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Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, 
stroke, cancer, brain diseases) constitute a significant cause of rising healthcare 
costs and pose a significant burden on quality-of-life for many individuals. Despite 
the increased need for smart healthcare sensing systems that monitor / measure 
patients’ body balance, there is no coherent theory that facilitates the modeling of 
human physiological processes and the design and optimization of future healthcare 
cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s 
physiological state based on available continuous sensing, quantify risk indices 
corresponding to the onset of abnormality, signal the need for critical medical 
intervention in real-time by communicating patient’s medical information via a 
network from individual to hospital, and most importantly control (actuate) vital 
health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized 
homeostasis.

To prevent health complications, maintain good health and/or avoid fatal conditions 
calls for a cross-disciplinary approach to HCPS design where recent statistical-physics 
inspired discoveries done by collaborations between physicists and physicians are 
shared and enriched by applied mathematicians, control theorists and bioengineers. 
This critical and urgent multi-disciplinary approach has to unify the current state of 
knowledge and address the following fundamental challenges: One fundamental 
challenge is represented by the need to mine and understand the complexity of 
the structure and dynamics of the physiological systems in healthy homeostasis 
and associated with a disease (such as diabetes). Along the same lines, we need 
rigorous mathematical techniques for identifying the interactions between integrated 
physiologic systems and understanding their role within the overall networking 
architecture of healthy dynamics. Another fundamental challenge calls for a deeper 
understanding of stochastic feedback and variability in biological systems and 
physiological processes, in particular, and for deciphering their implications not 
only on how to mathematically characterize homeostasis, but also on defining new 
control strategies that are accounting for intra- and inter-patient specificity – a truly 
mathematical approach to personalized medicine.

Numerous recent studies have demonstrated that heart rate variability, blood glucose, 
neural signals and other interdependent physiological processes demonstrate 
fractal and non-stationary characteristics. Exploiting statistical physics concepts, 
numerous recent research studies demonstrated that healthy human physiological 
processes exhibit complex critical phenomena with deep implications for how 
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homeostasis should be defined and how control strategies should be developed 
when prolonged abnormal deviations are observed. In addition, several efforts have 
tried to connect these fractal characteristics with new optimal control strategies that 
implemented in medical devices such as pacemakers and artificial pancreas could 
improve the efficiency of medical therapies and the quality-of-life of patients but 
neglecting the overall networking architecture of human physiology. Consequently, 
rigorously analyzing the complexity and dynamics of physiological processes 
(e.g., blood glucose and its associated implications and interdependencies with 
other physiological processes) represents a fundamental step towards providing 
a quantifiable (mathematical) definition of homeostasis in the context of critical 
phenomena, understanding the onset of chronic diseases, predicting deviations 
from healthy homeostasis and developing new more efficient medical therapies that 
carefully account for the physiological complexity, intra- and inter-patient variability, 
rather than ignoring it.

This Research Topic aims to open a synergetic and timely effort between physicians, 
physicists, applied mathematicians, signal processing, bioengineering and biomedical 
experts to organize the state of knowledge in mining the complexity of physiological 
systems and their implications for constructing more accurate mathematical models 
and designing QoL-aware control strategies implemented in the new generation 
of HCPS devices. By bringing together multi-disciplinary researchers seeking to 
understand the many aspects of human physiology and its complexity, we aim 
at enabling a paradigm shift in designing future medical devices that translates 
mathematical characteristics in predictable mathematical models quantifying not 
only the degree of homeostasis, but also providing fundamentally new control 
strategies within the personalized medicine era.
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Editorial on the Research Topic

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological

Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated

Cyber-Physical Platforms

A fundamental problem in biology, physiology, and medicine is understanding how complexity in
the structure and dynamics of biological and physiological systems emerges from multicomponent
regulatory mechanisms, where non-linear feedback loops across scales lead to efficient homeostatic
control in the presence of continuous temporal variability in systems outputs. Addressing this
problem requires (i) comprehensive analyses of systems dynamics based on multifractal formalism
and methodology (Ivanov et al., 1999, 2001, 2002; Mukli et al., 2015) to probe feedback interactions
underlying biological and physiological systems by quantifying the temporal organization of
physiological fluctuations and their cascades across scales, and (ii) a general network physiology
framework (Bashan et al., 2012; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al.,
2016) to investigate networks of interactions among diverse physiological systems and subsystems
across space and time scales that lead to emergent complex behaviors at the organism level. An
entire new class of diagnostic and prognostic biomarkers has resulted from pioneering studies in
these new directions, especially needed now when witnessing a pandemic of chronic diseases (e.g.,
heart diseases, diabetes, and its complications, stroke, cancer, brain diseases) which constitute a
significant cause of rising healthcare costs and a reduced quality-of-life (QoL).

Despite the increased need for smart healthcare sensing systems that monitor patients’ body
balance, there is no coherent theory that facilitates the modeling of human physiological processes
and the design and optimization of future healthcare cyber-physical systems (HCPSs) (Bogdan and
Marculescu, 2011; Xue and Bogdan, 2017; Bogdan, 2019). The HCPSs are expected to measure and
mine the patient’s physiological state based on available continuous sensing, quantify risk indices
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corresponding to the onset of abnormality, signal the need for
critical medical intervention in real-time by communicating
patient’s medical information via a network from individual to
hospital, and most importantly control (actuate) vital health
signals (e.g., cardiac pacing, insulin level, blood pressure) within
personalized homeostasis.

To maintain good health, prevent health complications,
and/or avoid fatal conditions calls for a cross-disciplinary
approach to HCPS design that rely on recent advances in
statistical physics, non-linear dynamics, machine learning, and
artificial intelligence. There is a palpable need for a multi-
disciplinary approach to consolidate the current state of art in
order to respond to the following fundamental challenges. First
and foremost, the fundamental properties (e.g., non-stationarity,
fractality) of human physiology in terms of mathematical
formalism needs to be characterized in order to facilitate the
understanding of its complexity (West, 1991; Bassingthwaighte
et al., 1994; Stanley et al., 1999; Amaral et al., 2001; Eke et al.,
2002; Ivanov et al., 2009; Xue and Bogdan, 2019) in healthy
homeostasis, as well as in conditions associated with aging and
diseases (Mietus et al., 2000; Ashkenazy et al., 2001; Bernaola-
Galvan et al., 2001; Schulte-Frohlinde et al., 2001; Goldberger
et al., 2002; Schmitt and Ivanov, 2007).

Indeed, defining the trajectory of the healthy aging process
in terms of its complexity metrics (Goldberger et al., 2002)
seems essential to keep the health care system on target. At
this end, Mukli et al. demonstrated the utility of multifractal
metrics of cerebral hemodynamics as biomarkers of the healthy
aging process. In particular, these authors—by applying a novel
adaptive bimodal multifractal analysis (Mukli et al., 2015; Nagy
et al., 2017) to enhanced human cerebrocortical functional
Near Infrared Spectroscopy (fNIRS) data—disentangled the
neurogenic from vasogenic components in brain dynamics that
were then shown being attenuated in the course of healthy
aging. Racz et al. applied multifractal time series analysis (Mukli
et al., 2015) to investigate dynamic functional connectivity (DFC)
reconstructed from resting-state electroencephalography (EEG)
measurements. This work demonstrated that metrics of DFC
as captured in the temporal evolution of graph theoretical
measures—even under resting-state conditions—dynamically
fluctuated according to region-specific true multifractal temporal
patterns. Mono- and multifractal measures of the generalized
Hurst exponent for individual functional connections exhibited
a spatial pattern well in sink with the overall functional
organization of the brain. The authors propose that multifractal
analysis can provide further details in the description of DFC
to most methods currently applied in the field, and could
serve as a valuable tool for a better characterization of healthy
and pathological brain functions. Akhrif et al. performed an
adaptive monofractal analysis of functional magnetic resonance
(fMRI) data and estimated the Hurst exponent of the impulsivity
network. This study not only demonstrates that the Hurst
exponent can be used as a biomarker to quantify deviations in
network functions at early stages, but also serve as a control
knob in therapeutic strategies aimed at delaying the onset and
improving treatment of disorders. França et al. demonstrated that
multifractal analysis can provide important relevant information

for mining the intracranially recorded EEG data and extracting
features that can be used for machine learning-based diagnosis
outperforming other techniques like signal variance or power
spectrum. In particular, they demonstrated that there may
exist an optimal time scale between the sampling frequency
and epoch length that can best influence the detection
accuracy of temporal changes in multifractality associated
with epileptic seizures. While this study has identified that
multifractal algorithms perform well on EEG and simulated
data alike, it also brought attention to the issue of optimal
time scales at which machine learning-based diagnosis should
be done.

With the goal of mathematical characterization of blood
glucose variability, initially scrutinized in Ghorbani and Bogdan
(2013). Kohnert et al. provided a cross-sectional investigation
and compared the relationships between indices of non-linear
dynamics and traditional glycemic variability, as well as their
potential application in diabetes control. Although this analysis
showed that the Poincaré plot measures the multiscale entropy
(MSE) index, and the detrended fluctuation analysis exponents
can help to discriminate between the type 1 and type 2 diabetes
(e.g., theMSE index decreased consistently from the non-diabetic
to the type 1 diabetic group), it also highlighted the need to
develop more advanced complexity measures in order to better
characterize the glycemia. These fractal-based observations can
have a significant impact on the development of efficacious
artificial pancreas with increased patient’s QoL.

In order to extract the multifractal characteristics and
determine disease signatures, Reyes-Manzano et al. investigated
the multifractal behavior of the beat-to-beat heart dynamics
captured in RR-interval fluctuations in fibromyalgia patients
(FM) via the multifractal detrended fluctuation analysis
(Kantelhardt et al., 2002). The multifractal and non-linear
behavior exhibited a decrease in patients with fibromyalgia.
Consequently, this investigation not only highlights the role
of the dysfunctional autonomic control in the pathogenesis
of fibromyalgia, but it can also provide a theoretical and
algorithmic foundation for HCPS. With the goal of analyzing
the cardiac abnormalities observed in heart failure disease,
Platiša et al. exploited the short-term and long-term scaling
exponents obtained via the detrended fluctuation analysis
(DFA) (Peng et al., 1995; Hu et al., 2001; Chen et al., 2002,
2005; Xu et al., 2005; Ma et al., 2010) for discriminating the
deterioration in cardiac autonomic nervous system control.
Their study demonstrated that the heart failure patients
exhibited a more pronounced heart rate asymmetry and a
higher long-term scaling exponent. Moreover, a ratio between
the DFA short-term and long-term scaling exponents can
help at discriminating between various types of heart failure
disease states.

To provide a deeper understanding of atrial fibrillation
disease, Attuel et al. described a model of cardiac excitable
cell network which is capable to reproduce the experimentally
observed multifractal intermittent nature of the cardiac impulse
energy. In order to investigate the cardiac electrophysiological
and arrhythmogenic properties, Tse et al. studied the beat-to-
beat variability in action potential duration data and concluded
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that the atrial monophasic action potential recordings (MAPs)
exhibits greater degree of variability than the ventricular MAPs.
Along the same lines of exploiting non-linear metrics in various
disease states, Ghita et al. investigated the tissue heterogeneity
and dynamic non-linearity in respiratory impedance data and
quantified the sensitivity of the forced oscillation technique to
various degrees of obstruction in patients suffering from chronic
obstructive pulmonary disease (COPD). They showed that the
degree of non-linearity correlates well with various degrees
of COPD.

We need rigorous mathematical techniques and a general
theoretical framework to characterize the interactions between
integrated physiologic systems with different output dynamics
(Bartsch et al., 2012; Liu et al., 2015; Lin et al., 2016;
Ivanov et al., 2017), as well as other related processes (e.g.,
metabolic, proteomic, genomic), and understand their role
within the overall network physiology of healthy dynamics
(Ivanov et al., 2016). Along the lines of characterizing
the interactions across scales, Ghorbani et al. investigated
the individual gene expression dynamics and the cross-
dependency among genes and transcription factors in the
context of gene regulatory networks corresponding to Escherichia
coli and Saccharomyces cerevisiae bacteria. This initial study
demonstrated that the interaction between genes and linked
transcription factors exhibit multifractal and long-range cross-
correlated characteristics with implications for understanding
genome-level dynamics.

Finally, there is a fundamental need for deeper understanding
of the mechanisms of stochastic feedback and variability in
biological systems and physiological processes (Ivanov et al.,
1998; Ashkenazy et al., 2002; Lo et al., 2002). This is
essential for developing adequate approaches to mathematically
characterize homeostasis as well as for defining new control
strategies accounting for intra- and inter-patient specificity—
a truly mathematical approach to personalized medicine (Xue
and Bogdan, 2017; Bogdan, 2019; Yang and Bogdan, 2020).
For example, the multi-scale interactions and feedback among
cognitive events may play an essential role in information
processing in the prefrontal cortex (Racz et al., 2017). Hu et
al. demonstrated that the optimal performance of the working
memory is concurrent with the critical dynamics at the network
level and the excitatory and inhibitory balance at the neuron level.
Moreover, this study suggests the existence of a unified multi-
scale optimal state for the prefrontal cortex, which further can
be modulated by dopamine opening new therapeutic strategies
in HCPS.

The works presented in this Research Topic collection as
well as current advances in the field of fractal and multi-fractal
investigations of physiological systems structure and dynamics,
and their applications to homeostatic control, clinical diagnosis,
and the development of cyber-physical systems in healthcare
outline a new horizon of multidisciplinary cooperation with
new challenges. There is an urgent need for adopting a cross-
scale perspective and a corresponding theoretical framework to
investigate the multi-scale regulatory mechanisms underlying
the overall network physiology and its relation to physiological
states and functions emerging at the organism level in health and

disease. When dealing with the heterogeneity, multi-modality
and complexity of physiological processes, we need rigorous
mathematical and algorithmic techniques that can extract causal
interdependencies between systems across different scales while
overcoming various noise sources. For example, obtaining high-
frequency genomic and proteomic sensing data over large spatial
and temporal dimensions can open new frontiers and lead to
the discovery of basic laws of regulation with broad clinical
applications. Consequently, progress in this direction will require
new algorithmic strategies to quantify time-varying information
flow among diverse physiological processes across scales, and
determine how it influences the global dynamics of complex
physiological networks. Intrinsically related with future efforts
on quantifying causal dependencies and control principles in
biological and physiological networks, it will be essential to
develop robust optimization algorithms capable to reconstruct
or infer the structure and dynamics of complex interdependent
networks while overcoming partial observability, noise induced
defects and adversarial interventions caused by bacterial or viral
infections. Lastly, the biomedical and engineering communities
need to develop new control methodologies that do not seek to
only enforce a specific reference value (that proved beneficial
for some patients), but rather ensure that the physiological
complexity and multifractality are restored to the healthy profiles
when abnormalities are detected—e.g., a mathematical strategy to
abstract the complexity of brain network through an approximate
transfer function and a new minimal control strategy allows
one to efficiently enforce a healthy fractal profile when frailty is
early detected.

Toward this end, with these challenges also unique
opportunities arise for interdisciplinary research. From
the interactions of statistical physics, non-linear dynamics,
information theory, probability and stochastic processes,
artificial intelligence, machine learning, control theory and
optimization, basic physiology and medicine new theoretical
and algorithmic foundations will emerge for mining, analyzing,
and controlling the network physiology. Ultimately, such
efforts would lead to a new class of network-physiology-derived
diagnostic and prognostic markers with innovative applications
in cyber-physical systems and clinical practice.
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Fluctuations in resting-state cerebral hemodynamics show scale-free behavior over two

distinct scaling ranges. Changes in such bimodal (multi) fractal pattern give insight to

altered cerebrovascular or neural function. Our main goal was to assess the distribution of

local scale-free properties characterizing cerebral hemodynamics and to disentangle the

influence of aging on these multifractal parameters. To this end, we obtained extended

resting-state records (N = 214) of oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and

total hemoglobin (HbT) concentration time series with continuous-wave near-infrared

spectroscopy technology from the brain cortex. 52 healthy volunteers were enrolled in

this study: 24 young (30.6± 8.2 years), and 28 elderly (60.5± 12.0 years) subjects. Using

screening tests on power-law, multifractal noise, and shuffled data sets we evaluated

the presence of true multifractal hemodynamics reflecting long-range correlation (LRC).

Subsequently, scaling-range adaptive bimodal signal summation conversion (SSC) was

performed based on standard deviation (σ) of signal windows across a range of temporal

scales (s). Building on moments of different order (q) of the measure, σ(s), multifractal

SSC yielded generalized Hurst exponent function, H(q), and singularity spectrum, D(h)

separately for a fast and slow component (the latter dominating the highest temporal

scales). Parameters were calculated reflecting the estimated measure at s = N (focus),

degree of LRC [Hurst exponent,H(2) andmaximal Hölder exponent, hmax] andmeasuring

strength of multifractality [full-width-half-maximum of D(h) and 1H15 = H(−15)−H(15)].

Correlation-based signal improvement (CBSI) enhanced our signal in terms of interpreting

changes due to neural activity or local/systemic hemodynamic influences. We

characterized the HbO-HbR relationship with the aid of fractal scale-wise correlation

coefficient, rσ (s) and SSC-based multifractal covariance analysis. In the majority of

subjects, cerebral hemodynamic fluctuations proved bimodal multifractal. In case

of slow component of raw HbT, hmax, and Ĥ(2) were lower in the young group

explained by a significantly increased rσ (s) among elderly at high temporal scales.

Regarding the fast component of CBSI-pretreated HbT and that of HbO-HbR covariance,
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hmax, and focus were decreased in the elderly group. These observations suggest an

attenuation of neurovascular coupling reflected by a decreased autocorrelation of the

neuronal component concomitant with an accompanying increased autocorrelation of

the non-neuronal component in the elderly group.

Keywords: aging, cerebral hemodynamics, neurovascular coupling, near-infrared spectroscopy (NIRS),

correlation-based signal improvement, multifractality, multifractal analysis, signal summation conversion

INTRODUCTION

Scale-free dynamics is an ubiquitous property of
physiological processes (West, 1991; Eke et al., 2000; Ivanov
et al., 2001) such as low frequency fluctuations of cerebral
hemodynamics (Fox and Raichle, 2007; Herman et al., 2009;
Pierro et al., 2012) and neural activity (Linkenkaer-Hansen
et al., 2001; Ivanov et al., 2009; He, 2014). Scale-free dynamics
is a hallmark of complexity viewed as an emergent property
of biological systems composed of numerous elements with a
network of stochastic (typically weak) connections amongst
them (Csermely, 2006). Several human studies investigated
the scale-free phenomenon of functional brain imaging signals
by using mono-(Eke and Hermán, 1999; Thurner et al., 2003;
Maxim et al., 2005; Eke et al., 2006; Khoa and Nakagawa, 2008;
Bullmore et al., 2009; He et al., 2010; He, 2011; Herman et al.,
2011) and multifractal analysis (Shimizu et al., 2004; Wink et al.,
2008; Ciuciu et al., 2012; Quang Dang Khoa and Van Toi, 2012).
Monofractal analysis reveals global, long-range correlation (LRC)
structuring in terms of the influence of past events in the process
on future ones (Bassingthwaighte et al., 1994; Eke et al., 2000,
2002). Multifractal analysis yields a distribution of fractality
measures (Barabási et al., 1991; Stanley et al., 1999; Kantelhardt
et al., 2002; Ihlen and Vereijken, 2010; Mukli et al., 2015) that
enables a more detailed characterization of local temporal scaling
behavior provided that fluctuations at wide range of temporal
scales are sufficiently represented in the sampled physiological
process (Eke et al., 2012). The estimation of these complexity
parameters is essentially based on a power-law model fitted to the
appropriate statistics of the data, which is reliable only if sample
size is large enough [at the order of hundreds, Eke et al., 2002;
Clauset et al., 2009]. Such statistics usually shows power-law
scaling—indicating LRC—within a bounded interval of temporal

Abbreviations: BOLD, blood oxygen level dependent; CBSI, correlation based

signal improvement; 1H15, the difference between the H(−15) and H(15) values;
f , measure describing the fast signal component dominating over the low-

frequency region; FMF, focus-based multifractal formalism (an approach using

focus-based regression scheme); fwhm, full-width of the singularity spectrum,

D(h), at half of its maximum; hmax, maximal Hölder exponent at which singularity

strength (D) is equal to 1; LRC, long-range correlation; Ns, number of non-

overlapping segments; PSD, power spectral density; rsNIRS, resting-state near-

infrared spectroscopy; rσ(s), scale-wise fractal correlation coefficient; s, measure

describing the slow signal component dominant over the lower scales; s’, scaling

boundary (possible breakpoint); XSσ (q, s), scaling function value at a given

moment order (q) and temporal scale (s), calculated from signal X, with σ as

measure; ln(X Ŝ(N)), the focus of the scaling function for signalX; SR, scaling range;

SSC, signal summation conversion (method); SSE, sum of squared error; v, the

order of non-overlapping segments v = 1, . . . , Ns; (V)LFO, (very) low-frequency

oscillation.

scales usually termed as scaling range (SR; Caccia et al., 1997). In
addition to the finite representation of the dynamics the lower
and upper boundary of SR are determined by the signal genesis
of the underlying physiological process. Nevertheless, numerous
examples of empirical data exhibit multiple SR indicating
multimodal scaling, see examples cited in Nagy et al. (2017).
Multimodality has also been of concern in case of cerebral
hemodynamics and typically present itself with two (case of
bimodality) or even more apparent SRs in which the statistical
measure of fractal analysis scales with a different exponent
(Nagy et al., 2017).

Application of a possible bimodal scale-free model on resting-
state hemodynamic signals requires a measurement technology,
which assures that the process is sampled at high enough rate
in long enough records. Near-infrared spectroscopy (NIRS)
is an emergent imaging technology which readily captures
cerebrocortical resting-state hemodynamic fluctuations at a cm
spatial resolution and at high sampling frequency with no
particular limitations on signal length (Jöbsis, 1977; Chance
et al., 2007; Fox and Raichle, 2007). In case of continuous wave
near-infrared spectroscopy (cwNIRS), the measured intensity
signals are determined by the relative tissue concentration
of total hemoglobin (HbT) and its constituents: oxy- and
deoxyhemoglobin (HbO and HbR, respectively; Cope et al.,
1988).

By now the physiological underpinnings of the functional
NIRS (fNIRS) signal has been elucidated (Jöbsis, 1977; Kocsis
et al., 2006a; Tachtsidis et al., 2008). As to its dynamics,
oscillations of cerebral hemodynamics has been characterized by
spectral analysis of NIRS signals (Elwell et al., 1999). Monofractal
pattern of NIRS spectral data was first reported by Eke and
Herman for the human brain cortex (Eke and Hermán, 1999).
Later, multifractal properties of fNIRS were also demonstrated
(Quang Dang Khoa and Van Toi, 2012). These pioneering reports
understandably focused on signal analysis and not making an
attempt to identify the underlying physiological mechanisms
shaping the observed complex patterns. As to the nature of
local hemodynamic fluctuations, they are primarily elicited by
neural activity via neurovascular coupling (NVC; Devor et al.,
2003; Drake and Iadecola, 2007) but the hemodynamic response
is also modulated by endothelial mechanism (Li et al., 2013;
Chen et al., 2014). In addition, systemic hemodynamic effects
should be considered (Yamada et al., 2012; Scholkmann et al.,
2014) for an enhanced interpretation of results obtained from
resting-state records from subjects with similar age. Apart
from non-biological noise and motion artifacts, resting-state
NIRS (rsNIRS) signal bears the fingerprint about systemic
hemodynamics such as cardiac cycle and respiration (Tian
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et al., 2009; Li et al., 2013). Separation of the functional and
the systemic components became of considerable interest and
various approaches have been developed to address this issue
(Scholkmann et al., 2014). Correlation between the fluctuations
of oxy- and deoxyhemoglobin concentration is the basis of
signal improvement presented by Cui et al. (2010) and the
technique proposed by Yamada et al. (2012). Under certain
assumptions—that usually hold in resting state, neural activity
renders the relationship between HbO and HbR fluctuations
more anticorrelated while fluctuations of systemic origin in the
resting state (Cui et al., 2010; Scholkmann et al., 2014) has a
correlated influence on hemoglobin chromophores.

The nonstationary fractal character of HbT (Eke et al., 2006)
implies that its constituents, HbO, and HbR, also exhibit non-
stationary dynamics. Consequently, their relationship should
be explored in terms of a non-stationary characterization of
correlation. Therefore, the HbO-HbR relationship was studied
with the aid of scale-wise fractal cross-correlation coefficient
and a novel adaptation of multifractal covariance analysis. The
former is essentially a measure applicable to nonstationary time
series building on the correlation of scale-wise mean variances
obtained separately for HbO and HbR signal (Podobnik and
Stanley, 2008; Zhou, 2008), while the latter is a multifractal
approach examining the scaling properties—and its moments of
various order—of HbO-HbR covariance similarly to the analyses
described in Refs (Kristoufek, 2011; Jiang et al., 2016; Zhao et al.,
2017).

It has been shown that aging (Goldberger et al., 2002; Lipsitz,
2003) and various diseases (Ivanov et al., 1999; Goldberger
et al., 2002; Maxim et al., 2005) affect complexity parameters
and the impact of other factors, such as gender (Ni et al.,
2014), have also been recognized. This study contributes to
this accumulating body of knowledge on the influence of aging
on the complexity of physiological processes. In general, the
contraction of homeodynamic space is an essential attribute
of an aging biological system meaning that the dynamics
of physiological processes in an elderly person is typically
confined to a restricted state space (Rattan, 2014). Taking the
cardiovascular system as an example the well-known dependence
of heart rate variability (Beckers et al., 2006; Vandeput et al.,
2012) on age can be attributed to a decline in autonomic
modulation (Nunes Amaral et al., 2001; Lipsitz, 2003; Tulppo
et al., 2005; Silva et al., 2017) reducing the adaptational
reserve of regulatory mechanisms (Goldberger et al., 2002).
Such reports on aging and altered complexity parameters are
typically based on demonstrating coincidences, while there is a
palpable need to establish a causal relationship for the changing
complexity.

Accordingly, our goal was to provide plausible explanation for
the physiological mechanism of observed age-related alterations
based on parameters of complexity obtained from measures of
brain hemodynamics captured by rsNIRS. Firstly, the measured
signals were evaluated for the presence of true LRC-type
multifractality. Multifractal parameters obtained for young
and elderly volunteers were compared to assess the impact
of aging on the complexity of cerebral hemodynamics. In
addition, we extended our analysis incorporating the oxy-

and deoxyhemoglobin signals in order to explore the age-
dependent alterations in their relationship. The influence of
age was characterized by exploring the strength of causal link
between these measures of the coupled fluctuations of oxy-
and deoxyhemoglobin and multifractal parameters of cerebral
hemodynamics.

METHODS

Extended records of fluctuating rsNIRS signals from the human
brain prefrontal cortex (PFC) analyzed for their multifractality in
this work have been collected in a previous study of the group
reporting on the monofractal serial correlation in these signals
(Eke et al., 2006).

Near Infrared Spectroscopy
According to the principle of cwNIRS, backscattered light
intensities were measured at wavelengths of 775, 830, 849, and
907 nm by a NIRO 500 Cerebral Oxygen Monitor (Hamamatsu
Photonics, Hersching, Germany), a single-channel instrument.
The mean penetration depth of near infrared photons for
the 4 cm interoptode distance of this device can be estimated
at approximately 2 cm (Firbank et al., 1998), thus our NIRS
optode sampled the brain cortex (Chance, 1994). Based on the
modified Beer-Lambert law (Kocsis et al., 2006b) the relative
tissue concentrations of HbO and HbR were calculated along
with HbT obtained as their sum. While the fluctuation of HbT
reflects on cerebral blood volume (CBV) dynamics, that of the
other two chromophores and their relationship are dependent on
oxygenation, too.

Data Collection
HbO, HbR, and HbT data were dumped via the RS232 port
of the NIRO instrument into a computer file at a rate of
2Hz. Extended records of HbO, HbR, and HbT samples
were created and processed for each subject in length of
N = 214 proven to be adequate for fractal analysis (Eke
et al., 2002). The source and detector fibers were secured
in a rubber pad. The optode was mounted just under the
hairline over the forehead. The cranium was shielded from
ambient light. Instrument noise was determined by placing
the optode over a slab of “mock” brain, whose scattering
(µs = 10.96 1/mm) and absorption (µa = 0.099 1/mm)
coefficients were matched to that of the human brain (courtesy of
Prof. Britton Chance, University of Pennsylvania, Philadelphia,
U.S.A.). The power of instrument noise was found negligible
when compared to the power of resting-state fluctuations in vivo
(Eke et al., 2006).

Subjects
Following approval by the Local Research Ethics Committee of
Semmelweis University and having obtained informed written
consent, 52 healthy volunteers with no neurological disorders
(28 women, 24 men) participated in the study. To evaluate the
effect of age and gender, subjects were assigned into groups of
young females (YF, n = 9, age<45 years), young males (YM,
n = 13, age<45 years) elderly females (EF, n = 19, age≥45
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years) and elderly males (EM, n= 10, age≥45 years). The rsNIRS
measurements were carried out in a comfortable sitting position
in a session slightly exceeding 2.5 h as previously described in
(Eke et al., 2006).

Data Preprocessing
Multifractal analyses were performed on raw signals and
following correlation-based signal improvement (CBSI;
Cui et al., 2010; Scholkmann et al., 2014), the latter
designed to remove correlated (systemic) influences
(e.g., head movement). Specifically, this preprocessing
step incorporate a standard deviation ratio of HbO and
HbR that is used in their subsequent linear combination
yielding: CBSIHbT = 1

2 ·
(
HbR−

(
Oσ (N)/Rσ (N)

)
·HbR

)
+ 1

2 ·(
HbO−

(
Rσ (N)/Oσ (N)

)
·HbO

)
. The improved HbT signal is

regarded as a representation of anticorrelated hemodynamics
attributable to local hemodynamic influences and oxygen
consumption accompanying neuronal activity.

Multifractal Analyses
Multifractal Scaling Analysis

Signal summation conversion (SSC) method
The multifractal scaling functions of HbT, HbO, and HbR were
calculated by the multifractal SSC method (Mukli et al., 2015) as
the basis of our approach to evaluate the multifractality of our
bimodal rsNIRS signals (Figure 1). For detailed description of
the MF-SSC method the reader is referred to Refs. (Mukli et al.,
2015; Nagy et al., 2017). Briefly, multifractal SSC uses a measure
depending on the temporal scale (s) of signal window—bridge-
detrended variance σ(s), see Ref. (Eke et al., 2000)—and a set of q-
order statistical moments, to create corresponding moment-wise
generalized variance profiles, Sσ (q, s) of Equation 1, spanning
across a range of temporal scales within the chosen analytical SR.

Sσ

(
q, s

)
=

[
1

Ns

Ns∑

v=1

µ
q
v(s)

]1/q

∝ sH(q) (1)

Specifically, 60 logarithmically spaced time scales were chosen
between smin = 16 and smax = 8192 for computing σv(s) in each
non-overlapping time window [v = 1, 2, ..., Ns = int(N/s)] of
cumulatively summed signal. The low temporal scales dominated
by fast fluctuations with weak, non-fractal autocorrelation (Eke
et al., 2006) were excluded and the fairly high scales (Nagy et al.,
2017) with well-manifested scale-free processes were secured.
The selected moment orders ranging from −15 to 15 were
adequate1 to capture both large- and small-variance dynamics
in a fluctuating rsNIRS signal; the former being emphasized by
variance profiles corresponding to positivemoments, the latter by
those corresponding to negative moments (Grech and Pamuła,
2012; Mukli et al., 2015). Please note that statistical estimates
obtained at q= 2 obey rules of linearity, while in fact, those for q6=
2 capture non-linearity in system dynamics (Gómez-Extremera
et al., 2016; Bernaola-Galván et al., 2017).

1q takes all integer values in this interval.

FIGURE 1 | Various representations of the measured NIRS signals. (A)

Resting-state raw NIRS signal components. (B) Variance profiles of different

signal components. (C) Variance profiles of HbT calculated at different set

cross-correlation levels. (D) Fractal correlation coefficient between HbO and

HbR as a function of scale. In this paper multifractal scaling function values are

actually given by Sσ (q, s) [or by Sσ (s) for q = 2], where the subscript σ refers

to the measure of the chosen multifractal method (SSC).

Relationship between variance profiles of hemoglobin

chromophores
Since HbT=HbO+HbR, it is the generalized Bienaymé formula
(Equation 2) which describes the relationship between their
variance profiles2: TSσ (2, s),

OSσ (2, s), and
RSσ (2, s) in an exact

form3 (Nagy et al., 2017).

2Different signal types (T –HbT; O –HbO; R –HbR; OR – relationship of oxy- and

deoxyhemoglobin) are indicated by a left superscript to the variable of multifractal

analysis.
3Note that the Bienaymé formula is not specific to fractal time series.

Frontiers in Physiology | www.frontiersin.org 4 August 2018 | Volume 9 | Article 107214

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mukli et al. Multifractal Cerebrocortical Hemodynamics and Aging

TSσ (2, s)
2
= OSσ (2, s)

2
+RSσ (2, s)

2
+2rσ (s)·OSσ (2, s) ·RSσ (2, s) .

(2)
The unknown factor is the scale-wise fractal correlation
coefficient, rσ (s); all the others are scaling function values directly
calculated from the measured signal.

Focus-Based Scaling-Range Adaptive Analyses
Focus-based multifractal analysis (FMF-SSC) were carried out
(Mukli et al., 2015) to estimate the generalized Hurst exponent,
H(q), which is essentially a set of slopes of the scaling function
profiles fitted in the analytical SR, as expressed by

Sσ

(
q, s

)
∝ sH(q). (3)

H(q) describes the moment-wise or global distribution of fractal
correlation (essentially that of the fractal dimension) in the signal,
thereby generalizing H(2), the usual outcome of monofractal
time series analysis. Taking H(q) as its input, the multifractal
formalism (Frisch and Parisi, 1985; Barabási and Vicsek, 1991;
Muzy et al., 1993; Eke et al., 2012) via the multiscaling exponent,
τ (q)=qH(q)−1, and Legendre transformation will yieldD(h), the
local distribution of the fractal dimension or singularity strength,
D, as a function of roughness or Hölder exponent, h.

h =
dτ (q)

dq
, (4)

D
(
h
)
= inf

q

(
qh− τ (q)

)
. (5)

Incorporating the focus—obtained as a fitted intersection of
scaling function profiles at s = N–ensures monotonously
decreasing Ĥ(q) and thus stable, uncorrupted D(h). Enforcing
the focus of scaling function, ln(Ŝσ (N)), when regressing for
Ĥ(q) was recognized as a prerequisite to obtain stable results of
multifractal analysis (Mukli et al., 2015).

In an attempt to find the best fitting model for the observed
scaling functions we adapted the concept of bimodality originally
described in the frequency domain (Eke et al., 2006). This
pattern can be recognized as two scale-free processes separated
by moment-wise breakpoint scales (s’(q)) (Nagy et al., 2017).
The less correlated (“fast”) component dominates the lower
range of scales while a more correlated (“slow”) component is
characteristic in the higher scales (Figure 2A). A breakpoint-
based bilinear regression model (denoted as moment-wise SR
adaptive) was implemented as described in Ref. (Nagy et al.,
2017). Briefly, it is an iterative process by estimating breakpoint
scales that minimize sum of squared error (SSE) of the residuals
for each and every moment as

SSE
(
s′
(
q
))

=
∑15

q=−15

[ ∑s′(q)

s=smin

(
f Ĥ

(
q
)
·
(
ln s− lnN

)

+ ln f Ŝσ

(
N

)
− ln Sσ (q, s)

)2
+

(s
Ĥ

(
q
)
·
(
ln s− lnN

)

+ ln sŜσ

(
N

)
− ln Sσ (q, s)

)2
]
, (6)

where ln(sŜσ (N)) and ln(f Ŝσ (N)) are the moment-independent
foci (Figure 2B) associated with the slow and fast components,

respectively. sĤ(q), f Ĥ(q) are the slopes (Figure 2C) of the fitted
two lines of regression4 (i.e., the generalized Hurst exponent
functions of the two components). This iteration thus adaptively
yields the best segregation of scaling ranges. Ĥ(q) and D(h)
(Figure 2D) are obtained for the fast and the slow component,
respectively.

We calculated global multifractal endpoint parameters to
characterize the degree of autocorrelation [maximal Hölder
exponent, hmax and monofractal Hurst exponent, Ĥ(2)] and
multifractality [1H15 = H(−15)–H(15), and full-width at half
maximum (fwhm) of D(h) (Wink et al., 2008; Grech and
Pamuła, 2012)] in the measured cerebral hemodynamic signals
as illustrated in lower panels of Figure 2.

Evaluating True Multifractality
Since multifractal tools—including FMF-SSC—readily produce
seemingly realistic values for multifractal measures such as
D(h) even in the absence of true multifractality (Kantelhardt
et al., 2002; Clauset et al., 2009; Grech and Pamuła, 2012); it is
mandatory to evaluate our empirical signals in this regard using
the following framework. Accordingly, because our FMF-SSC
method always produces uncorrupted D(h) irrespective whether
the signal is a true multifractal or not, this property needs to be
tested separately (Figure A1). Verification of true multifractality
consists of three subsequent steps: (i) identifying general scale-
free behavior with power spectral density (PSD) analysis,
(ii) distinguishing true multifractality from multifractal noise,
and (iii) determining the origin of the expressed multifractal
scaling. Therefore, in these tests, true, long-range correlated
multifractals are to be distinguished from processes lacking
scale-free properties or not showing autocorrelation. Failing
to pass in any of the aforementioned tests resulted in the
exclusion of the subject in question from further analysis.
Details of this framework are explained in the Appendix
(Supplementary Material) and in Ref. (Racz et al., 2018).

Characterizing HbO-HbR Relationship

Scale-wise fractal cross-correlation coefficient
One approach to assess the relationship of HbO and HbR
fluctuations is to calculate ameasure of cross-correlation by using
variance profiles. After rearrangement of Equation 2 it is possible
to express rσ (s):

rσ (s) =
TSσ (2, s)

2
− OSσ (2, s)

2
− RSσ (2, s)

2

2 ·O Sσ (2, s) ·RSσ (2, s)
. (7)

This measure indicates whether the fluctuations at a given scale
are enhanced (rσ (s)>0), diminished (rσ (s)<0) by coupling HbO
and HbR signal or their relationship is insensitive to coupling
between them (rσ (s)= 0).

The fractal cross-correlation analysis yielding rσ (s) is
strikingly similar—in terms of calculation steps and order—to
the detrended cross correlation analysis, the major difference
of these methods concerns their measure (Podobnik and

4Parameters obtianed directly from multifractal regression analysis are denoted as

estimates with a hat: H(q) and ln(Ŝσ(N)).
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FIGURE 2 | Steps of bimodal multifractal SSC analysis. (A) Scaling function of SSC as moment-wise generalization of variance profiles. Separate components are

marked in blue (fast) and red (slow). (B) The sets of power-law functions fitted separately for the two components with focus-based regression. (C) Generalized Hurst

exponent functions, H(q)s of the two components as functions of moment order q. The focus point and H(q) for both components (f, fast; s, slow) were iterated for

finding the scale with minimum SSE(s’(q)) as the true breakpoint at a given moment, which process finally yields ln (sŜσ (N)), ln (f Ŝσ (N)),
sĤ(q), and f Ĥ(q) with the best

fit. (D) Singularity spectra of the two components. Multifractal endpoint parameters: the highest singularity strength (D = 1) is associated with the maximal Hölder

exponent (hmax), which usually correlates well with H(2), a measure of global LRC in the signal. Distribution of local scale-free behavior is captured in 1H15 = H(−15)

– H(15) and in full-width at half maximum (fwhm) of D(h) respectively, reflecting degree of multifractality.

Stanley, 2008). The cited approach uses fluctuation while
ours calculates bridge-detrended variance to assess correlation
of coupled non-stationary time series. When comparing the
above scale-wise approaches with the standard means of
calculating cross-correlation (i.e., Pearson and Spearman), the
first major difference is that the prerequisite of stationarity
applies to the latter methods. Furthermore, the sequence of
calculation steps is critical, too: because when the standard
cross-correlation is calculated it is followed by a step of
averaging effectively abolishing the scale-wise information. It
is worth of noting that Spearman proved a more robust
standard measure of correlation than the Pearson coefficient
as the latter assumes not only stationarity but linearity, too
(Zimeo Morais et al., 2018).

Multifractal covariance analysis
The other approach is based on the extension of FMF-SSC
in order to analyze the scaling of long-range cross-correlation.
This method assesses the multifractality emerging genuinely
from coupled oxy- and deoxyhemoglobin fluctuations. Scale-
and moment-wise bridge-detrended covariances (Cov) were
calculated of HbO and HbR signals to yield an estimate of
bivariate generalized Hurst exponent function, ORH(q).

ORSCov
(
q, s

)
=

[
1

Ns

Ns∑

v=1

OR |Cov|
q
v(s)

]1/q

∝ s
ORH(q) (8)

Now applying Equations 3–5 yields the corresponding singularity
spectrum andmultifractal endpoint parameters. Covariance truly
scales only if the ORĤ(q) function differs from the average
of RĤ(q) and OĤ(q). Therefore this comparison must be
carried out after obtaining the distribution of scaling exponents
and output parameters of multifractal analysis. Prior to that,
moment-wise bimodal regression analysis had been performed
on the q-wise (generalized) variance profiles of HbO, HbR,
and HbT and on the HbO-HbR covariance profile in the same
manner.

Descriptive Statistical Analyses
Normal distributions in each independent sample were checked
by Shapiro-Wilk’s test. Difference between group means or
medians were considered significant in case of p< αs, αs =0.05
(level of significance). Homogeneity of variances was confirmed
by Levene’s test.

Assessing the Effect of Age and Gender
Two-way univariate ANOVA were performed treating
multifractal endpoint parameters and rσ (s) as dependent
variables and assuming that there was an interaction
between age and gender (categorical factors). Most of the
results presented in this paper are based on the output
of two-way ANOVA with Tukey’s post hoc test. Had the
prerequisites of ANOVA been not met, group means were
compared with two-sample t-test (with Welch’s correction
for inhomogeneous variances in case of significant Levene’s
test). In the absence of normal distribution, the comparison
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of group medians was performed by Mann-Whitney U
test.

Multivariate ANOVA (MANOVA) was performed to detect
age- and gender-related differences between direct descriptors
of the scaling function: sĤ(2), f Ĥ(2), ln(sŜσ (N)), ln(f Ŝσ (N)).
As changes occurring by coincidence is of concern, MANOVA
tests were used taking Ĥ(2), ln(sŜσ (N)), ln(f Ŝσ (N)) and rσ (s) (at
scales corresponding to the slow component s = 4,344, 4,828,
5,367, and 5,965) as dependent variables. The p < 0.05 of Wilks’s
test suggests that the same subjects are responsible for each of
the between-group differences. Finally, examining the degree of
correlation of dependent variables (expressed as r2) enables to
identify the most relevant endpoint parameters of multifractal
analysis.

Explaining the Variance Profiles of HbT
In order to identify a link between the altered scale-wise fractal
cross-correlation coefficient and the alteredmultifractal endpoint
parameters, the influence of rσ (s) as an independent variable
were evaluated on TSσ (2, s) in a general linear model (GLM).
The Bienaymé formula expresses an explicit relationship between
TSσ (2, s) and the scaling function values obtained for HbO, HbR,
and rσ (s) (Equation 7). Accordingly, the variability of TSσ (2, s)
were explained with the aid of multiple regression tests that were
performed for each temporal scales. The regressors of this model
were OSσ (2, s),

RSσ (2, s), and rσ (s) but categorical predictors (age
and gender) were not included.

Subsequently, – in addition to the regressors of the previously
described test—we took into account the effect of age and gender
by applying scale-wise covariance analysis (AnCova). Specifically,
age and gender were treated as categorical factors and OSσ (2, s),
RSσ (2, s), and rσ (s) as covariates. Before AnCova, homogeneity
of slopes model was evaluated for each s, significant result of
this test means that AnCova is inapplicable due to an interaction
between categorical predictors and covariates. In these cases the
separate slopes model was used which include these interaction
terms.

Software
For a more detailed description of our analytical flowchart as a
guide for the FMF-SSC analysis, see (Eke et al., 2000, 2012; Mukli
et al., 2015; Nagy et al., 2017). The above aspects of multifractal
analyses of rsNIRS time series have been implemented in Matlab
2012 (The MathWorks, Inc., Natick, MA, U.S.A.) by custom
scripts written by the authors based on the recently published
“MultiFracTool” software (Mukli et al., 2015; Nagy et al., 2017;
Racz et al., 2018). The toolbox can be requested from the
corresponding author. Statistical analyses were performed with
StatSoft Statistica 13.2.

RESULTS

The Presence of True Bimodal
Multifractality
All measured signals showed an apparent bimodal scaling
function. True multifractality was confirmed in 44 subjects, two

of them with an unacceptable fit of the bimodal model. For
further details, see Appendix in Supplementary Material.

Impact of Age-and Gender on Multifractal
Endpoint Parameters
In case of raw HbT signals, the degree of autocorrelation for the
slow component, marked by sĤ(2), significantly increased with
age unlike for the fast component (Figure 3A). Conversely, the
neural component obtained with CBSI significantly decreased
with age for the fast, but not for the slow component
(Figure 3B). In the elderly group, the hmax of the slow
component of the raw signal, shmax, was found increased
(Figure 3C), while it did not change with the CBSI-treated
signal. These changes were the opposite—similarly to Hurst
exponent—regarding f hmax in the young group (Figure 3D).
Regarding the foci, for the raw HbT signals they were
statistically the same in both age groups (Figure 3E), while
for the fast component of the CBSI-enhanced HbT signal
they were lower in elderly subjects (Figure 3F). Given that
the (SD(HbO)/SD(HbR) ratios—the key element in CBSI
model—did not differ between young and elderly groups
(p = 0.543), the above significant differences should be regarded
as real.

Age-related differences remained significant when the slow
and fast components were compared. Specifically, component-
wise contrast – defined as ln(sŜσ (N))/ln(f Ŝσ (N))—turned out
to be significantly different between the age groups (p = 0.03).
A concomitant—albeit non-significant—decrease characterizing
the fast component (p= 0.405) for focus contributed to an overall
increased ratio of foci (p= 0.067).

Comparing the multifractal parameters of cerebral
hemodynamic fluctuations of female and male subjects,
the only significant difference was observed for their HbO
slow component. Incorporating age groups rendered the
gender-related differences non-significant.

In order to prove that the significant differences in endpoint
parameters seen in Figure 3 attribute to alterations in a single
subject, endpoint parameters related to slow and fast component
were statistically evaluated in combination as dependent
variables in multivariate analysis. When scale-free endpoint
parameters of the same kind [Ĥ(2), hmax] were combined,
MANOVA revealed a strong correlation (r2 > 0.7). Furthermore,
significant multifractal endpoint parameters of slow component
of raw HbT and fast component of CBSI HbT showed joint
significance in a multivariate analysis (p = 0.045, Wilk’s test)
suggesting the coincident change of both components. Taken
it together, these findings indicate that the observed alterations
in the multifractal endpoint parameters resulted from subject-
wise aging. As to the key geometrical parameters of the
multifractal scaling functions, p-values obtained from Wilk’s test
indicated an overall non-significant influence of age. Of note
the two main estimates of the analysis – Ĥ(2) and ln(Ŝσ (N) –
showed positive correlation for the fast component of the CBSI-
pretreated (r2 = 0.46) and the slow component of the raw HbT
signal (r2 = 0.58). The p-values of the statistical analyses are
summarized Table 1.
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FIGURE 3 | Results of univariate statistical analysis of multifractal endpoint parameters. Ĥ(2) of slow and fast components in the two age groups calculated from raw

(A) and on CBSI-pretreated (B) HbT signals. hmax obtained from raw (C) and CBSI-treated (D) HbT signals. Focus of raw (E) and CBSI-pretreated (F) HbT signals.

Recall that the raw HbT signal represents neuronal and non-neuronal events combined, while the CBSI-pretreated signal is a enhanced representation of the

underlying neurodynamics. Accordingly, the fact that we found significant differences in the slow component for the raw HbT signal and in the fast component for the

CBSI-pretreated signals identifies the slow component emerging dominantly from vascular events, while the fast component attributed mainly to neurodynamics.

Influence of Age and Gender on the
HbO-HbR Relationship
Scale-Wise Fractal Cross-Correlation
The mean fractal scale-wise cross-correlation coefficient was
found higher at all scales in the elderly group (Figure 4A).

Importantly, this decrease in rσ (s)was more pronounced in
young participants at higher values of s achieving significance
(two-way ANOVA, confirmed by Tukey’s post-hoc test) at a
cluster of the corresponding high temporal scales (see the
probability profile on Figure 4A). Based on this parameter
calculated at these large scales, the oxy- and deoxyhemoglobin
fluctuations are uncorrelated (random) among the elderly and
were found anticorrelated in the young group. MANOVA
revealed a statistical coincidence between the age-related increase
in rσ (s) at specific high scales (corresponding to 2,172, 2,414,
2,683, and 2,982 s) and the same alteration observed for each
multifractal endpoint parameters [shmax,

sĤ(2) of the raw HbT
and f hmax,

f Ĥ(2) of CBSI-treated HbT]. In addition, concerning
rσ (s) and

TSσ (2, s) as dependent variables their close relationship
specifically appears at some of these aforementioned temporal

scales. Since rσ (s) is determined by the dynamics of oxygen
delivery and its extraction in the brain (i.e., supply and demand),
these are key results for discussing the impact of aging on cerebral
oxygenation.

Multifractal Covariance
In contrast to scale-wise fractal correlation analysis when
covariance is normalized by σ(s), the multifractal covariance
analysis allows for a moment-wise characterization of the scaling
properties of HbO-HbR coupling extending also for q 6= 2. This
method revealed a statistically significant age-related difference
concerning the fast component [see f hmax and ln(f ŜCov(N)),
Figure 4B], which is markedly correlated with f hmax (r

2 = 0.55)
and ln(f ŜCov(N)) (r2 = 0.69) obtained for CBSI-pretreated HbT
signals across age groups.

Power-law scaling of the multifractal HbO-HbR covariance
function may either originate from the independent scale-free
variance profiles of HbO and HbR or as from the coupled
fluctuations of the two. In case of the fast component, the
significant contribution from the latter is confirmed for the whole
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TABLE 1 | Significance of gender-related differences (p-values).

Parameter HbO–raw HbR–raw HbT–raw HbT–CBSI HbO vs. HbR

Slow component Ĥ(2) 0.938 0.086 0.559 0.437 0.673

hmax 0.600 0.273 0.849 0.416 0.656

1H15 0.828 0.671 0.305 0.591 0.852

fwhm 0.823 0.731 0.456 0.581 0.861

ln(sŜσ (N)) 0.408 0.539 0.273 0.296 0.494

Fast component Ĥ(2) 0.845 0.442 0.503 0.205 0.378

hmax 0.115 0.060 0.140 0.141 0.049

1H15 0.028 0.189 0.196 0.066 0.140

fwhm 0.014 0.220 0.247 0.071 0.138

ln(f Ŝσ (N)) 0.053 0.302 0.082 0.119 0.044

FIGURE 4 | Age-related differences revealed by scale-wise and scale-free analysis of oxy- and deoxyhemoglobin relationship. (A) Fractal correlation coefficient of

HbO and HbR as functions of scale in the elderly (upper) and young (middle) groups with the corresponding p-values (lower). At smin, these were above 0 and

decreased gradually toward-1 as s approached smax in both age groups. (B) Multifractal covariance of fhmax (upper) and ln(f Ŝσ (N); lower) of the fast component in

the young and elderly groups.

study population, given that ORH(q) derived from scale-wise
covariances differed from (OH(q)+RH(q))/2 both obtained at
q = 2 (p = 0.003, Wilcoxon matched pairs test). Moreover this
pattern was absent in the elderly group (p= 0.116), but not in the
young group (p= 0.006).

The correlation (r2) between dependent variables (i.e.,
multifractal endpoint parameters) captures the percentage of
mutual variance of multifractal HbO-HbR covariance profiles
and those obtained by SSC for the variance of CBSI-pretreated
HbT signals. The percentage of mutual variance was the highest
for ln(f ŜCov(N)) (r2 = 0.81), and there was a strong relationship
between their focus ratios (r2 = 0.72). However, the correlation
was moderate for f hmax (r2 = 0.56). To sum it up, results of

multifractal covariance analysis seems rather consistent with an
altered fast component of the CBSI-pretreated HbT signals.

Significance of Fractal Scale-Wise
Cross-Correlation
For the sake of comparison, we calculated fractal scale-wise
cross-correlation and averaged running Pearson and Spearman
correlation coefficients at the same time scales (Figure 5).

Variability of the HbT scaling function profiles at q = 2
and for all scales was explained as related to the independent
variables–rσ (s),

OSσ (2, s), and
RSσ (2, s)—based on the Bienaymé-

formula given in Equation 2 (Figure 6 top). First, a series of
multiple regression tests—not yet accounting for the effect of
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FIGURE 5 | Comparing means of different correlation coefficients between

HbO and HbR calculated for all subjects. We explain the less correlated values

observed for rσ (s) with the effect of calculation order on trends in the signal. In

case of the mean Pearson- and Spearman-coefficients, detrending and

averaging step come after calculating the correlation effectively neglecting the

fundamentally scale-free character of the processes. However, considering

fractal scale-wise correlation coefficient, this latter step is the last preceded by

averaging of bridge-detrended variances at a given scale. Please also note the

characteristic transient—indicated by red arrow—only appearing in rσ (s).

age and gender—were performed across all temporal scales that
yielded positive correlation between each regressors and TSσ (2,
s). Importantly, the standardized regression coefficients proved to
be significant for rσ (s) in case of all temporal scales. The highest
estimated effects were observed in case of OSσ (2, s) while this test
revealed the weakest effect of RSσ (2, s) being a non-significant
regressor of TSσ (2, s) at high scales (note the empty blue circles
on Figure 6 bottom).

Subsequently gender and age were incorporated in the
multiple regression model as categorical predictors to evaluate
their influence on the p-value of correlation between the
covariates and variance profiles related to CBV fluctuations
(TSσ (2, s)). In the GLM framework the appropriate choice was
AnCova or separate slopes model depending on the prerequisites
of each approach. Age in of itself turned out to be not
determinant of scale-wise hemodynamic fluctuations captured
by TSσ (2, s). It is the scale-wise cross-correlation on the basis
of which the impact of aging could be explained (Table 2).
These results confirm the outcome of multiple regression analysis
showing a significant and strong relationship between TSσ (2, s)
and OSσ (2, s) and a less steep but still significant relationship
between the dependent variable and the fractal scale-wise cross-
correlation coefficient.

DISCUSSION

In this study, we found that hemodynamics in the human
brain cortex captured by NIRS technology in most of the cases
exhibited a bimodal multifractal scaling emerging from a range
of low and high temporal scales (slow and fast components,
respectively). We suggest relating the slow component of

FIGURE 6 | Significance of multiple regression tests. (A) Scaling function value

of HbT as a function of OS(q, s) (left), RS(q, s) (middle) and scale-wise fractal

cross-correlation coefficient (right) acquired at equal scale and moment

(exemplary case at q = 2 and s = 4828). (B) Regression coefficients and their

significance (closed circle for cases of p < 0.05) related to scaling function

values of HbO, HbR; and rσ as functions of scale s. The estimated effect were

significant for all s values in case of OS(q and rσ (s), and the lower standardized

regression coefficients indicated the weak (not significant for all scales) effect

of RS(q, s). For further details, see main text.

the raw HbT signal to dominantly vascular (vasogenic, i.e.,
non-neural) dynamics, while we consider the fast component
primarily resulting from neurovascular coupling (i.e., neurogenic
component). In order to demonstrate the impact of healthy
aging, CBSI pretreatment of the raw HbT signal was necessary to
enhance the neurovascular contribution in the fast component.
Our main result is two-fold: first, we demonstrate that
the vasogenic hemodynamics (CBV fluctuations proportional
to HbT concentration changes) show increased long-range
autocorrelation in the elderly group compared to the young
group which is in agreement with what we had found previously
applying monofractal analysis (lowPSDw,e method5) within
comparable scaling ranges (Eke et al., 2006). Second, we show
that the fluctuations of the neural component are less correlated
in the elderly group. This opposite influence of healthy aging
on the slow vasogenic and the fast neurogenic fluctuations
is consistent with an attenuated NVC. In support of this
notion, we evidence that age-dependent alterations in HbO-
HbR relationship is a manifestation of altered neurovascular
coupling and also a determinant of scaling properties of CBV
dynamics. Specifically, in in silico experiments we substantiated

5low – right half (high frequencies) of the spectrum is excluded, w – windowing,

e – endmatching.
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TABLE 2 | Homogeneity of Slopes Model/Separate Slopes Model/Covariance

analysis results.

Effect Significance of the effect

Gender or Age (per se) Non-significant for any scale

Gender or Age (with interaction) Significant for 444 sec (Gender x Age x OSσ x
RSσ ), Significant for 1758 sec (see below)

OSσ (per se) Significant for all scales

RSσ (per se) Significant for time scales between 8 and 400

sec, non-significant for all time scales above

400 sec

OSσ or RSσ (with interaction) Significant for 444 sec (see above), significant

for 610 sec ( OSσ x RSσ x rσ ), significant for

1758 sec (see below)

rσ (per se) Significant for all scales

rσ (with interaction) Significant for 444 sec (see above), significant

for 1758 sec (for all interactions, with the

exception of Gender x rσ )

Interaction effects are denoted as “x”.

that (i) a decreased correlation in neurogenic fluctuations
is attributed to decreased incoming signaling, (ii) HbO-HbR
relationship became more correlated due to aging either as a
result of decreased incoming signaling concomitant to lesser
hemodynamic response or from increased vascular stiffening.
These alterations do indicate that linear CBV dynamics is
susceptible to aging. In contrast, non-linear CBV dynamics
is spared by aging as demonstrated in unaltered degree of
multifractality.

Multifractality of cerebral hemodynamics has been
investigated extensively in case of blood oxygen level dependent
(BOLD) signals using functional magnetic resonance imaging
(fMRI). The influence of brain activity was demonstrated in
the pioneering work of Shimizu et al. (2004). Later, findings
on the topology of multifractal parameters and methodological
refinements were reported (Wink et al., 2008; Ciuciu et al.,
2012). On data from a publicly available imaging repository
(Biswal et al., 2010), the effect of age and gender on multifractal
spectrum was shown for resting-state fMRI-BOLD signals (Ni
et al., 2014). While rsNIRS signals have been made subject to
multifractal analysis in an earlier feasibility study (Dzung, 2010;
Quang Dang Khoa and Van Toi, 2012), our study—to the best of
our knowledge—is the first reporting on it elucidating some of
the key underlying mechanisms using a scrutinized dataset with
proven true multifractality.

Multifractal CBV Dynamics
CBV dynamics in the human brain cortex was shown to follow
a complex, scale-free temporal pattern in the frequency domain
that could be captured in the 1/f β model, where β is spectral
index (Eke et al., 2006). The variance profile at q= 2 is analogous
to the power spectrum, thus their apparent similarity can be
readily shown (Figure 7). The estimated β obtained by lowPSDw,e

method is directly related to Ĥ(2), given the explicit relation of
H(2)=(β+1)/2 (Eke et al., 2000). In fact, the power spectrum is
equivalent to the Fourier transform of the signal’s autocorrelation

function according to Wiener-Khinchin theorem (He et al.,
2010)6. Since its decay follows a power law with 2Ĥ(2)−1 as
its exponent, Ĥ(2) and β̂ are interpreted as equivalent measures
of LRC in the fractional Gaussian noise / fractional Brownian
motion framework (Eke et al., 2002).

It should be recalled that Fourier transform builds on
independency of frequency components. As multifractality can
emerge from interactions betweenmultiple time scales (Ihlen and
Vereijken, 2010), it cannot be captured in the power spectrum
alone. Nevertheless, its presence still could be detected in the
form of phase-amplitude coupling [nested frequency, see Ref.
(He et al., 2010)]. Thus capturing multifractality in the time
domain can reveal the underlying multiplicative interactions
between the temporal scales of the observation with 1H15 and
fwhm as the measures of these cross-scale interactions (Ihlen and
Vereijken, 2010).

Separation of Neurogenic and Vasogenic Multifractal

Dynamics: CBSI-Pretreatment
In pursuit of the physiological origin of hemodynamic
fluctuations, the analyses were performed both on raw and
CBSI-pretreated (Cui et al., 2010) data. In addition, we
carried out in silico experiments to substantiate the need of
this preprocessing step to identify components dominated
by vasogenic and neurogenic influences, respectively (see
Supplementary Material). CBSI method builds on the
assumption that maximally correlated fluctuations of HbO
and HbR are not related to neural activity. Given our recent
demonstration of CBSI pretreatment enhancing the neuronal
component in the signal (Racz et al., 2017) our two-teared
approach of signal processing allows for a distinction between
influences of neuronal and non-neuronal nature in this study;
aspects of particular interest in the aging process. Accordingly,
the age-related differences of the calculatedmultifractal measures
revealed for the fast component of the pretreated signal should
reflect altered neurogenic fluctuations. Vice versa, we found
that the significant age-related differences in the multifractal
indices obtained for the slow component of raw NIRS signals
disappeared after applying CBSI. This indicated that the slow
component was non-neural, referred to as vasogenic.

Some authors pointed out specific limitations of CBSI to
isolate the neural component in the signal in fNIRS studies
using various stimulus response paradigms (Scholkmann et al.,
2014). Although the neural activity readily and always induces
anticorrelated dynamics in HbO and HbR—as postulated in
CBSI –, the response to a specific task may elicit systemic
confounding effects, too. In this regard, CBSI cannot be
considered to be immune to global effects (Tachtsidis et al.,
2008). Nevertheless, as we present results based on the analysis
of resting-state NIRS observations we do not need to deal with
such confounding influences in task.

In principle, we could not a priori exclude that CBSI-
pretreatment would not distort the signal. The formulation of

6Since Wiener-Khinchin theorem only applies to wide-sense stationary processes,

the autocorrelation function of the increment process is considered according to

the fGn6fBm framework.
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FIGURE 7 | Relationship between power spectrum and scaling function profiles obtained by the FMF-SSC method. Although multifractal analyses were performed in

the time domain, its design and results can be interpreted in the frequency domain as well owing to the explicit relationship between representation of dynamics in the

temporal and the spectral domains both for the raw (A) and CBSI-pretreated (B) signal. The ordinate shows both frequency and temporal scale. It is the

variance profile at q = 2 that corresponds well with the mean spectral estimates. The range of spectral estimates fall in between S(q, s) profiles for q = 15 and

q = −15. The fractal scaling range emerges from the (non-fractal) noise (of biological origin) dominating the low temporal scales. It contains a breakpoint, which

separates S(2, s) into a slow (associated with high temporal scales) and a fast (associated with intermediate temporal scales) scale-free component. This appears as a

low- and a very-low frequency spectral band in the frequency domain. For further details, see text. Component-based focus is indicated by asterisk (*) as ln(Ŝσ (N)) for

the raw (A) and ln(Ŝσ (N)) for the CBSI-pretreated HbT signal (B).

the pretreatment algorithm allows for analytical considerations
about the influence of CBSI on multifractal parameters, which
in cases of other pretreatment algorithms would be more
difficult to make. In particular, the above step in the algorithm
can be shown to affect only the scale-dependent measures
such as ln(Ŝσ (N)) and breakpoint scales but not the scale-free
parameters (Ĥ(2), hmax, 1H15, and fwhm), unlike with various
filteringmethods (Valencia et al., 2008). Nevertheless, these scale-
dependent influences spared the impact of age on scale-free
parameters because mean Oσ(N)/Rσ(N) were found very similar
in all measurement groups.

Origin of Multifractality in Resting-State

Hemodynamic Fluctuations
Fluctuations of rsNIRS signal related to neural activity should
be viewed as a sampled representation of an interim stage
from intrinsic signal generation throughout the brain to
the region of interest (ROI), where it is transformed into
hemodynamic fluctuations. The regionally recorded rsNIRS
signal—aside from systemic influences—is produced by the
NVC driven by incoming signaling. Directly, it represents
the hemodynamics within a population of vessels behaving
like viscoelastic balloons in the ROI. As to the non-neural
component of the rsNIRS signal, a likely origin of scale-
free behavior is the numerous weekly coupled vascular source
(diameter-dependent segmental oscillations along the arterial
tree) blending into a fractally correlated pattern (Colantuoni
et al., 1994).

Signal generation also raises questions about the spatial
dynamics and resting-state functional connectivity. Regarding
the incoming neural activity, electrocorticography records
captured across various locations in the brain cortex have
been shown scale-free temporal structuring (He et al., 2010;
He, 2011). Moreover, the power spectral density of cortical
EEG exhibits scale-free structuring not only in the temporal
but—in an interrelated manner—in the spatial domain, too,

(Freeman et al., 2003). Specifically, as demonstrated by these
authors, fluctuations spanning from high-frequency/low-power
bands to the low-frequency/high-power ranges reflect upon
neural events propagating across the micro-meso-macro scales
representing contributions from ion channels, across gyri
all the way to those of lobes, respectively. Hence a PSD
and scaling function representations of neurodynamics and
coupled hemodynamics could be viewed as capturing the
information flow within the system from its sources via
inhomogeneous network routes eventually converging onto
the signaling input of the monitored ROI (Buzsaki, 2006).
The sampled representation of this process will typically
show inhomogeneously distributed fluctuations, visible as
intermittent periods of small and large variability; genuine
properties of multifractal processes (Ihlen and Vereijken,
2010).

When the multiplicative cascading process was extended into
the spatial domain, a description was obtained comparable to
the one by the self-organizing branching process (Zapperi et al.,
1995); a refined extension of the SOC model (Bak et al., 1987).
The inference is that the intermittent in essence multifractal
temporal patterns and the inhomogeneous incoming network
connections are manifestations of the same phenomenon:
emergence of intermittent regional activity from multiple sites
of the brain converging via multiplicative interactions between
spatiotemporal scales as integrated incoming signaling in the
ROI.

Indeed, our findings related to fractal dynamics could
potentially reflect the presence of SOC (Bak et al., 1987)
in the observed physiological subsystems shaping cerebral
hemodynamics in the ROI. SOC, substantiating the 1/f noise-
type neurodynamics of the human brain, builds on the notion
that the brain dissipates the local low-frequency perturbation
elicited by external or internal stimuli without any particular
spatial or temporal scales (Stam, 2005; Bullmore et al., 2009;
Chialvo, 2010; Sporns, 2011). When interactions between scales
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occur, multifractality can readily emerge in systems showing
properties of SOC (Tebaldi et al., 1999; Lima et al., 2017).
Of relevance, in a recent rsNIRS study using 16 channels
sampling of resting-state hemodynamics in the PFC, it has been
evidenced that the presence of critical state in resting-state
dynamic functional connectivity (Racz et al., 2018). In sum, the
measured signals are considered as a composite of hemodynamic
fluctuations of vasogenic and those elicited by incoming signaling
of neurogenic origins with NVC as the link between the
two.

Interpretation of Multifractal Endpoint Parameters
The vasogenic component of the rsNIRS signal in terms of
its observed multifractal temporal patterns can be interpreted
as a consequence of attenuated neurovascular coupling—
reflected by an anticorrelated → random shift in the fractal
cross-correlation of HbO and HbR. As to the neurogenic
fluctuations here we explain the altered multifractal endpoint
parameters resulting from interactions between multiple time
scales along functional connections (Ihlen and Vereijken,
2010). Along with our focus-based multifractal formalism
(Mukli et al., 2015) and a small world implementation
(Watts and Strogatz, 1998) of the concept of self-organized
criticality (Mandelbrot, 1974; Ihlen and Vereijken, 2010) offer
a concise framework for the interpretation of the results
obtained in this study the way outlined in the followings.
Further details are provided below and please also see the
Supplementary Material.

Linear dynamics: H(2) vs. hmax

Since the degree of global LRC is quantified by H(2), its changes
can be interpreted as increased or decreased persistence, meaning
correlation of a non-stationary process (Eke et al., 2000; Herman
et al., 2011). Furthermore, Deligniéres et al. established a
relationship between network degeneracy—meaning partial
overlap in heterogeneous functional connections—and
output signal correlation (Delignières and Marmelat, 2013).
Accordingly, the Hurst exponent does not only reflect upon
global scale-free properties emerging from a network, but its
degree of degeneracy, too.

While LRC—and thus H(2)—reflects global scale-free
properties, the Hölder trajectory is a local scale-free measure
varying along the signal. Although multifractal analysis of
physiological data usually shows tightly correlating changes
of hmax and Ĥ(2), the interpretation of hmax as a measure of
correlation within the signal is only approximate, since it is
associated with q= 0, not q= 2.

Non-linear dynamics: 1H15 and fwhm
Though1H15 is defined onH(q) and fwhm is derived fromD(h),
their excellent correlation – owing to the deterministic formalism
established by Equations 3–5 – offers a rationale to interpret
them together. The applications of q-order statistics reveals non-
linear properties in scaling of the signal (Ashkenazy et al., 2003).
Thus these two multifractal endpoints are indeed equivalent
measures of multiplicative interaction between temporal scales
of the observed dynamics process (Ihlen and Vereijken, 2010).

Importantly,1H15 and fwhm should be regarded as indicators of
non-linear dynamics (Gómez-Extremera et al., 2016; Bernaola-
Galván et al., 2017).

Asymmetry of D(h)—an occasionally observed
phenomenon—could be incorporated in the analysis of
multifractality in terms of W=W+/W– where fwhm is equal
to the sum of W+ and W– (Wink et al., 2008), corresponding
to the width of left and right-half of the singularity spectrum.
We calculated the W and found the shape of our singularity
spectra symmetric and not affected by age and gender. We stress
that testing for true multifractality based on 1H15 statistics
(for details see Appendix in Supplementary Material) is an
essential prerequisite when it comes to evaluating changes
in these endpoint parameters in regard of multifractal CBV
dynamics.

