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Editorial on the Research Topic
Analytical methods for nonlinear oscillators and solitary waves

1 Introduction

Physics is mathematical, new physical phenomena require new mathematical tools. This
Research Topic is an attractive introduction of some new mathematical concepts, e.g., the
two-scale fractal geometry, the fractal-fractional models, the homotopy perturbationmethod
and the frequency formulation appliable to physics. The new findings of physical
phenomena using the new mathematical tools have excited physicists with their
potential to reveal secrets in physics and have triggered new research frontiers in
physics. Here is an overview of the Research Topic.

2 Fractional soliton vs. fractal soliton

Fractional soliton is a new concept in mathematics, in this paper, Zeng et al. studied the
fractional Kdv–Burgers equation to reveal that the soliton profile is not function of t and x,
but tη and xη, where η is the fractional order.

Fractal soliton, on the other hand, is a solitary wave moving along an unsmooth
boundary or through a porous medium [1]. When an attosecond electron beam is trapped in
and propagate with the laser pulse, the travelling solitary wave can be modelled in a fractal
space [2], and the attosecond physics won 2023 Nobel Prize in Physics [3]. Discontinuous
time appears on an attosecond (10−18 s) scale, so fractal time has to be adopted [4, 5], and
pinpointing the fractal dimensions is tricky, especially when the studied system has not
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seeming self-similarity, now He-Liu’s fractal dimensions
formulation [6] makes the fractal theory accessible to porous
media and discontinuous time.

3 Fractional vibration vs. fractal
vibration

The fractional calculus can also be applied to model the memory
property of a damped vibration system. In this paper, Zhang et al.
studied a fractional stochastic vibration systemby taking full advantage
of the memory property of the Caputo fractional derivative.

A fractal vibration system, on the other hand, works in a fractal
space. The fractal vibration theory allows scientists to insight into the
vibration properties on a molecule scale. The traditional vibration
theory cannot model the effects of molecules or nanoparticles’ size and
distribution in air on the vibrating properties. Tian et al. [7] considered
the effect of the air pollution on the operation of the MEMS system,
and concluded that the fractal dimensions can be used for controlling
the pull-in instability. In this paper, Lin and Li applied the fractal
vibration theory to elucidate the ions release mechanism instead of the
traditional diffusion process, opening up a flood of promising
opportunities to design new hollow fibers.

4 Homotopy perturbation method

The homotopy perturbation method (HPM) was proposed by
Ji-Huan He [8], a heuristic review on the method is available in
Ref. [9]. In an interview with ScienceWatch.com on February
2008, Ganji http://archive.sciencewatch.com/dr/fbp/2008/
08febfbp/08febGanji/ emphasized the homotopy perturbation
method (HPM), “wherever a nonlinear equation is found, Dr.
He’s HPM will be the primary tool of discovery,” and he further
concluded, “He’s homotopy perturbation method itself is
mathematically beautiful and extremely accessible to non-
mathematicians.” In the last two decades, Dr. Ganji’s prediction is
coming true. There are many modifications of the homotopy
perturbation method, among which He-Laplace method is extremely
suitable for fractional calculus [10–12], and Li-He’s modified homotopy
perturbation method [13–15] for forced oscillators.

In this paper, Qayyum et al. found that the homotopy
perturbation method is extremely suitable for the search for
fractional soliton solutions, Tao et al. coupled the Aboodh
transformation with the homotopy perturbation method, a new
hope for fractional calculus, Buhe et al. applied the method to study
forest resource and there is the possibility to extend it to other
natural resources, especially the grassland resources.

5 Frequency formulation

The simpler is the better for most physical problems. So far
the simplest approach to a nonlinear oscillator is He’s frequency

formulation [16–18]. There are many modifications, the most
famous one is the Hamiltonian-based frequency-amplitude
formulation [19, 20]. El-Dib extended it to time-delayed
vibration systems [21]. In this paper, Niu et al. extended the
frequency formulation to fractal–fractional non-linear
oscillators.

6 Concluding remarks

This Research Topic of Frontiers in Physics consists mainly of
a Research Topic of mathematics methods appliable to physics, it
is to bring to the fore the many new and exciting applications of
some new mathematical theories of the two-scale fractal theory
and the fractal-fractional calculus, it can attract much attention
from different fields, such as mathematics, physics, artificial
intelligence, neural network, computer science, textile
engineering, material science and others. We hope that this
Research Topic will prove to be a timely and valuable
reference for researchers in this Research Topic.
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A simple frequency formulation
for fractal–fractional non-linear
oscillators: A promising tool and
its future challenge

Jing-Yan Niu1†, Guang-Qing Feng2*† and Khaled A. Gepreel3,4

1College of Technology, Jiaozuo Normal College, Jiaozuo, China, 2School of Mathematics and
Information Science, Henan Polytechnic University, Jiaozuo, China, 3Taif University, Taif, Saudi Arabia,
4Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt

This paper proposes a simple frequency formula developed from He’s frequency
formulation for fractal systems. In this approach, the initial guess can be judiciously
chosen. Even the simplest initial guess leads to a highly accurate approximate
solution. A detailed theoretical development is elucidated, and the solving process
is given step by step. The simple calculation and reliable results have beenmerged
into an effective tool for deeply studying fractal vibration systems, and the present
approach offers a completely new angle for the fast insight into the physical
properties of a non-linear vibration system in a fractal space.

KEYWORDS

frequency formula, trial solution, fractal oscillator, successive approximate solution,
frequency–amplitude relationship, numerical simulation

1 Introduction

Fractal oscillations not only demonstrate the beauty ofmathematics but also reveal the nature
of the world and change the way people study nature. Fractal non-linear systems truly describe
the dynamic problems of engineering science, and the research on them greatly expands the field
of human cognition. The emergence of fractal theorymakes us realize that the world is non-linear
and fractals are everywhere. Fractal non-linear vibration can be close to practical problems in
both depth and breadth, and it explains many phenomena through the fractal theory. Since the
birth of the fractal theory, it has been used in engineering and science, for example, the fractal
diffusion [1, 2], the fractal rheological model [3], the fractal control [4], the fractal solitary waves
[5, 6], and the fractal oscillators [7]. The two-scale fractal calculus is used to describe transport
problems in a porous medium, such as the problem of oil extraction and heat transfer of heat
pipes. The porous medium is viewed as a fractal space, so non-linear vibrations in the porous
medium can be modeled by fractal vibration theory [8, 9].

There are many analytical and numerical methods to find an approximate solution of a
differential equation containing fractional derivatives. The homotopy perturbation method
contains perturbation parameters, which have been extended to a wide range of physical
applications and engineering fields by many researchers [10, 11]. He’s frequency formula is a
simple and powerful method for a conservation non-linear oscillator, which has been widely
applied to solve non-linear oscillator problems, especially the pull-in instability found in
MEMS [12, 13]. It can be extended to the fractal oscillators and non-conservative oscillators
[14–21]. The applications of these non-linear oscillations do not have non-linear even
functions. El-Dib proposed a modification of He’s method for the case of even non-linearity
[22]. The Hamiltonian-based frequency formula is a modification of He’s frequency formula
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[23]. The most important property of a non-linear system is the
relationship between frequency and amplitude, so how to quickly
estimate the frequency–amplitude relationship is an urgent problem
to study. Many researchers devoted their efforts to studying
fractional calculus which provides a powerful tool to characterize
the periodic behavior of a non-linear oscillator [24]. He gave a
tutorial review on fractal space and fractional calculus [25], Tian
et al. established a fractal model for N/MEMS [26], and Li et al.
studied the non-linear vibration of nanoparticles in the
electrospinning process [27].

There are many analytical solutions for fractal oscillators,
but the continuous solution has not been discussed so far.
Existing frequency formulas cannot be formulated to
correspond to the frequency of the continuous process [28].
Recently, El-Dib proposed an efficient frequency formula,
which can be used to obtain successive approximate
solutions for the non-linear oscillation [22]. In this paper, we
illustrate the frequency formula and extend it in the differential
equation with the fractional derivative. The new method will be
applied to rapidly predict the frequency characteristics and
determine successive approximate solutions of a fractal
vibration system.

2 Two-scale fractal theory

As the fractal theory is helpful in establishing a governing
equation in a fractal space, it has become a significant topic in
both mathematics and mechanical engineering. The two-scale
fractal derivative [29] is defined as follows:

dz
dtφ

t0( ) � Γ 1 + φ( ) lim
t−t0→Δt
Δt≠0

z t( ) − z t0( )
t − t0( )φ (1)

where φ ∈ R.
When we observe a motion at a large scale, it may be a continuous

change, while at a small scale, it may become discontinuous.
Therefore, the two-scale fractal theory is a powerful mathematical
tool to study the world with greater precision [30].

When φ � 1 and Δt → 0, we can easily have
dz
dt1 � Γ 2( ) lim

t−t0→Δt
Δt≠0

z t( )−z t0( )
t−t0 � z′. Similarly, when φ � 2, dz

dt2 �

Γ 3( ) lim
t−t0→Δt
Δt≠0

z t( )−z t0( )
t−t0( )2 � z″.

It is worthmentioning that the two-scale fractal derivative agrees
with the traditional differential derivative when the fractal
dimension φ is a positive integer.

To better understand the fractional derivative, let us take the
function z � tμ as an example. Using Eq. 1, we can obtain [31]

d
dtφ

tμ � Γ 1 + μ( )Γ 1 + φ − N( )
Γ 1 + μ − N( ) tμ−φ (2)

where N is a natural number, N≤φ.
Knowing the fractional derivative of the power function, the

derivatives of all elementary functions will also be calculated, with
the help of Taylor’s series. For example, we have the following
equation:

sint � ∑∞
k�0

−1( )k
2k + 1( )!t

2k+1. (3)

By using Eqs 2, 3, we can obtain

d
dtφ

sint � ∑∞
k�0

−1( )k
2k + 1( )!

Γ 2 + 2k( )Γ 1 + φ − N( )
Γ 2 + 2k − N( ) t2k+1−φ (4)

After simple calculations, it yields the following result:

d
dt1

sint � ∑∞
k�0

−1( )k
2k + 1( )!

Γ 2 + 2k( )Γ 1 + 1 − 1( )
Γ 2 + 2k − 1( ) t2k+1−1 � cost

(5)
and

d
dt1.5

sint � ∑∞
k�0

−1( )k
2k + 1( )!

Γ 2 + 2k( )Γ 1 + 1.5 − 1( )
Γ 2 + 2k − 1( ) t2k+1−1.5

�
��
π

√
2

t−0.5cost (6)

Also, we can obtain another form of the fractional derivative. It
is obvious that the fractal derivative is useful and convenient to
study.

3 Successive approximate solutions for
fractal non-linear oscillation

We consider a general fractal non-linear oscillator in a fractal
space as follows:

d
dtφ

dz
dtφ

( ) + h z( ) � 0, z 0( ) � A,
dz 0( )
dtφ

� 0 (7)

where h(z) is an odd potential function or an odd polynomial as
h(z) � a1z + a3z3 + . . . + a2n+1z2n+1.

Let τ � tφ, Eq. 7 can be converted into its differential partner as

z″ + h z( ) � 0, z 0( ) � A, z′ 0( ) � 0, (8)
where the derivative of the function z with respect to τ is defined.
Here, φ is the scale dimension, and t and τ describe the small and
large scales, respectively.

He rewrote Eq. 8 in the following form [12]:

z″ + h z( )
z

z � 0 (9)

where the ratio h(z)/z is the equivalent stiffness.
When Eq. 8 is approximated by a linear oscillator:

z″ + ω2z � 0 (10)
He has established a simple formula [12].

ωHe
2 � dh z( )

dz

∣∣∣∣∣∣∣z�A
2

(11)

Following the analysis principle of He’s frequency formula, He
and Liu proposed a modified frequency formulation for a fractal
vibration in the porous medium [32].

ωHL
2 � ∫A

0
z4h z( )dz∫A

0
z5dz

(12)
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El-Dib established an extended frequency–amplitude formula,
which is the best and most efficient formula and can be used to
obtain successive approximate solutions for the non-linear
oscillations [26]. We extend this method to the fractal system
and obtain high-precision approximate frequency.

In the same way as in Eqs 8, 9 can be rewritten as follows:

z″ + h z( )z
z2

z � 0 (13)

Integrating the numerator and the denominator of the stiffness
term, the frequency ω2 with the trial solution z � z(τ) that
corresponds to the initial conditions is obtained in the following
form:

ω2
∣∣∣∣z�z τ( ) �

∫T

0
h z( )zdτ∫T

0
z2dτ

(14)

where T is the period, T � 2π
ω .

Let us explain this frequency formula from another angle.
By the comparison of Eqs 8, 10, the error function needs to take

the minimum value.

E ω2( ) � h z( ) − ω2z
∣∣∣∣ ∣∣∣∣ (15)

The mean square error is defined as

MSE ω2( ) � ∫T

0
h z( ) − ω2z( )2dτ,

� ω4∫T

0
z2dτ − ω22∫T

0
h z( )zdτ + ∫T

0
h2 z( )dτ (16)

The aforementioned problem is equivalent to the value of ω2,
and the functionMSE(ω2) takes the minimum value. After a simple
calculation, the minimum point is

dMSE ω2( )
dω2

� ω22∫T

0
z2dτ − 2∫T

0
h z( )zdτ � 0 (17)

The solution of Eq. 17 is Eq. 14. The aforementioned analysis
process verifies the accuracy of the frequency formula. With a
suitable chosen trial solution, performing the aforementioned
integrals gives the corresponding frequency.

For the non-linear oscillator, h(z) � a1z + a3z3, we obtain

ωHe
2 � ωHL

2 � ω2
∣∣∣∣z�Acosωτ � a1 + 3

4
A2a3 (18)

The precision of Eq. 18 can be found by comparing it with the
exact frequency [22].

ωexc � π

2∫π/2

0
dθ������������

a1+1
2A

2a3 1+sin 2 θ( )√ (19)

FIGURE 1
Illustration of the first-order approximate solution with A � 1.

FIGURE 2
Illustration of the first-order approximate solution with A � 5.

FIGURE 3
Illustration of the second-order approximate solution with A � 1.
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4 Application and numerical illustration

In order to illustrate the solution process of the aforementioned
method, we consider the following oscillator:

d
dtφ

dz
dtφ

( ) + z
1
3 � 0, z 0( ) � A,

dz 0( )
dtφ

� 0 (20)

We consider that the general mth-order trial solution which
satisfies the initial conditions can be expressed by

zm τ( ) � ∑m

n�1cn cos 2n − 1( )ωmτ( ), (21)

where τ � tφ and ∑m

n�1cn � A.
Using the first-order trial solution, z1 � Acosω1τ, and

employing Eq. 14, the corresponding frequency is

ω1 �

���������∫T

0
z1( ) 4

3dτ∫T

0
z1( )2dτ

√√
� 1.076845

A
1
3

, T � 2π
ω1

(22)

For a comparison between He–Liu’s modification and the
present modification, we obtain

ωHL �

����������∫A

0
z4h z( )dz∫A

0
z5dz

√√
� 1.06066

A
1
3

(23)

The exact frequency of Eq. 20 is ωexc.

ωexc � 2π

2
�
2

√ ∫A

0
dz�����∫A

z
s
1
3 ds

√ � 1.070451

A
1
3

(24)

FIGURE 4
Illustration of the second-order approximate solution with A � 5.

FIGURE 5
Comparison of the numerical solution with first- and second-order solutions for A � 1

FIGURE 6
Graphing solution (28) for sequences of the parameter φ with
A � 1.
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So, the relative error in the first-order approximate frequency is
given by

ωexc − ω1

ωexc

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ × 100% � 0.5973% (25)

Also, the error in He–Liu’s modification is

ωexc − ωHL

ωexc

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ × 100% � 0.9147% (26)

It is noticed that the present method has better precision.
The first-order approximate solution of Eq. 20 is

z1 � Acos
1.076845

A
1
3

τ( ), (27)
that is,

z1 � Acos
1.076845

A
1
3

tφ( ) (28)

We consider that the second-order trial solution meeting the
initial conditions can be expressed as

z2 � c1 cos ω2τ( ) + A − c1( ) cos 3ω2τ( ) (29)
Using a trigonometric formula

cos(3ω2τ) � 4cos 3(ω2τ) − 3 cos(ω2τ), we have the following equation:
z2 � 4c1 − 3A( ) cos ω2τ( ) + 4A − 4c1( )cos 3 ω2τ( ) (30)

The least-square of the displacement is estimated as follows:

∫T

0
4c1 − 3A( ) cos ω2τ( )[ ]2dτ � ∫T

0
4A − 4c1( )cos 3 ω2τ( )[ ]2dτ,

T � 2π
ω2

(31)
The solution of Eq. 31 is c1 � 086038A, and substituting the

value into Eq. 29, we obtain

z2 � 086038A cos ω2τ( ) + 0.13962A cos 3ω2τ( ) (32)
Using Eq. 32 and the second-order trial solution, Eq. 14 becomes

ω2 �

���������∫T

0
z2( ) 4

3dτ∫T

0
z2( )2dτ

√√
, T � 2π

ω2
(33)

After integral calculation, the second-order approximate
frequency is given by

ω2 � 1.074586

A
1
3

(34)

The percentage relative error in second-order approximate
frequency is 0.3863%. Also, the second-order approximate
solution of Eq. 20 is

z2 � 086038A cos
1.074586

A
1
3

τ( ) + 0.13962A cos
3.223758

A
1
3

τ( )
(35)

This leads to

z2 � 086038A cos
1.074586

A
1
3

tφ( ) + 0.13962A cos
3.223758

A
1
3

tφ( )
(36)

In order to obtain the sequential extended approximate
solution and improve the accuracy of the solution, we can
use a higher-order trial solution, but the solving process
becomes more complex.

To verify the accuracy of the method, the approximate
solution is compared with the exact solution of Eq. 20 in
Figures 1–5. The comparison of the approximate frequency
with the exact one is made, and relative errors have been
found. It is noted that the relative error does not depend
upon the amplitude; that is, the error is the same for any
value of the amplitude, while it decreases with the increase in
the order of approximation. Figures 1, 2 show first-order
approximate solutions with different values of the
amplitudes. Figures 3, 4 show second-order approximate
solutions. A good agreement for various amplitudes of first-
and second-order approximate frequencies can be seen from
these figures. Figure 5 shows the comparison of the numerical
solution obtained by the Matlab solver “ode45” with
approximate solutions over a small interval.

Different values of the fractal exponent φ are considered for
Eq. 28 and shown together in Figure 6. It is observed that the
vibration attenuation occurs more, and the oscillation
frequency becomes faster for increasing the values of the
fractal exponent φ.

5 Conclusion

In this paper, a high-precision frequency is obtained by a trial
solution for the first time ever, and a frequency formula
determined by the trial solution is proposed for solving a
fractal nonlinear vibration system. The new method is
described theoretically, and an example is given to explain in
detail the process of finding the higher-order approximate solution
and the approximate frequency. The analysis results show that this
new method can be used to obtain the frequency with high
accuracy and to quickly calculate the high-order continuous
solution of the fractal non-linear oscillator. The influence of the
fractal derivative order on the periodic motion is visually displayed
graphically. It is revealed that the fractal exponent affects the
frequency characteristics greatly as that discussed in Refs. [33, 34].
Although we only discuss the oscillator with the non-zero initial
condition, it is still valid for the oscillator with zero initial
condition as that in micro-electromechanical systems [35],
which will be discussed in the next paper.
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Fractional solitons: New
phenomena and exact solutions

Huajun Zeng1, Yuxia Wang1*, Min Xiao1 and Ying Wang2

1Zhejiang Gongshang University, Hangzhou, Zhejiang, China, 2School of Science, Xi’an University of
Architecture and Technology, Xi’an, Shaanxi, China

The fractional solitons have demonstrated many new phenomena, which cannot be
explained by the traditional solitary wave theory. This paper studies some famous
fractional wave equations including the fractional KdV–Burgers equation and the
fractional approximate long water wave equation by a modified tanh-function
method. The solving process is given in details, and new solitons can be
rigorously explained by the obtained exact solutions. This paper offers a new
window for studying fractional solitons.

KEYWORDS

time-fractional KdVB model, fractional approximate long water wave model, exact
solutions, fractional solitons, fractional complex transform

1 Introduction

A fractional solitary wave [1] has some special properties which cannot be explained by the
traditional soliton theory. The traditional soliton is a single wave with the same shape in
propagation, while the fractional soliton has some amazing memory and non-local properties,
which means the present wave morphology depends upon its history. This is caused by the
intrinsic property of the fractional derivative [2]. The fractal solitary waves, on the other hand, are
waves traveling along an unsmooth boundary [3, 4]. And the fractal solitary wave has the local
property, the unsmooth boundary affects its wave shape.Here, the two-scale fractal theory [5, 6] is
adopted to figure out the basic property of the unsmooth boundary.

This paper focuses on fractional solitons, which can describe physical phenomena more
accurately and reflect their intrinsic properties deeply. Therefore, fractional solitons have attracted
increasing attention from both physics and oceanography. For example, shallow water waves [7, 8]
can describe the effects of waves in the ocean better than other mathematical models. Shallow water
waves are fluctuations in the ocean with wavelengths much greater than the depth of the water
(usuallymore than 25 times), and the dispersion of water waves is one of the key properties inmany
shallow water wave models, which has obvious memory property. Fractional shallow water
equations can describe the propagation of waves in dispersed media and model the
hydrodynamics of lakes, estuaries, tidal stalls, and coastal waves, as well as deep-ocean tides.
These fractional differential equations have a significant impact on the study offluidmotion in ocean
waves and the soliton theory as well; however, a serious bottleneck was hit, that is, the fractional
model is extremely difficult to be solved analytically. Therefore, many scholars focused on using
differentmethods to find fractional solitons. For instance, the first integral method [9], the fractional
sub-equation method [10], the homotopy perturbation method [11-13] and its modifications,
Mohand transform–homotopy perturbation method [14, 15], two-scale transform–-homotopy
perturbation method [16], Laplace transform–homotopy perturbation method [17], Li–He’s
modified homotopy perturbation method [18-20], the tanh-function method [21, 22] and its
modification—tanh function expansion method [23]—and modified extended tanh-function
method [24,25]. It is worth mentioning that fractional complex transform was first proposed
by [26]; it can convert fractional differential equations directly into ordinary differential equations.
This method makes a significant contribution to finding exact solutions of fractional differential
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equations, and it was applied to gain insights into physical properties of
the time-fractional Schrodinger equation [27] and the time-fractional
Camassa–Holm equation [28].

In the current article, our concern is to find some exact solutions
of the following two non-linear FPDEs via the modified extended
tanh-function method with the fractional complex transform.

1) The time-fractional KdV–Burgers (KdVB) equation of the
form [29

zηu

ztη
+ wu

zu

zx
+ ρ

z2u

zx2
+ s

z3u

zx3
� 0, (1)

where w, ρ, and s are real constants and 0< η< 1. The KdVB equation
(η = 1) is a well-known mathematical model for describing waves on
shallow water surfaces; it plays an essential role in both applied
mathematics and physics. This equation can be used to describe and
analyze a few foremost physical contents related to liquids, dispersion,
viscosity, andwave dynamics. For example, it is used to study the spread
of waves in elastic tubes filled with viscous fluids [30] and to analyze the
propagation of wave-like pores in shallow water [31].

However, with the increasing irregularities and non-linearities
in wave motion observed by other scholars, the broader outlook
establishment for this model is necessary. Therefore, an increasing
number of scholars began to study the extended classical model into
a new model with time-fractional derivatives to deal with what the
traditional KdVB equation (η = 1) cannot do.

There have been some common methods to solve fractional KdVB
equations. For instance, [32] extended the homotopy perturbation
method to solve time-space fractional equations. [29] applied the
residual power series method (RPSM) for finding approximate
solutions of the time-fractional KdVB equation. [33] solved the time-
fractional KdVB equation numerically by the Petrov–Galerkin method.

2) The fractional approximate long water wave equation is given
as [34]

Dη
t u − uDη

xu −Dη
xv + aD2η

x u � 0,
Dη

t v −Dη
x uv( ) − aD2η

x v � 0,
(2)

where 0< η< 1 and a is a real parameter. As a famous equation to
describe the propagation of shallow water waves, it is also important for
its amazing fractional solitons, so its exact solutions are much needed to
gain insights deeply into the properties of the fractional solitary waves.
Up to now, some explicit solutions appeared in the literature, for
instance, [34] found three traveling wave solutions by the fractional sub-
equation method, [35] obtained an exact solution by using the (G’/G)-
method, and [36] also constructed an exact solution by the generalized
Kudryashovmethod. Althoughmuch achievement was obtained, its full
breathtaking panorama has not been offered yet.

The article is divided into the following sections: First, an
introduction is given to the basic knowledge in Section 2; second, in
Section 3, the general steps for the solution are given in detail; and
finally, the applications and the conclusions are organized in Section 4
and Section 5, respectively.

2 Preliminaries

Regarding the definition of fractional derivatives, many
mathematicians started from different perspectives and gave
different definitions. Here are some definitions.

1) Caputo fractional derivative [37, 38]:

Dη
x f x( )[ ] � 1

Γ n − η( )∫x

0
x − t( )n−η−1d

nf t( )
dtn

dt. (3)

2) Jumarie’s modified Riemann–Liouville (R–L) fractional
derivative [39]:

Dη
t g t( ) �

1
Γ 1 − η( )∫t

0
t − ξ( )−η−1 g ξ( ) − g 0( )( )dξ, η< 0,

1
Γ 1 − η( ) d

dt
∫t

0
t − ξ( )−η g ξ( ) − g 0( )( )dξ, 0< η< 1,

g n( ) t( )( ) η−n( ), n≤ η< n + 1, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where

Γ η( ) � ∫+∞

0
xη−1e−xdx, η> 0. (5)

(3) He’s fractional derivative [20, 40]:

Dη
t f � 1

Γ n − η( ) dn

dtn
∫t

to

s − t( )n−η−1 f0 s( ) − f s( )[ ]ds, (6)

FIGURE 1
Three-dimensional plots of u1(ζ) and u2(ζ) in case 1 for η=0.5,
w=1, ρ=1, s=1, l=1, L=1.
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where f0(x) is a known function.

4) Two-scale fractal derivative [41, 42]:

zw

ztη
tη( ) � Γ 1 + η( ) lim

t−t0�4t,△≠0

w tη( ) − w tη0( )
t − t0( )η , (7)

where △t is the period required for the motion through a gap of a
porous space.

In addition, there are other famous derivatives in the literature
such as the Atangana–Baleanu derivative with non-local and non-
singular kernel [43, 44]. In this paper, we adopt the Jumarie’s
modified R–L derivative definition. Some of its important
properties are as follows:

Dη
t t

m � Γ 1 +m( )
Γ 1 +m − η( )tm−η, (8)

Dη
t cg x( )( ) � cDη

t g x( ), c is a constant, (9)
Dη

t g ω( ) + f ω( ){ } � Dη
t g ω( ) +Dη

t f w( ). (10)

3 Basic idea of the modified tanh-
function expansion method

Considering the following equation

P u,Dη
t u, D

γ
xu, D

η
t D

η
t u, D

η
t D

γ
xu,D

γ
xD

γ
xu,/( ) � 0, 0< η, γ< 1( ),

(11)
whereDη

t u, D
γ
xu,D

η
t D

η
t u, D

η
t D

γ
xu/ are the modified R–L fractional

derivatives. P presents the polynomial function. To solve this
equation, by using the modified tanh-function expansion method,
we divide the solution processes into three steps.

Step 1: Using the fractional complex transformation [26, 45]

u x, t( ) � u ζ( ),
ζ � lxγ

Γ γ + 1( ) + ktη

Γ η + 1( ), (12)

where l and k are constants and l, k ≠ 0. By the chain rule [45],

Dη
t u � σt

zu ζ( )
dζ

Dη
t ζ , Dη

xu � σx
zu ζ( )
dζ

Dη
xζ ,

D2η
t u � σt( )2z

2u ζ( )
dζ2

D2η
t ζ , D2η

x u � σx( )2z
2u ζ( )
dζ2

D2η
x ζ ,

(13)
where σt and σx are sigma indices. We take σt = σx = L, where L is a
constant. Then, substituting Eqs 12 and 13 into Eq. 11, we obtain a
non-linear ODE that contains only variable ζ:

D u, u′, u″/( ) � 0, (14)
where u′ � du

dζ , u″ � d2u
dζ2

/ and D presents the polynomial function.
Step 2: Supposing Eq. 14 has the solution as Eq. 15

u ζ( ) � ∑n
i�0

aiΦi ζ( ), (15)

where Φ is a function about ζ, and it satisfies the Riccati equation

Φ′ � τ +Φ2, (16)

τ is a constant, and ai(i = 0, 1, 2, . . . , n) are undetermined constant. n
is a balancing parameter which is determined by the homogeneous
balance method. Φ has the following three types of solutions
according to the different values of constant τ

Φ � − ���−τ√
tanh

���−τ√
ζ , τ < 0,

Φ � − ���−τ√
coth

���−τ√
ζ , τ < 0,

Φ � �
τ

√
tan

�
τ

√
ζ , τ > 0,

Φ � �
τ

√
cot

�
τ

√
ζ , τ > 0,

Φ � −1
ζ
, τ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

Step 3: Substituting Eq. 15 and 16 into Eq. 14, we obtain an
iteration formulation to obtain the polynomial of Φ. Then, we get
the algebraic equations about ai(i = 0, 1, 2, . . . , n) and l, k, L, and τ by
letting the coefficients of each power and constant terms ofΦ to be 0.
By solving them, we calculate the values of ai(i = 0, 1, 2, . . . , n) and l,

FIGURE 2
Three-dimensional plots of u3(ζ) and u4(ζ) in case 2 with η=0.5,
w=1, ρ=1, s=1, l=1, L=1.

Frontiers in Physics frontiersin.org03

Zeng et al. 10.3389/fphy.2023.1177335

16

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1177335


k, L, and τ. Thus, the exact solution of Eq. 11 is obtained from Eqs.
15–17.

4 Applications

We choose two different and classical equations named the
time-fractional KdVB equation and the fractional approximate long
water wave equation for applications. By the calculations of software,
we obtain the exact solutions of these two equations and the 3D plots
of the obtained solutions perform well.

4.1 Solving process for the fractional
Kdv–Burgers model

Taking the fractional complex transform [26, 45]

u x, t( ) � u ζ( ),
ζ � lx + ktη

Γ η + 1( ). (18)

Then, the original equation Eq. (1) is converted into a non-
linear ODE:

kLu′ + lwuu′ + l2ρu″ + l3su‴ � 0. (19)
Integrating once and the integral constant is equal to zero, Eq. 19

turns into

2kLu + lwu2 + 2l2ρu′ + 2l3su″ � 0, (20)
where n is a balancing parameter. It is used to keep the balance
between the term “u″” and the non-linear term “u2”; we find n = 2.
Therefore, Eq. 15 changed to

u ζ( ) � a0 + a1Φ ζ( ) + a2Φ2 ζ( ). (21)
Substituting Eqs 16 and 21 into Eq. 20, merging the terms of the

same degree of Φ, and vanishing each coefficient of the resulted
polynomials to zero, we obtain the equations for the unknowns a0,
a1, a2, l, k, L, and τ:

2a0kL + 2τl2 a1ρ + 2a2τls( ) + a20lw � 0,
2a2τl

2ρ + a1 kL + 2τl3s + a0lw( ) � 0,
a1l 2lρ + a1w( ) + 2a2 kL + 8τl3s + a0lw( ) � 0,
2a2lρ + 2a1l

2s + a1a2w � 0,
12l2s + a2w � 0.

(22)

Solving the aforementioned set of algebraic equations in the
software application, the solutions of the original equation called
four generalized hyperbolic function solutions are obtained.

Case 1.

a0 � − 3ρ2

25sw
, a1 � −12lρ

5w
, a2 � −12l

2s

w
, k � 6lρ2

25Ls
, σ � − ρ2

100l2s2
,

which produces

u1 ζ( ) � − 3ρ2

25sw
+ 6ρ2

25sw
tanh

ρ

10ls
ζ − 3ρ2

25ws
tanh2

ρ

10ls
ζ , τ < 0, (23)

u2 ζ( ) � − 3ρ2

25sw
+ 6ρ2

25sw
coth

ρ

10ls
ζ − 3ρ2

25ws
coth2

ρ

10ls
ζ , τ < 0, (24)

where ζ � lx + ktη

Γ(η+1), l is an arbitrary constant, and l ≠ 0.
Figure 1 is the 3D plots of the obtained solutions of the KdVB

equation in case 1 for η = 0.5, w = 1, ρ = 1, s = 1, l = 1, and L = 1.

FIGURE 3
Three-dimensional plots of u1(ζ), v1(ζ)and u2(ζ), v2(ζ) of Eq. 2 for
η=0.5, a=1, l=1, k=1, L=1.
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Case 2.

a0 � 9ρ2

25sw
, a1 � −12lρ

5w
, a2 � −12l

2 s

w
, k � − 6lρ2

25Ls
, σ � − ρ2

100l2s2
,

which produces

u3 ζ( ) � 9ρ2

25sw
+ 6ρ2

25sw
tanh

ρ

10ls
ζ − 3ρ2

25ws
tanh2

ρ

10ls
ζ , τ < 0, (25)

u4 ζ( ) � 9ρ2

25sw
+ 6ρ2

25sw
coth

ρ

10ls
ζ − 3ρ2

25ws
coth2

ρ

10ls
ζ , τ < 0, (26)

where ζ � lx + ktη

Γ(α+1), l is an arbitrary constant, and l ≠ 0.
Figure 2 shows the 3D plots of the obtained solutions of the

KdVB equation in case 2 for η = 0.5, w = 1, ρ = 1, s = 1, l = 1,
and L = 1.

4.2 Solving process for the fractional
approximate long water wave equation

Equation 2 is transformed into the following ODEs by applying
the fractional complex transformation Li and He [26] and He
et al. [45]:

u x, t( ) � u ζ( ), v x, t( ) � v ζ( ),
ζ � lxη

Γ η + 1( ) + ktη

Γ η + 1( ). (27)

Then, the following expressions are obtained:

kLu′ − luLu′ − lLv′ + al2L2u″ � 0,
kLv′ − lL uv( )′ − al2L2v″ � 0.

(28)

We perform the same process as mentioned previously and we
obtain

2ku − lu2 − 2lv + 2al2 Lu′ � 0,
kv − l uv( ) − al2Lv′ � 0.

(29)

Balancing “v” with “u2″ in the first equality in Eq. 29 and “v′”
with “UV” in the second equality in Eq. 29, we find n = 1 andm = 2.
Therefore, Eq. 15 can be written as

u ζ( ) � a0 + a1Φ ζ( ),
v ζ( ) � b0 + b1Φ ζ( ) + b2Φ2 ζ( ). (30)

Substituting Eq. 16 and 30 into Eq. 29, merging the terms of the
same degree of Φ, and making the coefficient of each item in the
result equal to zero, we obtain the equations for the unknowns a0, a1,
b0, b1, b2, a, k, l, L, and τ

2a0k − a0
2l + 2l −b0 + aa1lLτ( ) � 0,

a0a1l + b1l − a1k � 0,
a1

2 + 2b2 − 2aa1lL � 0,
−a0b0l + b0k − ab1l

2Lτ � 0,
b1k − a0b1l − a1b0l − 2ab2l

2 Lτ � 0,
b2k − a0b2l − a1b1l − ab1l

2L � 0,
a1 + 2alL � 0.

(31)

Solving the equations, we have

a0 � k

l
, a1 � −2alL, b0 � k2

l2
, b1 � 0, b2 � −4a2l2L2, τ � − k2

4a2l4L2
.

(32)

Finally, from Eqs 17, 27, 30 and 32, we obtain the following
generalized hyperbolic function solutions of Eq. 2:

u1 ζ( ) � k

l
+ k

l
tanh

k

2al2L
ζ , τ < 0, (33)

v1 ζ( ) � k2

l2
− k2

l2
tanh2 k

2al2 L
ζ , τ < 0, (34)

and

u2 ζ( ) � k

l
+ k

l
coth

k

2al2L
ζ , τ < 0, (35)

v2 ζ( ) � k2

l2
− k2

l2
coth2 k

2al2 L
ζ , τ < 0, (36)

where ζ � lxη

Γ(η+1) + ktη

Γ(η+1), l and k are arbitrary constants, and l, k ≠ 0.
Figure 3 shows the 3D plots of the obtained solutions of Eq. 2 for

η = 0.5, a = 1, l = 1, k = 1, and L = 1.

5 Conclusion

In this paper, some attractive properties of the fractional solitons
are elucidated through two examples, and this paper proposes a total
new concept on the fractional soliton theory and gives a rigorous
mathematical tool to gain deep insights into the physical properties
of the fractional solitary solutions, which are practically applicable in
many fields. Additionally, this paper also reveals the simplicity,
comprehensibility, and effectiveness of the modified extended tanh-
function method.

We anticipate that this paper offers a flood of opportunities for
finding new physical phenomena of the fractional solitons, and this
paper can be used as a good paradigm for future research.
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A modern analytic method to
solve singular and non-singular
linear and non-linear differential
equations
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Ahmad Qazza2 and Moa’ath N. Oqielat1
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This article circumvents the Laplace transform to provide an analytical solution in a
power series form for singular, non-singular, linear, and non-linear ordinary
differential equations. It introduces a new analytical approach, the Laplace
residual power series, which provides a powerful tool for obtaining accurate
analytical and numerical solutions to these equations. It demonstrates the new
approach’s effectiveness, accuracy, and applicability in several ordinary differential
equations problem. The proposed technique shows the possibility of finding exact
solutions when a pattern to the series solution obtained exists; otherwise, only
rough estimates can be given. To ensure the accuracy of the generated results, we
use three types of errors: actual, relative, and residual error. We compare our
results with exact solutions to the problems discussed. We conclude that the
current method is simple, easy, and effective in solving non-linear differential
equations, considering that the obtained approximate series solutions are in
closed form for the actual results. Finally, we would like to point out that both
symbolic and numerical quantities are calculated using Mathematica software.

KEYWORDS

ordinary differential equations, Laplace transforms, power series, approximate solutions,
laurent series

1 Introduction

A differential equation or a system of differential equations, along with proper boundary
and initial conditions (ICs), is one of the most common outputs when mathematical
modeling describes physical, biological, or chemical phenomena. Finding ordinary or partial
differential equations and analyzing their solutions are at the heart of applied
mathematics [1].

Since ancient times, differential equations have attracted the interest of researchers and
scientists from two sides. The first is how to use them to express phenomena and issues that
interest them in their specializations and research. On the other hand, there is the question of
how to solve these equations. There are a limited number of differential equations, especially
linear ones, whose solutions can be determined using the well-known traditional methods
based on finite and simple algebraic operations. In contrast, there are many kinds of
differential equations that still require the search for simple and accurate solutions. For this
reason, the interest of mathematicians in previous decades was and is still in the investigation
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for analytical and sometimes numerical methods to solve these
forms of differential equations.

Many analytical, numerical, and numero-analytical techniques
have been proposed previously and recently to provide solutions for
differential equations with initial or boundary conditions, such as
the Laplace and Fourier transforms method [2], the Adomian
decomposition method [3–5], the variational iteration method
[6–8], the homotopy perturbation method [9–11], the homotopy
analysis method [12, 13], the differential transformation method
[14–16], the finite difference method [17], the predictor–corrector
method [18, 19], the first integral method [20, 21], the
Adams–Bashforth Molten method [22], the new iterative method
[23, 24], the Crank–Nicolson method [25, 26], the reproducing
kernel method [27, 28], the Laplace Adomian decomposition
method [11, 29, 30], the He–Laplace method [31–33], and others
[34–36].

Recently, Eriqat et al. [37] presented a new hybrid method in
which they combined the Laplace transform (LT) method with the
residual power series (PS) method to establish series solutions of the
pantograph equation. This method is called the LRPS method, and it
simulates the residual PS method but with a different construction
and view. It uses the limit concept instead of the concept of the
derivative as in the residual PS method. The LRPS method uses the
LT to transfer the given differential equation to a new algebraic
equation in a new space. The obtained algebraic equation is solved
by assuming that it is a solution that has a Laurent series (LS) form.
The values of the coefficients of the LS are determined by utilizing
the limit at infinity. Then, the inverse LT is used to transfer the LS,
which is the solution of the algebraic equation in the Laplace space,
to the initial space. Thus, we have obtained the solution to the
original problem in the form of PS.

Indeed, the LRPS method is similar to the He–Laplace method’s
[31–33] idea of searching for the solution of differential equations in
Laplace space. The He–Laplace technique uses the variational
iteration method or homotopy perturbation method to solve the
just-transformed Laplace space. In contrast, the LRPS method uses
the PS method to solve that equation using the Laurent series instead
of the Taylor series. In addition, the LRPS method is just an easy and
fast technique for finding the PS solution coefficients of the
differential equations.

The LRPS method has won the admiration and interest of many
researchers due to its ease, speed, and efficiency in arriving at exact
or accurate approximate solutions to many equations. In addition,
the LT was employed in dealing with non-linear problems because it
is known that the LT deals only with some categories of linear
equations. In 2021, El-Ajou [38] adapted the LRPS method to
establish solitary solutions of non-linear time-fractional dispersive
partial differential equations and to introduce a vector series
solution of some types of hyperbolic system of Caputo time-
fractional partial differential equations with variable coefficients
[39]. Recently, the LRPS method was used for solving time-
fractional Navier–Stokes equations [40], fuzzy quadratic Riccati
DEs [41], Lane–Emden equations of fractional order [42], a
system of fractional initial value problems (IVPs) [43],
autonomous n-dimensional fractional non-linear systems [44],
and others [45–49].

Despite the extensive publication of research dealing with the new
method, all works dealt with specific problems devoid of complexity

and generality. Therefore, we aim in thismanuscript,first, to employ the
LRPS method to provide exact or accurate approximate analytic series
solutions to linear ordinary differential equations (ODEs) in their
general form, whether their coefficients are constants or analytical
functions, which have the following formula:

dny

dtn
� Lt y t( )[ ] + g t( ), t≥ 0. (1.1)

Subject to the ICs,

y 0( ) � y0, y′ 0( ) � y1, . . . , y
n−1( ) 0( ) � yn−1, (1.2)

where Lt is a linear differential operator of order (n − 1) with
coefficients being analytic functions. This general equation is
difficult to solve by the direct PS method. Herein lays the
importance and novelty of the aim of this research.

Since in our world, most events are essentially non-linear and
modeled by non-linear equations, the study of non-linear issues is
critical in mathematics and physics, engineering, economics, and
other disciplines. Solving non-linear problems is difficult, and
getting an analytical approximation of a given problem is often
more complicated than getting a numerical one. Therefore, the
second aim of this paper is to establish analytic approximate
solutions to the general form of non-linear ODEs, which have
the following form using the proposed method (LRPS method):

dny

dtn
� f t, y t( ), dy

dt
,
d2y

dt2
, . . . ,

dn−1y
dtn−1

( ), t≥ 0. (1.3)

Subject to the ICs,

y 0( ) � y0, y′ 0( ) � y1, . . . , y
n−1( ) 0( ) � yn−1, (1.4)

where f is an analytic function on [0,∞).
The third objective of this article is to provide a series solution to

the singular ODEs, whether linear or non-linear. This type of
equation is of great interest to researchers in providing analytical
solutions to it, as it appears in the models of many natural
phenomena, as well as the difficulty of providing solutions to it.

To determine the efficiency and applicability of the method, we
test for three types of errors: exact error, relative error, and residual
error. We present the numerical results of the resulting solutions
through prepared and organized tables. In addition, we sketch the
obtained approximate solution by the proposed method along with
the exact solution if we can obtain it to make the comparison on the
one hand and to determine the period of convergence to solve the
series on the other hand.

2 Basic facts of the LT and PS

In this section, we overview essential facts about the LT and the
PS, along with some properties that are needed in this article.

Definition 2.1: [50]). We assume that y(t) is a continuous function
defined for t≥ 0 and let s ∈ I ⊆ R. Then, the LT of y(t) is the
function Y(s), denoted and defined as follows:

Y s( ) � L y t( )[ ] s( ) � ∫∞
0

e−sty t( )dt, (2.1)
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where the improper integral is the convergence on an interval of s,
which represents the domain of Y(s).

Also, the inverse LT of a function Y(s), s ∈ I is the function
y(t), t≥ 0 that is denoted and defined as

y t( ) � L−1 Y s( )[ ] t( ) � ∫c+i∞
c−i ∞

estY s( )ds, c � Re s( )> c0, (2.2)

where c0 lies in the right-half plane of the absolute convergence of
the Laplace integral.

