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Editorial on the Research Topic

Optimizing Exercise for the Prevention and Treatment of Type 2 Diabetes

iNtrodUCtioN

That exercise is beneficial for the prevention and treatment of type 2 diabetes (T2D) is not a novelty, 
and exercise is indeed regarded as a front-line therapy in T2D (1). In recent years, increasing attention 
has focused on how to manipulate the exercise stimulus to optimize beneficial responses. As such, 
factors, including intensity, volume, timing, and potential interactions with diet and medication have 
each, and in various combinations, been suggested to play pivotal roles in exercise efficacy. Despite 
this encouraging research, the optimal exercise strategy is far from determined, which is why this 
Research Topic was introduced.

This Research Topic consists of 10 articles, of which five contain original data and five are review/
opinion articles. A broad range of themes are covered, ranging from clinical effects of different types 
of exercise, to mechanisms underlying exercise-induced improvements in metabolic markers, and 
expanding to perspectives on why exercise may be important for hard endpoints and how motivation 
toward physical activity may be regulated.

iNtErVal traiNiNG ModalitiES

Interval training, especially high-intensity interval training (HIIT), has in the recent years gained 
momentum in prevention and treatment of T2D. As a result, HIIT was recently—for the first time—
included in the ADA position stand about physical activity/exercise and diabetes (2), as outlined 
by Colberg, with HIIT now being recommended as an alternative approach to continuous aerobic 
exercise for some individuals with diabetes. Since some researchers have argued that the inclusion 
of HIIT in the treatment of metabolic diseases is premature given that only few and small studies 
exist in relevant populations (3), it is of high interest that several large HIIT studies are included in 
this Research Topic (Phillips et al.; Francois et al.; Alvarez et al.). This includes the largest published 
HIIT trial, to our knowledge, in individuals with prediabetes [N = 189 (Phillips et al.)]. Overall, these 
studies suggest that supervised HIIT robustly improves glycemic control and other cardiovascular 
risk factors in individuals with or at risk for T2D. In contrast, HIIT does not seem to affect basic 
metabolic rate (Karstoft et al.). All together, these studies report results from N = 304 individuals 
undergoing HIIT, advancing the notion that HIIT is a feasible and effective training strategy, also in 
participants with metabolic disease.
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MECHaNiSMS

Bearing the above-standing beneficial effects of HIIT in mind, 
and also acknowledging that HIIT may be superior to moderate-
intensity continuous training (4–6), it is of interest to assess 
which mechanisms that are responsible for the improvements 
in cardiovascular risk factors seen with HIIT. In this context, 
several insightful articles are included in the Research Topic. 
As reviewed by Carson, myokines are proteins that are released 
by muscles and have auto-, para-, and/or endocrine functions; 
some of which are known to affect cardiovascular risk factors. 
Several of the known myokines are induced by contraction, and 
given that this induction is dependent on exercise intensity (7), 
it is intriguing to speculate that some of the effects of HIIT are 
mediated via contraction-induced myokines. Also relevant in 
this context, Eshghi et al. showed that the timing of exercise may 
be important, since exercise-induced increase in systemic levels 
of the myokine IL-6 is only seen following the first of two similar 
exercise bouts performed at one single day. The idea of so-called 
“non-response” or individualized responses to exercise training 
is a hot, yet somewhat controversial, topic in the field (8). This 
was addressed in a preliminary report from Alvarez et al., which 
suggested that baseline insulin resistance might influence certain 
cardiometabolic responses to HIIT in women.

In a comprehensive review, Parker et al. reviewed the complex 
interplay between oxidative stress, antioxidant defense, and 
physical activity. Whereas both inactivity/obesity on one side and 
acute exercise on the other side results in increased systemic lev-
els of oxidative stress, the effects on glycemic control and insulin 
sensitivity are opposing. Parker et al. suggests that differences in 
intracellular signaling and antioxidant defense may be responsi-
ble for these discrepancies. Again, given that the effect of exercise 
on oxidative stress is dependent on exercise intensity (9), it may 
be speculated that some of the improvements seen with HIIT are 
dependent on changes in oxidative stress and antioxidant defense.

NEW iNSiGHtS

Whereas the HIIT-induced improvements in cardiovascular 
risk factors are interesting, it must be acknowledged that little 
is known about the effects of HIIT (and other types of exercise) 
on hard endpoints. Given that high postprandial glucose excur-
sions are suggested to be more deleterious than elevated mean 

blood glucose levels for cardiovascular risk factors (10, 11), and 
since postprandial exercise is known to effectively reduce glucose 
excursions (12), Erickson et  al. suggest that exercise for T2D 
subjects should in general be prescribed post-meal and indi-
vidualized according to the need, with large glucose excursions 
requiring longer and more intense exercise bouts compared to 
small glucose excursions.

For benefits of any type of exercise, the need to adhere is 
fundamental. The review by Ruegsegger and Booth provides 
exciting new insights into the importance of the mesolimbic 
system in controlling motivation and physical activity behavior 
via dopaminergic signaling. Understanding these processes is 
imperative if the general trend in the population, where physical 
activity levels are decreasing, is to be reversed.

PErSPECtiVES

Papers in this Research Topic highlight that exercise has a role in 
the prevention and treatment of T2D. Whereas HIIT seems to be 
effective for improving cardiovascular risk factors, we still need 
to characterize the mechanisms underlying the improvements 
seen in order to develop even more effective training programs 
for individuals with or at risk for T2D. Moreover, whereas efficacy 
of supervised HIIT is evident, effectiveness of unsupervised “real-
life” HIIT is largely unknown and limited to small studies (13, 
14). In order for HIIT and other novel types of exercise to be 
implemented clinically, more work is needed. Interdisciplinary 
research involving mechanisms like myokines, oxidative stress, 
and brain reward systems coupled with innovative real-world 
trials of HIIT and traditional exercise seem an exciting avenue 
for optimizing exercise for the prevention and treatment of T2D.
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a Practical and Time-efficient  
high-intensity interval Training 
Program Modifies cardio-Metabolic 
risk Factors in adults with risk 
Factors for Type ii Diabetes
Bethan E. Phillips1, Benjamin M. Kelly2, Mats Lilja3, Jesús Gustavo Ponce-González4, 
Robert J. Brogan5, David L. Morris6, Thomas Gustafsson3, William E. Kraus7,  
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introduction: Regular physical activity (PA) can reduce the risk of developing type 2 dia-
betes, but adherence to time-orientated (150 min week−1 or more) PA guidelines is very 
poor. A practical and time-efficient PA regime that was equally efficacious at controlling 
risk factors for cardio-metabolic disease is one solution to this problem. Herein, we 
evaluate a new time-efficient and genuinely practical high-intensity interval training (HIT) 
protocol in men and women with pre-existing risk factors for type 2 diabetes.

Materials and methods: One hundred eighty-nine sedentary women (n = 101) and men 
(n = 88) with impaired glucose tolerance and/or a body mass index >27 kg m−2 [mean 
(range) age: 36 (18–53) years] participated in this multi-center study. Each completed 
a fully supervised 6-week HIT protocol at work-loads equivalent to ~100 or ~125% 
VO2 max . Change in VO2 max  was used to monitor protocol efficacy, while Actiheart™ 
monitors were used to determine PA during four, weeklong, periods. Mean arterial 
(blood) pressure (MAP) and fasting insulin resistance [homeostatic model assessment 
(HOMA)-IR] represent key health biomarker outcomes.

results: The higher intensity bouts (~125% VO2 max ) used during a 5-by-1 min HIT 
protocol resulted in a robust increase in VO2 max (136 participants, +10.0%, p < 0.001; 
large size effect). 5-by-1 HIT reduced MAP (~3%; p <  0.001) and HOMA-IR (~16%; 
p  <  0.01). Physiological responses were similar in men and women while a sizeable 
proportion of the training-induced changes in VO2 max, MAP, and HOMA-IR was 
retained 3 weeks after cessation of training. The supervised HIT sessions accounted for 
the entire quantifiable increase in PA, and this equated to 400 metabolic equivalent (MET) 
min week−1. Meta-analysis indicated that 5-by-1 HIT matched the efficacy and variability 
of a time-consuming 30-week PA program on VO2 max, MAP, and HOMA-IR.
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conclusion: With a total time-commitment of <15 min per session and reliance on a 
practical ergometer protocol, 5-by-1 HIT offers a new solution to modulate cardio-meta-
bolic risk factors in adults with pre-existing risk factors for type 2 diabetes while approx-
imately meeting the MET min week−1 PA guidelines. Long-term randomized controlled 
studies will be required to quantify the ability for 5-by-1 HIT to reduce the incidence of 
type 2 diabetes, while strategies are required to harmonize the adaptations to exercise 
across individuals.

Keywords: health, exercise, high-intensity interval training, variability, VO max2 , blood pressure, detraining, 
homeostatic model assessment of insulin resistance

inTrODUcTiOn

Substantial correlative evidence indicates that exercise capacity 
and greater self-reported physical activity (PA) (1) both positively 
relate to health. In fact, aerobic capacity ( )VO2 max  measured in 
the laboratory appears to be a better predictor of health status 
and risk of disease than many other risk factors (2). Furthermore, 
guidance aimed at concurrently improving diet and increasing 
levels of PA has successfully demonstrated substantial reductions 
in the incidence or progression-rates of type 2 diabetes after 
10 years of follow-up (3–5). It is currently a (reasonable) assump-
tion that the increased levels of PA in these trials (3–5) made a 
major contribution to the improved metabolic health. Shorter-
term exercise training intervention studies (6 weeks–6 months) 
attempt to quantify the physiological responses to exercise, relying 
on surrogates or “biomarkers” of health to explore the potential 
efficacy of very divergent training programs. These studies typi-
cally observe gains in aerobic capacity (6) and reductions in blood 
pressure (7) and insulin resistance (IR) following 6–40 weeks of 
supervised training (8). The format of each exercise training pro-
gram (time and exercise intensity) have reflected PA guidelines 
developed from epidemiological observations, e.g., high-volume 
continuous submaximal aerobic training carried out on 3–5 days 
each week (7, 9) with the aim of meeting a time-commitment for 
voluntary exercise of 150 min week−1.

Studies using lower volume very high-intensity interval 
training (HIT) and highly specialist cycle ergometers have dem-
onstrated that modulation of risk factors for type 2 diabetes can 
be achieved by exercising a total of 70–90 min week−1 in small 
groups of individuals (10–14). Nevertheless, while the total time 
for the “bouts” of exercise can be very low (≤5 min day−1), these 
formats of HIT require long recovery periods between each 
bout such that they do not substantially reduce the total time-
commitment to a level that might substantially improve exercise 
participation. Some investigators have raised the possibility 
of gender-specific benefits, which most likely reflect the large 
amount of inter-individual variability observed in any exercise 
training study (15–17) and the small number of subjects studied 
when evaluating any particular variant of HIT (10–14, 18). The 
reliance on a wide range of HIT protocols has meant that neither 
the effect size nor the inter-individual variability has been prop-
erly quantified (10–14, 18) and such divergent protocols limit the 
validity of any meta-analysis approach to address these important 
questions. Indeed, the design of future large-scale outcome stud-
ies of novel exercise paradigms requires reliable estimates of the 

effect size in target at-risk populations and this study evaluated a 
more time-efficient protocol that overcomes some of the practical 
limitations of earlier studies. The initial HIT protocol was based 
on a 1981 study by Ready et al. (19). While the present project was 
not a randomized clinical trial, we did embrace the multi-arm 
multi-stage clinical trial philosophy (20), whereby we monitored 
the HIT protocol efficacy on a rolling basis, by aggregating the 
VO2 maxtraining responses as we went along. This resulted in 
us discontinuing a 7-by-1 min HIT protocol (~100% VO2 max 
cycling intensity), in favor of a lower volume, higher intensity 
protocol (5-by-1 min HIT, at ~125% VO2 max cycling intensity). 
We were able to confirm that a practical and time-efficient 5-by-1 
HIT protocol not only improved VO2 max (on average), but also 
that this particular time-efficient exercise regime was equally 
effective in both men and women at modifying cardio-metabolic 
disease risk factors.

MaTerials anD MeThODs

The experimental design for the 7-by-1 HIT protocol and clinical 
testing procedures were discussed at a work-shop, in Las Palmas 
on January 30, 2012, with the following people, in addition to 
authors, in attendance: Martin Gibala, Jorn Helge, Fleming 
Dela, Ruth Loos, Laurie Goodyear, Claude Bouchard, Tuomo 
Rankinen, Jose Calbet, Urho Kujala, Heikki Kainulainen, Steen 
Larsen, Lauren Koch, and Paul Greenhaff.

Participant characteristics
For the METAPREDICT HIT trial, we recruited 189 participants 
(Figure 1) across 5 geographical regions: Nottingham (n = 37) 
and Loughborough (n  =  18) in the UK, Stockholm (Sweden, 
n  =  36), Copenhagen (Denmark, n  =  48), and Las Palmas de 
Gran Canaria (Spain, n = 50). All methods relied on across-site 
standard operating procedures. Participants were recruited via 
advertisements in local media, through publicity on the EU and 
University websites, and via links with radio and TV stations. We 
also used demographic databases to post information to potential 
volunteers and put out adverts in local community groups, par-
ticularly those involving sedentary adults. Participants were male 
(n = 88) and female (n = 101), with a mean (range) age of 36 (18–
53) years and body mass index (BMI) of 32.0 (26.6–48.0) kg m−2. 
All participants were classified as sedentary [<600 metabolic 
equivalents (METs) min week−1] using a modified International 
Physical Activity Questionnaire (21), and had a fasting blood 
glucose level consistent with World Health Organization criteria 
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for impaired glucose tolerance (IFG; >5.5, <7.0 mmol l−1), and/or  
a BMI > 27 kg m−2.

All participants were initially screened and excluded if they 
displayed evidence of active cardiovascular, cerebrovascular, 
respiratory, gastrointestinal, or renal disease. They were also 
excluded for history of malignancy, coagulation dysfunction, 
musculoskeletal or neurological disorders, recent steroid or hor-
mone replacement therapy, or any condition requiring long-term 
drug prescriptions. All participants gave their written, informed 
consent to participate. This study was approved by local ethics 
committees at all sites (the University of Nottingham Medical 
School Ethics Committee: D8122011 BMS; the Regional Ethical 
Review Board Stockholm: 2012/753-31/2; the ethics committee of 
the municipality of Copenhagen and Frederiksberg in Denmark: 
H-3-2012-024; Comité Ético de Investigación Humana de la 
ULPGC: CEIH-2012-02; and the Loughborough University Ethics 
Approvals Human Participants Sub-Committee: 12/EM/0223) 

and complied with the 2008 Declaration of Helsinki. To ensure 
accurate results, we were obliged to discontinue training for 
individuals who (i) failed to attend for more than two consecutive 
sessions, (ii) missed more than three (~15%) training sessions in 
total, or (iii) failed to complete their set exercise regime on two 
occasions or more. This was not the case for any participants.

hiT—Protocol 1 (“7-by-1”)
Forty participants [n = 20 men/20 women; age: 37 (20–53) years; 
BMI: 31.0 (27.0–45.5) kg m−2] completed a 7-by-1 HIT protocol 
(Table 1) developed using information from the literature (19, 22). 
7-by-1 HIT protocol consisted of three fully supervised cycling 
sessions per week for 6 weeks. Sessions began with a 2-min warm-
up at 50 W followed by seven sets of 1 min cycling at 100% of 
the work required to elicit VO2 max (Corival or Excalibur Sport, 
Lode, Groningen, the Netherlands) with 1 min recovery between 
bouts. For 1  h before, during, and for 1  h after each training 
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Table 1 | Participant characteristics.

comparison group (n = 13) 7-by-1 hiT (n = 40) 5-by-1 hiT (n = 136)

Gender  
(men/women)

4/9 20/20 64/72

Age (years) 31 ± 11 (20–51) 37 ± 10 (20–53) 36 ± 9 (18–50)
Height (m) 1.66 ± 0.09 (1.52–1.81) 1.72 ± 0.09 (1.53–1.94) 1.72 ± 0.09 (1.50–2.01)
Body mass (kg) 93.1 ± 18.0 (68.6–130.5) 92.6 ± 17.5 (63.5–138.8) 95.1 ± 15.2 (64.0–136.4)
BMI (kg m−2) 33.4 ± 5.0 (27.5–41.4) 31.0 ± 4.2 (27.0–45.5) 32.2 ± 4.1 (26.5–48.1)
IPAQ score 305 ± 150 (118–578) 362 ± 157 (73–594) 313 ± 188 (0–597)
Baseline VO2 max (mL kg−1 min−1) 24.1 ± 5.5 (13.2–32.0) 28.8 ± 7.0 (17.3–46.9) 27.2 ± 5.2 (15.8–44.6)
Systolic blood pressure (mmHg) 120 ± 9 (107–138) 124 ± 12 (106–161) 124 ± 11 (99–168)
Diastolic blood pressure (mmHg) 76 ± 9 (66–92) 78 ± 8 (67–105) 80 ± 10 (59–106)
Mean arterial  
pressure (mmHg)

91 ± 8 (80–104) 94 ± 9 (80–124) 95 ± 9 (74–127)

Log HOMA-IR 0.34 ± 0.17 (−0.06 to 0.51) 0.27 ± 0.24 (−0.27 to 0.92) 0.30 ± 0.26 (−0.46 to 0.86)

Values shown are mean ± SD and range.
BMI, body mass index; IPAQ, International Physical Activity Questionnaire; VO max2 , maximal aerobic capacity; HOMA-IR, homeostatic model assessment of insulin resistance; HIT, 
high-intensity interval training.
Based on the study monitoring process, allocation of the participants to the HIT groups was sequential. The comparison group was utilized to examine test–retest performance 
over the study duration and not to adjust the HIT intervention responses. Direct physical activity monitoring was utilized to better link the HIT training directly to the changes in health 
biomarkers.
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session, the participants were only allowed to consume water. 
No adverse events or unintended effects were observed with this 
intervention. However, based on interim analysis, 7-by-1 HIT was 
found to result in a relatively modest increase in VO2 max (+6.2%) 
and, thus, was insufficient to assess inter-individual variability in 
response to training [SD of individual responses (SDIR): 106 mL 
O2; 95% CI: −6 to 218 mL (see Data Processing and Statistical 
Analysis)]. Reliance on a 25-W stepwise VO2 max protocol was 
considered one limitation of work-load setting for 7-by-1.

hiT—Protocol 2 (“5-by-1”)
The decision was made to use a higher intensity protocol, while 
subjects who had started the 7-by-1 HIT protocol completed the 
protocol and underwent a full clinical assessment (as the protocol 
may still have had benefits on IR). A further 136 participants com-
pleted baseline visits, HIT, and the post-HIT assessment [n = 64 
men/72 women; age: 36 (18–50) years; BMI 32.2 (26.6–48.0) 
kg m−2] for a new higher intensity lower volume (5-by-1) HIT 
protocol (Table 1). The exercise training was fully supervised and 
consisted of three cycling sessions per week for 6 weeks. All ses-
sions began with a 2-min warm-up at 50 W followed by five sets 
of 1 min high-intensity cycling work with 90 s recovery between 
sets with the exception of week 1 where three sets per  session 
were performed in sessions 2 and 3. Work-load was determined 
in session 1 of week 1, where participants were asked to perform a 
2-min warm-up at 50 W followed by 1-min bouts of exercise with 
90 s recovery. Exercise started at 85% of the work required to elicit 
VO2 max (Wmax), and increased by 10% (e.g., 95, 105%, etc.)  
until the participant was unable to complete a full 1-min bout. 
Intensity for the last bout participants could complete was used 
thereafter for training, with a 10% increase in intensity after 
2 weeks. No adverse events or unintended effects were observed 
for this intervention.

non-exercise Participants
Thirteen participants were allocated at random, within a center, to 
serve as a non-exercise comparison group [Table 1, n = 4 men/9 

women; age: 31 (20–51) years; BMI 33.4 (27.5–41.4) kg  m−2]. 
These participants underwent all screening and assessment 
procedures but did not participate in any training. Their data 
served to complement the short-term test–retest variability data 
collected in the intervention groups at the two baseline sessions 
with “test–retest” data covering the full duration of the study.

Pre-Training Physiological 
characterization
Participants were instructed to refrain from exercise for 3 days 
prior to their visit (baseline session 1) and from alcohol and 
caffeine for 1  day (fasting from ~09:00 p.m. and reporting to 
the laboratory 12  h later at ~09:00 a.m.). After 30  min supine 
rest, blood pressure (BP; Omron M2, Omron Healthcare, Kyoto, 
Japan) and resting heart rate (RHR) were measured, with mean 
arterial pressure (MAP) calculated as: 2/3 diastolic blood pres-
sure + 1/3 systolic blood pressure. BP and RHR were determined 
as the average of three consecutive measurements. A blood 
sample was taken from a dorsal hand vein for the assessment 
of IR via the homeostatic model assessment (HOMA). Blood 
was immediately analyzed for glucose concentration (YSI 2300 
STAT Plus glucose analyzer, Yellow Springs Inc., OH, USA) and 
aliquoted in to lithium heparin spray-coated vacutainers (Becton 
Dickinson, NJ, USA) and centrifuged at 2,000  g for 10  min at 
4°C to yield plasma. Plasma was stored at −80°C and shipped for 
centralized analysis of insulin levels by a “high-sensitivity” ELISA 
(K6219, Dako Sweden AB, Stockholm) according to manufac-
turer’s instruction. HOMA-IR was calculated using the standard 
equation of [glucose (mmol/l) × insulin (mU/l)]/22.5 (23).

A VO2 max test was then conducted using a cycle ergometer 
(Lode Corival/Excalibur Sport) and a continuous ramp protocol. 
After a 5-min warm-up at 50  W, the work rate was increased 
by 1 W every 4 s. Participants were instructed to cycle to voli-
tional exhaustion. For the duration of the test, expired air was 
analyzed using an inline gas analyzer (e.g., Metamax 3B, Cortex, 
Leipzig, Germany; Vmax N29, Sensormedics, Anaheim, CA, 
USA; COSMED, Rome, Italy) with HR continuously monitored. 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


12

Phillips et al. Practical and Time-Efficient HIT

Frontiers in Endocrinology | www.frontiersin.org September 2017 | Volume 8 | Article 229

VO2 max was estimated as the highest value obtained in a 
15-breath rolling average and a test was deemed valid when the 
participants achieved two of the following three criteria: (i) voli-
tional exhaustion and/or no longer able to maintain a pedal rate of 
50 revolutions per minute despite strong verbal encouragement, 
(ii) heart rate within 10 beats min−1 of age-predicted maximum, 
and (iii) respiratory exchange ratio (RER) ≥1.10. These criteria 
were met in all but one test, which was excluded from analysis 
of VO2 max. To assess the reproducibility of this VO2 max test, 
the assessment was repeated 7 days later at baseline session 2 (as 
well as across 6 weeks in the non-training group). The coefficient 
of variation (CV) for repeated measurements for VO2 max was 
4.4%. As group mean VO2 max was not different for visits 1 and 
2 (2.59 ± 0.60 vs. 2.59 ± 0.63 L min−1, respectively) the mean of 
the two visits was taken as the subjects’ baseline value that reduces 
the influence of technical and biological variation and so should 
provide a better estimate of baseline VO2 max. At 72–96 h after 
the last exercise training session, participants underwent a third 
study day, identical to visit 1.

Pa and Post-Training Monitoring
Physical activity was monitored using Actiheart devices 
(CamNTech, Cambridge, UK), a chest-worn monitor that records 
heart rate and movement via an accelerometer. The device senses 
the frequency and intensity of torso movements and has been 
shown to be comparable to doubly labeled water for measuring 
energy expenditure (24). Activity data were obtained for 7 days 
prior to study visit 1, prior to study visit 2, during week 3 or 4 of 
HIT, and prior to study visit 4 (during the detraining period). 
Participants were instructed to wear the Actiheart device at all 
times during the monitoring periods (using waterproof Actiheart 
chest strap or using standard ECG electrodes). Participants using 
the ECG electrodes were instructed to place one electrode at the 
site of the fourth intercostal with the second electrode ~10 cm 
to the left (equivalent to V1 and V4 on a 12-lead ECG). These 
participants were instructed to wear the monitor at all times 
with the exception of a very short period each day when they 
were instructed to thoroughly wash and dry the skin under the 
electrodes in order to minimize the risk of contact dermatitis or 
other skin irritation. After completion of the exercise training 
intervention, participants were asked to return to their habitual 
PA levels for 3 weeks (confirmed by Actiheart) and then a fourth 
study day, identical to visit 3, was carried out.

Data Processing and statistical analysis
To bench mark these HIT protocols with literature values, a 
robust post-training group average increase in VO2 max had to be 
evident. Power analysis indicated that >29 participants would be 
required to detect a 4% difference between pre- and post-training 
VO2 max with a power of 95% and alpha = 0.05, based on a CV of 
5.7%. To detect a difference of 4% between men and women, for 
change in VO2 max, with alpha = 0.05 and a power of 95%, >53 
participants were required. Thus, the analysis was powered for 
primary statistical analysis presented in this paper.

Statistical analysis was performed using SPSS statistical soft-
ware (version 20.0, SPSS Inc., Chicago, IL, USA). Data were either 
tested for normality using the Shapiro–Wilks test and analyzed 

with non-parametric tests or log transformed. Differences between 
pre- and post-training values were evaluated using paired sample 
t-tests [n = 40 and n = 136 for VO2 max, and n = 36 and n = 133 
for HOMA-IR for 7-by-1 and 5-by-1 protocols, respectively 
(reflecting any missing values)]. Effect size was quantified using 
Cohen’s d (25). Gender differences in training response were 
analyzed using independent sample t-tests. Bivariate correlations 
were assessed using Pearson’s correlation coefficient. Repeated 
measures ANOVAs with post  hoc Bonferroni tests for multiple 
comparisons were used to assess retention of training effects fol-
lowing 5-by-1 HIT for those participants who completed study 
visit 4 (Figure 1). All data are presented as mean ±  SD unless 
stated otherwise.

Quantification of inter-individual responses to training, cor-
rected for estimates of random variation (technical/day-to-day 
biological) was performed according to the procedures proposed 
by Hopkins (26). SD for individual responses (SDIR) were cal-
culated by taking the square root of the difference between the 
squares of the SD of the training effect (SDexp) and the SD of either 
the double baseline measurement (for variables measured twice 
before training) or the SD of the repeated measures carried out in 
the comparison group (SDcon). In addition, paired sample t-tests 
were performed to determine differences between SDexp and 
SDcon, and Levene’s test was performed to determine differences 
between the SDexp for 5-by-1 HIT and the SDexp for an earlier 
study that utilized high volume combined aerobic/resistance 
training [STRRIDE AT/RT study (27)].

Actiheart data were scanned for missing values using a heuristic 
code in R, and data accepted only when ≥80% of minute-by-
minute activity data were available for a 24-h recording period. 
Furthermore, at least 4 days of valid data had to be available for a 
participant to be included in the group analysis (leaving n = 58 for 
5-by-1 HIT). Mean daily energy expenditure (METs) for each of the 
four measurement periods was calculated, and standard thresholds 
were used to determine the percentage of time engaged in activity 
within predetermined intensity zones (sedentary: <1.5 METs; light 
≥1.5 < 3 METs; moderate ≥3 < 6 METs; vigorous ≥6 < 10.2 METs; 
very vigorous ≥10.2 METs). Reliability of the Actiheart data, using 
this data selection criteria, was excellent (R2 = 0.87 for the repeated 
baseline measure; CV = 4.8%). The mean values obtained prior to 
study visits 1 and 2 were used as the baseline values.

resUlTs

Training responses
Following 6 weeks of 7-by-1 HIT, there were modest improve-
ments in mean VO2 max (+6.2%, 95% CI: 3.5–8.9%, p < 0.001). 
This equates to a moderate effect size, i.e., Cohen’s d = 0.71 (95% 
CI = 0.25–1.16) for the primary outcome. As expected, Wmax 
(5.3%; p < 0.001) was also increased by 7-by-1 HIT, but no other 
outcomes were significantly altered. For the control group that 
undertook two assessments 6 weeks apart, we observed no sig-
nificant changes between baseline assessment and reassessment 
6 weeks later in any parameter.

Following 6  weeks of the more time-efficient 5-by-1 HIT 
protocol, greater changes were observed for VO2 max (+10.0%, 
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FigUre 2 | An analysis of the training response to 5-by-1 HIT for VO max2 , 
MAP and HOMA-IR in men and women. Inter-participant variability in 
response to HIT is large for both men and women, but on average both 
genders respond to a similar extent. Abbreviations: VO max2

, maximal aerobic 
capacity; MAP, mean arterial pressure; HOMA-IR, homeostatic model 
assessment of insulin resistance; HIT, high-intensity interval  
training.

Table 2 | Mean physiological changes following 6 weeks of time-efficient high-intensity cycle-training.

7-by-1 hiT (n = 40) 5-by-1 hiT (n = 136)

baseline Post-hiT p-Value baseline Post-hiT p-Value

BMI (kg m−2) 31.0 ± 4.2 30.8 ± 4.2 0.138 32.2 ± 4.1 32.1 ± 4.2 0.98
Body mass (kg) 92.4 ± 17.3 92.0 ± 17.8 0.210 95.1 ± 15.2 95.1 ± 15.4 0.98
VO max2  (L min−1) 2.61 ± 0.60 2.77 ± 0.68 0.00005 2.59 ± 0.62 2.85 ± 0.68 <1E−20
Wmax at VO max2  (W) 189 ± 50 199 ± 51 0.001 198 ± 48 226 ± 53 <1E−23
SBP (mmHg) 124 ± 12 122 ± 11 0.169 124 ± 11 122 ± 12 0.007
DBP (mmHg) 78 ± 8 77 ± 8 0.281 80 ± 10 77 ± 10 0.0006
MAP (mmHg) 94 ± 9 92 ± 8 0.183 95 ± 9 92 ± 9 0.0001
Fasting glucose (mmol L−1) 4.56 ± 0.32 4.57 ± 0.40 0.855 4.63 ± 0.41 4.60 ± 0.45 0.61
Fasting insulin (pmol L−1) 10.6 ± 6.4 10.2 ± 6.8 0.494 11.3 ± 6.6 10.5 ± 6.7 0.005
Log HOMA-IR 0.27 ± 0.24 0.23 ± 0.30 0.187 0.30 ± 0.26 0.25 ± 0.27 0.004

Values shown are mean ± SD.
BMI, body mass index; VO max2 , maximal aerobic capacity; Wmax, maximum power output; SBP, supine systolic blood pressure; DBP, supine diastolic blood pressure; MAP, supine 
mean arterial pressure; HOMA-IR, homeostatic model assessment of insulin resistance; HIT, high-intensity interval training.
Note that the intensity of each bout during the 7-by-1 protocol was 20–30% lower than during the 5-by-1 protocol, indicating that relying on supramaximal (from the perspective 
of aerobic capacity) is probably important for gains in aerobic capacity. Changes in a measure of peripheral insulin resistance (HOMA-IR) were more variable with 7-by-1 and not 
improved with the n = 40 sample size for the selected threshold for statistical significance.
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95% CI: 8.4–11.6%; p < 0.001) presenting a larger and less vari-
able size effect (Cohen’s d = 1.24, 95% CI = 0.97–1.50) (Table 2). 
The increase in VO2 max with 5-by-1 HIT was also greater than 
we observed with 7-by-1 HIT (p < 0.05) supporting our interim 
analysis and decision to discontinue that protocol. The absolute 
increase in VO2 max with 5-by-1 HIT was significantly higher for 
men (0.32 ± 0.3 L min−1) compared to women (0.19 ± 0.2 L min−1; 
p < 0.001) as expected, but the relative benefits were not (Figure 2). 
Furthermore, 5-by-1 HIT yielded reductions in MAP (2.8%; 
p < 0.001) and HOMA-IR (16%; p < 0.01) (Table 2). Similarly, 
no significant gender differences were apparent for the relative 
training response for MAP or HOMA-IR (Figure 2). Thus, we 
found no evidence that HIT-induced physiological adaptations 
were subject to gender-related dimorphism.

Actiheart-derived PA data demonstrated a small increase 
in PA energy expenditure during the 6-week intervention 
period of 5-by-1 HIT (mean 24-h activity level: 1.46  ±  0.38 
vs. 1.50 ± 0.34 METs) equivalent to an increase of ~400 MET 
min  week−1 (p  <  0.05). This increase was accounted for by 
increases in the percentage of time spent performing vigorous 
(0.30  ±  0.47 vs. 0.43  ±  0.43%, p  <  0.001) and very vigorous 
activities (0.02 ± 0.09 vs. 0.07 ± 0.16%, p < 0.001), i.e., the 18 
HIT sessions. No change was observed in the percentage of 
time spent in sedentary (74.1  ±  16.3 vs. 74.0  ±  14.9%), light 
(18.0  ±  9.1 vs. 17.8  ±  8.6%), and moderate activity zones 
(7.6 ± 8.2 vs. 8.2 ± 7.0%). Thus, carrying out 5-by-1 HIT did 
not alter PA behavior out with the trial.

comparison of inter-individual Variability 
between hiT and high-Volume Training
Inter-individual variability (Figure  3) in training responses 
reflects the fact that there are genuine low and high responders 
for major physiological traits, following any type of exercise 
training program. This variability will be partly due to random 
contributions from technical and day-to-day biological varia-
tion, and partly due to genetic differences between individuals 
(28). For 5-by-1 HIT, change in VO2 max ∆( )VO2 max  was not 

correlated to baseline VO2 max (R2  =  0.01, NS) such that low 
baseline aerobic capacity was not associated with a greater train-
ing response nor vice versa. By contrast, ΔMAP was negatively 
correlated to baseline MAP (R2  =  0.18, p  <  0.001), and Δ log 
HOMA-IR was negatively correlated to baseline log HOMA-IR 
(R2 = 0.07, p < 0.01). In a population sample that had a range 
of blood pressure and log HOMA-IR spanning normal to above 
normal (74 to 127 mmHg and −0.46 to 0.86, respectively), such 
a correlation is expected as both parameters are regulated toward 
a physiologically “normal” value. Nevertheless, on an individual 
basis, this analysis, such as others before it, demonstrates that 
baseline physiological measures are not, on their own, useful at 
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FigUre 3 | Comparison of the inter-individual variability to exercise training contrasting short-term high-intensity training with longer-term high-volume submaximal 
training. The training response to 6-weeks 5-by-1 high-intensity interval training [(a,c,e); black bars] and our previously published 8-month STRRIDE AT and AT/RT 
exercise training study [(b,D,F); gray bars] for VO max2

, MAP, and HOMA-IR. Training-induced changes in both VO max2  (a,b), MAP (c,D), and HOMA-IR (e,F) vary 
considerably in both studies and to a similar extent. Abbreviations: AT, aerobic training; RT, resistance training; VO max2 , maximal aerobic capacity; MAP, mean 
arterial pressure; HOMA-IR, homeostatic model assessment of insulin resistance.
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predicting the health biomarker outcomes of an exercise train-
ing regime, indicating that more sophisticated strategies will be 
required to fulfill such an aim (29).

To contrast the variation observed in response to 5-by-1 
HIT with traditional higher volume exercise training (Figure 3) 
(30), we estimated the “added” variation caused by the training 
intervention (SDIR), over and above the random variation by 
comparing the variability in repeated measures at baseline [or in 
a control group (SDcon)] with the observed variability in response 
to the training intervention (SDexp). For 5-by-1 HIT, the SDcon for 
VO2 max (visit 1 vs. visit 2; 112 ± 94 mL) was lower than SDexp 
(visit 2 vs. visit 3; 204 ±  150  mL; p  <  0.001). For 5-by-1 HIT, 
the SDIR was calculated to be 170 mL (95% CI: 23–311 mL). In 

standardized units, the magnitude of the effect for the individual 
responses was large (0.67; 95% CI: 0.11–1.22). For VO2 max, the 
SDexp from our previously published data (30) was not significantly 
different from 5-by-1 HIT (204 vs. 234  mL O2). Based on this 
analysis, 95% of people performing 5-by-1 HIT can be expected 
to have a “true” response for VO2 max between −79 and +587 mL 
O2. Similarly, for MAP, SDexp exceeded SDcon for 5-by-1 HIT (4.2 
vs. 2.6  mmHg, respectively) resulting in an SDIR of 3.3  mmHg 
(95% CI: 0.3–6.3 mmHg). This is also a large effect in standardized 
units (−1.32; 95% CI: −2.50 to 0.13) and indicates that for 5-by-1 
HIT, 95% of people can be expected to have a response for MAP 
within −9.0 and +4.0 mmHg, i.e., considerable inter-individual 
variability in response to HIT. Despite the extreme differences in 
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FigUre 5 | Presentation of the average retention of the training-induced 
changes observed 3 weeks after cessation of 5-by-1 high-intensity interval 
training. A value of 100% represents the training effect and a value of 0% 
indicates that the training effect is lost 3 weeks after training (under sedentary 
conditions). Significant differences from baseline: **p < 0.01, ***p < 0.001. 
Significant differences from post-training: ∧∧∧p < 0.001. Abbreviations: 
VO max2

, maximal aerobic capacity; Wmax, maximal power output; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial 
pressure; HOMA-IR, homeostatic model assessment of insulin resistance.

FigUre 4 | Presentation of the responder frequency for the three main 
clinical biomarkers considered in this study [high-intensity interval training 
(HIT)] and comparison with our previously published endurance training (ET) 
study. Each individual was assessed for improvement in VO max2

, mean 
arterial pressure, or HOMA-IR, greater than the laboratory error, and the 
percentile frequency of 0, 1, 2, or 3 from three improvements was calculated. 
For sake of comparison, this is plotted side-by-side with the percentile 
frequency of 0, 1, 2, or 3 gains based on numerical improvements (a criteria 
that would be considered unreliable by most). Approximately 40% of subjects 
demonstrate improvement in only one health biomarker, while between 4 and 
9% demonstrate no reliable improvement in any.
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the format (volume and intensity) of exercise training between 
5-by-1 HIT and STRRIDE AT/RT (30), no significant differences 
were observed between their respective SDexp for blood pressure 
(MAP: 4.2 vs. 4.5 mmHg) (Figure 3).

The fact that the pattern of variability in response for VO2 max, 
MAP, and HOMA-IR (three key biomarkers for cardio-metabolic 
health) to 6  weeks of 5-by-1 HIT is not different from that 
observed in an 6-month high-volume aerobic/resistance training 
intervention suggests that inter-individual variability in responses 
to training is not dependent on exercise mode, exercise-session 
duration, total volume, or the duration of the intervention, but 
rather depends on genetics, epigenetics, and other biological 
factors (28). One important practical consideration is the propor-
tions of subjects that demonstrates “real” improvements in each 
of the main health biomarkers. To address such a question, we 
counted the frequency of people with 0, 1, 2, or 3 positive changes 
in VO2 max, MAP, and HOMA-IR defined as an improvement 
over and above technical error for that physiological param-
eter. As can be observed in Figure 4, whether one considers the 
frequency of observing a numerical improvement (unreliable) 
or a gain that is greater than the normal technical error for the 
test, ~50% of subjects improve at least two of the three health 
biomarkers following 6 months endurance training or 6 weeks 
of 5-by-1 HIT.