A scale-dependent measure of hemodynamic power: focus
The focus of the scaling function is a key element of our
regression scheme for obtaining H(q) thus securing a robust
estimate of D(h) free of inversion (Mukli et al., 2015).
Importantly, it is also a robust scale-dependent statistics
estimated at signal length as a point of convergence for the scaling
function profiles. Since our analysis is based on the SSC method
using bridge-detrended variance, Ŝσ (N) is essentially the variance
associated with the whole signal. Given that the coefficient of
variance for our rsNIRS signals were the same, Ŝσ (N) is also the
measure of the signal mean, which is consistent with our SOC-
simulations (Figure S3). In the frequency domain, it is analogous
with the power of the DC-component of the signal (see the
behavior of spectra and scaling functions on Figure 7 as f→ 0).

Since its value is influenced by numerous other variables,
conclusions regarding hemodynamic alterations can be drawn
if focus is interpreted together with Ĥ(2). Given their
analogous frequency domain parameter the hemodynamic power
corresponding to a spectral band can be estimated. The separated
components of the rsNIRS signal have distinct scaling ranges,
and the area under the scaling function corresponding to such
SRs is an approximation of summed logarithmic variance of the
given component. This area can be explicitly calculated as it is
proportional with ln(Ŝσ (N)) andwidth of SR, and it also increases
with decreased Ĥ(2). Given the straightforward relationship
between summed variance and total hemodynamic power in
a given temporal/frequency range, the obtained results for the
area should be viewed as power of hemodynamic fluctuations
associated with the isolated components.

The Inference of Bimodality
The majority of the measured rsNIRS signal showed bimodal
scaling that was statistically confirmed by comparing the errors
of fits for the bimodal and unimodal models. We used a
scaling-range adaptive method to assess scaling exponents and
multifractal endpoint parameters of the two components, which
approach has already been used in our previous study (Nagy
et al., 2017) and in other studies as well (Ge and Leung, 2012;
Kuznetsov et al., 2013). The apparent structural heterogeneity
in the scaling functions of our dataset (convex and/or concave
transient range) prompted us to choose the robust moment-wise
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SR-adaptive method instead of an alternative (decomposition of
scaling function) that was specifically designed to assess additive
properties of bimodal scaling.

The bimodal analysis is an adaptive tool that separates two
fractal SRs within an overall range of scales between the lowest
temporal scale of 8 seconds (smin = 16) and 4096 seconds
(smax = 8192). Although the Fourier transform does not assume
an exact relationship between temporal scales and frequencies,
we can still assign the non-fractal “noise” component below smin

to a spectral range from 0.125 to 1Hz (i.e., Nyquist frequency). It
is known that this band is dominated by fluctuations of systemic
origin such as cardiac pulsation and respiration (Tian et al.,
2009; Sassaroli et al., 2012), which is corroboratory regarding the
exclusion of time scales shorter than 8 s.

Earlier we introduced the slow and fast components as
dominantly neurogenic and vasogenic, in the followings the
reader is taken through arguments substantiating this division.
The fast and slow components were identified in the time
domain within their respective analytical scaling ranges in
the time domain. In a frequency domain representation, they
correspond to the low- and very low-frequency oscillations (LFO
and VLFO, respectively; Figure 7). The LFO/VLFO classification
was used by authors evaluating fundamental spectral aspects of
NIRS dynamics (Obrig et al., 2000; Schroeter et al., 2004; Li
et al., 2013; Vermeij et al., 2014). LFO is generally regarded
of neural origin and thus is a commonly investigated in
NIRS studies of cognition (Chance et al., 1993) and functional
connectivity (Sasai et al., 2011). Also, it substantiated the concept
of fMRI-based functional connectivity ever since Biswal et al.
(1995) analyzed cross-correlations in paired signals by clipping
their power spectra to zero above 0.1Hz in order to identify
temporal coincidences in local activities thus excluding the global
influences. It seems reasonable to separate the VLFO component
since its dynamics is dominated by non-neural (Schroeter
et al., 2004; Li et al., 2013; Vermeij et al., 2014), particularly
endothelium-related mechanisms (Li et al., 2013; Chen et al.,
2014). VLFO would manifest as the slow, vasogenic component
in our study within the breakpoints and smax, while the range
down to smin corresponds to LFO (Figure 7). Nevertheless,
the debate is still ongoing over further contributors to CBV
dynamics such as vasomotion (Elwell et al., 1999) and Mayer-
waves (Sassaroli et al., 2012); effectively being excluded from
our analyses by setting smin to 8 s corresponding to 0.125Hz.
In fact, vasomotion may show up, but within a narrow range of
scales and at low fluctuation amplitudes thus having a weak effect
if any on our scaling analysis. Please note that the assessment
of bimodality and scale-free properties of both LFO and VLFO
were only possible because the analyses were performed with a
high-enough smax as recommended by Nagy et al. (2017). The
consequent statistical instability is compensated by our focus-
based regression model.

Healthy Aging Is Associated With Altered
Complexity of Cerebral Hemodynamics
In the present study, decreased Ĥ(2), hmax, and ln(Ŝσ (N))
were seen in the fast—neurogenic—component of the CBSI-
pretreated NIRS signals of the elderly participants. In addition,
we found an increased Ĥ(2) and hmax in the elderly group

for the slow—vasogenic—component of the raw rsNIRS signal
(Figure 3) with spared ln(Ŝσ (N)) and multifractality (i.e.,
no difference in 1H15 and fwhm). These changes in the
multifractal endpoint parameters are consistent with attenuated
neurovascular coupling concomitant to declining incoming
signaling and impaired vascular responses.

Altered Neurogenic Component Due to Declining

Neurodynamics
Multifractal measures of the fast component (∼ LFO) of the
CBSI-pretreated NIRS signal revealed a difference between young
and elderly subjects. Specifically, Ĥ(2), hmax, and ln(f Ŝσ (N))—
a key parameter characterizing the overall decline in the
neurogenic component—was found decreased among the elderly
participants. In principle, a decrease of Ĥ(2) and hmax could have
resulted from the contribution of biological noise. The decreased
ln(f Ŝσ(N)) can be directly interpreted as a decreased power in LF
oscillations which was concluded by other studies, too (Schroeter
et al., 2004; Li et al., 2013; Vermeij et al., 2014). Although the
decline in power appears at all frequencies, a disproportionate
decrease could still manifest from biological noise present across
the lower frequencies first seen in our previous study (Eke et al.,
2006). A recent numerical study clearly showed that varying
signal/noise ratio by adding white noise yielded underestimation
of H(q) (Ludescher et al., 2011). Hence our decreased Ĥ(q) and
hmax of the fast component can at least in part be explained by the
relative impact of biological noise progressively dominating the
higher temporal scales. Although our choice of smin exceeds this
range of temporal scales, this factor must be taken into account
in our interpretation of the observed alterations of the neurogenic
component associated with the LFO range in our rsNIRS signals.
In spite of the spurious estimates of Ĥ(q) attributable to the
increased relative impact of biological noise, the conclusion of
an overall decline in the neurogenic component can be still
held. Nevertheless, please note that CBSI-pretreatment of raw
HbT signal effectively removes the impact of non-anticorrelated
dynamics in the signal. Therefore the impact of biological noise
is unlikely and the observed changes should be regarded as real.

This allows us to interpret the decreased focus as a sign
of decreased incoming signaling in line with the dominantly
neurogenic origin of the LFO and the aforementioned in
silico observations (Supplementary Material). As multifractality
can be viewed as resulting from cross-scale spatiotemporal
interactions (Monto, 2012), unchanged 1H15 and fwhm suggest
that healthy aging spared these interactions within the incoming
networks.

As to the multiple mechanisms involved in neurogenic aspects
of the aging process, based on our results we argue that even
healthy aging leads to progressive attenuation in incoming
signaling that to some unknown extent could be masked by
impaired neurovascular coupling. The aging process is known
leading to graymatter atrophy associated with dropping neuronal
count (McGeer et al., 1984) and lower gray matter density
(Sowell et al., 2003) along with impaired synaptic activity. The
latter is known to be prevailing in postmenopausal women
due to lower levels of estrogen (Gibbs and Aggarwal, 1998;
Khan et al., 2013). In addition, an age-related decrease in
the hemodynamic response elicited by cognitive task has been
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observed in the human prefrontal cortex by NIRS (Schroeter
et al., 2004). Several studies have evidenced that significant
changes in resting state functional connectivity take place in
the aging brain at large and small spatial scales alike with
inference to temporal dynamics (Ferreira and Busatto, 2013).
For example, the structural changes occurring in the aging brain
imply changes in its functional connectivity readily manifesting
in altered parameters of complexity parameters (Sun et al.,
2012). Specifically, global deleterious effects of older age has
been reported on functional networks (Achard and Bullmore,
2007) mounting to “topological marginalization” like that of the
prefrontal cortex due to segregation in the global network. It
was suggested that even healthy aging disrupts the underlying
networks by severing the long-range connections, especially in
higher-function areas like the prefrontal cortex (Ferreira and
Busatto, 2013). In a sample of subjects (19–80 years) a linear
effect of age associated with impaired resting-state functional
connectivity has been demonstrated (Mevel et al., 2013).

Indeed, when eliminating the multiplicative neural
interactions across spatial scales in an interaction-dominant
model of human cognition (Ihlen and Vereijken, 2010), more
aggregated, focal activities remain. Putatively, this model
behavior (global→ focal shift in intrinsic activities of the brain)
is capable of explaining the loss of complexity in our rsNIRS
signal as the sign of decreased incoming signaling. Nevertheless,
this takes place in the PFC during healthy aging to such an extent
that would still not interfere with the cross-scale spatiotemporal
interactions in the observed dynamics captured in unaltered
parameters of multifractality.

A further theory suggests the role of dedifferentiation in
the aging of physiological subsystems like the brain function
(Sleimen-Malkoun et al., 2014). Experiment using a motor task
paradigm indeed demonstrated that in addition to stronger
activation in dedicated regions to a motor task, older adults
generally exhibit activation of additional areas of the brain not
or only marginally involved in young participants (Sleimen-
Malkoun et al., 2014). Approaches relying on fMRI-based
connectivity studies accounting for the difference in task and
connectivity paradigms demonstrated that higher levels of
activity coexists with disrupted connectivity (Sala-Llonch et al.,
2015).

Altered Vasogenic Component Due to Impaired

Vascular Responses
The observations regarding the vasogenic component are
compatible with those of our previous monofractal study using
raw rsNIRS signals reporting on an increased spectral index
β in the elderly suggesting the impact of age-related vascular
sclerosis on CBV dynamics (Eke et al., 2006). The increased
Ĥ(2) and focus indicate a more correlated vascular dynamics
with decreased hemodynamic power in the elderly group. The
mean singularity spectrum for the vasogenic component was
found shifted to the right (reflected by hmax) with maintained
shape and width (Figure 8). Consistent with this view, we
hypothesize that healthy aging leads to this increased correlation
pattern in the vasogenic (VLF) component as a result of
vessel stiffening and a decline in the endothelium-mediated

(metabolic) regulation of cerebrovascular smooth muscle tone.
Our evidence to this hypothesis is indirect, though: the result of
CBSI-pretreatment and the temporal scales characterizing VLF
hemodynamics. Nevertheless, this interpretation of our results is
in agreement with several studies on this component of cerebral
hemodynamics. In an rsNIRS study investigating the effect of
age, Li et al. demonstrated (Li et al., 2013) decreased average
amplitudes of spontaneous oscillations in the elderly. The latter
authors assumed that the oscillations in the 0.005–0.02Hz range
originated from the endothelium. Aging has also been shown
decreasing the responsiveness of distal segments of the arterial
tree due to endothelial dysfunction (Toda, 2012) and increasing
wall stiffness (Schroeter et al., 2004; Zhu et al., 2011; Wardlaw
et al., 2013; Vermeij et al., 2014). The functional hyperemia
studied by selectively interrupting endothelial signaling in the
somatosensory cortex of rats confirmed its key role in mediating
the very slow—maintained—hemodynamic response brought
about by NVC (Chen et al., 2014). The vascular decline in the
elderly thus may attenuate the local hemodynamic response, too.

As to the attenuation in local vascular dynamics, indeed,
the local hemodynamic response elicited by incoming neural
activity is known to be driven locally by fast glutamate-mediated
signaling, andmore globally by amine- and ACh-mediated neural
systems (Attwell and Iadecola, 2002). Both have been shown
declining with age (McGeer et al., 1984; Gibbs and Aggarwal,
1998; Attwell and Iadecola, 2002). The above scenario may
indicate that an impaired neurovascular coupling (Fabiani et al.,
2014; Tarantini et al., 2017) could to some degree mask the
effects of deterioration of connectivity on neurogenic signal
complexity.

Implications of HbO-HbR Relationship
Age-related physiological dysregulation is essentially a gradual
and typically irreversible loss of regulatory control originating
from structural instabilities in regulatory systems (Cohen, 2016).
We shall discuss this phenomenon concerning parameters
reflecting neurovascular coupling with coupled HbO-HbR
dynamics in its focus. We used multifaceted approach for
its characterization: (i) scale-wise fractal cross-correlation, (ii)
multifractal covariance and (iii) statistical analysis of Bienaymé-
formulation of the HbO-HbR relationship. At this end, we
interpret our results as the impact of age on the output of
an integrated system of neurodynamics, coupled HbO-HbR
dynamics and hemodynamics as genuinely interrelated aspects of
neurovascular coupling.

Age-Related Increase in Scale-Wise Fractal

Cross-Correlation
In elderly participants, the higher rσ (s) capturing HbO-
HbR relationship indicate the relatively larger contribution
of correlating systemic hemodynamics to the recorded NIRS
signal (which) is also consistent with declining neurodynamics.
Furthermore, scale-wise correlation coefficients were found
significantly elevated for rather high temporal scales directly
influencing this domain of the variance profiles associated with
the vasogenic component (Figure 4A). In a certain range of
scales characterizing VLFO, the increase in rσ (s) values were
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FIGURE 8 | Input and output parameters of the focus-based multifractal formalism in the young and elderly groups for the slow (vasogenic) and fast (neurogenic)

components of CBV fluctuations. Average scaling functions (A,B) and average singularity spectra (C,D) obtained for the raw and CBSI-pretreated HbT signal. Age

coding: young—red (A,C), blue (C,D); elderly—green (A,C), orange (B,D). Preserved focus and increased correlation characterize the age-related changes of the

vasogenic component (A). Conversely, these parameters of the neurogenic component indicate a decline apparent in the average scaling functions (B). The alteration

of hmax is a good indicator of the right-ward shift of D(h) for the vasogenic (C) and a left-ward shift for the neurogenic component (D). It also reveals altered correlation

properties if the shape and distribution of singular behavior is not much affected, which happens to be the case in this study as the distribution of Hölder exponents

was found symmetrical around hmax irrespective of age and gender.

significantly associated with the shmax and sĤ(2) of the raw
HbT. Given the demonstrated association between endothelial-
mediated responses and VLFO (Stefanovska et al., 1999), the
pattern found in our study should be regarded as evidence
supporting the endothelial contribution to the age-related
increase in shmax and

sĤ(2).
Analyzing the coupled fluctuations of oxy- and

deoxyhemoglobin has been used to assess cerebral oxygenation
changes and the underlying processes (Reinhard et al., 2006;
Wylie et al., 2009; Pierro et al., 2012). There is scarce evidence
to determine the effects of aging on their relationship and the
rationale behind the utilized parameters is also debatable. Please
note the difference in the scale-wise pattern of rσ (s) only showing
a clear gradual decrease below ≈50–100 s (see the red arrow on
Figure 5). It is reasonable to assume that such pattern reflects
the relative contribution of mechanisms eliciting correlated or
anticorrelated chromophore dynamics. Supposing the origin
of the anticorrelated dynamics within the local balloons, and
regarding the correlated dynamics mainly of systemic origin,
this pattern may be informative of a relative impact of local
and systemic hemodynamics on our measured rsNIRS signals.
Specifically, local determinants of oxygen supply and extraction
dominate the correlation across wide range of frequencies below
0.01Hz (Stefanovska et al., 1999) emphasizing the potential
contribution of spatiotemporally sustained response mediated by
astrocyte-endothelial signaling (Iadecola and Nedergaard, 2007).

The Significance of Non-linear Relationship Revealed

by Multifractal Covariance Analysis
While scale-wise cross-correlation analysis does not reveal scale-
free properties, multifractal covariance analysis is specifically
designed to characterize LRCs and multifractality in the coupled
HbO-HbR dynamics. The covarying fluctuations of HbO and
HbR originate from their respective individual fluctuations and
the directly coupled dynamics of the exchange between the two
compartments. Following the approach of Kristoufek (2011) the
deviation of ORĤ(2) from (OĤ(2)+RĤ(2))/2 indicates oxygen
exchange within the hemoglobin pool. We found a clearly
significant decrease of ln(f ŜCov(N)) in the elderly (Figure 4B)
indicating weakening of the coupled fluctuation of HbO and
HbR. Indeed, the inference is an upset balance between oxygen
demand and supply. Given the strong association between
the foci of the fast component of the covariance scaling
function and of CBSI-pretreated signal scaling function, this
change supposedly can be attributed to the age-related decline
in neurodynamics. Although at a weaker significance and
lower correlation with the corresponding multifractal endpoint
parameter (obtained for multifractal covariance analysis and
multifractal analysis of CBSI-pretreated signals, respectively),
the decreased f hmax of HbO-HbR covariance in the elderly
participants besides its similar pattern with f hmax of neurogenic
fluctuations supports this notion. Clearly, more evidence is
needed coming from measurements and synthesized datasets

Frontiers in Physiology | www.frontiersin.org 16 August 2018 | Volume 9 | Article 107226

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mukli et al. Multifractal Cerebrocortical Hemodynamics and Aging

to elaborate and consolidate physiological models for this
interpretation.

Although our approach is essentially similar to themultifractal
detrended- (Zhou, 2008), height cross-correlation (Kristoufek,
2011) analyses and cross-wavelet analysis (Ciuciu et al., 2014;
Jiang et al., 2016), this is the first paper describing and utilizing
the bivariate adaptation ofmultifractal SSC analysis. Owing to the
similarities between our implementation and other time domain
algorithms a reliable parameter estimation was expected. A
performance characterization of multifractal covariance analysis
on synthetic signals with known degree of correlation, while
is certainly desirable, but is beyond the scope of the present
study.

The Importance of Coupled HbO-HbR Fluctuations

Driving Cerebral Hemodynamics
Physiologically, oxygen consumption related to neural activity
is not blood flow-limited, but rather neural activity controls
the CMRO2 and cerebral hemodynamics (Raichle and Mintun,
2006). Consequently, it is plausible to explain variations of
CBV fluctuations (proportional to the measured HbT signal)
as a function of HbO-HbR relationship providing insight in
variations in cerebral oxygenation. The explicit deterministic,
quantitative relationship between key variables of the study
established by Bienaymé-formula (Equation 2) offers an explicit
way assigned by GLM to evaluate their role with special emphasis
on rσ (s).

Scale-wise cross-correlation is a robustly significant
determinant of HbT fluctuations at all temporal scales within
the framework of GLM. Omitting either age and gender from
the statistical analyses (i.e., multiple regression, Figure 6) or
incorporating these categorical variables in it (AnCova/separate
slopes) yields essentially the same outcome on the role of rσ (s).
Considering the impact of age on rσ (s) and the age-corrected
dependence of rσ (s) CBV fluctuations (see Table 2) it can be
concluded that age exerts its effect on TSσ (2, s) in part via
rσ (s) shifting toward uncorrelated chromophore dynamics.
The impact of weakened HbO-HbR coupling in the elderly—
supposedly due to declining neurodynamics—is clearly seen
in the age-related changes of multifractal endpoint parameters
characterizing cerebral hemodynamics.

Limitations and Future Perspectives
Acquiring additional modalities would have allowed for a
more straightforward physiological interpretation of the signal.
Specifically, transcranial Doppler measurement (capturing blood
flow velocity in the middle cerebral artery) or continuous blood
pressure records offer measures on systemic influences that could
have been regressed out. To compensate, we applied CBSI to
remove these influences from the signal. Further development
and testing of robust pre-processing methods are in place to
further enhance the interpretation of multifractal measures of
physiological processes.

The intimate relationship between multifractal hemodynamic
fluctuations and functional connectivity has been demonstrated
and characterized on intrinsic fMRI networks (Ciuciu
et al., 2014) and by revealing scale-free network dynamics

in the prefrontal cortex captured by NIRS (Racz et al.,
2018). In this comparison, our single-region measurement
measurement appears like a limitation (Novi et al., 2016).
However, in fact, we present an analytical framework which
is capable of integrating aspects on incoming signaling with
those of regional hemodynamics elicited by neurovascular
coupling.

The tools developed for characterizing the coupled HbO-
HbR dynamics have potentials in other applications, too. The
fractal scale-wise correlation analysis captures linear aspects
while the multifractal covariance analysis adds a non-linear
dimension to the assessment of coupling between non-stationary
time series. These methods open new ways in uni- and
multimodal applications to investigate functional connectivity or
neurovascular coupling, respectively.

CONCLUSIONS

Mono- and multifractal approaches have greatly enriched our
insight of biological complexity in particular that of the
brain (Bullmore and Sporns, 2009; Herman et al., 2009; Ihlen
and Vereijken, 2010; Nagy et al., 2017; Racz et al., 2018).
To the best of our knowledge, this study is the first using
consolidated datasets with tested and proven correlation-type
multifractality for an in-depth characterization of resting-state
NIRS fluctuations. Here we interpret the multifractality of single-
region cerebral hemodynamics as resulting from neurogenic
oscillations via cross-scale interactions blending into a scale-
free intermittent arrhythmic pattern via neurovascular coupling.
However, the intrinsic and endothelium-evoked heterogeneous
oscillations of the vascular smooth muscle tone give rise
to multifractality of vasogenic fluctuations. The multifractal
endpoint parameters obtained from raw and pre-processed signal
attest to the impact of healthy aging on cerebral hemodynamic
fluctuations in the human prefrontal cortex. Specifically, we
report that the total power of very-low frequency—vasogenic—
oscillations of CBV decreased due to a preserved value
of focus and an increase of LRC, (sĤ(2)); the latter is
concomitant to the right-shifting singularity spectra [D(h) along
with its shmax]. As to the hemodynamic fluctuations elicited
by neural activity—related to low-frequency oscillations—we
show a general decline indicated by decreased Ĥ(2), hmax,
and focus of the neurogenic component. On the contrary,
parameters reflecting degree of multifractality are the same in
the group of young and elderly subjects which demonstrates
non-pathological aging spares non-linear hemodynamics. In
case of the elderly participants, the anticorrelation of HbO
and HbR fluctuations were barely present at high temporal
scales, while an attenuated cross-correlation was revealed by
multifractal covariance analysis. We show that the impact of
age on the parameters of neuro- and vasogenic components
must have resulted from the age-related alterations in HbO-HbR
coupling. In our study, the HbO-HbR relationship appears as
a key element directly influenced by the neuronal activity and
directly coupled to CBV dynamics via neurovascular coupling
which seems like sensitive to aging. We suggest that decreased
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incoming signaling and the prevalence of an altered pattern
of moment-to-moment HbO-HbR coupling could contribute to
the mismatch between oxygen demand and supply. Together
with vascular dysfunction could well be considered as factors
behind the observed age-dependent alterations of cerebral
hemodynamics.
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Objective: To characterize the multifractal behavior of the beat to beat heart-period

or RR fluctuations in fibromyalgia patients (FM) in comparison with healthy-matched

subjects.

Methods: Multifractral detrended fluctuation analysis (MDFA) was used to study

multifractality in heartbeat times-series from 30 female healthy subjects and 30 female

patients with fibromyalgia during day and night periods.The multifractal changes as

derived from the magnitude and sign analysis of these RR fluctuations were also

assessed.

Results: The RR fluctuations dynamics of healthy subjects showed a broad multifractal

spectrum. By contrast, a noticeable decrease in multifractality and non-linearity was

observed for patients with fibromyalgia. In addition, the spectra corresponding to FM

subjects were located on the average to the right of the spectra of healthy individuals,

indicating that the local scaling exponents reflect a smoother behavior compared to

healthy dynamics. Moreover, the multifractal analysis as applied to the magnitude and

sign heartbeat series confirmed that, in addition to a decreased nonlinearity, fibromyalgia

patients presented stronger anticorrelation in directionality, which did not remain invariant

for small or rather larger fluctuations as it occurred in healthy subjects.

Conclusion: When compared to healthy controls, fibromyalgia patients display

decreased nonlinearity and stronger anticorrelations in heart period fluctuations. These

findings reinforce the hypothesis of the potential role of the dysfunctional autonomic

nervous system in the pathogenesis of fibromyalgia.

Keywords: heart rate variability, scaling, magnitude and sign analysis, complexity theory, dysautonomia,

multifractaility, fibromyalgia
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1. INTRODUCTION

Diverse methods derived from non-linear dynamics and

statistical physics have been used to characterize the

spatiotemporal organization displayed by complex signals
from different living systems (Ashkenazy et al., 2002; Hu et al.,

2004; Ivanov et al., 2001, 2009; Bassingthwaighte et al., 2013).
Frequently, many of these signals exhibit power law scaling
when analyzed by techniques which are capable to detect a single
scaling exponent; but for other signals, a better description
is given in terms of a set of local exponents as it is the case
of multifractals (Goldberger et al., 2002; Bunde et al., 2012).
The multifractal formalism was introduced in the context of
turbulence studies (Kolmogorov, 1941; Frisch, 1995) and velocity
fluctuations (Frisch and Parisi, 1985). Since Mandelbrot (1974)
introduced the concept of multifractality in the context of
geometric objects; many different systems have been described
using a broad multifractal spectrum, indicating that a wide
range of local exponent values are needed to characterize the
irregularity in the original signal (Mandelbrot, 1977; Ivanov
et al., 1999a, 2001; Feder, 2013). The traditional procedure to
perform a multifractal analysis is derived from the construction
of a standard partition function, and only applies to normalized
stationary signals (Wang et al., 2014). At the beginning of the
90s, the wavelet transform modulus maxima (WTMM) method
was introduced to determine the multifractal spectrum based on
wavelet transform over different scales (Daubechies, 1992; Bacry
et al., 1993; Muzy et al., 1993, 1994; Arneodo et al., 1995a,b;
Ivanov et al., 1996).

Later, in 2002 Kantelhardt et al. (2002) introduced the
multifractral detrended fluctuation analysis (MDFA), as an
extension of the monofractal detrended fluctuation analysis
(DFA) method (Peng et al., 1994). One of the advantages of
the MDFA is that it provides a stable spectrum of a range
of multifractal signals, with a reliable estimation of the set of
local Hurst exponents. Besides, the MDFA has been tested to
extract a reliable multifractal spectrum when it is applied within
time scales corresponding to low frequencies (Galaska et al.,
2008).

On the other hand, the RR fluctuations or heart rate variability
has been the object of study by means of nonlinear methods
during past decades (Nunes Amaral et al., 2001; Ivanov et al.,
2001, 2009; Peña et al., 2009; Hernández-Pérez et al., 2011).
One of the most important features extracted by means of these
methods is the presence of power-law fractal organization under
healthy circumstances, while a degradation of the fractal scaling is
frequently observed for pathologic conditions (Guzmán-Vargas
et al., 2003). A more detailed assessment of the complex RR
fluctuations have revealed that healthy interbeat dynamics is well
described by a broad mutifractal spectrum, and a reduction in
the multifractality was detected for patients with congestive heart
failure (Ivanov et al., 1996; Guzmán-Vargas and Angulo-Brown,
2003; Guzmán-Vargas et al., 2005; Bojorges-Valdez et al., 2007;
Galaska et al., 2008).

Given the need to elucidate the etiology of fibromyalgia (FM),
identifying alterations in its RR fluctuations complexity has
gained particular interest. In this pathology, chronic pain and

other symptoms affect multiple systems extensively (Martinez-
Lavin et al., 2008). The pathophysiology of FM remains
uncertain, and no specific mechanisms can be pinpointed to
explain the dynamical changes observed in the heart rate
variability of these patients. However, there is strong evidence
about the involvement of the autonomic nervous system both,
in the etiology and the multifaceted alterations of this disease.
The main affliction of the syndrome (chronic pain) seems to
be maintained by the chronic sympathetic hyperactivity that
is associated with altered connections between the sensory
neurons and the sympathetic nervous system (Martinez-Lavin,
2004). In addition, the fact of having defective catecholamine
clearing enzymes appears to increase the susceptibility to pain
(Diatchenko et al., 2004). We have previously hypothesized that
the understanding of FM requires an approach in which the
autonomic nervous system is considered as a complex adaptive
system, which in itself constitutes the main element of the stress
response system (Martinez-Lavin et al., 2008). From this point
of view, we would expect that the alterations in this complex
adaptive system become manifested in the dynamical properties
of the physiological variables that such system regulates (such
as the beat to beat heart-period or RR fluctuations). The first
evidence of an altered complexity of RR fluctuations in FM
was the observation of a larger monofractal short-term scaling
exponent in FM patients compared to healthy subjects (Lerma
et al., 2016). Yet, it is not known if the multifractal spectrum
of these patients also shows a reduction or other alterations.
Here, we studied RR time series of patients with FM during day
and night periods. Our aim was to characterize the multifractal
behavior of the RR fluctuations in FM patients and in carefully
selected healthy-matched subjects, using the MDFA method. In
addition, the multifractal changes as derived from the magnitude
and sign analysis of these RR fluctuations were also assessed.

2. METHODS AND DATA

2.1. Multifractal Detrended Fluctuation
Analysis (MFDFA)
The multifractal detrended fluctuation analysis was introduced
by Kantelhardt et al., which is a robust method to detect the
scaling properties of the fluctuactions related with multifractilty
of a given signal. We briefly explain the main steps of the
multifractal detrended fluctuation analysis (Kantelhardt et al.,
2002):

• Step 1: Given the time series xk of lengthN. First, we determine
the profile

Y(i) ≡

i∑

k=1

[xk − 〈x〉], i = 1, ...,N, (1)

where 〈x〉 represents the mean value.
• Step 2: Next, the profile Y(i) is divided into Ns ≡ int(N/s)

segments of size s. To make more robust the statistics, the
same procedure is applied but starting from the end of the time
series, and in this way, 2Ns segments are considered for the
calculations.
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• Step 3: A least-square fit is applied to the 2Ns segments of the
integrated data. Then the variance is calculated,

F2(v, s) ≡
1

s

s∑

i=1

{Y[(v− 1)s+ i]− yv(i)}
2, (2)

for, v = 1, ...,Ns, where yv represents the fitting polynomial,
which can be linear, quadratic, or a higher order polynomial.

• Step 4: Now the qth-values are considered in the fluctuation
function

Fq(s) ≡

{
1

2Ns

2Ns∑

v=1

[F2(v, s)]
q
2

} 1
q

(3)

with q a parameter that modifies the behavior of Fq(s).
Particularly, the cases of q < 0 characterize small fluctuations
whereas q > 0 refer to larger ones (Kantelhardt et al., 2002).
The steps 2–4 are repeated for different time scales s in order
to construct the log-log plot of Fq(s) vs. s.

• Step 5: Finally, the scaling behavior is described by,

Fq(s) ∼ sh(q), (4)

where h(q) is an exponent that may depend on q and it is
called the generalized Hurst exponent. For instance, when
q = 2, h(2) is related to the standard Hurst exponent.
For monofractal time series, it is expected that h(q) remains
constant as the value of q is changed.

The use of different moments (q-values) permits to stablish a
relationship between the generalized Hurst exponent h(q) and
the scaling exponent τ (q), which is defined via an appropriate
partition function in the standard multifractal formalism (Feder,
1988; Kantelhardt et al., 2002). This relationship is given by,

τ (q) = qh(q)− 1. (5)

The singularity spectrum f (α) can be constructed to characterize
themultifractal properties of the time series. Specifically, f (α) can
obtained from τ (q) via the Legendre transform, by taking

α = τ ′(q) and F(α) = qα − τ (q), (6)

where α represents the singularity strength of Holder exponent
and F(α) is the dimension of the subset of the time series that is
characterized by α. We also recall that sometimes the multifractal
properties are described in terms of the generalized dimensions:

D(q) =
τ (q)

q− 1
. (7)

In order to characterize the multifractal spectrum f (α), we resort
to the following quantities (Makowiec et al., 2006; Galaska et al.,
2008):

• Width of the spectrum: distance between the maximum and
minimum Holder exponents,

1α = αmax − αmin. (8)

• Left-side width of the spectrum: distance between α∗ [which
corresponds to Fmax(α

∗)] and minimum α value

1αleft = αFmax − αmin. (9)

• Right-side width of the spectrum: distance between
maximum α and α∗

1αrigth = αmax − αFmax . (10)

• Global Hurst exponent:

HG =
1

2
(1+ τ (2)), (11)

where τ (2) represents the value of the scaling exponent for
q = 2.

• Left-slope and right-slope in τ : linear approximation to
the behavior of τ for negative (left) and positive (right)
moments q.

To further explore the multifractal changes in healthy and FM
conditions, we also resort to the magnitude and sign analysis of
the RR sequences. Ashkenazy et al. (2001) have reported that
scaling properties of the magnitude series are related to the
multifractal structure of the origial signal (non-linear properties),
whereas scaling sign analysis reveal mostly information about
linear correlation of the time series. Briefly, from the increment
1RR series, two new series are constructed: the magnitude series
|1RR| and sign(1RR), where the function sign(1RR) is defined
to be+1 for 1RR > 0,−1 for 1RR < 0 and 0 for 1RR = 0. The
magnitude and sign analysis of heart rate variability have been
proved to be useful to deferentiate between pathological changes
and certain clinical conditions (Ashkenazy et al., 2001; Schmitt
and Ivanov, 2007; Reyes-Lagos et al., 2016).

2.2. Patients and Data
As previously described (Lerma et al., 2016), we studied 30
women with fibromyalgia. Eligibility criteria for patients were
the following: (1) to have fibromyalgia according to the 1990
American College of Rheumatology guidelines; (2) to be free
of any medication that could affect autonomic performance
including tranquilizers or antidepressants; (3) to be 18–50 years
old; (4) to be in the fertile period of their lives with active
menstrual cycles, but not to be in their menstrual period the
day of the study; (5) to have no comorbid conditions; and (6)
to freely agree to participate in the study. Patients were sourced
from different rheumatology private practices in Mexico City.
For each patient, a control of similar age (±2 years) was recruited.
Eligibility criteria for controls were the following: (1) to consider
themselves healthy and to have five or fewer fibromyalgia tender
points; and (2) Not to be in their menstrual period the day of
the study. Controls were medical or paramedical personnel. A
rheumatologist examined all prospective participants to ascertain
the diagnosis of FM or the healthy status of controls. All
participants filled out validated spanish questionnaires for a
systematic and comprehensive assessment of their symptoms,
including the Fibromyalgia Impact Questionnaire (FIQ) and
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the Composite Autonomic Symptom Scale (COMPASS). The
fibromyalgia group had higher scores of the symptoms than the
control group (total FIQ score: 63 ± 16 vs. 10 ± 10, p < 0.0001;
total COMPASS score: 55±16 vs. 15±11, p < 0.0001). A detailed
description of all symptoms is described elsewhere (Lerma et al.,
2016). FM patients had similar age and body mass index (age =
31±8 years old, bodymass index = 23.8±4.4 Kg/m2) than healthy
participants (31 ± 8 years old, and body mass index (24.4 ± 3.2
Kg/m2). All participants signed a written consent form. The study
was approved by the Research Committee and by the Bioethics
Committee of the Instituto de Cardiología de Mexico.

The RR fluctuations time series of each participant were
obtained from an ambulatory 24 h electrocardiogram recording
with a Holter monitor (model DMS-307, DMS Inc.). An
automated computer program was used to identify the time
of occurrence of each heartbeat. Then the difference in time
between consecutive heartbeats was calculated (RR interval), and
an adaptive filtering method was used to identify and replace
the RR intervals that were not originated during normal sinus
rhythm (Wessel et al., 2000). The RR fluctuations time series
had a mean RR interval of 0.806 ± 0.082 in the FM group and
0.770± 0.074 s in the healthy group (p = 0.070).

2.3. Statistical Analysis
Kolmogorov–Smirnov tests were applied to all variables to assess
their normal distributions. Variables with normal distribution
were compared between groups by Student t-tests; variables
with no normal distributions were compared by Mann–Withney
U-tests. Regression analyses of h(q) vs. q were performed to
compare values of h(q) between FM and control groups. For each
group, the 95% confidence intervals of each model parameter
were estimated in a second order polynomial model [h(q) =

β0 + β1q + β2q
2]. The statistical analysis was performed with

SPSS version 21.0.

3. RESULTS

For both, healthy and FM patients, we performed the multifractal
analysis of RR time series from two 5-h segments of the ECG
recordings: nighttime (0.00 p.m.–5:00 a.m.) and daytime (2:00
p.m.–7:00 p.m.). These series are illustrated in the Figures 1A,B.
First, we explored the behavior of the fluctuactions in the plane
Fq(s) vs. s for different values of q and for different segment
lenghts (from 30 min to 5 h) as shown in the Figure 1C. It is
very important to consider the proper range selection of scales
s, for which the fittings in the fluctuactions Fq(s) are calculated.
In our case, we selected the scale range 6 < s < 100 and the
length of the segment 1t = 1, 500 ≈ 30 min to apply MFDFA.
The values of the local scaling exponents of all subjects are
averaged over all segments of the 5 h interval (either at daytime
or nighttime). The behavior of h(q) vs. q was determined for q-
values within the interval [−5, 5], and the multifractal spectrum
was then constructed. Figure 2 shows the results of the MFDFA
for the healthy and FM groups for daytime records. We observe
that theHurst exponent h(q) is not independent of q, i.e., a similar
variation in the average scaling-exponent values as a function of
q is observed for both groups ( the confidence intervals of β1 and

FIGURE 1 | Representative RR time series during timeday of a (A) healthy

subject and (B) patient with FM. Plot of (C) Fq(s) vs. q of a RR sequence

(healthy subject) for several values of q.

β2 from both groups are overlapped). This is a manifestation of
multifractal properties in the time series (Figure 2A). However,
the confidence intervals of β0 from both groups do not overlap,
indicating that the h(q) values from FM data are consistently
higher (i.e., smoother) than the corresponding values of the
healthy group. These results are in good concordance with a
previous report about monofractal estimation of the scaling
exponent [h(2)] based on the standard two-point correlation
DFA method (Lerma et al., 2016). For healthy subjects, we
observe that the behavior of τ (q) vs. q exhibits slightly more
nonlinearity (Figure 2B) than the FM patients, which showmore
linear τ (q) behavior. This indicates that under healthy conditions
the dynamics seems to showmore multifractal features (Table 1).
We find significant differences in Right-slope in τ (p < 0.05)
between healthy and FM groups, but not significant differences
were found for Left-slope in τ (p > 0.5). Figure 2C shows the
spectra of both groups. We observe that, for healthy subjects,
the local Holder exponents cover the range 1 < α < 1.62,
while for FM patients the dominant exponents fall within the
interval 1.1 < α < 1.7. These results indicate that FM signals
are similar to Brownian-type fluctuactions because the interval
of the dominant exponents are closer to the 1.5 value.
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FIGURE 2 | Results of the MFDFA for all healthy and FM subjects. (A) Plot of

h(q) vs. q. The values of h(q) are derived from fittings within the interval

6 < s < 100 and a time window of 1, 500 RR values during daytime. The

estimated regression models were h(q) = 1.295− 0.039q+ 0.003q2 (for FM

patients), and h(q) = 1.261− 0.042q+ 0.002q2 (for healthy group). In both

models, β0, β1, and β2 6= 0 with p < 0.001 and R2 > 0.55. The confidence

intervals of β1 and β2 are overlapped in both groups, while there was no

overlap in β0 of the FM group (1.281, 1.309) with the healthy group

(1.226, 1.256). (B) Behavior of τ (q) for data showed in (A). (C) Multifractal

spectrum F (α) vs α. Error bars represent the standard error of the mean.

Next, we also repeated the calculations for nighttime periods.
We find that during this period, there are not significant
differences between healthy and FM groups regarding the

TABLE 1 | Characteristics of the multifractal spectrum in patients with FM and

healthy subjects during daytime.

Parameters Healthy Fibromyalgia p-value

1α 0.6324 ± 0.1809 0.6136 ± 0.1291 0.6565

1αleft 0.4317 ± 0.1567 0.4320 ± 0.1150 0.9947

1αrigth 0.2006 ± 0.1095 0.1816 ± 0.0813 0.4638

HG 1.1595 ± 0.1108 1.2302 ± 0.1089 0.01947

Left-slope in τ 1.5389 ± 0.2122 1.6031 ± 0.2871 0.3459

Right-slope in τ 1.0904 ± 0.1515 1.1770 ± 0.1257 0.0236

The values of the parameters (mean ± SD) were obtained from fittings within the interval

6 < s < 100 in the log Fq (s) vs. log s plane. HG stands for global Hurst exponent.

multifractal properties (data not shown). To endorse our
findings, we also performed the same analysis on two surrogate
data sets derived from each group. First, we shuffled the RR
intervals to destroy temporal correlations while preserving the
probability distribution. Second, the Fourier transform is applied
to the RR intervals sequences, then we randomize the Fourier
phases and the inverse Fourier transform is performed to get
the surrogate time series. This process preserves the linear
properties of the signal (the same power spectrum) but changes
the probability distribution of the RR intervals (see Figure 3).
We observe that when the temporal two-point correlations are
destroyed, the dominant local scaling exponents are close to the
0.5 value for both groups (Figures 3A,C). For phase-randomized
data, we found that the width of the multifractal spectrum of
the healthy group is narrower than the width corresponding to
FM patients (Figures 3B,D), confirming that the contribution
of phase correlations to the multifractality is more important in
healthy subjects compared to FM patients where the multifractal
spectrum suffered a small change, as described above.

Next, we apply the MDFA to the magnitude and sign series
derived from the daytime or nighttime intervals. As it is shown
in Figure 4A, the average values of h(q) of magnitudes series are
higher for healthy subjects compared to the FM group.Moreover,
the width of the multifractal sprectrum of healthy data is slightly
larger than the width of the FM case, confirming that the
contribution of nonlinearities is more important under healthy
dynamics compared to the FM dynamics (Figure 4B). Figure 5
shows the results of the sign series. We observe that, unlike
the previous cases, here FM data lead to a wider multifractal
spectrum compared to healthy group. We also remark that the
FM group is characterized by a more anticorrelated scaling
exponents while the dominant exponents for healthy subjetcs are
less anticorrelated. For a better comparison of both groups, the
above description of the differences in the multifractal structure
between healthy subjects and FM patiens allow us to construct
a scatter plot of the generalized Hurst exponent hRR(q) of the
original RR time series vs. the corresponding Hurst exponent of
magnitude hmag(q) [or hRR(q) vs. sign hsign(q)] (Figure 6). We
find that, for hRR(q) vs. hmag(q), two different tendencies are
observed for positive and negative moments with a steeper slope
in the case of negative moments and both groups are clearly
differentiated (Figure 6A). For hRR(q) vs. hsign(q), sign scaling
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FIGURE 3 | (A) Average behavior of h(q) vs. q for healthy subjects, patients with FM and their corresponding shuffled version. (B) As in (A) but for the phase

randomized data. The exponents were calculated for the scaling region 6 < s < 100. (C) Multifractal spectrum F (α) vs α for healthy and FM groups and their

corresponding shuffled version. (D) As in (C) but for the phase randomized data, all during timeday. Error bars represent the standard error of the mean.

exponents of healthy data are almost constant for both negative
and positive moments while FM patients exhibit variations in
both type of scaling exponents and again both groups are
separated, specially for positive moments (Figure 6B).

4. DISCUSSION

This work presents a thorough exploration of the dynamic
behavior of heart rate variability in FM patients from
the point of view of multifractality, nonlinearity and
directionality. Our main findings are decreased multifractality
and non-linearity as well as stronger anticorrelation in
FM patients during daytime compared to matched-healthy
subjects.

The differences during daytime between groups were mainly
identified in two characteristics of the multifractal spectrum
(HG and the right slope in τ ) as well as in a larger effect of
the phase randomization that provoked a narrower width of
the resulting multifractal spectrum for the healthy group. This
implied a reduced nonlinearity of heart rate variability in FM
patients, which was also confirmed by the multifractal structure
of the magnitude series because the generalized hmag(q) values
of the healthy group were consistently larger for all qth values.
Moreover, the generalized hsign(q) showed consistently smaller
values in FM patients, which implies a stronger anticorrelated
behavior for all qth values (q > −4). The multrifractal approach
also exhibited that in FM patients, the value of hsign(q) changes
at different qth values, while this variation does not occur in

healthy subjects. From a dynamical point of view, whereas
a narrower and shifted multifractal spectrum in FM patients
reveals smoother Brownian-like fluctuations, in accordance
with previous results based on a monofractal analysis (Lerma
et al., 2016), their stronger anticorrelated behavior indicates
that the fluctuations in heart rate variability tend to alternate
the increments and decrements of the RR interval at several
scales. Given the well-known effects of periodic trends on
the scaling properties (Hu et al., 2004; Schmitt and Ivanov,
2007; Perakakis et al., 2009), such smoother fluctuations in FM
patients may arise, among other factors, from the occurrence
of periodic breathing patterns that have been observed in
FM (Sergi et al., 1999). Future studies are required to asses
the potential influence of periodic breathing patterns upon
multifractality HRV properties in FM. FM is characterized by a
wide range of symptoms and inter-subject variability is usually
very high. A strength of our study is the carefully selected
patient and control groups. All patients had well-established
fibromyalgia, without comorbid conditions and were free of
any medication that could affect autonomic nervous system
performance. Expert rheumatologists examined all prospective
participants to ascertain the diagnosis of FM or the healthy status
of controls according to the American College of Rheumatology.
Further studies with large samples are needed to assess the
generalization of the present findings in more heterogeneous
samples of patients

Previous studies have used both time domain and frequency
domain heart rate variability analysis. The majority of studies
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FIGURE 4 | Multifractal detrended fluctuation analysis of magnitude increment

sequences of healthy and FM patients during timeday. (A) Behavior of h(q) vs.

q for scaling exponents obtained from fittings in the scaling region

15 < s < 100. F (α) vs. α for data showed in (B). Error bars represent the

standard error of the mean.

observed lower heart rate variability in FM patients compared to
healthy control persons, as well as increased sympathetic activity
and a blunted autonomic response to stressors (Meeus et al.,
2013). The power spectral analysis of heart rate variability in FM
patients have actually shown a sympathetic predominance during
all phases of the circadian cycle (Martínez-Lavín et al., 1998), and
the time domain analysis indicated a decreased overall variability,
which correlated with some FM symptoms (Lerma et al., 2011).
In our study, representative multifractality indexes were different
between patients and controls during daytime but not at night.
A hypothetical explanation for this finding could be that the
blunted response to stressors of fibromyalgia patients degrade
the multifractal dynamics exhibited by heart rate variability
when confronted to the daytime chores. Concerning patients
with congestive heart failure, a disease that compromise the
cardiovascular dynamics more severely than FM, a monofractal
analysis of healthy dynamics vs. patients with congestive heart
failure showed scaling exponents of both groups that are closer
to each other during sleep phases with a noticeably similar
irregular behavior compared to daytime periods (Ivanov et al.,
1999b). Far from the reductionist vision of FM as a disease solely
caused by chronic sympathetic hyperactivity, we consider that
FM and related conditions may result from an overall degraded
performance of the autonomic nervous system, which is a

FIGURE 5 | Multifractal detrended fluctuation analysis of sign time series from

healthy and patients with FM during timeday.(A) Plot of h(q) vs. q for scaling

exponents obtained from fittings in the scaling region 15 < s < 100. (B) F (α)

vs. α for data showed in (A). Error bars represent the standard error of the

mean.

complex adaptive system that constitutes the main orchestrator
of the stress response system (Martinez-Lavin et al., 2008).
From this point of view, previous findings of smoother heart
rate variability are consistent with the hypothesis of an altered
and more “rigid” autonomic response to stress (Lerma et al.,
2016). The current work provides further evidence of this
decreased complexity in the autonomic nervous system because
the multifractal analysis showed less nonlinearity in FM patients
than in healthy subjects. This was observed by a larger HG and
larger right slope in τ (Table 1), which was also confirmed by
the surrogate analysis and multifractal analysis of the magnitude
series as explained above. Moreover, the multifractal analysis
of the sign series showed that FM patients have an increased
anticorrelated behavior, which is consistent with the sympathetic
predominance of FM according to the stochastic feedback
model for random walks (Ivanov et al., 1998). In this model,
an increment of anticorrelations is achieved by introducing a
dominant attracting factor to set the main heart rate (i.e., instead
of concurrent influences from several factors, one modulating
factor becomes predominant).
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FIGURE 6 | (A) Scatter plot of the generalized Hurst exponents hRR (q) vs.

hmag(q), for healthy and FM groups during daytime periods. For both groups,

symbols with error bars represent the mean value, and the error bars the

corresponding standard error of the mean. We observe that both groups are

well separated for the different values of q. (B) As in (A) but for the generalized

Hurst exponents hRR(q) vs. hsign (q), for healthy and FM groups during daytime

periods. In this case, both groups are close each other for negative moments

while tend to be more separated as q increases.

There are other hypotheses beyond the autonomic
modulation that have motivated the exploration of changes
in the anatomical or functional complexity, which both could
be associated with the hyperactivity of the nociceptive system in
FM patients. For example, morphometric analysis of different
subcortical brain regions in FM patients showed a reduction in
the total brainstem volume, which was significantly correlated
with the clinical score of tender points (Fallon et al., 2013). From
a functional point of view, the interaction between brain areas
of FM patients has been assessed through network sensitivity
analysis of electroencephalogram data. Two properties of such
networks (node degree and frequency) showed significant
correlation with chronic intensity pain, suggesting that the

central nervous system of these patients has an altered network
configuration that may increase hypersensitivity to pain (Lee
et al., 2018). However, it remains uncertain if such changes of
the central nervous system participate in functional alterations
of other regulatory systems, and if this participation modifies
effector variables such as the heart rate period.

The multifractal detrended analysis as applied here
to magnitude and sign heart rate variability sequences
indicated a potential route to evaluate the impairment of
the regulatory adaptability because, regardless of characterizing
the directionality in small (q < 0) or rather large fluctuations
(q > 0), the level of anticorrelation remained invariant for
healthy subjects. Given that our healthy subjects were carefully
selected (see section 2), this finding could then imply that such
invariance reveals stability because the interplay of different
attracting factors (Ivanov et al., 1998) are similar manifested
during the course of small or large fluctuations. The current
work provides further evidence of this decreased complexity
in the autonomic nervous system because the multifractal
analysis showed less nonlinearity in FM patients than in healthy
subjects. Future studies associating the severity of the disease
will determine if this new information has clinical implications
and additional analyses remain to be performed to assess this
consideration.

5. CONCLUSIONS

Themultifractal analysis of heart rate variability revealed a loss of
complexity (i.e., less nonlinearity) and increased anticorrelated
dynamical behavior in FM patients, which reinforces the
hypothesis of the crucial role of the impaired autonomic nervous
systems in the etiology and diverse alterations of FM.
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Eckhard Salzsieder1

1 Institute of Diabetes “Gerhardt Katsch”, Karlsburg, Germany, 2 Diabetes Service Center, Karlsburg, Germany, 3 Heart
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Methods from non-linear dynamics have enhanced understanding of functional
dysregulation in various diseases but received less attention in diabetes. This
retrospective cross-sectional study evaluates and compares relationships between
indices of non-linear dynamics and traditional glycemic variability, and their potential
application in diabetes control. Continuous glucose monitoring provided data for 177
subjects with type 1 (n = 22), type 2 diabetes (n = 143), and 12 non-diabetic subjects.
Each time series comprised 576 glucose values. We calculated Poincaré plot measures
(SD1, SD2), shape (SFE) and area of the fitting ellipse (AFE), multiscale entropy (MSE)
index, and detrended fluctuation exponents (α1, α2). The glycemic variability metrics
were the coefficient of variation (%CV) and standard deviation. Time of glucose readings
in the target range (TIR) defined the quality of glycemic control. The Poincaré plot indices
and α exponents were higher (p < 0.05) in type 1 than in the type 2 diabetes; SD1
(mmol/l): 1.64 ± 0.39 vs. 0.94 ± 0.35, SD2 (mmol/l): 4.06 ± 0.99 vs. 2.12 ± 1.04,
AFE (mmol2/l2): 21.71 ± 9.82 vs. 7.25 ± 5.92, and α1: 1.94 ± 0.12 vs. 1.75 ± 0.12,
α2: 1.38 ± 0.11 vs. 1.30 ± 0.15. The MSE index decreased consistently from the non-
diabetic to the type 1 diabetic group (5.31 ± 1.10 vs. 3.29 ± 0.83, p < 0.001); higher
indices correlated with lower %CV values (r = −0.313, p < 0.001). In a subgroup of type
1 diabetes patients, insulin pump therapy significantly decreased SD1 (−0.85 mmol/l),
SD2 (−1.90 mmol/l), and AFE (−16.59 mmol2/l2), concomitantly with %CV (−15.60).
The MSE index declined from 3.09 ± 0.94 to 1.93 ± 0.40 (p = 0.001), whereas the
exponents α1 and α2 did not. On multivariate regression analyses, SD1, SD2, SFE, and
AFE emerged as dominant predictors of TIR (β = −0.78, −1.00, −0.29, and −0.58) but
%CV as a minor one, though α1 and MSE failed. In the regression models, including
SFE, AFE, and α2 (β = −0.32), %CV was not a significant predictor. Poincaré plot
descriptors provide additional information to conventional variability metrics and may
complement assessment of glycemia, but complexity measures produce mixed results.

Keywords: variability analysis techniques, continuous glucose monitoring, glucose time series, indices of non-
linear and fractal dynamics, multiscale entropy, Poincaré plots, detrended fluctuation analysis, glycemic control
of diabetes

Frontiers in Physiology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 125742

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01257
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01257
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01257&domain=pdf&date_stamp=2018-09-06
https://www.frontiersin.org/articles/10.3389/fphys.2018.01257/full
http://loop.frontiersin.org/people/551680/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01257 September 4, 2018 Time: 19:14 # 2

Kohnert et al. Variability Analysis Techniques in Diabetes

INTRODUCTION

Glucose variability (GV), as based on the amplitude of
continuously recorded glycemic profiles, is an essential factor in
the clinical control of diabetes, and high amplitudes in glucose
excursions represent an independent predictor of hypoglycemia
(Monnier et al., 2011). Moreover, GV may be a risk factor for
the development of chronic diabetes complications (Nalysnyk
et al., 2010). Several indices were introduced to measure GV
(Rodbard, 2009), but these classical indices only consider the
amplitude of the glucose signal, i.e., the global variability, and
neglect any time component (Kovatchev and Cobelli, 2016).
A few GV metrics, containing a time component are known.
For example mean of daily differences (Molnar et al., 1972),
mean absolute glucose change (Hermanides et al., 2010; Kohnert
et al., 2013), and continuous overlapping net glycemic action
(McDonnel et al., 2005), but they firmly correlate to the
amplitude-only-based indices. A new metric, glycemic variability
percentage, recently introduced by Peyser et al. (2018), gives
weight to the amplitude as well as the frequency of glucose
fluctuations. However, the limitation of all these indices is
that they emanate from linear analyses methods and thus
fail to measure the complexity or structural variability of
glucose time series. The theory of non-linear dynamics provides
the basis for analysis of structural variability in complex
systems (Schubert, 2013). Consequently, variability analysis of
physiological signals may either comprise evaluation by metrics
from linear or non-linear methods. However, only non-linear
analysis techniques provide access to the dynamics of regulatory
systems.

Several researchers developed multiple measures of variability
to assess the degree and patterns of physiological signal variation
over time intervals in health and disease. Voss et al. (2009)
and Bravi et al. (2011) have identified several domains of
variability including geometric, information, and fractal scaling
domains. We selected measures of non-linear dynamics from
three different variability domains proposed by Bravi et al., 2011).
These include Poincaré plots (Kovatchev et al., 2005; Crenier,
2014), multiscale entropy (Chen et al., 2014; Costa et al., 2002,
2014), and detrended fluctuation analysis (Yamamoto et al.,
2010; Ogata et al., 2012; Khovanova et al., 2013; Thomas et al.,
2015) for the variability analysis of glucose time series (Table 1).
These techniques have recently found application in analyzing
the dynamics of glucose time series from patients with diabetes
mellitus. The results of these studies collectively showed reduced
dynamics of blood glucose variations in patients with diabetes as
compared with non-diabetic subjects (Ogata et al., 2012; Chen
et al., 2014; Crenier, 2014; Costa et al., 2014; Khovanova et al.,
2013; Kohnert et al., 2017).

Beyond traditional estimates of glycemia and glycemic
variability, dynamical measures may enable assessment of several
extrinsic factors and treatment modalities that can modify the
intrinsic dynamics of the glucoregulatory system. However,
whether such factors affect glucose dynamics or which, if any, of
the dynamical measures, could complement traditional clinical
measures of glycemic variability in the assessment of diabetes
control is not known.

Herein, we address these problems by examining glucose
dynamics in type 1 and type 2 diabetes. We compare classical
measures of glycemic variability with indices from different
domains of variability and investigate their interrelationships.
Finally, we evaluate their contribution to the quality of glycemic
control and potential clinical significance.

MATERIALS AND METHODS

Study Design
The present study is a cross-sectional investigation that used
historical data. We conducted a retrospective analysis of
ambulatory continuous glucose monitoring (CGM) profiles
recorded with the second-generation MiniMed CGM system
(Northridge, CA, United States) set at a sampling rate of one
glucose measurement every 5 min. We analyzed the CGM data
using the MiniMed Solution Software (Version 2b, Medtronic
MiniMed) and utilized established measures of glucose dynamics,
glycemic variability, and glycemic control. Study participants
had received glucose sensors placed on their abdomen. We
used a minimum of four blood glucose meter calibrations
per day and a mean duration of 69-h continuous monitoring.
We excluded data not meeting the validity criteria of the
manufacturer (≥three paired sensor/meter readings and mean
absolute difference ≤ 28%).

Study Subjects and Collection of CGM
Data
The CGM data were collected for a total of 177 study participants:
Twenty-two patients with type 1 diabetes (T1D), 143 with type 2
diabetes (T2D), and 12 non-diabetic control subjects (ND). All
subjects participated in the Diabetiva Program (Augstein et al.,
2010), an integrated national diabetes care network. The study
participants entered the type and amount of food consumed into
their logbooks during CGM. The entrance of consumed food
enabled calculation of carbohydrate intake per day, according
to standard tables containing the nutrient composition with
carbohydrate exchange units (Metternich, 2008). Of the T2D
patients 42 had diet alone and of those assigned to oral therapy 63
had received common oral agents only or combinations thereof.

TABLE 1 | Techniques of variability analysis of glucose time series.

Domain Features Indices Feature assumptions

Geometric Poincaré plots
features

SD1,
SD2,
SFE,
AFE

Low dimensional
representation of the
dynamical attractor

Information Multiscale
entropy

MSE The complexity changes
depend on the window
length used

Fractal scaling Detrended
fluctuation
analysis

α1, α2 The SD of the detrended
cumulative time series
has scale-invariant properties

Based on the classification of analysis techniques by Bravi et al. (2011).
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Eighteen patients had insulin plus oral antidiabetes agents, and 20
patients received insulin alone. T1D patients (n = 22) had been
treated with multiple daily insulin injections (MDI) of short-
and long-acting insulin. A subgroup of these patients (n = 10)
switched to continuous subcutaneous insulin injections (CSII).
Patients after CSII are not included in the characteristics of the
total study cohort. Eighty-five percent of all patients had taken
blood pressure lowering medication. Data were not included
in this evaluation if patients had severe diabetes complications
or decompensated glycemic control with glycated hemoglobin
(HbA1c) values > 10% (86 mmol/mol).

The original study had obtained ethical approval and required
no further approval for this retrospective data analysis.

Linear Analysis
As the primary measures of GV, we computed the percentage of
coefficient of variation of glucose (%CV) and standard deviation
(SD) from the data obtained and averaged the data over a 48-
h CGM period (Rodbard, 2011). The glucose exposure metrics
included mean glucose and glycosylated hemoglobin (HbA1c).
To assess the quality of glycemic control, we computed the time
(h/day) in the target range (Rodbard, 2018) and defined a range
of 3.9–8.9 mmol/l as acceptable for clinical practice (Bergenstal
et al., 2013).

Non-linear Analysis
Forty-eight hour CGM profiles obtained during recordings
were used for calculation of dynamical parameters. We applied
the standard Poincaré plot (PCP), which is a scattergram
constructed by locating data points from the CGM time
series on the coordinate plane according to the pairing G(t),
G(t)+1t. G(t) is the glucose level at time t, and 1t is the
time delay, which is a multiple of the sampling time of the
signal. We probed 1t values of 30, 60, and 120 min but
found 1t = 60 min most suitable to represent the PCP
geometry characteristics for our study groups and used the code
created by Crenier (2014) to compute the pairs of coordinates
defining the PCPs. SD1 and SD2 statistics (Brennan et al.,
2001), enabled quantification of the plots. The PCP measures
included the minor axis of the fitting-ellipse (SD1) defined as
the dispersion of data perpendicular to the line of identity and
along the major axis (SD2) of the ellipse. Further PCP-derived
metrics were the shape (SFE) and area (AFE) of the fitting
ellipse calculated as SFE = SD2/SD1 and AFE = π∗SD1∗SD2
(Crenier, 2014). Of note, although SD1 and SD2 quantify
more or less linear rather than non-linear features (Brennan
et al., 2001; Schulz and Voss, 2017), we formally include these
indices here in differentiating them from traditional measures
of global GV.

The analysis of multiscale entropy (MSE) for the CGM
sequences utilized the previously described procedure (Chen
et al., 2014; Costa et al., 2014). This procedure comprised: (1)
derivation of a set of time series from the original glucose signal
on different time scales using the coarse-graining technique,
(2) computation of sample entropy (SampEn) with standard
parameter values for each coarse-grained time series. We chose
the window length m = 2, the sensitivity criterion r = 0.15 times

the SD, and the data length N = 576 within the entire coarse-
grained sequence with the broadest scale factor set at M = 5. Thus,
the length of the coarse-grained data (Humeau-Heurtier, 2015)
at this scale factor contained 115 glucose samples. We calculated
SampEn for the scales 1 to 5, using the mse.c program available at
https://www.physionet.org/physiotools/mse/tutorial/.

The complexity index was defined as the sum of these SampEn
values.

We also analyzed the CGM time series by calculating the
detrended fluctuation analysis (DFA) according to the standard
method, as described by (Yamamoto et al., 2010), which involves
the integration of the time series and dividing it into intervals
of equal size n. Integration of the time series was performed as
follows:

y(k) =
k∑

t−1

[B(i)− Bave]

F(n) is the calculated detrended fluctuation represented as the
root-mean-square fluctuation from the trend summed up for all
boxes (B) with B(i) as each point in the time series and Bave as the
average of the whole series.

F(n) =

√√√√ 1
N

N∑
k=1

[y(k)− yn(k)]2

n: size of the time segments (windows) of the integrated
curve
F(n): the measure of the difference between the integrated
curve and the regression lines
y(k): the value at each individual point of the integrated
curve
yn(k): the value of the regression line at the point
N: the total number of data points

Plots drawn with log F(n) on the y-axis and log(time window)
permitted computation of the α exponents and constructing the
slope of the line relating F(n) to log(time window). Because of the
crossover phenomenon observed in the regression line α (Peng
et al., 1995), we split the regression line into two regions, the
short-term (α1) and long-term (α2) range. Alpha 1 represents the
slope of the regression within 1.25 h calculated as n = 2–16 points
and α2 the slope of the regression over 1.25 h from 16 to 144 data
points.

Statistical Analysis
We categorized the patients into type 1 and type 2 diabetes
and included a control group of healthy participants. We
used one-way analysis of variance (ANOVA) and the t-test
with Bonferroni–Holm correction for control of multiple
pairwise comparisons. The two-tailed paired Student’s t-test
permitted comparison between MDI and CSII data. Variables
are presented as means ± SD and their statistical significance
by a two-tailed test. Diabetes duration is given as median
(25th – 75th) percentile. Spearman’s correlation revealed the
strength of associations between dynamical indices and linear
regression analyses and their associations with conventional
GV measures. Multiple linear regression analysis used a
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core model (standardized regression coefficient denoted by β)
that consisted of the following covariates: age, sex, diabetes
duration, body mass index, carbohydrate intake, and antidiabetic
therapy (CORE MODEL). Antidiabetic therapy was coded:
1 = none, 2 = diet with/without oral agents, 3 = oral
agents with/without insulin and 4 = insulin alone. Stepwise
forward selection identified confounding variables (McNamee,
2005). The variance inflation factor (VIF) and Durbin-Watson
statistic ensured the absence of confounding effects. Results
at p < 0.05 were statistically significant. We applied the
Statistical Package for the Social Sciences software package
(version 17.0; SPSS, Chicago, IL, United States) for statistical
analyses.

RESULTS

Characteristics of Study Subjects
The summary of demographic and clinical characteristics of
the study cohort in Table 2 shows that patients with T2D
were significantly older (65.4 ± 8.2 years) than those with T1D
(43.3± 15.2 years) or the ND control subjects (44.3± 12.4 years),
but the age difference between the T1D and ND group was
not statistically significant. Diabetes duration (years) was shorter
in T2D [7.0 (3.0 – 12.0)] than in T1D [20.5 (14.8 – 29.0)],
and body mass index was higher in T2D than in T1D patients
(30.3 ± 4.8 vs. 25.3 ± 3.9 kg/m2). However, carbohydrate intake
and hemoglobin A1c (HbA1c %) were lower in T2D patients
than in patients with T1D; HbA1c (6.8 ± 1.0 vs. 7.7 ± 0.9),
whereas mean glucose levels did not significantly differ (p = 0.37)
between these two diabetes groups. As expected, the global GV
measured by %CV was markedly higher (p < 0.001) in the group
of T1D patients than in the T2D (36.9 ± 8.6 vs. 20.2 ± 7.4)
and ND (15.7 ± 3.5) groups. Likewise, SD was significantly
higher in the T1D than in the T2D and ND group. Consistent
with the data on glucose exposure and GV, the time spent in
target range was significantly longer (p < 0.001) in the ND
than in the T2D and T1D group (23.4 ± 1.0 vs. 17.4 ± 6.2 vs.
13.2± 3.8).

The Dynamics of CGM Tracings in the
Study Groups
Comparison of sample CGM tracings (Figure 1) obtained from
a non-diabetic control subject (Figure 1A) a patient with
T2D (Figure 1B), and T1D patient (Figure 1C) exemplified
that the selected dynamical indices are capable of expressing
differences in glucose dynamics between individual patients.
Despite well-controlled diabetes, as reflected by HbA1c < 7.0%
and mean glucose values < 9.4 mmol/l, significant glycemic
fluctuations in the CGM time series were evident in the two
diabetic patients. There SD2, AFE, α exponents increased, and
MSE values decreased, indicating altered glucose dynamics as
compared with that of the non-diabetic sample. Note, high PCP
metrics and low MSE index values correlated with large glycemic
fluctuations and loss of the information content of the glucose
signal.

Dynamical Indices in Diabetic Patients
and Non-diabetic Control Subjects
Figure 2 shows that the selected non-linear GV indices in
diabetic patients are significantly different (p < 0.05) from
those in non-diabetic subjects (ND). Moreover, except for SFE,
all other metrics of PCP geometry were higher in T1D than
in patients with T2D (Figures 2A,B). The SFE index did
not differ between the T1D and T2D group 2.51 ± 0.58 vs.
2.26 ± 0.64, p = 0.08). On the contrary, the MSE index values
(Figure 2C) increased significantly (p < 0.001) between groups
when moving from T1D (3.29 ± 0.83) to T2D (3.89 ± 1.19)
and finally to the ND group (5.31 ± 1.10). Lower MSE
indices correlated with higher %CV values (−0.313, p < 0.001).
These changes indicate a loss of complexity in the glucose
time series of diabetic patients. The two DFA α exponents
in Figure 2D were higher in diabetes compared to non-
diabetes, but among both diabetes groups, were higher in
patients with T1D than in those with T2D: α1 (1.95 ± 0.12 vs.
1.75 ± 0.12, p < 0.001) and α2 (1.38 ± 0.11 vs. 1.30 ± 0.15,
p = 0.017).

Correlations Among Indices From
Different Variability Domains
When we investigated the associations between the classical
PCP indices by Spearman’s correlation analysis (Table 3), we
found strong correlations of SD1 and SD2 with the AFE index
(r = 0.776–0.805, p < 0.001 for all). We noticed weak negative
associations between SD1 and SFE (r = −0.167, p = 0.026),
whereas those with SD2 (0.604, p < 0.001 were stronger. The
associations among MSE and the PCP indices were moderate
but inverse for SD1, SD2, SFE, and AFE, (r = −0.432 to −0.564,
p< 0.001), and with the exponent α1 (r =−0.401, p< 0.001) and
α2 (r =−0.385, p < 0.001).

Relationships Between Dynamical
Indices and Conventional Measures of
Global Glucose Variability
Linear regression analysis of dynamical variables against
conventional metrics of glycemic variability (Table 4) indicated
that the PCP descriptors SD1, SD2, and AFE, with the exception
of SFE, have a consistently closer and positive relationship with
%CV (β = 0.78–0.82, p < 0.001) than the DFA α exponents
(β = 0.47 and 0.41, p < 0.001). In contrast, the complexity
index, MSE, has a weak, negative relationship (β = −0.36 and
−0.38, p < 0.001) with %CV and SD. These results clearly show
that numerically higher PCP metrics and DFA exponents relate
to larger glucose fluctuations, whereas lower complexity index
values correlate with higher glycemic variability.

Dynamical Indices as Determinants of
the Quality of Glucose Control
We performed multiple regression analyses to assess the
independent effects of glucose dynamics on TIR as the quality
measure of glycemic control. We included %CV as the
conventional, linear measure of GV and the covariates age, sex
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TABLE 2 | Demographic and metabolic characteristics of diabetic patients and control subjects.

