Omnibus (GEO) database. Probes were converted to
gene symbols according to the platform annotation information of
the normalized data. Probes with more than one gene were
eliminated, and the average of genes corresponding to more than
one probe was calculated. The limma package in R software (version
4.2.1) was used to study differentially expressed genes. The adjusted
p-value was determined to correct the false positive results in the
GEO datasets. “Adjusted p < 0.05 and log(fold change) > 1 or
log(fold change) < −1” were defined as the threshold for the
differential expression of genes. The data for the listed DEGs
were processed, and heatmaps and volcano plots were drawn
using ComplexHeatmap and ggplot2 R packages.

Functional and pathway enrichment analysis

To further confirm the underlying function of potential
targets, the data were analyzed by functional enrichment. Gene
Ontology (GO) is a widely used tool for annotating genes with
functions, especially molecular function (MF), biological
pathways (BP), and cellular components (CC). Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis is a practical resource for studying gene functions and
associated high-level genome functional information. To better
understand mRNA involvement in pathogenesis, ClusterProfiler
package (version: 3.18.0) in R was employed to analyze the GO
function of potential targets and enrichment in the KEGG
pathway. The R software package, pheatmap, was used to draw
heatmaps. Then, gene set enrichment analysis (GSEA) was
applied for further analysis of pathway regulation. We used
KEGG rest API (https://www.kegg.jp/kegg/rest/keggapi.html) to
obtain the latest gene annotation. Enrichment analysis was
performed using the R package, clusterProfiler (version 3.14.3).
In this analysis, the minimum gene set was 5 and the
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maximum gene set was 5,000. A p-value <0.05, false discovery rate
(FDR) <0.25 and |NES| >1 indicated a significantly enriched term.

Weighted gene co-expression network
analysis (WGCNA)

Human SIC heart and healthy heart tissue samples from the
GSE79962 dataset were analyzed by the WGCNA R 1.70-3 package.
First, Pearson’s correlation matrices and the average linkage method
were both performed for all pair-wise genes. Then, a weighted adjacency
matrix was constructed using a power function, β was a soft-
thresholding parameter that could emphasize strong correlations
between genes and penalize weak correlations. Meanwhile, a soft
threshold was reasonably selected as the degree of scale
independence reached 0.8. After choosing the power of β = 5, the
adjacency was transformed into a topological overlap matrix (TOM),
which could measure the network connectivity of a gene defined as the
sum of its adjacency with all other genes for network Gene ration, and
the corresponding dissimilarity (1-TOM) was calculated. To classify
genes with similar expression profiles into gene modules, average
linkage hierarchical clustering was conducted according to the
TOM-based dissimilarity measure with a minimum size (gene
group) of 30 for the genes dendrogram. The modules that correlated
the most with the clinical traits were identified as SIC-related modules.
All functions of hub genes with gene significance (GS) >0.2 andmodule
membership (MM) >0.8 were analyzed by GO enrichment.

Construction and validation of a
cuproptosis- and ferroptosis-related gene
signature

First, we obtained ferroptosis-related genes were from the FerrDb
V2 database (http://www.zhounan.org/ferrdb/current/). Then,
cuproptosis-related genes were obtained from the literature. The
obtained cuproptosis-related and ferroptosis-related genes were inputed
into the STRING website (https://string-db.org/), and the minimum
required interaction score was set to 0.9 to obtain iron genes related to
copper genes. Thus, we constructed a novel signature (CRF) by combing
cuproptosis-related genes with ferroptosis-related genes.

Intersection genes and venn analysis

A Venn diagram drawing tool (http://bioinformatics.psb.ugent.
be/webtools/Venn/) was used to generate Venn diagrams of DEGs,
WGCNA-based hub genes and CRF genes. Intersection genes were
included in subsequent analyses.

Identification of hub genes based on
receiver operating characteristic (ROC)
curve analysis

The diagnostic values of intersection genes for SIC were detected
by ROC curve and area under the ROC curve (AUC) analysis using
the pROC R 1.17.0.1 package.

Construction of a transcription factor (TF)-
microRNA-hub gene network

microRNAs (miRNAs) and TFs related to intersection genes
were screened for based on the miRNet2/0 online database (https://
www.mirnet.ca/). TFs and miRNAs related to intersection genes
were identified and added to the network using Cytoscape software
(version 3.8.2).

Screening the drug-gene interaction
database (DGIdb) for potential therapeutic
drugs for SIC

DGIdb (https://www.dgidb.org/) was used as a drug–gene
interaction database to screen for drug–gene interactions and
information from papers, databases, and web resources.
Therapeutic drugs for intersection genes were identified based on
the DGIdb.

Results

Differential gene expression analysis

The gene expression dataset, GSE79962, contained data from
20 SIC samples, and 11 normal myocardial tissue samples. As
shown in Figure 1A, data normalization and cross comparability
were assessed. Using the limma package in R software (version
4.2.1) for differential expression analysis, with adjusted p < 0.05 and
|log2 FC| >1 as filtering conditions, we found that 173 genes were
differentially expressed in the myocardial tissue of patients with SIC
cardiomyopathy compared with normal myocardial tissue. Sixty-seven
DEGs were upregulated and 106 were downregulated. The ferroptosis-
related genes (NOX4, HMOX1, POR, SAT1, etc.) were highly expressed
in sepsis-induced cardiomyopathy model. Recent studies showed that
NOX4 was characterized in the cardiovascular system, HMOX1 can be
induced by sepsis, and POR was selected as the central gene of SIC. The
above results are consistent with our research. Clustering analysis of
these DEGs was performed, as shown in a volcano plot (Figure 1B). The
heatmap for the dataset indicated better clustering of samples and
higher confidence (Figure 1C).

Functional pathway enrichment analysis of
DEGs in SIC

We performed KEGG and GO enrichment analyses on the up
and downregulated DEGs in the GSE79962 dataset. The results
showed that there were significant differences among the functions
of DEGs. The upregulated DEGs were mainly enriched in pathways
of muscle tissue development, regulation of small molecule
metabolic process, regulation of actin cytoskeleton, leukocyte
transendothelial migration, and AMPK signaling pathway
(Figures 2A, B). The downregulated DEGs were mainly enriched
in pathways of response to interleukin 1, regulation of peptidase
activity, positive regulation of cytokine production, neutrophil
activation involved in immune response, MAPK signaling
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pathway, JAK-STAT signaling pathway, and cytokine-cytokine
receptor interaction (Figures 2C, D). As we all know, AMPK has
a strong regulatory effect on cellular energy balance, metabolic
homeostasis, inflammatory response, oxidative stress and
myocardial cell survival, and is closely related to the pathogenesis
of septic cardiomyopathy. MAPK signaling pathway and JAK/STAT
signaling is an important pathway for the signal transduction of
several key cytokines in the pathogenesis of sepsis, which can
transcribe and modulate the host immune response. p38-MAPK
in the MAPK family is involved in SIC signaling and apoptosis
mechanism. Application of clinically used JAK/STAT inhibitors,
tofacitinib and baricitinib, fully prevented IFNγ-induced
cardiomyopathy, confirming the critical roles of this signaling
pathway in inflammatory cardiac disease. Our results are
consistent with previous studies.

GSEA showed that compared with control samples, the identified
KEGG pathways were Huntington’s disease, Alzheimer’s disease,
oxidative phosphorylation, citrate cycle TCA cycle, Parkinson’s
disease, cardiac muscle contraction, valine leucine and isoleucine
degradation, fatty acid metabolism and peroxisome (Figure 3A). The

identified hallmark gene sets were oxidative phosphorylation, fatty acid
metabolism, adipogenesis, UV response up, estrogen response early,
apoptosis, androgen response, hypoxia, inflammatory response,
estrogen response late, IL6-JAK-STAT3 signaling, P53 pathway, IL2-
STAT5 signaling, unfolded protein response, TNFα signaling via NF-
κB, and TGFβ signaling (Figure 3B). The human phenotype ontologies
identified were arrhythmia and mitochondrion (Figures 3C, D).

Hub modules and genes identified by
WGCNA

A total of 22,828 genes were derived from the 31 samples of the
GSE79962 dataset. These genes were used to construct a co-expression
network. The cluster analysis results of the samples are shown in
Figure 4. Clustering trees for each dataset were established and no
outliers were found (Figure 4A). Soft threshold was reasonably selected
as the degree of scale independence reached 0.8. The scale-free fit index
andmean connectivity were calculated and the power of β= 5 (scale free
R2 = 0.87) was selected (Figure 4B). Theminimumnumber of genes per

FIGURE 1
DEG analysis. (A) Boxplot diagram of the DEGs in the GSE79962 dataset. (B) Volcano plot of the DEGs in the GSE79962 dataset. (C) Heatmap of the
DEGs in the GSE79962 dataset.
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module was set to 30 according to the criteria of the dynamic tree-
cutting algorithm. The final 37 transcriptional modules represented by
different colors were identified (Figure 4C). The adjacencies of modules
in the network are shown in Figure 4D. To correlate the modules with
sample information, we analyzed the data according to the heatmap of
module-clinical trait correlations, thereby correlating data for the
clinical traits (Figure 4E). The black, floral white, magenta, and pale
violet red 3 modules, which were identified as the hub modules
associated with clinical traits, were used to explore the correlation
between module membership (MM) and gene significance (GS) to

identify the hub genes in SIC (Figures 4F–I). Furthermore, we
demonstrated 411 hub genes were respectively identified from the
above four modules with MM >0.8 and GS >0.2.

Selection of intersection hub genes and their
functions in SIC

Based on the FerrDb V2 database, we obtained
612 ferroptosis-related genes. We also identified

FIGURE 2
GO and KEGG enrichment analysis of DEGs. (A)GO enrichment analysis of the upregulated DEGs. (B) KEGG enrichment analysis of the upregulated
DEGs. (C) GO enrichment analysis of the downregulated DEGs. (D) KEGG enrichment analysis of the downregulated DEGs.
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FIGURE 3
Gene set enrichment analysis (GSEA) for GSE79962. (A) KEGG (B) hallmark gene sets (C) arrhythmia (D) mitochondrion.

FIGURE 4
(A–I) WGCNA analysis of GSE79962.
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16 cuproptosis-related genes from the literature (Li et al., 2022;
Tsvetkov et al., 2022). A protein-protein interaction network was
created using the STRING database to further explore
relationships among these genes. We identified
128 ferroptosis-related genes to be closely associated with
cuproptosis-related genes. Therefore, we constructed a novel
signature (CRF) by combing cuproptosis-related genes with
ferroptosis-related genes. The protein-protein interaction
network was constructed based on the STRING online
database and visualized using Cytoscape software (Figure 5A).
By taking the intersection of the DEGs, WGCNA-based hub
genes and CRF genes, three overlapping genes (POR, SLC7A5,
and STAT3) were identified for SIC (Figure 5B). The diagnostic
values of the three genes were confirmed by ROC curve and AUC

analysis. As shown in Figure 5C, the AUC values of POR,
SLC7A5 and STAT3 produced diagnosis powers for SIC of
0.922727, 0.990909, and 0.963636, respectively. Subsequent
GSEA showed that the hallmark gene sets of the three genes
were for fatty acid metabolism (Figures 6A–C).

Construction of a TF-miRNA-hub gene
network for SIC

We further investigated the regulatory mechanism of these
three genes in SIC. The target miRNAs and TFs of the three
genes were identified and then the TF–miRNA-hub gene
network was constructed based on miRnet. Finally, a

FIGURE 5
(A) The correlation between cuproptosis-related genes and ferroptosis-related genes (CRFs). (B) Venn diagram of CRFs related DEGs. (C)
Quantification of ROC curves values of AUC for POR, SLC7A5, STAT3.

FIGURE 6
Gene set enrichment analysis (GSEA). The pathway related to three genes (A) POR (B) SLC7A5 (C) STAT3.
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TF–miRNA-hub gene network, which included the three genes,
19 TFs, and 21 miRNAs, was constructed with 45 edges
(Figure 7).

Screening for SIC therapeutic drugs

Potential therapeutic compounds for SIC associated with the
three hub genes were screened for using DGIdb (Table 1). We
identified 15 drugs as potential therapeutic compounds for SIC.

Discussion

Sepsis has become one of the top ten causes of death in both
developed and developing countries (Reinhart et al., 2017). Sepsis-
induced cardiomyopathy, which is common and closely associated
with higher mortality, has been the focus of attention. Although
intensive efforts have been made to understand the molecular
mechanism of sepsis-induced cardiomyopathy, a precise
definition and prognostic parameters remain uncertain. Although
biomarkers were added to the physiological parameters of sepsis-
induced cardiomyopathy, their release was observed to be generally
inconsistent with the severity of the disease (Hollenberg and Singer,
2021).

Programmed cell death is critical for organ development, tissue
homeostasis, as well as the prevention of tissue injury and
tumorigenesis (Fuchs and Hermann, 2011). As a newly
recognized form of programmed cell death, ferroptosis is closely
related to the pathogenesis of a large variety of diseases, such as
cancer (Lei et al., 2022), cardiovascular disease (Fang et al., 2019),
Parkinson’s disease (Bruce et al., 2016), chronic obstructive
pulmonary disease (Yoshida et al., 2019), and autoimmune

FIGURE 7
Construction of the TF-miRNA-hub gene network in sepsis-induced cardiomyopathy based on miRnet.

TABLE 1 The potential compounds of three genes were identified using DGIdb.

Gene Drug match_type Sources

POR NICOTINE Definite PharmGKB

POR MIDAZOLAM Definite PharmGKB

POR CYCLOSPORINE Definite PharmGKB

POR ZIDOVUDINE Definite PharmGKB

POR SIROLIMUS Definite PharmGKB

POR ATORVASTATIN Definite PharmGKB

POR SUNITINIB Definite PharmGKB

POR TACROLIMUS Definite PharmGKB

SLC7A5 MELPHALAN Definite PharmGKB

STAT3 ACITRETIN Definite TTD

STAT3 PYRIMETHAMINE Definite DTC

STAT3 DIGITOXIN Definite DTC

STAT3 NICLOSAMIDE Definite DTC

STAT3 DIGOXIN Definite DTC

STAT3 OUABAIN Definite DTC
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hepatitis (Zhu et al., 2021). Recent studies have shown that
ferroptosis is closely related to the occurrence of sepsis and plays
a crucial role in sepsis organ damage (Liu et al., 2022a). Vital roles of
ferroptosis in the pathogenesis of SIC were also identified and
ferritinophagy-mediated ferroptosis is involved in sepsis-induced
cardiac injury (Ning et al., 2020). Both ferroptosis and cuproptosis
are associated with mitochondria and are involved in the
progression of a number of malignant tumors. Cuproptosis is
also closely related to cardiovascular diseases. In this study, we
screened cuproptosis- and ferroptosis-related genes using a
bioinformatics approach. Previous studies have only focused on
WCGNA to identify key genes; however, we applied text mining and
WCGNA and, thereby, identified three hub genes (POR, SLC7A5,
and STAT3). The diagnostic values of the three genes for SIC were
confirmed using ROC curves.

The three hub genes are all associated with ferroptosis, their
connection with cuproptosis in the pathophysiology of SIC is
unknown. Cytochrome p450 oxidoreductase (POR) encodes an
oxidoreductase that is indispensable for metabolism (Sugishima
et al., 2019). The reactive oxygen species (ROS) that initiate
ferroptosis come from a variety of sources, including iron-
mediated Fenton reactions, mitochondrial ROS, and membrane-
associated ROS driven by the NOX protein family. Polyunsaturated
fatty acid-containing phospholipids are the main substrates of lipid
peroxidation in ferroptosis, which is positively regulated by POR
(Liu et al., 2022b). In a recent bioinformatics analysis of sepsis-
induced cardiomyopathy, POR was selected as the central gene and
its expression level was higher than that of the control group. GSEA
then demonstrated POR to have a close relationship with cardiac
metabolism, necroptosis and apoptosis of cells in SIC (Li et al.,
2021). Solute carrier family 7 member 5 (SLC7A5), also known as
L-type amino acid transporter (LAT1) (Galluccio et al., 2013), is a
sodium-independent high-affinity amino acid transporter.
SLC7A5 together with SLC3A2 mediate cellular uptake of the
large neutral amino acids, phenylalanine, tyrosine, leucine, and
tryptophan (Mastroberardino et al., 1998). SLC7A5 may affect
the development of many diseases by regulating ferroptosis (Mao
and Ma, 2022). Signal Transducer and Activator of Transcription 3
(STAT3) is a member of the STAT protein family. It can trigger
transcription of a variety of genes in response to cytokines, which
play a key role in many cellular processes, such as cell growth,
apoptosis and ferroptosis. Accumulating evidence indicates
STAT3 to be a converging point of multiple inflammatory
response pathways in sepsis pathophysiology (Lei et al., 2021).
This indicates that these genes are promising targets for drug
development. Regulating fatty acid metabolism can sensitize cells
to ferroptosis. In our study, GSEA showed that the hallmark gene
sets of the three genes were for fatty acid metabolism. Therefore, we
speculate that fatty acid metabolism maybe also involved in
cuproptosis in SIC patients, but further experiments are needed
to confirm this.

In addition to single protein-expressing genes, whole pathway
networks may be deregulated in SIC. This may be mediated by
miRNAs. miRNAs are associated with the pathophysiological
process of many diseases (Formosa et al., 2022) and are involved
in the occurrence and development of SIC (Beltrán-García et al.,
2021). We therefore built a TF-miRNA-hub gene network

depending on the shared dataset and published literature. We
identified 19 TFs and 21 miRNAs as the master regulators of the
resulting gene regulatory network that have the largest connectivity
with the three co-expressed genes associated with SIC. Finally, by
screening DGIdb, target therapeutic compounds for the hub genes
were identified.

There are some limitations to this study. We only extracted data
from databases and did not validate these data with animal
experiments or clinical specimens. The screening results of this
study were relatively accurate, which provides theoretical support
for clinical drug development.

Conclusion

In summary, this study used bioinformatics methods to identify
hub genes and pathways involved in sepsis-induced cardiomyopathy
and revealed the potential role of ferroptosis and cuproptosis. Our
findings indicated 15 drugs as candidates for sepsis-induced
cardiomyopathy therapy. Further studies are needed to explore
the causal relationship between ferroptosis and cuproptosis and
sepsis-induced cardiomyopathy and to provide prognostic markers.
Overall, our analysis provides a workflow for predicting biomarkers
and drug targets, which can be widely used in other diseases.
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Cell-free circulating tumor RNAs
in plasma as the potential
prognostic biomarkers in
colorectal cancer

Nana Jin1†, Chau-Ming Kan2†, Xiao Meng Pei3,
Wing Lam Cheung3, Simon Siu Man Ng4, Heong Ting Wong5,
Hennie Yuk-Lin Cheng3, Wing Wa Leung4,
Yee Ni Wong4, Hin Fung Tsang2, Amanda Kit Ching Chan6,
Yin Kwan Evelyn Wong2, William Chi Shing Cho 7,
John Kwok Cheung Chan6, William Chi Shing Tai3,
Ting-Fung Chan8,9, Sze Chuen Cesar Wong3*,
Aldrin Kay-Yuen Yim1* and Allen Chi-Shing Yu1*

1R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China, 2Department of Health
Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
SAR, China, 3Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic
University, Hong Kong, Hong Kong SAR, China, 4Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China, 5Department of Pathology,
Kiang Wu Hospital, Macau, Macau SAR, China, 6Department of Pathology, Queen Elizabeth Hospital,
Hong Kong, Hong Kong SAR, China, 7Department of Clinical Oncology, Queen Elizabeth Hospital,
Hong Kong, Hong Kong SAR, China, 8School of Life Sciences, The Chinese University of Hong Kong,
Hong Kong, Hong Kong SAR, China, 9State Key Laboratory of Agrobiotechnology, The Chinese
University of Hong Kong, Hong Kong, Hong Kong SAR, China
Background: Cell free RNA (cfRNA) contains transcript fragments from multiple

cell types, making it useful for cancer detection in clinical settings. However, the

pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC)

patients remain unclear.

Methods: To identify the tissue-specific contributions of cfRNAs

transcriptomic profile, we used a published single-cell transcriptomics

profile to deconvolute cell type abundance among paired plasma samples

from CRC patients who underwent tumor-ablative surgery. We further

validated the differentially expressed cfRNAs in 5 pairs of CRC tumor

samples and adjacent tissue samples as well as 3 additional CRC tumor

samples using RNA-sequencing.

Results: The transcriptomic component from intestinal secretory cells was

significantly decreased in the in-house post-surgical cfRNA. The HPGD,

PACS1, and TDP2 expression was consistent across cfRNA and tissue samples.

Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify

the patients into two groups with significantly different survival outcomes.

Conclusions: The three-gene signature holds promise in applying minimal

residual disease (MRD) testing, which involves profiling remnants of cancer
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cells after or during treatment. Biomarkers identified in the present study

need to be validated in a larger cohort of samples in order to ascertain

their possible use in early diagnosis of CRC.
KEYWORDS

cell-free circulating tumor RNAs, colorectal (colon) cancer, CRC prognostic
biomarkers, RNA sequencing (RNA-seq), transcriptome (RNA-seq)
1 Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-

related mortality and morbidity in the world1 (1–4). One of the

major factors affecting the survival of patients with CRC is the high

frequency of recurrence after curative surgery, which is estimated to

be 22.5% at 5 years. Approximately 11% of patients survive for 5

years after recurrence (5). Even though advances in cancer therapy

have been made in recent decades, metastatic cancer and recurrence

still pose a serious threat to the survival of CRC patients (6).

Therefore, the identification of post-treatment biomarkers that

reflect the potential of CRC recurrence is required to improve the

survival of patients.

Genomic alterations associated with oncogenic drivers have

traditionally been detected with invasive tissue biopsy, which is

highly dependent on the amount of tumor tissue recovered in the

biopsy and the initial analysis of the tissue for diagnosis (7). Liquid

biopsy, through the use of circulating tumor molecules isolated

from blood, has shown to be a promising minimally-invasive

approach to detect, monitor, and evaluate the genetic profile of

cancer patients (8). Currently, tumor-derived circulating cell-free

DNA (ctDNA) analysis has been shown to predict cancer

progression. However, there is only a limited amount of ctDNA

shed into the circulation, and have different characteristics from

patient to patient, which is hard to determine the tumor tissue of

origin in cancer patients (9, 10). Although the circulating cfDNA

methylation approach in plasma was effective in detecting and

localizing cancer with higher specificity (11, 12), these methods may

be ineffective without extensive deep sequencing coverage, and their

sensitivity and specificity may not be adequate (9, 10). According to

our previous study, cfRNA could serve as a potential diagnostic

biomarker for patients with colorectal adenoma (13, 14). Therefore,

additional circulating cell-free RNA (cfRNA) biomarkers may be

required to complement detection by ctDNA to detect cancer,

especially at the earliest stages or monitoring the outcome of

surgery (10).

Plasma cfRNA is released from cells through active secretion,

necrosis, and apoptosis (15, 16). Plasma cfRNA can reflect localized

tumor sites as well as systemic tumor responses (17). In this study,

we have performed a comprehensive profiling of the transcriptome

in both pre-surgical and post-surgical cfRNAs, as well as the paired
0231
CRC tumor samples and CRC tumor-adjacent samples, in order to

examine the mutational landscape in cfRNAs upon removal of

tumor tissue. We deconvolved the relative abundance of cell types

in plasma samples using published single-cell RNA-seq datasets and

examined whether tissue after surgical might lead to a decrease in

the ratio of intestinal cell-associated RNAs in plasma. Novel cfRNA

expression biomarkers that showed consistent gene expression

changes across in-house plasma samples, tissue samples, and the

CRC samples in TCGA were identified. Survival analysis was used

to evaluate the prognostic performance of these potential

biomarkers and quantitative reverse transcription polymerase

chain reaction (qRT-PCR) was conducted to validate these

biomarkers in plasma from an independent cohort of 36 cancer

patients. The biomarkers we identified could play an important role

in the early diagnosis and prognosis of CRC.
2 Materials and methods

2.1 Subject recruitment

A total of 45 CRC patients were recruited from the Prince ofWales

Hospital (PWH) between May 2020 and January 2022 with the

approval from the joint Chinese University of Hong Kong- New

Territories East Cluster Clinical Research Ethics Committee (CUHK-

NTEC CREC; Ref No: 2019.542). Only individuals unrelated to each

other were included. Diagnosis of CRC was based on the histological

confirmation of colon adenocarcinoma. Patients with hereditary CRC

and inflammatory bowel disease were excluded in this study. Each

patient was invited to donate tissues (CRC tumor samples and CRC

tumor-adjacent samples) and blood (pre-surgery on the day before

surgery and post-surgery on the 5th-7th day after surgery) for research

purposes with written informed consent before the operation. After the

surgical removal of the tumor, the tissues were immediately preserved

in RNAlater™ Stabilization Solution (Cat# AM7020, Thermo Fisher

Scientific, USA) at 4°C overnight in order to make sure the RNAlater

can penetrate into the tissue. Then the tissues were stored at -80°C. The

tumor-adjacent samples were cut 3 to 4 cm from the tumor. Plasma

isolation was performed within 3 hours after the anti-coagulated blood

collection using the VACUETTE® TUBE 2 ml K2E K2EDTA

(Cat#454024, Greiner Bio-one, Austria). The blood was firstly

centrifuged for 1,600 g, 10minutes at 4 °C. The upper layer plasma

without disturbing the buffy coat was collected to the other tube, then

re-centrifuged for 16,000 g, 4 °C for 10minutes to remove residual cell
frontiersin.org
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pellet. After that, plasma was collected and preserved by 2ml TRIzol™

LS Reagent (Cat#10296028, Thermo Fisher Scientific, USA) before

storage at −80 °C.
2.2 Extraction of cfRNAs from blood

Eight pairs of pre- and post-surgical cfRNA that were prepared

for sequencing were extracted from 2-4 ml plasma by using 10ml

TRIzol™ LS Reagent (Cat#10296028,Thermo Fisher Scientific,

USA). The cfRNA was extracted by using QIAamp cfRNA/

cfDNA extraction kit (Cat#55184, Qiagen, Germany) following

the manufacturer’s instruction and eluted in 30ul water. The

RNA quality was assessed by the TapeStation using High

sensitivity RNA assay (Cat#5067-5579, Agilent, USA). The RNA

quantity was measured by Qubit™ RNA High Sensitivity (HS)

(Cat# Q32852, Invitrogen™, USA) (Supplementary Table S1).
2.3 Total RNA extraction from tissues

The tissues were shredded by a homogenizer. CRC tumor

samples and CRC tumor-adjacent samples from eight patients

that were prepared for sequencing were extracted from the

AllPrep DNA/RNA kit (Qiagen). The RNA quality was assessed

by the TapeStation, using High sensitivity RNA assay (Cat#5067-

5579, Agilent, USA). The RINs for all tissue RNA were> 2. The

RNA quantity was measured by Qubit™ RNA High Sensitivity

(HS) (Cat# Q32852, Invitrogen™, USA).
2.4 Ribosomal RNA (rRNA) depletion and
library construction for tissue RNA

rRNA depletion was performed on the extracted total RNAs

from tissue and subsequent library prep following the NEBNext®

rRNA Depletion Kit v2 (Human/Mouse/Rat) (Cat#7400L, New

England BioLabs, England)’s protocol, which depletes both

mitochondrial (12S and 16S) and cytoplasmic (5S, 5.8S, 18S,

and 28S) rRNA species. cDNA synthesis was performed by using

Maxima First Strand cDNA Synthesis Kit for RT-qPCR, with

dsDNase (Cat#1671, Thermo Scientific™, USA). End-repair, A

tailing, adaptor ligation, and library amplification were

performed by using the KAPA HyperPlus kit (Cat#KK8512,

Rocha, USA). Completed libraries were quantified by each

library by Qubit™ 1X dsDNA High Sensitivity (HS) assay kit

(Cat#Q33231, Invitrogen™, USA) and the insert size estimation

was measured by TapeStation, using D1000 ScreenTape assay

(Cat#5067-5582, Agilent, USA).
2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

3 https://www.gencodegenes.org/pages/biotypes.html

4 https://portal.gdc.cancer.gov
2.5 Library construction for plasma cfRNA

In order to compare the genetic composition of cfRNA before

and after surgery, rRNA depletion was not performed in cfRNA as

part of the whole transcriptome study (10).
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cfRNAs were converted to the cDNA by using SMARTer®

Universal Low Input RNA Kit for Sequencing (Cat#634940,

Takara Bio, Japan). End-repair, A tailing, adaptor ligation, and

library amplification were performed according to the protocol of

the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®

(Cat# E7645S, New England BioLabs, England). Completed

libraries were quantified by each library by Qubit™ 1X dsDNA

High Sensitivity (HS) assay kit (Cat#Q33231, Invitrogen™, USA)

and the insert size estimation was measured by TapeStation, using

D1000 ScreenTape assay (Cat#5067-5582, Agilent, USA).
2.6 RNA sequencing

The Illumina sequencing adaptors were ligated onto the

fragments. Constructed libraries were sequenced (300 cycles)

using Illumina NextSeq550 (Illumina Inc), according to the

manufacturer’s instructions. The Binary Base Call (BCL) files

were converted to FASTQ files using the Illumina BCL Convert

(v3.7.5). Raw-seq reads quality was assessed using FastQC

(v0.11.9)2 (18). Adapters and low-quality bases (Q<20 in 4bp

sliding window) were trimmed using fastp (v0.20.1) (19).

Specifically, seven bases SMARTer adapter from both ends of the

reads will be trimmed for plasma cfRNA only. Clean RNA-seq reads

were then mapped to the human genome from the Genome

Reference Consortium (GRCh38) using STAR aligner (v2.7.7a)

with the 2-pass mode (20). Alignments were quantitated using

HTSeq (v0.13.5) (21) overlapping with the annotations in

GENCODE human release 35. The definition of the biotypes was

referenced to GENCODE3 (22). Gene expression estimation in

terms of Fragments Per Kilobase of transcript per Million

mapped reads (FPKM) and differential expression analysis was

performed by the R (v4.0.5)/Bioconductor package DESeq2

(v1.30.1) (23). Reactome Pathway Database (24) annotation was

performed using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID v2021) (25).
2.7 Public dataset collections

2.7.1 TCGA dataset
Gene expression data and the corresponding clinical

information of 453 patients with CRC (colon adenocarcinoma

(COAD) and rectum adenocarcinoma (READ))4 were

downloaded from the TCGA data portal (26), including 453 CRC

tumor samples and 42 CRC tumor-adjacent samples. The

identification of the differentially expressed genes (DEGs) was

performed using the R/Bioconductor package DESeq2 (v1.30.1).
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2.7.2 CRC single-cell datasets
Single-cell 3’ mRNA sequencing data from 23 colorectal cancer

patients with the annotation to the cell types including B cell,

epithelial cell, mast cell, myeloid cell, stromal cell, and T cell were

downloaded from the Gene Expression Omnibus (GEO) database

(GSE132465) (27).

2.7.3 Tabula Sapiens
Tabula Sapiens version 1.0 was used to determine the origin of

cells of plasma transcriptome. Tabula Sapiens is a human cell atlas

of nearly 500,000 cells from 24 organs. The single cell signature used

in CIBERSORTx referred to the deconvolution of cell-free RNA

tutorial (28) (https://github.com/sevahn/deconvolution/tree/

master/deconvolve_cfrna_tutorial).

2.7.4 Cell type abundance determination
The single-cell datasets were used to deconvolute the cell type

proportion of bulk tissues and plasma using CIBERSORTx (29).

The top 1,000 variated genes in CRC single-cell dataset and Tabula

Sapiens dataset were used as the single-cell signatures. All

parameters were set as default, except for the permutation was set

as 1,000 in the cell fraction imputation step.

2.7.5 Reference-guided de novo assemblies
Reference-guided de novo assemblies were assembled and

quantitated using StringTie (v2.1.4) (30) after mapping to the

human genome from the GRCh38 using HISAT2 (v2.2.1) (31),

overlapping with the annotations in GENCODE human release 35.

Gffcompare (v0.11.2) (32) was used to compare with the reference

annotation. The transcripts with the classification code of i, x, y, and

u were defined as novel transcripts, otherwise, the transcripts were

defined as known transcripts. Differential expression analyses were

performed by the R/Bioconductor package ballgown (v2.22.0) (33).

The transcripts that (1) not overlapped with regulatory regions in its

5kb upstream and downstream regions from the transcription start

site, and (2) with abs(log2Fold-Change) of the expression less than

1 were filtered out as transcripts with low confidence. Regulatory

regions were obtained from ORegAnno (v3.0) (34). CPC 2.0 (35)

was used to predict the coding potential for the assembled

transcripts. AnnoLnc2 (36) was used to predict the expression of

the novel transcripts in human samples. We used lncPro to predict

the interaction between novel transcripts and proteins (37).
2.8 qRT-PCR validation

Plasma samples from 36 patients were used to validate the

expression of the candidate genes. The cfRNA was extracted from 1-

4.5 ml TRIzol™ LS Reagent (Cat#10296028, Thermo Fisher

Scientific, USA) preserved plasma by using miRNeasy Serum/

Plasma Kit (Cat#217184, Qiagen, Germany). RNA quantity was

measured by Qubit™ RNA High Sensitivity (HS) (Cat# Q32852,

Invitrogen™, USA). A majority of the extracted RNAs were below

the limit of detection (LOD) of the Qubit™ RNA High Sensitivity
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(HS) (Cat# Q32852, Invitrogen™ , USA) (LOD<10ng)

(Supplementary Table S2). Reverse transcription reactions were

performed following the manufacturer’s instructions using

PrimeScript RT Master Mix (Takara) in 10 μL reactions.

Otherwise, 30ng RNA was input for reverse transcription.

The primers (Supplementary Table S3) for the candidate genes

were designed based on the gene sequences gained from the

GeneBank, National Centre for Biotechnology Information, NCBI

and validated for the absence of self and cross dimers, secondary

structures as well as primer efficiency and specificity. Melting curve

plot of RT-PCR products showed that no unspecific amplification

was detected (Supplementary Figure S1).

qRT-PCR assays were performed using the SsoAdvanced

Universal SYBR Green Supermix (Cat# 1725270, Bio-Rad, USA)

in ABi ViiA7 Real-Time PCR System (ThermoFisher Scientific) in a

20 mL reaction volume according to the manufacturer’s

instructions. The thermal cycling condition was 30 seconds at 95°

C for initial activation, followed by 45 cycles of 15 seconds at 95°C

and 60 seconds at 60°C.

GAPDH was demonstrated as useful housekeeping gene to

normalize the data, in order to determine the relative target gene

expression in cfRNA samples (38). The gene expression was

normalized to GAPDH among the same patient by delta-delta Ct

method as following. The expression level of GAPDH was detected

as stable among samples (Supplementary Figure S2).

DCt=Ct(PACS1=HPGD=TDP2)−Ct(GAPDH)

DDCt=DCt−DCt(pre−surgical cfRNA)

Fold change expression  = 2−DDCt
2.9 Survival analysis

451 TCGA CRC samples were split into training and test

datasets: 70% of samples of the dataset were randomly selected as

training dataset (N=315) and 30% as test dataset (N=136). Gene

expression was standardized by removing the mean and scaling to

unit variance before analysis. We generated a protective score for

each sample – the accumulative weighted gene expression of the

HPGD, PACS1, and TDP2 by the first principal component. Linear

regression was used to fine-tune the protective score. Then samples

with a protective score>0.5 were classified as a low-risk group,

otherwise as a high-risk group. AUC was used to evaluate the model

performance. Survival curves were estimated by the Kaplan-Meier

method and compared with a log-rank test.
2.10 Statistics

The correlation between gene expression in CRC tumor

samples vs TCGA tumor samples and pre-surgical cfRNA vs CRC

tumor samples was described using the linear regression model. The
frontiersin.org

https://github.com/sevahn/deconvolution/tree/master/deconvolve_cfrna_tutorial
https://github.com/sevahn/deconvolution/tree/master/deconvolve_cfrna_tutorial
https://doi.org/10.3389/fonc.2023.1134445
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jin et al. 10.3389/fonc.2023.1134445
significance of the overlapping between significantly upregulated

genes in pre-surgical plasma and upregulated protein-coding genes

in TCGA tumor samples was described using the hypergeometric

test. P values from the Wilcoxon rank-sum method indicated

significance levels for differences in cell type proportion across

sample groups. Gene expression detected using qRT-PCR was

compared between post- and pre-surgical cfRNAs using the

paired T-test. The error bars represented mean ± standard

deviation (SD).

We used the Python library SciPy (v1.5.2) to perform the

statistical analysis. We used adjusted p-value< 0.001 and abs

(log2Fold-change) >1 to identify DEGs in in-house CRC tumor

samples and CRC tumor-adjacent samples, as well as TCGA tumor

samples and tumor-adjacent samples; p-value<0.05 to identify

DEGs and DETs in pre- and post-surgical cfRNAs. Gene

expression detected using qRT-PCR was compared between post-

and pre-surgical cfRNAs using the paired T-test.
2.11 Study approval

Each patient was invited to donate tissues (CRC tumor samples

and CRC tumor-adjacent samples) and blood (pre-surgical and

post-surgical cfRNA) for research purposes with written informed

consent before the operation. This study was approved by the joint

Chinese University of Hong Kong- New Territories East Cluster

Clinical Research Ethics Committee (CUHK-NTEC CREC; Ref

No: 2019.542).
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2.12 Data availability

The raw RNA-seq data of the plasma and tissue samples in this

study are available in the NCBI Sequence Read Archive (SRA)

database under the accession code PRJNA891435.
3 Results

A total of 45 rectal and colon adenocarcinoma patients were

recruited in this study (62.2% men; age: 70.5 ± 8.8 years,

Supplementary Table S4). cfRNA-seq was performed for 8

patients with matching pre- and post-surgical plasma samples

(pre-surgical cfRNA and post-surgical cfRNA) (75% men; 71.6 ±

7.0 years), and bulk RNA-seq was performed using the 5 pairs of

CRC tumor samples and CRC tumor-adjacent samples as well as 3

additional CRC tumor samples (87.5% men; age 70.5 ± 5.7 years,

Figure 1A). The remaining 36 plasma samples (58.3% men; age 70.1

± 9.3 years) were used in downstream qRT-PCR validation for the

biomarkers discovered in this study.
3.1 Genetic characterization of plasma
cell-free and tissue transcriptome

To characterize the expression landscape of CRC, RNA-seq was

performed using the entire yield of extracted cfRNAs and tissue

RNAs (see Methods). We systematically profiled the genetic
B

C

A

FIGURE 1

Analytical characterization of cell-free RNA and tissue transcriptome. (A) Experimental design of the study, Created with BioRender.com. (B) Relative
intensity across different fragment lengths of plasma and tissue transcriptomes in a patient with CRC. Pie charts showed the percentage of gene
expression in each biotype. (C) Correlation between gene expression of the top expressed genes in in-house tumor samples and TCGA datasets, and
plasma and tissue datasets. The top 500 expressed genes in TCGA and in-house tissue were selected, respectively.
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composition of the plasma cell-free and tissue transcriptome

(Figure 1B; Supplementary Tables S5, S6). By comparing pre-

surgical and post-surgical cfRNAs, we identified that the

percentage of noncoding RNAs decreased significantly (T-test: p-

value=1.42e-03) after surgery (39, 40), while the percentage of

rRNAs increased significantly (T-test: p-value=1.20e-02). The

genetic composition of tissue, however, has no significant

variation between in-house CRC tumor samples and CRC tumor-

adjacent samples as expected (Supplementary Table S6). This

suggests that surgical removal of CRC tissue samples may affect

the corresponding cfRNA abundance in plasma.