Lemma 2.1: [50]). Suppose that y(t) and x(t) are both
continuous functions defined on [0,∞), Y(s) � L[y(t)],
X(s) � L[x(t)], and η, λ are constants. Then, we have the
following properties:

1) L[eλty(t)] � Y(s − λ)
2) L[tny(t)] � (−1)n dn

dsn Y(s)
3) L[y(λt)] � 1

λY(sλ), λ> 0
4) L−1[ηY(s) + λX(s)]

� ηL−1[Y(s)] + λL−1[X(s)] � ηy(t) + λx(t)

5) lim
s→∞ sY(s) � y(0)

6) L[y(n)(t)] � snL[y] −∑n−1
k�0 s

n−k−1y(k)(0)

Definition 2.2: [51]). A series that has the representation

∑∞
n�−∞

cn s − s0( )n � ∑∞
n�1

c−n
s − s0( )n +∑∞

n�0
cn s − s0( )n (2.3)

is called the LS about s � s0, where s is the variable and cn’s are the
coefficients of the series. The series∑∞

n�0cn(s − s0)n is known as the

analytic or regular part of the LS, while ∑∞
n�1

c−n
(s−s0)n is known as the

singular or the principal part of the LS.

Theorem 2.1: [50]). Let y(t) be an analytic function defined on the
domain D: ξ1 < |t − t0|< ξ2. Then, y(t) can be expanded as a PS as
follows:

y t( ) � ∑∞
n�0

cn t − t0( )n, (2.4)

which is valid for ξ1 < |t − t0|< ξ2.

Theorem 2.2: If Y(s) � L[y(t)] has an LS representation
about s � 0,

Y s( ) � c0
s
+∑∞

n�1

cn
sn+1

, s> 0, (2.5)

then cn � y(n)(0), n � 0, 1, 2, . . . ..
Proof. Suppose that Y(s) can be represented by the LS

expansion as in Eq. 2.5. So,

sY s( ) � c0 +∑∞
n�1

cn
sn
, s> 0. (2.6)

According to part (5) of Lemma 2.1, we have c0 � y(0).
Multiplying Eq. 2.6 by s gives the following expansion:

s2Y s( ) − y 0( )s � c1 +∑∞
n�2

cn
sn
, s> 0. (2.7)

Using part (5) of Lemma 2.1, it is obvious that

c1 � lim
s→∞

c1 +∑∞
n�2

cn
sn

⎛⎝ ⎞⎠ � lim
s→∞

s2Y s( ) − sy 0( )( )
� lim

s→∞
s sY s( ) − y 0( )( ) � lim

s→∞
s L y′ t( )[ ]( ) � y′ 0( ).

Similarly, multiplying Eq. 2.7 by s gives the following
expansion:

s s2Y s( ) − y 0( )s − y′ 0( )( ) � c2 +∑∞
n�3

cn
sn
, s> 0. (2.8)

Again, by parts (5) and (6) of Lemma 2.1, we have

c2 � lim
s→∞

c2 +∑∞
n�3

cn
sn

⎛⎝ ⎞⎠ � lim
s→∞

s s2Y s( ) − sy 0( ) − y′ 0( )( )
� lim

s→∞
s L y″ t( )[ ]( ) � y″ 0( ).

Now, we can find out the general formula for the coefficient
cn. However, we can get it by multiplying Eq. 2.6 by sn+1 and
taking the limit of the resulting equation as s → ∞; then, we
find that cn � y(n)(0), n � 0, 1, 2, . . .. Thus, the proof is now
complete.

Theorem2.3: assume thatL[y(t)] � Y(s) can be represented as in
Eq. 2.6. If |sL[y(n)(t)]|≤K, on 0< s≤ d, then the reminder Rn(s) of
the expansion of the LS appearing in Theorem 2.2 will satisfy the
relation

Rn s( )| |≤ K

sn+2
, 0< s≤d . (2.9)

Proof.
First, we assume that for r � 0, 1, 2, . . . , n + 1, L[y(r)(t)](s) is

defined on 0< s≤d. Also, we assume the following:

sL y n+1( )( ) t( )[ ]∣∣∣∣∣ ∣∣∣∣∣≤K, 0< s≤d . (2.10)

From the definition of the reminder Rn(s) � Y(s) −∑n

i�0
y(i)(0)
si+1 ,

one can acquire

sn+2Rn s( ) � sn+2Y s( ) − ∑n
m�0

s n+1−m( )y m( ) 0( )

� s sn+1Y s( ) −∑n
i�0
s n−m( )y m( ) 0( )⎛⎝ ⎞⎠ � sL y n+1( ) t( )[ ].

(2.11)
Eq. 2.10 and Eq. 2.11 lead to the conclusion that

|s(n+1)α+1Rn(s)|≤K. Thus,

−K≤ sn+2Rn s( )≤K, 0< s≤ d . (2.12)
The inequality |Rn(s)|≤ K

sn+2 can be discovered by reformulating
Eq. 2.12, and so, we got the result.
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3 Constructing series solutions to ODEs

In this section, we first use the LRPS method to solve linear
ODEs in preparation for solving non-linear ODEs. What is worth
noting is the possibility of solving non-linear ODEs, which cannot be
carried out using the traditional LT method. We will use the
construction that we will get to solve non-linear ODEs when
solving singular ODEs, whether linear or non-linear, and this is
what we will see in Section 3.3.

3.1 LRPS method for solving linear ODEs

In this section, we demonstrate the steps of the LRPS method for
solving linear ODEs. The basic idea of the proposed method is to
apply the LT to the linear ODEs and then use the LRPS approach to
construct a series solution, in LS form, to the transformed equation.
Then, we transform the obtained solution into the required solution
in the original space.

To illustrate the idea of the LRPS method in constructing series
solutions to the linear ODEs, we consider problems (1.1) and (1.2),
considering that Lt is a linear differential operator given by

Lt � an−1 t( ) d
n−1

dtn−1
+ . . . + a1 t( ) d

dt
+ a0 t( ), (3.1)

where a0(t), a1(t), ..., an−1(t) and g(t) are arbitrary analytic
functions that depend only on t, y(t) is the unknown function
of the independent variables t, and I is an open interval.

To generate the LRPS solution of the IVP (1.1) and (1.2), first, we
apply the LT to both sides of Eq. 1.1 to obtain

L y n( ) t( )[ ] � L Lt y t( )[ ][ ] + L g t( )[ ], t ∈ I. (3.2)

Using ICs (1.2) and some properties of the LT, Eq. 3.2 becomes

Y s( ) � ∑n−1
i�0

yi

si+1
+ 1
sn

L Lt L−1 Y s( )[ ][ ][ ] + G s( )
sn

, s> 0. (3.3)

We assume that Y(s) in Eq. 3.3 has an expansion in the LS
form as

Y s( ) � ∑∞
i�0

ci
s1+i

, s> 0. (3.4)

Depending on Theorem 2.3 and the given conditions in Eq. 1.2,
the first n-coefficients of the expansion (3.4) can be determined, so it
can be rewritten as follows:

Y s( ) � ∑n−1
i�0

yi

si+1
+∑∞

i�n

ci
s1+i

, s> 0. (3.5)

The kth-truncated series of Y(s) is given by

Yk s( ) � ∑n−1
i�0

yi

si+1
+∑k

i�n

ci
s1+i

, s> 0. (3.6)

Thus, one can conclude

Yn s( ) � ∑n−1
i�0

yi

si+1
+ cn
s1+n

, s> 0. (3.7)

To find the values of the unknown coefficients in series (3.7), we
define the Laplace residual function (LRF) of Eq. 3.3 as

LRes s( ) � Y s( ) −∑n−1
i�0

yi

si+1
− 1
sn

L Lt L−1 Y s( )[ ][ ][ ] − G s( )
sn

, s> 0

(3.8)
and the kth LRF as

LResk s( ) � Yk s( ) −∑n−1
i�0

yi

si+1
− 1
sn

L Lt L−1 Yk s( )[ ][ ][ ] − G s( )
sn

, s> 0.

(3.9)
It is clear that Limk→∞LResk(s) � LRes(s), LRes(s) � 0, and

thus, skLRes(s) � 0 for s> 0 and k � 0, 1, 2, 3, . . .. Therefore,
Lims→∞(skLRes(s)) � 0. Moreover,

Lims→∞ sk+1LRes s( )( ) � Lims→∞ sk+1LResk s( )( ) � 0, k � 1, 2, 3, . . .

(3.10)
Substituting the first nth-truncated series in Eq. 3.7 into the nth

LRF to obtain

LResn s( ) � cn
s1+n

− 1
sn

L Lt L−1 ∑n−1
i�0

yi

si+1
+ cn
s1+n

⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦ − G s( )
sn

, s> 0.

(3.11)
Running the inverse LT in Eq. 3.11, we get

LResn s( ) � cn
s1+n

− 1
sn

L Lt ∑n−1
i�0

yi

i!
ti + cn

n!
tn⎡⎣ ⎤⎦⎡⎣ ⎤⎦ − G s( )

sn
, s> 0. (3.12)

Since the coefficients of the linear operator in Eq. 3.1 are analytic
functions, they can be expressed as

ar t( ) � ∑∞
j�0
λrjt

j, r � 0, 1, . . . , n − 1, (3.13)

where

λrj � a
j( )

r 0( )
j!

, r � 0, 1, . . . , n − 1, j � 0, 1, 2, . . . . (3.14)

So, the linear operator Lt in Eq. 3.1 can be expressed as

Lt � ∑n−1
r�0

∑∞
j�0
λrjt

j⎛⎝ ⎞⎠ dr

dtr
. (3.15)

Running the operator Lt on Eq. 3.12 according to its new form in
Eq. 3.15, we get

LResn s( ) � cn
s1+n

− 1
sn

L ∑n−1
r�0

∑∞
j�0

cn λrj
n − r( )!t

n+j−r +∑n−1
i�r

λrjyi

i − r( )!t
i+j−r⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− G s( )
sn

.

(3.16)
Finally, we run the LT in Eq. 3.16 to obtain the required form of

the nth LRF:
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LResn s( ) � cn
s1+n

− G s( )
sn

− 1
sn

∑n−1
r�0

∑∞
j�0

cn λrj
n − r( )!

n + j − r( )!
s1+n+j−r

(
+∑n−1

i�r

λrjyi

i − r( )!
i + j − r( )!
s1+j+i−r

⎞⎠. (3.17)

Now, multiplying Eq. 3.17 by sn+1, we get the following function:

sn+1LResn s( ) � cn − sG s( ) −∑n−1
r�0

∑∞
j�0

cn λrj
n − r( )!

n + j − r( )!
sn+j−r

−∑n−1
r�0

∑∞
j�0

∑n−1
i�r

λrjyi

i − r( )!
i + j − r( )!
sj+i−r

. (3.18)

Taking the limit at infinity to Eq. 3.18, according to Eq. 3.10,
we get

cn � g 0( ) +∑n−1
r�0

λr0yr. (3.19)

Thus, the first approximation of the solution of Eq. 3.3 is

Yn s( ) � y0

s
+ y1

s2
+ y2

s3
+ . . . + yn−1

sn
+ 1
sn+1

g 0( ) +∑n−1
r�0

λr0yr
⎛⎝ ⎞⎠.

(3.20)
Following that, one can find the value of the coefficient cn+1; to

do that, we substitute the (n + 1)th-truncated series,
Yn+1(s) � y0

s + y1

s2 + y2

s3 + . . . + yn−1
sn + cn

sn+1 + cn+1
sn+2 , into the (n + 1)th

LRF to get the following:

LResn+1 s( ) � cn
sn+1

+ cn+1
sn+2

− 1
sn

L Lt L−1 ∑n−1
i�0

yi

si+1
+ cn
s1+n

+ cn+1
sn+2

⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦
− G s( )

sn
.

(3.21)
Performing the previous steps, we obtain the final form of the

(n + 1)th LRF:

LResn+1 s( ) � cn
sn+1

+ cn+1
sn+2

− G s( )
sn

− 1
sn

∑n−1
r�0

∑∞
j�0

cn+1 λrj
n + 1 − r( )!

n + 1 + j − r( )!
s2+n+j−r

(
+ cn λrj

n − r( )!
n + j − r( )!
s1+n+j−r

+∑n−1
i�r

λrjyi

i − r( )!
i + j − r( )!
s1+j+i−r

⎞⎠. (3.22)

Again, we multiply Eq. 3.22 by sn+2 to obtain

sn+2LResn+1 s( ) � cn+1 − s2G s( ) + sg 0( ) + s∑n−1
r�0

λr0yr

−∑n−1
r�0

∑∞
j�0

cn+1 λrj
n + 1 − r( )!

n + 1 + j − r( )!
sn+j−r

(
+ cn λrj

n − r( )!
n + j − r( )!
sn+j−r−1

+∑n−1
i�r

λrjyi

i − r( )!
i + j − r( )!
si+j−r−1

⎞⎠. (3.23)

Computing the limit at infinity to both sides of the last equation
and using Eq. 3.10, we get

cn+1 � g′ 0( ) + cn λ n−1( )0 + 1!∑n−1
r�0

λr1yr +∑n−2
r�0

λr0yr+1. (3.24)

So, the second approximation of the solution of Eq. 3.3 is

Yn+1 s( ) � y0

s
+ y1

s2
+ y2

s3
+ . . . + yn−1

sn
+ 1

sn+1
g 0( ) +∑n−1

r�0
λr0yr

⎛⎝ ⎞⎠
+ 1

sn+2
g′ 0( ) + g 0( ) +∑n−1

r�0
λr0yr

⎛⎝ ⎞⎠ λ n−1( )0⎛⎝
+∑n−1

r�0
λr1yr +∑n−2

r�0
λr0yr+1). (3.25)

Like the previous steps, we have

cn+2 � g″ 0( ) + cn+1 λ n−1( )0 + cn λ n−2( )0 + 2!
1!
cn λ n−1( )1

+2! ∑n−1
r�0

λr2yr +∑n−2
r�0

λr1yr+1 +∑n−3
r�0

λr0yr+2⎛⎝ ⎞⎠. (3.26)

Repeating the steps, one can obtain

cn+3 � g‴ 0( ) + 3!∑2
i�0
∑i
r�0

c n+2−i( ) λ n−1−i+r( )r
3 − r( )! + 3! ∑3

i�0
∑n−1−i
r�0

λr 3−i( )y r+i( )
i!

⎛⎝ ⎞⎠.

(3.27)
Considering a pattern of the obtained coefficients, we easily

deduce the coefficient cn+k as follows:

cn+k � g k( ) 0( ) + k!∑k−1
i�0

∑i
r�0

c n+k−1−i( ) λ n−1−i+r( )r
k − r( )!

+ k! ∑k
i�0

∑n−1−i
r�0

λr k−i( )y r+i( )
i!

⎛⎝ ⎞⎠,

k � 0, 1, . . . . (3.28)
According to Eq. 3.14, the recurrence relation (3.28) becomes as

follows:

cn+k � g k( ) 0( ) +∑k−1
i�0

∑i
r�0

k
r

( )c n+k−1−i( ) a
r( )
n−1−i+r( ) 0( )

+ ∑k
i�0

∑n−1−i
r�0

k
i

( )y r+i( )a k−i( )
r 0( )⎛⎝ ⎞⎠. (3.29)

Thus, we can express the (k + 1)th-approximate solution of Eq.
3.3 by the following formula:

Yn+k s( ) � ∑n−1
i�0

yi

si+1
+∑k

i�0

cn+i
s1+i+n

, s> 0, k � 0, 1, . . . .. (3.30)

Therefore, the exact solution of Eq. 3.3 can be expressed as

Y s( ) � ∑n−1
i�0

yi

si+1
+∑∞

i�0

cn+i
s1+i+n

. (3.31)

Substituting the result in Eq. 3.29 into Eq. 3.31 and running the
inverse LT gives the solutions of IVP (1.1) and (1.2) as follows:
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y t( ) � ∑n−1
i�0

yi

i!
ti +∑∞

i�0

ti+n

i + n( )! g i( ) 0( ) +∑i−1
j�0

∑j
r�0

i

r
⎛⎝ ⎞⎠c n+i−1−j( ) a r( )

n−1−j+r( ) 0( )⎛⎝
+∑i
j�0

∑n−1−j
r�0

i
j

( )y r+j( )a
i−j( )

r 0( )). (3.32)

3.2 The LRPS method for solving non-linear
ODEs

This section introduces the steps of the LRPS approach in
solving non-linear ODEs. To explain the methodology of the
proposed method in constructing series solutions to this class, we
consider IVP (1.3) and (1.4).

To generate the LRPS solution of the IVP (1.3) and (1.4), we
consider the first step; that is, operating the LT to Eq. 1.3 and
utilizing conditions (1.4), we obtain

Y s( ) � ∑n−1
i�0

yi

si+1
+ 1
sn
Ψ s, Y s( ), dY

ds
,
d2Y

ds2
, . . . ,

dmY

dsm
( ), s> 0, (3.33)

where Ψ is a multivariable function of s, Y(s), dYds , d
2Y
ds2 , and

dmY
dsm ,

m ∈ N.
We assume that Y(s) given in Eq. 3.33 can be expanded as in Eq.

3.4. According to the conditions given in Eq. 1.4 and Theorem 2.3,
series (3.4) also has the form in Eq. 3.5, and the kth-truncated series
of Y(s) will be like Eq. 3.6.

To set the values of the unknown coefficients in Eq. 3.6,
according to Eq. 3.33, we define the LRF of Eq. 3.33 as

LRes s( ) � Y s( ) −∑n−1
i�0

yi

si+1
− 1
sn
Ψ s, Y s( ), dY

ds
,
d2Y

ds2
, . . . ,

dmY

dsm
( ), s> 0

(3.34)
and the kth LRF as

LResk s( ) � Yk s( ) −∑n−1
i�0

yi

si+1

− 1
sn
Ψ s, Yk s( ), dYk

ds
,
d2Yk

ds2
, . . . ,

dmYk

dsm
( ), s> 0. (3.35)

According to the form of Yk(s) as in Eq. 3.6, it is clear that
Ψ(s, Yk(s), dYk

ds ,
d2Yk
ds2 , . . . ,

dmYk
dsm ) has a finite LS as follows:

Ψ s, Yk s( ), dYk

ds
,
d2Yk

ds2
, . . . ,

dmYk

dsm
( ) � ∑k

i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+i

, s> 0,

(3.36)
where ϕ is a multivariable function of cn, cn+1, . . . , cn+i, for i �
0, 1, . . . , k.

Substituting the expansions (3.6) and (3.36) in (3.35) gives the
following expansion form of the kth LRF:

LResk s( ) � ∑k
i�n

ci
s1+i

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0. (3.37)

Thus, the nth LRF is

LResn s( ) � cn
s1+n

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0. (3.38)

Now, we multiply Eq. 3.38 by sn+1 to get

sn+1LResn s( ) � cn −∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
si

, s> 0. (3.39)

Now, applying the limit as s → ∞ to both sides of Eq. 3.39 and
using the fact in Eq. 3.10, we can easily determine the value of cn by
solving the following equation for cn:

cn � ϕ cn( ). (3.40)
In the same manner, we find the value of the coefficient cn+1 by

substituting the (n + 1)th-truncated series, Yn(s) � ∑n−1
i�0

yi

s1+i + cn
s1+n,

into the (n + 1)th LRF to get the following:

LResn+1 s( ) � cn+1
s2+n

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s2+n+i

, s> 0. (3.41)

Multiplying sn+2 by both sides of Eq. 3.41, we get the following
function:

sn+2LResn+1 s( ) � cn+1 −∑k
i�1

ϕ cn, cn+1, . . . , cn+i( )
si−1

, s> 0. (3.42)

Applying the limit at infinity to Eq. 3.42, we obtain the algebraic
equation:

cn+1 � ϕ cn+1( ). (3.43)
Solving Eq. 3.43 implicitly for cn+1 determines the second

unknown coefficient in Eq. 3.6.
Similarly, we compute the third coefficient cn+2 by substituting

the (n + 2)th-truncated series, Yn+2(s) � y0

s + y1

s2 + y2

s3 + . . .

+yn−1
sn + cn

sn+1 + cn+1
sn+2 + cn+2

sn+3 , into the (n + 2)th LRF to get the following
function:

TABLE 1 The exact and the 10th approximate solutions of the IVP (4.1) and (4.2)
and the actual and relative errors at a � 3 and b � −2.

t y(t) y10(t) Act. err.(t) Rel. err.(t)
0.0 0 0 0 −

0.1 0.044244 0.044244 1.45827 × 10−15 3.29600 × 10−14

0.2 0.196077 0.196077 4.34332 × 10−12 2.21511 × 10−11

0.3 0.489605 0.489605 3.82242 × 10−10 7.80716 × 10−10

0.4 0.967566 0.967566 9.21045 × 10−9 9.51919 × 10−9

0.5 1.683357 1.683357 1.09149 × 10−7 6.48398 × 10−8

0.6 2.703517 2.703516 8.25760 × 10−7 3.05439 × 10−7

0.7 4.110778 4.110774 4.58384 × 10−6 1.11508 × 10−6

0.8 6.007802 6.007782 2.02872 × 10−5 3.37681 × 10−6

0.9 8.521765 8.521689 7.55276 × 10−5 8.86290 × 10−6

1.0 11.809970 11.809724 2.45341 × 10−4 2.07741 × 10−5
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LResn+2 s( ) � cn+2
sn+3

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0. (3.44)

Multiplying Eq. 3.44 by sn+3 gives

sn+3LResn+2 s( ) � cn+2 − ϕ cn( ) − ϕ cn+1( ) − ϕ cn+2( )

−∑k
i�2

ϕ cn, cn+1, . . . , cn+i( )
si−2

, s> 0. (3.45)

According to fact (3.10), we obtain

cn+2 � ϕ cn( ) + ϕ cn+1( ) + ϕ cn+2( ). (3.46)
Solving Eq. 3.46 for cn+2 sets another coefficient in Eq. 3.6.
The value of the third unknown coefficient cn+3 can be

obtained by similar arguments and by solving the following
equation:

cn+3 � ϕ cn( ) + ϕ cn+1( ) + ϕ cn+2( ) + ϕ cn+3( ). (3.47)
Considering the pattern of the obtained coefficients, we easily

conclude the coefficient cn+k from the following implicit formula
of cn+k:

cn+k � ϕ cn( ) + ϕ cn+1( ) + ϕ cn+2( ) + ϕ cn+3( ) + . . . + ϕ cn+k( ). (3.48)
Thus, we can express the (k + 1)th-approximate solution of Eq.

3.33 in the following shape:

Yn+k s( ) � ∑n−1
i�0

yi

si+1
+∑k

i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0, k � 0, 1, . . . .

(3.49)
Therefore, the exact analytic solution of Eq. 3.33 is written in a

series form:

Y s( ) � ∑n−1
i�0

yi

si+1
+∑∞

i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

. (3.50)

Running the inverse LT to Eq. 3.50 gives the solution of Eq. 1.3
and Eq. 1.4 in a series expansion as

y t( ) � ∑n−1
i�0

yi

i!
ti +∑∞

i�0

ϕ cn, cn+1, . . . , cn+i( )
i + n( )! ti+n. (3.51)

3.3 The LRPS method for solving singular-
value problems

This section presents the LRPS method’s procedure for handling
singular-value problems. To do this, let us consider the following
singular-value problem:

1
tk

dny

dtn
� f t, y t( ), dy

dt
,
d2y

dt2
, . . . ,

dn−1y
dtn−1

( ), t ∈ I,m, k ∈ N. (3.52)

Subject to the ICs

y 0( ) � y0, y′ 0( ) � y1, . . . , y
n−1( ) 0( ) � yn−1. (3.53)

To solve the initial-singular value problems (3.52) and (3.53), we
first multiply Eq. 3.52 by tk to get

dny

dtn
� tkf t, y t( ), dy

dt
,
d2y

dt2
, . . . ,

dn−1y
dtn−1

( ). (3.54)

Now applying LT to Eq. 3.54 and using ICs (3.53), we get

Y s( ) � ∑n−1
i�0

yi

si+1

+ 1
sn
L L−1 k!

sk+1
[ ]L−1 Ψ s, Y s( ), dY

ds
,
d2Y

ds2
, . . . ,

dmY

dsm
( )[ ][ ], s> 0.

(3.55)

Now, suppose that the function Y(s) can be expressed in the
form of the expansion of (3.4), and so on. We can complete the steps
described in the previous Section 3.2 to obtain the required solution.

4 Applications to linear and non-linear
problems

This section presents seven interesting problems with wide
applications in physics and other sciences that are discussed and
solved by the LRPS method.

Problem 4.1: consider the following composite oscillation
equation:

d2y

dt2
− a

dy

dt
− by t( ) � 8, t≥ 0, (4.1)

with respect to the initial condition

y 0( ) � 0, y′ 0( ) � 0. (4.2)
Comparing Eq. 4.1 with Eq. 1.1 concludes that a1(t) �

a, a0(t) � b, and g(x) � 8. Using the results obtained in Section
3.1, we can deduce λ10 � a, λ11 � λ12 � λ13 � . . . � 0 and
λ00 � b, λ01 � λ02 � λ03 � . . . � 0. According to the recurrence
relation in Eq. 3.29, we can see that c2 � 8, c3 � 8a,
c4 � 8(b + a2), c5 � 8(a3 + 2ab), c6 � 8(a4 + 3a2b + b2), c7 �
8(a5 + 4a3b + 3ab2), c8 � 8(a6 + 5a4b + 6a2b2 + b3), c9 �
8(a7 + 6a5b + 10a3b2 + 4ab3), and c10 � 8(a8 + 7a6b+

TABLE 2 The exact and the 10th approximate solutions of the IVP (4.7) and (4.8)
and the actual and relative errors.

t y10(t) y(t) Act. err.(t) Rel. err.(t)
0.0 1 1 0 0

0.1 0.889966 0.889966 9.16853 × 10−14 1.03021 × 10−13

0.2 0.759453 0.759453 3.85420 × 10−10 5.07496 × 10−10

0.3 0.607144 0.607144 5.23038 × 10−8 8.61472 × 10−8

0.4 0.430542 0.430540 1.76504 × 10−6 4.09960 × 10−6

0.5 0.225375 0.225347 2.81962 × 10−5 1.25123 × 10−4

0.6 −0.015603 −0.015888 2.85811 × 10−4 1.79887 × 10−2

0.7 −0.304937 −0.307110 2.17319 × 10−3 7.07626 × 10−3

0.8 −0.664860 −0.678886 1.40298 × 10−2 2.06658 × 10−2

0.9 −1.135230 −1.224997 8.97720 × 10−2 7.32834 × 10−2
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15a4b2 + 10a2b3 + b4). Therefore, the 10th approximation of the
solution of the IVP (4.1) and (4.2) will be as follows:

y10 t( ) � 8
2!
t2 + 8a

3!
t3 + 8 b + a2( )

4!
t4 + 8 a3 + 2ab( )

5!
t5

+ 8 a4 + 3a2b + b2( )
6!

t6 + 8 a5 + 4a3b + 3ab2( )
7!

t7

+ 8 a6 + 5a4b + 6a2b2 + b3( )
8!

t8 + 8 a7 + 6a5b + 10a3b2 + 4ab3( )t9
9!

+ 8 a8 + 7a6b + 15a4b2 + 10a2b3 + b4( )t10
10!

.

(4.3)

It is easy to check if the exact solution of Eq. 4.1 and Eq. 4.2 is as
follows:

y t( ) � 4
bc

c + a( )e12 a−c( )t + c − a( )e12 a+c( )t( ) − 8
b
, c � �������

a2 + 4b.
√

(4.4)

To analyze the accuracy of the approximate solution in Eq. 4.3
and determine the interval of convergence, we introduce and
compute two types of error, actual and relative errors that are
defined, respectively, as follows:

Act.Err. t( ) � y t( ) − y10 t( )∣∣∣∣ ∣∣∣∣ (4.5)
and

Rel.Err. t( ) � y t( ) − y10 t( )
y t( )

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣. (4.6)

For analysis and comparison of the exact and approximate
solutions of IVP (4.1) and (4.2), Table 1 shows the numerical
results of this problem. It displays the exact and approximate
results in addition to the actual and relative errors at different
values of t within the interval [0, 1]. The results indicate that the
errors increase when the value of t increases. It is known that by
increasing the number of terms in the series solution, the error
decreases and the convergence period of the truncated series
increases. It should be noted that we can extend the convergence
period using the multi-stage technique.

Problem 4.2: consider the following Bessel’s equation:

1 − t2( )y″ t( ) − 2ty′ t( ) + 2y t( ) � 0. (4.7)
Subject to the ICs,

y 0( ) � 1, y′ 0( ) � −1. (4.8)
According to the existence and uniqueness theorem, it is clear

that the IVPs (4.7) and (4.8) have a unique solution in the interval
(−1, 1), so we seek to get this solution via the LRPS method. To
reach our goal and be able to rely on the construction obtained in
Section 3.1, it is necessary to rewrite Eq. 4.7 as follows:

y″ t( ) � 2t
1 − t2( )y′ t( ) − 2

1 − t2( )y t( ), 0≤ t< 1. (4.9)

Comparing Eq. 4.7 with Eq. 1.1, we find that

Lt � 2t
1 − t2( )

d

dt
− 2

1 − t2( ), a1 t( ) � 2t
1 − t2( ), a0 t( ) � −2

1 − t2( ),
(4.10)

where a0(t) and a1(t) are analytic functions on [0, 1).
Since the coefficients of the linear operator in Eq. 4.10 are analytic

functions, they can be expressed as McLaurin expansions as follows:

a0 t( ) � ∑∞
j�0
−2t2j, a1 t( ) � ∑∞

j�0
2t2j+1. (4.11)

So, according to Eq. 4.11 and Eq. 3.14, we have

λ0 2j( ) �
a

2j( )
0 0( )
2j( )! � −2, λ0 2j+1( ) �

a
2j+1( )

0 0( )
2j + 1( )! � 0, j � 0, 1, 2, . . .

λ1 2j( ) �
a

2j( )
1 0( )
2j( )! � 0, λ1 2j+1( ) �

a
2j+1( )

1 0( )
2j + 1( )! � 2, j � 0, 1, 2, . . .

.

(4.12)
Comparing with the general formula (3.29), we can find the

values of the coefficients as follows:

c2 � λ00y0 + λ10y1 � −2,
c3 � c2 λ10 + λ01y0 + λ11y1 + λ00y1 � 0,
c4 � c3 λ10 + c2λ00 + 2!c2 λ11 + 2 λ02y0 + λ12y1 + λ01y1( ) � −8,
c5 � c4 λ10 + c3 λ00 + 3c3 λ11 + 3c2 λ01 + 6c2 λ12 + 6 λ03y0 + λ13y1 + λ02y1( ) � 0
c6 � c5 λ10 + c4 λ00 + 4c4 λ11 + 4c3 λ01 + 12c3 λ12 + 12c2 λ02 + 24c2 λ13+24 λ04y0 + λ14y1 + λ03y1( ) � −144
c7 � c6 λ10 + c5 λ00 + 5c5 λ11 + 5c4 λ01 + 20c4λ12 + 20c3λ02 + 60c3λ13 + 60c2λ03

+ 120c2λ14 + 120 λ04y1 + λ05y0 + λ15y1( )� 0
c8 � c7λ10 + c6λ00 + 6c6λ11 + 6c5λ01 + 30c5λ12 + 30c4λ02 + 120c4λ13 + 120c3λ03+360c3λ14 + 360c2λ04 + 720c2λ15 + 720 λ05y1 + λ06y0 + λ16y1( ) � −5760
c9 � c7λ00 + 7c6λ01 + 42c5λ02 + 210c4λ03 + 840c3λ04 + 2520c2λ05 + c8λ10+7c7λ11 + 42c6λ12 + 210c5λ13 + 840c4λ14 + 2520c3λ15 + 5040c2λ16+5040 λ07y0 + λ17y1 + λ06y1( ) � 0
c10 � c8λ00 + 8c7λ01 + 56c6λ02 + 336c5λ03 + 1680c4λ04 + 6720c3λ05

+ 20160c2λ06 + c9λ10 + 8c8λ11 + 56c7λ12 + 336c6λ13 + 1680c5λ14

+ 6720c4λ15 + 20160c3λ16 + 40320c2λ17 + 40320 λ08y0 + λ18y1 + λ07y1( )
� −403200.

Therefore, the LRPS solution to Problem 4.2 can be expressed in
the following series form:

y t( ) � 1 − t − t t + t3

3
+ t5

5
+ t7

7
+ t9

9
+ . . .( ). (4.13)

TABLE 3 The 10th approximate LRPS solution of the IVP (4.24) and (4.25) and the
residual and relative errors.

t y10(t) Res. err.(t) Rel. err.(t)
0.0 1 0 0

0.1 0.990008 1.49429 × 10−20 4.90918 × 10−9

0.2 0.960133 6.11918 × 10−17 3.23767 × 10−7

0.3 0.910671 7.93635 × 10−15 3.88428 × 10−6

0.4 0.842113 2.50409 × 10−13 2.35678 × 10−5

0.5 0.755133 3.64141 × 10−12 1.00077 × 10−4

0.6 0.650575 3.24397 × 10−11 3.46087 × 10−4

0.7 0.529442 2.06065 × 10−10 1.06956 × 10−3

0.8 0.392875 1.02189 × 10−9 3.20192 × 10−3

0.9 0.242133 4.19437 × 10−9 1.04964 × 10−2

1.0 0.078569 1.48293 × 10−8 6.06363 × 10−2

Frontiers in Physics frontiersin.org08

El-Ajou et al. 10.3389/fphy.2023.1167797

27

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1167797


The expansion in (4.13) is the same expansion as that of the
function tan−1(t). Therefore, the exact solution of the IVP (4.7) and
(4.8) has the following closed form:

y t( ) � 1 − t − ttan−1 t( ), 0≤ t< 1. (4.14)
Table 2 shows the numerical results of Problem 4.2. It shows the

exact and approximate results in addition to the actual and relative
errors at different values of t ∈ [0, 09]. The displayed data are
acceptable and can be improved by increasing the order of the
approximation.

Problem 4.3: consider the following non-linear
nonhomogeneous ODE:

y 3( ) t( ) + y2 t( ) + cos ty′ t( ) � 1 − cos t. (4.15)
Subject to the ICs,

y 0( ) � 0, y′ 0( ) � 1, y″ 0( ) � 0. (4.16)
Similar to the previous problems, we operate the LT on both

sides of Eq. 4.15 and employ the ICs (4.16). Then, we obtain the
following equation in the Laplace space:

Y s( ) � 1
s2
− 1
s3
L L−1 Y s( )[ ]( )2[ ] − 1

s3
L L−1 s

1 + s2
[ ]L−1 sY s( )[ ][ ]

+ 1
s4
− 1
s2 1 + s2( ), s> 0.

(4.17)
We assume that the solution of Eq. 4.17 has the same LS

expansion as in Eq. 3.4. According to ICs (4.16), the kth-
truncated series of Y(s) becomes

Yk s( ) � 1
s2
+∑k

i�3

ci
s1+i

, s> 0. (4.18)

To set the value of the unknown coefficients in series (4.18), we
utilize the kth LRF of Eq. 3.17, which is defined as

LResk s( ) � Yk s( ) − 1

s2
+ 1

s3
L L−1 Yk s( )[ ]( )2[ ]

+ 1

s3
L L−1 s

1 + s2
[ ]L−1 sYk s( )[ ][ ] − 1

s4

+ 1

s2 1 + s2( ), s> 0.
(4.19)

To determine the coefficient c3, we substitute Y3(s) � 1
s2 + c3

s4 into
LRes3(s) and run the operators in Eq. 4.19 to get the following
rational function:

LRes3 s( ) � c3
s4
− 1
s4
+ 2
s2 1 + s2( ) +

2
s6
+ 8c3

s8

+ c3
1 + s2( )3 −

3c3
s2 1 + s2( )3 +

20c23
s10

. (4.20)

Employing fact (3.10), the solution of the equation
lim
s→∞ s4LRes3(s) � 0 for c3 introduces c3 � −1.

Similarly, to find out the value of the second unknown
coefficient c4, we substitute Y4(s) � 1

s2 + 1
s4 + c4

s5 into the 4th-LRF to
get the following:

LRes4 s( ) � c3
s5
+ 2

s6
− 8

s8
+ 20

s10
− 1

1 + s2( )3 + 3

s2 1 + s2( )3 − 2

s4 + s6
− 70c3

s11

+10c3
s9

+ c3

s3 1 + s2( )4 − 6c3

s 1 + s2( )4 + sc3

1 + s2( )4
+70c

2
3

s12
, s> 0. (4.21)

Utilizing fact (3.10) via Eq. 4.21 gives c4 � 0. Using the same
procedure as mentioned above, we can find more coefficients for
series (4.18). Some of them are c5 � 1, c6 � 0, c7 � −1, c8 � 0, c9 �
1, c10 � 0, c11 � −1. So, the series solution to Eq. 4.31 has the
following LS:

Y s( ) � 1
s2
− 1
s4
+ 1
s6
− 1
s8
+ 1
s10

− 1
s12

+ . . . . (4.22)

Therefore, the LRPS solution to Eq. 4.15 and Eq. 4.16 can be
expressed in the following series form:

y t( ) � t − t3

3!
+ t5

5!
− t7

7!
+ t9

9!
− t11

11!
+ . . . , (4.23)

which is the expansion of the exact solution y(t) � sin(t).

Problem 4.4: consider the following non-linear pantograph
equation:

d2y

dt2
� −2y2 t

2
( ), t≥ 0. (4.24)

Subject to the ICs,

y 0( ) � 1, y′ 0( ) � 0. (4.25)
Following the same procedure as in the previous problems, we

can express the LRPS solution to IVP (4.24) and (4.25) in the form

y t( ) � 1 − t2 + t4

12
− 7t6

1440
+ 127t8

1290240
− 10879t10

7431782400
+ . . . . (4.26)

Since we cannot predict the pattern in the coefficients of the
series solution in Eq. 4.26, we cannot reach the exact solution.

TABLE 4 The 8th approximate LRPS solution of the IVP (4.40) and (4.41) and the
residual and relative errors.

t y10(t) Res. err.(t) Rel. err.(t)
0.0 3.141592 0 0

0.1 3.143436 6.17550 × 10−12 3.88412 × 10−9

0.2 3.149766 3.46550 × 10−9 2.54577 × 10−7

0.3 3.162007 1.47389 × 10−7 2.96588 × 10−6

0.4 3.181938 2.19032 × 10−6 1.70131 × 10−5

0.5 3.211770 1.83429 × 10−5 6.60961 × 10−5

0.6 3.254229 1.07003 × 10−4 2.00356 × 10−4

0.7 3.312664 4.86480 × 10−4 5.10802 × 10−4

0.8 3.391178 1.84223 × 10−3 1.14494 × 10−3

0.9 3.494777 6.06308 × 10−3 2.32075 × 10−3

1.0 3.629549 1.78494 × 10−2 4.33494 × 10−3
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Therefore, we test the results using the residual and relative errors,
which are defined as follows, respectively:

Res.Err. t( ) � L−1 LResk s( )[ ]∣∣∣∣ ∣∣∣∣ � d2yk

dt2
+ 2y2

k

t

2
( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣, (4.27)

Rel.Err. t( ) � yk t( ) − yk/2 t( )
yk t( )

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣. (4.28)

Table 3 shows the numerical results of Problem 4.4. It displays
the 10th approximate solution in addition to the residual and
relative errors at different values of t within the interval [0, 1].
The results indicate that the LRPS solution is acceptable
mathematically in the period [0, 1].

Problem 4.5: consider the following homogenous linear
singular ODE:

sin t( )y″ − 2 cos t( )y′ − sin t( )y � 0, 0< t< π, (4.29)
with respect to the ICs:

y 0( ) � 2, y′ 0( ) � 0. (4.30)
We apply the LT on both sides of Eq. 4.29 and use the ICs in Eq.

4.30 to obtain the following symbolic algebraic equation in the
Laplace space:

L L−1 1

1 + s2
[ ]L−1 s2Y s( ) − 2s[ ][ ] − 2L L−1 1

1 + s2
[ ]L−1 sY s( ) − 2[ ][ ]

−L L−1 1

1 + s2
[ ]L−1 Y s( )[ ][ ] � 0, s> 0.

(4.31)
Suppose that the solution of Eq. 4.31 has a LS expansion as in Eq.

3.4. According to ICs (4.30), the kth-truncated series (3.6) can be
expressed as

Yk s( ) � 2
s
+∑k

i�2

ci
s1+i

, s> 0. (4.32)

To set the unknown coefficient in series (4.32), we define the kth
LRF of Eq. 4.31 as follows:

LResk s( ) � L L−1 1

1 + s2
[ ]L−1 s2Yk s( ) − 2s[ ][ ]

−2L L−1 1

1 + s2
[ ]L−1 sYk s( ) − 2[ ][ ]

−L L−1 1

1 + s2
[ ]L−1 Yk s( )[ ][ ], s> 0.

(4.34)

We substitute Y2(s) � 2
s + c2

s3 into LRes2(s) and run the operators
in Eq. 4.34 to get the following function:

LRes2 s( ) � − 2

1 + s2( )3 +
4c2

1 + s2( )3 −
4s2

1 + s2( )3 −
c2s2

1 + s2( )3

− 2s4

1 + s2( )3 −
c2s4

1 + s2( )3. (4.35)

Solving the equation lim
s→∞ s2LRes2(s) � 0 gives c2 � −2. Thus, the

first approximation of the solution of Eq. 4.31 is Y2(s) � 2
s − 2

s3.
Again, we substitute 3rd-truncated series, Y3(s) � 2

s − 2
s3 + c3

s4 , into
the 3rd LRF to get the following:

LRes3 s( ) � −10
1 + s2( )4 +

12c3s

1 + s2( )4 −
12s2

1 + s2( )4 +
4c3s3

1 + s2( )4 −
2s4

1 + s2( )4.
(4.36)

Consequently, the equation lim
s→∞ s3LRes3(s) � 0 gives c3 � 0.

Likewise, we substitute the 4th-truncated series,
Y4(s) � 2

s − 2
s3 + c4

s5, into the 4th LRF to get the following:

LRes4 s( ) � −10
1 + s2( )5 − 4c4

1 + s2( )5 − 22s2

1 + s2( )5 + 21c4s
2

1 + s2( )5 − 14s4

1 + s2( )5
+ 10c4s

4

1 + s2( )5 − 2s6

1 + s2( )5 + c4s
6

1 + s2( )5. (4.37)

Solving the equation lim
s→∞ s4LRes4(s) � 0 gives c4 � 2. Applying

the same procedure for k � 5, 6, 7, 8 leads to c5 � 0, c6 � −2, c7 � 0,
and c8 � 2. Thus, we conclude that the solution of Eq. 4.31 has the
following expansion:

Y s( ) � 2
s
− 2
s3
+ 2
s5
− 2
s7
+ 2
s9
− . . . . (4.38)

Applying the inverse LT to Eq. 4.38 gives the LRPS solution to
the IVP (4.29) and (4.30) in the following PS form:

y t( ) � 2 1 − t2

2!
+ t4

4!
− t6

6!
+ t8

8!
− . . .( ). (4.39)

It is clear that the closed form of the exact solution of IVP (4.50)
and (4.51) is y(t) � 2 cos(t).

Problem 4.6: consider the following non-homogeneous nonlinear
Lane–Emden singular ODE:

y″ t( ) + 2
t
y′ t( ) − t siny t( ) � e2t , t ∈ 0, 2( ), (4.40)

considering the ICs:

y 0( ) � π, y′ 0( ) � 0. (4.41)

TABLE 5 The 10th approximate LRPS solution of the IVP (4.46) and (4.47) and the
residual and relative errors.

t y10(t) Res. err.(t) Rel. err.(t)
0.0 0 0 0

0.1 1.66589 × 10−4 2.79119 × 10−12 1.21224 × 10−8

0.2 1.33102 × 10−3 1.07260 × 10−9 2.99609 × 10−7

0.3 4.48384 × 10−3 2.75171 × 10−8 1.60237 × 10−6

0.4 1.06044 × 10−2 1.83659 × 10−7 3.90207 × 10−6

0.5 2.06612 × 10−2 4.28369 × 10−9 3.15208 × 10−6

0.6 3.56173 × 10−2 7.03832 × 10−6 1.40973 × 10−5

0.7 5.64404 × 10−2 5.66213 × 10−5 7.81978 × 10−5

0.8 8.41213 × 10−2 2.83838 × 10−4 2.45959 × 10−4

0.9 1.19699 × 10−1 1.09913 × 10−3 6.12036 × 10−4

1.0 1.64304 × 10−1 3.57492 × 10−3 1.32164 × 10−3
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Using similar arguments to the previous problem, one can obtain
the series solution of the LT of the IVP (4.40) and (4.41) as follows:

Y s( ) � π

s
+

1
3

s3
+ 1
s4
+

12
5

s5
+

14
3

s6
+

60
7

s7
+ 15
s8

+ 28
s9

+
2588
45

s10
+ . . . . (4.42)

Applying the inverse LT on Eq. 4.42 gives the LRPS solution of
the IVP (4.40) (4.41) in the following series form:

y t( ) � π + t2

6
+ t3

6
+ t4

10
+ 7t5

180
+ t6

84
+ t7

336
+ t8

1440
+ 647t9

4082400
+ . . . .