Physiological changes during Detraining
As a secondary objective, we evaluated the status of training-
induced changes in physiological parameters, from 6  weeks of 
5-by-1 HIT, during a 3-week period where subjects returned to 
their baseline sedentary lifestyle (Figure 5). Seven participants 
(~5%) were lost to follow-up during this period. Actiheart-
derived PA measures confirmed that subjects had returned 
to baseline sedentary behavior (1.48  ±  0.37 METs). VO2 max 
tended toward pre-training levels (32% reversal; p < 0.001) after 
3 weeks of Actiheart-verified sedentary behavior, yet remained 
elevated above pre-training values (p  <  0.001). The reversal of 
exercise induced changes in MAP following detraining were par-
tial, whereas the HIT-induced changes in HOMA-IR were fully 
retained during this 3-week period, consistent with some earlier 
pilot metabolic protein data (31).
VO2 max, MAP, and HOMA-IR each displayed negative cor-

relations between the changes following 6 weeks of 5-by-1 HIT 
and changes following 3 weeks of detraining ( VO2 max: R2 = 0.12, 
p  <  0.001; MAP: R2  =  0.30, p  <  0.001; HOMA-IR: R2  =  0.15, 
p  <  0.001); i.e., high-responding participants tended to lose a 
greater amount of their training gains compared to low respond-
ers, which is logical and further supports that the determinations 
of training-induced changes were biological in origin. SDexp for 
VO2 max for detraining effects exceeded SDcon (178 vs. 112 mL 
O2, respectively), resulting in an SDIR of 138  mL O2 (95% CI: 
12–264 mL O2). Similarly, SDexp for MAP for detraining effects 
exceeded SDcon (4.2 vs. 2.6 mmHg, respectively), resulting in an 
SDIR of 3.3 mmHg (95% CI: 0.3–6.3 mmHg). This suggests the 
existence of low and high responders for retention of training 
effects. However, the amplified effect of technical and day-to-day 
biological variability on delta-scores compared to absolute scores 
limits our ability to draw conclusions on whether variability in 
the responses to training and detraining are strongly linked.
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DiscUssiOn

In this study, we adapted an exercise protocol used by Ready et al. 
(19) so that it was practical to implement using a standard electri-
cally braked cycle ergometer and involve a total time-commitment 
of <15 min. We then demonstrated that, on average, 6 weeks of 
this 5-by-1 protocol was efficacious at reducing blood pressure 
and peripheral IR, while increasing aerobic capacity and all to an 
extent identical to high-volume exercise training carried out over 
6 months (8). These observations enable us to claim that time-
efficient exercise (<45  min  week−1) can reduce type 2 diabetes 
and cardiovascular disease risk factors in overweight men and 
women. If this exercise behavior was maintained, it should yield 
long-term health benefits (32) with a fraction of the required 
time-commitment associated with the recommendations by cur-
rent public health guidelines (6).

Ready et  al. demonstrated over 35  years ago, in Ontario, 
Canada, that 10 1-min intervals at a work-load equating to ~110% 
VO2 max, interspersed with 1-min recovery intervals, yielded 
~8% gains in VO2 max. Despite this observation, awareness of 
the potential utility of HIT has only emerged in recent years. 
Recently, Little et al. using the same protocol as Ready et al., found 
improved glycemic control in a small group of people with type 
2 diabetes (22) and we now demonstrate that, in a large group of 
subjects at-risk for developing type 2 diabetes, HIT can improve 
HOMA-IR with a more time-efficient version of this protocol. 
5-by-1 HIT, relying on 50% fewer sprints than Ready et al. (19), 
but at a greater intensity (~125 vs. ~110% VO2 max), produced 
an equally robust increase in VO2 max (~10%) and reductions 
in HOMA-IR (~16%). We also noted that 6 weeks of 5-by-1 HIT 
has a mean effect for VO2 max comparable with 6  months of 
traditional high-volume time-consuming exercise training, indi-
cating that time-efficient HIT can match the efficacy of traditional 
exercise training paradigms for the present health biomarkers, as 
proposed from earlier pilot studies (33).

This study is the first to attribute improvements in health 
biomarkers to the HIT sessions per se, as we show that performing 
HIT did not result in alterations in PA out with the supervised 
training sessions. The lack of “extra-curricular” changes in PA 
is consistent with observations made during studies involving 
long-term high-volume exercise training (34). The estimation 
of energy expenditure using Actiheart monitors enabled us to 
present the HIT intervention protocol in units consistent with 
public health orientated measures of PA. The Actiheart device 
appears sufficiently sensitive to pick up high-intensity exercise 
performed during the HIT sessions, providing reliable free-living 
data on both total PA levels and time spent performing activi-
ties of different intensities. We found that subjects performing 
5-by-1 HIT had an increase in energy expenditure of ~400 
MET min week−1, consistent with the lower end of the current 
US Department of Health “time orientated” recommendations 
for PA (500–1,000 MET min  week−1). Thus, we were able to 
demonstrate that it is possible to reach these MET targets in a 
highly time-efficient manner. There were, however, technical 
limitations of the Actiheart monitoring, namely the devices 
produced acceptable data for less than half of our participants 
(reflecting obvious and periodic loss of signal). The participants 

received clear instructions on how to correctly wear the activity 
monitor during free-living conditions, and we do not know what 
caused the loss of signal and further research is needed to make 
continuous PA monitoring more reliable.

Importantly, we found that response variability in response to 
6 weeks of 5-by-1 HIT exceeds technical and day-to-day biologi-
cal variability for aerobic capacity and blood pressure and that 
this variability was similar that observed following 6  months 
of high-volume exercise training (9, 35). We observed, for the 
present three sessions per week training program, a rate of non-
responders for VO2 max (~15–20%) comparable to many other 
high volume training programs, involving thousands of volun-
teers typically training 4–5  days  week−1 (15, 36–39). Recently, 
it has been claimed that non-responders for VO2 max “do not 
exist” (40). This conclusion was based on “under-training”, then 
re-training four groups of 10 subjects with differing frequencies 
of training per week. The study used a spuriously and low value 
for the VO2 max testing variation, i.e., the Wmax error, and 
failed to consider that this “error” applies to both the pre-test 
and post-test values, seriously undermining the validity of the 
study. In addition, they could not replicate in phase one of their 
“study,” the known non-response rate for VO2 max seen in much 
larger studies using their 4–5 days week−1 training protocol (15, 
36–39), suggesting some form of recruitment bias. Careful con-
sideration of their data, claims, and an appropriate cutoff value 
for measurement variance indicates that the conclusions reached 
(40) are misleading. Thus, large and robust studies have found 
that physiological responses are heterogeneous to every type of 
exercise training program. Indeed, we present a meta-analysis of 
the genuine response frequencies for our three clinically relevant 
health biomarkers, VO2 max, BP, and HOMA-IR (Figure  4), 
demonstrating that at least 50% of the population can expect to 
be a non-responder for one of these biomarkers. This is somewhat 
in agreement with the efficacy noted in the long-term diabetes 
prevention studies (3–5), where type 2 diabetes risk is reduce but 
not eliminated.

We can, therefore, conclude that the present 5-by-1 HIT 
protocol is consistent with other exercise programs, and that it 
is on average sufficient to yield improvements in cardiovascular 
and metabolic parameters in both men and women. Weston 
et  al. (41) recently conducted a meta-analysis and concluded 
that improvements in the VO2 max of sedentary males (10.0%; 
90% CI: 4.9–15.1%) was greater than for sedentary females 
(7.3%; 2.5–12.1%). We would argue that an accurate estimation 
of the size effect of HIT using meta-analysis methodology and 
numerous very disparate small studies is not robust due to large 
variations in protocol design. While the large confidence inter-
vals presented by Weston et al. were indicative of a high level of 
uncertainty in their analysis, this study relied on a large cohort 
of men and women undertaking an identical training program 
and measurement protocol, and found gains in VO2 max were in 
fact comparable in men and women. The same conclusion can be 
reached regarding blood pressure and fasting IR.

Various HIT-like protocols have been utilized in patient 
groups to promote rehabilitation and control risk factors for 
disease (42–44). In fact, many HIT-type protocols have been 
utilized safely in cardiac patients for many years (45). In this 
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study, we did not observe any adverse clinical events in a group 
of sedentary participants with risk factors for cardiovascular and 
metabolic disease. However, we do not have the required size or 
duration of follow-up to make recommendations on safety (or 
disease prevention), as such an analysis will require thousands 
of participants (as serious acute clinical events are rare during 
exercise training). Nevertheless, given that the 5-by-1 protocol 
yields a PA MET “score” comparable to current PA targets, is 
equally effective at improving aerobic capacity and reducing IR, 
it would seem reasonable to conclude that it can emerge as an 
effective alternative to high-volume time-consuming aerobic 
exercise training. This is particularly true as the majority of the 
adult population do not meet the lower-intensity time-orientated 
targets and, thus, do not gain some of the benefits of an active life-
style. Thus 5-by-1 HIT could substantially reduce the incidence 
or progression-rates of type 2 diabetes similar to previous long-
term lifestyle interventions (3–5). Notably, the improvement in 
HOMA-IR following 6 weeks HIT is comparable in magnitude 
to 2  years of calorie restriction (46) supporting the idea that 
increased levels of PA via HIT could directly contribute to the 
prevention of type 2 diabetes more rapidly that other types of 
intervention.
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Background: High-intensity interval training (HIIT) can improve several aspects of

cardiometabolic health. Previous studies have suggested that adaptations to exercise

training can be augmented with post-exercise milk or protein consumption, but whether

this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2

diabetes is unknown.

Objective: To determine if the addition of a post-exercise milk or protein beverage

to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in

individuals with type 2 diabetes.

Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated

type 2 diabetes were randomized to one of three nutritional beverages (500mL skim-milk,

macronutrient control, or flavored water placebo) consumed after exercise (3 days/week)

during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity

intervals separated by 1-min low-intensity recovery periods. Two sessions per week

were cardio-based (at ∼90% of heart rate max) and one session involved resistance-

based exercises (at RPE of 5–6; CR-10 scale) in the same interval pattern. Continuous

glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-

energy X-ray absorptiometry), cardiorespiratory fitness (V̇O2peak), blood pressure, and

endothelial function (%FMD) were measured before and after the intervention.

Results: There were significant main effects of time (all p < 0.05) but no difference

between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (−0.5 ± 1.1

mmol/L), HbA1c (−0.2 ± 0.4%), percent body fat (−0.8 ± 1.6%), and lean mass (+1.1

± 2.8 kg). Similarly, V̇O2peak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were

increased, and mean arterial blood pressure reduced (−6 ± 7 mmHg), after 12 weeks of

HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11).

Conclusion: High-intensity interval training is a potent stimulus for improving several

important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of

HIIT are not augmented by the addition of post-exercise protein.

Keywords: dairy, exercise, lifestyle, body composition, glycemic control, endothelial function, blood pressure
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INTRODUCTION

Worldwide more than 257 million people have type 2 diabetes,
a figure projected to reach 395 million by 2030 (Shaw et al.,
2010). Of those, 71% have hypertension and 40% have three or
more coexisting chronic conditions, with cardiovascular disease
the leading cause of mortality (Centers for Disease Control
and Prevention, 2014). Accordingly, interventions that improve
both glycemic control and reduce cardiovascular risk factors
are central to reducing the burden of type 2 diabetes (Inzucchi
et al., 2012). Lifestyle interventions, including exercise and
nutrition are at the forefront for the prevention of diabetes
complications (Inzucchi et al., 2012). Intensive glucose lowering
with multiple pharmacological treatments leads to reduced
microvascular complications (UK Prospective Diabetes Study
Group, 1998), but the effect on macrovascular complications is
unclear.

Large controlled trials and numerous experimental studies
reveal the widespread benefits of exercise for people with
type 2 diabetes (Marwick et al., 2009; Lin et al., 2015). The
Look AHEAD (Action for Health in Diabetes) trial showed
that moderate continuous exercise and a caloric restrictive diet
leads to sustained reductions in cardiometabolic risk factors,
diabetes complications, and health costs (Wing et al., 2013).
However, the number of cardiovascular events between the
intervention and control groups was not different. The addition
of vigorous exercise may be required to elicit substantial
changes in cardiovascular function (Baldi et al., 2016), as
it appears that vigorous, but not low-moderate exercise,
reduces cardiovascular disease (Tanasescu et al., 2002; Lee
et al., 2003). Studies using higher exercise intensities, such
as interval and resistance exercise, show strong effects on
cardiometabolic outcomes (Wisløff et al., 2007; Weston et al.,
2014).

Cardiorespiratory fitness is an independent predictor of all-
cause mortality and cardiovascular events (Kodama et al., 2009).
A recent meta-analysis revealed that the increase in fitness after
interval training is ∼2-fold greater than continuous training
(Weston et al., 2014). In the longest trial to date comparing
interval and continuous exercise in diabetes, Karstoft et al. (2013)
randomized participants to 4 months interval walking (n =

12), energy and time-matched continuous walking (n = 12; 60-
min, 5 days/week), or non-exercise control (n = 8). Greater
improvements in fitness, body fat, and glycemic control were
observed after interval compared to continuous walking and
control (Karstoft et al., 2013). These findings clearly support the
benefit of interval exercise, however the volume of exercise (300
min/week) is far greater than usually attained by the general
population, many of whom cite lack of time as a considerable
exercise barrier (Korkiakangas et al., 2009). Emerging evidence
from small short-term trials show that low-volume high-intensity

Abbreviations: HIIT, High-intensity interval training; FMD, Flow mediated
dilation; V̇O2peak , Cardiorespiratory fitness; CGM, Continuous glucose
monitoring; MAGE, mean amplitude of glycemic excursions; QoL, Quality of Life;
HRmax,Peak heart rate; RPE, Rating of perceived exertion; VAT, Visceral Adipose
Tissue.

interval training (HIIT) rapidly improves glycemic control in
type 2 diabetes (Little et al., 2011; Madsen et al., 2015). Low-
volume HIIT involves alternating brief periods of vigorous
exercise with periods of recovery, typically taking ∼20 min per
session and performed three times per week (Little et al., 2011).
Further research is needed to confirm changes in cardiometabolic
health outcomes after several months of low-volume HIIT in
studies with larger sample sizes.

Sarcopenic obesity disproportionately affects people with
type 2 diabetes (Park et al., 2009). Diminished lean muscle
leads to poor physical functioning, glycemic control and
cardiovascular health (Anton et al., 2013). The anabolic effects
of exercise (Robinson et al., 2017) and high-quality protein
(Reitelseder et al., 2011) are important for counteracting the
age-associated decline in muscle, and when combined, provide
synergistic effects on muscle protein synthesis (Esmarck et al.,
2001; Hartman et al., 2007). In particular, it appears that
consuming milk-protein after exercise promotes significant
lean mass accretion and fat loss (Hartman et al., 2007; Josse
et al., 2010). HIIT was recently shown to promote increased
protein synthesis in the skeletal muscle of older adults, an
effect linked to improved insulin sensitivity and mitochondrial
function (Robinson et al., 2017). Combining HIIT with post-
exercise protein supplementation therefore holds potential for
maximizing skeletal muscle adaptations in order to improve
cardiometabolic health outcomes, particularly in older adults.

The purpose of this study was to determine whether post-
exercise milk augments the cardiometabolic benefits of low-
volume HIIT in individuals with type 2 diabetes. The primary
outcome of glycemic control was assessed across 3 days before
and after the intervention using continuous glucose monitoring
(CGM). Secondary outcomes of body composition, HbA1c,
fasting blood parameters, fitness, blood pressure, and endothelial
function were also examined to determine how low-volume HIIT
impacted key cardiometabolic health parameters.

RESEARCH DESIGN AND METHODS

Study Design
This double-blind, randomized clinical trial was conducted at
The University of British Columbia Okanagan between January
2015 andDecember 2016 (clinicaltrials.gov #NCT02251301). The
Clinical Research Ethics Board (CREB #H14-01636) approved
the study and participants provided written informed consent.
Randomization was by a third-party using variable permuted
block sizes with computer-generated random numbers and
sealed envelopes. A researcher not involved in data analysis
prepared the beverages so participants and study personnel were
blinded to the beverage condition.

Participants
Men and women between 40 and 75 years with physician-
diagnosed type 2 diabetes (>6 months) were recruited from
the Kelowna Diabetes Program via mail-out advertisements
and sign-up sheets. Exogenous insulin users, diagnosed
cardiovascular disease and diabetes complications, or
contraindications to exercise (Thompson et al., 2013)
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were excluded. After telephone/email interviews interested
participants attended a screening visit, which included a medical
history questionnaire, physical activity readiness questionnaire-
plus (PARQ+), and informed consent. Eligible participants then
completed a 12-lead stress test using a modified Bruce protocol
and a cardiologist provided clearance for vigorous exercise.

Intervention
Experimental Protocol Overview
Fifty-three participants were randomized to one of three
beverages; (i) low-fat milk, (ii) macronutrient control, or (iii)
placebo, consumed after exercise (details below). Baseline and
post-intervention outcomes were assessed over 5 days before
and after the intervention (48–72 h after the last training
session). Fasted blood and body composition measures were
obtained on day 1 and CGM was performed across days 2–4
while participants followed a standardized diet. Blood pressure,
endothelial function and fitness were assessed on day 5. Body
weight, waist circumference, blood pressure, and endothelial
function were also assessed at 6 weeks (Mid).

Exercise Training
All groups performed supervised low-volume HIIT 3d/week for
12 weeks. To be consistent with exercise recommendations by
the American Diabetes Association and the American College
of Sports Medicine (Colberg et al., 2016) both resistance and
cardio-based exercises were included in the HIIT program.
The first and last sessions per week were cardio-based (cycle
ergometer, treadmill, or elliptical) involving 1-min bursts of
exercise at 85–90% of the participants’ maximum heart rate
(HRmax; obtained during baseline V̇O2peak test) with 1 min of
easy recovery in between. The middle session each week involved
whole-body resistance exercises (using resistance bands or multi-
gym). Similar to cardio-based HIIT, each resistance exercise was
performed for 1 min (as many repetitions as possible) at an
intensity eliciting an RPE of 5 “hard” on the CR-10 scale (Borg,
1962) followed by 1 min of recovery. A 3-min warm-up and
cool-down was performed with all sessions. The number of 1-
min intervals in each session progressed from four in week one
to ten in week six of training. Thereafter, 10 X 1-min intervals
eliciting ∼90% of HRmax (cardio-based) or RPE ∼5 (resistance-
based) were completed in each session. Previous short-term
training studies in individuals with, and at risk for, diabetes, have
shown this low-volume HIIT protocol is effective for improving
cardiometabolic health (Little et al., 2011; Francois et al., 2016).
A heart rate monitor was worn to closely prescribe intensity,
and capillary blood glucose and blood pressure measures were
obtained before and after each exercise session.

Post-exercise Nutrition Supplementation
After each session participants consumed 500 mL of either: (i)
low-fat milk; (ii) milk protein macronutrient-matched control;
or (iii) placebo (water), within 1 h. The beverages were
designed to look and taste similar and distributed in opaque
containers. To accomplish this, one-teaspoon of cocoa powder
and ¼ teaspoon of stevia (Stevia In The Raw R©, Cumberland
Packing Corp; containing ∼28mg stevia) were added to each

beverage. Low-fat milk was prepared from skim-milk powder
(MedallionMilk Co., Canada) providing 187 calories, 19 g
protein, 26 g carbohydrate, and <1 g of fat. Macronutrient-
matched control (milk protein concentrate; Vitalus Nutrition
Inc., Canada plus lactose; NOW R© Foods, IL, US) provided 186
calories, 21 g protein, 24 g carbohydrate, and <1 g of fat; i.e.,
providing the same macronutrient and protein composition as
milk but without the micronutrients and other bioactive factors.
The placebo beverage provided <10 calories from the cocoa
powder.

Outcomes
Continuous Glucose Monitoring (CGM)
A continuous glucose monitor (iPro 2, Medtronic Inc.) was used
to continuously measure blood glucose across 3 days before and
after the intervention. CGM provides valuable insight (that a
one-off fasting blood or HbA1c sample cannot) into glycemic
variability and the magnitude of postprandial excursions across
several days under free-living conditions (Klonoff, 2005). The
CGM continuously samples interstitial fluid from the abdomen,
measuring glucose concentration every 5-min using the glucose
oxidase reaction (Rossetti et al., 2010). Participants took capillary
glucose samples (4X/d), which were used to retrospectively
calculate retrospective blood glucose concentration via an
algorithm within the online software program (CareLink Pro,
Medtronic; Rossetti et al., 2010). All food, drink, and medication
were recorded (including time eaten, amount, brand) for pre-
testing, and then replicated exactly for post-intervention.

The primary outcome was 24-h average glucose (from 00:00
to 23:55), calculated as the mean of the 3 CGM days. Standard
deviation of 24-h blood glucose and mean amplitude of glycemic
excursions (MAGE; Molnar et al., 1970) were calculated from the
same 24-h periods to assess glycemic variability.

Body Composition
Waist circumference (WHO Expert Consultation, 2008), height
and weight (Seca 700, Hamburg, Deutschland) were measured to
the nearest 0.1 cm and 0.1 kg, respectively. Percent fat, visceral
adipose tissue (VAT) and lean body mass (LBM) were measured
by dual-energy X-ray absorptiometry (Hologic Discovery DXA,
MA, USA). All measures were performed and analyzed by the
same researcher, with calibrations and quality control testing
performed daily.

Cardiorespiratory Fitness (V̇O2peak)

V̇O2peak was assessed using a maximal incremental ramp test on
a cycle ergometer (Lode Excalibur, Netherlands) with continuous
sampling of expired gases (Parvomedics TrueOne2400, USA).
Beginning at 30W, the test increased by 1W every 4 s (15W/min)
until volitional exhaustion or contraindication (Fletcher et al.,
2013). V̇O2peak and RER were calculated from the highest 30-s
average, while HRmax was recorded as the highest value obtained
during the test.

Biochemical Analyses
Fasting blood samples were collected by venipuncture into EDTA
containing tubes, centrifuged for 15 min (1,550 g at 4◦C) and
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the plasma stored at −80◦C for subsequent batch analyses.
Medications were withheld the morning of the fasting blood
sample. Fasting glucose was measured by the hexokinase method,
high-sensitivity C-reactive protein by latex particle enhanced
immunoturbidimetric assay and triglycerides by the enzymatic
glycerol kinase and glycerol phosphate oxidase method. Pre
and post-intervention samples were analyzed concurrently in
duplicate (average coefficient of variation 6.8%) on a clinical
chemistry analyzer (Chemwell 2910, Awareness Technologies)
using assays from Pointe Scientific (MI, USA). HbA1c was
analyzed from a separate EDTA tube by a medical laboratory
that routinely performs this analysis according to the National
Glycohemoglobin Standardization Program (NGSP).

Blood Pressure and Endothelial Function
All measures were assessed 4 h postprandial, after abstaining
from alcohol and caffeine for 12 h and, within participants, at
the same time of day with meal and medication standardized.
After 20 min of rest in a supine position, blood pressure was
measured manually using the auscultatory method, at least twice
to the nearest 2 mmHg.

Flow-mediated dilation
Brachial artery flow-mediated dilation (FMD) is an important
prognostic indicator of endothelial function and incident
cardiovascular disease (Yeboah et al., 2007). The ability of
the vessel to dilate (%FMD) is measured in response to a
physiological (shear stress) stimulus (Thijssen et al., 2011). In
the current study, brachial artery FMD was assessed according
to current guidelines (Thijssen et al., 2011). Briefly, simultaneous
measures of diameter and blood velocity were obtained with
high-resolution ultrasound (Terason 3200), 2 cm from the
antecubital fossa. Data were collected over a 1-min baseline, for
the last 30 s of a 5min period of forearm ischemia (pneumatic cuff
inflated 60 mmHg above systolic blood pressure) and for 3min
thereafter.

Brachial artery dilatory capacity
The peak blood flow and diameter response to ischemic handgrip
exercise provides an index of resistance artery size or remodeling
and the maximal dilatory capacity (Naylor et al., 2005). This
is important since changes in artery function (%FMD) with
exercise training are thought to occur rapidly (i.e., first fewweeks)
after which are superseded by changes in structure, potentially
concealing further changes in function (Tinken et al., 2010). After
15 min of rest, following the FMD procedure, baseline diameter
and blood velocity were recorded for 1 min. This was followed by
5 min of forearm ischemia (as above), including 3 min of isotonic
handgrip exercise (1 contraction every 2 s using a dynamometer)
between 1-min periods of ischemia alone (Naylor et al., 2005).
Again recording resumed 30 s before cuff deflation and continued
for 3 min thereafter.

Absolute FMD (peak diameter – baseline diameter), %FMD
(peak – baseline diameter/baseline diameter), and time to
peak diameter were measured using custom designed edge-
detection and wall-tracking software, which minimizes user bias
(Woodman et al., 2001). This protocol is routinely performed

TABLE 1 | Baseline characteristics of participants.

Milk (n = 18) Macronutrient

control (n = 16)

Placebo

(n = 19)

Sex 11 F 12 F 11 F

Age (y) 62 ± 8 56 ± 9 55 ± 9

BMI (kg/m2) 36 ± 7 35 ± 6 33 ± 6

Years of diagnosis 6 ± 6 7 ± 7 5 ± 6

MEDICATIONS

Lifestyle only 5 5 3

Metformin 10 11 13

Sulfonylureas 6 1 3

SGLT2 inhibitors 1 2 3

DPP4 inhibitors 1 2 3

GLP1 analogs 1 2 0

Lipid lowering 9 7 7

Antihypertensive 7 6 8

BASELINE PHYSICAL ACTIVITY

LTPA score 17 ± 15 14 ± 10 21 ± 17

MVPA (min/day) 14 ± 15 13 ± 13 30 ± 19

Dairy intake (servings/day) 2.3 ± 2.4 2.7 ± 2.1 2.1 ± 1.6

F, Females; LTPA, Leisure-Time Physical Activity; MVPA, Moderate-Vigorous Physical

Activity.

in our lab using the methods outlined in Francois et al. (2016);
coefficients of variation for diameter and %FMD are 2.1 and
7.3%, respectively.

Quality of Life (QoL)
Participants completed the Medical Outcomes Study Short Form
36 (SF-36) questionnaire before and after the intervention
(McHorney et al., 1994). The SF-36 is a self-report QoL
questionnaire; the scores are used to provide two norm-based
T scores, physical component summary (PCS) and mental
component summary (MCS).

Diet and Exercise Standardization
Participants maintained their usual diet, lifestyle, and medication
habits throughout the testing and training sessions, verified by
physical activity and diet records. Baseline dairy consumption
was assessed using a food frequency questionnaire, and dietary
intake before and during the study was assessed using 3-
day diet records analyzed using FoodWorks16 (The Nutrition
Company, NJ, USA). Baseline activity was examined using both
accelerometry (Actigraph GT3x, FL, USA) over a 7-day period
to assess minutes of moderate-vigorous physical activity (MVPA,
Freedson et al., 1998 cut-points) and a Godin leisure-time
exercise questionnaire (Godin and Shephard, 1997; Table 1).

Statistical Analyses
Sample Size
Using means and standard deviations from previously published
data on the change in CGM assessed hyperglycemia in type
2 diabetes after HIIT (Little et al., 2011), power calculations
determined that n = 17 per group would be sufficient to detect
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a 30% reduction in glucose (Cohen d = 0.7) with a power of 80%
and alpha of 0.05.

Statistics
Analyses were performed on all participants that completed
the intervention. Characteristics of the intervention groups are
shown in Table 1. Linear mixed models using SPSS 22.0 (SPSS,
Chicago, Illinois) examined changes in trial outcomes (pre-
post or pre-mid-post) between groups. Significant interactions
were probed with pre-planned contrasts comparing the change
within each group, whereas isolated significant main effects
of time were examined by pairwise comparisons with groups
collapsed using Least Significant Difference (LSD) test (Hopkins
et al., 2009). Results are reported as means and standard
deviations with 95% confidence limits. Magnitude based
inferences were used to identify clinically meaningful changes
in major outcomes using techniques described by Batterham
and Hopkins (2006). The threshold for clinically beneficial
changes in 24-h glucose and HbA1c were reductions of 0.5
mmol/l and 0.7%, respectively, based on the reduced risk for
diabetes complications (Mazzone, 2010). For cardiorespiratory
fitness an increase of 1 metabolic equivalent (MET) was used
for a 15% risk reduction in cardiovascular disease (Kodama
et al., 2009). For %FMD +1% was used, based on the 13%
risk reduction in cardiovascular events (Inaba et al., 2010).
In line with previous studies, a 2mmHg reduction in MAP
was considered to be the smallest clinical threshold change for
BP (Cook et al., 1995). The clinically meaningful difference in
QOL was determined as a change >3 points (Warkentin et al.,
2014).

RESULTS

Participant Compliance and Adverse
Events
Figure 1 shows the CONSORT flow diagram of study
progression. Fifty-three participants were eligible after screening;
four required additional 24-h blood pressure monitoring (n =

2) and stress echo (n = 2) cardiologist clearance following the
12-lead ECG stress test. Baseline characteristics of randomized
participants are shown in Table 1. The majority (51/53)
were of European descent, while two were Southeast Asian
(2/53).

Of the 53 participants randomized, 51 successfully completed
36 sessions of HIIT in 12± 1 wk. One participant suffered a non-
fatal myocardial infarction in week eight (after 23 HIIT sessions)
and one dropped out for personal reasons. There were no
reports of hypoglycemia after exercise or at home throughout the
intervention. Exercise sessions were rescheduled on 10 occasions
(n = 6 due to sickness and n = 4 due to systolic blood pressure
>144mmHg prior to exercise). No musculoskeletal injuries were
reported as a result of the training. V̇O2peak testing was truncated
in three participants because systolic pressure exceeded 250
mmHg during the test (Fletcher et al., 2013). For CGM analyses
three participants were excluded due to sensor failure (n = 1)
and medication changes (n = 2; required reduced medication).
All other analyses are reported for n = 51 unless otherwise

FIGURE 1 | Consolidated Standards of Reporting Trials (CONSORT) flow

diagram.

FIGURE 2 | Continuous blood glucose across 24-h (n = 48) before and after

the intervention (groups collapsed, *main effect of time: p = 0.01). Inset:

Change in blood glucose after the intervention in the milk, protein, and water

groups.

stated. Overall the exercise intensity achieved was 88 ± 7% of
HRmax during cardio-based intervals, and an average RPE of
5 ± 1 and 4 ± 1, for cardio- and resistance-based intervals,
respectively.

Glycemic Control
There was a significant reduction in mean 24-h glucose following
12 weeks of HIIT (by −0.5 ± 1.1 mmol/L, Figure 2) with no
difference between groups (Table 2). The probability that the
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TABLE 2 | Body composition, cardiorespiratory fitness, blood pressure, flow-mediated dilation, triglycerides, C-reactive protein, and glycemic control measures before

and after 12 weeks of HIIT and nutritional beverage.

Milk (n = 18) Macronutrient control (n = 16) Placebo (n = 19) P-value

Pre Post Pre Post Pre Post Interaction Time

BODY COMPOSITION

Mass (kg) 97.7 ± 19.3 96.8 ± 20.5 95.9 ± 17.3 94.5 ± 17.3 89.5 ± 21.1 89.1 ± 20.9 0.46 0.03*

VAT (g) 1057 ± 335 1033 ± 316 1007 ± 260 981 ± 212 815 ± 337 802 ± 285 0.75 0.25

CARDIORESPIRATORY FITNESS

V̇O2peak (L/min) 1.7 ± 0.4 2.0 ± 0.7 1.8 ± 0.5 2.0 ± 0.6 1.9 ± 0.5 2.1 ± 0.5 0.53 <0.01*

BLOODS

HbA1c (%; mmol/mol) 7.1 ± 0.8 6.9 ± 0.7 6.9 ± 0.8 7.0 ± 0.7 6.9 ± 0.8 6.6 ± 0.9 0.92 <0.01*

54 ± 9 52 ± 8 54 ± 8 53 ± 8 51 ± 8 49 ± 9

Fasting glucose (mmol/L) 8.6 ± 2.3 8.3 ± 1.7 9.2 ± 1.9 9.5 ± 2.3 8.9 ± 2.7 8.5 ± 2.1 0.35 0.53

Triglycerides (mg/dL) 149 ± 82 152 ± 70 161 ± 62 139 ± 65 152 ± 93 142 ± 80 0.36 0.17

C-reactive protein (mg/dL) 7.1 ± 10.3 4.4 ± 5.3 4.7 ± 4.3 4.9 ± 4.7 3.7 ± 4.1 3.1 ± 3.6 0.33 0.21

CGM GLUCOSE CONCENTRATION

24-h mean (mmol/L) 8.4 ± 1.4 7.7 ± 1.2 8.1 ± 1.4 7.8 ± 1.7 8.4 ± 2.1 7.8 ± 1.5 0.74 0.01*

SD (mmol/L) 1.6 ± 1.0 1.3 ± 0.5 1.6 ± 0.6 1.1 ± 0.4 1.7 ± 0.8 1.5 ± 0.7 0.51 0.01*

MAGE (mmol/L) 4.3 ± 3.5 3.1 ± 1.3 4.1 ± 2.0 2.8 ± 1.3 4.1 ± 2.2 3.7 ± 1.6 0.60 0.02*

BLOOD PRESSURE

Systolic (mmHg) 130 ± 10 119 ± 7 132 ± 13 129 ± 9 128 ± 13 117 ± 11 0.03# <0.01*

Diastolic (mmHg) 79 ± 6 75 ± 5 83 ± 11 79 ± 6 81 ± 7 75 ± 7 0.20 <0.01*

FLOW-MEDIATED DILATION

Absolute FMD (mm) 0.020 ± 0.01 0.027 ± 0.01 0.018 ± 0.01 0.024 ± 0.01 0.019 ± 0.01 0.023 ± 0.01 0.61 <0.01*

Baseline diameter (mm) 0.41 ± 0.10 0.41 ± 0.09 0.41 ± 0.08 0.41 ± 0.07 0.41 ± 0.07 0.42 ± 0.07 0.77 0.71

Time to peak (s) 64 ± 26 57 ± 25 60 ± 30 46 ± 23 56 ± 21 50 ± 21 0.75 0.05*

Total energy intake (Kcal/day) 2053 ± 881 2039 ± 898 1810 ± 525 2017 ± 706 1912 ± 629 1888 ± 710 0.35 0.25

HbA1c, Glycosylated Hemoglobin; BMI, Body Mass Index; VAT, Visceral Adipose Tissue; MAP, Mean Arterial Pressure; FMD, Flow Mediated Dilation; TE, Total Energy.
*Time effect p < 0.05.
# Interaction group*time p < 0.05.

change in glucose was clinically beneficial was 54% (95% CI:
−0.8, 0.1 mmol/L). Glycemic variability assessed by both SD (by
−0.33 ± 0.78 mmol/L) and MAGE (by −0.98 ± 2.27 mmol/L)
was significantly reduced, with no differences between groups
(Table 2). HbA1c was significantly reduced after 12 weeks of HIIT
(by−0.22± 0.39%, Figure 3) with no differences between groups
(Table 2). The probability that the change in HbA1c was clinically
beneficial was 0% (95% CI:−0.33, 0.16%), with the change being
most likely trivial. Fasting glucose was not significantly different
after HIIT in all groups (Table 2).

Body Composition
Body mass was significantly lower after 12 weeks of HIIT (by
−0.9 ± 3.9 kg, Table 2), with no difference between groups.
There was a significant reduction in waist circumference after
12 weeks of HIIT (by −2.9 ± 3.5 cm, main effect of time: p <

0.01) with no difference between groups (Interaction: p = 0.21,
Figure 4). Percent body fat was significantly reduced (by −0.76
± 1.63%, main effect of time: p = 0.02) and lean body mass
significantly increased (by +1.07 ± 2.76 kg, main effect of time:
p = 0.01) after 12 weeks of HIIT, with no difference between
groups (Interactions: all p > 0.83, Figure 3).

Cardiorespiratory Fitness (V̇O2peak) and
Blood Pressure
V̇O2peak significantly increased 9.8% after 12 weeks of HIIT
(main effect of time: p < 0.01, Figure 3) with no difference
between groups (Interaction: p = 0.55). The probability that the
change in fitness was clinically beneficial was 5% (95% CI: 1.8, 3.1
mL/kg/min), with the change being 95% very likely trivial.

Mean arterial blood pressure was significantly reduced after
12 weeks of HIIT (by −5.7 ± 7.0 mmHg, main effect of time:
p < 0.01) with no difference between groups (Interaction: p =

0.11, Figure 4). The probability that the change in MAP pre-post
intervention was clinically beneficial was 99% (95% CI: −9, −2
mmHg).

Flow-Mediated Dilation
%FMD significantly increased after 12 weeks of HIIT (by+1.4±
1.9%, main effect of time: p < 0.01), with no difference between
groups (Interaction: p= 0.72, Figure 4). The probability that the
change in%FMDwas clinically beneficial was 94% likely (95%CI:
0.86, 1.94%). Absolute FMD also increased after HIIT (Table 2),
with no difference between groups. Time to peak dilation was
significantly lower (by 9.1 ± 31.1 s, Table 2) after 12 weeks of
HIIT, with no difference between groups. Peak dilator capacity
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FIGURE 3 | Change from pre intervention for (A) % body fat, (B) lean body mass, (C) cardiorespiratory fitness (V̇O2peak) and (D) glycosylated hemoglobin (HbA1c) in

the milk, protein, and water groups (all main effect of time p < 0.05, no group interaction p > 0.05).

did not change across the intervention; Pre: 9.6 ± 5.2%, Mid: 8.1
± 4.2%, Post: 10.4± 3.6% (main effect of time: p= 0.36).

Quality of Life
PCS scores significantly increased after 12 weeks of HIIT (n= 49,
by 8.1 ± 12.1, main effect of time: p < 0.01) with no difference
between groups (Interaction: p = 0.11). The probability that
the change in PCS pre-post intervention was clinically beneficial
was 99% likely (95% CI: 4.4, 11.8). The change in MCS post-
intervention was different between groups (n= 49, Interaction: p
= 0.02); post hoc testing revealed significant improvements in the
protein group (+12.1 ± 9.69, p < 0.01) but not skim-milk (−1.1
± 13.5, p= 0.79) or placebo (+5.6± 10.7, p= 0.06).

Dietary Intake Records
Analysis of the 3-day diet records collected before and during the
last week of the intervention showed no difference in the total
daily energy intake between groups and/or across time (Table 2).
Macronutrient composition of the diet was not different between
groups (p = 0.32), or across time: for % carbohydrate (Pre: 48.0
± 12.5% vs. Post: 48.4 ± 13.0% of total energy, p = 0.47), %
protein (Pre: 20.4 ± 4.9% vs. Post: 19.9 ± 4.9% of total energy,
p = 0.15) and % fat (Pre: 30.3 ± 12.5% vs. Post: 30.7 ± 13.3% of
total energy, p= 0.49).

DISCUSSION

This study comprehensively examined the cardiometabolic
benefits of HIIT in individuals with type 2 diabetes. We show
for the first time that 12 weeks of low-volume HIIT, with or

without post-exercisemilk or protein, improves glycemic control,
blood pressure, cardiorespiratory fitness, body composition, and
endothelial function. Low-volume HIIT therefore appears to be a
feasible and efficacious lifestyle intervention, involving minimal
time and resource, to improve health in type 2 diabetes. Reducing
the interval length and total exercise time has previously been
shown to increase enjoyment and compliance (Martinez et al.,
2015). To this end, we experienced very low dropout rates and
high compliance to low-volume HIIT. In addition, we show that
12 weeks of HIIT improves quality of life, similar to previous
studies in hypertensive (Molmen-Hansen et al., 2012) and heart
failure (Wisløff et al., 2007) patients.

Exercise interventions generally result in modest weight
loss, however exercise promotes lean mass accretion; which
has important implications for whole-body metabolism, glucose
disposal, and quality of life (Anton et al., 2013). Indeed, in
the current study HIIT significantly increased lean mass and
reduced body fat. Although weight loss was not a goal of the
intervention, participants lost, on average,∼0.9 kg of body mass,
which was a statistically significant change yet small inmagnitude
(∼1%). Generally studies report significant benefits of weight
loss in the magnitude of 5–7% (Wadden et al., 2012) but it is
possible that improvements in some cardiometabollic outcomes
were related to the small amount of weight loss seen. Consuming
high-quality protein after exercise is known to further potentiate
muscle protein synthesis (Esmarck et al., 2001; Hartman et al.,
2007). Despite this, comparable changes in body composition
and cardiometabolic health were seen with post-exercise milk,
milk-protein, or water. In agreement, Parr et al. (2016) found
changes in body composition after a combined resistance training
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FIGURE 4 | Data for (A) mean arterial blood pressure (MAP), (B) percentage

flow-mediated dilation (%FMD), and (C) waist circumference, before (Pre), after

6 weeks (Mid), and 12 weeks (Post) mean for all participants (bar graph, all

main effect of time p < 0.05) and individual data (line and symbols per

beverage group, no group interaction p > 0.05).

and diet intervention were independent of the amount and
type of protein (high/low dairy). Epidemiological data shows
an inverse relationship between low-fat dairy consumption
and the risk of type 2 diabetes (Aune et al., 2013) and the
addition of four servings of low fat dairy per day has been
shown to improve insulin resistance (Rideout et al., 2013).
Therefore, additional milk/protein supplementation (e.g., on
non-exercise days) may have been needed to elucidate effects
of nutritional supplementation. Indeed, some previous studies
showing benefits on lean mass have provided milk/protein after
exercise 5 days per week (Hartman et al., 2007; Josse et al., 2010).
However, ∼20 g of post-exercise protein (similar to the current
study) has been shown to maximize muscle protein synthesis
(Churchward-Venne et al., 2016). To this end, a non-exercising

control group may be required to detect effects of post-exercise
protein added to a potent training intervention such as, HIIT.
However, we feel a non-exercise control group in type 2 diabetes
is unethical since numerous studies have shown worsening of
glycemic control and cardiovascular risk factors in control group
participants (Church et al., 2010; Karstoft et al., 2013).