To examine the level of concordance between in-house CRC

tumor sample RNA-seq profiles and published CRC RNA-seq data,

we compared the gene expression level between 8 in-house CRC

tumor samples and 453 TCGA CRC tumor samples (see Methods).

A positive correlation (R2 = 0.55, p-value=1.53e-89) was observed in

the top 500 expressed genes in the TCGA dataset (Figure 1C).

Interestingly, the expression between in-house CRC tumor samples

and pre-surgical cfRNA was also positively correlated (R2 = 0.31, p-

value=9.05e-43). The correlation coefficient is higher than it

between in-house CRC tumor-adjacent samples and pre-surgical

cfRNA (R2 = 0.23, p-value=1.17e-30), as well as between in-house

CRC tumor samples and post-surgical cfRNA (R2 = 0.27, p-

value=4.67e-36; Supplementary Figure S3). The concordance

between the in-house CRC tumor samples and pre-surgical
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cfRNA leads us to the hypothesis that the patients’ cfRNA could

be derived from subpopulations of cells within the tumor (41),

additional analysis is therefore necessary to delineate the tissue

origin of cfRNA in plasma as to identify biomarkers for CRC

in blood.
3.2 Cell type abundance suggested a
decrease of intestinal cell-originating RNAs
in plasma after surgery

Given the correlation between in-house CRC tumor samples

and pre-surgical cfRNA, we hypothesize that a portion of the

cfRNA in plasma could be originating from the cancer tissue. We

performed a single-cell deconvolution analysis to predict the

relative ratio of contributing cell types based on their specific

expression signatures. Firstly, we used CIBERSORTx to predict

the cell type proportion of all in-house CRC tumor and CRC tumor-

adjacent samples using the published CRC single-cell RNA-seq

dataset (GSE132465). A marginal increase in myeloid cells was

observed in CRC tumor samples than in CRC tumor-adjacent

samples (Figure 2A; log2Fold-change=7.35; p-value=5.4e-02),

consistent with the role of myeloid cells in providing growth

factors and metabolites for tumor growth (42). B Cells, however,

were depleted in the tumor samples when compared to CRC tumor-
B

C D

A

FIGURE 2

Cell type proportion in tissue and cfRNA. (A) Deconvoluted cell type proportion of in-house bulk CRC tumor samples and CRC tumor-adjacent
samples. Box plot showed myeloid and B cell fraction distribution from CRC patients. (B) Deconvoluted cell type proportion of 42 TCGA bulk tumor
and normal samples. Each stacked bar of the left and middle panels represented matched tumor and normal tissue from a single participant. Box
plots showed myeloid and B cell fraction distribution from 42 CRC patients in TCGA. (C) Heatmap of expression for CRC tissue-highly expressed
genes in plasma samples. (D) Box plots showed intestinal secretory cells, erythrocytes, erythroid progenitors, and leukocyte fraction distribution from
pre- and post-surgical plasma samples. P values from the Wilcoxon rank-sum method indicated significance levels for differences in cell type
proportion across sample groups. “**” represented P<0.01; “*” represented P<0.05. NS, not significant.
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adjacent samples (log2Fold-change=-1.91; p-value=2.3e-02), which

is expected for the inhibition role of B cells in tumor development

(43). These results were also observed in the TCGA dataset

(Figure 2B; p-value=2.6e-05 in myeloid cells; p-value=1.1e-08 in B

cells) and showed high consistency with the findings from the

single-cell RNA-seq data (27).

After demonstrating consistent cell-type specific expression

signature between the in-house tissue sample RNA-seq data and

TCGA dataset, we hypothesize that the proportion of cfRNA

secreted by intestinal cells should be decreased in post-surgical

cfRNA samples. Principal component analysis (PCA) based on the

top 500 DEGs showed discriminating between the pre- and post-

surgical plasma samples (Supplementary Figure S4). We detected 50

significantly upregulated genes that expressed across all the samples

(FPKM>1) in pre-surgical cfRNA samples, 7 of them overlapped

with the 2,379 upregulated protein-coding genes in TCGA tumor

samples (Figure 2C; Hypergeometric test: p-value=3.63e-03). To

determine if the up-regulated genes in pre-surgical cfRNA could be

contributed by the intestinal-related cell, we further used the

comprehensive human single-cell atlas - Tabula Sapiens (44) to

deconvolute the cellular composition of the plasma samples (10).

Consistent with the hypothesis, the proportion of intestinal

secretory cells was significantly decreased after the surgery (p-

value=7.2e-03) when compared to pre-surgical plasma samples

(Figure 2D). We observed an insignificant change in the

expression signature of erythrocyte, erythroid progenitor, and

leukocytes between pre- and post-surgical samples (Figure 2D),

which agrees with a previous study that demonstrated relatively

stable expression of these cell types in plasma (28). Taken together,

cfRNAs can reflect the intestinal tumor load, which has the

potential to be the non-invasive biomarkers for CRC.
3.3 Identification of CRC non-invasive
differential expression (DE) biomarkers

To identify potential blood-based DE biomarkers for CRC

patients, we further performed a de novo assembly-based DE

analysis to identify transcripts, potentially novel transcripts, that

show consistent DE pattern across pre- and post-surgical cfRNA

samples, as well as in-house CRC tumor samples and CRC tumor-

adjacent samples (Figure 3A).

A total of 106,802 transcripts were assembled, the average

length of which is 453 bp (see Methods, Supplementary Figure

S5). We detected 409 differentially expressed transcripts (DETs)

with more than 1 exon in the assembled transcripts. 268 out of the

409 transcripts were found to be known transcripts – overlapping

with the GENCODE human release 35, and the remaining 141

transcripts were defined as novel transcripts (see Methods). Among

the known transcripts, RNU2-1 which was previously shown to be

released from tissue to plasma among CRC patients (45), has been

shown to be decreased in the post-surgical cfRNA (Supplementary

Figure S6A; p-value=0.04, log2Fold-Change=-0.55). A lowered

expression was also observed in in-house CRC tumor-adjacent

samples (log2Fold-Change=-0.93) and TCGA tumor-adjacent
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samples (log2Fold-Change=-0.81; Supplementary Figure S6A). By

selecting highly confident novel transcripts based on fold differences

and TSS proximity (34) (see Methods), 10 transcripts were further

shortlisted (Supplementary Table S7). Interestingly, we identified a

significant decrease of the novel MCF2L-intronic-AS in post-

surgical cfRNA (Supplementary Figures S6B, C; p-value=8.31e-03,

log2Fold-Change=-1.03) located within the intronic region at

antisense strand of MCF2L. This novel transcript was predicted as

a non-coding transcript with a coding probability of 0.03 by using

CPC 2.0 (35) and shown to be expressed in colon adenocarcinoma

cell lines by AnnoLnc2 (36). The transcript was predicted to interact

with a common set of proteins as MCF2L-AS1 – a known antisense

non-coding RNA of MCF2L. MCF2L-AS1 showed distinctly higher

expression in CRC compared to matched normal specimens (46),

and its deficiency dramatically impeded cell proliferation, invasion,

and migration capacities of CRC (47). MCF2L-intronic-AS may

serve the consistent role as MCF2L-AS1 according to interacting

with the common proteins. In sum, these significantly depleted

post-surgical cfRNAs could be contributed by the reduced intestinal

secretory cells after surgical removal of the CRC tissue.

To identify genes with the same DE patterns in (i) CRC tumor

tissue and tumor-adjacent tissue and (ii) pre- and post-surgical

cfRNA samples (Figure 3A), we further performed DE analysis

between CRC tumor and tumor-adjacent and identified 1,942 DE

genes. Among these 1,942 genes, 11 genes were shown to be

overlapping with the 409 DETs in cfRNAs. CDCA7, CELSR3,

PACS1, SNTB1, and TBC1D31 showed consistent upregulation in

CRC tumor samples and pre-surgical cfRNA, while GFI1B, HPGD,

SH3BGRL2, SIAE, PKHD1L1, and TDP2 showed downregulation in

CRC tumor samples and pre-surgical cfRNA. We further prioritize

these genes based on their biomolecular functioning using

Reactome Pathway Database (24). Only HPGD, PACS1, and

TDP2 showed involvement in biological pathways, including

metabolism, infection, and DNA repair-related pathways

(Supplementary Table S8).
3.4 Independent external validation of
HPGD, PACS1 and TDP2 expression
showed high concordance in CRC

We set out to validate the expression of the three cfRNA

biomarkers – HPGD, PACS1, and TDP2 identified in our in-

house cfRNA and CRC tissue samples using an independent

cohort of pre- and post-surgical cfRNA samples (N=36) and

published TCGA CRC tumor and tumor-adjacent samples

(N=453). HPGD has a significantly lower expression in in-house

CRC tumor samples (p-value=4.63e-07, log2Fold-Change=-2.70)

and pre-surgical cfRNA (p-value=1.67e-02, log2Fold-Change=-

0.74). The loss expression of HPGD was reported in several

colorectal carcinoma cell lines (48) and microscopic colon

adenomas (49). We also observed a similarly low HPGD

expression in TCGA tumor samples (p-value=6.67e-38, log2Fold-

Change=-2.86) and the independent in-house pre-surgical cfRNA

cohort (p-value=2.25e-02, log2Fold-Change=-0.58) (Figure 3B;
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Supplementary Table S9). Especially, the 9 out of 36 patients with

N0 stage in the independent in-house cfRNA cohort showed a lower

expression in pre-surgical cfRNA (p-value=2.53e-02, log2Fold-

Change=-0.61; Supplementary Figure S7), implying a role of

HPGD in early detection of CRC. The expression of PACS1 and

TDP2was also examined in both the TCGA CRC RNA-seq data and

the independent pre- and post-surgical cfRNA cohort. PACS1
Frontiers in Oncology 0837
expression is shown to be consistently higher in both in-house

and TCGA CRC tumor samples, as well as pre-surgical cfRNA

(Figure 3C). TDP2, however, is shown to be lowly expressed in the

in-house tumor samples, TCGA CRC tumor samples, and pre-

surgical cfRNA (Figure 3D). In summary, these results confirmed

the monitoring potential of HPGD, PACS1, and TDP2 in

individuals with CRC.
B

C

D

A

FIGURE 3

(A) Schematic diagram showed the consistent DEGs identification across cfRNAs, in-house CRC tissue samples, and TCGA samples. Gene expression of
HPGD (B), PACS1 (C), and TDP2 (D) in cfRNAs, in-house CRC tissue samples, TCGA samples, and in-house qRT-PCR cfRNA data across sample groups.
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3.5 Detection of survival outcome
difference in TCGA CRC patients based on
the linear combination of HPGD, PACS1,
and TDP2 expression
We next explored whether the expression of HPGD, PACS1 and

TDP2 can guide the patient classification based on their survival

time. We used a linear regression model to investigate the

association between the survival time of TCGA CRC patients and

the expression of HPGD, PACS1, and TDP2 (see Methods). In order

to evaluate the fitted model’s accuracy in predicting the risk for

CRC patients, we randomly split the TCGA CRC dataset into

training (N=315) and test datasets (N=136) and used the receiver

operating characteristic (ROC) and the area under the curve (AUC)

to assess the model performance (see Methods). The AUC for the

training dataset is 0.838 and 0.831 for the test dataset, indicating the

good performance of the model (Figure 4A). HPGD (beta

coefficients = -0.05, 95% confidence interval (CI): -0.09 to -0.02,

p = 1.25e-03) and PACS1 (beta coefficients=-0.06, 95% CI: -0.09 to

-0.03, p = 6.34e-05) were identified as significant risk factors in the

model, while TDP2 (beta coefficients = 0.15, 95% CI: 0.11 to 0.19,

p=3.61e-13) as a significant protective factor (Figure 4B). The linear

combination of HPGD, PACS1 and TDP2 expression was used to

assess patient survival probability (see Methods). A significant

difference was detected for the training dataset (Log-rank p-value:

4.75e-02) and test dataset (Log-rank p-value: 2.95e-02) (Figure 4C).

The median survival time for a low-risk group (N=110) in the test

dataset was 1.65 years compared to 1.36 years for the high-risk

group (N=26) (Figure 4C). Taken together, the linear combination
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ofHPGD, PACS1, and TDP2 expression showed an association with

the survival probability of the CRC patient, suggesting the

prognostic ability of these potential biomarkers.
4 Discussion

Identifying blood-based prognostic markers for minimally

invasive cancer detection has been a major focus in the diagnostic

area. ctDNA profiling is now being routinely applied clinically for

both companion diagnosis and screening for minimal residual disease

(MRD) among cancer patients. However, the detection of ctDNA for

MRD is challenging as only a minute amount of ctDNA are present

in blood at earlier cancer stages, especially in post-surgical setting (7,

10, 50). The cfDNA concentration may fall below the detection limit

of the NGS-based ctDNA test, resulting in a very low or even zero

mutation allele frequency (MAF) for the mutations (51). More

importantly, it is difficult to determine the tumor tissue of origin

(TOO) in cancer patients and differentiate informative cfDNA

mutations from benign variants such as clonal hematopoiesis (7).

Therefore through the amplification of tumor-derived RNA signal,

we have shown that the detection of the expressed cfRNA in blood is

technically feasible and may help circumvent the existing limitation

in ctDNA detection, which will increase cancer detection sensitivity

(7, 10). To our knowledge, this is the first study that compared the

plasma transcriptomes derived both pre-operatively and post-

operatively. Together with paired transcriptome derived from

tumor tissues and adjacent normal tissues from CRC patients, we

investigated the transcriptional landscape in both blood and tissue

upon the surgical removal of CRC tissue.
B

C
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FIGURE 4

Assessment of the linear regression model using the 451 TCGA CRC samples. (A) ROC curve of the training and test datasets. (B) Beta coefficients
and 95% CI of HPGD, PACS1, and TDP2. (C) Kaplan-Meier estimates of overall survival in the training and test datasets according to the linear
combination of HPGD, PACS1, and TDP2 expression.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1134445
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jin et al. 10.3389/fonc.2023.1134445
Previous studies have shown that the cellular components within

the tumor immune microenvironment (TIM) are important

regulators of primary tumor progression, organ-specific metastasis,

as well as a therapeutic response (52, 53). By using published CRC

and healthy individual single-cell RNA-seq profiles, we showed that

the CRC tumor micro-environment has a marked surge of immune

cells, including both myeloid cells and B cells. This agrees with the

finding that tumor-infiltrating cells play a critical role in tumor

development and treatment response (53), myeloid cells were also

previously found to be abundantly present within the TIM among

immune cells (54). Interestingly, when examining the cell type

contribution among the cfRNA transcriptome profiles, we detected

more intestinal secretory cell signatures in pre-surgical cfRNA than

post-surgical cfRNA, which have only been reported in the CRC

tumor tissue in the previous study (55).

Three significant cfRNA biomarkers HPGD, PACS1, and TDP2

were identified through our comprehensive analysis and qRT-PCR

validation experiments. The reduction of HPGD promotes the

expression of COX-2, including Ras-activated protein kinase

(MAPK) and extracellular signal-regulated kinase (ERK) (56, 57),

phosphoinositide 3-kinase (PI3K)–Akt signaling, epidermal growth

factor receptor (EGFR) (58) and Wnt/b-catenin (59). The PACS-1

promotes chromatin organization by increasing the acetylation of

chromatin (60) and its deficiency results in replication stress and

gross chromosomal aberrations (56). TDP2 is a DNA repair enzyme

that regulates DNA topology by creating double-strand breakage

with free 5’ phosphate for re-ligation (61–63). Since HPGD is a

tumor suppressor gene, as expected, it is freshly expressed in the

normal colonic mucosa (59). Interestingly, HPGD showed as a

significant risk factor in the linear regression model when its

expression combined with PACS1 and TDP2 expression.

Importantly, the model based on the expression of the three

genes showed a high AUC (>0.83) of the ROC curve in both

training and test datasets. Taken together, linear combination of

HPGD, PACS1, and TDP2 expression was associated with survival

probability, which provides support evidence to potential

prognostic biomarkers for CRC. Surprisingly, our research

identified a significant decline in MCF2L-intronic-AS expression

following surgery, which is identical to MCF2L-AS1 expression.

Because potentially interact with the common proteins, MCF2L-

intronic-AS may play a role in regulating the progression of CRC,

which may include promoting cell proliferation, migration,

invasion, epithelial-to-mesenchymal transition (EMT), and cell

apoptosis (46, 47, 64). There are no studies that have reported the

presence of MCF2L-intronic-AS in plasma; therefore, further

investigations must be conducted to validate the dysregulation

pattern of MCF2L-intronic-AS.

In the genetic characterization analysis of plasma cfRNA,

upregulated expression was observed in rRNA in post-surgical

cfRNA samples when compared to pre-surgical cfRNA samples.

Two mitochondrially encoded ribosomal RNAs, MT-RNR2 and

MT-RNR1 are dominant for the increasing expression in the post-

surgical cfRNA samples (MT-RNR2: log2FC=2.60, p-value=1.41e-

03; MT-RNR1: log2FC=2.73, p-value=1.06e-03), which may play an
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important role on aiding in the repair of damage during surgery

(65). Meanwhile, although no noncoding RNA was observed as a

dominant one in the reduction in post-surgical cfRNAs, non-coding

RNAs have been reported as drivers of malignant transformation

that promote the development of cancers (66). On the other hand,

some CRC biomarkers identified from previous studies, such as

CTNNB1 (14), S100A4 (67), and EPAS1 (68) were also detected in

this study with similar dysregulation patterns, but there was an

insufficient sample size in this study that led to these biomarkers

being statistically insignificant. While this study shows encouraging

results and suggests that the adoption of cfRNA could be useful in a

monitoring operation response, future studies with a larger number

of replicates per condition should be performed. We acknowledge

as a limitation of the present study the small sample size related to

cfRNA analysis which did not allow associating the candidate

biomarkers to CRC stages as well as investigating on their impact

in MRD detection. In conclusion,HPGD, PACS1, and TDP2 in CRC

plasma samples were demonstrated as potential prognosis

biomarkers of CRC, we hope that our results will enable future

studies in incorporating cfRNA in the detection, monitoring, and

diagnosis of premalignant CRC.
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Introduction: Breast cancer is the most common form of cancer among women,
it is critical to identify potential targets and prognostic biomarkers. Ferroptosis
combined with immunity shows a pivotal role in a variety of tumors, which
provides new opportunities to detect and treat breast cancer.

Methods: Our first step was to combine multiple datasets to search for immune
ferroptosis-related mRNAs. In the next step, risk signatures were created using
Least Absolute Shrinkage and Selection Operator (LASSO). After that, based on the
results of the multivariate Cox analysis, we created a prognostic nomogram and
validated the model’s accuracy. Finally, functional enrichment analysis, single
sample gene set enrichment analysis (ssGSEA), immunity and drug sensitivity
correlation analysis were performed to explore the possible mechanisms by
which these immune ferroptosis associated mRNAs affect BRCA survival.

Results: An immune ferroptosis signature (IFRSig) consisting of 5 mRNAs was
constructed and showed excellent predictability in the training and validation
cohorts. A correlation analysis revealed that clinical characteristics were closely
related to risk characteristics. Our nomogram model, which we created by
combining risk characteristics and clinical parameters, was proven to be
accurate at predicting BRCA prognosis. Further, we divided patients into
lowrisk and high-risk groups based on the expression of the model-related
genes. Compared with low-risk group, high-risk group showed lower levels of
immune cell infiltration, immune-related functions, and immune checkpoints
molecules, which may associate with the poor prognosis.

Discussion: The IFRSig could be used to predict overall survival (OS) and treatment
response in BRCA patients and could be viewed as an independent prognostic
factor. The findings in this study shed light on the role of immune ferroptosis in the
progression of BRCA.
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1 Introduction

With the highest incidence of all female malignant tumors
worldwide, BRCA is the most prevalent malignant tumor in
women (Siegel et al., 2021). Although great progress has been
made in the therapeutic effect of BRCA (Siegel et al., 2023),
sadly, there are still no reliable diagnostic tools or markers for
determining the prognosis of BRCA patients (Islam et al., 2020;
Pupa et al., 2021; Sindhu et al., 2021). Until now, tumor lymph node
metastasis (TNM) stage has been used to predict BRCA prognosis
and treatment response. However, due to tumor heterogeneity,
BRCA patients with the same TNM stage showed different
prognosis and treatment response. Therefore, it is important to
combine other useful indicators to predict prognosis and treatment
response.

As opposed to apoptosis, necrosis, and autophagy, ferroptosis
was a type of programmed cell death dependent on iron (Hadian
and Stockwell, 2020; Fardi et al., 2021; Jiang et al., 2021). The
classical mode of regulation of ferroptosis was through the
neutralization of lipid peroxides by glutathione peroxidase 4
(GPX-4) (Yang and Stockwell, 2016; Ding et al., 2020; He
et al., 2020). There was growing evidence that ferroptosis
causes hypersensitivity reactions in cancer cells with a higher
degree of malignancy, particularly those with intrinsic or
acquired drug resistance (Hangauer et al., 2017; Viswanathan
et al., 2017). In addition, ferroptosis influences the effectiveness
of cancer immunotherapy and was associated with T cell-
mediated antitumor immunity (Wang et al., 2019).
Additionally, it had been demonstrated that immune
modulation of the tumor microenvironment (TME) could
facilitate ferroptosis, which in turn increases the
immunogenicity of the TME, enhancing the immune
modulation response (Zhang et al., 2019). It was anticipated
that immunotherapy will had synergistic effects through
ferroptosis, promoting tumor control, in combination with
ferroptosis-promoting modalities like radiation therapy and
targeted therapy (Lang et al., 2019; Chen et al., 2021). There
was a close relationship between tumor cells, the immune
microenvironment, and ferroptosis (Lang et al., 2019; Jiang
et al., 2021). In addition, studies had found that ferroptosis
intervention could effectively improve immunosuppression
(Gao et al., 2015; Sun et al., 2016; Alavian and Ghasemi,
2021). In conclusion, the important role of immunity and
ferroptosis might provide a new direction for predicting
prognosis and treatment response of breast cancer.

The goal of this research was to develop new survival predictive
risk signatures and to explore the prognostic role of immune
ferroptosis-related mRNAs in BRCA. Firstly, we combined
multiple datasets to screen mRNAs associated with prognosis.
The risk features for BRCA prognosis prediction were then
constructed by LASSO regression analysis. At the same time,
the total samples were divided into training cohort and
validation cohort according to the ratio of 1: 1. Then, by
combining this feature with other clinical parameters, a
nomogram was created to predict 1-, 3-, and 5-year survival.
Ultimately, we explored the relationship between risk
characteristics and underlying biological function, immunity,
and drug susceptibility.

2 Materials and methods

2.1 Transcriptome data acquisition and
model building

In this research, we downloaded the transcriptome Fregments
Per Kilobaseper Million (FPKM) of breast cancer patients from
the TCGA database (https://portal.gdc.cancer.gov/). The
RNAseq data in FPKM format was converted into transcripts
per millionreads (TPM) format and log2 conversion was
performed. Transcriptome data was organized and ENSG
numbers were converted to symbolic IDs. The research was
carried out in accordance with the Helsinki Declaration
(revised 2013).

The ImmPort database (https://www.immport.org./home) and
the GeneCard database (https://www.genecards.org/) were used to
obtain 17,500 human immune-related genes (IRGs). A total of
398 ferroptosis-related genes (FRGs) were downloaded through
the FerrDb database (http://www.datjar.com) and literature (Song
et al., 2021). Two gene sets were crossed with differentially expressed
genes to obtain co-expressed genes (IFR-DEG), and the cutoff
conditions were set as log2 fold change (logFC) < 1, p-value <0.
05. Then, univariate Cox regression analysis was performed, and the
total samples were divided into training cohort and validation
cohort according to the ratio of 1: 1. The training cohort builds a
risk model based on LASSO-Cox regression analysis. The formula
for calculating the risk score was as follows: Risk score =
βgene1×exprgene1+βgene2×exprgene2+.+βgenen×exprgenen. At
the same time, to reduce the dimensionality of the nomogram,
we used an unsupervised learning algorithm called principal
component analysis (PCA), which allowed us to visualize the
spatial distribution of samples.

2.2 Gene correlation, gene network and
functional enrichment analysis

Gene correlation analysis was performed by Spearman analysis
and visualized with the ggplot2 package. Model-related genes were
submitted through GeneMANIA (http://www.genemania.org),
which analyzed and displayed genes that perform similar
functions—representing protein expression and inheritance in
the network. Genes were enriched by Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways to investigate the potential biological functions of
interacting proteins and model gene co-expression in pan-
cancer, GO enrichment analysis including molecular function
(MF), cellular component (CC) and biological process (BP).
Both GO and KEGG analyses were performed by the R package
ClusterProfiler. Then high and low risk differential genes were also
analyzed by GO and KEGG.

2.3 Model validation

We divided patients into high-risk and low-risk groups, and
then we generated heatmaps associated with prognosis based on the
median risk score. To determine differences in survival between
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high- and low-risk groups, we plotted Kaplan-Meier survival curves,
distributions of survival status, and distributions of risk scores.
Finally, the predictions of the risk scoring model were further
validated by applying the “timeROC” package to plot the ROC
curves of the training and validation groups.

2.4 Independent prognostic analysis and
nomogram construction

Nomograms were constructed by combining relevant clinical
factors and risk scores obtained with risk scores (we used the R
packages: “rms”, “foreign” and “survival”). An evaluation of the
model’s discriminative ability was then carried out by drawing a
calibration curve.

2.5 The relationship between risk score and
immune cell infiltration

We calculated immune stages using single-sample gene set
enrichment analysis (ssGSEA) (He et al., 2018). In exploring the
relationship between risk score values and immune-infiltrating cells,
we used Spearman’s rank correlation analysis.

2.6 Immune microenvironment, immune
checkpoints, immune escape

A stromal score, an immune score, an estimated score, and a
tumor purity were calculated using transcriptome profiles from
UCECs. In the high-evolution and low-evolution groups of hub
genes, we compared stroma scores, immune scores, estimated
scores, and tumor purity using Limma and ggpubr packages. In
addition, tumor immune escapemechanisms in different risk groups
were analyzed using the TIDE algorithm.

2.7 Gene mutation analysis

In the gene mutation analysis, the number and quality of gene
mutations in two subgroups (Maftools package) of BRCA patients were
analyzed. In addition, we also analyzed the relationship between tumor
mutational burden (TMB) and risk score subgroups using Student’s t-test.

2.8 Predicting response to chemotherapy

To elucidate the role of signatures in clinical treatment,
IC50 values of commonly used chemotherapeutics were evaluated

FIGURE 1
Build a riskmodel. (A) Venn diagram. Blue represented immunity genes, green represented ferroptosis genes, and red represented differential genes.
(B) Distribution of LASSO regression coefficients for crossed genes. (C) LASSO deviation profile of crossed genes. (D) PCA plot of high and low-risk
group. PCA, principal component analysis.
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using high-throughput sequencing data of BRCA in TCGA. In this
study, the Wilcoxon signed-rank test was used to compare the
differences between the two groups, and pRRophetic and
ggplot2 were used for the visualization of the results.

2.9 Statistical analysis

R software (version 4.1.2) was used for statistical analysis. For
data processing, the Perl programming language is used. Prognostic
significance was determined using multivariate Cox regression
analysis. PCA was also performed using R’s ggplot2 package. The
survival difference between the two groups was analyzed by Kaplan-
Meier curve and logrank test was used. Gene correlations, risk scores
and correlations between immune cells and immune genes were
analyzed using Spearman’s correlation coefficient test. When p <
0.05, the difference was statistically significant.

3 Results

3.1 Construction of a prognostic risk model
for differentially expressed genes related to
immune ferroptosis

89 co-expressed genes were discovered by combining
17,500 immune-related genes, 398 ferroptosis-related genes, and
5072 BRCA differentially expressed genes (Figure 1A). A
predictive model of immune ferroptosis-related risk was then
constructed using lasso regression (Figure 1B). The risk score
formula was: riskscore= (0.008*TFRC) + (−1.042*IFNG) +
(−0.064*FLT3) + (−0.016*FZD7) + (−0.009 *SIAH2)
(Figure 1C). Patients were divided into high- and low-risk
groups based on the median risk score (50%). The results of
PCA validated the differential expression of high- and low-risk
groups in BRCA patients (Figure 1D).

FIGURE 2
(A)Gene correlation network diagram of prognosticmodel. (B)Model -related gene network plotted using GeneMANIA. (C)Model gene enrichment
analysis in pan-cancer: GO and KEGG.
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3.2 Model gene correlation and functional
enrichment analysis

To explore potential relationships of model genes, we examined
correlations between Model-related genes using Spearman
correlation analysis. As shown in Figure 2A, FLT3 negatively
correlated with SIAH2, while TFRC positively correlated with

IFNG and FZD7; SIAH2 positively correlated with FZD7 and
SIAH2; TFRC positively correlated with FZD7 and SIAH2;
FLT3 positively correlated with FZD7 and SIAH2; FZD7 was
negatively correlated with SIAH2.

We constructed gene-gene networks through GeneMANIA to
explore gene interactions. Figure 2B shows 20 nodes around the
central node of the Model-related genes, which were genes related to

FIGURE 3
Survival analysis of patients in both the training and validation cohorts. (A) Distribution plots of survival times in the training cohort. (B) Distribution
plots of survival times in the validation cohorts. (C) Scatter plots of risk scoresin the training cohort. (D) Scatter plots of risk scores in the validation cohorts.
(E) Gene expression levels in the training cohort. (F) Gene expression levels in the validation cohorts. (G) Overall survival (OS) in the training cohort. (H)
Overall survival (OS) in the validation cohorts. (I) Time-dependent ROC curves in the training cohort. (J) Time-dependent ROC curves in the
validation cohorts.
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the genes model based on physical interactions, co-expression,
predictions, co-localization, genetic interactions, pathways, and
shared domains. Among them, TF, WNT3, IFNGR1, and
FLT3LG were ranked in the top. Regarding model-related genes
GO and KEGG enrichment analysis, as shown in Figure 2C, in BP,
the regulation of lymphocyte differentiation, ironion transport,
positive regulation of tyrosine phosphorylation of STAT rotein
was dominant. MF was significantly enriched in glucocorticoid
eceptor binding, Wnt-activated receptor activity, ubiquitin
conjugating genzyme binding. In CC, they were mainly located
in recycling endosome, early endosome, endosome membrane. A
KEGG enrichment analysis indicated that model-related genes were
associated with the hemotopoietic cell lineage, significantly
associated with the HIF-1 signaling pathway.

3Validation of a prognostic risk model for differentially
expressed genes related to immune ferroptosis.

Based on the median risk scores of the training and validation
cohorts and the test cohorts, all patients were divided into high- or
low-risk groups with each group accounting for 50%. As the risk score
increased, so did the number of patient deaths (Figures 3A–D). The
risk model-related genes expression level between high- and low-risk

groups were shown in Figures 3E, F. In both trainning and validation
cohorts, OS was significantly different (Figures 3G, H, p < 0.001). Low
risk patients had better clinical outcomes than high risk patients in
each cohort, which was consistent with both groups’ results. The
survival time ability of IFRSig was assessed using a time-dependent
ROC curve. The areas under the curve (AUC) at 1, 3, and 5 years were
0.690, 0.673, and 0.690 for the training cohort (Figure 3I) and 0.665,
0.685, and 0.674 for the validation cohort (Figure 3J), respectively. The
results of all studies suggest that IFRSig can accurately predict OS.

3.3 Heatmap and GO/KEGG pathway
enrichment analysis

Based on clinical features, we created heatmap to compare the
expression relationship of prognostic model-related genes between high-
risk and low-risk subgroups, and the status of HER2, ER, PR, age, T, N,
M, stage, immune score were shown as patient annotations (Figure 4A).

Classification analysis revealed that GO: BP was mainly
concentrated in classical pathway, humoral immune response
mediated by circulating immunoglobulin, complement activation,

FIGURE 4
Heatmap and GO/KEGG pathway enrichment analysis. (A) Clinically relevant heatmap. A heatmap based on data on the clinicopathological
characteristics of the patients was created based on the risk characteristics associated with prognosis. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of high and low risk differential genes. (C) GSEA analysis of high and low
risk differential genes.
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B cell mediated immunity, lymphocyte mediated immunity; CC was
mainly concentrated in immunoglobulin complex, immunoglobulin
complex, circulating, external side of plasma membrane, blood
microparticle, T cell receptor complex; MF was mainly
concentrated in immunoglobulin receptor binding, cytokine
receptor activity, chemokine receptor binding, chemokine activity.
Importantly, KEGG was mainly enriched in Hematopoietic cell
lineage, Primary immunodeficiency, Cytokine-Cytokine receptor
interaction, Viral protein interaction with cytokine and cytokine
receptor, T cell receptor signaling Pathway (Figure 4B).

Further GSEA, we found that high and low risk were mainly
enriched in REACTOME_FCERI_MEDIATED_MAPK_
ACTIVATION, REACTOME_FCERI_MEDIATED_NF_KB_
ACTIVATION, REACTOME_IMMUNOREGULATORY_
INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_
LYMPHOID_CELL, REACTOME_ADAPTIVE_IMMUNE_SYSTEM
(Figure 4C).

3.4 Independent prognostic factors and
nomogram construction

In the TCGA cohort, univariate Cox regression analysis showed
stage, M, N, T, age, ER, and risk score were significantly associated
with OS; while multivariate Cox regression analysis showed that age

(p < 0.001) and risk score (p < 0.001) were significantly associated
with OS (Figures 5A, B). The results showed that IFRSig was an
independent prognostic factor for BRCA.

We constructed a nomogram based on risk scores and other
clinicopathological covariates for calculating individualized cancer
risk scores (Figure 5C). According to calibration plots, the
prognostic nomogram for 1-, 3-, and 5-year OS was in
agreement with the diagonal lines (Figure 5D). The outcomes
demonstrated that the nomogram created by IFRSig has a good
level of prognostic accuracy for BRCA patients.

4 Immune characteristics

Tumor immune cell compositions played a major role in
response to immunotherapy but the heterogeneity and dynamics
of immune infiltrates in human cancer lesions remained poorly
characterized. In BRCA samples, we assessed the immune
infiltrating profile of immune infiltrating cells to better
understand the complex crosstalk between IFRSig and immune
signatures (Figure 6C). Moreover, we investigated the
relationship between immune infiltrating cells and immune
function as well as IFRSig, and immune infiltrating cells and
immune function were found to be lower in high-risk individuals
than in low-risk individuals (Figures 6A, B).

FIGURE 5
Construction of independent prognostic factors and nomogram. (A) Univariate Cox regression analysis. (B)Multivariate Cox regression analysis. (C)
Survival nomogram based on the total TCGA cohort. (D) Calibration curves for predicting 1, 3, and 5-year survival of BRCA patients in the TCGA cohort.
*p < 0.05, **p < 0.01, ***p < 0.001.
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4.1 The immune microenvironment,
immune checkpoints, immune escape

Tumor microenvironments, as their name suggests, contained
the necessary conditions for tumor cells to proliferate and
metastasize. Tumor progression was influenced by immune cells,
tumor cells, stromal cells, as well as a variety of active molecules.
Figure 7A showed that high-risk patients have lower immune and
ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumour tissues using Expression data) scores.

Our study compared the expression values of immune
checkpoints molecules in patients with different IFRSigs. As
shown in Figure 7B, the bar plot shows that the expression of
immune checkpoints molecules were significantly lower in the high-
risk score group than in the low-risk score group, except NRP1 and
CD276. These findings imply that high-risk group may not benefit
from anti-PD1/PD-L1/CTLA ICI immunotherapy, but from anti-
NRP1/CD276.

As well, the Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm could predict how immune checkpoint inhibitors would
react with different subgroups. Results showed that high-risk group

dysfunction and TIDE scores were lower, and exclusion was higher
than low-risk group exclusions (Figures 7E–H).

4.2 The association of immune ferroptosis-
related mRNA signatures withTMB

It was reported that in many cancer types, including bread
cancer, patients with higher tumor burden mutations (TMB) had
lower survival rates. On the contrary, patients treated by ICI, with
higher TMB generally associated with longer survival (Godenick,
1995).

Accordingly, we speculated that TMB might have a non-
negligible relationship between prognosis risk score and TMB.
Therefore, we analyzed and displayed the distribution of genetic
mutations among high-risk and low-risk score subtypes. A total of
84.19% of low-risk BRCA samples had genetic mutations
(Figure 8A), while 84.43% were mutated in the high-risk group
(Figure 8B), indicating that samples from the high-risk group had a
higher probability of gene mutation. A comprehensive landscape of
somatic variation showed mutational patterns and clinical features

FIGURE 6
Relationship with immune infiltration (A) Boxplot of association between IFRSig and immune cell lineage; (B) Boxplot of association between IFRSig
and immune function; ANOVA used as significance test, *p < 0.05, **p < 0.01, ***p < 0.001. (C) Immune correlation heatmap.
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of the top 15 most frequently changed driver genes. There were
6 genes in the low-risk group with the highest mutation frequency,
including PIK3CA (35%), TP53 (59%), TTN (17%), CDH1 (12%),
GATA3 (11%), MUC16 (11%). TP53 (34%), PIK3CA (33%), TTN
(18%), CDH1 (12%), GATA3 (11%), MAP3K1 (10%) and other
genes had the top 6 mutation frequencies in the high-risk group. A
number of anticancer genes, including TP53, had a relatively high
mutation rate among high-risk individuals (34% compared to 30%),
MUC16 had a relatively low mutation rate in the high-risk group
(9% vs 11%).

A higher level of TMB was found in the high-risk subgroup
compared to the low-risk group (p = 0.028, Figure 8C). Patients
were then assigned to different subtypes on the TMB score. There
was a significant correlation between high TMB values and short
overall survival (p = 0.018, Figure 8D). Moreover, we validated
that risk score and TMB could predict BRCA prognosis without
immunotherapy synergistically. As shown by the stratified
survival curves, TMB status did not interfere with the risk
score prognostic prediction performance. In low and high
TMB status subtypes, risk score subgroups were significantly
different from each other in terms of prognosis (p < 0.001,
Figure 8E).

4.3 Drug sensitivity

The sensitivity to chemotherapeutic drugs was also
anticipated to better direct clinical practice because
chemotherapy was a significant therapeutic approach. The
IC50 of commonly used chemotherapy drugs (Bleomycin,
Bryostatin, Doxorubicin, Cisplatin, Gemcitabine, Gefitinib,
Imatinib, Vinorelbine) in BRCA patients in the high-risk
group and low-risk group were calculated and compared by
pRRophetic analysis (Figures 9A–H). In this study, it was
determined that patients with a higher risk score might benefit
more from chemotherapy including Bleomycin, Cisplatin,
Doxorubicin, Gefitinib, Gemcitabine and Vinorelbine), while
patients with a lower risk score might benefit more from
chemotherapy including Bryostatin and Imatinib.