(4.43)
There is no pattern between the series terms in Eq. 4.43. So, it is

difficult to predict the exact solution formula. Thus, we suffice with
the approximate solution we got for Problem 4.6. It is worth noting
that the more terms we calculate for the LRPS solution, the longer
the series convergence interval and the higher the accuracy of the
solution. Therefore, we test the 8th approximate LRPS solution for
Problem 4.6 using the residual and relative errors, which are defined
as follows, respectively:

Res.Err. t( ) � L−1 LRes8 s( )[ ]∣∣∣∣ ∣∣∣∣
� t − ⅇ2tt + 2t2 + 2t3 + 4t4

3
+ 2t5

3

∣∣∣∣∣∣∣∣
+4t

6

15
+ 4t7

45
+ 8t8

315
+ t9

1512
− 13t10

4320
− 1003t11

255150
− 113221t12

32659200
|,
(4.44)

Rel.Err. t( ) � y8 t( ) − y4 t( )
y8 t( )

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
�

t6

84 + t7

336 + t8

1440 + 647t9

4082400

π + t2

6 + t3

6 + t4

10 + 7t5
180 + t6

84 + t7

336 + t8

1440 + 647t9
4082400

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣. (4.45)

Table 4 shows the numerical results of Problem 4.6. It illustrates
the 8th approximate solution in addition to the residual and relative
errors at different values of t within the interval [0, 1]. Similar to the
results in the previous tables, the data are good for the period [0, 1].

Problem 4.7: We consider the following micro-electromechanical
system (MEMS) [52]:

y″ + y + θ

y − 1
� 0, θ > 0, (4.46)

with the ICs:

y 0( ) � y′ 0( ) � 0. (4.47)
This dynamic differential equation is used to describe the wire’s

movement as a point mass, where y is the dimensionless distance
and θ is a voltage-related parameter.

Simulating the previous examples, the LT of the IVP (4.46) and
(4.47) is given by the following algebraic equation:

L L−1 s2Y s( )[ ]L−1 Y s( )[ ][ ] − s2Y s( ) + L L−1 Y s( )[ ]( )2[ ] − Y s( ) + 1
s2

� 0, s> 0.
(4.48)

Applying the arguments and processes of the LRPS method, one
can obtain the LRPS solution to the algebraic Eq. 4.48 as follows:

Y s( ) � θ

s3
+ θ θ − 1( )

s5
+ θ 1 − 2θ + 7θ2( )

s7
− θ 1 − 3θ + 39θ2 − 127θ3( )

s9

+θ 1 − 4θ + 168θ2 − 1678θ3 + 4369θ4( )
s11

+ . . . .

(4.49)

Applying the inverse LT to Eq. 4.49 gives the LRPS solution of
the IVP (4.46) (4.47) as follows:

y t( ) � θt2

2
+ θ θ − 1( )t4

4!
+ θ 1 − 2θ + 7θ2( )t6

6!
− θ 1 − 3θ + 39θ2 − 127θ3( )t8

8!

+θ 1 − 4θ + 168θ2 − 1678θ3 + 4369θ4( )t10
10!

+ . . . .

(4.50)

To test the accuracy of the obtained solution given in (4.50), we
compute the residual and relative errors to the 10th approximation of the
solution. Table 5 shows the 10th approximate solution in addition to the
residual and relative errors at different values of twithin the interval [0, 1].
The results indicate that the obtained solution is acceptable
mathematically.

On the other hand, what specialists in MEMS system
implementations are most interested in is the pull-in phenomenon
analysis. The MEMS system in Eq. 4.46 and Eq. 4.47 conducts either
periodically or unsteadily. This behavior depends on the value of the
voltage-related parameter, θ. At small values of θ, the solution of the
system is stable and periodic, whereas at large values of θ, it becomes

FIGURE 1
Phase trajectories at different values of θ. (A) Solid line: θ � 0.2; dotted line: θ � 0.203; and dashed line: θ � 0.203632188. (B) Solid line: θ � 0.2037;
dotted line: θ � 0.25; and dashed line: θ � 0.3.
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unstable, called pull-in instability. Figure 1 shows that the system is
stable and periodic at θ values less than or equal to the critical value
(θ � 0.203632188) [52], and it becomes unstable at θ values greater
than the critical one.

5 Conclusion

This study aims to test the efficiency of the LRPS method in finding
series solutions for ODEs, which are difficult to solve in the analytical
methods. We have succeeded in providing a solution to the general form
of linear ODEs whose coefficients are analytical functions as an exact
solution in a PS form. We also dealt with non-linear ODEs in the
proposed technique and found approximate solutions with high accuracy.
The biggest surprise is the success of the LRPSmethod in providing series
solutions for the equations about the singular points that coincidewith the
exact results in some examples. Using the LRPSmethod, there is no longer
an obstacle to obtaining a PS solution for a broad class of ODEs. In
addition, the idea of the method circumvented the use of the LT to solve
non-linear equations to which the LT is difficult to apply. In addition to
themethod’s efficiency in arriving at exact solutions, LRPS is easy and fast
in finding the coefficients of a series solution. There is no doubt that we
can use the new method to solve other sets of equations that we did not
have to deal with in previous studies, such as using it to solve partial
differential equations, integral equations, integrodifferential equations, and
linear or non-linear, as well as algebraic equations. We should not forget
that the method has not been applied to solve differential equations with
boundary conditions. All these and other topics will be under research by
our research team in the next stage.
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The Aboodh transformation-
based homotopy perturbation
method: new hope for fractional
calculus
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1School of Mathematics and Statistics, Huanghuai University, Zhumadian, China, 2Department of
Mathematics, Government College University, Faisalabad, Pakistan, 3School of Mathematics and Statistics,
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Fractional differential equations can model various complex problems in physics
and engineering, but there is no universal method to solve fractional models
precisely. This paper offers a new hope for this purpose by coupling the homotopy
perturbationmethodwith Aboodh transform. The new hybrid technique leads to a
simple approach to finding an approximate solution, which converges fast to the
exact one with less computing effort. An example of the fractional casting-mold
system is given to elucidate the hope for fractional calculus, and this paper serves
as a model for other fractional differential equations.

KEYWORDS

homotopy perturbation method, Aboodh transform, He’s polynomials, fractional
differential equation, two-scale fractal theory

1 Introduction

Fractional calculus has triggered much interest in both physics and mathematics [1, 2].
Traditional differential equations cannot accurately represent many physical problems, and
the fractional partner can provide deeper insight into these complex physical phenomena
with ease. In general, this newly developed field is for studying real-world applications in the
fractal space, so most literature labeled it as the fractal–fractional calculus [3–5] or the local
fractional calculus on the Cantor set [6]. A continuum medium, e.g., water or air, becomes a
fractal space (porous medium) when we observe it on a molecule’s scale. Any phenomena
arising in molecules’ perturbation have to be modeled by the fractal–fractional model [7]. As
an example, we consider a nanoparticle’s motion in the air, which is stochastic and difficult to
be modeled by the traditional differential equation; however, if the air is considered as a
fractal space on a molecule’s scale, its motion is determinate and can be modeled by the
fractal–fractional model. So, we need two scales for a porous medium; one is large enough so
that the continuum assumption works, and the other is small enough so that the porosity can
be measured, as pointed out by Ji-Huan He that “seeing with a single scale is always
unbelieving” [8]. Another example is the motion of the Moon, which is naturally periodic;
however, if we measure its motion at an extremely far distance, its motion becomes
stochastic, and the Heisenberg-like uncertainty principle works for the Moon [9]. He
and Qian showed that the fractal diffusion process in water depends on the fractal
dimensions [10], and other scientists also discussed the fractional
advection–reaction–diffusion process [11] and the fractal diffusion–reaction process [12].
A cocoon’s air/moisture permeability and its thermal property can best be revealed by the
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fractal–fractional model [13, 14], and the fractal micro-
electromechanical systems show even more amazing properties
[15–18].

Fractional calculus is a good and reliable tool for scientists
and engineers but a mixed blessing for practical applications
because an intractable problem arises; that is, fractional models
are extremely difficult to be solved. Researchers have been racing
to test various analytical methods which were originally proposed
to solve traditional differential equations. Though there are many
famous analytical methods in the literature, for example, the
homotopy perturbation method [19–23] and its various
modifications [24–26], the decomposition method [27], the
variational iteration method [28–30], the exp-function method
[31], and the differential transform method [32], so far, there is
not a universal approach to solving exactly fractional differential
equations, and this paper offers a new hope for this purpose by
coupling the homotopy perturbation method [33, 34] and the
Aboodh transform [35].

The homotopy perturbation method (HPM) was first proposed
by Chinese mathematician Prof. Ji-Huan He in the later 1990s [33];
it is mathematically simple and physically insightful. The method is
equally suitable for linear or non-linear, homogeneous or
inhomogeneous, and initial and/or boundary value problems. The
solution is expressed in an infinite series and typically converges to
the exact solution. The HPM is now considered a matured tool for
almost all kinds of problems, and many researchers have used this
method for an accurate insight into the solution properties of a
complex problem [36–38].

The Aboodh transform (AT) was proposed by Aboodh [35]
and derived from the classical Fourier integral. This transform is
now considered a simple technique for solving linear differential
equations but is unable to solve non-linear ones. By coupling AT

with the HPM, one has the capability to solve linear and non-
linear problems, and a lot of literature works have been witnessed
to utilize this coupling for solving various types of problems.
Using AT–HPM, Manimegalai et al. [39] solved strongly non-
linear oscillators with great success. Jani and Singh [40] found it
had obvious advantages over the decomposition method, Yasmin
[41] revealed the dynamic behavior of the fractional
convection–reaction–diffusion process, and Jani and Singh
[42] extended it to the soliton theory.

Though much work was achieved, in this study, we will show
that AT–HPM is a universal tool for fractional calculus. As an
example, we consider the time-fractional casting-mold system
which is used in manufacturing various medical equipment,
ranging from injections to the COVID-19 tool-kit [43]. The
significant findings reveal that AT–HPM is an accurate and
effective approach that reduces the computational work with
fast convergence ratio.

2 Aboodh transform-based homotopy
perturbation technique

This section is divided into two sections. In the first section, the
methodology will be proposed, and the convergence of the suggested
technique will be discussed in the second section.

TABLE 1 Aboodh transform of some elementary functions.

f(t) 1 t tn ebt sin bt cos bt sinh bt cosh bt

F(u) 1
u2

1
u3

n!
un+2

1
u2−bu

b
u(u2+b2)

1
u2+b2

b
u(u2−b2)

1
u2−b2
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2.1 Methodology

In this section, we give a brief introduction to the Aboodh
transform [35] and homotopy perturbation method [33, 34].

If f is a continuous piecewise function of time t, then the Aboodh
transform of f(t) is F(u) that can be expressed as follows [35]:

A f t( )[ ] � F u( ) � 1
u
∫∞
0

f t( )e−utdt, t≥ 0, k1 ≤ u≤ k2, (1)

where k1 and k2 are positive and can be finite or infinite. f(t) is
considered a function of the exponential order, which assures the
convergence of the integrand. e−ut is the kernel of the transform,
and u is the transform variable. Table 1 includes the Aboodh
transformation of some elementary functions helpful for this
manuscript. This table can also be used for inverse Aboodh transform.

The Aboodh transform of the partial derivative of time can be
obtained using the following formula:

A
znf w, t( )

ztn
[ ] � unF w, u( ) −∑n−1

k�0

1
u2−n+k

zkf w, 0( )
ztk

, (2)

where w is the independent variable. Now, suppose the general
system of PDEs is expressed as

Ltx + Lwy +N1 x, y( ) � g1,
Lty + Lwx +N2 x, y( ) � g2,

(3)

where L is the linear operator, N1, N2 are the non-linear operators,
x, y are the dependent variables, and g1, g2 are the inhomogeneous
functions. We assume the initial conditions as

x w, 0( ) � h1 w( ),
y w, 0( ) � h2 w( ), (4)

where h1 and h2 are known functions of the independent variable w.
Themethodology composed of initially applying the Aboodh transform
to both sides of the system of equations written in Eq. 3 and then
employing the given initial conditions expressed in Eq. 4, thus yielding

A Ltx[ ] + A Lwy[ ] + A N1 x, y( )[ ] � A g1[ ],
A Lty[ ] + A Lwx[ ] + A N2 x, y( )[ ] � A g2[ ]. (5)

By employing the differential characteristic of Aboodh
transform, we can express Eq. 3 as

uA x w, t( )[ ] − x w, 0( )
u

+ A Lwy[ ] + A N1 x, y( )[ ] � A g1[ ],
uA y w, t( )[ ] − y w, 0( )

u
+ A Lwx[ ] + A N2 x, y( )[ ] � A g2[ ], (6)

and after using the initial conditions, we have

A x w, t( )[ ] � h1 w( )
u2 − 1

u
A Lwy[ ] − 1

u
A N1 x, y( )[ ] + 1

u
A g1[ ],

A y w, t( )[ ] � h2 w( )
u2 − 1

u
A Lwx[ ] − 1

u
A N2 x, y( )[ ] + 1

u
A g2[ ]

or

x w, t( ) � K1 w( ) − A−1 1
u

A N1 x, y( )[ ] + A Lwy[ ]{ }( ),
y w, t( ) � K2 w( ) − A−1 1

u
A N2 x, y( )[ ] + A Lwx[ ]{ }( ), (7)

where K1(w) and K2(w) denote the terms arising from the initial
condition. According to the standard homotopy perturbation method
[33, 34], the solution x and y can be expanded into an infinite series as

x �∑∞
n�0

pnxn, y �∑∞
n�0

pnyn , (8)

where p ∈ [0, 1] is the embedding parameter. Also, the non-linear
terms N1 and N2 can be written as

N1 x, y( ) �∑∞
n�0

pnH1n x, y( ), N2 x, y( ) �∑∞
n�0

pnH2n x, y( ) , (9)

whereH1n andH2n are He’s polynomials [44] and can be generated
by the recursive formula

Hn x0, x1,/, xn( ) � 1
n!

zn

zpn N ∑∞
i�0
pixi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦∣∣∣∣∣∣∣∣∣∣
p�0

n � 0, 1, 2,/ .

(10)
By substituting Eqs 7, 8 in Eq. 6, we get

∑∞
n�0

pnxn � K1 w( ) − p A−1 1
u

A H1n[ ] + A Lwy[ ]{ }( )[ ],
∑∞
n�0

pnyn � K2 w( ) − p A−1 1
u

A H2n[ ] + A Lwx[ ]{ }( )[ ]. (11)

Comparing the coefficients of like powers of p, we have

p0: x0 � K1 w( ),
p1: x1 � −A−1 1

u
A H10[ ] + A Lwy0[ ]{ }( ),

p2: x2 � −A−1 1
u

A H11[ ] + A Lwy1[ ]{ }( ),
..
.

(12)

p0: y0 � K2 w( ),
p1: y1 � −A−1 1

u
A H20[ ] + A Lwx0[ ]{ }( ),

p2: y2 � −A−1 1
u

A H21[ ] + A Lwx1[ ]{ }( ).
..
.

(13)

We can obtain the best approximation for the solution as

x � lim
p→1

xn � x0 + x1 + x3 +/,

y � lim
p→1

yn � y0 + y1 + y3 +/. (14)

2.2 Convergence analysis

To show that the series solution of the system in Eq. 14 converges to
the solution of Eq. 3, we are to prove the sufficient condition of the
convergence, and the following theorem will help us.

Theorem: We assume that X and Y are Banach spaces and
M: X → Y is a non-linear contractive mapping such that

∀s, s* ∈ X: M s( ) −M s*( )‖ ‖≤ λ s − s*‖ ‖, 0< λ< 1.
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Then, according to Banach’s fixed point theorem, M has a
unique fixed point μ, that is, M(μ) � μ. Supposing that the
sequence in Eq. 14 can be written as

Sn � M Sn−1( ), Sn−1 �∑n−1
i�0

Si, n � 1, 2, 3,/

and considering that S0 � s0 ∈ Br(s), where Br(s)
� s* ∈ X | ‖s* − s‖< r{ }, we have

(i) Sn ∈ Br(s)
(ii) lim

n→∞ Sn � s

Proof: (i) By the principle of mathematical induction, for n � 1,
we have

S1 − s‖ ‖ � M S0( ) −M s( )‖ ‖≤ λ s0 − s‖ ‖.
Assuming ‖Sn−1 − s‖≤ λn+1‖s0 − s‖ as an induction hypothesis,

we get

Sn − s‖ ‖ � M Sn−1( ) −M s( )‖ ‖≤ λ Sn−1 − s‖ ‖≤ λn s0 − s‖ ‖.
By employing the definition of Br(s), we have

Sn − s‖ ‖≤ λn s0 − s‖ ‖≤ λnr< r which implies Sn ∈ Br s( ).
(ii) As ‖Sn − s‖≤ λn‖s0 − s‖ and lim

n→∞ λn � 0,

lim
n→∞

Sn − s‖ ‖ � 0, that is, lim
n→∞

Sn � s.

Hence, the given statement is proved.

3 Numerical examples

In this section, three examples are presented to illustrate the idea
explained in Section 2. First, we will study the method for a
homogeneous linear system of PDEs. Second, the analytical
solution will be obtained for an inhomogeneous linear system of
PDEs. Finally, the inhomogeneous non-linear system of PDEs will
be examined.

3.1 The system of homogeneous linear PDEs

We consider the following linear system:

xt + yw − x + y( ) � 0,
yt + xw − x + y( ) � 0,

(15)

with initial conditions

x w, 0( ) � sinh w,
y w, 0( ) � cosh w.

(16)

By employing the Aboodh transform method, we have

uA x w, t( )[ ] − x w, 0( )
u

� −A yw[ ] + A x + y[ ],
uA y w, t( )[ ] − y w, 0( )

u
� −A xw[ ] + A x + y[ ]. (17)

Using the initial conditions given in Eq. 16, we reach

A x w, t( )[ ] � sinhw

u2 − 1
u

A yw[ ] − A x + y[ ]( ),
A y w, t( )[ ] � coshw

u2 − 1
u

A xw[ ] − A x + y[ ]( ) (18)

or

x w, t( ) � sinhw − A−1 1
u

A yw[ ] − A x + y[ ]( )( ),
y w, t( ) � coshw − A−1 1

u
A xw[ ] − A x + y[ ]( )( ). (19)

The Aboodh transform-based homotopy perturbation method
considers a series solution given by

x w, t( ) �∑∞
n�0

pnxn w, t( ), y w, t( ) �∑∞
n�0

pnyn w, t( ). (20)

By using the aforestated equation, the system of equations in Eq.
19 gets the form

∑∞
n�0

pnxn w,t( ) � sinhw−pH1 xn,yn( )� sinhw

−pA−1 1
u
A ∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠

w

− ∑∞
n�0

pnxn w,t( )+∑∞
n�0

pnyn w,t( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠,

∑∞
n�0

pnyn w,t( ) � coshw−pH2 xn,yn( )� coshw
−pA−1 1

u
A ∑∞

n�0
pnxn w,t( )⎛⎝ ⎞⎠

w

− ∑∞
n�0

pnxn w,t( )+∑∞
n�0

pnyn w,t( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠.

(21)

By comparing like powers of p from the aforestated equation, we
obtain

p0:
x0 w, t( ) � sinhw
y0 w, t( ) � coshw,

{ (22)

p1:
x0 w, t( ) � t coshw
y0 w, t( ) � t sinhw,

{ (23)

p2:

x0 w, t( ) � t2

2
sinhw

y0 w, t( ) � t2

2
coshw,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (24)

..

.

..

.

Hence, the series solution by using Eq. 14 can be
expressed as

x w, t( ) � 1 + t2

2!
+ t4

4!
+/( )sinhw + t + t3

3!
+ t5

5!
+/( )coshw,

y w, t( ) � 1 + t2

2!
+ t4

4!
+/( )coshw + t + t3

3!
+ t5

5!
+/( )sinhw

(22a)
or in a closed form as

x w, t( ) � sinh w + t( ),
y w, t( ) � cosh w + t( ), (23a)

which is the exact solution of Eq. 15.
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3.2 The system of inhomogeneous linear
PDEs

Suppose the following inhomogeneous linear system of PDEs:

xt − yw − x − y( ) � −2,
yt + xw − x − y( ) � −2, (24a)

with initial conditions

x w, 0( ) � 1 + ew,
y w, 0( ) � −1 + ew.

(25)

Applying the Aboodh transform on each side of the equations in
Eq. 24 and then putting on the given initial conditions, we obtain

A x w, t( )[ ] � 1 + ew

u2 − 2

u3 +
1
u

A yw[ ] + A x − y( )[ ]( ),
A y w, t( )[ ] � −1 + ew

u2 − 2

u3 +
1
u

A x − y( )[ ] − A xw[ ]( ) (26)

or

x w, t( ) � 1 + ew − 2t + A−1 1
u

A yw[ ] + A x − y( )[ ]( )( ),
y w, t( ) � −1 + ew − 2t + A−1 1

u
A x − y( )[ ] − A xw[ ]( )( ). (27)

By using the Aboodh transform-based homotopy perturbation
method, the series solution is expressed by

x w, t( ) �∑∞
n�0

pnxn w, t( ), y w, t( ) �∑∞
n�0

pnyn w, t( ). (28)

The system of equations in Eq. 27 gets the following form after
employing the aforestated equation:

∑∞
n�0

pnxn w,t( ) � 1+ ew −2t+p A−1 1
u
A ∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠

w

⎡⎢⎢⎣⎛⎝⎧⎪⎨⎪⎩
+ ∑∞

n�0
pnxn w,t( )−∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠])},

∑∞
n�0

pnyn w,t( ) � −1+ ew −2t

+p A−1 1
u
A ∑∞

n�0
pnxn w,t( )−∑∞

n�0
pnyn w,t( )⎛⎝ ⎞⎠⎡⎢⎢⎣⎛⎝⎧⎨⎩

− ∑∞
n�0

pnyn w,t( )⎛⎝ ⎞⎠
w

])}.
(29)

By comparing the coefficient of like powers of p, we have

p0:
x0 w, t( ) � 1 + ew − 2t
y0 w, t( ) � −1 + ew − 2t,

{ (30)

p1:
x1 w, t( ) � tew + 2t
y1 w, t( ) � −tew + 2t,

{ (31)

p2:

x2 w, t( ) � t2

2!
ew

y2 w, t( ) � t2

2!
ew,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (32)

p3:

x3 w, t( ) � t3

3!
ew

y3 w, t( ) � −t
3

3!
ew,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (33)

..

.

..

.

Therefore, the solution in the form of an infinite series by using
Eq. 14 can be expressed as

x w, t( ) � 1 + ew 1 + t + t2

2!
+ t3

3!
+/( ),

y w, t( ) � −1 + ew 1 − t + t2

2!
− t3

3!
+/( ) (34)

or in its convergent form as

x w, t( ) � 1 + ew+t,
y w, t( ) � −1 + ew−t,

(35)

which is the exact solution of Eq. 24.

3.3 The system of inhomogeneous non-
linear PDEs

Suppose the following inhomogeneous non-linear system of
PDEs:

xt + xwy + x � 1,
yt − xyw + y � 1,

(36)

with initial conditions

x w, 0( ) � ew,
y w, 0( ) � e−w.

(37)

Employing the Aboodh transform on each side of the equations
in Eq. 36 and then applying the given initial conditions give

x w, u( ) � ew

u2 +
1

u3 −
1
u

A xyw[ ] + A x[ ]( ),
y w, u( ) � e−w

u2 + 1

u3 +
1
u

A xyw[ ] + A y[ ]( ). (38)

Taking the inverse Aboodh transform on each side, we obtain

x w, t( ) � ew + t − A−1 1
u

A xyw[ ] + A x[ ]( )( ),
y w, t( ) � e−w + t + A−1 1

u
A xyw[ ] + A y[ ]( )( ). (39)

According to the Aboodh transform-based homotopy
perturbation method, the solution functions x(w, t) and y(w, t)
are series solutions, and inserting these series into both sides of each
equation of the system yields

∑∞
n�0

pnxn w, t( ) � ew + t − p A−1 1
u

A ∑∞
n�0

pnH1n x, y( )⎡⎣ ⎤⎦⎛⎝ ⎞⎠ +∑∞
n�0

pnxn w, t( )⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭ ,

∑∞
n�0

pnyn w, t( ) � e−w + t + p A−1 1
u

A ∑∞
n�0

pnH2n x, y( )⎡⎣ ⎤⎦⎛⎝ ⎞⎠ +∑∞
n�0

pnyn w, t( )⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭,

(40)
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where the non-linear terms xwy and xyw are denoted by He’s
polynomials H1n(x, y) and H2n(x, y), respectively. A few He’s
polynomials are

H10 x, y( ) � y0x0w,
H11 x, y( ) � y1x0w + y0x1w,
H12 x, y( ) � y2x0w + y1x1w + y0x2w,

..

.

..

.

(41)

H20 x, y( ) � x0y0w,
H21 x, y( ) � x1y0w + x0y1w,
H22 x, y( ) � x2y0w + x1y1w + x0y2w,

..

.

..

.

(42)

By comparing the coefficient of like powers of p, we have

p0:
x0 w, t( ) � ew + t
y0 w, t( ) � e−w + t,

{ (43)

p1:

x1 w, t( ) � − t + t2

2!
+ tew + t2

2!
ew( )

y1 w, t( ) � − t + t2

2!
+ te−w + t2

2!
e−w( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (44)

p2:

x2 w, t( ) � t2

2!
+ t2ew

y2 w, t( ) � t2

2!
+ t2e−w,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (45)

..

.

..

.

Therefore, the solution in the form of an infinite series by using
Eq. 14 can be expressed as

x w, t( ) � ew 1 − t + t2

2!
− t3

3!
+/( ),

y w, t( ) � e−w 1 + t + t2

2!
+ t3

3!
+/( ) (46)

FIGURE 1
Error estimations for the casting process at β = 1 and x = 0.5, 1, 2.

FIGURE 2
Error estimations for the molding process at β = 1 and x = 0.5, 1, 2.
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or in its convergent form as

x w, t( ) � ew−t,
y w, t( ) � e−w+t,

(47)

which is the exact solution of Eq. 36.

4 Time-fractional casting-mold system

Now, we turn back to a time-fractional casting-mold system
which models the temperature distribution in the casting and
molding processes. For this, two heat conduction equations are
used with initial and Dirichlet boundary conditions [45]. The
mathematical model is depicted as follows:

zβZ t, x( )
ztβ

� a
z2Z t, x( )

zx2 ,

zβN t, x( )
ztβ

� b
z2N t, x( )

zx2 ,

(48)

where a, b are parameters,Z,N are functions of time t and space x that
represent the temperature on casting and molding plates, respectively,
and β is the fractal dimension. For more details on the modeling aspect
of the aforementioned model, readers can see [45].

It is necessary to point out that Eq. 48 was originally studied in [45],
where the series solution was presented and no closed-form solution was
formulated. Our aim here is to overcome the main shortcomings in [45]
and to offer a totally new hope for numerical approximation. To this end,
applying the Aboodh transform in the aforementioned system, we have

A Z t, x( )[ ] � 1

uβ ∑m−1

k�0

Z k( ) 0, x( )
u2−β+k + A a

z2Z t, x( )
zx2[ ]⎛⎝ ⎞⎠,

A N t, x( )[ ] � 1

uβ
∑m−1

k�0

N k( ) 0, x( )
u2−β+k + A b

z2N t, x( )
zx2[ ]⎛⎝ ⎞⎠. (49)

Now, by inverse Aboodh transformation, we obtain

Z t, x( ) � A−1 1

uβ
∑m−1

k�0

Z k( ) 0, x( )
u2−β+k + A a

z2Z t, x( )
zx2[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

N t, x( ) � A−1 1

uβ ∑m−1

k�0

N k( ) 0, x( )
u2−β+k + A b

z2N t, x( )
zx2[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (50)

which can further be written as

Z t, x( ) � Z 0, x( ) + A−1 1

uβ
A a

z2Z t, x( )
zx2[ ]( )[ ],

N t, x( ) � N 0, x( ) + A−1 1

uβ
A b

z2N t, x( )
zx2[ ]( )[ ]. (51)

According to the standard HPM [33, 34], the solution Z and N
can be expanded into a finite series as

Z � ∑∞
m�0

pmZm, N � ∑∞
m�0

pmNm. (52)

By substituting Eq. 52 in Eq. 51, the solution can be
written as

∑∞
m�0

pmZm � Z 0, x( ) + p A−1 1

uβ
A a

z2Z t, x( )
zx2[ ]( )[ ]( ),

∑∞
m�0

pmNm � N 0, x( ) + p A−1 1

uβ
A a

z2Z t, x( )
zx2[ ]( )[ ]( ). (53)

Equating coefficients of powers of p, we yield the following:

p0:
Z0 t, x( ) � Z 0, x( )
N0 t, x( ) � N 0, x( ),{ (54)

p1:

Z1 t, x( ) � A−1 1

uβ
A aZ0( )[ ]

N1 t, x( ) � A−1 1

uβ
A bN0( )[ ],

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (55)

p2:

Z2 t, x( ) � A−1 1

uβ
A aZ1( )[ ]

N2 t, x( ) � A−1 1

uβ
A bN1( )[ ],

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (56)

..

. ..
.

..

. ..
.

The approximate solution can be obtained as

Z � Z0 + Z1 + Z2 +/,
N � N0 +N1 +N2 +/.

(57)

4.1 Example

We consider the system expressed in Eq. 48 for the case
a � 1, b � 1,Z(0, x) � e2x,N(0, x) � ex. By utilizing Eqs 54–56, we
have

Z0 � e2x, N0 � ex,

Z1 � e2xtβ

Γ 1 + β( ), N1 � extβ

Γ 1 + β( ),
Z2 � e2xt2β

Γ 1 + 2β( ), N2 � ext2β

Γ 1 + 2β( ),
Z3 � e2xt3β

Γ 1 + 3β( ), N3 � ext3β

Γ 1 + 3β( ),
..
. ..

.

..

. ..
.

By employing Eq. 57, the solution can be written as

Z t, x( ) � e2x + e2xtβ

Γ 1 + β( ) + e2xt2β

Γ 1 + 2β( ) + e2xt3β

Γ 1 + 3β( ) +/,

N t, x( ) � ex + extβ

Γ 1 + β( ) + ext2β

Γ 1 + 2β( ) + ext3β

Γ 1 + 3β( ) +/.

(58)
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The expressions are similar to those obtained by the fractional
complex transform [46–49]. In the closed form, we obtain

Z t, x( ) �∑n
k�0

e2xtkβ

Γ 1 + kβ( ) � e2xEβ tβ( ),
N t, x( ) �∑n

k�0

extkβ

Γ 1 + kβ( ) � exEβ tβ( ), (59)

where Eβ(tβ) is the Mittag-Leffler function [50]. One can check that
Eq. 59 is an exact solution of Eq. 48 for the said parameters.

4.2 Results and discussion

This section is devoted to test the applicability and validity of
the suggested technique for the time-fractional casting-mold
system over the series-based solution of the same model.

Figures 1, 2 present the errors of the series solutions obtained
by the HPM [45] for the fractal dimension β = 1. It is observed
that for all the parameters and for both casting and molding
processes, the errors grow exponentially for the case of a series
solution [45] and can be reduced by adding more terms in the
solution. On the other hand, the suggested solution has the exact
solution, and there is no chance of error even for a larger range of
t. Therefore, based on these findings, we can say that the
proposed technique is more effective than the previous
method [45].

5 Conclusion

The Aboodh transform-based homotopy perturbation
method is successfully employed to solve traditional
differential equations and fractional differential equations
successfully. This approach has been shown to have the
potential to solve both linear and non-linear problems. For a
linear system, the exact solution is predicted, while for a non-
linear system, with the help of He’s polynomials, a series
solution is obtained, which converges fast to the exact one.
So, the method pushes the progress of non-linear science and
will make a “big change” to increase the number of practical
applications, and this paper serves as a model for other
applications.
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Nomenclature

f continuous piecewise function

A Aboodh transform operator

w independent variable

L Linear operator

x, y dependent variable

p purturbation parameter

A−1 inverse Aboodh transform operator

M mapping from X to Y

λ parameter

Z temperature at casting plate

Eβ(.) Mittag-Leffler function

β fractal dimension

t time

u transformed variable

g1 , g2 functions of independent variables

N1 ,N2 Nonlinear operators

K1 ,K2 functions of variable w

H He’s polynomials

X,Y Banach spaces

μ fixed point

s, s* elements of Banach space

N temperature at molding plate

Γ(.) Gamma function

a, b parameters of casting and molding
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On the asymptotically cubic
generalized quasilinear
Schrödinger equations with a
Kirchhoff-type perturbation
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In this paper, we consider the non-existence and existence of solutions for a
generalized quasilinear Schrödinger equation with a Kirchhoff-type perturbation.
When the non-linearity h(u) shows critical or supercritical growth at infinity, the
non-existence result for a quasilinear Schrödinger equation is proved via the
Pohožaev identity. If h(u) shows asymptotically cubic growth at infinity, the
existence of positive radial solutions for the quasilinear Schrödinger equation is
obtained when b is large or equal to 0 and b is equal to 0 by the variational
methods. Moreover, some properties are established as the parameter b tends
to be 0.

KEYWORDS

quasilinear Schrödinger equations, Kirchhoff-type perturbation, asymptotically cubic
growth, non-existence, positive solutions

1 Introduction

The Schrödinger equation [1] is of paramount importance in physics, and there are
many modifications in literature, for example, the Chen–Lee–Liu equation [2] and stochastic
Schrödinger equation [3]. However, the generalized quasilinear Schrödinger equation with a
Kirchhoff-type perturbation was rarely studied in literature, which can be written as

1 + b∫
R3
g2 u( )|∇u|2dx( ) −div g2 u( )∇u( ) + g u( )g′ u( )|∇u|2[ ] + V x( )u � h u( ), (1.1)

where x ∈ R3, b≥ 0, V: R3 → R and h: R → R are continuous functions, g ∈ C1(R,R+)
satisfies (g1), g is even, g′(t) ≤ 0, g(0) � 1, lim

t→+∞g(t) � l, l ∈ (0, 1), and ∀ t ≥ 0.
When b = 0, Eq. 1.1 is reduced to the following quasilinear Schrödinger equation:

−div g2 u( )∇u( ) + g u( )g′ u( )|∇u|2 + V x( )u � h u( ), x ∈ R3. (1.2)
According to [4], let g(u) �

															
1 + 2(φ′(|u|2))2u2

√
, then, Eq. 1.2 is transformed into

−△u − △ φ |u|2( )( )[ ]φ′ |u|2( )u + V x( )u � h u( ), x ∈ R3. (1.3)
It is well-known that the classical case is φ(s) = s or φ(s) � 				

1 + s
√

[5–12].
For Eq. 1.1, another interesting question is b > 0. When g(t) = 1 for all t ∈ R, it is reduced

to the following classical Kirchhoff equation:
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− 1 + b∫
R3
|∇u|2dx( )Δu + V x( )u � h u( ), x ∈ R3. (1.4)

It is well-known that Eq. 1.4 is related to the stationary analog of
the following Kirchhoff-type equation:

utt + 1 + b∫
R3
|∇u|2dx( )Δu + V x( )u � h u( ), x ∈ R3, (1.5)

which was proposed by Kirchhoff as an extension of the classical
D’Alembert’s wave equation for free vibrations of elastic strings
[13,14]. More physical background can be found in [15] and the
references therein. Based on the aforementioned analysis, it is
necessary to study Eq. 1.1.

1.1 Related works and main results

At first, let us briefly review the predecessors’ pioneering works
about the problem [16–20]. However, to the best of our knowledge,
there are no works involving Eq. 1.1 when the non-linearity h(u) is
asymptotically cubic at infinity. More information about the
asymptotically cubic problems is given in [21,22] and the
references therein. The main goal of the present paper is to
investigate this problem. Precisely, we suppose that

(V1) V(x) � V(|x|), 0<V0 ≤V(x)≤V∞ ≔ lim
|x|→+∞

V(x)<∞;

(V2) V ∈ C1(R3,R) and 〈∇V(x), x〉≤ 0,∀ x ∈ R3;
(h1) h ∈ C(R,R), h(t) = 0, ∀ t ≤ 0, and lim

t→0

h(t)
t � 0;

(h2) lim
|t|→+∞

|h(t)|
|t|3 � γ, γ> bl4λ1, where

λ1 ≔ inf ∫
R3
|∇w|2dx( )2

: w ∈ H, ∫
R3
|w|4dx � 1{ }

and H is defined in Section 2;

(h3) 1
4 h(t)t≥H(t) for all t > 0, where H(t) � ∫t

0
h(s)ds.

Remark 1.1: For example, h(t) � γt5

1+t2. By direct calculations, we have

H t( ) � γt4

4
− γt2

2
+ γ

2
ln 1 + t2( ).

It is easy to observe that h satisfies the assumption (h1) − (h3).
The first result involves non-existence for the Kirchhoff-type

perturbation problem.
Theorem 1.1: Assume that (g1) holds with 1

3≤ l≤ 1 and 〈∇V(x), x〉≥
0. For any b > 0, Eq. 1.1 has no non-trivial solutions with h(u) = |
u|p−2u, p ≥ 6.

The next result describes the existence for generalized
quasilinear Schrödinger equations with the Kirchhoff term.
Theorem 1.2: Assume that (V1), (V2), (g1), (h1), and (h2) are
satisfied. Then, Eq. 1.1 has a positive radial solution.

The third result shows the existence for generalized quasilinear
Schrödinger equations without the Kirchhoff term.
Theorem 1.3: Assume that (V1), (V2), (g1), and (h1) − (h3) are
satisfied. Then, Eq. 1.2 has a positive radial solution.

Compared with Theorem 1.2, without the Kirchhoff term∫
R3g2(u)|∇u|2dx, we find that we need to add the condition

(h3). Until now, we have not been able to remove it. A natural

question is that what happens if Kirchhoff-type perturbation occurs,
that is, when b → 0, can we build a relationship between Theorem
1.2 and 1.3? In this regard, we state the following.
Theorem 1.4: Assume that (V1), (V2), (g1), and (h1) − (h3) hold and
{ubn} ⊂ H are the positive radial solutions obtained in Theorem
1.2 for each n ∈ N. Then, ubn → u0 inH as bn→ 0, n→∞, where u0
is a positive radial solution for Eq. 1.2.

1.2 Our contributions and methods

We should mention that our results are new since we focus on
the asymptotically cubic case. Compared with [16,19,20], we know
that in Theorem 1.1, our non-linear term in the autonomy problem
Eq. 1.1 is supercritical, so we invoke the Pohožaev-type identity. As
for Theorem 1.2, the problem is asymptotically 3-linear at infinity
(i.e., h(t) ~ t3), so it is different from [16]. We take full advantage of
the condition h2, and this is our paper’s highlight. We borrow the
idea from [16], but we require more elaborate estimates (see Lemma
3.2–3.4) to prove Theorem 1.3. It is worth pointing out that in
Theorem 1.3, it seems that the condition (h3) is fussy, but our pursuit
is not to relax the condition. Our condition (h3) is different from
([16], h5), and we adopt the idea from [23], Lemma 2.2 to obtain
mountain pass geometry (see Lemma 3.5). Finally, we study the
behavior of the positive radial solutions as b → 0. Since we do not
know whether u0 is unique, we cannot draw the conclusion that u0 is
obtained in Theorem 1.2.

1.3 Organization

This paper is organized as follows. Section 2 provides some
preliminaries, and Section 3 is divided into three parts, which will
prove Theorems 1.1–1.3, respectively. The proof of Theorem1.4 is given
in Section 3. Throughout this paper, the following notations are used:

• ‖u‖p (1 < p ≤ ∞) is the norm in Lp(R3);
• → and . denote strong and weak convergence, respectively;
• 〈·, ·〉 denotes the duality pairing between a Banach space and
its dual space;

• on(1) denotes on(1) → 0 as n → ∞.

2 Preliminary results

Since the condition (V1), we use the work space

H ≔ u ∈ H1 R3( ): u x( ) � u |x|( ){ },
equipped with the norm

‖u‖2H � ∫
R3

|∇u|2 + V x( )u2( )dx. (2.1)

According to [16], the energy functional associated with Eq. 1.1 is

Ib u( ) � 1
2
∫

R3
g2 u( )|∇u|2dx + 1

2
∫

R3
V x( )|u|2dx + b

4
∫

R3
g2 u( )|∇u|2dx( )2

−∫
R3H u( )dx,

whereH(t) � ∫t

0
h(s)ds. We require the change of variable [24–27]

Frontiers in Physics frontiersin.org02

Li et al. 10.3389/fphy.2023.1185846

44

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1185846


v � G u( ) � ∫u

0
g t( )dt, (2.2)

and I(u) can be reduced to

Jb v( ) � 1
2
∫

R3
|∇v|2dx + 1

2
∫

R3
V x( )|G−1 v( )|2dx + b

4
∫

R3
|∇v|2dx( )2

−∫
R3
H G−1 v( )( )dx, (2.3)

where G−1(v) is the inverse of G(u).
Clearly, we have the following lemma (see [16]).

Lemma 2.1: Assume that (V1) holds. If v ∈ H is a critical point of Jb,
then u = G−1(v) is a weak solution of Eq. 1.1.

3 Proof of the main results

3.1 Proof of Theorem 1.1

By a standard argument in [28], we can obtain the following
Pohožaev type.
Lemma 3.1: If v ∈ H is a weak solution of Eq. 1.1 with h(t) = |t|p−2t,
p ≥ 6, then v satisfies

1
2
∫

R3
|∇v|2dx +3

2
∫

R3
V x( )|G−1 v( )|2dx + 1

2
∫

R3
〈∇V x( ), x〉|G−1 v( )|2dx

+b
2

∫
R3
|∇v|2dx( )2

� 3
p
∫

R3
|G−1 v( )|pdx.

Based on the identity, we can provide the proof of Theorem 1.1.
Indeed, v satisfies∫

R3 |∇v|2dx + ∫
R3
V x( ) G−1 v( )

g G−1 v( )( ) vdx + b ∫
R3
|∇v|2dx( )2

� ∫
R3

|G−1 v( )|p−2G−1 v( )
g G−1 v( )( ) vdx.

Since 1
3≤ l≤ 1, using (5) of Lemma 2.1 in [29], jointly with 〈∇V(x),

x〉≥ 0, we can obtain 0 = u = G−1(v).

3.2 Proof of Theorem 1.2

This section provides the proof of Theorem 1.2. Clearly, as
mentioned previously, we are devoted to studying the functional Jb
[Eq. 2.3]. Since our case is asymptotically cubic, it is hard to prove
the boundedness of the PS-sequences of Jb. Hence, we use [30],
Theorem 1.1 to find a special bounded PS-sequence of Jb,μ, where

Jb,μ v( ) ≔ 1
2
∫

R3
|∇v|2dx + 1

2
∫

R3
V x( )|G−1 v( )|2dx + b

4
∫

R3
|∇v|2dx( )2

−μ∫
R3H G−1 v( )( )dx,

μ ∈ [1, 2]. We have the following lemma.
Lemma 3.2: Assume that (h1)–(h2) are satisfied, then

(i) for μ ∈ [1, 2], there exists v ∈ H\{0} such that Jb,μ(v) < 0.
(ii) there exists ρ, α > 0 such that Jb,μ(v) ≥ α and ‖v‖H � ρ.

Proof. (i) It is well-known that λ1 > 0 is attained [ ([31]; Section
1.7)]. In other words, ϕ ∈ H satisfied∫

R3 |ϕ|4dx � 1 and ϕ> 0 such that

λ1 � ∫
R3
|∇ϕ|2dx( )2

.

In view of (h2), 1< 1
l2, and 1 ≤ μ ≤ 2, jointly with (3) and (4) of Lemma

2.1 in [29], we have

lim
t→+∞

Jb,μ tϕ( )
t4

< lim
t→+∞

1

l2t2
‖ϕ‖2H + b

4
∫

R3
|∇ϕ|2dx( )2

− μ∫
R3

H G−1 tϕ( )( )
|G−1 tϕ( )|4 |G−1 tϕ( )|4

|tϕ|4 |ϕ|4dx[ ]
≤
b

4
∫

R3
|∇ϕ|2dx( )2

− bλ1
4
∫

R3
|ϕ|4dx

� 0.

Hence, when t is large, let v≔ tϕ, and we obtain the results.
(ii) Let ε ∈ (0, l2V0

2μ ), then we obtain

Jb,μ v( )≥ 1
2
∫

R3
|∇v|2dx + 1

2
∫

R3
V0 − με

l2
( )|v|2dx − Cεμ

qlq
∫

R3
|v|qdx.

(3.1)
Hence, we can choose ‖v‖H � ρ> 0 small enough such that
Jb,μ(v) > 0.

Define

A v( ) ≔ 1
2
∫

R3
|∇v|2 + V x( )|G−1 v( )|2[ ]dx + b

4
∫

R3
|∇v|2dx( )2

,

B v( ) ≔ ∫
R3H G−1 v( )( )dx.

It is deduced from (V1) and (3) of Lemma 2.1 in [29] that

A v( )> 1
2
‖v‖2H → +∞, as ‖v‖H → ∞, ∀ v ∈ H.