Current research suggests that HIIT is more effective than
continuous training for improving insulin resistance (Jelleyman
et al., 2015). A recent meta-analysis revealed that absolute
changes in HbA1c are 0.5 and 0.25% greater with HIIT than
control and continuous exercise, respectively (Jelleyman et al.,
2015). The small, yet significant change in HbA1c in the current
study is in line with previous HIIT interventions (Madsen et al.,
2015; Cassidy et al., 2016) yet robust changes in 24-h glucose
were observed (Figure 2). Interestingly, the changes in 24-h
glucose are similar to Karstoft et al. (2013) after 4 months
of high-volume HIIT (300 min/week). This is an important
finding given the perceived time barrier to exercise participation
in type 2 diabetes (Korkiakangas et al., 2009). The use of
CGM is a strength as it allows for additional insight into the
changes in postprandial hyperglycemia and overall glycemic
variability (Klonoff, 2005). Mean 24-h glucose and glycemic
variability were reduced by 7 and 23%, respectively, after
HIIT, regardless of post-exercise nutritional supplementation.
Glycemic variability may be a stronger predictor than HbA1c

for diabetes complications (Praet et al., 2006). Previous research
also shows that HIIT has the potential to improve beta cell
function as Madsen et al. (2015) demonstrated an increase in
the oral disposition index and HOMA-%β after 8 weeks. The
mechanisms underlying the improvements in glycemic control
could not be ascertained from the present study design but likely
involve a combination of improvements in peripheral insulin
sensitivity, beta cell function, and hepatic insulin resistance
(Karstoft et al., 2014; Madsen et al., 2015; Cassidy et al., 2016).
Collectively, these findings show the potential of HIIT to improve
several underlying aspects of glycemic dysfunction in type 2
diabetes.

The added benefits of vigorous exercise for cardiovascular
health are well known (Marwick et al., 2009; Baldi et al., 2016)
and many studies have demonstrated superior cardiovascular
effects of HIIT compared to continuous training (Wisløff et al.,
2007; Marwick et al., 2009; Weston et al., 2014). Extending on
this work, we observed an ∼10% increase in cardiorespiratory
fitness, a 6 mmHg reduction in MAP and ∼1.4% improvement
in FMD following 12 weeks of HIIT in type 2 diabetes.
In itself, cardiorespiratory fitness is a strong predictor for
cardiovascular mortality with each MET increase associated
with a 10–20% improvement in survival (Kodama et al., 2009).
Although only a 0.7 MET increase was observed, this is in line
with previous low-volume HIIT studies (Madsen et al., 2015)
and participants are likely to have gained significant health
benefits given their low baseline fitness (<6 MET). A meta-
analysis showed that the greatest mortality benefits occur for
even small increases in fitness for those progressing from the
least fit category (Kodama et al., 2009). Furthermore, the low-
volume nature of the HIIT protocol involved only 45–78 min of
exercise per week with one session being resistance training. The
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combination of resistance and cardio exercise may be superior
to either type alone for improving health in type 2 diabetes
(Church et al., 2010). Indeed, in hypertensive patients blood
pressure is reduced more with combination training than cardio
alone (Lamberti et al., 2016); the 5–6 mmHg reduction is in
line with the current study. Our findings suggest that HIIT
performed as combined aerobic and resistance exercise clearly
promotes beneficial cardiovascular adaptations in type 2 diabetes
patients.

In conclusion, we show that low-volume HIIT, with or
without post-exercise milk or protein supplementation, improves
metabolic and cardiovascular risk factors in individuals with
type 2 diabetes. The combination of resistance and aerobic-
based HIIT increases lean mass, reduces fat mass, and improves
endothelial function. This study, the largest and longest low-
volume HIIT study in type 2 diabetes to date, provides
further evidence that HIIT is a feasible and efficacious exercise
intervention to improve glycemic control, cardiovascular fitness,
and body composition.
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Background and objectives: Ambiguous results have been reported regarding the effects 
of training on resting metabolic rate (RMR), and the importance of training type and intensity 
is unclear. Moreover, studies in subjects with type 2 diabetes (T2D) are sparse. In this study, 
we evaluated the effects of interval and continuous training on RMR in subjects with T2D. 
Furthermore, we explored the determinants for training-induced alterations in RMR.

Methods: Data from two studies, both including T2D subjects, were encompassed in 
this manuscript. Study 1 was a randomized, crossover study where subjects (n = 14) 
completed three, 2-week interventions [control, continuous walking training (CWT),  
interval-walking training (IWT)] separated by washout periods. Training included 10 
supervised treadmill sessions, 60 min/session. CWT was performed at moderate walking 
speed [aiming for 73% of walking peak oxygen uptake (VO2peak)], while IWT was per-
formed as alternating 3-min repetitions at slow (54% VO2peak) and fast (89% VO2peak) 
walking speed. Study 2 was a single-arm training intervention study where subjects 
(n = 23) were prescribed 12 weeks of free-living IWT (at least 3 sessions/week, 30 min/
session). Before and after interventions, RMR, physical fitness, body composition, and 
glycemic control parameters were assessed.

results: No overall intervention-induced changes in RMR were seen across the studies, 
but considerable inter-individual differences in RMR changes were seen in Study 2. At 
baseline, total body mass (TBM), fat-free mass (FFM), and fat mass were all associated with 
RMR. Changes in RMR were associated with changes in TBM and fat mass, and subjects 
who decreased body mass and fat mass also decreased their RMR. No associations were 
seen between changes in physical fitness, glycemic control, or FFM and changes in RMR.

Conclusion: Neither short-term continuous or interval-type training, nor longer term interval 
training affects RMR in subjects with T2D when no overall changes in body composition are 
seen. If training occurs concomitant with a reduction in fat mass, however, RMR is decreased.

Clinical Trials registration (www.ClinicalTrials.gov): NCT02320526 and 
NCT02089477.

Keywords: resting metabolic rate, exercise interventions, exercise training, body composition, physical fitness, 
glycemic control, diabetes type 2
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inTrODUCTiOn

Most subjects with type 2 diabetes (T2D) are overweight or obese, 
and overweight/obesity is considered to be a central component  
of the pathogenesis and pathology of T2D (1, 2). Indeed, weight 
loss is associated with improvements in glycemic control and  
other cardiovascular risk factors, and weight loss is recommended 
for all overweight/obese subjects with T2D (3). Classically spo-
ken, body weight is dependent on the balance between energy 
intake and energy consumption, and a decrease in energy intake 
and/or an increase in energy consumption will lead to a weight 
loss. Energy consumption is dependent on several factors, with 
resting metabolic rate (RMR) being responsible for 60–70% of 
the total energy consumption in subjects who are not very active 
(4). As such, an increase in RMR will increase the likelihood of a 
weight loss, and interventions that may increase RMR would be 
attractive in subjects with T2D.

Exercise increases energy expenditure during and after the 
exercise (5). The increased energy expenditure in the hours 
following an exercise session is known as excess post-exercise 
oxygen consumption (EPOC), and this is dependent on both 
exercise duration and exercise intensity (6). Moreover, training 
interventions may indirectly increase RMR since fat-free mass 
(FFM), which is known to be the predominant determinant of 
RMR (4), is often maintained or increased with training. Since 
subjects with similar FFM may differ substantially in RMR 
(7), FFM is, however, not the only determinant of RMR, and 
although data are conflicting (8), it has been suggested that train-
ing may directly influence RMR. As such, it has been found that 
endurance-trained subjects have higher RMR than sedentary 
matched controls (9–11) and that training interventions may 
increase RMR (10, 12). Conversely, other studies have found 
that training interventions do not affect RMR (13, 14). Whereas 
these discrepancies between studies may be dependent on differ-
ent factors, it has been suggested that VO2max is an important 
determinant for changes in RMR (9, 15), and so the ability of a 
training intervention to increase VO2max may be essential.

Only a few studies examining the effect of training interven-
tions on RMR in diabetic subjects have been performed, and, as 
for healthy subjects, findings are conflicting. Araiza et al. found 
that a training intervention increased RMR (16), whereas Mourier 
et al. and Jennings et al. found no effect of training interventions 
on RMR (17, 18). In subjects with T2D, RMR is typically higher 
compared to matched normal glucose tolerant subjects, some-
thing which is considered to be due to the compromised glycemic 
control (19, 20). Whereas Araiza et al. found no improvements in 
glycemic control with their training intervention, both Mourier 
and Jennings et  al. did see training-induced improvements in 
glycemic control. Thus, it might be speculated whether training-
induced improvements in RMR were blunted or even completely 
offset by the training-induced improvements in glycemic control 
in the two latter studies.

Exercise intensity is an important determinant for training-
induced changes in body composition (21), and we have previously 
found that 17 weeks of interval-walking training (IWT) results in 
a substantial weight loss (on average 4 kg) in opposition to time 
duration and energy-expenditure matched continuous walking 

training (CWT) (22). Whereas part of this differential weight 
loss between CWT and IWT may be explained via differential 
EPOC (23), the main reason for the discrepancy remains unclear. 
There are some indications that training with higher intensity 
may increase RMR more than training with lower intensity, but 
it is unclear if this is due to differential effects on VO2max and 
other potential determinants for RMR, or if there is a direct effect 
of higher training intensity on RMR (24). As such, we aimed 
to examine the direct effects (independent of changes in body 
composition and VO2max) of short-term (2 weeks) IWT/CWT 
and the effects of longer term (12 weeks) IWT on RMR in subjects 
with T2D. Moreover, we aimed to assess the associations between 
potential determinants for RMR (VO2max, body composition, 
glycemic control) and RMR, both at baseline and in relation to 
the changes induced with 12 weeks of IWT.

MaTErialS anD METHODS

This manuscript builds on data from two different studies, both 
including subjects with T2D (25). Exclusion criteria were preg-
nancy, smoking, contraindication to increased levels of physical 
activity (26), insulin dependence, and evidence of thyroid, 
liver, lung, heart, or kidney disease. All subjects underwent a 
screening consisting of a medical interview and examination, 
an oral glucose tolerance test (OGTT), a walking VO2peak test 
with indirect calorimetry (Cosmed K4B2, Rome, Italy) and a 
familiarization VO2max test performed on a treadmill (Katana 
Sport, Lode, Groningen, the Netherlands) with indirect calo-
rimetry (Cosmed Quark, Rome, Italy) as previously described 
(22, 27). Written and informed consent was obtained from all 
research participants before any investigations were performed 
and the studies were approved by the Ethical Committee of the 
Capital Region of Denmark (H-6-2014-043 and H-1-2013-116) 
and registered at www.ClinicalTrials.gov (NCT02320526) and 
(NCT02089477).

Study Designs and interventions
Study 1 was a randomized, crossover trial where subjects were 
included in three different interventions, each lasting 2 weeks. The 
interventions were CWT (ten 60-min walking sessions performed 
with a continuous speed, aiming for oxygen uptake rates at 73% 
of VO2peak); IWT [ten 60-min walking sessions performed with 
cycles of alternating 3-min slow (54% of VO2peak) and 3-min fast 
(89% of VO2peak) walking]; control (CON) (no walking), and 
interventions were performed in randomized order. All walk-
ing sessions were performed at a treadmill (Katana Sport) and 
controlled with indirect calorimetry at the first and sixth session 
(in order to determinate the walking speed that corresponded to 
the correct oxygen uptake rates). Between interventions, washout 
periods (8  weeks after CWT/IWT, 4  weeks after CON), where 
subjects returned to their habitual activity level, were applied to 
ensure that any intervention-induced effects disappeared before 
initiation of the next intervention. Other data from this study 
have previously been published (28).

Study 2 was a single-arm intervention study, where subjects 
were prescribed free-living IWT for 12 weeks. Subjects were told 
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TaBlE 1 | Pre- and (for Study 2) post-intervention characteristics.

Study 1 Study 2 pre Study 2 post

n 14 23
Sex (M/F) 11/3 7/16
Age (years) 65.3 ± 1.7 64.8 ± 1.5
Time since diagnosis (years) 8.6 ± 1.3 6.0 ± 0.9

Glucose-lowering medication (n)
Metformin 14 19
Sulfonylureas 3 2
GLP-1 analogs/DPP-4 inhibitors 3 7
SGLT2 inhibitors 0 1

rMr
Absolute (ml O2/min) 1,736 ± 85 1,659 ± 51 1,646 ± 69
Relative to body mass (ml O2/min/kg TBM) 18.1 ± 0.6 21.4 ± 0.8* 21.0 ± 0.7
Relative to FFM (ml O2/min/kg FFM) 28.8 ± 1.1 34.4 ± 0.8* 34.0 ± 1.1

Physical fitness (VO2max)
Absolute (ml O2/min) 2,438 ± 147 1,961 ± 90 2,065 ± 92‡

Relative to body mass (ml O2/min/kg TBM) 25.3 ± 1.1 25.1 ± 1.0 26.3 ± 0.8‡

Relative to FFM (ml O2/min/kg FFM) 41.3 ± 3.7 40.0 ± 1.1 42.1 ± 0.8(‡)

Body composition
BMI (kg/m2) 31.6 ± 1.1 28.8 ± 1.3 28.7 ± 1.2
TBM (kg) 98.3 ± 4.7 79.7 ± 3.5* 79.3 ± 3.4
FFM (kg) 61.5 ± 3.2 48.8 ± 1.8* 48.7 ± 1.8
Fat mass (kg) 36.8 ± 2.1 30.6 ± 2.5 30.2 ± 2.5
Fat percentage (%) 38.0 ± 1.5 38.8 ± 2.0 38.5 ± 2.1

Glycemic control
Fasting glucose (mmol/l) 7.7 ± 0.5 6.9 ± 0.4 7.1 ± 0.4
Fasting insulin (pmol/l) 119 ± 35 72 ± 10 83 ± 10
Two-hour OGTT glucose (mmol/l) 13.1 ± 1.3 14.4 ± 0.7 14.1 ± 0.7
Mean OGTT glucose 13.0 ± 0.7 13.4 ± 0.6 13.2 ± 0.6
HbA1c (mmol/mol) 47.7 ± 2.4 50.1 ± 2.5 50.5 ± 2.3

Thyroid hormones
TSH (×10−3 IU/L) 1.8 ± 0.3 1.6 ± 0.2 1.7 ± 0.2
Triiodothyronine (nmol/l) 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1
Thyroxine (nmol/l) 96.7 ± 6.1 87.3 ± 2.7 89.5 ± 2.9

Data are numbers (n) or mean ± SEM.
GLP-1, glucagon-like peptide-1; DPP-4, dipeptidyl peptidase-4; SGLT2, sodium-glucose cotransporter-2; RMR, resting metabolic rate; VO2max, maximal oxygen consumption rate; 
TBM, total body mass; FFM, fat-free mass; BMI, body mass index; OGTT, oral glucose tolerance test; HbA1c, hemoglobin A1c; TSH, thyroid-stimulating hormone.
Statistical differences are indicated by *(p < 0.05, Study 1 vs. Study 2 pre, Student’s unpaired t-test) and ‡(p < 0.05, Study 2 pre vs. study 2 post, Student’s paired t-test). 
(‡)indicates p < 0.10.
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to complete at least three weekly training sessions, each last-
ing at least 30 min and with repeated cycles of 3-min fast and 
3-min slow walking. Training was controlled by a smartphone 
application (InterWalk®), and data from training sessions were 
uploaded to a central server (29). Other data from this study have 
previously been published (27).

investigations
Before (pre) and after (post) interventions, subjects underwent 
one experimental day (meaning that subjects in Study 1 com-
pleted 6 experimental days in total). Subjects met fasting (~12 h 
for all except water) in the laboratory, by means of passive trans-
port (car, bus, etc.). After confirming that no subjective feeling of 
acute disease and no fever was present, subjects voided. Subjects 
were then weighted, had an antecubital vein catheter inserted, 
and were placed in a bed in a temperature controlled (20°C) and 
calm room. After an acclimatization period of at least 30 min, the 
RMR measurements commenced: a standardized head tilt (15°) 

was applied to the bed and a ventilated hood (Cosmed, rounded 
canopy) was placed over the subject’s head and connected to 
an indirect calorimetric system (Cosmed Quark) via a canopy 
blower (Cosmed). Carbon dioxide concentrations in the system 
were kept below 1% to avoid excess breathing (30). Subjects 
were instructed to breathe normally and not to fall asleep. RMR 
measurements were performed for 20 min.

Following the RMR measurements, fasting blood samples 
(lithium-heparin and EDTA tubes) were obtained and subjects 
included in Study 1 underwent supine resting whereas subjects in 
Study 2 underwent a 2 h standard OGTT (75 g anhydrate glucose 
dissolved in water to a total volume of 300  ml) with bedside 
blood glucose measurements (ABL 8 series, Radiometer, Herlev, 
Denmark) obtained every 30  min. Finally, following resting/
OGTT procedures, all subjects were given a light meal and under-
went a dual-energy X-ray absorptiometry scan (Lunar Prodigy 
Advance; GE Healthcare, Madison, WI, USA) and a VO2max test 
comparable to the one performed at the screening day.
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FiGUrE 1 | The effect of training interventions on resting metabolic rate (RMR). Subjects with type 2 diabetes underwent three 2-week interventions (a–C); no 
training [control (CON)], continuous walking training (CWT), interval-walking training [IWT or 12 weeks of IWT training (D–F)]. RMR was measured before and after 
interventions and is reported as total RMR (a,D), RMR relative to total body mass [TBM (B,E)] and RMR relative to fat-free mass [FFM (C,F)]. Data are shown as 
mean ± SEM (a–C) and mean + individual data (D–F). Statistical analyses [two-way repeated-measures ANOVA in Panels (a–C)] and Student’s paired t-test  
(D–F) did not result in any significant changes within interventions (p > 0.05 for all comparisons).
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Post-intervention investigations were in Study 1 initiated 
39–43 h after the last exercise bout (in CWT/IWT interventions), 
and in Study 2 at least 48 h after the last exercise bout.

analyses and Calculations
Fasting blood samples were centrifuged (2,000 g, 15 min, 4°C). 
Lithium-heparin plasma was analyzed for thyroid hormones 
(thyroid-stimulating hormone, triiodothyronine, and thyroxine) 
and insulin via Electrochemiluminescence immunoassay (Cobas 
8000, Roche Diagnostics, IN, USA). EDTA plasma was analyzed 
for HbA1c via absorption photometry (Tosoh G7; Tosoh, San 
Francisco, CA, USA).

Mean oxygen uptake and carbohydrate excretion rates were 
calculated from the indirect calorimetric measurements. RMR 
was calculated according to the equations by Weir (31).

Statistics
First, intervention-induced effects on RMR were compared using 
two-way (time × intervention) repeated-measures (RM) ANOVA 
(Study 1) and Student’s paired t-test (Study 2).

Next, simple linear regression analyses between potential 
determinants of RMR (VO2max, body composition, and gly-
cemic control variables) and RMR were performed on baseline 
data (both studies) and on post–pre intervention (delta) values  
(Study 2). To avoid regression toward the mean, all delta values 
were controlled for baseline values, and this did not change the 
results of the regression analyses.

Finally, due to large between-subject heterogeneity in RMR 
responses in Study 2, subjects were stratified into three groups 
according to the intervention-induced effect on RMR as  
(1) decreased RMR (≥  10% decrease); (2) unchanged RMR;  
(3) increased RMR (≥10% increase). The specific cutoff levels 
were chosen to ensure that subjects categorized in group 1 and 

3 with certainty had intervention-induced alterations in RMR 
and that the differences measured were not just due to impreci-
sion of the measurements or biological day-to-day variation  
(30, 32). Stratified analyses were performed as one-way ANOVA 
of baseline values (to assess baseline differences between strata), 
as one-way RM ANOVA of delta values between strata (to assess 
differential changes in potential determinants of RMR between 
strata), and as two-way (time  ×  stratification) RM ANOVA’s  
(to assess differential changes in potential determinants of RMR 
within each strata).

Data are reported as mean ± SEM or delta values with con-
fidence intervals (CI). All analyses were performed using Prism 
v6.03 (Graphpad Software, CA, USA) and statistical significance 
was accepted when p < 0.05.

rESUlTS

Baseline data are given in Table 1. N = 14 subjects were included 
in Study 1 with all subjects being included in the analyses. 
N = 32 subjects were included in Study 2, but only 23 subjects 
underwent RMR measurements. As such, N = 37 subjects were 
overall included in the current analyses. No subjects changed 
glucose-lowering medication during the study period. In Study 
1, glucose-lowering medication was continued unchanged during 
the entire study, whereas, in Study 2, glucose-lowering medica-
tion was paused from 2 days before each experimental day and 
until the end of the experimental day.

Training Data
In Study 1, training adherence (amount of training performed 
relative to prescribed) was 99% in both CWT and IWT. As previ-
ously published (28), mean oxygen consumption and heart rates 
were comparable between CWT and IWT, whereas fast and slow 
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FiGUrE 2 | Baseline associations between resting metabolic rate (RMR) and potential determinants of RMR. Simple regression analyses were performed between 
baseline values of potential determinants of RMR (x-axis) and baseline RMR (y-axis). The potential determinants were VO2max [absolute, relative to total body mass 
(TBM), and relative to fat-free mass (FFM) (a–C)], body composition [body mass, FFM, and fat mass (D–F)] and glycemic control [fasting glucose, mean oral glucose 
tolerance test (OGTT) glucose, and 2 h OGTT glucose (G–i)]. Data from both Study 1 (open circles) and Study 2 (black circles) were included in the regression 
analyses and results (β-coefficients, r2-, and p-values) are given in each panel.
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IWT intervals were performed with higher and lower oxygen 
consumption and heart rates, respectively, compared to CWT.

In Study 2, the mean uploaded IWT time was 68 ± 9 min/week, 
corresponding to 75% of the minimal volumes of prescribed 
training. There were, however, substantial between-subject dif-
ferences in uploaded IWT time, with six individuals uploading 
less than 30% of the minimal volumes of prescribed training. 
If excluding these six, apparently non-adherent, subjects from 
the analyses, mean uploaded IWT time was 85 ± 7 min/week, 
corresponding to 94% of the minimal amounts of prescribed 
training. It was not possible to assess training intensity from the 
uploaded data.

intervention-induced Effects on rMr
In Study 1, no effect of any intervention was found on RMR 
[delta CON  =  −33 (95% CI: −122 to 57)  kcal/24  h, delta 
CWT = −32 (95% CI: −122 to 58) kcal/24 h, delta IWT = 62 
(95% CI: −28 to 152) kcal/24 h, p > 0.05 for all comparisons] 

(Figure 1). Likewise, in Study 2, no overall intervention-induced 
change in RMR was found [delta IWT = −13 (95% CI: −125  
to 98) kcal/24 h, p > 0.05], and exclusion of the subjects who 
were apparently non-adherent to the training (n  =  6), did 
not change this. Moreover, no association was seen between 
uploaded IWT time and changes in RMR (r2 = 0.05, p = 0.34) 
However, intervention-induced changes in RMR varied consid-
erably between subjects (Figures 1D–F). As such, n = 7 subjects 
decreased RMR (≥10%), n = 9 subjects did not change RMR and 
n  =  7 subjects increased RMR (≥10%) with the intervention. 
Normalization of RMR to total body mass (TBM) or FFM did 
not alter the above-standing results.

Potential Determinants of rMr
In Study 1, no intervention-induced effects on physical fitness or 
body composition was seen with any of the interventions (p > 0.05 
for all comparisons, data not shown) (Table 1). Conversely, and 
as previously described (28), measures of glycemic control (mean 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGUrE 3 | Associations between delta (post minus pre intervention) values of resting metabolic rate (RMR) and delta values of potential determinants of RMR. 
Simple regression analyses were performed between delta values of potential determinants of RMR (x-axis) and delta values of RMR (y-axis). The potential 
determinants were VO2max [absolute, relative to total body mass (TBM) and relative to fat-free mass (FFM) (a–C)], body composition [body mass, FFM and fat mass 
(D–F)] and glycemic control [fasting glucose, mean oral glucose tolerance test (OGTT) glucose, and 2 h OGTT glucose (G–i)]. Data from Study 2 were included in 
the regression analyses and results (β-coefficients, r2-, and p-values) are given in each panel.

35

Karstoft et al. RMR and Training in Subjects with T2D

Frontiers in Endocrinology | www.frontiersin.org June 2017 | Volume 8 | Article 132

and maximum 24 h glucose levels) were improved with IWT, with 
no effects of CON or CWT.

In Study 2, physical fitness improved with the intervention 
[delta VO2max = 104 (CI: 11–197) ml/min, p < 0.05], whereas nei-
ther body compositional nor glycemic control variables improved 
with the intervention (Table 1, p > 0.05 for all comparisons).

associations between Potential  
rMr-Determinants and rMr
Baseline levels of VO2max were positively correlated with RMR 
(Figures 2 and 3). When normalizing VO2max to body mass or 
FFM, however, the association disappeared. No significant asso-
ciations between delta values in VO2max and RMR were seen.

Body compositional variables (TBM, FFM, and fat mass), 
were all positively correlated with RMR at baseline. When 

analyzing delta values, the associations between TBM/fat mass 
and RMR were maintained, whereas no association between 
FFM and RMR was seen. The association between changes in 
fat mass and RMR was maintained when a sequential correc-
tion for changes in the other potential RMR-determinants was 
performed.

No associations between glycemic control variables (fasting 
glucose, mean OGTT glucose, 2 h OGTT glucose, HbA1c) and 
RMR were seen, neither at baseline nor when analyzing delta 
values.

Changes in Potential rMr-Determinants 
in Stratified analyses
No baseline differences in RMR or any potential determinants 
of RMR (measures of VO2max, body compositional variables, 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TaBlE 2 | Stratified analyses in Study 2.

Decreased rMr Unchanged rMr increased rMr

Pre Post Pre Post Pre Post

rMr
Total (kcal/24 h)†# 1,616 ± 102 1,308 ± 69* 1,751 ± 85 1,735 ± 95 1,586 ± 78 1,871 ± 92*
Relative to body mass (kcal/24 h/kg TBM)# 36.4 ± 0.9 30.0 ± 0.6* 34.9 ± 1.2 34.4 ± 1.7 31.8 ± 1.7 37.6 ± 2.1*
Relative to FFM (kcal/24 h/kg FFM)# 23.7 ± 1.4 19.7 ± 1.2* 21.6 ± 1.0 21.4 ± 1.0 18.7 ± 1.1 21.9 ± 1.4*

Physical fitness (VO2max)
Absolute (ml O2/min)‡ 1,681 ± 88 1,721 ± 154 2,141 ± 135 2,225 ± 151 2,034 ± 190 2,171 ± 146
Relative to body mass (ml O2/min/kg TBM)‡ 24.8 ± 1.6 25.3 ± 1.0 28.2 ± 2.2 29.2 ± 2.3 24.0 ± 2.2 25.2 ± 1.4
Relative to FFM (ml O2/min/kg FFM)(‡) 38.0 ± 1.0 40.5 ± 2.3 43.3 ± 2.2 43.9 ± 2.3 40.4 ± 3.0 43.1 ± 1.2

Body composition
Body mass (kg)# 70.1 ± 7.0 68.4 ± 6.4* 82.0 ± 5.1 81.9 ± 4.8 86.4 ± 5.7 87.0 ± 5.6
FFM (kg) 44.6 ± 3.2 43.9 ± 3.1 50.6 ± 3.0 51.1 ± 3.0 50.6 ± 3.3 50.5 ± 3.1
Fat mass (kg)# 25.4 ± 5.0 24.0 ± 4.6* 30.9 ± 4.2 30.7 ± 4.2 35.2 ± 3.4 35.9 ± 3.4
Fat percentage (%) 36.0 ± 3.9 35.2 ± 4.0 38.2 ± 3.8 37.9 ± 3.9 42.2 ± 2.1 42.7 ± 2.0

Glycemic control
Fasting glucose (mmol/l) 6.2 ± 0.5 6.5 ± 0.6 6.5 ± 0.2 6.7 ± 0.2 8.0 ± 1.2 8.2 ± 1.0
2 h OGTT glucose (mmol/l)(†) 15.5 ± 0.9 14.5 ± 1.4 12.4 ± 1.4 12.6 ± 1.0 15.8 ± 1.2 15.7 ± 1.1
Mean OGTT glucose (mmol/l)(†) 13.8 ± 0.9 13.0 ± 1.3 12.2 ± 0.9 11.9 ± 0.6 14.7 ± 1.1 15.1 ± 0.7
HbA1c (mmol/mol) 49.9 ± 4.6 48.6 ± 3.4 47.1 ± 1.2 48.6 ± 1.6 53.9 ± 6.2 54.7 ± 6.4

Subjects with type 2 diabetes underwent a 12-week interval-walking training intervention, with measurements of resting metabolic rate (RMR), physical fitness, body composition, 
and glycemic control before (Pre) and after (Post) the intervention. Subjects were stratified according to the intervention-induced change in RMR as decreased RMR (≥10%), 
unchanged RMR or increased RMR (≥10%), and the intervention-induced changes in potential determinants of RMR were analyzed using a two-way repeated-measures ANOVA for 
within-strata changes. Data are presented as mean ± SEM.
Statistical differences are indicated by ‡(main effect of time), †(main effect of stratification), #(time × stratification interaction), *(within group, pre vs. post, p < 0.05). Parenthesis 
indicates p < 0.10.
TBM, total body mass; FFM, fat-free mass; OGTT, oral glucose tolerance test; HbA1c, hemoglobin A1c.
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glycemic control variables) were seen between strata (p >  0.05 
for all comparisons) (Table 2; Figure 4).

For measures of VO2max and glycemic control, no  
intervention-induced changes within strata were seen, nor were 
there any intervention-induced differences between strata.

An intervention-induced reduction in body mass was seen in 
subjects who also decreased RMR, and a between-strata differ-
ence in body mass was seen between subjects who decreased and 
subjects who increased RMR (p < 0.05 for both).

Whereas the results for fat mass mirrored those seen for TBM, 
no differences within or between strata was seen for FFM.

Hormone levels
In Study 1, no intervention-induced effects on fasting insulin or 
thyroid hormones were seen with any of the interventions (data 
not shown, p > 0.05 for all comparisons).

In Study 2, fasting insulin and thyroid hormones did not 
change with the intervention, and likewise, no differences were 
seen in the stratified analyses (data not shown, p > 0.05 for all 
comparisons).

DiSCUSSiOn
The most important finding of this study is that neither short-
term continuous or interval-based training nor longer term 
interval-based training altered RMR in subjects with T2D as 
long as the training did not alter body composition. Body com-
position, both FFM and fat mass, were important determinants 
for RMR at baseline, but, interestingly, only training-induced 

changes in fat mass and not in FFM were associated with 
training-induced changes in RMR. This was supported by the 
stratified analyses, were subjects with a training-induced loss of 
fat mass had an accompanying decrease in RMR.

The lack of training-induced changes in RMR is in line with 
most previous studies. Both in healthy subjects (13, 14) and in 
subjects with T2D (17, 18), it is most commonly reported that 
RMR does not change with a training intervention. However, 
some studies have found increased RMR after a training inter-
vention (10, 12, 16). Whereas parts of the explanation for the 
conflicting findings may be due to different training modalities 
(33), and differential changes in body composition, it is also 
possible that the post-intervention RMR measurement has been 
performed too early after the last exercise bout in some studies, 
implying that EPOC has been included in the measurement (6). 
Whereas we did not see any significant changes in RMR in any of 
the two studies in the primary analyses, a paired t-test indicated 
a tendency for increased RMR with IWT in Study 1 (p = 0.06). 
Since EPOC is increased with IWT compared to both CON and 
CWT (23), and since our RMR measurements were performed 
~40 h after the last exercise bout, it is possible that the tendency 
for increased RMR seen with IWT in Study 1 in fact was pro-
longed EPOC (8).

In contrast to previous observations (19, 20), we did not find 
any indication that glycemic control affected RMR. Increased 
RMR has mainly been reported in subjects with dysregulated 
diabetes (5) and the subjects included in our studies had a 
fairly good glycemic control both at baseline and after the 
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interventions; potentially too good to affect RMR. Also, the pre-
viously reported positive correlation between VO2max and RMR 
(9, 15), was not replicated in our data when VO2max relative to 
body weight or FFM was used, neither for baseline values nor 
for intervention-induced changes. Since an association between 
changes in VO2max and glycemic control has previously been 
described in subjects with T2D (34), it would hypothetically 
be possible that subjects who increased VO2max the most also 
improved glycemic control the most, and that the combined and 
opposing effect of these determinants resulted in no changes 
in RMR. However, since no associations were seen between 
changes in VO2max/glycemic control and changes in RMR and 
since no associations were found between changes in VO2max 
and changes in glycemic control (data not shown), we find this 
unlikely.

The strong baseline associations we found between FFM and 
fat mass on one side and RMR on the other side have previously 
been reported (35). Interestingly, when comparing intervention-
induced changes in Study 2, the association between FFM and 
RMR disappeared, whereas the association between fat mass 
and RMR persisted. Moreover, subjects who decreased RMR 
with the training intervention also lost fat mass. Whereas FFM 
is considered to be the primary determinant for RMR and 

training-induced changes in RMR are most often explained by 
changes in FFM (4, 8), it has also been reported that a training-
induced loss of fat mass may “overrule” the effect of an increase in 
FFM on RMR since this combination has been shown to decrease 
RMR (36). The mechanisms underlying these results cannot read-
ily be derived from our data. It is generally believed, however, that 
the body responds to a weight loss with a homeostatic energy 
sparring, which is mainly seen as decreased RMR dependent on 
reductions in hormones like insulin and triiodothyronine (37) 
and reduced activity of the sympathetic nervous system (38). 
This has mainly been shown for a weight loss arising from dietary 
energy restriction (39–41), but may also be seen when at least 
parts of the weight loss is mediated via increased physical activ-
ity (42, 43). Whereas we did not see any changes in insulin or 
thyroid hormones with any of the training interventions, we did 
not measure sympathetic nervous system activity. Since changes 
in sympathetic nervous system activity are closer associated with 
changes in fat mass than with changes in FFM (44), it is plausible 
that the subjects who lost fat mass in Study 2 had a reduction 
in RMR due to a decreased activity of the sympathetic nervous 
system.

While Study 1 was fully supervised efficacy trial with high 
training adherence, Study 2 was a free-living effectiveness trial 

FiGUrE 4 | Stratified analyses of potential determinants for resting metabolic rate (RMR). Subjects included in Study 2 were stratified according to their change in 
RMR as increased RMR (≥10%, n = 7), unchanged RMR (n = 9), or decreased RMR (≥10%, n = 7). Delta (post minus pre intervention) values ± SEM of potential 
determinants for RMR {VO2max [absolute, relative to total body mass (TBM), and relative to fat free mass (FFM); panel (a–C)], body composition [body mass, fat free 
mass, and fat mass; panel (D–F)], and glycemic control [fasting glucose, mean OGTT glucose, and 2 h OGTT glucose; panel (G–i)]} are shown for the different 
strata. Within-strata changes in potential determinants of RMR were analyzed by two-way (strata × time) repeated-measures (RM) ANOVA (significant changes 
indicated by an asterisk above the bar) and between-strata differences were analyzed by one-way RM ANOVA of the delta values (significant changes indicated by a 
connecting line and an asterisk).
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without supervision. Whereas the training adherence in Study 2,  
in terms of volume, was fairly good compared to other free-living 
training studies (45, 46), the training adherence, in terms of 
intensity, was not possible to assess. Since no overall changes in 
glycemic control and body composition were seen in Study 2,  
it must be speculated how good the training adherence was. 
Subjects improved their VO2max, however, indicating that some 
effect of the training was seen. Still, when compared to our 
previous study, where 17 weeks of IWT resulted in considerable 
weight loss and improvements in glycemic control and a much 
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VO2max (9, 15) may be central for increases in RMR, it may be 
speculated whether a more intense training intervention would 
have resulted in different RMR results.

Given that the analyses in this paper were secondary to other 
analyses (27, 28) and that no power calculations were performed 
for RMR outcomes, it may be speculated whether the negative 
findings were a result of a lack of power. This is further important 
since a large heterogeneity was seen for changes in RMR. As such, 
despite the overall analyses indicated that RMR was unaffected 
by the training interventions, no final conclusions can be drawn 
from this paper.

In summary, neither short-term continuous or interval-type 
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with T2D when no overall changes in body composition are seen. 
Whereas both FFM and fat mass are important determinants of 

RMR at baseline, only training-induced changes in fat mass and 
not in FFM seem to be important for training-induced changes 
in RMR.

aUTHOr COnTriBUTiOnS

KK designed the studies, analyzed and interpreted the data, and 
wrote the manuscript. MR-L contributed to the study design. 
KK, CB, IT, and JN researched the data. All authors reviewed and 
revised the manuscript, approved the final version, and agreed to 
be accountable for the content of the work.

aCKnOWlEDGMEnTS

We thank all participants for their participation. Laura Staun 
Valentiner (CopenRehab, Department of Public Health, Section 
of Social Medicine, University of Copenhagen) is acknowledged 
for technical assistance.

FUnDinG

The Centre for Physical Activity Research (CFAS) is supported by 
a grant from TrygFonden. During the study period, the Centre of 
Inflammation and Metabolism (CIM) was supported by a grant 
from the Danish National Research Foundation (DNRF55). The 
study was further supported by grants from Diabetesforeningen, 
Augustinusfonden, Fonden til Laegevidenskabens Fremme, 
and Krista og Viggo Petersens Fond. CIM/CFAS is a member 
of DD2—the Danish Center for Strategic Research in Type 2 
Diabetes (the Danish Council for Strategic Research, grant no. 
09-067009 and 09-075724). MR-L was funded by a post doc grant 
from the Danish Diabetes Academy (through the Novo Nordic 
Foundation).