5 Discussion

Molecular heterogeneity, high recurrence and mortality rates,
and a serious threat to women’s health make BRCA one of the most
complex cancer types (Saatci et al., 2021). Early detection of BRCA

FIGURE 7
The immune microenvironment, immune checkpoints, immune escape (A–C) Comparison of interstitial scores, immune scores, and ESTIMATE
scoresin high-risk and low-risk subgroups. (D) Boxplot showed association between IFRSig and immune checkpoints. *p < 0.05, **p < 0.01, ***p < 0.001.
(E–H)Immune escape. (E) Dysfunction (F) Exclusion (G) MSIExprsig (H) TIDE score in different risk-groups.
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is essential for effective treatment and an improved prognosis
because BRCA has a poor prognosis, which has serious
implications for human health and socioeconomics (Winters
et al., 2017; Wang et al., 2018). Therefore, finding influential
molecular markers, assessing BRCA tumor immunoreactivity,
and establishing convincing prognostic models are critical for
personalizing BRCA therapy.

There was a synergistic relationship between immunity and
ferroptosis in tumors, according to the results of previous

studies (Hong et al., 2021; Xu et al., 2021; Yang et al., 2021).
In the TME, macrophages could convert fromM2 to M1, making
more H2O2 available for the Fenton reaction, leading to
ferroptosis of tumor cells (Zanganeh et al., 2016). Another
study found that activated CD8+ T cells release IFN- to
prevent cystine from being absorbed by the body’s systems,
which caused tumor cells to ferroptose through lipid
peroxidation (Shao et al., 2021). When tumor cells undergo
ferroptosis, tumor antigens are released, resulting in the

FIGURE 8
Correlation of risk scorewith TMB. (A)Oncoprint of the somaticmutational landscape of the low-risk group. (B)Oncoprint of the somaticmutational
landscape of the high-risk group. (C) TMB differences between patients in low/high risk score subgroups. (D) Kaplan-Meier curves of high and low
TMBgroups. (E) Kaplan-Meier Q19 curves of patients stratified by TMB and risk score.
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production of immunogenic TMEs that enhance the response to
immune regulation (Lu et al., 2021).

As part of this study, we performed co-expression analyses of
breast cancer-related and immune ferroptosis-related genes using
the TCGA. After performing a lasso regression analysis, 89 co-
expressed immune ferroptosis-related DEGs were collected in order
to create prognostic risk models, which could be used for both
prognostic and therapeutic purposes. A high-risk and low-risk
IFRSig group was created for the cancer samples. In nomograms
and prognostic risk models, IFRSig was the key factor. We
demonstrated a satisfactory correlation between IFRSig and
clinical outcomes, indicating the IFRSig was a useful risk factor
for predicting clinical outcomes. To ascertain the effectiveness of the
treatment, we examined the sensitivity and resistance to
chemotherapeutic drugs.

An TME consists of a complex network of tumor cells within an
extremely complex internal environment formed by tumor stromal
cells and their secreted active factors, as well as vascular and
lymphatic networks, and extracellular matrix (Xiang et al., 2022),
of which immune cells and stromal cells were the most common
non-tumor cells in TME.

In addition to targeting immunogenic tumor mutations,
autologous tumor-infiltrating lymphocytes (TILs) and immune
checkpoint inhibitors (ICIs) could help to promote tumor growth
(Bu et al., 2021; Kirtane et al., 2021), and antibodies that target PD-1,
PD-L1, and CTLA-4 could be used as ICB drugs for the treatment of
a variety of cancers (Han et al., 2020; Archilla-Ortega et al., 2022).
Thus, we examined how risk subgroups and IC expression relate and
found that high-risk patients express more NRP1 and CD276 but
less CTLA-4 and PCDC1. This finding suggested that NRP1 and
CD276 could be used for targeted immunotherapy for BRCA high-
risk patients. Studies have shown that targeting CD276might reduce

cancer stem cell (CSC) immune escape in neck squamous cell
carcinoma (HNSCC) (Wang et al., 2021). In conclusion, risk
models could be employed to choose immunotherapy that was
more appropriate and to forecast how well it will work for BRCA
patients.

Overall, we constructed a prognostic risk signature with many
advantages, but it still has some limitations. Because of tumor
heterogeneity, we needed to validate our risk profile across
different cohorts, and it was necessary to validate our risk profile
in clinical trials. Despite the fact that our signature was still reliable
because we had proven its superiority in terms of survival, tumor-
infiltrating immune cells, clinicopathological features, signaling
pathways, ICs, and potential small molecule drugs. Upon
receiving more information and larger clinical sample sizes, our
team will continue to examine and validate the risk profile.

As a result, we developed IFRSig, which was closely related to
BRCA prognosis, which along with immunological features could be
used to better predict clinical treatment response in patients
with BRCA.

6 Conclusion

Our study established a prognostic risk model and identified
immune ferroptosis-related genes with independent prognostic
value using procedural algorithm analysis. Immune scores,
immune checkpoints, and chemotherapeutic agents all showed
significant correlations with prognostic models, which were then
regarded as an independent prognostic feature to predict OS and
clinical treatment response in BRCA patients. In this study, we
gained a better understanding of how immune ferroptosis-related
genes contribute to BRCA occurrence and progression.

FIGURE 9
Drug sensitivity (A–H) Half maximal inhibitory concentration (IC50) of 8 common chemotherapeutic drugs (Bleomycin, Bryostatin, Cisplatin,
Doxorubicin, Gefitinib, Gemcitabine, Imatinib, Vinorelbine). *p < 0.05, **p < 0.01, ***p < 0.001.
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Deciphering tissue heterogeneity
from spatially resolved
transcriptomics by the
autoencoder-assisted graph
convolutional neural network

Xinxing Li, Wendong Huang, Xuan Xu, Hong-Yu Zhang and
Qianqian Shi*

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural
University, Wuhan, China

Spatially resolved transcriptomics (SRT) provides an unprecedented opportunity to
investigate the complex and heterogeneous tissue organization. However, it is
challenging for a single model to learn an effective representation within and
across spatial contexts. To solve the issue, we develop a novel ensemble model,
AE-GCN (autoencoder-assisted graph convolutional neural network), which
combines the autoencoder (AE) and graph convolutional neural network
(GCN), to identify accurate and fine-grained spatial domains. AE-GCN transfers
the AE-specific representations to the corresponding GCN-specific layers and
unifies these two types of deep neural networks for spatial clustering via the
clustering-aware contrastive mechanism. In this way, AE-GCN accommodates
the strengths of both AE and GCN for learning an effective representation. We
validate the effectiveness of AE-GCN on spatial domain identification and data
denoising using multiple SRT datasets generated from ST, 10x Visium, and Slide-
seqV2 platforms. Particularly, in cancer datasets, AE-GCN identifies disease-
related spatial domains, which reveal more heterogeneity than histological
annotations, and facilitates the discovery of novel differentially expressed
genes of high prognostic relevance. These results demonstrate the capacity of
AE-GCN to unveil complex spatial patterns from SRT data.

KEYWORDS

spatially resolved transcriptomics, spatial domain identification, spatial information,
graph convolutional neural network, autoencoder

Introduction

Spatially resolved transcriptomics (SRT) technologies, such as spatial transcriptomics
(ST) (Ståhl et al., 2016), 10x Visium, and Slide-seqV2 (Stickels et al., 2021), can measure the
transcript localization and abundance in the dissected tissue area, enabling novel insights
into tissue development and tumor heterogeneity (Atta and Fan, 2021; Nasab et al., 2022).
Their generated data (i.e., gene expression in tissue locations [spots] and spatial locational
information) can be used to decipher the spatially functional regions and cellular
architectures in tissues (Maniatis et al., 2021; Marx, 2021; Zeng et al., 2022). However,
due to technical limitations (Xu et al., 2022), modeling and integrating the available SRT
modalities for accurate spatial domain identification still remain challenging.
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Currently, the spatial domain detection methods could be mainly
divided into two categories: non-spatial and spatial clustering methods.
Some non-spatial methods originally developed for single-cell RNA-
sequencing (scRNA-seq) studies, e.g., Seurat (Butler et al., 2018) and
Scanpy (Wolf et al., 2018), are also applied in SRT studies. They only
utilize the expression profiles to cluster spots while often obtaining
domains lacking in spatial continuity to some extent. To address such
issues, spatial clustering approaches generally incorporate the additional
spatial information into their models. For example, with the spatial
prior, BayesSpace (Zhao et al., 2021) and HMRF (Dries et al., 2021) use
the Markov random field model (or its variant) to encourage the
spatially neighboring spots to belong to the same domain. SpaGCN (Hu
et al., 2021) and SEDR (Fu et al., 2021) enable spatial clustering by
learning the low-dimensional representation with graph constraints
that represent the spatial dependency. STAGATE (Dong and Zhang,
2022) identifies spatial domains by adaptively learning the similarity of
neighboring spots via attention mechanisms. Modeling the spatial
dependency of gene expression fairly facilitates the discovery of
spatial domains with spatial coherence.

Though these methods have provided useful information on the
usage of expression profiles and spatial information, they usually
depend on single models, which center on either expression data
itself or spatially neighboring structure, thus probably resulting in
the preferred usage of the focused data type. For example, the non-
spatial clustering methods only models the gene expression itself, while
the spatial clustering methods often take spatial neighbors prior as a
hard constraint to ensure spatial clustering continuity, which may lead
to over-smoothing of expression (Huang et al., 2018) andmissing subtle
spatial regions with a handful of spots. Thus, the rational combination
of these different kinds of models can fairly generate more useful
representations, enabling better spatial domain detection in SRT studies.

Here, we develop a novel combined model, AE-GCN (autoencoder-
assisted graph convolutional neural network), which combines the
autoencoder (AE) and graph convolutional neural network (GCN), for
accurate and fine-grained spatial domain identification. Specifically, AE-
GCN relies on AE for learning expression data-based representations and
GCN for spatial graph-constrained learning. AE-GCN orderly transfers
the AE-specific representations to GCN-specific layers and unifies these
two types of neural networks for spatial clustering via a clustering-aware
contrastivemechanism. In this way, AE-GCN combines the advantages of
the twomodels and takes full integration of the expression data and spatial
information during the representation learning process.

We demonstrate the effectiveness of AE-GCN on spatial domain
identification and data denoising using SRT datasets generated from
ST, 10x Visium, and Slide-seqV2 platforms. In particular, it is
validated in two cancer samples that AE-GCN can refine the
spatial functional regions and discover novel cancer-associated
genes. These results show that AE-GCN is capable of unveiling
complex tissue architecture from SRT data.

Materials and methods

Overview of AE-GCN

AE-GCN is an integrative scheme that incorporates the AE and
GCN learning processes, enabling tasks of spatial domain detection
and data denoising (Figure 1).

Given the original expression X0 ∈ RM×N (where M and N,
respectively, denote the number of genes and spots) and spatial
coordinates, the spatially neighboring network A ∈ RN×N and the
enhanced expression data X ∈ RM×N are computed as the input of
the combined learning process (see Methods). On the enhanced
expression data X, AE-GCN employs AE to learn the low-
dimensional representation (i.e., AE-specific representation
H(l)

1 , l � 1, . . . , L, where L is the number of total layers in AE) in
each layer. With the spatially neighboring network A, AE-GCN
utilizes GCN to learn the graph-constrained representation in each
layer (i.e., GCN-specific representationH(l)

2 , l � 1, . . . , B, where B is
the number of layers in GCN or the encoder of AE). Then, AE-GCN
transfers the AE-specific representations from the encoder to the
corresponding GCN layer, thus generating the combined
representation Y. Additionally, AE-GCN proposes a clustering-
aware contrastive module to make the combined representation
appropriate for spatial clustering.

When the learning process reaches convergence, the low-
dimensional representation (i.e., Y) of the last layer and the
reconstructed expression data (i.e., X′) can be used for
downstream analytical tasks. The optimal representation enables
AE-GCN to identify spatial domains interoperating with the Leiden
method (Traag et al., 2019). The reconstructed expression data serve
as the denoised profile, which overcomes the sparsity of the original
data to improve differentially expressed gene identification (see
Methods).

Spatially neighboring network construction
and expression augmentation

Spatially neighboring network construction
Assume that there are original expression matrix X0 and spatial

locations in the SRT dataset. We first use spatial coordinates and
Euclidean distance to calculate the distance between spots and then
select the k-nearest spatial neighbors of each spot to participate in
the subsequent process. In this work, we set k = 10 for ST and 10x
Visium datasets and k = 30 for Slide-seqV2 datasets. Then, we
perform principal component analysis (PCA) based on gene
expression and select the top p PCs (i.e., U ∈ Rp×N, default to
15) to calculate the similarity matrix D ∈ RN×N between the
center spot and its spatial neighbors using cosine metric:

D � exp 2 − cosine dist U( )( ), Dii � 0 (1)
Then, the weighted adjacency matrix A ∈ RN×N is obtained by

normalizing the similarity matrix D:

Aij � Dij

∑N
i�0Dij

(2)

Spatial expression augmentation
Limited by the transcript capture rate of SRT technologies,

expression data are often sparse and noisy. AE-GCN generates
the enhanced expression data X by borrowing the shared
information from spatial neighborhood, which can correct low-
quality measurements and strengthen local similarity:

X � X0 + αX0A (3)
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where the tunable parameter α is flexibly set, and it controls the
extent to aggregating expression information from neighboring
spots.

AE component

We employ AE to learn the useful representations from the
expression data itself and assume that there are B layers in the
encoder and (L − B) layers in the decoder. Specifically, the learned
lth layer representation, H(l)

1 , can be obtained as follows:

H l( )
1 � ϕl W

l( )H l−1( )
1 + b l( )( ), l � 1, . . . , B (4)

H l( )
1 � ψl W

l( )H l−1( )
1 + b l( )( ), l � B + 1, . . . , L (5)

where ϕl and ψl are the activation functions of the lth layer in the
respective encoder and decoder. W(l) and b(l) are the weight matrix
and reconstruction error in the lth layer, respectively. For
convenience, we denote the enhanced expression data X as H(0)

1 .

The output (i.e., X′ � H(L)
1 ) of the decoder part is obtained

through the reconstruction of the input data (i.e., X) by minimizing
the following loss function:

Lres � X −X′
���� ����2F (6)

GCN component

AE-specific representations, e.g., H(1)
1 , H(2)

1 , /, H(L)
1 , can

denoise data itself and extract valuable information from the data
itself, which can effectively reflect expression variation but cannot
guarantee the spatial smoothness of the identified domains. GCN
can model the spatial structural dependency between spots, which is
beneficial to improving the spatial smoothness of the identified
domains. Thus, we then transfer AE-specific representations in the
encoder into GCN-specific representations and use the GCN
module to propagate these AE-specific representations for

FIGURE 1
Schematic overview of AE-GCN and its potential applications. Given gene expression and spatial coordinates as input, AE-GCN first builds the
spatially neighboring network A and enhances expression X. AE-GCN uses AE to learn representations from the enhanced expression and employs GCN
to learn the representations of each layer from the spatially neighboring network A. Then, AE-GCN transfers the AE-specific representations from the
encoder to the corresponding GCN-specific layer and learns the combined representation Y . To ensure effective training of the combined deep
learningmodel for clustering, AE-GCN proposes a clustering-aware contrastivemodule based on the distribution of the representation Y . When AE-GCN
reaches convergence, the latent combined representation Y enables AE-GCN to identify spatial domains for different platforms, i.e., ST, 10x Visium, and
Slide-seqV2. The reconstructed expression data X′ serves to denoise expression profiles.
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capturing a more complete and powerful representation. Thus, the
GCN-learnable representations can accommodate two different
kinds of information: gene expression values and spatial
neighborhood structure. The representation learned by the lth
layer of GCN, H(l)

2 , can be obtained as follows:

H l( )
2 � 1 − μ( )ϕl W l( )H l−1( )

2
~D
−1
2 ~A ~D

−1
2( ) + μH l( )

1
~D
−1
2 ~A ~D

−1
2 (7)

where I denotes the identity diagonal matrix. ~A � A + I and
~Dii � ∑j

~Aij. ~D
−1
2 ~A ~D

−1
2 is the normalized adjacency matrix. μ is

the balance coefficient and is often uniformly set to 0.5. Note that
GCN and AE share weights.

Note that we denote the representation (i.e., H(B)
2 ) of the last

GCN layer as Y. The input of the first layer GCN can be obtained
from the enhanced expression data X:

H 0( )
2 � ϕl W 0( )X ~D

−1
2 ~A ~D

−1
2( ) (8)

Clustering-aware contrastive component

Although we have incorporated the encoder of AE into the
neural network architecture of GCN to obtain the combined
representation, this representation cannot be directly applied to
the clustering problem. Herein, we propose a clustering-aware
contrastive module to unify these two different deep learning
models for effective spatial clustering.

Specifically, we use student’s t-distribution to measure the
probability of assigning the spot i to cluster j based on the
combined latent representation Y as follows:

qij �
1 + yi − μj

�����
�����2/ρ( )

−ρ+1
2

∑j′ 1 + yi − μj′
�����

�����2/ρ( )
−ρ+1

2

(9)

where μj is the cluster center by K-means on learned
representations. yi is the ith column of Y. We regard Q � [qij]
as the distribution of the assignments of all samples. ρ is the degree
of freedom of student’s t-distribution.

To optimize the AE-GCN-learnable representation from the
high-confidence assignment, we make data representation closer to
cluster centers for improving the cluster cohesion. Hence, we
calculate the target distribution P as follows:

pij �
qij

2/sj
∑j′qij′

2/sj′ (10)

where sj � ∑iqij is the soft cluster frequency. Each assignment in Q
is squared and normalized to produce the target distribution P,
which makes the data representation surround the cluster centers
closer and helps AE-GCN learn a better representation for the
clustering task. By minimizing the KL (Kullback–Leibler)
divergence loss between Q and P distributions, the target
distribution P can help the AE-GCN learn a better representation
for the clustering task, i.e., making the data representation surround
the cluster centers closer, thus leading to the following loss function:

Lcl � KL P Q‖( ) � ∑i∑jpijlog
pij

qij
(11)

This design is regarded as a clustering-aware contrastive
mechanism, where the P distribution supervises the updating of
the distribution Q, and the target distribution P is calculated by the
distribution Q in turn. Using this mechanism, AE-GCN can directly
concentrate two different objectives: clustering objective and data
reconstruction objective, in one loss function. Thus, the overall loss
function of AE-GCN is

Lobj � Lres + βLcl (12)
where β denotes the tunable parameter β> 0 and can be flexibly set,
which balances data reconstruction and clustering optimization.

Data collection and general preprocessing

The top 3,000 highly variable genes (HVGs) for 13 10x Visium
datasets, one ST dataset, and one Slide-seqV2 dataset are selected
using scanpy.pp.highly_variable_genes() from the Scanpy Python
package. The log-transformation of the expression profiles is
performed using scanpy.pp.log1p() on the original gene
expression data.

Spatial domain detection and gene
expression denoising

AE-GCN uses the combined latent representation Y to detect
spatial domains by Leiden (Traag et al., 2019) algorithms
implemented as scanpy.tl.leiden(). The parameter “resolution”
can be adjusted to match the number of the manual annotations.

For the enhanced expression matrix X, AE-GCN aggregates the
shared information between each spot and its surrounding
neighbors by incorporating prior spatial information into gene
expression, which is used to adjust expression values in each spot
and enrich spatial local signals. For the reconstructed expression
data X′, AE-GCN uses AE and GCN to reconstruct the enhanced
expression matrix X. By minimizing the reconstruction error, the
reconstructed data X′ can reflect both the spatial local signals and
expression measurement global signals. Thus, AE-GCN uses the
reconstructed expression data X′ as the denoised profiles.

Performance evaluation

We use adjusted Rand index (ARI) (Hubert and Arabie, 1985)
and cluster purity (i.e., Eq. 13) (Zhao et al., 2021) to quantify the
accuracy of the identified spatial domain and the reference
annotations from original publications.

cluster purity � 1
N

∑
c∈C

max
g∈G

c ∩ g
∣∣∣∣ ∣∣∣∣ (13)

where C is denoted as the set of the spatial cluster set and G is
regarded as the set of annotated groups. Due to cancer slices with
rough annotations (e.g., IDC and PDAC cancer data), cluster purity
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is specifically used to evaluate the clustering performance on SRT
cancer datasets (Zhao et al., 2021).

Survival analysis

We use bulk expression data with patient survival information to
evaluate the prognostic significance of genes via the Kaplan–Meier
plotter (Zwyea et al., 2021) in the IDC and PDAC cancer studies.

Results

Benchmarking AE-GCN against state-of-
the-art methods

We evaluated the ability of AE-GCN to detect spatial domains
using 12 human dorsolateral prefrontal cortex (DLPFC) slices
generated using 10x Visium. The DLPFC dataset obtained from
spatialLIBD (Pardo et al., 2022) is manually annotated as the layered

regions by gene markers and cytoarchitecture. The annotations can
be considered as the ground truth for benchmarking. Based on this
dataset, we compared AE-GCN with the existing state-of-the-art
methods, including six spatial clustering methods [i.e., BayesSpace
(Zhao et al., 2021), Giotto (Dries et al., 2021), SEDR (Fu et al., 2021),
SpaGCN (Hu et al., 2021), stLearn (Pham et al., 2020), and
STAGATE (Dong and Zhang, 2022)] and three non-spatial
algorithms [i.e., variational autoencoder (VAE) (Kingma and
Welling, 2019), Leiden implemented in Scanpy (Wolf et al.,
2018), and Louvain implemented in Seurat (Butler et al., 2018)].
The adjusted Rand index (ARI) is used to quantify the similarity
between themanual labels and identified clusters, which ranges from
0 for poor consistency to 1 for identical clusters.

Generally, most of the spatial clustering methods performed better
than non-spatial algorithms (Wilcoxon signed-rank test P< 10−5,
Figure 2A), which showed that the integration of spatial information
is necessary to improve the spatial clustering performance. Strikingly,
AE-GCN had the highest mean ARI (mean ARI = 0.561) and
substantially performed better than the competing methods over the
slices (Wilcoxon signed-rank test P< 10−8, Figure 2A). Taking slice

FIGURE 2
Benchmarking AE-GCN against state-of-the-art spatial domain detection methods. (A) Spatial clustering performance is compared using ARI on
12 manually annotated DLPFC datasets from spatialLIBD. The bold line represents the mean ARI value of each approach on all the datasets. (B) Slice
151673 with the manual annotation. (C) Comparative illustration of the identified spatial domain on slice 151673. The identified spatial domains of each
method are distinguished by colors without strict correspondence.
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151673 as an example (Figure 2B), we found AE-GCN (ARI = 0.623),
STAGATE (ARI = 0.588), BayesSpace (ARI = 0.556), and SEDR (ARI =
0.515) delineated the layered regions (Figure 2C). Notably, the
partitions from AE-GCN (termed as a deep learning model-
combined method) exhibited clearer and less noisy outcomes than
those from singlemodel-basedmethods (e.g., GCN-based SpaGCN and
the VAE model).

AE-GCN reveals fine-grained anatomical
regions onmouse hippocampus Slide-seqV2
data

To illustrate the effectiveness of AE-GCN on high-resolution
SRT platforms, we applied AE-GCN to a mouse hippocampus Slide-
seqV2 dataset (n = 41,786 spots). Slide-seqV2 can measure gene
expression at near-cellular resolution (Stickels et al., 2021) but has
lower number of transcripts per location/spot and higher dropouts
than the 10x Visium platform. Thus, it poses more challenges for
accurately distinguishing tissue structures from the data of high
sparsity. To better validate the performance of AE-GCN, we also
compared it with other domain detection methods and used the
corresponding anatomical diagram from the Allen Mouse Brain
Atlas (Sunkin et al., 2012) as the illustrative reference (Figure 3A).

Comparing with the reference, we found that AE-GCN and
STAGATE can identify the spatially coherent domains compared to

other involved methods. However, AE-GCN performed better to detect
the fine-grained structures, such as the cornu ammonis 2 (CA2, AE-GCN
domain 16), ventricle (AE-GCN domain 12), and habenula (AE-GCN
domain 11) sections (Figure 3A). These sections are delineated with
sharper boundaries and higher concordance with the anatomical
annotation. We further isolated the focused regions and provided
validations from other perspectives (Figures 3B–D). For the
CA2 section, which is only detected by AE-GCN, the domain location
showed good alignment with the marker gene expression (i.e., Pcp4 (San
Antonio et al., 2014)) and independent in situ hybridization (ISH) image
(Figure 3B). For ventricle and habenula sections, AE-GCN domains are
closer to the shapes of their respective marker expression (Enpp2 for
ventricle (Koike et al., 2006) and Gabbr2 for habenula (De Beaurepaire,
2018)) or stained regions and match the anatomical shape well (Figures
3C, D). Thus, for higher-resolution SRT data, AE-GCN is capable of
effectively unveiling the fine-grained anatomical functional regions.

AE-GCN accurately discerns tumor regions
on human pancreatic ductal
adenocarcinoma data

To illustrate the effectiveness of AE-GCN on cancer tissue, we
applied AE-GCN to the human pancreatic ductal adenocarcinoma
(PDAC) ST dataset (n = 428 spots). The histopathological image and
annotations were taken as references (Figures 4A, B). We assessed these

FIGURE 3
AE-GCN reveals the finer-grained anatomical regions on mouse hippocampus Slide-seqV2 data. (A) Corresponding anatomical diagram from the
Allen Mouse Brain Atlas and spatial domains identified by each competed method. (B–D) CA2 and ventricle and habenula regions (at the top) from AE-
GCN partitions are, respectively, validated by the known gene markers (i.e., Pcp4, Enpp2, and Gabbr2) from gene expression (at the middle) and ISH
images (at the bottom). The ISH images of Pcp4, Enpp2, and Gabbr2 are also obtained from the Allen Mouse Brain Atlas.
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spatial domain identification methods using cluster purity (see
Methods) as the quantitative measure on cancer datasets with rough
annotation information. AE-GCN achieved the highest cluster purity
(purity = 0.756) and detectedmore spatially enriched functional regions
in tumor tissue than other compared methods (Figure 4C).

Next, we examined whether AE-GCN could provide more
insights into the underlying tumor heterogeneity, as data sparsity
could hinder other downstream analytical tasks, for example, the
identification of differentially expressed genes (DEGs). In this
manner, we used the AE-GCN-reconstructed data to denoise the
low-quality measurements and evaluated the effectiveness in
recovering gene spatial expression patterns. Based on the
denoised data, we selected the top 50 DEGs of each domain from
the reconstructed data X′ and compared the log fold change (LFC)
of these DEGs before and after denoising (Figure 4D). Overall, the
comparison highlights the significant improvement of biological
specificity brought by AE-GCN denoising across the identified
domains (Wilcoxon signed-rank test P< 10−14, Figure 4D). In
particular, we found that some DEG expression (e.g., S100P and

TNS4) appeared more spatially smoothed on spots in situ
(Figure 4E). These two DEGs were validated to be the potential
prognostic risk factors for PDAC (Figure 4F). For example, S100P is
ever reported to be involved in the aggressive properties of cancer
cells and associated with poor prognosis (Wang et al., 2012)
(Figure 4F); TNS4 is associated with cancer cell motility and
migration, whose high expression can indicate poor prognosis
(Sakashita et al., 2008). These results indicate that AE-GCN has
the potential to provide the in-depth biological insights into the
underlying tumor heterogeneity from the perspectives of spatial
domain detection and gene expression pattern recovery.

AE-GCN reveals more intratumor
heterogeneity on invasive ductal carcinoma
data

To illustrate the generalization ability of AE-GCN on cancer
tissues, we next tested AE-GCN using the invasive ductal carcinoma

FIGURE 4
AE-GCN identifies tumor regions on human PDAC ST data. The H&E-stained image (A) and the corresponding manual annotation (B) are shown as
references. (C) The identified spatial domains using all the compared methods are distinguished by different colors without strict correspondence.
Cluster purity is used to compare the similarity between identified domains and the reference annotation. (D) The change in gene differential expression
in each domain before and after data denoising. log2(FC): the logarithmic value of the gene expression fold changewith base 2. (E) Spatial expression
visualization of selected DEGs (i.e., S100P and TNS4) before and after data denoising. (F) Kaplan–Meier survival curves show the clinical relevance of the
identified DEGs (i.e., S100P and TNS4).
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(IDC) Visium dataset (n = 4,727 spots). The histopathological
annotations from the original paper (Zhao et al., 2021) were
taken as the reference (Figures 5A, B). We found that the
identified domains of AE-GCN were highly consistent with the
manual annotations (purity = 0.865, Figure 5C). Compared with the
domains captured by other methods, the clustering partitions from
AE-GCN showed clear spatial separations with few scatter points
and high regional continuity.

Then, for functional gene identification, we identified the top
50 DEGs of each cluster from the denoised data X′. Similarly, based
on the comparison before and after denoising, we found that AE-
GCN significantly improves the LFCs of gene expression, revealing
more biological specificity across domains, which may suggest the
detection of new disease-associated genes (Figure 5D). For example,
SLC7A5 and RDH16 are two newly found DEGs after denoising,
whose spatial expression patterns are greatly enhanced after
denoising (Figure 5E). Moreover, the two novel DEGs were

shown to be the potential prognostic risk genes for breast cancer
via survival analysis of independent clinical data (Figure 5F). Their
biological functions in tumors indicate the prognostic relevance
from previous studies. For example, SLC7A5 is reported to involve in
tumor cell metabolism and promotes cell proliferation (El Ansari
et al., 2018). RDH16 affects retinol metabolism to participate
indirectly in breast cancer occurrence and progression (Gao
et al., 2020). The application, along with the PDAC case,
demonstrates that AE-GCN can unveil cancer heterogeneity from
SRT data, enabling the discovery of novel spatial patterns of both
samples and genes.

Discussion

Spatially resolved transcriptomics technologies measure gene
expression on each spot while preserving spatial context, which can

FIGURE 5
AE-GCN provides more biological insights into intratumor heterogeneity on the IDC 10x Visium dataset. The fluorescent image (A) and the
correspondingmanual annotation (B) are shown as references. Each spot is colored due to the annotation label in (B). (C) The spatial domains obtained by
all involved methods are distinguished using different colors without strict correspondence. Cluster purity is used to compare the similarities between
identified outcomes and reference annotation. (D) The change gene FC before and after data denoising. (E) Spatial expression visualization of the
selected domain-specific genes (i.e., SLC7A5 and RDH16) before and after data denoising. (F) Kaplan–Meier survival curves show the clinical relevance of
the newly identified DEGs (i.e., SLC7A5 and RDH16).
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support computational methods to identify functional regions of
tissue and further resolve organizational heterogeneity. The
combined modeling of gene expression and spatial information
enables the improved identification accuracy of spatial domains,
especially for complex spatial architecture, e.g., tumor
microenvironments. In this paper, AE-GCN combines the
autoencoder and graph convolutional neural network to achieve
effective latent representations from expression data itself and spot
neighboring structure. The superiority of AE-GCN is shown not
only on the accurate and fine-grained identification of spatial
domains for multiple SRT platforms but also on the recovery or
identification of gene spatial expression patterns. In particular, the
application on cancer slices (i.e., IDC and PDAC) demonstrates that
AE-GCN reveals more functional regions and novel cancer
prognostic genes for interpreting cancer heterogeneity, suggesting
that AE-GCN has great capability of unveiling tissue heterogeneity
from SRT data.

The effectively combined modeling is key to the superiority of
AE-GCN in the SRT study. Generally, AE models learn the
representations from expression data itself, while GCN models
learn the structured representations from the sample graph
structure by providing an approximate second-order graph
regularization, which may suffer from over-smoothing issues.
AE-GCN combines the characteristics of these two deep learning
methods and integrates them to learn effective representations so
that AE is used to weaken the problem of overfitting while
simultaneously learning the structured representations in GCN.
Additionally, the proposed clustering-aware contrastive module
in AE-GCN further promotes the combined model from
processes independent of clustering targets to the model that
achieves effective spatial clustering. Thus, AE-GCN can not only
effectively use the information of the expression data itself but also
reasonably regularize the learned information from expression data
by spatial structure between spots, which has better advantages than
the spatial domain detection methods based on a single-model
design in SRT studies.

Currently, AE-GCN only models gene expression and spatial
information from SRT data and cannot utilize histological images
which are also provided by several SRT technologies, e.g., 10x
Visium. Although some methods have used histological images in
spatial domain detection, histological images are mainly used to
enhance the quality of expression data and lack of modeling image
data separately, e.g., stLearn (Pham et al., 2020). Compared with
expression data and spatial information, histological image data are
one type of modalities more suitable for deep learning modeling.
The future work to extend AE-GCN is to integrate deep learning
models for each multi-modal data characteristic (i.e., gene
expression, histological images, and spatial information) to
improve the performance of current methods in SRT research.
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Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical
University, Jinan, China

MicroRNAs (miRNAs) play a crucial role in various biological processes and human
diseases, and are considered as therapeutic targets for small molecules (SMs). Due
to the time-consuming and expensive biological experiments required to validate
SM-miRNA associations, there is an urgent need to develop new computational
models to predict novel SM-miRNA associations. The rapid development of end-
to-end deep learning models and the introduction of ensemble learning ideas
provide us with new solutions. Based on the idea of ensemble learning, we
integrate graph neural networks (GNNs) and convolutional neural networks
(CNNs) to propose a miRNA and small molecule association prediction model
(GCNNMMA). Firstly, we use GNNs to effectively learn the molecular structure
graph data of small molecule drugs, while using CNNs to learn the sequence data
of miRNAs. Secondly, since the black-box effect of deep learning models makes
them difficult to analyze and interpret, we introduce attention mechanisms to
address this issue. Finally, the neural attention mechanism allows the CNNsmodel
to learn the sequence data of miRNAs to determine the weight of sub-sequences
in miRNAs, and then predict the association between miRNAs and small molecule
drugs. To evaluate the effectiveness of GCNNMMA, we implement two different
cross-validation (CV) methods based on two different datasets. Experimental
results show that the cross-validation results of GCNNMMA on both datasets
are better than those of other comparison models. In a case study, Fluorouracil
was found to be associated with five different miRNAs in the top 10 predicted
associations, and published experimental literature confirmed that Fluorouracil is a
metabolic inhibitor used to treat liver cancer, breast cancer, and other tumors.
Therefore, GCNNMMA is an effective tool for mining the relationship between
small molecule drugs and miRNAs relevant to diseases.

KEYWORDS

small molecule drug, miRNAs, graph neural networks, convolutional neural networks,
CNN, liver cancer

Introduction

With the development of sequencing technology, the biomedical field has accumulated a
large amount of medical data, which provides more convenience for researchers to study the
relationship between diseases and drugs using these data. The prediction of the relationship
between small molecule (SM) drugs and microRNAs (miRNAs) has become an important
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and rapidly developing area in pharmacology and
pharmacogenomics research (Bartel, 2004; Beermann et al., 2016;
Kozomara et al., 2019; Liu et al., 2022). miRNAs are small non-
coding RNA molecules that regulate gene expression and play a key
role in various biological processes, including the development of
diseases (Cai et al., 2021; Peng et al., 2023). On the other hand, small
molecule drugs have been widely used to treat diseases, but their
impact on miRNA expression is not clear. However, there are still
blind issues in using traditional biological experiments to identify
small molecule drug-related miRNAs, which require a lot of
experimental time and cost. With the increasing availability of
large datasets, it is possible to predict the relationship between
small molecule drugs and miRNAs and use this information to
improve the efficacy and safety of drugs (Wang et al., 2019; Chen
et al., 2020). This field has tremendous potential in discovering new
therapeutic targets and developing personalized drugs (Chen et al.,
2021; Liu et al., 2023; Xu et al., 2023).

Computational methods have played a crucial role in
predicting the association between small molecule drugs and
miRNAs (Xu et al., 2020; Zhang et al., 2023). As the available data
on drugs and miRNAs continues to increase, various
computational methods have been proposed to identify and
predict their interactions. Lv et al. (2015) constructed a
complete network by combining small molecule similarity
networks, miRNA similarity networks, and known small
molecule-miRNA association networks. They calculated the
similarity of small molecules and miRNAs using a weighted
combination strategy, and then used the RWR (Random Walk
With Restart) algorithm to predict the potential associations
between small molecule drugs and miRNAs. BNNRSMMA
first defined a new matrix to represent the small molecule-
miRNA heterogenous network using miRNA-miRNA
similarity, small molecule-small molecule similarity, and
known small molecule-miRNA associations. They then
completed this matrix by minimizing its kernel parameter
count and used alternating direction multiplication to further
minimize the kernel parameter count and obtain prediction
scores. They introduced a regularization term to tolerate noise
in the integrated similarity. Wang et al. (2022a) proposed a novel
dual-network collaborative matrix factorization (DCMF) method
for predicting potential SM-miRNA associations. They first
preprocessed the missing values in the SM-miRNA association
matrix using the WKNKN method, and then constructed a
matrix factorization model for the dual network to obtain
feature matrices containing potential features of small
molecules and miRNAs, respectively. Finally, the predicted
SM-miRNA association score matrix was obtained by
calculating the inner product of the two feature matrices. Li
et al. (2016) proposed a network-based inference model for small
molecule-miRNA networks (SMiR-NBI), which relies solely on
known SM-miRNA associations. For a given SM, the initial
resources are evenly allocated to its associated miRNAs. Then,
the resources of each miRNA are allocated to all its associated
SMs, and the resources are then redistributed from SMs to their
associated miRNAs. The final resources obtained by the miRNAs
reflect the likelihood of associations between the given SM and
miRNAs. Guan et al. (2018) developed a new graphlet
interaction-based inference model for predicting small

molecule-miRNA associations (GISMMA). The complex
relationships among SMs or miRNAs are described by
graphlet interactions, which consist of 28 isomers. The
association score for an SM-miRNA pair is calculated by
counting the number of graphlet interactions. However, if
neither the SM nor the miRNA has a known association, the
model cannot predict the SM-miRNA association. Wang et al.
(2022b) proposed an ensemble method for predicting small
molecule-miRNA associations based on kernel ridge regression
(EKRRSMMA). This method combines feature dimension
reduction and ensemble learning to reveal potential SM-
miRNA associations. Firstly, the authors constructed different
feature subsets for SMs and miRNAs. Then, homogeneous base
learners were trained on different feature subsets, and the average
scores obtained from these base learners were used as the
association scores for SM-miRNA pairs. Peng et al. (2022)
proposed a new computational method based on deep
autoencoder and scalable tree boosting model (DAESTB) to
predict the associations between small molecules and miRNAs.
Firstly, a high-dimensional feature matrix was constructed by
integrating small molecule-small molecule similarity, miRNA-
miRNA similarity, and known small molecule-miRNA
associations. Secondly, the feature dimension of the integrated
matrix was reduced using a deep autoencoder to obtain potential
feature representations for each small molecule-miRNA pair.
Finally, a scalable tree boosting model was used to predict
potential associations between small molecules and miRNAs.
Although these models have achieved promising results and
played important roles in the development of computational
methods for small molecule-miRNA association identification,
they have certain issues or limitations: the experimental
validation of small molecule-miRNA associations is very
limited, and there are many negative associations. When
performed on this noisy and sparse small molecule-miRNA
association network, the predictors often detect many false
negative associations.