Moreover, from (h1), it can be observed that B(v) �∫
R3H(G−1(v))dx≥ 0,∀ v ∈ H.
Using [30], Theorem 1.1 or [16], Theorem 4.1, it shows that for

a.e. μ ∈ [1, 2], there is a bounded (PS)cμ sequence {vn} ⊂ H, where cμ
is the mountain pass level.
Lemma 3.3: Up to a subsequence, vn → vμ in H.
Proof: Since {vn} ⊂ H is bounded, up to a subsequence, there exists
vμ ∈ H such that vn. vμ, inH, vn→ vμ, in Lp(R3) for 2 < p < 6, and
vn(x) → vμ(x) a.e. x ∈ R3. Obviously, Jb,μ′ (vμ) � 0. Then,

on 1( ) � 〈Jb,μ′ vn( ) − Jb,μ′ vμ( ), vn − vμ〉

� ∫
R3
|∇ vn − vμ( )|2dx + ∫

R3
V x( ) G−1 vn( )

g G−1 vn( )( ) − G−1 vμ( )
g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦

vn − vμ( )dx + b[∫
R3
|∇vn|2dx∫

R3
∇vn∇ vn − vμ( )dx

− ∫
R3
|∇vμ|2dx∫

R3
∇vμ∇ vn − vμ( )dx]

− μ∫
R3

h G−1 vn( )( )
g G−1 vn( )( ) − h G−1 vμ( )( )

g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦ vn − vμ( )dx.
(3.2)

We define φ: R → R by φ(t) =G−1(t)/g(G−1(t)). Noting that l < g(t) ≤
1 for t ∈ R, jointly with [29], (2) of Lemma 2.1, we have

φ′ t( ) � 1
g2 G−1 t( )( ) 1 − G−1 t( )g′ G−1 t( )( )

g G−1 t( )( )[ ]≥ 1
g2 G−1 t( )( )≥ 1.
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According to the mean value theorem, for any x ∈ R3, there exists a
function ξ(x) between vμ(x) and vn(x) such that

∫
R3V x( ) G−1 vn( )

g G−1 vn( )( ) − G−1 vμ( )
g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦ vn − vμ( )dx � ∫

R3V x( )φ′ ξ( )|vn − vμ|2dx
≥∫

R3V x( )|vn − vμ|2dx.
(3.3)

It is easy to check that∫
R3 |∇vn|2dx∫

R3
∇vn∇ vn − vμ( )dx−

∫
R3
|∇vμ|2dx∫

R3
∇vμ∇ vn − vμ( )dx

� ∫
R3

|∇vn|2 − |∇vμ|2[ ]dx∫
R3
∇vn∇ vn − vμ( )dx

+∫
R3
|∇vμ|2dx∫

R3
|∇ vn − vμ( )|2dx

→ 0, n → ∞ . (3.4)
Noting that [29], (3) of Lemma 2.1, we obtain

∫
R3

h G−1 vn( )( )
g G−1 vn( )( ) − h G−1 vμ( )( )

g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦ vn − vμ( )dx∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

≤C∫
R3

|vn| + |vn|q−1 + |vμ| + |vμ|q−1( )|vn − vμ|dx. (3.5)

Therefore, vn → vμ in H.
It is easy to check the following lemma.

Lemma 3.4: If v ∈ H is a critical point of Jb,μ(v), then v satisfies

1
2
∫

R3
|∇v|2dx +3

2
∫

R3
V x( )|G−1 v( )|2dx + 1

2
∫

R3
〈∇V x( ), x〉|G−1 v( )|2dx

+b
2

∫
R3
|∇v|2dx( )2

� 3μ∫
R3
H G−1 v( )( )dx.

Up to this point, we can prove Theorem 1.3. In fact, it is deduced
from Lemma 3.2 and 3.3 that there exists {μn} ⊂ [1, 2] such that
lim
n→∞ μn � 1, vμn ∈ H satisfies Jb,μn(vμn) � cμn > 0, Jb,μn′ (vμn) � 0. Next,
we prove {vμn} is bounded inH. Since themap μ→ cμ is non-increasing,
combining with Lemma 3.4 and condition (V2), we obtain

M ≥ Jb,μn vμn( )
� 1
3
∫

R3
|∇vμn|2dx − 1

6
∫

R3
〈∇V x( ), x〉|G−1 vμn( )|2dx + b

12
∫

R3
|∇vμn|2dx( )2

≥
1
3
∫

R3
|∇vμn|2dx. (3.6)

It is easy to check that∫
R3 |∇vμn|2dx + ∫

R3
V x( ) G−1 vμn( )

g G−1 vμn( )( )vμndx + b ∫
R3
|∇vμn|2dx( )2

� μn∫R3

h G−1 vμn( )( )
g G−1 vμn( )( )vμndx

≤
εμn
l2
∫

R3
|vμn|2dx + Cεμn

l6
∫

R3
|vμn|6dx

≤
εμn
l2
∫

R3
|vμn|2dx + CεμnS

l6
∫

R3
|∇vμn|2dx( )3

≤
εμn
l2
∫

R3
|vμn|2dx + CεμnS

l6
3M( )3.

Moreover, using (3) and (5) of Lemma 2.1 in [29], it is deduced from
condition (V1) that

∫
R3
V0|vμn|2dx≤∫

R3
|∇vμn|2dx + ∫

R3
V x( ) G−1 vμn( )

g G−1 vμn( )( )vμndx
+b ∫

R3
|∇vμn|2dx( )2

≤
εμn
l2
∫

R3
|vμn|2dx + CεμnS

l6
3M( )3.

Let ε � l2V0
2μn

, then we obtain

∫
R3
|vμn|2dx≤

2SCεμn
l6V0

3M( )3. (3.7)

From Eqs 3.6, 3.7, we know that {vμn} is bounded in H.
A subsequence of {vμn} is selected and also denoted by {vn}, such

that vn. v inH. Similar to the proof of Lemma 3.3, we obtain vn→
v inH. It is well-known that μ↦cμ is continuous from the left [ ([16],
Theorem 4.1)]. So,

lim
n→∞

Jb vμn( ) � lim
n→∞

Jb,μn vμn( ) + μn − 1( )∫
R3
H G−1 vμn( )( )dx[ ]

� lim
n→∞

cμn � ~c.

In addition,

lim
n→∞ 〈Jb′ vμn( ),ψ〉 � lim

n→∞ 〈Jb,μn′ vμn( ), ψ〉 + μn − 1( )∫
R3

h G−1 vμn( )( )
g G−1 vμn( )( )ψdx⎡⎢⎣ ⎤⎥⎦

� 0,

for any ψ ∈ C∞
0 (R3), which means that Jb′(v) � 0 satisfies

Jb(v) � ~c> 0. Let v− = min{v, 0}. Using (3) and (5) of Lemma
2.1 in [29], we have

0 � 〈Jb′ v( ), v−〉
� ∫

R3 |∇v−|2 + V x( ) G−1 v−( )
g G−1 v−( )( )v−( )dx

≥ ∫
R3 |∇v−|2 + V x( )|v−|2( )dx. (3.8)

It shows that v−≡ 0. Applying the strong maximum principle, we
obtain v(x) > 0.

3.3 Proof of Theorem 1.3

This section studies the case 1
4 h(t)t≥H(t) for all t > 0 and

without the Kirchhoff term ∫
R3g2(u)|∇u|2dx. At first, let us check

the mountain pass geometry of the functional J0.
Lemma 3.5: Assume that (h1)–(h2) are satisfied, then

(i) there exists v ∈ H\{0} such that J0(v) < 0.
(ii) there exist ρ, α > 0 such that J0(v) ≥ α, ‖v‖H � ρ.
Proof (i) Motivated by Lemma 2.2 of [23], we need to study the
following equation:

−Δv + V∞
G−1 v( )

g G−1 v( )( ) �
h G−1 v( )( )
g G−1 v( )( ), x ∈ R3. (3.9)

The corresponding functional is J0,∞(v). We also define the
mountain pass min–max level

c∞ � inf
ξ∈Γ∞

max
t∈ 0,1[ ]

J0,∞ ξ t( )( ),

where

Γ∞ � ξ ∈ C 0, 1[ ],H: ξ 0( ) � 0 ≠ ξ 1( ), J0,∞ ξ 1( )( )( < 0{ }.
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By the standard arguments, it shows that w ∈ H1(RN) is a solution
of Eq. 3.9, which satisfies J0,∞(w) = c∞. A continuous path
α: [0,+∞) → H is defined by α(t) (x) = w(x/t), if t > 0 and
α(0) = 0. Taking the derivative, we know that

d

dt
J0,∞ α t( )( ) � 1

2
∫
R3

|∇w|2dx + 3
2
t2∫

R3
V∞|G−1 w( )|2dx

−3t2∫
R3
H G−1 w( )( )dx.

Since w is a solution of Eq. 3.9, it satisfies the Pohožaev identity,

1
2
∫

R3
|∇w|2dx + 3

2
∫

R3
V∞|G−1 w( )|2dx � 3∫

R3
H G−1 w( )( )dx.

Therefore,

d

dt
J0,∞ α t( )( ) � 1

2
1 − t2( )∫

R3
|∇w|2dx.

The map t ↦ J0,∞(α(t)) achieves the maximum value at t = 1. By
choosing L > 0 sufficiently large, we have J0,∞(α(L)) < 0. Taking ζ(t) =
α(tL), we have ζ ∈ Γ∞. If ζy(t) ≔ w(·−ytL ), noting that (V1), we obtain

J0 ζy 1( )( ) � J0,∞ ζy 1( )( )
+ 1
2
∫

R3
V x + y( ) − V∞( )|G−1 ζy 1( )( )|2dx< 0,
for |y| is large.

Choosing e = ζy(1), we can obtain the result.
(ii) Similar to (ii) of Lemma 3.2, we obtain

J0 v( ) ≥
1
2
∫

R3
|∇v|2 + V x( )|v|2( )dx − ∫

R3

ε

2
|G−1 v( )|2 + Cε

q
|G−1 v( )|q( )dx

≥
C

4
‖v‖2H − C1Cε

qlq
‖v‖qH.

Hence, choosing ‖v‖H � ρ> 0 small enough, we can obtain the
desired conclusion.

Therefore, there is a (PS) c0 sequence {vn} ⊂ H where c0 is the
mountain pass level of the J0.
Lemma 3.6: {vn} is bounded.
Proof: Since G−1(vn)g(G−1(vn)) ∈ H, jointly with (h3) and [29], (2)
of Lemma 2.1], we obtain

c + on 1( ) � J0 vn( ) − 1
4
〈J0′ vn( ), G−1 vn( )g G−1 vn( )( )〉

≥
1
4
‖vn‖2H.

Hence, {vn} is bounded in H.
Similar to Lemma 3.3, we obtain the following result.

Lemma 3.7: Up to a subsequence, vn → v in H.
Proof of Theorem 1.3: It deduces from lemmas 3.5, 3.6, and

3.7 that Eq. 1.2 has a non-trivial solution v. Similar to Eq. 3.8, we
know that v(x)> 0, x ∈ R3.

4 Asymptotic properties of the positive
radial solution

Proof of Theorem 1.4: If vbn is a critical point of Jbn , which is
obtained in Theorem 1.2 for each n ∈ N. Similar to the proof of
Lemma 3.2, for bn → 0, n → ∞, {vbn} is a (PS)c sequence, which is
bounded in H. There exists a subsequence of {bn}, still denoted by
{bn}, such that vbn.v0 in H. It is easy to obtain

‖vbn − v0‖2H ≤ 〈Jbn′ vbn( ) − J0′ v0( ), vbn − v0〉
−bn∫

R3
|∇vbn|2dx∫

R3
∇vbn∇ vbn − v0( )dx

+∫
R3

h G−1 vbn( )( )
g G−1 vbn( )( ) − h G−1 v0( )( )

g G−1 v0( )( )[ ] vbn − v0( )dx
� on 1( ).

On one hand, in view of (3) of Lemma 2.1 in [29], we can use the
Lebesgue dominated convergence theorem to obtain

lim
n→∞∫

R3
V x( ) G−1 vbn( )ϕ

g G−1 vbn( )( )dx � ∫
R3
V x( ) G−1 v0( )ϕ

g G−1 v0( )( ) dx,

lim
n→∞∫

R3

h G−1 vbn( )( )ϕ
g G−1 vbn( )( ) dx � ∫

R3

h G−1 v0( )( )ϕ
g G−1 v0( )( ) dx.

On the other hand, we have 〈Jbn′ (vbn),ϕ〉 � on(1) and
〈J0′(v0), ϕ〉 � on(1). Moreover,

lim
n→∞∫

R3
∇vbn∇ϕdx � ∫

R3
∇v0∇ϕdx,

lim
n→∞

bn∫
R3
|∇vbn|2dx∫

R3
∇vbn∇ϕdx � 0.

Thus,∫
R3
∇v0∇ϕdx + ∫

R3
V x( ) G−1 v0( )

g G−1 v0( )( ) ϕdx � ∫
R3

h G−1 v0( )( )
g G−1 v0( )( ) ϕdx.

It shows that v0 is a positive solution of Eq. 1.2.
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A mini-review on release
oscillation in a hollow fiber

Ling Lin1 and Ya Li2,3*
1Ningbo Advanced Textile Technology & Fashion CAD Key Laboratory, Zhejiang Fashion Institute of
Technology, Ningbo, China, 2Zhejiang Sci-Tech University, College of Textile Science and Engineering
(International Silk College), Hangzhou, China, 3Laimei Technology Co., Ltd., Changxing, Huzhou,
Zhejiang, China

This mini-review aims at strengthening the links among textile science, physics,
and mathematics. The state-of-the-art technology for silver ions’ release from
hollow fibers is reviewed, its bottleneck problems are identified, and some open
problems are elucidated. The release oscillation opens a new era for modern
applications of hollow fibers containing silver ions.

KEYWORDS

hollow fiber, ions release, capillary rise, antibacterial property, nanofluid, fractal,
fractional calculus (FC)

1 Introduction

Hollow fibers have obvious advantages in that they are low density and have good
flexibility. Natural hollow fibers have even more amazing properties, for example, polar bear
hairs have remarkable thermal properties [1, 2]. Wang et al. elucidated the biomechanism of
the hollow hair of the polar bear using the fractal calculus with great success [3], Cui et al.
designed a biomimetic textile with good thermal insulation [4], and Liu et al. found a new
phenomenon of thermal oscillation in the thermal insulation [5]. Hollow-fiber liquid-phase
microextractionare is highly efficient for extraction of heavy metals and pharmaceuticals
[6–8]. The corresponding solvent, which should be of low polarity and immiscible with
water, is immobilized in the pores in the wall of hollow fibers and serves as a supported liquid
membrane. A larger number of reports have been published on the development of hollow
fibers as a green sample preparation technique requiring only a few microliters of organic
solvent per sample. Due to the protection of the acceptor phase by the supported liquid
membrane, hollow fibers are amenable to highly complex samples such as plasma, whole
blood, urine, saliva, breast milk, tap water, surface water, pond water, seawater, and soil
slurries [9].

The physical process of hollow fiber spinning always involves four steps: solution
formulation, extrusion, coagulation, and coagulated fiber treatment [10]. Thus far, the
electrospinning technique has been considered as a versatile and efficient method for the
fabrication of membranes with highly interconnected pore structures [11]. The flexibility of
device construction for electrospinning and the diversity of the post-treatment process to
electrospun membrane leaves vast scope for researchers to tailor the membrane structures
and properties; thus, polymeric nano-scale hollow fibers via electrospinning technology have
become popular, for example, bubble electrospinning might be a good candidate for hollow
fiber fabrication [12, 13].

This paper focuses on artificial hollow fibers containing silver particles [14, 15], with an
emphasis on the release oscillation [16–18].
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2 Antibacterial mechanism

Hollow fibers containing silver ions are widely used for
antibacterial and antifouling applications [19, 20]; when the fibers
are submerged in water, silver ions are gradually released from the
inner wall into the water.

Viruses and bacteria are generally quite small [21–23]. In
particular, some deadly viruses (e.g., the COVID-19 virus) have a
complex unsmooth surface, and a small surface has high surface
energy (geometric potential) [24–26], which can easily absorb silver
nanoparticles around the surface. The absorbed nanoparticles make
viruses and bacteria inactive [24].

On the other hand, silver ions react with water when ions are
adhered to the surface of bacteria or viruses:

Ag++H2O → AgOH +H+ (1)
Bacteria and viruses will be killed due to their exsiccosis and

hydrogen ions can react with macromolecules, which is the
mechanism of the antibacterial property of the hollow fibers
containing silver ions. Of course, however, a high concentration
of silver ions will be also harmful to human cells.

3 Capillary effect and diffusion process

The inner diameter of hollow fibers greatly affects the ions
release. A smaller diameter implies a higher capillary rise [27, 28]; as
a result, more ions can dissolve in water and the diffusion process
makes the ions release into the outside of the hollow fiber. Han and
He unlocked the secret of hollow fibers’ antifouling properties using
the capillary effect [29]. Environmental temperature and saline
water will affect the ions’ diffusion process [30–33].

Though hollow fibers with thinner diameters have better
capillary effect, the corresponding fabrication needs more costs,
meanwhile, the inner wall surface area is less, so there are less
loaded ions. The effects of the temperature on the diffusion process
and viruses and bacteria’s metabolism should also be considered,
as well as additionally the nanofluid mechanics [34–37] being of
paramount importance in studying the optimal design of the
hollow fiber’s geometrical structure and its effect on its
antibacterial properties.

4 Release oscillation and frequency
property

Due to environmental perturbation, the water in hollow
fibers is vibrated periodically, the mechanism of which was first
found in [17]. The vibrating water accelerates the release process;
however, the non-linear vibrations make it difficult to predict its
frequency properties. The governing equation can be expressed
as [17].

d2u

dt2
+ a + bu

L0 − u( ) u + u0( ) � 0 (2)

with initial conditions

u 0( ) � 0, u′ 0( ) � A (3)

where u is the capillary rise, a, b, and L0 are constants. The physical
understanding represented by each physical parameter is referred to
reference [17], and A is the initial velocity.

Solving Eq. 2 effectively is still an open problem. The possible
methods to solve Eq. 2 with the initial conditions of Eq. 3 include
mainly the homotopy perturbation method [38, 39], the Li-He
method [40–42], frequency-amplitude formulation [43], and the
variational principle [44].

For u, Eq. 2 can be approximately expressed as

d2u

dt2
+ a + bu

u0L0
1 + u

L0
( ) 1 − u

u0
( ) � 0 (4)

or

d2u

dt2
+ a

u0L0
+ 1
u0L0

a

L0
− a

u0
+ b( )u + 1

u0L0
− a

u0L0
+ b

L0
− b

u0
( )u2

− b

u0L0( )2u
3 � 0

(5)
This equation was studied in [45]; the quadratic non-linearity

will gradually consume the vibrating energy, and finally the vibrating
motion will stop (see the discussion in [46]).

5 Fractal-fractional model for ions
release

The unsmooth surface of the inner wall of the hollow fiber is
another important factor affecting the release process. Because any
physical laws are scale-dependent, the same phenomenon may lead
to debating theories if observed using different scales [47]. Capillary
effect plays an important role in the heat transmission of porous
media and capillary vibration significantly affects the capillary rise
or capillary pressure; therefore, the mass transfer or heat transfer will
be greatly affected [48]. Most capillary vibrations in the literatures
have assumed that the capillary tube is small and uniform; however,
capillary tubes are non-uniform in most porous media [24, 48]. The
capillary fluid moves extremely slowly, and its vibrations near its
equilibrium have an extremely low frequency [48]. Owing to two
types of capillary pressures (positive capillary pressure and negative
capillary pressure), the capillary pressure from porous media should
be taken into consideration [11]. Furthermore, capillary pressure is
affected by pore size, capillary pressure with different pore sizes has
been analyzed for the hydrophobic-hydrophilic interface in detail,
such as electrospun hollow nanofibers used in oil/water
separation [11].

The capillary effect has wide applications for
microelectromechanical systems and microfluidics devices, in
which the capillary vibration significantly affects its mass
transmission [48]. Nanofluid mechanics can be directly used for
describing the releasing process for the smooth boundary, so the
unsmooth boundary makes the release more difficult, but it is
amazing Wolfgang Pauli (1900–1958) once said that “God made
the bulk, the surface was invented by the devil”. The unsmooth
surface determines the release process and it can be modeled by the
two-scale fractal dimension [49] with ease. In the fractal space, Liu
et al. established a fractional model for the silver ions’ release
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oscillation [50]. The fractal-fractional model offers a new window
for studying the effect of the unsmooth boundary on the release
process. Fan et al. concluded that the fractal calculus plays an
important role in unlocking the mechanisms of natural fibers
[51]. Lu et al. provided two numerical approaches for finding the
approximated solutions of the time fractional Boussinesq-Burgers
equations without any linearization or complicated computation,
including the homotopy perturbation transform method and the
method based on the fractional complex transform and homotopy
perturbation method [52]. Afterwards, a numerical approach was
proposed for finding the approximated solutions of a fractal
modification of the Yao-Cheng oscillator based on the two-scale
fractal transformation and the global residue harmonic balance
method with He’s fractal derivative as well [53]. They also
proposed a combined technique for solving the fractional
modification of the non-linear oscillator with coordinate-
dependent mass [54]. Meanwhile, the numerical sensitive analysis
of the approximations were further considered with respect to
different amplitudes and parameters, confirming their high
efficiency and stability [53, 54]. Considering that two-scale
thermodynamics observes the same phenomenon using two
different scales, fractal calculus is adopted to establish governing
equations, and fractal variational principles are discussed for 1-D
fluid mechanics [47], modeling the ions’ release process from an
unsmooth boundary of the inner wall of the hollow fibers might be
possible.

6 Conclusion

Hollow fibers are now a research Frontier in textile engineering,
nanofluid mechanics, material science, non-linear science, physics,
and mathematics. This mini-review article provides a panoramic
view of the recent studies in this meaningful direction. It is still an
open problem to model the ions’ release process from an unsmooth

boundary of the inner wall of the hollow fibers; a mathematical
model for the fractal release oscillation might be more attractive and
promising. There is much opportunity and challenge, so this article
should be the beginning of future research, not only a review.
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Physical phenomena and natural disasters, such as tsunamis and floods, are
caused due to dispersive water waves and shallow waves caused by
earthquakes. In order to analyze and minimize damaging effects of such
situations, mathematical models are presented by different researchers. The
Wu–Zhang (WZ) system is one such model that describes long dispersive
waves. In this regard, the current study focuses on a non-linear (2 + 1)-
dimensional time-fractional Wu–Zhang (WZ) system due to its importance in
capturing long dispersive gravity water waves in the ocean. A Caputo fractional
derivative in the WZ system is considered in this study. For solution purposes,
modification of the homotopy perturbation method (HPM) along with the Laplace
transform is used to provide improved results in terms of accuracy. For validity and
convergence, obtained results are compared with the fractional differential
transform method (FDTM), modified variational iteration method (mVIM), and
modified Adomian decomposition method (mADM). Analysis of results
indicates the effectiveness of the proposed methodology. Furthermore, the
effect of fractional parameters on the given model is analyzed numerically and
graphically at both integral and fractional orders. Moreover, Caputo,
Caputo–Fabrizio, and Atangana–Baleanu approaches of fractional derivatives
are applied and compared graphically in the current study. Analysis affirms that
the proposed algorithm is a reliable tool and can be used in higher dimensional
fractional systems in science and engineering.
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Wu–Zhang system, fractional-order system, homotopy perturbation, Laplace transform,
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1 Introduction

The study of differential equations (DEs) is a pivotal topic as
they capture most of the real-world phenomena, i.e., earthquakes [1,
2], natural gas consumption [3, 4], current flow [5], and cooking [6].
These equations can additionally be characterized into linear and
non-linear differential equations. Many important and interesting
phenomena like electrical circuits [7, 8], DNA sequencing [9, 10],
disease modeling and analysis [11, 12], and food chain models [13,
14] are captured through differential equations. Since the order of a
DE describes the nature and scope of the captured phenomena, it is
therefore important for researchers to cater fractional-order
derivatives for a more general study of the physical aspects of the
considered phenomena. Fractional models allow better
understanding of model dynamics and facilitate researchers to
accurately predict changes in the physical systems. The chaos
theory [15], nanotechnology [16], fluid flow [17], cosmology
[18], and robotics [19] use differential equations for problem
formulation. These equations also frequently appear in many
branches of mathematics [20, 21], finance [22], economy [23],
and biology [24].

The phrase “fractal” was first created in 1975 by mathematician
Benoit Mandelbrot [25]. It is a geometric shape that exhibits the
same level of non-regularity on all scales. Fractals are infinite
patterns, which we frequently see in nature. Snowflakes, trees,
mountains, clouds, and coastlines represent fractals as they are
highly uneven at both large and small scales. Many important
models including the diffusion model of red ink [26] and thin
films [27], the vibration model for a concrete beam [28] and
electronic devices [29], and the COVID-19 mathematical model
[30] contain fractal geometry. The distinction between fractional
and fractal is that the former is a statement of a fractional number,
while the latter is a geometric figure that is similar at all scales.

The Wu–Zhang system [31] contains non-linear partial
differential equations (PDEs) and deals with the motion of water
waves in oceans. In 1996, three sets of model equations were first
derived by Wu and Zhang and named the Wu–Zhang system of
PDEs [31]. This system is used to customize several harbor and
coastal designs. This non-linear (2 + 1)-dimensional fractional
system describes shallow water dispersive long gravity waves in
two horizontal directions, which are given as

zζU
ztζ

+ U zU
zx

+ V zU
zy

+ zW
zx

� 0,

zζV
ztζ

+ U zV
zx

+ V zV
zy

+ zW
zy

� 0,

zζW
ztζ

+ z UW( )
zx

+ z VW( )
zy

+ 1
3

z3U
zx3 +

z3U
zxzy2 +

z3V
zx2zy

+ z3V
zy3( ) � 0,

(1)
where U and V represent the velocities at the surface of water in x and y
directions, while W depicts the elevation of water waves. The
aforementioned WZ system is a time fraction, while Wang and He
[32] concluded that when time is fractional, space must also be
fractional. This is called Wang–He’s spatiotemporal fractional
relationship (for more details see [32]). Due to the substantial
importance of WZ systems, many scholars have attempted to solve
and analyze these systems through variety of methodologies like mVIM

[33], ADM [34, 35], extended tanh and exp–function method [36], and
dynamical analysis method [37]. Recently, for more generalized
solutions and predictions, the WZ systems are also attempted
fractionally by few of the scientists. Kaur and Gupta discussed
dispersion analysis of the (2 + 1)-dimensional time-fractional WZ
system [38]. Patel and Patel investigated the fractional-order WZ
system analytically [39]. Different approaches of fractional
derivatives can be utilized, such as Caputo [40], Atangana–Baleanu
[41], Caputo–Fabrizio [42], and He’s fractional derivative [43].

In order to solve such highly non-linear fractional systems, many
analytical and numerical methodologies are utilized by different
researchers. Anjum et al. [44] applied Li–He’s modified homotopy
perturbation approach to solve the microelectromechanical system.
Baitiche et al. [45] used the monotone iterative method for fractional
DEs with non-linearity at the boundary. Do et al. [46] extended
Chebyshev wavelets to two-dimensional fractional DEs. Hashemi
et al. [47] investigated multi-term FDEs using minimization
techniques. Tian and Liu utilized the modified exp-function to
fractional PDEs in [48]. Furthermore, to solve complex problems, the
enhanced homotopy methods can be found in [49, 50]. In this study, a
hybrid algorithm is proposed by mixing the classical homotopy
perturbation method [51, 52] with the Laplace transform [53] along
with different fractional derivatives (Atangana–Baleanu,
Caputo–Fabrizio, and Caputo) for a highly non-linear time-fractional
(2 + 1)-dimensional WZ system. In the rest of the paper, Section
2 contains preliminary definitions. Section 3 contains the proposed
methodology for handling time-fractional (2 + 1)-dimensional WZ
system, whereas proof of convergence and error analysis are given in
Section 4. Solution and results and discussion are given in Sections 5 and
6, respectively, while a conclusion is given in Section 7.

2 Basic definitions

Definition 1: For a function U(t, x, y), the Caputo’s time-fractional
derivative CDζ

t is [54]

CDζ
tU t, x, y( ) � 1

Γ q − ζ( )∫t

0
t − G( )q−ζ−1U q( ) G, x, y( )dG,

q − 1< ζ ≤ q. (2)

Definition 2: According to [55], one can express the Laplace
transform L of the function U(t, x, y) that has been subjected to
the Caputo’s time-fractional derivative CDζ

t .

L CDζ
tU t, x, y( ){ } � sζL U t, x, y( ){ } − ∑q−1

p�0
sζ−p−1U p( ) 0, x, y( ),

q − 1< ζ ≤ q. (3)

Definition 3: The Caputo–Fabrizio’s time-fractional derivative
CFDζ

t of a function U(t, x, y) is [42]

CFDζ
tU t, x, y( ) � 1

1 − ζ
∫t

0
e
−ζ t−G( )
1−ζ

zU G, x, y( )
zG

dG, 0< ζ < 1. (4)
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Definition 4: The Laplace transform L of the Caputo–Fabrizio’s
time-fractional derivative CFDζ

t of a function U(t, x, y) is given
as [56]

L CFDζ+q
t U t, x, y( ){ } � sq+1L U t, x, y( ){ } − ∑q

p�0
sq−pU p( ) 0, x, y( )

s + ζ 1 − s( ) , 0< ζ ≤ 1.

(5)

Definition 5: A function U(t, x, y) in the sense of
Atangana–Baleanu’s time-fractional derivative ABDζ

t is stated
as [41]

ABDζ
tU t, x, y( ) � K ζ( )

1 − ζ
∫t

0
Eζ −ζ t − G( )ζ

1 − ζ
[ ] zU G, x, y( )

zG
dG, 0< ζ ≤ 1.

(6)

Here, K(ζ) is a normalization function with properties K(0) =
K(1) = 1.

Definition 6: The Laplace transform L connected with
Atangana–Baleanu time-fractional derivative ABDζ

t of a function
U(t, x, y) can be described as [57]

L ABDζ
tU t, x, y( ){ } � AB ζ( ).s

ζL U t, x, y( ){ } − sζ−1U 0, x, y( )
sζ 1 − ζ( ) + ζ

, 0≤ ζ ≤ 1.

(7)

Here, AB(ζ) is a normalization function.

Definition 7: He’s fractional derivative of a function U(t, x, y) can
be defined by [43]

Dζ
tU t, x, y( ) � 1

Γ q − ζ( ) dq

dtq
∫t

t0

G − t( )q−ζ−1 U0 G, x, y( ) − U G, x, y( )[ ]dG,
q − 1< ζ ≤ q. (8)

Definition 8: The core idea behind the two-scale dimension [58,
59], which commonly arises in the non-linear problem, is that while
self-similarity is difficult to uncover in practical applications, fractal
structures self-assemble on all scales. Creating models with the two-
scale dimension allows for the successful description of various
physical events.

Definition 9: A Banach space B is a normed space ‖. ‖, which is
complete with respect to the metric derived from its norm.

3 Hybrid algorithm for (2 + 1)-
dimensional time-fractional systems

Consider a (2 + 1)-dimensional, time-fractional system as

Dζ
tA1 t, x, y( ) + L Ar t, x, y( )[ ] +N Ar t, x, y( )[ ] − l t, x, y( ) � 0,

Dζ
tA2 t, x, y( ) + L Ar t, x, y( )[ ] +N Ar t, x, y( )[ ] −m t, x, y( ) � 0,

Dζ
tA3 t, x, y( ) + L Ar t, x, y( )[ ] +N Ar t, x, y( )[ ] − n t, x, y( ) � 0,
r � 1, 2, 3, t> 0,
q − 1< ζ ≤ q,

(9)
that has initial conditions

A1 0, x, y( ) � J 1,
A2 0, x, y( ) � J 2,
A3 0, x, y( ) � J 3,

(10)

where the unknown functionsA1(t, x, y),A2(t, x, y), andA3(t, x, y)
have time-fractional derivatives, and Dζ

t , l(t, x, y), m(t, x, y), and
n(t, x, y) are some of its known functions. The symbols N and L
represent non-linear and linear operators, respectively.

The procedure will start by applying the Laplace transform on
(9), which gives

L Dζ
t A1 t,x,y( )[ ]{ }+L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]{

− l t,x,y( )} � 0,L Dζ
t A2 t,x,y( )[ ]{ }+L L Ar t,x,y( )[ ]{

+N Ar t,x,y( )[ ]−m t,x,y( )}� 0,L Dζ
t A3 t,x,y( )[ ]{ }

+L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]−n t,x,y( ){ } � 0.

(11)
Now, by utilizing the basic definitions given in Section 2, we can find the
Laplace transform of the fractional derivative. Definition (2) gives

L A1 t,x,y( )[ ]− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]{ +N Ar t,x,y( )[ ]− l t,x,y( )}� 0,

L A2 t,x,y( )[ ]− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]{ +N Ar t,x,y( )[ ]−m t,x,y( )}� 0,

L A3 t,x,y( )[ ]− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]{ +N Ar t,x,y( )[ ]−n t,x,y( )}� 0.

(12)
The homotopy of the system is

H1 � 1− s( ) L A1 t,x,y( ){ }−A10 t,x,y( )( )+ s(L A1 t,x,y( ){ }
− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )+ 1

sζ
( )L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]{

− l t,x,y( )}),H2 � 1− s( ) L A2 t,x,y( ){ }−A20 t,x,y( )( )
+ s(L A2 t,x,y( ){ }− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )+ 1

sζ
( )L L Ar t,x,y( )[ ]{

+N Ar t,x,y( )[ ]−m t,x,y( )}),H3 � 1− s( ) L A3 t,x,y( ){ }(
−A30 t,x,y( ))+ s(L A3 t,x,y( ){ }− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]−n t,x,y( ){ }),

(13)

where A10, A20, and A30 are initial guesses. Expansion of
A1(t, x, y), A2(t, x, y), and A3(t, x, y) in power series with
respect to s leads to

A1 t, x, y( ) � A10 t, x, y( ) + s1A11 t, x, y( ) + s2A12 t, x, y( ) + . . .
A2 t, x, y( ) � A20 t, x, y( ) + s1A21 t, x, y( ) + s2A22 t, x, y( ) + . . .
A3 t, x, y( ) � A30 t, x, y( ) + s1A31 t, x, y( ) + s2A32 t, x, y( ) + . . .

(14)
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After substituting Eq. 14 in (13) and then comparing similar
coefficients of s, we obtainAt s1

L A11 t,x,y( ){ }+A10 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar0 t,x,y( )[ ]{ +N Ar0 t,x,y( )[ ]− l t,x,y( )}� 0,

L A21 t,x,y( ){ }+A20 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar0 t,x,y( )[ ]{ +N Ar0 t,x,y( )[ ]−m t,x,y( )}� 0,

L A31 t,x,y( ){ }+A30 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar0 t,x,y( )[ ]{ +N Ar0 t,x,y( )[ ]−n t,x,y( )}� 0.

(15)
The inverse Laplace transform leads to

A11 t,x,y( )+L−1 A10 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )⎧⎨⎩ ⎫⎬⎭+L−1{ 1

sζ
( )

L{L Ar0 t,x,y( )[ ]+N Ar0 t,x,y( )[ ]− l t,x,y( )}� 0,

A21 t,x,y( )+L−1 A20 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )⎧⎨⎩ ⎫⎬⎭+L−1{ 1

sζ
( )

L L Ar0 t,x,y( )[ ]+N Ar0 t,x,y( )[ ]−m t,x,y( ){ }� 0,

A31 t,x,y( )+L−1 A30 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )⎧⎨⎩ ⎫⎬⎭+L−1{ 1

sζ
( )

L L Ar0 t,x,y( )[ ]+N Ar0 t,x,y( )[ ]−n t,x,y( ){ }� 0.
(16)

At sk

L A1k t, x, y( ){ } + 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ } � 0,

L A2k t, x, y( ){ } + 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ } � 0,

L A3k t, x, y( ){ } + 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ } � 0.

(17)
Operating the inverse Laplace transform gives the following:

A1k t, x, y( )+L−1 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ }{ } � 0,

A2k t, x, y( )+L−1 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ }{ } � 0,

A3k t, x, y( )+L−1 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ }{ } � 0.

(18)
The approximate solution of the given general time-fractional, (2 +
1)-dimensional PDE system is

~A1�A10 t,x,y( )+A11 t,x,y( )+A12 t,x,y( )+A13 t,x,y( )+/ ,
~A2�A20 t,x,y( )+A21 t,x,y( )+A22 t,x,y( )+A13 t,x,y( )+/ ,
~A3�A30 t,x,y( )+A31 t,x,y( )+A32 t,x,y( )+A33 t,x,y( )+/ .

(19)
Residual errors of the system are

Res1 � Dζ
t

~A1[ ] + L ~Ar[ ] +N ~Ar[ ] − l t, x, y( ),
Res2 � Dζ

t
~A2[ ] + L ~Ar[ ] +N ~Ar[ ] −m t, x, y( ),

Res3 � Dζ
t

~A3[ ] + L ~Ar[ ] +N ~Ar[ ] − n t, x, y( ). (20)

The same procedure can be extended to a system that comprises
more than three equations.

4Convergence and error analysis of the
hybrid algorithm for (2 + 1)-dimensional
fractional systems

4.1 Convergence

Theorem 1: If a Banach space has Arn(t, x, y) and Ar(t, x, y)
defined in it for r = 1, 2, 3, then, the series solution of a fractional (2 +
1)-D system in Eq. 19 converges to the solution of (9) for a constant
μ ϵ (0,1).

Proof: Let us define the sequence of partial sums of Eq. 19 as Qrn.
To demonstrate that Qrn(t, x, y) forms a Cauchy sequence in the
Banach space, we can proceed by using

‖Qrn+1 t, x, y( ) − Qrn t, x, y( )‖ � ‖Arn+1 t, x, y( )‖
≤ μ‖Arn t, x, y( )‖
≤ μ2‖Arn−1 t, x, y( )‖
≤ . . . ≤ μn+1‖Ar0 t, x, y( )‖. (21)

If Qrn and Qrm are partial sums with n ≥ m and n, m ϵ N, then
utilization of triangle inequality gives

‖Qrn − Qrm‖ � ‖ Qrn t, x, y( ) − Qrn−1 t, x, y( )( ) + Qrn−1 t, x, y( )(
− Qrn−2 t, x, y( )) +/ + Qrm+1 t, x, y( )(
− Qrm t, x, y( ))‖≤ ‖Qrn t, x, y( ) − Qrn−1 t, x, y( )‖
+ ‖Qrn−1 t, x, y( ) − Qrn−2 t, x, y( )‖
+/ + ‖Qrm+1 t, x, y( ) − Qrm t, x, y( )‖.

(22)

From Eq. 21, we get

‖Qrn −Qrm‖≤μn‖Ar0 t,x,y( )‖+μn−1‖Ar0 t,x,y( )‖
+/+μm+1‖Ar0 t,x,y( )‖≤ μn +μn−1 +/+μm+1( )
‖Ar0 t,x,y( )‖≤μm+1 μn−m−1 +μn−m−2 +/+μ+1( )
‖Ar0 t,x,y( )‖≤μm+1 1−μn−m

1−μ( )‖Ar0 t,x,y( )‖.
(23)

Given 0 < μ< 1, hence, 1 − μn−m < 1. Thus, we have

‖Qrn − Qrm‖≤ μm+1

1 − μ
max |Ar0 t, x, y( )|, ∀ t ϵ 0, T[ ].

(24)
Since Ar0 is bounded, so

lim
n,m→∞

‖Qrn t, x, y( ) − Qrm t, x, y( )‖ � 0. (25)

Thus, Qrn(t, x, y) is a Cauchy sequence in the Banach space, and
hence, the given statement is proved.

4.2 Error estimation

Theorem 1: One can determine the maximum absolute truncation
error of the solution (19) for a fractional (2 + 1)-dimensional system
(9) by using the following expression:
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Ar t, x, y( ) −∑m
j�0

Arj t, x, y( )∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣≤ μm+1

1 − μ
‖Ar0 t, x, y( )‖. (26)

Proof: From Eq. 23, we have

‖Ar t, x, y( ) − Qrm‖≤ μm+1 1 − μn−m

1 − μ
( )‖Ar0 t, x, y( )‖. (27)

Since 0 < μ< 1, therefore, 1 − μn−m < 1. Thus, we have

Ar t, x, y( ) −∑m
j�0

Arj t, x, y( )∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣≤ μm+1

1 − μ
‖Ar0 t, x, y( )‖. (28)

5 Solution and analysis of the time-
fractional Wu–Zhang system

Consider the following coupled time-fractional (2 + 1)-
dimensional WZ system [39]:

zζU
ztζ

+U zU
zx

+V zU
zy

+ zW
zx

� 0,
zζV
ztζ

+U zV
zx

+V zV
zy

+ zW
zy

� 0,

zζW
ztζ

+ z UW( )
zx

+ z VW( )
zy

+ 1
3

z3U
zx3 +

z3U
zxzy2 +

z3V
zx2zy

+ z3V
zy3( )� 0,

0<ζ ≤1
(29)

that has the initial conditions

U 0, x, y( ) � −d + ac

b
+ 2

 
3

√
3

b tanh bx + cy( ),
V 0, x, y( ) � a + 2

 
3

√
3

c tanh bx + cy( ),
W 0, x, y( ) � 2

3
b2 + c2( )sech2 bx + cy( ), (30)

where U and V represent the velocity at the surface of water in the x
and y directions, respectively, and W depicts the elevation of the
water waves. a, b, c, and d are the non-zero arbitrary constants. The
exact solution of (29) at ζ = 1 is

U t, x, y( ) � −d + ac

b
+ 2

 
3

√
3

b tanh bx + cy + dt( ),
V t, x, y( ) � a + 2

 
3

√
3

c tanh bx + cy + dt( ),
W t, x, y( ) � 2

3
b2 + c2( )sech2 bx + cy + dt( ). (31)

Solution: The initial step of the He–Laplace procedure is the
applicationof theLaplace transformonbothsidesofEq.29,whichgives

L
zζU
ztζ

{ } + L U zU
zx

+ V zU
zy

+ zW
zx

{ } � 0, L
zζV
ztζ

{ }
+ L U zV

zx
+ V zV

zy
+ zW

zy
{ } � 0, L

zζW
ztζ

{ }
+ L

z UW( )
zx

+ z VW( )
zy

+ 1
3

z3U
zx3 +

z3U
zxzy2({

+ z3V
zx2zy

+ z3V
zy3)} � 0.

(32)

Utilization of the Laplace transform on the Caputo’s time-fractional
derivative (2) leads to

L U t, x, y( ){ } − 1
s

−d + ac

b
+ 2

 
3

√
3

b tanh bx + cy( )( )
+ 1

sζ
( )L U zU

zx
+ V zU

zy
{ +zW

zx
} � 0,

L V t, x, y( ){ } − 1
s

a + 2
 
3

√
3

c tanh bx + cy( )( )
+ 1

sζ
( )L U zV

zx
+ V zV

zy
+ zW

zy
{ } � 0,

L W t, x, y( ){ } − 1
s

2
3

b2 + c2( )sech2 bx + cy( )( ) + 1

sζ
( )

× L
z UW( )

zx
+ z VW( )

zy
+ 1
3

{ z3U
zx3 +

z3U
zxzy2 +

z3V
zx2zy

+ z3V
zy3( )} � 0.

(33)
We construct homotopies of the aforementioned system as

TABLE 1 He–Laplace errors for different values of ζ,when a = d = 0.13, b = 0.11,
c = 0.12, x = 3, and y = 6. Here,Ru,Rv ,Rw , andR represent residual errors of
U, V, W, and system errors, respectively.

ζ t Ru Rv Rw R
0.1 0.1 9.81 × 10−7 1.07 × 10−6 1.95 × 10−6 1.33 × 10−6

0.3 1.69 × 10−6 1.84 × 10−6 3.38 × 10−6 2.30 × 10−6

0.5 2.17 × 10−6 2.37 × 10−6 4.36 × 10−6 2.97 × 10−6

0.7 2.56 × 10−6 2.80 × 10−6 5.16 × 10−6 3.51 × 10−6

0.9 2.90 × 10−6 3.17 × 10−6 5.86 × 10−6 3.98 × 10−6

0.1 8.75 × 10−9 9.54 × 10−9 9.87 × 10−9 9.39 × 10−9

0.3 1.02 × 10−7 1.11 × 10−7 1.17 × 10−7 1.10 × 10−7

0.45 0.5 3.19 × 10−7 3.48 × 10−7 3.71 × 10−7 3.46 × 10−7

0.7 6.76 × 10−7 7.37 × 10−7 7.94 × 10−7 7.36 × 10−7

0.9 1.18 × 10−6 1.29 × 10−6 1.40 × 10−6 1.29 × 10−6

0.1 1.27 × 10−10 1.39 × 10−10 6.70 × 10−11 1.11 × 10−10

0.3 6.22 × 10−9 6.78 × 10−9 3.34 × 10−9 5.45 × 10−9

0.71 0.5 3.78 × 10−8 4.12 × 10−8 2.06 × 10−8 3.23 × 10−8

0.7 1.23 × 10−7 1.35 × 10−7 6.87 × 10−8 1.09 × 10−7

0.9 2.99 × 10−7 3.27 × 10−7 1.68 × 10−7 2.65 × 10−7

0.1 1.48 × 10−12 1.62 × 10−12 9.78 × 10−14 1.06 × 10−12

0.3 2.87 × 10−10 3.13 × 10−10 2.03 × 10−11 2.07 × 10−10

0.96 0.5 3.31 × 10−9 3.61 × 10−9 2.49 × 10−10 2.39 × 10−9

0.7 1.65 × 10−8 1.80 × 10−8 1.32 × 10−9 1.19 × 10−8

0.9 5.48 × 10−8 5.98 × 10−8 4.63 × 10−9 3.98 × 10−8
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FIGURE 1
Graphical illustration of the He–Laplace solution at ζ = 1, a = c = 2, b = d = 1, and t = 2.