Characteristic Type 1 Diabetes Type 2 Diabetes Non-diabetes P- value

Patients (n) 22 143 12

Sex (male/female) 11/11 91/52 5/7

Age (years) 43.3 ± 15.2 65.4 ± 8.2∗∗∗,+++ 44.3 ± 12.4 <0.001

Diabetes duration (years) 20.5 (14.8 – 29.0) 7.0 (3.0 – 12.0)∗ NA <0.001

Body mass index (kg/m2) 25.3 ± 3.9 30.3 ± 4.8∗∗∗ 27.1 ± 4.1 <0.001

Carbohydrate intake (g/day) 211.8 ± 46.6 138.8 ± 50.7∗∗,+++ 185.6 ± 35.3 <0.001

Glucose exposure

Hemoglobin A1C (%) 7.7 ± 0.9+++ 6.8 ± 1.0∗∗∗,+++ 5.0 ± 0.3 < 0.001

Hemoglobin A1C (mmol/mol) 61 51 31

Mean glucose (mmol/l) 8.0 ± 1.7+++ 7.8 ± 2.0+++ 5.4 ± 0.5 <0.001

Glucose variability

Coefficient of variation (%) 36.9 ± 8.6+++ 20.2 ± 7.4∗∗∗,+ 15.7 ± 3.5 <0.001

Standard deviation (mmol/l) 2.9 ± 0.7+++ 1.6 ± 0.7∗∗∗,+++ 0.9 ± 0.2 <0.001

Quality of glycemic control

Time in target range (h/day) 13.2 ± 3.8+ 17.4 ± 6.2∗,+ 23.4 ± 1.0 <0.001

Data are mean ± SD or median (25th – 75th percentile) values. (NA), not applicable. The groups were compared using analysis of variance (ANOVA) and t-test with
Bonferroni–Holm correction. Differences between the groups: ∗∗p < 0.01, ∗∗∗p < 0.001 vs. type 1 diabetes and +p < 0.05, +++p < 0.001vs. non-diabetes.

FIGURE 1 | Analysis of samples of 48-h continuous glucose monitoring tracings obtained from (A) a non-diabetic control subject (ND), (B) a patient with type 2
diabetes (T2D) on sulfonylurea treatment, and (C) a type 1 diabetic (T1D) patient treated with multiple insulin injections. The columns (from left to right) show the
CGM profiles, detrended fluctuation analysis, and Poincaré plots. The glycemic characteristics and the dynamical indices derived from the glucose time series are
shown in Table 6. Note the increase in the Poincaré indices SD1, SD2, and AFE, the decrease in MSE as well as the increasing short- (α1) and long-term (α2) fractal
scaling exponent when moving from the non-diabetic subject down to the T1D patient.

diabetes duration, body mass index, carbohydrate intake, and
antidiabetic therapy (Supplementary Table 1, see link on this
article). In the fully adjusted regression models (model 2–5, 8) the

dynamical indices were associated with TIR. Out of these, models
2, 3, and 5 achieved an adjusted R2 of 0.39, 0.50, and 0.31 with
SD1 (β = −0.78), SD2 (β = −1.00), and AFE (β = −0.58); %CV
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β = 0.34, 0.47, and 0.11, respectively. The statistical significance
for SD1, SD2, and AFE was p < 0.001. These regression analyses
revealed that SD1, SD2, and AFE were the most powerful
predictor variables of the quality of glycemic control presented
as TIR. SFE (β = −0.29) and α2 (β = −0.32) were also significant
(both p < 0.001) but weaker predictors. The covariates age, sex,
diabetes duration, body mass index, carbohydrate intake, and
antidiabetic therapy, except for carbohydrate intake in model 4
and 8, failed to contribute significantly. MSE (model 6) was not
a significant predictor. In the regression models integrating the
variables AFE, SFE, and α2, %CV failed to contribute to TIR. The
variance inflation factors (≤3.5) and the Durban-Watson statistic
(1.8 – 2.1) confirmed the absence of significant collinearity.

Glucose Dynamics Before and After
Switching From Multiple Daily Insulin
Injections to Continuous Subcutaneous
Insulin Infusions
The transition from multiple daily insulin injections (MDI) to
continuous subcutaneous insulin infusions (CSII) in a subgroup
of 10 patients with T1D, reduced SD1, SD2, and the AFE index
except for SFE (Table 5). The significant reduction by roughly
50% in SD1, SD2, and AFE indicates an overall improvement in
PCP geometry. Whereas the MSE index decreased (3.09 ± 0.94
vs. 1.93 ± 0.40, p = 0.001), the DFA scaling exponents α1
(2.04 ± 0.06 vs. 2.09 ± 0.02, p = 0.05) and α2 (1.43 ± 0.11
vs. 1.57 ± 0.36, p = 0.16) did not significantly vary. These
latter results suggest a further loss of complexity and a
non-significant change in fractal-like behavior of the glucose
time series after initiation of insulin pump therapy. HbA1c
(range 7.3 – 10.3% at baseline) and the mean glucose levels
(range 6.2 – 12.1 mmol/l at baseline) did not significantly
change. As Table 5 further shows, the amplitude-based glucose
fluctuations, measured as %CV and SD, declined markedly
(p = 0.003 and 0.010, respectively). Likewise, the quality of
diabetes control ameliorated, as TIR increased from 13.0 to
17.7 h/day (p = 0.021). This result is consistent with the CGM
profiles in Figure 3, demonstrating lower glycemic amplitudes
and better glycemic control after the commencement of CSII
therapy (Figure 3B).

FIGURE 2 | Comparison of glucose variability indices in non-diabetes (ND),
type 2 (T2D), and type 1 diabetes (TD1) from the geometric, information, and
fractal scaling domains. Analysis of variance (ANOVA) and t-test with
Bonferroni–Holm correction gave the between-group differences as indicated:
∗p < 0.05, ∗∗∗p < 0.001 vs. type 2 diabetes and ++p < 0.01, +++p < 0.001
vs. non-diabetes.

DISCUSSION

Glucose time series may differ in individual diabetic patients
despite comparable HbA1c and mean glucose levels because such
clinical, linear measures are not appropriate to reveal the inherent
dynamics of the glucoregulatory system.

We demonstrate that several indices derived from the
geometric, information, and fractal scaling domains of variability
techniques can characterize the variability of glucose time
series in health and diabetes. Previous studies in the literature
(Yamamoto et al., 2010; Khovanova et al., 2013; Chen et al., 2014;
Costa et al., 2014; Weissman and Binah, 2014), using various
non-linear signal processing techniques, reported that glucose
dynamics appears reduced in patients with diabetes compared
with non-diabetic subjects. However, it is not known whether
the type and severity of diabetes or factors such as age, diabetes

TABLE 3 | Spearman correlation coefficients among measures of glucose dynamics.

Poincaré plot Multiscale Detrended fluctuation

entropy analysis

SD1 SD2 SFE AFE MSE α1 α2

Poincaré plot SD1 (short term) 1

SD2 (long term) 0.872 1

SFE (shape) −0.167 0.604 1

AFE (area) 0.776 0.805 0.365 1

Multiscale entropy MSE −0.432 −0.549 −0.437 −0.564 1

Detrended fluctuation analysis α1 (short term) 0.468 0.454 0.160 0.489 −0.401 1

α2 (long term) 0.270 0.600 0.780 0.433 −0.385 0.236 1

Correlations at the significance level of p < 0.001 are given in bold face; those at p < 0.05 (two-tailed) in regular type face.
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TABLE 4 | Linear regression analysis of indices of glucose dynamics against conventional measures of glycemic variability Coefficient of Variation (%CV) and Standard
deviation (SD).

%CV SD

β R2
adj P-value β R2

adj P-value

Poincaré plot SD1 0.82 0.67 <0.001 0.90 0.81 <0.001

SD2 0.82 0.67 <0.001 0.94 0.88 <0.001

SFE −0.34 0.11 <0.001 −0.44 0.19 <0.001

AFE 0.78 0.60 <0.001 0.86 0.74 <0.001

Multiscale entropy MSE −0.36 0.13 <0.001 −0.38 0.14 <0.001

Detrended α1 0.47 0.22 <0.001 0.43 0.14 <0.001

fluctuation analysis α2 0.41 0.16 <0.001 0.47 0.22 < 0.001

duration, BMI, and carbohydrate intake or antihyperglycemic
therapy may affect the dynamical behavior of glucose time series.
Regarding the natural history of diabetes, immune-mediated
destruction of the pancreatic β-cells leading to an irreversible
loss of the β-cell mass characterizes T1D, whereas in T2D a
progressive decline of β-cell function over time occurs with
rising insulin resistance and deterioration of glucose regulation.
Because of the diverse pathogenic mechanisms, T1D needs
insulin and is difficult to control, but those patients with T2D
are able to manage their disease mostly with a variety of oral
antihyperglycemic agents.

The indices derived from PCP and DFA analysis in the
present study provided qualitatively similar results with respect
to the differentiation of the glucose time series dynamics between
the two types of diabetes, i.e., the values for these indices be
significantly lower in the T2D than in the T1D group but were
lowest in the ND group. In contrast, the complexity index
calculated from MSE is highest in the ND group and lowest in
the T1D group. These data are also compatible with the increase

TABLE 5 | Comparison of dynamic and glycemic measures in type 1 diabetic
patients before and after initiation of continuous subcutaneous insulin infusion
therapy.

Before CSII At 6 months after P-value

initiation of CSII

Dynamic measures

SD1 (mmol/l) 1.66 ± 0.37 0.81 ± 0.19 <0.001

SD2 (mmol/l) 4.37 ± 0.74 2.47 ± 0.90 <0.001

SFE 2.75 ± 0.74 3.07 ± 0.86 0.17

AFE (mmol2/l2) 23.07 ± 7.18 6.48 ± 3.32 <0.001

MSE 3.09 ± 0.94 1.93 ± 0.40 0.001

α1 2.04 ± 0.06 2.09 ± 0.02 0.05

α2 1.43 ± 0.11 1.57 ± 0.36 0.16

Glycemic measures

HbA1c (%) 8.2 ± 0.85 7.7 ± 0.51 0.07

Mean glucose (mmol/l) 7.4 ± 1.2 7.5 ± 1.6 0.83

CV (%) 39.9 ± 8.5 24.3 ± 6.8 0.003

SD (mmol/l) 2.9 ± 0.6 1.8 ± 0.7 0.010

Time in range (h/day) 13.0 ± 3.0 17.7 ± 5.3 0.021

The number of patients was n = 10. Data are mean ± SD values. P-values are
two-tailed.

FIGURE 3 | Continuous glucose monitoring tracings obtained from patients
(n = 10) with type 1 diabetes (A) before and (B) 6 months after initiation of
insulin pump therapy. Tracings are shown for each patient with the average
curve in bold. The corresponding dynamic and glycemic measures are shown
in Table 5.

in glucose fluctuations (reduced non-linear autocorrelation) and
thus with the diminished glycemic stability observed in the
glucose profile structure of our T1D and T2D patient samples
(Figure 1). In so far PCP descriptors in T1D and healthy
control subjects are concerned, this is in agreement with a report
by Crenier (2014). Regarding the ratio of long-term to short-
term glucose time series variability, SFE was correspondingly
higher in patients with T1D than in the non-diabetic subjects.
Numerically high PCP indices unequivocally point toward
dynamical instability in the glucoregulation. Nevertheless, the
indices SD1, SD2, and AFE of PCP analysis quantify linear
rather than non-linear features of the underlying time series
(Brennan et al., 2001; Fishman et al., 2012). Consistent with the
changes that occurred in the PCP geometry, the decreased MSE,
and the altered DFA plots with increased α1 and α2 exponents
observed in the T1D group further indicate significant alterations
in the feedback mechanism that is less able to diminish glucose
fluctuations in patients with T1D than in those with T2D.
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TABLE 6 | Summary of characteristics and metrics of the continuous glucose monitoring profiles shown in Figure 1 for a non-diabetic control subject (ND), a patient
with type 2 diabetes (T2D), and a type 1 diabetic patient (T1D).

ID Group Diabetes duration HbA1c (%) Mean glucose CV (%) SD1 SD2 AFE MSE α1 α2

(years) (mmol/l) (mmol/l) (mmol/l) (mmol2/l2)

777773 ND NA 5.1 5.6 23.42 0.81 2.00 5.08 5.47 1.81 1.32

128701 T2D 13 6.1 6.1 26.27 1.11 2.39 8.31 4.66 1.83 1.24

125264 T1D 29 6.8 8.7 32.37 1.48 3.67 17.06 2.86 2.02 1.53

Our previous results demonstrated that the β-cell function
is an independent predictor of glucose time series dynamics as
measured by the DFA alpha exponents (Kohnert et al., 2014).
Thus, the reduced glucose dynamics in the T1D versus the
T2D patient group allows the assumption that worsening of the
glucoregulation is partly due to the loss of the β-cell secretory
capacity, whereas the remaining β-cell reserve prevents such
derailment in T2D. The variability indices from the different
domains correlated weakly or moderately to one another. As
one could expect, the strongest correlations existed between the
PCP indices within the geometric domain. The unexpectedly
weak correlation across the variability domains suggests that
the indices are not interchangeable. These correlations are in a
way comparable with those found for the cardiac interbeat time
series (Bassi et al., 2015) because the information retrieved from
PCP and from DFA analysis show structural correlations of the
underlying dynamics. By the multivariate regression analyses,
we disclosed that the measures of glucose profile dynamics are
independent predictors of the quality of glucose control, as
defined by the time spent in target range (TIR). The analyses
showed that the PCP indices SD1, SD2, and AFE along with
%CV were independent determinants of TIR (Supplementary
Table 1). Sex, age, diabetes duration, BMI, carbohydrate intake,
and antidiabetic treatment had, if any, no substantial influence.
Of note, we found that SD1, SD2, and AFE explained 35, 44,
and 29%, respectively, of the interindividual variance in TIR
compared to an additional 3–8% defined by the %CV. The
variables SFE and α2, even significant in the regression models,
were weaker predictors, explaining 17 and 21% of TIR. Moreover,
the regression models (4, 5, and 8) including SFE, AFE, and
α2 demonstrate that these measures predicted the quality of
glycemic control, whereas the overall glycemic variability as
measured by %CV was not a significant predictor. The MSE did
not determine TIR which indicates that this index is not useful in
the assessment of the quality of glycemic control. Therefore, the
evaluated indices do not reflect purely the global GV, although
they relate to conventional measures of GV. Methods analyzing
the fluctuation of glucose time series are not detecting the
same phenomena as those methods that identify amplitude-
based glycemic variability. Indeed, a loss in glucose time series
dynamics gives rise to increased overall glycemic variability
(Garcia Maset et al., 2016). Although strongly correlated with
SD (in our study r = 0.876, p < 0.0001), we chose %CV for
our regression models as the standard metric of GV in clinical
research (Rodbard, 2018) to compare its effect on TIR with those
indices from the different variability domains. We used TIR as
an established and clinically useful indicator of the quality of

glycemic control, reflecting the time in predefined target ranges
(Bergenstal et al., 2013 and Rodbard, 2018).

Finally, we investigated the dynamics of glucose time series in
a cohort of T1D patients in response to insulin pump therapy.
CSII yielded a marked improvement in the PCP geometry–
consistent with the report by Crenier (2014), except for the SFE
descriptor, with a corresponding decrease in glycemic variability
(calculated as %CV and SD) and increased quality of glycemic
control as evaluated using TIR. Although HbA1c did not
significantly change and mean glucose not markedly drop (Vogt
et al., 2016), one may conclude that overall glycemia improved
because of reduced glycemic variability and increased TIR. Of
note, however, the MSE index decreased, whereas the DFA long-
term exponent α2 tended to increase. This is an unexpected
result, and we do not have any plausible explanation, because
healthier glycemic dynamics are associated both with higher MSE
values and lower α exponents (see Figures 2C,D). Nevertheless,
these finding suggests that even 6 months of CSII could not halt
the loss of glucose time series complexity and fractal structure in
glucose dynamics. In other words, CSII therapy is inappropriate
to reverse glucose dynamics to those of non-diabetic subjects.
We assume that owing to the absolute β-cell insulin deficiency in
T1D, the glucoregulatory system remains insufficient to correct
defective glucose dynamics. Islet transplantation rather than
insulin pump therapy would offer restoration of the β-cell
function (Vantyghem et al., 2014). Whether such therapy can
restore glucose complexity and the fractal structure is not known
and requires appropriate clinical studies.

This study has limitations in as much as it is retrospective in
nature, and the number of subjects in the T1D and ND group is
relatively small. Furthermore, the follow-up time in the patients
after insulin pump therapy appears too short to allow restitution
of glucose complexity and the fractal structure of glucose time
series. In patients with T2D, for example, β-cell function began to
increase not until after 12 months of CSII therapy (Choi et al.,
2013). The strength of the investigation is the use of indices
from different variability domains and classical GV measures
as well as the inclusion of both patients with T1D and T2D to
enable comparison of glucose dynamics between distinct types of
diabetes.

In summary, this study provides evidence that glucose time
series dynamics differ between the two primary forms of diabetes.
The loss of complexity is more pronounced in T1D than in T2D,
which we anticipate is due to differences in the β-cell pathology.
Insulin pump therapy for 6 months can not reverse multiscale
dynamics toward those of non-diabetic subjects because of the
failure to mimic healthy patterns of insulinemia. Our findings,
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which corroborate and extend previous work by others, also
emphasize the need for using an ensemble of indices from various
variability domains to characterize glucose time series more
specifically. Moreover, we show that a combination of several
dynamical metrics and classical GV measures has the potential
to assess both the natural glucoregulatory system and quality of
blood glucose control which may help in approaching diabetes
treatment on a personalized basis.
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Fractal phenomena can be found in numerous scientific areas including neuroscience.

Fractals are structures, in which the whole has the same shape as its parts. A specific

structure known as pink noise (also called fractal or 1/f noise) is one key fractal

manifestation, exhibits both stability and adaptability, and can be addressed via the Hurst

exponent (H). FMRI studies using H on regional fMRI time courses used fractality as an

important characteristic to unravel neural networks from artificial noise. In this fMRI-study,

we examined 103 healthy male students at rest and while performing the 5-choice

serial reaction time task. We addressed fractality in a network associated with waiting

impulsivity using the adaptive fractal analysis (AFA) approach to determineH. We revealed

the fractal nature of the impulsivity network. Furthermore, fractality was influenced by

individual impulsivity in terms of decreasing fractality with higher impulsivity in regions

of top-down control (left middle frontal gyrus) as well as reward processing (nucleus

accumbens and anterior cingulate cortex). We conclude that fractality as determined via

H is a promising marker to quantify deviations in network functions at an early stage and,

thus, to be able to inform preventive interventions before the manifestation of a disorder.

Keywords: fMRI, Hurst Exponent, frontal cortex, nucleus accumbens, biomarker, impulse control disorders

INTRODUCTION

Fractal structures possess the property that the whole structure consists of parts, which have the
same pattern composition but at different scales and/or in different sizes [e.g., broccoli, the Koch
snowflake (Koch, 1904, 1906; Mandelbrot, 1967, 1983)]. Fractals can be found not only in static
objects but also dynamic processes. This property of self-similarity, or in the temporal domain
scale invariance (Suckling et al., 2008; Ivanov et al., 2009; Nagy et al., 2017) means that both,
rapidly occurring changes and slowly proceeding dynamics follow the same structure, or better,
that measures of the patterns are independent of the sampling rate, used during data acquisition
(Riley et al., 2012).
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For time series, this property is mathematically expressed as
follows:

S
(
f
)
=

Cf∣∣f
∣∣β (1)

β = 2H − 1 (2)

S
(
f
)
represents the power spectrum density of the analyzed

fluctuations, f the frequency, Cf a constant and 0 < β < 2.
Furthermore, β is related to the Hurst Exponent (H) according
to Equation 2 (see Figure 1). For more details on how to compute
H refer to method section fractal analysis (AFA) as suggested by
Riley et al. (2012).

Fractal patterns have been examined in many research fields
including physiology and neuroscience. A specific phenomenon
called pink noise (also called fractal or 1/f noise, with β = 1)
is one of the key fractal manifestations. Pink noise is a
stochastic process, used for the modeling of dynamic systems.
Its power spectral density is inversely proportional to the
sample frequency (Keshner, 1982; Eke et al., 2000, 2002).
Because pink or 1/f noise lies between white noise ( 1

f 0
, or

random noise), and red/Brownian noise ( 1
f 2
, power density

decreases with increasing frequency), it has been proven to bring
stability and adaptability into dynamic processes, thus, crucial
properties of well-functioning complex systems (Bak et al.,
1987). Pink noise has been documented in behavioral as well
as physiological processes, for example in heartbeat dynamics
(Ivanov et al., 1999, 2001), neural network organization (Lipsitz
and Goldberger, 1992; Lipsitz, 2002) and cognitive processes
(Ihlen and Vereijken, 2010; Wijnants et al., 2012). The manifold
appearance of pink noise has led to the speculation, that “there
exists some profound law of nature that applies to all non-
equilibrium systems and results in such noise” (Sejdić and
Lipsitz, 2013). Intuitively, one might assume that pink noise
has a detrimental effect to a system’s performance and accuracy.
However, as pink noise arises from the interaction of multiple
systems and operates over different scales, it has been shown
to contribute to system resiliency and structural integrity if
individual components were lost or interrupted for example by
age or disease (Lipsitz and Goldberger, 1992; Lipsitz, 2002).
Thus, a fractal network structure, thus, qualifies a system to cope
with stress or disturbances by adjusting specific components and
fine tuning its responses (for a review see Sejdić and Lipsitz,
2013).

Pink noise can be found in the fMRI signal (i.e., the Blood-
Oxygen-Level-Dependent, BOLD response) (Bullmore et al.,
2009; He, 2011; Herman et al., 2011; Ciuciu et al., 2012, 2014;
Eke et al., 2012; Churchill et al., 2016; Nagy et al., 2017).
H valued close to 1 in the fMRI signal has been associated

Abbreviations: BOLD, Blood-Oxygen-Level-Dependent; AFA, adaptive fractal

analysis; dlPFC, dorsolateral prefrontal cortex; fMRI, functional magnetic

resonance imaging; highImp, high impulsive; HFC, high frequency components;

HC, hippocampus; H, Hurst Exponent; LFC, low frequency components; lowImp,

low impulsive subjects; MFG, middle frontal gyrus; NAcc, nucleus accumbens;

PSD, power spectrum density; rs-fMRI, resting-state fMRI; ROI, Regions of

Interest; vmPFC, ventromedial prefrontal cortex.

with a higher predictability of time series (Gentili et al., 2017),
greater low-frequency power and, therefore, higher persistence
over time (Ball et al., 2011), as well as highly complex and
well attuned dynamics in the underlying network (Lipsitz and
Goldberger, 1992; Goldberger et al., 2002). Likewise, it has been
shown that deviation from pink noise in relevant parameters,
independent of whether the changes occurred in the direction of
white or red noise, was associated with neurological as well as
psychiatric disorders (resting-state fMRI in Alzheimer’s disease:
Maxim et al., 2005; e.g., reaction time sequences in attention
deficit/hyperactivity disorder: Gilden and Hancock, 2007).

In addition, fractality seem to be more pronounced in
low compared to high frequencies. For example, Fox et al.
(2007) reported 1/f noise in the fMRI signal (Fox et al., 2007),
emphasizing that “spontaneous BOLD follow a 1/f distribution,
meaning that there is an increasing power in the low frequencies.”
(Fox and Raichle, 2007). In addition, Gentili et al. (2017) found
brain regions where H as well as metrics of low-frequency
oscillations (i.e., amplitude of low-frequency fluctuations, ALFF,
fractional amplitude of low-frequency fluctuations, fALFF) had
similar effects hinting toward strong relation between both
measures (Gentili et al., 2017). In task-fMRI data, fractal noise
of inactive voxels differed from those of active ones (Thurner
et al., 2003). Recent resting-state fMRI-studies showed, that
H correlated with personality traits such as anxiety (Gentili
et al., 2015) and extraversion (Gentili et al., 2017) in regions of
the default mode network, with response time in the inferior
frontal gyrus (Wink et al., 2008) hinting toward an influence
of personality traits and task performance on the persistence
of network dynamics (Wink et al., 2008). Likewise, findings
from task-fMRI studies reported that H decreased with task
processing (Ciuciu et al., 2012) and cognitive effort (Barnes
et al., 2009; Churchill et al., 2016) concluding that “task-
related modulation of multifractality appears only significant
in functional networks and thus can be considered as the
key property disentangling functional networks from artifacts”
(Ciuciu et al., 2012).

Impulsivity is a personality trait, which spans from normal
manifestations, e.g., in life time situations where decision making
under time pressure is required (Burnett Heyes et al., 2012), to
pathological presentations, mirroring the psychiatric symptoms
of “loss of control” and “impulse control disorder” associated
for example with ADHD (e.g., Sebastian et al., 2013; for a
recent review see Hinshaw, 2017). Waiting impulsivity (WI)
is one form of impulsivity and is operationally defined as
the tendency to premature responding, i.e., to respond before
target onset. Thus, it involves the aspects of response inhibition
and top-down control, mediated by motivational aspects and
reward processing (Robinson et al., 2009; Voon et al., 2014).
Its associated functional network consists of the dlPFC and
the vmPFC representing impulse control (Mechelmans et al.,
2017), the reward-perception-related NAcc, the ACC for the
cognitive evaluation of the reward and hippocampus (HC) and
amygdala (AMY) responsible for reward-based learning (Dalley
et al., 2011). Impulsivity has been documented to affect on
the behavioral performance of attentional functions, working
memory, motor speed, and language processing (Hinshaw et al.,

Frontiers in Physiology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 137853

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Akhrif et al. Fractal Nature of an Impulsivity Network

FIGURE 1 | The 1/f noise pattern in a power spectrum (Equation 1) of an exemplary time course is shown on logarithmic scales while the scale invariance relation

(Equation 3) is indicated by the slope H. Please note, that the relationship between β and H is according to Equation (2) β = 2H− 1. For demonstration, the example

of a representative individual time course of the right MFG during task has been used.

2002; Huang-Pollock et al., 2006; Solanto et al., 2007). In
brain activation, high impulsive healthy subjects showed reduced
activation in right dorsolateral prefrontal cortex (dlPFC) while
performing a descision making task (Deserno et al., 2015),
bilaterally in the ventral prefrontal cortex (vmPFC) during
motor inhibition (Goya-Maldonado et al., 2010) as well as
in the dlPFC and the hippocampus in aggressive impulsive
subjects (Sala et al., 2011). At rest, impulsivity affected functional
connectivity from resting-state fMRI in terms of less elaborated
neural network architecture, e.g., lateral and medial prefrontal
regions were isolated from reward associated regions such as
the nucleus accumbens (NAcc) (Davis et al., 2013), connectivity
between the NAcc and the anterior cingulate cortex (ACC) as
well as the ACC and the amygdala (Li et al., 2013). A first
study addressing the influence of impulsivity on H revealed
that impulsivity correlated negatively with H in the orbito-
frontal cortex (i.e., the vmPFC) and NAcc (Hahn et al., 2012)
the way that the higher impulsive the subjects the smaller
the H.

In this study, we examined the fractal nature of a brain
network associated with WI using the AFA approach. H was
determined for all network regions at rest and while performing
a WI task. To define, whether a subject is high (highImp) or
low impulsive (lowImp), the number of premature responses
has been used (Feja et al., 2014; e.g., Donnelly et al., 2014). A
permutation test was performed to insure the validity of using
the number of premature responses as grouping criteria (see
Supplement permutation.xlsx—Supplementary Datasheet 1).
Based on the introduced findings we were intrigued to address
the existence of pink noise in our network, thus, we expected to
find

(a) a fractal nature of the impulsivity network and that fractality
consists of pink noise, i.e., H values of all network regions
were close to 1.

(b) smallerH at task compared to rest (Barnes et al., 2009; Ciuciu
et al., 2012; Churchill et al., 2016).

(c) significant influence of impulsivity on H predominantly in
the PFC and the NAcc (Wink et al., 2008; Hahn et al., 2012).
In line with the previous studies (Gilden and Hancock, 2007;
Hausdorff, 2007) we expected to find deviation from 1/f noise
pronounced in highImp compared to lowImp subjects.

MATERIALS AND METHODS

Subjects
In this study, data of the same sample of 103 students was used
as described by Neufang et al. (2016). Students were between
19 and 28 years old (24.0 ± 2.6 years), and were recruited
at the University of Wuerzburg, Germany. From all subjects,
measures for impulsivity were collected, using the Wender-
Reimherr-Interview and Attention-Deficit/Hyperactivity
Disorder checklist (subscales “impulsivity” and “hyperactivity
and impulse control”) (Rösler et al., 2008). The examination
was conducted in accordance with the Declaration of Helsinki
in its latest version from 2008 and was approved by the ethics
committee of the Faculty of Medicine, University of Wuerzburg,
and written informed consent was obtained from all subjects.

Experimental Paradigm
The used paradigm was an fMRI-adaptation of the four-choice
serial reaction time task by Voon et al. (2014) and has been
described in detail by Neufang et al. (2016), Voon et al. (2014),
and Neufang et al. (2016). The task entailed the detection of a
brief visual target (a green dot) after a certain waiting period.
Depending on the subject’s task performance, a reward of 1 Euro
or 1 Cent was given, or better the punishment of 1 Euro was
subtracted. In detail, a trial implied three phases/experimental
conditions: the “cue” presentation, indicating the start of the
waiting period; the “target” onset, in terms of a green circle in
one of the choices. Subjects were instructed to indicate the correct
choice by pressing the corresponding button as fast and as correct
as possible; the reward feedback, showing the amount of recently
earned/lost money in combination with the overall amount of
earned money (see Figure 2).

The task consisted of one baseline run outside the scanner
and five experimental runs within the scanner. During the five
runs in the scanner, WI was experimentally manipulated by
(i) implementing a monetary reward (blocs 1, 3, 4, 5), (ii)
varying the duration of the target presentation (blocs 3, 4, 5), (c)
extending the waiting period (cue-target interval) (blocs 4 and
5) and (d) presenting additional distractor taget before the actual
target presentation, i.e., circles in different colors (bloc 5). Task
scanning was of a total duration of 14min.
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FIGURE 2 | Structure of an experimental trial.

Before task-fMRI, all subjects were scanned at rest for
12min. During the rs-fMRI, subjects kept their eyes open and
were instructed not to think of something specific. Eyes were
controlled by the examiner via an eye tracking camera outside
the MR scanner.

fMRI—Data Acquisition
The fMRI scanner was a 3 Tesla TIM Trio Scanner (Siemens,
Erlangen, Germany). Functional MRI included a T2∗-weighted
gradient echo-planar imaging sequence with the following
sequence parameters: repetition time (TR) = 2000ms, echo time
(TE) = 30ms, 36 slices, 3mm thickness, field of view (FoV) =
192mm, flip angle = 90◦, number of volumes in task-fMRI =
425, number of volumes in rs-fMRI= 350).

fMRI—Data Processing
Data preprocessing was performed using the Statistical
Parametric Mapping Software Package (SPM12). Preprocessing
followed the standard routine including temporal and spatial
alignment, i.e., slice time correction and realignment and
unwarp, spatial normalization [standard space: Montreal
Neurological Institute (MNI) space] including a resampling of
the data to an isotropic voxel size of 2 × 2 × 2 mm3, spatial
smoothing with a Gaussian kernel of 8mm full width at half
maximum (FWHM), and linear trend removal [using the matlab
routine detrend (y)] (see Supplementary Presentation 1) (Bai
et al., 2008; Zhang et al., 2008; Fox et al., 2009; Qiu et al., 2011).
Pre-processing did not include high-pass filtering or global mean
correction.

fMRI Time Course Extraction
Regions of Interest (ROI) were defined based on the significantly
activated brain regions while performing the waiting impulsivity
task. In detail, for the identification of global activation maxima,
the contrasts target > baseline and reward > baseline were
defined on a single subject level and analyzed on group
level using a one sample t-test. The local maxima of each
significantly activated regions were identified and coordinates
were then used as the centere of a 10mm spheric ROI using
MarsBar [24]. ROIs were built and used for the extraction

of the time course for each subject. Time course extraction
was performed using the routine as suggested by Brett et al.
(2002) (see MarsBar manual, http://marsbar.sourceforge.net/
marsbar.pdf) from preprocessed fMRI data (i.e., smoothed
files resulting from the pre-processing procedure) (Brett et al.,
2002).

AFA
Fractal analysis of time series is based on quantifying the degree
of fluctuation around the overall trend of the data over time,
to measure the scale invariance quantified by the value of H
(Equation 3, see below). In this paper, we split the fMRI signal in
its two components: the low and the high frequency components
(LFC, HFC) (see Figure 3).

LFC is the second order polynomial that is a smooth and
global fit of the original time course (see Figure 4). HFC
represents the residuals after subtracting the fitting curve from
the original time course. For time series to be fractal, their
power spectrum density (PSD) must be inversely proportional to
frequency (see also Figure 5, legend).

After analyzing these two main components, we found, that
the residuals were more likely to obscure the results with
respect to the scale invariance analysis. HFC, in addition, could
not be classified as fractal (see Figure 5A). The low frequency
component of the signal on the other hand, held all the
information concerning the fractal nature of the original signal.
In line with earlier studies and to avoid inaccuracies and the
reduction of H, we focused in our analyses on those parts of the
signal/those regions, which showed power law scaling and fractal
scaling was present (e.g., Cannon et al., 1997; Herman et al., 2011;
Riley et al., 2012): only the LCF was taken into consideration for
further analysis via AFA to compute H.

AFA is one of the existing mathematical methods that
computes H, a factor that reflects in a scale law manner the
relationship, that is intrinsic to fractal processes, between the
variance of fluctuation computed around, in our case, a second
order polynomial trend v (i) fitted to time series within each
segment w, and its size:

F (w) =

[
1

N

N∑

i=1

(u (i) − v (i))2

] 1
2

∼ wH , (3)

N: length of the time series

w = 2n+ 1, n = 5, 6 . . . , 13

H is determined as the slope of the log-log diffusion plot
log2 (F (w)) as a function of log2 (w) (see Figure 1B).

Statistical Analysis
The factor impulsive phenotype was defined as high impulsive
(highImp) versus low impulsive subjects (lowImp), based on the
subjects’ number of premature responses. If the number was ≥
3 they were classified as highImp and if the number was <3
as lowImp. Threshold definition was adapted from Feja et al.
(2014) in terms of the median value of premature responses
across all subjects [range: 0–6 number of premature responses
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FIGURE 3 | Power frequency spectrum of the original time course (black dots), as well as of the resulting low (yellow line) and high frequency (red line) components.

Please note the overlap between the black dots (original time course) and the yellow line (LFC) in low frequencies (left part of the x-axis) and between the black dots

and the red line (HFC) in high frequencies (right part of the x-axis). The same time course of the right MFG during task of a representative subject has been used.

FIGURE 4 | Overlap between low frequency course (LFC) and the original time course. LFC fits well the data without overfitting leaving out unnecessary information

for the fractal analysis. In this figure, the same time course of the right MFG during task of a representative subject has been used.

(adapted from Feja et al., 2014)]. The sample consisted of 66
lowImp subjects and 38 highImp. In addition, a permutation
test was performed to insure the validity of using the number
of premature responses as grouping criteria (see Supplement
permutation.xlsx—Supplementary Datasheet 1).

On behavioral level, 1 × 2 ANOVA models were defined
using the between-subject factor impulsivity phenotype (highImp
vs. lowImp) as independent factor and the dependent variables
the behavioral parameters no. of premature responses, accuracy,
reward (amount of total win) and reaction times.

The question of the existence of pink noise was verified using
a one sample Wilcoxon test with H of all network regions as test
variables and 1 as hypothetical median.

To address the two aspects (a) changes in fractality at rest

and while task processing and (b) the influence of impulsivity

on fractality of the impulsivity network, the following statistical

analyses were performed:

(a) To compare fractality at rest and while task processing,
non-parametric tests of related samples were defined using
the within-subject factor condition (task vs. rest), and H as
dependent variable. To reveal the impact of the impulsive
phenotype on differences between rest and task, the same
analyses were performed phenotype-specifically.

(b) The influence of impulsivity on network fractality was
performed using both, the factorial and the dimensional
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FIGURE 5 | Log-log diffusion plots of the power spectrum density (PSD) of the low and high frequency components (LFC, HFC): whereas the HFC (red dots) fails to

fulfill the criteria of a fractal structure expressed by Equation 1, the PSD of the LFC (yellow dots) is clearly inversely proportional to frequency hinting toward a fractal

nature. The data presented is the same time course of the right MFG during task of a representative subject.

approach. Impulsive phenotype differences of H were
addressed using non-parametric Mann-Whitney-U-Test for
2 independent samples using the between-subject factor
impulsive phenotype and dependent variables were H scores.
In addition, correlations between WI (i.e., the number of
premature responses, task accuracy, reward and reaction
times) and H scores were performed.

For all statistical analyses a significance threshold of p < 0.05,
corrected for multiple comparisons using the False-Discovery
Rate (Benjamini and Hochberg, 1995), was applied. The number
of test as well as q∗-scores representing the FDR-corrected
significance levels were provided for each analysis in the results
section as well as in Tables 1, 2.

RESULTS

post-hoc power analyses using G∗Power (version 3.1.9.3, http://
www.gpower.hhu.de/) revealed a power of 0.77 and a critical
Z = 1.6.

Regarding behavioral differences only main effect of impulsive
phenotype on the number of premature responses passed the
threshold of significance (MlowImp = 0.6± 0.5, MhighImp = 2.5±
0.9, F(102,2) = 201.8, p= 0.000, corrected for 4 comparisons with
q∗ = 0.0125). All other effects on any other dependent variable
were not significant (for further results please see Neufang et al.,
2016).

Performed fMRI analyses revealed that whereas activation
bilaterally in the middle frontal gyrus (MFG) (right MFG: x= 40,
y = 0.8, 34, T = 19.7; left MFG: x = −44, y = 6, 28, T = 21.7),
the ACC (x = 6, y = 30, 28, T = 18.6) as well as the vmPFC
(x= 0, y= 48,−12, T = 6.5) was associated with impulse control,
bilaterally the HC (right HC: x = 24, y = −28, −6, T = 21.9;
left HC: x = −22, y = −28, −6, T = 17.7), the right NAcc
(x = 8, y = 12, −10, T = 14.6), and the left amygdala (x = −22,
y = 0, −12, T = 6.0) were active while reward processing
(see Figure 6).

Via AFA we found that at rest (a) across all subjects, H was
similar to 1 in the following network regions (rHC: M = 0.93 ±
0.13, p= 0.000; lHC:M= 0.96± 0.12, p= 0.000; lMFG:M= 1.01
± 0.12, p = 0.156; rMFG: M = 1.00 ± 0.12, p = 0.577; ACC:
M = 1.01 ± 0.12, p = 0.414; rNAcc: M = 1.03 ± 0.10, p = 0.060;

lAMY: M = 1.00 ± 0.11, p = 0.928; vmPFC: M = 1.01 ± 0.12,
p= 0.087, corrected for 8 comparisons with q∗ =.006) proving a
stable fractal nature of this network for confidence intervals from
bootstrap see Supplementary Table 1.

(a) Across all subjects (i.e., independent of the impulsive
phenotype), H was significantly higher at rest compared to
task in all regions. Group-specific analyses, however, revealed
that in highImp subjects, fractality in the right HC did not
differ at rest and during task processing (see Table 1). In
lowImp subjects, H was significantly higher at rest compared
to task in all regions.

(b) H during task-processing differed between impulsivity
phenotypes in terms of reduced H in highImp subjects in the
reward-associated NAcc and the impulse control-related ACC
(see Table 2). Furthermore, H of the left HC varied trend-
wisely between impulsivity groups across. At rest, there was
no significant difference in any region. Correlations revealed
a significant correlation between H of the left MFG and the
number of premature responses (r = −0.242, p = 0.013,
corrected for 16 comparisons with q∗ = 0.012), whereas there
was no significant relation between H and accuracy, reward
and reaction times.

DISCUSSION

In this study, we addressed the fractal nature of a neural
network associated with waiting impulsivity. We found that
(a) pink noise in all network regions, proving the existence of
a stable fractal nature within this network (Bak et al., 1987;
Lipsitz and Goldberger, 1992; Lipsitz, 2002; Wijnants et al.,
2012). Furthermore, (b) H was significantly higher at rest
compared to task. This was the case in all regions and across
all subjects. However, in high impulsive (highImp) subjects,
H was comparable between both activation conditions in the
right HC. (c) Finally, during task processing, fractality in
impulse control related left MFG as well as reward-associated
NAcc and ACC was influenced by impulsivity the way that in
highImp subjects H was significantly smaller and, therefore, was
a less adequate 1/f noise fit candidate compared to lowImp
subjects.
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TABLE 1 | Comparison of H between task and rest across all subjects.

Across all subjects lowImp highImp

Task [M(SD)] Rest [M(SD)] Z Task [M(SD)] Rest [M(SD)] Z Task [M(SD)] Rest [M(SD)] Z

rHC 0.88 (0.11) 0.93 (0.13) 3.7** 0.88 (0.11) 0.94 (0.13) 3.4** 0.88 (0.11) 0.92 (0.12) n.s.

lHC 0.90 (0.10) 0.96 (0.12) 3.8** 0.91 (0.10) 0.96 (0.13) 2.6** 0.88 (0.10) 0.95 (0.10) 2.8**

lMFG 0.93 (0.11) 1.01 (0.12) 5.4** 0.94 (0.11) 1.02 (0.11) 4.1** 0.90 (0.12) 1.00 (0.12) 3.5**

rMFG 0.92 (0.13) 1.00 (0.12) 4.4** 0.93 (0.14) 1.00 (0.13) 2.7** 0.90 (0.12) 1.00 (0.12) 3.6**

ACC 0.93 (0.12) 1.01 (0.12) 4.8** 0.96 (0.13) 1.02 (0.13) 2.8** 0.89 (0.09) 0.99 (0.10) 4.1**

rNAcc .91 (0.13) 0.97 (0.13) 3.6** 0.93 (0.13) 0.98 (0.12) 2.3** 0.87 (0.13) 1.00 (0.12) 2.9**

lAMY 0.88 (0.11) 1.02 (0.12) 3.0** 0.89 (0.12) 0.92 (0.12) n.s. 0.86 (0.11) 0.95 (0.14) 2.7**

vmPFC 0.98 (0.11) 1.07 (0.12) 5.4** 0.98 (0.11) 1.07 (0.12) 4.2*** 0.97 (0.11) 0.91 (0.12) 3.3**

rHC, right hippocampus; lHC, left hippocampus; lMFG, left middle frontal gyrus; rMFG, right middle frontal gyrus; ACC, anterior cingulate cortex; Nacc, nucleus accumbens; lAMY,

left amygdala; vmPFC, ventromedial prefrontal gyrus; lowImp, low impulsive subjects; highImp, high impulsive subjects; FDR-corrected was applied for 8 comparisons; corrected

significance level were q*(all subjects) = 0.05; q*(highImp subjects) = 0.04; q*(highImp subjects) = 0.04; **p < q*; n.s., not significant.

TABLE 2 | Comparison of H between high and low impulsive subjects.

lowImp

[M(SD)]

highImp

[M(SD)]

Z

TASK

rHC 0.87 (0.11) 0.88 (0.11) 0.2

lHC 0.91 (0.10) 0.88 (0.10) 1.9

lMFG 0.94 (0.11) 0.90 (0.11) 1.7

rMFG 0.93(14) 0.90 (0.11) 1.1

ACC 0.96 (0.13) 0.89 (0.09) 3.0**

rNAcc 0.93 (0.13) 0.87 (0.13) 2.4**

lAMY 0.89 (0.11) 0.86 (0.11) 1.4

vmPFC 0.98 (0.11) 0.97 (0.11) 0.6

REST

All

regions

n.s .

rHC, right hippocampus; lHC, left hippocampus; lMFG, left middle frontal gyrus; rMFG,

right middle frontal gyrus; ACC, anterior cingulate cortex; Nacc, nucleus accumbens;

lAMY, left amygdala; vmPFC, ventromedial prefrontal gyrus; low, low impulsive subjects;

high, high impulsive subjects; FDR-corrected was applied for 16 comparisons; corrected

significance level was q* = 0.007; ** p < q*; n.s., not significant.

The Fractal Nature of the Waiting

Impulsivity Network
As introduced we learned that a brain network follows a stable
fractal patterns when H is close to 1 (e.g., Stadnitski, 2012), is
decreased while cognitive activation (Barnes et al., 2009; Ciuciu
et al., 2012; Churchill et al., 2016), and is sensitive to normal
and abnormal alteration such as disease or age (Lipsitz and
Goldberger, 1992; Lipsitz, 2002; Sejdić and Lipsitz, 2013). In
our data, we could find all these aspects and, hence, assumed a
fractal nature in the impulsivity network: (a) at rest, H varied
around 1 across all subjects; during task processing, H was
significantly reduced in all regions and, finally, when comparing
H between high and low impulsive subjects, H was reduced in
highImp subjects in some of the network regions. The network
examined here has been introduced in a comprehensive review
article by Dalley et al. (2011) and is based on relevant findings
from humans and animal studies on impulsivity and cognitive

top-down control (Dalley et al., 2011). The notion that the
suggested network regions were indeed involved in the processes
of waiting impulsivity as measured via the 5-CSRTT has been
shown in recent studies (NAcc and ACC: Morris et al., 2016;
e.g., NAcc and vmPFC: Neufang et al., 2016; dlPFC and ACC:
Mechelmans et al., 2017). The characterization of this network as
a “healthy and complex system” (Bak et al., 1987), however, has
been demonstrated in this study for the first time.

Fractality During Task Processing and at

Rest
Higher fractality at rest compared to task processing/cognitive
effort is in line with earlier findings (He, 2011; Ciuciu et al., 2012;
Churchill et al., 2016). In the context of the common knowledge,
that neural networks are predominantly active after an external
stimulation, e.g., of our senses or while cognitive processing
(Penn and Shatz, 1999; Kandel et al., 2000), this finding seems
counter-intuitive. However, the recent years of research on the
brain at rest have accentuated the prominence of endogenously
engendered brain responses as an important defining factor in
modeling the topology of large-scale neuronal networks (for
reviews see Linkenkaer-Hansen, 2002; Calhoun and De Lacy,
2017; Gorges et al., 2017; Liégeois et al., 2017; Smitha et al., 2017).
The terms used most frequently to describe resting-state neural
activity, such as “endogenous,” “intrinsic” and “spontaneous,”
indicate that network function is created within the brain itself,
and can, thus, be understood as “self-organized” (Linkenkaer-
Hansen, 2002). Self-organized criticality, in return, has been
described by Bak et al. (1987) as the origin of fractal objects. They
demonstrated, that “dynamic systems naturally evolve into self-
organized critical structures of states” and suggested, that “this
self-organized criticality is the common underlying mechanism“
behind those dynamic system (Bak et al., 1987). For an empirical
example in the context of sleep dynamics, Lo et al. (2013) were
able to identify two independent paths for the transition between
sleep phases using power-law scaling on noctural EEG recordings
(Lo et al., 2013). Thus, a task-induced stimulation operating as an
involvement from the outside system may lead to a reduction of
these dynamics, hence of fractality.
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FIGURE 6 | The impulsivity network is presented in terms of significantly activated brain regions across all subjects while performing the 5-choice serial reaction time

task. PFC, prefrontal cortex; ACC, anterior cingulate cortex; Nacc, nucleus accumbens.

In highImp subjects, however,H did not decrease significantly
during task in the right HC. A generally small fractality in
the hippocampus has been reported by He (2011, 2014). They
found varying H across different cortical regions with lowest
H in the HC, interpreting these findings in terms of regional
differences in neurovascular coupling mechanisms (He, 2011,
2014;). Impaired hippocampal H has also been reported between
patients with Alzheimer’s disease and control subjects (Maxim
et al., 2005) with the persistence of H being assumed to
reflect neurodegenerative processes. The insignificant change of
H during task processing in high impulsive subjects in our
study, thus, might reflect a weaker recruitment of the right
HC while performing the task and a more superficial learning
(e.g., El-Gaby et al., 2015). In return, this finding can also
be interpreted the way, that the right HC is less adaptive
in high impulsive subjects, thus constantly following its own
dynamics, leading to an impaired motivation- or reward-based
learning of the task (Chantiluke et al., 2012; Moreno-López et al.,
2012).

Fractality Differs in Function of Impulsivity
Our analyses revealed, that impulsivity modulated fractality only
during task processing and predominantly in the fronto-striatal
loop namely the ACC and the NAcc, as well as the left MFG.
Morris et al. (2016) showed that functional connectivity in
the ACC and the NAcc via the subthalamic nucleus varied in
function of the number of premature responses (Morris et al.,

2016) emphasizing the crucial and interacting role of these two
structures on the key parameter of waiting impulsivity. The left
MFG as part of the dorsolateral PFC, in return, reflects the
counterpart, i.e., top-down control which decreases with higher
reward processing (Mechelmans et al., 2017).

In the NAcc as well as in the ACC, in high impulsive subjects,
H was significantly reduced compared to low impulsive subjects.
A negative association between impulsivity/reward sensitivity
and the ventral striatum has been reported by Hahn et al. (2012)
before in the way that the higher impulsive/reward sensitive the
subjects were, the smaller theH (Hahn et al., 2012). ReducedH in
the NAcc and ACC in high impulsive subjects of our study, thus,
reflects an altered reward processing.

In addition, significant correlations between impulsivity and

fractality in the frontal cortex have been shown for the orbito-

frontal cortex (Hahn et al., 2012) as well as for the lateral
PFC (Ball et al., 2011). Similar to these findings, we found a
significant (negative) correlation with the number of premature
responses and H in the left MFG across all subjects as well
as in the vmPFC in the highImp group. The MFG is strongly
involved in response inhibition and cognitive control (Chambers
et al., 2009; Boehler et al., 2010; Braver, 2012; Bari and Robbins,
2013), thus, a more random top-down control in highImp
subjects reflects impaired control and more impulsive task
performance. Taken together, the combination of impaired top-
down control and altered reward processing is common and
has been described for numerous impulse control disorders
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such as attention-deficit/hyperactivity disorder (e.g., Scheres and
Hamaker, 2010), eating disorders (for review Citrome, 2015),
addiction (Weinstein, 2017), bipolar disorder, and depression
(Carver et al., 2008).

In contrast to findings by Wink et al., H of network
regions associated with waiting impulsivity did not correlate
with reaction time (Wink et al., 2008). This, however, might be
based on the different anatomical structures: Wink et al. reported
a correlation of H and resting-state fMRI signals in the right
inferior frontal cortex, which was not included in our network.

LIMITATION AND CONCLUSION

In this study, we chose a monofractal approach. The main
reasons were the following: (1) This is a pilot study for a clinical
project; thus, data acquisition was strongly determined by the
factors (a) field strength (3T) (b) total scanning time (12 min/365
volumes during resting-state; 14 min/420 volumes during tast),
(c) sample rate (TR was 2000ms) to ensure the feasibility for
patients to perform the scanning procedure successfully. All
factors, however, play a crucial role in the analysis of fractal
patterns in fMRI (Eke et al., 2012). For example, the field strength
highly influences measurement sensitivity (Eke et al., 2006)
and multi-fractal analysis is “known to require a much higher
signal definition for an optimal performance” than monofractal
(Ciuciu et al., 2012; Eke et al., 2012). Likewise, multi-fractal
analyses need longer time series/higher sampling rates than those
found for monofractal series (Eke et al., 2002, 2012). (2) In
a previous step multi-fractality was addressed (using q from
−2 to 2) and revealed, that our signals are, with no loss of
information, to be approximated as monofractal (see Figure S1).
The monofractal approximation, however, has been proven to
be a robust assumption and, thus, an adequate tool to address
similar signals.

In summary, we revealed that activity in the neural network
associated with waiting impulsivity is of fractal nature. The
use of fractal parameters to examine neural networks regarding
to health or disorder has been described in earlier studies
(e.g., Lipsitz, 2002; Maxim et al., 2005; Hahn et al., 2012; Lei
et al., 2013; Sokunbi et al., 2014; El-Gaby et al., 2015; Dona
et al., 2017; Gorges et al., 2017), introducing these parameters
as exceptionally sensitive toward alterations. In our study,
however, we performed analysis in a very homogenous sample of
young adult male students. The classification into high and low
impulsive subjects, therefore, is relative and does not represent
samples with manifest impulse control disorders. The transfer
of the present data to a clinical context therefore predominantly
relies on the findings of earlier studies (e.g., Lipsitz, 2002; Maxim
et al., 2005; Hahn et al., 2012; Lei et al., 2013; Sokunbi et al., 2014;
El-Gaby et al., 2015; Dona et al., 2017; Gorges et al., 2017) and
would be of high interest for future studies.

In contrast to earlier studies, in which H was determined on
the whole brain level and in a data-driven manner (e.g., Suckling
et al., 2008; Wink et al., 2008; Barnes et al., 2009; Gentili et al.,
2015, 2017; Churchill et al., 2016), we chose to focus on an

earlier described network. This way, we were able to a priori
match cognition and neural structures, however, taking the risk
of losing information, for example regarding the compensatory
recruitment of additional structures. When examining a clinical
sample, thus, a combined approach would be indicated.

Taken together, we would like to emphasize, that the use
of fractality and H in particular, has two advantages which
makes it a promising biomarker in the early detection of
disease: (i) the reference score is a concrete number (e.g., 1)
the difference can be interpreted as a measure of the deviation
from this reference state, (ii) in principle the assessment of
H can be integrated in the (f)MRI clinical routine protocol
subject to the availability of sufficiently long fMRI-BOLD
sequences. However, consistent with earlier observations with
various fractal time series methods (Eke et al., 2000) -, as
specifically stated by Riley et al. (2012), “AFA requires careful
consideration of signal properties, parameter settings, and
interpretation of results, and should not be applied blindly to
unfamiliar signals.” (Riley et al., 2012). In line with earlier
studies, our data showed the potential of fractal parameters
in the detection of altered brain function in the clinical
context. For that reason, it is highly recommended to follow
up on the development of methods to making fractal analysis
accessible to a wider public and delivering unambiguous
results.
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Figure S1 | The scaling function f and the corresponding regression line of the

entire signal (left upper row) and for its LFC only (right upper row). Please note that

data points in the case of the LFC are linearly fitted, whereas this is not the case in

the entire signal. The diagramm in the lower row shows that the slopes H of the

regression lines are q-indepenent (monofractal). For this diagramm, MFDFA has

been used (Ihlen, 2012). For demonstration, the example of a representative

individual time course has been used.

Supplementary Presentation 1 | Plots of raw BOLD series.

Supplementary Table 1 | Bootstrap.

Supplementary Datasheet 1 | Permutations.

Frontiers in Physiology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 137860

https://www.frontiersin.org/articles/10.3389/fphys.2018.01378/full#supplementary-material
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Akhrif et al. Fractal Nature of an Impulsivity Network

REFERENCES

Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., et al. (2008). Default-mode

network activity distinguishes amnestic type mild cognitive impairment from

healthy aging: a combined structural and resting-state functional MRI study.

Neurosci. Lett. 438, 111–115. doi: 10.1016/j.neulet.2008.04.021

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality:

An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384.

doi: 10.1103/PhysRevLett.59.381

Ball, G., Stokes, P. R., Rhodes, R. A., Bose, S. K., Rezek, I., Wink, A.M., et al. (2011).

Executive functions and prefrontal cortex: a matter of persistence? Front. Syst.

Neurosci. 5:3. doi: 10.3389/fnsys.2011.00003

Bari, A., and Robbins, T. W. (2013). Inhibition and impulsivity: behavioral

and neural basis of response control. Prog. Neurobiol. 108, 44–79.

doi: 10.1016/j.pneurobio.2013.06.005

Barnes, A., Bullmore, E. T., and Suckling, J. (2009). Endogenous human brain

dynamics recover slowly following cognitive effort. PLoS ONE 4:e6626.

doi: 10.1371/journal.pone.0006626

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate:

a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57,

289–300.

Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., and

Woldorff, M. G. (2010). Pinning down response inhibition in the brain–

conjunction analyses of the Stop-signal task. Neuroimage 52, 1621–1632.

doi: 10.1016/j.neuroimage.2010.04.276

Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms

framework. Trends Cogn. Sci. 16, 106–113. doi: 10.1016/j.tics.2011.12.010

Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-P. (2002). “Region of

interest analysis using an SPM toolbox [abstract],” in Neuroimage International

Conference on Functional Mapping of the Human Brain (Sendai).

Bullmore, E., Barnes, A., Bassett, D. S., Fornito, A., Kitzbichler, M.,

Meunier, D., et al. (2009). Generic aspects of complexity in brain

imaging data and other biological systems. Neuroimage 47:1125.

doi: 10.1016/j.neuroimage.2009.05.032

Burnett Heyes, S., Adam, R. J., Urner,M., VanDer Leer, L., Bahrami, B., Bays, P.M.,

et al. (2012). Impulsivity and rapid decision-making for reward. Front. Psychol.

3:153. doi: 10.3389/fpsyg.2012.00153

Calhoun, V. D., and De Lacy, N. (2017). Ten key observations on the analysis

of resting-state functional MR imaging data using independent component

analysis.Neuroimaging Clin. N. Am. 27, 561–579. doi: 10.1016/j.nic.2017.06.012

Cannon, M. J., Percival, D. B., Caccia, D. C., Raymond, G. M., and

Bassingthwaighte, J. B. (1997). Evaluating scaled windowed variance methods

for estimating the Hurst coefficient of time series. Phys. A 241:606.

doi: 10.1016/S0378-4371(97)00252-5

Carver, C. S., Johnson, S. L., and Joormann, J. (2008). Serotonergic function,

two-mode models of self-regulation, and vulnerability to depression: what

depression has in common with impulsive aggression. Psychol. Bull. 134,

912–943. doi: 10.1037/a0013740

Chambers, C. D., Garavan, H., and Bellgrove, M. A. (2009). Insights into the neural

basis of response inhibition from cognitive and clinical neuroscience. Neurosci.

Biobehav. Rev. 33, 631–646. doi: 10.1016/j.neubiorev.2008.08.016

Chantiluke, K., Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A.,

Giampietro, V., et al. (2012). Fronto-striato-cerebellar dysregulation in

adolescents with depression during motivated attention. Biol. Psychiatry 71,

59–67. doi: 10.1016/j.biopsych.2011.09.005

Churchill, N. W., Spring, R., Grady, C., Cimprich, B., Askren, M. K., Reuter-

Lorenz, P. A., et al. (2016). The suppression of scale-free fMRI brain dynamics

across three different sources of effort: aging, task novelty and task difficulty.

Sci. Rep. 6:30895. doi: 10.1038/srep30895

Citrome, L. (2015). A primer on binge eating disorder diagnosis and management.

CNS Spectr. 20(Suppl. 1), 44–50; quiz 51. doi: 10.1017/S1092852915000772

Ciuciu, P., Abry, P., and He, B. J. (2014). Interplay between functional connectivity

and scale-free dynamics in intrinsic fMRI networks. Neuroimage 95, 248–263.

doi: 10.1016/j.neuroimage.2014.03.047

Ciuciu, P., Varoquaux, G., Abry, P., Sadaghiani, S., and Kleinschmidt, A. (2012).

Scale-free and multifractal time dynamics of fMRI signals during rest and task.

Front. Physiol. 3:186. doi: 10.3389/fphys.2012.00186

Dalley, J. W., Everitt, B. J., and Robbins, T. W. (2011). Impulsivity,

compulsivity, and top-down cognitive control. Neuron 69, 680–694.

doi: 10.1016/j.neuron.2011.01.020

Davis, F. C., Knodt, A. R., Sporns, O., Lahey, B. B., Zald, D. H., Brigidi, B. D.,

et al. (2013). Impulsivity and the modular organization of resting-state neural

networks. Cereb. Cortex 23, 1444–1452. doi: 10.1093/cercor/bhs126

Deserno, L., Wilbertz, T., Reiter, A., Horstmann, A., Neumann, J., Villringer,

A., et al. (2015). Lateral prefrontal model-based signatures are reduced in

healthy individuals with high trait impulsivity. Transl. Psychiatry 5:e659.

doi: 10.1038/tp.2015.139

Dona, O., Noseworthy, M. D., Dematteo, C., and Connolly, J. F. (2017). Fractal

Analysis of Brain Blood Oxygenation Level Dependent (BOLD) signals from

children with mild traumatic brain injury (mTBI). PLoS ONE 12:e0169647.

doi: 10.1371/journal.pone.0169647

Donnelly, N. A., Holtzman, T., Rich, P. D., Nevado-Holgado, A. J., Fernando, A. B.,

Van Dijck, G., et al. (2014). Oscillatory activity in the medial prefrontal cortex

and nucleus accumbens correlates with impulsivity and reward outcome. PLoS

ONE 9:e111300. doi: 10.1371/journal.pone.0111300

Eke, A., Herman, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D. B.,

Cannon,M., et al. (2000). Physiological time series: distinguishing fractal noises

from motions. Pflugers Arch. 439, 403–415. doi: 10.1007/s004249900135

Eke, A., Herman, P., and Hajnal, M. (2006). Fractal and noisy CBV dynamics in

humans: influence of age and gender. J. Cereb. Blood Flow Metab. 26, 891–898.

doi: 10.1038/sj.jcbfm.9600243

Eke, A., Herman, P., Kocsis, L., and Kozak, L. R. (2002). Fractal characterization

of complexity in temporal physiological signals. Physiol. Meas. 23, R1–38.

doi: 10.1088/0967-3334/23/1/201

Eke, A., Herman, P., Sanganahalli, B. G., Hyder, F., Mukli, P., and Nagy, Z. (2012).

Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case.

Front. Physiol. 3:417. doi: 10.3389/fphys.2012.00417

El-Gaby, M., Shipton, O. A., and Paulsen, O. (2015). Synaptic plasticity and

memory: new insights from hippocampal left-right asymmetries.Neuroscientist

21, 490–502. doi: 10.1177/1073858414550658

Feja, M., Hayn, L., and Koch, M. (2014). Nucleus accumbens core

and shell inactivation differentially affects impulsive behaviours

in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 54, 31–42.

doi: 10.1016/j.pnpbp.2014.04.012

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,

700–711. doi: 10.1038/nrn2201

Fox, M. D., Snyder, A. Z., Vincent, J. L., and Raichle, M. E. (2007). Intrinsic

fluctuations within cortical systems account for intertrial variability in human

behavior. Neuron 56, 171–184. doi: 10.1016/j.neuron.2007.08.023

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. (2009). The global signal

and observed anticorrelated resting state brain networks. J. Neurophysiol. 101,

3270–3283. doi: 10.1152/jn.90777.2008

Gentili, C., Cristea, I. A., Ricciardi, E., Vanello, N., Popita, C., David, D.,

et al. (2017). Not in one metric: Neuroticism modulates different resting

state metrics within distinctive brain regions. Behav. Brain Res. 327, 34–43.

doi: 10.1016/j.bbr.2017.03.031

Gentili, C., Vanello, N., Cristea, I., David, D., Ricciardi, E., and Pietrini, P. (2015).

Proneness to social anxiety modulates neural complexity in the absence of

exposure: a resting state fMRI study using Hurst exponent. Psychiatry Res. 232,

135–144. doi: 10.1016/j.pscychresns.2015.03.005

Gilden, D. L., and Hancock, H. (2007). Response variability in attention-deficit

disorders. Psychol. Sci. 18, 796–802. doi: 10.1111/j.1467-9280.2007.01982.x

Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P., Peng, C. K.,

and Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with

disease and aging. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl. 1), 2466–2472.

doi: 10.1073/pnas.012579499

Gorges, M., Roselli, F., Muller, H. P., Ludolph, A. C., Rasche, V., and

Kassubek, J. (2017). Functional connectivity mapping in the animal model:

principles and applications of resting-state fMRI. Front. Neurol. 8:200.

doi: 10.3389/fneur.2017.00200

Goya-Maldonado, R.,Walther, S., Simon, J., Stippich, C.,Weisbrod,M., and Kaiser,

S. (2010). Motor impulsivity and the ventrolateral prefrontal cortex. Psychiatry

Res. 183, 89–91. doi: 10.1016/j.pscychresns.2010.04.006

Frontiers in Physiology | www.frontiersin.org 10 October 2018 | Volume 9 | Article 137861

https://doi.org/10.1016/j.neulet.2008.04.021
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.3389/fnsys.2011.00003
https://doi.org/10.1016/j.pneurobio.2013.06.005
https://doi.org/10.1371/journal.pone.0006626
https://doi.org/10.1016/j.neuroimage.2010.04.276
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.neuroimage.2009.05.032
https://doi.org/10.3389/fpsyg.2012.00153
https://doi.org/10.1016/j.nic.2017.06.012
https://doi.org/10.1016/S0378-4371(97)00252-5
https://doi.org/10.1037/a0013740
https://doi.org/10.1016/j.neubiorev.2008.08.016
https://doi.org/10.1016/j.biopsych.2011.09.005
https://doi.org/10.1038/srep30895
https://doi.org/10.1017/S1092852915000772
https://doi.org/10.1016/j.neuroimage.2014.03.047
https://doi.org/10.3389/fphys.2012.00186
https://doi.org/10.1016/j.neuron.2011.01.020
https://doi.org/10.1093/cercor/bhs126
https://doi.org/10.1038/tp.2015.139
https://doi.org/10.1371/journal.pone.0169647
https://doi.org/10.1371/journal.pone.0111300
https://doi.org/10.1007/s004249900135
https://doi.org/10.1038/sj.jcbfm.9600243
https://doi.org/10.1088/0967-3334/23/1/201
https://doi.org/10.3389/fphys.2012.00417
https://doi.org/10.1177/1073858414550658
https://doi.org/10.1016/j.pnpbp.2014.04.012
https://doi.org/10.1038/nrn2201
https://doi.org/10.1016/j.neuron.2007.08.023
https://doi.org/10.1152/jn.90777.2008
https://doi.org/10.1016/j.bbr.2017.03.031
https://doi.org/10.1016/j.pscychresns.2015.03.005
https://doi.org/10.1111/j.1467-9280.2007.01982.x
https://doi.org/10.1073/pnas.012579499
https://doi.org/10.3389/fneur.2017.00200
https://doi.org/10.1016/j.pscychresns.2010.04.006
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Akhrif et al. Fractal Nature of an Impulsivity Network

Hahn, T., Dresler, T., Ehlis, A. C., Pyka, M., Dieler, A. C., Saathoff, C., et al. (2012).

Randomness of resting-state brain oscillations encodes Gray’s personality trait.

Neuroimage 59, 1842–1845. doi: 10.1016/j.neuroimage.2011.08.042

Hausdorff, J. M. (2007). Gait dynamics, fractals and falls: finding meaning in the

stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26, 555–589.

doi: 10.1016/j.humov.2007.05.003

He, B. J. (2011). Scale-free properties of the functional magnetic resonance

imaging signal during rest and task. J. Neurosci. 31, 13786–13795.

doi: 10.1523/JNEUROSCI.2111-11.2011

He, B. J. (2014). Scale-free brain activity: past, present, and future. Trends Cogn.

Sci. 18, 480–487. doi: 10.1016/j.tics.2014.04.003

Herman, P., Sanganahalli, B. G., Hyder, F., and Eke, A. (2011). Fractal analysis

of spontaneous fluctuations of the BOLD signal in rat brain. Neuroimage 58,

1060–1069. doi: 10.1016/j.neuroimage.2011.06.082

Hinshaw, S. P. (2017). Attention Deficit Hyperactivity Disorder (ADHD):

controversy, developmental mechanisms, and multiple levels of analysis. Annu

Rev Clin Psychol. 4:291–316. doi: 10.1146/annurev-clinpsy-050817-084917

Hinshaw, S. P., Carte, E. T., Sami, N., Treuting, J. J., and Zupan, B. A.

(2002). Preadolescent girls with attention-deficit/hyperactivity disorder: II.

Neuropsychological performance in relation to subtypes and individual

classification. J. Consult. Clin. Psychol. 70, 1099–1111.

Huang-Pollock, C. L., Nigg, J. T., and Halperin, J. M. (2006). Single dissociation

findings of ADHD deficits in vigilance but not anterior or posterior attention

systems. Neuropsychology 20, 420–429. doi: 10.1037/0894-4105.20.4.420

Ihlen, E. A. (2012). Introduction to multifractal detrended fluctuation analysis in

matlab. Front. Physiol. 3:141. doi: 10.3389/fphys.2012.00141

Ihlen, E. A., and Vereijken, B. (2010). Interaction-dominant dynamics in

human cognition: beyond 1/fα fluctuation. J. Exp. Psychol. 139, 436–463.

doi: 10.1037/a0019098

Ivanov, P., Ma, Q. D., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A.,

Schulte-Frohlinde, V., et al. (2009). Levels of complexity in scale-invariant

neural signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79:041920.

doi: 10.1103/PhysRevE.79.041920

Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., and Havlin, S.

(1999). Multifractality in human heartbeat dynamics. Nature 399:461.

doi: 10.1038/20924

Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum,M. G.,

Stanley, H. E., et al. (2001). From 1/f noise to multifractal cascades in heartbeat

dynamics. Chaos 11, 641–652. doi: 10.1063/1.1395631

Kandel, E. R., Schwartz, J. H., and Jessel, T. M. (2000). Principles of Neuroscience,

4th Edn. New York, NY: McGraw Hill.

Keshner, M. (1982). 1/f noise. Proc. IEEE 70, 212–218.

doi: 10.1109/PROC.1982.12282

Koch, H. V. (1904). Sur une courbe continue sans tangente, obtenue par une

construction géométrique élémentaire. Astron. och Fys. 1, 681–702.

Koch, H. V. (1906). Une méthode géométrique élémentaire pour l’étude de

certaines questions de la théorie des courbes planes. Acta Math. 30, 145–174.

doi: 10.1007/BF02418570

Lei, X., Zhao, Z., and Chen, H. (2013). Extraversion is encoded by

scale-free dynamics of default mode network. Neuroimage 74, 52–57.

doi: 10.1016/j.neuroimage.2013.02.020

Li, N., Ma, N., Liu, Y., He, X. S., Sun, D. L., Fu, X. M., et al. (2013). Resting-state

functional connectivity predicts impulsivity in economic decision-making.

J. Neurosci. 33, 4886–4895. doi: 10.1523/JNEUROSCI.1342-12.2013

Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J., and Yeo, B. T. T. (2017).

Interpreting temporal fluctuations in resting-state functional connectivityMRI.