Therefore, we propose a miRNA-molecule association
prediction model (GCNNMMA) by integrating graph
convolutional networks (GCNs) (Scarselli et al., 2008) and
convolutional neural networks (CNNs) (Chen, 2015) (Figure 1).
Firstly, GCNs are used to effectively learn the molecular structural
graph data of small molecule drugs, and CNNs are used to learn the
sequence data of miRNAs. Due to the black-box nature of deep
learning models, it is difficult to analyze and interpret them.
Therefore, GCNNMMA introduces a neural attention mechanism
(Bahdanau et al., 2014) to address this issue. The neural attention
mechanism enables CNNs to learn the weights of sub-sequences in
miRNAs, thus predicting the associations between miRNAs and
small molecule drugs.

Materials and methods

Datasets

For dataset 1, we obtained a total of 664 known small molecule-
miRNA associations from SM2miR database (version 1.0) (Liu et al.,
2013). Then a total of 831 small molecules were extracted and
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integrated from SM2miR, DrugBank (Wishart et al., 2018), and
PubChem (Kim et al., 2019). 541 miRNAs were collected from
SM2miR, HMDD, miR2Disease, and PhenomiR (Ruepp et al.,
2010). To evaluate our model performance more
comprehensively, we constructed dataset 2, which contains
680 small molecules, 2,460 miRNAs, and 60,212 known small
molecule-miRNA associations. Additionally, we downloaded
corresponding small molecule drug SMILES data from
DrugBank. The SMILES format data was used to describe the
spatial structural information of small molecule drugs.
Furthermore, we obtained corresponding miRNA sequence data
from the miRbase database (Table 1).

Predictionmodel based on the integration of
CNNs and GNNs

GNNs process small molecule drug data
End-to-end learning model GNNs has been shown to achieve

good performance in many scenarios. Therefore, we first use two
functions [the transformation function tran(x) and the output
function f(x)] in GNNs to map the molecular structure graph
G(V, E) of small molecule drugs to a low-dimensional vector
yϵRd. The transformation function tran(x) updates the feature

information of each node in the molecular graph G(V, E) using
information from neighboring nodes (atoms in the molecular
structure graph) and neighboring edges (chemical bonds in the
molecular structure graph). The output function f(x) converts
the updated node information in the molecular graph after the
transformation function into a low-dimensional vector. In
GNNs, both the transformation function and the output
function are implemented as differentiable neural networks,
and the parameters in the functions are automatically learned
through the backpropagation process (Figure 2). The specific
steps are as follows:

Subgraph embedding with radius r: Here, we use G(V, E) to
represent a molecular graph, where V is a set of nodes and E is a
set of edges. In the molecular structure graph, viϵV represents the
i-th atom and eijϵE represents the chemical bond between atom i
and atom j. Because there are only a few types of nodes (hydrogen
and carbon) and edges (double and single bonds) in the
molecular graph, representative learning models cannot obtain
effective learning results. To solve this problem, GCNNMMA
introduces the concept of r-radius subgraphs. An r-radius
subgraph describes the set of atoms and chemical bonds
within a radius of r with a certain atom as the center. Here,
we use Γ(i, r) to represent the set of indices of all adjacent nodes
in the subgraph with node i as the center and a radius of r. Γ(i, 0)

FIGURE 1
The overall workflow of GCNNMMA.

TABLE 1 Statistics of datasets used in this study.

Dataset No. of miRNAs No. of molecules No. of associations

Dataset 1 541 831 664

Dataset 2 2,460 680 60,212
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is the node i itself. We use the following definition to describe the
subgraph with node vi and a radius of r:

vri � Vr
i , E

r
i( ) (1)

Where,Vr
i� vj|jϵΓ(i, r){ },Er

i � emnϵE|(m,n)ϵ(Γ(i, r) × Γ(i, r − 1)){ }
Similarly, the subgraph with a radius of r can be defined for the
edge eij: erij � (Vr−1

i ∪ Vr−1
j , Er

i ∩ Er
j).

Vertex transformation function: In the molecular structure
graph G, subgraph embedding can start from any vertex. v(t)i ϵRd

is used to describe the vertex i at the t-th step of subgraph
embedding information update. The update process is described
as follows:

v t( )
i � σ v t−1( )

i + ∑
jϵΓ i( )

h t( )
ij

⎛⎝ ⎞⎠ (2)

Where σ(x) � 1
(1+ex), Γ(i) represents the set of neighbor node

indices for vertex i. h(t)ij is a hidden vector describing the information
of neighbor node j and the edge eij between the two nodes for vertex
i. It can be calculated using the following formula:

h t( )
ij � max 0,Wneighbor*

v t( )
j

e t( )
ij

⎡⎣ ⎤⎦ + bneighbor( ) (3)

Were, WneighborϵRd×2d is a weight matrix and bneighborϵRd is a
bias matrix. e(t)ij represents the t-th subgraph embedding
information update between vertex i and vertex j. By summing
the hidden vectors of adjacent nodes and iteratively updating, vertex
embedding can gradually learn the global information of the
molecular structure graph.

The edge transformation function: The process of updating edge
embeddings are similar to the process of updating vertex
embeddings. Here, e(t)ij is used to represent the embedding of the
edge between vertex i and vertex j. At the same time, the
embeddings of adjacent vertices to the edge, v(t)i and v(t)j , are
used to update the edge embedding information. The update
process is described as follows:

e t( )
ij � σ e t−1( )

ij + g t−1( )
ij( ) (4)

The formula describes g(t−1)
ij as follows:

g(t)
ij � max(0,Wside*[v(t)i + v(t)j ] + bside). WsideϵRd×2d is a weight

matrix, and bsideϵRd is a bias vector.
Small molecule output function: To obtain the final output

ysmϵRd, the model sums up the embeddings of each vertex in
the molecular graph V � v(t)1 (t), v(t)2 (t), · · ·, v(t)|V|(t){ }. The
process is described as follows:

ysm � 1
V| | ∑

V| |

i�1
v t( )
i (5)

|V| represents the number of vertices in the molecular graph.

Using CNNs to process miRNA sequence
data

First, CNNs use filter functions to compute a hidden vector
y ∈ Rd based on the sub-sequences of the input sequence C and a
weight matrix (learned parameters). The filter functions are
implemented by neural networks. In CNNs, the overall function �
f(C) is differentiable and all parameters in f(x) are learned
through backpropagation (Figure 3). The specific steps are shown
as follows:

Sequence input function
To apply CNNs to miRNA sequence data, First, miRNA

sequences are defined as “words” consisting of n-length bases
(Dong et al., 2006; Costa and De Grave, 2010), where n refers to
the number of bases. Then, the miRNA sequence is divided into
overlapping n-mers. In this study, to maintain a manageable and
informative word vocabulary and to avoid using low-frequency
sequence fragmentation in learning representations, a relatively
small value of n � 3 was set for the number of bases. The
miRNA sequence S � x1, x2, · · ·, x|s|, where xi is the i-th base pair

FIGURE 2
Using GNNs to extract features of small molecule drugs.
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and |s| is the length of the sequence, is then split into overlapping
n-base pair segments. All words are then translated into randomly
initialized embeddings, referred to as “word embeddings.” The word
embeddings are ordered asX1, X2, · · ·, X|s|−1X|s|, whereXi ∈ Rd is a
d-dimensional embedding for the i-th word. Alternatively, we can
consider a sequence whose elements consist of concatenated word
embeddings. For example, a sequence composed of three
consecutive embeddings would be
[X1;X2; X3], [X2; X3;X4] · · · [X|S|−2;X|S|−1;X|s|], where
[Xi+1; Xi+2; Xi+3]ϵR3d is the concatenation of Xi+1, Xi+2, and
Xi+3. Here, Xi: i+w−1 refers to [Xi; · ··; Xi+w−1], where w is the
window size. This processed sequence can be used as input
for CNNs.

Filter function
Using Xi: i+w−1 � [Xi;Xi+w−1] � c(0)i ϵRdw as the input to the

filter function f(x), the output of the filter function is a hidden
vector c(1)i ϵRd. The description of the hidden vector is as follows:

c 1( )
i � f Wconv*c

0( )
i + bconv( ) (6)

Where f(x) is a non-linear activation function, WconvϵRd×dw is the
weight matrix, and bconv is the bias vector. By using the filter function
repeatedly, multiple hidden vectors can be obtained:

c t( )
i � f Wconv*c

t−1( )
i + bconv( ) (7)

Multiple hidden vectors form a hidden vector set C �
c(t)1 , c(t)2 , c(t)3 , ......c(t)|c|{ }.

miRNA sequence output function. In order to obtain the final
output ymiRNAϵRd from C � c(t)1 , c(t)2 , c(t)3 , ......c(t)|c|{ }, the average of C
is taken. The process is described as follows:

ymiRNA � 1
C| | ∑

C| |

i�1
c t( )
i (8)

|C| denotes the number of elements in set C.

Neural attention mechanism for predicting
potential associations between miRNAs and
small molecule drugs

GCNNMMA employs a neural attention mechanism to infer
interactions between small molecules and subsequences in miRNA
sequences. In the collection of hidden vector sequences C �
c(t)1 , c(t)2 , c(t)3 , ......c(t)|c|{ } for miRNA sub-sequences, each hidden
vector sequence represents its corresponding miRNA sub-
sequence. Different miRNA sub-sequences have different binding
abilities and probabilities with small molecules. A neural attention
mechanism is used to assign corresponding weights to each sub-
sequence in the miRNA hidden vector sequence collection, which
represents the importance of its association with small molecules.
The weight calculation process is described as follows:

hsm � f Winter*ysm + binter( ) (9)
hi � f Winter*ci + binter( ) (10)

αi � σ hTsm*hi( ) (11)

Where Winter is the weight matrix and binter_inter is the bias
vector. αi represents the strength of interaction between small
molecules and miRNA sub-sequences. Based on the calculated
attention weights, the final weighted sum can be obtained, as
shown below:

ymiRNA � ∑
C| |

i�1
αi*hi (12)

Finally, the model obtains the final classification output vector
ZϵR2 by jointly considering ymiRNA and ysm:

Z � Woutput* ymiRNA;ysm[ ] + boutput (13)
WhereWoutput ∈ R2×2d is the weight matrix and boutput ∈ R2 is the

bias vector. Finally, the output vector Z � [y0, y1]] is passed through
the softmax function to compute the associated probabilities:

FIGURE 3
Using CNNs to extract features of miRNAs.
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Pt � exp yt( )
∑iyi

(14)

Results

Performance of GCNNMMA in the cross-
validation

In this work, we compared the performance of the latest five
models [SMiR-NBI (Li et al., 2016), GISMMA (Guan et al., 2018),
SLHGISMMA (Yin et al., 2019), SNMFSMMA (Zhao et al., 2020),
EKRRSMMA (Wang et al., 2022b)] with GCNNMMA, and
conducted 5-fold cross-validation (CV) on both dataset 1 and
dataset 2 to evaluate the predictive performance of GCNNMMA.
All predicted small molecule miRNA pairs were ranked
according to the obtained scores. Based on the rankings, we
used receiver operating characteristic (ROC) curves to illustrate
the performance of our models in the cross-validation runs. As
shown in Figure 4, we found that GCNNMMA achieved the best
predictive performance on both dataset 1 (AUC = 0.9812) and
dataset 2 (AUC = 0.9384). This suggests that GCNNMMA
performed the best in predicting the correlation between small
molecule drugs and miRNAs.

GCNNMMA is superior to other popular
methods in predicting miRNAs associated
with new small molecule drugs

It is important to examine the performance of the above
method in predicting new miRNAs related to small molecule
drugs, in addition to testing the performance of global
prediction of small molecule drug-miRNA relationships. A
leave-one-out experiment is used to evaluate the ability of the

algorithm to predict miRNAs related to new small molecule drugs.
To compare the fairness of the test, we still use ROC as the
indicator of predictive performance. The local LOOCV
experiment was carried on the dataset 1 and dataset 2 (see
Figure 5). GCNNMMA showed a higher performance over
other approaches in terms of AUC on the dataset 2.
Specifically, GCNNMMA obtained AUC value of 0.9367,
outperforming that of SMiR-NBI (AUC = 0.6754), GISMMA
(AUC = 0.8473), SLHGISMMA (AUC = 0.8532), SNMFSMMA
(AUC = 0.9254), EKRRSMMA (AUC = 0.8751). In addition, we
can find that the performance of GCNNMMA is also second only
to SNMFSMMA on the dataset 1. This also sufficient GCNNMMA
is also the best way to predict m miRNAs related to new small
molecule drugs.

Case studies: identifying the relationship
between small molecule drugs and miRNAs
associated with liver cancer

To further verify the reliability capability of GCNNMMA, we
take all known miRNAs-small molecule drug associations in the
SM2miR dataset 1 as the training set, and regard the missing
miRNAs-small molecule drug associations as candidate sets. After
GCNNMMA predicted the interaction probabilities of all candidate
miRNAs-small molecule drug associations, we then ranked them
according to the predicted probabilities so that the top-ranked
associations were most likely to interact. We also validated these
top 30 associations by searching for corresponding PubMed
literature, as shown in Table 2. Among the top 10, 20, and
30 predicted associations, we were able to validate 6, 12, and
20 associations, respectively through literature search. In the top
10 predicted associations, we found that 5 different miRNAs were
associated with Fluorouracil (CID: 3385), a small molecule drug that
belongs to the class of pyrimidine analogs and is an anti-metabolic
drug used to treat tumors. It interferes with DNA synthesis by

FIGURE 4
The ROC curves for GCNNMMA and benchmark algorithms for 5-fold CV on the (A) dataset 1 and (B) dataset 2.
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blocking the conversion of deoxyuridine monophosphate to
thymidine monophosphate (Ellison, 1961). Currently,
Fluorouracil is used to treat diseases such as actinic keratosis,
breast cancer, colon cancer, pancreatic cancer, gastric cancer,
liver cancer, and superficial basal cell carcinoma (Lecluse and
Spuls, 2015; Guo et al., 2020). Among the top 20 predicted
associations, we discovered novel small molecule drugs associated
with miRNAs and Estradiol (CID:5757), Testosterone (CID: 6013),
and Dihydrotestosterone (CID: 10635). These three hormones have
high bioavailability and can enhance cellular metabolism. These

three hormones have high bioavailability and can enhance cellular
metabolism (Pentika€inen et al., 2000). Among the top 30 predicted
associations, we found that the small molecule drugs Etoposide
(CID: 36462) (Wang et al., 2003) and Gemcitabine (CID: 60750) are
used for cancer treatment. Etoposide is a semi-synthetic derivative
with anti-tumor activity. It inhibits DNA synthesis by forming a
complex with topoisomerase II and DNA, inducing double-stranded
DNA breaks and preventing repair by blocking the binding of
topoisomerase II. Accumulation of DNA breaks prevents cells
from entering mitosis, leading to cell death (Uesaka et al., 2007).

FIGURE 5
The ROC curves for GCNNMMA and benchmark algorithms for local LOOCV on the (A) dataset 1 and (B) dataset 2.

TABLE 2 Predicting the top 30 small molecule drugs associated with miRNAs.

Rank CID miRNA Evidence (PubMed) Rank CID miRNA Evidence (PubMed)

1 3,229 hsa-mir-212 28,131,841 16 5,757 hsa-mir-542 17,765,232

2 3,385 hsa-mir-149 27,415,661 17 5,757 hsa-mir-663a 32,215,262

3 3,385 hsa-mir-1915 22,121,083 18 6,013 hsa-mir-135a-1 32,735,753

4 3,385 hsa-mir-203a 25,526,515 19 6,013 hsa-mir-29a 26,296,572

5 3,385 hsa-mir-320a unconfirmed 20 10,635 hsa-mir-32 20,945,501

6 3,385 hsa-mir-483 unconfirmed 21 10,635 hsa-mir-630 20,945,501

7 3,385 hsa-mir-519c 26,386,386 22 31,401 hsa-mir-603 20,689,055

8 3,385 hsa-mir-617 21,743,970 23 36,462 hsa-mir-26b 31,985,026

9 5,311 hsa-mir-126 unconfirmed 24 36,462 hsa-mir-663a 31,639,426

10 5,311 hsa-mir-409 unconfirmed 25 60,750 hsa-mir-139 33,300,085

11 5,311 hsa-mir-574 unconfirmed 26 60,750 hsa-mir-211 25,789,319

12 5,311 hsa-mir-595 unconfirmed 27 60,750 hsa-mir-299 28,131,841

13 5,311 hsa-mir-744 unconfirmed 28 60,750 hsa-mir-326 unconfirmed

14 5,311 hsa-mir-760 unconfirmed 29 60,953 hsa-mir-137 22,740,910

15 5,757 hsa-mir-17 24,283,290 30 216,239 hsa-mir-664a unconfirmed
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Gemcitabine (CID: 60750) is a nucleoside analog used in
chemotherapy that, like fluorouracil and other pyrimidine
analogs, replaces a structural group of nucleic acids in DNA
replication to form cytidine in this case. The formation of
cytidine stops tumor growth as new nucleosides cannot attach to
the “defective” nucleosides, leading to cell apoptosis (cell “suicide”)
(Hastak et al., 2010; Vogl et al., 2010). Currently, Gemcitabine is
used to treat cancers such as non-small cell lung cancer, pancreatic
cancer, bladder cancer, and breast cancer.

Discussion

The development of deep learning provides new approaches
for predicting the association between small molecule drugs and
miRNAs. We developed a prediction model called GCNNMMA
based on graph neural networks (GNNs) and convolutional
neural networks (CNNs), and validated its performance on
two datasets. Experimental results show that GCNNMMA
exhibited the best performance in the datasets. Compared with
previous similarity-based models, our model extracts the
characteristic information of small molecule drugs and
miRNAs through GNN and CNN networks, avoiding the
dependence on known association information. Furthermore,
when predicting the top 30 associations in the dataset,
GCNNMMA identified Gemcitabine (CID: 60750) related to
hsa-mir-139 and Fluorouracil (CID: 3385) related to hsa-mir-
149, both of which are used in cancer treatment by targeting the
relevant miRNAs to inhibit cell division and induce cancer cell
death. While GCNNMMA achieved good performance, there is
still room for improvement, such as integrating multi-source data
which remains a challenging problem. In the future,
incorporating more data sources, such as miRNA spatial
structure data and miRNA precursor data, could improve
GCNNMMA. In addition, three-dimensional structural
information can better reflect spatial information. One of the
future research directions is to utilize the three-dimensional
structural information of miRNAs and small molecule drugs
to improve prediction accuracy.
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Hepatoblastoma (HB) is the most commonmalignant liver tumor among children.
To gain insight into the pathobiology of HB, we performed RNA sequence analysis
on 5 patient-derived xenograft lines (HB-243, HB-279, HB-282, HB-284, HB-295)
and 1 immortalized cell line (HUH6). Using cultured hepatocytes as a control, we
found 2,868 genes that were differentially expressed in all of theHB lines onmRNA
level. The most upregulated genes were ODAM, TRIM71, and IGDCC3, and the
most downregulated were SAA1, SAA2, and NNMT. Protein-protein interaction
analysis identified ubiquitination as a key pathway dysregulated in HB. UBE2C,
encoding an E2 ubiquitin ligase often overexpressed in cancer cells, was markedly
upregulated in 5 of the 6 HB cell lines. Validation studies confirmed UBE2C
immunostaining in 20 of 25 HB tumor specimens versus 1 of 6 normal liver
samples. The silencing of UBE2C in two HB cell models resulted in decreased cell
viability. RNA sequencing analysis showed alterations in cell cycle regulation after
UBE2C knockdown. UBE2C expression in HB correlated with inferior patient
survival. We conclude that UBE2C may hold prognostic utility in HB and that
the ubiquitin pathway is a potential therapeutic target in this tumor.

KEYWORDS

hepatoblastoma, liver tumor, pediatric cancer, ubiquitin, UBE2C

1 Introduction

Hepatoblastoma (HB) is the most common malignant pediatric liver neoplasm with an
annual incidence of 1.9/1,000,000 (Aronson and Meyers, 2016; Feng et al., 2019) that has
been increasing over the past decades (Linabery and Ross, 2008). The etiology of most cases
of HB remains unknown, but preterm birth, birthweight less than 2500 g, and certain genetic
conditions such as Familial Adenomatous Polyposis and Beckwith-Wiedemann syndrome
are associated with increased risk of HB (Spector and Birch, 2012; Paquette et al., 2019).
Wnt/β-catenin signaling has been identified as one of the pathways altered in the majority of
HB tumors, but other molecular pathways involved in HB pathogenesis are not yet fully
understood (Udatsu et al., 2001; Armengol et al., 2011). Current treatment of HB includes
complete surgical resection combined with doxorubicin and cisplatin- or carboplatin-based
neoadjuvant and adjuvant chemotherapy (Zsíros et al., 2010). These forms of chemotherapy
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are effective but often lead to serious long-term side effects including
cardiotoxicity, ototoxicity, and nephrotoxicity (Spector and Birch,
2012; Volkova and Russell, 2012). Although the prognosis of HB has
improved over the years, 20%–30% of HB patients still respond
poorly to current treatment modalities (Sivaprakasam et al., 2011),
so new therapeutic targets are needed.

Metabolic reprogramming is one of the hallmarks of cancer
(Faubert et al., 2020). Highly proliferating tumor cells need to
adapt to conditions such as hypoxia and lack of nutrients and
thus require metabolic reprogramming to enhance their survival.
Many of the oncogenes and tumor suppressors are participating
in dysregulation of metabolic pathways in cancer (Nong et al.,
2023). Also, genes coding for metabolic enzymes have been
described to be mutated or aberrantly expressed in several
tumor types (Sreedhar and Zhao, 2018). Major changes
include alterations in glucose metabolism, known as Warburg
effect, as well as in amino acid and lipid metabolism (Counihan
et al., 2018). Alterations in genes regulating ubiquitination and
deubiquitination and their role as modulators of the metabolic
changes of tumor cells are also known to be essential in cancer
progression (Sun et al., 2020).

Some changes in metabolic genes have already been
demonstrated to be present in HB. In HB tumors, activating
mutations in the Wnt/β-catenin pathway genes lead to altered
glucose metabolism mediated by upregulation of GLUT3 (Crippa
et al., 2017). Immortalized HepG2 cells, originally derived from a
HB, exhibit deranged bile acid metabolism (Kullak-Ublick et al.,
1996) due in part to and downregulated SLC10A1 (Wang et al.,
2020). In the same study, the authors also found that
downregulation of SLC10A1 resulted in upregulated adenosine
metabolism. Retinol metabolism and cytochrome P450 pathway
have both been demonstrated to be downregulated in HB (Sekiguchi
et al., 2020). Despite these findings, the gene expression behind the
metabolic alterations taking place in HB still remain poorly
understood.

The objective of this study was to characterize the landscape of
metabolic genes in HB using RNA sequencing data and
bioinformatics analyses. Our overarching goal was to identify
potential treatment targets and novel biomarkers in HB.

2 Materials and methods

2.1 RNA sequencing andmicroarray datasets

Raw RNA sequencing datasets from previously published
studies were obtained from Gene Expression Omnibus (GEO)
database of National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/geo/) and European
Genome-phenome Archive (EGA) (https://ega-archive.org/).
Accession numbers were as follows: EGAS00001004827/
EGAD00001006621 (HB-282, HB-295, HB-279, HB-284, HB-
243), GSE140520 (PHH-D3, 1–3), GSE83518 (1HUH6HB,
2HUH6HB). Raw microarray data of gene expression in 53 HB
tissue samples and 14 noncancerous liver tissue samples collected
from the HB patients at the time of surgery were acquired from
GEO, accession number GSE131329.

2.2 Identification of differentially expressed
genes and differentially expressedmetabolic
genes

RNA sequencing dataset files were analyzed with Chipster
software (https://chipster.rahtiapp.fi/) (Kallio et al., 2011). Reads
were preprocessed using Trimmomatic and aligned to human
reference genome (GRCh38) using HISAT2 (Kim et al., 2015).
Reads per genes were counted with HTseq (Anders et al., 2015).
Differential expression analysis was conducted with the edgeR
package (Robinson et al., 2009). Differentially expressed genes
(DEGs) were then filtered using cut-off criteria adjusted to
p-value <0.05 and |log2FC|≥1.0.

Microarray data were analyzed with Chipster plus the
normalization tool for Affymetrix gene arrays (Li, 2001; Irizarry
et al., 2003). Statistical tests were conducted using the “Two group
tests” tool (empirical Bayes as test and BH as p-value adjustment
method) (Smyth, 2004).

Human metabolic genes were obtained from The Virtual
Metabolic Human database (VMH) (Supplementary Table S1)
(Noronha et al., 2019). A list of DEGs in each cell line was
compared to a list of human metabolic genes to further filter the
results. Duplicates were removed from the list leaving 3,285 unique
genes.

2.3 Protein-protein interaction (PPI) network
construction

PPI networks of differentially expressed metabolic genes in each
cell line were constructed with the online tool of STRING database
(Szklarczyk et al., 2019) using 0.7 as minimum required interaction
score. Results were visualized with Cytoscape (Shannon et al., 2003).
Highly interconnected areas (clusters) of these interaction maps
were identified and scored using the Cytoscape plugin Molecular
Complex Detection (MCODE) (Bader and Hogue, 2003) using the
following criteria: degree cut-off: 2; haircut: yes; fluff: no; node score
cut-off: 0.2; K-core: 2; max. Depth: 100. Based on this score, highest-
ranking cluster of each cell line was chosen to be investigated more
thoroughly. PPI network of UBE2C was constructed using STRING
with 0.4 as minimum required interaction score.

2.4 Kyoto encyclopedia of genes and
genomes (KEGG) and gene ontology (GO)
pathway enrichment analyses

Genes in each cell line’s highest-scoring cluster were uploaded to
Enrichr (Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021).
Results of KEGG pathway and GO Biological Processes term
enrichment analyses were imported from the website. Results
with adjusted p-value of <0.05 were considered significant. The
top 5 terms with lowest adjusted p-values from both KEGG and GO
were chosen for each HB cell line. Python programming language
(Python Software Foundation) with Matplotlib (Hunter, 2007),
NumPy (Harris et al., 2020), and pandas (McKinney, 2010)
libraries were used for handling and plotting this data.
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2.5 Statistical analysis of clinical variables

Student’s t-test, Mann-Whitney U test, and receiver operating
characteristic (ROC) curves were used to analyze microarray gene
expression data and clinical variables provided in
GSE131329 dataset. Statistical significance was set to
p-value <0.05. Analyses were conducted with R software (v.
4.0.3) or GraphPad Prism (v. 8.4.2; GraphPad, San Diego, CA,
United States).

2.6 Gene co-expression analysis

An online tool for gene co-expression analysis, GeneFriends v
5.0 (Raina et al., 2022), was used to analyze the gene co-expression of
UBE2C. Following input parameters were used: Species; Homo
Sapiens, Data Source; SRA, Tissue: All tissue types, Object type;
Gene, Seed gene: UBE2C, Pearson correlation threshold: 0.75.

2.7 Patient samples

Formalin-fixed paraffin-embedded (FFPE) HB tumor samples
[n = 24, median age in years 3.37 (range 0.23–11.75)] and normal
liver control samples (NL, n = 6, median age in years 12.5 (range
3–26)) were obtained from the Helsinki Biobank at Helsinki
University Hospital. HB samples were originally collected at the
time of surgical treatment from patients treated in Children’s
Hospital, Helsinki University Hospital between 1 January 1991,
and 31 December 2017. Prior to resection, majority of patients
had received preoperative chemotherapy. NL samples were collected
from liver transplantation donors in Helsinki University Hospital.
This study was approved by Helsinki University Hospital
institutional ethical committee (HUS/3319/2018) and conducted
in accordance with Finnish bylaws. Informed consent was obtained
when samples were deposited to the Helsinki Biobank.

2.8 Immunohistochemistry

Samples were heated for 30 min at 60°C oven and deparaffinized
with NeoClear (Merck-Millipore, Darmstadt, Germany). Target
retrieval was performed using pH 9.0 target retrieval solution for
30 min at + 98°C (Dako, Glostrup, Denmark). Novolink Polymer
Detection System Kit (Leica, Newcastle, United Kingdom) was used
to block endogenous peroxidase activity and nonspecific binding.
Samples were incubated with UBE2C polyclonal antibody at +4°C
overnight (dilution 1:1,500; #PA5-102791; Invitrogen, Thermo
Fisher Scientific). A polymerized reporter enzyme staining system
(Novolink Polymer Detection System Kit) was used to visualize the
bound antibody. UBE2C immunoreactivity was scored as strong
nuclear staining (positive) or negative by two separate observers.
Images were generated using 3DHISTECH Pannoramic 250 FLASH
II digital slide scanner at Genome Biology Unit supported by HiLIFE
and the Faculty of Medicine, University of Helsinki, and Biocenter
Finland.

2.9 HB in vitro models

HB cell line HUH6 was obtained from Japanese Collection of
Research Bioresources Cell Bank (Osaka, Japan). Cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM)-
glutaMAX (Gibco) supplemented with 10% FBS (Gibco), 100 U/
mL penicillin (Gibco), and 100 μg/mL streptomycin sulfate (Gibco,
Waltham, MA, United States). HB cell line HB-243 from patient-
derived xenograft (PDX) was provided by XenTech (Evry, France)
(Kats et al., 2019). HB-243 cells were cultured in Advanced DMEM/
F12 (Gibco, Waltham, MA, United States) supplemented with 8%
fetal bovine serum (FBS) (Gibco), 2 mM glutaMAX (Gibco), 100 U/
mL penicillin (Gibco), 100 μg/mL streptomycin sulfate (Gibco) and
20 μM rock kinase inhibitor Y-27632 (S1049; SelleckChem,
Houston, TX, United States). Absence of mycoplasma was
regularly confirmed with PCR-based method (PromoCell,
Heidelberg, Germany).

2.10 UBE2C silencing

UBE2C expression in HUH6 and HB-243 cell models was
silenced by small interfering RNA (siRNA) transfection. The cells
were exposed to 25 nM UBE2C ON-TARGETplus SMARTpool
siRNA (cat# L-004693-00-0005) or ON-TARGETplus non-
targeting (NT) control siRNA (cat# D-001810-10-05; both
purchased from Horizon Discovery, Cambridge,
United Kingdom). Dharmafect 4 (Horizon Discovery) was used
to deliver the siRNAs into the HUH6 cells using the protocol
provided. Knockdown efficacy was evaluated at mRNA and at
protein level 48 h after transfection.

2.11 RNA and protein extraction

Total RNA and protein were extracted from cultured HUH6 and
HB-243 cell models using NucleoSpin RNA/Protein extraction kit
(Macherey-Nagel, Düren, Germany). Instructions provided by the
manufacturer were followed.

2.12 Quantitative real-time polymerase
chain reaction

Reverse transcription was carried out using iScript cDNA
Synthesis Kit (Bio-Rad, Hercules, CA, United States).
Quantitative polymerase chain reaction (qPCR) was performed
using PowerUp SYBR Green Master Mix (Thermo Fisher
Scientific, Fremont, CA, United States). The geometric mean of
B2M and PPIG served as a reference. Primer sequenced were
designed as follows: B2M 5′- GAT GAG TAT GCC TGC CGT
GT—3′ (forward), 5′- CTG CTT ACA TGT CTT GAT CCC A- 3′
(reverse); PPIG 5′ -CAA TGG CCA ACA GAG GGA
AG—3′(forward), 5′—CCA AAA ACA TGA TGC CCA—3′
(reverse); UBE2C 5′- CCG CCC GTA AAG G—3′ (forward), 5′-
CTC AGG TCT TCA TAT ACT GTT CCA G -3′ (reverse).
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2.13 Western blotting

Equal amounts of protein (10 µg) were loaded into Mini-
Protein TGX stain-free gels (Bio-Rad) and separated using gel
electrophoresis. Proteins were transferred to polyvinyl-fluoride
membrane and 5% skimmed milk in Tris-buffered saline-
Tween20 was utilized to block unspecific binding. Primary
antibody incubation was performed at room temperature for
overnight (UBE2C at dilution 1:500; #14234S; Cell Signaling
Technology Inc., Danvers, MA, United States). Secondary
antibody incubation was carried out at room temperature for
1 h (goat anti-rabbit IgG at dilution 1:10,000; #111-035-144,
Jackson ImmunoResearch, West Grove, PA, United States).
Protein bands were visualized using Enhanced
Chemiluminescence detection kit (Amersham ECL reagent; GE
Healthcare, Barrington, IL, United States). Protein quantification
was performed with Image Lab software (version 6.0, Bio-Rad) by
normalizing UBE2C band intensities to amount of total protein
in corresponding lane utilizing stain-free technology (Gürtler
et al., 2013).

2.14 RNA sequencing of UBE2C silenced
HUH6 cells

HUH6 cells were cultured and treated with either UBE2C or
non-targeting siRNAs. RNA and protein extraction were
conducted as described above. Prior to sequencing, RNA
concentration, quality, and integrity were assessed using
Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA,
United States) and the TapeStation system (Agilent, Glostrup,
Denmark). After quality assessment, RNA libraries were
constructed applying polyA selection, and Illumina
compatible cDNA libraries were prepared by GENEWIZ
(Leipzig, Germany). Samples were then sequenced on
Illumina NovaSeq 6,000 yielding 2 × 150 bp paired end reads
(GENEWIZ). Processing of RNA sequencing data was done
using Chipster software as described above. The cut-off
criteria were set to adjusted p-value <0.1. No cut-off criteria
were used for logFC. Enrichr was used to identify enriched
pathways and ontologies.

2.15 Cell viability assays

Cell viability after UBE2C knockdown was evaluated with cell
proliferation agent WST-1 and clonogenic survival assay. The
WST-1 assay (Roche Diagnostics GmbH, Basel, Switzerland) was
performed according to the manufacturer’s instructions at
timepoint of 48 h. For the clonogenic assay, HUH6 cells
transfected with UBE2C or NT siRNAs were disaggregated
into single-cell suspension and seeded at low density into 12-
well plates. After culturing for 72 h, the cells were washed with
phosphate-buffered saline (PBS), fixed with 4%
paraformaldehyde, permeabilized with 100% methanol, stained
with crystal violet and rinsed with dH2O. The area occupied by
cell colonies in each well was calculated using Cell Profiler
(McQuin et al., 2018).

2.16 Migration assay

Cell migration was assessed using transwell migration inserts
(8 um pore size; Merck Millipore, Darmstadt, Germany). The
bottom of each insert was pre-coated with collagen I (0.1 mg/mL;
Sigma Aldrich, St. Louis, MO, United States) and placed into 24-well
plates containing cell culture medium (10% serum). UBE2C or NT
siRNA transfected cells were seeded to upper side of membrane in
starvation medium (serum-free) (seeding density 5 × 105 cells per
well). After culturing for 42 h, cells were fixed with 4%
paraformaldehyde, permeabilized with 100% methanol, and
stained with crystal violet. Non-migrated cells were removed
from upper side of membrane with a cotton swab. In each insert,
images were captured from five randomly chosen fields with Eclipse
TS100 microscope supplemented with DS-Fi1 digital imaging
system (magnification ×10; Nikon, Tokyo, Japan). The number of
migrated cells was calculated with ImageJ software.

3 Results

3.1 Genes differentially expressed in HB cell
lines vs. primary hepatocytes

The workflow is outlined in Figure 1. Five of the cell lines used in
this study were established from aggressive HB tumors; the sixth was
the immortalized human HB cell line, HUH6. Details of these cell
lines are shown in Table 1 (Doi, 1976; Kats et al., 2019). RNA-
sequencing analysis of these six cell lines identified approximately
9,000 differentially expressed genes (DEGs) in each cell line
compared to primary hepatocytes (Figure 2A; Supplementary
Table S2). Of these, approximately half were upregulated and
half downregulated. Venn analysis showed that 2,868 of DEGs
were shared among all 6 HB cell lines (Figure 2B). The top
20 most upregulated and most downregulated genes are shown
in Figure 2C. The most upregulated genes were ODAM, TRIM71,
and IGDCC3, while the most downregulated genes were SAA1,
SAA2, and NNMT. Among the most upregulated genes were
GPC3, DLK1, and SP8, previously connected to aggressive HB,
underscoring the robustness of the analysis pipeline (Cairo et al.,
2008; Zynger et al., 2008; Wagner et al., 2020).

3.2 Differentially expressed metabolic genes

A list of known human metabolic genes was obtained from
Virtual Human Metabolomics (Supplementary Table S1). Venn
analysis showed that 490 of these metabolic genes were shared
among all 6 HB cell lines (Figure 3A; Supplementary Table S4).
Approximately 1,400 DEGs in each HB cell line were classified as
metabolic genes (Figure 3B; Supplementary Table S3). The 20 most
upregulated and most downregulated DEGs overlapping with
metabolic genes are listed in Figure 3C. The most upregulated
metabolism-associated genes were RBP2, DPEP1, and PCYT1B,
and the most downregulated genes were NNMT, VNN1, and
CYP2C18. Out of these six genes, DPEP1, responsible for
hydrolysis of several dipeptides, and nicotinamide
N-methyltransferase NNMT have been demonstrated to play a
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role in HB pathogenesis in previous studies (Cui et al., 2019; Rivas
et al., 2020). Other genes were not previously reported in HB. These
genes are involved in regulating oxidative phosphorylation (RBP2,
VNN1), phosphatidylcholine biosynthesis (PCYT1B), and
xenobiotic and retinoid metabolism (CYP2C18, RBP2) (Chen and
Goldstein, 2012; Grinde et al., 2014; Váraljai et al., 2015; Giessner
et al., 2018; Blaner et al., 2020).

3.3 PPI-network construction and clustering

Protein-to-protein interaction (PPI) networks describe the
physical contact of proteins within cells. PPI networks were
constructed to better understand the changes in cell physiology
represented by transcriptome analysis in HB. Lists of
differentially expressed metabolic genes in each cell line

FIGURE 1
Flowchart of the study design.

TABLE 1 HB cell line characteristics.