FIGURE 2
Error analysis at different values of the fractional parameter ζ, when a = c = 0.2, b = d = 0.1, and t = 2.
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TABLE 2 Error comparison of the He–Laplace algorithm with other methods, when ζ = 1, a = b = 0.1, c = d = 0.01, t = 5, and y = 20.

Exact HLM HLM FRDTM mADM mVIM

x Sol Sol Error Error [39] Error [39] Error [39]

U −40 −0.22534 −0.22534 0 0 4.33 × 10−10 1.21 × 10−5

−30 −0.22453 −0.22453 1.38 × 10−17 1.00 × 10−10 3.59 × 10−9 8.93 × 10−5

−20 −0.21870 −0.21870 0 2.00 × 10−10 2.44 × 10−8 6.36 × 10−4

−10 −0.18334 −0.18334 1.38 × 10−17 2.30 × 10−9 1.02 × 10−7 3.60 × 10−3

0 −0.08171 −0.08171 3.46 × 10−18 3.23 × 10−9 3.04 × 10−7 6.44 × 10−3

10 −0.01204 −0.01204 1.38 × 10−17 8.30 × 10−10 8.92 × 10−3 1.91 × 10−4

20 0.00293 0.00293 0 1.00 × 10−10 5.19 × 10−9 2.91 × 10−4

30 0.00512 0.00512 0 0 1.37 × 10−9 4.01 × 10−5

40 0.00542 0.00542 0 0 2.07 × 10−10 5.44 × 10−6

−40 0.08846 0.08846 0 0 6.33 × 10−11 5.96 × 10−8

−30 0.08854 0.08854 1.73 × 10−18 1.00 × 10−11 3.39 × 10−10 4.34 × 10−7

−20 0.08912 0.08912 0 2.00 × 10−11 2.43 × 10−9 2.91 × 10−6

−10 0.09266 0.09266 4.33 × 10−19 2.30 × 10−10 1.02 × 10−8 1.07 × 10−5

V 0 0.10282 0.10282 1.73 × 10−18 3.00 × 10−10 3.05 × 10−8 5.87 × 10−6

10 0.10979 0.10979 1.73 × 10−18 0 8.96 × 10−9 7.18 × 10−6

20 0.11129 0.11129 0 0 5.39 × 10−10 1.30 × 10−6

30 0.11151 0.11151 0 0 1.07 × 10−10 1.84 × 10−7

40 0.11154 0.11154 0 0 2.07 × 10−11 2.50 × 10−8

−40 0.00001 0.00001 2.87 × 10−21 1.11 × 10−12 5.70 × 10−11 2.73 × 10−6

−30 0.00010 0.00010 8.01 × 10−20 6.50 × 10−12 4.11 × 10−10 1.98 × 10−5

−20 0.00076 0.00076 1.57 × 10−19 1.85 × 10−11 2.63 × 10−9 1.30 × 10−4

−10 0.00401 0.00401 1.77 × 10−19 6.20 × 10−11 8.87 × 10−11 4.14 × 10−4

W 0 0.00632 0.00632 2.11 × 10−18 7.96 × 10−10 3.83 × 10−8 1.15 × 10−4

10 0.00188 0.00188 6.50 × 10−20 2.07 × 10−10 1.48 × 10−8 2.26 × 10−5

20 0.00029 0.00029 2.70 × 10−20 8.60 × 10−12 5.89 × 10−11 6.97 × 10−7

30 0.00004 0.00004 1.68 × 10−20 3.31 × 10−12 1.52 × 10−10 1.99 × 10−7

40 5.4 × 10−6 5.4 × 10−6 3.53 × 10−21 4.90 × 10−13 2.41 × 10−11 2.87 × 10−8

FIGURE 3
Effect of the fractional parameter ζ on the water surface level, when a = 0.8, c = 0.9, b = d = 0.7, y = 3, and x = 2.
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H1 � 1 − p( ) L U t, x, y( ){ } − U0 t, x, y( )( )
+ p L U t, x, y( ){ } − 1

s
−d + ac

b
+ 2

 
3

√
3

(( b tanh bx + cy( ))
+ 1

sζ
( )L U zU

zx
+ V zU

zy
+ zW

zx
{ }), H2 � 1 − p( ) L V t, x, y( ){ }(

− V0 t, x, y( )) + p L V t, x, y( ){ } − 1
s

a + 2
 
3

√
3

c(( tanh bx + cy( ))
+ 1

sζ
( )L U zV

zx
+ V zV

zy
+ zW

zy
{ }), H3 � 1 − p( ) L W t, x, y( ){ }(

−W0 t, x, y( )) + p L W t, x, y( ){ } − 1
s

2
3

b2 + c2( )(( sech2 bx + cy( ))
+ 1

sζ
( )L z UW( )

zx
+ z VW( )

zy
+ 1
3

z3U
zx3({ + z3U

zxzy2 +
z3V
zx2zy

+ z3V
zy3)}),

(34)

where U0(t, x, y), V0(t, x, y), and W0(t, x, y) are the initial
guesses.

U0 t, x, y( ) � −d + ac

b
+ 2

 
3

√
3

b tanh bx + cy( ),
V0 t, x, y( ) � a + 2

 
3

√
3

c tanh bx + cy( ),
W0 t, x, y( ) � 2

3
b2 + c2( )sech2 bx + cy( ). (35)

In the next step, we will expand U(t, x, y), V(t, x, y), andW(t, x, y)
in Taylor’s series form with respect to p as

U t, x, y( ) � ∑∞
m�1

pmUm,

V t, x, y( ) � ∑∞
m�1

pmVm,

W t, x, y( ) � ∑∞
m�1

pmWm.

(36)

Substitution of Eq. 36 into Eq. 34 and then comparison of a similar
coefficient with respect to p givesthe first-order problem

L U1 t,x,y( ){ }+U0 t,x,y( )− 1
s

−d+ac
b

+ 2
 
3

√
3

btanh bx+cy( )( )
+ 1

sζ
( )L U0

zU0

zx
+V0

zU0

zy
+ zW0

zx
{ }�0,L V1 t,x,y( ){ }−V0 t,x,y( )

− 1
s

a+ 2
 
3

√
3

ctanh bx+cy( )( )+ 1

sζ
( )L U0

zV0

zx
{ +V0

zV0

zy
+ zW0

zy
}

�0,L W1 t,x,y( ){ }−W0 t,x,y( )− 1
s

2
3

b2+c2( )sech2 bx+cy( )( )
+ 1

sζ
( )L zU0W0

zx
{ + zV0W0

zy
+ 1
3

z3U0

zx3 + z3U0

zxzy2+
z3V0

zx2zy
+ z

3V0

zy3( )}�0,
(37)

with the condition

U1 0, x, y( ) � 0,
V1 0, x, y( ) � 0,
W1 0, x, y( ) � 0.

(38)

By operating the inverse Laplace transform, the solution at first
order is

U1 t, x, y( ) � −4bd
2t2ζ tanh bx + cy( )sech2 bx + cy( ) 

3
√

Γ 2ζ + 1( ) ,

V1 t, x, y( ) � −4cd
2t2ζ tanh bx + cy( )sech2 bx + cy( ) 

3
√

Γ 2ζ + 1( ) ,

W1 t, x, y( ) � 4 b2 + c2( )d2t2ζ cosh 2 bx + cy( )( ) − 2( )sech4 bx + cy( )
3Γ 2ζ + 1( ) .

(39)
The second-order problem is

L U2 t,x,y( ){ }+ 1

sζ
( )L U1

zU1

zx
+V1

zU1

zy
+ zW1

zx
{ }� 0,

L V2 t,x,y( ){ }+ 1

sζ
( )L U1

zV1

zx
+V1

zV1

zy
+ zW1

zy
{ }� 0,

L W2 t,x,y( ){ }+ 1

sζ
( )L zU1W1

zx
+ zV1W1

zy
+ 1
3

z3U1

zx3 + z3U1

zxzy2 +
z3V1

zx2zy
+ z3V1

zy3( ){ }� 0

(40)

that has the condition

U2 0, x, y( ) � 0,
V2 0, x, y( ) � 0,
W2 0, x, y( ) � 0.

(41)

FIGURE 4
Comparison of Caputo, Caputo–Fabrizio, and Atangana–Baleanu fractional derivative approaches on the solution profile, when a = 0.6, b = 0.8, c =
0.9, d = 0.7, y = 2, and x = 5.
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The inverse of the Laplace transform gives

U2 t, x, y( ) � 2bdtζ sech2 bx + cy( ) 
3

√
Γ ζ + 1( ) ,

V2 t, x, y( ) � 2cdtζ sech2 bx + cy( ) 
3

√
Γ ζ + 1( ) ,

W2 t, x, y( ) � −tζ 4
3
db2 tanh bx + cy( )sech2 bx + cy( ) + 4

3
c2(

d tanh bx + cy( )sech2 bx + cy( ))/Γ ζ + 1( ).

(42)

The same procedure is applied for higher-order problems. Thus, the
approximate solution at the higher order of the (2 + 1)-dimensional
Wu–Zhang system can be obtained by

~U � ∑∞
m�0

Um t, x, y( ),
~V � ∑∞

m�0
Vm t, x, y( ),

~W � ∑∞
m�0

Wm t, x, y( ).
(43)

By replacing the approximate solutions (43) in the given system (29),
we obtain residual errors

R1� zζ ~U
ztζ

+ ~U z ~U
zx

+ ~V z ~U
zy

+ z ~W
zx

,

R2� zζ ~V
ztζ

+ ~U z~V
zx

+ ~V z~V
zy

+ z ~W
zy

,

R3� zζ ~W
ztζ

+ z ~U ~W
zx

+ z~V ~W
zy

+ 1
3

z3 ~U
zx3 +

z3 ~U
zxzy2 +

z3 ~V
zx2zy

+ z3 ~V
zy3( ).

(44)

6 Results and discussion

The objective of this study is to propose a new soliton solution of
the non-linear time-fractional Wu–Zhang system. This (2 + 1)-
dimensional system describes the phenomena of long dispersive
waves. The current section is focused on the numerical and graphical
results of the WZ system through a hybrid approach by using
homotopy perturbation with the Laplace transform, which is
known as the He–Laplace algorithm (method). Initially, solutions
are captured through the He–Laplace algorithm, considering the
fractional derivative in Caputo sense. The obtained results are then
analyzed at both fractional and integral orders. Table 1 depicts the
residual error at U ,V,W along with overall system errors at various
fractional parameter values. These errors clearly indicate the
reliability of proposed methodology across the complete
fractional domain. It is also observed that error is reduced when
fractional parameter approaches one.

Table 2 shows the comparison of results obtained through
He–Laplace and other methods at the integer order that is ζ = 1.
This numerical comparison indicates that He–Laplace
surpasses other mentioned schemes in terms of accuracy.
Figure 1 depicts the He–Laplace solution of the WZ system

in 3D at the integer order. This graphical illustration confirms
that in the WZ system, surface water velocities in x and y
directions are very high, while elevation in water waves
decreases with time. Error analysis at ζ = 0.4, 0.8, and 1 as
3D structures can be seen from Figure 2 for U , V, and W,
respectively. At ζ = 1, the errors are lesser than ζ = 0.8, and the
same can be observed in case of ζ = 0.4.

The impact of the fractional parameter on the water surface is
depicted in Figure 3. Research findings indicate that a rise in ζ

results in a reduction of the water surface velocity, in both the x
and y directions. However, water wave elevation (W) shows
inverse behavior in this case. Comparative analysis of different
fractional derivative approaches (Atangana–Baleanu,
Caputo–Fabrizio, and Caputo) on the solution profile can be
seen in Figure 4. Analysis of this figure shows that water surface
velocities are highest in the Atangana–Baleanu fractional
approach as compared to Caputo and Caputo–Fabrizio
fractional approaches. On the other hand, W depicts opposite
behavior as compared to U and V.

7 Conclusion

In this article , a hybrid approach is proposed to solve and
analyze the highly non-linear time-fractional (2 + 1)-
dimensional WZ system, which is famous for capturing long
dispersive waves. A hybrid approach in which homotopy
perturbation is combined with the Laplace transform along
with different fractional derivatives is proposed for the
solution and analysis of the fractional WZ system. Efficiency
of the obtained solution is checked over the entire fractional
domain to show the validity and convergence of the proposed
methodology. Error analysis is also performed in comparison
with other well-known numerical methods, which confirms the
efficiency of the proposed approach. Graphical analysis shows
that water surface velocities increase, while surface elevation
decreases, when fractional parameter increases. Also, it is
noted that the Atangana–Baleanu approach uplifts water
velocities in x and y directions more than Caputo and
Caputo–Fabrizio approaches. Analysis of the results also
concludes that the proposed method is a reliable technique,
which can be extended to more complex fractional systems.
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Nomenclature

Parameter Description

U Velocity in the x direction

V Velocity in the y direction

W Elevation of water waves

ζ Fractional parameter

x, y Dimensions

t Time

a, b, c, d Non-zero arbitrary constants

L Laplace transform

R Residual errors
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Abundant optical solutions for the
Sasa-Satsuma equation with
M-truncated derivative

Farah M. Al-Askar  1 and Wael W. Mohammed  2,3*
1Department of Mathematical Science, College of Science, Princess Nourah Bint Abdulrahman University,
Riyadh, Saudi Arabia, 2Department of Mathematics, College of Science, University of Ha’il, Ha’il, Saudi
Arabia, 3Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Here, we look at the Sasa-Satsuma equation with M-truncated derivative (SSE-
MTD). The analytical solutions in the form of trigonometric, hyperbolic, elliptic,
and rational functions are constructed using the Jacobi elliptic function and
generalizing Riccati equation mapping methods. Because the Sasa–Satsuma
equation is applied to explain the propagation of femtosecond pulses in optical
fibers, the acquired solutions can be employed to explain a wide range of
important physical phenomena. Moreover, we apply the MATLAB tool to
generate a series of graphs to address the effect of the M-truncated derivative
on the exact solution of the SSE-MTD.

KEYWORDS

Sasa-Satsuma equation, M-truncated derivative, optical solitons, generalizing Riccati
equation mapping method, analytical solutions

1 Introduction

Many authors have centered their attention on fractional nonlinear differential equations
(FNLDEs) in the noble age of technology and science to examine complex mathematical
models that are used in research area and real life, such as neuroscience, robotics, fluid
dynamics, quantum mechanics, plasma physics, optical fibers, and so on. A lot studies have
been published about some aspects of fractional differential equations, such as finding exact
and numerical solutions, the existence and uniqueness of solutions, and the stability of
solutions [1–7]. Therefore, it is essential to discover the exact solutions to these equations in
order to understand the physical phenomenon and overcome the resulting obstacles.
Recently, acquiring soliton solutions to important equations has emerged as a major
field of study. Numerous researchers defended numerous novel methods to evaluate
soliton solutions including (G′/G, 1/G)-expansion method [8] (G′/G)-expansion [9, 10],
generalized (G′/G)-expansion [11], exp-function method [12], Jacobi elliptic function
expansion [13], sine-cosine procedure [14], auxiliary equation scheme [15], first-integral
method [16], sine-Gordon expansion technique [17], generalized Kudryashov approach
[18], exp(−ϕ(ς))-expansion method [19], homotopy perturbation method with Aboodh
transform [20], He–Laplace method, He’s variational iteration method [21, 22], and others.
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In contrast, a new differentiation operator has grown up, that
includes the concepts of fractional differentiation and fractal derivative.
Therefore, various kinds of fractional derivatives were proposed by
several mathematicians. The most well-known ones are the ones
proposed by Grunwald-Letnikov, He’s fractional derivative,
Atangana-Baleanu’s derivative, Riemann-Liouville, Marchaud, Riesz,
Caputo, Hadamard, Kober, and Erdelyi [23–26]. The bulk of fractional
derivative types do not follow classic derivative equations like the chain
rule, quotient rule, and product rule. Sousa et al. [27] have developed a
new derivative known as the M-truncated derivative (MTD), which is a
natural extension of the classical derivative. The MTD for
u: [0,∞) → R of order δ ∈ (0, 1] is indicated as

Mδ,β
j,t u t( ) � lim

h→0

u tEj,β ht−δ( )( ) − u t( )
h

,

where Ej,β(t), for t ∈ C and β > 0, is the truncated Mittag-Leffler
function and is defined as:

Ej,β t( ) � ∑j
k�0

tk

Γ βk + 1( ).
TheMTD has the following characteristics for any real integers a

and b [27]:

(1) Mδ,β
j,t (au + bv) � aMδ,β

j,t (u) + bMδ,β
j,t (v),

(2) Mδ,β
j,t (u◦v)(t) � u′(v(t))Mδ,β

j,t v(t),
(3) Mδ,β

j,t (uv) � uMδ,β
j,t v + vMδ,β

j,t u,

(4) Mδ,β
j,t (u)(t) � t1−δ

Γ(β+1)
du
dt,

(5) Mδ,β
j,t (t]) � ]

Γ(β+1)t
]−δ .

There are many authors have considered some nonlinear
partial differential equations with M-truncated derivative such
as [28–31] and the references therein. In this article, we examine
the Sasa-Satsuma equation with M-truncated derivative
(SSE-MTD):

iMδ,β
j,tW + 1

2
Wxx + i α1Wxxx + α2W W| |2( )x + α3 W| |2Wx[ ]

+ α4 W| |2W � 0, (1)
whereW � W(x, t) is the optical soliton profile, i � 			−1√

. αk, for k =
1, 2, 3, 4, are real constants. Wt defines the temporal evolution of
optical soliton molecules,Wxx is the group velocity dispersion.Wxxx

represents the third-order dispersion, while W(|W|2)x provides the
stimulated Raman scattering, |W|2Wx is the self-steepening and
|W|2W is Kerr-law fiber nonlinearity.

If we set δ = 1 and β = 0, then we have the Sasa-Satsuma (SS)
equation (32, 33):

iWt + 1
2
Wxx + i α1Wxxx + α2 W| |2Wx + α3W W| |2( )x[ ] + α4 W| |2W

� 0.

(2)
The SS Eq. 2, which was found while studying the integrability of

Schrödinger equation, reduced to nonlinear Schrödinger equation
when α1 = α2 = α3 = 0 as follows:

iWt + 1
2
Wxx + α4 W| |2W � 0. (3)

In 1991, Sasa and Satsuma [34] created Eq. 2. This equation has
additional components that explain third-order dispersion, self-
steepening, and self-frequency shift, which are prevalent in many
areas of physics, such as ultrashort pulse propagation in optical
fibers [35, 36]. Due to the importance of SS Eq. 2, many authors
have obtained its exact solutions by using various methods such as new
auxiliary equationmethod [37], extended trial equation and generalized
Kudryashov methods [38], inverse scattering transform [39], improved
F-expansion methods and improved auxiliary [40], Riemann problem
method [41], unified transform method [42], Bäcklund transformation
[43], Darboux transformation [44].

Our main objective of this work is to find the exact solutions
of the SSE-MTD (1). The solutions in the form of hyperbolic,
trigonometric, elliptic, and rational functions are constructed by
utilizing the Jacobi elliptic function method (JEF-method) and
generalizing Riccati equation mapping method (GREM-method).
Because the Sasa–Satsuma equation is applied to clarify the
propagation of femtosecond pulses in optical fibers, the
solutions obtained can be employed to study a wide range of
important physical phenomena. Furthermore, we utilize the
MATLAB tool to generate a series of graphs to examine the
effect of the M-truncated derivative on the exact solution of the
SSE-MTD (1).

The following is how the paper is organized: In the next section,
we describe the methods employed in this paper. The wave equation
for the SSE-MTD (1) is developed in Section 3. In Section 4, we
employ the JEF-method and the GREM-method to get the precise
solutions of the SSE-MTD (1). In Section 5, we study the effect of the
MTD on the solution of Eq. 1. Finally, the findings of the article are
presented.

2 Description of the methods

In this section, we describe the methods employed in this paper.

2.1 GREM-method

It is useful to outline the essential steps of GREM-method
mentioned in [45] as follows:

1. We begin by looking at a general kind of PDEs with MTD as
follows

P W,Mδ,β
j,tW,Wx,Wxx, . . .( ) � 0. (4)

2. We use Eq. 4 to obtain the traveling wave solution

W t, x( ) � X ηδ( ), ηδ � η1x + Γ β + 1( )η2
δ

tδ . (5)

3. Using the next changes

Mδ,β
j,tW � η2X ′,
ux � η1X ′,

..

. ..
. ..
.

uxn � ηn1X n( ).

(6)
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4. After then, substituting (6) into (4) to get ordinary differential
equation (ODE)

P η2X ′, η1X ′, ηn1X n( )( ) � 0. (7)

5. Putting the following Riccati-Bernoulli equation

X ′ � sX 2 + rX + p, (8)
where s, r, p are constants, into Eq. 8. Then we balance each coefficient
of Xk to zero to get a system of ODE. We solve this system to attain
the value of s, r and p. It is straightforward to obtain the non-traveling
wave solutions to Eq. 4 by solving Eq. 8 and utilizing Eq. 5.

2.2 JEF-method

While, we summarize here the main steps of the JEF-method
described by Fan et al. [46] as follows.

1. We repeat the first four steps from the previous subsection in
order to obtain Eq. 7.

2. Assuming the solution of Eq. 7 in this type

X ηδ( ) � ∑N
k�0

ak F ηδ( )[ ]k, (9)

where N is a positive integer that will be determined and F(ηδ) �
sn(Kηδ ,m) or F(ηδ) � cn(Kηδ ,m) or F(ηδ) � dn(Kηδ ,m) for 0 <
m < 1. The Jacobi elliptic functions sn(Kηδ ,m),
cn(Kηδ ,m), dn(Kηδ ,m) are periodic and have features of
triangular functions as follows: sn2(Kηδ ,m) + cn2(Kηδ ,m) � 1,
dn2(Kηδ ,m) � 1 −m2sn2(Kηδ ,m), [sn(Kηδ ,m)]′ � cn(Kηδ ,m)
dn(Kηδ ,m),[cn(Kηδ ,m)]′ � −sn(Kηδ ,m)dn(Kηδ ,m), [dn(Kηδ ,
m)]′ � −m2sn(Kηδ ,m)cn(Kηδ ,m).

If m → 1, then sn(Kηδ , 1) → tanh(Kηδ), cn(Kηδ , 1) →
sech(Kηδ) and dn(Kηδ , 1) →sech(Kηδ).

3. Usually, to determine the parameter N, we balance the highest
order linear terms in the resulting equation with the highest order
nonlinear terms. To determine the order, we follow these steps:
Firstly, we define the degree of F as D[F ] � N. Secondly, we
calculated the highest order nonlinear terms and the highest
order nonlinear terms as

D
dnF
dηn

[ ] � N + n,

and

D F p dnF
dηn

( )s[ ] � pN + s N + n( ).

4. After we determineN, we substitute (9) into the ODE (7) in order
to attain an equation in powers of F .

5. Equating each coefficients of powers of F in the resulting
equation to zero. This will provide a set of equations
containing the ak (k = 0, 1, . . .N) and K. We solve these
equations to attain the values of ak (k = 0, 1, . . .N) and K and
substitute with these value into Eq. 9.

3 Traveling wave Eq. For SSE-MTD

To derive the wave equation for SSE-MTD (1), we use

W x, t( ) � X ηδ( )eiμδ , μδ � μ1x + μ2Γ β + 1( )
δ

tδ and

ηδ � η1x + η2Γ β + 1( )
δ

tδ , (10)

where X is a real function, μ1, μ2, η1, and η2 are non-zero constants.
We note that

Mδ,β
j,tW � η2X ′ + iμ2X[ ]eiμδ ,
Wx � η1X ′ + iμ1X( )eiμδ , W| |2( )x � η1 X 2( )′eiμδ ,
Wxx � η21X ′′ + 2iμ1η1X ′ − μ21X( )eiμδ ,
Wxxx � η31X ′′′ + 3iμ1η

2
1X ′′ − 3η1μ

2
1X ′ − iμ31X( )eiμδ . (11)

Inserting Eq. 11 into Eq. 1, we have for real part

1
2
η21 − 3α1μ1η

2
1( )X ′′ + −μ2 −

1
2
μ21 + α1μ

3
1( )X + α4 − α1μ1[ ]X 3 � 0,

(12)
and for imaginary part

α1η
3
1X ′′′ + η2 + μ1η1 − 3α1η1μ

2
1( )X ′ + η1 α2 + 2α3( )X 2X ′ � 0. (13)

Integrating (13) once, we get

[α1η
3
1X ′′ + η2 + μ1η1 − 3α1η1μ

2
1( )X + 1

3
η1 α2 + 2α3( )X 3 � C, (14)

where C is the integral constant. If we compare the coefficients of
Eqs (12) and (14), we have

η1 �
1
2α1

− 3μ1,

η2 � −2γ1μ1η1 + 3α1η1μ
2
1 − μ2 − γ1μ

2
1 + α1μ

3
1,

α4 � α1μ1 +
1
3
η1 α2 + 2α3( ),

and

C � 0.

Now, we can rewrite Eq. 12 as

X ′′ − ℓ1X 3 − ℓ2X � 0, (15)
where

ℓ1 � 2α1μ1 − 2α4

η21 − 6α1μ1η
2
1( ) , and ℓ2 � 2μ2 + μ21 − 2α1μ31( )

η21 − 6α1μ1η
2
1( ) . (16)

Balancing X ′′ with X 3 in Eq. 15 to calculate the parameter N as

N + 2 � 3N0N � 1.

4 Exact solutions of SSE-MTD

Two various methods such as GREM-method and JEF-method
are used to attain the solutions to Eq. 15. The solutions to the SSE-
MTD (1) are then determined.
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4.1 REM-method

Utilizing Eq. 8, we obtain

X ′′′ � 2s2X 3 + 3srX 2 + 2sp + r2( )X + rp. (17)
Substituting (17) into (15), we have

2s2 − ℓ1( )X 3 + 3srX 2 + 2sp + r2 − ℓ2( )X + rp � 0.

We put each coefficient of X i equal zero in order to get

2s2 − ℓ1 � 0, 3sr � 0, 2sp + r2 − ℓ2 � 0, and rp � 0.

Solving these equations, we have

s � ±

		
ℓ1

2

√
, (18)

r � 0, (19)
and

p � ℓ2

2s
� ±

ℓ2			
2ℓ1

√ , (20)

where ℓ1 and ℓ2 are stated in Eq. 16. There are different sets for the
solution of Eq. 8 relying on p and s as follows:

Set I: When ps > 0, thus the solutions of Eq. 8 are:

X 1 ηδ( ) � 		
p

s

√
tan

		
ps

√
ηδ( ),

X 2 ηδ( ) � −
		
p

s

√
cot

		
ps

√
ηδ( ),

X 3 ηδ( ) � 		
p

s

√
tan

			
4ps

√
ηδ( ) ± sec

			
4ps

√
ηδ( )( ),

X 4 ηδ( ) � −
		
p

s

√
cot

			
4ps

√
ηδ( ) ± csc

			
4ps

√
ηδ( )( ),

X 5 ηδ( ) � 1
2

		
p

s

√
tan

1
2

		
ps

√
ηδ( ) − cot

1
2

		
ps

√
ηδ( )( ),

Then, SSE-MTD (1) has the trigonometric functions solution:

FIGURE 1
(i–iii) display 3D-shape of solution |W(x, t)| in Eq. 26 with δ =1,0.7,0.5 (iv) display 2D-shape of Eq. 26 with different values of δ.
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W1 x, t( ) �
		
p

s

√
tan

		
ps

√
ηδ( )eiμδ , (21)

W2 x, t( ) � −
		
p

s

√
cot

		
ps

√
ηδ( )eiμδ , (22)

W3 x, t( ) �
		
p

s

√
tan

			
4ps

√
ηδ( ) ± sec

			
4ps

√
ηδ( )( )eiμδ , (23)

W4 x, t( ) � −
		
p

s

√
cot

			
4ps

√
ηδ( ) ± csc

			
4ps

√
ηδ( )( )e γW t( )−1

2γ
2t( ), (24)

W5 x, t( ) � 1
2

		
p

s

√
tan

1
2

		
ps

√
ηδ( ) − cot

1
2

		
ps

√
ηδ( )( )eiμδ , (25)

where ηδ � η1x + η2Γ(β+1)
δ tδ .

Family II: When ps < 0, thus the solutions of Eq. 8 are:

X 6 ηδ( ) � −
			−p
s

√
tanh

				−ps√
ηδ( ),

X 7 ηδ( ) � −
			−p
s

√
coth

				−ps√
ηδ( ),

X 8 ηδ( ) � −
			−p
s

√
tanh

					−4ps√
ηδ( ) ± isech

					−4ps√
ηδ( )( ),

X 9 ηδ( ) � −
			−p
s

√
coth

					−4ps√
ηδ( ) ± csch

					−4ps√
ηδ( )( ),

X 10 ηδ( ) � −1
2

			−p
s

√
tanh

1
2

				−ps√
ηδ( ) + coth

1
2

				−ps√
ηδ( )( ).

Then, SSE-MTD (1) has the hyperbolic functions solution:

W6 x, t( ) � −
			−p
s

√
tanh

				−ps√
ηδ( )eiμδ , (26)

W7 x, t( ) � −
			−p
s

√
coth

				−ps√
ηδ( )eiμδ , (27)

W8 x, t( ) � −
			−p
s

√
tanh

					−4ps√
ηδ( ) ± isech

					−4ps√
ηδ( )( )eiμδ , (28)

FIGURE 2
(i–iii) display 3D-shape of solution |W(x, t)| in Eq. 34 with δ = 1,0.7,0.5 (iv) display 2D-shape of Eq. 34 with different values of δ.
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W9 x, t( ) � −
			−p
s

√
coth

					−4ps√
ηδ( ) ± csch

					−4ps√
ηδ( )( )eiμδ , (29)

W10 x, t( ) � −1
2

			−p
s

√
tanh

1
2

				−ps√
ηδ( ) + coth

1
2

				−ps√
ηδ( )( )eiμδ ,

(30)
where ηδ � η1x + η2Γ(β+1)

δ tδ .
Family III: When p = 0, s ≠ 0, then the solution of Eq. 8 is

X 11 ηδ( ) � −1
sηδ

.

Then, we get the rational function solution of SSE-MTD
(1) as

W11 x, t( ) � −1
s η1x + η2Γ β+1( )

δ tδ( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠eiμδ . (31)

Remark 1: If we Put β = 0 and δ = 0 in Eqs. (21) and (26), then we get
the solutions (13) and (14) that stated in [40].

4.2 JEF-method

We assume the solutions of Eq. 15, with N = 1, are

X ηδ( ) � a + bF ηδ( ). (32)
First, let F(ηδ) � sn(Kηδ , m). Differentiate Eq. 32 two times, we
have

X ′′ ηδ( ) � − m2 + 1( )bK2sn Kηδ , m( ) + 2m2bK2sn3 Kηδ , m( ). (33)
Setting Eqs 32, 33 into Eq. 15, we obtain

2m2bK2 − ℓ1b
3( )sn3 Kηδ , m( ) − 3ℓ1ab

2sn2 Kηδ , m( )
− m2 + 1( )bK2 + 3ℓ1a

2b + ℓ2b[ ]sn Kηδ , m( ) − ℓ1a
3 + aℓ2( ) � 0.

FIGURE 3
(i–iii) display 3D-shape of solution |W(x, t)| in Eq. 38 with δ = 1, 0.7,0.5 (iv) display 2D-shape of Eq. 38 with different values of δ.
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Plugging each coefficient of [sn(Kηδ , m)]n equal zero, we attain

ℓ1a
3 + aℓ2 � 0,

m2 + 1( )bK2 + 3ℓ1a
2b + ℓ2b � 0,

3ℓ1ab
2sn2 � 0,

and

2m2bK2 − ℓ1b
3 � 0.

We obtain when we solve these equations

a � 0, b � ±

									
−2m2ℓ2

m2 + 1( )ℓ1

√
K2 � −ℓ2

m2 + 1( ).

Consequently, the solution of Eq. 15 is

X ηδ( ) � ±

									
−2m2ℓ2

m2 + 1( )ℓ1

√
sn

								
−ℓ2

m2 + 1( )

√
ηδ , m⎛⎝ ⎞⎠.

As a result, the solution of the SSE-MTD (1), for ℓ2 < 0 and ℓ1 >
0, is

W x, t( ) � ±

									
−2m2ℓ2

m2 + 1( )ℓ1

√
sn

								
−ℓ2

m2 + 1( )

√
ηδ , m⎛⎝ ⎞⎠eiμδ , (34)

where ηδ � η1x + η2Γ(β+1)
δ tδ . When m → 1, the solution (34)

tends to:

W x, t( ) � ±

			
−ℓ2
ℓ1

√
tanh

			−ℓ2
2

√
η1x + η2t( ), m( )eiμδ . (35)

Similarly, we can replace F(ηδ) in (32) with cn(Kηδ , m)
or dn(Kηδ , m) to derive the solutions of Eq. 15 as follows:

X ηδ( ) � ±

										
−2m2ℓ2

2m2 − 1( )ℓ1

√
cn

								
ℓ2

2m2 − 1( )

√
ηδ , m⎛⎝ ⎞⎠,

and

X ηδ( ) � ±

									
−2m2ℓ2

2 −m2( )ℓ1

√
dn

								
ℓ2

2 −m2( )

√
ηδ , m⎛⎝ ⎞⎠.

Consequently, the solutions of the SSE-MTD (1) are as
follows:

W x, t( ) � ±

										
−2m2ℓ2

2m2 − 1( )ℓ1

√
cn

								
−ℓ2

2m2 − 1( )

√
ηδ , m⎛⎝ ⎞⎠eiμδ , (36)

for ℓ2
(2m2−1)> 0, ℓ1 < 0, and

W x, t( ) � ±

									
−2m2ℓ2

2 −m2( )ℓ1

√
dn

								
ℓ2

2 −m2( )

√
ηδ , m⎛⎝ ⎞⎠eiμδ , (37)

for ℓ2 > 0, ℓ1 < 0, respectively. If m→ 1, then the solutions (36) and
(37) turn to:

W x, t( ) � ±

				
−2ℓ2
ℓ1

√
sech

		
ℓ2

√
η1x + η4t( )( )eiμδ , (38)

for ℓ2 > 0, ℓ1 < 0.

Remark 2: If we Put β = 0 and δ = 0 in Eqs. (34) and (36), then we
get the solutions (48) and (49) that stated in [40].

5 Discussion and effects of
M-truncated derivative

Discussion: For the Sasa-Satsuma equation with aM-truncated
derivative, we found the optical solutions in this paper. Two
effective methods, the REM-method and JEF-method, were used
to arrive at these results. The REM-method has provided optical
singular periodic (21) and (22), singular optical solution (27), and
dark optical solution (26). While JEF-method has provided elliptic
solutions. Dark optical solution can interpret solitary waves (SW)
with less intensity than the background [47]. SW with
discontinuous derivatives can be illustrated using singular
solitons [48, 49]. These kinds of SW are effective because of
their efficacy and applicability in optical long-distance
communications. Optical fibers can be thought of as thin, long
strands of pure-ultra glass that allow electromagnetic radiations to
travel unimpeded from one location to another.

Effects of M-truncated derivative: Now, we examine the
influence of MTD on the exact solution of the SSE-MTD (1).
Several graphical representations depict the behavior of some
obtained solutions, including (26) (34) and (38). Let us fix the
parameters α1 � 1

2, μ1 � μ2 � α4 � η1 � 1, α2 � 2, η2 �
−2, x ∈ [0, 4] and t ∈ [0, 2] to simulate these graphs.

Now, we deduce from Figures 1, 2, 3 that when the derivative
order δ of M-truncated derivative increases, the surface moves into
the right.

6 Conclusion

In this study, the Sasa-Satsuma equation with M-truncated
derivative (SSE-MTD) was examined. We acquired the exact
solutions by utilizing Jacobi elliptic function and generalizing
Riccati equation mapping methods. Because of the application of
the Sasa–Satsuma equation in explaining the propagation of
femtosecond pulses in optical fibers, these solutions may
explain a wide range of interesting and complex physical
phenomena. Furthermore, using the MATLAB program, the
M-truncated derivative effects on the exact solutions of SSE-
MTD (1) were illustrated. We concluded that when the
derivatives order increases the surface moves into the right. In
the future work, we can consider Sasa-Satsuma equation with
stochastic term.
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Nomenclature

Mδ,β
j,t

M-truncated derivative operator

Ej,β(t) Truncated Mittag-Leffler function

Γ(·) Gamma function

β Positive real number

δ Fractional derivative order

a and b Real constants

αk, for k = 1, 2, 3, 4 Real constants

x and t Independent variables

X Solution of wave equation

ηδ The wave variable

μδ The phase component

μ1 The wave frequency

μ2 The wave number

η1 The wave frequency

η2 The wave velocity

Sn The elliptic sine

Cn The elliptic cosine

Dn The delta amplitude

M Modulus
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Fractional stochastic vibration
system under recycling noise

Jian-Gang Zhang*, Fang Wang and Hui-Nan Wang

School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, China

The fractional stochastic vibration system is quite different from the traditional
one, and its application potential is enormous if the noise can be deployed
correctly and the connection between the fractional order and the noise
property is unlocked. This article uses a fractional modification of the well-
known van der Pol oscillator with multiplicative and additive recycling noises
as an example to study its stationary response and its stochastic bifurcation. First,
based on the principle of theminimummean square error, the fractional derivative
is equivalent to a linear combination of damping and restoring forces, and the
original system is simplified into an equivalent integer order system. Second, the
Itô differential equations and One-dimensional Markov process are obtained
according to the stochastic averaging method, using Oseledec multiplicative
ergodic theorem and maximal Lyapunov exponent to judge local stability, and
judging global stability is done by using the singularity theory. Lastly, the stochastic
D-bifurcation behavior of the model is analyzed by using the Lyapunov exponent
of the dynamical system invariant measure, and the stationary probability density
function of the system is solved according to the FPK equation. The results show
that the fractional order and noise property can greatly affect the system’s
dynamical properties. This paper offers a profound, original, and challenging
window for investigating fractional stochastic vibration systems.

KEYWORDS

van der Pol system, fractional derivative, recycling noise, stochastic averaging method,
stochastic bifurcation

1 Introduction

Fractional derivative [1, 2] is an extension of the theory of integer derivatives, and the
study of fractional derivatives has a history of over 300 years. Some new materials have
appeared, e.g., viscoelastic materials, nanomaterials, cement mortar, 3D-printed materials,
and porous materials [3–8], which are different from either a solid or a fluid, and their
constitutive relation is extremely difficult to be expressed correctly by the traditional calculus
though much effort has been made to solve the problem, for example, using the fractal
viscoelastic model [9] and the fractal rheological model [10]; the intractable constitutive
relation has not yet been solved.

Considering its memory property, we consider that fractional calculus might be the best
candidate for stochastic dynamical systems [11, 12]. Stochastic disturbances are widespread
in nature, and fractional stochastic systems have become a hot spot in both mathematics and
physics to deal with noise excitation. For example, energy-harvesting devices [13–15] are
always subject to random excitation, and a fractional model can effectively reveal the
bifurcation properties and multiple attractors of the energy-harvesting system, for example,
Ref. [16]. Fractional models for Gaussian white noise also caught much attention [17–21],
and the fractional convolution kernel neural network is a suitable mathematical tool for fault
diagnosis [22–24]. Duffing oscillator [25, 26] is extended to its fractional partner under noise
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[27, 28]. Van der Pol oscillator [29] is another widely used model for
the analysis of fractional stochastic P-bifurcation [30, 31].

In reality, noise exists in all aspects of practical applications,
especially in nonlinear systems. The properties of stationary response,
energy-harvesting efficiency, stability, and bifurcation will be greatly
affected by noise excitation. At present, the research on the dynamic
behavior of systems driven by recycling noise has attracted widespread
attention from domestic and foreign scholars and achieved fruitful
results, especially in the birhythmic biological system [32], stochastic
resonance in asymmetric bistable systems [33], and the double
entropic stochastic resonance phenomenon [34]. In this article, the
fractional van der Pol model with recycling noise is adopted to
investigate its dynamical properties.

2 Model description

Balthazar van der Pol is a famous electronic engineer in the
Netherlands. In 1927, he first deduced the famous van der Pol
equation in order to describe the oscillation effect of triodes in
electronic circuits, as shown below:

€x − μ 1 − x2( ) _x + x � 0

Afterward, as a classic nonlinear dynamic system, it is often
used in mathematics and some nonlinear dynamic systems to
demonstrate its dynamic behavior characteristics. In continuous
research, the highest number of nonlinear terms considered is also
constantly increasing, and there are also various methods for
solving approximate solutions of such equations [35, 36]. From
the classical van der Pol equation, changing the order of the
equation can obtain systems with different dynamic behaviors,
thereby better obtaining the dynamic behavior characteristics of
the system. Therefore, we use the following equation to introduce
the fractional generalized van der Pol model with multiplicative
and additive recycling noise:

€x − −ε + α1x
2 − α2x

4 + α3x
6 − α4x

8( ) _x + ω2x + c
0D

px

� η1 t( ) + x t( )η2 t( ), (1)
where ε is the damping coefficient, α1, α2, α3, α4 are nonlinear
damping coefficients, ω is the frequency, η1(t) and η2(t) are
independent recycling noises, i.e., D1 ≠ D2, ηi(t) � ξi(t)+
kξi(t − τ), (i � 1, 2). The power spectral density of recycling
noise is obtained as:

Si ω( ) � 2Di 1 + k2 + 2kcos ωτ( )[ ], i � 1, 2( ). (2)
c
0D

p[x(t)] is the Caputo fractional derivative [1, 2] of
p (0≤p≤ 1) order about x(t) defined as:

c
0D

p x t( )[ ] � 1
Γ m − p( )∫t

0

x m( ) u( )
t − u( )1+p−m du, m − 1<p≤m,m ∈ N.

(3)
There are other definitions of fractional derivatives, for example,

two-scale fractal derivative [37–41] and He’s fractional derivative
[42]. The Caputo fractional derivative has memory property [43,
44], so it is used for the present study.

The c
0D

px term in Eq. 1 can be expressed in a combination of
spring stiffness and damping terms [45–48], hence, Eq. 1 becomes:

€x − −ε + α1x
2 − α2x

4 + α3x
6 − α4x

8 + C p( )( ) _x
+ ω2 + K p( )( )x � η1 t( ) + x t( )η2 t( ), (4)

where C and K are the equivalent damping and stiffness coefficients
of fractional damping, respectively.

In order to identify C and K, we introduce an error function,
which reads

e � −C p( ) _x +K p( )x − c
0D

p x t( )[ ], (5)
According to the minimum mean square method [44], we

have

∂E e2( )/∂ C p( )( ) � 0,
∂E e2( )/∂ K p( )( ) � 0.

{ (6)

Equation 6 leads to the following equations:

E −C p( ) _x2 +K p( )x _x − _xc
0D

px[ ] � lim
T→∞

1
T
∫T

0
−C p( ) _x2 +K p( )x _x − _xc

0D
px( )dt � 0,

E −C p( )x _x +K p( )x2 − xc
0D

px[ ] � lim
T→∞

1
T
∫T

0
−C p( )x _x +K p( )x2 − xc

0D
px( )dt � 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)

Assuming that

x t( ) � a t( ) cosφ t( ) � a t( ) cos ωt + θ( ) (8)
and _a(t) ≈ 0, we have

_x t( ) � −a t( )ω sinφ t( ),
€x t( ) � −a t( )ω2 cosφ t( ).{ (9)

Considering Eq. 8, 9, we re-write Eq. 7 in the form

lim
T→∞

1
T
∫T

0
−C p( ) _x2 +K p( )x _x − _xc

0D
px( )dt

� lim
T→∞

1
T
∫T

0
−C p( )a2 t( )ω2sin 2 φ t( ) −K p( )a2 t( )ωφ t( ) cosφ t( )(

+ a t( )ω sinφ t( )c0Dpx)dφ

≈−C p( )a2ω
2

+ 1
Γ 1−p( ) lim

T→∞
1
T
∫T

o
aωsinφ( )∫t

0

_x t−τ( )
τp

dτ[ ]dφ
� −C p( )a2ω

2
− 1
Γ 1 − p( ) lim

T→∞
1
T
∫T

0
a2ω sinφ

× ∫t

0

sinφ cos ωτ( ) − cosφ sin ωτ( )
τp

dτ( )dt � 0,

For the same reason, we have

lim
T→∞

1
T
∫T

0
−C p( )x _x + K p( )x2 − xc

0D
px( )dt

� lim
T→∞

1
T
∫T

0
−C p( )a2 t( )ω sinφ t( ) cosφ t( ) +K p( )a2 t( )cos 2 φ t( )(

− a t( ) cosφ t( )c0Dpx)dφ

≈
K p( )a2
2ω

− 1
Γ 1 − p( ) lim

T→∞
1
T
∫T

o
acosφ( )∫t

0

_x t − τ( )
τp

dτ[ ]dφ
� K p( )a2

2ω
+ 1
Γ 1 − p( ) lim

T→∞
1
T
∫T

0
a2

× cosφ ∫t

0

sinφ cos ωτ( ) − cosφ sin ωτ( )
τp

dτ( )dt � 0.