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.2337/diabetes.54.1.166
https://doi.org/10.2337/diabetes.54.1.166
https://doi.org/10.2337/dc17-S010
https://doi.org/10.1172/JCI112749
https://doi.org/10.3389/fnut.2016.00056
https://doi.org/10.3389/fnut.2016.00056
https://doi.org/10.2165/00007256-200333140-00002
https://doi.org/10.1079/PNS2003282
https://doi.org/10.1210/jc.82.
10.3208
https://doi.org/10.1210/jc.82.
10.3208
https://doi.org/10.1097/00005768-199601000-00018
https://doi.org/10.1123/ijsnem.18.1.79
https://doi.org/10.1123/ijsnem.18.1.79
https://doi.org/10.1016/j.metabol.2006.06.006
https://doi.org/10.1016/j.metabol.2006.06.006
https://doi.org/10.1016/0026-0495(89)90185-6
https://doi.org/10.1016/j.metabol.
2006.06.009
https://doi.org/10.1016/j.metabol.
2006.06.009


39

Karstoft et al. RMR and Training in Subjects with T2D

Frontiers in Endocrinology | www.frontiersin.org June 2017 | Volume 8 | Article 132

17. Mourier A, Gautier JF, De KE, Bigard AX, Villette JM, Garnier JP, et  al. 
Mobilization of visceral adipose tissue related to the improvement in insulin 
sensitivity in response to physical training in NIDDM. Effects of branched-
chain amino acid supplements. Diabetes Care (1997) 20:385–91. doi:10.2337/
diacare.20.3.385 

18. Jennings AE, Alberga A, Sigal RJ, Jay O, Boule NG, Kenny GP. The effect of 
exercise training on resting metabolic rate in type 2 diabetes mellitus. Med Sci 
Sports Exerc (2009) 41:1558–65. doi:10.1249/MSS.0b013e31819d6a6f 

19. Alawad AO, Merghani TH, Ballal MA. Resting metabolic rate in obese diabetic 
and obese non-diabetic subjects and its relation to glycaemic control. BMC Res 
Notes (2013) 6:382. doi:10.1186/1756-0500-6-382 

20. Weyer C, Bogardus C, Pratley RE. Metabolic factors contributing to increased 
resting metabolic rate and decreased insulin-induced thermogenesis during 
the development of type 2 diabetes. Diabetes (1999) 48:1607–14. doi:10.2337/
diabetes.48.8.1607 

21. Shaw K, Gennat H, O’Rourke P, Del MC. Exercise for overweight or obesity. 
Cochrane Database Syst Rev (2006) (4):CD003817. doi:10.1002/14651858.
CD003817.pub3

22. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, 
et al. The effects of free-living interval-walking training on glycemic control, 
body composition, and physical fitness in type 2 diabetes patients. Diabetes 
Care (2013) 36:228–36. doi:10.2337/dc12-0658 

23. Karstoft K, Wallis GA, Pedersen BK, Solomon TP. The effects of interval- 
vs. continuous exercise on excess post-exercise oxygen consumption and 
substrate oxidation rates in subjects with type 2 diabetes. Metabolism (2016) 
65:1316–25. doi:10.1016/j.metabol.2016.05.017 

24. Byrne HK, Wilmore JH. The relationship of mode and intensity of training on 
resting metabolic rate in women. Int J Sport Nutr Exerc Metab (2001) 11:1–14. 
doi:10.1123/ijsnem.11.1.1 

25. 2. Classification and diagnosis of diabetes. Diabetes Care (2016) 39(Suppl 1): 
S13–22. doi:10.2337/dc16-S005 

26. Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing 
exer cise as therapy in 26 different chronic diseases. Scand J Med Sci Sports  
(2015) 25(Suppl 3):1–72. doi:10.1111/sms.12581 

27. Brinklov CF, Thorsen IK, Karstoft K, Brons C, Valentiner L, Langberg H, 
et al. Criterion validity and reliability of a smartphone delivered sub-maximal 
fitness test for people with type 2 diabetes. BMC Sports Sci Med Rehabil (2016) 
8:31. doi:10.1186/s13102-016-0056-7 

28. Karstoft K, Clark MA, Jakobsen I, Muller IA, Pedersen BK, Solomon TP, et al. 
The effects of 2 weeks of interval vs continuous walking training on glycaemic 
control and whole-body oxidative stress in individuals with type 2 diabetes: 
a controlled, randomised, crossover trial. Diabetologia (2017) 60:508–17. 
doi:10.1007/s00125-016-4170-6 

29. Ried-Larsen M, Thomsen RW, Berencsi K, Brinklov CF, Brons C,  
Valentiner LS, et al. Implementation of interval walking training in patients 
with type 2 diabetes in Denmark: rationale, design, and baseline characteris-
tics. Clin Epidemiol (2016) 8:201–9. doi:10.2147/CLEP.S97303 

30. Levine JA. Measurement of energy expenditure. Public Health Nutr (2005) 
8:1123–32. doi:10.1079/PHN2005800 

31. Weir JB. New methods for calculating metabolic rate with special reference 
to protein metabolism. J Physiol (1949) 109:1–9. doi:10.1113/jphysiol.1949.
sp004363 

32. Ashcraft CM, Frankenfield DC. Validity test of a new open-circuit indirect 
calorimeter. JPEN J Parenter Enteral Nutr (2015) 39:738–42. doi:10.1177/ 
0148607114526242 

33. Byrne HK, Wilmore JH. The effects of a 20-week exercise training program on 
resting metabolic rate in previously sedentary, moderately obese women. Int 
J Sport Nutr Exerc Metab (2001) 11:15–31. doi:10.1123/ijsnem.11.1.15 

34. Bacchi E, Negri C, Zanolin ME, Milanese C, Faccioli N, Trombetta M, et al. 
Metabolic effects of aerobic training and resistance training in type 2 diabetic 
subjects: a randomized controlled trial (the RAED2 study). Diabetes Care 
(2012) 35:676–82. doi:10.2337/dc11-1655 

35. Hirsch KR, Smith-Ryan AE, Blue MN, Mock MG, Trexler ET. Influence of 
segmental body composition and adiposity hormones on resting metabolic 
rate and substrate utilization in overweight and obese adults. J Endocrinol 
Invest (2017) 40(6):635–43. doi:10.1007/s40618-017-0616-z 

36. Westerterp KR, Meijer GA, Janssen EM, Saris WH, Ten HF. Long-term effect 
of physical activity on energy balance and body composition. Br J Nutr (1992) 
68:21–30. doi:10.1079/BJN19920063 

37. Muller MJ, Enderle J, Bosy-Westphal A. Changes in energy expenditure with 
weight gain and weight loss in humans. Curr Obes Rep (2016) 5:413–23. 
doi:10.1007/s13679-016-0237-4 

38. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation 
in obesity and metabolic syndrome. J Diabetes Res (2015) 2015:341583. 
doi:10.1155/2015/341583 

39. Muller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, 
et  al. Metabolic adaptation to caloric restriction and subsequent refeeding: 
the Minnesota Starvation Experiment revisited. Am J Clin Nutr (2015) 
102:807–19. doi:10.3945/ajcn.115.109173 

40. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting 
from altered body weight. N Engl J Med (1995) 332:621–8. doi:10.1056/
NEJM199503093321001 

41. Straznicky NE, Lambert EA, Lambert GW, Masuo K, Esler MD,  
Nestel PJ. Effects of dietary weight loss on sympathetic activity and cardiac 
risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab 
(2005) 90:5998–6005. doi:10.1210/jc.2005-0961 

42. Hulmi JJ, Isola V, Suonpaa M, Jarvinen NJ, Kokkonen M, Wennerstrom A, 
et al. The effects of intensive weight reduction on body composition and serum 
hormones in female fitness competitors. Front Physiol (2016) 7:689. 

43. Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. 
Metabolic slowing with massive weight loss despite preservation of fat-free 
mass. J Clin Endocrinol Metab (2012) 97:2489–96. doi:10.1210/jc.2012-1444 

44. Gentile CL, Orr JS, Davy BM, Davy KP. Modest weight gain is associated with 
sympathetic neural activation in nonobese humans. Am J Physiol Regul Integr 
Comp Physiol (2007) 292:R1834–8. doi:10.1152/ajpregu.00876.2006 

45. Gram B, Christensen R, Christiansen C, Gram J. Effects of Nordic walking and 
exercise in type 2 diabetes mellitus: a randomized controlled trial. Clin J Sport 
Med (2010) 20:355–61. doi:10.1227/NEU.0b013e3181e56e0a 

46. Negri C, Bacchi E, Morgante S, Soave D, Marques A, Menghini E, et  al. 
Supervised walking groups to increase physical activity in type 2 diabetic 
patients. Diabetes Care (2010) 33:2333–5. doi:10.2337/dc10-0877 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer, OS, and handling editor declared their shared affiliation, and the 
handling editor states that the process nevertheless met the standards of a fair and 
objective review.

Copyright © 2017 Karstoft, Brinkløv, Thorsen, Nielsen and Ried-Larsen. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.2337/diacare.20.3.385
https://doi.org/10.2337/diacare.20.3.385
https://doi.org/10.1249/MSS.0b013e31819d6a6f
https://doi.org/10.1186/1756-0500-6-382
https://doi.org/10.2337/diabetes.48.8.1607
https://doi.org/10.2337/diabetes.48.8.1607
https://doi.org/10.1002/14651858.CD003817.pub3
https://doi.org/10.1002/14651858.CD003817.pub3
https://doi.org/10.2337/dc12-0658
https://doi.org/10.1016/j.metabol.2016.05.017
https://doi.org/10.1123/ijsnem.11.1.1
https://doi.org/10.2337/dc16-S005
https://doi.org/10.1111/sms.12581
https://doi.org/10.1186/s13102-016-0056-7
https://doi.org/10.1007/s00125-016-4170-6
https://doi.org/10.2147/CLEP.S97303
https://doi.org/10.1079/PHN2005800
https://doi.org/10.1113/jphysiol.1949.sp004363
https://doi.org/10.1113/jphysiol.1949.sp004363
https://doi.org/10.1177/
0148607114526242
https://doi.org/10.1177/
0148607114526242
https://doi.org/10.1123/ijsnem.
11.1.15
https://doi.org/10.2337/dc11-1655
https://doi.org/10.1007/s40618-017-0616-z
https://doi.org/10.1079/BJN19920063
https://doi.org/10.1007/s13679-016-0237-4
https://doi.org/10.1155/2015/341583
https://doi.org/10.3945/ajcn.115.109173
https://doi.org/10.1056/NEJM199503093321001
https://doi.org/10.1056/NEJM199503093321001
https://doi.org/10.1210/jc.2005-0961
https://doi.org/10.1210/jc.2012-1444
https://doi.org/10.1152/ajpregu.00876.2006
https://doi.org/10.1227/NEU.0b013e3181e56e0a
https://doi.org/10.2337/dc10-0877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


July 2017 | Volume 8 | Article 15440

Original research
published: 11 July 2017

doi: 10.3389/fendo.2017.00154

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Jan Polák,  

Charles University in Prague, Czechia

Reviewed by: 
Andrea Enzo Scaramuzza,  

Istituti Ospitalieri di Cremona, Italy  
Niels Jessen,  

Aarhus University, Denmark

*Correspondence:
Normand G. Boulé 

nboule@ualberta.ca

Specialty section: 
This article was submitted  

to Diabetes,  
a section of the journal  

Frontiers in Endocrinology

Received: 24 February 2017
Accepted: 20 June 2017
Published: 11 July 2017

Citation: 
Eshghi SR, Fletcher K,  

Myette-Côté É, Durrer C, Gabr RQ, 
Little JP, Senior P, Steinback C, 

Davenport MH, Bell GJ, Brocks DR 
and Boulé NG (2017) Glycemic and 

Metabolic Effects of Two Long Bouts 
of Moderate-Intensity Exercise in Men 

with Normal Glucose Tolerance or 
Type 2 Diabetes. 

Front. Endocrinol. 8:154. 
doi: 10.3389/fendo.2017.00154

glycemic and Metabolic effects 
of Two long Bouts of Moderate-
intensity exercise in Men with 
normal glucose Tolerance or  
Type 2 Diabetes
Saeed Reza Eshghi1,2, Kevin Fletcher1,2, Étienne Myette-Côté1,2, Cody Durrer3,  
Raniah Q. Gabr4, Jonathan P. Little3, Peter Senior2,5, Craig Steinback1,2,  
Margie H. Davenport1,2, Gordon J. Bell 1,2, Dion R. Brocks6 and Normand G. Boulé1,2*

1 Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada, 2 Alberta Diabetes Institute, 
University of Alberta, Edmonton, AB, Canada, 3 School of Health and Exercise Sciences, University of British Columbia, 
Kelowna, BC, Canada, 4 National Organization for Drug Control and Research (NODCAR), Giza, Egypt, 5 Division of 
Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada, 
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Background: The glycemic and insulinemic responses following 30–60 min of exercise 
have been extensively studied, and a dose–response has been proposed between 
exercise duration, or volume, and improvements in glucose tolerance or insulin sen-
sitivity. However, few studies have examined the effects of longer bouts of exercise in 
type 2 diabetes (T2D). Longer bouts may have a greater potential to affect glucagon, 
interleukin-6 (IL-6) and incretin hormones [i.e., glucagon-like peptide-1 (GLP-1) and 
glucose-dependent insulinotropic peptide (GIP)].

aim: To examine the effect of two bouts of long-duration, moderate-intensity exercise on 
incretins, glucagon, and IL-6 responses before and after exercise, as well as in response 
to an oral glucose tolerance test (OGTT) conducted the following day.

Methods: Twelve men, six with and six without T2D, participated in two separate con-
ditions (i.e., exercise vs. rest) according to a randomized crossover design. On day 1, 
participants either rested or performed two 90 min bouts of treadmill exercise (separated 
by 3.5  h) at 80% of their ventilatory threshold. All participants received standardized 
meals on day 1. On day 2 of each condition, glucose and hormonal responses were 
measured during a 4-h OGTT.

results: On day 1, exercise increased IL-6 at the end of the first bout of exercise (exer-
cise by time interaction p = 0.03) and GIP overall (main effect of exercise p = 0.004). 
Glucose was reduced to a greater extent in T2D following exercise (exercise by T2D 
interaction p = 0.03). On day 2, GIP and active GLP-1 were increased in the fasting state 
(p = 0.05 and p = 0.03, respectively), while plasma insulin and glucagon concentrations 
were reduced during the OGTT (p = 0.01 and p = 0.02, respectively) in the exercise com-
pared to the rest condition for both healthy controls and T2D. Postprandial glucose was 
elevated in T2D compared to healthy control (p < 0.05) but was not affected by exercise.
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conclusion: Long-duration, moderate-intensity aerobic exercise can increase IL-6. On 
the day following exercise, fasting incretins remained increased but postprandial insulin 
and glucagon were decreased without affecting postprandial glucose. This long duration 
of exercise may not be appropriate for some people, and further research should inves-
tigate why next day glucose tolerance was unchanged.

Keywords: aerobic exercise, glucose tolerance, glucagon, insulin, glucagon-like peptide-1, glucose-dependent 
insulinotropic peptide

inTrODUcTiOn

Exercise recommendations for the prevention and treatment of 
type 2 diabetes (T2D) emphasize exercise prescriptions designed 
to target insulin sensitivity or body composition (1, 2). These 
outcomes have been extensively studied, and it is generally 
recognized that typical exercise-induced changes in body com-
position are modest and that changes in insulin sensitivity are 
short lived (1, 2). Evidence to support, adapt, and fine-tune these 
recommendations are rapidly accumulating. The most recent 
(November 2016) position statement of the American Diabetes 
Association on Physical Activity/Exercise and Diabetes (2) cur-
rently recommends:

•	 To enhance insulin action: daily exercise or at least not allow-
ing more than 2 days to elapse between exercise sessions.

•	 For optimal glycemic and health outcomes: adults with T2D 
should ideally perform both aerobic and resistance exercise 
training.

•	 To prevent or delay the onset of T2D in populations at high 
risk and with prediabetes: structured lifestyle interventions 
that include at least 150  min/week of physical activity and 
dietary changes resulting in weight loss of 5–7%.

While exercise interventions based on this paradigm clearly 
contribute to meaningful reductions in the incidence of diabetes 
(3, 4) or hyperglycemia (5, 6), an unintended consequence of this 
success may have been a substantially smaller emphasis on the 
effects of exercise on other pathophysiologic disturbances pre-
sent in T2D. For example, Defronzo (7) proposed an “ominous 
octet” of potential pathophysiologic targets that also includes an 
increased glucagon secretion and a decreased incretin effect. The 
effects of exercise on many of these other outcomes are largely 
unknown in people with T2D.

Insight regarding how exercise could potentially affect 
glucagon or incretins in T2D may be obtained from studies in 
other populations. For example, repeated long bouts (e.g., two 
bouts of 90 min) of moderate-intensity exercise performed on 
the same day have been shown to lead to reductions in glucagon 
and other counter-regulatory hormones, as well as reductions 
in sympathetic nerve activity, which persist until at least the 
next day in people with type 1 diabetes (T1D) (8) and in healthy 
participants (9). This has been studied as part of the concept 
known as hypoglycemia-associated autonomic failure or HAAF 
(10). Reduced glucagon responses may be problematic in T1D 
who can experience hypoglycemia in response to exercise or 
excess insulin and has been studied more extensively. However, 

T2D and impaired glucose tolerance are characterized by 
impaired postprandial suppression of glucagon and could 
potentially benefit from non-pharmacological reductions in 
glucagon (11–13).

Incretin hormones, such as glucagon-like peptide-1 (GLP-1)  
and glucose-dependent insulinotropic peptide (GIP), are 
secreted from the gastrointestinal tract into the portal circula-
tion in response to nutrients. In a nutrient-dependent manner, 
incretins have been shown to contribute to lowering blood glu-
cose by increasing insulin secretion, decreasing glucagon secre-
tion, and decreasing the rate of gastric emptying [as reviewed 
by Drucker (14)]. On the other hand, GIP can increase glucagon 
secretion when glucose is low (15). The GLP-1 receptor has been 
found in cardiac muscle, smooth muscle of the vasculature, and 
perhaps skeletal muscle (16, 17). These findings, combined 
with the established heart rate (HR) increasing effect of GLP-1 
(18), suggest that incretins could play a role in cardiometabolic 
responses to exercise.

Ellingsgaard et  al. (19) have shown that increased interleu-
kin-6 (IL-6) during exercise could stimulate secretion of GLP-1 
from intestinal L cells and also pancreatic alpha cells. As reviewed 
by Pedersen (20), it is likely that increased circulating IL-6 during 
exercise is secreted directly by skeletal muscle and is proportional 
to the amount of glycogen depletion. In vivo human studies 
in healthy, obese, or T2D have often not observed an effect of 
exercise on incretin concentrations (21, 22), whereas a study in 
healthy runners observed increased GLP-1 following a marathon 
(23). It is unclear if this difference among human studies is due to 
differences in exercise duration or volume.

The effects of exercise clinical relevant outcomes such as 
glycated hemoglobin have been extensively studied (6, 24). The 
objective of this study was to examine the effect of two bouts 
of long-duration, moderate-intensity exercise on biomarkers, 
such as plasma glucagon, IL-6, GLP-1, and GIP. It was hypoth-
esized that, compared to rest, two bouts of long-duration (i.e., 
90 min) moderate-intensity exercise would increase plasma IL-6 
and incretin hormone concentrations in T2D and in healthy 
participants. On the day after the exercise or rest conditions, 
participants returned to the laboratory for a 4-h oral glucose 
tolerance test (OGTT) and it was hypothesized that two bouts  
of long-duration moderate-intensity exercise would reduce 
the following day glucagon concentrations immediately before 
(fasted state) and during the OGTT. These objectives were exam-
ined using large amounts of exercise as a proof of concept with 
the understanding that this large amount of exercise (i.e., 3 h in 
a single day) is unlikely for most people and unsafe for some.
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FigUre 1 | Study experimental design Legend:  = exercise,  = rest (Control),  = standardized meal,  = blood samples,  = heart rate 
variability and indirect calorimetry.
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MaTerials anD MeThODs

research Design
The experimental design involved two conditions that each 
required visits to the laboratory on two consecutive days  
(i.e., a total of four visits). On day 1 of each condition, participants 
were assigned to either exercise or control (i.e., rest) according 
to a randomized crossover design (Figure 1). On day 2 of each 
condition, participants return to the lab following an overnight 
fast for a 4-h OGTT. The 2-day exercise and control conditions 
were separated by at least 2 weeks.

Participants
Twelve men, six without diabetes and six with physician diag-
nosed T2D, were recruited for this study. Men were selected 
since they have higher glucagon concentrations in response to 
various stimuli (e.g., exercise or hypoglycemia) (25) and previ-
ous exercise studies of this nature have shown larger reductions 
in counter-regulatory responses in men (22). To minimize het-
erogeneity in T2D and the risk of hypoglycemia with prolonged 
exercise, participants were required to be treated with lifestyle 
intervention(s) and metformin only. In order to be eligible, all 
participants also had to be non-smokers and not taking any 
beta-blockers. Furthermore, participants were excluded if they 
had cardiovascular or orthopedic limitations to exercise, or 
felt they would be unable to walk for 90 min without interrup-
tion. Many of the participants with T2D were recruited from 
our previous exercise studies (26, 27) and were purposefully 
identified due to their above average level of fitness as potential 
volunteers due to the long bouts of walking required in the 
present study. Comparable cohorts of men without diabetes 
had not previously been studied in our lab, therefore, recruited 
a convenience sample of healthy counterparts with similar body 
mass indices.

This study was carried out in accordance with the recommen-
dations of the Tri-Council Policy Statement on “Ethical Conduct 
for Research Involving Humans” with written informed consent 
from all subjects. The protocol was approved by the University of 
Alberta Health Research Ethics Board.

Baseline assessment
Participants attended a baseline visit to measure glycated hemo-
globin (A1c; DCA Vantage™ A1C Analyzer, Siemens Medical 
Solutions, Malvern, PA, USA), resting metabolic rate (RMR), and 
perform a graded submaximal exercise test with indirect calorim-
etry (TrueMax metabolic measurement system, Parvo Medics, 
Salt Lake City, UT, USA). HR was measured using a Polar heart 
rate monitor (Polar Electro, Finland). The submaximal exercise 
test was performed according to a modified Balke–Ware tread-
mill protocol where each participant walked at a self-selected 
speed, determined as comfortable but brisk, while the grade was 
increased by 1% each minute. The test was ended shortly after 
participants reached their individual ventilatory threshold (VT) 
using the V-slope criteria (28) as determined by a trained exercise 
physiologist.

Once eligibility was confirmed and baseline assessments were 
performed, a 1-month exercise habituation phase was completed 
by every participant that included three sessions of exercise per 
week at 80% of their VT. The duration began with 30 min and 
gradually progressed until participants could walk for 90  min 
continuously.

experimental Protocol
On day 1 of each condition, participants arrived at lab at 08h00 
after a minimum 10-h overnight fast. They were asked to avoid 
vigorous exercise the day before each testing condition. An intra-
venous catheter was inserted into an antecubital vein and was 
kept patent with sterile saline. The exercise condition contained 
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two 90-min bouts of treadmill exercise at intensity of 80% of 
the previously determined VT, as described in previous studies 
(9, 29). The first exercise bout began at 09h00 in the fasted state 
and the second at 14h00. Blood samples were taken immediately 
before and after each bout of exercise. Indirect calorimetry and 
HR measurements were collected during the first and last 10 min 
of each 90-min bout of exercise. During the non-exercise condi-
tion, participants remained sedentary but the above measures 
(except for HR) were collected at the same times as during the 
corresponding exercise condition.

The energy intake required to maintain energy balance 
during non-exercise condition was estimated based on par-
ticipants’ previously measured RMR multiplied by a physical 
activity level (PAL) of 1.4 (Note: this PAL is typically used to 
characterize a sedentary lifestyle (30)). As in previous studies 
of this nature (31, 32), energy intake was kept the same on 
the exercise and non-exercise conditions. Energy intake was 
divided in two equal standardized meals (59% carbohydrate, 
22% fat, 19% protein) provided 30 min after each exercise bout 
(see Figure 1). As such, the first exercise bout was performed 
in the fasting state and the second bout started 150 min after 
the first meal.

On day 2, participants returned to the lab after a minimum 
10-h fast. Two fasting blood samples were taken; one 15 min 
before and the other immediately before the beginning of 
the OGTT containing 75 g of glucose (Trutol, Thermo Fisher 
Scientific, Canada). Ten blood samples were collected at specific 
time points following consumption of the glucose beverage 
(i.e., 15, 30, 45, 60, 90, 120, 150, 180, 210, and 240 min). Oxygen 
consumption and carbon dioxide production were collected for 
10  min before the OGTT and for the last 10  min of each of 
the next 4-h periods (see Figure 1) using the same metabolic 
measurement system. Respiratory exchange ratio (RER) was 
determined as ratio between carbon dioxide production and 
oxygen consumption, while energy expenditure was calculated 
assuming non-protein energy equivalents. A metabolic equiva-
lent (MET) was calculated as 1  kcal/kg/h (33). Participants 
were asked sit continuously throughout the test, with the 
exception of a bathroom break if required. Appetite rating and 
HR were collected during the same intervals. Appetite ratings 
were measured by a 150 mm visual analog scale and included 
questions on hunger, fullness, prospective food consumption, 
and desire to eat something sweet, salty, or fatty (34). HR was 
measured using a standard three-lead ECG over the same inter-
vals as for the indirect calorimetry. Heart rate variability (HRV) 
is a tool that can be used to investigate the sympathetic and 
parasympathetic function of the autonomic nervous system. 
Autonomic nervous system activity can be affected by both 
hypo- and hyperglycemia. HRV indices included the root mean 
squared of the successive differences between R–R intervals 
(rMSSD), the SD of the R–R intervals (SDRR), and the ratio 
of low frequency spectral power to high frequency spectral 
power. For both day 1 and day 2, the first and last minutes of 
the 10-min indirect calorimetry and HR periods were excluded 
to allow for more stable data.

Participants with T2D refrained from taking their metformin 
dose on all four testing days. The last metformin dose was 

consumed more than 12 h prior to first blood sample which was 
taken on day 1 of each testing condition.

Blood samples
Each blood sample was first collected into a 10-mL EDTA vacu-
tainer tube. Subsequently, 2.0 mL was transferred into a tube with 
20 µL of a dipeptidyl peptidase (DPP-4) inhibitor (Millipore, MA, 
USA), 2.0 mL was transferred into a tube with 6.7 µL aprotinin 
(Millipore, MA, USA), and 0.25 mL whole blood was transferred 
into 1.0 mL ice-cold 8% perchloric acid. Aprotinin was added to 
inhibit proteases known to interfere with the determination of 
glucagon. The DPP-4 inhibitor was added to prevent degradation 
of active GLP-1. Perchloric acid was added to deproteinize the 
samples. The EDTA tubes were centrifuged at 1,500 × g for 10 min 
at 4°C. The tubes containing perchloric acid and aprotinin were 
centrifuged at 2,000 × g for 15 min at 4°C. Following centrifuga-
tion, the samples were immediately moved to a −80°C freezer 
until assays were completed.

Non-esterified fatty acids (NEFAs) were analyzed using 
commercially available kits (Wako Diagnostics, CA, USA), 
while plasma glucose and lactate were determined enzymati-
cally using spectrophotometric assays. Total GIP, glucagon and 
insulin were measured using a Multi-Spot® Assay System with a 
Sector® Imager 2400 (Meso Scale Discovery®, MD, USA). Active 
GLP-1 was measured separately (Meso Scale Discovery®, MD, 
USA). Hematocrit was measured only on day 1 for both exercise 
and non-exercise conditions. Plasma IL-6 was also measured 
from day 1 plasma samples using a high-sensitivity ELISA 
(Quantikine HS human IL-6, R&D Systems Ltd., Abingdon, 
UK). Plasma metformin concentrations were assessed by high 
performance liquid chromatography in all plasma samples from 
day 1 as well as fasting samples from day 2. The concentration of 
phosphate solution used in the mobile phase was 20 mmol/L. The 
metformin assay was validated to a lower limit of quantitation 
of 8 ng/mL metformin based on 0.1 mL of human plasma (35). 
All assays were run in duplicate and the average of the two was 
reported.

statistical analysis
The primary analyses were conducted using a three-way mixed 
factorial design ANOVA with Diabetes as a between group factor 
(i.e., T2D vs. healthy control), as well as Exercise (i.e., exercise vs.  
rest conditions) and Time (i.e., consecutive blood samples) as 
repeated measures factors. The number of levels for the time 
factor differed depending on the time period examined (e.g., day 
1 had four consecutive blood samples). For day 2, The Diabetes 
by Exercise by Time ANOVA showed a significant effect of Time 
for all of the blood sample results (all p < 0.01). Therefore, it was 
deemed more informative to separate the fasting from the post 
glucose beverage results. For the 10 blood samples taken at dif-
ferent intervals postprandially, we considered both the area under 
the curve (AUC) and incremental AUC (iAUC). The AUC was 
calculated by the trapezoid method. The iAUC was calculated by 
subtracting the average of the two fasting values from the AUC. 
For the variables that were measured at 1-h intervals postprandi-
ally (e.g., calorimetry, HRV, and appetite) the four postprandial 
values were averaged. Age was a known confounder for HRV 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TaBle 1 | Baseline characteristics.

T2D healthy p-Value

n 6 6 –
Age (years) 60.5 ± 8.5 42.5 ± 10.5 0.009
BMI (kg/m2) 24.8 ± 4.3 26.7 ± 3.2 0.39
Body weight (kg) 75.5 ± 16.2 81.6 ± 10.2 0.45
Duration of T2D (years) 3.9 ± 2.3 – –
A1c (%) 6.4 ± 0.3 5.6 ± 0.1 <0.001
VO2@VT (mL/kg/min) 28.5 ± 5.6 37.2 ± 8.4 0.06
SBP (mmHg) 125 ± 14 131 ± 11 0.44
DBP (mmHg) 75 ± 10 71 ± 5 0.45

T2D, type 2 diabetes; BMI, body mass index; A1c, glycated hemoglobin; NA, not 
applicable; NS, not significant; VT, ventilatory threshold; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; RMR, resting metabolic rate.
Data presented as mean ± SD.

TaBle 2 | Indirect calorimetry and HR at the beginning and at the end of two bouts of exercise or control (i.e., rest) on day 1.

healthy T2D p-Value

9h00–9h10 10h20–10h30 2h00–2h10 3h20–3h30 9h00–9h10 10h20–10h30 2h00–2h10 3h20–3h30

RER (VCO2/VO2) Ex 0.87 ± 0.04 0.84 ± 0.02 0.90 ± 0.02 0.85 ± 0.03 0.89 ± 0.03 0.82 ± 0.03 0.89 ± 0.03 0.84 ± 0.04 Ex < 0.001
Time < 0.001

Rest 0.76 ± 0.03 0.74 ± 0.05 0.83 ± 0.03 0.80 ± 0.03 0.79 ± 0.04 0.79 ± 0.05 0.86 ± 0.05 0.84 ± 0.06 Ex × T2D = 0.036
Ex × Time < 0.001

EE (METs) Ex 7.25 ± 1.81 7.59 ± 1.65 7.29 ± 1.25 7.08 ± 1.14 6.78 ± 1.06 6.86 ± 1.01 6.56 ± 0.98 6.49 ± 1.19 Ex < 0.001
Rest 0.93 ± 0.15 0.91 ± 0.11 1.12 ± 0.14 1.01 ± 0.10 0.86 ± 0.18 0.94 ± 0.11 1.08 ± 0.11 1.01 ± 0.16

HR (bpm) Ex 120 ± 13 135 ± 23 139 ± 23 145 ± 25 121 ± 6 139 ± 9 129 ± 9 141 ± 11 Time = 0.001
Rest NA NA NA NA NA NA NA NA

Outcomes were measured during the first 10 min and last 10 min of each bout of exercise (or rest).
T2D, type 2 diabetes; Ex, exercise; RER, respiratory exchange ratio; EE, energy expenditure; METs, metabolic equivalent (kcal/kg/h); HR, heart rate; bpm, beats per minute; NA, not 
available.
Data presented as mean ± SD. ANOVA examined main effect of exercise, diabetes, time, and their interactions. Only significant p-values are shown.
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and was significantly associated with our HRV outcomes; we, 
therefore, considered age as a covariate for the statistical analyses 
on HRV. For each ANOVA, we examined interaction effects and 
main effects, but did not conduct the many possible post  hoc 
comparisons due to lack of statistical power. Sphericity was tested 
using Mauchly’s test of sphericity. In the events where Mauchly’s 
sphericity test was significant the Greenhouse–Geisser correction 
was used.

Baseline characteristics were compared between groups 
using independent t-tests. Secondary analyses also examined 
the bivariate correlations among variables (e.g., IL-6 vs. GLP-1). 
Statistical tests were two-tailed, and p-values ≤ 0.05 were consid-
ered significant. Statistical analyses were performed with SPSS 21 
(SPSS, Inc., Chicago, IL, USA).

resUlTs

Participants
All 12 participants (6 T2D and 6 healthy) completed the 
study. Baseline characteristics are presented in Table  1. T2D 
and healthy participants had an average age of 60.5 ± 8.5 and 
42.5 ± 10.5 years (p < 0.01) and an average body mass index 
(BMI) of 24.8 ± 4.3 and 26.7 ± 3.2 kg/m2 (p = 0.39), respectively. 

All T2D participants had a well-controlled glycemia as sug-
gested by their A1c (6.4 ± 0.3%). They were treated with 500 
to 1,500 mg of metformin per day and the average duration of 
diabetes diagnosis was 3.9 ± 2.3 years.

Day 1
Energy Expenditure and HR
All participants completed both 90-min exercise bouts without 
requiring adjustments to the exercise intensity. Indirect calorim-
etry and HR results from the exercise bout and corresponding 
rest conditions are presented in Table  2. As expected, energy 
expenditure and RER were significantly increased with exercise 
(main effect of Exercise p < 0.001). Energy expenditure corre-
sponded to approximately one MET on the rest day and seven 
METs during exercise with no significant difference between 
T2D and healthy participants (see Table 2 for details). In addi-
tion to an increased RER with exercise, a significant Exercise by 
Diabetes interaction (p = 0.036) and an Exercise by Time inter-
action (p <  0.001) were observed for RER. These interactions 
were the result of RER being lower on the rest day in the healthy 
participants and after lunch in the exercise condition but greater 
after lunch in the rest condition. During the exercise bouts, HR 
averaged 121 ±  3 beats per minute during the first 10  min of 
each bout of exercise, or 72 ± 2% of age predicted maximum HR, 
and drifted upwards throughout exercise (main effect of time 
p = 0.001).

Plasma Samples
Results of blood sample analyses from day 1 are summarized in 
Table 3 and Figure 2. There was a significant Time by Diabetes 
interaction (p = 0.03) suggesting that glucose changed to a greater 
extent in T2D over time. In addition, there was a significant main 
effect of Exercise leading to lower overall glucose concentrations 
in the exercise condition (p = 0.02).

There was a significant Exercise by Time interaction for IL-6 
(p = 0.03). Visual Inspection of the graph in Figure 2 suggests 
that exercise increased IL-6 compared to rest when performed in 
the fasting state but not when performed after lunch when IL-6 
was increased overall compared to fasting. The IL-6 responses 
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TaBle 3 | Concentrations of energy substrates and hormones before and after two 90-min moderate-intensity exercise bouts or rest on day 1.

healthy T2D p-value

9h00 (pre-
first bout)

10h30 (post-
first bout)

2h00 (pre-
second bout)

3h30 (post-
second bout)

9h00 (pre-
first bout)

10h30 (post-
first bout)

2h00 (pre-
second bout)

3h30 (post-
second bout)

Glucose 
(mmol/L)

Ex 4.7 ± 0.2 4.3 ± 0.3 4.8 ± 0.3 3.8 ± 0.2 6.1 ± 0.5 5.2 ± 0.2 8.8 ± 1.1 4.3 ± 0.3 Ex = 0.02
Time, T2D < 0.001

Rest 4.5 ± 0.3 4.7 ± 0.2 5.1 ± 0.8 4.5 ± 0.5 6.2 ± 0.6 6.2 ± 0.5 9.3 ± 1.1 6.9 ± 1.0 Time × T2D = 0.03
Lactate 
(mmol/L)

Ex 0.9 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.2 ± 0.2 Ex × Time = 0.05
Rest 1.0 ± 0.2 0.7 ± 0.0 1.1 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 1.2 ± 0.1 1.0 ± 0.1

NEFA 
(mmol/L)

Ex 0.4 ± 0.1 1.2 ± 0.3 0.2 ± 0 1.1 ± 0.2 0.5 ± 0.1 1.4 ± 0.2 0.3 ± 0.1 1.1 ± 0.2 Ex, Time < 0.001
Time × T2D = 0.02

Rest 0.5 ± 0.1 0.5 ± 0.1 0.2 ± 0.0 0.3 ± 0.0 0.4 ± 0.1 0.6 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 Ex × Time < 0.001
Insulin 
(pmol/L)

Ex 39.1 ± 8.9 20.8 ± 6.2 308.6 ± 81.7 23.9 ± 10.5 30.6 ± 9.5 36.3 ± 11.2 168.8 ± 48.5 37.7 ± 7.61 Time < 0.001
Rest 37.2 ± 7.6 32.5 ± 8.9 319.9 ± 103 58.9 ± 21.2 31.3 ± 8.8 24.6 ± 8.3 392.9 ± 159.7 20.6 ± 42

Glucagon 
(ng/L)

Ex 54.7 ± 6.5 81 ± 14.7 79.1 ± 5.5 114 ± 16.1 71.3 ± 6.7 78.9 ± 6.3 97.3 ± 19 103.6 ± 9.9 Ex, Time < 0.001
Rest 50.2 ± 6.9 49.8 ± 7.7 77.7 ± 6.2 62.8 ± 6.6 58.9 ± 5.9 47.3 ± 9.3 86.4 ± 13.8 69.2 ± 4.6 Ex × Time = 0.02

Outcomes were measured immediately before and immediately after of each bout of exercise (or rest). T2D, type 2 diabetes; Ex, exercise; NEFA, non-esterified fatty acids. Results 
presented as mean ± SEM. ANOVA examined main effect of exercise, diabetes, time, and their interactions. Only significant p-values are shown.

FigUre 2 | Day 1 plasma concentrations for interleukin-6 (IL-6), active glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) in 
response to two 90-min bouts of exercise (▪) vs. rest (⚬) in healthy participants (left panels) and in type 2 diabetes (T2D) (right panels). Data shown as mean ± SEM.
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TaBle 4 | Indirect calorimetry and heart rate variability during fasting and following an oral glucose tolerance test on day 2.

Fasting Mean postprandial ΔPostprandial

healthy T2D p healthy T2D p healthy T2D p

RER (VCO2/VO2) Ex 0.77 ± 0.04 0.73 ± 0.03 T2D < 0.01 0.82 ± 0.04 0.76 ± 0.02 T2D = 0.01 0.04 ± 0.03 0.03 ± 0.01
Rest 0.80 ± 0.03 0.76 ± 0.02 0.84 ± 0.03 0.80 ± 0.02 Ex < 0.01 0.05 ± 0.02 0.04 ± 0.02

EE (METs) Ex 0.85 ± 0.12 0.90 ± 0.11 0.91 ± 0.08 0.95 ± 0.12 0.05 ± 0.10 0.05 ± 0.05
Rest 0.85 ± 0.13 0.88 ± 0.08 0.91 ± 0.07 0.92 ± 0.11 0.06 ± 0.08 0.03 ± 0.07

HR (bpm) Ex 60 ± 5 59 ± 15 64 ± 4 61 ± 13 4 ± 2 2 ± 2
Rest 56 ± 5 61 ± 15 59 ± 4 62 ± 13 3 ± 1 1 ± 4

RMSSD Ex 51 ± 23 34 ± 15 40 ± 10 28 ± 11 −11 ± 12 −6 ± 10
Rest 60 ± 20 27 ± 14 49 ± 16 26 ± 11 −10 ± 5 −1 ± 9

SDRR Ex 80 ± 38 46 ± 17 66 ± 19 54 ± 26 −14 ± 23 8 ± 18
Rest 74 ± 25 46 ± 20 70 ± 20 48 ± 27 −1 ± 19 2 ± 13

LF/HF Ex 1.52 ± 1.14 0.91 ± 9.34 1.61 ± 0.72 1.32 ± 0.94 −0.04 ± 1.12 0.41 ± 1.17
Rest 0.77 ± 0.27 1.80 ± 1.03 1.27 ± 0.84 1.46 ± 1.28 0.53 ± 0.66 −0.34 ± 1.53

T2D, type 2 diabetes; Ex, exercise; RER, respiratory exchange ratio; EE, energy expenditure; METs, metabolic equivalent or kilocalories divided by kilograms of body mass and hours 
(kcal/kg/h); HR, heart rate; bpm, beats per minute; SDRR, SD of the R–R intervals; rMSSD, root mean squared of the successive differences between R–R intervals; LF/HF, the ratio 
of low frequency spectral power to high frequency spectral power; mean postprandial, average from 10 min at the end of each of the four 1-h postprandial periods; ΔPostprandial, 
mean postprandial minus fasting. Data presented as mean ± SD. ANOVA examined main effect of exercise, diabetes, time, and their interactions. Only significant p-values are 
shown.
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were similar for participants with and without T2D (Figure 2). 
GIP followed a similar pattern during the first exercise bout 
compared to rest, but increased to a greater extent in healthy 
participants following lunch, leading to an Exercise by Time 
by Diabetes interaction (p =  0.03). Overall plasma metformin 
concentrations decreased from 402  ±  120 to 191  ±  52  ng/ml 
(main effect of Time p = 0.03) throughout day 1 and were not 
affected by exercise.