Neuroimage doi: 10.1016/j.neuroimage.2017.09.012

Linkenkaer-Hansen, K. (2002). Self Organized Criticality and Stochastic Resonance

in the Human Brain Dept Of Engineering Physics and Mathematics. Helsinki:

Helsinki University of Technology.

Lipsitz, L. A. (2002). Dynamics of stabilitythe physiologic basis of functional health

and frailty. J. Gerontol. 57, B115–B125. doi: 10.1093/gerona/57.3.B115

Lipsitz, L. A., and Goldberger, A. L. (1992). Loss of complexity and aging: potential

applications of fractals and chaos theory to senescence. JAMA 267, 1806–1809.

doi: 10.1001/jama.1992.03480130122036

Lo, C. C., Bartsch, R. P., and Ivanov, P. C. (2013). Asymmetry and

basic pathways in sleep-stage transitions. Europhys. Lett. 102:10008.

doi: 10.1209/0295-5075/102/10008

Mandelbrot, B. (1967). How long is the coast of britain? statistical

self-similarity and fractional dimension. Science 156, 636–638.

doi: 10.1126/science.156.3775.636

Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. New York, NY: W. H.

Freeman.

Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., et al. (2005).

Fractional gaussian noise, functional MRI and Alzheimer’s disease.Neuroimage

25, 141–158. doi: 10.1016/j.neuroimage.2004.10.044

Mechelmans, D. J., Strelchuk, D., Donamayor-Alonso, N., Banca, P.,

Robbins, T. W., Baek, K., et al. (2017). Reward sensitivity and waiting

impulsivity: shift towards reward valuation away from action control. Int.

J. Neuropsychopharmacol. 20, 971–978. doi: 10.1093/ijnp/pyx072

Moreno-López, L., Soriano-Mas, C., Delgado-Rico, E., Rio-Valle, J. S., and

Verdejo-Garcia, A. (2012). Brain structural correlates of reward sensitivity and

impulsivity in adolescents with normal and excess weight. PLoS ONE 7:e49185.

doi: 10.1371/journal.pone.0049185

Morris, L. S., Kundu, P., Baek, K., Irvine, M. A., Mechelmans, D. J., Wood,

J., et al. (2016). Jumping the gun: mapping neural correlates of waiting

impulsivity and relevance across alcohol misuse. Biol. Psychiatry 79, 499–507.

doi: 10.1016/j.biopsych.2015.06.009

Nagy, Z., Mukli, P., Herman, P., and Eke, A. (2017). Decomposing multifractal

crossovers. Front. Physiol. 8:533. doi: 10.3389/fphys.2017.00533

Neufang, S., Akhrif, A., Herrmann, C. G., Drepper, C., Homola, G. A.,

Nowak, J., et al. (2016). Serotonergic modulation of ’waiting impulsivity’ is

mediated by the impulsivity phenotype in humans. Transl. Psychiatry 6:e940.

doi: 10.1038/tp.2016.210

Penn, A. A., and Shatz, C. J. (1999). Brain waves and brain wiring: the role of

endogenous and sensory-driven neural activity in development. Pediatr. Res.

45, 447–458. doi: 10.1203/00006450-199904010-00001

Qiu, Y. W., Han, L. J., Lv, X. F., Jiang, G. H., Tian, J. Z., Zhuo, F.

Z., et al. (2011). Regional homogeneity changes in heroin-dependent

individuals: resting-state functional MR imaging study. Radiology 261,

551–559. doi: 10.1148/radiol.11102466

Riley, M. A., Bonnette, S., Kuznetsov, N., Wallot, S., and Gao, J. (2012).

A tutorial introduction to adaptive fractal analysis. Front. Physiol. 3:371.

doi: 10.3389/fphys.2012.00371

Robinson, E. S., Eagle, D. M., Economidou, D., Theobald, D. E., Mar, A. C.,

Murphy, E. R., et al. (2009). Behavioural characterisation of high impulsivity

on the 5-choice serial reaction time task: specific deficits in ’waiting’ versus

’stopping’. Behav. Brain Res. 196, 310–316. doi: 10.1016/j.bbr.2008.09.021

Rösler, M., Retz, W., Retz-Junginger, P., Stieglitz, R. D., Kessler, H., Reimherr,

F., et al. (2008). ADHS-Diagnose bei Erwachsenen. Nervenarzt 79, 320–327.

doi: 10.1007/s00115-007-2375-0

Sala, M., Caverzasi, E., Lazzaretti, M., Morandotti, N., De Vidovich, G., Marraffini,

E., et al. (2011). Dorsolateral prefrontal cortex and hippocampus sustain

impulsivity and aggressiveness in borderline personality disorder. J. Affect.

Disord. 131, 417–421. doi: 10.1016/j.jad.2010.11.036

Scheres, A., and Hamaker, E. L. (2010). What we can and cannot conclude

about the relationship between steep temporal reward discounting and

hyperactivity-impulsivity symptoms in attention-deficit/hyperactivity disorder.

Biol. Psychiatry 68, e17–e18. doi: 10.1016/j.biopsych.2010.05.021

Sebastian, A., Jacob, G., Lieb, K., and Tuscher, O. (2013). Impulsivity in

borderline personality disorder: a matter of disturbed impulse control

or a facet of emotional dysregulation? Curr. Psychiatry Rep. 15:339.

doi: 10.1007/s11920-012-0339-y
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Gene expression is a vital process through which cells react to the environment and
express functional behavior. Understanding the dynamics of gene expression could
prove crucial in unraveling the physical complexities involved in this process. Specifically,
understanding the coherent complex structure of transcriptional dynamics is the goal of
numerous computational studies aiming to study and finally control cellular processes.
Here, we report the scaling properties of gene expression time series in Escherichia coli
and Saccharomyces cerevisiae. Unlike previous studies, which report the fractal and
long-range dependency of DNA structure, we investigate the individual gene expression
dynamics as well as the cross-dependency between them in the context of gene
regulatory network. Our results demonstrate that the gene expression time series display
fractal and long-range dependence characteristics. In addition, the dynamics between
genes and linked transcription factors in gene regulatory networks are also fractal
and long-range cross-correlated. The cross-correlation exponents in gene regulatory
networks are not unique. The distribution of the cross-correlation exponents of gene
regulatory networks for several types of cells can be interpreted as a measure of the
complexity of their functional behavior.

Keywords: gene expression, gene regulatory network, fractals, dynamics, entropy

INTRODUCTION

Protein synthesis is fundamental for biological systems to perform a variety of functions.
They control the organism’s shape or can function as enzymes catalyzing specific metabolic
pathways to regulate specific cellular processes. These cellular functions include responding to
stimuli, transporting molecules and catalyzing metabolic reactions. In order to program cells
for performing the desired functionality, one should regulate the protein synthesizing process.
The process of protein synthesis from the activation of a specific gene is called gene expression
(Lockhart and Winzeler, 2000; Teichmann and Babu, 2004; Huang et al., 2005; Düvel et al., 2010).

Gene expression (briefly shown in Figure 1a) is the process in which the genetic information of
a cell causes a cell to generate a functional gene product and, finally, perform specific cell functions
(Niedenthal et al., 1996). In other words, it is the process by which genotype information gives rise
to phenotype (observable characteristics). It is a vital process, which causes cellular differentiation,
morphogenesis, and the versatility and adaptability of any organism (O’Connor et al., 2010).
Controlling the production process of the desired gene expression product (e.g., a protein) refers
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FIGURE 1 | (a) Gene expression process is initiated with the triggering of a gene in the DNA strand and continues with the generation of RNA, mRNA and, finally, the
protein product. (b) Part of the gene regulatory network of Escherichia coli reported by Lockhart and Winzeler (2000), which consists of genes and transcription
factors (TFs). The diamonds represent TFs and the circles represent genes. (c) Time series of TFs of E. coli obtained from Marbach et al. (2012) and explained in the
methods section. (d) Time series of genes of E. coli obtained from Marbach et al. (2012) and explained in the methods section.

to the regulation of the gene expression process. The regulation
of gene expression controls the amount and timing of production
of target proteins (Malone et al., 2009). Hence, investigating
the dynamics of gene expression enables to understand the
mechanisms driving biological organisms. This knowledge helps
us from both scientific and engineering perspectives. It can
be exploited to detect an anomaly or disease or to engineer
cells for performing specific tasks (e.g., drug delivery for cancer
treatment) as it is the target of synthetic biology.

The biophysical mechanism affecting the regulation process
has been actively studied (Elf et al., 2007; Kolesov et al., 2007;
Kuhlman and Cox, 2012; Bauer and Metzler, 2013; Pulkkinen and
Metzler, 2013). For instance, searching for the target gene by the
transcription factors (TFs) is discussed in Kolesov et al. (2007);
Pulkkinen and Metzler (2013) and the diffusion process of

search for the target genes is studied in Elf et al. (2007);
Bauer and Metzler (2013). Also, the spatial distribution of gene
products is reported in Kuhlman and Cox (2012). However,
these prior studies were not concerned with the mathematical
characterization of the gene expression dynamics for several
gene regulations in a network of genes. To identify the main
mathematical characteristics of gene expression dynamics, we
investigate individual and cross-dependent gene expression time
series. First, we investigate the statistical properties of single
(isolated) gene expression time series (shown in Figures 1c,d),
and, then, we analyze the cross-correlation between pairs
consisting of a gene and a TF in the gene regulatory network
(Figure 1b). In contrast to the previous study (Tsuchiya et al.,
2016) in which regulation of cell fate through genome-wide
expression by temporal-spatial self-organization is considered,
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here, we mainly analyze the temporal variability of individual
genes. We then investigate the correlation of linked TF and genes.
Moreover, we analyze the expression level of single cells without
considering population effect (Tsuchyia et al., 2007).

The remaining of this paper is organized as follows: In
the first part of the Results section, we present our findings
on the individual and cross-dependence dynamics of gene
expression time series. Then, we report the distribution of
the cross-dependencies and a complexity quantification strategy
for the gene expression networks. In the latest section of
Results, we investigate whether the observed multifractality can
be explained by a well-known model such as the Mandelbrot
analytical cascade model. The Discussion section concludes our
findings and outlines some future research directions. Lastly, the
Methods section summarizes the mathematical strategies used for
obtaining the findings reported here.

RESULTS

Gene Expression Dynamics Exhibits
Long-Range Dependency and
Multifractal Properties
We investigate the statistical properties of gene expression data
and compute the Hurst exponents of gene expression time series
in Saccharomyces cerevisiae (S. cerevisiae) and Escherichia coli
(E. coli). Figures 2a,b show the log–log plot of the fluctuation
function as a function of the scale for the time series of a TF
(ynel) in S. cerevisiae and E. coli, respectively. In these plots, the
slope of the curve represents the Hurst exponent. We observe

that 95 and 98% of the time series of genes from the S. cerevisiae
and the E. coli gene expression networks, respectively, exhibit
a long-range dependency property. More precisely, their Hurst
exponent was greater than 0.5. To demonstrate this important
property, Figures 2c,e show the histogram of the Hurst exponent
of gene expression time in S. cerevisiae and E. coli, respectively.
Generally speaking, a Hurst exponent that exceeds the 0.5
threshold value denotes a persistent (positively correlated)
behavior in the sense that a high value is likely to be followed by
another high value with nonzero probability. In addition, because
the Hurst exponent for most of the genes is significantly higher
than 0.5, the gene and TF time series cannot be regarded as
a random process and modeled through Markovian formalism
(Kantelhardt et al., 2001). This mathematical characteristic
provides a clue as to how to construct stochastic models for gene
expression processes, but this is left for future work. We observe
the same property in the time series of TFs in S. cerevisiae and
E. coli. More precisely, 97% of the TFs in S. cerevisiae and E. coli
possess the long-range dependence property. The histogram of
the Hurst exponent of TFs in S. cerevisiae and E. coli are shown in
Figures 2d,f respectively.

Employing fractal analysis is also helpful to gain insight into
other interesting properties. Here, we see a bimodal characteristic
in the Hurst exponent distribution, shown in Figures 2c–f. This
feature is especially visible in Figures 2c,e where the histogram
of genes in S. cerevisiae and E. coli is presented. This may
be explained by a possible bimodal diffusion potential, as in
Muzychuk (2006). Since gene expression includes a diffusion
process with multiple diffusion potentials (inside and outside the
nucleus), this bimodality can be explained by non-equilibrium
Brownian motion with multiple potential profiles. However,

FIGURE 2 | (a) Scaling of fluctuation function of a gene time series in Saccharomyces cerevisiae, (b) Scaling of fluctuation function of ynel gene time series in E. coli,
(c) Histogram of cross-correlation exponent of genes in S. cerevisiae, (d) Histogram of cross-correlation exponent of TFs in S. cerevisiae, (e) Histogram of
cross-correlation exponent of genes in E. coli. (f) Histogram of cross-correlation exponent of TFs in E. coli.
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further experimental studies are required to elucidate the nature
and implications of these bimodal statistics.

By employing the multifractal detrended fluctuation analysis
(MFDFA) (Kantelhardt et al., 2002) (see Materials and methods
section) to examine the multifractal characteristics of gene
expression time series, we observe that both genes and TFs have
pronounced multifractal properties. For monofractal behavior,
the generalized Hurst exponent displays a linear dependency with
the order q of the cross moments. Instead, if the generalized
Hurst exponent exhibits a nonlinear dependency (such as the
S-shape displayed in Figure 3b) as a function of the order q
of the cross-moments, then the stochastic interdependence is
considered to possess multifractal characteristics.

To provide a more in-depth report, we use the bootstrapping
technique (Efron, 1982) to investigate the existence of the
long-range dependence property, considering the limitations
related to the length of the experimental time series. For every
gene expression time series, we have sampled 10 randomized
subintervals of the gene expression time series, each containing
90% of the ordered piece of the original time series. Then,
we calculate the Hurst exponents for all the randomized
versions. The difference between the percentage of the long-range
dependency for the gene expression time series and the
randomized versions was approximately 0.006 for E. coli and

0.0001 S. cerevisiae. We also investigate whether the observed
Hurst exponent varies in different conditions. We observed that
for time series of E. coli, the Hurst exponent varies in different
acidic levels and osmotic stress level and we have reported them
in Supplementary Material.

Time Series of Interactions Within the
Gene Regulatory Networks Demonstrate
Long-Range Cross-Correlation and
Multifractal Properties
We analyzed the cross-correlation between linked pairs of
genes and TFs in gene regulatory networks. By computing the
cross-correlation exponent (Podobnik and Stanley, 2008), we
noticed that 98% of the linked pairs of genes and TFs in gene
regulatory network for E. coli and S. cerevisiae possess the
long-range dependence property. Figure 3a shows the scaling
of the detrended covariance function for a pair of gene and TF
(link) in E. coli (ihfB to ompR) and S. cerevisiae (YLR256W
to YKL020C). We have applied the multifractal detrended
cross-correlation analysis for pairs of genes and TFs (links) in the
gene regulatory network of E. coli and S. cerevisiae and found that
there is a pronounced multifractal cross-correlation signature
in these gene regulatory network links. Figure 3b shows the

FIGURE 3 | (a) Scaling of detrended covariance function in a gene-TF link in E. coli (ihfB to ompR) and S. cerevisiae (YLR256W to YKL020C) regulatory network.
(b) Generalized cross-correlation exponent of a gene-TF link in E. coli and S. cerevisiae. (c) Histogram of cross-correlation exponents of gene regulatory network
links in S. cerevisiae and (d) Histogram of cross-correlation exponents of gene regulatory network links.
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generalized Hurst exponent H(q) as a function of the order of the
cross moments q in Figure 3a. For a mono-fractal behavior, the
generalized Hurst exponent displays a linear dependency with the
order q of the cross-moments. Instead, if the generalized Hurst
exponent exhibits a nonlinear dependency (such as the S-shape
displayed in Figure 3b) on the order q of the cross-moments,
then the stochastic interdependence is considered to possess
multifractal characteristics. In conclusion, the causal relationship
between TFs and genes in gene regulatory networks was mainly
also long-range dependent. The concentration level of a gene not
only depends on the current concentration level of the linked TF
but also on the previous values of that gene. This dependency
obeys a power-law-like relationship.

The Distribution of Cross-Correlation
Exponents of Pairs of Genes and
Transcription Factors of Gene Regulatory
Networks Has a Wide Range of Variation
Although we observe the fractal and long-range cross-correlation
in linked pairs of genes and TFs in the gene regulatory
networks, the cross-correlation exponents were not the same
in all the links. We have shown the distribution of the
cross-correlation exponents for pairs of genes and TFs in the
S. cerevisiae and E. coli gene regulatory networks in Figures 3c,d
respectively. Inspired by Shannon entropy (Shannon, 2001), we
use this histogram for measuring the entropy, and hence, the
information content of a gene regulatory network across different
cell types for quantitative analysis and specification of gene
regulatory networks. The computed Shannon sample entropy
for S. cerevisiae and E. coli was 4.18 and 5.29, respectively.
Consequently, we conclude that the gene expression network of
E. coli has more complex dynamics than that of S. cerevisiae.
Also, considering a static gene regulatory network and having
traces of gene expression time series for a cell at different
times, we can compute the cross-correlation exponents for
the links at a different time. This can be useful to compare
statistical properties and complexity of dynamics. Similarly, by
having different time series of gene expression dynamics, we can
compare normal vs. disease affected (for example cancer typed)
cells.

Multifractal Characteristics of
Interactions Within the Gene Regulatory
Network Can Be Modeled by Random
Cascades on Wavelet Dyadic Trees
We analyzed the multifractal property of the cross-correlation
of pairs of genes and TFs in a gene regulatory network.
We investigated whether the observed multifractality can be
explained by the known analytical cascade models including the
Mandelbrot bimodal cascade model (Mandelbrot et al., 1997)
(see Materials and methods section) and the random cascades
on wavelet dyadic trees (Arneodo et al., 1998). We observe
deviations of the empirical spectrums from the Mandelbrot
model and an approximate agreement to the random cascades on
wavelet dyadic trees model.

Based on the range of the Holder exponent values in the
multifractal spectrum, we observe that only 0.04 of the links in
a gene regulatory network of S. cerevisiae and none of the links in
the network of E. coli can be modeled by the Mandelbrot cascade
model for multifractal spectrums (see Materials and methods
section). We observe that even for the few links that we could
find a closest Mandelbrot model spectrum, the deviation from
the Mandelbrot model and the data we had for gene regulatory
network was significant. We show two such samples in Figure 4.
Figure 4a shows several multifractal spectrums for the links in
E. coli gene networks. Note that the peak of the multifractal
spectrum for these spectrums was lower than the value 1, which
does not fit with the Mandelbrot Binomial Cascade Model
(Mandelbrot et al., 1997). Figure 4b shows several multifractal
spectrums for the links in S. cerevisiae. Figure 4c shows the closest
Mandelbrot Model we could fit for the links in the S. cerevisiae
gene regulatory model. There is a significant deviation between
the Mandelbrot model and the spectrum from gene regulatory
network data.

We also investigated the agreement between the observed
multifractality of the cross-dependencies in the gene regulatory
network of S. cerevisiae and E. coli, respectively, and a few
well-known multifractal models such as the random cascades
on wavelet dyadic trees (Arneodo et al., 1998). We investigated
whether the log-normal W-cascade model can be fitted to
the cross-dependencies (links) in the two above-mentioned

FIGURE 4 | (a) Multifractal spectrum of several randomly picked links of gene regulatory network of E. coli. (b) The multifractal spectrum of several randomly picked
links of gene regulatory network of S. cerevisiae. (c) The multifractal spectrum of a link between the gene regulatory network of S. cerevisiae and the best spectrum
from the Mandelbrot binomial model.

Frontiers in Physiology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 144668

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01446 October 17, 2018 Time: 13:57 # 6

Ghorbani et al. Fractality of 4D Genome

gene regulatory networks. We extracted the parameter of the
estimated log-normal W-cascade model based on the peak of
the empirical spectrum and the variation of the singularity
spectrum (see the Methods section). We observed very similar
spectrums for a significant number of links. We computed the
overlapping area under the curve for both the estimated and
the empirical multifractal spectrums. The ratio of the area of
the overlapping fitted spectrum to the area of the empirical
spectrum can be used to either accept or reject the postulated
multifractal model as a good fitting for the empirically estimated
multifractal spectrums. In this study, we used two threshold
values of 70 and 75% for the ratio of mentioned areas. For the
gene expression cross-dependencies in E. coli, we observed a
74 and 38% agreement between the postulated model and the
empirically estimated multifractal spectrums when considering
overlapping area ratio thresholds of 70 and 75, respectively.
For the gene expression cross-dependencies in S. cerevisiae,
we observed a 59 and 31% agreement between the postulated
multifractal model and the empirically estimated multifractal
spectrums when considering overlapping area thresholds of 70
and 75%, respectively. Figures 5A,B show a best fitting scenario
between the postulated multifractal model and an empirically
estimated spectrum for a cross-dependence in the gene regulatory
network of E. coli and S. cerevisiae, respectively.

We also investigated the agreement between the empirical
multifractal spectrums and the log-Poisson W-cascade model
(Arneodo et al., 1998). We observed that the empirical
multifractal spectrums could not be described by this cascade
model since the second derivative of the mass exponent should
follow a power law (see Methods section) while the empirical data
has a significant deviation from a power law trend (see Figure 6
in the Methods section).

DISCUSSION

A genome expression vector is the most informative descriptor of
a cell state, as the functional state of an organism is determined

largely by the pattern of expression of its genes (O’Connor et al.,
2010). Gene expression is the process in which information from
a gene is used to synthesize a functional gene product. It is
the process in which the information flows within a complex
biological system. As the search for patterns in nature and
their interpretation is one of the main purposes of science,
unveiling the DNA patterns in those sequences has become
an exciting challenge to the present generation of biologists,
statistical physicists, and information scientists. Toward this
end, many researchers have studied the statistical properties of
coding and non-coding segments of DNA sequences. They have
reported interesting results showing fractal nature of coding
DNA regions (Lockhart and Winzeler, 2000; Teichmann and
Babu, 2004; Huang et al., 2005; Düvel et al., 2010). However,
these studies fail to address the dynamical properties of the
biological systems. Since biological systems are dynamic, their
study requires monitoring their activity at multiple time points.

To investigate the causal relations in gene expression,
numerous biophysical mechanisms affecting the regulation
process were studied in Elf et al. (2007), Kolesov et al. (2007),
Kuhlman and Cox (2012), Bauer and Metzler (2013), Pulkkinen
and Metzler (2013). It is demonstrated by several simulations
that rapid and reliable gene regulation requires that the TF
be close to their target site on DNA (Kolesov et al., 2007). In
Pulkkinen and Metzler (2013), the authors use an explicit model
for numerical analysis. The authors report that the observed
variations in regulation efficiency are linked to the magnitude of
the variation of TF concentration peaks as a function of binding
site distance from the source. In Bauer and Metzler (2013), the
authors have presented a semi-analytical model for the in vivo
target search of the TFs within a diffusion framework. They
have shown that alternating between three-dimensional bulk
diffusion and one-dimensional sliding along the DNA contour
can provide a quantitative approach to gene regulation in living
bacteria cells. Their proposed model agrees with experimental
findings regarding the mean search time of lac repressor in a
living E. coli. In Elf et al. (2007), the authors have reported
their observation of kinetics of the gene expression process

FIGURE 5 | (A) The multifractal spectrum of a cross-dependency (link) between the gene regulatory network of E. coli (soxR and soxS genes) that can best be fitted
by the log-normal cascade multifractal model. (B) The multifractal spectrum of a cross-dependency (link) between the gene regulatory network of S. cerevisiae
(YKL032C and YKL043W genes) that can best be fitted by the log-normal cascade multifractal model.
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FIGURE 6 | (A) The second derivative of the mass exponent for cross-dependencies in E. coli. (B) The second derivative of the mass exponent for
cross-dependencies in S. cerevisiae.

at the single-molecule level in living cells by labeling with
a fluorescent protein, which agrees with 1D diffusion along
DNA segments and 3D diffusion. In Kuhlman and Cox (2012),
the authors test the expectation of previous theoretical models
using high-throughput single-molecule microscopy to determine
the average spatial distribution of lac repressor. Their finding
shows inconsistency between expectations and experimental
findings. They show that the gene products distribution is
spatially inhomogeneous and dependent on the location of the
repressor gene in bacteria and eukaryotes. However, they do
not consider the gene expression dynamics from a network of
genes perspective and do not account for cross-correlations and
multiscale phenomena.

To study the dynamic nature of gene expression processes,
researchers must monitor activity levels of genes and TFs at
multiple time points. The most informative source of information
regarding gene expression activity is the gene expression
time-series. With advances in gene array technology, the level
of gene expression of thousands of genes (by providing the
concentration level of gene expression products) can be measured
simultaneously. By accessing a high- throughput data collection,
a wide range of insights, such as characterizing the functions of
specific genes, the relationships among these genes, and their
regulation and coordination can be gained. These insights can
also be used to understand the gene regulatory network as a
complex network. There are many studies which try to infer
the underlying gene regulatory network from empirical time
series (Marbach et al., 2012). However, little is known about the
mathematical characteristics of the gene expression dynamics
from a complex systems perspective.

In this paper, we investigated the scaling properties of gene
expression dynamics. Unlike previous work that demonstrated
the fractal properties in DNA sequences (Peng et al., 1994;
Arneodo et al., 1996; Zhang et al., 2011; Marbach et al.,
2012), we investigate the dynamics of cross-dependencies

between genes and TFs within the gene regulatory networks.
We show that the gene expression time series (which is the
concentration of gene expression products in the process of gene
expression) have fractal and long-range dependence properties
in E. coli and S. cerevisiae. We also investigate the cross-
correlation of gene-TFs, which are linked together in gene
expression networks. We report the fractal and long-range
cross-dependency of linked genes and TFs of gene expression
networks in E. coli and S. cerevisiae. We also show that the
multifractal nature of these cross-correlations cannot be modeled
through a Mandelbrot binomial cascade model. In contrast, we
found very good agreement between the empirical multifractal
spectrum of the cross-dependencies in the gene regulatory
networks and the log-normal W-cascade model. We suggest
investigating more cascade models on empirical data (Bacry
and Muzy, 2003; Chainais et al., 2005; Kiyono et al., 2007) as
future work. In summary, there is a need for more advanced
theoretical models that can capture the multifractality observed
in this critical biological process. One possible method for
modeling gene expression dynamics can exploit the multifractal
Fokker-Planck formalism, as discussed in Xue and Bogdan
(2017).

We also propose using the distribution of cross-correlation
exponent of the links in gene regulatory network as a measure
of the complexity for the regulatory networks. Having this
complexity measure enables a quantitative descriptor for different
cell types or to differentiate different cell fates when the
system undergoes transitions. We report the distribution of
cross-correlation exponent of links in regulatory networks
of E. coli and S. cerevisiae as case studies. We suggest
investigating this property on a wider range of biological
systems when enough data sets are available. We also propose
using this property as a network property in general. We
propose using the distribution of cross-correlation exponents
of gene-TF links in a complex network to measure the
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complexity of the interactions in the network. Also, the computed
cross-correlation exponents of a network can be used by other
algorithms, such as those proposed in Anand and Bianconi
(2009), Anand et al. (2011), Teschendorff and Enver (2017) for
computing the entropy of a network. This has a variety of
applications in distinguishing the different status of cells (e.g.,
healthy vs. disease affected states). This can reveal insightful
results in many complex networks either in biology, social,
financial and many other interesting examples of complex
networks.

Our findings explain the inherent variability in gene
expression processes, even among isogenic cells situated
in an identical environment. Because of the long-range
cross-dependency of a gene and its linked TF, the current
concentration level of a gene depends both on current and
previous values of its own and its linked TF. As explained in
previous studies, this leads to phenotypic diversity, which can be
helpful for surviving in an uncertain and fluctuating environment
(Ji et al., 2013). Also, the endogenous cellular mechanism
through positive and negative feedback controls variability in
gene expression to prevent disruption from normal development.
Hence, unlike the usual assumption about noise as a nuisance,
variability in gene expression makes the population of cells more
robust against environmental fluctuations. Interestingly, there
are other examples in nature in which the presence of noise makes
the system smarter. For example, in Maass (2014), they have
shown how the presence of noise in a network of spiking neurons
in the human brain enables probabilistic reasoning and creative
problem-solving.

This study is the first to demonstrate the long-range
dependency of gene expression dynamics. In contrast to
previous studies (Bernaola-Galván et al., 1996), which have
shown the long-range dependency for the structure of
DNA, we investigate the dynamics of gene expression time
series. Previous studies show that coding regions of DNA
structure, which store the biological information for the
gene expression process, possess the long-range dependency
property (Bernaola-Galván et al., 1996). In contrast, our results
report the same property in gene expression time series.
Of note, these dynamics stem from the transformation of
information from the structure to dynamics by producing
gene products. This is an insightful empirical result that can
trigger more studies on other examples from nature, as well
as analytical and mathematical investigations. For example,
investigating other processes that follow a rule from a static
structure to generate dynamical products and process (such
as the central dogma of biology) can be interesting. Lastly,
mathematical and analytical investigation of the relation between
structure and dynamics of processes are also fundamental in
theory. It would be revealing to investigate how long-range
dependency (and/or fractal/multifractal properties) evolves
from structure to dynamics (and vice versa) in processes.
Answering to the question of how long-range dependency
transfers between structure and dynamics and how the degree of
fractality/multifractality of structure and dynamics are like each
other would have a huge impact on predicting the behavior of
complex systems.

MATERIALS AND METHODS

We use the data set from the publicly available DREAM project1

(Stolovitsky and Califano, 2007), which is for assessment of
network inference methods. It is organized around annual
challenges where the community of network inference experts
is solicited to run their algorithms on benchmark data sets.
The data is provided from Gene-expression microarray datasets
for E. coli and S. cerevisiae2. A compendium of microarray
data is compiled for E. coli, where all chips are on the
same Affymetrix platform, the E. coli Antisense Genome
Array. In total, 805 chips with available raw data Affymetrix
files were compiled. Completion of microarray normalization
and filtering resulted in a total of 4,297 genes over the
805 microarrays. Also, a compendium of microarray data
was compiled for S. cerevisiae, where all chips are on the
same Affymetrix platform, the Affymetrix Yeast Genome S98
Array. Chips were downloaded from GEO (Platform ID: GPL).
In total, 536 chips with available raw data Affymetrix files
were compiled. The completion of microarray normalization
and filtering resulted in a total of 5,667 genes over the
536 microarrays. Transcriptional interactions and, hence, gene
regulatory networks for E. coli and S. cerevisiae are collected
from strong experimental supports in Marbach et al. (2012).
Known transcriptional interactions for E. coli are collected
from manually curated Ecocyc (Gama-Castro et al., 2010) and
RegulonDB (Keseler et al., 2010) databases. A gene regulatory
network for E. coli is constructed from RegulonDB Release
6.8. Only transcriptional interactions with at least one strong
piece of evidence were included (2,066 interactions). For
S. cerevisiae, we use the network based on the most stringent
thresholds from MacIsaac et al. in MacIsaac et al. (2006)
compared to other studies (Hu et al., 2007; Abdulrehman
et al., 2010). By varying the thresholds required for binding
and evolutionary conservation of motifs, different versions
of the network were obtained. Based on the most stringent
thresholds, which includes only interactions with strong evidence
of binding and a strongly conserved motif, the interactions in
the regulatory network are obtained. There are 5950 time-series,
each having 536 data points for S. cerevisiae, and 4511 time-
series, each having 805 data points for E. coli expression
series.

Noise in Gene Expression Time Series
Since DNA, RNA, and proteins involved in the gene expression
process can be present and active at a few copies per cell,
this process is sensitive to stochastic fluctuations (Raser
and O’shea, 2005). The four most important sources of
variation in gene expression dynamics include (i) the
inherent stochasticity of biochemical processes that are
dependent on the small number of molecules, (ii) differences
in the internal states of cells, (iii) subtle environmental
differences, and (iv) genetic mutations (Raser and O’shea,
2005). The existence of this variation causes genetically

1http://wiki.c2b2.columbia.edu/dream
2https://www.synapse.org/#!Synapse:syn2787209/wiki/70349
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identical organisms with identical environmental exposure
to varying in behavior and shape. The fluctuation in
the gene expression process is inevitable and does not
follow the law of mass action. Hence, in this study, we
have investigated the process independently of assuming
stationarity and the MFDFA method explained below is
used.

The Hurst Exponent and Multifractal
Detrended Fluctuation Analysis (MFDFA)
In this paper, we have used the MFDFA method for analysis
of gene expression time series. This method, which is the
extension of detrended fluctuation analysis (DFA) to extract
the Hurst exponent (Kantelhardt et al., 2002), is introduced in
Kantelhardt et al. (2002) for analysis of multifractal properties of
nonstationary time series. Since we do not have the stationarity
assumption for gene expression time series, MFDFA method is a
suitable one for studying them. Scaling properties and long-range
dependency of time series can be obtained by the DFA method.
However, for time series with multifractal properties and different
scaling exponents on different scaling regimes or different time
intervals, it is essential to exploit the multifractal detrended
fluctuation method (MFDFA) to reveal the multifractal property.

The MFDFA method consists of five steps to estimate the
multifractal spectrum of a nonstationary time series. Similar to
the DFA method, the profile of the time series is obtained first,
which is determined by the integration of the difference of the
time series with its average value (̂x):

y(i) =
k∑

i=1

(x(i)− x̂)

Second, it divides the profile into non-overlapping segments (or
scales (n = N/s), where s is the scale). For each of these boxes, a
least squared local trend is fitted.

Third, it calculates the local trend within each segment. For
each of these boxes, a least squared local trend is fitted. The value
of the fitted time series obtained for boxes of length (n) is denoted
by yn.

Fourth, it computes the average of the fluctuation function
over all segments to obtain the qth order fluctuation function.

F(s)q =

Ns∑
k=1

((y(i)− yn(i))2)q/
Ns

Finally, the Generalized Hurst exponent is estimated by fitting a
linear line to the log-log plot of the F(s)q with respect to scale (s),
according to the following equation:

F(s)q = sH(q)

The Hurst exponent is the value of the Generalized Hurst
exponent (H(q = 2)), which is a special case and is used
usually when one is interested only in analyzing the long-range
dependency of a signal and not the multifractal chrematistics.

Finally, the multifractal spectrum of the multi-variable signal
(α, f (α)) is estimated by the Legendre transform:

τ(q) = H(q)∗(q− 1)

α(q) = dτ(q)
/

dq

f (α) = qα− τ(q)

Detrended Cross-Correlation Analysis
(DCCA)
This method is designed to investigate the power law
cross-correlation between two time-series (Podobnik and
Stanley, 2008). Similar to the DFA (discussed in the previous
sub-section), which computes the scaling behavior of the
auto-correlation function, the DCCA method computes the
scaling behavior of the cross-correlation function between two
time-series and analyzes its scaling behavior.

DCCA method first computes the integrated profile of each
time series:

y1(i) =
k∑

i=1

(x1(i)− x̂1)

y2(i) =
k∑

i=1

(x2(i)− x̂2)

Second, both the entire time series is divided into non-
overlapping intervals. Third, it computes the local trend in
each interval for each time series (y1,n(i), and y2,n(i)). Fourth,
it calculates the covariance of the residual of profiles from local
trends. It calculates the detrended covariance (H(q)) by summing
over all segments of the nonstationary time series:

F̂(s)q =

Ns∑
k=1

((y1(i)− y1,n(i)2(y2(i)− y2,n(i))2)q/
Ns

The cross-correlation exponent (λ ) is estimated by fitting a linear
line to the log-log plot of the F̂(s)q with respect to scale (s):

F̂(s)q = sλ

The Mandelbrot Binomial Cascade Model
This model is proposed by Mandelbrot et al. (1997) to better
explain an alternative for probability distribution for the erratic
or fractal appearance of a probability measure. It starts with a
probability measure (µ), which is self-similar:

µ([a,b]) = m0 µ([2a,2b]) + m1 µ([2a−1,2b−1])

Once the unit interval [0,1] is divided into two subintervals, m0
mass is assigned to the left subinterval and m1=1−m0 is assigned
to the right subinterval. Repeating this step for each of the
subintervals for n times will result in the Mandelbrot model with
n iterations. Mandelbrot has proved that the limit behavior of
this model when n is infinitely large (∞) can be best illustrated
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by multifractal formalism. He formulated the (α, f(α)) spectrum
on the basis of the parameters of the Mandelbrot Cascade model.
We have compared the observed multifractality spectrum in gene
expression time series to the closest one obtained by Mandelbrot
cascade model.

Random Cascades on Wavelet Dyadic
Trees
This model (Arneodo et al., 1998) is proposed to model
multifractal objects. The notion of cascade here refers to a self-
similar process whose properties are defined multiplicatively
in different scales. In summary, in this model, the wavelet
coefficients of a function are self-similar at different scales.
Two types of W-cascades are proposed: Log-Normal W-cascades
and Log-Poisson W-cascades. For the log-normal cascade (with
µ and σ for parameters of the normal random variable), the
following equation holds for singularity spectrum:

F(α) = −
ln 2
2σ2 (α+ µ

/
ln 2)2

For the Log-Poisson W-cascades, the following equation holds
for the mass exponent:

τ(q) = 1
ln 2 (λ(1−δq)−γq) − 1

As can be seen, the second derivative of the mass
exponent for Log-Poisson W-cascade model has the following
equation:

τ′(q) = λ
/

ln 2(− ln δ δq)− γ
/

ln 2

τ′′(q) = −λ
/

ln 2(ln δ )2δq

We have reported the similarity of the multifractal spectrum
of cross-dependencies in gene expression time series to the
log-normal W-cascades model. Also, we have reported the
disagreement of the multifractal spectrum of cross-dependencies

in gene expression time series to log-Poisson W-cascade model
due to its deviation from power-law shape as shown in Figure 6.

Entropy and Entropy of a Network
Shannon entropy (Shannon, 2001) is a measure of the
unpredictability of the state, or equivalently, of its average
information content. Shannon defined the entropy of a discrete
random variable X with possible values of {x1 ,x2 ,...,xk } and
probability mass function P(X) as:

H(X) = E[I(X)] = E[− log P(X)]

More explicitly, entropy can be written as:

H(X) = −

n∑
i=1

P(xi) log P(xi)

Entropy is a measure of the unpredictability of the state or
its average containing information. One example to illustrate is
when there is no uncertainty and the random variables take only
one value in which the value of the entropy will be zero. As the
number of possibilities increases, the entropy increases as well.

We have used the notion of entropy in the context of networks.
We consider the weight of the links in the network as the random
variable and we discuss entropy of the weight of the weighted
links. Given an undirected binary graph of gene regulatory
networks and time series of genes and TFs in the network (which
are the nodes in the gene regulatory network), we construct
a weighted network (shown in Figure 7). In the constructed
weighted network, the weight of each link is the cross-correlation
exponent of the time series of two time-series linked together
in the gene regulatory network. Then, in the new constructed
weighted network, we consider the distribution of the weights
of the links and entropy of them as a measure of the entropy of
the network. Also, this weighted network can be used for other
algorithms measuring the entropy of complex networks proposed
in Anand and Bianconi (2009), Anand et al. (2011). Figure 7
illustrates this method by showing how the weights are assigned

FIGURE 7 | Extracting a weighted graph from cross-correlation exponents of the linked nodes in a gene regulatory network
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to each link. In this figure, γ1,2,. . ., γ1,9 are the cross-corrections
of the time series of the TF and genes which are linked together in
the gene regulatory network in the left part of the figure. Hence,
this shows how knowing the existing interactions in the network
and having the time series of each node’s dynamics can lead us to
know cross-correlation exponents and then assigning the concept
of entropy to the network dynamics.
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Background: Beat-to-beat variability in action potential duration (APD) is an intrinsic

property of cardiac tissue and is altered in pro-arrhythmic states. However, it has never

been examined in mice.

Methods: Left atrial or ventricular monophasic action potentials (MAPs) were recorded

from Langendorff-perfused mouse hearts during regular 8Hz pacing. Time-domain,

frequency-domain and non-linear analyses were used to quantify APD variability.

Results: Mean atrial APD (90% repolarization) was 23.5 ± 6.3ms and standard

deviation (SD) was 0.9 ± 0.5ms (n = 6 hearts). Coefficient of variation (CoV) was

4.0 ± 1.9% and root mean square (RMS) of successive differences in APDs was

0.3 ± 0.2ms. The peaks for low- and high-frequency were 0.7 ± 0.5 and 2.7 ±

0.9Hz, respectively, with percentage powers of 39.0 ± 20.5 and 59.3 ± 22.9%.

Poincaré plots of APDn+1 against APDn revealed ellipsoid shapes. The ratio of the

SD along the line-of-identity (SD2) to the SD perpendicular to the line-of-identity (SD1)

was 8.28 ± 4.78. Approximate and sample entropy were 0.57 ± 0.12 and 0.57

± 0.15, respectively. Detrended fluctuation analysis revealed short- and long-term

fluctuation slopes of 1.80 ± 0.15 and 0.85 ± 0.29, respectively. When compared

to atrial APDs, ventricular APDs were longer (ANOVA, P < 0.05), showed lower

mean SD and CoV but similar RMS of successive differences in APDs and showed

lower SD2 (P < 0.05). No difference in the remaining parameters was observed.
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Conclusion: Beat-to-beat variability in APD is observed in mouse hearts during regular

pacing. Atrial MAPs showed greater degree of variability than ventricular MAPs. Non-

linear techniques offer further insights on short-term and long-term variability and signal

complexity.

Keywords: variability, repolarization, time, frequency, non-linear, entropy

INTRODUCTION

Beat-to-beat variations in the repolarization time-course
represent an intrinsic property of cardiac electrophysiological
function. This may be manifested as variability of action
potential durations (APDs) at the cellular level (Nanasi et al.,
2017), or of QT durations at the organism level (Niemeijer
et al., 2014; Phadumdeo and Weinberg, 2018). This variability
may be affected by distinct physiological states, such as the
degree of intercellular coupling (Zaniboni et al., 2000), redox
states (Kistamas et al., 2015a), altered intracellular calcium
handling (Kistamas et al., 2015b) or APD itself (Abi-Gerges et al.,
2010). Clinical studies have shown that higher variability in QT
intervals can predict pro-arrhythmic outcomes in the context of
non-ischemic heart failure (Hinterseer et al., 2010), as well as
long QT syndrome (Hinterseer et al., 2009).

Mouse models are widely used to study cardiac
electrophysiological and arrhythmogenic properties, owing
to their amenability to pharmacological or genetic manipulation
(Nerbonne, 2014; Choy et al., 2016). However, despite the
importance of APD variability, it has never been examined in
this species. In this study, we quantified beat-to-beat variability
in APDs by applying time-domain and non-linear techniques
for the first time to monophasic action potential recordings
(MAPs) obtained from Langendorff-perfused mouse hearts
during regular pacing.

MATERIALS AND METHODS

Solutions
Krebs-Henseleit solution (composition in mM: NaCl 119,
NaHCO3 25, KCl 4, KH2PO4 1.2, MgCl2 1, CaCl2 1.8, glucose
10 and sodium pyruvate 2, pH 7.4), which has been bicarbonate-
buffered and bubbled with 95% O2-5% CO2, was used in the
experiments described in this study.

Preparation of Langendorff-Perfused
Mouse Hearts
This study was approved by the Animal Welfare and Ethical
Review Body at the University of Cambridge. Wild-type mice of
129 genetic background between 5 and 7 months of age were
used. They were maintained at room temperature (21 ± 1◦C)
and were subjected to a 12:12 h light/dark cycle with free access
to sterile rodent chow and water in an animal facility. Mice were
terminated by dislocation of the cervical spine in accordance with
Sections 1(c) and 2 of Schedule 1 of the UK Animals (Scientific
Procedures) Act 1986. The technique for Langendorff perfusion
has been used by our group and described previously (Tse et al.,

2016a,d, 2017). After removal from their chest cavities, the hearts
were submerged in ice-cold Krebs-Henseleit solution. The aortas
were cannulated using a custom-made 21-gauge cannula prefilled
with ice-cold buffer. Amicro-aneurysm clip (Harvard Apparatus,
UK) was used to secure the hearts onto the Langendorff perfusion
system. Retrograde perfusion was carried out at a flow rate
of 2 to 2.5ml min−1 by use of a peristaltic pump (Watson–
Marlow Bredel pumps model 505S, Falmouth, Cornwall, UK).
The perfusate passed through successively 200 and 5µm filters
and warmed to 37◦C using a water jacket and circulator before
arriving at the aorta. Approximately 90% of the hearts regained
their pink color and spontaneous rhythmic activity. These were
therefore studied further. The remaining 10% did not and were
discarded. The hearts were perfused for a further 20min to
minimize residual effects of endogenous catecholamine release,
before their electrophysiology properties were characterized.

Stimulating Procedures
Paired platinum electrodes (1mm interpole distance) were used
to stimulate the right ventricular epicardium electrically. This
took place at 8Hz, using square wave pulses of 2ms in duration,
with a stimulation voltage set to three times the diastolic
threshold (Grass S48 Stimulator, Grass-Telefactor, Slough, UK)
immediately after the start of perfusion.

Atrial and Ventricular Map Recording
Procedures
For atrial MAP recordings, the atrio-ventricular nodes of the
Langendorff perfused hearts were first mechanically ablated
as previously described (Tse et al., 2016b). This eliminated
ventricular far-field activity at the recording electrode. The MAP
electrode was placed at the left atrial or ventricular epicardium
(Linton Instruments, Harvard Apparatus). The stimulating and
recording electrodes were maintained at constant positions
separated approximately by a distance of 3mm. All recordings
were performed using a baseline cycle length (BCL) of 125ms
(8Hz) to exclude rate-dependent differences in action potential
durations (APDs). MAPs were pre-amplified using a NL100AK
head stage, amplified with a NL 104A amplifier and band
pass filtered between 0.5Hz and 1 kHz using a NL125/6 filter
(Neurolog, Hertfordshire, UK) and then digitized (1401plus
MKII, Cambridge Electronic Design, Cambridge, UK) at 5 kHz.
Waveforms were analyzed using Spike2 software (Cambridge
Electronic Design, UK). MAP waveforms that did not match
established criteria for MAP signals were rejected (Knollmann
et al., 2001; Tse et al., 2016c). They must have stable baselines,
fast upstrokes, with no inflections or negative spikes, and a
rapid first phase of repolarization. Zero Percent repolarization
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was measured at the peak of the MAP and Hundred Percent
repolarization was measured at the point of return of the
potential to baseline (Gussak et al., 2000; Knollmann et al., 2001;
Fabritz et al., 2003).

APD Variability Analysis
APD variability analysis was performed using Kubios HRV
Standard software (Version 3.0.2) over a 60 s period. Time-
domain analysis yielded the (1) standard deviation (SD) of
APDs, which represents the overall (short-term and long-term)
variability, and (2) root mean square (RMSSD) of successive
differences of APDs, which represents the short-term variability:

SDAPD =

√√√√ 1

N − 1

N∑

j=1

(
APDj − APD

)2
(1)

RMSSD =

√√√√ 1

N − 1

N−1∑

j=1

(
APDj+1 − APDj

)2
(2)

Frequency-domain analysis was conducted using the Fast Fourier
Transform method. For frequency domain parameters, spectral
analysis was performed by using fast-Fourier transform method.
The sampling frequency was set to 8Hz. The power in the
repolarization spectrum between 0.04 and 4Hz was defined as
total power (TP). The power in the repolarization spectrum was
divided into three different frequency bands: very low frequency
power (VLF, 0 to 0.04Hz), low frequency power (LF, 0.04 to
1.5Hz) and high frequency power (HF, 1.5 to 4Hz).

The above frequency analysis does not provide any
information on the time evolution of the frequencies. To
achieve, this, time-frequency analysis was conducted using
two different techniques. Firstly, short-time Fourier transform
(STFT) was used to break the signal into small time segments
using an appropriate sliding-window function, and then apply
a Fourier transformation to the successive sliding-window
segments. The Hanning window with a Fast Fourier Transform
length of 256 and overlap of 128 were selected.

Secondly, continuous wavelet transform (CWT) was used to
divide a continuous-time function into wavelets given by:

CWT(a, b) =
1
√
a

∫ +∞

− ∞

x (t) . ψ∗(
t− b

a
)dt (3)

Where the superscript, ∗, is the complex conjugate and ψa,b
∗

represents a translated and scaled complex conjugated mother
wavelet. The mother wavelet ψ is invertible when it verifies the
condition of admissibility which is stated as:

∫ +∞

−∞

∣∣ψ̂(ω)
∣∣

ω
dω <∞ (4)

The Morlet wavelet was selected, which uses a Gaussian-
modulated sinusoid:

ψ (t) =
1
4
√
π

(
eiωot − e−

ω2o
2

)
e−

t2

2 (5)

where ωo is the central frequency of the mother wavelet. The
second term in the brackets corrects for the non-zero mean of
the complex sinusoid of the first term. This becomes negligible
for values of ωo > 5, which we selected in our case:

ψ (t) =
1
4
√
π
eiωot e−

t2

2 (6)

Non-linear properties of APD variability were studied as follow.
Poincaré plots are graphical representations of the correlation
between successive APD values, in which APDn+1 is plotted
against APDn. This enables determination of the SD of the
points perpendicular to the line-of-identity (SD1). Different
points along this perpendicular axis represent a beat-to-beat
variation between the initial (n) and subsequent (n + 1)
contraction, representing multiple two-beat “snapshots” with
little correlation to a progressive time parameter. Therefore, SD1
is associated with instantaneous or short-term variability. As for
the points along the line-of-identity (SD2), it shows beat-to-beat
consistency between the initial (n) and subsequent (n + 1) RR
interval. Hence, deviation of the clustered SD2 points away from
the average RR interval, taken with reference to the centroid,
represents long-term variability. The ratio SD2 to SD1 then gives
an indication of the degree of long-term variability in relation to
the short-term variability.

Coined in 1991 by Pincus et al., the concept of approximate
entropy was introduced to provide approximations on the degree
of regularity when applied to a short-duration epoch, which
cannot be achieved with moment statistics such as mean and
variance. This is applied to non-stationary biomedical data
such as heart rate variability, which commonly presents with
non-linearity and complexity. Logarithmically, the approximate
entropy takes into account the imputed threshold “r” under
which a recurrence is identified. With this it expresses the
likelihood of repeated signals within the threshold for m and
m+ 1 points. It is computed as follows:

Firstly, a set of length m vectors uj is formed:

uj = (APDj;APDj+1, . . . , APDj+m−1); j = 1; 2; . . .N−m+ 1
(7)

where, m is the embedding dimension and N is the number of
measured APDs. The distance between these vectors is defined
as the maximum absolute difference between the corresponding
elements:

d(uj, uk) = max{|APDj+n − APDk+n||n = 0, . . . , m− 1} (8)

for each uj the relative number of vectors uk for which d(uj, uk)
≤ r is calculated. This index is denoted with Cmj (r) and can be
written in the form

Cm
j (r) =

nbr of
{
uk| d

(
uj, uk

)
≤ r

}

N −m+ 1
∀k (9)

Taking the natural logarithms gives:

8m (r) =
1

N −m+ 1

N−m+1∑

j=1

lnCm
j (r) . (10)
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The approximate entropy is then defined as:

ApEn (m, r, N) = 8m (r)− 8m+1(r) (11)

Approximate entropy measures the likelihood that certain
patterns of observations are followed by different patterns of
observations. As such, a lower approximate entropy values reflect
a more regular signal, whereas higher values reflect a more
irregular signal (Pincus, 1991; Mesin, 2018).

The sample entropy also provides a measure of signal
irregularity but is less susceptible to bias than approximate
entropy (Richman and Moorman, 2000; Nayak et al., 2018).
This is done by eliminating the counting of self-matches; hence
the count of the number of similar vector lengths is always
one less than that of ApEn. Furthermore, sample entropy
uses the logarithm of the sum of conditional properties rather
than each conditional property individually, illustrated by the
negative natural logarithm for conditional properties. Both
sample entropy and approximate entropy are able to differentiate
between experimental and theoretical data sets. However, it
has been demonstrated that sample entropy yielded better
relative consistency compared to approximate entropy, reflecting
independence from data length and choice of m or r (Molina-
Pico et al., 2011).

This is given by:

Cm
j (r) =

nbr of
{
uk| d

(
uj, uk

)
≤ r

}

N −m
∀k 6= j (12)

Averaging then gives:

Cm (r) =
1

N −m+ 1

N−m+1∑

j=1

Cm
j (r) (13)

The sample entropy is then given by:

SampEn (m, r, N) = ln (
Cm (r)

Cm+1 (r)
) (14)

Finally, detrended fluctuation analysis (DFA) was performed
to determine long-range correlations in non-stationary
physiological time series (Peng et al., 1995), yielding both
short-term fluctuation (α1) and long-term fluctuation (α2)
slopes. The point at which the slopes α1 and α2 is the crossover
point.

Statistical Analysis
All values were expressed as mean ± standard error of the mean
(SEM). Numerical data were compared by one-way analysis of
variance (ANOVA), a statistical technique that utilizes the F-
distribution to compare the means or two or more samples. P <
0.05 was considered statistically significant and was denoted by ∗

in the figures.

RESULTS

Atrial and Ventricular Action Potential
Duration Variability Determined Using
Time-Domain and Frequency-Domain
Methods
Representative stable MAP recordings were obtained from the
left atrial (Figure 1A) or ventricular (Figure 1B) epicardium of
Langendorff-perfused mouse hearts during regular 8Hz pacing.
Typical time series of atrial and ventricular APDs at 90%
repolarization (APD90) are shown in Figures 1C,D, respectively
and their corresponding histograms are shown in Figures 1E,F,
respectively. Atrial APD90 took a mean value of 23.5 ± 6.3ms
(Figure 2A) with a mean standard deviation (SD) 0.9 ± 0.5ms
(Figure 2B) (n = 6 hearts). The coefficient of variation (CoV),
a measure of relative variability calculated by dividing SD by
the mean and subsequently multiplying by 100%, was 4.0 ±

1.9% (Figure 2C) and the root mean square (RMS) of successive
differences in APDs was 0.3 ± 0.2ms (Figure 2D). By contrast,
ventricular APD90 (n = 6 hearts) were longer than atrial APD90

(44.0 ± 9.1ms; ANOVA, P < 0.05), with lower mean SD (0.4 ±

0.2ms, P< 0.05), CoV (0.8± 0.3%, P< 0.01) but similar RMS of
successive differences in APD90 (0.2± 0.3%, P > 0.05).

An example of a frequency spectrum using the Fast Fourier
Transform method is shown in Figure 3A. Frequency-domain
analysis revealed that the peaks for very low-, low- and high-
frequency for atrial MAPs were 0.04 ± 0.00, 0.7 ± 0.5 and 2.7
± 0.9Hz, respectively (Figures 3B–D), with percentage powers
of 1.7 ± 2.6, 39.0 ± 20.5, and 59.3 ± 22.9% (Figures 3E–G). For
the ventricles, similar peak frequencies (0.04 ± 0.00, 0.2 ± 0.0
and 3.0 ± 0.6%) and percentage powers (0.9 ± 1.1, 66.0 ± 27.8,
and 32.5± 27.0) were observed (ANOVA, P > 0.05).

Simultaneous time-frequency analysis was subsequently
performed using short-time Fourier transform (STFT) and
continuous wavelet transform (CWT). Application of STFT
yielded plots demonstrating frequency against time for atrial
and ventricular APD90 (Figures 4A,B), and their corresponding
three-dimensional representations (Figures 4C,D). CWT with
Morlet wavelets as basis functions of atrial and ventricular APD90

yielded image plots shown in Figures 4E,F, respectively.

Action Potential Duration Variability
Determined Using Non-linear Methods
Poincaré plots expressing APDn+1 as a function of APDn were
constructed for the atrial and ventricular MAPs (Figures 5A,B).
In all of the hearts studied, ellipsoid shapes of the data points
were evident. The SD perpendicular to the line-of-identity
(SD1) and SD along the line-of-identity (SD2) are shown in
Figures 5C,D, respectively. For atrial recordings, the mean SD1
and SD2 were 0.20 ± 0.15 and 1.26 ± 0.67, respectively. The
SD2 to SD1 ratio took a mean value of 8.28 ± 4.78 (Figure 5E).
The approximate and sample entropy took values of 0.57 ±

0.12 (Figure 5F) and 0.57 ± 0.15 (Figure 5G), respectively. For
ventricular MAPs, Poincaré plots of APDn+1 against APDn

revealed similar ellipsoid shapes. They showed similar SD1 (0.15
± 0.19, P > 0.05) and lower SD2 (0.49 ± 0.26, P < 0.05).
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FIGURE 1 | Representative MAP traces from a single heart obtained over a ten-second period during regular 8Hz pacing from the left atrium (A) or left ventricle

(B). The corresponding time-series (C,D) and histograms (E,F) for action potential duration at 90% repolarization (APD90).

FIGURE 2 | Time-domain analysis yielding mean APD (A), standard deviation (SD) of APDs (B), coefficient of variation (CoV) (C), and root mean square (RMS) of

successive differences of APDs (D) (n = 6; *P < 0.05; **P < 0.01).
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FIGURE 3 | Examples of frequency spectra using the Fast Fourier Transform method for atrial (A) and ventricular (B) MAP recordings. Peaks for very low- (C), low-

(D) and high-frequency (E) for atrial and ventricular MAPs, and their percentage powers (F–H).

Nevertheless, there was no difference in SD2/SD1 ratio (6.19
± 3.03, P > 0.05). Moreover, approximate entropy (0.69 ±

0.27, P > 0.05), and sample entropy (0.75 ± 0.54, P > 0.05)
were statistically indistinguishable when compared to the atrial
parameters.

Detrended fluctuation analysis plotting the detrended
fluctuations F(n) as a function of n in a log-log scale was
performed for the atrial and ventricular MAPs (Figures 6A,B).
This revealed short- (α1) and long-term (α2) fluctuation slopes

of 1.80 ± 0.15 (Figure 6C) and 0.85 ± 0.29 (Figure 6D),
respectively for the atria, which were not significantly
different from the values obtained from the ventricles
(1.32 ± 0.49 and 1.15 ± 0.28, respectively, both P >

0.05). α1 was significantly larger than α2 in the atria
(ANOVA, P < 0.001) but not in the ventricles (ANOVA,
P > 0.05).

The variability data for APD70, APD50, and APD30 are shown
in Supplementary Appendices 1–3, respectively.
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FIGURE 4 | Application of Short-Time Fourier Transform (STFT) yielded plots demonstrating frequency against time for atrial (A) and ventricular APD90 (B), and their

corresponding three-dimensional representations (C,D). Continuous wavelet transform (CWT) with Morlet wavelets as basis functions of atrial (E) and ventricular

APD90 (F).

DISCUSSION

This is the first proof-of-concept study investigating the
beat-to-beat variability in repolarization time-courses of atrial
and ventricular MAP recordings in whole hearts of mice.
The main findings are that (1) variability in APDs can be
detected using time-domain, frequency-domain, combined time-
frequency, and non-linear methods; (2) the atria and ventricles
show similar low- and high-frequency peaks; (3) but the atria
showed predominantly low-frequency components whereas the
ventricles showed predominantly high-frequency components;
(4) Poincaré plot showed ellipsoid shapes from all of the hearts;
(5) the SD perpendicular to the line-of-identity (SD2) was
significantly larger than the SD along the line-of-identity (SD1),
leading to SD2/SD1 ratios greater than unity; (6) a degree of
disorder was identified by approximate and sample entropy
analyses, (7) short-term fluctuation slopes were steeper than
long-term fluctuation slopes.

Variability in recorded signals is an intrinsic property of
excitable media in biological systems. In the heart, heart rate
variability (HRV) is normally observed in the healthy state
(Shaffer and Ginsberg, 2017), whereas alterations in HRV have
been associated with adverse outcomes such as arrhythmogenesis
that may be mediated through generation of APD variability
(Mcintyre et al., 2014). Similarly, beat-to-beat variability in the
repolarization time-course can be present and can be observed
electrocardiographically as QT interval variability (Baumert
et al., 2016; Orini et al., 2016). Naturally occurring beat-
to-beat variations in APDs have been observed in isolated
cardiomyocytes (Kiyosue and Arita, 1989; Shryock et al., 2013),
even when pacing rate and temperature are held constant
(Zaniboni et al., 2000). It has been studied in detail in canine
ventricular cardiomyocytes (Abi-Gerges et al., 2010; Kistamas
et al., 2015a,b; Szentandrassy et al., 2015; Magyar et al., 2016),
but never in mouse models whether in single cells or isolated
hearts. Our study adds to the literature by demonstrating

Frontiers in Physiology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 157882

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Tse et al. Repolarization Variability in Mouse Hearts

FIGURE 5 | Representative Poincaré plots of APDn+1 against APDn from the left atrium (A) or left ventricle (B) from a single heart. SD along the line-of-identity (SD1)

(C) and SD perpendicular to the line-of-identity (SD2) (D), and the SD2/SD1 ratio (E), approximate entropy (F), and sample entropy (G) (*P < 0.05).

that such variabilities are also present in Langendorff-perfused
mouse hearts under similar constant rate pacing conditions.
Computational modeling has previously identified the molecular
mechanisms underlying such beat-to-beat variability in APDs
(Heijman et al., 2013). These include stochastic gating of ion
channels, in particular that of sodium and delayed rectifier
potassium channels. Although fluctuations in APDs was present
in our experimental mouse model, the variability was very small,
with standard deviation of around 1.4ms for the atria and 0.2ms

for the ventricles. This may be due to the differing morphology
of the cardiac action potentials in this species. Consistent with
these findings, modeling studies suggests that variability is higher
in species that have more pronounced plateau phase during
repolarization, such as guinea pigs and rabbits (Heijman et al.,
2013), than those with a triangular action potential morphology
such as mice. Indeed, the standard deviation is around 10ms in
guinea pig ventricular cardiomyocytes (Zaniboni et al., 2000) and
7ms in rabbit sinoatrial nodal cells (Wilders and Jongsma, 1993).
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FIGURE 6 | Detrended fluctuation analysis (DFA) plots expressing detrended fluctuations F(n) as a function of n in a log-log scale for the atria (A) and ventricles

(B), yielding short-term (C), and long-term (D) fluctuation slopes (α1 and α2, respectively).

This variability is dependent on the APD. Therefore, one way
to express this is the coefficient of variation (CoV), given by the
percentage of SD divided by the mean APD. The CoV is around
2% in both the guinea pig and the rabbit ventricles. From our
study, we found CoV to be 4.0% in the atria and 0.8% in the
ventricles. It should be noted that our model used intact hearts
whereas single cells were used in the other studies. Multicellular
preparations are known to show lower levels of variability than
in single cells because of electrical coupling, which dampens the
differences between cells (Magyar et al., 2015).

Time-domain analysis allowed the quantification of the
variability using standard deviations, coefficients of variations
and root mean squares of successive APDs in both the atria
and ventricles. It was noted that atrial APDs were significantly
shorter than ventricular APDs, in keeping with our previous
findings (Tse et al., 2016a,b). Moreover, we report for the first
time higher degrees of variability in the atria as reflected by
higher mean SD, CoV and RMS of APDs when compared
to the ventricles. Frequency-domain analysis using the Fast
Fourier Transform-based method produced power spectrum
density estimates for the APD90 time series. This provides the
basic information on how power is distributed as a function of
frequency. We observed that both atrial and ventricular MAPs
were predominantly in the low-frequency domain. LF and HF
rhythms in repolarization variability are important as they reflect
QT rate adaptation (Merri et al., 1993). Variability assessed in
the frequency domain represents an index of temporal dispersion
of ventricular repolarization (Lombardi et al., 1998) which is

an important determinant of arrhythmogenesis. However, the
above frequency analysis does not provide any information
on the time evolution of the frequencies. To achieve, this,
time-frequency analysis was conducted using both short-time
Fourier transform (STFT) and continuous wavelet transform
(CWT). Previously, time-frequency analysis has been applied to
electrograms to detect regional cardiac repolarization alternans
that occur transiently (Orini et al., 2013, 2014).

Significantly, non-linear analyses of APDs yielded further
insights. Thus, Poincaré plots of APDs showed ellipsoid shapes
in all of the hearts studied, and together with a SD2/SD1 ratio
> 1, indicated that variability in the long-term was greater than
variability in the short-term. This ratio was around 6 to 8 and
did not significantly differ between the atria and ventricles. In
a canine model, higher short-term variability calculated from
Poincaré plots being associated with the occurrence of drug-
induced torsade de pointes (Thomsen et al., 2004). Furthermore,
the present findings also found a degree of entropy present
in the atria and ventricles. Entropy refers to the degree of
disorder in a system and has been used to quantify the regularity
or complexity of biological signals (Pincus, 1991; Pincus and
Goldberger, 1994). These entropy calculations are based on the
state space reconstruction of time series data (Richman and
Moorman, 2000; Bandt and Pompe, 2002; Li et al., 2015). Our
study quantified for the first time approximate entropy in the
atria and ventricles. This is an appropriate method for time series
with more than 50 points, a condition that we have satisfied
(Pincus, 2001). Similar, this study determined sample entropy,
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which is a refined version of approximate entropy. It can quantify
the irregularity of APD time series without biasing (Richman
and Moorman, 2000) and has the advantage of eliminating self-
matches and being less dependent on time-series length (Li et al.,
2009). Entropy has been identified as a pro-arrhythmic indicator
(Cervigon et al., 2016). High entropy in repolarization was shown
to predict arrhythmic or mortality outcomes in patients receiving
implantable-cardioverter defibrillator for primary prevention of
sudden cardiac death (Demazumder et al., 2016). Further studies
are needed to confirm or refute the hypothesis that increased
approximate or sample entropy predicts the onset of atrial or
ventricular arrhythmias in mouse hearts. However, its use has
some important limitations. For example, it should not be applied
to long duration signals because more computations are required
for real-time implementation (Tripathy et al., 2017).

Fractional calculus has been applied to investigate
physiological time series such as heart rate variability (González
et al., 2012; Sturmberg and West, 2013; Sturmberg et al., 2015).
Some techniques assume stationary signals whilst others do not
make such assumptions (Gao et al., 2013). This study applied
for the first time detrended fluctuation analysis (DFA) to reveal
complex fractal fluctuation patterns by delineating them into
long- and short-term fluctuation for the first time in the mouse
heart. DFA is a method for quantifying long-range correlations
in non-stationary physiological time series (Peng et al., 1995).
DFA enables correct estimation of the power law scaling, the
Hurst exponent, in the presence of extrinsic non-stationaries
while eliminating spurious detection of long-range dependence
(West et al., 2008). The average fluctuation is plotted against
the number of beats on a log-log scale, yielding short- and
long-term fluctuation slopes, or scaling exponents (α1 and α2,
respectively). α of 0.5 indicates uncorrelated data, and deviations
from 0.5 indicates the presence of correlation. For example, in
the atria, we found α1 to be around 1.7, suggesting the presence
of short-term correlation, but α2 was around 0.7, suggesting the
minimal long-term correlations. In the ventricles, α1 and α2
took similar values to those observed in the atria.

Previously, decreases in the short-term exponent of HRV,
has been associated with arrhythmic and mortality outcomes in
heart failure after acute myocardial infarction (Huikuri et al.,
2000) and in end-stage renal failure patients receiving peritoneal
dialysis (Chiang et al., 2016). Decreases in the short-term
exponent have also been detected prior to the onset of atrial
arrhythmias (Vikman et al., 1999). In a rabbit hypertrophic
cardiomyopathy model, DFA of maximum QT intervals showed
higher scaling exponent in diseased compared to control groups
(Sanbe et al., 2005). In human induced pluripotent stem cell-
derived cardiomyocytes, fractal correlations as determined by α1
was observed (Kuusela et al., 2016). In humans, a significant
decrease in α1 was observed during sympathetic activation
suggesting a breakdown of the short-term fractal organization of
heart rate (Tulppo et al., 2005). Moreover, normal α1 but lower
α2 was observed in patients with atrial fibrillation compared to
those without AF (Kalisnik et al., 2015).

Previous work has demonstrated that HRV time series have
a crossover phenomenon (Havlin et al., 1999; Penzel et al.,
2003). In this study, DFA also found scaling trends with two

distinct values. This is interesting because it may be related to
bi-fractality, where fractal patterns can emerge from random
fluctuations via allometric filtering mechanisms (Scafetta and
West, 2007). Thus, APD time series are potentially crossover-
fractals with two fractal dimensions. This could be validated
by using empirical mode decomposition to construct crossover-
fractals from two monofractals (Liaw and Chiu, 2010). However,
although DFA is useful for exploring the structure of correlations
in physiological time series, tracking the local evolution of
the exponent by a recursive least-squares method can yield
structures of correlations that can provide additional details
on the dynamics of these series (Bojorges-Valdez et al., 2007).
Our findings suggest that repolarization characteristics exhibit
fractal behavior and may be better represented using concepts
from fractional calculus, for example by using fractal dynamical
equations (Marculescu and Bogdan, 2011). Such an approach
has successfully been used to optimize control for implantable
pacemakers (Bogdan et al., 2012, 2013).

Moreover, fractional differintegration was used to characterize
HRV, allowing determination of the standard deviation of the
fractionally differintegrated RR time series for a fractional
differintegration of order α [SDFDINN(α)]. αc, the order of the
fractional differintegration that provide the minimum standard
deviation of the fractionally differintegrated RR set, showed a
linear correlation with the Hurst exponent. Interestingly this
method for estimating the exponent showed less bias and lower
variance when compared to DFA (García-González et al., 2013).
Also, αc was closely related to α1 but they were not equal.
Future studies are needed to explore the predictive values
of these fluctuation exponents, and to evaluate the efficacy
of fractal dynamical state equation to describe the spatial
and temporal dependency structure of repolarization properties
in mouse models of cardiac arrhythmias (Xue and Bogdan,
2017).