Hence
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lim
T ��→∞

1
T
∫T

0
−C p( ) _x2 +K p( )x _x− _xc

0D
px( )dt

� −C p( )a2ω
2

− 1
Γ 1−p( ) lim

T ��→∞
1
T
∫T

0
a2ωsinφ ∫t

0

sinφcos ωτ( )− cosφsin ωτ( )
τp

dτ( )dt� 0,
lim

T ��→∞
1
T
∫T

0
−C p( )x _x+K p( )x2 −xc

0D
px( )dt

�K p( )a2
2ω

+ 1
Γ 1−p( ) lim

T ��→∞
1
T
∫T

0
a2 cosφ ∫t

0

sinφcos ωτ( )− cosφsin ωτ( )
τp

dτ( )dt� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

To simplify Eq. 10 further, we use the following asymptotic
integrals

∫t

0

cos ωτ( )
τp

dτ � ωp−1 Γ 1 − p( ) sin pπ

2
( ) + sin ωt( )

ωt( )p( ) + o ωt( )−p−1( ),
∫t

0

sin ωτ( )
τp

dτ � ωp−1 Γ 1 − p( ) cos pπ

2
( ) − cos ωt( )

ωt( )p( ) + o ωt( )−p−1( ).
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(11)

In view of Eq. 11, the integral averaging of Eq. 10 with respect to
φ results in

C p( ) � −ωp−1 sin
pπ

2
( ),

K p( ) � ωp sin
pπ

2
( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

Hence, the equivalent system (4) can be written in the form

€x − λx + ω0
2x � η1 t( ) + x t( )η2 t( ), (13)

where

λ � −ε + α1x
2 − α2x

4 + α3x
6 − α4x

8 − ωp−1 sin
pπ

2
( ),

ω0
2 � ω2 + ωp cos

pπ

2
( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

3 Model processing

Now the problem becomes relatively simple; we assume that the
solution of Eq. 13 can be expressed as [49].

X � x t( ) � a t( ) cosΦ t( ),
Y � _x t( ) � −a t( )ω0 sinΦ t( ),
Φ t( ) � ω0t + θ t( ),

⎧⎪⎨⎪⎩ (15)

where a(t) and θ(t) are the amplitude and initial phase of the
system, respectively.

We re-write Eq. 13 in the form

_x � y,
_y � λy − ω0

2x t( ) + η1 t( ) + x t( )η2 t( ).{ (16)
By Eq. 15 and the stochastic averaging method [50], Eq. 16

becomes
da

dt
� F11 a, θ( ) + G11 a, θ( )η1 t( ) + G12 a, θ( )η1 t( ),

dθ

dt
� F21 a, θ( ) + G21 a, θ( )η1 t( ) + G22 a, θ( )η1 t( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

where

F11 a, θ( ) � asin 2 Φ
−ε + α1a

2cos 2 Φ − α2a
4cos 4 Φ + α3a

6cos 6 Φ

−α4a8cos 8 Φ − ωp−1 sin
pπ

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F21 a, θ( ) � sinΦ cosΦ
−ε + α1a

2cos 2 Φ − α2a
4cos 4 Φ + α3a

6cos 6 Φ

−α4a8cos 8 Φ − ωp−1 sin
pπ

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

G11 a, θ( ) � −sinΦ
ω0

, G12 a, θ( ) � −asinΦ cosΦ
ω0

,

G21 a, θ( ) � −cosΦ
aω0

, G22 a, θ( ) � −cos
2 Φ

ω0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

The recycling noise is a stationary process and can be
approximated by a 2-D diffusion process. After stochastic
averaging, the drift and diffusion coefficients are as follows:

m1 � F11 + ∫0

−∞

−cosΦ
ω0

( ) −cosΦ t + τ1( )
aω0

( ) + −cosΦ sinΦ
ω0

( ) −asin 2Φ t + τ1( )
2ω0

( )
+ −a cos 2 Φ − sin 2 Φ( )

ω0
( ) −cos2Φ t + τ1( )

ω0
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦R τ1( )dτ1

� F11 + cos 2 Φ
aω0

2 S1 1( ) + acos 2 Φsin 2 Φ + acos 2Φcos 2 Φ
ω0

2[ ]S2 1( ),

m2 � F21 + ∫0

−∞

cosΦ
a2ω0

( ) −sinΦ t + τ1( )
ω0

( ) + sinΦ
aω0

( ) −cosΦ t + τ1( )
aω0

( )
+ 2 cosΦ sinΦ

ω0
( ) −cosΦ2 t + τ1( )

ω0
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦R τ1( )dτ1

� F21 − 2 cosΦ sinΦ
a2ω0

2 S1 1( ) − 2cos 3 Φ sinΦ
ω0

2 S2 1( ),

B11 � ∫+∞

−∞
−sinΦ
ω0

( ) −asinΦ t + τ1( )
ω0

( )R τ1( )dτ1 � 2sin 2 Φ
ω0

2 S1 1( ),

B12 � ∫+∞

−∞
−asin 2Φ

2ω0
( ) −asin 2Φ t + τ1( )

2ω0
( )R τ1( )dτ1 � 2a2cos 2 Φsin 2 Φ

ω0
2 S2 1( ),

B21 � ∫+∞

−∞
−cosΦ
aω0

( ) −cosΦ t + τ1( )
aω0

( )R τ1( )dτ1 � 2cos 2 Φ
a2ω0

2 S1 1( ),

B22 � ∫+∞

−∞
−cos 2 Φ

ω0
( ) −cos 2 Φ t + τ1( )

ω0
( )R τ1( )dτ1 � 2cos 4 Φ

ω0
2 S2 1( ),

(19)

where Si(1) is the value of power spectral density of ηi(t)
at ω � 1.

TABLE 1 Global stability analysis.

Condition State Category Conclusion

H1/H3 < 1 ca < 1 a � 0 Attract natural
boundary

The trivial solution of Eq. 26 is stable in the sense of probability, and the original system is probabilistically stable
at the balance point

cl > − 1 a � +∞ Exclude natural
boundary

H1/H3 > 1 ca > 1 a � 0 Exclude natural
boundary

The trivial solution of Eq. 26 is unstable in the sense of probability, and the original system is probabilistically
unstable at the balance point

cl < − 1 a � +∞ Attract natural
boundary

H1/H3 � 1 ca � 1 a � 0 Strict natural boundary The critical condition of system bifurcation
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Si 1( ) � 2Di 1 + k2 + 2kcos τ( )[ ], i � 1, 2( ) (20)
For the deterministic averaging of φ(t), we have

�m11 � 1
2π

∫2π

0
F11 a, θ( ) + cos 2 Φ

aω0
2 S1 1( ) + acos 2 Φsin 2 Φ + acos 2Φcos 2 Φ

ω0
2 S2 1( )[ ]dΦ

� −1
2
a ε + ωp−1 sin

pπ

2
( )( ) + α1a

3

8
− α2a

5

16
+ 5α3a

7

128
− 7α4a

9

256
+ S1 1( )
2aω0

2 +
3aS2 1( )
8ω0

2

�m22 � 1
2π

∫2π

0
F21 a, θ( ) − 2 cosΦ sinΦ

a2ω0
2 S1 1( ) − 2cos 3 Φ sinΦ

ω0
2 S2 1( )[ ]dΦ � 0,

�B11 � 1
2π

∫2π

0

2sin 2 Φ
ω0

2 S1 1( )dΦ � S1 1( )
ω0

2 ,

�B12 � 1
2π

∫2π

0

2a2cos 2 Φsin 2 Φ
ω0

2 S2 1( )dΦ � a2S2 1( )
4ω0

2 ,

�B21 � 1
2π

∫2π

0

2cos 2 Φ
a2ω0

2 S1 1( )dΦ � S1 1( )
a2ω0

2,

�B22 � 1
2π

∫2π

0

2cos 4 Φ
ω0

2 S2 1( )dΦ � 3S2 1( )
4ω0

2 .

(21)
The corresponding Itô SDE is

da � m1 a( )dt + σ11
2 a( )dB1 t( ) + σ12

2 a( )dB2 t( ),
dθ � m2 a( )dt + σ21

2 a( )dB1 t( ) + σ22
2 a( )dB2 t( ),{ (22)

where

m1 a( ) � −1
2
a ε + ωp−1 sin

pπ

2
( )( ) + α1a

3

8
− α2a

5

16

+5α3a
7

128
− 7α4a

9

256
+ S1 1( )
2aω0

2 +
3aS2 1( )
8ω0

2 ,

m2 a( ) � 0,

σ11
2 a( ) � S1 1( )

ω0
2 , σ12

2 a( ) � a2S2 1( )
4ω0

2 ,

σ21
2 a( ) � S1 1( )

a2ω0
2, σ22

2 a( ) � 3S2 1( )
4ω0

2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

The one-dimensional Markov Process can be expressed as:

da � H1a

8
+ α1a

3

8
− α2a

5

16
+ 5α3a

7

128
− 7α4a

9

256
+ H2

2a
( )dt
+ H2( ) 1

2dB1 t( ) + H3a2

4
( )1

2

dB2 t( ), (24)
where

H1 � −4 ε + ωp−1 sin
pπ

2
( )( ) + 3S2 1( )

ω0
2 ,

H2 � S1 1( )
ω0

2 , H3 � S2 1( )
ω0

2 .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (25)

4 Stochastic stability analysis

4.1 The local stochastic stability

Considering the case of α1 � α2 � α3 � α4 � H2 � 0 and linear
Itô stochastic stability, from Eq. 24, we obtain

da � H1

8
a( )dt + H3

4
a2( )1

2

dB2 t( ),

m a( ) � H1

8
( )a, σ a( ) � H3

4
( )1

2

a.

(26)

Therefore, it isobtainedthat _m(0) � H1/8and _σ12(0) � (H3/4)1/2,
using Oseledec multiplicative ergodic theorem [51] and maximal
Lyapunov exponents to judge local stability. According to Itô
stochastic differential equation, the solution of Eq. 26 is

a t( ) � a 0( ) exp ∫t

0
_m 0( ) − _σ12 0( )( )2

2
[ ]ds + ∫t

0
_σ12 0( )dB2 s( )( ),

Then the approximate solution of the Lyapunov exponent of Itô
stochastic differential equation is obtained

λ � lim
t→+∞

1
t
ln x t, t0( )‖ ‖( ) � lim

t→+∞
1
t
ln a t( )( ) 1

2

� _m 0( ) − _σ12 0( )( )2
2

( )/2 � 1
2

H1

8
− H3

8
( ).

When H1 −H3 < 0, i.e., λ< 0, Eq. 26 is stable in the sense of
probability, and Eq. 16 is stable at the balance point. When
H1 −H3 > 0, i.e., λ< 0, the effect is just the opposite.

4.2 The global stochastic stability

4.2.1 Linear Itô stochastic stability
Judging global stability by the singularity theory, a � 0 is the first

kind of singular boundary of Eq. 26. a � +∞ is the second kind of
singular boundary problem of Eq. 26. Calculating the diffusion
index, drift indices, and characteristic value at boundary a � 0
and a � +∞, respectively, yields

αa � 2, βa � 1, ca � lim
a→0+

2ma a − 0( ) αa−βa( )
σ122 a( )

� lim
a→0+

2H1

8
a2( )/ H3

4
a2( ) � H1

H3
,

αl � 2, βl � 1, cl � − lim
a→+∞

2ma a − 0( ) αl−βl( )
σ12

2 a( )
� − lim

a→+∞
2H1

8
a2( )/ H3

4
a2( ) � −H1

H3
.

And the following conclusions are drawn, as shown in Table 1.

4.2.2 Stability of nonlinear Itô stochastic
differential equation

When α1, α2, α3, α4, H2 ≠ 0, a � 0 is the first kind of singular
boundary of Eq. 24. When a � +∞ and ma � +∞, a � +∞ is the
second kind of singular boundary problem of Eq. 24. Calculating the
diffusion index, drift indices, and characteristic value at boundary
a � 0 and a � +∞, respectively, yields

αa � 2, βa � 1, ca � lim
a→0+

2ma a − 0( ) αa−βa( )
σ11

2 a( ) + σ12
2 a( )

� lim
a→0+

−a ε + ωp−1 sin
pπ

2
( )( ) + α1a

3

4
− α2a

5

8

+5α3a
7

64
− 7α4a

9

128
+ S1 1( )
aω0

2 + 3aS2 1( )
4ω0

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠a/ S1 1( )
ω0

2 + a2S2 1( )
4ω0

2( )

� lim
a→0+

ω0
2

−128a2 ε + ωp−1 sin
pπ

2
( )( ) + 32α1a

4 − 16α2a
6

+10α3a8 − 7α4a
10 + 128S1 1( ) + 96a2S2 1( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
128S1 1( ) + 32a2S2 1( ) � 1, limαl � 2, βl

� 9, cl � − lim
a→+∞

2ma a − 0( ) αl−βl( )
σ11

2 a( ) + σ12
2 a( )

� − lim
a→+∞

−a ε + ωp−1 sin
pπ

2
( )( ) + α1a

3

4
− α2a

5

8

+5α3a
7

64
− 7α4a

9

128
+ S1 1( )
aω0

2 + 3aS2 1( )
4ω0

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠a−7/ S1 1( )
ω0

2 + a2S2 1( )
4ω0

2( )

� − lim
a→+∞

ω0
2

−128a2 ε + ωp−1 sin
pπ

2
( )( ) + 32α1a

4 − 16α2a
6

+10α3a8 − 7α4a
10 + 128S1 1( ) + 96a2S2 1( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
128S1 1( )a8 + 32S2 1( )a10 � − 7α4ω0

2

32S2 1( ).
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Conclusion: when a � 0 and ca � 1 are a strict natural boundary;
when a � +∞ , cl > − 1, and (α4ω0

2)/S2(1)< 32/7, the boundary is
an exclude natural boundary; when cl < − 1 and (α4ω0

2)/S2(1)>
32/7, the boundary is an attract natural boundary; when cl � −1 and
(α4ω0

2)/S2(1) � 32/7, the boundary is a strict natural boundary.
Therefore, ca � 1 is a critical condition of system bifurcation.

5 Stochastic bifurcation analysis

5.1 D-bifurcation

If H2 � H3 � 0, Eq. 13 becomes a deterministic system without
a stochastic bifurcation phenomenon. Therefore, discussing the
situation of H3 ≠ 0 and α1 � α2 � α3 � α4 � H2 � 0, let σ12(a) �
(H3/4)1/2a and m(a) � (H1/8 −H3/8)a, then the continuous
dynamic system generated by Eq. 26 is

ψ1 t( )x � x + ∫t

0
m ψ1 s( )x( )ds + ∫t

0
σ ψ1 s( )x( )+dB, (27)

Equation 27 is the only strong solution of Eq. 26 with x as the
initial value. When m(0) � 0 and σ12(0) � 0, let m(a) be bounded,
for all a ≠ 0, the elliptic condition σ12(0) ≠ 0 is satisfied, so there is
only one stationary probability density. Therefore, the FPK equation
corresponding to Eq. 26 is obtained.

∂p
∂t

� − ∂
∂a

H1

8
a( )p[ ] − ∂2

∂a2
H3

4
a2( )p[ ]. (28)

Let ∂p/∂t � 0 get the stationary probability density
corresponding to Eq. 28

p a( ) � c σ12
−1 a( )∣∣∣∣ ∣∣∣∣ exp ∫a

0

2m u( )
σ12

2 u( )du( ). (29)

At this time, Eq. 27 has a non-trivial stationary state and a fixed-
point equilibrium state. Assuming the invariant measures of these
two kinds of stationary states are υ1 and ϑ1, respectively, the density
is Eq. 29 and ϑ1(x), respectively. Hence, the solution of Eq. 28 is

a t( ) � a 0( ) exp ∫t

0
_m a( ) + σ12 a( )€σ12 a( )

2
( )ds + ∫t

0
_σ12 a( )dB2[ ].

(30)
The Lyapunov exponent of ψ1 with respect to estimate u can be

defined as follows

λψ1
u( ) � lim

t→+∞
1
t
ln a t( )‖ ‖, (31)

Substituting Eq. 30 into Eq. 31, here σ12(0) � 0 and _σ12(0) � 0,
its Lyapunov exponent of the fixed-point reads

λψ1
ϑ1( ) � lim

t→+∞
1
t

ln a 0( )‖ ‖ + _m 0( )∫t

0
ds + _σ12 0( )∫t

0
dB2 s( )[ ]

� _m 0( ) + _σ12 0( ) lim
t→+∞

B2 t( )
t

� _m 0( ) � H1

8
− H3

8
.

(32)

Invariant estimate υ1 with Eq. 29 as density. Substituting Eq. 30
into Eq. 31. Assuming that _σ and _m + σ _σ are bounded and
integrable, respectively, the Lyapunov exponent can be obtained

λψ1
υ1( ) � lim

t→+∞
1
t
∫t

0
_m a( ) + σ12 a( )€σ12 a( )[ ]ds

� ∫
R

_m a( ) + σ12 a( )€σ12 a( )
2

[ ]p a( )da � −2∫
R

m a( )
σ12 a( )[ ]2

p a( )da _m 0( ) � −2H2
3/2 H1

8
− H3

8
( ) exp 8

H3

H1

8
− H3

8
( )( ).

(33)
Let α � H1 −H3, when α< 0 and H1 <H3, ϑ1 is stable, υ1 is

unstable; when α> 0 andH1 >H3, ϑ1 is unstable, υ1 is stable. So α is
a D-bifurcation point of Eq. 13.

5.2 P-bifurcation

5.2.1 Stochastic P-bifurcation under additive
recycling noise

When additive noise just exists, D1 ≠ 0 and D2 � 0. The
following is an analysis of the stochastic P-bifurcation of the
system in this case. Eq. 22, 23 show that the Itô stochastic
differential equation corresponding to a(t) does not depend
upon θ(t), and it is a 1-D diffusion process; its corresponding
FPK equation can be expressed as

∂p a, t( )
∂t

� − ∂
∂a

m1 a( )p a, t( )[ ] + 1
2

∂2

∂a2
σ11

2 a( )p a, t( )[ ], (34)
the corresponding boundary conditions are

p � c, c ∈ −∞,+∞( ), when a � 0.

p → 0,
∂p
∂a

→ 0, when a → ∞ .

⎧⎪⎪⎨⎪⎪⎩ (35)

In view of Eq. 35, the stationary probability density of the
amplitude is

p a( ) � C

σ11
2 a( ) exp ∫a

0

2m1 u( )
σ11

2 u( ) du[ ], (36)

where C is the normalization constant,

C � ∫∞

0

1
σ11

2 a( ) exp ∫a

0

2m1 u( )
σ11

2 u( ) du[ ]( )da[ ]−1
. (37)

In view of Eq. 23, from Eq. 36, we obtain

p a( ) � Caω0
2

S1 1( ) exp − a2ω0
2Δ

7680S1 1( )[ ], (38)

where

Δ � 3840ε + 3840ωp−1 sin
pπ

2
( ) − 480α1a

2 + 160α2a
4 − 75α3 + 42α4a

8,

ω0
2 � ω2 + ωp cos

pπ

2
( ),

S1 1( ) � 2D1 1 + k2 + 2kcos τ( )[ ].
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(39)

The original system response meets a(t) � &&&&&&&&&&&
x2(t) + _x2(t)√

, in
view of Eq. 38, the joint probability density function of the system is

p a( ) � C
&&&&&&&&&&&
x2 t( ) + _x2 t( )

√
ω0

2

S1 t( ) exp − x2 t( ) + _x2 t( )( )ω0
2

3840S1 t( ) Δ[ ]. (40)
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5.2.1.1 Influence of fractional order
As fractional damping is a combination of the equivalent stiff

and equivalent damping, the fractional order is of paramount
importance; its value can be calculated by He-Liu’s fractal
formulation [52] for practical applications. According to Eq. 12,
when p � 1, fractional damping becomes a damping term, while
when p � 0, it is a stiff term.

Setting
τ � 2, k � 0.4, ε � −0.1, α1 � 1.51, α2 � 2.85, α3 � 1.693, α4 � 0.312,
and ω � 1 in Eq. 13 as that in Refs [30, 53], the stochastic
P-bifurcation is studied hereby. Keeping D1 � 0.005 constant, we
draw the joint probability density function section and top view of
Eq. 13 under the influence of different fractional orders.

When p � 0.06, the joint probability density function diagram
shows a crater shape; there is only one peak in the section, and there
is only a large limit cycle. The response is shown as a vibration far
beyond the origin (Figure 1).

When p � 0.139, from the section, it can be clearly seen that
there are two peaks, but the second peak has a much larger
amplitude. At this time, the system has a balance point and a
large limit cycle; hence, the system response switches between
two peaks, and the probability of a large amplitude vibration is
high, as shown in Figure 2.

When p � 0.141, the section has three peaks, showing two peaks
in addition to the origin. A balance point now coexists with a large
and small limit cycle in the system, and the system response switches
between the three peaks, which is a multimodal response. Due to the
existence of the double limit point set, the relative heights of the joint
probability density function peaks at the three peaks are different,
implying that the system response peaks are different, as shown in
Figure 3.

When p � 0.145, the section has two peaks, in contrast to
Figure 2, the relative height of the peak changes, with the second
peak being significantly smaller. At this time, the system has both a
balance point and a small limit cycle; hence, the system response
switches between two peaks, and the probability of a small amplitude
vibration is high, as shown in Figure 4.

Based on the above discussions, we conclude that the fractional
order can cause stochastic P-bifurcation behavior in the system.
From Figure 5, we find that an increasing fractional order will

change the stationary response from a single mode to a dual mode
and then to a tristable mode. The peak value changes from a single
peak to two peaks and then to three peaks, so stochastic
P-bifurcation occurs. Increasing the value of p to 0.145 again,
the tristable disappears and the bistable appears; the peak value
changes from three peaks to two peaks, so stochastic P-bifurcation
occurs.

5.2.1.2 Influence of noise intensity
Keeping the above parameters unchanged, and fixing p � 0.14,

we draw the joint probability density function section and top view
of Eq. 13 under the influence of different noise intensity.

When D1 � 0.03, the joint probability density function diagram
shows a crater shape, there is only one peak in the section, and there
is only a large limit cycle. The response is shown as a vibration far
beyond its origin, as shown in Figure 6.

When D1 � 0.015, from the section, it can be clearly seen that
there are two peaks, but the first peak is much smaller. At this time,
the system has both a balance point and a large limit cycle; hence,
the system response switches between two peaks, and the
probability of a large amplitude vibration is high, as shown in
Figure 7.

When D1 � 0.005, the section has three peaks, showing two
peaks in addition to the origin. A balance point now coexists with a
large and small limit cycle in the system, and the system response
switches among the three peaks, which is a multimodal response.
Due to the existence of the double limit point set, the relative heights
of the joint probability density function peaks at the three peaks are
different, implying that the vibration frequency of the system
response peak is different, as shown in Figure 8.

When D1 � 0.0013, the section has two peaks, in contrast to
Figure 7; the relative height of the peak changes, with the first peak
being much larger. At this point, the system has a balance point and
a small limit cycle, the system response switches between two peaks,
and the probability of a small amplitude vibration is high, as shown
in Figure 9.

Based on the above discussions, it can be verified that
changing the noise intensity affects greatly stochastic
P-bifurcation property. From Figure 10, it can also be seen
that with noise intensity being reduced, the stationary

FIGURE 1
Joint probability density function section and top view of Eq. 13 when p � 0.06.
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response of the system switches from a single mode to a dual
mode and then to a tristable mode. The peak value of the
stationary probability density function curve changes from a
single peak to two peaks and then three peaks, so stochastic
P-bifurcation occurs. Decreasing the value of D1 to 0.0013 again,
the tristable disappears and the bistable appears; the peak value

changes from three peaks to two peaks, so stochastic
P-bifurcation occurs.

5.2.2 Additive and multiplicative recycling noise
When D1 ≠ 0 and D2 ≠ 0, the expression of the stationary

probability density function of the amplitude of Eq. 13 is

FIGURE 2
Joint probability density function section and top view of Eq. 13 when p � 0.137.

FIGURE 3
Joint probability density function section and top view of Eq. 13 when p � 0.14.

FIGURE 4
Joint probability density function section and top view of Eq. 13 when p � 0.143.
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p a( ) � C

σ112 a( ) + σ12
2 a( ) exp ∫a

0

2m u( )
σ11

2 u( ) + σ12
2 u( )du[ ], (41)

where C is the normalization constant,

C � ∫∞

0

1
σ11

2 a( ) + σ12
2 a( ) exp ∫a

0

2m1 u( )
σ11

2 u( ) + σ12
2 u( ) du[ ]( )da[ ]−1

.

(42)
In view of Eq. 23, from Eq. 42, we have

p a( ) � 4Caω0
2 4S1 1( ) + a2S2 1( )[ ]− Δ1

S2
5 1( ) exp

Δ2

768S2
4 1( )( ), (43)

where

Δ1 � 2ω0
2 ε + ωp−1 sin

pπ

2
( )( )S24 + α1S1S2

3 + 2α2S1
2S2

2 + 5α3S1
3S2 + 14α4S1

4[ ],
Δ1 � a2ω0

2 384α1S2
3 + 768α2S1S2

2 + 1920α3S1
2S2 + 5376α4S1

3( )
+a4ω0

2 −96α2S23 − 240α3S1S2
2 − 672α4S1

2S2( )
+a6ω0

2 40α3S2
3 + 112α4S1S2

2( ) − 21a8ω0
2α4S2

3 ,

ω0
2 � ω2 + ωp cos

pπ

2
( ),

S1 1( ) � 2D1 1 + k2 + 2kcos τ( )[ ], S2 1( ) � 2D2 1 + k2 + 2kcos τ( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(44)

Keeping the above parameters unchanged, we draw the joint
probability density function section and top view of Eq. 13 under the
influence of different fractional orders and noise intensity.

When p � 0.05, let D1 � 0.5 and D2 � 1. The joint probability
density function diagram shows a crater shape; there is only one
peak in the section, and there is only a large limit cycle. The response
is shown as a vibration far away from the origin. At the same time,
reducing the value of noise intensity reveals that the peak of the joint

FIGURE 5
Stationary probability density function diagram of Eq. 13 when
D1 � 0.005.

FIGURE 6
Joint probability density function section and top view of Eq. 13 when D1 � 0.03.

FIGURE 7
Joint probability density function section and top view of Eq. 13 when D1 � 0.015.
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probability density does not change with only one peak. However,
the system only has a limit cycle, which has been in a monostable.
Therefore, there is no stochastic P-bifurcation phenomenon
occurring, as shown in Figure 11.

When p � 0.1, let D1 � 0.002 and D2 � 0.01. From the section,
it can be clearly seen that there are two peaks, but the second peak
has a much larger amplitude. At this time, the system has both a
balance point and a limit cycle; hence, the system response switches
between two peaks, and the large amplitude vibration has a higher
probability. When the simultaneous improvement of the noise
intensifies to D1 � 0.008 and D2 � 0.2, the peak value of the
stationary probability density function curve changes from two
peaks to one peak. There is only a large limit cycle, and the
system response becomes a vibration far from the origin.
Therefore, increasing the noise intensity induces a stochastic
P-bifurcation property, as shown in Figure 12.

When p � 0.14, let D1 � 0.003 and D2 � 0.01. The section has a
peak near the origin. There is only a balance point in the system at this
time, and the response is shown as a vibration closer to the origin.
When simultaneously improving its noise intensity toD1 � 0.004 and
D2 � 0.1, the peak value of the stationary probability density function
curve changes from a single peak to two peaks. At this time, the system
has both a balance point and a limit cycle; hence, the system response
switches between two peaks, and the probability of a large amplitude
vibration is small. Therefore, increasing the noise intensity induces the
stochastic P-bifurcation phenomenon. Further increasing the noise
intensity to D1 � 0.006 and D2 � 0.15, the peak value of the section
changes relatively, and the first peak is lower. The system response
switches between two peaks, and the probability of a small one is

FIGURE 9
Joint probability density function section and top view of Eq. 13 when D1 � 0.0013.

FIGURE 8
Joint probability density function section and top view of Eq. 13 when D1 � 0.005.

FIGURE 10
Stationary probability density function diagram of Eq. 13 when
p � 0.141.
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small. Continuing to increase the value of noise intensity toD1 � 0.04
andD2 � 0.3, the peak value of the curve changes from two peaks to a
single peak. There is only a limit cycle in the system at this time, and
the response is shown as a vibration far away from the origin.
Therefore, increasing the noise intensity induces the second
stochastic P-bifurcation phenomenon, as show in Figure 13.

6 Conclusion

In this paper, the stationary response and the stochastic bifurcation of
the fractional van der Pol equation under multiplicative and additive
recycling noise excitations are investigated. By the least square method,
we obtain an equivalent integral nonlinear stochastic system. The Itô

differential equation and One-dimensional Markov process are obtained
according to the stochastic averaging method. We discuss the local and
global stochastic stability and analyze the conditions for inducing
D-bifurcation and P-bifurcation in the system. The analysis shows
that when α< 0 and H1 <H3, the point equilibrium state becomes
stable, and the non-trivial stationary state becomes unstable; when α> 0
andH1 >H3, the result is the opposite. So α is a D-bifurcation point of
the original system. When only additive noise exists, the fractional order
and the noise intensity will greatly affect the system’s property. It was
found that reducing the order p or increasing the noise intensityD1 can
cause nonlinear jumping or significant oscillation in the system, leading
to system instability. Through increasing the order p or reducing the
noise intensityD1, the system response is in amonostable state or a small
disturbance near the balance point. Similarly, when additive and

FIGURE 11
Joint probability density function section and top view of Eq. 13 when p � 0.05.

FIGURE 12
Joint probability density function section and top view of Eq. 13 when p � 0.1.

FIGURE 13
Joint probability density function section and top view of Eq. 13 when p � 0.14.
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multiplicative noise coexist, selecting appropriate parameters can
maintain the system response at a monostable or small disturbance
near the balance point. Therefore, in practical engineering, to avoid the
potential adverse effects of high noise intensity on the system, the
occurrence of stochastic bifurcation behavior can be controlled by
changing the noise intensity or fractional order. In the future, we will
combine theory with practice to explore the impact of recycling noise on
the stationary response and stochastic bifurcation of systems in wind
turbines. We will study the impact of changing noise intensity and
fractional order on the system, and how to handle these adverse effects to
achieve optimal system performance.
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The mechanism of the capillary
oscillation and its application to
fabrics’ sweat permeability
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The capillary effect plays an important role in air and moisture permeability, and it
can be used for thermal enhancement and energy harvesting. However, the
capillary oscillation has not been extremely studied, and its mechanism for
fabrics’ sweat permeability was rare and preliminary. This paper studies the
frequency property of the capillary oscillation in a zig-zag porosity of a fabric
with a multiple layer structure. The theoretical analysis reveals that small porosity
and low frequency of the zig-zag porosity are beneficial to the high sweat
permeability. The proposed capillary oscillation probably paves a new avenue
for designing fabrics with high moisture permeability, particularly in sportswear
and military apparel in extreme cold environments.

KEYWORDS

capillary flow, capillary oscillator, low-frequency property, sweat permeability, fabric,
hierarchical structure

1 Introduction

The capillary effect [1–3] appears everywhere in our everyday life and engineering, and
the capillary fluid [4] can be used for enhancing heat conduction in micro/nanodevices or in
a porous hierarchy [5, 6]. The capillary effect can also be effectively applied in the
microelectromechanical system (MEMS) [7, 8] and energy-harvesting devices [9, 10] and
can greatly affect the mechanical and thermal properties of porous materials [11–14]. The
application of capillary oscillation to fabrics’ sweat permeability has significant implications
in textile engineering. Sportswear garments that are designed with high sweat permeability
are preferred to enhance breathability and prevent excessive moisture buildup. This is crucial
as excessive moisture buildup can lead to discomfort and distraction during physical activity,
ultimately hindering the performance of the wearer. Similarly, garments with excellent sweat
permeability are necessary to allow for rapid absorption of sweat and minimize skin
irritation in undergarments. The fabrics’ sweat permeability from the inner side to the
environment has triggered rocketing interest in sportswear and military apparel in an
extreme cold environment. If the sweat cannot be transferred through the cloth after an
active motion, it will greatly affect the comfort property and even be life-threatening due to
the icy fabric.

The capillary oscillation and its relationship with sweat permeability are crucial for
developing newmaterials with improved performance characteristics in textile. However, the
capillary fluid’s oscillation property was hardly analyzed. Jin et al. revealed the frequency
property mathematically [1]. Han and He applied the capillary oscillation to fabric’s self-
cleanliness [15]. Xiao, et al. studied the capillary oscillation in a short small tube [16]. Saxena
studied moisture permeability through nylon and cotton fabrics [17]. Midha et al. researched
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the laundering times on moisture permeability [18]. As the capillary
thread moves up and down, it displaces a small amount of liquid
from the surface of the fabric into the surrounding air. The process
reduces the local surface tension at the contact point between the
fabric and the skin, making the fabric more hydrophilic and thus
more susceptible to sweat absorption. Ha et al. showed that air and
moisture permeability plays an important role in the clothing
microclimate [19]. Raja et al. conducted an experiment on the
sweat transfer of multi-weave structure fabrics [20]. Guan et al.
studied the clothing–human body system [21]. Liu et al. researched
the thermal property of a microstructure [22]. The oscillatory
motion of the capillary wall can create micro-cracks and pores in
the fabric, which can facilitate the passage of sweat molecules and
enhance sweat permeability. Furthermore, these micro-cracks can
also provide additional channels for moisture transfer from the skin
to the surrounding environment, further improving sweat
evaporation and cooling performance.

All the aforementioned theoretical and experimental studies
revealed that the capillary effect on fabrics’ sweat permeability is
of extreme importance for both everyday life and advanced
applications. When sweat interacts with a fabric surface, capillary
oscillation enhances the transfer of sweat from the skin to the fabric’s
surface. This process results in increased sweat permeability, which
is essential for regulating body temperature. In this paper, we will
show the mechanism of the capillary oscillation and its great effect
on the fabric’s air/moisture permeability.

2 Capillary oscillation

When a small tube is gradually immersed into a fluid, the fluid
rises along the tube. This phenomenon, commonly referred to as the
capillary effect [2, 3], is a familiar observation to anyone who has
witnessed the wetting process of a napkin when it comes into contact
with water. It can be explained by the geometrical potential theory
[23]. The capillary rise is vulnerable to an environmental
perturbation, and the capillary fluid will vibrate periodically [1].
The periodicity of the capillary oscillator is determined by the
combined action of the gravity and surface tension of the liquid,
and this periodicity is more obvious in the pull-in solution. Pull-in
instability and periodic behavior are two key phenomena in
microelectromechanical system (MEMS) dynamics, and
differential equations can well describe these nonlinear aspects
[24–26]. The capillary rise without any perturbation can be
expressed as [27].

h∝
1
rn
, (1)

where h is the capillary rise, r is the equivalent capillary radius, and n
is a positive parameter depending on the tube’s geometry.

Equation 1 shows that a smaller porosity leads to a higher
capillary rise, which can explain why a nanofiber membrane has
high permeability [28]. The nanofiber membrane can be produced
via the electrospinning technology [29] and has the potential
application in optimizing design of the sportswear and military
apparel in an extreme cold environment.

A mathematical model was established in Ref. [1], and Bin et al.
conducted a numerical simulation of the capillary oscillation [2].

The dynamical motion of the capillary fluid through a zig-zag
porous structure of a fabric can be modelled using the following
equation [1]:

x″ + ε sin ωx( ) + ω2
0x � 0, x 0( ) � A, x′ 0( ) � 0, (2)

where x is the center of the capillary fluid when it is still, ω is the
frequency of zig-zag porosity, ω0 is a parameter relative to the
capillary effect, ε is a geometric parameter relative to fabric’s
geometry, and A is the amplitude.

When ω0 = 0, Eq. 2 becomes a famous pendulum oscillator [30].
When x<<1, Eq. 2 can be approximately expressed as

x″ + εω + ω2
0( )x − 1

6
εω3x3 � 0, x 0( ) � A, x′ 0( ) � 0. (3)

This is the duffing oscillator [31]. To provide insights into the
periodic property of Eq. 3, we quote the frequency formulation of Ji-
Huan He [32, 33]. Consider a general nonlinear oscillator in the form

x″ + p x( ) � 0, x 0( ) � A, x′ 0( ) � 0, (4)
where p is a nonlinear function of x and p/x > 0. Ji-Huan He’s
frequency formulation reads [32, 33].

Ω2 � p x( )
x

{ }∣∣∣∣∣∣∣∣
x�

�
3

√
2 A

, (5)

where Ω is the frequency of the nonlinear oscillator.
The square of the frequency of Eq. 3 is

Ω2 � εω + ω2
0( )x − 1

6 εω
3x3

x
{ }∣∣∣∣∣∣∣∣

x�
�
3

√
2 A

� εω + ω2
0 − 1

6 εω
3x2{ }∣∣∣∣∣x� �

3
√
2 A

� εω + ω2
0 −

1
8
εω3A2,

(6)

where Ω is the capillary fluid’s vibrating frequency and A is the
amplitude. This frequency formulation is a simple yet effective tool
for the fast and accurate identification of the periodic property of a
nonlinear oscillator [34–36]. Eq. 4 can also be derived using various
numerical methods, such as the homotopy perturbation method [37,
38], the variational iteration method [24, 39], Wang’s variational
approach [40], or asymptotic methods [25, 26].

3 Fabrics’ sweat permeability

A higher vibrating amplitude of the capillary motion implies
that sweat can be transferred to a farther distant. When the capillary
rise is less than the thickness of the fabric, the capillary oscillation is
the main factor for the sweat permeability. According to Eq. 4, a
higher amplitude requires a low frequency, and this low-frequency
property is the mechanism underlying the sweat permeability. The
period of the capillary oscillation is

T � 2π
Ω � 2π���������������

εω + ω2
0 − 1

8 εω
3A2

√ , (7)

where A is the amplitude of the capillary fluid’s periodic motion.
According to Eq. 7, a large amplitude implies a large period, which
infers an extremely slowly motion. This can explain why the
capillary rise seems to be stable at the initial stage when the
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small tube is immersed into water and keeps convincingly
unchanged for few hours; however, it might change after 24 h or
longer. As the permeability thickness reaches h+A, where h is the
capillary height, the capillary fluid’s periodic motion will continue to
oscillate within the capillary. This oscillation will cause the fluid to
move back and forth along the length of the capillary, creating a
wave-like motion. A will increase as the thickness of the permeability
increases, leading to an increase in the overall flow rate through the
capillary. When the fabric’s thickness is less than h+A, a good
permeability is predicted.

The maximal amplitude of the capillary fluid reaches when the
frequency becomes zero:

Ω �
���������������
εω + ω2

0 −
1
8
εω3A2

√
� 0. (8)

The maximal amplitude reads

A max �
���������
8 εω + ω2

0( )
εω3

√
. (9)

Equation 9 shows that the frequency of zig-zag porosity is the
main factor affecting the moisture/air permeability.

4 Fabrics with multiple layers and
hierarchical structure

To ensure good sweat permeability, the fabric should have a
large zig-zag period, as shown in Figure 1.

L � 2π
ω
, (10)

where L is the zig-zag period. A larger L leads to a thicker fabric, and
the multiple-layer structure is always adopted in practical
applications.

In order to decrease the thickness of the fabric with good air/
moisture permeability, we can adopt a hierarchical structure from a
nano/micro-inner layer to a macro-outside layer, and the thickness
of each layer should satisfy the following inequality 11:

Hn < rn +
������������
8 εnωn + ω2

n0( )
εω3

n

,

√
(11)

where Hn is the thickness of the nth layer of the hierarchy, rn is the
nth layer’s capillary rise, and ωn is the zig-zag frequency of the nth
layer [1].

The inner wall of blood vessels is unsmooth, leading to a zig-zag
inner surface, so that the blood can be transferred to a farther
distance than that of the smooth inner surface.

If the porosity is smooth enough in each layer, inequality
11 should be modified as

Hn < rn, (12)
which means the thickness of each layer should be less than its

capillary rise. Many natural hierarchical systems can transport water
for a long distance [41].

5 Conclusion

This paper proposes the capillary oscillation model to design
hierarchical fabrics with good air/moisture permeability, which is of
critical importance for the clothing design, especially for sportswear
and military apparel in an extreme cold environment, where the
sweat permeability plays an important role in human’s comfort and
safety. This theoretical analysis enables scientists to understand the
capillary oscillation and its role in air/water transportation.
Capillary oscillation is the periodic oscillation of liquid in a
capillary tube due to the interaction between surface tension and
viscous forces. In the context of fabric moisture absorption and
perspiration, capillary oscillation plays an important role in
determining the wicking and transport of moisture in the fabric.
When a fabric comes into contact with moisture, capillary forces
cause the liquid to be drawn into the fabric’s capillary channels. The
capillary oscillation then helps distribute the moisture throughout
the fabric, allowing it to be absorbed and transported more
efficiently. This is because the oscillation creates a pumping effect
that helps move the liquid through the capillary channels. In
addition, capillary oscillation can also help enhance the fabric’s
moisture absorption and perspiration properties. By promoting the
movement of moisture through the fabric, capillary oscillation can
help increase the rate of moisture absorption and perspiration,
thereby improving the fabric’s overall comfort and performance.
Overall, the relationship between capillary oscillation and moisture
absorption and perspiration properties of fabrics is complex, with
many factors influencing the process. However, it is clear that
capillary oscillation plays an important role in determining the
wicking and transport of moisture in the fabrics and can help

FIGURE 1
Zig-zag capillary tube.
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enhance the fabric’s moisture absorption and perspiration
properties. Understanding this relationship and applying
advanced techniques like nanotechnology and optimized yarn
structure can lead to the development of innovative textile
materials with superior sweat permeability and performance.
Because this paper gives a self-contained theoretical model for
the sweat permeability for the first time, the future holds exciting
possibilities for improving garment design and enhancing human
wellbeing as technology advances and researchers continue to
explore this topic.
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The fractional-order nonlinear Gardner and Cahn–Hilliard equations are often
used to model ultra-short burst beams of light, complex fields of optics, photonic
transmission systems, ions, and other fields of mathematical physics and
engineering. This study has two main objectives. First, the main objective of
this investigation is to solve the fractional-order nonlinear Gardner and
Cahn–Hilliard equations by using the modified auxiliary equation method,
which is not found in the literature. Second, the exact and approximate
solutions of these equations are obtained by utilizing the fractional
conformable residual power series algorithm and the modified auxiliary
equation method. For the analytical and numerical solutions to two equations,
we employ two separate techniques and establish consistency between the
precise answers that are derived and the compatible numerical solution. To
the best of our knowledge, this method of solving equations has never been
investigated in this manner. The 2D and 3D contours have been defined using
appropriate parametric values to support the physical compatibility of the results.
The assessed findings suggested that the approach used in this study to recover
inclusive and standard solutions is approachable, efficient, and faster in computing
and can be considered a useful tool in resolving more complex phenomena that
arise in the field of engineering, mathematical physics, and optical fiber.
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fractional conformable residual power series algorithm, nonlinear partial differential
equations, fractional-order nonlinear Cahn–Hilliard equation, modified auxiliary
equation method, approximate solution
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1 Introduction

In complicated areas of fields that can be modeled by various
types of partial differential equations, many linear and nonlinear
solutions appear. The nonlinear partial differential equations
(NLPDEs) are crucial for studying a variety of issues.
Understanding virtually nonlinear partial differential equations
requires an effort to determine precise solutions to nonlinear
equations [1–3]. Fractional calculus, which is the study of
integrals and derivatives of any arbitrary real or complex order,
has gained significant recognition over the past 30 years or so largely
because of its well-established applications in numerous and varied
disciplines of technical knowledge [4].