Day 2
Energy Expenditure, HR, and Appetite
There were main effects of Time on energy expenditure and 
RER during the OGTT (both p < 0.001). There were no effects 
of Exercise or T2D on energy expenditure in the fasting state or 
postprandially. RER was greater in participants with diabetes but 
lower after exercise throughout day 2 (main effect of T2D and 
Exercise, both p ≤ 0.01 see Table 4). There was no statistically sig-
nificant effect of exercise or diabetes and HRV indices during the 
OGTT. Overall, ratings for prospective food consumption were 
higher during the OGTT from the exercise condition compared 
to the rest condition (p = 0.03). However, postprandial fullness 
decreases following exercise in T2D only (Diabetes by Exercise 
interaction p  =  0.04 for fasting; p  =  0.056 for the mean post-
prandial values). Participants with T2D had a lower desire to eat 
something sweet in the fasting (p = 0.01) and postprandial state 
(p = 0.03), but a Diabetes by Exercise interaction (p = 0.045) indi-
cated that exercise tended to increase the desire to eat something 
sweet in T2D while decreasing this rating in healthy participants 
during the OGTT.

Plasma Samples
There were significant main effects of Time on all energy 
substrates and hormones on day 2. Therefore, analyses were 
conducted separately for the fasting and postprandial values. 

There was a main effect of Diabetes on fasting, AUC, and iAUC 
glucose (all p  <  0.05) but no main effect of Exercise on the 
AUC and iAUC. However, there was a main effect of Exercise 
on fasting glucose (p  =  0.05), with a 0.5 and 0.1  mmol/L 
decrease fasting glucose in the morning following exercise 
in the T2D and healthy control group, respectively (note: the 
Diabetes by Exercise interaction was not significant, p = 0.35),  
see Figure 3.

Exercise increased fasting glucagon in the healthy control 
group but not in T2D (Exercise by Diabetes interaction, p = 0.02), 
whereas the postprandial iAUC for glucagon was reduced by 
exercise (main effect of Exercise, p = 0.01). Fasting insulin was 
not affected by exercise but iAUC and AUC insulin were reduced 
(main effect of Exercise, p = 0.08, p = 0.01 and p = 0.001, respec-
tively). In terms of the insulin:glucagon ratio, both the iAUC and 
AUC were reduced following exercise (main effect of Exercise 
p = 0.04 and p = 0.004, respectively), see Figure 3.

Fasting active GLP-1 and GIP concentrations showed a small 
increase with exercise (main effect of Exercise, both p <  0.05). 
Exercise on the previous day did not affect postprandial incretin 
hormones during the OGTT, see Figure 3 and Table 5.

Upon arrival on day 2, fasting plasma metformin concen-
trations were very low and similar between exercise and rest  
(i.e., control) conditions (76 ± 17 to 83 ± 18 ng/ml, respectively, 
main effect of Time, p = 0.03).

Bivariate Correlations
There was no significant bivariate correlation between changes 
in IL-6, insulin or glucagon and changes in active GLP-1 or 
GIP, either when examining the participants with and without 
T2D together or separately on day 1. On day 2, there was an 
inverse association (r = −0.60, p = 0.038) between the exercise-
induced changes in lactate and HRV as assessed by RMSSD. 
No associations were found between incretins and glucagon or 
insulin.
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DiscUssiOn

To our knowledge, no other study in T2D has examined the 
glycemic, hormonal, and metabolic responses to exercise 

of such a high volume in a single day (i.e., 3  h walking). 
Although other studies have suggested a dose–response 
relationship between exercise duration and improvements in 
glucose tolerance or insulin sensitivity (36–38), we did not 

FigUre 3 | Day 2 fasting plasma concentrations (−15 and 0 min) and responses to an oral glucose tolerance test (area under the curve = AUC; incremental AUC = 
iAUC) for glucose, glucagon, insulin, and active glucagon-like peptide-1 (GLP-1), the day after two 90-min bouts of exercise (▪) vs. rest (⚬) in healthy participants (left 
panels) and in type 2 diabetes (T2D) (right panels). Results from 2 × 2 ANOVA showing main effects of exercise vs. rest, diabetes vs. control, and their interaction. 
Data shown as mean ± SEM.
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found that consuming a carbohydrate beverage during 120 min 
of cycling abolished leg IL-6 release even though muscle glycogen 
was reduced to a similar extent compared to fasting exercise (42). 
IL-6 was also increased by lunch itself, which is consistent with 
previous studies (43, 44). Therefore, it appears that exercise-
induced IL-6 secretion requires, or at least is more pronounced, 
with fasting exercise protocols.

A notable finding in the present study was that, in accord-
ance with the hypothesis, two long bouts of exercise enhanced 
the postprandial suppression of glucagon (i.e., reduced iAUC). 
The postprandial suppression of glucagon is thought to be 
impaired in people with T2D (7). While both insulin and 
glucagon were lowered by exercise during the OGTT, insulin 
was reduced to a greater extent as reflected as a decrease in both 
the iAUC and AUC for the insulin:glucagon ratio. Insulin acts 
to suppress glucagon secretion; therefore, the observation of a 
lower glucagon in the presence of lower insulin is noteworthy 
since previous studies using hyperinsulinemic clamp protocols 
reported a reduced glucagon following exercise when insulin 
was maintained in the exercise and rest conditions (8, 9, 29). 
The mechanism by which this form of exercise suppresses post-
prandial glucagon concentration in T2D cannot be elucidated 
from this study and is indeed a topic of continued interest and 
debate (7, 45). Despite postprandial glucagon being reduced 
in our participants with T2D, postprandial hyperglycemia was 
not improved. While this may be disappointing from a clinical 
perspective, the similar concentrations of plasma glucose in both 
conditions may be considered fortuitous to examine changes in 
glucoregulatory hormones without needing to clamp glucose at 
a fixed concentration.

From a theoretical perspective, the absence of a glucose 
lowering effect of exercise during an OGTT performed on the 
following day in T2D was unexpected. It is generally believed 
that the glucose lowering effect of exercise is proportional to 
the duration or volume of exercise (37, 38). Although our study 
had a small sample size, the absence of the expected glucose 
lowering effect of exercise is unlikely to be due low statistical 
power as the post OGTT glucose AUC was slightly higher (1%) 

observe any improvements in glucose tolerance following 3 h  
of exercise.

Unlike other studies in T2D or obesity which utilized shorter 
bouts of exercise (21, 22, 39), we observed elevated incretin hor-
mones, particularly GIP, immediately after exercise (Figure 2). 
This increase persisted to the following day in the fasted state but 
not during the OGTT. It is unclear if these increases are practi-
cally meaningful as the increases were small in absolute terms 
and occurred at times when incretins were low. The increase 
was nonetheless consistent as we were able to detect these dif-
ferences with a small sample size. In the participants with T2D 
who had relatively well-controlled glycemia, postprandial plasma 
incretin concentrations were not lower in T2D compared to 
healthy controls. While earlier studies suggested lower incretins 
in T2D, recent meta-analyses suggest that this is not always the 
case for both GIP (40) and GLP-1 (41). Another possibility to 
explain the strong incretin response (particularly for GLP-1) 
during the OGTT in our participants with T2D was that they 
were prescribed metformin, an oral hypoglycemic medication 
that has been shown to increase incretins (21). However, the 
last metformin dose had been consumed at least 36 h before the 
OGTT and metformin concentrations had been reduced less 
than 5% of the concentrations we observed in the hours following 
a morning dose of metformin (21). However, it is not known if 
the effect of long term metformin treatment could have persisted 
beyond 36 h.

According to Ellingsgaard et al. (19) an increased GLP-1 fol-
lowing exercise may be due to increased IL-6. Importantly, the 
increase in plasma IL-6 during exercise can be directly attributed 
to secretion from skeletal muscle and IL-6 is thought to be secreted 
in proportion to glycogen depletion [as reviewed by Pedersen 
(20)]. We observed that plasma IL-6 only increased compared 
to rest during the first exercise bout, which was performed in 
the fasting state and not during the second bout performed 
after lunch. The design of the present study does not allow us to 
conclude if the absence of an effect of exercise on plasma IL-6 
after lunch was due to the meal itself or to a reduced effect when 
sequential exercise bouts are performed. However, a recent study 

TaBle 5 | Concentrations of energy substrate and hormones during fasting and following an oral glucose tolerance test on day 2.

Fasting iaUc aUc

healthy T2D p healthy T2D p healthy T2D p

Glucose 
(mmol/L)

Ex 4.6 ± 0.1 6.2 ± 0.5 Ex = 0.05 372 ± 171 1,006 ± 264 T2D < 0.05 1,469 ± 190 2,499 ± 345 T2D < 0.05
Rest 4.7 ± 0.2 6.7 ± 0.6 T2D < 0.05 269 ± 138 902 ± 193 1,408 ± 185 2,504 ± 304

Lactate 
(mmol/L)

Ex 0.8 ± 0.1 0.8 ± 0 T2D < 0.05 38.8 ± 5.3 51.9 ± 11.5 221.4 ± 15.0 241.3 ± 9.8 Ex = 0.05
Rest 0.7 ± 0.1 1.0 ± 0.1 Ex × T2D < 0.05 49.6 ± 7.4 26.6 ± 12.2 222.9 ± 10.0 264.8 ± 15.3

NEFA  
(mEq/L)

Ex 0.7 ± 0.1 0.6 ± 0.1 −73.4 ± 23.2 −55.7 ± 8.9 90.3 ± 14.2 76.5 ± 13.1
Rest 0.6 ± 0.1 0.5 ± 0.1 −75.4 ± 12 −48.1 ± 6.5 66.7 ± 5.2 72.0 ± 17.0

Insulin  
(pmol/L)

Ex 31.9 ± 7.6 28.7 ± 8.7 36,182 ± 9,974 13,992 ± 3,841 Ex = 0.01 43,836 ± 11,595 20,881 ± 5,203 Ex < 0.01
Rest 40.7 ± 9.2 32.6 ± 8.7 47,004 ± 14,486 20,144 ± 5,078 56,777 ± 16,265 27,958 ± 6,422

Glucose-
dependent 
insulinotropic 
peptide (pg/mL)

59.9 ± 7.2 68.7 ± 10.7 Ex = 0.05 43,630 ± 6,230 34,329 ± 7,530 58,016 ± 5,804 50,827 ± 7,208
55.1 ± 6.4 57.2 ± 7.6 39,297 ± 6,526 36,856 ± 4,640 52,515 ± 5,716 50,594 ± 4,441

T2D, type 2 diabetes; Ex, exercise; AUC, area under the curve; iAUC, incremental area under the curve; T2D, type 2 diabetes; NEFA, non-esterified fatty acids. For all outcomes, 
there was a sigificant main effect of time. Data presented as mean ± SEM. ANOVA examined main effect of exercise, diabetes, and their interactions. Only significant p-values are 
shown.
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in the exercise condition. The reasons for the unchanged glu-
cose were unclear, although postprandial insulin was reduced 
suggesting improved insulin sensitivity. Other studies have 
documented an absence of improvement in OGTT following 
longer bouts of exercise. For example, Tremblay et al. observed 
an increase in glucose AUC during an OGTT performed 16 h 
after 90 min of cycling at 67% of VO2max (46). They attributed 
this increased to an increased adipose tissue lipolysis, increased 
NEFA, and a decreased glucose oxidation (46). This explana-
tion is consistent with our observation of a decreased RER (i.e., 
indicating a decreased carbohydrate oxidation) and a tendency 
for increased NEFA (p  =  0.09) during the OGTT from the 
exercise condition.

A primary limitation of the present study was the small sample 
size. As a result, our study was underpowered to detect poten-
tially meaningful effects of exercise or diabetes. Our randomized 
crossover design helped to reduce the impact of this limitation 
on statistical power when comparing the exercise and rest condi-
tions. However, the between participant comparison of T2D 
(n = 6) to healthy control (n = 6) was particularly underpowered 
for some outcomes.

The validity of conclusions regarding comparisons between 
T2D and healthy controls was further impaired by these small 
subgroups which were not matched for possible confounders 
(e.g., age, BMI, and fitness). BMI and exercise-induced energy 
expenditure ended up being relatively similar between the 
healthy and T2D participants; however, the healthy control 
group was younger and likely had different body composition 
(e.g., more fat free mass). Age was not associated with most 
outcomes in our study with the notable exception of HRV. HRV 
was lower in our T2D participants but these differences were 
no longer significance after adjusting for age. Although not 
statistically significant, there were trends to suggest an increase 
in indices of HRV following exercise in T2D but not in healthy 
participants. In addition to detecting differences in glucose, our 
study was able to detect other expected differences between 
healthy participants and T2D [e.g., RER (47) and glucagon (11)].  
Nonetheless, the primary contributions to be retained from 
this article should be in regards to the exercise vs. control 
comparison.

The participants with T2D that were recruited for our study 
were likely more fit, more physically active, and leaner than many 
people with T2D. Such participants were selected to increase the 
likelihood of completing the exercise protocol and reduce the risk 
of injury. However, this selection also introduces potential bias. 
The phenotypic differences in our participants could influence 
many of the hormonal and metabolic responses to exercise. For 
example, participants with lower fitness or greater adiposity may 
have a different inflammatory profile or different inflammatory 

response to exercise (48, 49). This could potentially reduce gen-
eralizability of our result.

Another limitation of the study was the reliance on plasma 
concentrations of hormones taken from peripheral blood sam-
ples. These concentrations from the systemic circulation often do 
not reflect the exposure of other organs to these hormones (e.g., 
pancreas or liver). In addition, our multiplex hormone assay used 
has limitations in regards to specificity. For example, the glucagon 
assay has been shown to have some cross-reactivity with glicentin 
(or to a lesser extent oxyntomodulin) (50).

In conclusion, exercise can affect a variety of pathological 
features that can contribute to hyperglycemia. Potential ben-
efits include decreasing postprandial hyperglucagonemia 
and increasing incretin concentrations. The exercise protocol  
(i.e., two 90 min bouts of exercise) used in this study is likely not 
feasible for most people. Larger samples sizes and closer match-
ing of participant characteristics would be required to more 
carefully address differences between participants with normal 
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seek to better understand if similar results can be obtained 
with shorter exercise protocols, as well as the persistency of the 
observed changes.
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Background: Exercise training improves performance and biochemical parameters on

average, but wide interindividual variability exists, with individuals classified as responders

(R) or non-responders (NRs), especially between populations with higher or lower levels

of insulin resistance. This study assessed the effects of high-intensity interval training

(HIIT) and the prevalence of NRs in adult women with higher and lower levels of insulin

resistance.

Methods: Forty adult women were assigned to a HIIT program, and after training were

analyzed in two groups; a group with higher insulin resistance (H-IR, 40 ± 6 years; BMI:

29.5 ± 3.7 kg/m2; n = 20) and a group with lower insulin resistance (L-IR, 35 ± 9 years;

27.8± 2.8 kg/m2; n= 20). Anthropometric, cardiovascular, metabolic, and performance

variables were measured at baseline and after 10 weeks of training.

Results: There were significant training-induced changes [delta percent (1%)] in

fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance

(HOMA-IR) scores in the H-IR group (−8.8, −26.5, −32.1%, p < 0.0001), whereas

no significant changes were observed in the L-IR. Both groups showed significant

pre-post changes in other anthropometric variables [waist circumference (−5.2, p

< 0.010, and −3.8%, p = 0.046) and tricipital (−13.3, p < 0.010, and −13.6%,

p < 0.0001), supra-iliac (−19.4, p < 0.0001, and −13.6%, p < 0.0001), and

abdominal (−18.2, p < 0.0001, and −15.6%, p < 0.010) skinfold measurements].

Systolic blood pressure decreased significantly only in the L-IR group (−3.2%, p <

0.010). Both groups showed significant increases in 1RMLE (+12.9, p < 0.010, and

+14.7%, p = 0.045). There were significant differences in the prevalence of NRs

between the H-IR and L-IR groups for fasting glucose (25 vs. 95%, p < 0.0001)

and fasting insulin (p = 0.025) but not for HOMA-IR (25 vs. 45%, p = 0.185).
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Conclusion: Independent of the “magnitude” of the cardiometabolic disease (i.e.,

higher vs. lower insulin resistance), no differences were observed in the NRs prevalence

with regard to improved HOMA-IR or to anthropometric, cardiovascular, and muscle

performance co-variables after 10 weeks of HIIT in sedentary adult women. This research

demonstrates the protective effect of HIIT against cardiometabolic disease progression

in a sedentary population.

Keywords: high-intensity interval training, non-responders, insulin resistance, women

INTRODUCTION

Exercise training is a strategy for the prevention and treatment
of several inactivity-related metabolic diseases, such as insulin
resistance (Álvarez et al., 2014) and type 2 diabetes mellitus
(T2DM) (Alvarez et al., 2016). Similarly, exercise-based
interventions, including resistance training (RT), together
with pharmacological, and dietary interventions, represent the
cornerstones of T2DM management (ADA, 2011). In addition
to the beneficial effects on glycemic control (Umpierre et al.,
2013) and other risk factors of T2DM (Chudyk and Petrella,
2011; Figueira et al., 2014), physical exercise is effective in
improving muscle strength (Dunstan et al., 2002), cardiovascular
function (Cano-Montoya et al., 2016), and functional capacity
(Cadore and Izquierdo, 2015). In this regard, combining RT and
endurance training is an effective intervention to promote overall
physical fitness in T2DM patients (Balducci et al., 2012). More
recently, high-intensity interval training (HIIT, i.e., repeated
short bursts of high intensity activity with rest breaks in between
each bout of exercise) is a time-efficient exercise modality
that has emerged as an alternative to continuous traditional
endurance exercise training to improve cardiometabolic health
(Gibala et al., 2012).

However, despite the frequent reports of “average” exercise-
related changes, there is wide interindividual variability in the
results of exercise training (Astorino and Schubert, 2014). Under
the same stimulus, some subjects, termed responders (R), achieve
benefits after training, while others, termed non-responders
(NRs), show an unchanged or worsened response (Bouchard
et al., 2012; Bonafiglia et al., 2016; Álvarez et al., 2017). In
the literature, this phenomenon has been characterized using
several terms, such as low/high responders (Davidsen et al.,
2011), non-responders/responders (Sisson et al., 2009), or as an
adverse response (Bouchard et al., 2012); in these studies, similar
but slightly different methodological criteria have been applied
for identifying R and NRs. Genetic (Stephens et al., 2015) and
environmental factors (Bouchard and Rankinen, 2001) have been
suggested to be responsible for this variability, although not all of

Abbreviations: T2DM, type 2 diabetes mellitus; R, responders; NRs, non-
responders: HIIT, high-intensity interval training; H-IR: higher insulin resistance
group; L-IR, lower insulin resistance group; BMI, body mass index; HOMA-
IR, homeostasis model assessment of insulin resistance; 1RM, one repetition
maximum strength test; 1RMLE, one repetition maximum test of leg extension;
1RMUR, one repetition maximum test of upper row; HbA1c, glycated hemoglobin,
OGTT, oral glucose tolerance test; VO2peak, maximum peak of oxygen uptake,
VO2max, maximum oxygen uptake.

the potential environmental factors (e.g., different health status,
magnitude of disease, or different mode of exercise training) have
been explored.

Furthermore, the prevalence of these unchanged or worsened
responses, known as NRs prevalence (i.e., percentage of subjects
who do not improve/show a worsened response with regard to
a variable), has been reported predominantly after endurance
training (Sisson et al., 2009; Bouchard et al., 2012) and RT (Moker
et al., 2014; Churchward-Venne et al., 2015). There have been
no studies reporting the NRs prevalence associated with risk
factors for T2DM after HIIT, which has been shown to improve
anthropometric, cardiovascular, metabolic, and performance
variables in different cohorts (Astorino and Schubert, 2014;
Alvarez et al., 2016). For example, in one study of insulin
resistance adult women, there were reductions of −12 to −14%
in fasting glucose, −27 to −37% in fasting insulin and ∼40% in
homeostasis model assessment of insulin resistance (HOMA-IR)
scores after 8 weeks of HIIT (Álvarez et al., 2014). In another
study of T2DM subjects, there was a decrease of ∼14% in
fasting glucose, with additional decreases of ∼4 mmHg in blood
pressure, ∼2% in body mass, ∼4% in waist circumference, and
∼19% in subcutaneous fat after 16 weeks of HIIT (Alvarez et al.,
2016). Notably, another study showed that only 2 weeks of HIIT
decreased the average 24 h fasting glucose level by approximately
−13% (Little et al., 2011). Finally, a study of subjects with poor
glucose control showed an improvement (−12%) in the area
under the curve for the oral glucose tolerance test (OGTT) results
and a 4.2 kg decrease in fat mass after 10 weeks of HIIT (Mancilla
et al., 2014).

Latin America has experienced an epidemiological transition
characterized by an increasing burden of cardiometabolic disease
due to physical inactivity and shifts in diet and lifestyle
patterns (Rivera et al., 2014). Evidence in Chilean adults
suggests similar associations between low physical activity
levels and cardiometabolic risk factors and between health
status and overweight/obesity (Vio et al., 2008). Thus, the
aim of the present study was to assess the effects 10 weeks
of HIIT and the NRs prevalence (as indicated by glucose
control variables) in groups with higher and lower levels
of insulin resistance. A second aim was to assess other
anthropometric, cardiovascular, and performance variables. We
hypothesized that independent of the magnitude of the metabolic
disease [i.e., higher (HOMA-IR > 5.0) or lower (HOMA-
IR < 3.0) levels of insulin resistance], there would be no
differences in the NRs prevalence for changes in glucose
control parameters after HIIT between women with higher
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and lower levels of insulin resistance using the HOMA-IR
criteria.

MATERIALS AND METHODS

Participants
The first stage of the study was to recruit, using a short telephone
survey, adult patients who were previously identified at their last
clinical exam as at risk for T2DM and who had dropped out
from their regular appointments at the healthcare center. In this
first stage, 168 sedentary adult women (aged ≥18 years) with
no background of regular exercise training volunteered to be
screened.

Screening and Preliminary Testing
First, subjects were screened for insulin resistance based on a
HOMA-IR > 2.6 using both fasting glucose and fasting insulin,
and after intervention the subjects were separated into two
groups and analyzed based on differences in the “magnitude”
of insulin resistance (i.e., a group with a higher level of insulin
resistance: HOMA-IR > 5.0, and a group with a lower level
insulin resistance: HOMA-IR < 3.0). In the first screening
before intervention, 65 individuals classified as “higher insulin-
resistance” subjects (n = 65) were excluded for multiple reasons
(16 due to age > 40 years; 2 due to being recently physically
active; 5 due to a diagnosis of hypertension; 5 due to a diagnosis
of hypothyroidism; 3 due to musculoskeletal injury; 21 due to
no history of T2DM; 6 due to stationary asthma/respiratory
disease; and 7 due to having a rural address). Similarly, 25 subjects
identified as “lower insulin-resistance” subjects (n= 25) were also
excluded for similar reasons (6 due to age ≥40 years; 12 due to
being physically active; 2 due to a diagnosis of hypothyroidism;
and 5 due to having a rural address). Finally, 78 screened subjects
with a higher level of insulin resistance (n= 78) were assigned to
10 weeks of a HIIT program and were analyzed after intervention
in two different groups: a group with a higher level of insulin
resistance (H-IR, n = 20) and a group with a lower level of
insulin resistance (L-IR, n= 20). None of the subjects were taking
oral hypoglycemic medications to improve metabolic control
of glucose because they all had been recently diagnosed with
insulin resistance by our research team. Subjects with < 70%
attendance at training sessions were excluded from all statistical
analyses after the intervention; after excluding those subjects, the
characteristics of the analyzed subject groups were as follows: H-
IR group, age 40± 6 years, n= 20; L-IR group, age 35± 9 years,
n = 20 (see flow chart in Figure 1). The treatment allocation is
described in the flow chart in Figure 1.

All participants were informed about the experimental
procedures and about possible risks and benefits associated
with participation in the study. Written informed consent was
obtained before any of the assessments were performed. The
study was conducted in accordance with the Declaration of
Helsinki and was approved by the institutional review board for
the use of human subjects of the local Ethics Committee of the
University of los Lagos (Comité de Revisión Científica y Ética
Institucional del Departamento de Ciencias de la Actividad Física

de la Universidad de Los Lagos). Characteristics of the study
participants are provided in Tables 1, 2.

Eligibility criteria included the following: (a) diagnosed with
insulin resistance based on the HOMA-IR metabolic marker
method and using a cut-off point of HOMA-IR≥2.6 in a Chilean
population (Garmendia et al., 2009), (b) physical inactivity (≤150
min/week of low-moderate physical activity or <75 min/week of
vigorous physical activity; O’Donovan et al., 2010), (c) no familial
(parents/siblings) history of T2DM, (d) living only in urban areas,
and (e) with care provided under the public Chilean healthcare
system (i.e., not a private healthcare system). Exclusion criteria
included participants with the following characteristics:
(a) potential medical or musculoskeletal problems, (b)
osteoarthritis, (c) history of ischemic disease, (d) arrhythmia,
(e) asthma, (f) chronic obstructive pulmonary disease, and
(g) utilization of drugs that modulate metabolic or respiratory
control.

Classification of Responder (R) and
Non-responders (NRs)
Using previous criteria applied in exercise-based interventions
(Bonafiglia et al., 2016), the interindividual variability in the
response to exercise training of the subjects was used to categorize
them as responders (R) or non-responders (NRs) using the
typical error measurement (TE). Thus, the TE was calculated
for all independents variables 3 weeks before the pre-test
measurements as described previously (Álvarez et al., 2017) using
the following equation:

TE = SDdiff /

√
2 (1)

where SDdiff is the variance (standard deviation) of the difference
in scores observed between the two repeats of each test. A non-
responders participant for HOMA-IR assessments, as well as
for all other included co-variables, was defined as an individual
who failed to demonstrate a decrease or increase (in favor of
beneficial changes) that was greater than two times the TE from
zero. A change greater than two times the TE means that there
is a high probability (i.e., 12 to 1 odds) that this response is a
true physiological adaptation beyond what might be expected
to result from technical and/or biological variability (Hopkins,
2000).

Procedures
Anthropometric and Cardiovascular Assessments
Anthropometric and blood pressure assessments were carried
out during the first week of the allocation stage. Body mass
was assessed using a digital scale with an accuracy of 0.1 kg
(Omron HBF-INTTM, Omron Healthcare Inc., Lake Forest,
IL, USA). Height was assessed with a professional stadiometer
(Health o MeterTM Professional, Sunbeam Products Inc.,
Chicago, IL, USA) with an accuracy of 0.1 cm, and body
mass index (BMI) was calculated according to the following
formula: kg/m2. Waist circumference was assessed with
an inextensible measuring tape with and accuracy of 0.1
cm (HoechstmassTM, Sulzbach, Germany). Three skinfold
measurements of subcutaneous adipose tissue (i.e., tricipital,
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FIGURE 1 | Study design.

supra-iliac, and abdominal skinfolds) were assessed using a
LangueTM skinfold caliper (Beta Technology Inc., Santa Cruz,
California, USA) according to standard protocols (Marfell-Jones
et al., 2006).

Systolic and diastolic blood pressure were assessed using an
automatic monitor (Omron HEM 7114TM, Omron Healthcare
Inc., Lake Forest, IL, USA) in triplicate (2-min interval between
measurements) after 15 min of rest and with the subjects in
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a seated position following standard classification procedures
(Chobanian et al., 2003).

Plasma Metabolic Markers
The metabolic measurements were carried out in the second
week. Subjects arrived at the laboratory of the Riñihue clinic
between 8 and 10 in the morning after a 10 h overnight fast.
Blood samples (approximately 3.5 mL) were collected in tubes
with specific anticoagulant gels for fasting glucose and fasting
insulin measurements at baseline and at the 10 week follow-up.
Samples were placed on ice and centrifuged at 4,000 rpm (1,700×
g) for 5min at 4◦C. Plasma samples were immediately transferred
to pre-chilled microtubes and stored at−20◦C for later analysis.

Plasma glucose was analyzed via enzymatic methods using
standard kits (Wiener Lab Inc., Rosario, Argentina) on an
automatic analyzer (Metrolab 2300 PlusTM, Metrolab Biomed
Inc., Buenos Aires, Argentina). Fasting insulin was measured
via RIA (DPC, Los Angeles, CA, USA). The HOMA-IR index
was calculated using the Matthews equation (Matthews et al.,
1985): HOMA-IR = [Fasting glucose (mg/dL) × Fasting insulin
(µU/dL)]/405). The same blood sampling and preparation
procedure was performed at the end of the 10 week follow-up 48
h after the last exercise session in the morning to avoid possible
acute effects of exercise.

Familiarization with the Exercise Training Program
In weeks 3 and 4, in three sessions, the subjects in both the H-
IR and L-IR groups underwent a familiarization period for the
HIIT protocol, as well as for the 1RMLE- and 1RMUR-tests. In
the first and second sessions, the subjects were educated about
the cycling machines and the free weights, as well as the exercise
machine used for the strength test. In the following four sessions,
the subjects underwent HIIT.

One-Repetition Maximum Test
In week 5, after a familiarization process with the test and
before the intervention, both groups performed one-repetition
maximum strength tests to establish 1RMLE- and 1RMUR-values
as previously described (Izquierdo et al., 2004). The 1RMLE-
test involved an exercise machine (OXFORDTM, model EE4002,
Santiago, Chile), and in the 1RMUR-test, free weights with bars
were used. In brief, for the 1RMLE-test, the subjects began by
lifting a load of weights on the machine with both legs. For
the 1RMUR-test, the subjects adopted a body flexion angle of
90◦, grabbed a bar with weights and plates, and with both arms
extended, lifted the bar to approximately knee height. The highest
load from three attempts per exercise was reported.

Experimental Protocol
The HIIT program was started in the sixth week and was
performed three times per week, for a total of 30 sessions,
using exercise bikes (OXFORDTM, model BE2601, OXFORD Inc.,
Santiago, Chile). Each participant performed a range of 8–12
cycling intervals during the intervention period. The time of each
cycling work interval was 60 s, with 120 s of passive rest (sitiing
on the bicycle without movement) between work intervals. This
rest period was progressively decreased (2 min weeks 1–2, 1.45 T
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min weeks 3–5, 1.30 min weeks 6–8, and 1.15 min weeks 9–10),
reaching a time of 1.15 min in the tenth week. Cycle revolutions
were maintained at a range of 50–70 rpm and a speed between 20
and 40 km/h during each work interval. Subjects were required to
cycle at levels between 8 and 10 points on a modified 0–10 Borg
scale during the work interval (Ciolac et al., 2015). This subjective
intensity corresponds to a range of 70–100% of the maximum
heart rate according to the Karvonen formula (Karvonen and
Vuorimaa, 1988). All subjects had good exercise tolerance, and
none of the participants reported an injury. Exercise compliance
was 82.0 ± 3% in the H-IR group and 79.3 ± 4% in the L-IR
group.

Statistical Analysis
Data are presented as the mean ± standard deviation (SD).
Normality and homoscedasticity assumptions for all data
were assessed using the Shapiro-Wilk-test and Levene’s-test,
respectively. The Wilcoxon-test was used for non-parametric
data. One-way ANOVA was performed to test differences
between groups at baseline. An ANCOVA was conducted to
analyze variables that were significantly different at baseline.
A repeated-measures ANOVA (group × time) was used to
determine differences in all dependent variables between pre-
and post-tests using each group × time. A chi-square test (X2)
was used to determine differences between categorical variables
for R and NRs by group (H-IR × L-IR). After the intervention,
the typical error (TE) were calculated for the pre-post changes
for each dependent variable. The subjects were categorized as
a R or NRs according to the previously described criteria of a
change greater than two times the TE (Bonafiglia et al., 2016).
The Bonferroni post-hoc test was applied to establish differences
among groups. Additionally, Cohen’s-test was used to detect
effect sizes (ESs), with threshold values at 0.20, 0.60, 1.2, and
2.0 for small, moderate, large, and very large effects, respectively
(Hopkins et al., 2009). ES-values are presented as the mean with
95% confidence limits. Odds ratios (ORs) were used to assess
differences in dichotomous NRs variables between groups. All
statistical analyses were performed with SPSS statistical software
version 18 (SPSSTM Inc., Chicago, Illinois, USA). The alpha level
was fixed at p≤ 0.05 for determining statistical significance in all
cases.

RESULTS

Anthropometric Measurements
At baseline, there were significant (p ≤ 0.05) differences between
groups for abdominal skinfold thickness (Table 1). There were
significant (p ≤ 0.05) pre-post changes [presented as delta
percent (1%)] in waist circumference (−5.2, −3.8%) and in
tricipital (−13.3, −13.6%), supra-iliac (−19.4, −13.6%), and
abdominal skinfold thicknesses (−18.2, −15.6%) in both the
H-IR and L-IR groups (Table 1).

Cardiovascular Measurements
At baseline, there were no significant (p > 0.05) differences
between the groups for diastolic or systolic blood pressure
(Table 1). After intervention, the L-IR group showed significant

pre-post changes in systolic blood pressure (−2.3%) (Table 2),
whereas there were no significant changes in diastolic blood
pressure in any group (Table 2).

Metabolic Measurements
At baseline, there were significant (p ≤ 0.05) differences between
the groups for fasting glucose, fasting insulin, and HOMA-
IR scores (Table 2). After intervention, there were no pre-post
changes in fasting glucose, fasting insulin, or HOMA-IR scores
in L-IR group (Table 2). There were significant (p ≤ 0.05)
pre-post changes [presented as delta percent (∆%)] in fasting
glucose (−8.8%), fasting insulin (−26.5%), and HOMA-IR scores
(−32.1%) in the H-IR group (Table 2). The ES-values were high
for fasting glucose (−1.65; 95%CI −2.07, −1.22) and HOMA-IR
scores (−1.23; 95%CI−1.60,−0.85) in the H-IR group (Table 2).

FIGURE 2 | Differences in the prevalence of non-responders to decrease

HOMA-IR after high-intensity interval training in a higher insulin resistance

(H-IR, n = 20), and lower insulin resistance group (L-IR, n = 20) of adult

women. OR, odds ratios for suffering a non-response.
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Muscle Performance Measurements
At baseline, there were no significant (p ≤ 0.05) differences
between groups for 1RMLE and 1RMUR (Table 2). After
intervention, there were significant (p ≤ 0.05) pre-post changes
in 1RMLE in the H-IR (+12.9) and L-IR (+14.7%) groups
(Table 2), whereas 1RMUR remained unchanged in both groups.
The ES-value was high for 1RMLE (1.25; 95%CI 1.04, 1.45) in the
L-IR group (Table 2).

Differences in NRs Prevalence between the
H-IR vs. L-IR Groups with Respect to
Glucose Control Variables
There were significant differences between the H-IR vs. L-IR
groups in NRs prevalence with regard to improved fasting
glucose (25.0 vs. 95.0%, p < 0.0001) and fasting insulin (25.0
vs. 60.0%, p = 0.025). There were no significant differences
between the H-IR vs. L-IR groups in NRs prevalence with regard
to a decrease in HOMA-IR scores (25.0 vs. 45.0%, p = 0.185;
Figure 2).

Differences in the NRs Prevalence between
the H-IR vs. L-IR Groups with Respect to
Other Anthropometric, Cardiovascular, and
Performance Variables
There were no significant differences between the H-IR vs.
L-IR groups in NRs prevalence with regard to improvements
in anthropometric parameters (i.e., body mass, BMI, waist
circumference, and tricipital, supra-iliac, and abdominal
skinfolds), muscle performance (i.e., 1RMLE and 1RMUR), or
cardiovascular parameters (i.e., systolic/diastolic blood pressure;
Table 3).

The OR analysis for NRs prevalence detected a high risk
of being a NRs (>2-fold) associated with improved waist
circumference (OR: 2.1, 95%CI 0.1, 3.2), diastolic blood pressure
(OR: 2.1, 95%CI 1.5, 2.9), fasting glucose (OR: 4.0, 95%CI 2.2,
14.4), and 1RMUR (OR: 2.1, 95%CI 0.5, 9.0; Table 3).

DISCUSSION

The present study was designed to assess the effects 10 weeks
of HIIT and NRs prevalence (as indicated by glucose control
parameters) in adult women with higher and lower levels of
insulin resistance to test if the “magnitude” of a metabolic disease
play a role in increasing or decreasing the NRs prevalence. The
major findings of this study indicate that (i) HIIT promotes
significantly more benefits in training-induced changes in fasting
glucose, fasting insulin and HOMA-IR scores in adult women
with higher insulin resistance; (ii) the NRs prevalence was
significantly different between the H-IR vs. L-IR groups with
regard to improve fasting glucose and fasting insulin but
not for HOMA-IR scores; and (iii) both the H-IR and L-IR
groups experienced similar positive training-induced changes
and similar NRs prevalence with regard to anthropometric (body
mass, BMI), cardiovascular (systolic/diastolic blood pressure),
and muscle strength performance (1RMLE, 1RMUR) measures.

Several environmental factors related to NRs prevalence have
been reported after training interventions. For example, a recent
report assessed the effects of RT at different frequencies (3
and 2 days/week) to tests the effect of frequency in older NRs
subjects for 12 and 24 weeks. Major differences between both
training regimens were found for body mass, which decreased
by ∼4.5% at 12 weeks and 23% at 24 weeks. Interestingly, other
results included increases in type I (+34.5 vs. +29.4%) and type
II muscle fibers (+22.7 vs. +21.1%), as well as increasing leg
strength in extension exercises (+0.9 vs. +1.17%) at 12 and 24
weeks, with relatively similar results obtained independent of the
training frequency. These results indicated that the frequency of
training was not necessarily related to the NRs prevalence for
some variables (Churchward-Venne et al., 2015).

There is limited evidence about interindividual variability in
exercise training with regard to the NRs prevalence in subjects
with low glucose control, and there are several methodological
differences in studies comparing the NRs prevalences observed
in previous studies (Boulé et al., 2005; Gremeaux et al., 2012;
Yates et al., 2013; Moker et al., 2014; Winett et al., 2014;
Higgins et al., 2015). For example, for glucose control variables,
several authors have observed that after 3 months of strength
training (2 days/week, 2 strength exercises at maximal effort),
the NRs prevalence for improvements in an OGTT in pre-
diabetic patients was 44%. In the present study, we found a
NRs prevalence of 15 and 25% in the H-IR and L-IR groups,
respectively, for decreased fasting glucose, with no significant
difference between the groups (to see Table 3; Winett et al.,
2014). Regarding HOMA-IR, the HERITAGE study (Boulé et al.,
2005) showed that after 20 weeks of endurance training [30–50
min/session, 55–75% maximum oxygen uptake (VO2max) for
20 weeks], 42% of subjects were NRs for a decrease in HOMA-
IR scores. We found similar results regarding a decrease in
HOMA-IR scores, with a NRs prevalence of 15 and 20% for
the H-IR and L-IR groups, respectively (Figure 2). Therefore,
considering our 10 weeks of HIIT-based exercise vs. the 20 weeks
of endurance exercise in the abovementioned study (Boulé et al.,
2005), increasing the environmental “volume” factor of exercise
may not necessarily be related to a decrease in the NRs prevalence
for improved glucose control variables such as HOMA-IR scores.
In a different study (Yates et al., 2013), NRs prevalence of 3%
was reported for decreased fasting glucose after 12 months of
exercise-based intervention. Similarly, when T2DM subjects were
tested after 9 months of endurance training, RT or concurrent
training in another study (Stephens et al., 2015), 21% of subjects
were NRs for decreased glycated hemoglobin, as well as other
body composition and protein markers.

Understanding the NRs prevalence after exercise modes such
as HIIT and including populations with higher and lower risks
of T2DM, such as those with higher and lower levels of insulin
resistance, can be useful for designing more efficient exercise
interventions: in this case, populations with higher levels of
insulin resistance, such as the H-IR group, defined based on
fasting glucose and HOMA-IR scores, are less likely to be
NRs after 10 weeks of HIIT. This altered baseline, which we
termed previously as “higher insulin resistance,” may be in
some way related to potential factors for predicting responses
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TABLE 3 | Prevalence of non-responders (NRs) on anthropometric, cardiovascular, metabolic, and performance parameters after 10-weeks high-intensity interval training

in a group of adult women with a higher level of insulin resistance: HOMA-IR > 5.0 (H-IR), and a group with a lower level insulin of resistance: HOMA-IR < 3.0 (L-IR).