Cell line Age at sampling Sex Histology Origin References

HB-243 52 months Male embryonal intrahepatic relapse Kats et al., 2019

HB-279 79 months Male embryonal and macrotrabecular primary tumor Kats et al., 2019

HB-282 12 months Male embryonal primary tumor Kats et al., 2019

HB-284 83 months Male embryonal peritoneal metastasis Kats et al., 2019

HB-295 26 months female fetal primary tumor Kats et al., 2019

HUH6 12 months Male mixed, predominantly embryonal primary tumor Doi, (1976)
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(Supplementary Table S3) were used to construct the PPI
networks using the STRING database. Highly interconnected
areas (clusters) in each PPI-network were identified, scored,

and ranked on size and density. The highest-scoring cluster of
each cell line is shown in Figures 4A–F. The scores of the top
clusters were 34 (HB-243), 24 (HB-279), 32 (HB-282), 29 (HB-

FIGURE 2
Differentially expressed genes in HB cell lines compared to primary hepatocytes Upregulated (pink) and downregulated (blue) genes in each HB cell
line (A). Venn diagram showing the number of significant differentially expressed genes compared to primary hepatocytes that were shared among all six
HB cell models (B). Heatmap of the 20 most downregulated and the 20 most upregulated differentially expressed genes sorted by log2FC (C). Genes in
gray = change not statistically significant. Differential expression analysis was conducted using the edgeR package.
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284), 33 (HB-295) and 28 (HUH6). Upregulated genes found in
one or more of these clusters included UBE2C, UBE2D1,
UBE2N, UBE2O, UBE2Q1, UBE2Q2, UBE2R2, UBE2S, DZIP3,

HACE1, MGRN1, MIB2, MYLIP, RBBP6, RNF126, RNF138,
RNF182, SIAH2, SMURF2, WWP1, ZNRF1, and ZNRF2.
Downregulated genes included CBLB, HECTD2, HECTD3,

FIGURE 3
Differentially expressedmetabolic genes in HB cell models Venn diagram showing the number of sharedmetabolic genes among the 6 HB cell lines
(A). Overlap of differentially expressed genes in each cell line and the list of all metabolic genes (B). Heatmap of the 20 most up- and the 20 most
downregulated metabolic genes in HB cell models (C). Genes in gray = change not statistically significant.
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HECW2, HERC3, HERC4, LRSAM1, MKRN1, NEDD4,
NEDD4L, PJA1, RCHY1, RNF115, RNF130, RNF14, RNF144B,
RNF19A, RNF19B, RNF217, SH3RF1, SIAH1, SMURF1, STUB1,
TRAF7, TRIM32, TRIP12, UBA1, UBA7, UBE2A, UBE2D4,
UBE2E1, UBE2E2, UBE2E3, UBE2H, UBE2J1, UBE2J2,
UBE2L6 UBE3C, UBR1, and UBR2.

3.4 KEGG and GO analyses of the highest-
ranking clusters

Next, to identify enriched pathways and gene sets, the list of protein-
coding genes in each cell line’s highest-scoring PPI clusterwere uploaded to
the online tool Enrichr and the results ranked by p-value. The top 5 most

FIGURE 4
Highest-scoring clusters found in PPI networks of differentially expressed metabolic genes in each cell line. Clusters were ranked based on their
score using MCODE plugin of Cytoscape. HB-243 (A), HB-279 (B), HB-282 (C), HB-284 (D), HB-295 (E), and HUH6 (F).
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statistically significant GO-terms in the highest-ranking clusters were
protein ubiquitination, protein polyubiquitination, protein modification
by small protein conjugation, modification-dependent protein catabolic
processes, and protein ubiquitination involved in ubiquitin-dependent
protein catabolic processes (Figure 5A). The corresponding KEGG-
terms were ubiquitin mediated proteolysis, endocytosis, protein
processing in endoplasmic reticulum, Hedgehog signaling pathway,
TGF-β signaling pathway, and Parkinson’s disease (Figure 5B).

3.5 Validation of findings with HB patient
microarray dataset

Genes present in all six of the highest-scoring clusters in the
PPI-network were RNF130, UBE2E2, UBE2C, RNF14, HERC3,

HERC4, STUB1, UBE2S, RNF144B, MYLIP, and UBE2D4. Of
these, four genes—RNF130, UBE2C, HERC3, and
RNF144B—were found to be significantly altered in the
GSE131329 microarray dataset. This dataset includes 53 HB
tissue samples and 14 noncancerous liver (NCL) tissue
samples collected at the time of surgery from HB patients.
RNF144B, RNF130, and HERC3 mRNA expression was
downregulated compared to the normal liver samples
(log2FC −0.84, adj. p-value 1.10*10−5; log2FC −0.6, adj. p-value
3.0*10−06, and log2FC −0.62, adj. p-value 0.00186, respectively),
whereas UBE2C mRNA expression was upregulated in HB
samples (log2FC 1.0; adj. p-value 0.0001). RNF144B, RNF130,
and HERC3 act as a ubiquitin ligases and UBE2C is an ubiquitin
conjugating enzyme. Expression of these 4 genes in both HB and
NCL groups is shown in Figures 6A–D.

FIGURE 5
KEGG and GO analyses for enriched pathways. Genes in each cell line’s top-ranking PPI clusters were analyzed to find common enriched pathways.
Statistically significant (p < 0.05) GO biological processes (A) and KEGG pathways (B) are shown for each cell line.
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FIGURE 6
mRNA expression and ROC curve analysis of the four key genes in GSE131329 dataset. Expression of UBE2C (A), HERC3 (B), RNF130 (C) and
RNF144B (D) in HB samples compared to noncancerous liver samples on mRNA level. ROC curve analysis of UBE2C (E), HERC3 (F), RNF130 (G) and
RNF144B (H) assessing the suitability of each gene for discrimination of noncancerous liver (NCL) and HB. ** = p < 0.01. Grey dots represent gene
expression of independent patients, the whiskers represent the first and third quartile, and the thick solid line is median (A–D).
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3.6 Clinical analyses of potential key genes
UBE2C, RNF130, HERC3, and RNF144B

To analyze the suitability of each selected gene (UBE2C,
RNF130, HERC3, and RNF144B) to discriminate normal control
liver samples (NCL) andHB, we performed ROC curve analysis. The
area under curve (AUC) was 0.8875 for UBE2C (Figure 6E, 95% CI
0.81–0.96), 0.8369 for HERC3 (Figure 6F, 95% CI 0.74–0.93),
0.8834 for RNF130 (Figure 6G, 95% CI 0.77–0.99), and
0.8949 for RNF144B (Figure 6H, 95% CI 0.81–0.98). Next, we
assessed the association of each of these genes with distant
metastasis status, occurrence of events, and overall survival. High
UBE2C mRNA expression was linked with distant metastasis
(p-value <0.01), events (p-value <0.05), and death (p-value <0.01)
(Table 2). Downregulation of HERC3 and RNF144B was associated
with occurrence of events (p-values <0.05) (Table 2). RNF130

expression did not show a statistically significant association with
any of the studied variables (Table 2). Clinical information adapted
from GSE131329 dataset is summarized in Table 3.

3.7 UBE2C associated protein interactions
and gene co-expression analysis

To analyze the functional enrichment of UBE2C specific protein
interactions in general, STRING network analysis was carried out.
UBE2C was used as the input protein. Thirty proteins were
interacting with UBE2C when the cut-off was set to 0.4
(Figure 7A). Next, we assessed the level of differential RNA
expression of these UBE2C interacting proteins in our RNA
sequencing data of the six HB cell models. Of these 30 proteins,
fourteen were found to be significantly differentially expressed on
RNA level in all 6 HB models (Figure 7B).

Gene co-expression analysis was conducted forUBE2C using the
online tool GeneFriends to further explore the relationship between
UBE2C and related genes. Using UBE2C as the seed gene, top 10 co-
expressed genes with the highest Pearson correlation values were
CCNB2, TOP2A, NUSAP1, CKS2, NUF2, CDK1, NEK2, PTTG1,
CKS1B, and lncRNA RP11-102C16.3 (Supplementary Figure
S1A–B). When comparing these protein interactions and gene
co-expression results of UBE2C, three genes/proteins, CKS1B,
CCNB2 and CDK1, were present in both networks.

3.8 Immunohistochemical staining of
UBE2C in HB patient samples

To validate UBE2C protein expression in HB patient samples,
immunohistochemical staining was performed on 6 NL (Table 4)
and 25 HB (Table 5) samples. One of the 6 NL samples showed
positive UBE2C staining on the cell membranes (Figures 8A, B). Of
the HB samples, 5 were considered UBE2C-negatives (Figures
8C, D) and 20 UBE2C positive (Figures 8E, F). Compared to NL
samples, staining for UBE2C in HB cells appeared stronger and
localized to nuclei rather than the cell membrane.

TABLE 2 Association of UBE2C, HERC3, RNF130, and RNF144B mRNA expression (log2) with clinical course of the disease assessed with Mann-Whitney U test.

UBE2C HERC3 RNF130 RNF144B

Distant metastasis NO (n = 39) Median mRNA exp 7.330 7.940 9.400 8.240

Distant metastasis YES (n = 14) Median mRNA exp 8.295 7.440 9.470 7.765

p-value 0.0046 0.0682 0.5592 0.0874

Event-free YES (n = 32) Median mRNA exp 7.325 8.060 9.460 8.310

Event-free NO (n = 21) Median mRNA exp 7.930 7.580 9.330 7.860

p-value 0.0303 0.0247 0.6619 0.0130

Overall survival ALIVE (n = 38) Median mRNA exp 7.325 8.005 9.425 8.280

Overall survival DEAD (n = 15) Median mRNA exp 8.240 7.560 9.510 7.840

p-value 0.0095 0.0581 0.4966 0.0269

TABLE 3 Clinical information of GSE131329 dataset. (HB = hepatoblastoma;
NCL = non-cancerous liver).

HB (n = 53) NCL (n = 17)

Median age, months 22 (0–109) 17 (5–98)

Sex FEMALE, n (%) 47.2 57.1

Sex MALE, n (%) 52.8 42.9

PRETEXT = 1, n 9 —

PRETEXT = 2, n 15 —

PRETEXT = 3, n 18 —

PRETEXT = 4, n 11 —

Distant metastasis NO, n 39 —

Distant metastasis YES, n 14 —

Event-free NO, n 21 —

Event-free YES, n 32 —

Overall survival, alive (%) 71.7 —
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FIGURE 7
UBE2C protein-protein interaction network. UBE2C associated protein-protein interactions (A). The fold change of UBE2C interacting DEGs (in
relation to primary hepatocyte) emerging from our RNA sequencing analysis (B).
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3.9 UBE2C silencing decreases cell viability
and migration in HUH6 and HB-243 HB cell
models

To explore UBE2C function in vitro, UBE2C was silenced
in HUH6 and HB-243 cell lines using siRNA transfection.

Non-targeting (NT) siRNAs were used as a control. After
siRNA transfections, UBE2C expression was reduced 95% at
mRNA and 80% at protein level in HUH6 (Figures 9A, B) and
98% at mRNA and 80% at protein level in HB-243. (Figures 9D,
E). The effect of UBE2C knockdown on cell viability was
evaluated using WST-1 assay. Relative cell viability

TABLE 4 Liver samples from donors used in IHC.

Sample UBE2C staining Age at death (years) Sex Cause of death

NL1 − 3 M anoxia, heart-related

NL2 − 8 M traumatic brain injury

NL3 + 11 F anoxia, trauma-related

NL4 − 26 F traumatic brain injury

NL5 − 14 M traumatic brain injury

NL6 − 16 F spontaneous subdural hemorrhage

TABLE 5 Clinical information of HB patient tissue samples used in IHC.

Sample UBE2C staining Age at tx/res (years, age group) Risk Histology Sex

HB1 + 3–7 high NA F

HB2 + >7 high epithelial, macrotrabecular M

HB3 + 1–3 high fetal epithelial, well differentiated F

HB4 + 1–3 high embryonal and fetal epithelial F

HB5 + >7 high fetal epithelial M

HB6 + 1–3 standard mixed epithelial and mesenchymal M

HB7 + 1–3 standard fetal epithelial M

HB8 − 3–7 high fetal epithelial F

HB9 + 3–7 high epithelial F

HB10 + 1–3 standard fetal epithelial M

HB11 + >7 high fetal epithelial F

HB12 + >7 high fetal epithelial M

HB13 + <1 standard fetal, teratoid features M

HB14 + 1–3 standard fetal epithelial M

HB15 − 1–3 high mixed epithelial and mesenchymal with teratoid features F

HB16 + <1 high mixed epithelial and mesenchymal M

HB17 + 1–3 high embryonal and fetal epithelial M

HB18 + >7 high embryonal and fetal epithelial F

HB19 + 3–7 high fetal epithelial M

HB20 - >7 high embryonal and fetal epithelial F

HB21 + 3–7 high embryonal and fetal epithelial F

HB22 − 3–7 high fetal epithelial M

HB23 − 3–7 high embryonal epithelial F

HB24 + 3–7 high mixed M

HB25 + 3–7 high fetal epithelial, well differentiated M
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decreased 24% in HUH6 (Figure 9C) and 44% in HB-243
(Figure 9F).

RNA sequencing of UBE2C silenced HUH6 cells showed
111 differentially expressed genes (Supplementary Table S5). Top
5 pathways and ontologies matching these genes included cell cycle
related processes such as p53 regulation, DNA damage response,
and G1/S checkpoint (Figures 10A–F).

Effects of UBE2C knockdown in HUH6 cells were further
evaluated using a clonogenic assay, which showed a statistically
significant fall in cell number in UBE2C silenced cells with the well
area covered by cells decreasing 35% (Supplementary Figure
S2A–C). The effect of UBE2C silencing on HUH6 cell migration
was assessed with transwell assay, which demonstrated a statistically
significant 65% decrease in the number of migrated cells compared
to NT siRNA treated cells (Supplementary Figure S2D–F).

4 Discussion

Metabolic derangements have been associated with enhanced
tumorigenesis and cancer progression in several tumor entities
(Faubert et al., 2020), and these tumor-specific changes can be
exploited to develop targeted therapies (Sullivan et al., 2016). In
our RNA sequencing analysis of HB cell models, ubiquitination
emerged as the most significantly altered metabolic pathway. The
expression of three ubiquitin ligases (HERC3, RNF130, and
RNF144A) and one ubiquitin conjugating enzyme (UBE2C) was
significantly dysregulated in all studied HBmodels. These four genes
were assessed more thoroughly in a HB patient dataset to validate
their significance in the clinical setting. We noticed a remarkable
association between high UBE2C expression and aggressive disease
in the particular HB patient cohort.

FIGURE 8
UBE2C protein expression in HB tissues. Immunohistochemical staining of UBE2C in 6 normal liver (NL) samples and 25 hepatoblastoma (HB)
samples was done. Representative image of normal liver stained with UBE2C with ×20 (A) and ×40 (B) magnification. Representative image of HB liver
staining negative for UBE2C with ×20 (C) and ×40 (D) magnification. Representative sample of HB liver staining positive for UBE2C ×20 (E) and ×40 (F)
magnification. Scale bars = 50 µm (B,D) and 20 µm (C,E).
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Ubiquitination is a crucial mechanism for the degradation of
short-lived proteins like those involved in cell cycle regulation (Guo
et al., 2019; Zhang et al., 2021). In addition to protein degradation,
ubiquitination regulates DNA repair, translation, and inflammation
(Miranda and Sorkin, 2007). The three main steps in ubiquitination
are activation (performed by ubiquitin-activating enzymes, E1s),
conjugation (ubiquitin-conjugating enzymes, E2s), and ligation
(ubiquitin-ligating enzymes, E3s) (Komander and Rape, 2012).
Ubiquitination and deubiquitination are known to be modulated
during cancer progression (Sun et al., 2020), and high UBE2C
expression portends poor survival in various cancers including
node-positive breast cancer (Loussouarn et al., 2009) and ovarian
carcinomas (Berlingieri et al., 2007). The magnitude of UBE2C
mRNA overexpression in HB cell lines was striking (up to 128-
fold higher than primary hepatocytes), andUBE2C expression in HB
clinical specimens was associated with increased risk of distant
metastasis, events, and death. Our findings echo a recent study
showing that UBE2C expression may be used as a diagnostic

biomarker in hepatocellular carcinoma, the most frequent liver
cancer in adults (Gao et al., 2021).

In HB tissue samples, we observed predominantly nuclear
localization of UBE2C protein. In other cancers, both nuclear
and cytoplasmic UBE2C immunoreactivity have been observed,
but the functional significance of this is unclear (Shen et al.,
2013; Ma et al., 2016; Palumbo et al., 2016). Kraft et al. showed
that strong nuclear expression of UBE2C was linked with higher
mitosis rate in melanoma suggesting that UBE2C localization in
nuclei may be at least partially related to its role in the regulation of
cell cycle associated proteins (Kraft et al., 2017).

It has previously been shown that in cancer cells UBE2C plays an
important role in facilitation of protein degradation and dysregulation
of the cell cycle (Sun et al., 2020). UBE2C overexpressing cells have the
ability to overridemitotic spindle checkpoints, whichmay lead to loss of
genomic stability, a characteristic of cancer (Reddy et al., 2007). UBE2C
is also suggested to be a potential oncogene enhancing migration and
invasion in hepatocellular carcinoma (Xiong et al., 2019). Consistently,

FIGURE 9
Knockdown of UBE2C and its effect on HUH6 and HB-243 cell viability. Following the siRNA transfection, UBE2C mRNA expression in HUH6 was
reduced by 95% (A) and protein expression by 80% (B) compared to cells transfected with non-targeting (NT) siRNA. In HB-243,UBE2CmRNA expression
was reduced by 98% (D) and protein expression by 80% (E). WST-1 assay showed a 24% decrease in HUH6 (C) and 44% in HB-243 (F) in cell viability after
UBE2C silencing. Bar plots are presented as relative values of mean of three independent experiments ± RSD. **p-value <0.01, NT = non-targeting.
Normalization factor (NF) describing the amount of total protein in lane in relation to other lanes is given beneath the bands (B, E).
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we demonstrated that knockdown of UBE2C resulted in a decrease in
HB viability, and preliminary results suggest that it could also have a
negative effect on HB cell migration. Our RNA sequencing results
supported the hypothesis that UBE2C participates in cell cycle
regulation in HB. After UBE2C knockdown, we observed alterations
in mRNA expression of CDKN1A, CDK, PIK3C2B, PIDD1, and E2F2
genes which are known to participate in cell cycle regulation and the
p53 signaling pathway. Changes in mRNA expression, however, were
rather subtle. Effects ofUBE2C knockdown on cell cycle were, however,
not assessed with in vitro experiments in this article. Given the role of
UBE2C as a post-translational factor rather than a direct regulator of
gene expression, proteomics analysis could be conducted in future
experiments. UBE2C overexpression has also previously been linked to
increased ubiquitination and subsequent degradation of the tumor
suppressor p53 in endometrial cancer (Liu et al., 2020). A novel
therapy aimed at enhancing p53 activity has been suggested to be a
potential treatment alternative for HB (Woodfield et al., 2021). If
UBE2C participates in post-translational regulation of
p53 expression in HB, its inhibition could lead to reactivation of p53.

Aurora Kinase A (AURKA), a serine/threonine kinase, has a critical
role in regulating cell cycle and mitosis (Du et al., 2021). Expression of
AURKA has been shown to be significantly higher inHB than in normal
liver (Tian et al., 2021). In our study, AURKA was significantly
upregulated in all studied HB cell lines. Treatment modalities
targeting AURKA, such as alisertib, have shown promising results in
preclinical studies of HB (Tan et al., 2020). Interestingly, increased

AURKA expression has been demonstrated to correlate with
upregulated UBE2C in cancer cells (http://gepia.cancer-pku.cn)
(Naso et al., 2021). Furthermore, inhibition of UBE2C expression
was shown to reduce the level of phosphorylation of AURKA and
impair cell viability in gastric adenocarcinoma cells (Wang et al., 2017).

UBE2C links to another key HB gene, cyclin-dependent kinase 1
(CDK1) (Aghajanzadeh et al., 2020; Sun et al., 2021; Tian et al., 2021).
CDK1 functions as a serine/threonine kinase and, likeAURKA, plays an
important role in cell cycle regulation. CDK1 has been reported to be
upregulated in various cancers including hepatocellular carcinoma
(Zhou et al., 2019). Consistent with previous studies, our RNA-
sequencing results showed that CDK1 was highly upregulated in
HB cell models. CDK1 siRNA knockdown was shown to inhibit the
growth and invasiveness of HUH6 HB cells (Tian et al., 2021). A study
of ovarian cancer cells showed that high UBE2C expression correlated
with expression of CDK1. Knockdown of UBE2C induced G2/M arrest
in the cells, which led to decreased CDK1 expression (Li et al., 2020). In
our study, knockdown of UBE2C in HUH6 cells increased cyclin-
dependent kinase inhibitor 1 (CDKN1A) expression and decreased
cyclin-dependent kinase 2 (CDK2) expression at mRNA level, both of
these having a role in G1/S transition. CDK1 expression was not
significantly altered.

There is some evidence that UBE2C overexpression impacts
chemoresistance. Downregulation of UBE2C reversed resistance to
cisplatin in ovarian cancer cell models (Li et al., 2020). UBE2C
inhibition has been shown to increase doxorubicin sensitivity in

FIGURE 10
Effects ofUBE2C knockdown in HUH6 cells on RNA level.UBE2C knockdown is linkedwith alterations in RNA expression of genes connected to cell
cycle regulation and p53 signaling pathway. Top 5 pathways and ontologies ranked by p-value (A–F).
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breast cancer cells in vitro (Rawat et al., 2013). Cisplatin and
doxorubicin are both widely used in HB management. In
addition to targeted treatment, UBE2C expression status could
thus be utilized in the evaluation of treatment resistance to
conventional chemotherapy in HB. The proteasome inhibitor
bortezomib slows HB progression in vitro and in vivo (Hooks
et al., 2018). In colorectal carcinoma, bortezomib treatment has
been demonstrated to downregulate UBE2C expression leading to
decreased cell viability via stabilizing mitotic cyclins and inhibiting
cell cycle progression (Bavi et al., 2011). Thus, high UBE2C
expression could identify HB patients who may benefit from
bortezomib treatment.

There are some limitations to this study. The reader should note that
in this article, both mRNA- and protein expression of the genes in
question are being used. While changes in mRNA-expression often
correlate with changes in protein expression, this is not always the case
given the several factors affecting the translation process and the final
amount of protein in the tissue. This should be kept in mind while
interpretating the results. In this study we have used
immunohistochemistry and Western blotting to determine the protein
expression levels of UBE2C in HB tissues. More extensive proteomics
would, however, be required to further elucidate the actual protein
expression levels of all the genes related to UBE2C. Liver matures
throughout childhood, and the use of primary hepatocytes from adult
donor as control cells in RNA sequencing analyses of the PDX models
may have impacted our results. The noted effects of UBE2C silencing on
mRNA expression level of cell cycle regulating genes should be further
validated with in vitro and in vivo experiments in order to properly assess
the effects on cell cycle. The number of HB patient samples available for
this study limited clinical analyses and conclusions. This is unfortunately
the case with most studies concerning HB, since the prevalence of HB is
low and the availability of samples therefore limited.

Given the promising role of ubiquitin system as a target of new
cancer treatments, the role and function of UBE2C in HB
progression should be investigated further. The possible role of
UBE2C and other ubiquitination-mediating enzymes in drug
resistance is also intriguing. One possible technique that could be
utilized is single-cell RNA sequencing (scRNAseq). Previously,
Bondoc et al. have characterized HB tumor cell populations and
identified driver tumor cell clusters using scRNAseq (Bondoc et al.,
2021). Given the advantages of the technique, analysis of scRNAseq
could provide new insight.

Taken together, we found that metabolic alterations taking place
in HB tumors are diverse and that ubiquitination-related factors
may have a significant role in HB progression. Notably, UBE2C
expression was highly upregulated in all six HB cell lines as well as in
patient samples at both mRNA and protein level. In vitro
knockdown of UBE2C resulted in decreased cell division and
motility. Moreover, high UBE2C expression was associated with
inferior patient survival. These findings may be brought to the clinic
to identify the high-risk HB patients for earlier treatment
interventions.
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Glossary

AURKA aurora kinase A

CDK1 cyclin-dependent kinase 1

CDKN1A cyclin-dependent kinase inhibitor 1A

CYP2C18 cytochrome P450 Family 2 subfamily C member 18

DEG differentially expressed gene

DPEP1 dipeptidase 1

E2F2 E2F transcription factor 2

FFPE formalin-fixed paraffin-embedded

GLUT3 glucose transporter 3

GO gene ontology

HB hepatoblastoma

HERC3 HECT and RLD domain containing E3 ubiquitin protein ligase 3

IGDCC3 immunoglobulin superfamily DCC subclass member 3

KEGG kyoto encyclopedia of genes and genomes

NCL non-cancerous liver

NL normal liver

NNMT nicotinamide N-methyltransferase

NT non-targeting

ODAM odontogenic ameloblast-associated protein

PBS phosphate-buffered saline

PCYT1B phosphate cytidylyltransferase 1B

PIDD1 P53-onduced death domain protein 1

PDX patient-derived xenografts

PIK3C2B phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 beta

PPI protein-protein interaction

p53 tumor protein p53

RBP2 retinol binding protein 2

RNF130 ring finger protein 130

RNF144B ring finger protein 144B

ROC receiver operating characteristic

SAA1 serum amyloid A1

SAA2 serum amyloid A2

siRNA small interfering RNA

SLC10A1 solute carrier family 10 member 1

TRIM71 tripartite motif containing 71

UBE2C ubiquitin conjugating enzyme E2 C

VMH virtual metabolic human

VNN1 vanin1
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A novel disulfidptosis-associated
expression pattern in breast
cancer based onmachine learning

Zhitang Wang†, Xianqiang Du†, Weibin Lian, Jialin Chen,
Chengye Hong, Liangqiang Li and Debo Chen*

Department of Breast, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou,
China

Background: Breast cancer (BC), the leading cause of cancer-related deaths
among women, remains a serious threat to human health worldwide. The
biological function and prognostic value of disulfidptosis as a novel strategy for
BC treatment via induction of cell death remain unknown.

Methods: Gene mutations and copy number variations (CNVs) in 10 disulfidptosis
genes were evaluated. Differential expression, prognostic, and univariate Cox
analyses were then performed for 10 genes, and BC-specific disulfidptosis-related
genes (DRGs) were screened. Unsupervised consensus clustering was used to
identify different expression clusters. In addition, we screened the differentially
expressed genes (DEGs) among different expression clusters and identified hub
genes. Moreover, the expression level of DEGs was detected by RT-qPCR in
cellular level. Finally, we used the least absolute shrinkage and selection operator
(LASSO) regression algorithm to establish a prognostic feature based onDEGs, and
verified the accuracy and sensitivity of its prediction through prognostic analysis
and subject operating characteristic curve analysis. The correlation of the
signature with the tumor immune microenvironment and tumor stemness was
analyzed.

Results: Disulfidptosis genes showed significant CNVs. Two clusters were
identified based on three DRGs (DNUFS1, LRPPRC, SLC7A11). Cluster A was
found to be associated with better survival outcomes(p < 0.05) and higher
levels of immune cell infiltration(p < 0.05). A prognostic signature of four
disulfidptosis-related DEGs (KIF21A, APOD, ALOX15B, ELOVL2) was developed
by LASSO regression analysis. The signature showed a good prediction ability. In
addition, the prognostic signature in this study were strongly related to the tumor
microenvironment (TME), tumor immune cell infiltration, tumor mutation burden
(TMB), tumor stemness, and drug sensitivity.

Conclusion: The prognostic signature we constructed based on disulfidptosis-
DEGs is a good predictor of prognosis in patients with BC. This prognostic
signature is closely related to TME, and its potential correlation provides clues
for further studies.

KEYWORDS

breast cancer, disulfidptosis, prognostic signature, tumor microenvironment, expression
pattern
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1 Introduction

Breast cancer (BC), the most frequently diagnosed malignancy
in women, is a highly heterogeneous disease that accounted for 30%
of female malignancies in 2020. This malignancy poses a great threat
to women’s health, due to its extremely high recurrence and
mortality rates (Siegel et al., 2019; Sung et al., 2021). At present,
treatment strategies for BC mainly include surgery, radiotherapy,
chemotherapy, hormone therapy, targeted therapy, and
immunotherapy. Despite these, however, the mortality rate for
BC remains very high (Wang et al., 2021). Therefore, it is
imperative to explore new therapeutic targets and reliable
prognostic models in order to achieve optimal BC clinical outcomes.

Disulfidptosis is a new type of programmed cell death that has been
found to be independent of apoptosis, iron death, necrotic apoptosis,
and copper death (Vanden Berghe et al., 2014; Liu et al., 2023).
Disulfidptosis is a rapid cell death mechanism caused by disulfide
stress resulting from the accumulation of excess cysteine in cells, which
usually occurs during glucose starvation (Liu et al., 2023). In glucose-
deficient cancer cells expressing high levels of SLC7A11, a large
accumulation of disulfide molecules leads to abnormal disulfide
formation in the actin cytoskeleton, interfering with the organization
of tissues and ultimately leading to the breakdown of the actine network
and eventual cell death (Liu et al., 2020). We identified several genes
involved in disulfidptosis that may provide novel strategies for
predicting outcomes in patients with BC.

This study systematically studied the genomic characteristics of BC-
specific disulfidptosis-related genes (DRGs). Based on DRGs, two
disulfidptosis expression patterns were determined by unsupervised
consensus clustering. The differences in prognosis, clinicopathological
factors, and immune features between the two clusters were elucidated.
In addition, the prognostic signature based on differentially expressed
genes (DEGs) between the two disulfidptosis subtypes has been
established to quantify disulfidptosis-related characteristics, high risk
score predicted poor prognosis and higher TMB in BC patients. We
then analyzed tumor microenvironment (TME) evaluation scores,
tumor mutation burden (TMB) associations, RNA based stemness
scores (RNAss) associations, and differences in chemotherapy
sensitivity in the high-low risk group. These results suggest that
disulfidptosis related genes play an important role in BC, which
helps us to evaluate the prognosis of patients with BC and their
response to chemotherapy and immunotherapy, and these genes
may be potential synergistic targets to improve the therapeutic
efficacy of BC.

2 Methods

2.1 Public data acquisition and
preprocessing

Disulfidptosis-related gene lists were acquired from recently
published literature (Liu et al., 2023). The gene expression data,
corresponding survival information, copy number variations
(CNVs), and somatic mutation data of patients with BC were
obtained from The Cancer Genome Atlas (TCGA) database. Bulk
RNA expression matrices were calibrated to the TPM format for
subsequent analysis, and the GSE86166 and TCGA-BRCA bulk

RNA expression matrices were integrated to form a complete queue.
The data were then randomly divided at a ratio of 1:1, into training
and test cohorts for subsequent analyses.

The “maftools” R package (version 4.2.2) was used to characterize
DRGs and tumor mutation burden (TMB). The “ggpubr” R package
was used to analyze the correlation between risk score and TMB, and
the boxplot and correlation graph were used to visualize the results.
Based on the CNV data, we analyzed the frequency of CNVs in DRGs
and used the “RCircos” R package to locate CNVs on the 22 somatic
human chromosomes, as well as the X/Y sex chromosomes.

2.2 Screening of BC-specific disulfidptosis-
related genes

We investigated the differences in the expression levels of DRGs
between tumor and normal samples. Statistical significance was
considered to be p < 0.05. Univariate Cox regression and
Kaplan–Meier (KM) analyses were used to screen for BC-specific
DRGs. The “limma” and “reshape2” R packages were used to screen
DRGs. The KM survival analysis and univariate Cox analysis based
on above genes were performed using the R packages “survival” and
“survminer.” Venn diagrams were constructed using the R packages
“ggplot2” and “VennDiagram.”

2.3 Unsupervised clutering for
disulfidptosis-related genes

A consensus clustering algorithm based on the R package
“ConsensuClusterPlus” with 1000 permutations was used to
calculate the number of disulfidptosis clusters in the overall cohorts.
Principal component analysis (PCA) was conducted to verify the
expression patterns using the R packages “limma” and “ggplot2.”

2.4 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed for
patients between high- and low-risk groups using the
“clusterProfiler” R package. Statistical significance was set at p <
0.05 for GO and KEGG pathways.

2.5 Analysis of correlation with immune
infiltration

Based on the LM22 gene set on the CIBERSORT website, the
CIBERSORT algorithm was used to estimate the total immune
infiltration of high- and low-risk groups, as well as DRGs.

2.6 Screening of hub disulfidptosis-related
DEGs

Gene expression between clusters was compared by “limma” R
package, and the differentially expressed genes were obtained
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according to | FC | > 1, p < 0.05. These genes were included in
univariate Cox analysis to obtain genes with important value. Least
absolute shrinkage and selection operator (LASSO) Cox regression
was used for 10-fold cross-validation of overall survival (OS), and
genes related to disulfidptosis were screened. The “glmnet” R
package was used to identify genetic signatures containing
biomarkers that were the most helpful for prognosis, and risk
scores were calculated for each sample in all datasets based on
these signatures. The risk score was calculated using the following
formula:

Risk score � KIF21A*0.218( ) + APOD* − 0.058( )
+ ALOX15B* − 0.071( ) + ELOVL2* − 0.087( )

To assess the predictive ability of disulfidptosis-related
differentially expressed genes (DEGs), time-dependent
receiver operating characteristic (ROC) at 3 years, 5 years,
and 10 years of survival were analyzed in training and test
data sets using the “timeROC” R package. For survival
analysis, the optimal cut-off value of risk score was analyzed
using the “Survival” R package, and the samples were divided
into a high-risk and low-risk group. Kaplan–Meier analysis was
used to investigate the prognostic significance of disulfidptosis-
related DEGs. In addition, a prognostic nomogram was
established based on the TCGA-BC dataset. Time-dependent
calibration curves were plotted to predict the accuracy of the
nomogram.

2.7 Cell culturing

The cell lines used in the study included human normal breast
cell line MCF-10A and human breast cancer cell line MDA-MB-
231were purchased from Procell (Wuhan, China). Cells were
cultured in DMEM medium supplemented with 10% FBS (Gibco,
United States) and antibiotics (Penicillin 100 U/mL, Streptomycin
100 mg/mL) (Gibco, United States). Cells were cultured at 37°C with
5% CO2.

2.8 RNA extraction and quantitative real-
time PCR (qRT-PCR)

RNA was isolated using TRIzol reagent (Invitrogen, Thermo
Fisher Scientific, Waltham, MA, United States), and reverse
transcription was performed using the PrimeScriptTM RT
Reagent Kit (Takara; Takara Bio, Shiga, Japan). SYBR Green PCR
Master Mix (Takara) was used for qRT-PCR on a StepOnePlus
System (Applied Biosystems, Thermo Fisher Scientific). Fold-
changes in gene expression were determined using the 2−ΔΔCT

method, using GAPDH for normalization. The primers used in
this study are listed in Supplementary Table S1.

2.9 Statistical analysis

The Wilcoxon rank-sum test was used to compare differences
between the two groups. The K–W test was performed to compare

three or more groups. Kaplan–Meier analysis was used to evaluate
survival differences between the low- and high-risk- groups. All
statistical analyses were done using R version 4.2.2 with p <
0.05 indicating statistical significance.

3 Results

3.1 Genetic alterations analysis and
screening of disulfidptosis-related genes
in BC

We identified 10 genes (NCKAP1, LRPPRC, NDUFS1, GYS1,
SLC3A2, RPN1, SLC7A11, OXSM, NDUFA11, and NUBPL) that
were closely related to disulfidptosis. We first determined the
somatic mutation levels, CNVs, gene expression levels, and
prognostic values of DRGs in BC samples.

Somatic mutations were not widespread in these genes
(Figure 1A). Somatic mutations in the DRGs were present in
47 of the 987 samples, a frequency of 4.76%. Among these, the
mutation frequencies of NCKAP1, LRPPRC, NDUFS1, and GYS1
were the highest. By investigating the frequency of the CNVs, we
noticed that DRGs had widespread alterations in CNVs and that
most genes had a gain status that was higher than the loss status.
The primary genes showing CNV amplification were SLC3A2 and
NUBPL. By contrast, NDUFA11 had the highest number of CNV
deletions (Figure 1B). The positions of these 10 genes on the
chromosome are shown in Figure 1C. We then analyzed the
expression levels of these 10 genes in cancers and their adjacent
normal tissues. NDUFA11, LRPPRC, SLC7A11, SLC3A2, OXSM,
and RPN1 showed higher expression levels in cancer tissues,
whereas NDUFS1 and NUBPL were expressed at lower levels (p <
0.01). The expression of NCKAP1 and GYS1 was not significantly
different between cancer and adjacent normal tissues
(Figure 1D). OS analysis showed that the group with high
expression of NDUFA11 and the group with low expression of
NDUFS1, SLC7A11, OXSM, NCKAP1, and LRPPRC had better
prognoses (p < 0.05; Figure 1E). There were no significant
differences in OS between the NUBPL, RPN1, and SLC3A2
expression groups.

3.2 Identification of BC-specific DRGs and
distinct expression patterns

Univariate Cox regression analysis identified three primary
genetic risk factors: LRPPRC, NDUFS1and SLC7A11 (p < 0.01;
Figure 2A). Three BC-specific DRGs were identified by
intersections of eight DRGs, six prognostic DRGs, and three
risk factors from the univariate cox regression analysis. These
were the genes NDUFS1, LRPPRC and SLC7A11 (Figure 2B).
Based on these genes, unsupervised consensus clustering of the
overall cohort was performed and patients with BC in the overall
cohort were categorized into clusters A and B (Figures 2C, D).
PCA showed that BC samples could be distinguished according to
distinct expression patterns, and our KM survival curve showed
that the median OS of cluster A was better than that of cluster B
(Figure 2E).
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FIGURE 1
Gene mutational, copy number variations (CNV), differentially expressed, and survival analysis of disulfidptosis-related genes. (A) Waterfall plot
showing the gene mutational frequency and types of genetic mutations. (B, C) Bar chart and circus show the CNV frequency and the position of the
disulfidptosis-related genes on the chromosomes. (D) Gene expression analysis between normal and breast cancer samples. (E) K–M survival analysis
between high and low expression of genes. **p < 0.01, ***p < 0.001.
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3.3 Correlation between expression patterns
and BC molecular subtype

We constructed a heat map that showed the differences in the
clinical factors between clusters A and B (Figure 2F). In order to
further explore the relationship between breast cancer molecular
subtypes and the expression pattern we identified, we drew the

Sankey diagram and KM survival curve. The results showed that in
cluster A, patients with luminal A, luminal B, HER2 and Basel
subtypes account for 60.4%, 17.4%, 8.8% and 13.4%, respectively. In
cluster B, luminal A, luminal B, HER2 and Basel subtypes accounted
for 39.8%, 26.0%, 5.8% and 28.4%, respectively (Supplementary
Figure S1A). The results indicated that the proportion of patients
with Luminal A subtype in cluster A is significantly higher than that

FIGURE 2
The construction of distinct disulfidptosis-related expression patterns. (A)Univariate Cox regression and correlation analysis between disulfidptosis-
related genes. (B) Venn plot showing the shared genes according to the results of differentially expressed analysis, univariate Cox regression analysis, and
K–M survival analysis. (C) The consensus clustering matrix (k = 2) was used to stratify Breast cancer (BC) patients into two clusters. (D) Consensus
clustering model with cumulative distribution function (CDF) by k from 2-9. (E) K-M survival analysis between cluster A and (B) (F) The heat map
shows differences in clinicopathological factors in each distinct cluster.
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in cluster B, and the proportion of patients with Basel subtype in
cluster B is significantly higher than that in cluster A. The results of
KM survival analysis showed that there was a significant difference

in the prognosis of patients in the cluster A and B of luminal subtype,
but no difference was found in HER2 and Basel subtypes.
(Supplementary Figure S1B).