CONCLUSIONS

The present findings provide a proof-of-concept that APD
variability is present at baseline conditions and can be
detected using time-domain, frequency-domain and non-linear
techniques. AtrialMAPs showed greater degree of variability than
ventricular MAPs. Non-linear techniques offer further insights
on short-term and long-term variability and signal complexity.
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Assessing the functional connectivity (FC) of the brain has proven valuable in enhancing

our understanding of brain function. Recent developments in the field demonstrated that

FC fluctuates even in the resting state, which has not been taken into account by the

widely applied static approaches introduced earlier. In a recent study using functional

near-infrared spectroscopy (fNIRS) global dynamic functional connectivity (DFC) has

also been found to fluctuate according to scale-free i.e., fractal dynamics evidencing

the true multifractal (MF) nature of DFC in the human prefrontal cortex. Expanding

on these findings, we performed electroencephalography (EEG) measurements in 14

regions over the whole cortex of 24 healthy, young adult subjects in eyes open

(EO) and eyes closed (EC) states. We applied dynamic graph theoretical analysis to

capture DFC by computing the pairwise time-dependent synchronization between brain

regions and subsequently calculating the following dynamic graph topological measures:

Density, Clustering Coefficient, and Efficiency. We characterized the dynamic nature of

these global network metrics as well as local individual connections in the networks

using focus-based multifractal time series analysis in all traditional EEG frequency

bands. Global network topological measures were found fluctuating–albeit at different

extent–according to true multifractal nature in all frequency bands. Moreover, the

monofractal Hurst exponent was found higher during EC than EO in the alpha and

beta bands. Individual connections showed a characteristic topology in their fractal

properties, with higher autocorrelation owing to short-distance connections–especially

those in the frontal and pre-frontal cortex–while long-distance connections linking the

occipital to the frontal and pre-frontal areas expressed lower values. The same topology

was found with connection-wise multifractality in all but delta band connections, where

the very opposite pattern appeared. This resulted in a positive correlation between global

autocorrelation and connection-wise multifractality in the higher frequency bands, while a

strong anticorrelation in the delta band. The proposed analytical tools allow for capturing

the fine details of functional connectivity dynamics that are evidently present in DFC, with

the presented results implying that multifractality is indeed an inherent property of both

global and local DFC.

Keywords: functional connectivity, dynamic functional connectivity, multifractal analyses, brain, synchronization

likelihood (SL), self-organized criticality (SOC), electroencephalography (EEG)
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INTRODUCTION

Functions of the brain emerge from dynamic
interactions between the elements of its complex neuronal
networks (Chialvo, 2010; Werner, 2010). This phenomenon
is present across a broad range of spatial scales from the
microanatomical level of individual neurons through neuronal
cell assemblies to macroanatomical brain regions (Sporns, 2011).

Pioneering works by Friston et al. (1993) and Biswal et al. (1995)
paved the way to the emergence of a new field of neuroscience
aiming at describing brain function through its anatomical
and functional connectivity (FC) (Sporns et al., 2005; van den
Heuvel and Hulshoff Pol, 2010; Friston, 2011). The key concept

underlying the latter is assessing the statistical interdependence

of neural activity registered at disparate regions of the brain, as it
is assumed to be proportional to the degree of their functional

cooperation (Friston et al., 1993). FC studies did not only reveal
the existence of several resting-state brain networks such as
the default mode network (Raichle et al., 2001; Greicius et al.,
2003) or the task-positive network (Fox et al., 2005), but also
showed that FC properties responded to changes in physiological
conditions e.g., sleep (Horovitz et al., 2009; Liu et al., 2015) or
cognitive stimulation (Esposito et al., 2006; Racz et al., 2017). In
addition, altered FC was also found in pathological conditions
like those in degenerative dementias (Pievani et al., 2011),
schizophrenia (Liu et al., 2008), or multiple sclerosis (Cader
et al., 2006).

Until recently, most studies typically considered connections
in functional networks and thus FC itself, too, as being stationary
despite the fact that a dynamic approach might provide a more
detailed and more realistic description of brain connectivity
(Hutchison et al., 2013a). Indeed it has been shown that FC
dynamically fluctuates even in the resting state (Chang and
Glover, 2010) and also during task modulation (Sakoglu et al.,
2010). Since then, investigating dynamic functional connectivity
(DFC) has become one of the most rapidly evolving fields
of neuroscience with a steadily expanding body of literature
(Hutchison et al., 2013a; Calhoun et al., 2014; Preti et al., 2017).

In FC studies most often functional magnetic resonance
imaging (fMRI) is used to monitor brain activity with high
spatial resolution and precise anatomical localization (Hutchison
et al., 2013a; Preti et al., 2017). Fluctuations in FC are usually
captured with a sliding-window (SW) approach, however other
approaches such as point process analysis (Tagliazucchi et al.,
2012a) or paradigm free mapping (Gaudes et al., 2013) have
also been presented. During SW analysis, FC is calculated from
a small data segment (i.e., within the actual window), then the
window is advanced by a predefined time step and the process
is repeated until the whole signal is covered. To assess FC
within the actual window, statistical interdependence is usually
estimated by bivariate statistical methods as Pearson-correlation
(Hutchison et al., 2013b), but multivariate methods such as
spatial independent component analysis (Allen et al., 2014) or
time-frequency methods (Chang and Glover, 2010) are also
often used. DFC is then described through–including but not
limited to–properties such as the number of stable global states,
their variability, and transition probabilities (Allen et al., 2014;

Calhoun et al., 2014; Damaraju et al., 2014). As graph theory
provides a useful tool in characterizing complex networks of
the brain (Bullmore and Sporns, 2009) along several topological
aspects (Rubinov and Sporns, 2010), dynamic graph theoretical
analysis is also frequently applied (Tagliazucchi et al., 2012b; Yu
et al., 2015; Du et al., 2016; Racz et al., 2018). Finally, some DFC
studies focus–instead of on global network topology–only on one
or a few individual connections between specific regions (Rack-
Gomer and Liu, 2012) or intrinsic connectivity networks (Chang
and Glover, 2010; Allen et al., 2014). The fluctuating nature
of DFC is then usually captured in measures such as standard
deviation (Kucyi and Davis, 2014; Falahpour et al., 2016) or
coefficient of variation (Gonzalez-Castillo et al., 2014), however
these descriptive measures may be insensitive to finer temporal
structuring, which may well be present in DFC.

Although large-scale DFC attracted increasing attention
only recently, the dynamic nature of the functional coupling
between neuronal cell assemblies had been addressed earlier
(Friston, 2000). In fact, functional connectivity for modalities like
electroencephalography (EEG) and magnetoencephalography
(MEG) was reported having non-linear characteristics (Stam and
van Dijk, 2002; Stam et al., 2003). Also, it was shown that several
properties of DFC did not have a characteristic time-scale, instead
they showed scale-free (fractal) dynamics; Gong et al. (2003)
presented that fluctuations in phase synchronization between
brain regions were scale-free with the characterizing exponent
being stable across multiple subjects. Stam and de Bruin (2004)
investigated DFC in terms of global synchronization and found
that in the alpha and beta bands it scaled with a higher exponent
with eyes closed than open. EEG microstates—periods where
EEG topography remains constant for 80–120ms (Lehmann
et al., 1987)—also exhibited fractal dynamics as reported by Van
de Ville et al. (2010). While these studies evidenced fine, complex
temporal structuring present in functional connectivity dynamics
both on global (state) and local (individual connection) levels, to
the best of our knowledge still only a few studies investigated the
scale-free nature of DFC.

Global scale-free (i.e., monofractal) behavior is most
commonly characterized by the Hurst exponent (H) in the
time-, and by the negative power spectral slope (i.e., scaling
exponent, β) in the frequency domain (Eke et al., 2000, 2002). H
and β are inherently interrelated (Eke et al., 2002) as they both
characterize the global long-range correlation (LRC) in a signal.
This is established by the Wiener-Khinchin theorem stating
that the power spectrum is equivalent to the Fourier-transform
of the linear autocorrelation function (Kantz and Schreiber,
2004). Describing dynamics through only H or β implicitly
assumes that frequency components of the power spectrum
are independent/random, and information encoded in the
phase angles is not considered. According to the definition by
Schreiber and Schmitz (2000) this property holds only for linear
dynamics. As mentioned above, functional connections in the
brain has been shown to be non-linear, which calls for more
in-depth analysis techniques capable of providing a detailed-
enough description of their dynamic characteristics. At this end,
multifractal analysis considers scaling as a local instead of a global
property of the signal (Mandelbrot, 1986; Tel, 1988; Theiler,
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1990), yielding a set of exponents characterizing the scaling in
the signal (Kantelhardt et al., 2002; Barunik and Kristoufek,
2010). Moreover, using the method of decomposing a signal into
the sign and magnitude time series of its increments (Ashkenazy
et al., 2001), it has been shown that multifractal properties of a
signal correlated well with its degree of non-linearity (Ashkenazy
et al., 2003; Gomez-Extremera et al., 2016; Bernaola-Galvan
et al., 2017). Since the seminal work of Ivanov et al. (1999), a
diverse set of physiological processes were shown to exhibit
multifractal dynamics such as human heart rate variability
(Ivanov et al., 2001; Ashkenazy et al., 2003), motor coordination
(Ihlen and Vereijken, 2013) or gait dynamics (Ashkenazy et al.,
2002). Multifractal analysis of human heartbeat dynamics was
also able to capture the separate effects of sympathetic and
parasympathetic blockade (Nunes Amaral et al., 2001) as well
as reveal the impact of congestive heart failure as the loss of
multifractality, substantiating future clinical and diagnostic
applications (Ivanov et al., 1999, 2001, 2004). The multifractal
nature of neural dynamics was also reported using several
different modalities (Shimizu et al., 2004; Wink et al., 2008; Ihlen
and Vereijken, 2010), therefore a multifractal approach appears
a proper choice when investigating the supposedly rich dynamic
properties of functional connectivity.

A recent study using dynamic graph theoretical analysis of
multichannel functional near-infrared spectroscopy (fNIRS) data
demonstrated that DFC in the human pre-frontal cortex (PFC)
expressed multifractal properties (Racz et al., 2018). In this paper
we make an attempt on expanding some of the limitations
of this previous study: firstly by investigating DFC based on
whole-head measurements instead of relying on those only in
the PFC, and secondly by considering not only the temporal
evolution of global network properties but describing the
dynamic fluctuations of individual connections in the network
as well. We estimate dynamic functional connectivity based
on whole-head EEG measurements using the synchronization
likelihood method (Stam and van Dijk, 2002) and apply
dynamic graph theoretical analysis. By doing so, we calculate
the temporal evolution of three network measures—Density,
Clustering Coefficient, and Efficiency—, in order to characterize
separate topological aspects of the dynamic networks. Then, both
global DFC (as captured in the fluctuations of these network
measures) and individual dynamic connections (captured as the
fluctuating synchronization levels between regions) are made
subject to multifractal time series analysis to reveal their dynamic
properties. We performed EEG measurements in eyes open
(EO) and eyes closed (EC) states in male and female subjects,
which allowed for exploring differences related to state, gender,
and network measure. Furthermore, analysis of individual
connections between different brain regions allowed us to show
if they express not only mono- but indeed multifractal character
and also if they show any particular topological pattern regarding
their dynamic properties. Our findings imply that multifractal
analysis of the dynamics of global functional connectivity as
well as that of individual functional connections may provide
a valuable tool when extracting information on the temporal
structuring of DFC and carry potentials for experimental and/or
clinical applications as well.

MATERIALS AND METHODS

Participants, Experimental Protocol and
Data Acquisition
A total of 24 young, healthy volunteers (age: 24.25 ± 2.4 ranging
from 20 to 29 years, 12 female) participated in this study. This
number of subjects was determined by statistical power analysis
of preliminary measurements. The study was approved by the
Semmelweis University Regional and Institutional Committee
of Science and Research Ethics (ethical approval number:
2017/94) and all subjects provided written informed consent.
No participants had reported history of any neurological or
psychiatric disorders. Test subjects were instructed not to
consume any stimulant (e.g., caffeine) at least 4 h prior to
participating and to have at least 6 h of sleep the night before.
During the measurement, subjects were seated comfortably in
an armchair in a light- and sound-attenuated, electrically sealed
room, instructed to remain still, retrain from structured thinking
while remaining awake. Resting-state EEG measurements were
performed with eyes open (EO) while visually fixating on a dot on
a computer screen, followed by another recording session with
eyes closed (EC), resulting in four analysis groups: female eyes
open, female eyes closed, male eyes open and male eyes closed
(FEO, FEC, MEO and MEC, respectively). The recorded signals
were visually inspected online, and a session was completed once
an artifact-free 305 s record in both EO and EC state have been
obtained, which was achieved within 20min with all subjects.

Measurements were carried out using an Emotiv Epoc+
wireless EEG system (Emotiv Systems Inc., San Francisco, CA,
USA), acquiring signals from 14 brain regions according to the
10–20 international system, including AF3, F3, F7 FC5, T7, P7,
O1, O2, P8, T8, FC6, F8, F4, and AF4 with additional CMS/DRL
reference electrodes at P3 and P4 positions. Data was sampled
at 2,048Hz and internally band-pass filtered between 0.2 and
45Hz with additional notch filters at 50 and 60Hz, then down-
sampled to an effective temporal resolution of 128Hz. Electrode
impedances were kept under 20 k� during signal acquisition.
All measurements were performed with maximal contact quality
confirmed by the provided Emotiv Xavier TestBenchTM software
(version 3.1.18).

EEG Data Pre-processing
EEG data was pre-processed off-line in Matlab 2012a (The
Mathworks, Natick, MA, USA) using the freely available
EEGLAB toolbox (Delorme and Makeig, 2004) along with
custom scripts and functions. Independent Component Analysis
(ICA) was performed (Hyvarinen and Oja, 2000) to remove
signal components related to eye movement, blinking, muscle
contraction and general noise. These components were identified
by their power spectra, visual appearance, and spatial power
distribution over the cortex and rejected from the data before
performing inverse ICA. Subsequently, the ICA-pruned datasets
were band-pass filtered in the traditional frequency bands used in
EEG-analysis: δ, 0.5–4Hz; θ, 4–8Hz; α, 8–13Hz; α, 13–30Hz, and
γ, 30–45Hz according to Stam and de Bruin (2004). All further
analyses were also performed on broadband (unfiltered), ICA-
pruned signals as well. The first and last 2 s of each measurement
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segment were rejected, resulting in datasets with length of 38528
data points for both states of every subject.

Synchronization Likelihood
The synchronization likelihood (SL) method (Stam and van
Dijk, 2002) was used for pairwise estimation of dynamic
functional connectivity. SL identifies non-linear statistical
interdependencies between a pair (or in case of global SL, a
larger set) of signals. It is by its nature dynamic (i.e., estimates
synchronization as a function of time), normalized and seems
unaffected by non-stationarities (Stam and vanDijk, 2002). These
properties make SL a suitable tool in FC studies using EEG
measurements, as EEG signals (and brain activity in general) are
often considered non-stationary (Kaplan et al., 2005; Freeman
and Quian Quiroga, 2013) and the functional coupling between
different neuronal ensembles was confirmed to be non-linear by
several studies (Friston, 2000; Stam et al., 2003).

SL measures the general synchronization between discretely
sampled processes x(t) and y(t), t = 1, 2,... T. First, the temporal
evolution of x(t) and y(t) is reconstructed in the state space
by temporal embedding (Takens, 1981), where x(t) and y(t) is
converted into a set of state space vectors X(t) and Y(t) as

X (t) = x
(
t, t −m, t − 2m, . . . , t −

(
d − 1

)
m

)
,

Y (t) = y
(
t, t −m, t − 2m, . . . , t −

(
d − 1

)
m

)
, (1)

where d is the embedding dimension and m is the time lag.
Further, let’s define the probability for every state space vector
X (t) [and for Y(t), similarly] that the distance of a randomly
selected vector X (t+u) is closer than distance rx(t) as

C (rx (t) ,X) =
1

2 (w2 − w1)

∑

w1<|u|<w2

θ {rx (t)−

|X (t) − X (t + u)|} , (2)

where u is the temporal distance, |·| is the Euclidean norm, θ

is the Heaviside step function, w1 is the Theiler correction for
autocorrelation (Theiler, 1986) and w2 is a window parameter
such as w1 ≪ w2 ≪ T. It should be noted, that w2 serves as
the time window in a SW analysis, and as u can be negative
as well, the ‘window length’ appears as 2w2, with the middle
2w1 segment discarded to avoid effects of autocorrelation. The
distance parameters rx(t) and ry(t) are set for every time point t
that C (rx (t) ,X) = C

(
ry (t) ,Y

)
= pref , with pref usually fixed

at a value close to 0. Thus, pref basically serves as an internal
thresholding variable. Finally, the synchronization likelihood at
time point t is defined as the conditional probability that Y(t)
and Y(t+u) are closer than ry(t) given that X(t) and X(t+u) are
closer than rx(t) and calculates as

SL (t) =
1

2pref (w2 − w1)

∑

w1<|u|<w2

θ {rx (t) − |X (t) (3)

−X (t + u) |} θ
{
ry (t) − |Y (t) − Y (t + u)|

}
.

SL(t) is then computed for every time point t. Note, that the
concept of synchronization likelihood is strongly related to the
correlation integral (Grassberger and Procaccia, 1983) and can
be considered as a so called “fixed-mass” or “k-nearest-neighbor”
approach (Theiler, 1990).

In this study, initial parameters of SL (d, m, w1, w2) were set
to fit the filter parameters for each frequency band, according to
Montez et al. (2006). Parameter settings for each frequency band
and those for broadband EEG data are shown in Table 1.

Dynamic Graph Theoretical Analysis
Synchronization likelihood was computed on the pruned EEG
datasets for all pair-wise combination of the channels, yielding a
14× 14 weighted synchronization matrix for every time point, in
which the connection strength is assumed to be proportional to
the level of synchronization between brain regions. Each of these
matrices capture the actual topology of the underlying network,
and calculating different network measures over them yield
Network Metrics Time Series (NMTS) that describe the temporal
evolution of network topology. Complex networks have several
aspects to their topologies such as modularity or small-worldness
(Rubinov and Sporns, 2010). The network is required to contain
a sufficiently large number of nodes for network descriptors to
make sense, i.e., there is no point in calculating for example
the node degree distribution on a network with 14 nodes. It
has been demonstrated however, that global network measures
Density (D), Clustering Coefficient (C) and Efficiency (E) can be
used effectively to describe and capture significant topological
differences in smaller networks (Racz et al., 2017). We used
the weighted formulas to calculate the aforementioned network
measures. Weighted Density (often termed also Connectivity
Strength) is the fraction of overall connectivity strength present
to the maximal possible connection strength in a network
(Rubinov and Sporns, 2010) and calculates as

DW =
1

n (n− 1)

n−1∑

i=1

n∑

j=i+1

cij, (4)

where n is the total number of nodes, and cij is the connection
strength–in this case, SL(t) for every t–between nodes i and j.
Density is a general measure of “wiring cost” of a network, and
is also equal to the average normalized node degree (Rubinov
and Sporns, 2010). The Clustering Coefficient of an individual

TABLE 1 | Synchronization likelihood parameters for each frequency band.

Band Range d m w1 w2

Delta 0.5–4Hz 25 11 264 1264

Theta 4–8Hz 7 5 30 1030

Alpha 8–13Hz 6 3 15 1015

Beta 13–30Hz 8 1 7 1007

Gamma 30–45Hz 6 1 5 1005

Broadband 0.5–45Hz 289 1 288 1288
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node denotes the fraction of the existing triangles to the maximal
possible number of triangles around a node (Rubinov and
Sporns, 2010) and was generalized to weighted networks by
Onnela et al. (2005). Clustering Coefficient of node i calculates
as

CW
i =

2

k
(
k− 1

)
n∑

j,h

w̃ijw̃ihw̃jh, (5)

where k is the number of edges connected to node i and w̃ih

is the weight of the edge between nodes i and j. Edge weights
are normalized by the largest weight present in the network,
therefore on binary networks the formula returns with the
original definition, that is also equivalent to the fraction of a
node’s neighbors that are also neighbors of each other (Watts and
Strogatz, 1998). The global Clustering Coefficient is the average
taken over individual nodes. C is the most general measure of
network segregation and related to “local” information flow in
the network (Rubinov and Sporns, 2010). Finally, Efficiency is
a global parameter capturing network integration, and is often
associated with the speed of information processing in a complex
system (Rubinov and Sporns, 2010). It is the average inverse
shortest path length between all nodes of a network and computes
according to

EW =
1

n

n∑

i=1

n∑

j=1,i 6=j

(
dWij

)−1

n− 1
, (6)

where dWij is the length of the shortest weighted path between

nodes i and j (Latora and Marchiori, 2001). It is strongly related
to the average shortest path length, however often considered
as being a superior measure to the latter in describing network
integration (Achard and Bullmore, 2007). Efficiency is related
to the “global” information flow in the network (Rubinov and
Sporns, 2010). For the sake of simplicity, in the following we will
drop the superscripts “w” and will refer by D, C, and E to their
weighted forms, respectively.

Since SL has an internal step of thresholding, to avoid
acquiring an overwhelming amount of results we decided not to
use any additional threshold values, as in a previous study (Racz
et al., 2018) the dynamic properties of DFC did not show any
specific relation to the value of threshold. We calculated the time
evolution of Density, Clustering Coefficient, and Efficiency [D(t),
C(t), and E(t), respectively] for every subject both in EO and EC
states. For the calculations of D, C, and E we used functions of the
Brain Connectivity Toolbox by Rubinov and Sporns (2010).

Focus-Based Multifractal Signal
Summation Conversion (FMF-SSC)
Multifractal analysis, instead of a single scaling exponent yields a
set of scaling exponents, each describing scaling in fluctuations
of different sizes in the signal (Kantelhardt et al., 2002). This
can be achieved by characterizing scaling at several statistical

moments q, where small fluctuations are amplified by the
negative, while large fluctuations by the positive moments
(Barunik and Kristoufek, 2010; Ihlen, 2013). We used the
multifractal generalization of the Signal Summation Conversion
(SSC) method (Eke et al., 2000; Mukli et al., 2015) to extensively
characterize the power-law scaling of the NMTSs and the SL(t)s
of individual connections. In SSC, the signal is cumulatively
summed and standard deviation σ is calculated at different
window sizes ranging from a minimal to a maximal scale (smin

and smax, respectively). Within each window the local linear
trend is removed before calculation to diminish effects of non-
stationarity. The power-law dependence of σ on s is captured in
the Hurst exponent H according to σ (s) ∝ sH (Eke et al., 2000).
The multifractal generalization of SSC (MF-SSC) consists of
repeating the steps of the analysis at different statistical moments
q, yielding the unified scaling function S(q,s) (Figure 1) (Mukli
et al., 2015)

S
(
q, s

)
=

{
1

Ns

Ns∑

υ=1

σ (υ , s)q

} 1
q

, (7)

where Ns is the number of non-overlapping time windows at
scale s, and υ is the index of the actual window of calculation.
As σ is now dependent on s and q as well, their relationship is
established via the generalized Hurst exponent H(q) according

to σ
(
q, s

)
∝ sH(q) and can be acquired by linear regression on

the values of S(q,s) (Barunik and Kristoufek, 2010). On empirical

FIGURE 1 | The scaling function. H(2) characterizes the global i.e.,

monofractal scaling, while the difference between H(−15) and H(15) termed

1H15 captures the degree of multifractality. The focus is used as a reference

point for linear regression. Scaling function of D(t) of subject male 4 during

eyes closed is used for illustration.
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signals with finite length the regressed functions converge in one
specific point termed focus (Mukli et al., 2015). This can be simply
shown by replacing s in S(q,s) with the total length of the signal
as it results in the disappearance of the sum and therefore q
from equation (7). The focus therefore is used as a reference
point during regression, which renders the multifractal analysis
of empirical time series very robust and prevents it from ending
up with “inverted” or corrupted multifractal spectra (Mukli et al.,
2015). Note that this way of handling of empirical signals is not
unique to SSC, but can be applied also to other MFmethods such
as Detrended Fluctuation Analysis or Wavelet Leader methods
yielding their focus-based variants (Mukli et al., 2015).

The NMTSs and SL(t)s were analyzed by FMF-SSC with
the following input parameters as suggested in Mukli et al.
(2015): smin = 8 with s increasing dyadically until smax =

8192 and q ranging from −15 to +15 with unit increments.
The scaling range was defined between scales 23 and N/4, as
scaling function values below and over these scales become
statistically unreliable (Cannon et al., 1997; Gulich and Zunino,
2014). Scaling windows based on a dyadic scale provide efficient
computation. The range of q was selected based on Grech and
Pamula (2012), Mukli et al. (2015), and Nagy et al. (2017).
Global (i.e., monofractal) scaling associated with the long-term
memory of the signal was captured in H(2), and the degree
of multifractality was described by 1H15 = H(−15)–H(15),
as a measure of how much the scaling is different for small
and large fluctuations (Figure 1). Note, that 1H15 captures the
distribution of local scaling in a signal equivalently with the
often used multifractal/singularity spectrum that can be acquired
from S(q,s) by Legendre-transformation (Frisch and Parisi, 1985;
Chhabra et al., 1989).

Surrogate Data Testing
Multifractal scaling in a time series can appear as a consequence
of different long-range correlations present in the signal, however
multifractality can also originate in the heavy-tailed probability
distribution of signal values without any correlations whatsoever
(Ivanov et al., 1999; Kantelhardt et al., 2002). Also, the finite
size and/or simple constant linear autocorrelation of the signal
can also produce a so-called “multifractal background noise”
(Grech and Pamula, 2012), that has to be distinguished from
true multifractality. Thus, a proper surrogate data testing is
indispensable when analyzing empirical signals. Therefore, all
time series (NMTSs and SL(t)s) underwent steps of thorough
tests to verify if they indeed showed true multifractality. In all
of these steps, n = 39 surrogate datasets of equal length were
generated with the null hypothesis that the investigated time
series cannot be distinguished from its surrogates based on the
discriminating statistical measure (Theiler et al., 1992). The null
hypothesis was rejected if the discriminating statistic was found
outside the mean ± 2σ range calculated from the surrogate
datasets, that with n= 39 surrogate datasets corresponds to a 95%
confidence level (Theiler et al., 1992; Kaplan and Glass, 1995).

First, we tested the presence of global power-law scaling. This
can best be done in the frequency domain, as a signal with global
power-law scaling also has a corresponding 1

f β
-like spectrum

(Eke et al., 2000). Hence, for every time series surrogate datasets

with equal β were generated with the spectral synthesis method
(Saupe, 1988), and the Kolmogorov-Smirnov distances were
calculated to estimate the goodness-of-fit (GoF) of the power-law
function. A time series was considered scale-free, if its GoF to a
power-law function was within the mean ± 2 σ range of those
calculated from surrogate data with known (identical) power-law
spectra (Clauset et al., 2009; He, 2011).

Second, we tested the presence of distribution-related
multifractality by randomly shuffling the values of the time series
(Ivanov et al., 1999; Kantelhardt et al., 2002). Shuffling destroys
all correlations and reduces the signal to pure random noise
but has no effect on the distribution of values. Consequently, if
shuffling renders H(q) ≈ 0.5 (i.e., white noise) for all q the case
of distribution-related multifractality can be excluded, otherwise
presence of scaling (at least partly) could be attributed to a
power-law type distribution of signal values.

Finally, we tested if the observed multifractality resulted from
the presence of different long-range correlations. For this purpose,
surrogate datasets were generated by Fourier transforming the
signal with Fast Fourier Transformation, randomizing its phases
and then performing inverse Fourier transformation (Theiler
et al., 1992). Phase randomization leaves the amplitudes and
therefore the power spectrum (hence, linear autocorrelation)
unaffected (Kantz and Schreiber, 2004), while destroying all
non-linear correlations in the signal (Schreiber and Schmitz,
2000). Hence it yields surrogate datasets with equal H(2)
i.e., monofractal characteristic preserved (Eke et al., 2000).
As the resulting time series are monofractal signals, this step
simultaneously tests for multifractal background noise/true
multifractality (Grech and Pamula, 2012) and the presence of
non-linearity (Ivanov et al., 1999). Multifractality was considered
true and as a sign of non-linear dynamics, if the 1H15 value of
a signal was significantly larger than those of surrogate datasets.
In the following, we will refer those processes passing all tests as
true multifractals.

Analysis Strategy
The flowchart of the analysis steps is shown as a summary of
the methods on Figure 2. The first aim of this study was to
show if global DFC when investigated by EEG show multifractal
properties. For this purpose, the acquired D(t), C(t), and E(t)
time series were made subject to surrogate data tests for power-
law scaling, long-range autocorrelation and true multifractality
as described above, and the fraction of subjects passing each
test were computed for all measures. To explore the effect of
gender (F and M), network measure (D, C, and E), and state (EO
and EC) on the MF properties of global DFC, two-way repeated
measures ANOVA tests were performed for each frequency
band separately, with gender as grouping variable, while state
and network measure as repeated measure factors. Bonferroni
post-hoc tests were performed to identify significant differences
between interactions (in the following marked by ×). Results
will be presented in the following manner: for each frequency
band, we present the significant differences considering the effect
of gender, measure and state separately, along with interaction
effects of gender×measure, gender× state and measure× state.
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FIGURE 2 | Steps of the analysis procedure.

When they bear significance, results from the post-hoc tests are
also discussed in detail.

Our second aim was to show if dynamic functional
connections themselves—captured in SL(t) between different
locations—exhibited multifractal scaling. Therefore, all SL(t)s
were also processed by the same testing framework as the
NMTSs. Fractions of edges in the network passing each test were
calculated on the subject level and were averaged combining all
four groups (FEO, FEC, MEO, andMEC) to obtain a general picture
on the presence of true multifractality in functional connections.
Subsequently, to reveal if functional connections express any
particular topology in regards of their mono- and multifractal
properties, H(2) and 1H15 values of the connections were
standardized (z-scored) on the subject level and averaged across
subjects within all analysis groups collectively. This resulted
in group-averaged networks where edge weights represent
their corresponding z-scored values [z(H(2)) and z(1H15),

respectively]. Also, to investigate the possible correlation between
the long-term memory and the degree of multifractality of
connections, the Pearson coefficient (r) was calculated between
the group averaged z(H(2)) and z(1H15) values. In order
to distinguish between a true correlation effect and pure
coincidence, r was calculated on the shuffled data as well when
n = 39 spatial surrogates (Aaria et al., 2013) were generated
by randomly shuffling the z(H(2)) and z(1H15) values [thus
destroying possible correlation betweenH(2) and 1H15]. Again,
if the r of original values was outside the mean ± 2 σ range
acquired from surrogate data, we regarded the correlation
between H(2) and 1H15 as significant.

It should be noted, that multifractality of individual
connections were investigated in each group (FEO, FEC, MEO, and
MEC) individually as well, however as results were comparable
between analysis groups, for the sake of simplicity we decided to
present the results of all groups combined. All statistical analyses
were carried out in StatSoft Statistica 13.2.

RESULTS

Testing for True Multifractality
Results for surrogate data testing of NMTSs (including all groups
and states) are shown in Table 2. In the vast majority of the cases,
D(t), C(t), and E(t) were proven to have broadband power-law
spectra, qualifying them as scale-free (fractal) processes. Shuffling
reduced H(q) approximately to 0.5 in all cases, proving again
the presence of long-range correlations in the signals, while also
excluding the contribution of distribution-related multifractality.
True multifractality was also present in network dynamics in
most of the cases for all frequency bands as well for broadband
EEG data (Table 2).

Similar results were obtained when investigating the
power-law scaling and autocorrelation properties of individual
connections in the dynamic functional networks on the subject
level (Table 3). In that most connections in the networks yielded
power-law spectra, and all connections contained LRCs while
distribution-related multifractality could be excluded. Although
the fraction of true multifractal connections were generally high
in the delta, theta and alpha bands, slightly lower values were
found in functional networks of the higher (beta and gamma)
frequency bands with a slightly lower amount of connections
passing the true multifractality test in broadband EEG networks.
Nevertheless, these results compare well with those obtained
from global network dynamics (Table 2) implying that the
multifractal nature of global network dynamics emerges from
multifractally fluctuating individual connection strengths in
the network. Note that values in Table 3 refer to the fraction of
connections in the functional networks of each subject, thus they
are presented as mean ± σ across subjects (combining all four
groups).

Multifractal Nature of Global DFC
In the following, for the H(2) of D(t), C(t), and E(t) we will
use the abbreviations HD(2), HC(2), and HE(2), respectively.
Similarly, 1H15 of D(t), C(t), and E(t) will be referred to as
1HD15, 1HC15, and 1HE15. Summary of the results regarding
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TABLE 2 | Fraction of NMTSs passing each surrogate data test.

Power-law Shuffling Phase randomization

Band D (%) C (%) E (%) D (%) C (%) E (%) D (%) C (%) E (%)

Delta 97.9 97.9 100 100 100 100 100 100 91.7

Theta 97.9 100 95.8 100 100 100 87.5 93.8 85.4

Alpha 97.9 95.8 100 100 100 100 97.9 93.8 95.8

Beta 100 100 97.9 100 100 100 89.6 89.6 89.6

Gamma 100 100 100 100 100 100 91.7 93.8 95.8

Broadband 97.9 100 100 100 100 100 91.7 100 91.7

TABLE 3 | Fraction of functional connections in the network passing each test.

Band Power-law (%) Shuffling (%) Phase randomization (%)

Delta 99.13 ± 9.29 100 99.47 ± 7.24

Theta 98.92 ± 10.32 100 93.77 ± 24.17

Alpha 98.86 ± 10.64 100 97.09 ± 16.80

Beta 98.99 ± 9.99 100 76.53 ± 42.38

Gamma 98.72 ± 11.25 100 81.87 ± 38.53

Broadband 98.28 ± 12.99 100 89.33 ± 30.87

H(2) of global DFC is shown in Figure 3, while those of 1H15
are presented on Figure 4.

A prominent measure-related effect appeared in H(2) which
was present in all frequency bands, as HC(2) values were found
significantly lower than those of HD(2) and HE(2). The same
difference was found regarding 1H15 (1HD15 > 1HC15 <

1HE15), however in the delta band, only. Moreover, state had
a significant effect in the alpha and beta bands as H(2) values
increased during EC compared to EO condition. Gender related
effects were found sparsely with a tendency of higher H(2) and
1H15 values in males. In the following, we elaborate on these
results for every frequency band separately.

Delta Band
H(2) values were found significantly higher in the male groups
(main effect of gender, p = 0.023). The three network measures
also showed significant difference with HC(2) being lower than
those of HD(2) and HE(2) (main effect of measure, p < 0.0001).
Interaction of measure × gender and Bonferroni post hoc
tests showed that these differences occurred in both genders
(Figure 3A).

Measure had a significant main effect on 1H15 as well (p
< 0.0001). The measure × gender interaction revealed, that in
females 1HD15 was significantly larger than 1HC15 and1HE15
with no difference between the latter two, while in males 1HE15
was also larger than 1HC15 (p < 0.01 in all cases). Neither
gender nor state had significant effect on 1H15 in the delta band
(Figure 4A).

Theta Band
Measure had a similar main effect on H(2) as in the delta band
[HD(2)>HC(2)<HE(2), p< 0.001 in all cases], however neither
gender- nor state-related differences were found (Figure 3B).

Regarding 1H15, only measure-related differences were
found (main effect of measure, p = 0.026). Bonferroni post hoc
test indicated that 1HD15 was higher than 1HC15, however
the interaction measure × gender showed that this was not
significant in neither the male or female groups individually
(Figure 4B).

Alpha Band
The previously observed difference in measure regarding H(2)
was also found in the alpha band [HD(2) > HC(2) < HE(2),
p < 0.001 in all cases], however additionally in males HE(2)
was slightly higher than HD(2) and HC(2) (p = 0.043). Also, a
significant difference related to state was revealed withH(2) being
higher in EC than in EO state (p= 0.035). Interaction of measure
× state verified that this difference was present in all network
measures (Figure 3C).

Larger 1H15 values were found in the male groups (main
effect of gender, p = 0.014). Interestingly, the interaction gender
× state revealed a trend in which state had the opposite effect in
the two genders, as 1H15 increased in males while decreased it
in females during EC condition (p= 0.066) (Figure 4C).

Beta Band
The main effect of measure was found significant (p < 0.0001)
with Bonferroni post hoc test revealing HC(2) being smaller than
HD(2) and HE(2) (p < 0.001 in all cases). Moreover, similarly to
the alpha band, state had a significant effect in increasing H(2)
when transitioning from EO to EC (p < 0.001) (Figure 3D).

1HD15, 1HC15, and1HE15 were found increased in EC
state, although the main effect of state was not significant (p
= 0.136). The interaction of gender × state revealed that this
increase was only present in the male group, while 1H15 values
remained unchanged in females, although yet again only in
tendency (p= 0.093) (Figure 4D).

Gamma Band
In H(2), only measure-related differences appeared significant,
with a similar tendency as in the alpha band, with HC(2) being
lower than HD(2) and HE(2), and in males HE(2) also being
higher than HD(2) too (p < 0.001 in all cases) (Figure 3E). No
differences were found regarding 1H15 (Figure 4E).

Broadband EEG
Measure related differences were found (main effect of measure,
p < 0.0001) with Bonferroni post hoc test confirming the same
tendency as in most previous cases [HD(2) > HC(2) < HE(2), p
< 0.01]. Also, higher H(2) values were found in EC (main effect
of state, p= 0.014) (Figure 3F).

The main effect of gender on 1H15 appeared significant (p=
0.012) with higher values in the male groups. Measure also had
a significant effect on 1H15 (p = 0.0006) however the measure
× gender interaction and Bonferroni post hoc test revealed that
significant differences only occurred in the male group, with
1HD15 being significantly higher than 1HC15 and 1HE15 (p
< 0.001 in both cases) (Figure 4F).

In order to keep the statistical analysis simple, frequency band
was not included as a factor in the statistical analysis, however
it can be clearly seen on Figure 3 that H(2) values in the delta
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FIGURE 3 | Summary of results regarding H(2) of global network metrics for the delta (A), theta (B), alpha (C), beta (D), and gamma (E) bands, as well as for

broadband EEG (F). Dotted lines connect the means of the corresponding analysis groups. Significant differences are marked by * for effects of gender, measure and

state (displayed on the left, in front and right of each subplot, respectively). Note, that significant differences of interaction effects are not marked.

FIGURE 4 | Summary of results regarding 1H15 of global network metrics in for the delta (A), theta (B), alpha (C), beta (D), and gamma (E) bands, as well as for

broadband EEG (F). Dotted lines connect the means of the corresponding analysis groups. Significant differences are marked by * for effects of gender and measure

(displayed on the left and in front of each subgraph, respectively). Again, significant differences of interaction effects are not marked.
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and alpha band are considerably higher than those of the theta,
beta, and gamma bands, with H(2) of unfiltered signals being
approximately in between. Figure 4 shows that 1H15 values
were the highest in the delta-, alpha-, and broad-band EEG, with
slightly lower values in the theta, beta, and gamma bands.

Individual Connection Dynamics
Long-Range Correlation–H(2)
H(2) of individual connections showed a characteristic
topological distribution in all frequency bands as well as
broadband EEG data (Figure 5). In that spatially proximal
functional connections between ROIs expressed higher, while
those between distant regions showed lower H(2) values. This
pattern could be observed most prominently in connections
between regions of the frontal and pre-frontal cortex that had
the highest z(H(2)) values, while in general connections linking
regions of the occipital and parietal cortex to those of the frontal-
and pre-frontal cortex had the lowest z(H(2)) values. Also,
nearby connections linking contralateral regions in the frontal
and pre-frontal areas expressed higher long-range correlation,
however this did not hold for connections linking areas of
the occipital and parietal cortex to those of the contralateral
hemisphere (Figure 5).

Degree of Multifractality–1H15
Topology of 1H15 of individual connections in the delta band
were markedly different from those of other frequency bands
(Figure 6). While dynamic connections in the theta, alpha, beta
and gamma bands resembled a topology similar to that observed
forH(2) (with higher values for short- and lower-values for long-
distance connections), amarkedly opposite distribution appeared
in the delta band. Within this range, stronger multifractality was
found in connections linking the occipital and parietal regions
to pre-frontal and frontal regions while lower 1H15 values
appeared in connections between nearby regions. Connections
estimated on broadband EEG appeared to exhibit a homogenous
distribution of1H15 without any particular topology (Figure 6).

Relationship Between z(H(2)) and z(1H15)
The relationship between the multifractal properties of dynamic
functional connections was captured in the Pearson correlation
coefficient between z(H(2)) and z(1H15) values with their scatter
plots shown in Figure 7. In the theta, alpha, beta, and gamma
bands, significant positive correlations were found indicating
that connections with higher long-term autocorrelation was
associated with higher degree of multifractality. The opposite
topology of z(H(2)) and z(1H15) in the delta band however
resulted in a strong negative correlation as connections with high
H(2) were associated with lower 1H15 values. In broadband
EEG no correlation was found concomitant with the absence of
topology in 1H15 of individual connections (Figure 5).

DISCUSSION

Multifractal Nature of Global DFC
In this study, we reported that dynamic functional connectivity
of the brain—as reconstructed from 14 channel whole-head EEG

measurements and captured with dynamic graph theoretical
analysis—fluctuates according to multifractal dynamics.
Surrogate data tests proved that in majority, this temporal
structuring was of true multifractal nature in all frequency
bands as well as in broadband EEG. We also identified several
significant differences in the MF characteristics of global DFC
related to network measure, gender, and state.

We found that the degree of long-range temporal correlation
could be attributed to specific topological aspects of the dynamic
functional networks in that HC(2) was found significantly
lower than HD(2) and HE(2). This pattern was present almost
universally in all frequency bands as well as in broadband EEG
data. A very similar pattern regarding the H(2) of the same
dynamic graph theoretical measures (D, C, and E) was reported
previously in Racz et al. (2018), where multifractal nature of
DFC in the pre-frontal cortex was investigated using fNIRS
imaging. Findings of the present study and those of Racz et al.
(2018) suggest therefore that this pattern is a genuine feature
of FC dynamics as it can be captured in different imaging
modalities across a broad range of spatio-temporal scales.
In 1H15, significant differences related to network measure
appeared prominently only in the delta band, where 1HC15 was
significantly lower than 1HD15 and 1HE15. These findings are
also consistent with the similar results of Racz et al. (2018), where
1H15 showed comparable differences regarding the applied
network measures (1HD15 > 1HC15 < 1HE15). As in this
study, this measure-related pattern was found only in the delta
band with basically no significant measure-related differences
in higher frequency bands. As Racz et al. (2018) investigated
spontaneous brain activity in the 0.01–0.1Hz range, these results
may apply for lower-frequency brain activity, only.

Multifractal time series analysis characterizes the time-
dependent scaling in a temporal process, that can emerge from
intermittent periods with high variance (Ihlen and Vereijken,
2010). In this study, employing three graph theoretical measures–
each capturing different aspects of network structure and
topology–all were shown fluctuating in a multifractal manner,
although to a different extent. The true multifractal scaling
of all three network topological measures indicates that their
scaling is in fact a local, time-dependent property. This implies
that the temporal evolution of dynamic resting-state connection
networks was interspersed with short periods of high variance
in their segregation and integration, suggesting that these
reorganization events leave their impact on localized and global
information transfer alike (as captured in C and E, respectively).
Moreover, the differences observed in theH(2) and 1H15 values
of these measures—at least in the delta band—imply that local
and global information processing is affected differently: the
lower1HC15 suggesting amore “balanced” temporal structuring
of localized activity, while global network integration (related
to fast information transfer between distant network sites) and
overall “wiring cost” is associated with larger variability in scaling.

The scale-free nature of global DFC has been demonstrated
earlier by Stam and de Bruin (2004). In that study, DFC was
captured in global synchronization of EEG signals (as acquired by
averaging SL time series) and fractal dynamics were characterized
by the monofractal Hurst exponent estimated with Detrended
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FIGURE 5 | Topology of global long-range correlations in dynamic functional connections across the brain cortex. In all frequency bands as well as in broadband EEG,

connections between frontal and prefrontal regions exhibit higher, while occipito-frontal connections lower H(2) values.

Fluctuation Analysis. The authors found an increased Hurst
exponent in eyes closed condition in the alpha and beta bands
(Stam and de Bruin, 2004). As weighted Density is in fact the
averaged connectivity strength (captured in SL), our current
observations regarding the same difference–i.e., increased H(2)
in the alpha and beta bands–are in agreement with those of Stam
and de Bruin (2004) thereby extending their validity to Clustering
Coefficient and Efficiency. The transition from eyes closed to eyes
open state is often associated with desynchronization in cortical
activity [Berger (1929), for a review see Barry et al. (2007)],
with lower H(2) values reflecting on the dominance of rapid
fluctuations (Stam and de Bruin, 2004). The lower H(2) values
found in EO condition for all three networkmeasuresmay indeed
reflect the large-scale network reorganization affecting both local
and global information flow (Rubinov and Sporns, 2010; Preti
et al., 2017).

In a more recent study, Van de Ville et al. (2010) reported that
EEG microstates also exhibit scale-free dynamics. Nevertheless,
the authors did not find any difference in the scaling between
various statistical moments as EEG microstates were found
fluctuating in a strictly monofractal manner. However, this
absence of MF dynamics could be the consequence of the applied
analysis method. Specifically, it has been shown previously, that
brain electrical activity fluctuates between only four different
microstates in resting state (Lehmann et al., 1998). Van de Ville

et al. (2010) used bipartitioning between these four microstates to
capture microstate transitions, and confirmed fractal dynamics
in all possible bipartitioning scenarios independently from
the applied partition itself (Van de Ville et al., 2010). The
random walk time series analyzed by Van de Ville et al.
(2010) were acquired by cumulatively summing the bipartition
label sequences (consisting of −1 and +1 values) of the EEG
microstates. These are reminiscent of the sign time series
obtained from an increment series (Ashkenazy et al., 2001, 2003),
that can be obtained as the sign sequence of the local derivatives
of a fluctuating signal. Sign time series were indeed shown to be
related to the monofractal character (Gomez-Extremera et al.,
2016), while scaling in the magnitude time series acquired as
the absolute value sequence of local derivatives was reported
to be related to multifractality of a dynamic process (Gomez-
Extremera et al., 2016; Bernaola-Galvan et al., 2017). Our results
show that dynamic graph theoretical analysis can capture the
dynamics of FC in a more detailed fashion than EEGmicrostates,
allowing for the unfolding of finer temporal structuring such as
multifractal scaling.

Gender-related differences in DFC has also been reported
previously (Yaesoubi et al., 2015a,b). Yaesoubi et al. (2015b)
investigated the simultaneous occupation of different FC states
(i.e., state combinations termed as “combo states”) and showed
that males occupy a larger fraction of all possible combo states
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FIGURE 6 | Topology of the degree of multifractality in dynamic functional connections across the brain cortex. Connections of the delta band showed a markedly

different topology from the rest of the frequency bands. Also, no particular topological pattern was apparent in connections estimated on broadband EEG.

than females. Since spatio-temporally overlapping events were
suggested as a possible origin of multifractal dynamics in a
complex system (Lima et al., 2017), this may indeed be the
underlying reason of the higher degree of multifractality of
DFC observed in males in the alpha band. We also found
higher autocorrelation i.e., higher H(2) values in male subjects
in the delta band. It is well-known, that functional connectivity
correlates well with structural (anatomical) connectivity (SC)
(Greicius et al., 2009; Honey et al., 2009) even when investigated
on multiple time scales (Honey et al., 2007). Our present findings
showed that in some cases gender can have an influence on FC
dynamics, which could well be–at least in part–to gender-related
differences in brain anatomical connectivity (Ingalhalikar et al.,
2014).

Finally, 1/f β i.e., scale-free neurodynamics were suggested
in numerous studies as an indication of an underlying self-
organized critical state of the brain (Linkenkaer-Hansen et al.,
2001; Stam and de Bruin, 2004; Stam, 2005; Kitzbichler et al.,
2009; Chialvo, 2010; Van de Ville et al., 2010; Tagliazucchi
et al., 2012a; Racz et al., 2018). Moreover, it has been reported
that not only mono- but indeed multifractal scaling could also
occur in a three dimensional system at a critical state (Lima
et al., 2017). The concept of self-organized criticality (SOC) as
introduced by Bak et al. (1987) refers to the intrinsic property of
a dynamic system constantly approaching a critical state without
the fine tuning of an external “control parameter.” A critical

state—where local perturbations are allowed to dissipate across
all spatial and temporal scales in the system—usually appears
near (first- or secondorder) phase transitions. Therefore, SOC
is often considered as an ideal state of the brain in which fast
adaptation to changes in the external or internal environment can
be effectively achieved by rapid large-scale reorganization (Van
de Ville et al., 2010). The scale-free–and indeed, multifractal–
nature of the DFC measures reported in this study may therefore
be considered evidencing yet another implication of the self-
organized critical nature of resting-state brain activity.

Multifractal Dynamics of Individual
Functional Connections
We showed that DFC networks exhibited multifractal dynamics
not only in their global graph theoretical parameters, but in their
dynamic functional connections, too, as captured in the varying
connectivity strengths between the nodes. This property was
most prevalent in the delta, theta and alpha band connections,
while slightly lower fraction of beta and gamma band as well as
broadband EEG connections was proven as true multifractals.

Given the moderate spatial resolution in this study, instead
of focusing on individual differences between inter-regional
connections, we rather investigated if dynamic functional
connections showed any global topology in theirH(2) and1H15
values and if there was a relationship between them. In all
frequency bands as well as in broadband EEG data we found a
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FIGURE 7 | Cross-correlation between z(H(2)) and z(1H15) of individual connections. Panels are scatter plots of all connections (14*13/2) of all subjects (48). The

Pearson correlation coefficient (r) is displayed in the lower right corner of each panel. Significant correlation is indicated by red regression line, while the black

regression line for broadband EEG indicates that the correlation was indistinguishable from spatial surrogates.

characteristic topology in the long-term autocorrelation of FC
strength, as short-range connections between the frontal and
pre-frontal areas tend to have higher H(2) values than long-
range connections linking the same regions to the occipital
and parietal cortex. A very similar topology regarding the
degree of multifractality captured in 1H15 was found in the
theta, alpha, beta, and gamma bands. On the contrary, the
topological pattern was the opposite in the delta band: long-
range connections linking occipital regions with mostly the
frontal and pre-frontal regions showed higher 1H15 values than
those linking nearby regions prominently again the frontal and
pre-frontal areas. This inverse relationship in the delta band
could be captured in a strong negative correlation between H(2)
and 1H15 values. However, in the higher frequency bands
the topology of 1H15 values were similar to those of H(2)
thus resulting in strong positive correlation between the two.
No correlation was found between the two MF measures in
broadband EEG connections. It should be emphasized that a
relationship between H(2) and 1H15 is indeed non-trivial, as
thesemeasures capture two separate properties of themultifractal
spectrum (i.e., spectral center and spectral width) (Theiler,
1990; Kantelhardt et al., 2002; Kantelhardt, 2009; Mukli et al.,
2015).

It has been shown in dynamic processes, that monofractal
scaling [captured in H(2) of the scaling function or the center
of the multifractal spectrum] is attributed to linear properties,
while the degree of multifractality [as assessed equivalently
either by 1H15 or the multifractal spectrum width] correlates
well with the degree of non-linearity (Gomez-Extremera et al.,
2016; Bernaola-Galvan et al., 2017). In addition non-linearity
in a power-law correlated signal can also be well estimated
by the long-term autocorrelation of its magnitude time series
(Ashkenazy et al., 2003; Schmitt et al., 2009). Multifractality
often emerges from the presence of intermittent periods of
higher variance (Ihlen and Vereijken, 2010). Accordingly, from
the topological pattern observed in broadband EEG and in the
lower frequency range (i.e., delta band), it is apparent that
connections between nearby regions express a lower degree of
non-linearity and they are more linearly autocorrelated (however
in most cases still non-linear as well), while on the contrary,
the opposite is true for long-distance connections where linear
autocorrelation is weaker and the dynamics appear more non-
linear. Therefore our results are in good agreement with—
and presumably reflect the same phenomenon as—previous
findings demonstrating the non-linear nature of neuronal
synchronization (Stam et al., 2003) and intermittent periods of
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high synchronization between neuronal cell assemblies (Friston,
2000). Also, this is in line with the fact that brain activity is
generally scale-free on the large-scale level while becoming more
synchronized when observed smaller spatial scales (Buzsaki,
2006).

Dynamic synchronization levels mainly capture the joint
activity of neuron populations of the regions of interest.
The fractal and multifractal nature of individual connections
therefore may also indicate that a possible critical state of brain
activity may not only be present on a global level, but also
on smaller spatial scales, too. In a SOC simulation using a
modified version of the classic sand pile model, Mukli et al.
(2018) investigated the effect of the size and connection density
of the cellular automata on the multifractal properties of their
dynamics, which was captured in the total number of sand
grains resident in the system at a given moment. Their results
demonstrated, that with (independently) increasing system size
or connection density, both H(2) and 1H15 of the system
dynamics increased (Mukli et al., 2018). This phenomenon
is very reminiscent of the positive correlation found in this
study between H(2) and 1H15 of individual connections in
the higher frequency bands. Therefore, higher H(2) and 1H15
values of a dynamic connection may well reflect that the
joint activity between the two regions involved larger and/or
more densely interconnected neuronal populations. Also, the
frequency range of network oscillations is constrained by the
networks size because most neuronal connections are local and
thus yield high-frequency oscillations (Braitenberg and Schüz,
2013). Accordingly, slower oscillations can only be produced
when larger neuronal cell assemblies are involved (Buzsaki and
Draguhn, 2004). Higher H(2) values indicate the dominance
of slow fluctuations thus suggesting the involvement of large
neural populations. These considerations are well in line with the
results of this study regarding that the highest H(2) and 1H15
values were found in connections of the frontal and prefrontal
cortex; regions that are both anatomically and functionally well
connected and form a high-level association cortex with diverse
functionality (Kandel, 2013). On the contrary, lower values
were found between both anatomically and functionally distant
regions.

Nevertheless the inverse relationship betweenH(2) and1H15
found in the delta band raises some questions. Delta band activity
is not prominent in awake state during physiological conditions,
however several studies demonstrated the critical nature of brain
dynamics during sleep stages (Lo et al., 2002, 2004, 2013). It
also has been shown recently (using an alternate DFC approach
termed time delay stability, TDS), that different sleep stages–that
are known to be dominated by specific EEG frequency bands, as α

oscillations are most prominent during quiet wake and rapid eye
movement, while θ and δ fluctuations usually characterize light-
and deep sleep, respectively–exhibit FC topologies characteristic
to sleep stage and frequency band as well (Bartsch et al., 2015; Liu
et al., 2015). Therefore, sleep would probably be a better setting
for further investigating the multifractal and critical nature of
delta band connections—and their relation to other frequency
bands—that is evidently beyond the scope of this present study.

Limitations, Future Perspectives
Multifractal analysis could reveal relevant information at the
global (network) and the local (connection) levels, that otherwise
may remain hidden in static and also in most dynamic functional
connectivity approaches. MF analysis of DFC carries potential
for future applications both in basic science and clinical fields,
however one has to consider some methodological difficulties
with this approach. For a reliable numerical estimation of fractal
and/or multifractal parameters, a signal length of at least a
few thousand data points is desired, as well as long-enough
measurement time and high temporal resolution so that the
signal could represent a sufficiently broad range of temporal
scales (Eke et al., 2002; Ihlen, 2013).While these prerequisites can
be readily met with imaging modalities such as EEG, fNIRS, or
MEG, still major drawbacks remain owing to their lower spatial
resolution, their lack of exact source localization and the fact
that these techniques cannot access subcortical regions. These
limitations can be partly overcome by using fMRI—with spatial
normalization even allowing for exact comparison between
separate studies—however at the expense of lower temporal
resolution and limited signal length, both considerably affecting
the applicability of multifractal analysis (Eke et al., 2012). As
these methods–e.g., EEG and fMRI–can provide complementary
information, the importance of simultaneous EEG-fMRI (and/or
fNIRS-fMRI) measurements is indeed crucial in revealing the
relationship between EEG-DFC and fMRI-DFC so that DFC
could be investigated with high temporal resolution and exact
spatial localization, alike.

Although in this study the whole brain cortex is sampled,
the spatial resolution is still fairly limited. Using a higher
spatial resolution method would not only benefit from a more
detailed sampling of brain activity, but would also allow for
calculating more complex network measures—i.e., those related
with modularity, centrality or network motifs being more
complex than triangles—that could reveal even more details on
functional brain organization. Also, from Table 1 it is apparent,
that gamma band activity may not be well represented in the state
space during SL calculation. This is a limitation brought about by
the sampling frequency that calls for greater caution when results
regarding the gamma band are evaluated.

DFC analyses carry great potentials not only in basic research
leading to a better understanding of brain functions, but also in
the clinical field, as several studies already demonstrated their
applicability in neuropsychiatric diseases such as schizophrenia
(SZ) (Sakoglu et al., 2010; Calhoun et al., 2014; Damaraju
et al., 2014) or autism (Price et al., 2014). Thus dynamic
graph theoretical analyses similar to the one presented in this
study could prove a useful and potentially powerful tool when
investigatingDFC in clinical settings.When analyzing theDFC of
the default mode network with fMRI imaging in SZ patients, the
same dynamic graph theoretical measures as used in this study
were found to be fluctuating around a lower average value than in
healthy controls (Du et al., 2016). Moreover in a whole brain DFC
study on SZ patients, in addition to the same results it was also
demonstrated that D(t), C(t), and E(t) showed less variance than
in healthy controls (Yu et al., 2015). Results of the present study
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clearly show, that the standard deviation (i.e., the square root of
variance) of graph theory metrics depends on the observation
scale and that second order statistics alone are insufficient to fully
characterize the network dynamics.Multifractal analysis however
is suitable to capture such features, therefore may serve as a
more sensitive tool in distinguishing physiological states from
pathological conditions based on their dynamic graph theoretical
measures.

Finally, in a recently established field of biological systems
science termed network physiology (Bashan et al., 2012; Ivanov
and Bartsch, 2014), the dynamic interactions of local neural
activity with several other physiological subsystems (e.g., the
cardiac and respiratory system) were analyzed (Bartsch and
Ivanov, 2014; Bartsch et al., 2015; Lin et al., 2016). These studies
showed that during different physiological states such as sleep
stages, the interactions between the elements of this physiological
network change significantly. As functional connectivity was
also shown to alter during different physiological conditions
(Horovitz et al., 2009; Liu et al., 2015; Racz et al., 2017), a dynamic
graph theoretical approach may contribute to this emerging field
by providing a way for capturing coordinated states of neural
activity so that its interactions with other functions of the human
body could be further analyzed.

CONCLUSIONS

In this study, we showed that dynamic global functional
connectivity of the brain—when investigated by EEG mapping
and captured in dynamic graph theoretical measures—fluctuates

according to a multifractal temporal pattern. Our results
revealed that several network topological aspects exhibit
different characteristics. Moreover, the dynamic functional
connections assembling these networks showed multifractal
dynamics themselves. We found a characteristic topology
in both mono- and multi-fractal measures with a positive
correlation between them in the higher frequency bands, while
anticorrelation in the delta band. Our results suggest that
multifractality is indeed a fundamental property of both global
and local (i.e., individual) DFC with specific global and local
attributes to network topology and anatomical localization,
respectively. Our findings are in support of a possible self-
organized critical nature of resting-state brain activity. We
propose that multifractal analysis can provide a more detailed
description of global and local connectivity dynamics than most
methods applied in the field, and it could serve as a valuable tool
for a better characterization of healthy and pathological brain
functions.
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The quantification of brain dynamics is essential to its understanding. However, the brain

is a system operating on multiple time scales, and characterization of dynamics across

time scales remains a challenge. One framework to study such dynamics is that of fractal

geometry; and currently there exist several methods for the study of brain dynamics

using fractal geometry. We aim to highlight some of the practical challenges of applying

fractal geometry to brain dynamics—and as a putative feature for machine learning

applications, and propose solutions to enable its wider use in neuroscience. Using

intracranially recorded electroencephalogram (EEG) and simulated data, we compared

monofractal and multifractal methods with regards to their sensitivity to signal variance.

We found that both monofractal and multifractal properties correlate closely with signal

variance, thus not being a useful feature of the signal. However, after applying an

epoch-wise standardization procedure to the signal, we found that multifractal measures

could offer non-redundant information compared to signal variance, power (in different

frequency bands) and other established EEG signal measures. We also compared

different multifractal estimation methods to each other in terms of reliability, and we found

that the Chhabra-Jensen algorithm performed best. Finally, we investigated the impact of

sampling frequency and epoch length on the estimation of multifractal properties. Using

epileptic seizures as an example event in the EEG, we show that there may be an optimal

time scale (i.e., combination of sampling frequency and epoch length) for detecting

temporal changes in multifractal properties around seizures. The practical issues we

highlighted and our suggested solutions should help in developing robust methods for

the application of fractal geometry in EEG signals. Our analyses and observations also aid

the theoretical understanding of the multifractal properties of the brain and might provide

grounds for new discoveries in the study of brain signals. These could be crucial for the

understanding of neurological function and for the developments of new treatments.
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1. INTRODUCTION

Brain dynamics are non-linear and are often considered as one of
the most complex natural phenomena, involving several different
and interacting temporal scales. For example, fast electric activity,
slower chemical reactions, and even slower diffusive processes
have been observed in the brain. Interestingly, brain dynamics
have also been characterized as “scale-free” (Stam and de Bruin,
2004; Fraiman and Chialvo, 2012), meaning that certain signal
properties stay preserved across different time scales. To describe
and quantify such time scale invariant dynamics, the framework
of fractal geometry is often applied (Werner, 2010).

Fractals have two specific properties: they consist of parts
that are similar to the whole—termed self-similarity, and
they have a fractional Hausdorff-Besicovitch dimension, also
called fractal dimension (FD) (Mandelbrot, 1982; Feder, 1988;
Falconer, 2003). Fractal geometry has been applied to the
study of temporal dynamics, such as human brain dynamics
in health (Lutzenberger et al., 1995; Pereda et al., 1998; Eke
et al., 2000, 2002; Linkenkaer-Hansen et al., 2001; Bullmore
et al., 2003, 2009; Gong et al., 2003; Acharya et al., 2005;
Bassett et al., 2006, 2010; Hsu et al., 2007; Van De Ville
et al., 2010; Papo et al., 2017) and disease (Esteller et al.,
1999; Gómez et al., 2009; Zappasodi et al., 2014), providing
intriguing results. For example, FD has been shown to
vary prior to and during epileptic seizures (Esteller et al.,
1999).

Objects adequately characterized by a single fractal dimension
are referred to as monofractals. However, the fractal formalism
has to be extended to capture certain phenomena that cannot
be described by a single fractal dimension; these are called
multifractals (Stanley et al., 1999). Multifractal objects can be
conceived as decomposable into different subsets or parts, each
characterized by its own distinct fractal dimension. The subsets
are more precisely described as different statistical moments, and
a multifractal is an object where the fractal dimension depends
on the statistical moment being examined (Mukli et al., 2015).
Thus multifractal objects are often described by a spectrum,
showing the subsets/statistical moments and their corresponding
fractal dimensions. Some natural phenomena exhibit multifractal
patterns in space, for example, turbulence (Meneveau and
Sreenivasan, 1987; Chhabra and Jensen, 1989), soil composition
(Miranda et al., 2006; Zeleke and Si, 2006; Vázquez et al., 2008;
Paz-Ferreiro et al., 2010a,b); and in time, for example heart
beat patterns (Ivanov et al., 1999), and human physical activity
(França et al., 2019).

There is also considerable evidence that brain dynamics are

multifractal (Suckling et al., 2008; Ihlen and Vereijken, 2010;
Ciuciu, 2012; Zorick and Mandelkern, 2013; Zhang et al., 2015;
Papo et al., 2017; Xue and Bogdan, 2017; Racz et al., 2018).
At the very least, additional statistical moments appear to be

required, to characterize such dynamics (Fraiman and Chialvo,

2012). Furthermore, it is known that interacting processes with
different time scales, similar to those observed in the brain, can
generate multifractal patterns (Argoul et al., 1989; Suckling et al.,
2008).

To measure the multifractal spectrum in brain dynamics,
Multifractal Detrended Fluctuation Analysis (MF-DFA)
(Kantelhardt et al., 2002) is currently the most used approach
(Ihlen, 2012; Zhang et al., 2015). However, more advanced
and potentially more stable estimation techniques have been
proposed, such as the Multifractal Detrended Moving Average
(Xu et al., 2017), and Chhabra-Jensen approaches (Chhabra and
Jensen, 1989). These techniques, to our knowledge, however,
have not yet been evaluated with brain signals. In addition, there
are several parameter choices to be made for the purpose of
the analysis. For example, to capture time-varying changes in
multifractal properties, the epoch length and sampling frequency
have to be chosen. These parameters may impact the multifractal
estimation (Eke et al., 2002), but, to date, have not been studied
systematically in the context of brain dynamics.

The biggest gap in the literature so far, however, is how
multifractal properties relate to existing time series signal
measures of brain dynamics (e.g., variance of the signal, band
power, etc.). A major concern is that complex methods of
analysis may not offer a significant advance over simpler,
already established methods—this is crucial to a putative
feature in machine learning applications, e.g., seizure prediction
or detection (Mormann et al., 2007; Freestone et al., 2015;
Brinkmann et al., 2016; Baldassano et al., 2017; Karoly et al.,
2017; Kuhlmann et al., 2018a,b; Varatharajah et al., 2018). For
example, in the analysis of the electroencephalogram of epileptic
seizures, complex methods were found to actually reproduce
patterns detected by simpler measures such as variance of the
signal (Martinerie et al., 2003; McSharry et al., 2003). It is
therefore, essential to understand how the (mono- and multi-)
fractal measures relate to more traditional measures, and if new
features can be obtained from the signal by applying a mono- or
multi-fractal formalism.

To summarize, there is a knowledge gap in three critical
areas: (1) which (multi)fractal characterization methodology
is best suited for brain signals? (2) what are the optimal
estimation parameters (e.g., in terms of recording epoch length)
of potentially time varying multifractal properties? (3) what
is the relationship between (multi)fractal properties and more
traditional and established time series signal measures? To
address these questions, we chose to analyse intracranially
recorded human electroencephalography (icEEG) data, due to its
high temporal resolution and high signal to noise ratio.

2. MATERIALS AND METHODS

To address the questions above, we will first outline four
experiments. We will then provide details on monofractal and
and multifractal estimation methods, and also show how time
series data with known mono- and multifractal properties can be
generated to test the performance of the estimation methods. To
test the multifractal measures on real-life brain signals, we then
applied our analysis on human intracranial EEG. Thus, finally,
we will summarize the EEG datasets used in this work.
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The original scripts used in this work are available in
https://github.com/yujiangwang/MultiFractalEEG. In addition,
the following software packages were used: MATLAB; R
(R Core Team, 2017); and ggplot2, R.matlab, reshape2,
PerformanceAnalytics, and RColorBrewer (Wickham, 2007,
2009; Neuwirth, 2014; Peterson and Carl, 2014; Bengtsson, 2016).

2.1. Experiments
2.1.1. Experiment 1: Monofractal Estimation With

Respect to Changing Signal Variance
Estimation of monofractal properties has been applied to
EEG signals in the past with varying and often contrasting
results (Esteller et al., 1999; Li et al., 2005). A particular
concern is that complex measures may simply reflect simple
properties of the signal (Martinerie et al., 2003; McSharry
et al., 2003). Hence, in our first analysis, we focus on
the relationship between monofractal measures and signal
variance. For this, we used a simulated monofractal time
series (termed fractional Brownian motion, or short fBm)
with its standard deviation modulated by a modified ramp
function.

The fBm was simulated with a Hurst exponent H = 0.7 and
a modulating function M (described in more detail later and in
Appendix A in Supplementary Material) and split into 1,800
1,024-sample epochs. We estimated the monofractal dimension
of this simulated signal using the Higuchi and DFA methods. To
assess the impact of signal variance, we have also tested the effect
of epoch-based standardization. To ensure that our effects were
not simply an artifact generated by the fBm, we also repeated the
analysis on one exemplary icEEG data segment.

2.1.2. Experiment 2: Multifractal Estimation Stability
In order to evaluate the stability of multifractal properties in
time, we generated a time series exhibiting stable multifractal
properties over time using the p-Model. The time series
was then evaluated using an epoch-based approach with the
three estimators: MF-DFA, MF-DMA, and Chhabra-Jensen. The
stability of the estimator can then simply be assessed as the
temporal variability of its output.

2.1.3. Experiment 3: Multifractal Estimation of Human

EEG and Its Potential Added Value
To assess whether the chosen multifractal metrics contribute
any non-redundant features about the signal in addition to
more established signal metrics, we analyzed human EEG
signals recorded intracranially. Again, we used an epoch-based
approach, and we compared the multifractal metrics to a number
of conventional signal metrics (mean, standard deviation, line
length, bandpower) on each epoch. The similarity between
signal features was evaluated using Pearson correlation and
Mutual Information (Guyon and Elisseeff, 2003) (the code is
available at https://github.com/robince/gcmi) (Ince et al., 2017).
Furthermore, monofractal metrics were also included in this
comparison, to further demonstrate the advantages in applying
a multifractal over monofractal approaches.

2.1.4. Experiment 4: Impact of Sampling Frequency

and Epoch Length on Multifractal Estimation of

Human EEG
Finally, we also evaluated the impact of the multifractal
estimation parameters in the characterization of a seizure.
We used intracranial EEG signals recorded from four patients
undergoing pre-surgical planning, the signals were originally
sampled at 5,000 Hz. For this analysis, down-sampled versions
were evaluated with epochs of different sizes. To assess the effect
of sampling frequency, we down-sampled the signal to 4,000,
3,000, 2,500, 2,000, 1,000, 800, 750, 600, 500, 400, 300, and 250
Hz. For each sampling frequency, we evaluated different epoch
sizes (1,024, 2,048, 4,096, 8,192, and 16,384 points).

We defined a difference in multifractal spectrum width (1α†)
during the seizure compared to the background as the effect size
(Cohen’s D) between the ictal and interictal periods:

D =
< 1α

†

ictal
> − < 1α

†

interictal
>

s(1α
†

interictal
)

(1)

where < 1α† > represents the mean and s denotes standard
deviation.

2.2. Fractal Dimension Estimation
To estimate the monofractal properties from a time series, we
used two established estimation approaches: Higuchi method
(Higuchi, 1988) and Detrended Fluctuation Analysis (Peng et al.,
1994). These methods are widely applied in the literature and
aim to capture the features of a time series in a single scaling
exponent.