Response H-IR L-IR OR p-Values

(95% CI) NRs H-IR vs. NRs L-IR

n = 20 20

ANTHROPOMETRIC

Body mass (%/n=) NRs 20.0 (4) 10.0 (2) 0.4 (0.7, 2.7) 0.376

R 80.0 (16) 90 (18)

Body mass index (%/n=) NRs 25.0 (5) 10.0 (2) 0.3 (0.5, 1.9) 0.212

R 75.0 (15) 90.0 (18)

Waist circumference (%/n=) NRs 5.0 (1) 10.0 (2) 2.1* (0.1, 3.2) 0.548

R 95.0 (19) 90.0 (18)

Tricipital skinfold (%/n=) NRs 5.0 (1) 5.0 (1) 1.0 (0.5, 0.9) 0.987

R 95.0 (19) 95.0 (19)

Supra-iliac skinfold (%/n=) NRs 30.0 (6) 30.0 (6) 1.0 (0.2, 3.8) 0.944

R 70.0 (14) 70.0 (14)

Abdominal skinfold (%/n=) NRs 10.0 (2) 5.0 (1) 0.4 (0.3, 5.6) 0.543

R 90.0 (18) 95.0 (19)

CARDIOVASCULAR

Systolic blood pressure (%/n=) NRs 55.0 (11) 70.0 (14) 1.9 (0.5, 7.0) 0.327

R 45.0 (9) 30.0 (6)

Diastolic blood pressure (%/n=) NRs 90.0 (18) 100 (20) 2.1* (1.5, 2.9 0.147

R 10.0 (2) 0 (0)

METABOLIC

Fasting glucose (%/n=) NRs 25.0 (5) 95.0 (19) 4.0* (6.2, 14.4) <0.0001

R 75.0 (15) 5.0 (1)

Fasting insulin (%/n=) NRs 25.0 (5) 60.0 (12) 4.5 (1.1, 4.3) 0.025

R 75.0 (15) 40.0 (8)

PERFORMANCE

1RMLE (%/n=) NRs 10.0 (2) 0 (0) 0.4 (0.3, 0.6) 0.147

R 90.0 (18) 100 (20)

1RMUR (%/n=) NRs 20.0 (4) 35.0 (7) 2.1* (0.5, 9.0) 0.288

R 80.0 (16) 65.0 (13)

Data are percentage, %/n= number of cases. 1RMLE , one-maximum repetition of leg extension; 1RMUR, one-maximum repetition of upper row. Bold values denotes significant (p< 0.05)

differences between NRs from H-IR vs. NRs from the L-IR group at level (p < 0.05).

*Denotes a high risk (>2-fold) for suffering a non-response.

in future long-term studies. Collectively, and in combination
with previous reports (Hecksteden et al., 2013b), these findings
indicate that the “magnitude” of changes in response to an
acute exercise session can be a potential factor for predicting
responses to chronic exercise-based interventions. In this study,
the magnitude of changes in plasma variables after volitional
exercise was very similar to results from another study where
subjects showed decreased fasting insulin after chronic exercise
training [walking/running at 60% peak oxygen consumption
(VO2peak) for 4 weeks].

Another study (Moker et al., 2014) exploring another
co-variable, blood pressure, showed that after 5 months of
endurance training (65–80% VO2peak, walking/jogging), RT (8–
12 repetitions per set, 8 exercises, 70–85% of their one-maximum
repetition value), or concurrent training, approximately ∼60%
of subjects were NRs for a decrease in systolic and diastolic
blood pressure. In our study, we found a NRs prevalence of

20 and 15% for decreased systolic blood pressure in the H-IR
and L-IR groups, respectively, as well as a more pronounced
NRs prevalence of 30 and 45% for decreased diastolic blood
pressure in the H-IR and L-IR groups, respectively (Table 3).
Because none of the intervention groups were diagnosed
with hypertension, we hypothesized that genetic together with
environmental factors, such as time of intervention, mode
of training, and non-hypertensive baseline profiles, may be
responsible for these results. However, these results were more
positive after 10 weeks of HIIT than the 60% NRs prevalence
observed in the aforementioned study following 5 months of
intervention. Thus, the volume of training does not appear
to play a role in NRs prevalence for decreases in systolic or
diastolic blood pressure. Evidence has shown the benefit in terms
of decreased systolic blood pressure after HIIT interventions
(Ciolac, 2012); however, in this non-hypertensive cohort, we did
not observe significant training-induced changes in systolic or
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diastolic blood pressure (Table 2). In other studies, there was an
∼60% NRs prevalence for decreased systolic or diastolic blood
pressure after 6 weeks (Higgins et al., 2015) or 6 months (Moker
et al., 2014) of HIIT. Interestingly, a study that explored the
magnitude of the changes in blood pressure after an acute exercise
session reported that this response can be used as a predictive
factor for decreases in blood pressure after long-term exercise
training (Hecksteden et al., 2013a).

In this study, we found significant training-induced changes
in 1RMLE-test results in the H-IR (+12.9%) and L-IR (+14.7%)
groups (Table 2). Similarly, we found a 10% NRs prevalence
for an increase in 1RMLE results in the H-IR group and no
NRs (0%) in the L-IR group (Table 3). However, in previous
studies, RT (10–15 repetitions, four sets of leg extension, 60–80%
of the one-maximum repetition value) resulted in a minimum
NRs prevalence of ∼1% for an increase in 1RMLE after 12 and
24 weeks of RT (Churchward-Venne et al., 2015). Additionally,
despite the fact that our HIIT mode of training is very different
methodologically than what was reported in previous studies,
the HIIT protocol was able to increase the strength of the lower
limbs. These findings are consistent with a previous HIIT-based
study (90 s, 6 bouts, 6 weeks), in which HIIT improved several
parameters related to power cycling in the lower limbs in adult
men (Ziemann et al., 2011).

We observed different ranges of NRs prevalence for other
anthropometric (5–30%), blood pressure (55–100%), metabolic
(25–95%), and performance (0–35%) variables. These results are
consistent with literature reports for blood pressure (59–60%)
(Moker et al., 2014), metabolic (7–44%) (Boulé et al., 2005; Yates
et al., 2013; Winett et al., 2014; Osler et al., 2015; Stephens
et al., 2015), and performance (1%) variables (Churchward-
Venne et al., 2015). Finally, our study has some important
limitations. Our sample size was limited, but it is similar to
the sample sizes used in other exercise training studies (∼10–
20 subjects). Additionally, we lacked a true no-exercise control
group, and we did not control the physical activity patterns and
diet of subjects after training, although subjects were reminded
each week to maintain their baseline patterns of activity and food
consumption. The strengths of this study were that we included
both the effects of HIIT and NRs prevalences for changes in
anthropometric, cardiovascular, and metabolic risk factors and
in performance variables. We also included a statistical estimate
of the ES for each variable studied.

CONCLUSION

In summary, independent of the “magnitude” of the
cardiometabolic disease (i.e., higher vs. lower insulin
resistance), no differences were observed in the NRs
prevalence with regards to improved HOMA-IR scores,
other anthropometric, cardiovascular, and muscle performance
variables after 10 weeks of HIIT in sedentary adult women.
This research demonstrates the protective effect of HIIT
against cardiometabolic disease progression in a sedentary
population.
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inTRODUCTiOn

No doubt remains that the adoption and maintenance of physical activity is important for overall 
health and blood glucose management in individuals with diabetes and prediabetes. Recently, the 
American Diabetes Association (ADA) published updated recommendations and precautions about 
physical activity and exercise in people with type 1 diabetes, type 2 diabetes, and gestational diabetes 
(1). Given the importance of these topics, it is worth discussing the key changes and updates included 
in this ADA position statement (PS).

pre-Exercise Health Screening and Evaluation
This PS reiterates that “pre-exercise medical clearance is not necessary for asymptomatic, sedentary 
individuals who wish to begin low- or moderate-intensity physical activity not exceeding the demands 
of brisk walking or everyday living” (1). This stance directly opposes a recent recommendation from 
the American College of Sports Medicine (ACSM) (2) that requires anyone with a metabolic disease 
(in this case, diabetes) who desires to begin exercising at any level—even doing light activities—to 
obtain medical clearance from a health-care provider first. The authors of the ADA PS did not agree 
with this restriction and took the same stance as the prior ADA PS on type 2 diabetes and exercise 
(3), which I believe is a much better recommendation. Making adults obtain any type of medical 
clearance prior to starting walking, for example, is an unnecessary barrier that will not necessarily 
make exercising any safer for them. However, ADA agrees with ACSM that adults with diabetes who 
plan to exercise at higher intensities than currently undertaken or who would be considered at high 
risk for cardiovascular disease (e.g., have elevated blood cholesterol, smoke, have a strong family 
history, etc.) or other health complications from doing such activities are recommended to obtain 
a pre-training examination from a health-care provider who may or may not recommend exercise 
stress testing (3).

RECOMMEnDED pHYSiCAL ACTiViTY/EXERCiSE

All physical movement has the potential to improve physical and mental health (4–6). Since blood 
glucose management varies with a number of factors, it is critical for recommendations to be tailored 
for activity type and health complications to be effective (3, 7). In the PS, physical activity is defined 
as any movement that increases energy use, and exercise is a subset of physical activity that is more 
planned or structured (1), which is an important distinction.

Aerobic Exercise Training
As previously recommended, most adults with type 1 or type 2 diabetes should undertake at least 
150 min or more of moderate- to vigorous-intensity activity weekly; it is also recommended that 
these activities occur on at least 3 or more days during the week and that individuals should not allow 
more than 2 days to elapse between activity sessions to maintain higher levels of insulin sensitivity 
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TAbLE 1 | Exercise training recommendations.

Aerobic Resistance Flexibility and balance

Type of exercise Prolonged, rhythmic activities using large muscle 
groups (e.g., walking, cycling, and swimming)

Resistance machines, free weights, resistance 
bands, and/or body weight as resistance exercises

Stretching: static, dynamic, and other 
stretching, yoga

May be done continuously or as high-intensity 
interval training

Balance (for older adults): practice 
standing on one leg, exercises using 
balance equipment, lower-body and 
core resistance exercises, tai chi

Intensity Moderate to vigorous (subjectively experienced as 
“moderate” to “very hard”)

Moderate (e.g., 15 repetitions of an exercise that 
can be repeated no more than 15 times) to vigorous 
(e.g., 6–8 repetitions of an exercise that can be 
repeated no more than 6–8 times)

Stretch to the point of tightness or 
slight discomfort

Balance exercises light to moderate 
intensity

Duration At least 150 min/week at moderate to vigorous 
intensity for most adults with diabetes. For adults 
able to run steadily at 6 mph/9.7 kmph for 25 min, 
75 min/week of vigorous activity may provide similar 
cardioprotective and metabolic benefits

At least 8–10 exercises with completion of 1–3 sets 
of 10–15 repetitions to near fatigue per set on every 
exercise early in training

Hold static or do dynamic stretch 
for 10–30 s; 2–4 repetitions of each 
exercise

Balance training can be any duration

Frequency 3–7 days/week, with no more than 2 consecutive 
days without exercise

A minimum of 2 non-consecutive days/week, but 
preferably 3

Flexibility: ≥2–3 days/week

Balance: ≥2–3 days/week

Progression A greater emphasis should be placed on vigorous-
intensity aerobic exercise if fitness is a primary 
goal of exercise and not contraindicated by 
complications; both high-intensity interval and 
continuous exercise training are appropriate activities 
for most individuals with diabetes

Beginning training intensity should be moderate, 
involving 10–15 repetitions per set, with increases 
in weight or resistance undertaken with a lower 
number of repetitions (8–10) only after the target 
number of repetitions per set can consistently be 
exceeded; increase in resistance can be followed 
by a greater number of sets and lastly by increased 
training frequency

Continue to work on flexibility and 
balance training, increasing duration 
and/or frequency to progress over time

Copyright 2016© American Diabetes Association from Ref. (1). Reprinted with permission from The American Diabetes Association.
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(Table 1). However, it is now recognized in this PS that younger 
or more physically fit individuals may receive similar cardiovas-
cular and fitness benefits from undertaking vigorous-intensity or 
high-intensity interval training (HIIT), assuming it adds up to a 
minimum of 75 min/week (1, 8, 9).

Also included in the PS this time for the first time is HIIT, 
which is a type of training that includes short bursts (seconds 
to minutes) of very intense activity with recovery periods inter-
spersed that may involve a lower intensity activity or rest. Such 
training has been demonstrated to result in greater insulin sensi-
tivity and better overall blood glucose levels, at least in adults with 
type 2 diabetes (9, 10). Adults with type 1 diabetes can engage 
in HIIT and manage blood glucose with appropriate regimen 
changes (8, 11), which may include more insulin during and 
following and activity and reduced dosing overnight, along with 
food intake to prevent overnight hypoglycemia. Since its safety 
and efficacy remain unclear for some adults (12, 13), individuals 
who undertake such training should be clinically stable, already 
exercising regularly in activities that are moderate in intensity or 
harder, and possibly supervised when HIIT is started (14). This 
type of training is definitely not right for everyone.

Resistance Exercise Training
The PS recommends 2–3 sessions/week of resistance exercise 
on non-consecutive days using a variety of strength training 
modalities (1), which is also unchanged from prior recom-
mendations and from guidelines for all adults. Although heavier 
resistance training improves glycemic control and strength more 

than lighter weights or home-based activities (15), all resistance 
training has the potential to result in greater strength, which can 
translate into improved balance and ability to live independently 
and undertake activities of daily living.

The main PS update is related to discussing the glycemic 
impact of resistance exercise in adults with type 1 diabetes (1), 
which remains unclear (8). It may lower the risk of developing 
exercise-induced hypoglycemia in type 1 diabetes (16). When 
both aerobic and resistance exercise are undertaken during a 
solitary activity session, it has been shown that doing the bout 
of resistance work first may actually help maintain glycemic bal-
ance more so than when aerobic exercise occurs before resistance 
training (17). Varying the order of the activities based on blood 
glucose levels may minimize the risk of hypoglycemia.

Flexibility and balance Exercises
One major change of this PS is a greater focus on the inclusion 
of flexibility exercise to improve range of motion around joints in 
individuals of all ages (18) and balance activities to improve gait 
and prevent falls in older adults (19). Both flexibility exercises 
and balance training are recommended to be done minimally 
2–3 times/week, especially by older adults (1). Including both 
is vitally important to living well since limited joint mobility 
is common in older adults and long-standing diabetes due to 
advanced glycation end products formed by normal aging and 
hyperglycemia (20). Stretching increases range of motion around 
joints and flexibility (18), and balance training can reduce falls 
risk by improving balance and gait (19).
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Lower-body and core strengthening exercises may be consid-
ered part of balance training. Yoga may promote improvement 
in glycemic control, lipid levels, and body composition in adults 
with type 2 diabetes (21). Tai chi training may improve glycemic 
control and balance neuropathic symptoms and some dimen-
sions of quality of life in adults with diabetes and neuropathy (22).

Daily Movement
Engaging in more unstructured daily activity, such as errands, 
household tasks, dog walking, and gardening, increases daily 
energy expenditure and assists with weight loss and mainte-
nance (23–25). Increasing daily movement appears to acutely 
lower postprandial hyperglycemia and possibly improve blood 
glucose management, especially when undertaken after meals 
(26–34). It is recommended as part of a whole-day approach and 
as a starting place for anyone who is currently sedentary and 
either unwilling or unable to start engaging in more structured 
activities. For many deconditioned and older individuals with 
diabetes, increasing daily movement may be an appropriate place 
to start with physical activity rather than with more structured 
activities.

Reduced Sedentary Time and  
interrupted Sitting
As demonstrated in adults with type 2 diabetes, encouraging 
them to interrupt prolonged periods of sitting with 15  min of 
walking after meals (26) and either light walking or simple body-
weight resistance activities undertaken for 3  min after every 
30 min of inactivity (29) improves overall glycemic control. The 
PS recommends that all adults attempt to lower the total amount 
of time that they spend each day in sedentary activities and break 
up prolonged bouts of sitting with some type of light activity for 
a few minutes at least every 30  min to improve their glycemic 
management; both should be added to daily structured exercise 
and unstructured movement rather than being a replacement 
for them. Research in this area, however, is still in its infancy— 
especially in populations with diabetes—and more studies are 
needed to better define the best types and timing of activity, not 
only for managing blood glucose levels but also for preventing 
type 2 diabetes and reversing prediabetes in the first place.

pHYSiCAL ACTiViTY AnD TYpE 2 
DiAbETES

The impact of exercise on insulin action is transient and, accord-
ingly, activities should be undertaken daily or no less frequently 
than every other day. It is important to continue to recommend 
that exercise be undertaken regularly since in many cases, acute 
effects of aerobic exercise may not last even 24  h. At least one 
study has shown that if the same volume of exercise is done—
either as 30 min of moderate exercise daily or 1 h at the same 
intensity every other day—the glycemic effects over the ensu-
ing 48-h period are similar (35). Exercise does not necessarily 
need to be prolonged to result in enhanced insulin sensitivity, 
but if shorter in duration, engaging in harder workouts or high-
intensity intervals will increase its impact (36, 37). However, 

daily moderate or high-intensity aerobic or resistance exercise 
is likely optimal (38–40). Aerobic training may improve overall 
glycemic control more than resistance training, but both reduce 
cardiovascular risk markers similarly (41), and a single bout of 
either may have a similar acute effect in any case (42). To achiever 
better glycemic management, engaging in combined aerobic and 
resistance training appears to be superior to undertaking either 
type of training on its own (43, 44). In fact, the PS states, “Adults 
should ideally perform both aerobic and resistance exercise 
training for optimal glycemic and health outcomes” (1), which 
I firmly believe to be an excellent recommendation.

It is also important for type 2 diabetic youth (children and 
adolescents) to be more physically active. Their goal should be to 
meet the activity goals recommended for all youth, which con-
sists of 60 min/day or more of moderate- or vigorous-intensity 
aerobic activity, with vigorous, muscle-strengthening, and bone-
strengthening activities at least 3 days/week (1). Few studies have 
been done to examine the impact of exercise training and inter-
ventions in youth with type 2 diabetes, and those are inconclusive, 
although it can be assumed that the health and glycemic benefits 
they would gain are similar to those experienced by adults with 
type 2 diabetes (45).

pHYSiCAL ACTiViTY AnD TYpE 1 
DiAbETES

This PS is the first in many decades to address the complexities 
of managing blood glucose with exercise in adults and children 
with type 1 diabetes (46). Both aerobic and resistance training 
are recommended for these adults (47–49), and youth with type 1  
diabetes should follow general recommendations for children 
and adolescents (47). Blood glucose responses are impacted 
by the type, timing, intensity, and duration of exercise, as well 
as by many other factors. Different activities will likely require 
individualized adjustments to carbohydrate and food intake and 
insulin dosing during and after exercise.

Aerobic exercise after meals usually decreases blood glucose 
levels (50), especially during prolonged activity (34, 51, 52). Doing 
activity during fasting conditions, however, results in more stable 
glycemia, with less of a decline or even a small increase in overall 
levels (53). Engaging in very intense activities either maintains or 
raises blood glucose (16, 54), depending on duration, which is an 
important point to keep in mind.

Variable glycemic responses to physical activity (46) make 
uniform recommendations nearly impossible. In general, 
individuals will need to increase their carbohydrate intake and/
or reduce circulating insulin levels when engaging in longer 
duration aerobic activities, along with frequently monitoring 
blood glucose. These additional recommendations are stated in 
the PS (1) but come from other studies: for low- to moderate-
intensity aerobic activities lasting 30–60  min during fasting or 
basal insulin conditions, ~10–15 g of carbohydrate may suffice to 
prevent hypoglycemia (55). For activities done after bolus insulin, 
30–60  g of carbohydrate per hour may be needed (56, 57), or 
insulin can be reduced 25–75% to reduce or eliminate the need 
for carbohydrate intake (58). Basal rate reductions for exercise 
may reduce hypoglycemia (59).
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Continuous glucose monitors (CGM) are more widely 
available nowadays and have increased in accuracy; for many 
individuals, wearing such a device may decrease the fear of 
developing exercise-induced hypoglycemia. They are able to 
provide blood glucose trends, which can potentially assist the 
user in preventing hypoglycemia or treating it sooner (60–63). 
Some issues with CGM use during activity remain, however, as 
stated in the PS (1): inadequate accuracy (64), sensor filament 
breakage (62, 63), inability to calibrate (61) time lags between 
the change in blood glucose and its detection by CGM (65), 
and variations in sensor performance (66–68). CGM devices 
are currently being paired with insulin pumps into closed-loop 
systems run by algorithms. These technological issues with CGM 
use during exercise are continuing to make regular participation 
in physical activity a huge hurdle to creating an effective system.

pHYSiCAL ACTiViTY AnD pREGnAnCY 
WiTH DiAbETES

The PS recommends, “Females with pre-existing diabetes of any 
type should be advised to engage in regular physical activity prior 
to and during pregnancy” (1). It also reiterates prior recommen-
dations from other organizations that state that “pregnant females 
with or at risk for gestational diabetes should engage in 20–30 min 
of moderate-intensity exercise on most or all days of the week” 
(69–71). Undertaking any type of training (aerobic or resistance) 
has the ability to improve insulin sensitivity and overall blood 
glucose management (72). Ideally, physical activity should start 
prior to pregnancy to reduce gestational diabetes risk (73) but 
can be initiated safely during pregnancy (69). Regular physical 
activity is important for other positive pregnancy outcomes as 
well and should be recommended to all females of childbearing 
age, both prior to and during pregnancy.

MiniMiZinG EXERCiSE-RELATED 
ADVERSE EVEnTS

In the PS (1), it is reiterated that, “Exercise-induced hypoglyce-
mia is common in type 1 diabetes, and to a lesser extent, people 
with type 2 diabetes using insulin or insulin secretagogues.” 
Some medications (other than insulin) may increase exercise 
risk, and doses may need to be adjusted (74, 75). Given that fear 
of hypoglycemia related to exercise is a proven barrier to exercise 
participation (76), any strategies that will assist in minimizing its 
occurrence have the potential to increase adherence to exercise 
training. Other acute strategies to prevent hypoglycemia involve 
including short sprints, performing resistance exercise before 
aerobic exercise in the same session, and activity timing (77–82), 
which are primarily based on the ability of a greater release of 
counterregulatory hormones during intense activities to main-
tain blood glucose levels more effectively. Exercise-induced 
nocturnal hypoglycemia is a major concern (83). Hypoglycemic 
events occur typically within 6–15 h postexercise (84), although 
risk can extend out to 48 h (85). Risk of nocturnal hypoglycemia 
following physical activity may be mitigated with lower basal 

insulin doses overnight, bedtime snacks, and/or use of CGM, 
and these strategies should be recommended to assist in prevent-
ing delayed-onset lows.

Very intense exercise like sprinting (79), brief but intense aero-
bic exercise (86), and heavy powerlifting (87, 88) may promote 
hyperglycemia, especially with elevated starting blood glucose 
levels (86). A number of strategies can mitigate exercise-induced 
hyperglycemia, though. For example, it may be modulated with 
insulin administration, interspersing moderate aerobic activity 
between intense bouts, and a low-intensity cooldown (89, 90). 
Another stance taken in the PS (1) is “Overconsumption of carbo-
hydrates before or during exercise, along with aggressive insulin 
reduction, can promote hyperglycemia during any exercise (58). 
Exercising with hyperglycemia and elevated blood ketones is not 
recommended.”

Aging combined with diabetes may result in worse blood glu-
cose control; moreover, peripheral neuropathy may be present and 
skin blood flow and sweating impaired (91–93), which increases 
the risk of heat-related illness. Chronic hyperglycemia also causes 
dehydration. These are all fairly new findings. For these reasons, 
the PS (1) recommends, “Older adults with diabetes or anyone 
with autonomic neuropathy, cardiovascular complications, or 
pulmonary disease should avoid exercising outdoors on very hot 
and/or humid days to prevent heat-related illnesses.”

In addition, these statements from the PS are aimed at avoid-
ance of other exercise-related adverse responses (1), which is 
critical for continued participation: “Active individuals with type 
1 diabetes are not at increased risk of tendon injury (94), but this 
may not apply to sedentary or older individuals with diabetes. 
Diabetes may lead to exercise-related overuse injuries due to 
changes in joint structures related to glycemic excursions (95), so 
exercise training should progress appropriately to avoid excessive 
aggravation to joint surfaces and structures, particularly when 
taking statin medications for lipid control (96).”

MAnAGinG HEALTH COMpLiCATiOnS

Finally, many individuals with diabetes carry the burden of 
having associated health concerns, many of which can impact 
their ability to exercise safely and effectively. None of these are 
new ideas, but here is a summary of recommended actions as 
stated in the PS (1): macrovascular and microvascular diabetes-
related complications can develop and worsen with inadequate 
blood glucose management (97, 98). Physical activity with 
vascular diseases can be undertaken safely, but with appropriate 
precautions. Being active with peripheral neuropathy necessitates 
proper foot care to prevent, detect, and treat problems early to 
avoid ulceration and amputation. Autonomic neuropathy may 
complicate being active; certain precautions are warranted to pre-
vent problems during activity, such as avoiding rapid directional 
changes (if orthostatic hypotension is present) and preventing 
dehydration and overheating during exercise with adequate fluid 
intake. Vigorous aerobic or resistance exercise, jumping, jarring, 
and head-down activities, and breath-holding should be avoided 
in anyone with severe non-proliferative and unstable prolifera-
tive diabetic retinopathy. Exercise with diabetic kidney disease 
can be undertaken safely, even during dialysis sessions. Regular 
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stretching and appropriate progression of activities should be 
done to manage joint changes and diabetes-related orthopedic 
limitations.

COnCLUSiOn

This PS really does not contain any controversial recommenda-
tions, other than ADA disagreeing (strongly) with the requirement 
that ACSM put forth that all individuals with a metabolic condi-
tion who are currently sedentary must seek medical clearance 
prior to getting up off the couch. It is good to be reminded as well 
that although everyone can benefit from being physically active, 
specific recommendations and precautions will vary by the type 
of diabetes, age, activity done, and presence of complications, and 
exercise prescriptions should be tailored to meet the specific needs 

of each individual. Overall, this ADA PS provides a comprehensive 
and current guide to assist individuals of all ages with any type 
of diabetes with engaging in recommended amounts of regular 
physical activity safely and effectively and is a much-needed pub-
lication. For even more specifics about type 1 diabetes and exercise 
participation, however, readers are referred to a very recent con-
sensus statement (99) sponsored by the Juvenile Diabetes Research 
Foundation, which is far more comprehensive for this group of 
exercisers than this ADA PS ever intended to or realistically could 
be since it covered all types of diabetes, not just type 1.
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We discuss a novel hypothesis: the effect size of postmeal exercise for attenuating post-
prandial glucose will be a function of the exercise bout vs. the size of the postprandial 
glucose response, specifically peak and duration of the postprandial glucose excursion.
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introdUCtion

Hyperglycemia is a hallmark feature of type 2 diabetes. Sustained high glucose concentrations play 
a central role in the development of diabetes-related complications (1). Importantly, restoration 
of glycemic control reduces cardiovascular disease (2). Thus, the primary goal of type 2 diabetes 
treatment is to achieve and maintain glycemic control. While various therapeutic options are 
available, glycemic control remains challenging. For example, the long-term performance of 
hypoglycemic agents is unsatisfactory (2–4).

Traditional markers for glycemic control include fasting glucose, hemoglobin A1C (HbA1C), and 
postprandial glucose. The gold standard for assessing glycemic control is HbA1C, which represents 
a 3-month average of glucose exposure. Postprandial glucose is gaining more recognition as a key 
glycemic target for therapeutic intervention, as multiple lines of evidence support its use as a clini-
cal marker. Epidemiological studies have shown that postprandial glucose is a better cardiovascular 
disease predictor than HbA1C (5–7), as well as fasting glucose (8). In addition, interventional 
studies have shown that reducing postprandial glucose improves glycemic control (9) and leads to 
reductions in cardiovascular disease risk in people with type 2 diabetes (10).

Due to the growing body of evidence supporting the link between postprandial glucose and 
cardiovascular disease, the International Diabetes Federation (IDF) published guidelines for 
postmeal glucose management. Specifically, the target glucose value 1–2 h after meal ingestion is 
160 mg/dL (9.0 mmol/L) (11). Recommendations for treatment of postprandial glucose include 
pharmacologic and non-pharmacological strategies (11). Interestingly, exercise was not described 
as a treatment option in the IDF recommendation.

Exercise has been shown to be important for both prevention and treatment of type 2 diabetes, 
and the American Diabetes Association and American College of Sports Medicine have developed 
exercise guidelines for people with type 2 diabetes (12). However, these guidelines are not specific 
to postprandial glucose, and they do not mention exercise timing in relation to meal ingestion.  
The lack of attention to exercise timing in treatment guidelines highlights a need for more research 
on postmeal exercise and its effects on diabetes-related outcomes.

Postprandial exercise has been shown to be safe (13) and effective in people with type 2 dia-
betes (Figure  1) (14). Exercise acutely increases glucose uptake in skeletal muscle. This occurs 
through an insulin-independent process (15, 16) and, therefore, is applicable to type 2 diabetes. 
Muscle contraction serves as a signal for GLUT-4 receptor translocation on the skeletal muscle 
plasma membrane (17). GLUT-4 receptors are responsible for transporting glucose from systemic 
circulation and into skeletal muscle. This effect occurs after just a single bout of exercise, meaning 
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FiGUre 3 | Theoretical depiction. Solid line represents sedentary condition 
and dashed line represents postmeal exercise condition. (a) Displays larger 
effect size for postmeal exercise-induced glucose reduction in a smaller, 
shorter excursion. (B) Displays smaller effect size for a higher, longer  
glucose excursion.

FiGUre 2 | Indicates optimal range of postprandial glucose control. The 
upper glucose bound is set by the International Diabetes Federation 
Guidelines, while the lower glucose bound is defined by hypoglycemic risk. 
Continuous glucose monitoring data are representative of a 24-h glucose 
profile of an individual with type 2 diabetes. Summary data have been 
published previously (23).

FiGUre 1 | Continuous glucose monitoring data during the postprandial 
phase of both sedentary and postmeal exercise conditions after a 
standardized meal in the same individual. Figure has been adapted from 
previously published works (20). American Physiological Society, permissions 
for reuse not required due to original authorship.
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the glucose-lowering effects can be realized immediately (17). 
Furthermore, the acute nature of this response indicates that 
long-term training adaptations are not necessary for beneficial 
effects on blood glucose to occur. The optimal timing for post-
meal exercise has been suggested to be 30 min after the start of a 
meal (18). This is because peak postmeal glucose values typically 
occur within 90  min (19), and initiating exercise during this 
time window will blunt peak glucose excursions protecting the 
endothelial wall from pro-atherogenic glucose concentrations.

eFFeCtiVe eXerCise Considers 
GLUCose LeVeLs

A key characteristic of type 2 diabetes is an exaggerated glu-
cose response to a meal, and studies using continuous glucose 
monitoring (CGM) have shown that glucose excursions in 
people with type 2 diabetes are well above those of non-diabetic 
controls, even when treated with hypoglycemic agents (21, 22).  
An optimal postprandial glucose treatment will produce a glu-
cose response that mimics normal glucose tolerance. Measurable 
parameters of the postprandial glucose response that can be used 
for interventional guidance include glucose peak and duration 
of elevation. Those with normal glucose tolerance do not exceed 
140 mg/dL and glucose levels return to preprandial levels after 
2 h. Given these parameters, postmeal exercise can be strategi-
cally applied to lower peak glucose as well as time of elevation, 
thus resembling normal glycemic control. Effective exercise for 
type 2 diabetes requires balance, in that, clinically meaningful 
glucose reductions should be pursued, while minimizing risk for 
hypoglycemia (Figure 2).

We propose that the effectiveness of exercise will be dependent 
on the postprandial glucose response, including the glucose peak 
and duration of elevation. Larger amplitude, longer duration 
glucose excursions will require more intervention than smaller, 
shorter glucose excursions to produce a normoglycemic pattern. 
Therefore, the measurable effect size of an exercise bout will be 
dependent on the glycemic excursion itself, in that, a higher 

and longer excursion will experience less reduction from the 
same exercise bout compared to a smaller and shorter excursion 
(Figure 3). This concept is supported by quantitative compari-
sons of our previous work. In two distinct studies, we used CGM 
to assess the effects of postmeal exercise on postprandial glucose 
excursions in those treated with metformin (20), as well as those 
treated with more advanced T2D requiring metformin plus 
additional hypoglycemic agents (23).

We observed different effect sizes for postmeal exercise-
induced reductions in 2-h glucose peak, including a large effect 
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size (0.81) in individuals treated with only metformin (20) vs. 
a moderate effect size (0.56) in those treated with additional 
hypoglycemic agents (23). We propose that these differential 
results can be explained by two key differences among studies, 
including (1) differences in the applied exercise bout, as well as (2) 
differences in the amplitude of the postprandial glucose peak. The 
larger effect size was observed in the study that applied the larger 
exercise stimulus, i.e., exercise that was longer in duration (50 vs. 
30 min) and modestly higher in intensity (60% VO2 max vs. 50% 
VO2 max). In addition, the amplitude of the 2-h glucose peak 
measured in the control condition was lower in the metformin 
study participants compared to that of the metformin plus add-
on hypoglycemic agent study participants (12.0 vs. 14.5 mmol/L, 
respectively), indicative of an easier glucose “target” for reduction. 
This comparison suggests that a larger exercise stimulus (longer 
in duration, higher in intensity) applied to the smaller glucose 
peak resulted in a more effective strategy for glucose attenuation. 
One interpretation of this comparison is that the effectiveness of 
a postmeal exercise bout is a function of the amount of exercise 
vs. the size of the glucose peak.

To further explore this concept, a second comparison of the two 
studies was completed. The aim of this analysis was to use CGM 
data to quantify the amount of time exercising vs. the amount of 
time spent in postprandial hyperglycemia. This can be thought of 
as the percentage of time in which the glucose excursion was being 
intervened upon by exercise. This analysis revealed differences 
among our two studies. The percentage of time that was “treated” 
by exercise was 34% in the metformin study (20), vs. only 16% in 
the add-on therapy (23). These findings are consistent with the 
measured effect sizes, in that the larger effect size corresponded 
with the larger percentage of treated time (ES: 0.81; 34% of time was 
“treated” with exercise) and the smaller effect size corresponded 
with the small percentage of treated time (ES: 0.56; 16% of time 
was “treated” with exercise). These findings further support the 
concept that the effectiveness of exercise will be a function of the 
exercise bout vs. the size of the postprandial glucose response.

Significant glucose reductions have been reported in people 
with type 2 diabetes using a large variety of exercise strategies. 
This includes continuous (24, 25) and interval protocols (20, 23). 
In addition, various durations (20–60 min) and intensities have 
been shown to be effective (26, 27). Furthermore, multiple modes 
of exercise have been used including walking and cycling (24, 25). 
More recently, high-intensity interval training has been shown 
to be a promising approach for improving health outcomes in 
the people with type 2 diabetes (28–30). Taken together, these 
studies show there are numerous strategies to prescribe exercise. 
It is currently not clear if one variable is more important than 
another for postprandial glucose control. However, in the case of 
postmeal exercise approaches, it seems evident that maximizing 
the glucose-lowering power of an exercise bout will require tak-
ing the size of the glucose excursion itself, into account.

CoMpLeMentary eFFeCts oF drUGs 
and eXerCise

Hypoglycemic agents are a mainstay in type 2 diabetes treat-
ment. Thus, the combined effects of hypoglycemic agents and 

exercise should remain a high priority for future investigations. 
Metformin is the first-line therapy (31) for the prevention 
and treatment of type 2 diabetes. During disease progression,  
a variety of hypoglycemic agents can be used for glycemic control. 
Currently, there are nine available FDA-approved classes of oral 
hypoglycemic agents (32) and several injectable agents. Some 
drug classes specifically target and reduce postprandial glucose, 
including α-glucosidase inhibitors, DPP-4 inhibitors, glinides, 
GLP-1 derivatives, short-acting sulfonylureas, and insulin 
regimens (31). All of these medications are recommended to be  
taken along with regular exercise.

The target tissues and mechanisms of action widely vary 
among drug classes. Subsequently, these drug classes have dif-
fering effects on the 24-h glycemic profile. Some drugs effectively 
lower fasting glucose, while others target postprandial glucose. 
Postmeal exercise may be an effective complement to these agents. 
In fact, the combination of postmeal exercise and hypoglycemic 
agents has been shown to produce further glucose-lowering 
effects compared to drug treatment alone (20, 23). Additional 
experimental studies are needed to determine the interactive 
effects of postmeal exercise among various drug classes. This will 
involve appropriately timing medication and exercise in order  
to avoid hypoglycemia.

Insulin and insulin-analog regimens have been specifically 
designed to reduce postprandial glucose. Incorporation of post-
meal exercise alongside insulin therapy may also have beneficial 
health effects. If postmeal exercise is effective enough, it could 
potentially lead to a reduction in insulin dose. A study in par-
ticipants with type 1 diabetes found that prolonged walking 
(~40–50 km) led to profound reductions in insulin administra-
tion (26%) compared to a sedentary day (33). Future studies 
should investigate the effectiveness of more feasible exercise 
strategies, including postmeal exercise, as a complementary 
treatment to insulin.

For safety reasons, optimal diabetes treatments should have 
a low probability for eliciting hypoglycemia. The counter- 
regu latory response is a natural physiological process that 
defends against hypoglycemia, and this can occur if glucose 
falls too low during exercise. The counter-regulatory release of 
hormones into the circulation, including glucagon, catechola-
mines (epinephrine and norepinephrine), cortisol, and growth 
hormone is triggered when glucose drops below 3.8  mmol/L 
(34). This effect has been demonstrated experimentally in people 
with type 2 diabetes (25, 35) and should remain a consideration  
with prescribing exercise alongside hypoglycemic agents.

GLUCose-GUided approaCH

Our current hypothesis that the effectiveness of an exercise bout 
will be dependent on the size of the glucose excursion itself. 
Therefore, optimal exercise approaches will require knowledge 
of glucose values in real time. One commonly used approach is 
self-monitoring capillary glucose with finger sticks and glucom-
eters. When timed correctly, this method can be used to assess 
acute fluctuations in glucose after meals. In addition, CGM will 
likely play an important role. CGM technology uses a small 
probe within the subcutaneous tissue that samples and measures 
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glucose concentrations in the interstitial fluid. Future studies 
should determine the most effective and feasible approach for 
glucose-guided exercise prescriptions, which may involve a 
hybrid approach of glucometers and CGM.

ConCLUsion

Improving the treatment of type 2 diabetes is a major health 
care need. Taming postprandial glucose excursions can be 
accomplished by exercising after meals. The effectiveness of an 
exercise bout for lowering glucose will be dependent upon the 
size (peak and duration) of the postprandial glucose excursion. 
Larger excursions necessitate more aggressive intervention, while 
smaller excursions are easier targets for attenuation. Glucose 

monitoring techniques, such as glucometers and CGM technol-
ogy, may have an important role in quantifying the effectiveness 
of exercise bouts.
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Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular 
disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults 
fail to perform substantial levels of physical activity needed to improve health. Thus, 
understanding the molecular factors that stimulate physical activity, and physical inactiv-
ity, is imperative for the development of strategies to reduce sedentary behavior and in 
turn prevent chronic disease. Despite many of the well-known health benefits of physical 
activity being described, little is known about genetic and biological factors that may 
influence this complex behavior. The mesolimbic dopamine system regulates motivating 
and rewarding behavior as well as motor movement. Here, we present data supporting 
the hypothesis that obesity may mechanistically lower voluntary physical activity levels via 
dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine 
activity is a strong contributor to voluntary physical activity behavior. We also summarize 
findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn 
contributes to reductions in physical activity that often accompany obesity. Additionally, 
we highlight examples in which central leptin activity influences physical activity levels in 
a dopamine-dependent manner. Future elucidation of these mechanisms will help sup-
port strategies to increase physical activity levels in obese patients and prevent diseases 
caused by physical inactivity.