FIGURE 3
ssGSEA and immune infiltration analysis in distinct cluster and functional enrichment analysis of disulfidptosis. (A)Heatmap plot showing our ssGSEA
analysis of clusters (A, B). (B) Box plot showing the differences between clusters (A, B). (C) Principal Component Analysis (PCA) based on the two clusters.
(D) The differentially expressed genes between cluster (A, B). (E, F)GOand KEGG analysis ofmolecular subtype-relatedDEGs. *p < 0.05, **p < 0.01, ***p <
0.001.
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3.4 Analysis immune infiltrate level analysis
and functional enrichment analysis between
two clusters

GSVA functional enrichment analysis indicated that cluster A
was mainly enriched in mutations pertaining to arachidonic acid
and drug metabolism pathways. Cluster B was mainly enriched in
tumor-related pathways (e.g., DNA replication and cell cycle) and
metabolic pathways (e.g., primary bile acid biosynthesis, pyrimidine
metabolism, cysteine and methionine metabolism, and glyoxylate
and dicarboxylate metabolism; Figure 3A). As shown in Figure 3B,
the extent of immune cell infiltration differed distinctly between
clusters A and B. CD56bright natural killer cells, immature B cells,
immature dendritic cells, MDSC, macrophages, natural killer T cells,
follicular helper T cells and Type 1 helper T cells were observed. The
infiltration of immune cells was higher in cluster A than in cluster B.
PCA analysis showed that cluster A and B could better distinguish
patients into different group. Therefore, we further explored the
difference between the two clusters (Figure 3C). 239 disulfidptosis-
DEGs were identified between cluster A and B (Figure 3D). GO and
KEGG enrichment analyses of disulfidptosis-DEGs showed that
these genes were mainly enriched in cell division-related

pathways (e.g., nuclear division, mitotic nuclear division, and
chromosome segregation; Figure 3E). The results of the KEGG
analysis showed that disulfidptosis-DEGs were significantly
enriched in cancer-related pathways (e.g., cell cycle, p53 signaling
pathway, and ECM-receptor interaction; Figure 3F).

3.5 Construction of prognostic signature

A total of 239 DEGs between clusters A and B, including
71 prognostic-associated disulfidptosis-DEGs were selected for
univariate Cox regression analysis. A prognostic signature of four
disulfidptosis-DEGs was then developed by LASSO regression
analysis based on the training cohort (Figure 4A). We then
verified the expression levels of four disulfidptosis-DEGs at
the cellular level. KIF21A and ALOX15B were low expressed
in cancer cells, APOD was high expressed in cancer cells, and
ELOVL2 expression was not significantly different between
cancer cells and normal cells (Supplementary Figure S2).
Cluster B had a higher risk score than Cluster A (Figure 4B).
Except for NDUFA11, the expression of nine of the DRGs differed
between the high- and low-risk groups. Of these nine, NUBPL

FIGURE 4
Establishment of disulfidptosis-related prognostic signature. (A) Lasso regression was used to establish the four-gene prognostic signature. (B) Box
plot showing the differences in the risk score of patients between clusters (A, B). (C) The differential gene expression analyses that were performed
between low- and high-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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was expressed at low levels in the high-risk group, whereas the
remaining eight genes were highly expressed in the high-risk
group (Figure 4C).

3.6 Validation of the disulfidptosis-related
prognostic signature

The risk score of the high-risk group was higher than that of the
low-risk group, and the number of deaths increased with risk score
in the training and testing cohorts and all cohort (Figure 5A). A
heatmap showed the differential expression of disulfidptosis-DEGs
between the high- and low-risk groups (Figure 5B). Among these
genes, KIF21A was highly expressed in the high-risk group, whereas
APOD, ALOX15B, and ELOVL2 were highly expressed in the low-
risk group.

3.7 Evaluating the independent role of the
prognostic signature and building a
predictive nomogram for prognosis
prediction

We also confirmed that the overall survival (OS) of the low-risk
group was significantly longer than that of the high-risk group (p <
0.05; Figure 6A). We also explored the consistency of prognostic
value of prognostic models across different molecular subtypes of
BC. We found that in Luminal and Her2 subtypes, the PFS and DSS

of high-risk group were worse than those of low-risk group. There
was no difference in the prognosis of the high- and low-groups in
Basel subtype, which may due to the small number of patients in the
low-risk group (the number of patients with Basel subtype in the
low- and the high-risk group was 14 and 175, respectively).
However, we found that the 7-year PFS and DSS of the low-risk
group was also significantly better than that of the high-risk group in
the K-M survival curve. In general, the prognostic models had good
prognostic value for different molecular subtypes of BC
(Supplementary Figure S3). The AUCs of the prognostic
signature suggested that the model had good predictive accuracy
(Figure 6B). Nomograms are another quantitative model for
predicting clinical outcomes in patients with BC. Therefore, a
nomogram was developed based on the risk score and other
clinical characteristics (e.g., age, disease stage and molecular
subtype), so that the probability of survival at 1, 3, and 5 years
for each patient with BC could be calculated (Figure 6C). The
calibration charts used for internal validation of the line charts
showed good agreement between the predicted OS results and actual
observations (Figure 6D).

3.8 Analysis of immune cell infiltration, TMB,
RNAss, and drug sensitivity

We used the CIBERSORT algorithm to calculate the
correlation between the level of infiltration of 22 immune cells
and the disulfidptosis-DEGs we identified. Among these, APOD

FIGURE 5
The relationship between survival status and risk score, and differential expression analysis of signature related genes, in the different risk groups. (A)
Scatterplots showing the changes in survival statuses of BC patients as a function of increasing risk scores. (B) Heat map plots showing the differences
between the low- and high-risk group in four signature-related genes.
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and naïve B cells, as well as ELOVL2 and resting mast cells,
showed significant positive correlations. APOD and
M0 macrophages, as well as ELOVL2 and CD4 resting
memory T cells were negatively correlated (Figure 7A). We
then analyzed the correlation between the content of stromal
cells immune cells in the tumor microenvironment (TME), and
the risk score. The low-risk group showed higher stromal and
estimated scores (Figure 7B). Next, we analyzed whether there
were differences in the TMB between the high- and low-risk
groups. The results showed that the TMB frequency in the high-
risk group was greater than in the low-risk group (Figure 7D).
There was a positive correlation between TMB and risk score
(Figure 7E). In BC, the TMBs of 20 genes with high mutation

frequencies differed significantly between the high- and low-risk
groups. For example, the mutation frequencies for PIK3CA were
23% and 46% in the high-and low-risk groups, respectively. TP53
was mutated in 46% of the high-risk group and 18% of the low-
risk group (Figure 7C). A positive correlation between RNAss
and risk score was observed in tumor stemness analysis
(Figure 7F). The results of drug sensitivity analysis showed
that the sensitivity of low-risk group to cisplatin,
cyclophosphamide, docetaxel, lapatinib, paclitaxel, and
tamoxifen was higher than that of high-risk group, while the
drug sensitivity of high-risk group to Ribociclib was higher than
that of low-risk group, which could help to guide the selection of
clinical treatment (Supplementary Figure S4).

FIGURE 6
Prognostic value and reliability analyses of the prognostic signature for the training, testing, and all cohorts during development of the nomogram.
(A) K–M survival analysis between low- and high-risk group in the three cohorts. (B) Receiver operating characteristic (ROC) curves were constructed,
and the area under the ROC curve (AUC) were determined. (C) A nomogramwas built based on prognostic signature and clinicopathological factors (age
and disease stage). (D) The calibration curve showing the predictive accuracy of nomogram.
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4 Discussion

Cell energy metabolism is a necessary condition for maintaining
biological development and internal environmental balance (Vander
Heiden et al., 2009). Studies have shown that disulfide is closely related

to energy metabolism in cancer cells. Cancer cells typically exhibit
increased glucose uptake and, in the context of high
SLC7A11 expression, limit NADPH production by glucose
starvation or GLUT inhibition, resulting in massive accumulation of
disulfide, defective oxidation-reduction reactions, and cell death

FIGURE 7
The correlation of tumor immune cell infiltration, gene mutational frequency, TMB, and RNAss with prognostic signature. (A) The heat map shows
the correlation between four signature-related genes and level of tumor immune cell infiltration. (B) A violin plot showing the differences in stromal score,
immune score, and estimate score between the different risk groups. (C) Waterfall plots showing the top 20 genes with highest gene mutational
frequencies, and the types of gene mutations. (D) A box plot showing the difference in TMB between the low- and high-risk group. (E) Correlation
analysis of TMB andmolecular subtypeswith risk score. (F)Correlation scatterplot showing the relationship between RNAss and risk score. *p < 0.05, **p <
0.01, ***p < 0.001.
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(Stockwell et al., 2017; Liu et al., 2020).Disulfidptosis has recently been
identified as a new type of cell death (Liu et al., 2020; Liu et al., 2023),
and a new therapeutic approach for targeting and killing cancer cells.
Targeting and killing of cancer cells is a new therapeutic approach.
Aberrant expression of the cystine transporter solute carrier family
7 member 11 (SLC7A11; also known as xCT), the 11th member of the
seventh family of solute transporters, is a cystine/glutamate anti-
transporter involved in amino acid transport across the plasma
membrane (Conrad et al., 2018). In 2020, Gamboi et al. found that
for cells to maintain cystine at non-toxic levels, cancer cells with high
expression of SLC7A11 reduced cystine to more soluble cysteine,
leading to the rapid depletion of NADPH pools and abnormal
accumulation of disulfides, with resultant toxic effects that led to cell
death (Liu et al., 2020).We found that the expression of SLC7A11 in BC
tissues wasmuch higher than that in adjacent normal tissues. Therefore,
targeting the disulfidase pathway is a promising new strategy for BC
therapy.

BC is a molecular heterogeneous disease. The classical molecular
subtypes of BC classify patients into Luminal, HER2 and Basel
subtypes and the prognostic characteristics and drug sensitivity are
different among these molecular subtypes (Holm et al., 2017). In this
study, we investigated the relationship between expression patterns
we built and classical molecular subtypes of BC. We found that the
proportion of patients with Luminal A subtype in cluster A is
significantly higher than that in cluster B, and the proportion of
patients with Basel subtype in cluster B is significantly higher than
that in cluster A. The epidemiological study of breast cancer
reported that the prognosis of luminal A is the best among four
molecular subtypes, on the contrary, the basel subtype had the worst
prognosis. This is also consistent with the results in survival analysis
between cluster B and cluster A in our research. Besides, the results
of subgroup analysis based on the three BRCA subtypes (Luminal,
Her2, Basel) indicated that the expression pattern we identified can
combined with BRCA molecular subtype for better predicting and
improving the prognosis of patients with luminal subtype.

At present, there are few studies on constructing prognostic
models based on disulfidptosis-related gene. Recent studies have
found that disulfidptosis-related gene signature has an excellent
ability to identify the immune landscape of patients with bladder
cancer and predict their prognosis (Zhao et al., 2023).However, little
research has been conducted on DRGs in BC. Therefore, in this
study, we first integrated TCGA data and the GSE86166 dataset to
screen three DRGs (NDUFS1, LRPPRC, and SLC7A11) with
differential expression and prognostic value. According to the
expression pattern of DRGs, BC patients were divided into two
clusters, with significant differences in OS rate and immune cell
infiltration level. Indicating that these DRGs participate in TME.
Subcomponent PCAwas used to evaluate the prognostic value of the
two groups (clusters A and B). Subsequently, four disulfidptosis-
DEGs with prognostic value were identified using LASSO Cox
regression analysis, and a prognostic model was constructed. In
the training and validation cohort, the OS difference between the
high-risk group and the low-risk group indicates that the risk score
can be used as an indicator to distinguish the BC survival rate.
Multivariate Cox analysis showed that risk score, age and tumor
stage were considered to be independent prognostic indicators of
BC. In order to better quantify 1-year, 3-year, and 5-year OS in BC
patients, a nomogram combining these independent prognostic

factors was developed. The results of ROC and calibration curve
showed that the nomogram had significant prognostic performance.
This quantitative result can be used as a complementary tool to
improve prognosis assessment and personalized treatment.

The tumormicroenvironment includes a variety of complex cellular
components, such as immune cells, stromal cells and tumor cells (Shi
et al., 2022; Srinivasan et al., 2022). Their difference in composition and
expression is one of themain causes of tumor heterogeneity. Elucidating
tumor immune heterogeneity will help to identify effective synergistic
targets to enhance the efficacy of BC therapy. The prognosis of cluster A
was better than cluster B. Cluster A showed abundant infiltration of
activated B, CD8+ T, dendritic, natural killer cells and neutrophil. These
immune cells kill tumor cells and promote immune responses and
immunotherapy. In the constructed signature based on disulfidptosis-
DEGs, the stromal and estimated scores of the low-risk group were
higher than those of the high-risk group, and the immune scorewas also
higher in the low-risk group than in the high-risk group, although the
difference was not statistically significant. These findings suggest that
disulfidptosis is associated with TME, and can be used to guide targeted
immunotherapy.

Disulfidptosis is a novel type of cell death, and this study established
a prognostic model based on disulfidptosis-DEGs for the first time. Our
study adds to the understanding of the molecular biology of DRGs in
BC. TCGA and GEO data were integrated to expand the sample size
and improve the accuracy of the results. However, our study also had
several limitations. First, this study mainly used the TCGA and GEO
databases for analysis, and thus lacked real-world research, which
urgently needs to be used for full verification of our results in the
future. Second, the regulatory mechanism of DRGs in BC immune
infiltration remains unclear, and further functional verification at tissue,
cell and animal level is needed in the future. Finally, further research is
needed to determine whether the model can be used to predict
resistance to therapeutic agents in clinical practice.

5 Conclusion

We used consensus clustering to identify two disulfidptosis-
molecular subtypes in breast cancer with different OS. We further
constructed a prognostic signature based on disulfidptosis-DEGs
that better predicted patient survival outcomes and tentatively
identified the relationship between our risk model and the
immune landscape. The results of our study provide useful
insights into predicting the prognoses of patients with BC, and
may even aid their treatment in clinical practice.
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Minimal residual disease (MRD) refers to a very small number of residual tumor
cells in the body during or after treatment, representing the persistence of the
tumor and the possibility of clinical progress. Circulating tumor DNA (ctDNA) is a
DNA fragment actively secreted by tumor cells or released into the circulatory
system during the process of apoptosis or necrosis of tumor cells, which emerging
as a non-invasive biomarker to dynamically monitor the therapeutic effect and
prediction of recurrence. The feasibility of ctDNA as MRD detection and the
revolution in ctDNA-based liquid biopsies provides a potential method for cancer
monitoring. In this review, we summarized the main methods of ctDNA detection
(PCR-based Sequencing and Next-Generation Sequencing) and their advantages
and disadvantages. Additionally, we reviewed the significance of ctDNA analysis to
guide the adjuvant therapy and predict the relapse of lung, breast and colon
cancer et al. Finally, there are still many challenges of MRD detection, such as lack
of standardization, false-negatives or false-positives results make misleading, and
the requirement of validation using large independent cohorts to improve clinical
outcomes.

KEYWORDS

MRD, tumor, CtDNA, biomarker, NGS

1 Introduction

Liquid biopsy, which has many advantages such as non-invasiveness, acceptability,
repeatability and prediction of tumor burden and treatment response, has played an
increasingly important role in the diagnosis and treatment of cancer. Cancer biomarkers
can be extracted and analyzed from the blood, urine, pleural effusion, seroperitoneum,
cerebrospinal fluid or saliva of cancer patients with this novel detection method. Circulating
tumor cells (CTCs), cell free nucleic acids, exosomes and other biological components
secreted into body fluids by cancer cells are all analytes of liquid biopsies, providing
biomarkers such as somatic point mutations, amplifications, deletions, gene fusions,
DNA methylation markers, miRNAs, proteins, and metabolites.

Cell-free DNA (cfDNA) consists of double-stranded DNA with a length of 150–200 base
pairs that circulate mainly in the blood, released through apoptosis, necrosis, and
phagocytosis (Corcoran and Chabner, 2018). The origin of cfDNA is hemopoietic cells
such as erythrocytes, leukocytes and endothelial cells in healthy individuals, and normal
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tissues damaged by ischemia, trauma, infection or inflammation can
also contribute cfDNA (Schwarzenbach et al., 2011; Snyder et al.,
2016). Circulating tumor DNA (ctDNA) is a rather minor fraction of
cfDNA released by malignant tumors into the bloodstream or other
bodily fluids (Diehl et al., 2008). ctDNA is shorter compared to
cfDNA derived from non-cancer cells (Mouliere et al., 2011; Zheng
et al., 2012; Underhill et al., 2016). ctDNA is generally more
fragmented than non-mutant cfDNA, with a maximum
enrichment between 90 and 150 bp compared with 250–320 bp
(Bao et al., 2016; Mouliere et al., 2018; He et al., 2020a). ctDNA
levels correlate with clinical and pathological features of cancer,
including stage, tumor burden, localization, vascularization, and
response to therapy (Diehl et al., 2008; Bettegowda et al., 2014;
Heitzer et al., 2019). In addition, ctDNA levels vary according to
tumor type, shedding rate, and other biological factors (Bettegowda
et al., 2014; Siravegna et al., 2019).

MRD (Minimal residual disease) is defined as a small
number of cancer cells that remain in the body after cancer
treatment (those that do not respond to treatment or are
resistant to drugs), which may ultimately lead to disease
relapse. ctDNA tests can benefit patients with solid tumor for
its capacity to confirm the existence of MRD during the
postoperative period. On the other hand, MRD tests can
monitor and assess the biomarkers that indicate the
effectiveness of adjuvant chemotherapy as well as drug
resistance (Guibert et al., 2020). (Figure 1)

2 ctDNA detection methods

The ctDNA detectionmethods are mainly divided into twomain
categories: the PCR-based detectionmethods such as Droplet Digital
PCR (ddPCR), and the Next-Generation Sequenceing (NGS). These
methods have significant differences in detection sensitivity,
specificity and coverage.

2.1 Droplet digital PCR

Droplet Digital PCR (ddPCR) is to distribute the DNA sample
into millions of water-oil emulsion droplets before the traditional
PCR amplification, which means, each of the droplets either
contains no gene under test or contains one gene. After PCR
amplification, each microdroplet was detected one by one. The
initial copy number or concentration of the DNA to be tested
could be obtained according to the Poisson distribution principle
and the number and proportion of positive microdroplet (Zonta
et al., 2016; He et al., 2021). The ddPCR provides an absolute
quantification that improves sensitivity at a low cost, and it can also
achieve high specificity by designing the primers and probes
individually.

The detection limit of ddPCR turns out to be about 0.1% (Dong
et al., 2018; Corless et al., 2019; He et al., 2020b; Vessies et al., 2020).
Reported LODs vary due to differences in the amount of ctDNA in

FIGURE 1
ctDNA during cancer progression. Detection of ctDNA is achieved by liquid biopsy, which allows monitoring and adjunctive treatment of MRD.
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plasma, sample quality, and analysis approaches. Although ddPCR
is very effective for detecting small numbers of mutations identified
from sequencing of tumor tissue or hot-spot mutations with a high
prevalence, this detection approach has inferior clinical sensitivity
for MRD than highly parallel NGS methods monitoring multiple
mutations (Garcia-Murillas et al., 2015; Pietrasz et al., 2017; Schøler
et al., 2017; Christensen et al., 2018).

The ddPCR method has the advantages of low cost and short
detection time, but the disadvantage of detecting only known
variants and analyzing only a limited number of variants localize
its use in clinical practice as a supplement or conditional substitute
for tissue biopsy for genotyping (Elazezy and Joosse, 2018;Wei et al.,
2018; Franczak et al., 2019; Kerachian et al., 2019; Peng et al., 2022;
Wang et al., 2022). Therefore, in most circumstances, ddPCR is not
the preferred approach for solid tumor MRD detection.

2.2 PCR amplicon-based NGS

Next-generation sequencing (NGS) is a high-throughput
technique that enables detection of billions of DNA molecules
from a biological sample. Compared with ddPCR method, NGS
can search for previously unidentified variations (Wan et al., 2017).
With the emergence of more andmore therapeutic relatedmolecular
targets, NGS has become increasingly important in cancer research.
Although whole genome sequencing (WGS) or whole exome
sequencing (WES) can provide more detailed genomic
information, ctDNA NGS techniques for clinical application
utilize amplicon-based NGS or hybridization capture-based NGS
to provide clinically relevant information with higher sequencing
depth at lower cost.

Amplicon-based NGS is one of the popular detectionmethods to
identify specific ctDNAmolecules. Gene-specific PCR amplicons are
used to amplify the specific genomic regions originated from tumor-
derived mutations before NGS is performed. Unique molecular
identifiers (UMI) can help increasing sensitivity and specificity of
NGS detection (Phallen et al., 2017; Goldberg et al., 2018). Forshew
et al. first described Tagged-Amplicon Sequencing (TAm-Seq),
demonstrating that cancer mutations with allele frequencies as
low as 2% and sensitivity and specificity over 97% could be
detected, and this technique was successfully applied to cancer
mutation surveillance in patients with advanced ovarian cancer
(Forshew et al., 2012). Later on, TAm-seq was used to apply
NGS to a target panel which has detection limits as low as 0.01%
(Gale et al., 2018). Although amplicon-based targeted NGS methods
are highly sensitive and specific, amplification may potentially bias
the observed mutant allele, and this technique is limited to the
queried amplicon space while mutation detection performed
(Chaudhuri et al., 2015; Wan et al., 2017; Abbosh et al., 2018).

2.3 Hybridization capture-based NGS

Hybrid capture-based NGS, which hybridize relevant DNA
sequences to biotinylated probes before NGS is performed, is
developed to improve the detection of multiple mutations of
tumor with high sensitivity and without significant prior
knowledge (Wan et al., 2017).

Newman et al. utilized an highly sensitive ctDNA detection
technique named Cancer Personalized Profiling by Deep Sequencing
(CAPP-Seq) (Newman et al., 2014a). Cancer WGS and WES data
from databases such as The Cancer Genome Atlas (TCGA) and the
Catalog of Somatic Mutations in Cancer (COSMIC) was used for
bioinformatics analysis to identify recurrently mutated genomic
regions in the population of a given cancer type. Biotinylated
probes, designed according to these results, were applied to
cfDNA capture before NGS of certain cancer patients in order to
quantitate the ctDNA with a detection limit of 0.02%. UMI was used
to reduce the effect of PCR errors and a bioinformatic error
correction step called polishing was used to reduce the effect of
stereotypical background artifacts (Newman et al., 2016). Recently
ctDNA detection limit was improved to 1 part per million by
utilizing multiple somatic mutations within individual DNA
fragments to reduce the effect of both technical and biological
errors (Kurtz et al., 2021).

The capability of CAPP-Seq includes detection of SNV,
insertions/deletion (indel), and genomic rearrangements without
individuation. Compared to amplicon-based NGS, Capp-seq shows
more reliable detection of copy number changes and allows
detection of fusion proteins (Gagan and Van Allen, 2015; Xiao
et al., 2022). Otherwise, results from sequencing can reveal the
mechanisms of carcinogenesis and drug resistance (Chabon et al.,
2016; Khan et al., 2018).

2.4 Whole genome sequencing (WGS) and
whole exome sequencing (WES)

NGS approaches have become prevalent for tumor sequencing
and have also been applied to ctDNA detection. WGS applied to
cfDNA achieves a sequencing depth of 0.1× and WES achieves a
sequencing depth of 100× (Farris and Trimarchi, 2013; Heitzer et al.,
2013; Murtaza et al., 2013; Cohen et al., 2017). Although some
studies suggest thatWGS is feasible for clinical application to certain
patients, it is prohibitive for routine clinical implementation ofWGS
because of its cost and time required to perform WGS and the
associated bioinformatic analysis (Welch et al., 2011; Chan et al.,
2013). Therefore, WES turns out to be feasible to improve detection
sensitivity and reduce cost while maintaining comprehensive
coverage of likely mutated genomic regions. The exons are
enriched for most of the pathogenic somatic mutations while
they represent only 1.5% of the whole genome (Choi et al.,
2009). Above all, there is an inverse correlation between
sequencing breadth and detection cost, and sequencing depth
versus detection limit of detection. Due to the low level of
ctDNA in body fluids, targeted approaches, including
hybridization capture-based NGS, PCR amplicon-based NGS, are
superior to more extensive sequencing approaches such as whole
exome or whole genome sequencing.

3 Application of ctDNA for MRD
detection

ctDNA detection has shown promising clinical potential as a
method to detect MRD in solid tumors after radical therapy and
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before clinical or radiographic disease recurrence (Chaudhuri et al.,
2017). MRD status is closely associated with future radiological
relapse and the detection of ctDNA after clinical treatment may
improve the decision of the next therapeutic regimen. Most
treatments are still based on strict chemotherapy regimens,
although the probability of serious adverse effects is lower than
in the past. Therefore, it is important to avoid unnecessary adjuvant
chemotherapy when it can be established that patients may not
benefit. ctDNA analysis showed that MRD was associated with poor
prognosis in patients with malignant tumors. In this review, we
focus on the significance of ctDNA analysis to guide the adjuvant
therapy and predict the relapse of lung, breast and colon cancer.

3.1 Lung cancer

Among patients with non-metastatic lung cancer, some patients
can be cured by primary surgical resection, radiotherapy and
comprehensive treatment including chemotherapy (Kalemkerian
et al., 2013; Ettinger et al., 2022). In fact, by the time recurrent
or progressive lesions were detected by imaging tests after treatment,
the patient’s systemic tumor burden was significantly increased.
Therefore, there is a great interest in whether MRD detection after
radical resection of NSCLC can identify patients at risk of recurrence
and provide personalized adjuvant therapy before the tumor burden
increases (Kalemkerian et al., 2013; Chaudhuri et al., 2017; Chen
et al., 2017; Chen et al., 2019a; Zhao et al., 2019; Peng et al., 2020;
Ettinger et al., 2022).

The TRACERx study showed that MRD was predictive of
recurrence before routine imaging and that more than 99% of
MRD-negative patients did not relapse after treatment (Abbosh
et al., 2017). The time interval between the increase in ctDNA levels
after surgery and the clinical diagnosis of cancer recurrence provides
an opportunity for clinical intervention.

Dynamic study prospectively revealed the dynamic changes of
ctDNA in patients with primary lung cancer after surgery (Chen
et al., 2019b). After tumor resection, ctDNA level decreased rapidly
in patients with surgical lung cancer. The half-life of ctDNA after
radical resection of lung cancer is only 35 min. They proposed that
3 days after R0 resection can be used as a baseline for postoperative
monitoring of lung cancer.

Chaudhuri et al. (Chaudhuri et al., 2017) introduced their
research utilizing CAPP-seq to detect ctDNA. After 36 months of
MRD detection, 100% of the patients with detectable ctDNA had
disease progression, while 93% of those without detectable ctDNA
had no progression of cancer (HR = 43.4, p < 0.001). The long-term
survival rate of patients without ctDNA detected in MRD was
significantly higher than that of patients with ctDNA detected
(p < 0.001). They suggested that both node-positive and node-
negative patients with stage I to III NSCLC may benefit from
personalized adjuvant therapy. Patients without tissue material
may benefit from tyrosine kinase inhibitors (TKI) or immune
checkpoint inhibitors (ICI) with assessing actiable mutations and
mutational burden in ctDNA.

In the study of Kuang’s, they detected tumor tissue-specific
mutated ctDNA in preoperative plasma samples from 19 (50%)
patients (Kuang et al., 2020), and preoperative ctDNA in plasma was
consistent with that in tissue. Compared with patients with

undetectable ctDNA after chemotherapy, the RFS of ctDNA-
positive patients after chemotherapy was worse (HR = 8.68, p =
0.022). ctDNA-negative patients after chemotherapy had better
long-term efficacy than patients with positive ctDNA after
chemotherapy (HR = 4.76, p = 0.047).

Gale et al. reported their study using patient-specific assays with
up to 48 amplicons targeting tumour-specific variants unique to
each patient to monitor postoperative MRD (Gale et al., 2022). Of
the 48 patients whose samples were collected 1–3 days after surgery,
ctDNA was detected in 12 samples (25%), with a median eVAF of
0.0026%. Therefore, in the case of complete excision of the disease,
ctDNA may be present transiently in the blood at low
concentrations. ctDNA was detectable in 18/28 (64.3%) patients
with clinical recurrence of primary tumors. ctDNA detection had
clinical specificity >98.5% and preceded clinical detection of relapse
of the primary tumour by a median of 212.5 days. They suggested
that MRD detection may be best delayed beyond the first few days as
well, because ctDNA was detectable during 1–3 days after surgery in
25% patients, but half of them did not have clinical relapse.

A recent study identified a potentially cured population of
localized NSCLC by longitudinal MRD detection (Zhang et al.,
2022). From 261 patients with stage I to III NSCLC who
underwent definitive surgery, 913 peripheral blood samples were
successfully detected by MRD assay. In the surveillance population,
only 6 patients (3.2%) with longitudinally undetectable MRD
relapsed, with a negative predictive value of 96.8%. The authors
identified these patients with longitudinally undetectable MRD as
potentially cured patients. The peak risk for detectable MRD was
approximately 18 months after the landmark detected. The positive
predictive value of longitudinal detectable MRD was 89.1%, and the
median lead time was 3.4 months. MRD detection is not ideal for the
monitoring of patients with only brain recurrence (n = 1/5, 20%).
Further subgroup analysis showed that patients with undetectable
MRD may not benefit from adjuvant therapy. In addition, the
authors suggest that the risk of developing detectable MRD
decreased progressively 18 months after the biomarker discovery.

In conclusion, MRD detection can identify patients at risk of
recurrence earlier and is a practical prognostic factor after radical
NSCLC surgery. Positive ctDNA after treatment may indicate the
presence of MRD, which may be a signal suggesting a change in
treatment regimen. After treatment, ctDNA can change from
positive to negative, which means that surgery or adjuvant
therapy can remove MRD, thereby changing disease progression
and survival.

3.2 Breast cancer

Although tumor biopsy has long been the standard method for
tumor detection, its limitations have made minimally invasive and
relatively inexpensive liquid biopsy an alternative. For patients with
early-stage breast cancer, ctDNA testing can monitor tumor burden
and treatment response, so as to guide therapeutic regimen selection.

Riva et al. described their study that massively parallel
sequencing (MPS) was performed on patients with nonmetastatic
triple-negative breast cancer (TNBC) and droplet digital PCR
(ddPCR) was used to monitor TP53 mutations expressed in
tumor tissues (Riva et al., 2017). Patients were treated with
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neoadjuvant chemotherapy prior to surgery, ctDNA levels decreased
rapidly during NCT and no MRD was detected postoperatively. The
slow decline in ctDNA levels during NCT is closely associated with
shorter survival.

Another study used whole exome sequencing to detect
mutations in tumor tissue (Parsons et al., 2020). They then
performed an individualized MRD assay to detect mutations in
cfDNA. This approach was 100-fold more sensitive than ddPCR
when tracking individual mutation. MRD detection at 1 year was
strongly associated with distant recurrence (HR = 20.8; 95%
confidence interval, 7.3–58.9). The median lead time from first
detectable ctDNA to clinical recurrence was 18.9 months.

In the neoadjuvant I-SPY 2 TRIAL, cfDNA was isolated from
291 plasma samples of 84 high-risk early breast cancer patients
(Magbanua et al., 2021). 16 patient-specific mutations were
identified by whole exome sequencing of pretreated tumors, and
then ultra-deep sequencing of cfDNA from patients was performed
with this personalized ctDNA detection panel. Patients with positive
ctDNA after 3 weeks of neoadjuvant chemotherapy had a
significantly lower probability of pathological complete response
(pCR) after treatment than patients with negative ctDNA (odds ratio
4.33, p = 0.012). All patients who achieved pCR were ctDNA
negative after neoadjuvant chemotherapy (n = 17, 100%). While
ctDNA-positive patients (14%) who failed to achieve pCR (n = 43)
showed a significantly high risk of metastatic relapse [HR 10.4; 95%
CI 2.3–46.6]. 86% of those who did not achieve pCR and had
negative ctDNA had a favorable prognosis. The author suggested
that even in patients who did not achieve pCR, insufficient ctDNA
clearance was an important predictor of poor treatment response
and metastatic tumor recurrence, and clearance was associated with
improved survival.

In advanced or metastatic tumors, ctDNA has high clinical value
and development prospects because of its relatively high detection
rate (Diehl et al., 2008; Tie et al., 2015; Jiang et al., 2022). Recently,
Liu et al. introduced their research of metastatic breast cancer (Liu
et al., 2022a). They established a novel ctDNA-level Response
Evaluation Criterion in Solid Tumors (ctle-RECIST) to assess
treatment response and predict progression-free survival (PFS)
based on ctDNA alteration levels and variant allele frequency
(VAF). By monitoring and analyzing the ctDNA of 223 patients
withmetastatic breast cancer at different time points before and after
treatment, the results showed that the median PFS of patients
without ctDNA changes was significantly longer than that of
patients with ctDNA changes (6.63 vs 4.9–5.7 months, p < 0.05).
In addition, they found that ctDNA detection may be a good
complement to radiological assessment, due to the median PFS
of double DCR group tended to be longer than that of single DCR
group [HR 1.41 (0.93–2.13), p = 0.107].

In the treatment of breast cancer patients, PARP inhibitors are
synthetically lethal to TNBC tumors carrying BRCA1/2 aberrations
by impairing DNA repair mechanisms (Helleday et al., 2005).
Genomic alterations detected by longitudinal plasma sampling
can identify genes that are resistant to PARP inhibitors such as
olaparib and velipariib. Mutations in the TP53 and PIK3CA gene in
ctDNA have been sensitive and specific circulating blood
biomarkers (Dawson et al., 2013). In addition, ESR1-mutated
ctDNA has also been identified as a predictive marker of
response to aromatase inhibitor therapy (Guttery et al., 2015;

Schiavon et al., 2015). These studies suggest that ctDNA
detection can be used to track molecular alterations in patients
before and after treatment to develop personalized targeted
therapies.

3.3 Colorectal cancer

Compared with the lack of sufficient tumor tissue in the
specimen and the need for a long test cycle in the tissue biopsy,
the utilization of liquid biopsy to detect ctDNA is expected to
become an effective tool to promote precision medicine.

For stage II CRC patients, most of them did not receive
postoperative chemotherapy. MRD detection is needed to identify
10%–15% of those patients who still have residual lesions after
surgery (Osterman and Glimelius, 2018). Postoperative
chemotherapy may help reducing the risk of relapse for those
who have positive ctDNA. For stage III CRC patients, 30% of
them had clinical recurrence after receiving postoperative
chemotherapy (Osterman and Glimelius, 2018). At the same
time, most patients with stage III colorectal cancer receive
postoperative chemotherapy, although more than 50% of patients
are cured by surgery (Böckelman et al., 2015; Påhlman et al., 2016;
Babaei et al., 2018). Therefore, MRD detection is one potential
approach to address the problem of how to better identify patients
who could benefit from postoperative adjuvant therapy.

In a previous study, 40% of patients with stage II colorectal
cancer who received 6 months of conventional adjuvant
chemotherapy had an absolute risk reduction of only 3%–5%,
despite the risk associated with potentially serious adverse events
and without means to monitor the efficacy of adjuvant therapy
(Wirtzfeld et al., 2009). In another study of patients with stage III
colorectal cancer, at least one somatic mutation was identified in
tumor tissue from all 96 evaluable patients (Tie et al., 2019). ctDNA
was detectable in 20 of 96 (21%) postoperative samples and was
associated with poor recurrence-free survival (HR, 3.8; 95% CI,
2.4–21.0; p < 0.001). For patients received chemotherapy, 15 of 88
(17%) samples were ctDNA positive, with a 30% estimated 3-year
RFI. While for those ctDNA undetectable, the 3-year RFI was 77%
(HR, 6.8; 95% CI, 11.0–157.0; p < 0.001). The author found out that
postoperative ctDNA status was independently associated with RFI
and significantly outperformed standard clinicopathologic
characteristics as a prognostic marker. They later utilized meta-
analysis to summarize their previous studies and concluded that the
5-year recurrence-free rate and overall survival rate of patients with
non-metastatic CRC who had detectable ctDNA after surgery were
poorer (Tie et al., 2016; Tie et al., 2019; Tie et al., 2019; Tie et al.,
2021). In this meta-analysis, they combined individual patient data
from three independent cohort studies of non-metastatic colorectal
cancer (CRC). A massively parallel sequencing platform SafeSeqS
was used to analyze ctDNA from 485 CRC patients. ctDNA was
detected in 59 (12%) patients postoperatively and the risk of
recurrence increases exponentially with increasing ctDNA
mutation allele frequency (MAF) (HR, 1.2, 2.5 and 5.8 for MAF
of 0.1%, 0.5% and 1%). ctDNAwas detected in 3 of 20 patients (15%)
with local regional recurrence and 27 of 60 patients (45%) with
distant recurrence (p = 0.018). This also implies that ctDNA is a
better predictor of distant recurrence than local regional recurrence.
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An observational GALAXY study recently analyzed MRD in
patients with stage I-Ⅳ colorectal cancer (Taniguchi et al., 2021;
Kotaka et al., 2022). Within the 188 MRD-positive patients,
95 received postoperative adjuvant chemotherapy. ctDNA levels
decreased at a significantly faster rate in patients who received
adjuvant chemotherapy than in those who did not receive
adjuvant chemotherapy (68% vs. 7%; HR: 17.1; p < 0.001).
Furthermore, patients received adjuvant chemotherapy had
significantly longer 6-month DFS than those who did not (84%
vs. 34%; HR: 0.15; p < 0.001).

In a recent study, Liu et al. used a technique that allows multiple
tests of one single cfDNA sample using different methods (Liu et al.,
2022b). They detected MRD using 3 approaches for each sample:
personalized detection targeting tumour-informed mutations,
universal panel for genes frequently mutated in colorectal cancer
(CRC), and low depth sequencing for copy number alterations
(CNAs). MRD positivity on personalized detection after
neoadjuvant therapy was significantly associated with an
increased risk of recurrence (HR = 27.38; p < 0.0001). Post-nat
universal Panel was good at predicting recurrence in patients with
high clinical risk, but not in patients with low clinical risk. CNAs
analysis also showed a compromised performance in predicting
recurrence.

Current methods for monitoring disease status in patients with
metastatic colorectal cancer include radiographic imaging
techniques and detection of serum CEA levels. However, serum
CEA levels may be increased in only 70%–80% of patients
(Goldstein and Mitchell, 2005).

In a study of patients with metastatic colorectal cancer (Garlan
et al., 2017), ≥80% ctDNA clearance after first-line or second-line
chemotherapy was associated with significantly improved objective
response rates (47.1% vs. 0%; p = 0.003) and longer median PFS
(8.5 months vs. 2.4 months; HR 0.19, 95% CI 0.09–0.40; p < 0.0001)
and OS (27.1 months vs. 11.2 months; HR 0.25, 95% CI 0.11–0.57;
p < 0.001). In another study, the authors used amplicon based deep
sequencing to detect ctDNA in mCRC patients (Osumi et al., 2019).
Patients with lower ctDNA levels (≤50%) showed significantly
longer PFS and OS than patients with higher ctDNA levels
(>50%) 8 weeks after initiation of chemotherapy.

In patients with stage II and III CRC, based on current studies, it
has been demonstrated that ctDNA may be a useful prognostic
marker after surgery to guide initial adjuvant therapy and monitor
postoperative recurrence. ctDNA analysis can potentially transform
the postoperative management of CRC by enabling risk
stratification, chemotherapy monitoring, and early recurrence
detection.