Mandelbrot (1982) defined fractals as self-similar structures
with fractal dimensions (FD) that are between their topological
and embedding dimensions T and E, and an established
relationship of FD+H = E, where E = T+1, T = 1 in the case of
a time series, and H is the Hurst exponent. When assuming this
self-similarity, we can measure both FD and H in our EEG time
series as alternative ways of estimating the fractal dimension.

However, we also note that more generally, the fractal
dimension FD and the Hurst exponent H do not necessarily
reflect the same property of the time series (see Gneiting and
Schlather, 2004 for more details). Indeed, we empirically tested
the relationship between our estimated FD andH for an example
EEG time series and found that FD and H correlate with ρ =

−0.8, and their empirical relationship is FD = −0.86H + 2.74.
For our application in EEG time series, we conclude that FD and
H measure two related, but slightly different signal properties
[FD: a measure of roughness, H: a measure of long memory
dependency (Gneiting and Schlather, 2004)]. Note that this of
course also depends on how the FD and H are estimated exactly.
Nevertheless, for our paper, we will apply these two established
methods to estimate FD and H, respectively. We will assess the
properties of bothmethods in the context of EEG, to demonstrate
that our conclusions generalize to both types of measures.
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2.2.1. Higuchi Method
The Higuchi method measures the fractal dimension FD of a
time series. It consists of constructing series with elements of an
original time series and measuring their lengths (Higuchi, 1988).
Given a time series with N time points X(1),X(2), ...,X(N), the
Equation (2) shows a rule for reconstructing smaller time series
with elements of the original recording. The lengths of the time
series can be assessed according to Equation (3). The brackets ⌊⌋
represent Gauss’ notation, i.e., the rounded integer of the division
(Higuchi, 1988). The variable d represents a down-sampling
factor of the original time series.

X(m),X(m+ d),X(m+ 2d), ...,X

(
m+

⌊
N −m

d

⌋
d

)
where

m = 1, 2, ..., d (2)

Lm(d) =

{
∑[(N−m)/d]

i=1 |X(m+ id)− X(m+ (i− 1)d)|
N − 1

⌊(N −m)/d⌋d

}

d
(3)

If the average curve length < Lm(d) >m over d sets follows a
power law, according to Equation (4), the time series has scaling
properties, with a fractal dimension FDHig .

< L(d) >∝ d−FDHig (4)

The routine used in the estimation of Higuchi fractal dimension
FD is available at https://uk.mathworks.com/matlabcentral/
fileexchange/50290-higuchi-and-katz-fractal-dimension-
measures.

2.2.2. Detrendred Fluctuation Analysis
The Detrended Fluctuation Analysis (DFA) method is an
alternative method (Peng et al., 1994, 1995), which estimates
the Hurst exponent H in time series data instead of the fractal
dimension.

The method consists of the following steps: Initially the time
series with N time points X(1),X(2), ...,X(N) is integrated as
follows:

y(k) =

k∑

i=1

(X(i)− 〈X〉) (5)

Where X(i) represents the i − th element of the time series and
< X > denotes the mean over the whole recording. The second
step consists of dividing the time series intoNl windows of length
l, then the mean square root of the integrated series is subtracted
from the local trend, in every window (Peng et al., 1995), as
shown in Equation (6).

F(l) =

√√√√ 1

Nl

Nl∑

k=1

[y(k)− yl(k)]2 (6)

The local trend (yl(k)) is obtained from a linear regression over
the time series in the window, and number Nl represents the
total number of windows. In the following step, Equation (6) is
obtained for several window lengths (l). The relation between
F(l) and l is described by a power law, according to Equation (7),
where H is the Hurst exponent.

F(l) ∝ lH (7)

The code used here is available in the Physionet repository
(https://www.physionet.org/physiotools/dfa/) (Peng et al., 1995;
Goldberger et al., 2000).

2.3. Multifractal Spectrum Estimation
In this section, we describe three multifractal spectrum
estimators: Multifractal Detrended Moving Average (Gu and
Zhou, 2010), Multifractal Detrended Fluctuation Analysis
(Kantelhardt et al., 2002; Ihlen and Vereijken, 2010; Ihlen, 2012),
and Chhabra-Jensen (Chhabra and Jensen, 1989), as these are
the most established methods used in the literature.

Multifractal properties are represented as spectra (Figure 1),
where essentially the fractal scaling properties, or more precisely
Hausdorff dimensions [often noted as f (α)], are measured over
a range of different singularities (α). Formally, the singularity
spectrum is a function that describes the Hausdorff dimension
of subsets of the time series X(t) with a specific Hölder exponent,
according to:

f (α) = DF{X(ts),H(X(ts)) = α} (8)

Essentially, f (α) is the Hausdorff dimension (DF) of the subset
(ts) of the time series X(ts) that has a the Hölder exponent
α (van den Berg, 1999; Murcio et al., 2015). A definition
of the Hausdorff dimension is available in Appendix D in
Supplementary Material.

To characterize the function, or singularity spectrum f (α),
usually, the width (1α) and height (1f )—differences of
maximum and minimum values of α and f (α), respectively—of
the spectrum are used. 1α indicates the range of singularities
present in a time series, this is also the most commonly used
measure of howmultifractal a time series is. The spectrum height
1f indicates the range of Hausdorff dimensions present in the
time series. See Figure 1 for an exemplary singularity spectrum
plot.

2.3.1. MF-DMA
Multifractal DetrendedMoving Average (MF-DMA) is one of the
most commonly used methods for the estimation of multifractal
measures. The method of calculation consists of the following
steps (Gu and Zhou, 2010): Given time series X(t) with time
points X(1),X(2), ...,X(N), the cumulative sum time series is
obtained:

y(t) =

N∑

t=1

X(t) (9)
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FIGURE 1 | Multifractal singularity spectrum with a characteristic parabolic

shape. The spectrum width (1α) and height (1f ) measures are indicated by

the arrows.

We then calculate the moving average over time windows of
length l:

ỹ(t) =
1

l

l−1∑

z=0

y(t − z) (10)

A detrended version of the signal is obtained by the subtraction:

ǫ(i) = y(i)− ỹ(i) (11)

The resulting series is then divided in Nl disjoint sets of points of
size l and a root-mean-square function is obtained for each set ν

via:

Fν(l) =

{
1

l

l∑

i=1

ǫ2ν (i)

} 1
2

(12)

A generalized qth-order overall fluctuation function can be
obtained from:

Fq(l) =

{
1

Nl

Nl∑

ν=1

Fν(l)
q

} 1
q

q 6= 0 (13)

and

ln F0(l) =
1

Nl

Nl∑

ν=1

ln Fν(l) for q = 0 (14)

It is possible to find a power-law relationship between Fq(l) and
the window length, or scale l by:

Fq(l) ∝ lα(q) (15)

The multifractal “mass exponent” (Biswas and Cresswell, 2012)
can be defined as:

τ (q) = qα(q)− Df (16)

where Df is the fractal dimension of the support measure. For a
single-channel time series, Df = 1. The spectrum, f (α), can be
obtained with a Legendre transform (Gu and Zhou, 2010):

α(q) =
dτ (q)

dq
(17)

f (q) = qα − τ (q) (18)

It is important to note that the Legendre transform is known
to cause problems in multifractal spectra derivations if some
heterogeneities are present in the signal, as has been reported
elsewhere (Chhabra and Jensen, 1989; Mukli et al., 2015).

2.3.2. MF-DFA
The Multifractal Detrended Fluctuation Analysis (MF-DFA)
method is essentially a generalization of the DFA approach
(Kantelhardt et al., 2002; Ihlen, 2012). The time series is first
rebuilt according to Equation (5).

It is then divided into Nl = N
l
non-overlapping epochs ν

of length l. The variance of the detrended series is calculated as
follows:

F2ν(l) =
1

l

n∑

k=1

(y((ν − 1)l+ 1)− yv(k))
2 (19)

where yν represents the fitting in the epoch ν obtained via linear
regression. The overall q-th order fluctuation functions can be
obtained as:

Fq(l) =

{
1

Nl

Nl∑

ν=1

(F2ν(l))
q
2

} 1
q

(20)

A log-log plot of Fq(l) vs. l for different values of q should
present a linear curve defined by the power law in Equation
(15). Similarly to the MF-DMA method, the multifractal scaling
exponent can be defined as in Equation (16) and the spectrum
f (α) can be determined in the same way as in the MF-DMA
approach.

2.3.3. Chhabra-Jensen
Multifractal spectra can be obtained in amore direct way, without
the need for the Legendre transform using the Chhabra-Jensen
(CJ) method (Chhabra and Jensen, 1989; Miranda et al., 2006;
Zeleke and Si, 2006; Vázquez et al., 2008; Paz-Ferreiro et al.,
2010a,b; Murcio et al., 2015; Xu et al., 2017; França et al.,
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2019). Considering a time series as a distribution over time, the
approach consists of calculating a family of generalized measures
by covering the time series with windows. These are probabilistic
measures with an emphasis factor q that accentuates different
singularities depending on its value. More singular regions are
emphasized by q > 1 whereas less singular regions will have a
higher weight with q < 1 (Chhabra and Jensen, 1989).

First, we define:

µi(q, l) =
Pi(l)

q

∑
j Pj(l)

q
(21)

where Pi(l) represents the cumulative probability of a window i.
l corresponds to the size of the window in which the generalized
measures are obtained. The window epochs are indexed by the
variables i and j. Then the multifractal spectra can be obtained
directly from:

α(q) = lim
l→0

∑
i µi(q, l) log Pi(l)

log l
(22)

and

f (q) = lim
l→0

∑
i µi(q, l) logµi(q, l)

log l
(23)

A numerical approximation to the equations above is provided by
the measuresMα andMf functions in Equations (24) and (25).

Mα =
∑

i

µi(q, l) log Pi(l) (24)

Mf =
∑

i

µi(q, l) logµi(q, l) (25)

α and f (q) can then be obtained as the slopes by regressing these
two measures against the scales l:Mα ∼ l andMf ∼ l.

The algorithmic summary of the Chhabra-Jensen method
consists of the following steps:

• The algorithm has as input the time series, a range of q values
to which the spectrum will be evaluated, and window sizes l
that vary in a dyadic scale.

• The time series is divided into non-overlapping epochs of
length l and the generalized measures are estimated according
to Equation (21).

• The measures Mα and Mf are obtained from the generalized
measures.

• α and f (q) in Equations (22) and (23), respectively, are
obtained with a linear regression procedure: log(Mα) is
regressed against − log(l) and log(Mf ) is regressed against
− log(l), they give α and f respectively as the slopes.

• A rejection criterion is also used, where all q exponent values
with R2 < 0.9 in the linear regression are not considered.

The code used in this study to calculate the multifractal
spectrum is available at: https://github.com/lucasfr/chhabra-
jensen. A flow-chart diagram of the algorithm is included
in the repository above and in Appendix Figure E1 in
Supplementary Material.

2.4. Data
2.4.1. Simulating Fractal Time Series: Modulated

Fractional Brownian Motion
To fully test methods of estimating the monofractal dimension
from time series, we computationally produced time series
that are known to be fractal (used for Experiment 1). We
generated fractional Brownian motion (fBm) (Mandelbrot and
Van Ness, 1968) profiles/time series using a novel modified
version of the Wood-Chan or circulant embedding approach
(Kroese and Botev, 2015; Shevchenko, 2015) that allow us to
change the variance of the signal over time, in order to evaluate
its influence on the fractal estimation. Our modulated fBM
approach uses a modulating function, M(t), which produces
a signal that has an amplitude varying over time. The details
of fBm and our Modulated fBm (ModfBm) are described in
Appendix A in Supplementary Material. The fBm time series
was simulated with Hurst exponent H = 0.7; the value
was chosen due to its persistent features, i.e., it generates
a time series with memory. The modulating function M(t)
used to modify the variance of the signal over time (see
also described in Appendix A in Supplementary Material) is
shown in Figure 2C. Using this method, we generated time
series to evaluate the impact of variance change on monofractal
estimators.

Note that there are alternative methods to generate
monofractal time series (Davies and Harte, 1987; Eke et al.,
2002; Mukli et al., 2015; Nagy et al., 2017). However, as our
aim was not to compare generative models of monofractal time
series, but rather simply demonstrate that the effects we observe
in EEG signals could be more general. We chose the above
mentioned approaches as example demonstrations.

2.4.2. Simulating Multifractal Time Series: p-Model
Similarly to the fBm, we also used a computational procedure
to generate time series that are known to be multifractal (for
Experiment 2) based on the p-model, which was developed to
reproduce features observed in turbulence experiments known to
have multifractal properties (Meneveau and Sreenivasan, 1987).
This is a simple model, having a single fraction p1 as its only input
and is often mentioned in literature (Meneveau and Sreenivasan,
1987, 1991; Lipa and Buschbeck, 1989; She and Leveque, 1994;
Consolini et al., 1996; Davis et al., 1997; Sreenivasan and Antonia,
1997; Kestener and Arneodo, 2003; Zhou, 2008; Pechlivanidis
and Arheimer, 2015). Briefly the algorithm works as follows:
From an interval of length L and height ǫL = c ( is a constant),
we create two segments of length L/2. Based on the input
parameter p1, it is possible to establish a second fraction in
which a second parameter will be given by p2 = 1 − p1.
The heights of each interval will thus be given by y = 2p1ǫL,
and y = 2p2ǫL, respectively. This procedure is repeated for
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each remaining segment, selecting left or right for p1 randomly
(Meneveau and Sreenivasan, 1987).

We employed the p-model in the simulation of a time
series profile with multifractal properties to be evaluated
by different estimation methods. It was generated with a
code available at http://www2.meteo.uni-bonn.de/staff/venema/
themes/surrogates/pmodel/ (Davis et al., 1997; Venema et al.,
2006). Using this algorithm, we generated time series to evaluate
the performance of different multifractal estimators with p = 0.4.
The value was rounded (for simplicity) from the figure used
elsewhere (p = 0.375) (Davis et al., 1997).

2.4.3. Human EEG Data
Intracranial EEG data segments extracted from recordings in
patients undergoing evaluation for epilepsy surgery were used
for Experiments 3 and 4. In order to evaluate the effect of EEG
signal variance change on multifractal properties (Experiment
3), we specifically looked for one recording, where the signal
variance changes dramatically over time. One such recording
was found in one patient (male, 28 years old, temporal lobe
epilepsy, recorded at the National Hospital for Neurology and
Neurosurgery (NHNN) (UCLH NHS Foundation Trust, Queen
Square, London, UK), patient ID: “NHNN1”) near one seizure
event. We used a 60-min recording segment around the epileptic
seizure for our analysis. The seizure onset and offset were marked
by expert clinicians, independent of this research project. Note
that we used this segment specifically due to the dramatic change
in signal variance, which actually occurred before the seizure and
evolves over about 15 min. We do not make conclusions about
the seizure event itself at this stage, but rather use this recording
as an example to illustrate a technical point about multifractal
property estimation from EEG.

To analyse the possible changes in multifractal properties
during seizures (Experiment 4), we used a different dataset:
Intracranial EEG from four subjects were retrieved from the
ieeg.org repository (http://www.ieeg.org/) (Wagenaar et al.,
2013): “I001_P005_D01,” “I001_P034_D01,” “I001_P010_D01,”
and “Study 040.” These subjects were chosen due to the high
sampling rate of their recordings (5 kHz), as we evaluated
the impact of sampling frequency on multifractal properties.
We extracted a 15-min segment around every seizure in each
patient for further analysis. In Experiment 4, we performed the
multifractal analysis on channels that were marked as seizure
onset channels. We show the results for one patient in the
main figure and the results for the remaining three patients
are shown in Appendix B in Supplementary Material. Further
information on the recordings is available in Appendix F in
Supplementary Material.

The anonymized data analyzed in this study were recorded
in patients undergoing evaluation for epilepsy surgery. iEEG.org
portal provided EEG data and ethical approval for analyzing the
data was provided by Mayo Clinic IRB (Brinkmann et al., 2009,
2016).

For NHNN data, the subject gave informed written consent,
and the study was approved by the Joint Research Ethics
Committee of the NHNN (UCLH NHS Foundation Trust)

and UCL Queen Square Institute of Neurology, Queen Square,
London, UK.

2.5. Pre-processing and Analysis of Time
Series
Unless stated otherwise, we have applied the same pre-processing
and analysis parameters to the computationally generated time
series and the human EEG recordings and performed the
fractal and multifractal estimations on 1,024-sample epochs. In
Experiments 1 and 2, we were specifically interested in the effect
of signal variance on the (multi) fractal estimation, and for
comparison we also subjected the EEG signal to a standardization
procedure, as follows:

x′ =
X− < X >

s
(26)

where < X > is the epoch mean and s the epoch standard
deviation of the time series X, resulting in a time series with zero
mean and unit standard deviation in each epoch.

The Chhabra-Jensen method requires as input a distribution
function over the domain of positive real numbers, which is
incompatible with EEG data which contain positive and negative
values. Hence, we propose the use of a sigmoid-transformation
here (Equation 27) to map the time series onto positive values,
in order to apply the Chhabra-Jensen method. Example sigmoid
functions and correspondingly transformed EEG signal are
shown in Appendix Figure E2 in Supplementary Material.

σ (X) =
1

1+ evX
(27)

The parameter v was chosen based on its effect on the
estimated multifractal width for three types of time series:
icEEG (NHNN1-channel 1), surrogate EEG (temporally shuffled
values of the original time series from NHNN1-channel 1)
and a simulated random series (with the same mean and
variance), across the range v = [0.1, 2.0] in steps of 0.1.
To find the optimal value for the parameter v, we needed
to balance the trade-off between the three series in terms of
presenting themost distinct1α values (Appendix Figure E3A in
Supplementary Material), while showing minimum distortion
on the recording, or maximum correlation with the original time
series (Appendix Figure E3B in Supplementary Material). We
chose v = 1 as an acceptable trade-off point. Finally, to compare
multifractal properties to classical EEG frequency band power,
we used the following definitions for the classical EEG frequency
bands: δ (0.5–4 Hz), θ (4–8 Hz), α (8–15 Hz), β (15–30 Hz), and
γ (30–60 Hz).

3. RESULTS

3.1. Experiment 1: Monofractal Estimation
With Respect to Changing Signal Variance
We evaluated the relationship between monofractal measures
and signal variance using a simulated time series based on
fractional Brownian motion (fBm), where its signal variance
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is modulated by a modified ramp function. The modulation
function is shown in Figure 2A and resulting time series
in Figure 2B. The standard deviation of the generated time
series indeed tracks the shape of the modulating function
(Figure 2C).

We estimated the monofractal dimension of this simulated
signal using two standard methods: Higuchi and DFA. We
observe that both methods appear to be affected by the
changing signal variance (Figures 2D,F). Furthermore,
the effect persists even after epoch-based standardization
(Figures 2E,G): the monofractal properties and standard
deviation correlate with ρ = 1.00 and ρ = 0.99 for the
Higuchi and DFA methods, respectively. A similar effect
was observed for a real icEEG recording that contained
changes in signal variance over time (Appendix Figure E4 in
Supplementary Material).

In conclusion, monofractal properties derived for each
epoch from DFA and Higuchi methods (with, or without
signal standardization) correlate highly with the signal standard
deviation of the epoch. Therefore, in epoch-based approaches
(e.g., for application such as detecting or predicting epileptic
seizures), the monofractal properties cannot be regarded as a new
useful EEG feature of an epoch that is not redundant to standard
deviation of the epoch. Thus we turn our attention to multifractal
properties of the signal next.

3.2. Experiment 2: Multifractal Estimation
Stability
In the following, we will denote the epoch-wise estimates of
multifractal width 1α and height 1f (and 1α† and 1f † for the
measure of the epoch-based standardized time series).

This experiment was designed to assess the reliability of
the different multifractal estimation methods over time. In
other words, if the multifractal properties of the time series
remain constant over different epochs, then we expect the
multifractal estimation method to show the same output
over these different epochs. Note that the accuracy of these
methods (i.e., the method outputting the expected multifractal
measures of a predefined multifractal object with known
multifractal properties) has been demonstrated elsewhere
(Chhabra and Jensen, 1989; Kantelhardt et al., 2002; Gu and
Zhou, 2010).

Figure 3 shows the simulated signal by the p-model and the
outputs of the three multifractal spectral estimation methods.
In all cases, the magnitude of 1α† and 1f † were clearly
different from zero. The (1α†, 1f †) output variances over time
for the MF-DFA, MF-DMA, and Chhabra-Jensen estimation
methods were: (0.018, 0.18), (4.17e-4, 0.0028), and (2.3e-
30, 6.5e-30), respectively. In addition, the MF-DFA output
violated the theoretical topological limit of 1f † = 1, again
indicating problems in the MF-DFA method, potentially due
to the inversion of multifractal spectrum (Mukli et al.,
2015). As the Chhabra-Jensen method shows the lowest
variance over time (i.e., most reliable/stable), it will be our
multifractal analysis method of choice for the remainder of this
work.

3.3. Experiment 3: Multifractal Estimation
of Human EEG and Its Potential Added
Value
Next, we evaluated the relationship between multifractal
signal properties and other widely used conventional EEG
measures (such as signal variance). Figure 4 shows the results
of the multifractal spectrum and conventional measures in
comparison. The pattern of multifractal spectrum width without
epoch-based standardization (1α) reflects the signal variance
closely, in contrast to the estimate for the epoch-based
standardized signal (1α†). Finally, signal line length also shows
a very different temporal profile from 1α†. A similar figure
showing the variation of 1f and 1f † metrics is available in
Appendix Figure E5 in Supplementary Material.

Figure 5 shows the quantification of similarities of the
signals in Figure 4 through a correlation analysis. In summary,
a high degree of correlation is present between the signal
standard deviation, multifractal spectrum width (1α), and
detrended fluctuation analysis (monofractal approach) both
with and without epoch-based standardization. We found that
standardization reduces the correlation between 1α and the
standard variation from ρ = 0.86 (for 1α ) to ρ = −0.14
(for 1α†). We also note that 1α is highly correlated with DFA
and DFA† estimates (ρ = 0.74 and ρ = 0.71, respectively)
while it is markedly reduced for 1α† (|ρ| < 0.3). The analysis
based on the mutual information (Ince et al., 2017) rather than
correlation showed a similar pattern (Appendix Figure E6 in
Supplementary Material).

The relationships of the multifractal properties and specific
EEG frequency band power are shown in Figure 6. In summary,
the correlation values between the multifractal measures 1α†,
1f †, and signal power in the classical EEG bands are low (|ρ| <

0.3). A supplementary analysis of EEG time series data containing
different sleep stages (which are known to be dominated by
specific frequencies) shows similar results (see Appendix C in
Supplementary Material). Based on these results, we focused on
1α† (using epoch-wise standardization of the time series) in the
subsequent analysis.

3.4. Experiment 4: Impact of Sampling
Frequency and Epoch Length on
Multifractal Estimation of Human EEG
The variation of the multifractal spectrum width 1α† for
different combinations of epoch sizes and sampling frequencies
is shown in Figure 7A. On visual inspection, it is clear that there
are some combinations of epoch size and sampling frequency
that show a clear increase of 1α† during the ictal period
(marked by the red lines). To quantify this effect, Figure 7B
shows the Cohen’s effect size D of the ictal vs. interictal 1α†

distributions plotted against epoch duration (in seconds). In
this plot, we included 15 different sampling frequencies, and
also data from three different EEG channels (all in the seizure
onset zone). A peak in D can be seen at about 1 s (across
all sampling frequencies), indicating that the change in 1α†

during a seizure can be best captured when using 1 s epochs
(regardless of sampling frequency). This effect was not found for
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FIGURE 2 | Impact of the signal standard deviation on monofractal scaling exponent estimation. (A) Modulation of the standard deviation of the time series over time;

(B) Time series simulated using fractional Brownian motion based on modulation in (A); (C) Standard deviation of the simulated signal in (B). (D) Monofractal

dimension obtained with the Higuchi method from signal without epoch-based standardization. (E) Monofractal dimension obtained with the Higuchi method from

epoch-based standardized signal. (F) Hurst exponent obtained with the DFA method from signal without epoch-based standardization. (G) Hurst exponent obtained

with the DFA method from epoch-based standardized signal.

the sampling frequency or epoch length separately. Similar results
for additional patients are shown on Supplementary materials
(Appendix B in Supplementary Material).

4. DISCUSSION

In this study, we have explored the monofractal and multifractal
properties of human EEG recordings and used simulated data
to test the performance of fractal property estimation methods.

Although mono- and multi-fractal approaches have been widely
employed in the study of physiological signals in humans (Ivanov

et al., 1999; Stanley et al., 1999; Hu et al., 2004, 2009; Costa
et al., 2017; França et al., 2019), we have demonstrated that the

monofractal dimension may be capturing a similar signal feature
as the signal variance. When using standardization to remove
the effect of signal variance, we demonstrated that multifractal
measures (estimated by the Chhabra-Jensen method) capture
information not contained in widely used conventional signal
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FIGURE 3 | Comparison of three multifractal spectrum estimation methods (MF-DFA, MF-DMA, and Chhabra-Jensen) for p-Model simulated time series. (A) Time

series simulated for p = 0.4. (B) Estimated multifractal spectra width 1α† and (C) height 1f†.

measures, making it a viable feature for machine learning in
clinical EEG applications. Finally, using epileptic seizure as an
example, we showed that the epoch length can significantly
impact the detection of time-varying effects in multifractal
properties, suggesting the need for data- and application-specific
optimization.

4.1. Methodological Considerations
One of our key observations is that monofractal estimators are
tightly correlated with signal variance—even following epoch-
wise standardization, whereas multifractal properties following
epoch-wise standardization are no longer tightly correlated with
signal variance. This may appear to be a curious and non-
intuitive observation that, to our knowledge, has not been
reported before.

To interpret this observation, it is worth noting the
relationship between monofractal and multifractal analyses.
Essentially, in multifractal analysis, at the point for which q = 2,
the corresponding f (α) is the so-called correlation dimension,

which is an alternative way of estimating the monofractal
dimension (Murcio et al., 2015). The relationship between
monofractal dimension and signal variance has been established
and explained before (Cannon et al., 1997). By the same token,
signal variance also affects higher statistical moments (q >

2 or q < −2). However, when analysing the exact effect
of variance on the multifractal spectrum (Appendix Figure E9
in Supplementary Material), we observe that the variance
particularly impacts the multifractal spectrum width and height,
but maintains an almost constant value of f (α) for q = 2.
This explains why epoch-wise standardization does not impact
monofractal dimension but does impact multifractal spectrum
width and height. The mono- and multifractal properties
we are investigating here are essentially describing different
properties of the multifractal spectrum. Note that through our
standardization procedure, we do not abolish “multifractality,”
but only its dependence on signal variance. Future work has
to show mathematically the exact reason for this observation,
although intuitively it is understandable that the standardization
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FIGURE 4 | Temporal dynamics of multifractal spectrum width compared with conventional measures for human intracranial EEG. (A) Intracranial EEG segment

containing a seizure (onset and offset marked with red vertical lines). Note that this recording was chosen because it showed a dramatic change in signal variance

during non-seizure periods, not because of any seizure related properties. (B) Variation of multifractal spectrum width without epoch-wise standardization (1α). (C)

Multifractal spectrum width based on epoch-wise standardized time series (1α†). (D) Standard deviation in each epoch. (E) Line length in each epoch. Black line:

moving average of each measure.

procedure (a linear transformation of the signal) changes the
q = 2 moment least and affects higher moment more.

We further observed that the Chhabra-Jensen method is the
most reliable out of the three multifractal estimation methods. As
was pointed out in the original publication (Chhabra and Jensen,
1989), this is most likely due to the fact that the Chhabra-Jensen
method avoids a Legendre transform that the other methods
require. The Legendre transformation requires smoothing of the
Dq curve and can lead to errors. For further advantages of the
Chhabra-Jensen method, the reader is referred to the original
publication (Chhabra and Jensen, 1989). A recent development,
FMF method (Mukli et al., 2015; Nagy et al., 2017), may be an
alternative to the approach proposed in this study.

Finally, our analysis highlighted the importance of choosing

an adequate epoch size given a sampling frequency, in order

to study events such as epileptic seizures. However, our

study was based on the analysis of ictal vs. interictal epochs,
i.e., a hard separation that may not represent continuous
phenomena accurately. Future work should take into account
that multifractal properties may be continuously changing over
time (a striking example is shown in Appendix Figure E7 in
Supplementary Material), and an explicitly time based approach
may be needed. Along similar lines, our finding of a optimal
time scale may be due to the non-stationary nature of the
multifractal properties. Further theoretical work may have to
develop a temporally resolved multifractal estimator, in order to
fully understand this aspect.

4.2. Implications for the Understanding of
Brain Activity and Brain Generators
Previous studies reported that the brain is characterized by
critical dynamics (Eguíluz et al., 2005; Chialvo, 2010, 2012; Racz

Frontiers in Physiology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 1767117

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


França et al. Fractal and Multifractal Properties of EEG

FIGURE 5 | Correlation between multifractal spectrum and conventional EEG measures for human icEEG data (from Figure 4). The diagonal of the matrix shows the

distribution for each measure across epochs. The lower triangle contains the scatter plots for each pair of measures across epochs. The upper triangle shows the

Pearson correlation value for each pair of measure, where the size of the font additionally corresponds to the correlation coefficient to provide an additional visual cue.

et al., 2018). This characteristic, found from microscopic spatial
scales (such as neuronal networks) (Beggs and Plenz, 2003, 2004)
to the whole-brain level (Eguíluz et al., 2005), is thought to
facilitate the storage and processing of information. It has been
further suggested that more than one scaling exponent would be
necessary to properly characterize the brain’s critical dynamics
(Suckling et al., 2008; Ihlen and Vereijken, 2010; Ciuciu, 2012;
Fraiman and Chialvo, 2012; Zorick and Mandelkern, 2013; Papo,
2014; Zhang et al., 2015; Papo et al., 2017; Racz et al., 2018),
as departures from the power-law pattern have been frequently
observed in brain signals. Hence, it has been proposed that
using additional, higher-order statistical moments can better
characterize such data (Fraiman and Chialvo, 2012). In this work,
we contribute a complementary observation: while monofractal
measures of EEG appeared to essentially follow the slow changes
of signal variance, multifractal characterization is capable of
revealing new information.

In terms of generative processes that can produce monofractal
properties, it has been suggested that a property called Self-
Organized Criticality (SOC) (Bak et al., 1987) may play an
essential role. SOC describes the capacity of a system to

evolve naturally into a critical state (a state in which a
minimum perturbation could lead to events of all sizes).
Such phenomena display power-law distributions and fractal
properties as signatures (Bak and Paczuski, 1995). An example
process that displays SOC is the so-called single avalanche or
Bak–Tang–Wiesenfeld model (also known as Abelian sandpile
model) (Bak et al., 1987). SOC behavior has been linked to
physiological control mechanisms, such as in human heart
rate variability (Goldberger et al., 2002). Similar to SOC, a
related regime—termed non-classical SOC—is thought to give
rise to multifractal properties (Lovejoy and Schertzer, 2007). The
analysis and understanding of the non-classical SOC is, however,
still under development.

In this context, our multifractal spectral analyses of human
EEG data suggest that cerebral phenomena should not be
modeled by a single avalanche model (classical SOC), in
agreement with findings in a previous study (Fraiman and
Chialvo, 2012). Moreover, it is hypothesized that brain dynamics
are non-ergodic (Bianco et al., 2007), i.e., display preferential
states and depends on previous states (Papo, 2014), which are
all properties of multifractal processes (Lovejoy and Schertzer,
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FIGURE 6 | Comparison of multifractal measures with classical spectral band power. Scatter plot matrix comparing both standardized multifractal spectrum width

and height (1α† and 1f†) with the δ, θ , α, β, and γ average band power in each epoch. Each scatter point is derived from a single epoch of the time series. The

diagonal of the matrix features the histograms for each measure. The lower triangle contains the scatter plots for each pair of measures. The upper triangle shows the

Pearson correlation for each pair of measure, where the size of the font additionally corresponds to the correlation coefficient to provide an additional visual cue. The

icEEG data underlying this figure is shown in Figure 4A.

2007). Thus, multifractal analyses could provide a new paradigm
for studying brain function and structure, as previously suggested
in other studies of normal (Suckling et al., 2008; Ihlen
and Vereijken, 2010; Ciuciu, 2012; Zorick and Mandelkern,
2013; Papo, 2014; Papo et al., 2017; Racz et al., 2018) and
pathological brain activity (Zhang et al., 2015). Furthermore,
generative processes displaying multifractal properties could
help understanding the observed multifractal changes on a
mechanistic level.

4.3. On the Detection of Brain State
Transitions in Health and Disease
We want to emphasize that the conclusions from our work are
drawn on the basis that slow changes in signal fractal features
can be captured by using an epoch-wise feature extraction
procedure. It is also from a feature redundancy perspective
that we argue for the need of multifractal approaches over
monofractal measures. We do not dispute the usefulness of
monofractal measures in other general applications. In our work,
we essentially performed a feature selection procedure using

correlation and mutual information (Guyon and Elisseeff, 2003).
We evaluated how different signal feature compare on an epoch-
wise basis. Feature selection is crucial to obtain faster and cost

effective models, and avoids overfitting of the available data. It

might also help achieving a deeper insight into the nature of the
studied phenomena (Blum and Langley, 1997; Liu et al., 1998;

Guyon and Elisseeff, 2003; Liu and Yu, 2005; Saeys et al., 2007).
A fundamental observation in our work is that an optimal

time scales may exist for specific physiological processes (such
as epileptic seizures) in terms of their multifractal dynamics
(Figure 7 and Appendix B in Supplementary Material). This
result suggests that, at least in an epoch-based study, for any
given epileptic seizure in a given patient, the variety of scaling
exponents (1α) will depend on the length of the epoch analyzed.
This is further supported by similar findings in monofractal
analysis (Eke et al., 2002). The implications of this observation
are that certain scaling exponents will only exist in specific time
scales and the diversity of scaling exponents will depend on the
duration of the epoch. These results suggest the potential need
for “tuning,” i.e., potentially having to find the characteristic
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FIGURE 7 | Influence of EEG sampling frequency and epoch length on multifractal spectrum width around and during an epileptic seizure. (A) Multifractal spectrum

width (1α†) in a 15-min intracranial EEG segment containing one seizure (onset and offset marked by the red lines). The signal was initially sampled at 5,000 Hz. Each

column shows 1α† for 5,000, 2,500, 500, and 100 Hz sampling rates. Different epoch sizes were used ranging from 1,024 to 16,384 samples (in each row). (B)

Relationship of effect size D (between the interictal and ictal distribution of 1α†) and epoch duration in seconds (obtained by dividing the number of sampling points

by the sampling rate of the signal). Channel 1 is the data shown in (A). The solid line represents a LOESS curve fitting of the data points, with formula “y ∼ x.” The data

used for this figure is obtained from for subject “I001_P005_D01” around seizure 1. Channel 1: ADMacro_01. Channel 2: ADMacro_02. Channel 3: ADMacro_03.
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time for every studied phenomenon. If this is indeed the case,
a temporally resolved (not epoch-based) multifractal method
should be developed in future to adequately characterize brain
dynamics.

Furthermore, the slow temporal changes in multifractal
dynamics need to be characterized in a systematic way.
Using epileptic seizures as an example, Appendix Figure E7
in Supplementary Material shows that dramatic changes in
multifractal properties can sometimes be seen before an epileptic
seizure. This observation requires further investigation to address
questions such as: are all epileptic seizures characterized by pre-
ictal changes in multifractal properties? Do other physiological
processes, such as sleep, influence this finding? To answer
these questions, we will most likely also need well-characterized
experimental conditions, where seizures can be triggered in a
controlled manner.

Finally, it is well-recognized that epileptic seizures are
spatio-temporal processes (see e.g., Wang et al., 2014, 2017),
and our current approach of only focusing in the temporal
aspect in one location will need to be expanded. Data-driven
unsupervised approaches, such as dimensionality reduction, may
help summarize spatial aspects. Additionally, the challenge will
be to develop a spatio-temporal multifractal analysis approach
that can also deal with the challenges of low spatial sampling
resolution in EEG recordings.

4.4. Outlook
Our work has highlighted several challenges that need to
be considered when analysing multifractal properties of EEG
signals; namely choice of the appropriate estimation method,
estimation parameters, and the influence of the time series
variance on signal features. We have suggested some solutions to
these problems, such as the used of the Chhabra-Jensen approach
combined with an epoch-wise standardization approach, which
has shown potential capabilities as a signal feature for machine
learning applications. We have also highlighted possible process-
specific challenges. In terms of epileptic seizures, future work
is required to analyse a larger number of patients in order
to draw firmer conclusions on the potential clinical relevance
of multifractal analyses. Furthermore, the study of mechanistic
generative models of EEG may shed light on why those
multifractal changes occur. For example, a generative process of
potential interest could feature a modified version of Bak–Tang–
Wiesenfeld model (Bak et al., 1987).

4.5. Summary
In this paper, we have analyzed the monofractal and multifractal
properties of human EEG recordings. We have shown that
monofractal estimates are influenced by the standard deviation

of the time series, thus not capturing features beyond signal
variance. For multifractal estimation, we have shown that the
Chhabra-Jensen approach is the most stable, and we have
developed a method of signal pre-processing to remove the
influence caused by the variance of the signal. Using the suggested
approach, the multifractal estimates do not correlate with
traditional EEG measures, thus yielding additional information
about the signal and being a relevant signal feature. Finally,
our results also indicate a preferential time scale to identify
differences in multifractal properties between ictal and interictal
state recordings in patients with epilepsy.
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The prefrontal cortex (PFC), which plays key roles in many higher cognitive processes, is a

hierarchical system consisting of multi-scale organizations. Optimizing the working state

at each scale is essential for PFC’s information processing. Typical optimal working states

at different scales have been separately reported, including the dopamine-mediated

inverted-U profile of the working memory (WM) at the system level, critical dynamics at

the network level, and detailed balance of excitatory and inhibitory currents (E/I balance)

at the cellular level. However, it remains unclear whether these states are scale-specific

expressions of the same optimal state and, if so, what is the underlying mechanism

for its regulation traversing across scales. Here, by studying a neural network model,

we show that the optimal performance of WM co-occurs with the critical dynamics at

the network level and the E/I balance at the level of individual neurons, suggesting the

existence of a unified, multi-scale optimal state for the PFC. Importantly, such a state

could be modulated by dopamine at the synaptic level through a series of U or inverted-U

profiles. These results suggest that seemingly different optimal states for specific scales

are multi-scale expressions of one condition regulated by dopamine. Our work suggests

a cross-scale perspective to understand the PFC function and its modulation.

Keywords: optimal states, working memory, criticality, E/I balance, dopamine, the PFC

INTRODUCTION

The brain is consisting of structures at different scales that are hierarchically organized, ranging
from synapses and cells all the way to networks of brain areas (Park and Friston, 2013; Betzel and
Bassett, 2017). Incorporating regularities for different levels to give a coherent, cross-scale account
for brain functions is a significant challenge for systems neuroscience. The prefrontal cortex
(PFC), which is involved in many higher cognitive processes, such as working memory (WM),
planning, and multi-tasking (Yang and Raine, 2009; Diamond, 2013), has been intensively studied
at different scales, revealing diverse scale-specific optimal states that can benefit the information
processing occurring at corresponding scales. Firstly, at the system level, WM, which refers to
the ability to temporarily hold and manipulate information in the brain (Baddeley, 1992, 2012),
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is strongly modulated by dopamine (DA) according to a well-
established “inverted-U” profile. That is, too strong or too weak
of dopamine D1 activation is detrimental for WM, with optimal
performance achieved at an intermediate level (Zahrt et al., 1997;
Vijayraghavan et al., 2007). Deficits in this modulation can lead
to severe impairment in WM, which is a key symptom in various
brain disorders (Austin et al., 2001; Steele et al., 2007), such
as schizophrenia (Lett et al., 2014). Secondly, at the network
level, it has been discovered that the state of PFC networks in
vitro could be affected by DA. That is, intermediate dopamine
D1 receptor activation led to a so-called critical state (Stewart
and Plenz, 2006), which has been suggested as the optimal
state for neuronal information processing (Beggs and Plenz,
2003; Kinouchi and Copelli, 2006; Levina et al., 2007; Millman
et al., 2010; Yu et al., 2017). Thirdly, at the cellular level, the
balance between the excitation and inhibition, reflected by the
close tracking of the inhibitory inputs to the excitatory ones for
individual neurons (Okun and Lampl, 2008), has been suggested
as an important factor that modulates the overall working state of
the network (Vogels et al., 2011). Although diverse biological and
computational approaches (Cools and D’Esposito, 2011; Barak
and Tsodyks, 2014) have been used to study the working state
regulation in the PFC, it remains unclear whether the optimal
states manifested at individual scales mentioned above are just
different expressions of the same unified, cross-scale optimal state
at the PFC.

In addition, if a unified optimal state indeed exists, what
could be the underlying mechanism modulating it at all
scales simultaneously? Anatomical studies indicated that the
PFC contains many DA receptors (Goldman-Rakic, 1995)
and receives diffuse projections from midbrain dopaminergic
neurons (Robbins, 2000). Thus, a potential candidate for the
cross-scale modulation of the optimal state is the dopamine
modulation. Previous studies have shown that different degrees
of dopamine D1 receptor activation act differentially on
glutamatergic synapses between the excitatory and inhibitory
neurons. Specifically, with low doses of DA, the inputs to
both excitatory and inhibitory neurons are unaffected; with
moderate doses of DA, the enhancement of glutamatergic input
to excitatory neurons is more pronounced; and with high doses
of DA, the inputs to both excitatory and inhibitory neurons are
strongly enhanced (Muly et al., 1998; Gao et al., 2001). However,
how such a mechanism could give rise to the modulation across
different scales in order to adjust the working state of the PFC
remains unclear.

Here we address these two issues by studying a network
model. We found that the optimal performance of WM at
the system level co-occurs with critical neuronal dynamics
at the network level and the most balanced excitation and
inhibition at the cellular level. Importantly, such a unified
optimal state is obtained through an intermediate level of
dopamine D1 activation at the synaptic level. These results
suggest that empirically observed, seemingly different optimal
states at individual scales are different expressions of one
condition regulated by dopamine. These results shed new light
on the multi-scale state optimization for information processing
in the PFC.

RESULTS

The State Transition of Neuronal Dynamics
in the Network
Our network model is adapted from a biologically plausible WM
model (Mongillo et al., 2008). In this model, the external input
for the network first activates one of the excitatory-selective
neuronal populations (Es, cf. Figure 1A), whose activities form
the internal representation of the input. These activities trigger
short-term synaptic facilitation, resulting in the strengthening of
the synaptic connections within this population. Consequently, a
strongly interconnected neuronal group is temporarily formed.
Through recurrent excitation, this group can maintain its
activity as the internal representation of the recent input,
even after the input is removed, thereby forming WM. To
investigate how network’s WM performance can be modulated,
we examined its behavior within a 2-D parameter space (the
EE–EI plane). The two dimensions represent synaptic strength
among excitatory neurons (JEE) and strength of synapses from
excitatory to inhibitory neurons (JEI), respectively. Driven by
weak background noise, the average firing rate of the neuronal
populations changed as a function of JEE and JEI (Figure 1B).
In this EE-EI plane, we found phase transition from a low
(phase1) to high activity regime (phase2). In phase1, the
neuronal activities were very sparse, with weak responses evoked
by background noise (Figure 1C), whereas in phase2, high-
frequency reverberating activities within one population were
maintained without external inputs (Figure 1D). Note that the
active population in this case was stochastically chosen by the
dynamics. This population activates the inhibitory group (I, cf.
Figure 1A), resulting in the suppression of activities of other
populations. Network behavior analysis within the EE-EI plane
provided a clear view of how WM can be achieved. That is,
in normal condition, the network resides in phase1 at rest
(i.e., without external input). When the external input triggers
activities leading to short-term increases in JEE, the network
state moves along a trajectory parallel to the JEE axis and
toward the phase transition border. If the input is sufficiently
strong to push the system across the transition border into
phase2, the reverberating activities are self-maintained and WM
is formed. Contrastingly, if the network resides in phase2 at rest,
the maintained reverberating activities have no corresponding
sensory event (“imaginary memory”), which is reminiscent of
hallucination in brains disorders, e.g., schizophrenia (Horga
et al., 2014; Llorca et al., 2016).

Dopamine Modulation at the Synaptic
Level in the Model
We next study how to model the dopamine modulation at
the synaptic level and introduce it into the model. Previous
studies have indicated that activation of the dopamine D1
receptor can have different effects on the excitatory inputs
between excitatory to excitatory and excitatory to inhibitory
synapses. Specifically, glutamatergic input of excitatory neurons
may increase at low D1 activation and, such a strengthening
effect saturates relatively early; however, glutamatergic input of
inhibitory neurons is less sensitive to D1 activation, resulting
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FIGURE 1 | Structure and dynamic behavior of the WM model, and its DA modulation. (A) Network architecture. ES1, …, ES5, Ens and I denote five selective

excitatory populations, one non-selective excitatory population, and one inhibitory population, respectively. Jij (where i, j is I or E) denotes the synaptic connection from

i population to j population. The E–E synapse can be a potentiated value (Jp), baseline value (Jb), or potentiated value with a certain probability (Jb/p). JEI and JEE (Jb,

Jp, Jb/p ) are modulated by DA (see Materials and Methods). (B) Firing rate of the most active Es population at rest (i.e., without external stimulus) changes with

synaptic strength among excitatory neurons (JEE ) and from the excitatory to inhibitory neurons (JEI ). AEE and AEI are the scaling factors for JEE and JEI, respectively.

(C,D) Spiking patterns corresponding to the two different phases (phase1 and phase2) in (B). Different colors represent five Es populations (only 10% neurons are

shown), with each dot denoting a spike. (E) Scaling factors AEE and AEI change as a function of dopamine D1 activation level. The strength difference

(1A = AEE − AEI ) reaches its maximum at DA = 1.0. (F) Trajectories represent how the corresponding system state changes with DA. The system represented by the

white trajectory is analyzed in the main text. Similar results can also be obtained through the gray trajectory (with a different synaptic strength range), demonstrating

the robustness of the results. Arrows mark the intermediate level of DA = 1.0.

in “delayed” onset and saturation of strengthening effects (Muly
et al., 1998; Dash et al., 2007). Therefore, in our model, the effects
of increasing the dopamine D1 activation level were simulated
by changing the strengths of JEE and JEI through multiplying
corresponding scaling factors AEE and AEI , according to the

functions shown in Figure 1E. For each level of D1 activation,
we deduced the corresponding values of JEE (AEE) and JEI (AEI),
providing coordinates to pinpoint the network state in the EE-EI
plane. Eventually, a continuous trajectory representing how the
network state changed was obtained (Figure 1F, white curve).
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With the increases in D1 activation level, the network initially
approached and then deviated from the transition border, with
the shortest distance achieved by an intermediate D1 activation
level. This analysis was not sensitive to specific positions at which
the trajectory met the phase transition border (determined by
different strength range, see Materials and Methods), as similar
results can be obtained with different trajectories (Figure 1F,
gray curve).

WM Performance at the System Level
Regulated by Dopamine
We then examined how WM performance at the system
level changed along the regulation trajectory of dopamine D1
activation mentioned above. As shown in Figure 2A, a memory
item could be loaded into WM when the network was in
the resting state. Importantly, the content of WM could also
be updated if another item need to be memorized. At the
“behavioral” level, these two measures were applied to evaluate
the performance of WM, including the sensitivity of loading
items and the flexibility of updating memory. Specifically, at
each level of D1 activation, stimuli with a fixed strength
were applied to one item-selective excitatory population (Es)
with different durations. As shown in Figure 2B, we found
that regardless of the input strength, the shortest time (Tsens)
needed for successfully loading an item into WM exhibited a
U-shaped profile. As a result, the sensitivity of WM, defined
as the reciprocal of Tsens, had an inverted-U profile, with the
maximal sensitivity achieved with the intermediate D1 activation
(Figure 2C). Similarly, when we defined the shortest time needed
to update a memory item as Tflexi (normalized by the smallest
Tflexi obtained in the whole DA modulation curve), and used
its reciprocal as the measure of the flexibility of WM, we
found that the flexibility of WM also exhibited an inverted-U
profile (Figure 2D).

Next we studied the network mechanisms underlying these
WM behaviors. As WM is formed by the system jumping from
phase1 to phase2 in response to an external input, the closer
the original state is to the transition border, the easier it is for
the system to go through the transition. Closer examination of
the system’s behavior revealed that intermediate D1 activation
was associated with the highest firing rates f (Figure 2E) and
maximal neural transmitter utilization parameter u (Figure 2F).
Accordingly, in such a state, the total amount of available
transmitter in presynaptic neurons, x, was lowest (Figure 2G).
Interestingly, as the increase in u was less pronounced compared
with the decrease in x, the amount of neural transmitter released
per spike (ux) reached the minimum (Figure 2H), reflecting a
more efficient use of transmitter to produce individual spikes
in the network. However, as the increase in firing rates was
more pronounced under an intermediate D1 activation, the
overall use of neural transmitter in the entire network (uxf )
was maximized in such a state (Figure 2I). This observation
indicates the price the system needs to pay for increased
sensitivity and flexibility of WM—the accelerated pace of
consuming neurotransmitter and, consequently, more energy
used to refill the reservoir. Note that the U or inverted-U
profiles in Figure 2 are non-symmetrical. Although the difference
of connecting strengths (1A) could be the same for lower

and higher dopamine concentrations, the absolute connecting
strengths (AEE, AEI) with higher D1 activations were larger than
those with lower D1 activations (Figures 1E,F), which led to
different network dynamics.

Critical State at the Network Level
Regulated by Dopamine
To bridge the state modulation regularity of WM performance at
the system level with the corresponding regulation processes and
characteristics at the network level, we examined the relationship
between the maximal WM sensitivity/flexibility and features
of network’s dynamics. Specifically, we analyzed two indicators
of so-called critical dynamics: avalanche size distribution and
branching parameter. Avalanches are activity cascades within the
system and avalanche size is how many neurons are involved
in the corresponding cascade (Figure 3A). A hallmark of the
critical state is that avalanche size distribution exhibits a power-
law with the exponent close to −1.5 (Beggs and Plenz, 2003).
Consistently, we found the network dynamics exhibited a power-
law distribution with exponent closest to −1.5 under the
intermediate D1 activation (Figures 3B,C). Another indicator of
critical dynamics is the branching parameter, which is defined as
how many neurons, on average, can be activated by one active
neuron. It measures how quickly the activities in a recurrent
network are amplified or attenuated. Stable activity propagation
of the critical state is associated with a branching parameter
close to 1 (Beggs and Plenz, 2003; Shew and Plenz, 2013).
Here, we found that the branching parameter estimated from
the network dynamics was closest to 1 under the intermediate
D1 activation (Figure 3D). Importantly, with too strong or
too weak D1 activation, the system deviated from the critical
state in the same direction. Specifically, large avalanches were
formed less frequently and the branching parameter was <1,
indicating a subcritical state in which the propagation of activities
was over-attenuated. Such a phenomenon is in line with the
previous finding that high or low D1 activation resulted in
a subcritical state in brain slices (Stewart and Plenz, 2006),
reflected by the deeper slopes of avalanche size distributions
and branching parameters being smaller than one. Further, to
provide an overview of the network state regarding the distance
from criticality (Figure 3E), we plotted the branching parameter
for all possible states within the EE-EI plane. We found a
phase transition in the branching parameter corresponding to
the transition in terms of network activity level, and the self-
sustained activities in the top left part was associated with a
branching parameter close to 1. The trajectory of DAmodulation
(Figure 3E) provides a direct assessment of how the distance
from the critical state was modulated by different levels of D1
activation. Compared with Figure 2, it is clear that the critical
state jointly emerged with the optimal WM performance when
the intermediate degree of dopamine D1 activation (DA = 1.0)
was set at the synaptic level.

Criticality at the Network Level Maintained
by E/I Balance at the Cellular Level
We next addressed how critical dynamics at the network
level could be maintained with the intermediate degree of D1
activation. Specifically, given the short-term synaptic facilitation
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FIGURE 2 | Dopamine modulation and the optimal working memory performance. (A) One item is loaded into memory from the resting state and updated to another

item by applying item-specific stimuli (green shading) with a durations of Tsens and Tflexi , respectively. Black dots are neural spikes (only 10% neurons are shown). u

and x donates average utilization parameter and available resource in corresponding populations, respectively. (B) The shortest stimulation time (Tsens) needed for the

model to load the stimulus into WM from resting state at each D1 activation level. Results for two stimulus strengths (strength1 < strength2) are shown. (C) Sensitivity

of WM, defined as the reciprocal of Tsens, exhibits an inverted-U profile with dopamine D1 modulation. (D) The shortest time (Tflexi ) needed to update a memory item

and corresponding flexibility were also shaped by the U and inverted-U profiles, respectively. (E–I) Internal parameters that determine the system’s dynamics change

as a function of D1 activation, including firing rate f (average firing rate), u (utilization parameter), x (available resources), ux (transmitters used per spike), and uxf (total

transmitters used) of the population receiving memory stimuli (strength1, and in total 200ms long), which was Es1 for all analyses presented in this paper. Data are

represented as mean ± S.D. across all the neurons in the population.
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FIGURE 3 | Intermediate D1 activation corresponds to a state close to criticality. (A) Schematic diagram showing the identification of neuronal avalanches. Solid

circles represent individual neurons, with red donating active state and gray donating quiescence. Neurons that fire in the same time bin or consecutive bins of length

1t form an activity cascade, i.e., an avalanche. Avalanche size, s, is defined as the number of active neurons in the cascade. Two avalanches (s = 6 and 3) are shown.

(B) Avalanche size distribution obtained with three different levels of D1 activation, with the intermediate level (DA = 1.0) associated with distribution closest to a

power-law exponent of −1.5 (red dashed line). (C,D) The exponent (α) and the branching parameter (σ ) change as a function of the D1 activation level. Red dotted

lines represent α = −1.5 and σ = 1 in (C,D), respectively. States corresponding to DA = 0.6, 1.0, and 1.4 are marked by arrows with the same color as in (B). α and

σ estimated with different D1 activation levels are statistically significant (one-way ANOVA, p < 0.05; post-hoc test among DA = 0.6, 1.0, and 1.4, p < 0.05; Data are

represented as mean ± S.D. across fifteen trials at each DA level). (E) Branching parameter (σ ) exhibits a phase transition similar to the firing rate shown in Figure 1F.

mechanisms built in the network, and that the intermediate
D1 activation leads to the most active network state, what
mechanism can prevent the system from a runaway excitation,
i.e., being supercritical, under such a condition? One possible
mechanism is the balance between the excitation and inhibition,
i.e., E/I balance, at the cellular level. Reflected by the close
tracking of the inhibitory inputs to the excitatory ones, E/I
balance is well-documented (Okun and Lampl, 2008) and is

suggested as an important factor modulating the overall network
state (Vogels et al., 2011). This balance is essential to maintain the
states of neuronal networks, demonstrated by both experimental
(Shew et al., 2009) and modeling studies (Lombardi et al., 2012;
Poil et al., 2012). Under the intermediate D1 activation, the
correlation between the total inhibitory and excitatory currents in
the network was maximized (Figure 4), reflecting a higher level
of E/I balance. This effect was global to the entire network, as
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FIGURE 4 | Dopamine modulates the balance between excitatory and inhibitory currents to individual neurons. (A–D) The average correlation coefficient of excitatory

and inhibitory currents received by individual neurons in different populations during stimulus presentation, including stimulus-targeted selective population (Es1), Es

population without stimulation (results for Es2 are shown as an example), non-selective population (Ens), and inhibitory population (I). Data are means ± SD across the

corresponding population. (E–H) Similar to (A–D) but the correlation coefficient is computed based on only recurrent currents, excluding external inputs and leaky

currents. (I) The correlation coefficient of Es1 (to save space, Es2, Ens, and I are omitted.) in (A) increases with stronger stimulation strengths. DA = 1 is associated

with the largest correlation across all strengths. For visual clarity, only the means of the correlation coefficients across the corresponding population are shown. (J) CV

(coefficient of variation) of the inter-spike interval changes as a function of DA modulation, with DA = 1 corresponding to the highest CV (Data are represented as

mean ± S.D. across fifteen trials at each DA level). The group differences between low, high, and intermediate DA in (A–J) are statistically significant (one-way ANOVA

with multiple comparison tests under Tukey’s criterion, p < 0.05).
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it was manifested in all neuronal populations (Figures 4A–D).
Furthermore, the correlation between the E and I currents
was higher when we only analyzed the recurrent inputs (i.e.,
without external inputs, background inputs, and membrane
leakages; seeMethods) (Figures 4E–H), suggesting that recurrent
dynamics dominated the E/I balance. To further verify this,
we examined how the E/I currents correlation changed as a
function of recurrent activity levels induced by external inputs
with different strengths. As shown in Figure 4I, this correlation
increased monotonically as a function of the strength of external
inputs, with the intermediate D1 activation associated with the
highest correlation, reconfirming the casual role of recurrent
activities in determining the E/I balance. Besides the highly
correlated E and I currents, a large coefficient of variation (CV)
of neuronal activities is also an important indicator of the E/I
balance (van Vreeswijk and Sompolinsky, 1996). Consistently,
we found that the CV of network activities was maximized with
the intermediate D1 activation (Figure 4J). These results imply
that the network state under the intermediate D1 activation is
associated with the highest level of E/I balance, which allows the
inhibition to track the excitatory drive within the network and to
avoid the supercritical state.

Multi-Scale Expressions of One Optimal
State Regulated by Dopamine
Finally, based on all the results described above, we propose a
framework incorporating the optimal states from the perspectives
of WM, network dynamics and the E/I balance, as shown in
Figure 5. At the synaptic level, different levels of dopamine D1
activation have different enhanced efficacy to the glutamatergic
input of the excitatory and inhibitory neurons, i.e., JEE and
JEI. This changes the relative strength of the excitation and
inhibition in the system. As a result, the measures of WM,
critical dynamics and the E/I balance at different scales are all
shaped by a series of U or inverted-U profiles. The extrema
of these U or inverted-U profiles suggest optimal working
states for corresponding scales, which simultaneously obtained
by the intermediate level of D1 activation. According to such
a framework, the optimal states in the PFC, including the
best WM performance at the system level, critical neuronal
dynamics at the network level, and detailed E/I balance at the
cellular level are multi-scale expressions of one state modulated
by dopamine.

DISCUSSION

When interpreting the results, several limitations need to
be clarified. Firstly, we did not consider the lags between
the excitatory and inhibitory currents in calculating their
correlations. From previous current-clamp recordings in single
neurons, the inhibitory currents lag about a few milliseconds
behind the excitatory currents (Okun and Lampl, 2008). Such
values are smaller than the sampling interval of currents in
our simulation. Therefore, neglecting the lags in calculating
the correlation between excitatory and inhibitory currents
would not have a strong effect on the results. Secondly, in

our simulation, we chose a specific range of AEE and AEI,
however, the main results obtained can be well-replicated
by other choices of the range of AEE and AEI, e.g., the
results (cf., Supplementary Figure S1) obtained from the gray
modulation curve in Figure 1F, suggesting that our results are
generalizable for different dopamine baseline and modulation
range. Thirdly, many different computational models of WM
have been proposed (Wang, 2002; Goldman et al., 2003;Machens,
2005; Barak and Tsodyks, 2014). Here we built our system
by adapting a biophysically realistic model of WM (Mongillo
et al., 2008), which is agreed well with various empirically
observed electrophysiological properties (Rainer and Miller,
2002; Shafi et al., 2007). It awaits future studies to investigate
if the same results can be obtained in other WM models.
Fourthly, in the present model, the neural noise was modeled
as stable Gaussian white noises, as in many other computational
models of WM (Brunel and Wang, 2001; Mongillo et al., 2008).
Recently, it was reported that the variance of neural noise is
related to environmental factors, such as body temperature (Dvir
et al., 2018), which has not been considered here. Our results
demonstrated that it was the recurrent currents rather than the
background noise primarily determined the detailed E/I balance
for individual neurons (Figures 4A–I). Thus, as long as the noise
variance level is within a normal range (i.e., the noise currents
do not suppress the recurrent currents), the optimal state would
not change.

In our results, the optimal working memory performance is
regulated by dopamine by a typical U or inverted-U profiles,
which are in line with many previous empirical (Dash et al., 2007;
Vijayraghavan et al., 2007; Kroener et al., 2009; Van Snellenberg
et al., 2016) and computational (Brunel and Wang, 2001; Dash
et al., 2007; Lew and Tseng, 2014) studies . On top of that,
our results provide a possible link between the system level
characteristics and underlying synaptic mechanisms. We show
that not only the measures at the system level like sensitivity
and flexibility but also the measures at the synaptic level, such
as available resources (x), are shaped by dopamine-mediated U
or inverted-U profiles. These results indicate that the modulation
of WM performance at the system level is an aggregated effect of
modulations occurring at the finer scales of neural networks.

A neural network operating close to a critical state has
various functional advantages in terms of information encoding,
storage, transmission, and processing (Kinouchi and Copelli,
2006; Beggs, 2008; Kello, 2013). Along with the empirical
evidence that biological neural networks were indeed exhibited
typical behavioral hallmarks of criticality in their dynamics, it
has been long expected that critical neural networks can play
an essential role in various brain functions, and the deviation
from such a state may lead to functional deficits as seen in many
brain disorders. However, so far there is nomechanism to directly
link the critical neural network and well-characterized brain
functions. Our results demonstrate that the optimal performance
of working memory at the system level was achieved when the
neural network was operating most close to a critical state at the
network level, and deviation from the critical state would impair
WMperformance. Because the basal dopamine levels are variable
across individuals (Mattay et al., 2000; Gibbs and D’Esposito,
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FIGURE 5 | Multi-scale expressions of the same optimal state regulated by dopamine, including detailed E/I balance at the cellular level, critical dynamics at the

network level, and optimal WM performance at the system level.

2005; Cools and D’Esposito, 2011), the DA-induced inverted-
U profile of WM performance is not a robust biomarker
for diagnosing working memory deficits. Unlike the optimal
concentration suggested by the DA-induced inverted-U profile
of WM performance, which varies greatly across individuals, the
critical state is a feature of network dynamics that is individual-
invariant. Thus, it would be informative to study if the deviation
from criticality can be used as an individual-invariant biomarker
of network anomalies underlying WM deficits.

Our results quantitatively show that the excitatory currents
are highly correlated with the inhibitory currents in individual
neurons, indicating detailed E-I balance. The finding is consistent
with the current-clamp recordings in single neurons that the
excitatory and inhibitory currents of nearby cells track each other

closely (Okun and Lampl, 2008). The current-clamp recording
can only record the sum of the excitatory or inhibitory currents in
a single neuron, so the relative contributions of sub-components
of the currents, such as the recurrent currents, the external inputs,
and the leaky currents of neurons, are difficult to delineate.
Simulations are free from this limitation, which enables us to
illustrate that the recurrent currents play a more important role
in keeping the E/I balance compared to the background noise, the
leaky currents, and item-targeted external inputs.

The most important finding of the present work is that
optimal states at different scales in the network model
are different expressions of the same underlying condition
modulated by dopamine. The measures at each scale are
characterized by a series of U or inverted-U profiles, and
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each extremum indicates an optimal working state in the
corresponding scale. Specifically, at the system level, DA-
mediated WM performance profiles suggest an optimal state
accompanied by the maximum sensitivity and flexibility. At the
network level, the optimal state is corresponding to the critical
dynamics, which hold numerous advantages in information
processing, including transmission (Beggs and Plenz, 2003; Rämö
et al., 2007), storage (Haldeman and Beggs, 2005; Larremore
et al., 2011), computation (Bertschinger and Natschläger, 2004),
stability (Beggs, 2008) and dynamic range (Hosaka et al., 2008;
Shew et al., 2009; Gautam et al., 2015). At the cellular level,
an optimal state means that the excitatory and inhibitory
currents most closely track each other (Okun and Lampl, 2008;
Cafaro and Rieke, 2010), which can optimize the coding and
metabolic efficiency (Yizhar et al., 2011; Sengupta et al., 2013),
and track the external input more quickly (van Vreeswijk and
Sompolinsky, 1996). Importantly, all these optimal states in
the PFC manifested at different scales are regulated by the
same control parameter—the concentration of dopamine at the
synaptic level, with an intermediate concentration corresponding
to above mentioned optimal states at all levels. An interesting
question is that what is the mechanism to dynamically modulate
the dopamine in the PFC. Anatomical studies indicate that
the PFC contains abundant DA receptors (Goldman-Rakic,
1995) and receives diffuse projections from the mesocortical
and mesolimbic dopaminergic systems originating in the ventral
tegmental area of the midbrain (Bannon and Roth, 1983; Cools
and D’Esposito, 2011). Thus, DA release in the PFC will occur
in response to a variety of events either aversive or rewarding,
and this release may prepare the PFC networks running in the
optimal state to deal with environmental or cognitive challenges
(Seamans and Robbins, 2010).

Working memory deficits were observed in many brain
disorders, such as schizophrenia (Lett et al., 2014), depression
(Austin et al., 2001), epilepsy (Swartz et al., 1996), and autism
(Steele et al., 2007). At the same time, abnormal regulation
in dopamine has been reported in related disorders, especially
in schizophrenic patients (Abi-Dargham et al., 2002). In
addition, disruption in the E/I balance has been implicated
in the same set of diseases (Rubenstein and Merzenich, 2003;
Fritschy, 2008; Marín, 2012; Murray et al., 2014). Here we
provide a cross-scale view to better understand how the
changes in dopamine in the PFC might cause E/I imbalance,
which can push the network away from the critical state and
eventually induce WM impairments. This provides a potentially
useful multi-scale framework to reveal how the effects of
abnormal neuromodulation at the synaptic level can penetrate
different scales and give rise to functional deficits in different
pathological conditions.

Our results indicate that these optimal states in the PFC
manifested at different scales are actually multi-scale expressions
of the same condition modulated by dopamine. More generally,
the multi-scale nature of complex biological systems are widely
reported. For example, healthy heartbeat interval series have
been found to exhibit multi-fractal properties (Ivanov et al.,
1999, 2004). In the brain, activity measures across a wide range
of spatial scales, including those based on neural spikes, the

local field potential (LFP), magnetoencephalography (MEG),
functional magnetic resonance imaging (fMRI), have revealed
a highly similar dynamical regime close to criticality (Beggs
and Plenz, 2003; Tagliazucchi et al., 2012; Shriki et al., 2013;
Bellay et al., 2015). In addition, previous modeling study have
also reported pervasive scaling laws at the cellular, network and
behavioral levels in the critical branching neural network (Kello,
2013). The current results further highlight that incorporating
the multi-scale properties with a cross-scale perspective is
vital for understanding complex phenomena and processes
in physiology.

In summary, based on studying a neural network model,
here we demonstrate a cross-scale mechanism of dopamine
modulation for state optimization in the PFC, which for the first
time links several seemingly unrelated regularities at different
levels into a unified, coherent framework. Our results suggest
that the optimal performance of WM at the system level, critical
dynamics at the network level, and E/I balance at the cellular level
could be multi-scale expressions of one optimal state in the PFC.
This unified framework gives a novel cross-scale understanding
of state optimization in the PFC, and more generally, provide a
new perspective to incorporate scale-specific regularities into a
coherent, cross-scale account for brain functions.

MATERIALS AND METHODS

Network Model
Our model was adapted from a biophysically realistic model
proposed by previous work (Mongillo et al., 2008), which
utilizes calcium-mediated synaptic facilitation among recurrently
connected excitatory neurons to formWM.

Model Architecture
The architecture of our model is shown in Figure 1A. The
network is composed of three types of neuronal populations:
(1) selective excitatory (Es) populations (from Es1 to Esp)
to encode in total p memory items, each containing fNE

neurons selected from a pool of excitatory neurons (in total
NE = 8,000 excitatory neurons; f is a proportion common
to all Es populations); (2) one non-selective excitatory (Ens)
population formed by the remaining (1 – pf )NE excitatory
neurons; and (3) one inhibitory population (I) with NI = 2,000
inhibitory neurons.

Each neuron, regardless of which population it belongs
to, randomly receives presynaptic connections from all other
neurons in the network with common probability c. Tomimic the
long-term potentiation effect of Hebbian learning, the excitatory-
to-excitatory connections (JEE) within the same Es population are
set to be stronger (Jp), whereas the connections between different
Es populations are set to be weaker, i.e., baseline value (Jb). The
synapses connecting neurons from the Es populations to neurons
in the Ens population, as well as the connections within the Ens
population, take the potentiated strength (Jp) with probability
γ and the baseline strength (Jb) with probability (1 – γ ). These
synaptic strengths are indicated by Jb/p in Figure 1A.

All excitatory-to-excitatory synapses (JEE) display short-
term plasticity (see below), whereas the remaining synapses,
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TABLE 1 | Parameters used in the model.

Dopamine modulation parameters Dopamine1 Dopamine2

Optimal concentration of dopamine D0 1.0 1.0

Concentration domain [Dmin, Dmax] [0, 2.0] [0, 2.0]

Steep parameter Kc 0.150 0.120

Shifting parameter Dv 0.105 0.185

Selective stimulation Strength1 Strength2

Contrast factor Acue 1.10 1.15

Network parameters E I

Coding probability f 0.10 0.10

Number of memory items p 5 5

Probability of synaptic connection c 0.20 0.20

Number of excitatory/inhibitory cells N 8,000 2,000

Mean external current µext 23.80mV 21.0 mV

Standard deviation of external current σext 1.0mV 1.0 mV

Cell parameters E I

Spike emission threshold θ 20mV 20 mV

Reset potential Vr 16mV 13 mV

Membrane time constant τ 15ms 10 ms

Absolute refractory period τarp 2ms 2 ms

Synaptic parameters Values

Synaptic efficacy E to I JEI 0.135 mV

Synaptic efficacy I to E JIE 0.25 mV

Synaptic efficacy I to I JII 0.20 mV

Baseline level of E to E synapses Jb 0.10 mV

Potentiated level of E to E synapses Jp 0.45 mV

Fraction of initial potentiated synapses γ 0.10

Synaptic delays δ 0–1 ms

Short-term synaptic parameters Values

Baseline utilization factor U 0.20

Baseline available resources X 1.00

Recovery time of utilization factor τd 1,500 ms

Recovery time of synaptic resources τf 200 ms

Dopamine1 and Dopamine2 are parameters used for the white and gray modulation curve

in Figure 1F, respectively. Some parameters are based on a previous computational

working memory model (Mongillo et al., 2008).

including the excitatory-to-inhibitory (JEI), inhibitory-to-
excitatory (JIE), and inhibitory-to-inhibitory (JII), are constant.
For convenience, all parameters used in this model are listed
in Table 1.