Fractional differential equations have received considerable
attention over the past 20 years as a result of their capacity to
accurately reproduce a broad range of events in a variety of

scientific and technical fields. In science and engineering,
fractional differential equations can be used to represent a
variety of physical applications [5]. Fractional differential
equations have been used to tackle numerous engineering and
scientific problems [6]. The differential equation in fractional
nonlinear partial differential equations (FNLPDEs) has
nonlinear variables which create complex behaviors and
phenomena not seen in linear equations. Complex patterns,
chaotic dynamics, solitons, and shocks can all occur as a
result of nonlinearity. The interaction between nonlinearity
and fractional derivatives makes it particularly difficult to
comprehend and analyze the dynamics of FNLPDEs.

The usage of fractional differential equations (FDEs) is
widespread throughout many scientific disciplines due to their
various applications in physics and engineering. Fractional
partial differential equations (FPDEs) have grown in

TABLE 1 Comparison of analytical solutions via the MSSE technique and numerical solutions computed via the modified VI technique for the model under
investigation.

Iteration Analytical Numerical Absolute error Relative error

1 6.2 23 17 2.8333

2 2.2 11 9 4.5

3 −19.2 −22 3 0.15789

4 −75.2 −94 19 0.25333

5 −190.2 −229 39 0.20526

6 −394.2 −457 63 0.1599

7 −723.2 −814 91 0.12586

8 −1219.2 −1342 123 0.1009

9 −1930.2 −2089 159 0.082383

21 −52894.2 −53797 903 0.017072

22 −63498.2 −64489 991 0.015607

23 −75619.2 −76702 1083 0.014322

24 −89395.2 −90574 1179 0.013189

25 −1.0497e + 05 −1.0625e + 05 1279 0.012184

26 −1.2249e + 05 −1.2388e + 05 1383 0.01129

27 −1.4212e + 05 −1.4361e + 05 1491 0.010491

28 −1.6402e + 05 −1.6562e + 05 1603 0.0097733

29 −1.8835e + 05 −1.9007e + 05 1719 0.0091266

30 −2.1529e + 05 −2.1713e + 05 1839 0.008542

31 −2.4502e + 05 −2.4698e + 05 1963 0.0080116

32 −2.7772e + 05 −2.7981e + 05 2091 0.0075291

33 −3.1359e + 05 −3.1582e + 05 2,223 0.0070888

34 −3.5283e + 05 −3.5519e + 05 2,359 0.0066859

35 −3.9564e + 05 −3.9813e + 05 2,499 0.0063164

36 −4.4222e + 05 −4.4486e + 05 2,643 0.0059767

37 −4.928e + 05 −4.9559e + 05 2,791 0.0056636
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significance and reputation among FDEs in recent years as a
result of their demonstrated utility in a wide range of extremely
diverse scientific and engineering disciplines [7]. Many fractional
types of equations are solved using novel transform [8] and zz
transform with the Mittag-Leffler kernel [9]. Since they cannot be
solved precisely, the majority of nonlinear FDEs require
approximate and numerical solutions such as the Adomian
decomposition method [10], spectral collocation method [11],
Euler method and homotopy analysis method [12], Laplace

residual power series [13], variational iteration transform
method [14], and homotopy analysis method [15]. FNLPDEs
find applications in various cutting-edge areas of research. For
example, in materials science, FNLPDEs are used to model
diffusion and transport in heterogeneous media. In finance,
they are employed to describe complex price dynamics and
risk management. In biology, FNLPDEs are utilized to study
the spread of diseases and population dynamics. The unique
combination of nonlinearity and fractional derivatives in

FIGURE 1
Physical depiction of v1,1 at σ = 0.4, θ = −1.4, and η = 0.5.
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FNLPDEs provides a versatile framework for modeling these
emerging phenomena.

One of the most recent methods developed in this field is the
auxiliary equation method proposed by Khater [16]. Although
this approach was employed in numerous research studies [17], a
modified auxiliary equation approach (also known as the
modified Khater method) was developed to get precise
traveling wave solutions. The soliton and other solitary wave
solutions of the equations are obtained in this research paper
using the modified auxiliary equation approach. It enhances the

auxiliary equation method. This article describes a method that
modifies the auxiliary differential equation methodology for
solving nonlinear partial differential equations [18]. Over the
past 30 years, fresh and state-of-the-art methods for investigating
nonlinear differential systems with fractional-order equations
have been created, along with new computer methods and
symbolic programming. Analytical methodologies, new
mathematical theories, and computational systems that enable
us to study nonlinear complicated phenomena have triggered this
revolution in understanding. Furthermore, the sub-equation

FIGURE 2
Physical depiction of v1,2 at σ = 0.34, θ = −2.4, and η = 1.5.
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method [19], modified Kudryashov method [20], and
F-expansion method [21–23] are just a few of the methods
that have been used.

A semi-approximate approach called numerical simulations
was developed specifically for addressing challenging nonlinear
temporal FPDEs that can appear in a variety of scientific fields.
This approach, which was devised and developed by Abu Arqub
for the study of fuzzy differential equations, is used for
generalizing the expansion of the Taylor series of arbitrary
order and minimizing the residual error identified to detect

the unknown compounds. This method has the ability to
immediately solve nonlinear terms without any constraints,
transformations, linearizations, or changes to the models. As a
result, it has attracted considerable attention and has become an
energizing focus of the research community [24, 25].

The Gardner equation [26] is developed to illustrate the
description of solitary inner waves in shallow water and combines
the KdV and modified KdV equations. The Gardner equation is
frequently used in various branches of physics, such as plasma
theories, quantum area theories, fluid mechanics, and physics [27].

FIGURE 3
Physical depiction of v1,3 at σ = −0.4, θ = 0.4, and η = −0.5.
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Numerous wave phenomena in the plasma and solid phases are also
covered [28]. We recognize the conformable fractional-order
nonlinear Gardner (FG) equation in the following form:

∂αt w x, t( ) + 6 w − λ2w2( ) ∂w
∂x

− ∂3w

∂x3
� 0, (1)

with an initial condition

w x, 0( ) � 1
2
+ 1
2
tanh

x

2
( ),

and boundary condition

w 0, t( ) � 1
2
+ 1
2
tanh

−t
2

( ),
w 1, t( ) � 1

2
+ 1
2
tanh

1 − t

2
( ).

A binary alloy’s phase separation under a critical temperature is
illustrated by the Cahn–Hilliard equation, which was first proposed
by Cahn and Hilliard in 1958 [29]. The spinodal decomposition,

FIGURE 4
Physical depiction of v1,4 at σ = 0.44, θ = −0.54, and η = 2.5.
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phase separation, and phase ordering dynamics are three fascinating
physical phenomena that depend critically on this equation [30]. In
this framework, the fractional Cahn–Hilliard (FCH) equation [31] is
expressed as follows:

∂αt w x, t( ) − ∂w

∂x
− 6w

∂w

∂x
( )2

− 3w2 − 1( ) ∂2w
∂x2

+ ∂4w

∂x4
� 0, (2)

with an initial condition

w x, 0( ) � tanh

�
2

√
x( )

2
( ),

and boundary condition

w 0, t( ) � tanh

�
2

√
t( )

2
( ),

w 1, t( ) � tanh

�
2

√
1 + t( )
2

( ).

FIGURE 5
Physical depiction of v1,5 at σ = 1.4, θ = −1.24, and η = 1.4.
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The methodology of this paper includes the following: Section 2
discusses the modified auxiliary equation method (MAEM) and also
solves the equations. Section 3 discusses the semi-analytical fractional
conformable residual power series algorithm and contains an explanation
of the system to a solution. Section 4 examines the stability property of the
equations. Section 5 contains the discussion and results of the system to
illustrate the approximate delicacy. Section 6 presents the conclusion.

Preliminaries

Definition 1: The α-order fractional conformable derivative of a
function w(x, t) of order αϵ(0, 1) is given as

∂αw t( )
∂t

� lim
ϵ→0

w ϵt1−α + t( ) − w t( )
ϵ , t> 0.

Moreover, if the previous limit exists at a point s; s > 0 in (0, s),
then w(t) is called α-differentiable so that ∂αw(s)

∂t � limt→s+
∂αw(t)

∂t .

Definition 2: The multiple time-fractional series (MTFS)
expansion t0 > 0 is given as

∑∞
i�0

ζ i x( ) t − t0( )iα � ζ0 x( ) + ζ1 x( ) t − t0( )α + . . . ,

FIGURE 6
Physical depiction of v2,1 at σ = −0.4, θ = −1.4, and η = −0.5.
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where ϵ(n − 1, n), tϵ(t0, t0 + r1/α), r > 0, r1/α is a radius of
convergence and ζi(x) indicates unknown coefficients of the
expansion. When α = 1, then the expansion in Definition
2 reduces to the usual series expansion at t0 > 0, with a radius
of convergence r that converges uniformly on |t − t0| < r. Many
other definitions are provided in [32].

2 Methodology

2.1 Modified auxiliary equation method

First, we introduce the MAEM [33]. Let us consider FNLPDEs.

F v, vαt , vxx, , vxt, , . . .( ) � 0, (3)

FIGURE 7
Physical depiction of v2,2 at σ = 0.74, θ = −1.74, and η = 0.75.
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where F is the function’s polynomial. In Eq. 3, v is a function of the
spatial variables x and t and represents the propagation of the wave
profile. To modify the following, Eq. 3 is transformed into an
ordinary differential equation as

v � V η( ), η � x − vtα

α
, (4)

where α represents arbitrary constants. Eq. 3 is converted into an
ODE of the kind using transforms from Eq. 4.

M V,V′, V″, . . .( ) � 0, (5)
whereM stands for the polynomial involving the function V and its
regular derivatives V′ = dV/dη. The solution to Eq. 5 is

V η( ) � a0 +∑m
i�1

aiL
iϕ η( ) + a−i L( )−iϕ η( )( ), (6)

where a0 and ai are unknown constants. Function ϕ′(η) is
expressed as

FIGURE 8
Physical depiction of v2,3 at σ = 1.4, θ = −3.4, and η = 3.5.
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ϕ′ η( ) � θLϕ η( ) + ϑL−ϕ η( ) + σ

In L( ) , (7)

where σ, θ, and ϑ are arbitrary constants and L≠ 1, L> 0. On the basis of
the (HBP), we may calculateN. The formal solution to Eq. 5 is obtained
by replacing the N in Eq. 6. By substituting the ODE Eq. 7 formal
solution into Eq. 5 and setting the coefficients of Liϕ(η), i = 0, ±1, ±2 . . . to
zero, the system of linear equations is produced. The unknown
constants a0, ai, and a−i can be found by solving this system of

equations. The following solutions for auxiliary Eq. 7 are taken into
consideration as follows:

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

tan 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

, (8)
or

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

cot 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

. (9)

FIGURE 9
Physical depiction of v2,4 at σ = −0.3, θ = −1.3, and η = 0.35.
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Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

tanh 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

, (10)
or

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

coth 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

. (11)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

Lϕ η( ) � −ση + 2
2ϑη

. (12)

By substituting the unknown values for a0, ai, a−i and the
aforementioned cases into Eq. 6, using transformations from Eq.
4, it is possible to obtain the closed-form solutions to Eq. 1 and Eq. 2.

FIGURE 10
Physical depiction of v2,5 at σ = 0.4, θ = −1.4, and η = 0.5. (A) is 3-D plot, (B) is 2-D plot, and (C) is contour plot.
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2.1.1 Application to the fractional-order nonlinear
Gardner equation

The governing Eq. 1 transforms into the following ODE
using the following conformable derivative transformation
from Eq. 4:

−vV′ + V 3( ) + 6 V − λ2V2( )V′ � 0,

−vV + V″ − 2λ2V3 + 3V2 � 0. (13)
By changing the degree of the highest-order derivative term and

nonlinear with HBP, N = 1 is calculated. According to the formal
solution in Eq. 13 derived from Eq. 6, we obtain

V η( ) � a0 + a1L
ϕ η( ) + a−1

Lϕ η( ). (14)
When Eq. 14 is substituted with Eq. 7 in Eq. 13, the coefficients

of powers of Liϕ(η), i = 0, ±1, ±2 . . . are set to zero, resulting in a linear
equation system. The following sets of solutions are found by using
Mathematica software.
Set 1:

a1 � 0, a−1 � ϑ

λ
, a0 � 0, v � 1

λ2
, θ � 0, σ � −1

λ
. (15)

Set 2:

a1 � − 1

16λ3ϑ
, a−1 � −ϑ

λ
, a0 � 1

2λ2
, v � 1

λ2
, θ � − 1

16λ2ϑ
, σ � 0. (16)

Set 3:

a1 � 1

16λ3ϑ
, a−1 � ϑ

λ
, a0 � 1

2λ2
, v � 1

λ2
, θ � − 1

16λ2ϑ
, σ � 0. (17)

Set 4:

a1 � 0, a−1 � −ϑ
λ
, a0 � 1

λ2
, v � 1

λ2
, θ � 0, σ � −1

λ
. (18)

Set 5:

a1 � 0, a−1 � ϑ

λ
, a0 � 1

λ2
, v � 1

λ2
, θ � 0, σ � 1

λ
. (19)

Family 1. Solutions to Eq. 1 are derived by substituting the
values from Set 1 into Eq. 15.

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

v1,1 � 2ϑ2

λ
�������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( ), (20)

or

v1,2 � − 2ϑ2

λ
�������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( ). (21)

Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

v1,3 � − 2ϑ2

λ
�������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( ), (22)

or

v1,4 � − 2ϑ2

λ
�������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( ). (23)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

v1,5 � −
2ϑ2 x − tα

αλ2
( )

λ 2 −
x − tα

αλ2

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)

FIGURE 11
Comparison of error terms between numerical and analytical results by using values of Table 1.
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Family 2. Solutions to Eq. 1 are derived by substituting the
values from Set 2 into Eq. 16.

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

v1,6 � 1

2λ2
−

�������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ

32λ3ϑ2

− 2ϑ2

λ
�������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( ),
(25)

or

v1,7 � 1

2λ2
+

�������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ

32λ3ϑ2

+ 2ϑ2

λ
�������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( ).
(26)

Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

v1,8 � 1

2λ2
+

�������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ

32λ3ϑ2

+ 2ϑ2

λ
�������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( ),
(27)

or

v1,9 � 1

2λ2
+

�������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ

32λ3ϑ2

+ 2ϑ2

λ
�������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( ).
(28)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

v1,10 � 1

2λ2
+

2ϑ2 x − tα

αλ2
( )

λ σ x − tα

αλ2
( ) + 2( ) +

σ x − tα

αλ2
( ) + 2

32λ3ϑ2 x − tα

αλ2
( ). (29)

2.1.2 Application to the fractional-order nonlinear
Cahn–Hilliard equation

The governing Eq. 2 transforms into the following ODE using
the traveling wave transformations from Eq. 4:

−vV′ + V 4( ) − 3V2 − 1( )V″ − 6VV′2 − V′ � 0.

Then, integrating the aforementioned equation, we obtain

−v − 1( )V + V 3( ) + 1 − 3V2( )V′ � 0. (30)
By adjusting the highest-order derivative term’s degree and

nonlinear using homogeneous balance principal, N = 1 is calculated.
According to the formal solution of Eq. 30 derived fromEq. 6, we obtain

V η( ) � a0 + a1L
ϕ η( ) + a−1

Lϕ η( ). (31)

When Eq. 31 is substituted with Eq. 7 into Eq. 30, the coefficients of
powers of Liϕ(η), i = 0, ±1, ±2 . . . are set to zero, resulting in a linear
equation system. The following sets of solutions are found using
Mathematica software.
Set 1:

a1 � −5
�
3

√
32ϑ

, a−1 � − 2ϑ�
3

√ , a0 � 1
4

�
3

√ , v � −1, σ � 0, θ � − 15
64ϑ

. (32)

Set 2:

a1 � 0, a−1 � 2ϑ�
3

√ , a0 � 1
27

4
�
3

√ − 5
��
30

√( ), v � −1,

σ � 1
9

5 − 4
��
10

√( ), θ � 0.
(33)

FIGURE 12
Comparison between numerical and analytical results by using values of Table 1.
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Set 3:

a1 � 5
�
3

√
32ϑ

, a−1 � 2ϑ�
3

√ , a0 � − 1
4

�
3

√ , v � −1, σ � 0, θ � − 15
64ϑ

.

Set 4:

a1 � 0, a−1 � 2ϑ�
3

√ , a0 � 1
27

4
�
3

√ + 5
��
30

√( ), v � −1,

σ � 1
9

4
��
10

√ + 5( ), θ � 0.

Set 5:

a1 � 0, a−1 � − 2ϑ�
3

√ , a0 � 1
27

5
��
30

√ − 4
�
3

√( ),
v � −1, σ � 1

9
5 − 4

��
10

√( ), θ � 0.

Family 1. Solutions to Eq. 2 are derived by substituting the
values from Set 1 into Eq. 32.

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

FIGURE 13
Physical depiction of H in Eq. 92 under σ = 0.5, v = 2.4, λ = 1.4, and ϑ = 0.4.
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v2,1 � 1
4

�
3

√ − 4ϑ2�
3

√ �������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( )
−
5

�
3

√ �������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( )
64ϑ2

,

(34)

or

v2,2 � 1
4

�
3

√ + 4ϑ2�
3

√ �������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
+
5

�
3

√ �������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
64ϑ2

.

(35)

Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

v2,3 � 1
4

�
3

√ + 4ϑ2�
3

√ �������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
+
5

�
3

√ �������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
64ϑ2

,

(36)

or

v2,4 � 1
4

�
3

√ + 4ϑ2�
3

√ �������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
+
5

�
3

√ �������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
64ϑ2

.

(37)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

v2,5 � 1
4

�
3

√ + 4ηϑ2�
3

√
ησ + 2( ) + 5

�
3

√
ησ + 2( )

64ηϑ2
. (38)

3 Numerical investigation using the
fractional conformable residual power
series algorithm

In this section, a newly developed approach is utilized to
produce accurate approximations of the time-fractional equations
supplied with a given initial condition inside a finite spatiotemporal
domain [34]. This approach uses a newly designed algorithm. Let us
consider the following nonlinear time-fractional equations to
achieve our goal:

∂αt w x, t( ) +N w,w2, wx, wxx( ) + . . . � 0, (39)
with an initial condition

w x, 0( ) � w0 x( ). (40)
The numerical simulation that is being provided assumes that

the solution to Eqs 39, 40 has a multiple time-fractional series
(MTFS) expansion of approximately t0 = 0 of the following form:

w x, t( ) � ∑m
i�1

tiαζ i x( )
i!αi

. (41)

The mth truncated solution of w(x, t) of Eq. 40 is defined as

wm � ζ0 x( ) +∑m
i�1

tiαζ i x( )
i!αi

. (42)

Initially, the residual error Rs(x, t) of Eqs 39, 40 is given as

Rs x, t( ) � ∂αt w x, t( ) +N w,w2, wx, wxx( ) + . . . . (43)
The Rs(x, t) mth residual error should be truncated so that

Rm
s x, t( ) � ∂αt wm x, t( ) +N wm,w

2
m, wx,m, wxx,m( ) + . . . . (44)

By replacing the mth truncated residual error in Eq. 44 with the
truncated MTFS solution in Eq. 42, we obtain

∂α m−1( )
t R2

s x, t( ) � ∂mα
t ζ0 x( ) +∑m

i�1

tiαζ i x( )
i!αi

⎛⎝ ⎞⎠
+N ∑m

i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

N ∑m
i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠2

,⎛⎝
∑m
i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠
x

,

∑m
i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠
xx

⎞⎠ + . . . .

(45)

To make the major steps of the provided FCRPSA in
determining the m-term truncated solution’s unknown
coefficients ζi(x) more clear (Eq. 42), set m = 1 and equate
R1
s(x, t) to zero at t = 0. Therefore, ζ1(x) is obtained. Thereafter,

set m = 2, apply operator ∂αt on both sides of the resulting relevant
equation, and solve ∂αtR2

s(x, 0). Then, ζ2(x) is also obtained. The
unknown coefficient ζi(x) of the MTFS expansion would be
discovered if we continue solving in this manner (Eq. 42).

3.1 Numerical simulation of the fractional-
order nonlinear Gardner equation

Let us consider the equation

Dα
t x, t( ) + 6 w − λ2w2( ) ∂w

∂x
− ∂3w

∂x3
� 0, (46)

with an initial condition

w 0, t( ) � 1
2
tanh

x

2
( ) + 1

2
. (47)

We use the fractional conformable residual power series algorithm
to solve this equation. For this, the m-truncated term is taken as

wm � ζ0 x( ) +∑m
i�1

tiαζ i x( )
i!αi

, (48)

and the residual error function is

Rm
s x, t( ) � ∂αwm

∂t
+ 6wm − λ2w2

m

∂wm

∂x
+ ∂3wm

∂x3
. (49)

For m = 0,

w0 x, t( ) � 1
2
tanh

x

2
( ) + 1

2
.
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For m = 1, the truncated term is

w1 x, t( ) � ζ0 x( ) + ζ1 x( )tα
α

, (50)

ζ0 x( ) � w0 x, t( ) � 1
2
tanh

x

2
( ) + 1

2
, (51)

w1 x, t( ) � 1
2
tanh

x

2
( ) + 1

2
+ ζ1 x( )tα

α
. (52)

Therefore, the first residual error function is

R1
s x, t( ) � ∂αw1

∂t
+ 6w1 − λ2w2

1

∂w1

∂x
+ ∂3w1

∂x3
. (53)

Substituting Eq. 50 into Eq. 53,we obtain

R1
s x, t( ) � 6

tαζ1 x( )
α

+ ζ0 x( )( ) − λ2
tαζ1 x( )

α
+ ζ0 x( )( )2( )

tαζ1′ x( )
α

+ ζ0′ x( )( ) + tαζ31 x( )
α

+ ζ30 x( )( ) + ζ1 x( ).
(54)

Thus, R1
s(x, t) at t = 0 results in

6 ζ0 x( ) − λ2ζ0 x( )2( )ζ0′ x( ) + ζ30 x( ) + ζ1 x( ) � 0, (55)
ζ1 x( ) � 1

8
sech4

x

2
( ) 3 λ2 − 1( )sinh x( ) + 3λ2 − 4( )cosh x( ) − 1( ).

(56)
So, the first series solution w1(x, t) is provided by

w1 x, t( ) � 1
2
+ 1
2
tanh

x

2
( ) + 1

8
sech4

x

2
( )

× 3 λ2 − 1( )sinh x( ) + 3λ2 − 4( )cosh x( ) − 1( ) tα
α
. (57)

For m = 2, the truncated term is

w2 x, t( ) � ζ2 x( )t2α
2α2

+ ζ1 x( )tα
α

+ ζ0 x( ), (58)

w2 x, t( ) � 1
2
+ 1
2
tanh

x

2
( ) + 1

8
sech4

x

2
( )

× 3 λ2 − 1( )sinh x( ) + 3λ2 − 4( )cosh x( ) − 1( ) tα
α

+ ζ2 x( )t2α
2α2

, (59)

and the second residual error function is obtained by substituting
Eq. 58 into Eq. 59

R2
s x, t( ) � ∂α

∂t

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )

+ 6
t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )(

−λ2 t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )2)
∂2

∂x2

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )

+ ∂3

∂x3

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( ),

(60)

R2
s x, t( ) � tαζ2 x( )

α
+ ζ1 x( )( )

+ 6
t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )(

−6λ2 t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )2)
t2αζ2′ x( )
2α2 + tαζ1′ x( )

α
+ ζ0′ x( )( )

+ t2αζ32 x( )
2α2 + tαζ31 x( )

α
+ ζ30 x( )( ).

(61)

Then, dα/dt is applied on both sides of Eq. 61 and thus at t = 0, we
obtain

−ζ31 x( )( ) ζ2 x( ) � 12λ2ζ0 x( )ζ1 x( )ζ0′ x( ) + 6λ2ζ0 x( )2ζ1′ x( )(
−6ζ1 x( )ζ0′ x( ) − 6ζ0 x( )ζ1′ x( )), (62)

ζ2 x( ) � − 1
64

sech7
x

2
( ) 18λ4 cosh

5x
2

( ) − 42λ2 cosh
5x
2

( )(
−24 λ2 − 1( )cosh x

2
( )) − 1

64
sech7 x

2
( )

−6 15λ4 − 37λ2 + 22( )cosh 3x
2

( ) + 24 cosh
5x
2

( )( )
− 1
64

sech7
x

2
( ) −204λ2 sinh x

2
( ) + 222λ2 sinh

3x
2

( )(
+ 206 sinh

x

2
( ) − 129 sinh

3x
2

( )) − 1
64

sech7 x

2
( )

−90λ4 sinh 3x
2

( ) + 18λ4 sinh
5x
2

( ) − 42λ2 sinh
5x
2

( )(
+25 sinh 5x

2
( )),

(63)
w2 x, t( ) � 1

2
+ 1
2
tanh

x

2
( ) + 1

8
sech4

x

2
( ) 3 λ2 − 1( )sinh x( )(

+ 3λ2 − 4( )cosh x( ) − 1) t
α

α
− 1
64

sech7 x

2
( )

18λ4 cosh
5x
2

( ) − 42λ2 cosh
5x
2

( )(
−24 λ2 − 1( )cosh x

2
( )) − 1

64
sech7 x

2
( )

−6 15λ4 − 37λ2 + 22( )cosh 3x
2

( ) + 24 cosh
5x
2

( )( )
− 1
64

sech7 x

2
( ) −204λ2 sinh x

2
( ) + 222λ2 sinh

3x
2

( )(
+ 206 sinh

x

2
( ) − 129 sinh

3x
2

( )) − 1
64

sech7 x

2
( )( − 90λ4 sinh

3x
2

( ) + 18λ4 sinh
5x
2

( ) − 42λ2 sinh
5x
2

( )
+ 25 sinh

5x
2

( )) t2α

2α2.

(64)
Similarly, through this process, we obtain
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wn x,t( ) � 1
2
+ 1
2
tanh

x

2
( )+ 1

8
sech4

x

2
( ) 3 λ2 −1( )sinh x( )(

+ 3λ2 −4( )cosh x( )−1)t
α

α
− 1
64

sech7
x

2
( )

18λ4 cosh
5x
2

( )−42λ2 cosh 5x
2

( )−24 λ2 −1( )cosh x

2
( )( )

− 1
64

sech7 x

2
( )(−6 15λ4 −37λ2 +22( )cosh 3x

2
( )

+24cosh 5x
2

( ))− 1
64

sech7 x

2
( )(−204λ2 sinh x

2
( )

+222λ2 sinh 3x
2

( )++206sinh x

2
( )) t2α

2α2 + . . . .
(65)

If α = 1, we obtain the exact solution

w x, t( ) � 1
2
tanh

x − t

2
( ) + 1

2
. (66)

3.2 Numerical simulation of the fractional-
order nonlinear Cahn–Hilliard equation

Let us consider the equation

∂αw

∂t
� ∂w

∂x
− 6w

∂w

∂x
( )2

+ 3w2 − 1( ) ∂2w
∂x2

− ∂4w

∂x4
, (67)

with an initial condition

w x, 0( ) � tanh

�
2

√
x

2
( ). (68)

We use the fractional conformable residual power series algorithm
for solving this equation. For this, the m-truncated term is

wm � ζ0 x( ) +∑m
i�1

tiαζ i x( )
i!αi

, (69)

and the residual error function is

Rm
s x, t( ) � ∂αwm

∂t
− ∂wm

∂x
− 6wm

∂wm

∂x
( )2

− 3w2
m − 1

∂2wm

∂x2
+ ∂4wm

∂x4
.

(70)
For m = 0,

w0 x, t( ) � tanh

�
2

√
x

2
( ).

For m = 1, the truncated term is

w1 x, t( ) � ζ0 x( ) + ζ1 x( )tα
α

, (71)

ζ0 x( ) � w0 x, t( ) � tanh

�
2

√
x

2
( ), (72)

w1 x, t( ) � tanh

�
2

√
x

2
( ) + ζ1 x( )tα

α
. (73)

Therefore, the first residual error function is

R1
s x, t( ) � ∂αw1

∂t
− w1 − 6w1

∂w1

∂x
( )2

− 3w2
1 − 1( ) ∂2w1

∂x2
+ ∂4w1

∂x4
.

(74)
Substituting Eq. 71 into Eq. 74, we obtain

R1
s x, t( ) � ∂α

∂t

ζ1 x( )tα
α

+ ζ0 x( )( ) − ∂

∂x
ζ0 x( ) + ζ1 x( )tα

α
( )

− 6 ζ0 x( ) + ζ1 x( )tα
α

( ) ∂

∂x
ζ0 + ζ1xt

α

α
( )2

− 3 ζ0 x( ) + ζ1xt
α

α
( )2

− 1( ) ∂2

∂x2

ζ1 x( )tα
α

+ ζ0 x( )( )
+ ∂4

∂x4 ζ0 x( ) + ζ1 x( )tα
α

( ).
(75)

Thus, R1
s(x, t) at t = 0,

−6ζ0 x( )ζ0′ x( )2 − 3ζ0 x( )2 − 1( )ζ0″ x( ) − ζ0 x( ) + ζ40 x( ) + ζ1 x( ) � 0,

(76)

ζ1 x( ) � sech2 x�
2

√( )�
2

√ . (77)
Therefore, the first series solution w1(x, t) is provided by

w1 x, t( ) � tanh

�
2

√
x

2
( ) + sech2 x�

2
√( )�
2

√ tα

α
. (78)

For m = 2, the truncated term is

w2 x, t( ) � ζ2 x( )t2α
2α2

+ ζ1 x( )tα
α

+ ζ0 x( ), (79)

w2 x, t( ) � tanh

�
2

√
x

2
( ) + sech2 x�

2
√( )�
2

√ tα

α
+ ζ2 x( )t2α

2α2
. (80)

Substituting Eq. 79 into Eq. 80, the second residual error function is

R2
s x, t( ) � ∂α

∂t

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )

− ∂

∂x

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )

− 6
t2αζ2 x( )
2α2 + ζ1xt

α

α
+ ζ0 x( )( )

∂

∂x

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )2

− 3
t2αζ2 x( )
2α2

+ ζ1xt
α

α
+ ζ0 x( )( )2

− 1( )
∂2

∂x2

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )

+ ∂4

∂x4

t2αζ2 x( )
2α2 + ζ1xt

α

α
+ ζ0 x( )( ),

(81)
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R2
s x, t( ) � tαζ2 x( )

α
+ ζ1 x( )( ) − t2αζ2′ x( )

2α2 + tαζ1′ x( )
α

+ ζ0′ x( )( )
− 6

t2αζ2 x( )
2α2 + tαζ1 x( )

α
+ ζ0 x( )( )

t2αζ2′ x( )
2α2

+ tαζ1′ x( )
α

+ ζ0′ x( )( )2

− 3
t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )2

− 1( )
t2αζ2″ x( )

2α2 + tαζ1″ x( )
α

+ ζ0″ x( )( )
+ t2αζ42 x( )

2α2 + tαζ41 x( )
α

+ ζ40 x( )( ).
(82)

Then, dα/dt is applied on both sides of Eq. 82 and thus at t = 0, we
obtain

ζ2 x( ) � 12ζ0 x( )ζ0′ x( )ζ1′ x( ) + 6ζ1 x( )ζ0′ x( )2 + 3ζ0 x( )2ζ1″ x( )
+ 6ζ1 x( )ζ0 x( )ζ0″ x( ) − ζ1″ x( ) + ζ1 x( ) − ζ41 x( ), (83)

ζ2 x( ) � tanh
x�
2

√( ) −sech2 x�
2

√( )( ) , (84)

w2 x, t( ) �
t2α tanh

x�
2

√( ) −sech2 x�
2

√( )( )
2α2 +

tαsech2
x�
2

√( )�
2

√
α

+ tanh

�
2

√
x

2
( ).

(85)
Similarly, through this process, we obtain

w3 x, t( ) � 1
16

sech6 x�
2

√( ) tanh
x�
2

√( ) �
2

√
sinh 2

�
2

√
x( )( )( )

1
16

sech6
x�
2

√( ) −224 cosh �
2

√
x( ) + 4 cosh 2

�
2

√
x( ) + 492( ) − 4

�
2

√( ),
(86)

wn x, t( ) �
t2α tanh

x�
2

√( ) −sech2 x�
2

√( )( )
2α2 +

tαsech2
x�
2

√( )�
2

√
α

+ tanh

�
2

√
x

2
( ) + 1

16
sech6 x�

2
√( )

tanh
x�
2

√( ) �
2

√
sinh 2

�
2

√
x( ) − 224 cosh

�
2

√
x( )((

+4 cosh 2
�
2

√
x( ) + 492) − 4

�
2

√ ) + . . . .

(87)

If α = 1, we obtain the exact solution

w x, t( ) � tanh

�
2

√
x + t( )
2

( ). (88)

4 Stability analysis

In this section, we examine the stability property [35] for Eqs 1,
2. Understanding the stability of an equilibrium solution may be
gained by linearizing the FNLPDE around it. In order to investigate

the rise or decay of minor perturbations, eigenvalue analysis is
performed on the linearized equation, which has fractional
derivatives. By solving the characteristic equation linked to the
linearized system, the eigenvalues may be found. The equilibrium
is stable if all of the eigenvalues have negative real portions;
otherwise, it is unstable. Nevertheless, it is crucial to keep in
mind that the fractional character of the derivatives makes the
eigenvalue analysis more complicated. A Hamiltonian system is
used to investigate the stability feature of the nonlinear fractional
equations. The Hamiltonian system’s momentum is represented
using the following formula:

H � 1/2∫k

−k
w2 x( ), dx. (89)

Consequently, the condition for the stability of solutions is as
follows:

∂H

∂v
> 0. (90)

For example, we check the stability property for Eq. 24, and we
obtain

H �
2ϑ4

σ − v−10( )( )+ 4
σ v−10( )−2−4 log 10σ+σ −v( )+2( )

σ3
− σ − v+10( )( )+ 4

σ v+10( )−2−4 log 2−σ v+10( )( )
σ3( )

λ2
.

(91)
Therefore,

∂H

∂v
|v � 2 � 1.6> 0. (92)

So, this solution is stable on the interval xϵ[−10, 10]. Similarly,
we can check the stability of other obtained solutions with our novel
technique.

5 Results and discussion

The MAEM and methods for fractional conformable residual
power series are designed particularly to handle fractional equations.
They take into account the special characteristics and behaviors
related to fractional calculus and are designed to operate with
fractional derivatives. These techniques offer specialized tools that
are ideally suited for studying FNLPDEs with fractional-order
derivatives. When compared to other numerical techniques, the
MAEM and fractional conformable residual power series algorithms
can provide computational efficiency. They frequently require
shortening series expansions or solving auxiliary equations, which
can lower the complexity and expense of computing. This benefit
may be especially important when handling complex or
computationally difficult FNLPDEs. Table 1 presents a
comparison of the absolute error |w − w2| of both equations.
These results clearly demonstrate the accuracy and effectiveness
of the numerical technique. The results of the MAEM include the
periodic and singular solutions. Utilizing 3D surface plots, 2D
contour plots, density graphs, and 2D line graphs, the graphical
simulation of a few retrieved solutions is discussed. The graphs are
created for appropriate values of the arbitrary parameters α, λ, and ϑ.
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Figure 1 shows the 3D, 2D, and counterplot graphs at α = 1, λ = 1,
ϑ = −1, and t = 5 of v1,1(x, t). Similarly, Figure 2 shows the 3D, 2D,
and counterplot graphs at α = 1, λ = 1, ϑ = 1, and t = 10, which is a
periodic solitary wave of v1,3(x, t). Figure 3 shows the 3D, 2D, and
counterplot graphs at α = 1, λ = 1, ϑ = −1, and t = 0.5, 1, 1.5 of v1,5(x,
t). Similarly, Figure 4 shows the 3D, 2D, and counterplot graphs at
α = 1 and t = 5 of v1,7(x, t). Figure 5 shows the 3D, 2D, and
counterplot graphs at θ = 1 and ϑ = 0.1 of v2,2(x, t). Similarly,
Figure 6 shows the 3D, 2D, and counterplot graphs at θ = 1 and ϑ =
0.1, which is periodic solitary wave of v2,4(x, t). Figure 7 shows the
3D, 2D, and counterplot graphs at α = 1, which is a singular soliton
solution of v2,5(x, t). Figure 8 shows the 3D, 2D, and counterplot
graphs at θ = 1 and ϑ = 0.1, which is periodic solitary wave of v2,4(x,
t). Figure 9 shows the 3D, 2D, and counterplot graphs at α = 1, which
is a singular soliton solution of v2,5(x, t). Figure 10 shows the 3D, 2D,
and counterplot graphs at θ = 1 and ϑ = 0.1, which is a periodic
solitary wave of v2,4(x, t). Figure 11 shows the comparison of error
terms between numerical and analytical techniques. Figure 12 shows
the comparison between numerical and analytical techniques.
Figure 13 shows the stability analysis of governing equations.
Fundamental mathematical techniques used to describe and
examine real-world occurrences in science and engineering
include trigonometric, hyperbolic, and rational functions. In
order to represent oscillatory motion and periodic phenomena
like waves and tides, trigonometric functions like sine and cosine
are used. Heat conduction, population expansion, and fluid
dynamics are the three areas where hyperbolic functions, such
as hyperbolic sine and cosine, are used to depict exponential
growth and decay. Rational functions, which are polynomial
ratios, have asymptotes, holes, and other graph characteristics
that make them useful for simulating complex systems in
financial analysis, control systems, population dynamics, and
circuit design.

6 Conclusion

The nonlinear fractional Cahn–Hilliard and Gardner
equations have been addressed in this paper using a unique
methodology. This analytical technique is useful for creating
partial differential equations and discovering approximate
solutions under the right initial circumstances. The
effectiveness of the suggested method is also shown by the
precise results obtained utilizing MAEM with a smaller
number of series terms. The application of this method to
two different physical models demonstrates its accuracy and
efficiency in handling fractional nonlinear equations, leading to
stunning and complicated graphics. Additionally, the
approximation series’ quick convergence is noted. We can see
how the graphs change as a result of changing parameter values.
When the calculations and simulations performed in

Mathematica 11 were compared to previous numerical
findings, it became clear that this numerical method is
capable of handling difficult fractional equations in higher
dimensions. The analytical approach used here is also notable
for being straightforward, reliable, and succinct when solving
nonlinear partial differential equations. The overall findings of
the study emphasize the importance of this strategy in
improving our knowledge and management of such difficult
equations.
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Reduction in forest resources due to increasing global warming and population
growth is a critical situation the World faces today. As these reserves decrease, it
alarms new challenges that require urgent attention. In this paper, we provide a semi-
analytical solution to a nonlinear mathematical model that studies the depletion of
forest resources due to population growth and its pressure. With the help of the
homotopy perturbationmethod (HPM), we determine an approximate series solution
with few perturbation terms, which is one of the essential power of the HPMmethod.
We compare our semi-analytical results with numerical solutions obtained using the
Runge-Kutta 4th-order (RK-4) method. Furthermore, we analyze the model’s
behaviour and dynamics by changing the parametric coefficients that represent
the depletion rate of forest resources and the growth rate of population pressure
and present these findings using various graphs.

KEYWORDS

semi-analytical solution, system of non-linear differential equations, homotopy
perturbation method, depletion of forest resources, mathematical mobel

1 Introduction

The world faces an alarming issue today due to the depletion of forest resources caused by
deforestation, fires, illegal logging, and other factors. Many countries will lose their remaining
forests by 2030 if this trend continues, according to a recent report [1]. Urgent action is needed
to address this challenge, including better coordination and control of the timber industry and
communities that depend on the forests [2]. Mathematics provides some powerful tools to
tackle such problems with the help of differential equations which can offer a way to solve
dynamical systems making them essential to science, engineering and humanity. Some studies
have used the mathematical modeling of forest depletion and suggested solutions using various
numerical and analytical methods. Gompil et al. [3] proposed numerical and simulated results
for a forest depletion model, while Eswari et al. [4] examined the homotopy perturbation
method (HPM) to solve the mathematical model for the depletion of forest resources.
Nugraheni et al. [5] proposed stability analysis and numerical simulations for a mangrove
forest resource dynamical model. Didiharyono and Kasse [6] studied the stability of a
mathematical model for deforestation and presented numerical simulations of the system.
All these studies offer useful insights into the dynamics of forest resources and propose possible
solutions to handle this critical global problem. This paper concentrates on the study of the
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depletion of forest resources, employing a mathematical model
suggested by Misra, Lata, and Shukla [7]. This mathematical
model consists of the cumulative density of forest resources, the
density of the population, and population pressure, represented by the
variables B, N, and P, respectively. In this model, the connection
between forest and population density is considered as a prey-
predator logistic model. The forest density decreases as housing
and development increase, impacting its growth rate. Population
pressure growth is proportional to population density in the model
[7]. The authors have investigated existence and uniqueness of the
global positive solution and provided numerical simulations to
study this model. The cumulative density of forests and population
size, are modelled using comprehensive equations with dynamic
relations similar to a prey-predator system. The model signifies the
depletion of forest resources provoked by population growth,
reduction of forest areas for expansion purposes and the
depletion by the pressure of the population. In addition, the
model considers that the increase in population pressure is
proportional to population density. This model consists of
dimensionless differential equations. The suggested model [7]
can be represented as:

dB

dt
� sB − hB2 − αBN − λ2B

2P,

dN

dt
� rN − jN2 + παBN,

dP

dt
� λN − λ0P,

(1)

where B (0) ≥ 0, N (0) ≥ 0, P (0) ≥ 0 and we define variables and
constant coefficients of this model in the following table as.

Values for the parameters and coefficients are considered, s =
0.8, s0 = 0.2, L = 50, α = 0.0001, λ = 0.2, λ0 = 0.1, r = 0.2, r0 = 0.1, K =
100, π = 0.004, λ2 = 0.0002, h � s0

L , j � r0
K and initial conditions n1 = B

(0) = 30, n2 =N (0) = 35, n3 = P (0) = 1 as given in (Misra et al., 2014).
The rate of forest depletion is alarming, mainly driven by illegal

logging and land clearing activities. This trend poses a serious threat
to our ecosystem and immediate action is needed to mitigate its

TABLE 1 Error in B(t), N(t) and P(t) by using HPM and RK 4th order.

t eB(t) eN(t) eP(t)

0 0 0 0

0.0040 7.02229385e − 11 3.8795633e − 12 1.11022302e − 15

0.0080 2.84295254e − 10 1.5518253e − 11 7.77156117e − 15

0.0120 6.60833165e − 10 3.4923175e − 11 2.13162820e − 14

0.0160 1.24834542e − 09 6.2129856e − 11 3.57491813e − 14

0.0200 2.14010853e − 09 9.7180929e − 11 3.15303338e − 14

0.0240 3.48907391e − 09 1.4013323e − 10 2.64233079e − 14

0.0280 5.52271828e − 09 1.9115020e − 10 1.93400850e − 13

0.032 8.55785131e − 09 2.5035973e − 10 5.49560397e − 13

0.0360 1.30154624e − 08 3.1803182e − 10 1.20303766e − 12

0.0400 1.94354861e − 08 3.9440806e − 10 2.29549712e − 12

0.0440 2.84915344e − 08 4.7988635e − 10 4.00479649e − 12

0.0480 4.10056628e − 08 5.74907232e − 10 6.55009380e − 12

0.0520 5.79630068e − 08 6.79982292e − 10 1.01949559e − 11

0.0560 8.05264832e − 08 7.95743915e − 10 1.52524659e − 11

0.0600 1.10051416e − 07 9.22938170e − 10 2.20889972e − 11

0.0640 1.48100092e − 07 1.06238928e − 09 3.11282111e − 11

Notation Description

B Cumulative density of forest resources

N Density of population

P Population pressure

S Intrinsic growth rate

h � s0
L Intraspecific growth rate of forestry resources in absence of

population

j � r0
K Intraspecific growth rate of population in absence of forestry

resources

A Depletion rate of forest resources due to population

Λ Growth rate of population pressure

λ0 Natural depletion rate

λ2 Depletion rate due to population pressure

Π Growth in population due to forest resources (proportionality
constant)

R Intrinsic growth rate human population
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TABLE 2 B(t) by using HPM with variation of α.

t B(t) at α = 0.0001 B(t) at α = 0.0002 B(t) at α = 0.0004

0 30 30 30

0.0400 30.8129 30.8123 30.79938896

0.0800 31.64006505 31.63119549 31.61346378

0.1200 32.48303939 32.46937528 32.44206418

0.1600 33.34108369 33.32237882 33.28500024

0.2000 34.21399144 34.18999515 34.14205247

0.2400 35.10152566 35.07198316 35.01297171

0.2800 36.00341892 35.96807153 35.89747924

0.3200 36.91937333 36.8779588 36.7952667

0.3600 37.84906054 37.80131329 37.70599611

0.4000 38.79212173 38.73777318 38.62929989

0.4400 39.74816763 39.68694645 39.56478085

0.4800 40.7167785 40.6484109 40.51201218

0.5200 41.69750417 41.62171415 41.47053744

0.5600 42.68986396 42.60637366 42.43987062

0.6000 43.69334678 43.60187669 43.41949605

0.6400 44.70741106 44.60768033 44.40886848

TABLE 3 B(t) by using HPM with variation of λ.

t B(t) at λ = 0.1 B(t) at λ = 0.2 B(t) at λ = 0.3

0 30 30 30

0.0400 30.81286325 30.81233672 30.81181021

0.0800 31.64226453 31.64006505 31.63786584

0.1200 32.48820566 32.48303939 32.47787449

0.1600 33.35066779 33.34108369 33.33150392

0.2000 34.22961141 34.21399144 34.19838205

0.2400 35.12497633 35.10152566 35.07809694

0.2800 36.03668172 36.00341892 35.97019679

0.3200 36.96462607 36.91937333 36.87418996

0.3600 37.9086872 37.84906054 37.78954498

0.4000 38.86872228 38.79212173 38.71569051

0.4400 39.84456783 39.74816763 39.65201535

0.4800 40.83603966 40.7167785 40.59786848

0.5200 41.84293296 41.69750417 41.55255902

0.5600 42.86502224 42.68986396 42.51535622

0.6000 43.90206134 43.69334678 43.48548951

0.6400 44.95378345 44.70741106 44.46214845
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impact. Without decisive measures, the depletion of forest resources
will have long-lasting consequences on the environment and our
wellbeing. It is imperative to find sustainable solutions and enforce
regulations to curb the rampant destruction of forests and preserve
them for future generations.