Keywords: physical activity, physical inactivity, motivation, dopamine, obesity, leptin

inTRODUCTiOn

Physical inactivity presents a major public health problem. Predictions by Lee et al. (1) estimated 
that physical inactivity accounts for between 6 and 10% of type 2 diabetes (T2D) and coronary heart 
disease prevalence, with this percentage further elevated for specific diseases (30% for ischemic heart 
disease) (2). Moreover, the World Health Organization declared physical inactivity as the fourth 
leading risk factor for death worldwide, responsible for ~6% of the deaths worldwide in 2008 (1, 2). 
Accelerometry measurements by Troiano et al. (3) reported that less than 5% of adults met the US 
guidelines for physical activity, while questionnaire data collected globally in 2009 suggested that 31% 
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of the world’s population did not attain minimum recommended 
levels of physical activity (4). Given the deleterious effects of 
physical inactivity, understanding molecular mechanisms that 
influence physical activity adherence is needed. Here, we sum-
marize current knowledge suggesting the mesolimbic dopamine 
system regulates physical activity, obesity-induced impairments 
in dopamine signaling may cause physical inactivity, and central 
leptin resistance in obesity and T2D may alter physical activity 
in a dopamine-dependent manner. Specifically, our discussion 
focuses on motivated and self-rewarding (i.e., voluntary wheel 
running), rather than spontaneous (i.e., cage activity, tremors, 
etc.), forms of physical activity.

GeneTiC COnTROL OF PHYSiCAL 
ACTiviTY

In 1953, Mayer, a leader who helped clarify the natures of hunger 
and of obesity, demonstrated that physical activity behavior has 
a biological basis (5). Mayer noted that obese, hyperglycemic 
mice were far less active than non-obese littermates. However, 
when the obese mice were bred against mice with a so-called  
“waltzing gene” physical activity increased to sufficiently prevent 
the development of obesity. Since Mayer’s original speculation 
of an uncharacterized “waltzing gene,” studies in animals and 
humans have estimated the genetic component for physical 
inactivity to be between 20 and 80% (6–12). Analysis of 772 
same-sex twin pairs concluded that 31% of the variance in daily 
sedentary time was explained by heritable factors (13). Of these 
heritable factors, associations between dopamine and moti-
vated physical activity are well established, as discussed below. 
However, other neuromodulators such as endocannabinoids  
(14, 15), opioids (16), and brain-derived neurotrophic factor 
(17) also influence physical activity behavior. Furthermore, 
inter actions between these neuromodulatory systems imply 
that biological networks control voluntary physical activity (18). 
Evolutionary perspectives also argue that while selection did not 
operate to cope with the detrimental effects of long-term physical 
inactivity, humans adapted to avoid unnecessary exertion due 
to limited energy supply (19). Additionally, gene–environment 
interactions influence physical activity. Rowland (20) proposed 
that through components related to energy balance control an 
“activity-stat” may regulate the propensity for physical activity. 
Furthermore, obesity was speculated to be a critical negative 
influencer of the “activity-stat” (21). Collectively, these findings 
suggest that physical activity levels have strong genetic control.

DOPAMineRGiC COnTROL OF PHYSiCAL 
ACTiviTY

Although detailed mechanisms describing the neurobiology of 
wheel running are incomplete, substantial evidence suggests 
that the mesolimbic dopamine pathway, specifically the ventral 
striatum and nucleus accumbens (NAc), plays an important role 
in determining voluntary running behavior (22–24). A detailed 
review of the mesolimbic dopamine system is beyond the scope 
of this review; however, a brief overview is provided next [please 

see Ref. (25, 26) for more detailed review]. In the mesolimbic 
dopamine system, dopaminergic neurons originating in the 
ventral tegmental area (VTA) project to various limbic nuclei, 
including the NAc, and changes in dopamine transmission play 
central roles in modulating information flow through the limbic 
system (27–30). These nuclei, through interconnections via 
dopaminergic neurons, have implications in reward, motivation, 
learning, and motor movement (31). Importantly, the NAc acts as 
a “filter” and/or “amplifier” of information passing between vari-
ous limbic, cortical, and motor areas of the brain, suggesting the 
NAc is instrumental in orchestrating behavioral processes related 
to motivation (25). Several reports have demonstrated that other 
mesolimbic structures, such as the VTA and prefrontal cortex, 
contribute to reward derived from physical activity, potentially 
through their interactions with the NAc (32–34).

Disruption of dopaminergic transmission and/or dopamine 
receptor expression in the NAc and ventral striatum can strongly 
influence voluntary physical activity. The depletion of NAc dopa-
mine by 6-hydroxydopamine decreased wheel running ~40% 
(35). Knab et  al. (22) suggested that differences in dopamine 
1-like (D1-like) receptors and tyrosine hydroxylase (Th) mRNA, 
the rate-limiting enzyme in dopamine synthesis, in the NAc influ-
ence different running distances between mouse strains.

Selective breeding studies have provided ample insight into 
voluntary physical activity regulation. Mice bred by Garland 
et  al  for high voluntary running distance displayed dysfunc-
tional dopaminergic profiles in the NAc (36, 37) and increased 
dopamine receptor 2 (Drd2) and dopamine receptor 4 (Drd4) 
mRNA ~20% in the hippocampus (38), compared to control 
mice. Furthermore, agonism (24) and antagonism (37) of D1-like 
receptors in the NAc paradoxically both decreased wheel run-
ning in high-running mice to a greater extent than in control 
mice. Similar findings from our group using rat lines selectively 
bred for high (HVR) and low (LVR) wheel-running suggested 
rats predisposed to run high nightly distances may quickly 
develop a rewarding response to exercise due to optimal D1-like 
receptor signaling in the NAc (39). Collectively, these data sug-
gest the following: (1) dopamine signaling is optimally primed 
to achieve reward associated with running in high-running rats, 
(2) dopamine is at least partially required for wheel-running 
behavior, and (3) animals run to achieve the rewarding effects 
of dopamine but do not want to run when dopamine signaling 
is artificially activated. Dopamine receptors 1 (Drd1), Drd2, 
and dopamine receptor 5 (Drd5) mRNA were also inherently 
50 to 85% higher in the NAc of HVR compared to LVR (16). 
Similarly, inherent ~1.3-fold increases in NAc Drd1 mRNA 
and ~1.8-fold greater dopaminergic activity were speculated 
to mediate increased wheel running in rats selectively bred for 
high, compared to low, aerobic capacity, suggesting that aerobic 
capacity may influence physical activity levels through altera-
tions in mesolimbic dopamine activity (40, 41). Furthermore, 
the loss of dopamine receptors or reduced dopamine release in 
the brain was associated with age-related declines in physical 
activity across many species (42) and was hypothesized to influ-
ence age-related physical activity reductions in humans (43). 
Single nucleotide polymorphism (SNP) analysis suggested that 
the DRD2 gene associated with physical activity levels in women 
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FiGURe 1 | Data suggest that both increases in energy intake and reductions in energy expenditure associate with increased obesity prevalence, 
while in later years, decreased energy expenditure more strongly associates with T2D prevalence. Percentage of US adults with obesity (A) or diagnosed 
with type 2 diabetes (B) over the past ~40 years. (C) Unadjusted food intake for male (solid line) and female (dashed line) adults in the US during the same time 
frame. (D) Physical activity (solid line/left axis) [average metabolic equivalent (MET) hours per week] and physical inactivity (dashed line/right axis) (hours per week of 
sedentary time) performed by US adults. Obesity data redrawn from Ref. (48, 51), diabetes data from the CDC (52), food intake data from Ref. (53), and physical 
activity data from Ref. (54).
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(44) and that individuals with the CC homozygous variant in 
rs1800955 of the DRD4 gene were more prone to sport-specific 
sensation seeking (45). Similarly, Wilkinson et  al. (46) found 
associations between SNPs in two dopamine pathway genes, 
angiotensin I converting enzyme (ACE) and synaptosomal-
associated protein 25 (SNAP25), and decreased likelihood for 
physical activity in youth.

However, whether alterations in the dopamine system are 
the result or driver of differences in voluntary physical activity 
is unknown. For example, previous reports show that voluntary 
wheel running is rewarding, and over time, able to alter behavior 
and affect the neuroplasticity of the mesolimbic reward pathway 
(34). Furthermore, endurance exercise training increased central 
dopamine concentrations up to 1.5-fold (47). Thus, physical 
activity, itself, could function in a feed-forward mechanism to 
further elevate physical activity.

OBeSiTY AnD DOPAMineRGiC 
DYSReGULATiOn

In the past three decades, obesity prevalence in the US has risen 
from below 20 to 36.5% (48). Additionally, physical inactivity 

levels and excessive food intake have increased over a similar 
period, directly contributing to increases in obesity and T2D (1) 
(Figure 1). Increases in unadjusted food intake from ~1980 to 
1994 were associated with initial rapid increases in obesity, but 
not T2D, prevalence. Furthermore, beginning in ~1998 to 2000, 
physical activity levels rapidly dropped and sedentary time rapidly 
increased. This decrease in physical activity and increase in physi-
cal inactivity corresponded with increases in both obesity and 
T2D prevalence, despite food intake staying relatively constant 
during the same period. In our opinion, more recent increases 
in obesity are thus better associated with physical inactivity 
increases as caloric intakes were unchanged. Importantly, while 
declining physical activity levels contribute to obesity develop-
ment, obesity contributed to reductions in physical activity in 
humans, even after controlling for baseline differences in physical 
activity (49). This interaction may promote the development of 
self-perpetuating vicious cycles whereby physical inactivity and 
obesity promote each other’s development (50).

The effects of obesity on the mesolimbic dopamine system are 
well studied, and hypotheses suggesting “reward dysfunction”  
in obesity have developed given findings that obesity is asso-
ciated with alterations in striatal dopamine signaling (55). 
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For example, reduced dopamine function, particularly DRD2 
sig nal ing, is associated with obesity development in rodents 
(56–59) and humans (60–62). However, these studies associ-
ated hyperphagia with obesity development and did not assess 
physical activity. Similarly, using positron emission tomography 
(PET) Guo et al. (63) observed a negative relationship between 
D2-like receptor binding in the ventral striatum and body mass 
index (BMI), suggesting that BMI could influence rewarding 
and effort-based actions. Similar measurements associating 
D1-like receptor neuron activity with obesity in humans are 
lacking, although several animal studies found that Drd1 mRNA 
is reduced up to ninefold in the NAc of obese rats (64, 65).  
High-fat diet consumption for 12 weeks decreased tonic dopa-
mine and Drd1 and Drd2 mRNA expression ~50% in the NAc 
of mice (66). Interestingly, following a 4-week recovery from 
high-fat diet, NAc Drd1 and Drd2 mRNA expressions were 
normalized in female, but not male, mice (66). Similarly, PET 
studies in humans show that DRD2 binding is not recovered 
(67) or partially recovered (68) following Roux-en-Y gastric 
bypass surgery. Collectively, these data suggest that reductions 
in dopamine function accompanying obesity could persist 
following weight loss. This notion is consistent with findings 
that physical inactivity levels remained high in obese humans 
months after weight loss (69–71), raising the question whether 
“physical activity resistance” exists temporarily/permanently 
after weight loss.

Interestingly, animal studies also suggest that high-fat diet 
exposure, rather than weight gain, may be more predictive of 
changes in striatal dopamine signaling. Isocaloric high-fat diet 
feeding in rats resulted in ~40% lower DRD2 in the NAc (72). 
Furthermore, chronic ad libitum high-fat diet reduced dopamine 
turnover 3.5-fold in the NAc of rats, although similar reductions 
were observed following isocaloric high-fat diet (73). Additionally, 
animal studies suggest that longer-term high-fat diet exposure 
can suppress dopamine synthesis, release, or turnover, ultimately 
reducing motivated behaviors not limited to motivation for food, 
such as physical activity (74). Despite considerable variability in 
experimental outcomes, we conclude that decreased dopamine 
signaling, particularly decreased D2-type function, could be 
particularly relevant to obesity.

OBeSiTY AnD PHYSiCAL inACTiviTY

Obesity is strongly associated with physical inactivity (75, 76). 
While sparsely studied, several studies suggest that diet-induced 
dopaminergic alterations accompanying obesity may promote 
physical inactivity. Friend et  al. (77) noted that diet-induced 
obesity in mice reduced D2-type receptor binding in the stria-
tum that associated with decreased voluntary physical activity. 
Furthermore, in the same study the deletion of the Drd2 gene, 
specifically in inhibitory medium spiny neurons (iMSNs), 
decreased wheel revolutions compared to littermate controls, 
although these mice were surprisingly not more vulnerable to 
diet-induced weight gain (77). Finally, the restoration of iMSN 
signaling reversed deficits in wheel running (77). Collectively, 
these data support the notion that D2-type receptor dysregula-
tion contributes to obesity-induced physical inactivity, but that 

physical inactivity may be a consequence, rather than effector, 
of obesity.

Similarly, comparisons between mice bred for excessive 
exercise or obesity revealed that NAc dopamine content was 
increased in high running compared to obese and control mice, 
while Drd1, Drd2, and adenylate cyclase 5 (Adcy5) mRNAs were 
downregulated 92, 80, and 91%, respectively, in obese compared 
to control mice (78). Nonetheless, the authors hypothesized that 
modifications in the dopaminergic system may contribute to 
the differences in voluntary exercise between the high-running 
and obese mice (78). Analysis of obesity-resistant, compared to 
obesity-prone, rats also suggested that reduced physical activity 
levels in obesity-prone rats may stem from decreased action of 
hypothalamic orexin on dopamine neurons in the striatum and 
substantia nigra (79, 80). Finally, lower striatal dopaminergic 
activity may have contributed to low wheel running activity in 
rats with low aerobic capacity, who also had greater body weight 
and metabolic disease risk (40).

A recent study found that decreased DRD2 signaling in 
the striatum influences obesity development via reductions in 
physical activity rather than increases in food intake. Using 
Drd2 knockdown mice, Beeler et  al. (81) observed that when 
presented with voluntary exercise in an enriched environment, 
Drd2 knockdown mice were dramatically less active than wild-
type mice. Importantly, in the same study reduced voluntary 
exercise by Drd2 knockdown mice promoted an obese pheno-
type despite no differences in food intake (81). These intriguing 
observations not only suggest a direct link between reduced 
dopamine function and decreased physical activity, but that the 
decreases DRD2 signaling can contribute to obesity via reduced 
energy expenditure rather than the initiation of compulsive 
overeating. Furthermore, obesity-induced reduction in DRD2 
signaling could initiate the following feedback mechanism to 
further amplify obesity and physical inactivity: obesity → ↓ 
DRD2 signaling → ↑ physical inactivity → ↑ obesity → futile 
cycle. On the contrary, separate experiments show that dietary 
restriction increased wheel running (82) and dopamine over-
flow and receptor expression in the NAc (83, 84), suggesting 
that obesity and dietary restriction may have opposing effects 
on dopamine signaling and, in turn, voluntary physical activity. 
However, future research is needed to dissect causal and conse-
quential relationships between obesity, dopamine, and physical 
inactivity.

CenTRAL LePTin ACTiOn AnD 
PHYSiCAL ACTiviTY

Relationships between leptin and physical activity are well estab-
lished. Central leptin resistance is a hallmark of obesity (85, 86), 
and leptin resistance in the VTA following diet-induced obesity 
has been noted previously (87). Normal leptin signaling in VTA 
dopaminergic neurons is well characterized, with a general 
consensus being that leptin receptor (LEPR) signaling inhibits 
dopamine activity (88–90). Correspondingly, associations 
between select DRD2 and LEPR allelic gene variations have been 
associated with the development of severe obesity (91).
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Leptin suppressed the rewarding effects of wheel running in 
mice via activation of signal transducer and activator of transcrip-
tion-3 (STAT3) signaling in VTA dopamine neurons, an effect 
which likely influenced dopamine overflow and function in the 
NAc and suggested that leptin may influence the motivational 
and rewarding effects of wheel running (92). Additional studies 
show that dopamine overflow in the NAc is reduced by leptin 
deficiency (88) and diet-induced obesity (57). In mice bred by 
Garland et  al  for high voluntary wheel running, which display 
dysfunctional dopaminergic profiles in the NAc as described 
above (36, 37), intraperitoneal leptin injection increased running 
by 17%, while control mice were unaffected (93). Paradoxically, 
in the same study high-fat feeding increased wheel running 20% 
in high-running mice, an effect speculated to be mediated by 
leptin (93). Intracerebroventricular injection of a recombinant 
adeno-associated virus (rAAV) overexpressing a mutant of 
leptin, which produces a protein that acts as a LEPR antagonist, 
decreased wheel running 25 and 40% in rats fed either a standard 
chow or high-fat diet, respectively, while rAAV overexpression 
of functional leptin increased wheel running ~2-fold Matheny 
et al. (94). However, changes in voluntary physical activity in the 
Matheny et al. study could be secondary to changes in adiposity 
following rAAV injection. Collectively, a hypothesis describing 
the interaction between obesity, dopamine, leptin, and physical 
inactivity is presented in Figure 2.

Further suggesting that leptin may impact the motivational 
and rewarding effects of running are observations that high 
serum leptin levels inversely correlated with low marathon run 
times after BMI adjustment (96), and with running performance 
(time and speed) in mice bred for high voluntary running (97). 

Leptin deficiency has also been shown to influence physical 
activity humans, whereas acute leptin increased locomotor 
activity in leptin-deficient patients during the fed state (98, 99). 
Similarly, leptin-deficient ob/ob mice increased wheel running 
3.5-fold during the fed state following acute subcutaneous leptin 
injection, while no effect was observed in wild-type mice (100). 
Collectively, these studies highlight the important role of leptin 
as an effector of voluntary physical activity, potentially through 
alternations in dopamine signaling.

COnCLUSiOn

Physical inactivity and obesity have reached pandemic levels 
(101). The abovementioned studies strongly suggest that dopa-
minergic function influences physical inactivity levels. Similarly, 
obesity-induced suppression of dopamine signaling may con-
tribute to the high prevalence of physical inactivity observed 
in obese people. Additional understanding of mechanisms by 
which dopaminergic dysfunction contributes to obesity, physical 
inactivity, or their interactions may reveal novel approaches for 
increasing physically activity in obese populations.
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FiGURe 2 | Hypothesized model by which impaired dopaminergic signaling promotes physical inactivity in obesity. (A) Summary of the reward circuitry 
in the brain; originally established by Robison and Nestler (95). The blue projection illustrates dopaminergic projections from the ventral tegmental area (VTA) that 
release dopamine (DA) onto post-synaptic neurons in the nucleus accumbens (NAc). (B) Expanded, but simplified, illustration of this dopaminergic VTA to NAc 
projection as it is hypothesized to relate to physical inactivity in lean and obese individuals. In obesity, dopamine receptor (DxR), particularly dopamine receptor 2, 
expression is decreased in NAc medium spiny neurons (MSNs). Similarly, mechanisms controlling DA production and release are reduced with obesity, leading to 
less DA in the synapse. Central leptin resistance in obesity [denoted by open leptin receptor (LEPR) symbol] may influence LEPR signaling in VTA DA neurons, in 
turn further diminishing downstream DA function. Collectively, these obesity-induced impairments in dopaminergic signaling may lead to exacerbated levels of 
physical inactivity, which may in turn lead to a futile cycle of increased obesity, dopaminergic dysregulation, and physical inactivity. Other abbreviations: Amyg, 
amygdala; PFC, prefrontal cortex.
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Physical inactivity, excess energy consumption, and obesity are associated with ele-
vated systemic oxidative stress and the sustained activation of redox-sensitive stress- 
activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. 
Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, 
and the development and progression of cardiometabolic disease. Paradoxically, acute 
exercise transiently increases oxidative stress and SAPK signaling, yet postexercise gly-
cemic control and skeletal muscle function are enhanced. Furthermore, regular exercise 
leads to the upregulation of antioxidant defense, which likely assists in the mitigation 
of chronic oxidative stress-associated disease. In this review, we explore the complex 
spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and 
highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling 
as important regulators of glucose homeostasis.

Keywords: exercise, insulin signaling, stress kinase, glycemic control, oxidative stress, redox

iNTRODUCTiON

Physical inactivity and excess adipose tissue are associated with the development of insulin resist-
ance and type 2 diabetes mellitus (T2DM), which has reached epidemic proportions (1). Regular 
exercise can assist in the prevention and management of metabolic disease (2). Even a single session 
of exercise can improve glycemic control for up to 48  h postexercise (3–5). Improved glycemic 
control following acute and regular exercise occurs in part through improved insulin action and 
substrate metabolism in skeletal muscle (6, 7) by mechanisms that remain largely unknown. One 
potential mechanism may involve reactive oxygen species (ROS) and their paradoxical dual role 
in the pathophysiology of glucose homeostasis (8, 9). Considering that acute and chronic exercise 
training lead to alterations in oxidation–reduction (redox) homeostasis (10, 11), it is not surprising 
that redox biology has been proposed as a possible modulator of glycemic control and skeletal 
muscle adaptation to exercise (12–14). This review explores current evidence supporting exercise-
induced ROS and skeletal muscle redox-sensitive protein signaling as important regulators of 
glucose homeostasis.

eXeRCiSe AND GLYCeMiC CONTROL

insulin-Stimulated Glucose Uptake
Glucose homeostasis is vital for organism survival and involves the complex interaction between 
intestinal glucose absorption, liver gluconeogenesis and glycogenolysis, and tissue glucose uptake 
(15). During conditions of elevated substrate availability, for example, a glucose load from a meal, 
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elevated blood glucose is sensed by pancreatic β-cells resulting 
in the secretion of insulin to maintain glucose homeostasis 
(15). Under normal physiological conditions, insulin binds 
to the extracellular α-subunit of the insulin receptor promot-
ing autophosphorylation of the transmembrane β-subunit on 
tyrosine residues 1158, 1162, and 1163 (16). Scaffolding proteins 
including Shc adapter protein isoforms, signal-regulatory protein 
family members, Gab-1, Cbl, adapter protein with a PH and SH2 
domain, and insulin receptor substrates (IRS) are bound, and 
tyrosine residues phosphorylated to promote subsequent bind-
ing to phosphatidylinositol-3 kinase (PI3K) (17, 18). Activation 
of PI3K generates phosphatidylinositol (3,4,5)-trisphosphate 
(PIP3) that docks to and subsequently induces membrane trans-
location of the serine/threonine kinase Akt. PIP3 activation of 
phosphoinositide-dependent kinase-1 (PDK1) and the Rictor/
mTOR complex 2 lead to dual phosphorylation of Akt on serine 
473 and threonine residue 308 promoting subsequent activation 
of Akt kinase (19, 20). Increased Akt activity elicits phosphoryla-
tion of Akt substrate of 160 kDa (AS160; also known as TBC1D4) 
and TBC1D1 (21), promoting GTP loading and activation of 
Rab proteins releasing glucose transporter 4 (GLUT4) vesicles 
from intracellular compartments and promoting GLUT4 plasma 
membrane docking to facilitate glucose uptake (22–24).

Akt phosphorylation not only promotes GLUT4 translocation 
but also facilitates glycogen synthesis via inhibitory phospho-
rylation of glycogen synthase kinase 3 (GSK3) on Ser23 (GSK3α) 
and Ser9 (GSK3β) (25–27). PIP3 and PDK1 also activate atypical 
protein kinase C (PKC) isoforms ζ and λ, which are reported to 
facilitate GLUT4 vesicle trafficking and glucose uptake (28, 29). A 
summary of the canonical insulin signaling pathway is presented 
in Figure 1.

Glucose Uptake during exercise
Glucose uptake during exercise occurs in an exercise intensity- 
and exercise duration-dependent manner, which depends largely 
on a combination of increased glucose delivery, glucose trans-
port, and glucose metabolism (7). Increased trafficking of GLUT4 
to the plasma membrane during exercise occurs largely through 
mechanisms independent of insulin (7). These include the cel-
lular detection of changes in Ca2+ concentration (30, 31), changes 
in the energy status (ATP) of the cell (32–35), remodeling of the 
actin cytoskeleton via GTPase Rac1 (36), and fiber type-specific 
mediation of nitric oxide (NO) synthase (37). The primary protein 
signaling pathways include contraction-induced activation of 
calcium (Ca2+)/calmodulin-dependent kinase, atypical PKC, cal-
cineurin, 5′ adenosine monophosphate-activated protein kinase 
(AMPK), Akt, and mitogen-activated protein kinases (12, 38).  
Exercise-induced AMPK, and to a lesser extent Ca2+ signaling 
pathways (30, 31), elicits GLUT4 translocation and subsequent 
glucose uptake through phosphorylation and inactivation of the 
convergent glucose uptake signaling proteins AS160 and TBC1D1 
(21, 24, 39–42) (Figure 2).

Postexercise enhancement of insulin 
Sensitivity
Glucose uptake during exercise is maintained in populations 
who are insulin resistant and/or have been diagnosed with type 

2 diabetes (43). In contrast, basal and postexercise insulin-
stimulated glucose uptake appears to be impaired and contribute 
to the development of chronic disease (8, 44, 45). Regular exercise 
in both healthy and clinical populations improves indices of 
glycemic control including glycated hemoglobin (HbA1c) and 
insulin sensitivity in a “dose”-dependent manner (duration and 
intensity) (2, 46). It is generally conceded that training-induced 
improvements in glycemic control lead to improved insulin action 
in part through the upregulation of key skeletal muscle glucose 
homeostasis regulatory proteins such as Akt1/2, AS160, AMPK, 
hexokinase 2, and importantly GLUT4 (6, 7). Improved insulin 
action may also occur through exercise-induced mitochondrial 
biogenesis and improved mitochondrial function in addition to 
the upregulation of antioxidant defenses that lead to improved 
redox homeostasis (6, 13).

In contrast to regular exercise, the transient enhancement of 
insulin sensitivity in the hours after acute exercise appear to occur 
independent of modifications to the insulin receptor, IRS1/2, 
PI3K, Akt, and/or GSK3 α/β proteins (3, 14, 47, 48). It has been 
reported that AS160 and TBC1D1, which converge downstream 
of insulin- and contraction-mediated glucose uptake signaling 
pathways, are associated with the postexercise enhancement 
of insulin sensitivity (14, 42, 49–53). Although decades of 
research have contributed to a greater understanding of exercise 
and glycemic control, the specific exercise-induced signaling 
mechanisms leading to the acute and long-term adaptations 
that favor enhanced glycemic control are less clear (3, 7). One 
potential mechanism may be through exercise-induced ROS and 
their capacity to act as second messengers for skeletal muscle cell 
signaling (13, 14, 54, 55).

ReDOX HOMeOSTASiS

Biological organisms are constantly undergoing oxidation– 
reduction (redox) reactions to maintain a redox environment 
that is optimal for cellular signaling (56). Under certain circum-
stances, excess ROS production can lead to oxidative damage 
and/or modification of lipids, proteins, RNA, and DNA, leading 
to a redox state that is often referred to as oxidative stress (57). 
ROS production in a biological system occurs through numerous 
sources including radiation, environmental pollutants, chemo-
therapeutics, psychological stress (58), normal and abnormal 
cellular substrate metabolism (9, 59), and mechanical and physi-
ological stress induced through exercise (9, 11). ROS considered 
to be of biological importance, which includes hydroxyl radical 
(OH), superoxide anion O2

−( ), NO, peroxyl radical, peroxynitrite, 
hypochlorous acid, hydrogen peroxide (H2O2), singlet oxygen, 
and ozone (57, 60). It should be noted that reactive nitrogen 
species and reactive sulfur species also constitute separate radical 
groups with independent biological functions (61, 62); however, 
their discussion lies beyond the scope of this review.

Reactive oxygen species are capable of direct and/or indirect 
oxidative modification to proteins (63). Sustained oxidation of 
proteins can result in disruptions in the normal functioning  
of the proteome including protein inactivation (64), modifica-
tion of the protein side chains, fragmentation of peptide bonds 
(65), and structural unfolding and conformational changes (66). 
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FiGURe 1 | Primary signaling pathways involved in insulin-stimulated glucose uptake. Akt, protein kinase B; AS160, Akt substrate of 160 kDa; GLUT4, 
glucose transporter 4; GSK3, glycogen synthase kinase 3; IRS-1/2, insulin receptor substrates 1 and 2; mTORC1/2, mechanistic target of rapamycin complex 1/2; 
PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphatidylinositol-3 kinase; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PP2A, 
protein phosphatase 2; PTEN, phosphatase and tensin homolog; PTP1B, protein tyrosine phosphatase 1B.
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Likewise, ROS are implicated in oxidative damage to DNA, a 
process that ultimately results in strand breakage, DNA–protein 
crosslinks and base alterations, and defective DNA transcription 
and translation leading to the synthesis of less protein and/or 
defective protein (67–69). In addition to DNA, both messenger 
and ribosomal RNA are vulnerable to oxidative damage, which can 
lead to the disturbance of translational process and impairment 
of protein synthesis (69). ROS-induced damage to mRNA occurs 
primarily through the formation of highly reactive free radicals 
such as the OH (70) and appears to be selective and independent 
of the abundance of the mRNA species (69). Although RNA is 
highly susceptible to oxidative damage, considerably more so 
than DNA, protein, and lipids (69), to the authors knowledge, 
research has yet to investigate the effect of exercise-induced 
ROS production on RNA damage and the subsequent effects on 
protein synthesis and exercise adaption.

Lipids, especially polyunsaturated fatty acids, are susceptible 
to oxidative degradation, a process referred to as lipid peroxida-
tion, which can result in a chain reaction leading to subsequent 
formation of peroxyl radicals and hydroperoxides (71). In addi-
tion to the direct cellular damage caused by ROS-induced lipid 
peroxidation, secondary products from lipid peroxidation such 
as malondialdehyde, propanal, hexanal, and the highly toxic 
4-hydroxynonenal (4-HNE) can elicit signaling events that con-
tribute to the development of cardiometabolic disease (72–75).

Disturbances in redox homeostasis can lead to perturbed 
redox signaling and aberrant cellular functioning (56). Therefore, 
organisms have evolved to encompass a complex and intercon-
nected antioxidant defense system, which helps maintain redox 
homeostasis through the reduction of ROS and/or ROS inter-
mediates, subsequent termination of ROS-mediated chain reac-
tions, and/or through ROS-induced damage repair mechanisms 
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FiGURe 2 | Primary signaling pathways involved in contraction-induced glucose uptake. AMPK, 5′ adenosine monophosphate-activated protein kinase; 
AS160, Akt substrate of 160 kDa; CaMK, Ca2+/calmodulin-dependent protein kinase; GLUT4, glucose transporter 4; PKC, protein kinase C; RAC1, ras-related C3 
botulinum toxin substrate 1.
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(60, 76). These defenses include a number of redox-buffering 
enzymes, proteins, and scavengers, such as superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase (GPx)/reductase, 
thioredoxin, peroxiredoxin, inducible nitric oxide synthase 
(iNOS), gamma-glutamylcysteine synthetase, redox effector 
factor 1, nuclear factor erythroid 2-related factor 2, antioxidant 
response element, Kelch-like ECH-associated protein 1, uric acid, 
lipoic acid, bilirubin, coenzyme Q10, vitamin C, vitamin E, and 
carotenoids (57, 60, 77–82).

OXiDATive STReSS AND MeTABOLiC 
HeALTH

Chronically elevated systemic oxidative stress is associated with 
over 100 pathological conditions including accelerated aging, car-
diovascular disorders, insulin resistance, and T2DM (9, 57, 83).  
Considerable research has reported attenuated antioxidant defense 
and elevated basal oxidative stress in populations with chronic 
disease, often correlating with classical cardiometabolic risk 
factors such as increased circulating high-sensitivity C-reactive 
protein, greater waist-to-hip ratio, total cholesterol, triglycerides, 
and fasting blood glucose (84–90). As such, the measurement of 
basal systemic oxidative stress has been proposed as a marker 
for predicting the onset of a disease, assessing the progression 

of a disease, and evaluating the effect of pharmacological (e.g., 
antioxidant supplementation) and non-pharmacological (e.g., 
diet and exercise) therapies targeting oxidative stress-associated 
disease (81, 87, 91).

eXeRCiSe-iNDUCeD OXiDATive STReSS

Acute exercise elicits a transient state of elevated ROS, which 
depending on the type of exercise, duration and intensity, and 
antioxidant capacity of the individual, can result in oxidative 
stress (11, 87, 92). In contrast to chronic oxidative stress, the 
transient increase in ROS and oxidative stress elicited by most 
types of exercise (i.e., non-extreme muscle damaging exercise) are 
reported to be beneficial and a necessary requirement for optimal 
cellular functioning and adaptation to physiological stress (79).

Mechanisms for exercise-induced 
Oxidative Stress
The mechanisms of intracellular and extracellular ROS gen-
eration in skeletal muscle during exercise are reviewed in detail 
elsewhere (93–95). In brief, the primary mechanisms are sug-
gested to include NADPH oxidase (96, 97), xanthine oxidase 
(98), NO synthase (99), and arachidonic acid release from cell 
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FiGURe 3 | Sources of ROS in skeletal muscle. ETC, electron transport chain; eNOS, endothelial nitric oxide synthase; nNOS, neuronal nitric oxide synthase; 
NO, nitric oxide; ONOO−, peroxynitrite; OH, hydroxyl radical; O2

−, superoxide; H2O2, hydrogen peroxide; H2O, water; EcSOD, extracellular superoxide dismutase; 
MnSOD, manganese superoxide dismutase; CuZuSOD, copper–zinc superoxide dismutase; GPx, glutathione peroxidase; CAT, catalase; PLA2, phospholipase A2; 
Fe, iron; ROS, reactive oxygen species. Adapted from the study by Powers and Jackson (93) with permission.
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membranes by phospholipase A2 (100), whereas mitochondrial 
electron leak is suggested to contribute only marginally during 
muscular contraction (101) (Figure 3). Other mechanisms that 
may contribute to elevated skeletal muscle and/or plasma oxida-
tive stress include the oxidation of catecholamine (102), lactate 
accumulation (103, 104), elevated core body temperature (105), 
hemoglobin and myoglobin-mediated autooxidation (106–108), 
and postexercise inflammatory and phagocytic responses includ-
ing ischemic reperfusion, cytokine secretion, and respiratory 
burst (109–111).

Although plasma oxidative stress is commonly measured 
as an indicator of exercise-induced oxidative stress, the exact 
sources of systemic oxidative stress following skeletal muscle 
contraction are not well understood. Nevertheless, due to the 
large proportion of body mass that is constituted by skeletal 
muscle, it is proposed that skeletal muscle fibers, vascular cells, 
endothelial cells, and/or blood cells residing within skeletal tis-
sue are the main contributors of both the exercise-induced local 
and systemic oxidative stress (95). Ex vivo skeletal muscle con-
traction studies have established the potential for skeletal muscle 
to elicit systemic oxidative stress (95, 112, 113). The specific cell 
types that contribute to skeletal muscle ROS production likely 
include vascular smooth muscle cells, endothelial cells, fibro-
blasts, erythrocytes, and white blood cells, with skeletal muscle 
fibers suggested to play the biggest role in the generation of 
extracellular ROS during and after exercise (95, 114, 115). Other 
tissues such as the heart, liver, and lungs may also contribute to 
the systemic increase in oxidative stress following acute exercise, 
but likely to a lesser degree (95).

exercise-induced Oxidative Stress  
and Metabolic Health
To date, the literature is equivocal in regards to the effect of 
acute exercise on biomarkers of oxidative stress and antioxidant 
activity (11). Inconsistencies in the literature likely result from 
variations in dietary intake, training status, exercise intensity  
(5, 11, 92, 116, 117), exercise duration (11, 118, 119), exercise 
mode (11, 119), tissues sampled (119), sampling time points 
(119, 120), as well as the variety and volatility of the biochemical 
assays used (121). Nevertheless, the general consensus is that 
acute exercise elicits a transient increase in systemic and local-
ized oxidative stress and antioxidant defense, which, depending 
on the intensity and mode of exercise, can be detected for up to 
4 days after exercise (11, 116, 122).

Excessive ROS production and/or oxidative stress induced 
through severe or extreme exercise regimes (e.g., ultraendur-
ance events) in humans is associated with cellular disturbances 
promoting muscular fatigue (94, 123), aberrant upregulation 
of endogenous antioxidant defenses (124, 125), and impaired 
cognitive function (126). Similarly, impaired exercise tolerance 
and physiological responses have been documented in murine 
animal models (127). For example, Aoi et al. (128) reported that 
muscle damaging exercise in mice induced through downhill 
running increased skeletal muscle oxidative stress [thiobar bituric  
acid reactive substances (TBARS)] and resulted in 4-HNE-
mediated impairment of the canonical insulin protein signaling 
pathway and decreased insulin-stimulated glucose uptake 24 h 
after exercise. Thus, under certain conditions, exercise-induced 
oxidative stress has the potential to elicit a deleterious redox 
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FiGURe 4 | The influence of oxidative stress in health and disease. p38, p38 mitogen-activated protein kinases; JNK, c-Jun N-terminal kinases;  
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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environment conducive to impaired exercise capacity and 
health (Figure 4).

The pathological effects of exercise-induced oxidative stress 
likely stem from secondary muscle damage leading to phagocytic 
infiltration into skeletal muscle (129) and subsequent generation 
of ROS (130, 131). In support, Nikolaidis et  al. (122) reported 
that muscle damaging exercise (75 lengthening knee flexions) 
significantly increased serum oxidative stress (TBARS, oxidized 
GSH, and protein carbonyls) and serum antioxidant defense 
(CAT activity, uric acid, bilirubin, and total antioxidant capac-
ity), which lasted for up to 4 days after exercise. When a second 
identical bout of exercise was performed 3 weeks later, indices 
of muscle damage were lower, including improved isometric 
torque, which coincided with attenuation of the postexercise 
systemic redox response (122). Thus, the acute exercise-induced 
oxidative stress impairment of exercise performance, recovery, 
and metabolic health appears to occur independently from the 
transient and immediate increase in oxidative stress measured 
during and after exercise and is likely attenuated with subsequent 
exercise-induced oxidative stress insults (e.g., exercise training).

The majority of literature supports the idea that transient ROS 
production and/or oxidative stress elicited through regular exercise 
regimes (e.g., accustomed and/or non-extreme muscle damaging 
exercise) is beneficial and a necessary requirement for optimal 
physiological functioning and adaptation to physiological stress 
(79). Samjoo et  al. (132) reported that 12  weeks of endurance 
training (2–3 sessions per week of 30–60 min cycling at 50–70% 
VO2peak) in obese and sedentary men decreased basal skeletal muscle 
and urinary markers of oxidative stress (4-HNE, protein carbonyls, 
and 8-isoprostane), increased basal skeletal muscle MnSOD protein 

abundance, and improved indices of glycemic control. Thus, repeti-
tive sessions of exercise-induced ROS (i.e., exercise training) can 
improve metabolic health through the upregulation of endogenous 
antioxidant defense and attenuation of basal chronic oxidative 
stress. Further support for the beneficial effect of exercise-induced 
ROS can be found in human and animal studies that have reported 
antioxidant compounds to impair exercise capacity (133, 134), 
adaptive gene expression and protein synthesis (133, 135–138), 
upregulation of antioxidant defense (10, 13, 133, 136, 139, 140), 
cardiovascular health (141, 142), skeletal muscle inflammatory 
response and repair capabilities (134, 139), and insulin sensitivity 
(13, 55, 143, 144). Not all studies have reported the blunting of the 
aforementioned exercise-mediated adaptations (145–149), with 
some reports indicating enhanced exercise-induced adaptation with 
antioxidant supplementation (150, 151). An overview of the diverse 
role of oxidative stress in metabolic health is presented in Figure 4.

STReSS-ACTivATeD PROTeiN KiNASe 
(SAPK) AND MiTOGeN-ACTivATeD 
PROTeiN KiNASe (MAPK) SiGNALiNG

Stress-activated protein kinase and MAPK signaling pathways 
include, but are not limited to, p38 MAPK (p38 MAPK), c-Jun 
N-terminal kinases (JNK), nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), and PKC (152, 153). For 
the purpose of this review, both MAPK and SAPK are collectively 
referred to as SAPK.

Stress-activated protein kinase signaling pathways are associ-
ated with cellular proliferation, differentiation, survival, and cell 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


90

Parker et al. Exercise, Redox Homeostasis, and Glycemic Control

Frontiers in Endocrinology | www.frontiersin.org May 2017 | Volume 8 | Article 87

death. Uncontrolled or sustained activation of SAPK signaling 
pathways are associated with the development and progression 
of cancer, neurodegenerative, and cardiometabolic disease (8, 57, 
154). In contrast, controlled and/or transient SAPK activation is 
required for normal physiological functioning and reported to 
mediate many of the adaptations and health benefits received 
from regular exercise (12, 152).