Dynamic Rules of the Model
Activities of individual neurons are modeled by the leaky
integrate-and-fire model (LIF) with a refractory period of τarp.
Below the firing threshold (θ ), themembrane potential of neuron
i (Vi) is governed by:

τmV̇i = −Vi + I
(rec)
i (t)+ I

(ext)
i (t) (1)

where τm is the membrane time constant. The external input
(including background noise and memory-specific stimuli)

I
(ext)
i (t) is modeled as Gaussian white noise, with a mean of µext

and standard deviation of σext :

I
(ext)
i (t) = µext + σext · ηi(t) (2)

where ηi(t) is the standard Gaussian white noise. Memory-
specific stimuli are modeled by increasing µext but maintaining

σext . The recurrent current I
(rec)
i (t) is given by:

I
(rec)
i (t)=

∑

j

Ĵij(t)
∑

k

δ(t − t
(j)

k
− Dij) (3)

where t
(j)

k
refers to the firing times of presynaptic neuron j, Dij is

the transmission delay uniformly distributed between 0 and 1ms,
and Ĵij(t) is the instantaneous synaptic efficacy. For excitatory-
to-excitatory synapses, their strengths are dynamically adjusted
according to:

Ĵij(t) = Jij · uj(t − Dij)xj(t − Dij) (4)

u̇(t) =
U − uj (t)

τf
+ U

[
1− uj (t)

] ∑

k

δ

(
t − t

(j)
k

)
(5)

ẋj(t) =
X − xj (t)

τd
+ uj (t) xj (t)

∑

k

δ

(
t − t

(j)
k

)
(6)

where x indicates the available number of presynaptic
neurotransmitters, and u refers to the portion of x that
can be utilized during synaptic transmission, which reflects
the influence of calcium level on release probability at the
presynaptic site. U and X are the baseline values for u and x,
respectively. After each spike, x and u change according to
Equations (5, 6) with their corresponding time constants τd
(depressing) and τf (facilitating), respectively. As mentioned
above, only the excitatory-to-excitatory synapses are subjected
to this form of plasticity. All remaining synapse efficacies are
kept constant.

Model Dopamine Modulation
Previous studies have shown that different levels of dopamine D1
receptor activation act differently on glutamatergic input between
the excitatory and inhibitory neurons. Specifically, with low doses
of DA, the inputs to both excitatory and inhibitory neurons
are unaffected; with moderate doses of DA, the enhancement of
glutamatergic input to excitatory neurons is more pronounced;
and with high doses of DA, the inputs to both excitatory and
inhibitory neurons are strongly enhanced(Muly et al., 1998; Gao
et al., 2001). These differential effects of D1 activation level have
been widely acknowledged in computation models studying DA
modulation of the prefrontal cortical networks (Durstewitz et al.,
2000; Brunel and Wang, 2001; Lew and Tseng, 2014). To reflect
D1 modulation in the present model, we multiplied the absolute
strength of excitatory-excitatory (E-E) synapses (JEE, including
Jb, Jp, and Jb/p) and excitatory-inhibitory (E/I) synapses (JEI)
with relative strength factors AEE and AEI , respectively. AEE and
AEI are both functions of DA level, and the differences between
them change with DA, as indicated by the red dotted line (A) in
Figure 1E. The range of DA was set as D ∈ [0, 2]. Accordingly,
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we fixed the intermediate level of D1 activation at the center of
the range, i.e., D0 = 1.0. The range of the two scaling factors was
set as [Amin,Amax]. The functions of AEE and AEI could then be
specified as:

AEE =

[
1

CEE
·

(
1+

DL

1+ e(DE0−D)/Kc

)
− AP1

]
· 100% (7)

AEI =

[
1

CEI
·

(
1+

DL

1+ e(DI0−D)/Kc

)
− AP1

]
· 100% (8)

DE0 = D0 − DV (9)

DI0 = D0 + DV (10)

DL = Amax − Amin (11)

AP1 = 1− Amin (12)

where D refers to the level of D1 activation, and KC and DV are
two key parameters controlling the function shape in Figure 1E.
Steep parameter KC controls the vertical steepness and shifting
parameter DV controls the largest efficacy difference between
the two functions at D0. CEE and CEI are the normalization
parameters obtained by setting DV = 0 in Equations (9, 10) and
D= D0 in the following equations:

CEE = 1+
DL

1+ e(DE0−D)/Kc
(13)

CEI = 1+
DL

1+ e(DI0−D)/Kc
(14)

Each D1 activation level uniquely determines a AEI , AEE pair
(Figure 1E), which then specifies a point in the EE-EI plane.
With a continuously increasing D1 activation level, a system
state trajectory can be obtained. The exact shape and position
of the trajectory can be controlled by tuning parameters KC and
DV . Given (1) the objective function of obtaining the maximal
sensitivity of WM and avoiding the risk of “imaginary memory”
(see the main text for details), and (2) the constraints that at very
low/high D1 activation both JEE and JEI should be weak/strong,
eventually, we can obtain the trajectory as shown in Figure 1F.
With the increase in D1 activation level, the trajectory starts from
the diagonal, then approaches the transition line, before finally
returning to the diagonal.

Our main conclusions are robust toward different choices of
free parameters used in the model. For example, we show that
similar results (Supplementary Figure S1) can be obtained with
a different range of synaptic strengths, controlled by the scaling
factor [Amin,Amax], i.e., the gray trajectory in Figure 1F.

Analysis of Network Activities
Neuronal Avalanche Identification
We defined neuronal avalanches according to previous work
(Beggs and Plenz, 2003) (cf. Figure 3A). An avalanche is a
cascade of activity propagation within the network. To identify
such a cascade, a small time-window 1t is used to bin a Es
population activities. An inactive time bin is a bin during which
no neurons have fired, whereas an active time bin is the one
during which at least one neuron has fired. The cascades are then
defined as neuronal activities that occur either within the same

bin or within consecutive active bins (Figure 3A). For the present
analysis, 1t = 0.3ms, which is two times the average inter-spike
interval within the population. Avalanche size is defined as the
number of neurons involved in the corresponding cascade. All
neuronal avalanches in the present work are obtained with 2,000
ms-long simulations with a time step of 0.1 ms.

Power-Law Fitting
In critical neural networks, avalanche size distribution follows a
power law:

P(s) ∝ sα (15)

where P(s) is the probability density function (PDF) of observed
avalanche size s, α is the exponent that gives the power-law slope
in a log-log plot, which is close to −1.5 for critical networks
measured under both in vitro and in vivo conditions (Beggs,
2004; Gireesh and Plenz, 2008). To reduce the effect of noise
on distribution, a smoothing method based on geometric mean
values under the log-log coordinate was applied (Christensen and
Moloney, 2005), and the fit area are obtained by optimization the
object of minimal the Kolmogorov–Smirnov distance between
the data and fitting candidates, finally the exponent α then
estimated by least-square fitting in log-log coordinates. We
implemented these through a public python package Powerlaw
(Alstott et al., 2014).

Branching Parameter
Branching parameter σ is defined as the average number of active
units in the next time step that are triggered by one active unit at
the current time step. Following previous work (Beggs and Plenz,
2003), it can be measured by:

σ=

〈
Descendants

Ancestors

〉
(16)

where 〈〉 refers to the operation of arithmetic average, Ancestors
is the number of active units in the first bin of an avalanche, and
Descendants is the number of active units in the second bin of the
corresponding avalanche.

Correlation Coefficient and Coefficient
of Variation
The correlation coefficient is used to measure the degree of
balanced excitatory and inhibitory input to a neuron, which is
calculated as:

ρ =
cov(x1, x2)

√
D(x1)+ D(x2)

(17)

where x1 and x2 refer to the excitatory and inhibitory currents,
respectively, and D is the variance of the corresponding currents.
Note that the correlation coefficient between excitatory and
inhibitory currents is always a negative value. We always plotted
its absolute value in this to facilitate visual comparison.

The coefficient of variation of distribution is defined as:

CV =
µ

σ
(18)
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where µ and σ refer to the mean and standard deviation of
distribution, respectively.
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In a companion paper (I. Multifractal analysis of clinical data), we used a wavelet-based

multiscale analysis to reveal and quantify the multifractal intermittent nature of the

cardiac impulse energy in the low frequency range . 2Hz during atrial fibrillation (AF).

It demarcated two distinct areas within the coronary sinus (CS) with regionally stable

multifractal spectra likely corresponding to different anatomical substrates. The electrical

activity also showed no sign of the kind of temporal correlations typical of cascading

processes across scales, thereby indicating that the multifractal scaling is carried by

variations in the large amplitude oscillations of the recorded bipolar electric potential. In

the present study, to account for these observations, we explore the role of the kinetics of

gap junction channels (GJCs), in dynamically creating a new kind of imbalance between

depolarizing and repolarizing currents. We propose a one-dimensional (1D) spatial model

of a denervated myocardium, where the coupling of cardiac cells fails to synchronize

the network of cardiac cells because of abnormal transjunctional capacitive charging

of GJCs. We show that this non-ohmic nonlinear conduction 1D modeling accounts

quantitatively well for the “multifractal random noise” dynamics of the electrical activity

experimentally recorded in the left atrial posterior wall area. We further demonstrate

that the multifractal properties of the numerical impulse energy are robust to changes

in the model parameters.

Keywords: atrial fibrillation, modeling, excitable cell network, kinetics of gap junction channel, multifractal

analysis, intermittent dynamics

1. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained tachyarrhythmia encountered in clinical
practice (Nattel and Harada, 2014). It is sometimes not diagnosed until the occurrence of a severe
complication such as embolic stroke. Often associated with heart disease, clinical investigations
do not always uncover any preexisting cardiovascular comorbidity (idiopathic or lone AF).
Physiologically, current understanding of the onset and perpetuation of most tachyarrhythmias
including AF presumes the involvement of circuit reentries. This scenario was established
historically from the observation of reciprocating rhythms initiated in the atrio-ventricular node
via the fast and slow pathways of impulse conduction. Atrial flutter and regular tachycardias were
thus inferred to be rooted in circling conduction pathways, as going around anatomical obstacles
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or scars for example. Tachyarrhythmias may also spontaneously
evolve toward more irregular arrhythmias such as AF.
Experiments show that AF can be induced by in situ
injection of toxins like aconitine as well as by ectopic stimulation,
i.e., under extreme conditions enforcing local functional changes
of the excitable conducting substrate. AF may then persist
independently of the inciting protocol (Macfarlane et al., 2011;
Zipes et al., 2017). These observations paved the way to the
concept of multiple circuit reentries, not necessarily linked
to the anatomy but to a vulnerable atrial substrate because of
functional dispersion in space and time (such as non uniform
dispersion of refractoriness) (Moe and Abildskov, 1959; Moe
et al., 1964; Allessie et al., 1977; Attuel et al., 1989; Winfree,
1989). But clinically, the question remained whether abnormal
conducting pathways and ectopic triggers do stabilize AF. In
that respect, intervention procedures were developed either
to surgically create an electrical maze in the atria or, in a less
invasive and safer way, to isolate abnormal ectopic activity
as found in the pulmonary veins areas by radio frequency
ablation. Both procedures led to high clinical success rates in
stopping paroxysmal AF (Cox et al., 1991; Haïssaguerre et al.,
1998). Unfortunately, the diverse procedures instigated since
then remain suboptimal because the risk of relapse increases
with time, and the disease often evolves toward a chronic
state (Ganesan et al., 2013; Takigawa et al., 2014).

Cardiomyocytes belong to the family of excitable cells which
are ubiquitous in animals and plants (Hille, 2001). They are
distinguishable from non-excitable cells by their ability to reach
an electrically depolarized state of their extra-cellular phospolipid
bi-layer membranes. Action potentials (APs) correspond to cycle
events in which the membrane reaches a depolarized state
before relaxing back to the polarized rest state. In the wake of
the seminal work by Hodgkin and Huxley on the giant squid
axon AP (Hodgkin and Huxley, 1952a,b), a cardiac impulse
is similarly described by the nonlinear coupling between a
diffusing activator, the electric potential across the excitable
cell membrane, and a non-diffusing inhibitor, the overall ion
currents permeating through the membrane (Noble, 1962, 1965;
Beeler and Reuter, 1977; Plonsey and Barr, 2007; Fenton
and Cherry, 2008; Macfarlane et al., 2011). This nonlinearity
underlies the fact that the AP amplitudes depend very little
on the intensity of the exciting perturbation, provided they
are suprathreshold. Various transmembrane proteins selectively
allow some solutes to permeate. Leaking (potassium) channels
are balanced by (sodium-potassium) pump exchangers forcing
the cell membrane into a negatively polarized state, which
compensates for the hypertonic activity of internally sequestered
vital substances (Tosteson and Hoffman, 1960; Armstrong,
2003). Excitable cells take advantage of this situation to generate
electrical signals. Their plasma membrane incorporates a large
number of ion channels, sensitive to various other species such
as e.g., calcium. They are proteins forming pores that greatly
facilitate ion transport down electrochemical gradients. Ion
channels act as voltage dependent gates and their reaction rates
reflect the height of the free energy barrier separating the open
and closed conformation states (Hille, 2001). The membrane
depolarizes in a few milliseconds to a near Nernst-Planck resting

equilibrium, as for instance triggered by a supra-threshold
electrical stimulus. In the heart, in addition, each cardiomyocyte
cycle lasts a definite amount of time, typically a few hundreds
milliseconds, incorporating a refractory period during which
re-excitation is impossible.

Electric pulses travel by ohmic conduction within a single
cell membrane, whereas the transport of these pulses across
adjacent cardiac cells is ensured by gap junction channels
(GJCs). These GJCs connect adjacent cardiac cells along a
preferred longitudinal direction, each via tight assemblies of
hundreds to thousands of pores, themselves formed by two
hemichannels of six bound proteins called connexins. Also found
in nearly every connected animal tissues, and on the contrary
to ion channels, GJCs are wide and open at rest, thereby
prominently contributing to homeostasis, chemical messaging,
and electrical permeability throughout the whole network of
connected cells (Weidmann, 1966; Severs, 1990; Kumar and
Gilula, 1996; Harris, 2001; Evans and Martin, 2002). The
reduction of connexin genetic expression was shown to be
source of conduction inhomogeneities increasing susceptibility
to arrhythmias in ventricles and atria, in various animal models
and in humans with diverse heart conditions, potentially causing
sudden cardiac death (van der Velden et al., 2000; Dupont
et al., 2001; van der Velden and Jongsma, 2002; Ausma et al.,
2003; Danik et al., 2004; Severs et al., 2008). Recent studies
also suggest that missense mutations in connexin encoding
genes predispose to AF (Gollob et al., 2006), whereas connexin
gene transfer plays a protective role in preventing sustained AF
(Bikou et al., 2011; Igarashi et al., 2012).

The phenomenology of irregular arrhythmias is classically
interpreted as emanating from the chaotic dynamics of excitable
reaction-diffusion systems in which ohmic conduction is
assumed. Typical routes to deterministic chaos with specific
rhythms were theoretically identified in simple models based
on cell cycle phase resetting (Glass and Mackey, 1979, 1987;
Guevara et al., 1981; Guevara and Glass, 1982). In particular,
period doubling bifurcations in the dynamics of excitable pulses
propagating on a ring (Courtemanche et al., 1993) were put
forward as a mechanism prior to the onset of AF. More complete
ion channel models such as the historical Beeler-Reuter model
(Beeler and Reuter, 1977), were shown to succeed in generating
generic spatio-temporal patterns (Jensen et al., 1984; Chialvo
et al., 1990; Fenton and Cherry, 2008). Spiral waves in 2D spatial
dimensions (theoretically scroll waves in 3D) were observed
experimentally during ventricular tachycardia as well as before
the onset of fibrillation (Pertsov et al., 1993; Gray et al., 1995;
Garfinkel et al., 1997; Zipes et al., 2017). These spiral waves
can be seen as focal wave trains swirling periodically around
the analog of the “leading circle” at their core (Allessie et al.,
1977; Winfree, 1989). More recently, cellular automata on a two-
dimensional square lattice was used to demonstrate that phase-
dependent spiral attenuation could reproduce wave propagation
in excitable media of myocardial cells (de la Casa et al.,
2007a,b). Within this framework, fibrillation was interpreted
as the break-up of unstable spiral waves spoiling rhythmic
regularity (Gerhardt et al., 1990; Ito and Glass, 1991; Bär and
Eiswirth, 1993; Karma, 1993; Panfilov and Hogeweg, 1993; Bär
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and Brusch, 2004; Zipes et al., 2017). Other models based on
nonlinear stochastic feedback mechanisms were also proposed to
explain the regulation of cardiac dynamics (Ivanov et al., 1998),
suggesting that it could be intrinsically random (physiological
noise). To our knowledge, it has never been reported in cardiac
models the existence of a multifractal intermittent dynamics
of the cardiac impulse energy as observed experimentally over
large time scales in our companion paper I (Attuel et al., 2017).
In this study, we elaborate on a tentative interpretation of the
observed intermittent dynamics during AF as the signature
of synaptic plasticity. Typical individual GJC transition times
between open and closed states were shown to be much longer
than those of membrane polarization but compare well with
membrane recovery time (& 100ms) (Spray et al., 1984; Neyton
and Trautmann, 1986; Wang et al., 1992; Bukauskas and Verselis,
2004; Desplantez et al., 2007).Moreover, slow gatingmodulations
have been evidenced due to cytoplasmic protons (low pH) and
free calcium (Spray et al., 1984; Burt and Sray, 1988; Kumar
and Gilula, 1996; Harris, 2001; Bukauskas and Verselis, 2004;
Perrachia, 2004; Swietach et al., 2013). Thus, a perturbation of the
GJC opening and closing due to electric charge may induce some
time lag or advance in the activation of the cell, slowing down or
boosting the propagation of the AP, even impeding or reversing
it (after reexcitation), resulting in a local departure from ohmic
conduction law.

Here, we propose a mathematical model of cardiac cell
excitability which includes their dynamical coupling by GJC
kinetics. As (i) gap junctions electrically bind cardiac cells
preferentially along their elongated direction (Severs, 1990; Evans
and Martin, 2002)), and (ii) in the left atrial lateral wall area,
the CS has a thin surrounding muscular structure traversed by
myocardial strands (Ho et al., 2012), we simply consider a one-
dimensional (1D) spatial model to describe the transport of AP
along and across myocardial cells via the temporal interplay of
voltage-gated channels and GJCs. We show that (if probably not
minimal) this 1D model robustly accounts for the intermittent
modulation of cardiac pulse trains experimentally observed in the
clinical data recorded in the left atrial posterior wall area of the CS
(The study reported in Companion paper I (Attuel et al., 2017)
was carried out with the recommendations of the International
Cardiac Electrophysiological Service of public hospital CHU
Haut-Lévêque, Pessac, France. The protocol for clinic research
was approved by the Institutional Clinical Research and Ethics
Committee: CPP (Comité de Protection des Personnes) and
AFSSaPS (Agence Française de Sécurité Sanitaire des Produits
de Santé). All patients involved gave written informed consent
to the investigation of data. For this specific investigation
of the data, the authors accessed fully anonymized and
de-identified data.

2. MODEL AND NUMERICAL DATA

To reproduce the spatio-temporal multifractal intermittent
dynamics of voltage signals collected from the CS of patients
with chronic AF (companion paper I Attuel et al., 2017), we
propose the following system of four nonlinearly coupled partial

differential equations (PDEs) (Attuel et al., 2016):





cm
∂
∂t Um = F(Um, wm)− c−1

g
∂
∂x

(
g ρg

)
+ κ ∂2

∂x2
Um,

∂
∂t wm = G(Um, wm),
∂
∂t g = ω2 ρg − ν1 g,
∂
∂t ρg = −g ∂

∂xUm − ν2 ρg ,

(1)

where Um(x, t) is the membrane electric potential drop, wm(x, t)
the ionic channel gating variable, g(x, t) the gap junction
conductance deviation from normal, and ρg(x, t) the gap junction
capacitive charge density. wm(x, t) is generally a vector of state
variables describing the generation of the APs that is related to
the intracellular concentration variations of different ions (Na+,
K+, Ca2+, Cl−). As explained in section 2.1, the kinetics of
the voltage gated channels will be described by the simplified
FitzHugh-Nagumo model (FitzHugh, 1962; Nagumo et al., 1962;
Izhikevich and FitzHugh, 2006). Let us note that, as compared to
previous modeling attempts, our model (Equation 1) lies on the
assumption that the gap junction conductance is not static, and
that the GJC gating is driven by both the local transmembrane
field produced by the charging of the gap junction and its
conductance (nonlinear coupling term). The first two equations
correspond to the standard mono-domain model for cardiac AP
conduction, in which an additional term for the GJC current
has been introduced, responsible for an imbalance between
depolarizing and repolarizing membrane currents. The last two
equations describe the GJC conduction and capacitive charging.

2.1. Standard Modeling of Cardiac AP
Conduction
Let us consider an idealized elongated fiber of excitable cells
(Figure 1), along which a traveling depolarization front (AP
upstroke) is classically modeled by a 1D cable equation, assuming
Kirchhoff’s law of conservation of currents (Plonsey and Barr,
2007; Niebur, 2008; Macfarlane et al., 2011):

{
cm

∂
∂t Um = F(Um, wm)+ κ ∂2

∂x2
Um,

∂
∂t wm = G(Um, wm),

(2)

where Um (in V) is the electric potential across the cell
membrane, cm (in F/m) is the fiber’s insulating membrane
capacitance per unit length, κ = σS (in �−1×m ) is an
inverse resistance per unit length with σ the mono-domain
conductivity1, and S (in m2) is the fiber cross-section. The
coupling of the membrane electric potential Um with inhibiting
membrane currents responsible for repolarization by ion specific
voltage-gated channels (Na+, K+, Ca2+, Cl−) is represented
by the variable wm (in A/m) in the nonlinear function F. The
function G symbolizes the kinetics of the repolarizing voltage
gated ion channels. One example of a boundary condition
consists in imposing an external current stimulus Iext (in A),
possibly time dependent, at the x = 0 extremity of the cell array:

κ
∂

∂x
Um (x = 0) = − Iext . (3)

1 σ−1 = σ−1
i + σ−1

e , where σi and σe are the internal and external medium

conductivities in bi-domain models.
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FIGURE 1 | (A) Microscopic view of cardiac muscle cells (longitudinal section) stained with hematoxylin (nuclei) and eosin (cytoplasm). The myocardial cells can be

recognized by their elongated aspect (50–100 µm long, with sections ∼ 10µm), a longitudinal striated organization, multiple branchings and connections at their

extremities via intercalated disks (IDs). (B) Schematic GJCs at the onset of depolarization. Depolarizing (resp. polarized) cells are stained in red (resp. blue). Surface

charges are depicted with ± symbols, on the inner and outer side of the depolarizing (gray) and polarized (black) membranes and on the dysfunctional GJCs (red)

with capacitive charge loading Qg such that
〈
Qg

〉
=

∫
ρg dx. Voltage-gated channel ionic flows are marked with green vertical arrows. Normal GJCs: red resistor

symbol, dysfunctional GJCs: gray capacitor symbol. Total currents I (blue horizontal arrow) circulate in opposite directions inside and outside the cell, splitting into the

normally flowing ohmic current I� (red), and residual closed GJCs current Ig (dashed red) building up charge. Typical membrane and intercalated disk dimensions are

lm ≈ lg ∼ 5 nm.

A popular model for the nonlinear function F(Um, wm) in
Equation 2 is the so-called FitzHugh-Nagumo (FHN) model
(FitzHugh, 1962; Nagumo et al., 1962; Izhikevich and FitzHugh,
2006), which was constructed from a damped van der Pol
oscillator model (named the Bonhoeffer-van der Pol model by
Fitzhugh). Indeed, the FHN model was introduced as a nerve
model to simplify the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952a,b) and to facilitate analytic calculations:

F(Um, wm) = µUm (A− Um) (Um − B) − γ 2wm, (4)

whereµ,A, B and γ are real parameters. Note that cm/ (ABµ) ≈
τd corresponds to a depolarization time scale, A and B are
coefficients establishing themagnitude of the saturating “plateau”
potential while the sign of A tells whether the portion of fiber
is excitable (A > 0) or self-sustained oscillating (A < 0), and
γ 2 > 0 is the coupling rate between Um and wm. The coupling
to membrane currents is described by the following form of the
function G in Equation (2):

G(Um, wm) = α2Um − ν0wm + λ , (5)

where α2 > 0 (real positive) is an inverse inductance per unit
length, λ is a leaking current parameter that will be put to zero
for simplicity, and ν−1

0 a relaxation time scale for voltage gated
channel inactivation. Since Equation (2) is a RLC circuit analog,
it is straightforward to show that the saturating plateau potential
lasts for a typical refractory period RP≈ (αγ )−1, similarly to the
damped van der Pol oscillator (Van der Pol and Van der Mark,
1928; Takashi, 2007).

It takes a time τd ∼ 1 to 10 ms to depolarize one cell
membrane. Actually, τd acts as a cut-off time scale for continuous
models as Equation (2). For a linear capacitance cm . 10−6 F/m,
and a linear conductivity κ . 10−10 �−1×m, an upstroke
(ion channels releasing the electric energy stored by conversion

of chemical bond energy) is estimated to travel at a typical

velocity c ∼

√
κ (cm τd)

−1 & 0.1 m/s. This is consistent with
the conduction velocity measured in the atria under various
conditions c ∼ 0.1 to 1 m/s (Zipes et al., 2017). The upstroke
spans a typical membrane length of order ld ≈ c τd ∼ 0.1 to
10 mm (Figure 1B), which acts as a spatial cut-off scale in such
continuous models. Note that for very slow conduction velocity
and rapid upstroke, the upstroke length scale can decrease down
to the longitudinal size of one cell. Mathematically, a single
boundary stimulus gives rise to a unique traveling upstroke:
Um(x, t) = Um(x − c t). Immediately following depolarization,
other voltage gated ion channels start contributing in a way as
to set the membrane potential back to its original negative value.
The resting polarized state is then restored back in a typical time
of order τr & 100 ms in the heart (Hille, 2001; Plonsey and
Barr, 2007; Macfarlane et al., 2011). Time history dependencies
of channel activation define the absolute refractory period RP of
duration& 100 ms in the heart.

A traveling pulse solution of the partial differential (Equation
2) indeed corresponds to a homoclinic cycle in the FHN
model biasymptotic to the resting electric potential stable fixed
point (Beuter et al., 2003; Izhikevich, 2007; Fenton and Cherry,
2008; Guckenheimer and Kuehn, 2009). Homoclinic cycles are
triggered locally by the advancing foot of the depolarizing
front or by an external stimulus. To reproduce the observed
variety of physiological properties of an excitable myocardium,
nonlinear modifications or extra membrane currents were added
to the coupling functions F and G as for instance in Bär and
Eiswirth (1993), Karma (1993), Panfilov and Hogeweg (1993),
Fenton and Karma (1998), Fenton et al. (2002), Fenton and
Cherry (2008), and Zipes et al. (2017). However, in their FHN
type, Equations (2), (4), and (5) are quite adapted to simulate
the homoclinic orbits underlying AP cycles and cardiac pulse
trains. The dynamical complexity of the original FHN model
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has attracted a lot of mathematical and numerical attention
(Glass and Mackey, 1987; Izhikevich, 2007). Under periodic
stimulation, period doubling bifurcations were shown to precede
a transition to deterministic chaos (Nolasco and Dahlen, 1968;
Glass and Mackey, 1979, 1987; Guevara et al., 1981; Chialvo
et al., 1990; Fenton and Cherry, 2008). Interestingly, along the
line of the diffusely coupled Fitzhugh-Nagumo (Equations 2–5),
the generation of higher-dimensional hyperchaotic spatio-
temporal dynamics was suggested as a possible explanation of
the dynamic transition to fibrillatory states in cardiac tissue
(Baier and Müller, 2004).

2.2. Inter-cellular Ion Conduction and GJC
Dynamics
The cardiac cell-cell contacts, where electrical signal conduction
occurs, are found at intercalated discs located mostly at the
narrow end of elongated cardiomyocytes. On their lateral side,
the cardiomyocytes are ensheathed by cell-matrix contacts
(Figure 1) with weaker electrical coupling. This organization
favors a synchronized unidirectional propagation of electrical
signals through serial strands of cardiomyocytes. When this
synchronization is compromised, life-threatening arrhythmias
can develop, and ultimately can become an obstacle for the
regeneration of damaged heart tissues. The cardiac intercalated
discs (IDs) must therefore be resilient to both mechanical
and electrical disturbances to ensure a fast and reproducible
propagation of the electrical signal that initiates contraction
throughout the heart. ID includes three main structures: (i) the
desmosome and (ii) the adherens junction (AJ) that provide
the mechanical strength and continuity of the cell-cell contact,
and that are both connected to the cytoskeleton, and (iii)
the gap junction (GJ) which couples the cells electrically and
metabolically. Other proteins which are not directly involved
in the cell-cell contact also reside in the ID, including ion
channels. The close contact and communication between cardiac
myocytes is therefore essential for proper heart functioning
as a syncytium, for both electrical and mechanical signal
conductions. The GJCs (type I) which are found in cardiac
muscles are organized in hexagonal arrays (connexins), with
8–9 center-to-center spacing, and overall thickness ∼ 15-16
nm. Despite their negligible size, as compared to the myocyte
length, these junctions were soon recognized as discontinuous
conduction zones of the myocardium (Spach, 1983), and they
were suspected to offer a low resistance to the transfer of
electrical signals and more surprisingly to enhance this transfer
nonlinearly (Cole et al., 1988).

Several numerical and theoretical attempts have tried to
reconcile the difference of scales (from membrane and GJCs
thickness to cell length) in a continuous or quasi-continuous
treatment of cardiac fiber excitability (Diaz et al., 1983; Joyner
et al., 1984; Cole et al., 1988; Keener, 1990; Bub et al., 2005; Pumir
et al., 2005; Hand and Griffith, 2010; Hand and Peskin, 2010;
Lin and Keener, 2010, 2013). At the heart tissue level, it appears
at first legitimate to discard the GJC discontinuities, except
maybe for radical instances of static or permanent alterations
of GJCs due e.g., to connexin expression depletion (Cole et al.,

1988) or gap junction blocker like α-glycerrhetinic acid (Bub
et al., 2005) over large areas. As the longitudinal electric field
generated by repeatedly passing APs drives the GJCs, we propose
in this study to consider the spatio-temporal dynamics of the
GJC conductances especially at cardiac intercalated discs where
most GJCs reside. Indeed, we do not explicitly account for the
discreteness of the GJCs spatially, considering instead an average
behavior, but we introduce a nonlinear coupling term in the
conduction current mono-domain cable (Equation 2) to mark
the distinct propagation and polarization dynamics of GJCs and
channel-gated ion channels.

Transjunctional voltage gated inactivation and recovery rates
are comparable to repolarization rates (Neyton and Trautmann,
1986; Wang et al., 1992; Desplantez et al., 2007). This is a clue
that we regard as pivotal for the behavior of ion transport along
the direction of propagation at the locations of GJCs, especially
during rapidly beating electrical activity (AP). As compared to
previous AP propagation models involving GJCs (Burt and Sray,
1988; Kumar and Gilula, 1996; Harris, 2001; Bukauskas and
Verselis, 2004; Danik et al., 2004; Perrachia, 2004), we put more
attention on the dynamical implication of GJC (slow) kinetics in
response to positive charge accumulation (capacitive charging).
By considering that the capacitive charging of closed GJCs is
proportional to the voltage drop across the interstitial space,
we show that the GJC slow kinetics can enhance the effect
thereby amplifying fluctuations around a stationary conductance.
The whole AP propagation can therefore be strongly affected
because small initial fluctuations of the GJC conductance may
be amplified to non negligible values corresponding to a sort of
nonlinear resonance of the GJC dynamics.

Averaging over typical depolarization time and length scales,
corresponding to several thousands of intercalated discs, allows
to derive a continuous mathematical model of inter-cellular ion
condition and GJC dynamics. When combined with the well
controlled FHN mono-domain mode, we get the following 1D
system of nonlinearly coupled PDEs:





cm
∂
∂t Um = µUm (A− Um) (Um − B)

− γ 2wm − c−1
g

∂
∂x

(
g ρg

)
+ κ ∂2

∂x2
Um, (6a)

∂
∂t wm = α2Um − ν0wm + λ, (6b)
∂
∂t g = + ω2 ρg − ν1 g, (6c)
∂
∂t ρg = − g ∂

∂xUm − ν2 ρg , (6d)

with the same boundary conditions as defined in Equation
(3). The new dynamical variables are: (i) the GJC conductance
fluctuations g (around its mean value accounted for in κ) (in
S ≡ �−1), which can be interpreted as the non zero gradient part
g ≡ ∂

∂xκ 6= 0, and (ii) the average capacitive charge linear density
ρg . The new parameters are cg : an average linear capacitance
analog to cm but for the intercalated disks, ω2: a reaction rate for
the zeroth-order kinetic Equation (6c), and ν1 a relaxation rate
(ν2 → 0). Note that the zeroth-order (independent of g) reaction
rate is justified because only a small fraction of abnormally
closing GJCs have to grow from zero initially, while a majority of
others remain conducting. At the same time, capacitive charges
act on all nearby hexamers. In addition, current conservation
modifies Equation (2) so as to include a current term coming
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TABLE 1 | Parameters used in the simulations of Equations (6)–(8).

Param L cm cg κ µ A B ν0 ν1 ν2 γ
2

α
2

ω
2

λ

Simul #1 210 1 1 0.01 3 0.1 1 0.02 0.01 0.0001 3 0.008 105 0

Simul #2 150 1 1 0.01 3 0.1 1 0.02 0.01 0.0001 3 0.008 105 0

Simul #3 90 1 1 0.01 3 0.1 1 0.02 0.01 0.0001 3 0.008 105 0

Simul #4 30 1 1 0.01 3 0.1 1 0.02 0.01 0.0001 3 0.008 105 0

Simul #5 150 1 1 0.005 6 0.1 1 0.01 0.005 0.0001 6 0.004 5.104 0

Simul #6 150 1 1 0.04 3 0.1 1 0.02 0.01 0.0001 3 0.008 105 0

Simul #7 150 1 1 0.08 3 0.1 1 0.02 0.01 0.0001 3 0.008 105 0

The spatial size is L in δx = 0.3 mm units (section 2.3). The parameter dimensions are: cm (ms×mm−1 ×�−1), cg (ms×mm
−1 ×�−1), κ (mm×�−1 ), ω2 (mm×ms−2×mV−1), νi (ms

−1 )

for 0 ≤ i ≤ 2 ; α2 (ms−2 ), γ (no unit), µ (mm−1 ×�−1×mV−2), A, B (mV).

from the capacitive charging of GJCs. Precisely, the local ohmic
current flowing through open GJCs experiences losses due to
closed GJCs. Thus, adding the GJC current as Ig = c−1

g gρg ,

to the unpertubed conduction current I� = − κ ∂
∂xUm, gives

a total longitudinal current I = I� + Ig (Figure 1B). From
charge conservation hypothesis, taking the divergence of I yields
Equation (6a). Equation (6d) is obtained by considering that the
net capacitive charging current density ∂

∂t ρg is non zero as soon
as the GJCs start closingmassively. This current density is written
as the product of the GJC conductance and the local electric field
produced by the AP wave (− ∂

∂xUm). Finally, ν1 accounts for the
GJC relaxation rate while ν2 (with ν2 ≪ ν1) accounts for other
charge leakages. We refer the reader to Table 1 for more details
on units and numerical values.

The boundary conditions are defined such that the value of A
is chosen opposite (A → −A) for x = 0, making this fiber end
self-sustained oscillating, and unconstrained for x = L with null
electric field − ∂

∂xUm (x = L) = 0, while no external current is
added Iext = 0. Thus, we set :

cm
∂

∂t
Um = µUm (−A− Um) (Um − B) − γ 2wm

− c−1
g g ρg for x = 0, (7)

and

∂

∂t
ρg = − ν2 ρg for x = L. (8)

2.3. Numerical Scheme
We use standard finite difference techniques to integrate
numerically the system of partial differential Equation
(6) with boundary conditions defined in Equations (7)
and (8). The linear Laplacian operator is handled with the
standard “Crank-Nicholson” scheme using tri-diagonalization.
But, one notable unusual trait, as compared to other
cardiac models, is that by construction here, the spatial
operator is no longer elliptic because of the divergence
term. This calls for a special treatment of the gap junction
fluctuating quantities.

One way to find out a stable scheme is by considering the
following heuristic. For the sake of exposition simplicity, the
mean membrane potential is assumed adiabatically constant
∂
∂tUm = 0. Equation (6d) possesses an important mirror

antisymmetry upon changing Um → −Um and x → −x, which
distinguishes flow directions of GJ charging or discharging, for
a given fluctuating conductance. Consistently, Equations (6b, c)
are invariant under the change ρg → −ρg and g → −g. Hence,

the fluctuating vector W =

[
ρg
g

]
obeys the following temporal

evolution equation:

∂

∂t
W = MW, (9)

where the matrix local evolution operator is

M =

[
−ν2 − ∂

∂xUm

ω2 −ν1

]
, (10)

which shows (ν2 → 0) that the quantity θ = ω

√∣∣ ∂
∂xUm

∣∣
can act, for some fluctuation, as a typical growth rate (as in
the case of a right moving depolarizing front for which the
gradient is negative) or as a typical pulsation frequency otherwise.
To handle this particular linear, (temporal) evolution, the so-
called “leap-frog” method is usually well adapted and was found
numerically stable.

When fluctuations can be assumed as happening over a local
spatial distance δℓ such that a positive variation from zero is
W ≃ −δℓ ∂

∂xW, one can rewrite dimensionally the temporal
evolution operator (Equation 10) into a spatial transfer operator:
MW → −M′ ∂

∂xW − νW where

M′ =

[
0 δℓ ∂

∂xUm

−δℓω2 0

]
, (11)

and ν =

[
ν2
ν1

]
. Thus, an advection velocity appears of magnitude

v = δℓθ , directed in one or the other way depending on the
sign of the fluctuating variables. If not further driven, these
fluctuating variables are damped over a spatial distance (along
a characteristic) 1x = ±v1t, in a time 1t ∼ ν−1

1 . A
standard “upwind” scheme takes good care of the numerical
stability of advection, with sufficient precision, but favors a
particular direction of propagation for positive fluctuations, here
in agreement with the mirror antisymmetry. This also explains
why we choose to place on the outer left side of our 1D
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FIGURE 2 | Numerically simulated pseudo bipolar potential. (A) 6 s time-series 1b8 (Equation 12) are generated at positions x (in δx = 0.3 mm units) = 8, 18, 75 and

134 (from top to bottom) with our model defined in Equations (6)–(8) with parameter values defined in Simul #2 (Table 1), L = 150 (in δx = 0.3 mm units).

(B) Corresponding Fourier transform power spectra. No attempt was made to reproduce the high and low pass filtering used in real bipolar catheter acquisitions. The

natural point source frequency at the boundary is ∼ α γ ≈ 5 Hz. Rarefaction of pulses occurs as one moves away from the source which is a hint at some randomly

back-scattered pulses that collide and annihilate up-following pulses without reexciting new pulses.

system a rapidly beating cell (Equation 7) mimicking an ectopic
source, whereas the dynamics is monitored only on its right, at
different spatial positions. The outer right boundary is chosen
non-excitable in the present study, which mimics any kind of
connection to non-conducting tissues. Numerical integration
values of time step δt = 0.4 ms for all simulations in Table 1

(except Simul #5 for which δt = 0.25 ms), and spatial step
δx = 0.3 mm are chosen to abide by the Courant-Friedrichs-
Lewy condition v δt/δx < 1, for which an upper bound estimate
of the conduction velocity is c ≃ 0.1 m/s.

2.4. Software and Documentation
The numerical integration code can be downloaded directly
from the following link: https://geostat.bordeaux.inria.fr/images/
fwd-matlab-code.zip or through Geostat team software page:
https://geostat.bordeaux.inria.fr/index.php/downloads.html
(last item).

2.5. From the Formal Model Variables to
Experimentally Recorded Potential Values
We simulated the external electric potential recorded by a bipolar
electrode 1b8 by use of the dipole layer approximation. Within
the mono-domain framework, the electric potential felt just
outside a cardiac fiber of thickness e ∼ 2 mm is evaluated as
(Plonsey and Barr, 2007; Macfarlane et al., 2011):

1b8(x, t) = 5p ⋆ id(x, t) =

∫
5p(x− x′ ; e)

(
κ
∂2

∂x2
Um(x

′, t) − ig(x
′, t)

)
dx′, (12)

where 5p is the convolution function for the bipolar probe,

id(x, t) = κ ∂2

∂x2
Um(x, t) − ig(x, t) the total dipole layer

current divergence (or flux across a fiber section), and ig(x, t) =
∂
∂x Ig(x, t) the new contribution coming from GJC losses. Since
we are interested in variations over distances greater than the
depolarization length scale, a good approximation is to compute

5p(x) = ∂
∂x5(x, e), where 5(x, e) = 2π

(
x
|x| − x√

x2+e2

)
≈

∫
|r|−3 Er · EdS is the solid angle spanning the fiber section at

a distance Er = (x, e) of the depolarization front from the
probe. Figure 2 shows typical pseudo bipolar potential time series
numerically simulated with our 1D system of PDEs (Equation
6) with, as boundary condition at x = 0 (Equation 7), an
automatically beating source of frequency αγ ∼ 5 Hz so
as to match the cardiac pulse trains observed experimentally.
Tuning the newly introduced parameters ω2 and ν1 in Equation
(6), we have found quite easily paths leading from a phase
of coherent propagation of AP pulses to a phase of quite
incoherent and intermittent electrical activity (Figure 2) that
strongly reminds the very irregular behavior of electric potential
time series recorded during AF (see for comparison Figure 1 in
our companion paper I Attuel et al., 2017). Besides the obvious
interest of analyzing the succession of bifurcations and transition
events encountered along these paths in parameter space, we will
focus in this paper on a comparative study of the complex and
highly intermittent modulation of cardiac pulse trains simulated
numerically with our model of cardiac AP conduction and GJC
dynamics and the one observed experimentally in the coronary
sinus during episodes of AF (Attuel et al., 2017).
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FIGURE 3 | Wavelet transform of local impulse energy time-series. (A) A 100 s portion of E(t) recorded at the electrode Pt3 (Companion paper I Attuel et al., 2017).

(B) Time-scale WT representation of E(t) with the third-order analyzing wavelet g(3) (Equation 16). The modulus of the WT is coded, independently at each scale a,

using 256 colors from black (|T
g(3)

(t, a)| = 0) to red (maxt |Tg(3) (t, a)|). (C) WT skeleton defined by the maxima lines of a 10 s portion of E(t). The scale a = α1t/δt,

where α is an analyzing wavelet dependent constant (α = 8.6 10−2 for g(3) with the lastwave software), and δt = 0.4 ms. (A′–C′) same as (A–C) for a numerical time

series E(x, t) generated at position x = 75 (in δx = 0.3 mm units) with our model defined in Equations (6)–(8) with the set of parameter values used in Simul #2

(Table 1), and a total system length L = 150 (in δx = 0.3 mm units). In (B′) the white horizontal dashed-dotted lines delimit the range of time scales (28.5 ≤ a ≤ 213.5)

used to perform linear regression fit estimates of the τ (q) and D(h) multifractal spectra.

3. METHODS OF ANALYSIS

3.1. Local Impulse Energy
With the same convention as in the companion paper I (Attuel
et al., 2017), the local 1D impulse electric energy traveling with
scarcely any alteration at velocity c over a depolarization time
period τd, is evaluated from Equation (12) as:

E(x, t) =

(
∂1φb(x, t)

∂t

)2

, (13)

after dropping some constant prefactors. To practically derive
E(x, t) from the numerically simulated 1b φ(x, t), we used the
same order 4 finite difference scheme as in the companion paper
I (Attuel et al., 2017).

3.2. Zooming on the Local Impulse Energy
With the Wavelet Transform Microscope
In Figure 3 is shown in a comparative time-scale decomposition
of two 100 s long local (x fixed) impulse energy time-series, the
first one was experimentally recorded at the electrode Pt3 in a
patient with chronic AF (companion paper I, Attuel et al., 2017)
and the second ones was numerically simulated with Equations
(6)–(8) with model parameters defined in Simul #2 (Table 1).
The continuous wavelet transform (WT) consists in expanding
signals in terms of wavelet constructed from a single function,
the “analyzing wavelet” ψ , by means of translations and dilations

(Grossmann and Morlet, 1984; Daubechies, 1992; Meyer, 1992;
Mallat, 1998):

Tψ [E](t0, a) =
1

a

∫ +∞

−∞

E(t)ψ(
t − t0

a
)dt , (14)

where t0 is a time parameter and a (> 0) a scale parameter
(inverse of frequency). Interestingly, by choosing a wavelet ψ
which has its first nψ moments null [

∫
tmψ(t)dt = 0, 0 ≤ m <

nψ ], it can be proven (Arneodo et al., 1988, 1995b, 2008; Jaffard,
1989; Muzy et al., 1991, 1994; Mallat and Hwang, 1992) that:

Tψ [E](t0, a) ∼ ah(t0), a → 0+, (15)

provided nψ > h(t0), where h(t0) is the point-wise Hölder
exponent that characterizes the maximum regularity of the signal
E at point t0. As experienced in the companion paper I (Attuel
et al., 2017) for experimental local impulse energy time-series, we
will use in this work the third derivative of a Gaussian function as
analyzing wavelet with nψ = 3 (Muzy et al., 1994; Arneodo et al.,
1995b) (Figure S1 in the companion paper I):

g(3)(t) =
d3

dt3

(
e−t2/2

)
. (16)

Interestingly, to track cusp singularities (for oscillating
singularities like chirps see Arneodo et al., 1995a, 1997),
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the WT skeleton defined by the so-called maxima lines of local
WT modulus maxima (WTMM) (Figures 3C,C’), was proved to
be of practical use since along these maxima lines, Equation (15)
was shown to apply (Mallat and Hwang, 1992).

3.3. A Wavelet-Based Multifractal
Formalism
The wavelet transform modulus maxima (WTMM)
method (Muzy et al., 1991, 1994; Bacry et al., 1993; Arneodo
et al., 1995b, 2008) was originally developed to generalize box-
counting techniques (Arneodo et al., 1987) and to remedy the
limitations of the structure functions method (Muzy et al., 1993)
in performing multifractal analysis of one-dimensional (1D)
velocity signals in fully-developed turbulence. It has proved
very efficient to estimate scaling exponents and multifractal
spectra (Muzy et al., 1994; Audit et al., 2002; Arneodo et al.,
2008; Ivanov et al., 2009). The WTMM method has been
extensively applied in different domains of fundamental and
applied science, including the analysis of complex time-series
found in genomics (Nicolay et al., 2007; Arneodo et al., 2011;
Audit et al., 2013) and physiological systems (Ivanov et al.,
1999, 2001, 2009; Nunes Amaral et al., 2001; Goldberger et al.,
2002; Ciuciu et al., 2012; Chudácek et al., 2014; Gerasimova
et al., 2014; Richard et al., 2015; Gerasimova-Chechkina
et al., 2016). The WTMM method and its wavelet leaders
discrete generalization (Jaffard et al., 2007; Wendt et al., 2007)
have already been applied to cardiac signals but mainly to
characterize the fluctuations of inter-beat intervals (Ivanov
et al., 1999, 2001; West et al., 2004; Leonarduzzi et al., 2010;
Wendt et al., 2014; Gadhoumi et al., 2018). As for the analysis
of experimental local impulse energy time-series in the
companion paper I (Attuel et al., 2017), we will use here two
declinations of the WTMM method, the moment (partition
function) method and the magnitude cumulant method
(Muzy et al., 1994; Arneodo et al., 2008).

The method of moments consists in investigating
the scaling behavior of partition functions defined in
term of WTMM:

Z(q, a) =
∑

l∈L(a)

|Tψ [E](t, a)|
q
∼ aτ (q), a → 0+, (17)

where q ∈ R, L(a) is the set of the maxima lines l that defines the
WT skeleton and the exponents q and τ (q) play, respectively, the
role of an inverse temperature and a free energy in the analogy
that links the multifractal formalism and thermodynamics (Bohr
and Tél, 1988; Arneodo et al., 1995b). Then, from the Legendre
transform of τ (q):

D(h) = min
q

[qh− τ (q)], (18)

we get as equivalent of entropy, the so-called D(h) singularity
spectrum defined as the fractal (Hausdorff) dimension of the set
of points t where the Hölder exponent (equivalent of energy)
h(t) = h (Bacry et al., 1993; Muzy et al., 1993, 1994; Arneodo
et al., 1995b; Jaffard, 1997a,b).

In practice, to avoid instabilities in performing the
Legendre transform, we instead compute the following
expectation values (Muzy et al., 1994; Arneodo et al., 1995b),
analogous to the fundamental thermodynamic relations, by
inversion of Equation (18):

h(q, a) =
∂

∂q
ln(Z(q, a)) =

∑

l∈L(a)

ln
(
|Tψ [E](l, a)|

)
·Wψ [E](q, l, a),

(19)
and

D(q, a) = q
∂

∂q
ln(Z(q, a))− ln(Z(q, a))

=
∑

l∈L(a)

Wψ [E](q, l, a) · ln
(
Wψ [E](q, l, a)

)
, (20)

where Wψ [E](q, l, a) = |Tψ [E](l, a)|
q/Z(q, a) corresponds to

the Bolzmann weight (Arneodo et al., 1995b). Then, from
the slopes of h(q, a) and D(q, a) vs. ln a, we get h(q) and
D(q), and therefore the D(h) singularity spectrum as a curve
parametrized by q.

An alternative method that can be used as a double check of
the predictions of themethod ofmoments is the so-calledmethod
of magnitude cumulants (Delour et al., 2001). This method
consists in computing the cumulants Cn(a) of the magnitude
ln |Ta|. Then from the behavior of the cumulants:

C1(a) ≡ 〈ln |Ta|〉 ∼ c1 ln(a),

C2(a) ≡ 〈ln2 |Ta|〉 − 〈ln |Ta|〉
2
∼ −c2 ln a,

C3(a) ≡ 〈ln3 |Ta|〉 − 3〈ln2 |Ta|〉 + 2〈ln |Ta|〉
3
∼ c3 ln a,

· · ·

(21)

we get the following expansion formula for τ (q):

τ (q)− c0 + c1q− c2q
2/2!+ c3q

3/3! · · · (22)

where the coefficients cn > 0 are estimated as the slope of Cn(a)
vs. ln a (n = 1, 2, 3, , · · · ), and c0 = DF as the fractal dimension
of the support of singularities of E(t).

Multifractal analysis allows us to distinguish monofractal
signals of unique Hölder exponent H. Their τ (q) spectrum is
a linear function of q with slope c1 = H, all the other ci =

0, i ≥ 2. The corresponding D(h) singularity spectrum reduces
to a single point D(h = c1) = DF . In contrast, a nonlinear τ (q)
is the signature of multifractal signals with Hölder exponent h(t)
fluctuating over time (Muzy et al., 1991, 1994; Bacry et al., 1993;
Arneodo et al., 1995b, 2002, 2008). As in the companion paper I
(Attuel et al., 2017), in this study we will fit the numerical data by
so-called log-normal quadratic approximation

τ (q) = −c0 + c1q− c2q
2/2, (23)

leading to a quadratic single hump shaped D(h) singularity
spectrum

D(h) = c0 − (h− c1)
2/2c2, (24)
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FIGURE 4 | Multifractal analysis of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the parameter values defined in

Simul #2 (Table 1), L = 150 (in δx = 0.3 mm units). (A) log2 Z(q, a) vs. log2 a (Equation 17). (B) h(q, a)/ ln 2 vs log2 a (Equation 19). (C) D(q, a)/ ln 2 vs. log2 a

(Equation 20). The computation were performed with the WTMM method (Paper I, Methods of Analysis Attuel et al., 2017) for different values from q = −1 to 5 with

the analyzing wavelet g(3) (Equation 16). The vertical dashed lines delimit the range of scales (28.5 ≤ a ≤ 213.5) used for the linear regression estimate of τ (q), h(q) and

D(q) in Figure 5. The symbols correspond to the time-series E(x, t) computed at the spatial positions x = 8 (◦), 18 (2), 75 (▽) and 134 (△) (in δx = 0.3 mm units).

where c0 = −τ (0) = Df is the fractal dimension of the support
of singularities of E(t), c1 is the value of h that maximizes D(h),
and the intermittency coefficient c2 characterizes the width of the
D(h) spectrum (Delour et al., 2001).

3.4. Beyond One-Point Statistics: The
Two-Point Magnitude Correlation Method
Many studies have misleadingly extrapolated a multifractal
diagnosis to the existence of an underlying multiplicative cascade
process. To address this issue, we indeed need to investigate two-
point statistics. The two-point magnitude correlation method
amounts to investigate how the two-point magnitude correlation
function (Arneodo et al., 1998a)

C(a,1t) = 〈
(
ln |Ta(t)| − 〈ln |Ta(t)|〉

)
·(

ln |Ta(t +1t)| − 〈ln |Ta(t)|〉
)
〉 (25)

changes as a function of 1t at scale a. As demonstrated by
Arneodo et al. (1998a,b) for random multiplicative cascades on
wavelet dyadic trees (see also Meneveau and Sreenivasan, 1991):

C(a,1t) ∼ −c2 ln1t, 1t > a, (26)

where the proportionality coefficient c2 is the intermittency
coefficient defined in Equations (21) and (22) [Note that
C(a,1t = 0) ≡ C2(a) ∼ −c2 ln a]. Thus, by
computing C(a,1t) from Equation (25) and plotting it
as a function of ln1t, inferences can be made about
long-range dependence and consistency with a multiplicative
cascading process (Arneodo et al., 1998a,b). Applications of
the two-point magnitude correlation method have already
provided insight into a wide variety of problems, e.g.,

the validation of the log-normal cascade phenomenology of
fully developed turbulence (Arneodo et al., 1998a,c, 1999)
and of high resolution temporal rainfall (Venugopal et al.,
2006; Roux et al., 2009), and the demonstration of the
existence of a causal cascade of information from large to
small scales in financial time series (Arneodo et al., 1998d;
Muzy et al., 2001). In the companion paper I (Attuel
et al., 2017), we have applied this method to experimental
local impulse energy time-series during episodes of AF.
Surprisingly, this study has revealed the absence of an
underlying multiplicative time-scale structure that will be used
in this work as a multifractal random noise numerical test
of the pertinence of our cardiac excitable network modeling
(section 2) during AF.

4. RESULTS

4.1. One-Point Multi-Fractal Analysis of
Local Impulse Energy Numerical Data
4.1.1. Multifractal Analysis of the Simulated Impulse

Energy Time-Series With the WTMM Method of

Moments
When applying the WTMMmethod to the impulse energy time-
series E(x, t) obtained by numerically integrating Equation 6
with periodically driven boundary condition (Equation 7) at
x = 0 (Figure 3A’), we confirmed that the partition function
Z(q, a) (Equation 17) obtained from the WT computed with the
analysing wavelet g(3) (Figure 3B’) and its skeleton (Figure 3C’),
displays scaling properties for q = −1 up to . 5 over a
range of time-scales larger than the typical interbeat ∼ 0.2 s
(Figure 2B). We strictly limited this range to (1.7, 54 s) for
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linear regression fit estimates in a logarithmic representation
(Figure 4A). The τ (q) spectrum so-obtained at different spatial
positions x = 8, 18, 75 and 134 for a 1D system of total length
L = 150 (x and L expressed in δx = 0.3 mm units) is
robustly well approximated by a quadratic spectrum (Equation
23) with parameter values that do not changemuch whenmoving
away from the periodic beating source at x = 0 (Table 2).
The support of singularities of E(x, t) has a fractal dimension
c0 = DF ∼ 1, independently of x. The singularities of Hölder
h = c1 ∼ 0.45 − 0.48 that maximizes D(h) are also consistently
observed all along our 1D spatial system. Interestingly, the
intermittency coefficient c2 is significantly different from zero
(the hallmark of multifractal signals) and increases from values
c2 ∼ 0.03 close to the source up to values c2 ∼ 0.1 far
away from the source. Overall the values of c0, c1 and c2
parameters reported in Table 2 are very similar to the ones
obtained in Table 1 of the companion paper I (Attuel et al., 2017)

TABLE 2 | Results of the WTMM multifractal analysis of local impulse energy

time-series E(x, t) numerically simulated with our model defined in Equations

(6)–(8) with the set of parameter values defined in Simul #2 (Table 1), L = 150 (in

δx = 0.3 mm units).

x = 8 x = 18 x = 75 x = 134

c0 1.004 ± 0.001 1.005 ± 0.001 1.013 ± 0.001 0.989 ± 0.002

c1 −0.449 ± 0.003 −0.435 ± 0.005 −0.481 ± 0.002 −0.460 ± 0.007

c*1 −0.448 ± 0.007 −0.443 ± 0.007 −0.486 ± 0.008 −0.462 ± 0.009

c2 0.028 ± 0.006 0.060 ± 0.009 0.070 ± 0.003 0.097 ± 0.013

c*2 0.042 ± 0.013 0.051 ± 0.014 0.074 ± 0.011 0.063 ± 0.013

c0, c1, c2 are the coefficients of the quadratic log-normal approximation of τ (q) (Equation

23) obtained at spatial positions x = 8, 18, 75 and 134 (in δx = 0.3 mm units), with

the WTMM method of moments when using the analysing wavelet g(3) (Equation 16). c∗1
and c∗2 are the corresponding coefficients obtained with the magnitude cumulant method

(Equation 21).

for electrodes Pt3 and Pt5 located in the left atrial posterior
wall. Our numerical simulations thus reveals some increased
intermittency of E(x, t), when moving away from the periodic
beating source, rather rapidly converging to a τ (q) spectrum
in quantitative agreement with the one observed experimentally
(Figure 5A). This is confirmed when, respectively, plotting
h(q, a)/ ln 2 (Equation 19) and D(q, a)/ ln 2 (Equation 20) vs.
log2 a (Figures 4B,C). Despite some deterioration of scaling for
large q & 4 values, from the estimate of the slopes h(q) and
D(q), we get the single humped D(h) spectra shown in Figure 5B

and which clearly widen when moving away from the source
to ultimately match the D(h) spectra observed experimentally
(Figure 5B). As a check of the reliability of the so-obtained
D(h) spectra, they are found quite well approximated by the
quadratic spectra defined in Equation 24 with the parameter
values obtained from a polynomial fitting of the τ (q) data
(Table 2, Figure 5).

4.1.2. Multifractal Analysis of the Impulse Energy

Data With the Method of Magnitude Cumulants
As previously performed in our companion paper I (Attuel et al.,
2017) for the analysis of experimental impulse energy data, we
have reproduced our multifractal analysis of numerical time-
series using the alternate magnitude cumulant methodology.
The first-, second- and third-order cumulants where computed
using Equation (21) and are plotted vs. the logarithm of
the scale in Figure 6. As expected, C1(a), C2(a) and C3(a)
display consistent scaling behavior over the same range of
scales (28.5 ≤ a ≤ 213.5). The results obtained for C3(a)
(Figure 6C) confirm that with limited 422 s long time series
as recorded in experiments, there is no way to conclude
about the possible departure from a log-normal quadratic
τ (q) spectrum (c3 ≡ 0). Interestingly, the quadratic τ (q)
spectra with parameter values c∗1 and c∗2 listed in Table 2, are
found in good agreement with the ones previously estimated

FIGURE 5 | Multifractal spectra of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the set of parameter values

defined in Simul #2 (Table 1), L = 150 (in δx = 0.3 mm units). (A) τ (q) vs. q estimated by linear regression fit of log2 Z(q, a) vs. log2 a (Figure 4A). (B) D(h) vs. h

obtained from linear regression fits of h(q, a) (Figure 4B) and D(q, a) (Figure 4C) vs. log2 a. The symbols have the same meaning as in Figure 4. The curves

correspond to quadratic spectra Equations (23) and (24) with parameters [c0, c1, c2] reported in Table 2 for time-series E(x, t) computed at the spatial positions x = 8

(◦), 18 (2), 75 (▽) and 134 (△) (in δx = 0.3 mm units). For comparison are reported the spectra previously obtained for the experimental time-series recorded at the

electrodes Pt3 (blue H) and Pt5 (green H) in the left atrial posterior wall (Companion paper I Attuel et al., 2017).
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FIGURE 6 | Magnitude cumulant analysis of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the set of parameter

values defined in Simul #2 (Table 1), L = 150 (in δx = 0.3 mm units). (A) C1(a)/ln2 vs. log2a. (B) C2(a)/ln2 vs. log2a. (C) C3(a)/ln2 vs. log2a. The computation of the

Cn(a) (Equation 21) was performed with the third-order analyzing wavelet g(3) (Equation 16). The vertical dashed lines delimit the range of scales (28.5 ≤ a ≤ 213.5)

used for the linear regression estimate of coefficients c*1, c
*
2 and c*3 of τ (q) (Equation 22) reported in Table 1. The symbols have the same meaning as in Figures 4, 5.

FIGURE 7 | Multifractal spectra of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the sets of parameter values

defined in Table 1. (A) τ (q) vs. q. (B) D(h) vs. h. These spectra were computed at the same relative spatial position x = L/2 for different lengths L = 30 (Simul #4, ◦,

· · · ), 90 (Simul #3, 2, ), 150 (Simul #2, ▽, ), and 210 (Simul #1, △, ) (in δx = 0.3 mm units). The curves correspond to quadratic

spectra (Equations 23 and 24) with parameters [c0, c1, c2] reported in Table 3. For comparison are reported the spectra previously obtained from the experimental

time-series recorded at the electrodes Pt3 (blue H) and Pt5 (green H) in the left atrial posterior wall (Companion paper I Attuel et al., 2017).

with the method of moments. This not only strengthens
the multifractal diagnosis of the local impulse energy at low
frequencies but it further confirms that farther from the
source, larger the intermittency coefficient c2, and closer to the
experimental multifractal spectra obtained in the companion
paper I (Attuel et al., 2017).

4.2. Robustness of the Multifractal
Properties of Local Impulse Energy Under
Model Parameter Changes
4.2.1. 1D Spatial System Length L
As a first test of the robustness of the computed multifractal
properties of local impulse energy time series, we have performed
additional simulations of our 1D PDE system (Equations 6–8)
for the same parameter values as before but changing the total

TABLE 3 | Results of the WTMM multifractal analysis of local impulse energy

time-series E(x = L/2, t) numerically simulated with our model defined in

Equations (6)–(8) with the set of parameter values defined in Table 1 for different

lengths: L = 30 (Simul #4), L = 90 (Simul #3), L = 150 (Simul #2), and L = 210

(Simul #1) (in δx = 0.3 mm units).

L = 30 L = 90 L = 150 L = 210

c0 1.004 ± 0.001 1.003 ± 0.000 1.013 ± 0.000 0.994 ± 0.001

c1 −0.506 ± 0.003 −0.476 ± 0.002 −0.481 ± 0.002 −0.452 ± 0.003

c*1 −0.504 ± 0.003 −0.481 ± 0.004 −0.486 ± 0.008 −0.453 ± 0.008

c2 0.012 ± 0.005 0.068 ± 0.004 0.070 ± 0.003 0.088 ± 0.005

c*2 0.024 ± 0.009 0.051 ± 0.012 0.074 ± 0.011 0.075 ± 0.009

length (in δx = 0.3 mm units) of our cellular array L = 210
(Simul #1), 150 (Simul #2), 90 (Simul #3) and 30 (Simul #4). As
shown in Figure 7 and Table 3, when using both the methods
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FIGURE 8 | Multifractal spectra of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the sets of parameter values

defined in Simul #6 (Table 1) and L = 150 (in δx = 0.3 mm units). (A) τ (q) vs. q. (B) D(h) vs. h. The spectra were computed at the same relative spatial position

x = L/2 = 75 for different conductivities of the fiber: Simul #2 (▽, ), Simul #6 (+, ) and Simul #7 (∗, · · · ). The curves correspond to quadratic

spectra (Equations 23 and 24) with parameters [c0, c1, c2] reported in Table 4.

TABLE 4 | Results of the WTMM multifractal analysis of local impulse energy

time-series E(x = L/2, t) numerically simulated with our model defined in

Equations (6)–(8) for different values of the conductivity parameter κ defined in

Simul #2, Simul #6 and Simul #7 (Table 1), L = 150 (in δx = 0.3 mm units).

κ = 0.01 mm.�−1
κ = 0.04 mm.�−1

κ = 0.08 mm.�−1

c0 1.013 ± 0.001 1.010 ± 0.001 0.994 ± 0.001

c1 −0.481 ± 0.003 −0.462 ± 0.004 −0.484 ± 0.005

c*1 −0.486 ± 0.008 −0.468 ± 0.010 −0.509 ± 0.009

c2 0.070 ± 0.003 0.059 ± 0.07 0.039 ± 0.009

c*2 0.074 ± 0.011 0.058 ± 0.013 0.022 ± 0.016

of moments and of magnitude cumulants to compute the τ (q)
and D(h) spectra of E(x = L/2, t) at the midpoint of the array,
we recover qualitatively similar multifractal spectra with c0 =

DF = 1, c1 ∼ 0.45–0.50 and an intermittency coefficient c2 that
increases when increasing L. This is nothing but a confirmation
that E(x, t) becomes more and more intermittent when moving
the spatial position X = L/2 away from the periodically beating
source at x = 0. For 1D arrays as small as L = 30, c2 ∼ 0.015
corresponding to a very narrow D(h) spectrum (Figure 7B).
When increasing L, this D(h) spectrum widens progressively to
become comparable to the ones obtained experimentally (c2 ∼

0.1) in Table 1 of the companion paper I (Attuel et al., 2017) for
the electrodes Pt3 and Pt5 located in the left atrial posterior wall.

4.2.2. Fiber Conductivity κ

When changing the fiber conductivity parameter κ that accounts
for the diffusive coupling of the cells in our 1D cell array
(Equation 6a), not much modification of the τ (q) and D(h)
spectra is observed (Figure 8). Some weak narrowing of D(h)
is obtained when increasing κ corresponding to a small but
systematic decrease of the intermittency coefficient from c2 ∼

0.07 for κ = 0.01 mm.�−1 to c2 ∼ 0.04 for κ =

0.08 mm.�−1 (Table 4). This is an indication that when
strengthening the inter-cell conduction coupling, keeping all

the other model parameters fixed, one somehow reduces the
multifractal (intermittent) desynchronization of our 1D excitable
cell network.

4.2.3. New Set of Parameters
We have also reproduced the one-point multifractal analysis
reported in section 4.1.1 (Simul #2) to local impulse energy
numerical time-series generated with the parameter set defined
in Simul #5 (Table 1) and the same 1D system spatial size L =

150 (in δx = 0.3 mm units). Many parameters were changed,
including κ , µ, ν0, ν1, γ

2, α2 and ω2 (Table 1). As shown in
Figure 9, the τ (q) and D(h) spectra obtained at different spatial
positions x = 8, 18, 75, and 134 are quite similar to the ones
previously obtained in Figure 5. They are robustly approximated
by quadratic spectra (Equations 23 and 24, respectively) with
comparable c0, c1, and c2 parameter values (Table 5).

4.3. Two-Point Magnitude Analysis of Local
Impulse Energy Data
The results of the two-point magnitude correlation analysis
of the local impulse energy time series numerically generated
with our 1D PDE system (Equations 6–8) with the set of
parameter values defined in Simul #2 are shown in Figure 10.
C(a,1t)/C(a, 0) (Equation 25) computed with the third-order
analyzing wavelet g(3) (Equation 16) is represented vs. ln(1t)
for two scales a = 29 and 210 in the scaling range. Strikingly,
for the four numerical time-series corresponding to different
spatial positions x = 8 (Figure 10A), 18 (Figure 10B), 75
(Figure 10C), and 134 (Figure 10D), for time-lag 1t & a,
C(a,1)/C(a, 0) drops to zero as a clear indication that the
magnitudes are uncorrelated. As a reference, we put in each panel
in Figure 10, a dashed straight line of slope −c2 as predicted
by Equation (26) for multifractal signals exhibiting a cascading
multiplicative structure along a time-scale tree (Arneodo et al.,
1998a,b). The slow decay predicted by the “multiplicative” log-
normal model with intermittency coefficient c2 is definitely
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FIGURE 9 | Multifractal spectra of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the set of parameter values

defined in Simul #5 (Table 1) and L = 150 (in δx = 0.3 mm units). (A) τ (q) vs. q. (B) D(h) vs. h. The spectra were computed with the WTMM method with the

third-order analyzing wavelet g(3) (Equation 16). The symbols correspond to the spatial positions x = 8 (•, · · · ), 18 (�, ), 75 (H, ), and 139 (N,

) (in δx = 0.3 mm units). The curves correspond to quadratic spectra (Equations 23 and 24) with parameters [c0, c1, c2] reported in Table 5. For comparison

are reported in open symbols (◦, 2, ▽ △), the corresponding spectra previously obtained with the set of parameter values defined in Simul #2 (Table 1) and L = 150

in Figure 5.

TABLE 5 | Results of the WTMM multifractal analysis of local impulse energy

time-series E(x, t) numerically simulated with our model defined in Equations (6)–(8)

with the parameters defined in Simul #6 (Table 1), L = 150 (in δx = 0.3 mm units).

x = 8 x = 18 x = 75 x = 134

c0 0.996 ± 0.001 0.994 ± 0.001 0.986 ± 0.002 0.986 ± 0.002

c1 −0.410 ± 0.006 −0.427 ± 0.002 −0.393 ± 0.008 −0.406 ± 0.009

c*1 −0.412 ± 0.006 −0.422 ± 0.007 −0.406 ± 0.003 −0.425 ± 0.005

c2 0.066 ± 0.011 0.055 ± 0.004 0.112 ± 0.016 0.124 ± 0.017

c*2 0.056 ± 0.011 0.046 ± 0.010 0.067 ± 0.010 0.070 ± 0.008

not observed. Thus, the numerical local impulse energy time
series look much more like what has been called log-normal
multifractal random noise in pioneering works to distinguish
“uncorrelated” and “multiplicative” log-normalmodels (Arneodo
et al., 1998a). Importantly, a similar absence of magnitude
correlation was observed with the experimental time-series
recorded at the electrodes located in the left atrial posterior wall
in our companion paper I (Attuel et al., 2017). This is a strong
evidence that our cardiac excitable cell network model indeed
accounts for both one-point and two-point statistics of local
impulse energy time-series during AF.