3.4 Other tumors

In recent studies, ctDNA has emerged as a potential biomarker
for minimal residual disease (MRD) after treatment of many solid
tumors (Lou et al., 2018; Xiong et al., 2019; He et al., 2020c; Chen
et al., 2020; Xu et al., 2020). In a study of patients with locally
advanced unresectable or metastatic gastric cancer, patients with low
ctDNA levels significantly prolonged DFS after the first cycle of
chemotherapy (3 months) compared with patients with high ctDNA
levels (COX regression p = 0.0228) (Normando et al., 2018). In

another study, advanced gastric cancer patients with higher ctDNA
levels were more likely to have peritoneal recurrence and
significantly lower 5-year overall survival rate than patients with
lower ctDNA levels (39.2% vs 45.8%, p = 0.039) (Fang et al., 2016).
Carrying ctDNA mutations was associated with poor prognosis
among patients with late stage gastric cancer. In a study of
gastrointestinal malignancies, ctDNA levels were higher in the
gastrointestinal tumor group than in the carcinoma in situ group
and healthy controls (p = 0.019) (Lan et al., 2017). For recurrent
gastric cancer, persistent high levels of ctDNA and an increasing
trend were observed after surgery (Wen et al., 2015). In addition,
ctDNA levels tended to be more sensitive than CEA levels in
predicting recurrence during postoperative monitoring.

In a study of metastatic gastroesophageal cancer, ctDNA was
detectable in plasma before treatment in 75% of 72 patients and
correlated well with mutations on metastatic biopsy (86%
agreement) (van Velzen et al., 2022). The detection of multiple
mutations in baseline plasma ctDNA was associated with poorer
overall survival (OS, HR 2.16, 95% CI 1.10–4.28; p = 0.027) and PFS
(PFS, HR 2.71, 95% CI 1.28–5.73; p = 0.009), and the VAF was
associated with baseline tumor volume (Pearson’s R 0.53, p <
0.0001). In addition, patients with residual ctDNA detected after
9 weeks of treatment had worse OS and PFS (OS: HR 4.95, 95% CI
1.53–16.04; p = 0.008; PFS: HR 4.08, 95% CI 1.31–12.75; p = 0.016).

A large proportion of the patients with early and intermediate
stage liver cancer after surgery will have recurrence. In a recent
study, peripheral blood samples were collected from all patients after
surgery and analyzed by next-generation sequencing based on
hybrid capture (Ye et al., 2022). The recurrence rates of ctDNA
positive group and ctDNA negative group were 60.9% and 27.8%,
respectively. Multivariate Cox regression analysis showed that
postoperative ctDNA was an independent prognostic factor for
DFS (HR: 6.074, 95% Cl: 2.648–13.929, p < 0.001) and OS (HR:
4.829, 95% CI: 1.508–15.466, p = 0.008). The prognosis of patients
with negative ctDNA was better than that of patients with positive
ctDNA regardless of tumor stage. In addition, the authors suggested
that the combination of ctDNA and AFP detection could improve
the prediction performance.

The value of ctDNA in predicting early postoperative tumor
recurrence and monitoring tumor burden in patients with
hepatocellular carcinoma (HCC) was investigated in another
prospective study (Zhu et al., 2022). They utilized NGS to
analyze the ctDNA sequences before and after surgery, and
whole exome sequencing was used to detect the DNA of HCC
and adjacent tissues. During a median follow-up of 17.7 months,
9 patients (22%) experienced cancer relapse. The positive rate of
ctDNA in the non-recurrence group was significantly lower than
that in the recurrence group, and ctDNA positivity was associated
with significantly shorter recurrence-free survival (RFS). The author
suggested that median VAF of baseline ctDNA was an independent
predictor of RFS in HCC patients.

Pancreatic cancer is an aggressive solid tumor with a poor
prognosis. Currently used biomarkers that are often used to
identify advanced pancreatic cancer also do not indicate
prognosis. A recent study used hybrid capture-based NGS to
sequence ctDNA in patients with metastatic pancreatic cancer
(Guan et al., 2022). In 40 tumor tissue samples, mutations in
KRAS (87.5%, N = 35) and TP53 (77.5%, N = 31) were more
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common, and ≥3 mutations in driver genes were strongly associated
with overall survival (OS). Univariate analysis showed a significant
association between CDKN2A or SMAD4 mutation in ctDNA and
PFS in 35 blood samples. Cox hazard proportion model showed that
CDKN2A mutation in ctDNA (HR = 16.1, 95% CI = 4.4–59.1, p <
0.001) were significantly associated with OS. Patients’ CDKN2A
mutation in ctDNA (HR = 6.8, 95% CI = 2.3–19.9, p = 0.001) and
SMAD4 mutation (HR = 3.0, 95% CI = 1.1–7.9, p = 0.031) were
significantly associated with PFS. Disease progression detected by
ctDNAwas 0.9 months earlier than radiological imaging (mean PFS:
4.6 m vs. 5.5m, p = 0.004).

In another research of patients with borderline resectable
pancreatic cancer, no significant decrease in median RFS or OS
was observed in ctDNA-positive patients before treatment or after
NAC (Kitahata et al., 2022). The median OS of patients (723 days)
with positive ctDNA was significantly shorter than that of patients
with negative ctDNA (not reached; p = 0.0148). The hazard ratio for
adjusted survival risk increased from 4.13 times to 17.71 times for
patients with a risk factor (detectable ctDNA or CA19-9>37 U/ml)
compared with patients without risk factors (both p = 0.0055).

Perioperative systemic chemotherapy can improve the prognosis of
upper tract urothelial carcinoma (UTUC). A recent study utilized NGS
to analyze perioperative ctDNA to identify patients with poor prognosis
who require perioperative chemotherapy (Nakano et al., 2022). They
performed targeted ultra-deep sequencing of plasma free DNA
(cfDNA) and albugemma DNA, as well as whole-exome sequencing
of cancer tissue, thereby eliminating possible false positives. ctDNAwas
positive in 23 of 50 untreated UTUC patients (46%) and in 17 of
43 localized UTUC patients (40%). Among preoperative risk factors,
only preoperative ctDNA score >2% was a significant and independent
risk factor associated with poor recurrence-free survival (RFS). In
addition, the presence of ctDNA early after surgery was significantly
associated with poor RFS, suggesting the presence of MRD.

In another study of urothelial carcinoma, the authors improved the
performance of the prognostic model by combining ctDNA sequence
aggregate VAF (aVAF) values with clinical factors, including age, sex,
and liver metastases (KyrillusShohdy et al., 2022). In consecutive
ctDNA samples, an increase in ctDNA aVAF of ≥1 predicted
disease progression within 6 months in 90% of patients. The
majority of patients with aVAFs≤0.7 in three consecutive ctDNA
samples achieved a durable clinical response (≥6 months).

4 Challenges of MRD detection

When we perform MRD detection, the number of specific
variants we focused on was very small because the total number
of gene copies in the plasma samples was limited. As we all know,
MRD detection often requires a high sequencing depth, the
sensitivity of ctDNA analysis is limited, and when VAF lowers
close to LOD, the number of specific variants in the sample may be
demanding. In addition, the tumor fraction of cfDNA varies
between cancer entities and even between patients with the same
cancer entity (Bachet et al., 2018; Normanno et al., 2018; Jiang and
Yan, 2021; Huo et al., 2022). In some ctDNA-based studies, it has
been found that tumor micrometastases represent a higher tumor
burden than residual local disease, and therefore can shed higher
ctDNA levels (Azad et al., 2020; Tie et al., 2021). Therefore, some

false-negative results cannot be prevented due to biological factors
such as low DNA shedding in some tumors or the location of the
metastasis itself. The sensitivity of different types of mutations is also
different. The ability of different techniques to detect single
nucleotide mutations differs from that of structural variants (e.g.,
fusion) or copy number variants (e.g., copy number amplification).
ctDNA analysis is less sensitive to detect structural variants or copy
number variants. Therefore, the interpretation of ctDNA results
needs to take into account that the amount of ctDNA may not be
sufficient to detect specific types of variation. Pascual J, Attard G,
Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, Italiano A,
Lindberg J, Merker JD, Montagut C, Normanno N, Pantel K,
Pentheroudakis G, Popat S, Reis-Filho JS, Tie J, Seoane J,
Tarazona N, Yoshino T, Turner NC. ESMO recommendations on
the use of circulating tumour DNA assays for patients with cancer: a
report from the ESMO Precision Medicine Working Group. Ann
Oncol. 2022 August; 33(8):750–768. doi: 10.1016/j.annonc.2022.05.
520. Epub 2022 July 6. PMID: 35809752.

DNA fragments from the clonal hematopoiesis of indeterminate
potential (CHIP) or non-neoplastic hematopoietic stem cells can
lead to false-positive ctDNA results, which can be reduced by
advanced bioinformatics analysis or comparison of ctDNA
sequencing with leukocytes and/or matched tumor tissue
(Steensma et al., 2015; Snyder et al., 2016). These mutations
represent a confounding factor when analyzing actual tumor
variants in the absence of white blood cell (WBC) control
samples (Razavi et al., 2019). Therefore, additional NGS analysis
of leukocytes is recommended to rule out CHIP-related variants,
especially in the case of MRD or early cancer detection.

Agreement between ctDNA and tissue-based NGS results is
typically defined as the presence or absence of identical genomic
alterations in a single gene on both molecular platforms. The main
reasons for inconsistent blood and tissue detection are biopsy
location and time, different DNA shedding, tumor heterogeneity,
and epigenetic modifications. Lack of standardization between
ctDNA tests is another barrier, which limits the understanding of
the available results. Inconsistent ctDNA results may be the result of
several variables, including the time of sample collection, sample
collection process, sample storage method, library construction
process, utilization of unique molecular identifiers and
bioinformatic analysis.

Accurate risk assessment and adjuvant therapy are very
important for cancer patients. ctDNA testing can accurately
identify the MRD after primary tumor resection, and thus
identify the patient population that needs further adjuvant
chemotherapy, so as to avoid unnecessary additional treatment.
In addition, determining the duration of adjuvant therapy based on
ctDNA clearance can help reduce adverse reactions. However, many
researchers also suggested that adjuvant therapy based on negative
ctDNA testing should not be excluded due to the low
standardization of ctDNA detection procedures and the
limitations of ctDNA testing techniques.

Although preliminary data on the clinical application of ctDNA
in MRD detection is promising, most of the studies that provide
evidence to support it are small, limited in scope and require
validation using large independent cohorts (Corcoran and
Chabner, 2018; Heitzer et al., 2019). It is only through these
further studies that we can solve the next important question of
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whether acting on positive ctDNAMRD results can improve clinical
outcomes or whether ctDNA MRD can be used to more precisely
guide adjuvant therapy.

5 Conclusion

Overall, MRD aids in the management of cancer at all stages,
including screening, guiding adjuvant treatment, predicting relapse
early, initiating systemic treatment and monitoring response, and
genotyping resistance. Liquid biopsy, espesially ctDNA, can be used
as an alternative to tumor tissue detection, especially when tissue biopsy
is not feasible or time does not permit. New technologies are being
developed, such as methylation pattern-based sequencing which have
the potential to optimize ctDNA detection for use in a wide range of
scenarios. In the future, we need to carry out more intervention studies
to provide stronger evidence support for the application of MRD
detection methods, so as to achieve the purpose of integration with
clinical routine. Through the monitoring of ctDNA, the therapeutic
regimen can be adjusted in time, and the treatment effect can be
improved to maximize the survival time of patients.
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Introduction: Lung cancer is one of themost frequent neoplasms worldwide with
approximately 2.2 million new cases and 1.8 million deaths each year. The
expression levels of programmed death ligand-1 (PDL1) demonstrate a
complex association with lung cancer. Neuroblastoma is a high-risk malignant
tumor and is mainly involved in childhood patients. Identification of new
biomarkers for these two diseases can significantly promote their diagnosis
and therapy. However, in vivo experiments to discover potential biomarkers are
costly and laborious. Consequently, artificial intelligence technologies, especially
machine learning methods, provide a powerful avenue to find new biomarkers for
various diseases.

Methods: We developed a machine learning-based method named LDAenDL to
detect potential long noncoding RNA (lncRNA) biomarkers for lung cancer and
neuroblastoma using an ensemble of a deep neural network and LightGBM.
LDAenDL first computes the Gaussian kernel similarity and functional similarity
of lncRNAs and the Gaussian kernel similarity and semantic similarity of diseases to
obtain their similar networks. Next, LDAenDL combines a graph convolutional
network, graph attention network, and convolutional neural network to learn the
biological features of the lncRNAs and diseases based on their similarity networks.
Third, these features are concatenated and fed to an ensemble model composed
of a deep neural network and LightGBM to find new lncRNA–disease associations
(LDAs). Finally, the proposed LDAenDL method is applied to identify possible
lncRNA biomarkers associated with lung cancer and neuroblastoma.

Results: The experimental results show that LDAenDL computed the best AUCs of
0.8701, 107 0.8953, and 0.9110 under cross-validation on lncRNAs, diseases, and
lncRNA-disease pairs on Dataset 1, respectively, and 0.9490, 0.9157, and 0.9708 on
Dataset 2, respectively. Furthermore, AUPRs of 0.8903, 0.9061, and 0.9166 under
three cross-validations were obtained on Dataset 1, and 0.9582, 0.9122, and 0.9743
on Dataset 2. The results demonstrate that LDAenDL significantly outperformed the
other four classical LDA prediction methods (i.e., SDLDA, LDNFSGB, IPCAF, and
LDASR). Case studies demonstrate that CCDC26 and IFNG-AS1 may be new
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biomarkers of lung cancer, SNHG3 may associate with PDL1 for lung cancer, and
HOTAIR and BDNF-AS may be potential biomarkers of neuroblastoma.

Conclusion: We hope that the proposed LDAenDL method can help the
development of targeted therapies for these two diseases.

KEYWORDS

lncRNA, biomarker, lung cancer, neuroblastoma, deep neural network, LightGBM

1 Introduction

Long non-coding RNAs (lncRNAs) are non-coding RNAs with
more than 200 nucleotides (Bertone et al., 2004; Peng et al., 2022a; Peng
et al., 2022b). LncRNAs play an important role in the development and
progression of various diseases (Lanjanian et al., 2021;Meng et al., 2021;
Yang and Li 2021; Peng et al., 2022c). LncRNAs have dense associations
withmany diseases, for example, lung cancer, colorectal cancer, prostate
cancer, andAlzheimer’s disease (Klattenhoff et al., 2013; Tan et al., 2013;
Chakravarty et al., 2014; He et al., 2014; Zhang et al., 2014). LncRNA
H19 is associated with the under-regulation of renal carcinoma cells
(Wang et al., 2015). The expression of EGOT in breast cancer is much
lower than one in adjacent noncancerous tissues (Broadbent et al.,
2008). NEAT1 is overexpressed in prostate cancer cells (Pasmant et al.,
2011). The identification of lncRNA-disease associations (LDAs) helps
us to further understand the biological processes and the molecular
mechanisms of various complex diseases. However, the number of
known and experimentally validated LDAs is very small. Thus, it is
important to identify potential LDAs. Determining LDAs through in
vivo experiments is costly and time-consuming, therefore, it is necessary
to design efficient computational approaches for identifying potential
LDAs (Meng et al., 2021; Peng et al., 2022d). Computational LDA
prediction methods are categorized as biological network-based
methods and machine learning-based methods.

Biological network-based methods use network algorithms for
association prediction (Liu et al., 2023a). This type of method first
constructs heterogeneous networks of lncRNAs and diseases and then
identifies LDAs via matrix decomposition, random walk, and so on. To
predict potential LDAs, LRWRHLDA combined Laplace normalized
random walk with restart (Wang et al., 2022), LDGRNMF used graph
regularized nonnegative matrix factorization (Wang et al., 2021),
DSCMF developed a dual sparse collaborative matrix factorization
approach (Liu et al., 2021a), RWSF-BLP added random walk-based
multi-similarity fusion to bidirectional label propagation (Xie et al.,
2021), HBRWRLDA utilized bi-random walk on hypergraphs (Xie
et al., 2022), and MHRWRLDA exploited a random walk model with
restart through multiplex and heterogeneous networks (Yao et al.,
2021).

With the fast advance of RNA sequencing technologies, artificial
intelligence has obtained wide applications in biomedical data
analysis (Peng et al., 2023a; Peng et al., 2023b; Xu et al., 2023).
Notably, artificial intelligence technologies, especially machine
learning methods, have been widely applied to predict miRNA-
disease associations (Liu et al., 2022) and circRNA-disease
associations (Liu et al., 2023b). To find new LDAs, HGATLDA
developed a novel heterogeneous graph attention network model
(Zhao et al., 2022), DeepMNE extracted multi-omics data and
designed a deep multi-network embedding model (Ma, 2022),
iLncDA-LTR is a rank-based method (Wu et al., 2022),

MAGCNSE utilized a graph convolutional network (Liang et al.,
2022), LDAformer extracted topological features and used a
transformer encoder for LDA classification (Zhou et al., 2022),
BiGAN explored a bidirectional generative adversarial network
(Yang et al., 2021), and SVDNVLDA extracted linear and non-
linear features and used an XGBoost for LDA prediction (Li et al.,
2021).

Computational methods have found many potential LDAs,
however, network-based methods were more likely to favor well-
investigated lncRNAs or diseases and can not predict LDAs for new
lncRNAs or new diseases. Machine learning-based methods failed to
effectively integrate different kernels from multiple data sources.
Thus, in this study, we developed a machine learning-based method
named LDAenDL to detect potential lncRNA biomarkers for lung
cancer and neuroblastoma based on an ensemble of a deep neural
network and LightGBM.

2 Materials and methods

As shown in Figure 1, LDAenDL first computes the Gaussian
kernel similarity and functional similarity of lncRNAs and the
Gaussian kernel similarity and semantic similarity of diseases to
obtain their similar networks. Next, LDAenDL combines a graph
convolutional network (GCN) (Kipf and Welling, 2016), graph
attention network (GAT) (Velickovic et al., 2017), and
convolutional neural network (Gu et al., 2018) to learn the
biological features of lncRNAs and diseases based on their
similarity networks. Third, these features are concatenated and
fed to an ensemble model composed of a deep neural network
(DNN) and LightGBM to find new LDAs. Finally, LDAenDL was
applied to identify possible lncRNA biomarkers associated with lung
cancer and neuroblastoma.

2.1 Data preparation

We used two human LDA datasets that were provided by Chen
et al. (2012) and Cui et al. (2018). Dataset 1 contains 605 LDAs
between 157 diseases and 82 lncRNAs. Dataset 2 contains
1,529 LDAs between 190 diseases and 89 lncRNAs. An LDA
network can be denoted as Y ∈ Rn×m where yij � 1 if lncRNA li
interacts with disease dj, otherwise, it equals 0.

2.2 Similarity computation

Inspired by the LDA-DLPU method (Peng et al., 2022a), we
computed the Gaussian kernel similarity and functional similarity of
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lncRNAs and the Gaussian kernel similarity and semantic similarity
of diseases. Based on the computed lncRNA similarity and disease
similarity matrices, we learned the features of lncRNAs and diseases
by combining a GCN, GAT, and CNN.

2.3 Feature learning

Dai et al. (2022) designed a hybrid graph representation learning
model (GraphCDA) to represent the features of circRNAs and diseases
and obtained better circRNA-disease association prediction
performance. Inspired by GraphCDA proposed by Dai et al. (2022),
we exploit a GraphCDA-based LDA feature learning model.

2.3.1 Graph convolutional network
A GCN was applied to obtain the feature representations of

lncRNAs and diseases based on their similarity networks. For a GCN
G, it is denoted as an adjacency matrix S ∈ RN×N with N nodes
where each node can be described as an F-dimensional vector. And
GCN outputs node representation matrix Hnew in Eqs 1, 2:

Hnew � GCN S,H( ) (1)
GCN S,H( ) � σ A−1

2S′A−1
2HQ( ) (2)

where S′ � I + S,A � ∑jSi,j
′ andQ ∈ RF×F denote degree matrix and

trainable weight matrix, and σ(·) denotes a ReLU activation
function.

2.3.2 Graph attention network
A GAT (Veličković et al., 2017) uses multi-head attention to set

weights for all adjacent nodes based on their importance. LDAenDL
introduces a GAT layer between two GCN layers to help the GCN to
extract high-level features of lncRNAs and diseases.

For the GCN G, a GAT layer outputs node representationsHnew

in Eq. 3:

Hnew � GAT S,H( ) (3)
For K attention mechanisms in multi-head attention and its

weight matrix Wk, let Hi
�→

denote the input feature vector of the i-th
lncRNA, its feature representation �H

new
i in Hnew can be denoted as

Eq. 4:

�H
new

i � σ
1
K
∑
K

k�1
∑
n

j ≠ i

ϕk
ijWk

�Hi
⎛⎝ ⎞⎠ (4)

where ϕkit denotes the k-th attention coefficients between two
lncRNA nodes i and t:

ϕk
ij �

exp f aTk Wk
�Hi ‖ Wk

�Hj ‖ BkSij[ ]( )( )
∑t≠i exp f aTk Wk

�Hi ‖ Wk
�Ht ‖ BkSit[ ]( )( ) (5)

where || denotes a concatenation operation, f denotes the
LeaklyReLU activation function, ak ∈ R2F+1 denotes a weight
vector related to the k-th attention mechanism, and Bk denotes
the weight of an edge Sij.

FIGURE 1
The pipeline of LDAenDL.

Frontiers in Genetics frontiersin.org03

Su et al. 10.3389/fgene.2023.1238095

119

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238095


2.3.3 Feature representation of lncRNAs and
diseases

For a lncRNA similarity network Gc, its adjacency matrix C, and
node feature matrix H(0)

c ∈ RNc×Fc , we alternately use GCN and
GAT layers to obtain the graph feature representation of lncRNAs at
different levels in Eq. 6:

H 1( )
c � GCN C,H 0( )

c( )
H 2( )

c � GAT C,H 1( )
c( )

H 3( )
c � GCN C,H 2( )

c( )
⎧⎪⎨
⎪⎩ (6)

Thus, a 1D CNN is used to produce the lncRNA feature
representation matrix Xc by combining the output features H(1)

c

and H(3)
c in the different GCN layers.

Similarly, the graph feature representations of diseases at
different levels are denoted by Eq. 7:

H 1( )
d � GCN D,H 0( )

d( )
H 2( )

d � GAT D,H 1( )
d( )

H 3( )
d � GCN D,H 2( )

d( )

⎧⎪⎪⎨
⎪⎪⎩ (7)

A 1D CNN is used to produce the disease feature representation
matrix Xc by combining the output features H(1)

d and H(3)
d in the

different GCN layers.

2.3.4 Preference matrix construction
The preference matrix U that describes all lncRNA-disease pairs

can be represented as Eq. 8 based on Xc and Xd:

U � Xc
TXd (8)

We used binary cross-entropy as the activation function to
evaluate the difference between the preference matrix U and the
known adjacency matrix R. By minimizing the loss function on two
LDA datasets, the feature representation matrices Xc and Xd of
lncRNAs and diseases are learned.

2.4 LDA prediction

2.4.1 DNN
We built a DNN to predict new LDAs based on known LDAs

and the learned LDA features. The DNN contains an input layer, an
output layer, and multiple hidden layers. In the input layer, there are
F neurons that are the same as the number of LDA features.

Given an LDA sample x, the input layer with k inputs is
represented by Eq. 9:

x � [x1, x2, . . .xk] (9)
where xi denotes the i-th feature in a sample x.

The hidden layer is represented by Eq. 10:

hj � ∑k

i�1 wixi + bj (10)

where wi and bj denote the weight of xi and the bias in the j-th
hidden layer, respectively.

The output in the j-th hidden layer is denoted by Eq. 11:

h � f hj( ) (11)

where f denotes a ReLU activation function. Finally, the output layer
with the sigmoid function outputs the LDA prediction results in Eq. 12:

σ h( ) � 1
1 + e−h

(12)

2.4.2 LightGBM
In this section, we built a LightGBM (Ke et al., 2017) to identify

new LDAs. For a training set X � (xi, yi){ }ni�1 with n lncRNA-
disease pair, LightGBM intends to build an approximation of f̂ to a
certain function f(x) by minimizing the expected value of loss
function L(y, f(x)) by Eq. 13:

f̂ � argmin
f

Ex,y L y, f x( )( )[ ] (13)

LightGBM integrates T regression trees ∑T
t�1 ft(X) to

approximate the final model by Eq. 14:

fT X( ) � ∑T

t�1ft X( ) (14)

The regression trees are expressed as wq(x), q ∈ 1, 2, . . . , J{ },
where J, q, and w denote the number of leaves, the decision rules
of the tree, and the sample weight of leaf nodes, respectively.

At step t, LightGBM is trained in an additive form:

Γt � ∑
n

i�1
L yi, Ft−1 xi( ) + ft xi( )( ) (15)

The objective function (15) is rapidly approximated with
Newton’s method (Sun et al., 2020).

To solve the objective function of LightGBM,we removed the constant
term for simplicity, and model (15) can be represented as Eq. 16:

Γt � ∑
n

i�1
gift xi( ) + 1

2
hif

2
t xi( )( ) (16)

where gi and hi are the first-order and second-order gradients
related to the loss function. Given the sample set Ij related to
leaf j, Eq. 16 is transformed to Eq. 17:

Γt � ∑
J

j�1
∑
i∈Ij

gi
⎛⎝ ⎞⎠wj + 1

2
∑
i∈Ij

hi + λ⎛⎝ ⎞⎠w2
j

⎛⎝ ⎞⎠ (17)

Given a certain tree structure q(x), for each leaf node w*
j, its

optimal leaf weight and the extreme value of Γk could be computed by
Eq. 18:

w*
j � − ∑i∈Ij gi

∑i∈Ij hi + λ

Γ*T � −1
2
∑
J

j�1

∑
i ∈ Ij

gi( )
2

∑i∈Ij hi + λ

(18)

where Γ*T is a scoring function used to evaluate the quality of a tree
structure q. Finally, Model (15) can be denoted as:

G � 1
2

∑i ∈ IL
gi( )2

∑i∈IL hi + λ
+ ∑i ∈ IR

gi( )2
∑i∈IR hi + λ

− ∑i ∈ I gi( )2
∑i∈I hi + λ

⎛⎝ ⎞⎠ (19)
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where IL and IR denote the example sets in the left and right subtrees
of q, respectively.

2.4.3 Ensemble learning
Through the solution of models (12) and (15), we can identify

potential LDAs based on a DNN and LightGBM. Ensemble learning
has better prediction accuracy than a single model. To further
improve LDA prediction accuracy, we combined a DNN and
LightGBM and developed an ensemble model for LDA
identification through soft voting in Eq. 16:

Score � αCDNN + βCLightGBM (20)
where CDNN and CLightGBM denote LDA prediction results from
the DNN and LightGBM, respectively. α and β are their weights

with values of 0.4 and 0.6, respectively. In particular, a
lncRNA–disease pair is taken as an LDA if its association
probability is greater than 0.5; otherwise, the pair is taken as a
negative LDA.

3 Results

3.1 Evaluation metrics

In this article, we compared our proposed LDAenDL
method with four LDA prediction methods, SDLDA,
LDNFSGB, IPCAF, and LDASR. Precision, recall, accuracy,
F1-score, AUC, and AUPR were used to compare the

TABLE 1 Comparison of LDAenDL with the other four methods under CV1.

SDLDA LDNFSGB IPCARF LDASR LDAenDL

Precision
Dataset 1 0.8514 ± 0.0509 0.7004 ± 0.0639 0.4878 ± 0.1309 0.6726 ± 0.1200 0.8764 ± 0.0493

Dataset 2 0.9399 ± 0.0154 0.8552 ± 0.0393 0.6615 ± 0.0966 0.8405 ± 0.0300 0.9391 ± 0.0290

Recall
Dataset 1 0.6521 ± 0.0732 0.6092 ± 0.0790 0.5721 ± 0.1580 0.5129 ± 0.0946 0.7019 ± 0.0639

Dataset 2 0.8239 ± 0.0437 0.8021 ± 0.0498 0.6434 ± 0.1545 0.7358 ± 0.0562 0.8304 ± 0.0523

Accuracy
Dataset 1 0.7799 ± 0.0341 0.6769 ± 0.0423 0.4906 ± 0.0951 0.6417 ± 0.0597 0.7996 ± 0.0312

Dataset 2 0.8857 ± 0.0283 0.8323 ± 0.0230 0.6526 ± 0.0775 0.7972 ± 0.0268 0.8879 ± 0.0289

F1-score
Dataset 1 0.7365 ± 0.0563 0.6462 ± 0.0451 0.5125 ± 0.1100 0.5668 ± 0.0536 0.7768 ± 0.0399

Dataset 2 0.8775 ± 0.0278 0.8260 ± 0.0230 0.6401 ± 0.1017 0.7827 ± 0.0260 0.8804 ± 0.0334

AUC
Dataset 1 0.8023 ± 0.0477 0.7346 ± 0.0465 0.5096 ± 0.1432 0.7057 ± 0.0420 0.8701 ± 0.0339

Dataset 2 0.9366 ± 0.0195 0.8839 ± 0.0270 0.7104 ± 0.0997 0.8641 ± 0.0256 0.9490 ± 0.0220

AUPR
Dataset 1 0.8461 ± 0.0553 0.7239 ± 0.0626 0.5336 ± 0.1423 0.6775 ± 0.0971 0.8903 ± 0.0273

Dataset 2 0.9533 ± 0.0129 0.8832 ± 0.0307 0.7128 ± 0.1012 0.8671 ± 0.0252 0.9582 ± 0.0167

The bold value denotes the best performance.

TABLE 2 Comparison of LDAenDL with the other four methods under CV2.

SDLDA LDNFSGB IPCARF LDASR LDAenDL

Precision
Dataset 1 0.8854 ± 0.0377 0.7548 ± 0.0639 0.5583 ± 0.0910 0.7462 ± 0.0613 0.9135 ± 0.0317

Dataset 2 0.9232 ± 0.0331 0.8005 ± 0.0625 0.5557 ± 0.1473 0.7625 ± 0.0749 0.9528 ± 0.0225

Recall
Dataset 1 0.7182 ± 0.0694 0.7309 ± 0.0646 0.7538 ± 0.1067 0.6431 ± 0.0757 0.6649 ± 0.0814

Dataset 2 0.8579 ± 0.0655 0.6936 ± 0.0794 0.5279 ± 0.1969 0.5758 ± 0.0894 0.4616 ± 0.1702

Accuracy
Dataset 1 0.8187 ± 0.0282 0.7552 ± 0.0291 0.5766 ± 0.0740 0.7165 ± 0.0339 0.8005 ± 0.0381

Dataset 2 0.9043 ± 0.0174 0.7670 ± 0.0432 0.5593 ± 0.1159 0.7010 ± 0.0463 0.7196 ± 0.0821

F1-score
Dataset 1 0.7917 ± 0.0519 0.7407 ± 0.0526 0.6339 ± 0.0715 0.6873 ± 0.0512 0.7664 ± 0.0593

Dataset 2 0.8886 ± 0.0475 0.7402 ± 0.0577 0.5190 ± 0.1434 0.6485 ± 0.0555 0.6032 ± 0.1612

AUC
Dataset 1 0.8788 ± 0.0274 0.8329 ± 0.0273 0.6402 ± 0.1004 0.7951 ± 0.0317 0.8953 ± 0.0284

Dataset 2 0.9559 ± 0.0160 0.8603 ± 0.0363 0.5992 ± 0.1601 0.8045 ± 0.0362 0.9157 ± 0.0420

AUPR
Dataset 1 0.8934 ± 0.0387 0.8163 ± 0.0537 0.6355 ± 0.1217 0.7914 ± 0.0542 0.9061 ± 0.0254

Dataset 2 0.9561 ± 0.0354 0.8292 ± 0.0680 0.6040 ± 0.1476 0.7630 ± 0.0717 0.9122 ± 0.0436

The bold value denotes the best performance.
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performance of LDAenDL with the four methods. The six
metrics have been defined by Peng et al. (2022b) (Shen et al.,
2022).

3.2 Comparison of LDAenDL with the other
four methods

To implement the performance evaluation, inspired by the
three cross-validations proposed by Zhou et al. (2021), we
conducted cross-validations on lncRNAs (CV1), diseases
(CV2), and lncRNA-disease pairs (CV3). Tables 1–3 give the
precision, recall, accuracy, F1-score, AUC, and AUPR under
CV1, CV2, and CV3 on two LDA datasets. In Tables 1–6, the
bold font in each row denotes the best performance.

Under CV1, LDAenDL randomly took 80% of lncRNAs as
training samples, and the rest were taken as test samples to
investigate the LDA prediction ability for new lncRNAs. The
results from Table 1 show that our proposed LDAenDL
approach obtained the best precision, recall, accuracy, F1-score,
AUC, and AUPR on two datasets under CV1 except that it
computed slightly lower precision on Dataset 2 (0.9391 vs.
0.9399). It computed the highest AUPRs of 0.8903 and 0.9582,
and far exceeded the AUPR values computed by SDLDA
(i.e., 0.8461 and 0.9533).

Figure 2 shows the AUC and AUPR values computed by
LDAenDL and the other four methods on two datasets under
CV1. The results demonstrated that LDAenDL can discover
possible diseases associated with a new lncRNA.

Under CV2, LDAenDL randomly took 80% of diseases as
training samples, and the rest were taken as test samples to
investigate the LDA prediction ability for new diseases. The
results from Table 2 show that our proposed LDAenDL
approach obtained better precision, AUC, and AUPR on two
datasets under CV2. However, SDLDA computed higher recall,

accuracy, and F1-score than LDAenDL, which may be caused by
smaller disease samples.

Figure 3 shows the AUC and AUPR values computed by
LDAenDL and the other four methods on two datasets under
CV2. The results show that LDAenDL can be applied to screen
possible lncRNAs associated with a new disease.

Under CV3, LDAenDL randomly took 80% of lncRNA-disease
pairs as training samples, and the rest were taken as test samples to
investigate the LDA prediction ability. The results from Table 3 show
that our proposed LDAenDL approach obtained the best precision,
recall, accuracy, F1-score, AUC, andAUPR on two datasets under CV3.
It computed the highest AUCs of 0.9110 and 0.9708 and far exceeded

TABLE 3 Comparison of LDAenDL with the other four methods under CV3.

SDLDA LDNFSGB IPCARF LDASR LDAenDL

Precision
Dataset 1 0.8782 ± 0.0306 0.7782 ± 0.0270 0.7069 ± 0.0478 0.7695 ± 0.0393 0.8637 ± 0.0312

Dataset 2 0.9178 ± 0.0154 0.8548 ± 0.0156 0.7693 ± 0.0850 0.8553 ± 0.0189 0.9351 ± 0.0157

Recall
Dataset 1 0.7256 ± 0.0376 0.8169 ± 0.0408 0.6155 ± 0.0652 0.6836 ± 0.0342 0.8234 ± 0.0314

Dataset 2 0.8824 ± 0.0198 0.8818 ± 0.0204 0.5034 ± 0.1469 0.8204 ± 0.0238 0.8999 ± 0.0179

Accuracy
Dataset 1 0.8120 ± 0.0216 0.7916 ± 0.0256 0.6793 ± 0.0403 0.7385 ± 0.0283 0.8462 ± 0.0229

Dataset 2 0.9015 ± 0.0114 0.8658 ± 0.0127 0.6793 ± 0.0753 0.8405 ± 0.0129 0.9186 ± 0.0126

F1-score
Dataset 1 0.7939 ± 0.0260 0.7965 ± 0.0262 0.6563 ± 0.0492 0.7233 ± 0.0289 0.8426 ± 0.0232

Dataset 2 0.8996 ± 0.0119 0.8679 ± 0.0129 0.5995 ± 0.1312 0.8371 ± 0.0137 0.9171 ± 0.0130

AUC
Dataset 1 0.8774 ± 0.0200 0.8578 ± 0.0234 0.7384 ± 0.0466 0.8133 ± 0.0218 0.9110 ± 0.0197

Dataset 2 0.9560 ± 0.0081 0.9346 ± 0.0074 0.7680 ± 0.0882 0.9143 ± 0.0112 0.9708 ± 0.0062

AUPR
Dataset 1 0.8952 ± 0.0177 0.8489 ± 0.0289 0.7409 ± 0.0515 0.8131 ± 0.0277 0.9166 ± 0.0203

Dataset 2 0.9639 ± 0.0063 0.9273 ± 0.0098 0.7689 ± 0.0924 0.9100 ± 0.0136 0.9743 ± 0.0058

The bold value denotes the best performance.

TABLE 4 Comparison of LDAenDL with individual models under CV1.

DNN LightGBM LDAenDL

Precision
Dataset 1 0.8772 ± 0.0461 0.8569 ± 0.0511 0.8764 ± 0.0493

Dataset 2 0.9149 ± 0.0375 0.9386 ± 0.0278 0.9391 ± 0.0290

Recall
Dataset 1 0.6851 ± 0.0694 0.7106 ± 0.0714 0.7019 ± 0.0639

Dataset 2 0.8337 ± 0.0510 0.8278 ± 0.0533 0.8304 ± 0.0523

Accuracy
Dataset 1 0.7930 ± 0.0317 0.7939 ± 0.0340 0.7996 ± 0.0312

Dataset 2 0.8772 ± 0.0288 0.8865 ± 0.0295 0.8879 ± 0.0289

F1-score
Dataset 1 0.7664 ± 0.0429 0.7737 ± 0.0446 0.7768 ± 0.0399

Dataset 2 0.8711 ± 0.0321 0.8786 ± 0.0344 0.8804 ± 0.0334

AUC
Dataset 1 0.8712 ± 0.0373 0.8622 ± 0.0340 0.8701 ± 0.0339

Dataset 2 0.9308 ± 0.0209 0.9497 ± 0.0227 0.9490 ± 0.0220

AUPR
Dataset 1 0.8842 ± 0.0327 0.8822 ± 0.0284 0.8903 ± 0.0273

Dataset 2 0.9449 ± 0.0190 0.9586 ± 0.0171 0.9582 ± 0.0167

The bold value denotes the best performance.
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those computed by SDLDA (i.e., 0.8774 and 0.9560). Furthermore, our
LDAenDL approach computed the highest AUPRs of 0.9166 and
0.9743 and far exceeded those computed by SDLDA (i.e., 0.8952,
and 0.9639).

Figure 4 shows the AUC and AUPR values computed by
LDAenDL and the other four methods on two datasets under
CV3. The results demonstrated that LDAenDL could find
potential LDAs based on known LDAs.

TABLE 5 Comparison of LDAenDL with individual models under CV2.

DNN LightGBM LDAenDL

Precision
Dataset 1 0.9049 ± 0.0383 0.8927 ± 0.0309 0.9135 ± 0.0317

Dataset 2 0.9274 ± 0.0412 0.9439 ± 0.0283 0.9528 ± 0.0225

Recall
Dataset 1 0.6182 ± 0.1006 0.6873 ± 0.0734 0.6649 ± 0.0814

Dataset 2 0.3426 ± 0.1457 0.5370 ± 0.1739 0.4616 ± 0.1702

Accuracy
Dataset 1 0.7759 ± 0.0453 0.8017 ± 0.0336 0.8005 ± 0.0381

Dataset 2 0.6580 ± 0.0689 0.7533 ± 0.0842 0.7196 ± 0.0821

F1-score
Dataset 1 0.7289 ± 0.0794 0.7740 ± 0.0493 0.7664 ± 0.0593

Dataset 2 0.4835 ± 0.1531 0.6678 ± 0.1537 0.6032 ± 0.1612

AUC
Dataset 1 0.8853 ± 0.0374 0.8869 ± 0.0281 0.8953 ± 0.0284

Dataset 2 0.8412 ± 0.0512 0.9164 ± 0.0441 0.9157 ± 0.0420

AUPR
Dataset 1 0.8882 ± 0.0368 0.8981 ± 0.0257 0.9061 ± 0.0254

Dataset 2 0.8416 ± 0.0530 0.9150 ± 0.0466 0.9122 ± 0.0436

The bold value denotes the best performance.