Many dynamical problems in science and engineering cannot be
solved analytically (exactly) and can be approximated numerically.
There is another technique named as series solution (semi-analytical
techniques) which is more closer to analytical results. For this purpose a

wide range of methods have been developed to find approximate
solutions that are as close as possible to the exact solutions. Among
these methods are the Taylor series method [8], which approximates
functions as power series; the Picard method [9], which iteratively
computes solutions from initial conditions; the Adomian
decomposition method [10], which decomposes a differential
equation into simpler sub problems; the variational iteration method
[11], which uses Lagrange multipliers to optimize solutions; and the
homotopy perturbationmethod [12–14,14,15,17–19], which constructs
a homotopy that gradually deforms the problem into a simpler one

TABLE 4 B(t) by using HPM with variation of λ2.

t B(t) at λ2 = 0.0001 B(t) at λ2 = 0.0002 B(t) at λ2 = 0.0003

0 30 30 30

0.0400 30.81659405 30.81233672 30.80808055

0.0800 31.64999511 31.64006505 31.63014111

0.1200 32.50021609 32.48303939 32.46588035

0.1600 33.36724938 33.34108369 33.31495729

0.2000 34.2510668 34.21399144 34.17699131

0.2400 35.15161962 35.10152566 35.05156215

0.2800 36.06883856 36.00341892 35.93820992

0.3200 37.00263378 36.91937333 36.83643509

0.3600 37.9528949 37.84906054 37.74569848

0.4000 38.91949097 38.79212173 38.6654213

0.4400 39.9022705 39.74816763 39.59498509

0.4800 40.90106144 40.7167785 40.53373176

0.5200 41.9156712 41.69750417 41.4809636

0.5600 42.94588662 42.68986396 42.43594323

0.6000 43.991474 43.69334678 43.39789368

0.6400 45.05217908 44.70741106 44.36599828

FIGURE 1
Solution for model 1.

FIGURE 2
Solution for model 1 in 3D.
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while adding a perturbation term to the solution. These methods have
been applied to a wide range of problems in physics, engineering,
various fields and have proven to be highly effective in providing
accurate approximations to complex dynamical systems.

Ji Huan He, a mathematician from China proposed a novel
semi-analytical method based on homotopy and perturbation
techniques in 1999, which was named the homotopy
perturbation method (HPM) [12]. He improved and extended
the HPM to solve a wide range of problems. In 2004, He used
the HPM to non-linear oscillators and asymptotic [13,14]. In 2005,
the HPM was applied to solve non-linear wave equations and
problems related to limit cycle and bifurcation of non-linear
systems [15,16]. In 2008, He employed the HPM to solve
boundary value problems [20]. In 2007, Javidi and Golbabai used
a revised version of the HPM to solve non-linear Fredholm integral
equations [21].Recently, HPM with small variations has been
applied to study fractal duffing oscillator problems under
arbitrary conditions [22], modified HPM for nonlinear oscillators
Anjum andHe [23], attachment oscillator arising in nanotechnology
[24], conservative nonlinear oscillators [25], non-linear oscillator
problems in a fractal space [26] and HPM including Aboodh
transformation to solve fractional calculus Tao et al. [27],
vibrating magnetic inverted pendulum Moatimid et al. [28],
Symmetry-breaking and pull-down motion for the
helmholtz–duffing oscillator Niu et al. [29], nonlinear fractional
Drinfeld–Sokolov–Wilson Equation Nadeem and Alsayaad [30],
trajectory analysis of a zero-pitch-angle e-Sail Niccolai et al. [31],
natural convection between two concentric horizontal circular
cylinders Abdulameer and Ali Al-Saif [32], nonlocal initial-
boundary value problems for parabolic and hyperbolic Al-Hayani
and Younis [33], multi-step iterative methods for solving nonlinear
equations Saeed et al. [34], telegraph equation Moazzzam et al. [35],
triangular linear diophantine fuzzy system of equations Shams et al.
[36], condensing coagulation model and Lifshitz-Slyzov equation
Arora et al. [37], singular nonlinear system of boundary value
problems Pathak et al. [38], rikitake-yype system Ene and Pop

[39], heat and mass transfer with 2D unsteady squeezing viscous
flow problem Abdul-Ameer and Ali Al-Saif [40], variable Speed
Wind Turbine Control Shalbafian and Ganjefar [41], radial thrust
problem Niccolai et al. [42], special third grade fluid flow with
viscous dissipation effect over a stretching sheet Swain et al. [43],
and the frequency–amplitude relationship of a nonlinear oscillator
with cubic and quintic nonlinearities He et al. [44]. The HPM has
become a widely-used technique to solve a large variety of problems
in different fields and many research papers have been published
each year using this method as evidenced by a simple search on
Google Scholar.

In this paper, we provide an approximate solution of model 1) by
using the homotopy perturbation method. The interesting feature of
HPM is that it provides the best approximate solution by taking a
few numbers of perturbation terms.

2 Homotopy perturbation method

Consider a non-linear differential equation

D μ( ) − g τ( ) � 0, τ ∈ [ (2)
subject to the boundary condition

β μ,
∂μ

∂τ
( ) � 0, τ ∈ Γ (3)

where D is a differential operator, β is boundary operator, Γ is the
boundary of the domain [ and g(τ) is an unknown function. The D,
generally consist on two parts, linear and non-linear part,
represented as L and N respectively. Therefore, 2) can be written
as follows

L μ( ) +N μ( ) − g τ( ) � 0, (4)
using homotopy method, by taking an embedding parameter q one
can construct a homotopy v (τ, q): [ × [0, 1] → R for Eq. 4 which
satisfies

FIGURE 3
Forest resources B(t) and α with the variation of time.

FIGURE 4
Forest resources B(t) and λ with the variation of time.

Frontiers in Physics frontiersin.org05

Buhe et al. 10.3389/fphy.2023.1246884

117

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1246884


H w, q( ) � 1 − q( ) L w( ) − L μ0( )[ ] + q L w( ) +N w( ) − g τ( )[ ] � 0,

(5)
and it is equivalent to

H w, q( ) � L w( ) − L μ0( ) + qL μ0( ) + q N w( ) − g τ( )[ ] � 0, (6)
where q ∈ [0, 1] is an embedding parameter, μ0 is an initial guess

approximation of Eq. 6 which satisfies the initial (or boundary)
conditions. It can be written as follows.

q � 0, H w, 0( ) � L w( ) − L μ0( ), (7)
q � 1, H w, 1( ) � L w( ) +N w( ) − g τ( ). (8)

We suppose the solution in the form of power series for Eq. 5 by
taking an embedding parameter q

w � w0 + qw1 + q2w2 + q3w3 +/ (9)
The approximate solution of Eq. 2 can be obtained by setting

q = 1,

μ � lim
q→1

w � w0 + w1 + w2 + w3 +/ (10)

The convergence of (Eq. 10) has been proved in [12]. The series
is convergent for most cases, however, the convergent rate depends
upon the nonlinear operator N(w). Furthermore He suggested the
following conditions.

1. The second derivative of nonlinear operator N(w) with respect to
wmust be small, because the parameter qmay be relatively large,
i.e., q → 1.

2. The norm of ‖L1(∂N∂w)‖must be smaller than one, in order that the
series converges.

3 Application of HPM

Now we apply HPM on our model, Eq. 1 of depletion of forest
resources (non-linear system of differential equations) as

1 − q( ) u′ − B0′( ) + q u′ − su + hu2 + αuv + λ2u
2w( ) � 0,

1 − q( ) v′ −N0′( ) + q v′ − rv + jv2 − παuv( ) � 0,
1 − q( ) w′ − P0′( ) + q w′ − λv + λ0w( ) � 0.

⎧⎪⎨⎪⎩
(11)

The initial guesses for (11) are constant as defined in [7].

u0 t( ) � B0 t( ) � B 0( ) � n1
v0 t( ) � N0 t( ) � N 0( ) � n2
w0 t( ) � P0 t( ) � P 0( ) � n3

(12)

and we assume the solution of (11) as,

u � u0 + qu1 + q2u2 + q3u3 +/ ,
v � v0 + qv1 + q2v2 + q3v3 +/ ,
w � w0 + qw1 + q2w2 + q3w3 +/ ,

(13)

by substituting Eq. 13 in Eq. 11 and collecting the terms of
powers of q, we obtain

q0:
u0′ � 0, u0 0( ) � n1,
v0′ � 0, v0 0( ) � n2,
w0′ � 0, w0 0( ) � n3.

⎧⎪⎨⎪⎩ (14)

q1:
u1′ + u0 αv0 − s( ) + u2

0 h + λ2w0( ) � 0, u1 0( ) � 0,
v1′ − r + απu0( )v0 + jv20 � 0, v1 0( ) � 0,
w1′ − λv0 + λ0w0 � 0, w1 0( ) � 0.

⎧⎪⎨⎪⎩ (15)

q2:
u2′ + αu0v1 + u1 αv0 + 2u0 h + λ2w0( ) − s( ) + λ2u2

0w1 , u2 0( ) � 0,
v2′ − απu1w0 − r + απu0 − 2jv0( )v1 � 0, v2 0( ) � 0,
w2′ − λv1 + λ0w1 � 0, w2 0( ) � 0,

⎧⎪⎨⎪⎩
(16)

q3:

u3′ + αu0v2 + u2
1 h + λ2w0( ) + u2 αv0 + 2u0 h + λ2w0( )( )

+ u1 αv1 + 2λ2u0w1( ) + 2λ2u2
0w2 � 0, u3 0( ) � 0,

v3′ − απu2v0 − απu1v1 + jv21 − rv2 − απu0v2 + 2jv0v2 � 0,
v3 0( ) � 0,

w3 − λv2 + λ0w2 � 0, w3 0( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17)

q4:

u4′ + αu2v1 + αu0v3 + u3 −s + αv0 + 2u0 h + λ2w0( )( ) + λ2u2
1w1

+λ2u0u2w1 + u1 αv2 + 2u2 h + λ2w0( ) + 2λ2u0w2( )
+λ2u2

0w4 � 0, u4 0( ) � 0,
v4′ − απu3v0 − απu2v1 − απu1v2 + 2jv1v2 − rv3

−απu0v3 + 2jv0v3 � 0, v4 0( ) � 0,
w4 − λv3 + λ0w4 � 0, w4 0( ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(18)

.

.

.

Now considering s = 0.8, s0 = 0.2, L = 50, α = 0.0001, λ = 0.2, λ0 =
0.1, r = 0.2, r0 = 0.1,K = 100, π = 0.004, λ2 = 0.0002, h � s0

L , j � r0
K, n1 =

B (0) = 30, n2 = N (0) = 35, n3 = P (0) = 1, and simplifying the
equations from (Eqs 14–18) we have.

By substituting these values in Eq. 13, we have the solution of
model 1) as

FIGURE 5
Forest resources B(t) and λ2 with the variation of time.

u0 = 30 v0 = 35 w0 = 1

u1 = 20.115t v1 = 5.7742t w1 = 6.9t

u2 = 4.84665t2 v2 = 0.375578t2 w2 = 0.232542t2

u3 = −0.260167t3 v3 = 0.00519615t3 w3 = 0.017287t3

u4 = −0.495765t4 v4 = −0.000913025t4 w4 = −0.00017237t4
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B t( ) � lim
q→1

u

� 30 + 20.115t + 4.84665t2 − 0.260167t3 − 0.495765t4

− 0.12174t5 +/ , (19)
N t( ) � lim

q→1
v

� 35 + 5.77542t + 0.375578t2 + 0.00519615t3

− 0.000913025t4 − 0.00006t5 +/ ,

(20)

P t( ) � lim
q→1

w

� 1 + 6.9t + 0.232542t2 + 0.0172871t3 − 0.00017237t4

− 0.000033t5 +/ (21)

For α = 0.0001, α = 0.0002 and α = 0.0004, we have.
B(t)α=0.0001 = 30 + 20.115t + 4.84665t2 − 0.260167t3 − 0.495765t4

+ /,
B(t)α=0.0002 = 30 + 20.01t + 4.77438t2 − 0.274268t3 − 0.49119t4

+ / and.
B(t)α=0.0004 = 30 + 19.8t + 4.63094t2 − 0.301744t3 − 0.481988t4

+ /.
For λ = 0.1, λ = 0.2 and λ = 0.3, we have.
B(t)λ=0.1 = 30 + 20.115t + 5.16165t2 + 0.0854419t3 − 0.336328t4

+ /,
B(t)λ=0.2 = 30 + 20.115t + 4.84665t2 − 0.260167t3 − 0.495765t4

+ / and.
B(t)λ=0.3 = 30 + 20.115t + 4.53165t2 − 0.605776t3 − 0.648587t4

+ /.
For λ2 = 0.0001, λ2 = 0.0002 and λ2 = 0.0003, we have.
B(t)λ2�0.0001 � 30 + 20.205t + 5.24226t2+

0.113954t3 − 0.334519t4 +/ ,
B(t)λ2�0.0002� 30+20.115t+4.84665t2−0.260167t3−0.495765t4

+/ and.
B(t)λ2�0.0002� 30+20.025t+4.45157t2−0.629906t3−0.645153t4

+/ .

3.1 Verification of the solution

To verify the validity of solution, first we check the solution for
initial conditions which are satisfied at t = 0, secondly we put the
solution and its derivatives in the system. If both sides of system are
satisfied then we consider the solution is correct or true. For the
second condition, we differentiate Eqs 19–21 with respect to t, so we
have

dB t( )
dt

� 20.115 + 9.69329t − 0.780501t2 − 1.98306t3 − 0.608698t4

+/

(22)
dN t( )
dt

� 0.77542 + 0.751156t + 0.0155885t2 − 0.0036521t3

− 0.000326555t4 +/ (23)
dP t( )
dt

� 6.9 + 0.465084t + 0.0518614t2 − 0.000689481t3

− 0.000165368t4 +/ (24)

Now using Eqs 19–24 and the values of given parameters in
system 1) and we have

0. − 1.77636 × 10−15t + 2.22045 × 10−16t3 − 2.22045 × 10−16t4 +/

� 0

(25)
0. + 3.46945 × 10−18t2 − 8.67362 × 10−19t3 + 4.73413 × 10−6t5 +/

� 0

(26)
0. − 6.93889 × 10−18t2 + 9.75483 × 10−6t5 +/ � 0 (27)

The coefficients of t powers in Eqs 25–27 are around 15 to
19 decimal places correct to zero. So our series solution (5th degree
polynomials) satisfies the system up to 4th degree polynomial
(where the coefficients are approximately 17 decimal correct to
zero). The solution can be improved by taking/adding more terms of
power t in it.

3.2 Results and discussions

In this section, we demonstrate the performance of our model
1 through the evaluation of our calculated approximate solutions,
B(t), N(t), and P(t). To validate our results, we compare them with
the Runge-Kutta 4th-order method and present the absolute error,
eB(t), eN(t), and eP(t) in Table 1 for various time steps. The time
domain of our Homotopy Perturbation Method (HPM) is divided
into sub-intervals and mapped onto 0 ≤ t ≤ 400 with a step size of
0.5 for graphical representation. Our analysis revealed an average
absolute error of 6.53290554e − 08, 5.09269781e − 10, and
1.35452205e − 11 for B(t), N(t), and P(t), respectively. In Tables
2–4, we present the cumulative density of forest resources, B(t), for
various values of α, λ, and λ2. These results underscore the versatility
and accuracy of our proposed model, which has the potential to
contribute significantly to the field of forest resource management.
Figure 1 provides a clear illustration of the behaviour of the
cumulative density of forest resources B(t), the density of
population pressure P(t), and the density of population N(t) as
calculated using HPM and RK-4th order method. The solid lines
represent the HPM series solution, while the dotted lines show the
numerical solution calculated by the RK-4th order method. The
graph highlights that the cumulative density of forest resources
decreases as the density of population pressure increases. This
suggests that controlling population pressure is essential for
preserving forests on a large scale. Additionally, Figure 2 depicts
the behaviour of model 1 in 3D with respect to HPM and RK
method, providing a comprehensive view of the model’s behaviour
over time. Figure 3, represents the impact of the depletion rate of
forest resources due to population, α = a, on the cumulative density
of forest resources, B(t). It reflects that decreasing the depletion rate
of forest resources due to population directs to a growth in the
cumulative density of forest resources over time. This emphasizes
the significance of controlling the population pressure on forests to
control their depletion. In Figure 4, we discuss the impact of the
growth rate coefficient of population pressure caused by population
λ = l on the cumulative density of forest resources B(t). The graph
indicates that if we decrease the value of λ, the cumulative density of
forest resources increases. Likewise, Figure 5 describes the effect of
population pressure λ2 on B(t). We can see, as the value of λ2
decreases, the cumulative density of forest resources B(t) increases.
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These figures illustrate the significance of controlling population
pressure and growth rates to save and preserve forest resources. It
also emphasizes the necessity for procedure interventions to control
population growth and decrease the depletion of forest resources.

3.3 Technical specification

These calculations are performed onMathematica® 11.3.0.0 (64-
bit) and Matlab® R2015a (8.5.0.197613) 64-bit using a machine
Intel(R) Core(TM) i3.2310M CPU @ 2.10 GHz and OS: window
7 Professional (64-bit).

4 Conclusion

In this paper, we used the homotopy perturbation method to
obtain a semi-analytical solution for the nonlinear model of the
depletion of forest resources. Important characteristic of HPM is
that it provides the adequate approximate series solution by taking a
few number of perturbation terms which is near to analytical exact
solution. Through comparison with the Runge-Kutta method, we
established the effectiveness and accuracy of the proposed method.
Additionally, we investigated the behaviour of the model by varying
the values of the depletion rate of forest resources due to population
α, the growth rate coefficient of population pressure caused by
population λ, and the depletion rate of its carrying capacity due to
population pressure λ2. The results showed that reducing these
coefficients can increase the cumulative density of forest
resources B(t). These findings highlight the urgent need for
measures to conserve forest resources for the wellbeing of our
planet. The presented model and its solution indicate the
seriousness of this global issue which needs to be acted upon
immediately and effectively to preserve our forest resources. This

study suggests that additional investigations and research is needed
to build more relevant models for assistance of forest resource
experts.
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The solitary wave solutions of the
stochastic Heisenberg
ferromagnetic spin chain equation
using two different analytical
methods

Farah M. Al-Askar*

Department of Mathematical Science, College of Science, Princess Nourah Bint Abdulrahman University,
Riyadh, Saudi Arabia

Here, we consider the stochastic (2 + 1)-dimensional Heisenberg ferromagnetic
spin chain equation which is forced by the multiplicative Brownian motion in the
Stratonovich sense. We utilize the (G′/G)-expansion method and the mapping
method to attain the analytical solutions of the stochastic (2 + 1)-dimensional
Heisenberg ferromagnetic chain equation. Various types of analytical stochastic
solutions, such as the hyperbolic, elliptic, and trigonometric functions, have been
obtained. Physicists can utilize these solutions to understand a variety of important
physical phenomena because the magnetic soliton has been categorized as one
of the interesting groups of nonlinear excitations representing spin dynamics in
the semiclassical continuum Heisenberg systems. Moreover, we employ MATLAB
tools to plot 3D and 2D graphs for some obtained solutions to address the
influence of Brownian motion on these solutions.
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1 Introduction

In many branches of science and mathematics, nonlinear evolution equations (NLEEs)
play a crucial role in describing a wide range of phenomena that linear equations are unable
to adequately explain. These equations involve nonlinear terms that can lead to diverse and
often intricate behaviors, making their study both fascinating and challenging. NLEEs have
also found significant applications in various branches of physics and engineering. In fluid
dynamics, the famous Navier–Stokes equations describe the behavior of fluids which are
inherently nonlinear due to their viscosity and turbulent effects. Understanding and solving
these equations is essential for predicting weather patterns, optimizing industrial processes,
and designing efficient aerodynamics. Additionally, NLEEs have been instrumental in
quantum field theory, providing insights into particle physics and the dynamics of
elementary particles.

In mathematics, the study of NLEEs has led to the development of several powerful
analytical and numerical techniques. Some of these methods include Jacobi elliptic function
[1], (G′G)-expansion [2, 3], sine–cosine [4, 5], perturbation [6, 7], exp (−ϕ(ς))-expansion [8],
Hirota’s [9], tanh–sech [10, 11], and Riccati–Bernoulli sub-ODE methods [12].

On the other hand, stochastic NLEEs (SNLEEs) play a crucial role in various scientific
fields, including physics, finance, and probability theory. These equations incorporate
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random variations into deterministic equations, adding a stochastic
term that captures the inherent uncertainty in the system. The
addition of the stochastic term is of paramount importance as it
allows us to better model and understand real-world phenomena by
accounting for unpredictable factors and fluctuations. Furthermore,
the addition of stochastic terms helps capture the complexity and
nonlinearity of real-world systems. Many physical and financial
systems exhibit a nonlinear behavior, where small changes in the
initial conditions or parameters can lead to drastic and
unpredictable outcomes. Traditional deterministic NLEEs often
fail to accurately capture this nonlinear behavior. By introducing
stochastic terms, we can better model the inherent randomness and
nonlinearity of these systems, leading to more realistic and insightful
solutions.

It looks more significant when considering models of NLEEs
with random forces. Therefore, here, we consider one of the most
important models in the modern magnetic theory, the stochastic
Heisenberg ferromagnetic spin chain equation (SHFSCE), derived
using multiplicative Brownian motion in the Stratonovich sense,
which has the following form:

idψ + k1ψxx + k2ψyy + k3ψxy − k4 ψ
∣∣∣∣ ∣∣∣∣2ψ[ ]dt + iρψ◦dB � 0, (1)

where ψ is a complex stochastic function of the variables x, y, and t
and ki is the constant for i = 1, 2, 3, and 4. σ is the noise intensity, and
B is the Brownian motion in one variable t.

A deterministic Heisenberg ferromagnetic equation (DHFE)
has been created to interpret magnetic ordering in ferromagnetic
materials. It plays an important role in the modern magnetic
theory, which describes nonlinear magnet dynamics and is used
in optical fibers. Due to the importance of DHFE, many authors
have attained the exact solution for this equation by using various
methods, such as Hirota’s bilinear method [13, 14], Darboux
transformation [15–17], sub-ODE method [18], sine-Gordon
and modified exp-function expansion methods [19], auxiliary
ordinary differential equation [20], Jacobi elliptic functions [21],
F-expansion method combined with Jacobi elliptic functions
[22], and generalized Riccati mapping method and improved
auxiliary equation [23], while many authors have investigated the
analytical solutions of fractional DHFE by using various
methods, including exp (−ϕ(ς))-expansion and extended tanh
function [24], new extended generalized Kudryashov [25], and
generalized Riccati equation mapping methods [26].

The main motivation of this work is to obtain the analytical
stochastic solutions of Eq. 1 using the (G′/G)-expansion and

FIGURE 1
(i–iii) 3D profile of the solution |ψ(x, y, t)| defined in Eq. 32, with θ3 � −5, ŵ � 0.5, and σ = 0, 1, 2. (iv) 2D profile of Eq. 32 with various values of σ.
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mapping methods. Physicists could utilize the acquired solution to
interpret a variety of fascinating physical phenomena because the
magnetic soliton has been categorized as one of the interesting
groups of nonlinear excitations representing spin dynamics in the
semiclassical continuum Heisenberg systems. Moreover, we show
the influence of Brownian motion on the behavior of these solutions
using MATLAB tools to exhibit some graphical representations.

The remainder of this article is organized as follows: in
Section 2, we define the Brownian motion and state the
relationship between the Stratonovich and Itô integrals. In
Section 3, we derive the wave equation of SHFSCE (1). In
Section 4, we apply the (G′G)-expansion method to attain the
analytical stochastic solution of SHFSCE (1). In Section 5, we
discuss the influences of Brownian motion on the analytical
solutions of SHFSCE (1). Finally, we outline the article’s
conclusions in Section 6.

2 Brownian motion

Brownian motion refers to the random movement of
microscopic particles suspended in a fluid. It was first

observed by the Scottish botanist Robert Brown in 1827 when
he noticed pollen grains jiggling randomly in water under a
microscope. This discovery paved the way for the development
of the kinetic theory of gases and had a profound impact on our
understanding of the physical world. Brownian motion has
applications in a wide range of scientific disciplines. In
physics, it has been used to determine fundamental constants,
such as Avogadro’s number, by measuring the displacement of
particles in a known volume under known conditions. In
chemistry, it has been utilized to study the diffusion of
molecules, enabling the determination of molecular sizes and
diffusion coefficients. In biology, it has been employed to study
the movement of microscopic organisms and the dynamics of
biological macromolecules.

Now, let us define the Brownian motion B(t) as follows:

Definition 1. The stochastic process B(t), t≥ 0 is called Brownian
motion if it satisfies the following criteria:

1. B(0) � 0.
2. B(t) has independent increments.
3. B(t) is continuous in t.

FIGURE 2
(i–iii) 3D profile of the solution |ψ(x, y, t)| defined in Eq. 33, with θ3 = −5 and σ = 0, 1, 2 (iv) 2D profile of Eq. 33 with various values of σ.
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4. The increments B(t) − B(s) are normally distributed with
variance t − s and mean 0.
We need the following lemma:

Lemma 1. E(eρB(t)) � e
1
2ρ

2t for any real number ρ.
We note that there are two widely used versions of stochastic

integrals, Stratonovich and Itô [27, 28]. Modeling issues usually
dictate determination of the acceptable version; however, once
the version is selected, a comparable equation of the other
version can be established with the same solutions. Thus, it is
possible to switch between Itô (denoted by ∫t

0
fdB) and

Stratonovich (denoted by ∫t
0
f◦dB) integrals using the

following relationship:

∫t

0
f s,Xs( )dB s( ) � ∫t

0
f s,Xs( )◦dB s( ) − 1

2
∫t

0
f s,Xs( ) ∂f s,Xs( )

∂x
ds,

(2)
where f is assumed to be sufficiently regular and {Xt, t ≥0} is a
stochastic process.

3 The wave equation of SHFSCE

To derive the wave equation of SHFSCE, we employ the next
wave transformation:

ψ x, y, t( ) � u η( )e iθ−σB t( )−σ2t( ), η � η1x + η2y + η3t,

θ � θ1x + θ2y + θ3t,
(3)

where u is a real deterministic function and ηi and θi for all i = 1, 2,
and 3 are constants. We note that

ψxx � η21u
′′ + 2iη1θ1u′ − θ21u[ ]e iθ−σB t( )−σ2t( ),

ψyy � η22u
′′ + 2iη2θ2u′ − θ22u[ ]e iθ−σB t( )−σ2t( ),

ψxy � η1η2u
′′ + i η1θ2 + η2θ1( )u′ − θ1θ2u[ ]e iθ−σB t( )−σ2t( ),

(4)

and

dψ � η3u′ + iθ3u + 1
2
σ2u − σ2u( )dt − σudB[ ]e iθ−σB t( )−σ2t( )dt

� η3u′ + iθ3u( )dt − 1
2
σ2udt + σudB( )[ ]e iθ−σB t( )−σ2t( )dt,

(5)

FIGURE 3
(i–iii) 3D profile of the solution |ψ(x, y, t)| defined in Eq. 43, with θ3 = −5 and σ = 0, 1, 2. (iv) 2D profile of Eq. 43 with various values of σ.
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where the term +1
2σ

2u represents the Itô correction. By using Eq. 2 in
the differential form, we obtain

dψ � η3u′ + iθ3u( )dt − σu◦dB[ ]e iθ−σB t( )−σ2t( )dt. (6)
Substituting Eq. 3 into (1) and utilizing Eqs 4, 5, we obtain the
following equation for the imaginary part:

η3 + 2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1( )u′ � 0, (7)
where we assume that

η3 � −k1η1θ1 − 2k2η2θ2 − k3η1θ2 − k3η2θ1.

Furthermore, we derive the following equation for the real part:

u′′ − Z1e
2σB t( )−2σ2t( )u3 − Z2u � 0, (8)

where

Z1 � k4
k1η21 + k2η22 + k3η1η2

and Z2 � θ3 + k1θ
2
1 + k2θ

2
2 + k3θ1θ2

k1η21 + k2η22 + k3η1η2
.

Taking expectation on both sides of Eq. 8, we attain

u′′ − Z1u
3e−2σ

2tE e2σB t( )( ) − Z2u � 0, (9)
where u represents the deterministic function. Using Lemma 1, Eq. 9
attains the following form:

u′′ − Z1u
3 − Z2u � 0. (10)

4 Exact solutions of SHFSCE

To find the solutions of Eq. 10, we apply the (G′/G)-expansion
[2] and mapping methods. Subsequently, we attain the solutions of
SHFSCE (1).

4.1 (G′/G)-expansion method

To begin, let us assume that the solution of Eq. 10 has the
following form:

u �∑N
i�0

bk
G′
G
[ ]i, (11)

where b0, b1, ..., bN denote unknown constants, such that bN ≠ 0, and
G solves

G′′ + λG′ + ]G � 0, (12)
where λ and ] are undefined constants. By balancing u3 with u′′ in
Eq. 10, we obtain

N � 1. (13)
From Eq. 13, we can rewrite Eq. 11 as

u � b0 + b1
G′
G
. (14)

Substituting Eq. 14 into Eq. 10 and utilizing Eq. 12, we obtain

2b1 − Z1b
3
1( ) G′

G
[ ]3 + 3λb1 − 3Z1b0b

2
1( ) G′

G
[ ]2

+ λ2b1 + 2b1] − 3Z1b1b
2
0 − Z2b1( ) G′

G
[ ]

+ ]λb1 − Z1b
2
0b1 − Z2b0( ) � 0.

Equating each coefficient of [G′G]i (i = 3, 2, 1, and 0) by zero, we obtain

2b1 − Z1b
3
1 � 0,

3λb1 − 3Z1b0b
2
1 � 0,

λ2b1 + 2b1] − 3Z1b1b
2
0 − Z2b1 � 0,

and

]λb1 − Z1b
3
0 − Z2b0 � 0.

We obtain the following equation by solving these equations:

b1 � ±

��
2
Z1

√
, λ � λ, b0 � ±

λ���
2Z1

√ , ] � λ2

4
+ Z2

2
. (15)

The roots of auxiliary Eq. 12 are

−λ
2

±

���−Z2
2

√
.

Depending on Z2, a variety of situations might arise, which are as
follows:

Case 1: If Z2 = 0, then

G η( ) � c1 exp
−λ
2
η( ) + c2η exp

−λ
2
η( ),

where c1 and c2 are constants. Hence, by using Eq. 14, the solution of
Eq. 10 is

u η( ) � ±
λ���
2Z1

√ ±

��
2
Z1

√
−λ
2
+ c2 exp −λ

2 η( )
c1 exp −λ

2 η( ) + c2η exp −λ
2 η( )⎡⎢⎣ ⎤⎥⎦. (16)

As a result, SHFSCE (1) derives the solution

ψ x,y,t( )�± λ���
2Z1

√ +
��
2
Z1

√
−λ
2
+ c2 exp −λ

2 η( )
c1 exp −λ

2 η( )+c2ηexp −λ
2 η( )⎡⎢⎣ ⎤⎥⎦⎧⎨⎩ ⎫⎬⎭e iθ−σB t( )−σ2t( ),

(17)
where η = η1x + η2y − (2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)t and θ =
θ1x + θ2y + θ3t.

Case 2: If Z2 <0, then

G η( ) � c1 exp
−λ
2
+
���−Z2
2

√( )η[ ] + c2 exp
−λ
2
−
���−Z2
2

√( )η[ ].
Therefore, the solution of Eq. 10 is

u η( ) � ±
λ���
2Z1

√ ±

��
2
Z1

√ c1
−λ
2
+
���−Z2

2

√( )exp −λ
2
+
���−Z2
2

√( )η( )
c1 exp

−λ
2
+
���−Z2

2

√( )η( ) + c2 exp
−λ
2
−
���−Z2

2

√( )η( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
c2

−λ
2
−
���−Z2
2

√( )exp −λ
2
−
���−Z2

2

√( )η( )
c1 exp

−λ
2
+
���−Z2

2

√( )η( ) + c2 exp
−λ
2
−
���−Z2
2

√( )η( )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (18)
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Consequently, the solution of SHFSCE (1) is

ψ x, y, t( ) � ±
λ���
2Z1

√ +
��
2
Z1

√ c1
−λ
2
+
���−Z2
2

√( )exp −λ
2
+
���−Z2

2

√( )η( )
c1 exp

−λ
2
+
���−Z2
2

√( )η( ) + c2 exp
−λ
2
−
���−Z2

2

√( )η( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+

c2
−λ
2
−
���−Z2

2

√( )exp −λ
2
−
���−Z2

2

√( )η( )
c1 exp

−λ
2
+
���−Z2
2

√( )η( ) + c2 exp
−λ
2
−
���−Z2

2

√( )η( )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭e iθ−σB t( )−σ2 t( ) .

(19)

Case 3: If Z2 >0, then

G η( ) � exp
−λ
2
η( ) c1 cos

��
Z2
2

√
η( ) + c2 sin

��
Z2
2

√
η( )[ ].

Hence, the solution of Eq. 10 is

u η( ) � ±
λ���
2Z1

√ ±

��
2
Z1

√
−λ
2
+
−c1

��
Z2
2

√
sin

��
Z2
2

√
η( ) + c2

��
Z2
2

√
cos

��
Z2
2

√
η( )

c1 cos
��
Z2
2

√
η( ) + c2 sin

��
Z2
2

√
η( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(20)
Thus, the solution of SHFSCE (1) is

ψ x, y, t( ) � λ���
2Z1

√ ±

��
2
Z1

√
−λ
2
+[⎧⎨⎩

+
−c1

��
Z2
2

√
sin

��
Z2
2

√
η( ) + c2

��
Z2

2

√
cos

��
Z2

2

√
η( )

c1 cos

��
Z2

2

√
η( ) + c2 sin

��
Z2
2

√
η( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭e iθ−σB t( )−σ2t( ),

(21)

where η = η1x + η2y − (2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)t and
θ = θ1x + θ2y + θ3t.

Special cases
Case 1: Substituting c2 = 0 and λ = 0 into Eq. 21, we obtain

ψ x, y, t( ) � ±

��
Z2
Z1

√
tan

��
Z2
2

√
η( )⎞⎠e iθ−σB t( )−σ2t( ). (22)

Case 2: Substituting c1 = 0 and λ = 0 into Eq. 21, we obtain

ψ x, y, t( ) � ±

��
Z2
Z1

√
cot

��
Z2
2

√
η( )e iθ−σB t( )−σ2t( ). (23)

Case 3: If we substitute c1 = c2 = 1 and λ = 0 into Eq. 21, then

ψ x, y, t( ) � ±

��
Z2
Z1

√
sec

���
2Z2

√
η( ) + tan

���
2Z2

√
η( )[ ]e iθ−σB t( )−σ2t( ).

Case 4: Substituting c1 = c2 = 1 and λ � ���
2Z1

√
into Eq. 21, we derive

ψ x, y, t( ) � ± 1 ∓ 2

��
Z2
Z1

√
1

1 + cot
���
2Z2

√
η( )( )⎡⎢⎣ ⎤⎥⎦e iθ−σB t( )−σ2t( ). (24)

Case 5: Substituting c1 = c2 = 1 and λ � − ���
2Z1

√
into Eq. 21, we obtain

ψ x, y, t( ) � ∓ 1 ± 2

��
Z2
Z1

√
1

1 + tan
���
2Z2

√
η( )( )⎡⎢⎣ ⎤⎥⎦e iθ−σB t( )−σ2t( ). (25)

Case 6: Substituting c1 = c2 = 1 and λ = 0 into Eq. 19, we derive

ψ x, y, t( ) � ±

����
−Z2
Z1

√
tanh

���−Z2
2

√
η( )e iθ−σB t( )−σ2t( ). (26)

Case 7: Substituting c1 = 1, c2 = −1, and λ = 0 into Eq. 19, we derive

ψ x, y, t( ) � ±

����
−Z2
Z1

√
coth

���−Z2
2

√
η( )e iθ−σB t( )−σ2t( ), (27)

where η = η1x + η2y − (2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)t and θ =
θ1x + θ2y + θ3t.

Remark 3. Eqs 22–27 with σ = 0 coincide with the results reported
in [24].

4.2 Mapping method

Let the solutions of Eq. 10 take the following form:

Ψ η( ) � ℓ0 + ℓ1φ η( ), (28)
where ℓ0 and ℓ1 denote the undetermined constants and φ solves the
first elliptic equation:

φ′ �
�����������
r + qφ2 + pφ4
√

, (29)

where the parameters r, q, and p all denote real numbers.
Substituting Eq. 28 into Eq. 10, we obtain

2ℓ1p − Z1ℓ
3
1( )φ3 − 3Z1ℓ0ℓ

2
1φ

2 + ℓ1q − 3Z1ℓ
2
0ℓ1 − ℓ1Z2( )φ

+ Z2ℓ0 − Z1ℓ
3
0( ) � 0.

Equating each coefficient of φk to zero, we derive

2ℓ1p − Z1ℓ
3
1 � 0,

−3Z1ℓ0ℓ
2
1 � 0,

ℓ1q − 3Z1ℓ
2
0ℓ1 − ℓ1Z2 � 0,

and

−Z2ℓ0 − Z1ℓ
3
0 � 0.

Solving these equations, we obtain

ℓ0 � 0, ℓ1 � ±

���
2p
Z1

√
, -1 � 0, q � Z2. (30)

Substituting into Eq. 28, we derive the solutions of Eq. 10 in the
following form:

u η( ) � ±

���
2p
Z1

√
φ η( ), for p

Z1
> 0.

Consequently, the solutions of SHFSCE (1), utilizing Eq. 3, are

ψ x, y, t( ) � ±

���
2p
Z1

√
φ η( )e iθ−σB t( )−σ2t( ), for p

Z1
> 0. (31)

Depending on p and Z1, a variety of cases might arise, which are as
follows:

Case 1: If p =, ŵ2, q � −(1 + ŵ2), and r = 1, then the solution of
Eq. 29 is φ(η) = sn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ± ŵ

��
2
Z1

√
sn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (32)

When ŵ → 1, then Eq. 32 changes to
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ψ x, y, t( ) � ±

��
2
Z1

√
tanh η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (33)

Case 2: If p = 1, q � 2ŵ2 − 1 and r � −ŵ2(1 − ŵ2), then the
solution of Eq. 29 is φ(η) = ds(η). Thus, Eq. 31 becomes

ψ x, y, t( ) � ±

��
2
Z1

√
ds η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (34)

When ŵ → 1, then Eq. 34 changes to

ψ x, y, t( ) � ±

��
2
Z1

√
csch η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (35)

If ŵ → 0, then Eq. 34 tends to

ψ x, y, t( ) � ±

��
2
Z1

√
csc η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (36)

Case 3: If p = 1, q � 2 − ŵ2, and r � (1 − ŵ2), then the solution
of Eq. 29 is φ(η) = cs(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ±

��
2
Z1

√
cs η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (37)

When ŵ → 1, then Eq. 37 transfers to Eq. 35. If ŵ → 0, then Eq. 37
tends to

ψ x, y, t( ) � ±

��
2
Z1

√
cot η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (38)

Case 4: If p = ŵ2

4 , q � (ŵ2−2)
2 , and r � 1

4, then the solution of Eq. 29
is φ(η) � sn(η)

1+dn(η). Thus, Eq. 31 becomes

ψ x, y, t( ) � ± ŵ

���
1
2Z1

√
sn η( )

1 + dn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (39)

When ŵ → 1, then Eq. 39 transfers to

ψ x, y, t( ) � ±

���
1
2Z1

√
tanh η( )

1 + sech η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (40)

Case 5: If p = (1−ŵ2)2
4 , q � (1−ŵ2)2

2 , and r � 1
4, then the solution of

Eq. 29 is φ(η) � sn(η)
dn+cn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ± 1 − ŵ2( ) ���1
2Z1

√
sn η( )

dn + cn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0.

(41)
If ŵ → 0, then Eq. 41 tends to

ψ x, y, t( ) � ±

���
1
2Z1

√
sin η( )

1 + cos η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (42)

Case 6: If p = 1−ŵ2

4 , q � (1−ŵ2)
2 , and r � (1−ŵ2)

4 , then the solution of
Eq. 29 is φ(η) � cn(η)

1+sn(η). Thus, Eq. 31 takes the following form:

ψ x, y, t( ) � ±

������
1 − ŵ2

2Z1

√
cn η( )

1 + sn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (43)

If ŵ → 0, then Eq. 43 tends to

ψ x, y, t( ) � ±

���
1
2Z1

√
cos η( )

1 + sin η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (44)

Case 7: If p = 1, q = 0, and r = 0, then the solution of Eq. 29 is
φ(η) � c

η. Hence, Eq. 31 becomes

ψ x, y, t( ) � ±

��
2
Z1

√
c

η
e iθ−σB t( )−σ2t( ), for Z1 > 0. (45)

Case 8: If p � −1, q � 2 − ŵ2, and r � (ŵ2 − 1), then the solution of
Eq. 29 is φ(η) = dn(η). Thus, Eq. 31 becomes

ψ x, y, t( ) � ±

���
−2
Z1

√
dn η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (46)

When ŵ → 1, then Eq. 46 transfers to

ψ x, y, t( ) � ±

���
−2
Z1

√
sech η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (47)

If ŵ → 0, then Eq. 46 tends to

ψ x, y, t( ) � ±

���
−2
Z1

√
e iθ−σB t( )−σ2t( ), for Z1 < 0. (48)

Case 9: If p � −ŵ2, q � 2ŵ2 − 1 and r � (1 − ŵ2), then the
solution of Eq. 29 is φ(η) = cn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ± ŵ

���
−2
Z1

√
cn η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (49)

When ŵ → 1, then Eq. 46 transfers to Eq. 47.
Case 10: If p � ŵ2−1

4 , q � (ŵ2+1)
2 , and r � (ŵ2−1)

4 , then the
solution of Eq. 29 is φ(η) � dn(η)

1+sn(η). Thus, Eq. 31 has the
following form:

ψ x, y, t( ) � ±

������
ŵ2 − 1
2Z1

√
dn η( )

1 + sn η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (50)

Case 11: If p � −1
4 , q � (ŵ2+1)

2 , and r � −(1−ŵ2)2
4 , then the solution of

Eq. 29 is φ(η) = ŵcn(η) ± dn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ±

���
−1
2Z1

√
ŵcn η( ) ± dn η( )[ ]e iθ−σB t( )−σ2t( ), for Z1 < 0.

(51)
When ŵ → 1, then Eq. 51 transfers to Eq. 47.

5 Brownian motion’s influence

In this section, we address the influence of Brownian motion
on solutions of SHFSCE (1). We provide numerous graphical
representations to demonstrate the influence of Brownian
motion on the behavior of these solutions. First, let us fix the
parameters k1 = 2.5, k2 = k3 = 1.5, k4 = 0.5, and η1 = η2 = θ1 = θ2 =
1. MATLAB is used to plot some solutions, such as [22], for x ∈ [0,
4], y = 1, and t ∈ [0, 4] and for various σ values (noise intensity) as
follows:
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When examining the surface at σ = 0, it is apparent from Figure 1,
Figure 2, and Figure 3 that there is a fluctuation and that the surface is not
smooth. When noise is added and its intensity is increased by a factor of
σ = 1 and 2, the surface becomes substantially flatter after minor transit
patterns. This demonstrates that the Brownian motion influences the
solutions of SHFSCE and stabilizes them at zero.

6 Conclusion

In this article, we considered SHFSCE (1) forced by multiplicative
Brownian motion. The stochastic solutions to this problem were
obtained using two separate methods: the (G′/G)-expansion
approach and the mapping method. These solutions are much more
accurate and helpful in comprehending several critical complicated
physical processes. Some previously obtained solutions, such as
those described in [24], were extended. Finally, we used MATLAB
tools to show the influence of multiplicative Brownian motion on the
solutions of SHFSCE using graphical representations.
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