5. CONCLUSIONS

To summarize, we proposed a model of cardiac excitable cell
network which accounts for the transport of AP along and across
myocardial cells via the spatio-temporal interplay of voltage-
gated and gap junction channels kinetics. We demonstrated
that this model robustly reproduces the multifractal intermittent
nature of the cardiac impulse energy experimentally recorded in
the left atrial posterior wall area over times (& 0.5 s) longer that
the mean interbeat (≃ 10−1 s) during AF (companion paper I,
Attuel et al., 2017). In particular, this model gives full account of

the experimental observation of the absence of a multiplicative
time-scale structure underlying multifractal scaling. To our
knowledge, our combined experimental and numerical studies
are the first to report the observation, quantification and
modeling of such multifractal dynamics which is found more
complex than previously suspected. Preliminary exploration of
the model bifurcation diagram suggests that it shares with other

models a good reproducibility of the spectrum of rhythmic and

AP disorders, such as early after depolarizations (EADs) or salvos
of premature beats, found experimentally prior to the onset of
AF. This stems here from the membrane current imbalance

between depolarization and repolarization, originating in the
capacitive currents building up at the GJs. In the model, the
nonlinearity of the GJC temporal response was proposed to be

due to a nonlinear coupling of the local electric field with the
GJC charging during AP propagation. However, the nature of our
studies was exploratory, with a data set limited to a few patients,

and although it was performed on time-series rather long for
clinical practice (422 s), they were not so long regarding the
range of time scales [0.6, 10 s] where scaling was observed. The
relevance of our modeling would definitely benefit of the analysis
of new data over a large set of patients at different stages of AF
development and to be explored in different areas of the atria.
Recording electric potential time series during AF concomitantly
to non intrusive Cardiovascular Magnetic Resonance (CMR)
imaging could help further the assessment of atrial remodeling
features such as increased expression of intercellular gap junction
and conduction velocity shortening, in addition to sinus node
dysfunction. Even more instructive, the comparative analysis
of different types of rhythms as atrial flutter, AV junctional
rhythm and various other annotated rhythms (Gadhoumi et al.,
2018) would allow us to evaluate the practicality of multifractal
cardiac impulse energy in the discrimination of AF from other
rhythms. Also, by combining our wavelet-based multifractal
analysis (low frequency) to a more classical dynamical system
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FIGURE 10 | Two-point magnitude analysis of local impulse energy time-series E(x, t) generated with our model defined in Equations (6)–(8) with the sets of parameter

values defined in Simul #2 (Table 1), L = 150 (in δx = 0.3 mm units). Two-point correlation function C(a,1t)/C(a, 0) vs. ln(1t) (Equation 25) computed with the

third-order analyzing wavelet g(3) (Equation 16). The two curves correspond to scales a = 29 (black) and 210 (gray) within the scaling range. The different panels

correspond to different spatial positions x = 8 (A), 18 (B), 75 (C), and 134 (D) (in δx = 0.3 mm units).

analysis including bifurcation diagrams, Lyapunov exponent
computations, we should be in position to improve and
refine our physiological heart tissue modeling and to open
new perspectives toward the understanding of mechanisms of
AF perpetuation.
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Heart failure (HF) is one of the most frequent heart diseases. It is usually characterized
with structural and functional cardiac abnormalities followed by dysfunction of
autonomic cardiac control. Current methods of heartbeat interval analysis are not
capable to differentiate HF patients and some new differentiation of HF patients
could be useful in the determination of the direction of their treatment. In this study,
we examined potential of the ratio of the short-term and long-term scaling exponents
(α1 and α2) to separate HF patients with similar level of reduced cardiac autonomic
nervous system control and with no significant difference in age, left ventricular ejection
fraction (LVEF) and NYHA class. Thirty-five healthy control subjects and 46 HF patients
underwent 20 min of continuous supine resting ECG recording. The interbeat interval
time series were analyzed using standardized power spectrum analysis, detrended
fluctuation analysis method and standard Poincaré plot (PP) analysis with measures
of asymmetry of the PP. Compared with healthy control group, in HF patients linear
measures of autonomic cardiac control were statistically significantly reduced (p< 0.05),
heart rate asymmetry was preserved (Cup > Cdown, p < 0.01), and long-term scaling
exponent α2 was significantly higher. Cluster analysis of the ratio of short- and long-
term scaling exponents showed capability of this parameter to separate four clusters of
HF patients. Clusters were determined by interplay of presence of short-term and long-
term correlations in interbeat intervals. Complementary measure, commonly accepted
ratio of the PP descriptors, SD2/SD1, showed tendency toward statistical significance
to separate HF patients in obtained clusters. Also, heart rate asymmetry was preserved
only in two clusters. Finally, a multiple regression analysis showed that the ratio α1/α2

could be used as an integrated measure of cardiac dynamic with complex physiological
background which, besides spectral components as measures of autonomic cardiac
control, also involves breathing frequency and mechanical cardiac parameter, left
ventricular ejection fraction.

Keywords: heart failure, scaling exponents, detrended fluctuation analysis, Poincaré plot, autonomic cardiac
control, asymmetry
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INTRODUCTION

Real-life experience warns us that patients do not have the
same clinical response to a single treatment regimen and that
traditionally accepted clinical parameters are not good enough
predictors of the success of the performed therapy. This is also
the case in various areas of the heart failure (HF) treatment. For
instance, despite the availability of advanced imaging techniques
and strict clinical, echocardiographic and electrocardiographic
criteria for the selection of patients with HF and an indication
for cardiac resynchronization therapy device implantation, still
20–40% of these patients do not have positive response to this
therapy (Dhesi et al., 2017). Therefore, in this field it is necessary
to find new ways of separating HF patients, with the intent of
defining a group of them who would benefit most from the
cardiac resynchronization therapy.

Both intrinsic heart rate and its modulation are primarily
determined by alterations in the autonomic tone. The autonomic
tone is the general activity rate of the autonomic nervous system
(ANS) and it is considered to refer to its long-term activity.
It is accepted that measurements of linear time domain and
frequency domain variables of heart rate variability (HRV) are
simple and practical tools to assess autonomic function (Akselrod
et al., 1981; Task Force of the ESC and the NASPE, 1996).
However, introduction of methods derived from non-linear
dynamics for analyzing HRV have shown new complementary
insights into dynamic and structural nature of HRV signals
(Eke et al., 2002, 2012; Sassi et al., 2015; Platiša et al., 2016).
Since multiple regulatory mechanisms of cardiac control operate
across different time scales and have shown scaling behavior,
classical linear signal analysis methods are often unsuitable
to quantify complex HRV content which is far from simple
periodicity. One of the featured groups of non-linear measures
in quantifying complex physiological dynamics is a group of
fractal measures which are used to assess self-affinity of heartbeat
fluctuations over multiple time scales. Fractal organization of
healthy sinus rhythm dynamics represents complex output from
linear and non-linear processes, usually with non-stationary
properties. Long-term scaling properties of interbeat time series
was first quantified by the scaling exponent (β) as a slope of the
regression line of the power versus frequency relation on log-
log graph (Kobayashi and Musha, 1982; Saul et al., 1987). In
general, the power law scaling exponent is typically calculated
in the frequency domain as the β or in the time domain as the
Hurst exponent (H) (Bassingthwaighte et al., 1994; Eke et al.,
2000). The technique of detrended fluctuation analysis (DFA),
based on modified root mean square analysis of a random
walk, was proposed to assess the intrinsic correlation properties
of a complex cardiac system where scaling exponent (α) of
approximately 1 indicates fractal-like behavior of healthy heart
rate dynamics (Peng et al., 1995). The obtained exponent is
similar to the Hurst exponent, except that DFA may also be
applied to non-stationary signals. With this method, the presence
of correlations in the fluctuations of heartbeat intervals can be
quantified by short- and long-term scaling exponents (α1 and α2)
in two distinct linear regions that determine range of the short-
and long-term correlation properties.

Beside monofractal complexity, multifractal analysis intro-
duced by Ivanov et al. (1999) revealed new informations
about physiological complexity of HRV signals. Multifractal
complexity arises from a large number of local scaling exponents
which physiological background was explained with involvement
of coupled cascades of feedback loops in healthy cardiac
system. More, Amaral et al. (2001) showed significant impact
of parasympathetic control on the multifractal properties on
HRV where atropine administration resulted with a marked
loss of multifractality. Reduced multifractality also was found
in pathological state, in patients with congestive HF (Ivanov
et al., 1999). Further, Silva et al. (2014) found that loss of
multifractality may indicate an impairment of the left ventricular
ejection fraction (LVEF) in patients after acute myocardial
infarction. One of the later papers of Ivanov et al. (2009)
showed that physiological or physical systems with similar
1/f scaling behavior can differ in various levels of complexity
which depend on the nature of control mechanisms. The
necessity for developing new methods to detect the network
between individual organ systems as well as between network
of coupled control mechanisms, in response to changes in
(patho)physiological conditions, has been recognized in the
proposed interdisciplinary area known as a Network Physiology
(Lin et al., 2016; Ivanov et al., 2017). This new field focuses
on understanding physiological functions with new theoretical
framework and analytic formalism.

Fractal view of physiology has become the basis in under-
standing and controlling physiological networks where both
homeostatic and allometric control mechanisms existed (West,
2009). Homeostatic control has a negative feedback character
which is local and rapid while allometric control can take into
account long-range interactions in complex phenomena (West,
2010). Hence, in recent modeling the dynamics and control of
complex physiological phenomena the fractional calculus is more
frequently applied (Bogdan et al., 2013). Furthermore, there have
been efforts of reconstructing the network between physiological
processes when some physiological signals are not observed
yet capturing their fractional behavior through fractional order
derivatives (Gupta et al., 2018).

In this study, we analyzed heterogeneity of HF patients
through application of various methods of HRV analysis. More,
we examined potential of the ratio of short- and long-term
scaling exponents to differentiate subgroups of HF patients with
different short-term and long-term correlation properties. We
also calculated standard linear HRV measures with twofold aim.
The first one was to show that our data are in line with previously
reported results (their reduction and alterations in HF patients)
and the second one was to help us to reveal the physiological
background of the obtained results.

MATERIALS AND METHODS

Subjects
The group of HF patients comprised 46 patients (nine females)
with a mean age of 59 ± 2 years (range 37–78 years). All patients
had HF with reduced LVEF, on average below 30%. They all
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had sinus rhythm without any supraventricular or ventricular
rhythm disorders, including supraventricular and ventricular
extrasystoles. Most of them were in functional class NYHA
II (36 patients) and 10 patients had worse functional capacity
(NYHA III). Majority of HF patients in this study were receiving
optimal therapy for HF, including β-blockers, angiotensin-
converting enzyme (ACE) inhibitors, and aldosterone blockers.
An individual therapeutic approach had always been applied
to the patients, which means that patients were not exclusively
receiving in the guidelines recommended, but maximum
tolerated doses of drugs, and rarely, in the presence of certain
contraindications, some of previously mentioned group of drugs
was left out of therapy. Control healthy group was formed from
35 volunteers (17 females) with a mean age 44 ± 2 years (range
35–59 years). All subjects were non-smokers, without medical
history. Ethic Committee of the Faculty of Medicine, Belgrade
University approved this study (Ref. Numb. 29/III-5).

Experimental Protocol and
Data Acquisition
Experiments were performed in the morning between 7:00 and
10:00 a.m. in a quiet setting at the Pacemaker Center of the
Clinical Center of Serbia and at the Laboratory for Biosignals,
Institute of Biophysics, Faculty of Medicine, Belgrade University.
Twenty minutes electrocardiogram (ECG) and respiratory signal
data were recorded with sampling rate 1 kHz using Biopac
and AcqKnowledge 3.9.1 software (BIOPAC System, Inc.,
Santa Barbara, CA, United States). The ECG data were collected
using the ECG 100C electrocardiogram amplifier module. The
classic 1 channel ECG for the measurement of Lead I based
on three electrodes placed on left and right shoulder and the
right leg was used. The RSP 100C respiratory pneumogram
amplifier module with TSD 201 transducer attached to the
belt (adjustable nylon strap) was used to measure abdominal
expansion and contraction. Transducer was placed on the
abdomen, at the point of minimum circumference (maximum
expiration). Subjects were relaxed before measurement, and they
were supine and breathed with spontaneous breathing frequency.
Interbeat (RR) intervals and interbreath intervals were extracted
from recorded signals using the Pick Peaks tool from Origin 6.0
(Microcal Origin, Northampton, MA, United States). Breathing
frequency (BF) was obtained as a reciprocal value of the mean
interbreath interval.

HRV Analysis in Time Domain
A few standard HRV parameters in time domain were
determined from time series of RR intervals with our Matlab
program: (1) standard deviation of the RR intervals (SDNN), (2)
root mean square difference between successive RR intervals, and
(3) the percent of RR intervals which were longer by more than
50 ms than the immediately following RR interval (pNN50) (Task
Force of the ESC and the NASPE, 1996).

Frequency Domain Analysis
Heart rate variability analysis in frequency domain was
performed using Origin 6.0 (Microcal Origin, Northampton,

MA, United States) (Platiša and Gal, 2006; Kapidžić et al., 2014).
RR interval series were resampled using the mean RR-value for
each subject. Power spectrum densities were obtained using FFT
with Hanning window (Microcal Origin, Northampton, MA,
United States). Absolute values of spectral components were
determined carrying out an integration of the power spectrum in
the range of total power (TP, 0.0033–0.4 Hz), very low frequency
(VLF, 0.0033–0.04 Hz), low frequency (LF, 0.04–0.15 Hz) and
high frequency (HF, 0.15–0.4 Hz) (Task Force of the ESC and
the NASPE, 1996). The power of RR variability in VLF range
is related to long-term regulation mechanisms related to the
thermoregulation, to the renin-angiotensin system and to other
humoral factors (Task Force of the ESC and the NASPE, 1996).
The physiological interpretation of LF spectral component is
still controversial because both sympathetic and parasympathetic
contributions are involved in this measure (Task Force of the ESC
and the NASPE, 1996; Billman, 2011), while HF spectral power
is generally accepted as a marker of parasympathetic activation
(Akselrod et al., 1981; Billman, 2011). In order to achieve a
normal distribution of the data, natural logarithm of spectral
powers in absolute units was taken. Relative units of spectral
powers were calculated by dividing each spectral component with
the sum of all three spectral powers.

Detrended Fluctuation Analysis (DFA)
A modification of the random walk model analysis has been used
to quantify the fractal-like scaling properties of RR interval time
series (Peng et al., 1995). The root-mean-square fluctuations of
the integrated and linear detrended data F(n) were measured
in observation windows of varying sizes n and then plotted
against the size of window on a log–log scale. The power-law
behavior was quantified as the slope of the linear regression
line, log F(n) ∼ α log n. This slope is defined as the scaling
exponent α. In this study detrended fluctuation function F(n)
was calculated by using algorithm from PhysioNet1 (Goldberger
et al., 2000). The short-term scaling exponent α1 was calculated
over the window size n = (4–16) and the long-term scaling
exponent α2 was calculated over the window size n ≥ 16.
Scaling exponents were estimated with standard errors and the
coefficient of determination (R2) was calculated in OriginPro 8
(OriginLab Corporation, Northampton, MA, United States). An
α < 0.5 characterizes signal with anticorrelations (with stronger
anticorrelations when α is closer to 0). If α = 0.5 there are no
correlations and signal represents (Gaussian) white noise; if α≈ 1
represents 1/f noise and if α = 1.5 the signal is random walk
(Brownian motion) (Peng et al., 1995; Bashan et al., 2008).

Asymmetry of the Poincaré Plot
A typical HRV Poincaré plot (PP) represents scatter graph
of RRi+1 = f (RRi). The two standard parameters SD1 and
SD2, called the PP descriptors, describe distribution of points
around two diagonals. It is accepted that SD1 describes instant
heartbeat intervals variability and quantifies short-term HRV,
while SD2 quantifies long-term HRV. Pearson correlation
coefficient of PP, noted as r, measured the association between

1https://physionet.org/physiotools/dfa/

Frontiers in Physiology | www.frontiersin.org 3 May 2019 | Volume 10 | Article 570160

https://physionet.org/physiotools/dfa/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00570 May 10, 2019 Time: 14:47 # 4

Platiša et al. Ratio of the Scaling Exponents

all pairs (RRi, RRi+1) in the time series of RR intervals
of one subject. Beside excellent visualization capability and
short- and long-term HRV information quantification, the
standard PP technique revealed asymmetry as one of unexploited
physiological phenomena in resting healthy people (Piskorski
and Guzik, 2007). Guzik et al. (2006) extended standard
descriptor SD1 (dispersion of the PP across the line of identity,
y = x) to two new finer descriptors SD1up and SD1down. Shortly,
pattern of heart rate during acceleration is different to the pattern
of deceleration, i.e., in deceleration contribution of the points
above the line of identity (RRi < RRi+1) is higher than that of
the points below the line (RRi > RRi+1). They introduced two
variables Cup and Cdown:

Cup =
SD12

up

SD12 (1)

Cdown =
SD12

down
SD12 (2)

which determine the relative contribution of SD1up and SD1down
to SD1. Analysis of the PP of RR intervals was done with
our Matlab program (The MathWorks Inc., United States).
Relation between Cup (Cdown) and Bauer’s deceleration
(acceleration) capacity (Bauer et al., 2006) is explained in
the Supplementary Material.

Statistics
Normal distribution of data was examined by the Shapiro–Wilk
test (appropriate for a small sample size of up to 50 subjects).
We used natural logarithm of the spectral powers to obtain their
normalized values. The K-means cluster analysis with Euclidean
distance measure was performed for continuous variable – the
ratio of the scaling exponents α1/α2. One-way ANOVA was
applied to find significant difference in mean values of each
variable or parameter: (1) between control and HF group;
(2) between four clusters in HF group with Bonferroni post hoc
test; and (3) between control and each cluster of HF with
Bonferroni post hoc test. Multiple regression analysis was applied
to find which variables and parameters predict the ratio of
the scaling exponents in HF patients. Statistical analyses were
performed using IBM Statistical Package for the Social Sciences
(SPSS) version 19.0. Data are presented as mean ± standard
errors. P < 0.05 was used as statistically significant.

RESULTS

Table 1 shows clinically relevant data of HF subjects and
descriptive statistic results for all linear and non-linear HRV
measures in healthy control group and HF patients. It can
be observed that, as it was expected, patients with HF had
statistically significantly reduced values of linear measures
of autonomic cardiac control compared with healthy control
group. However, some quantifiers of HRV properties were not
statistically different between groups (Cup and Cdown, as well as
short-term scaling exponent α1). Also, younger control subjects
had higher heart rate than HF patients (p< 0.01).

TABLE 1 | Anthropometric data, clinical parameters, and linear and non-linear
parameters of heart interbeat intervals in healthy control subjects and heart
failure patients.

Control, Heart failure,

N = 35 (17 F) N = 46 (9 F) p

Age (years) 44 ± 2 59 ± 2 < 0.01

NYHA 2.22 ± 0.10

LVEF (%) 27.52 ± 0.93

SDNN (ms) 46.3 ± 2.6 34.1 ± 2.4 < 0.01

RMSSD (ms) 31.6 ± 2.8 18.4 ± 1.5 < 0.01

pNN50 (%) 11.2 ± 2.1 3.02 ± 0.67 < 0.01

SD1 (ms) 16.4 ± 1.4 11.8 ± 1.1 0.013

SD2 (ms) 43 ± 2.4 32.0 ± 2.3 < 0.01

r, Pearson PP 0.735 ± 0.028 0.727 ± 0.035 0.86

SD2/SD1 2.94 ± 0.16 3.42 ± 0.27 0.16

Cup 55.3 ± 1.0∗∗ 54.27 ± 0.96∗∗ 0.47

Cdown 44.7 ± 1.0 45.72 ± 0.96 0.46

RR (s) 0.873 ± 0.018 0.938 ± 0.023 < 0.01

ln[VLF (ms2)] 5.68 ± 0.15 5.08 ± 0.19 0.04

ln[LF (ms2)] 5.59 ± 0.15 3.97 ± 0.18 < 0.01

ln[HF (ms2)] 5.27 ± 0.17 3.86 ± 0.19 < 0.01

ln[TP (ms2)] 6.72 ± 0.14 5.70 ± 0.17 < 0.01

BF (Hz) 0.239 ± 0.10 0.258 ± 0.089 0.49

α1 0.895 ± 0.029 1.000 ± 0.035 0.22

α2 0.830 ± 0.022 0.932 ± 0.020 < 0.01

α1/α2 1.111 ± 0.052 1.099 ± 0.047 0.44

∗∗p < 0.01 (Cup vs. Cdown). Data are presented as mean values ± standard errors.
LVEF, left ventricular ejection fraction; SDNN, standard deviation of RR intervals;
RMSSD, root mean square of successive differences of RR intervals; pNN50,
percentage of consecutive RR intervals that deviate from one another by more than
50 ms. SD1, SD2, and r (Pearson PP), Cup, and Cdown are parameters of Poincaré
plot. RR, mean interbeat interval; VLF, very low frequency spectral component;
LF, low frequency spectral component; HF, high frequency spectra component;
TP, total power of spectral power density; BF, breathing frequency; α1, short-term
scaling exponent; α2, long-term scaling exponent.

By applied cluster analysis we found that the ratio of the short-
and the long-term scaling exponents, α1/α2, was significantly
capable to differentiate four clusters of HF subjects. All curves
of detrended fluctuation functions F(n) plotted versus segment
size n on the log-log graph are presented on Figure 1 for healthy
subjects and on Figure 2 for the four clusters of HF patients.
Values of estimated scaling exponents for each patient in each
cluster of HF group could be found in the Tables 2–5.

Table 6 reports results of cluster analysis, with the mean and
standard errors of all linear and non-linear HRV indexes for
each cluster. Averaged values of short-term scaling exponent
(α1), long-term scaling exponent (α2), as well as their ratio for
each cluster and control group of healthy subjects are shown
on Figure 3. It can be seen that in HF patients with reduced
autonomic cardiac control, interplay of different correlation
properties in heart rhythm over short-term and long-term
scales determines four independent subgroups. In comparison of
clusters with control group we found that there is no significant
difference in α1 neither in the ratio α1/α2 between control and
2nd cluster, while α2 was significantly lower in control group than
in the first two clusters (Figure 3).
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FIGURE 1 | Detrended fluctuation functions F (n) for time series of interbeat
intervals (approximately N = 1,200 samples) versus segment size n on the
log-log graph, in the control group of healthy subjects. Dashed line separates
the two ranges in which the scaling exponents have been determined (n = 16).

Comparison of heart rate dynamics indices between patients
with HF showed that there is no significant difference between
time HRV measures neither between absolute values of spectral
components. However, we found significant difference between
subgroups in relative values of spectral powers as well as
in their comparison with control group (Figure 4). Results
of statistical analysis could be found in the legend of the
Figure 4. Also, there is no significant difference with respect
to age, NYHA, LVEF, or breathing frequency between clusters
patients (Table 6).

Poincaré plot descriptors SD1 and SD2 showed that they were
not able to separate patients in obtained clusters, but there was a
tendency toward statistical significance for their ratio SD2/SD1
(Table 6 and Figure 5). Asymmetry variables Cup and Cdown,
determined from the Poincaré plots, indicated that HF patients
could be separated only into two subgroups: one with dominant
deceleration mechanism and the second one, where there was
no statistical difference between deceleration and acceleration
pattern of regulatory mechanisms (Figure 6). We also found that
there is no statistical difference between control group and each
cluster in Cup and Cdown.

FIGURE 2 | Detrended fluctuation functions F (n) for time series of interbeat intervals versus segment size n on the log-log graph; in the first (A), second (B), third (C),
and fourth (D) cluster of heart failure patients. Dashed lines separate the two ranges in which the scaling exponents have been determined (n = 16). Estimated
scaling exponents with the coefficient of determination for every patient in each cluster are given in Tables 2–5.
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TABLE 2 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the first cluster of heart failure patients.

Patient α1 R2 α2 R2

1 0.728 ± 0.060 0.95 1.143 ± 0.012 0.99

2 0.661 ± 0.011 0.99 1.001 ± 0.014 0.99

3 0.661 ± 0.038 0.98 0.937 ± 0.021 0.99

4 0.536 ± 0.027 0.98 0.8971 ± 0.0037 0.99

5 0.420 ± 0.028 0.97 1.0636 ± 0.0077 0.99

6 0.550 ± 0.012 0.99 0.831 ± 0.051 0.99

7 0.414 ± 0.013 0.99 0.863 ± 0.012 0.99

8 0.512 ± 0.017 0.99 0.940 ± 0.016 0.99

Values are mean ± standard error. R2, coefficient of determination (the
goodness of linear fit).

TABLE 3 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the second cluster of heart failure patients.

Patient α1 R2 α2 R2

1 1.015 ± 0.041 0.99 1.035 ± 0.027 0.99

2 0.956 ± 0.016 0.99 0.904 ± 0.018 0.99

3 0.948 ± 0.018 0.99 0.954 ± 0.015 0.99

4 0.830 ± 0.022 0.99 1.0147 ± 0.0069 0.99

5 0.964 ± 0.028 0.98 1.1064 ± 0.0094 0.99

6 0.827 ± 0.036 0.99 0.999 ± 0.012 0.99

7 0.898 ± 0.044 0.99 0.929 ± 0.015 0.99

8 1.060 ± 0.043 0.99 1.0073 ± 0.050 0.97

9 0.967 ± 0.033 0.99 1.033 ± 0.038 0.98

10 0.963 ± 0.016 0.99 0.929 ± 0.032 0.99

11 0.992 ± 0.014 0.99 0.9549 ± 0.0059 0.99

12 0.901 ± 0.0.37 0.99 1.021 ± 0.044 0.97

13 0.862 ± 0.044 0.99 0.988 ± 0.020 0.99

14 1.0029 ± 0.0088 0.99 1.227 ± 0.012 0.99

Values are mean ± standard error. R2, coefficient of determination.

A multiple regression analysis was performed to determine
predictors of the ratio α1/α2. We found that relative spectral
powers (rHF and rVLF), the LVEF, normalized total spectral
power, and breathing frequency statistically significantly
predicted α1/α2 in HF subjects, F(5,40) = 20.966, p < 0.01,
R2 = 0.724 (Table 7). This result indicates complex physiological
background of the ratio of scaling exponents which comprised
relative cardiac vagal and central autonomic control, mechanical
efficiency of the left ventricle, total variability as well as
modulatory effect of the breathing process.

DISCUSSION

In the last few decades DFA method, i.e., short-term and long-
term scaling exponents separately, showed a greater prediction
potential in several cardiac diseases than any parameter from
HRV analyses. In this study, we found that in HF patients
short- and long-term correlation properties quantified by scaling
exponents could gradually change in the opposite directions.

TABLE 4 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the third cluster of heart failure patients.

Patient α1 R2 α2 R2

1 1.301 ± 0.033 0.99 1.065 ± 0.025 0.99

2 1.238 ± 0.016 0.99 0.950 ± 0.018 0.99

3 1.187 ± 0.037 0.99 1.031 ± 0.015 0.99

4 1.119 ± 0.029 0.99 0.853 ± 0.019 0.99

5 0.965 ± 0.050 0.98 0.771 ± 0.038 0.97

6 0.978 ± 0.037 0.99 0.778 ± 0.017 0.99

7 0.959 ± 0.018 0.99 0.8275 ± 0.0086 0.99

8 1.104 ± 0.062 0.98 0.892 ± 0.066 0.92

9 1.137 ± 0.038 0.98 0.557 ± 0.051 0.88

10 1.339 ± 0.018 0.99 1.189 ± 0.040 0.99

11 1.162 ± 0.041 0.99 0.909 ± 0.016 0.99

12 1.088 ± 0.020 0.99 0.865 ± 0.035 0.97

13 0.944 ± 0.032 0.99 0.697 ± 0.022 0.98

14 1.017 ± 0.016 0.99 0.841 ± 0.029 0.99

15 1.1356 ± 0.0083 0.99 0.968 ± 0.024 0.98

Values are mean ± standard error. R2, coefficient of determination.

TABLE 5 | Estimated values of short-term (α1) and long-term (α2) scaling
exponents in the fourth cluster of heart failure patients.

Patient α1 R2 α2 R2

1 1.060 ± 0.025 0.99 0.7804 ± 0.0081 0.99

2 1.235 ± 0.018 0.99 0.847 ± 0.030 0.99

3 1.179 ± 0.058 0.99 0.828 ± 0.037 0.98

4 0.9603 ± 0.0018 0.99 0.739 ± 0.020 0.99

5 1.3185 ± 0.052 0.99 0.869 ± 0.065 0.91

6 1.1010 ± 0.0046 0.99 0.729 ± 0.029 0.97

7 1.3314 ± 0.0092 0.99 0.8894 ± 0.019 0.99

8 1.412 ± 0.011 0.99 0.504 ± 0.062 0.81

9 1.2142 ± 0.0089 0.99 0.863 ± 0.011 0.99

Values are mean ± standard error. R2, coefficient of determination.

We introduced new parameter, the ratio of short- and long-
term correlation properties of heart interbeat fluctuations, which
could be used as an integrative parameter of regulatory cardiac
mechanisms in HF patients. This parameter is capable to
differentiate four clusters which could not be simply classified by
some clinical parameters (LVEF or NYHA) or solely by linear and
non-linear measures of autonomic cardiac control.

The finding for the first cluster could be a good example
of previously recognized interactions between short-term and
long-term cardiovascular control mechanisms under specific
pathological conditions (Hoyer et al., 2007). Namely, Hoyer et al.
(2007) showed that cardiovascular system incorporates dominant
short- and long-term control mechanisms which are in optimal
adjustment in normal healthy conditions. Under pathological
conditions, realized with increased collapse of the short feedback
loop, the inverse association between their randomness has
been recognized. As a system inherent type of readjustment,
short-term randomness increased and long-term randomness
decreased. We found in the first cluster of HF patients that
the ratio of the scaling exponents had the lowest value; α1 was
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TABLE 6 | Comparison of clinical data, and linear and non-linear HRV measures between four clusters of heart failure patients.

First (N = 8) Second (N = 14) Third (N = 15) Fourth (N = 9) p

Age (years) 62.1 ± 2.7 55.4 ± 2.5 61.1 ± 2.3 59.2 ± 3.2 0.85

NYHA 2.25 ± 0.16 2.21 ± 0.11 2.27 ± 0.12 2.11 ± 0.11 0.28

LVEF (%) 28.1 ± 2.7 25.8 ± 1.7 28.9 ± 1.7 27.3 ± 1.7 0.61

SDNN (ms) 26,6 ± 4.4 41.8 ± 4.8 31.0 ± 3.5 34.0 ± 6.5 0.15

RMSSD (ms) 20.4 ± 3.0 21.9 ± 3.1 16.4 ± 2.1 14.8 ± 3.5 0.29

pNN50 (%) 2.3 ± 1.2 4.9 ± 1.7 2.19 ± 0.82 2.1 ± 1.1 0.34

SD1 (ms) 14.8 ± 2.6 10.7 ± 1.6 13.0 ± 2.5 8.83 ± 6.4 0.37

SD2 (ms) 25.6 ± 4.2 36.2 ± 4.8 30.9 ± 3.5 33.1 ± 6.4 0.50

r, Pearson PP 0.44 ± 0.10 0.818 ± 0.029 0.707 ± 0.061 0.872 ± 0.018 < 0.01

SD2/SD1 2.06 ± 0.48 3.95 ± 0.62 3.25 ± 0.43 4.10 ± 0.33 0.07

RR (s) 1.027 ± 0.043 0.932 ± 0.041 0.910 ± 0.047 0.916 ± 0.044 0.24

ln[VLF (ms2)] 4.10 ± 0.43 5.40 ± 0.37 5.16 ± 0.31 5.31 ± 0.30 0.36

ln[LF (ms2)] 2.88 ± 0.43 4.04 ± 0.34 3.93 ± 0.26 4.88 ± 0.28 0.06

ln[HF (ms2)] 4.12 ± 0.35 4.10 ± 0.34 3.47 ± 0.35 3.89 ± 0.47 0.46

ln[TP (ms2)] 5.06 ± 0.35 5.88 ± 0.36 5.66 ± 0.28 6.07 ± 0.31 0.79

rVLF (%) 43.4 ± 7.3 63.5 ± 3.6 63.1 ± 4.7 53.8 ± 6.5 0.045

rLF (%) 12.6 ± 2.4 17.8 ± 2.0 21.9 ± 3.4 32.1 ± 3.2 0.002

rHF (%) 44.0 ± 7.5 18.6 ± 2.2 15.0 ± 3.0 14.1 ± 4.1 0.001

BF (Hz) 0.247 ± 0.022 0.252 ± 0.017 0.265 ± 0.016 0.266 ± 0.020 0.74

Data are presented as mean values ± standard errors. LVEF, left ventricular ejection fraction; SDNN, standard deviation of RR intervals; RMSSD, root mean square of
successive differences of RR intervals; pNN50, percentage of consecutive RR intervals that deviate from one another by more than 50 ms. SD1, SD2, and r (Pearson PP),
Cup, and Cdown are parameters of Poincaré plot. RR, mean interbeat interval. Absolute and relative values of VLF, very low frequency spectral component; LF, low
frequency spectral component; HF, high frequency spectral component; TP, total power of spectral power density; BF, breathing frequency.

significantly reduced and significantly lower than α2. The short-
term scaling exponent has shown greater clinical discrimination
of various cardiac diseases. A reduced α1 indicates loss of fractal
organization in cardiac interbeat intervals and it is a good
predictor of mortality in post-infarction patients (Huikuri et al.,
2000; Tapanainen et al., 2002), specific risk factor for cardiac
death in the elderly and it has been proposed as a strong predictor
for HF patients (Ho et al., 1997; Mäkikallio et al., 2001). In
this state of cardiac system with reduced ANS activity, loss
of short-term correlations in heartbeat intervals could result
from reduced capacity for cardiovascular adaptation, vagal tone
(high percentage of rHF) and/or alterations in breathing pattern
independent on the breathing frequency. This is an interesting
finding because there are plenty of data on factors that affect
the breathing frequency in HF, such as the effects of some drugs
like sedatives, or LVEF, NYHA, some lung diseases, but we have
not found out enough about alterations in breathing patterns so
far (Forleo et al., 2015). In our earlier papers we showed that
fractal organization of interbeat intervals dynamic could also be
altered with some physiological processes like standing, exercise,
and recovery (Platiša and Gal, 2008). Additionally, in our study
with voluntary breathing at different breathing frequencies we
found reduction of α1 with increase in breathing frequency
(Platiša and Gal, 2010). Perakakis et al. (2009) also showed that
breathing frequencies may bias evaluation of short-term fractal
scaling properties.

Compared with control, in patients from this cluster fractal
long-term correlations become stronger (α2 increased). Some
previous studies have reported change of fractal scaling behavior
with aging, where both scaling exponents increased with aging

(Ryan et al., 1994; Lipsitz, 1995; Pikkujämsä et al., 1999).
That type of correlations is usually related to the rigidness of
regulatory mechanisms with reduced control ability. According
Guzik’s variables of asymmetry these patients also preserved
asymmetry in short HRV, as it is observed in healthy subjects,
which indicates that dominant deceleration mechanism had a
different pattern from acceleration mechanism/s (Guzik et al.,
2006). Relative spectral powers of very low frequency (rVLF)
and of high frequency (rHF) regions had similar percentage
values and we assumed that regulatory mechanisms in this
range of frequencies are equally involved in the state of reduced
autonomic cardiac control as the result of readjustment in system
control mechanisms.

In the second cluster we did not find statistically significant
crossover between scaling exponents (fractal correlations are
very similar in both ranges). This cluster is very similar to the
control group, but with significantly higher long-term scaling
exponent α2. However, comparison of distributions of relative
spectral powers revealed similar rHF, but with a significant
reorganization of rLF and rVLF and with domination of slower
regulatory mechanism from domain of very low frequencies in
these HF patients. More, asymmetry was not reached, and the
pattern of short-term deceleration and acceleration mechanisms
was not different. We only may speculate that patients from
second cluster were in state with some developed compensatory
mechanisms of cardiac control.

Regarding relationship between scaling exponents, the third
and fourth cluster were similar, i.e., short-term scaling exponent
is significantly higher than long-term. Compared with control
group, α1 gradually increased while α2 remained statistically
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FIGURE 3 | Mean values plus standard errors of short-term scaling exponent
(α1), long-term scaling exponent (α2) and their ratio α1/α2 in control group and
four clusters of heart failure patients. ∗∗p < 0.01 (α1 vs. α2). Short-term
scaling exponent (α1) values were significantly different between control group
and three clusters (1st, 3rd, and 4th), p < 0.01. Long-term scaling exponent
(α2) values were significantly different between control group and two clusters
(1st and 2nd), p < 0.01. The ratio α1/α2 was significantly different between
control group and two clusters (1st and 4th), p < 0.01, and with tendency
toward statistical significance with the 3rd cluster (p = 0.07). After
comparisons only between clusters for α1 we obtained following significances:
(1st vs. 2nd, 1st vs. 3rd, and 1st vs. 4th, p < 0.01) and (2nd vs. 3rd, and 2nd
vs. 4th, p ≤ 0.01). For α2 we obtained: (1st vs. 4th, p < 0.01) and (2nd vs.
3rd, p = 0.06 and for 2nd vs. 4th, p < 0.01). For the ratio α1/α2 all
comparisons were statistically significant (p < 0.01).

unchanged. This type of interactions between short-term and
long-term randomness under HF as pathological condition, also
may be another type of system inherent readjustment, here in
the opposite direction compared with the first cluster. In the
literature, it can be found that the increase in α1 is usually
related to vagal withdrawal (Tulppo et al., 2001; Castiglioni et al.,
2011) but in this HF states probably with preserved feedback
loops of regulatory mechanisms. Tendency to decreased α2 in
the fourth cluster may be related to sinus node dysfunction (Shin
et al., 2011) or the β-receptor blockade (Castiglioni et al., 2011).
It is believed that complexity of interbeat interval fluctuations
is generated solely by ANS activity and that quantified linear
and non-linear parameters of HRV are quantifiers of modulatory
mechanisms of ANS. However, recently published data revealed
that interbeat intervals reflect intrinsic complexity with origin
in sinoatrial node cells (Ponard et al., 2007; Yaniv et al.,
2013) which usually is integrated in the whole complexity
of the heart rhythm. Hence, Yaniv et al. (2013) concluded
that HRV is determined by the intrinsic properties of cells in
the sinoatrial node and the competing influences of the two
branches of the autonomic neural input. With these findings,
the importance of assessments of long- term scaling exponent
has increased. Hotta et al. (2005) showed that α2 is a more
powerful measure for predicting cardiac morbidity and mortality.

FIGURE 4 | The distribution of relative spectral components in clusters
determined by the ratio of the scaling exponents. Values are given as mean
plus standard errors. Relative VLF spectral component (rVLF) was significantly
different between control group and two clusters (2nd and 3rd), p < 0.01.
Relative LF spectral component (rLF) was significantly different between
control group and three clusters (1st, 2nd, and 3rd), p < 0.01. Relative HF
spectral component (rHF) was significantly different between control group
and two clusters (1st and 3rd), p < 0.05, and with tendency toward statistical
significance with the 4th cluster (p = 0.08). Significant and toward significant
differences of comparison between clusters of heart failure patients are for
rVLF (1st vs. 2nd, p = 0.07 and 1st vs. 3rd, p = 0.08), for rLF (1st vs. 4th,
p < 0.01, and 2nd vs. 4th, p = 0.01), and for rHF (1st vs. 2nd, 1st vs. 3rd, and
1st vs. 4th, p < 0.01).

In the study of Shin et al. (2011) long-term scaling exponent
was the only parameter which was capable of discriminating
differences in heart rate dynamics between patients with sinus
node dysfunction. They concluded that reduced value of α2 is a
robust measure and could be an adjunctive tool for improvement
of diagnostic performance in detection of sinus node dysfunction.
The question is whether this finding can be applied to our
patients, because they were mostly treated with highly selective
beta blockers, whereas in the previously mentioned study, non-
selective propranolol was used in blocking the beta receptors.
Also, in healthy subjects in a much lesser extent, such alterations
of scaling exponents are characterized as age-related degradation
of integrated physiological regulatory systems (Iyengar et al.,
1996). Our patients probably had superposition of both effects
which are more pronounced in the fourth cluster. The reason for
decrease of α2 may be related to some other physiological back-
ground (Figure 2D). In the sixth and eighth patient, even with
statistically approved linear regression analysis, a new scaling
regime which is probably related to some slower regulatory
mechanism could be identified. Unfortunately, our time series of
20 min length with approximately 210 points was not long enough
to detect this regime in all patients of the fourth cluster.

It can be observed that the third and fourth cluster are
different with respect to the distribution of asymmetry variables.
While there was asymmetry in the third cluster, in the fourth
cluster short-term asymmetry has ceased to exist. In order to
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FIGURE 5 | Representative example of Poincaré plot in the first (A), second (B), third (C), and fourth (D) cluster of heart failure patients with PP for one healthy
subject. Patient from the first cluster had SD1 = 10.10 ms, SD2 = 12.80 ms, Cup = 62.72% and Cdown = 37.28%. Patient from the second cluster had
SD1 = 7.50 ms, SD2 = 22.30 ms, Cup = 47.42% and Cdown = 52.58%. Patient from the third cluster had SD1 = 4.90 ms, SD2 = 35.30 ms, Cup = 53.8% and
Cdown = 46.2%. Patient from the fourth cluster had SD1 = 3.1 ms, SD2 = 17.7 ms, Cup = 42.63% and Cdown = 57.37%. Control subject had SD1 = 13 ms,
SD2 = 32 ms, Cup = 57.42% and Cdown = 42.76%.

FIGURE 6 | Guzik’s variables of asymmetry in clusters of heart failure patients.
Data are presented as mean values plus standard errors. ∗∗p < 0.01,
∗p < 0.05 (Cup vs. Cdown). There is no significant difference between control
group and each of clusters with heart failure patients.

clarify all these findings, future studies with longer recordings
and/or pharmacological recognition need to be done.

We also noticed that even younger control subjects had
higher heart rate than HF patients. If it is known that the main
pathophysiological feature of HF is the imbalance of ANS with
increased sympathetic activity, then it is expected that patients
with HF will have faster resting rate than control subjects (Hori
and Okamoto, 2012). However, all patients with HF in this study
were receiving β-blockers, and some of them were treated with
additional antiarrhythmics, such as amiodarone or digoxin. Thus,
in all these patients there was iatrogenic decrease of heart rate.
Also, in previous study we found that HF patients with sinus
rhythm and without ventricular extrasystoles have a significantly
lower heart rate compared to HF patients with arrhythmias,
either ventricular or supraventricular (Radovanović et al., 2018).
Finally, it should be added that some researchers suggest
the existence of selectivity of effects of aging on autonomic
function in healthy subjects; more precisely, they believe that
sympathetic function remains unchanged with increasing age
(Parashar et al., 2016).

Results of multiple regression analysis showed that the ratio of
the scaling exponents was significantly predicted with the small
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TABLE 7 | Multiple regression analysis with predictors for the ratio of short-term to
long-term scaling exponents.

b S.E. b β t p

Constant 1.493 0.259 5.772 0.000

rHF (%) −2.518 0.272 −1.318 −9.245 0.000

rVLF (%) −1.468 0.245 −0.863 −6.004 0.000

LVEF (%) 0.014 0.005 0.273 3.023 0.004

ln[TP (ms2)] 0.064 0.024 0.230 2.632 0.012

BF (Hz) 0.932 0.459 0.177 2.031 0.049

rHF, relative spectral component of high frequency domain; rVLF, relative
spectral component of very low frequency domain; LVEF, left ventricular ejection
fraction; ln TP, natural logarithm of total power; BF, breathing frequency. b,
unstandardized regression coefficient; S.E.b, standard error of b; β, standardized
regression coefficient.

alterations in five independent measures which determined four
clusters of HF patients. Comparison of standardized regression
coefficient β values showed that relative spectral components,
rHF and rVLF, had strong negative relationship with the ratio
of the scaling exponents. Relative strength of relationships of
LVEF and lnTP with this ratio was much weaker, while with BF it
was the weakest.

Recognized heterogeneity in HF patients points to the
necessity of introducing new approaches in the analysis of cardiac
dynamics which will comprise the interactions with the other
coupled physiological systems (Ivanov et al., 2017; Kuhnhold
et al., 2017). In this pathological condition, analyses of the
heart–brain interactions are of special importance because of
recognition and quantification of neuroplasticity changes in the
dynamics of the brain stem integrators.

Limitations
The significant limitation of this study is a statistically
significant age difference between healthy controls and HF
patients. It is known that aging, as well as diseases, is
accompanied by significant cardiovascular modifications, both
structural and functional, although there are studies that
indicate that fractal temporal organization of cardiac dynamics
does not break down with healthy aging (Ferrari, 2002;
Schmitt et al., 2009). What is sure is that with aging the
sympathetic activity increases, the renin-angiotensin-aldosterone
system activity decreases, respiratory sinus arrhythmia and
HRV are reduced, as well as effectiveness of cardiovascular
and cardiopulmonary reflexes (Ferrari, 2002; Voss et al., 2015).
Some of these changes are also a characteristic of HF and,
therefore, a large problem is separating truly HF dependent
alterations from those arising from aging. However, we could
not age-match our HF patients and healthy controls, because
it was not feasible to select subjects without any medical
history, even without any risk factor for cardiovascular disease
development, among those who were closer in age to the
HF patients. In our study, patients were treated with a
combination of medications from groups of drugs recommended
for the treatment of HF. The differences among patients
in doses of given drugs remain an inevitable limitation of

this research, since the prescribed dose of the drug was
determined by the patient’s comorbidities, which were numerous
in our patients.

After this study it is necessary to examine the clinical
potential of the ratio of short- and long-term scaling exponents,
which was the basis for separating of HF patients. We want
to determine whether patients of one of these clusters have
greater benefit from the cardiac resynchronization therapy.
Results of a multiple regression analysis, more precisely, the
fact that the examined ratio is at the center of neural, cardiac
and respiratory influences, encourages us that this parameter
could contribute to a better selection of candidates for this
therapy and also be the parameter on which we will rely
on in the course of device programming optimization during
follow-up period. In the future, this ratio could potentially
be used by a device algorithm that would automatically
optimize its function. This will surely be the topic of
our next research.

CONCLUSION

Our findings showed that in the integral cardiac control
quantified by the ratio of short-term and long-term scaling
exponents, beside neural cardiac control, mechanical properties
of the heart and the modulatory effect of the breathing
frequency are significantly involved. This ratio is able of
differentiating four clusters of HF patients in sinus rhythm
which do not differ in cardiac autonomic control, age,
LVEF and NYHA class.
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This paper introduces the use of low frequencies forced oscillation technique (FOT) in the

presence of breathing signal. The hypothesis tested is to evaluate the sensitivity of FOT

to various degrees of obstruction in COPD patients. The measurements were performed

in the frequency range 0–2 Hz. The use of FOT to evaluate respiratory impedance

has been broadly recognized and its complementary use next to standardized method

as spirometry and body plethysmography has been well-documented. Typical use of

FOT uses frequencies between 4–32 Hz and above. However, interesting information at

frequencies below 4 Hz is related to viscoelastic properties of parenchyma. Structural

changes in COPD affect viscoelastic properties and we propose to investigate the use

of FOT at low frequencies with a fourth generation fan-based FOT device. The generator

non-linearity introduced by the device is separated from the linear approximation of the

impedance before evaluating the results on patients. Three groups of COPD obstruction,

GOLD II, III, and IV are evaluated. We found significant differences in mechanical

parameters (tissue damping, tissue elasticity, hysteresivity) and increased degrees of

non-linear dynamic contributions in the impedance data with increasing degree of

obstruction (p < 0.01). The results obtained suggest that the non-linear index correlates

better with degrees of heterogeneity linked to COPD GOLD stages, than the currently

used hysteresivity index. The protocol and method may prove useful to improve current

diagnosis percentages for various COPD phenotypes.

Keywords: forced oscillation technique, respiratory impedance, COPD, viscoelastic properties, small airways,

remodeling

1. INTRODUCTION

Standardized, clinical practice requires specific maneuvers from the subject (e.g., spirometry), i.e.,
maximal inspiratory and expiratory effort are required. For example, in order to differentiate
between patients with asthma and chronic obstructive disease (COPD) spirometry in combination
with other techniques (e.g., broncho-dilation) is employed. Therefore, measurement and
estimation of impedance by means of forced oscillation technique (FOT) have been widely
investigated for several years to show its added value and complementarity (Kaczka and Dellaca,
2011; Oostveen et al., 2013; Kamada et al., 2017, 2018). This is a non-invasive procedure
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which does not require any special maneuvers from the patient
and it requires minimal effort which makes this method an ideal
lung function test, especially for the limit ages (children and
elderly). FOT can be briefly described as an oscillatory air flow
superimposed on the breathing of the patient (Ionescu, 2013).
FOT has been broadly used for screening purposes, e.g., upper
airway obstruction, small airway disease in COPD (Ionescu,
2013), respiratory mechanics in obstructive sleep apnea.

The non-invasive FOT is used to measure the respiratory
mechanics at low frequencies (i.e., 0.1–2 Hz) in two groups of
volunteers (i.e., adults and children). FOT is a non-standardized
lung function test based on the action-reaction principle applied
to the lungs during normal breathing in a non-invasive manner.
The patient is advised to breath normally, i.e., no forcemaneuvers
are required, a non-condition which enlarges significantly the
applicability scope to marginal groups such as infants, children,
and the elderly. Developed half century ago, FOT implies
the generation of a signal Ug(t) (sinusoidal, or combination
hereof) within 0.3 kPa peak to peak amplitude. Signal generation
has varied in the past decades from loudspeakers, mechanical
pistons, to fan-based ventilators, depending on the envisaged
range of frequencies and power to be applied to the patient’s
lungs (Olarte et al., 2015). For instance, loudspeaker based
mechanisms are commonly used for frequencies well above
the breathing frequency; 5–250 Hz, revealing properties of the
proximal airways and useful for aerosol deposition studies.
Mechanical actuators and ventilators works at lower frequencies
(<5 Hz) enabling information on lung tissue properties such
as viscoelasticity.

For the measurements performed in this paper, the device
described in Olarte et al. (2015) has been employed. A more
detailed description of the system can be found in Olarte et al.
(2015). As mentioned above, when measuring at low frequencies
interference between the breathing signal and excitation signal
occurs. For this, a non-linear estimator has been employed to
eliminate the disturbance signal (i.e., breathing) without losing
the information about the respiratory response. However, the
mathematical details have been described elsewhere (Ionescu
et al., 2011a; Ionescu, 2013; Olarte et al., 2015; Copot et al.,
2017a,b).

In the current study, we propose to evaluate low frequencies
FOT in the presence of breathing signal and in a fourth
generation custom-made lung function FOT device. The
objective is to evaluate the sensitivity of FOT to various degrees
of obstruction in COPD patients and to separate from the
recorded information the linear and non-linear components of
the respiratory impedance. To this purpose, three COPD groups
are evaluated: GOLD II, GOLD III, and GOLD IV diagnosed
patients. In this paper the hypothesis whether changes in tissue
distribution in COPD will induce changes in the non-linear
dynamic response has been investigated. A method and protocol
is proposed to determine the amount of degree and correlate it to
the GOLD classification of COPD.

The paper is structured as follows. The next section presents
the biometric and spirometric details for the subjects and patients
evaluated in this work. The measurement device and method
for estimating respiratory impedance is also described. The third

TABLE 1 | Biometric characteristics and baseline lung function data for the

patients included in the study.

– GOLD II GOLD III GOLD IV Baseline

# Patients 21 22 20 20

Age (years) 60–71 65–73 70–74 33–36

Height (m) 1.68 –1.74 1.69–1.73 1.54–1.63 1.73–1.78

Weight (kg) 58–68 68–77 75–85 74–77

FEV1%pred 67–72 42–48 27–31 98–105

section illustrates the results, followed by a discussion section. A
conclusion section summarizes the main ideas of this study.

2. MATERIALS AND METHODS

2.1. Patients
In this paper a total number of 63 patients with COPD with an
average age of 60 years old have been evaluated using the FOT
device. The patients were coming for periodic lung evaluation
at the pneumology department at Ghent University Hospital,
Belgium. Biometric and spirometric parameters are shown in
Table 1. Each patient signed the inform consent form and the
protocol has been approved by the local ethical committee,
registered under the number B670201526182.

2.2. Measurement Device
The measurement device presented in this paper is a fourth
generation prototype of the device detailed in Ionescu et al.
(2014) and Maes et al. (2014). The measurement device consist
in two sets of three fans, one on each side of the main pipe as
shown in Figure 1. The aim of these fans is to move the air into
the tube on one side and to extract the air at the other side.
A pneumotachograph and two pressure sensors deliver the flow
and pressure measured at the mouth during tidal breathing. The
pressure signal generated by the device is a multisine within the
0.05–2 Hz frequency interval. The device has been described in
detail in Olarte et al. (2015) and Copot et al. (2017a) and includes
compensation of deadspace effects (Tang et al., 2005) through
closed loop control of fan speed.

2.3. Identification Method
The most identification approaches of non-linear dynamic
systems is to have small amplitude variations and a good SNR, to
avoid non-linear distortions. In this paper, we propose to make
use of this information in a systematic analysis.

In general, for multi-harmonic periodic signals, the quadratic
non-linear effect is present at combinations of fi − fj, while the
cubic non-linear effect is identified for the triple combination
fi − fj − fk (with fi, fj, and fk the frequencies present in the
excitation signal).

Consequently, exciting the system with periodic signals with
only odd harmonics will prevent the even non-linear distortions.
This allows discriminating between even and odd non-linear
contributions, while providing a best linear approximation
(BLA) of the system (Pintelon and Schoukens, 2012). This
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FIGURE 1 | Photo of the device used for measurements. The patient is using the mouth piece to connect to the device and the flow is directed toward the patient

while he breaths using straws. PWM stands for pulse wave modulated signal.

concept has been successfully applied to respiratory impedance in
loudspeaker based device and amotor-driven piston based device
(Ionescu et al., 2011a, 2014).

The influence of non-linear distortions on the frequency
response of measurements are quantified by using identification
methods given in Schoukens et al. (2002) and Pintelon and
Schoukens (2012). A brief description of the essential steps is
given hereafter.

u(t) =
1

√
N

N∑

k=1

Ak sin(ωkt + φk) (1)

with the phases φk random uniformly distributed in the interval
[0; 2π], ωk = 2πkFs the excited frequencies of the multisine,
with Fs the frequency resolution of the signal, N the number of
excited harmonics and Ak the spectrum amplitude.

Consider an input signal defined as a random phase multisine
with Ak the non-zero amplitude for odd k values, ω0 = 2π f0
and f0 = 0.1 Hz, φk the phase uniformly and independently
distributed in the [0; 2π] interval andN the number of sinusoids.
The best linear approximation (BLA) of a non-linear system can
be viewed as a minimization of the mean squared error between
the true output of the non-linear system and the output of an
approximated linear model. The estimated BLA ĜBLA(jωk) of
a wide class of non-linear systems, obtained using (1) can be
written as:

ĜBLA(jωk) = GBLA(jωk)+ GS(jωk)+ NG(jωk) (2)

with GBLA(jωk) the true best linear approximation (BLA) of the
non-linear system, GS(jωk) the zero mean stochastic non-linear
contributions and NG(jωk) the measurement noise (Schoukens
et al., 2002). The stochastic non-linear contributions GS(jωk) can
be extracted by averaging from a manifold of experiments M
containing different phase realizations in the excitation signal
from (1).

The basic principles for detecting non-linearities are shown
in Figure 2. The output of a linear system,which is excited

FIGURE 2 | A schematic representation of the input-output contributions.

with a multi-frequency input signal,is given on the first row.
Only amplitude variations on the excited (odd) frequencies are
observed (red). However, when this input signal is applied on
a non-linear system (e.g., the respiratory tissue), non-linear
dynamics become visible and can be measured as additional
detection lines (second and third row in blue and green). These
distortions are in fact superimposed to the linear output signal
and contribute to the signal measured at the output (last row).
The resulting out-put signal contains extra information via phase
differences. The non-linear contributions can be determined
via the identification of the even and odd harmonics(blue and
green). A detailed description of the method can be found in
Schoukens et al. (2002) and Pintelon and Schoukens (2012).
In order to reduce the non-linear effect over the FRF and
distinguish between even and odd non-linearities, only odd
frequencies are excited in the system. In this context, the even
non-linearities do not contribute to GB(jωk). The presence
and the level of even non-linearities can be detected at the
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even non-excited harmonics of the response spectrum signal.
Additionally, detection of odd non-linear distortions can be
identified by omitting some of the odd harmonics in the
excitation (Pintelon and Schoukens, 2012).

A convenient excitation signal that allows controlling easily
the excitation lines and maintains the advantages of periodic
excitation is designed as in (1), where the even harmonics are not
excited, and per group of three odd harmonics one is randomly
omitted. To avoid that the random phase realizations affect the
amplitude of the designed signal, a crest factor lower than 2.2 has
been used in (1).

An in-depth systematic analysis of the device has been
performed for detecting its non-linear contributions and its
sensitivity to various respiratory tube calibers and lengths, along
with a calibration validation, as given in Olarte et al. (2015). The
respiratory impedance data from the patients presented in the
current paper implies calibration and correction of non-linear
contributions of the device.

In order to quantify these non-linear contributions, the
following index has been introduced in Ionescu (2013) and it has
been used in this paper to evaluate the degree of heterogeneity in
patients with different degrees of COPD.

T =
Peven + Podd

Pexc
·

Uexc

Ueven + Uodd
(3)

where P represents the pressure and U is the input signal
(1). Each variable is the sum of the absolute values of all
the contributions in pressure signal and input flow signal
respectively, at the even non-excited frequencies, the odd
non-excited harmonics and the excited odd harmonics as
schematically depicted in Figure 3. Only the corrected output
pressure has been taken into account when calculating (3), i.e.,
the linear contribution has been estimated and subtracted. The
principle of detecting the non-linear contributions has been
described elsewhere (Pintelon and Schoukens, 2012). A brief
description of the method is given in the Appendix.

The index from (3) expresses a relative ratio of the
contributions at the non-excited frequency points, with respect to
the contributions at the excited frequency points. Furthermore, it
gives a relative measure of the gain between contributions in the
input and in the output of the system. Since this is a non-linear
system whose output depends on the input, the choice for this
relative measure is technically sound if one aims to extract the
degree of non-linearity existent in lung tissue.

2.4. Estimating Impedance and Related
Parameters
After the signals are recorded, they undergo a pre-conditioning
step. The purpose is to eliminate the non-linear harmonics
unavoidable by the interference with the low breathing
frequency. For this, we employ the method proposed in
Markovsky (2012) and Markovsky et al. (2014). This pre-
conditioning leaves the data ready for estimation of respiratory
impedance as real-imaginary parts as a function of frequency,
withminimized effect from breathing dynamics. As the algorithm
is not our contribution, is not listed here.

FIGURE 3 | Time signals for healthy case depicting the input signal (lower

graph), flow signal (middle graph), and pressure signal (upper graph).

The subjects were asked to breath freely in normal sitting
position for 30 s, i.e., about 5 periods of multisine excitation.
The pressure (kPa) and flow (L) time based signals were sampled
at 500 Hz frequency. The non-parametric estimation of the
impedance was performed by employing the tools detailed in
Daroczy and Hantos (1982), Oostveen et al. (2013), and Ionescu
et al. (2014) based on spectral analysis techniques:

ẐBLA(jωk) =
SPU(jωk)

SQU(jωk)
(4)

where SPU , SQU denotes the cross spectral density function
between the output pressuremeasured at themouth of the patient
and the excitation signal, and the output flow and the excitation
signal respectively, evaluated at the excited frequency lines ωk

(rad/s) corrected by the effect of non-linear contributions from
the device. The result is a graphical evaluation of the respiratory
properties and it is usually represented by its real and imaginary
parts as a function of frequency.

To this data, non-linear least square identification algorithm
can be applied to fit the parametric model:

ZCP(jωk) = R+ I(jωk)+
1

C(jωk)β
(5)

where R (kPa s/L) and I (kPa s2/L) represent the main airway
resistance and inheritance, while the last term consists of
a constant-phase element which can be quantified in term
of imaginary and real part which will represent the tissue
elastance and damping respectively, and are described by the
following equations:

G = 1

Cω
β

k

cos(βπ/2)

H = 1

Cω
β

k

sin(βπ/2)
(6)
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The ratio between the elastance and damping represents tissue
heterogeneity. When the changes in R are small then any changes
in G (kPa s(1−β)/L) will depict changes in parenchyma or in very
small airways (Ionescu et al., 2017). Significant changes inH (kPa
s(1−β)/L) changes in the intrinsic mechanical properties of the
parenchyma (Hantos et al., 1993; Thamrin et al., 2004).

This parametric model has been shown to reliably estimate
airway and tissue properties (Ionescu, 2013). The accuracy
of model parameters estimates by means of model fitting to
experimental data indicates that the resistance and inheritance
contain a high degree of uncertainty. The phase constancy
parameter provides a reliable estimation of the peripheral tissue
characteristics. The outcome of this study also indicates a
dependency on frequency at low frequencies in the real part
of impedance is consistently fitted by the constant-phase model
from (5) when compared to other models from literature.

FIGURE 4 | Time signals for COPD case depicting the input signal (lower

graph), flow signal (middle graph), and pressure signal (upper graph).

We have also previously showed that FOT measurements
with both (4) and (5) are useful to characterize differences
between healthy subjects and COPD patients (Ionescu et al.,
2010a). We have shown in the past that the proposed models,
method and device can be used to differentiate between healthy
and disease subjects. However, we did not employ the non-
linear index to evaluate the differences between the different
degrees of COPD (i.e., COPD II, COPD III, and COPD IV).
Hence, the aim of this study is to investigate whether or
not the non-linear index can be used to distinguish between
various degrees of obstruction in COPD. We have shown
that the term in fractional order frequency arises naturally
from the structure and mechanical properties of the lungs,
as described in Bates et al. (1994, 2007), Suki et al. (1994),
and Ionescu et al. (2010b, 2011b).

The measured pressure and flow and the input signal for
healthy and COPD case are shown in Figures 3, 4.

Figure 5 depicts a pre-conditioned pressure and flow signal
used for the estimation of the respiratory impedance.

The BLA of the respiratory impedance modulus evaluated in
healthy and in COPDGOLD3 are depicted in Figure 6 upper and
lower, respectively. One may conclude the non-linear distortions
tend to bemore significant in patients with COPD than in healthy
subjects as it can be seen in Figure 7. From clinical insight, this
is indeed a valid conclusion, more details regarding the clinical
interpretation can be found in Ionescu (2013) chapter 2. The
respiratory system affected by the COPD disease changes its
structure and this will also change the heterogeneous appearance
of the tissues and will introduce non-linear effects such as:
inflammation, clogged airways, viscoelasticity, etc. This paper
presents a preliminary study on the further development of
tools and methods for low-frequency measurement in a non-
invasive manner. Although this evaluation is performed on
a limited number of patients it indicates that measuring the
non-linear contributions is beneficial to gather insight into
evolution of respiratory diseases. Development of algorithms for
canceling the interference with the breathing signal of the patient
is motivated by the fact that the respiratory mechanics have

FIGURE 5 | Example of pre-conditioned time signals used for the estimation of the respiratory impedance.
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FIGURE 6 | Example of healthy (upper) and COPD (lower) estimated BLA impedance modulus along with non-linear contributions used to calculate index T.

inherent information on the viscoelastic properties of airways
and tissue.

This fact is also supported by the values obtained for the
T index depicted in Figure 8 by means of Anova analysis
plot (Matlab). More details about the non-linear index can
be found in Copot et al. (2017a). Given that the number of
subjects evaluated in each group is not very high one may
conclude that at this stage a statistical measure cannot be
performed, however a trend may be observed which corresponds
to the expected result: heterogeneity in small airways will
induce higher amount of non-linear effects in respiratory
mechanics properties.

Statistical analysis was performed using the Anova plot
in Matlab. With respect to airway resistance R and airway
inheritance I these were not used to perform any further
analysis since there was no normal distribution of the estimated
parameters. The values estimated at each frequency point
according to (6) and for all subjects in group are depicted as one
column in the Anova plot, indicating that statistical difference
exists, with p≪ 0.001.

Our results suggest that the proposed non-linear dynamic
index for the respiratory function T is better correlated to
heterogeneity in the COPD GOLD stages than the broadly used
heterogeneity index η.

FIGURE 7 | Evolution of the index G per group (p≪ 0.001).

The values estimated at each frequency point and for all
subjects in group are depicted as one column in the Anova plot,
indicating that statistical difference exists, with p≪ 0.001.

3. DISCUSSION

The presence of non-linear contributions in the respiratory
system increased steadily with every group, indicating a more
pronounced linear behavior in healthy lungs, depicted in
Figure 8. This does not imply a perfect linear system, but rather
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FIGURE 8 | Evolution of the index T per group - some indicative difference

exists (p≪ 0.001).

a less non-linear one. Pathological changes in COPD affecting
structure and viscoelastic properties introduce dynamical effects,
which may move away from Newtonian rheological framework.
In the remodeling framework associated with the evolution of
COPD (Hogg et al., 2004; Bergeron and Boulet, 2006), thickening
of the airway wall and accumulation of inflammatory exudates
in the lumen will enhance turbulent airflow conditions which
will enable significant non-linear contributions in the dynamical
system under analysis (Ionescu et al., 2011a). In patients with
GOLD III and GOLD IV, severe increase in lymphocytes and
presence of lymphoid follicles will determine a drastic change
in the energy balance distribution for enabling airflow in small
airways (Williamson et al., 2011). This accounts for significantly
higher degree of non-linearity in these groups than in GOLD II.

The degree heterogeneity in the small airways is related to
the presence of non-linear contributions. In Bates and Allen
(2006), a detailed description on the interpretation of the index
with changes in elastance and resistance is given. With respect
to η For η to increase by heterogeneity at low frequencies
(i.e., f = 0.16 Hz), the resistive and elastic properties must
have appropriate relative values. The regional increase/decrease
in heterogeneity does not automatically lead to an increase in
η (Bates and Allen, 2006). This specific aspect is reflected in
COPD GOLD III data, where the hysteresivity factor has a high
variability interval compared to the other groups. The relative
high heterogeneity factor in healthy subjects may be due to
the high variability present in the healthy respiratory system to
allow high flexibility to changing environmental and operating
conditions. This variability is also the backbone for adaptation
and remodeling with disease. Our respiratory tree is rather
robustly designed and heterogeneity in healthy does not have
the same underlying principles as the structural changes due
to disease.

Significant changes in G or H parameters indicate enhanced
or altered secretions that cause dysfunction in small airways
(Hantos et al., 1993). Changes in H will induce changes in tissue
elastance. Our values of H were slightly lower than in Lorx
et al. (2009) for COPD patients, but this may be due to the fact
that Lorx and colleagues evaluate H at specific transrespiratory
pressures. They indicated that at frequencies below 2 Hz, the
elastance values in COPD may be similar or even smaller than
those in healthy respiratory system, indicating the decreased
elasticity resulting from emphysematous changes. This is in

accordance with out results in H values for COPD GOLD III
and GOLD IV.

It has been concluded in Lutchen and Gillis (1997) that lung
resistance and lung elastance are extremely sensitive to mild
inhomogeneous constriction in which a few highly constricted
or nearly closed airway are present in peripheral zones. Strong
dependencies with frequencies have been observed at breathing
rates. This conclusion from their simulation studies can be
well-verified with the results obtained for COPD GOLD II
group, where markedly increased values for Eti have been found.
This indicated mild inhomogeneous constriction. By contrast,
severe homogeneous constriction would not increase Eti at the
lower breathing frequencies, supported by our results for COPD
GOLD III and GOLD IV groups. However, it seems that our
proposed non-linear dynamic index T outperforms the relevance
of η in degrees of heterogeneity assigned to various stages
of COPD GOLD.

In Dailey and Ghadiali (2010), the very same power
law formulation from (6) has been used to characterize
microrheological properties of materials in the context of
cell-injury during specific loads. This may be relevant for
instance in analyzing lung injury during mechanical ventilation
and preset positive end-expiratory pressures (Wheeler and
Bernard, 2007). However, the frequency dependency allows a
dynamic characterization of viscoelastic properties in lungs or
in similar materials (e.g., polymers). In Freed and Einstein
(2012), a model for lung parenchyma has been developed
where stress-strain properties are characterized for lung lobes,
similar to a pressure/volume curve model for inflation/deflation.
We also showed previously that mechanical models of lungs
preserving properties and structure imply the presence of a
power law term in time domain, or equivalently a fractional
order term in frequency as in (5) (Ionescu et al., 2010c;
Ionescu, 2013). However, simple impedance models as (5)
are more accessible and easier for evaluation in a clinical
context than complex theoretical models which are useful for
understanding underlying mechanisms of lung recruitment and
may be useful when individualized treatment and follow up
of COPD patients are envisaged (Derom et al., 2007). This
individualized treatment could very well be paired with a
wearable monitoring system for respiratory impedance as that
presented in Ionescu and Copot (2017).

4. CONCLUSIONS

In this paper we have shown that forced oscillation technique
is a complementary tool in evaluating tissue heterogeneity
and dynamic non-linearity in respiratory impedance data.
The proposed non-linear index provides valuable additional
information to the classical constant-phase parameter model.
The protocol enables separating linear from non-linear effects,
whereas changes in tissue parameters from constant-phase model
are highly sensitive to changes in peripheral airways. The
non-linear dynamics index proved to be better correlated to
various stages of COPD GOLD than the currently used index
for histeresivity. There is no doubt that FOT, in combination
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with reliable measurements at breathing frequencies, can deliver
information about small airways and thus help in accurate
diagnosis of various COPD phenotypes.
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