TABLE 6 Comparison of LDAenDL with individual models under CV3.

DNN LightGBM LDAenDL

Precision
Dataset 1 0.8561 ± 0.0357 0.8477 ± 0.0320 0.8637 ± 0.0312

Dataset 2 0.9214 ± 0.0171 0.9322 ± 0.0157 0.9351 ± 0.0157

Recall
Dataset 1 0.8241 ± 0.0373 0.8110 ± 0.0381 0.8234 ± 0.0314

Dataset 2 0.8983 ± 0.0204 0.8936 ± 0.0176 0.8999 ± 0.0179

Accuracy
Dataset 1 0.8419 ± 0.0244 0.8322 ± 0.0265 0.8462 ± 0.0229

Dataset 2 0.9106 ± 0.0130 0.9142 ± 0.0122 0.9186 ± 0.0126

F1-score
Dataset 1 0.8389 ± 0.0247 0.8284 ± 0.0277 0.8426 ± 0.0232

Dataset 2 0.9095 ± 0.0134 0.9124 ± 0.0126 0.9171 ± 0.0130

AUC
Dataset 1 0.9076 ± 0.0225 0.9015 ± 0.0204 0.9110 ± 0.0197

Dataset 2 0.9562 ± 0.0107 0.9692 ± 0.0064 0.9708 ± 0.0062

AUPR
Dataset 1 0.9067 ± 0.0244 0.9082 ± 0.0215 0.9166 ± 0.0203

Dataset 2 0.9611 ± 0.0102 0.9728 ± 0.0061 0.9743 ± 0.0058

The bold value denotes the best performance.

FIGURE 2
The AUC and AUPR values of five LDA prediction methods under CV1.
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FIGURE 3
The AUC and AUPR values of five LDA prediction methods under CV2.

FIGURE 4
The AUC and AUPR values of five LDA prediction methods under CV3.
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3.3 Comparison of LDAenDL with individual
models

To measure the effect of the ensemble algorithm on LDA
prediction performance, we compared LDAenDL with two
individual models, DNN, and LightGBM. Tables 4–6 show the
precision, recall, accuracy, F1-score, AUC, and AUPR of the
DNN, LightGBM, and LDAenDL under CV1, CV2, and CV3,
respectively.

Under CV1, as shown in Table 4, LDAenDL outperformed
the DNN and LightGBM on two LDA datasets for the majority of
conditions. LDAenDL computed the best accuracy and F1-score
on the two datasets. Although LDAenDL computed slightly lower
AUC value than the DNN on dataset 1, and still slightly lower
AUC than LightGBM on dataset 2, their differences were very
small. For example, the DNN computed an AUC of 0.8712 while
LDAenDL computed 0.8701 on dataset 1, and the DNN
calculated an AUC of 0.9497 while LDAenDL calculated
0.9490 on dataset 2. LDAenDL obtained the best AUPR on
dataset 1, and LightGBM obtained an AUPR of 0.9586 while
LDAenDL obtained an AUPR of 0.9582.

Under CV2, as shown in Table 5, LDAenDL outperformed the
DNN under all conditions on two LDA datasets. Recall, accuracy,

TABLE 7 The predicted top 20 lncRNA biomarkers for lung cancer in each of the two datasets.

Dataset 1 Dataset 2

Rank lncRNA Evidence Rank lncRNA Evidence

1 TUG1 27485439, 31532756 1 TUG1 27485439, 31532756

2 CRNDE 28550688, 30982057 2 DLEU2 31721438

3 DANCR 30535487, 32196604 3 WT1-AS 32349718

4 MIAT 29795987 4 CRNDE 28550688, 30982057

5 NPTN-IT1 27896272, 29416684 5 DANCR 30535487, 32196604

6 HNF1A-AS1 25863539 6 SNHG11 32239719

7 LINC00032 Unconfirmed 7 IFNG-AS1 Unconfirmed

8 WT1-AS 32349718 8 HULC 30575912

9 CBR3-AS1 32945466 9 XIST 29812958

10 HULC 30575912 10 PCA3 Unconfirmed

11 CCDC26 Unconfirmed 11 SRA1 Unconfirmed

12 SNHG3 31602642 12 HAR1A Unconfirmed

13 PVT1 27904703 13 DSCAM-AS1 32280246

14 BCAR4 28537678 14 NPTN-IT1 27896272, 29416684

15 PTENP1 32698750 15 TCL6 Unconfirmed

16 RMST Unconfirmed 16 PTENP1 32698750

17 LSINCT5 20214974 17 PANDAR 28121347

18 MIR155HG 32432745 18 TDRG1 31742752

19 BOK-AS1 Unconfirmed 19 KCNQ1OT1 31486494

20 KCNQ1OT1 31486494 20 IGF2-AS 28471495

FIGURE 5
The top 20 predicted lncRNA biomarkers for lung cancer in each of
the two datasets (The repeated lncRNAs in the two datasets have been
removed). This figure was drawn using Cytoscape (Shannon et al., 2003).
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and F1-score computed by LightGBM were slightly better than
LDAenDL on the two datasets. But it calculated the best AUC
and AUPR on dataset 1.

Under CV3, as shown in Table 6, LDAenDL computed the
highest precision, recall, accuracy, F1-score, AUC, and AUPR on
the two LDA datasets except that it computed a slightly lower
recall on dataset 1. The results demonstrate that LDAenDL is
appropriate to predict possible LDAs from unknown lncRNA-
disease pairs.

3.4 Case study

3.4.1 Identifying possible lncRNA biomarkers for
lung cancer

Lung cancer is one of the most prevalent causes of mortality
globally. It mainly contains small cell lung cancer and non-small
cell lung cancer. Targeted drug therapy is its one therapeutic
option (Lahiri et al., 2023). We used the proposed LDAenDL
method to predict possible lncRNA biomarkers for lung cancer.
Table 7 shows the predicted top 20 lncRNA biomarkers for lung
cancer. The 20 lncRNA biomarkers associated with lung cancer
have no known association information with lung cancer in the
two datasets.

In dataset 1, LDAenDL predicted that CCDC26 could be
associated with lung cancer. CCDC26 can enhance thyroid
cancer malignant progression (Ma et al., 2021). It promotes
imatinib resistance in human gastrointestinal stromal tumors
(Yan et al., 2019). Its inhibition could increase the sensitivity of
doxorubicin in MDR-CML cells (Liu et al., 2021b). In this study, we
predicted that CCDC26 could be associated with lung cancer in
dataset 1.

In dataset 2, LDAenDL predicted that IFNG-AS1 could be
associated with lung cancer. IFNG-AS1 has been reported in
long-lasting memory T cells (Castellucci et al., 2021). It can
boost interferon gamma generation in human natural killer cells
(Stein et al., 2019). We identified that IFNG-AS1 could be associated
with lung cancer in Dataset 2.

Figure 5 shows the top 20 predicted lncRNAs associated with lung
cancer in each of the two datasets. Yellow solid lines and blue solid lines
denote lncRNA-lung cancer associations confirmed by the literatures
among the predicted top 20 associations on datasets 1 and 2,
respectively. Grey solid lines denote the predicted and co-occurring
lncRNA-lung cancer associations that can be confirmed by the
literatures in the two datasets, and grey dashed lines denote the
predicted and unconfirmed lncRNA-lung cancer associations in the
two datasets. The repeated lncRNAs in the two datasets have been
removed.

TABLE 8 The top 20 predicted lncRNA biomarkers for neuroblastoma in each of the two datasets.

Dataset 1 Dataset 2

Rank lncRNA Evidence Rank lncRNA Evidence

1 HOTAIR Unconfirmed 1 BDNF-AS Unconfirmed

2 HNF1A-AS1 Unconfirmed 2 SNHG4 32614236

3 CDKN2B-AS1 Unconfirmed 3 BANCR Unconfirmed

4 GAS5 28035057 4 HAR1A Unconfirmed

5 CCAT1 Unconfirmed 5 HCP5 33189302

6 TUG1 Unconfirmed 6 TUG1 Unconfirmed

7 UCA1 Unconfirmed 7 HOTAIR Unconfirmed

8 CRNDE Unconfirmed 8 SRA1 Unconfirmed

9 WT1-AS Unconfirmed 9 TERC Unconfirmed

10 BANCR Unconfirmed 10 SPRY4-IT1 Unconfirmed

11 WRAP53 Unconfirmed 11 KCNQ1OT1 31433907

12 SPRY4-IT1 Unconfirmed 12 IGF2-AS 30914706

13 CCAT2 33475889 13 PTENP1 Unconfirmed

14 CCDC26 Unconfirmed 14 CCAT1 Unconfirmed

15 PVT1 Unconfirmed 15 PCAT1 Unconfirmed

16 HULC Unconfirmed 16 NPTN-IT1 Unconfirmed

17 CASC2 Unconfirmed 17 DGCR5 Unconfirmed

18 DANCR 34050113 18 HULC Unconfirmed

19 KCNQ1OT1 31433907 19 BOK-AS1 Unconfirmed

20 7SK Unconfirmed 20 BCYRN1 Unconfirmed
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3.4.2 Identifying possible lncRNAs associated with
PDL1 for lung cancer

Recent advances in lung cancer treatment have demonstrated
significant responses in patients when they were treated with
programmed death-1/programmed death-ligand 1 (PD-1/PD-L1)
checkpoint blockade immunotherapies (Lahiri et al., 2023). To find
possible lncRNAs associated with PDL1 for lung cancer, inspired by
LPI-DLDN proposed by Peng et al. (2022a), we first downloaded the
sequence of PDL1 from the UniProt database. Next, we extracted the
biological features of PDL1 and depicted PDL1 as a 10,029-dimensional
vector using BioTriangle. Finally, we used cosine similarity to compute
the similarities between PDL1 and the other proteins in a lncRNA-
protein interaction dataset (Li et al., 2015) and found the top 3 proteins
with the highest interaction probabilities with PDL1. The results show
that SNHG3 has a higher interaction probability with PDL1 and has
been reported to be associated with lung cancer.

3.4.3 Identifying possible lncRNA biomarkers for
neuroblastoma

Neuroblastoma is the most frequent pediatric solid tumor and
accounts for approximately 15% of childhood cancer-related
mortality (Zafar et al., 2021). We used the proposed LDAenDL
method to identify possible lncRNA biomarkers for neuroblastoma.
Table 8 shows the top 20 predicted lncRNA biomarkers for
neuroblastoma in each of the two datasets. The repeated
lncRNAs in the two datasets have been removed.

In dataset 1, we predicted that HOTAIR could be associated with
neuroblastoma with the highest probability. HOTAIR is a novel oncogenic
biomarker in human cancer (Rajagopal et al., 2020). Its knockdown can
promote radiosensitivity in colorectal cancer (Liu et al., 2020). It also can
enhance the carcinogenesis of gastric (Zhang et al., 2020). We identified
that HOTAIR may be one biomarker of neuroblastoma in dataset 1.

In dataset 2, we predicted that BDNF-AS could be associated
with neuroblastoma with the highest probability. PABPC1-induced
stabilization of BDNF-AS helps the inhibition of malignant
progression in glioblastoma cells (Su et al., 2020). It can regulate
the miR-9-5p/BACE1 pathway that affects neurotoxicity in
Alzheimer’s disease (Ding et al., 2022). We identified that BDNF-
AS is a possible biomarker of neuroblastoma in dataset 2.

Figure 6 shows the top 20 predicted lncRNAs associated with
neuroblastoma in each of the two datasets. Yellow solid lines and
blue solid lines denote lncRNA-neuroblastoma associations
confirmed by the literatures among the predicted top 20
associations on datasets 1 and 2, respectively. Grey solid lines
denote the predicted and co-occurring lncRNA-neuroblastoma
associations that can be confirmed by the literatures in the two
datasets, and grey dashed lines denote the predicted and
unconfirmed lncRNA-neuroblastoma associations in the two
datasets. The repeated lncRNAs in the two datasets have been
removed.

4 Conclusion

Lung cancer and neuroblastoma are two human diseases that
severely affect the human body. Detecting new biomarkers for
them contributes to their diagnosis and therapy. Experimental
biomarker identification methods are costly and laborious. Thus,
we developed a machine learning-based method named
LDAenDL to predict possible lncRNA biomarkers for the two
diseases based on an ensemble of a deep neural network and
LightGBM. LDAenDL first computed lncRNA similarity and
disease similarity and then combined a GCN, GAT, and CNN
to learn the biological features of lncRNAs and diseases. Finally,
these features were fed to a DNN and LightGBM to find
new LDAs.

LDAenDL was compared with the other four classical LDA
prediction methods (i.e., SDLDA, LDNFSGB, IPCAF, and LDASR).
The results showed that LDAenDL computed the best AUCs and
AUPRs under three cross-validations on two LDA datasets,
demonstrating the optimal LDA prediction performance of
LDAenDL. We further identified possible lncRNA biomarkers for
lung cancer and neuroblastoma. The results demonstrated that
CCDC26 and IFNG-AS1 may be new biomarkers for lung
cancer, SNHG3 may be associated with PDL1 for lung cancer,
and HOTAIR and BDNF-AS may be potential biomarkers for
neuroblastoma.

In the future, we will combine data from multiple sources, for
example, miRNA, circRNA, and drugs, to improve LDA identification
performance. We will also design a new deep-learning model to
efficiently extract the biological features of lncRNAs and diseases for
LDA prediction. We hope that the proposed LDAenDL can help the
development of targeted therapies for these two diseases.
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FIGURE 6
The top 20 predicted lncRNA biomarkers for neuroblastoma in
each of the two datasets. (The repeated lncRNAs in the two datasets
have been removed). This figurewas drawn using Cytoscape (Shannon
et al., 2003).
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Esophageal carcinoma ranks as the sixth leading cause of cancer-related mortality
globally, with esophageal squamous cell carcinoma (ESCC) being particularly
prevalent among Asian populations. Alternative splicing (AS) plays a pivotal role in
ESCC development and progression by generating diverse transcript isoforms.
However, the current landscape lacks a specialized database focusing on
alternative splicing events (ASEs) derived from a large number of ESCC cases.
Additionally, most existing AS databases overlook the contribution of long non-
coding RNAs (lncRNAs) in ESCC molecular mechanisms, predominantly focusing on
mRNA-based ASE identification. To address these limitations, we deployed DASES
(http://www.hxdsjzx.cn/DASES). Employing a combination of publicly available and
in-house ESCC RNA-seq datasets, our extensive analysis of 346 samples, with 93%
being paired tumor and adjacent non-tumor tissues, led to the identification of
257 novel lncRNAs in esophageal squamous cell carcinoma. Leveraging a paired
comparison of tumor and adjacent normal tissues, DASES identified 59,094 ASEs that
may be associated with ESCC. DASES fills a critical gap by providing comprehensive
insights into ASEs in ESCC, encompassing lncRNAs and mRNA, thus facilitating a
deeper understanding of ESCC molecular mechanisms and serving as a valuable
resource for ESCC research communities.

KEYWORDS

esophageal squamous cell carcinoma, alternative splicing, database, novel lncRNA,
isoform

1 Introduction

Esophageal carcinoma (EC), a type of malignant tumor affecting the esophagus, is a major
global health concern with an estimated annual incidence of over 600,000 and mortality of over
500,000, making it the seventh most common malignant tumor and the sixth leading cause of
cancer-related death globally (Sung et al., 2021). There are significant regional differences in the
incidence of EC, which can be divided into esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EAC), according to the pathological type, with nearly 79% of ESCC
occurring in Asian countries (Morgan et al., 2022). Although the incidence of ESCC has shown a
decreasing trend in certain countries (Liang et al., 2017), ESCC continues to be a pressing public
health issue on account of its increased fatality rate (Abnet et al., 2018).Majority of ESCC patients
present at an advanced stage during medical consultation, and conventional surgical
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interventions often exhibit suboptimal effectiveness or even fail to
achieve a radical resection in some cases (He et al., 2022; Pape et al.,
2022), with a 5-year survival rate of less than 30% (Allemani et al., 2018).
As tumor molecular biology and immune escape mechanisms are more
thoroughly studied, a growing number of targeted and immune drugs
are being investigated as potential treatments to prolong the survival
time of patients with ESCC (Kojima et al., 2020; Costoya and Arce,
2023).

Alternative splicing (AS) is a post-transcriptional regulatory
process that generates various RNA isoforms by employing
diverse splicing patterns, thereby playing a pivotal role in
regulating protein production, especially during developmental
and differentiation processes (Yang et al., 2016; Bonnal et al.,
2020). When AS is not properly regulated, it can result in the
production of oncogenic isoforms, which can contribute to the
growth and progression of tumors (Zhang et al., 2021). ESCC
patients exhibit a high frequency of alternative splicing events
(ASEs), which are associated with tumor initiation, progression,
invasion, and immune evasion (Dlamini et al., 2021;Wu et al., 2021).
Meanwhile, AS has potential importance in the treatment of ESCC,
and several studies suggest that intervention in AS can enhance the
sensitivity of ESCC cells to chemotherapy drugs (Siegfried and
Karni, 2018; Sciarrillo et al., 2020). Additionally, AS has been
shown to impact the efficacy of immunotherapy for ESCC by
influencing the expression and presentation of tumor antigens,
ultimately affecting the recognition and attack of tumor cells by
immune cells (Duan et al., 2021; Wu et al., 2021). Thus, AS has
important implications and value for a deeper understanding of the
molecular mechanisms of ESCC and the development of therapeutic
and immunotherapeutic strategies.

Currently, several databases are available that encompass ASEs,
including some that cover ESCC, such as TCGASpliceSeq (Deng
et al., 2021) and OncoSplicing (Zhang et al., 2022), developed based
on data from The Cancer Genome Atlas (TCGA) (Tomczak et al.,
2015). However, despite the inclusion of multiple cancer types, the
number of ESCC cases in these databases is limited, with only
96 cases available (Yang et al., 2023). Furthermore, most of these
databases primarily rely on oligo dT and poly A sequencing
techniques, focusing on AS identification in protein-coding genes,
with limited attention given to AS events involving long non-coding
RNAs (lncRNAs). In contrast, although ESCC-specific databases,
such as ESCCdb (Yang et al., 2023) and CCGD-ESCC (Peng et al.,
2018), encompass a larger number of cases, they lack the specific
annotation of ASEs. Considering the significant relationship
between lncRNA expression and ESCC development and
progression (Li et al., 2019b; Razavi and Ghorbian, 2019;
Sadeghpour and Ghorbian, 2019; Aalijahan and Ghorbian, 2020;
Liu et al., 2020; Ghasemzadeh and Ghorbian, 2023) and the absence
of specialized AS-related databases for ESCC, we developed the
Database of Alternative Splicing for Esophageal Squamous cell
carcinoma (DASES) (http://www.hxdsjzx.cn/DASES), which
utilizes two main sets of data. The first set consists of our in-
house total transcriptome sequencing data, derived from ESCC
patients at the West China Hospital of Sichuan University. The
second set is total transcriptome sequencing data from 11 published
projects related to ESCC. Through the integration of known
transcripts, the identification of novel lncRNAs, and the paired
comparison of isoforms between tumor and adjacent normal tissues,

DASES provides a comprehensive and precise catalog of ASEs in
ESCC, filling a critical gap in the field and offering a valuable
resource for ESCC research communities.

2 Materials and methods

2.1 Data collection

DASES contains raw data from two sources. The first source
includes total RNA sequencing data on both tumor and adjacent
normal tissues from 63 ESCC patients in West China Hospital of
Sichuan University. The second source includes publicly available
total RNA sequencing data on ESCC patients from the European
Bioinformatics Institute (EBI). To ensure high-quality data, we
employed strict search criteria to select suitable samples from EBI
(Figure 1): 1) the samples were obtained from human ESCC
tissues; 2) the data included RNA sequencing; and 3) the data
had sufficient information available. We excluded the cell line
RNA-seq data, RNA-seq data from esophageal adenocarcinoma or
other parts of the esophagus, and any data without sufficient
information. It is essential to emphasize that the included
datasets were not specifically targeted or enriched for circular
RNA (circRNA) or small RNA during the sequencing and library
preparation processes.

2.2 Data quality control and lncRNA
identification

In this study, we used a series of bioinformatics tools to identify
potential lncRNAs and mRNAs associated with ESCC (Figure 2).
First, the raw reads obtained from RNA-seq were subjected to
quality control using Trim Galore software (version 0.6.4; https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore) to
obtain clean reads. Then, we used STAR (version 2.7.3a) (Dobin
et al., 2013) and HISAT2 software programs (version 2.2.1) (Kim
et al., 2019) for sequence alignment of the clean data, resulting in the
generation of BAM and SAM files for each sample, respectively.
Next, we used Cufflinks (version 2.2.0) (Trapnell et al., 2010) and
StringTie software programs (version 2.1.4) (Pertea et al., 2015) to
assemble the BAM and SAM files, respectively, generating GTF files
for each sample. We then used StringTie software to merge all the
assembled GTF files, obtaining a preliminary merged GTF file.
Subsequently, we utilized GffCompare software (version 0.12.2)
(Pertea and Pertea, 2020) and reference transcripts to identify
potential lncRNAs and mRNAs. We selected transcripts with
class code “i” or “u” as potential lncRNA candidates and those
with class code “=,” “c,” or “j” as mRNA candidates. Finally, we
predicted the lncRNA candidates using CPAT (version 3.0.2) (Wang
et al., 2013) and PLEK software programs (version 1.2) (Li et al.,
2014), and selected those predicted as non-coding RNAs by both
tools as lncRNA candidates. We merged the lncRNA and mRNA
candidates to generate a comprehensive GTF file containing all
potential lncRNA and mRNA candidates associated with ESCC. All
the analyses were conducted using the human genome hg38 (release
84) reference provided by Ensembl (https://ensembl.org/Homo_
sapiens/Info/Index).
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2.3 Alternative splicing event identification

ASEs can manifest in different ways, including skipping an exon
(SE), including or excluding a mutually exclusive exon (MXE), using
alternative 5′ or 3′ splice sites (A5SS or A3SS), or retaining an intron
(RI). To determine the occurrence of ASEs, we compared two
different transcript isoforms derived from the same gene.
Specifically, we performed paired comparisons between tumor
and adjacent normal groups. In these comparisons, we assigned
the term “included isoform” to the isoform containing exons when
comparing two transcripts. Conversely, the isoform lacking exons
was referred to as the “excluded isoform.” The designation of the
“included isoform” was based on having a shorter intron length,
whereas the “excluded isoform” had a longer intron length
(Figure 3). By comparing the splice junctions and exon–intron
boundaries between these two isoforms, we identified and
quantified the specific ASEs present in the transcriptome.

To comprehensively identify ASEs associated with ESCC, we
employed rMATS software (version 3.1.0) (Shen et al., 2014) with a
stringent splicing difference cutoff of 0.0001. Given the publicly
available data literature reports, which indicated that all the whole-
transcriptome data utilized dUTP-based library construction
techniques, we considered the fr-firststrand library type during the
analysis of aligned reads in BAM format. By comparing exon inclusion
levels between tumor and adjacent normal groups, we detected
differential ESCC-related ASEs. We only retained ASEs with a
percent spliced in (PSI) (Katz et al., 2010) value greater than 0 and
that were present in at least two samples. The results of splicing with
only reads that span splicing junction based on GTF files were selected
as the ESCC-related ASEs. Furthermore, to establish the coordinates of
ASEs, we considered that each ASE comprises two transcript isoforms,
with each isoform potentially containing 0–2 introns. In order to define
the boundaries of ASE, we determined the minimum coordinate of the

intron within the event as the starting coordinate and the maximum
coordinate of the intron as the ending coordinate.

2.4 Expression quantitative analysis

For quantitative analysis of the RNA-seq data, we employed the
merged GTF file as the reference annotation. The BAM files,
generated from the alignment step, were subjected to subsequent
analysis using Cuffnorm (version 2.2.0), which is a part of Cufflinks
software. This tool allowed us to estimate the expression levels of
individual isoforms, providing fragments per kilobase of transcript
per million mapped reads (FPKM) values.

2.5 Potential affected the protein domain by
alternative splicing

To assess the potential overlap between ASEs and protein domains,
we adopted a conservative approach. We focused only on the known
protein domains that intersected with ASEs, disregarding the predictions
from various tools. Initially, we retrieved protein domain information
from the Ensembl database, specifically focusing on the hg38 version of
protein domain annotations (release 109), which includes InterPro
coordinates, associated transcripts, and corresponding genes. We then
mapped the InterPro coordinates onto genomic coordinates using
appropriate alignment algorithms as follows:

Startgenomic � StartCDS + 3 × StartInterPro − 3,

Endgenomic � StartCDS + 3 × EndInterPro − 1,

where Startgenomic and Endgenomic represent the start and end sites of
the protein domain on the genome, respectively, StartCDS refers to

FIGURE 1
Overview of the screening and inclusion criteria for ESCC patient transcriptome data in the study.
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the first CDS start site of the corresponding transcript, and
StartInterPro and EndInterPro indicate the start and end sites of the
protein domain on InterPro coordinates, respectively. Subsequently,
we scrutinized whether there was any intersection or overlap
between the genomic coordinates of protein domains and
genomic coordinates of ASEs. In the cases where a protein
domain exhibited any intersection or overlap with an ASE, we
deemed it as having a significant overlap with the respective ASE.

2.6 Deployment of DASES

DASES is readily accessible through its website at http://www.
hxdsjzx.cn/DASES, and no registration or login is required for usage.
The current version of DASES was deployed utilizing MySQL
(version 8.0.18) (http://www.mysql.com) and operates on a
Linux-based Aliyun web server. Server-side scripting was
implemented using Tomcat (version 8.0) (http://tomcat.apache.
org/) and JAVA (version 1.8) (https://www.oracle.com/
technetwork/java/index.html), providing the necessary

functionality. The user-friendly web interface of DASES was
created using Bootstrap (version 3.3.7) (https://v3.bootcss.com)
and jQuery (version 2.1.1) (http://jquery.com) for seamless
interaction and enhanced user experience. Genomic visualization
capabilities were achieved using JBrowse (http://jbrowse.org) and
IGV (https://igv.org), while additional visualizations were facilitated
by ECharts (https://echarts.apache.org/zh/index.html). The web
interface of DASES comprises various modules, including Home,
Search, Browse, Genome Browser, Download, and About, ensuring
comprehensive and intuitive access to the platform’s features and
information.

3 Results

3.1 Data and database overview

Following the application of quality control measures, a total of
14 patients, corresponding to 28 samples, were eliminated from the
dataset. Currently, DASES encompasses data from the in-house

FIGURE 2
Workflow for the identification of lncRNAs. The left panel represents each step of the identification process, while the right panel includes the tools
used and the types of input and output files for each step.
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study and 11 publicly available studies (Table 1), comprising a total
of 346 samples, with 185 distinct ESCC patients represented. We
identified 257 novel lncRNAs (Figure 4A) and a total of 59,094 ASEs

by using a tumor versus adjacent normal strategy, with
31,777 belonging to SE, 7,546 utilizing A5SS, 9,279 utilizing
A3SS, 2,653 involving MXE, and 7,839 RI (Figure 4B).

FIGURE 3
Classification of alternative splicing events.

TABLE 1 Information on whole-transcriptome data in ESCC patients from one in-house study and 11 publicly available studies.

Study
accession

Number of samples (tumor:
adjacent)a

Geographic
position

Layout Sequencing
library

Data accession

PRJCA017448 64:63 China Paired dUTP https://ngdc.cncb.ac.cn/search/?dbId=
hra&q=PRJCA017448

PRJNA793370 3:3 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
793370

PRJNA843947 6:6 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
843947

PRJNA784605 4:4 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
784605

PRJNA665149 18:18 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
665149

PRJNA689307 8:8 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
689307

PRJNA629358 10:10 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
629358

PRJNA594797 3:3 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
594797

PRJNA608223 0:25 Kazakhstan Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
608223

PRJNA533799 23:23 Korea Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
533799

PRJNA435587 7:7 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
435587

PRJNA298963 15:15 China Paired dUTP https://www.ncbi.nlm.nih.gov/bioproject/
298963

aThe number of samples on tumor tissues versus the number of samples on adjacent normal tissues for ESCC patients in each study.
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To facilitate easy access and utilization of the database, we
designed a user-friendly web interface featuring various modules.
The Home page provides users with a concise overview of DASES,
accompanied by illustrative diagrams showcasing the five major
types of ASEs (Figure 5A). The Search page offers four different
search options, namely, gene, transcript, ASE ID, and genomic
region, facilitating easy and efficient data retrieval (Figure 5B).
The Browse page provides a comprehensive list of all ASE IDs,
allowing users to narrow down their queries by applying filters based
on the ASE type or study name (Figure 5C). The Genome Browser
page enables users to visualize the genomic regions associated with
ASEs (Figure 5D). The Download page offers convenient access to
essential files, including processed GTF file and ASE-related data,
which can be downloaded for further analysis (Figure 5E). Lastly, the
About page serves as a valuable resource, providing a detailed
pipeline overview of the entire database, along with
comprehensive explanations of important interface features,
including headers and abbreviations for primary tables, enabling
users to fully comprehend and navigate the database with ease.

3.2 Diversified search strategies

In DASES, we present a comprehensive search system
comprising four dimensions (Figure 5B). The first dimension
allows users to conduct searches based on the gene ID or gene
name, thereby retrieving pertinent gene information alongside
details concerning gene-associated ASEs. By employing the
second dimension, users can search using the transcript ID,
obtaining transcript-specific information, expression levels across
samples, and insights into transcript-associated ASEs. The third
dimension facilitates searches based on the ASE ID, yielding ASE-
related details, including the exon junction count (EJC), intron
junction count (IJC), and PSI values. Finally, the fourth
dimension empowers users to search by genomic coordinates,

resulting in the retrieval of ASE information specific to
designated genomic loci.

3.3 Genome Browser visualization

The Genome Browser in DASES comprises two distinct sections.
The first section facilitates the visualization of all ASEs (Figure 5D).
Within the Genome Browser page, users can utilize diverse tracks to
filter ASEs based on specific criteria, including ASE types and
chromosome numbers. They also have the option to display or
conceal tracks associated with ASEs, transcripts, genes, and protein
domains. The second section is accessible via the Search page
(Figure 5F). When users conduct searches for genes, transcripts,
or specific ASEs, the pertinent information is presented visually on
the Genome Browser. This seamless integration of search results
with the Genome Browser offers users a contextual perspective on
the genomic location of these elements.

3.4 Significant association between ESCC
TNM staging and ASE frequency

ASEs have been closely linked to tumorigenesis and cancer
progression. To investigate whether the frequency of ASEs
exhibits an association with TNM staging in ESCC, we
conducted a comprehensive analysis using data from DASES. As
shown in Supplementary Figures S1A, D, both the frequency of
genes undergoing alternative splicing (AS-gene frequency) and the
frequency of ASEs in genes exhibiting AS (ASE frequency) exhibited
a substantial increase within ESCC tissues when compared to
adjacent normal tissues. Furthermore, our analysis unveiled a
significant trend in the correlation between ESCC TNM staging
and AS-gene frequency (Supplementary Figures S1B, C), as well as
ASE frequency (Supplementary Figures S1E, F). These findings

FIGURE 4
Composition of the gene type and alternative splicing event type in DASES. (A) Distribution of gene biotypes, where “Others” comprise a
combination of transcribed unitary pseudogene, transcribed processed pseudogene, miRNA, TEC, unprocessed pseudogene, and IG C gene. (B)
Distribution of alternative splicing event types.
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underscore a compelling association between ESCC TNM staging
and the frequency of ASEs, suggesting their potential relevance in
the context of ESCC progression. The source of DASES facilitates
the exploration of these intricate relationships, providing a valuable
platform for future research in this field.

3.5 Consistency with literature findings for
COL6A3 in DASES

The expression of COL6A3 in both bulk esophageal tissue and
single esophageal tissue samples exhibited a relatively high level, as
evidenced by data obtained from the GTEx website (https://
gtexportal.org/home/). Utilizing the search interface of DASES,
we specifically queried COL6A3 (Figures 6A, B), leading to the
identification of four ASEs, i.e., three SE events and one RI event
(Figure 6C). Notably, our findings closely align with the
observations reported by Ding, who identified three SE-type
ASEs of COL6A3 from 11 samples in their study of ESCC tissues

(Ding et al., 2021). Intriguingly, in addition to the ASEs reported by
Ding, we discovered an additional RI-type ASE,
“DASRI00000001151” (chr2: 237342162–237344349), which was
not addressed by Ding. This discrepancy could be attributed to
our larger sample size, which enabled us to identify more COL6A3-
related ASEs. Importantly, we observed statistically significant
differences in the PSI values of these four ASEs between the
tumor and adjacent normal tissue groups, further highlighting
their potential significance in ESCC (Figure 6D). This robust
consistency between our findings and those of Ding provides
substantial evidence for the reliability of ESCC-related ASEs
documented within DASES, thereby reinforcing their validity
through corroboration with findings from other literature reports.

4 Discussion

In this study, we successfully constructed DASES. By integrating
publicly available RNA-seq from ESCC patient tissues, DASES

FIGURE 5
Overview of DASESmodule interfaces. (A)Home interface, (B) Search interface, (C) Browse interface, (D)Genome Browser, (E)Download interface,
and (F) Genome Browser after performing a search.
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provides a comprehensive resource for the identification and
exploration of ASEs potentially associated with ESCC. Moreover,
DASES stands out as the first specialized database dedicated to
ESCC-associated ASEs, addressing the existing gap in ESCC-specific
databases in the field of AS.

DASES employed a tumor versus adjacent normal strategy to
identify ESCC-associated ASEs, presenting several notable
advantages. First, by comparing samples within the same patient,
DASES effectively highlights splicing events that are highly likely to
be functionally relevant to the development and progression of
ESCC, which could reduce the confounding effects of individual
genetic variations or splicing differences that are unrelated to ESCC.
This strategy has been demonstrated to be effective in previous
studies (Xiong et al., 2015; Kahles et al., 2018). Moreover, in line with
other research conclusions, the approach enables the identification
of ESCC-specific ASEs that may serve as potential biomarkers or
therapeutic targets as they reflect the unique molecular
characteristics of ESCC (Kalsotra and Cooper, 2011; Sebestyén
et al., 2016). Furthermore, by comparing splicing patterns within
the same patient, DASES minimizes inter-individual variations and
provides a more robust assessment of the splicing changes
specifically related to ESCC, enhancing the reliability of the
identified ASEs in DASES. In a word, this approach allows for a
more effective, accurate, and reliable characterization of ESCC-
related AS.

DASES serves as a comprehensive resource that includes whole-
transcriptome data to investigate both known ASEs linked to ESCC

and novel lncRNAs, along with their associated ASEs that could
potentially be implicated in ESCC. The identification of novel
lncRNAs and their associated ASEs in ESCC holds great promise
for advancing our understanding of the disease. Several studies have
highlighted the importance of lncRNAs in cancer development and
progression, including ESCC (Chen et al., 2018). These long non-
coding RNAs regulate gene expression, modulate signaling pathways,
and contribute to the hallmarks of cancer (Huarte, 2015). Therefore,
the incorporation of lncRNA-associated ASEs in DASES provides
valuable insights into the regulatory complexity underlying ESCC.
Moreover, we offer a comprehensive GTF file that incorporates both
the known transcriptome information and the newly discovered
lncRNAs in DASES. This resource enables the in-depth
exploration of the expression patterns, functional implications, and
potential interactions of these newly identified lncRNAs in the context
of ESCC.

We recognize that ESCC is a multifactorial disease with various
pathogenic genes, including but not limited to TP53, NOTCH1,
CDKN2A, and COL6A3 (Gao et al., 2014; Li et al., 2019b; Liu et al.,
2022; Ko et al., 2023). Our Gene Ontology (GO) enrichment analysis
of differentially expressed genes highlighted “cell adhesion” as one of
the top-ranked GO terms closely linked to cancer, with COL6A3
being among the genes significantly associated with this GO term.
Given these factors, we selected COL6A3 as a representative gene for
demonstrating the utility of DASES. Our analysis of ASEs within
COL6A3 revealed intriguing findings. Although consistent with the
study conducted by Ding et al. (2021) on paired ESCC tissues for the

FIGURE 6
Consistency between DASES results and literature findings for COL6A3. This figure showcases the validation process of DASES by employing an
example search for the highly expressedCOL6A3 in esophageal tissue. (A) Process of searching forCOL6A3 using the search interface. The search results,
including relevant descriptions of COL6A3 in (B) and detailed information on the identified alternative splicing events that are related to COL6A3 in (C).
Discovery of associated alternative splicing events that are consistent with literature reports (Ding et al., 2021). (D) Disparity in percent spliced in
values for these four alternative splicing events between the tumor and adjacent normal tissue groups, as determined by the Mann–Whitney test.
*p-value < 0.05.
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most part, our dataset uncovered an additional RI-type ASE within
COL6A3 not reported by Ding et al. (2021). This discrepancy could
be attributed to our larger sample size, enabling us to capture more
ASEs. This novel finding highlights the value of our database in
complementing existing knowledge and uncovering potentially
clinically relevant splicing events. It also underscores the
significance of leveraging a comprehensive resource like DASES
to complement existing studies and expand our knowledge of this
complex disease.

It is important to acknowledge that DASES also has certain
limitations and areas that can be further improved. First, DASES
currently focuses exclusively on ESCC patient tissue data and lacks
representation from other species. However, human patient tissue
data remain valuable, and future versions will include data from
diverse organizations to broaden its scope. Second, DASES primarily
relies on whole-transcriptome data, neglecting other sequencing
data types. Integrating multiple omics data types can enhance our
understanding of ESCC mechanisms. Moreover, in evaluating the
impact of ASEs on proteins, we only considered instances where
ASEs occur directly within protein domains. However, there are
other ways in which proteins can be affected, such as a frameshift
occurring before a protein domain or ASEs occurring in scaffold
regions, which can influence their three-dimensional structure.
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SUPPLEMENTARY FIGURE S1
Relationship between the frequency of ASEs and ESCC TNM staging. AS-
gene frequency denotes the frequency of genes undergoing AS, while the
ASE frequency indicates the frequency of ASEs in genes exhibiting AS. (A,D)
show the statistically significant difference in the AS-gene frequency and ASE
frequency between tumor and adjacent normal tissues, as determined by
the Mann–Whitney test (*p-value < 0.05). (B,C) demonstrate the
statistically significant trends in the AS-gene frequency concerning ESCC T
staging and N staging, and (E,F) reveal the statistically significant trends in
the ASE frequency with respect to ESCC T staging and N staging, as
determined by the Cochran–Armitage trend test (#p-value < 0.05).
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