Stress-activated protein kinase pathways are activated through 
numerous stimuli involving hormones, growth factors, cytokines, 
agents acting through G protein-coupled receptors, transforming 
growth factors, pathogens and danger-associated molecular pat-
terns, and physical and chemical stresses (153, 155, 156). Relevant 
to the current review, however, is the inherent capacity of ROS to 
both directly and indirectly activate SAPK signaling pathways in 
skeletal muscle (157–161).

ROS-induced SAPK Signaling
The direct oxidation of proteins on cysteine residues by ROS 
act as biological “switches” turning on the catalytic properties 
of numerous proteins and enzymes (162). Cysteine thiol oxida-
tion produces sulfenic acids, which form irreversible oxidation 
products or, in many cases, react to form reversible disulfide 
and sulfenamide bonds. These bonds can later be reduced via 
enzymes or compounds such as thioredoxin and glutathione, 
acting as an “off switch” and inhibiting protein function and enzy-
matic activity (163, 164). ROS-induced SAPK signaling can occur 
through reversible oxidative modification processes that involve 
MAPK kinase kinases (MAP3K/MAP2Ks) (165) and oxidative 
inactivation of thioredoxin (166, 167) and MAPK phosphatases 
(168–171). In addition, SAPK activation can occur through ROS-
induced inactivation of glutathione S-transferases (172), tyrosine 
phosphorylation of protein kinase D (173), tyrosine, and serine 
phosphorylation of upstream targets such as the nuclear factor 
of kappa light polypeptide gene enhancer in β-cells inhibitor 
alpha (174) and the interaction with growth factor and cytokine 
receptors (163, 175). Crosstalk also exists between SAPK signal-
ing pathways, with activation of one pathway (e.g., JNK and p38 
MAPK) often interacting with and activating other pathways 
(e.g., NF-κB) (176). Irrespective of the mechanisms, considerable 
research has reported increased SAPK signaling under conditions 
of elevated ROS production (135, 157–160).

exercise-induced SAPK Signaling
The mechanical and physiological stresses elicited by acute 
exercise are potent stimuli for the transient activation of SAPK 
signaling in human skeletal muscle in part through increased 
ROS production (12). Exercise-induced SAPK signaling activate 
important skeletal muscle transcription factors and coactivators, 
which include peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α), activating transcription factor 2, 
myocyte-enhancing factor 2, c-jun, c-fos, p53, and Elk-1 (12, 135, 
177–185). Exercise-induced SAPK signaling is also associated 
with increased gene expression and the upregulation of anti-
oxidant defenses such as SOD, iNOS, gamma-glutamylcysteine 
synthetase, GPx, and CAT (12, 135, 137, 161, 185–187).

Evidence supporting a role for exercise-induced ROS and 
SAPK signaling in exercise adaptation is primarily derived 

from research manipulating the redox environment to attenu-
ate or enhance the exercise-induced ROS and protein signaling 
response. Henriquez-Olguin et al. (161) reported that inhibition 
of the ROS-producing enzyme complex NADPH oxidase 2 in rats 
attenuates the exercise-induced skeletal muscle phosphorylation 
of p38 MAPK and NF-κB p65 and gene expression of MnSOD, 
GPx, citrate synthase (CS), and mitochondrial transcription  
factor A (mtTFA). Similar findings have also been published 
using ROS inhibitors (e.g., antioxidant supplementation) in 
animals (10, 135, 188). Strobel et al. (189) reported that increased 
exercise-induced oxidative stress via skeletal muscle glutathione 
depletion in rats resulted in greater PGC-1α gene expression. 
In humans, antioxidant supplementation attenuates exercise-
induced activation of p38 MAPK, NF-κB p65 and JNK protein 
signaling, and gene expression of SOD isoforms in skeletal muscle 
(10, 134, 137). Chronic inhibition of exercise-induced oxidative 
stress also impairs the training-induced upregulation of PGC-1α, 
nuclear respiratory factor (NRF)-1, and mtTFA in rats (135).

It is important to note that not all studies have reported an 
association between increased redox-sensitive protein kinase 
signaling and exercise adaptation. Wadley et al. (190) reported 
similar PGC-1α, NRF-2, and SOD gene expression after exercise 
in rats with allopurinol treatment, a xanthine oxidase inhibitor, 
despite decreased p38 MAPK phosphorylation and mtTFA 
gene expression. In addition, chronic allopurinol treatment was 
reported to have no effect on the training-induced upregulation 
of PGC-1α, mtTFA, cytochrome c, CS, and β-hydroxyacyl-
CoA dehydrogenase (190). In humans, Morrison et  al. (140) 
reported vitamin C and E supplementation to have little effect 
on exercise-induced gene expression of PGC-1α, mtTFA, and 
PGC-related coactivator, or training-induced improvements 
in VO2peak, CS activity, and expression of cytochrome oxidase 
subunit 4. However, SOD activity and protein abundance of SOD 
and mtTFA were attenuated by vitamin C and E supplementation 
(140). A summary of key findings from research investigating 
redox manipulation, exercise, and SAPK signaling are summa-
rized in Table 1.

The discrepancy in findings are unclear, but likely include 
interstudy variations in the method and/or compounds used 
to modulate exercise-induced ROS, variations in the dose and 
treatment/supplementation time, and the often non-specific 
and/or ineffective action of antioxidant supplementation/treat-
ment as a model for ROS inhibition (81, 191–195). Nevertheless, 
evidence provided so far supports a likely association between 
redox-sensitive SAPK signaling and skeletal muscle adaptation, 
specifically with that of mitochondrial biogenesis and endog-
enous antioxidant upregulation, which both participate in the 
regulation of glycemic control (6, 9).

POSiTive AND NeGATive ReGULATiON 
OF GLYCeMiC CONTROL BY ROS

Physical inactivity, excess Nutrient intake, 
and Oxidative Stress
Chronic physical inactivity and overnutrition are associated 
with elevated systemic oxidative stress and the development of 
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lifestyle disease in part through mitochondrial dysfunction (9). 
Metabolism of carbohydrate and lipids initiates the transfer of 
electrons from reducing equivalents (i.e., NADH, FADH2) into 
the mitochondrial electron transport system (ETS) (9). In the 
absence of energy demand, for example, physical inactivity, 
increased energy supply results in increased electron flow through 
the ETS and pumping of protons outside the mitochondrial 
membrane (9). When the membrane potential exceeds mito-
chondrial uncoupling capacity, electrons leak through complexes 
I and III reacting with O2 to form the free radical O2

−, where it 
is catalyzed by MnSOD to H2O2 (196–199). Providing there is 
sufficient antioxidant activity, H2O2 is further reduced to H2O 
by antioxidants such as GSH and/or CAT (200). In pathological 
conditions in which antioxidant defense is insufficient, H2O2 can 
accumulate in the mitochondrial matrix and intermembrane 
space or diffuse outside the permeable mitochondrial outer mem-
brane (201). Excess ROS production results in oxidative stress 
and the signaling events leading to insulin resistance and chronic 
metabolic disease (59). This proposed mechanism for physical 
inactivity and excess nutrient intake-induced chronic disease is 
supported by reports that mitochondrial-specific antioxidants, 
which attenuate mitochondrial ROS production, reverse high-fat 
diet-induced insulin resistance in rodents (198).

Elevated basal and/or postprandial hyperglycemia elicited 
through excess nutrient intake, physical inactivity, and insulin 
resistance also increases oxidative stress through the formation of 
advanced glycation end products (AGEs) (202). Activation of the 
AGE receptor stimulates ROS production through NADPH oxi-
dase (203), opening of the mitochondrial permeability transition 
pore (204), and through suppression of enzymatic antioxidant 
defenses (205–207). Therefore, hyperglycemia has the potential 
to elicit a potentially deleterious redox environment conducive 
to insulin resistance.

Numerous studies have reported increased biomarkers of 
systemic oxidative stress in humans for up to 4 h after the inges-
tion of pure carbohydrate (208, 209), fat, and protein meals (210); 
mixed macronutrient meals high in fat (211–214) and high in 
carbohydrate (215); and high-fat liquid meals (216, 217). Larger 
meals and meals higher in lipid content elicit greater postpran-
dial oxidative stress (218, 219). This has led to many studies 
researching the effects of high-fat meal ingestion on postprandial 
oxidative stress (211–214, 220); however, meals adhering to 
national recommended dietary guidelines also induce systemic 
postprandial oxidative stress (5).

A single bout of low to moderate-intensity exercise in healthy 
males can attenuate the postprandial oxidative stress response to a 
meal ingested 1–2 h before exercise (5, 216) and 24 h after exercise 
(215), in part through improved glucose and triglyceride process-
ing and clearance and increased antioxidant activity (214). Acute 
high-intensity exercise may also attenuate postprandial oxidative 
stress (212, 213); however findings are inconsistent and likely 
depend on whether exercise is performed before or after meal 
consumption (5, 214).

The divergent effects of postexercise oxidative stress (physi-
ological) and postprandial oxidative stress (pathological) on 
metabolic health may stem from the mechanisms of ROS 
production (59, 79). The pathological effects of oxidative stress 

are reported to primarily occur through mitochondrial dysfunc-
tion and excess mitochondrial ROS production (9), whereas 
exercise-induced ROS production are reported to primarily 
occur through alternative mechanisms such as NADPH oxidase 
and xanthine oxidase (95). Furthermore, the effects of ROS on 
glycemic control appear to occur on a spatiotemporal paradigm 
that involve the concentration of ROS (221), the exposure time 
of ROS (160), the type of ROS, organs and organelles involved 
(79), the subcellular localization of redox-sensitive protein sign-
aling (160), and the type of exercise and postexercise recovery 
timepoint (14, 128, 222).

Negative Regulation of insulin  
Signaling by ROS
Sustained activation of redox-sensitive SAPK signaling pathways 
leads to impaired insulin signaling via increased phosphorylation 
of IRS-1 and IRS-2 on multiple serine and threonine residues, 
see the study by Copps and White (223) for a detailed review. 
Sustained IRS-1/2 serine phosphorylation impairs PI3K activity 
and downstream insulin signaling through attenuated tyrosine 
phosphorylation and IRS proteasomal degradation and subcel-
lular relocalization (27, 160, 224–232) (Figure 5). The prevention 
of IRS-1 degradation through the inhibition of ROS and SAPK 
signaling restores insulin signaling and insulin-stimulated 
glucose uptake (8, 75, 181, 198, 233). Paradoxically, IRS serine 
phosphorylation may also be necessary for normal insulin signal 
transduction and glucose uptake (234). However, reports are 
contradictory (229, 231, 235) and depend largely on the length 
and degree of phosphorylation on specific serine residues (236). 
Previous studies have also reported that hyperinsulinemia 
initiates a negative feedback loop that inhibits insulin signaling 
and glucose uptake in part through SAPK-induced IRS serine 
phosphorylation (229, 231, 237–239).

Positive Regulation of insulin  
Signaling by ROS
The insulin receptor belongs to a subclass of the protein tyrosine 
kinase family. Positive regulation of the insulin signaling cascade 
is mediated in part through the oxidative inactivation of protein 
tyrosine phosphatases (PTP), which include protein tyrosine 
phosphatase 1B, phosphatase and tensin homolog, and protein 
phosphatase 2 (Figure 5). Insulin-induced inactivation of PTPs 
prevents the dephosphorylation of the insulin receptor (240), 
IRS-1 (241), and Akt proteins (242) and prevents the enzymatic 
degradation of PIP3 (243). The PTP superfamily signature motif 
contains an invariantly low-pKa catalytic cysteine residue mak-
ing it highly susceptible to reversible oxidation by ROS (244). 
ROS inactivation of PTP activity is associated with numerous 
cellular processes, including the regulation of cell prolifera-
tion, differentiation, survival, metabolism, and motility (244). 
Under basal conditions, antioxidant defenses such as CAT and 
peroxiredoxin create a reduced intracellular redox environment 
prioritizing PTP activity. Increased PTP activity suppresses 
kinase activity and maintains a dephosphorylated state of the 
IR, IRS-1, and inhibition of the PI3K/Akt signaling pathway 

http://www.frontiersin.org/Endocrinology/
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FiGURe 5 | Primary ROS signaling pathways involved in positive and negative regulation of insulin signaling. 4-HNE, 4-hydroxynonenal; Akt, protein 
kinase B; AS160, Akt substrate of 160 kDa; GSK3, glycogen synthase kinase 3; IRS-1/2, insulin receptor substrates 1 and 2; JNK, c-Jun N-terminal kinases; 
mTORC2, mechanistic target of rapamycin complex 2; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NOX, nicotinamide adenine 
dinucleotide phosphate oxidase; P38 MAPK, p38 mitogen-activated protein kinases; PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphatidylinositol-3 
kinase; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase C; PP2A, protein phosphatase 2; PTEN, phosphatase and tensin homolog; PTP1B, 
protein tyrosine phosphatase 1B; ROS, reactive oxygen species.
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(243, 245). The binding of insulin to the insulin receptor signals 
a burst of endogenous superoxide production, which is reduced 
to H2O2 creating a local oxidative redox environment (246–248). 
This oxidative redox environment favors the oxidation of 
catalytic cysteine to sulphenic acid, suppressing PTP activity 
and enhancing kinase activity and propagation of the insulin 
signaling cascade (9).

Insulin can elicit ROS production through enzymatic acti-
vation of NADPH oxidases (246–249). Furthermore, insulin-
induced receptor tyrosine phosphorylation inactivates the 
endogenous membrane-associated antioxidant peroxiredoxin I,  
allowing for increased ROS production (78). Mahadev et  al. 
(246) reported that NADPH oxidase-induced H2O2 enhances 
insulin signaling via oxidative inhibition of PTPs. Furthermore, 

palmitate-induced insulin resistance in rat skeletal muscle 
occurs through increased activity of PTPs via JNK and NF-κB 
(250), which is reversed 16 h after acute exercise in rats (222). 
Loh et al. (54) revealed that the elevated H2O2 response to insulin 
in GPx1−/− mouse embryo fibroblasts coincided with elevated 
PI3K/Akt signaling, which can be suppressed by pretreating 
cells with ebselen, an NADPH oxidase inhibitor, or the anti-
oxidant N-acetylcysteine. Subsequent experiments revealed that 
elevated H2O2 in GPx1−/− mice increased PI3K/Akt signaling 
and glucose uptake through decreased PTP activity, which was 
attenuated by the ingestion of n-acetylcysteine (NAC) (54). 
Thus, redox-mediated PTP activity appears to be associated with 
both positive and negative regulations of insulin signaling and 
glucose uptake.

http://www.frontiersin.org/Endocrinology/
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exercise-induced ROS, SAPK Signaling, 
and Glycemic Control
Reactive oxygen species are readily induced through contraction 
of skeletal muscle (251–253). Importantly, contraction of skeletal 
muscle coincides with increased activation of redox-sensitive 
SAPK signaling pathways implicated in glucose metabolism 
(14, 160, 161, 254–256). Therefore, skeletal muscle SAPK sign-
aling has emerged as a potential candidate for the postexercise 
enhancement of insulin sensitivity (14, 54, 182).

Loh et al. (54) reported that exercise-induced ROS in GPx1 
knockout mice coincided with increased phosphorylation of 
Akt(Ser473) and AS160(Thr642) and enhanced insulin-stimulated 
glucose uptake 60 min after a single session of treadmill exercise. 
This beneficial effect on insulin sensitivity was reversed with 
NAC supplementation, suggesting that redox signaling is not 
only an important regulator of basal insulin signaling and glucose 
uptake but also postexercise enhancement of insulin sensitivity. 
Importantly, GPx1 knockout mice showed similar improvements 
in insulin sensitivity when measured immediately after exercise, 
supporting a growing consensus that the effects of postexercise-
induced ROS on glycemic control are temporal (14, 222).

One of the first studies to indicate a regulatory role of redox 
signaling in exercise-induced enhancement of insulin sensitivity 
in humans was conducted by Ristow et al. (13). It was reported 
that vitamin C and E supplementation in humans attenuated the 
4-week training-induced improvements in insulin sensitivity 
and gene expression of PGC-1α/β, SOD, GPx1, and CAT (13). 
Not all studies in humans and rodents have reported impaired 
exercise-induced improvements in insulin protein signaling and 
insulin sensitivity with antioxidant supplementation (146, 148, 
257). Contradictory findings likely stem from variations in the 
type of antioxidant compound/s used, the dose used, the timing 
of supplementation, and the often non-specific and/or ineffective 
action of antioxidant supplementation for ROS inhibition in 
humans (81, 193, 194).

Enhanced glucose uptake approximately 4.5 h after one-legged 
knee extensor exercise in humans is reported to coincide with 
greater basal and insulin-stimulated p38 MAPK phosphorylation 
(182), highlighting SAPK signaling as a potential moderator of 
postexercise glucose metabolism. Trewin et  al. (55) reported 
that NAC infusion attenuated whole-body insulin sensitiv-
ity approximately 5  h after exercise. Phosphorylation of p38 
MAPK was lower immediately after exercise with NAC infusion; 
however, phosphorylation was not significantly different to 
baseline or the placebo after insulin stimulation. However, the 
null findings for p38 MAPK phosphorylation may be due to the 
timing of postexercise biopsies, the relatively small effect of NAC 
on insulin sensitivity (~6% reduction), and that NAC infusion 
was not maintained during the recovery period and subsequent 
insulin clamp (55). Interestingly, Parker et al. (14) demonstrated 
that a bout of high-intensity interval exercise prior to a 2-h  
euglycemic–hyperinsulinemic clamp in obese middle-aged males 
elicited greater insulin-stimulated p38 MAPK, JNK, NF-κB, and 
AS160Ser588 phosphorylation, which was associated with improved 
insulin sensitivity compared to a resting clamp. Equivocal find-
ings in humans may stem from reports that postexercise skel-
etal muscle SAPK and insulin protein signaling are effected by 

training status and occur in an exercise intensity and postexercise 
time course-dependent manner (256, 258).

Berdichevsky et al. (160) reported similar JNK phosphoryla-
tion in C2C12 myoblasts and L6 myotubes treated with chronic 
oxidative stress (1 µM of H2O2 for 48 h) and acute oxidative stress 
conditions (500 µM of H2O2 for 3 h). Interestingly, chronic oxida-
tive stress decreased insulin-stimulated Akt(Ser473) phosphoryla-
tion, whereas acute oxidative stress enhanced insulin-stimulated 
Akt(Ser473) and GSK3-α/β phosphorylation. Furthermore, acute 
oxidative stress exposure in insulin-resistant muscle cells res-
cues insulin-stimulated glucose uptake through increased IRS1 
protein abundance; increased phosphorylation of JNK, Akt(Ser473), 
Akt(Thr308), and GSK3-α/β; and decreased IRS-1(Ser307) phosphoryla-
tion (160). In contrast, Ropelle et al. (222) reported that a single 
bout of exercise in male rats reverses diet-induced insulin resist-
ance 16 h later via attenuation of JNK, NF-κB, and IRS-1(Ser307) 
signaling. It is possible that acute exercise enhances insulin signal 
transduction through the transient and immediate increase in 
ROS and SAPK signaling, which also leads to a delayed increase 
in antioxidant activity and subsequent attenuation of chronic 
oxidative stress and sustained SAPK signaling pathways associ-
ated with insulin resistance. Certainly, SOD protein content, 
SOD activity, and total antioxidant status increase and/or remain 
elevated for up to 16–24 h after exercise (116, 212, 259), whereas 
lipid-induced postprandial oxidative stress is attenuated (213).

Taken together, previous studies support a potential role for 
exercise-induced redox-sensitive protein signaling and glycemic 
control (Table  2); however, specific mechanisms remain to be 
elucidated (Figure 6).

Potential Mechanisms Linking SAPK 
Signaling and enhancement of  
Glycemic Control
Modulation of glycogen synthesis by oxidative stress-induced 
SAPK signaling has been associated with glucose metabolism and 
regulation (27, 160, 182, 260). Transient stimulation of C2C12 
myoblasts with H2O2 increases JNK, Akt, and GSK3α/β phospho-
rylation (160), suggesting the short exposure to exercise-induced 
ROS may increase postexercise glycogen synthesis and skeletal 
muscle glucose uptake. Likewise, postexercise enhancement of 
insulin-stimulated p38 MAPK phosphorylation is associated 
with postexercise glycogen depletion (182). Chan et  al. (261) 
established that low intramuscular glycogen was associated with 
greater phosphorylation of nuclear p38 MAPK after 60 min of 
cycle exercise. In contrast, insulin stimulation of rat skeletal 
muscle exposed to 1 h of H2O2 (~90 μM) exhibits impaired insu-
lin protein signaling, glycogen synthesis, and glucose uptake, 
despite increased p38 MAPK phosphorylation (27). Diamond-
Stanic et  al. (260) reported similar findings and proposed that 
p38 MAPK and GSK3 were unlikely to play a beneficial role in 
insulin-stimulated glucose uptake. Activation of JNK in skeletal 
muscle of mice is also associated with increased insulin-stimulated 
glycogen synthesis via the RSK3/GSK3 signaling pathway (262); 
however, greater postexercise JNK phosphorylation and insulin 
sensitivity in human skeletal muscle do not coincide with greater 
insulin-stimulated phosphorylation of GSK3 α/β (14).
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Other potential pathways include JNK-, NF-κB-, and p38 
MAPK-stimulated secretion of the recently identified insulin-
sensitizing interleukin-6 (IL-6) (255, 263–265). Carey et  al. 
(264) reported that IL-6 infusion increases insulin-stimulated 
glucose uptake in humans. Furthermore, IL-6 treatment in L6 
myotubes coincides with increased glucose uptake and GLUT4 
translocation, likely through AMPK pathways independent 
of the canonical insulin signaling cascade (264). Importantly, 
IL-6 secretion is increased following muscular contrac-
tion, likely via activation of JNK, NF-κB, and/or p38MAPK  
(261, 266, 267). It has also been reported that p38 MAPK inhibit-
ers, alongside expression of a dominant-negative p38 mutant, 
impairs insulin-stimulated glucose uptake without reductions 
in GLUT4 translocation (254). Researchers concluded that p38 
MAPK may exert its insulin-sensitizing effect through increased 
activation of translocated GLUT4 (254), but not all findings are 
supportive (268) and have yet to be investigated in humans. 
The reported subcellular redistribution of phosphorylated JNK 
from the cytoplasm to the nucleus with acute hydrogen peroxide 
exposure in skeletal muscle cells highlights another potential 
mechanism for the postexercise insulin sensitizing effect of JNK 
(160). Future research is warranted to explore the subcellular 
localization and activation of SAPK proteins after exercise and 
insulin stimulation in humans.

THe FUTURe OF eXeRCiSe-iNDUCeD 
OXiDATive STReSS, ROS, AND  
ReDOX SiGNALiNG

Early studies, and the majority of current findings, rely primarily 
on associations and the assumption that increased/decreased 
ROS and/or markers of oxidative stress are reflective of, or 
are likely to lead to, increased/decreased redox signaling (91). 
Certainly, studies inhibiting or increasing ROS have been useful 
for establishing a relationship between ROS and certain bio-
logical outcomes such as glycemic control and exercise adaption  
(13, 14, 55, 135, 161). However, in the absence of specific redox 
signaling measurements such as protein cysteine oxidation or 
S-nitrosylation (162, 269), research studies are limited in their 
capacity to elucidate specific redox cellular signaling networks 
that are complex, compartmentalized, and spatiotemporally 
regulated (195). Future studies utilizing modern redox proteom-
ics are required to establish the reversible and, in some cases, 
irreversible, redox regulation of kinases, phosphatases, tran-
scription factors, and coactivators, thus establishing the “true” 
redox signaling role of exercise-induced ROS (195, 270–274). 
Furthermore, not all ROS are equal in their capacity to exert sign-
aling effects (56). Future studies investigating exercise-induced 
oxidative stress should therefore strive to identify the specific 
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ROS involved, which can be achieved through the use of robust 
techniques such as electron spin resonance, targeted fluorescent 
probes, and mass spectrometry (252, 275–278).

Despite their non-specificity and/or inability to adequately 
reflect redox signaling, the measurement of ROS, oxidative 
stress, and/or antioxidant activity in a biological sample provides 
insight into the effects of an intervention (e.g., exercise) on redox 
homeostasis and remains a useful biomarker of overall health 
and disease (91). As such, a combination of both traditional 
measures of redox biomarkers, the direct measurement of ROS, 
redox-sensitive protein signaling, and specific redox proteomics 
will likely provide a robust investigation of exercise-induced ROS 
and subsequent redox signaling.

CONCLUSiON

Physical inactivity, excess energy consumption, and obesity 
are associated with elevated ROS production, systemic oxida-
tive stress, and sustained activation of redox-sensitive protein 
signaling pathways. If left unchecked, this chronic state of 
physiological stress can lead to insulin resistance, which likely 
contributes toward the development of cardiometabolic disease. 
Paradoxically, a single session of exercise transiently increases 

ROS, oxidative stress, and redox-sensitive protein signaling, yet 
both acute and regular exercises elicit favorable improvements in 
glycemic control and skeletal muscle adaptation. It appears that 
exercise-induced redox-sensitive protein signaling is necessary 
for adaptation to physiological stress. However, the spatiotempo-
ral interplay between physical activity/inactivity, ROS, PTP activ-
ity, SAPK and MAPK signaling, insulin protein signaling, and 
the subsequent effects on glycemic control and cardiometabolic 
health remain unclear. Future research would benefit by employ-
ing a combination of human primary cell culture, animal research, 
modern proteomics, and immunohistochemistry/subcellular 
analysis of human tissue to elucidate the physiological relevance 
of transient oxidative stress (exercise induced), chronic oxidative 
stress (physical inactivity/excess nutrition intake), and the role of 
redox-sensitive protein signaling in human health and disease.
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Skeletal muscle represents the largest organ in the body, comprises 36–42% of body 
weight, and has recently been recognized as having an endocrine function. Proteins 
expressed and released by muscle that have autocrine, paracrine, and endocrine bio-
activities have been termed myokines. It is likely that muscle contraction represents the 
primary stimulus for the synthesis and secretion of myokines to enable communication 
with other organs such as the liver, adipose tissue, brain, and auto-regulation of muscle 
metabolism. To date, several hundred myokines in the muscle secretome have been 
identified, a sub-population of which are specifically induced by skeletal muscle contrac-
tion. However, the bioactivity of many of these myokines and the mechanism through 
which they act has either not yet been characterized or remains poorly understood. 
Physical activity and exercise are recognized as a central tenet in both the prevention 
and treatment of type 2 diabetes (T2D). Recent data suggest humoral factors such as 
muscle-derived secretory proteins may mediate the beneficial effects of exercise in the 
treatment of metabolic diseases. This mini-review aims to summarize our current knowl-
edge on the role of contraction-induced myokines in mediating the beneficial effects of 
physical activity and exercise in the prevention and treatment of T2D, specifically glucose 
and lipid metabolism. Future directions as to how we can optimize contraction-induced 
myokine secretion to inform exercise protocols for the prevention and treatment of T2D 
will also be discussed.

Keywords: exercise, myokines, muscle, endocrine, diabetes

inTRODUCTiOn

Skeletal muscle has recently been identified as an endocrine organ that synthesizes and secretes 
proteins known as myokines (1). These myokines are involved in autocrine regulation of metabolism 
in the muscle itself and paracrine/endocrine regulation of other tissues and organs such as the liver, 
adipose, and brain.

As skeletal muscle represents the largest organ in the body, the influence of myokines on 
whole-body metabolism is potentially significant (2, 3). As skeletal muscle contraction is likely the 
primary stimulus for myokine synthesis and secretion, it is plausible that myokines mediate, in part 
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at least, beneficial adaptations to tissues in response to exercise. 
Recent research has identified several hundred myokines, a large 
sub-population of which are specifically induced by contrac-
tion (4). However, the specific bioactivity of a vast number of 
myokines remains largely undescribed and poorly understood. 
Furthermore, little is known about the role of type, intensity, or 
frequency of contraction in regulating myokine production and 
release.

Exercise has long been established as a central tenet to 
both the prevention and treatment of type 2 diabetes (T2D) 
(5). Though a number of mechanisms through which exercise 
confers these metabolic benefits have been well characterized 
(5), the pluripotency of exercise is not yet fully understood. One 
such mechanism is via cross-talk between tissues stimulated by 
contraction and release of myokines regulating tissue function. 
This creates a clear link between exercise and the regulation of 
whole-body metabolism. There have been several examples of 
this in recent research, most notably, the role of the contraction-
induced myokine IL-6 in mediating skeletal muscle glucose 
uptake (6–8). These findings generated excitement as to the 
potential roles of contraction-induced myokines in the preven-
tion of insulin resistance and metabolic diseases such as obesity 
and T2D. To date, a number of contraction-induced myokines 
have been identified which play a role in regulating glucose 
uptake, insulin sensitivity, and fat metabolism, leading factors in 
the development of T2D (9).

The purpose of this mini-review is to discuss known metabolic 
roles for contraction-induced myokines that aid in the preven-
tion/treatment of T2D. Future directions in optimizing exercise 
protocols to maximize the potential of contraction-induced 
myokines by the type and intensity of exercise and how this 
informs exercise prescription will also be discussed.

MYOKineS AnD MeTABOLiSM

Contraction-induced myokines have been shown to have auto-
crine, paracrine, and endocrine effects on numerous tissues. In 
this section, the evidence of contraction as a stimulus for myokine 
secretion, based on electrical pulse stimulation (EPS) models 
and/or an increase in circulating concentrations immediately 
post-exercise, and their effect on metabolic functions affecting 
the development of T2D in muscle, adipose, and liver will be 
discussed.

Myokines Regulating Glucose Metabolism
IL-6
Evidence exists for a number of contraction-induced myokines 
with roles for glucose uptake and insulin sensitivity. IL-6 is most 
prominent in the literature and has been the focus since the early 
2000s of those trying to identify the “exercise factor” through 
which skeletal muscles communicate to central and peripheral 
organs (10). IL-6 transcription in skeletal muscle and release to 
circulation in large volumes in response to contraction was first 
characterized in 2002 (11). Increased circulating concentrations 
of IL-6 are known to be affected by both the intensity and dura-
tion of contraction in humans (8, 12). Higher intensity and longer 

duration exercise result in increased circulating concentrations 
of IL-6 in humans (8, 12). IL-6 release in response to exercise 
is also dependent on the energy status of the cell, determined 
by pre-exercise glycogen content, whereby low glycogen content 
results in a greater release of IL-6 to the energy crisis in the muscle 
cell during contraction (6). In vitro studies demonstrate that IL-6 
treatment increases glucose uptake through AMP-activated 
protein kinase [adenosine monophosphate kinase (AMPK)] and 
phosphatidylinosotol 3-kinase (PI3K) pathways (13). Carey et al. 
(7) reported increased insulin-dependent glucose uptake in vivo 
in response to IL-6 infusion. By contrast, Harder-Lauridsen et al. 
(14) found no increase in glucose uptake during euglycemic 
hyperinsulinemic clamp with IL-6 infusion in T2D individuals, 
though there was a reduction in the plasma insulin suggesting 
increased insulin sensitivity (14). Jiang et al. (15) found a differ-
ential effect of IL-6 treatment on primary myotubes from normal 
glucose tolerant and T2D, suggesting a blunted role of IL-6 on T2D 
muscle. IL-6 treatment upregulated both insulin-dependent and 
-independent glucose uptake and glycogen synthesis in healthy 
myotubes, but this effect was lost in T2D myotubes. This suggests 
that from a glucose control perspective, the contraction-induced 
myokine IL-6 is effective in the prevention of T2D but may be 
ineffective for glucose uptake in patients with existing T2D.

IL-13
IL-13 is released from human primary myotubes in vitro and has 
been demonstrated to have an “insulin-like” effect on glucose 
metabolism in human muscle by increasing glucose uptake, 
glycogen synthesis, and glucose oxidation in normal and T2D 
primary myotubes (15). This “insulin-like” effect is mediated 
through activation of Akt and PI3K pathways. IL-13 expression 
is increased in response to strength training in human skeletal 
muscle (16), but no evidence exists for an increase in plasma 
IL-13. This suggests the influence of IL-13 on glucose metabolism 
is localized to the muscle in an autocrine/paracrine manner.

Follistatin-Like-1 (FSTL-1)
Follistatin-like-1 is a secretory myokine of the follistatin family, 
known to be secreted in vitro by C2C12s (murine cell line) (17). 
Furthermore, Görgens et al. (17) demonstrated FSTL-1 expres-
sion and release from human primary myotubes. Interestingly, 
contraction of primary myotubes by EPS did not induce the 
secretion of FSTL-1; however, an increase in circulating plasma 
FSTL-1 in humans is observed following an acute bout of aerobic 
exercise. In vitro incubation of L6 myotubes (rat cell line) in 
FSTL-1 has been shown to increase glucose uptake in an AMPK- 
and calcium–calmodulin kinase-dependent manner (18), result-
ing in increased GLUT4 mRNA expression and translocation to 
the plasma membrane mediating enhanced glucose control.

Chitinase-3-Like-1 Protein (CHI3L1)
Electrical pulse stimulation of primary human skeletal muscle 
cells increases CHI3L1 expression and secretion (19). Acute aero-
bic and resistance exercise increase circulating CHI3L1; however, 
combined training had no effect, suggesting a transient exercise 
response. Evidence indicates that CHI3L1 regulates myoblast 
proliferation, suggesting a role in muscle growth thus affecting 
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the size and volume of this organ as a “sink” for blood glucose 
(19). Furthermore, though CHI3L1 is induced by inflammation as 
well as contraction, it improves glucose uptake and insulin action 
under pro-inflammatory conditions in human primary skeletal 
muscle cells through activation of its receptor protease-activated 
receptor 2 (19). This suggests that CHI3L1 could regulate skel-
etal muscle glucose uptake under pro-inflammatory conditions 
observed in obesity and T2D.

IL-15
IL-15 is a known contraction-induced myokine secreted in 
humans post both aerobic and resistance exercise (20, 21) with 
similar responses between lean and obese participants (22). IL-15 
has an effect on glucose uptake in C2C12 skeletal muscle cells 
(murine cell line) via activation of AMPK (23). Krolopp et al. (24) 
found a similar increase in glucose uptake with IL-15 treatment, 
mediated by an enhanced GLUT4 translocation to the plasma 
membrane. However, in contrast to the findings of Gray and 
colleagues, GLUT4 translocation was not initiated by activation 
of AMPK, but rather through the Janus kinase–signal transducer 
and activation of transcription protein 3 (STAT3) pathway. It is 
not entirely clear why there is no increase in phosphorylation of 
AMPK in this study, when using a higher dose of IL-15 (100 vs 
1 ng/ml).

IL-8
IL-8 is secreted by primary human myotubes following EPS (25) 
and circulating IL-8 increases in response to endurance exercise 
in humans (26, 27). IL-8 is primarily associated with inflam-
mation and angiogenesis; however, Gray and Kamolrat (23) 
demonstrated in vitro an increase in glucose uptake in C2C12s in 
response to treatment with IL-8 via phosphorylation of AMPK. 
A role for IL-8 in glucose uptake in vivo is less clear but may be 
mediated by increased vascularization, an effect which is lost in 
muscle from T2D (28).

Fibroblast Growth Factor-21 (FGF-21)
Fibroblast growth factor-21 treatment improves glucose toler-
ance and insulin sensitivity in the liver of obese Zucker rats (29). 
FGF-21 treatment has also been demonstrated to lower blood 
glucose and enhance insulin sensitivity in a diabetic mouse model 
(30). FGF-21, mediated by activation of Akt, improves glucose 
uptake in primary human adipocytes, which is enhanced when 
combined with insulin, reducing the required level of insulin to 
achieve the same glucose uptake (31). Muise et al. (32) confirmed 
reduced plasma glucose in WT, HFD, and diabetic mouse models 
treated with FGF-21 perfusion and identified upregulation of 
genes associated with several pathways such as glucose uptake, 
and insulin receptor signaling regulated by FGF-21 in brown and 
white adipose tissue (WAT) and adipocytes in vitro. FGF-21 also 
increased basal and insulin-stimulated glucose uptake in primary 
human myotubes by increasing GLUT1 mRNA and transloca-
tion to the plasma membrane (33). Circulating concentrations of 
FGF-21 are increased after an acute bout of endurance exercise 
in humans (34) and enhanced by higher intensity exercise (35). 
Short-term training also resulted in increased circulating FGF-21, 
which was associated with lower fasting glucose (36). Conversely, 

3 weeks of sprint interval training results in reduced circulating 
FGF-21 (37). Similarly, 3  months of combined resistance and 
aerobic training resulted in a modest decrease in serum FGF-21 
in obese women (38). This suggests that an acute bout of exercise 
leads to a transient increase in FGF-21 but the effect of chronic 
training is equivocal. Circulating FGF-21 is increased in T2Ds 
compared to normal glucose tolerant individuals and correlated 
with fasting insulin and BMI (33). Perhaps, the effect of chronic 
training is to decrease fasting insulin and adipose mass and 
thereby reduce circulating FGF-21. The acute increase in FGF-21 
post-exercise is likely from muscle with the action of sensitizing 
muscle, adipose, and liver to insulin to facilitate glucose uptake.

Irisin
Irisin is a controversial candidate, primarily thought to be 
secreted not only by muscle but also in small amounts by adipose 
tissue. The main point of contention has been the detection of this 
myokine in its glycosylated and deglycosylated forms [for review, 
see Ref. (39)]. Future research should focus on detection by mass 
spectrometry as per (40); however, the in vivo data reported here 
use the best validated ELISA technique (39). Circulating irisin 
increases in response to high-intensity interval exercise, resist-
ance exercise, and continuous moderate exercise in both healthy 
and metabolic syndrome patients (41). Some data suggest a 
greater increase following resistance compared with aerobic 
exercise (42). Serum irisin is regulated by exercise intensity, 
with greater increases following high-intensity exercise (43, 44). 
By contrast, other research reports an increase in the expres-
sion of FNDC5 in human skeletal muscle following 12  weeks 
of training but a paradoxical decrease in circulating irisin (45). 
Though synthesized in muscle, it is not clear if irisin is secreted 
from muscle directly either in vitro or in vivo. Incubation of L6 
myotubes in irisin in vitro results in increased glucose uptake in a 
dose-dependent manner and is mediated by activation of AMPK 
and ACC (46). Irisin treatment also upregulates expression of 
PGC-1α4, a specific isoform associated with muscle hypertrophy, 
in primary myocytes (47). This was accompanied by increased 
IGF-1 and decreased myostatin expression, suggesting it a role in 
regulation of muscle growth, thus providing a larger muscle mass 
to act as a sink for blood glucose. Irisin perfusion in HFD mice 
resulted in decreased fasting blood glucose and improved glucose 
and insulin tolerance (48). Furthermore, FNDC5 overexpression 
in obese and HFD mice led to increased serum irisin resulting in 
decreased serum fasting glucose and improved glucose tolerance 
and insulin sensitivity in HFD mice (48).

Brain-Derived Neurotrophic Factor (BDNF)
The effect of resistance training on circulating BDNF remains 
equivocal. Several studies report no change in BDNF after either 
acute or chronic resistance training (49–53). By contrast, Yarrow 
et al. (54) and Coelho et al. (55) report increased plasma BDNF 
after acute and chronic resistance training. Circulating BDNF 
increases after both acute and chronic aerobic exercise in healthy 
participants [for review, see Ref. (56)]. Though a dose response 
is not apparent, there is evidence to support a greater increase 
in circulating BDNF following high-intensity exercise (57, 58), 
although whether muscle was the direct source of BDNF remains 
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unclear. BDNF mRNA expression is increased by contraction of 
skeletal muscle cells; however, there is no evidence to show BDNF 
is secreted by muscle cells following contraction (59). BDNF 
treatment reduces blood glucose in a diabetic rodent model (60). 
Yamanaka et  al. (61) also found that chronic BDNF infusion 
improved glucose uptake and metabolism in BAT and muscle of 
rodents.

Myokines Regulating Fat Metabolism
IL-6
IL-6 infusion stimulates lipolysis and whole-body fatty acid (FA) 
oxidation in healthy males (62). Similarly, IL-6 treatment in 
humans results in elevated FA oxidation measured by palmitate 
oxidation and disappearance rates and a decreased respiratory 
quotient, peaking 60 min post-infusion (63). Increased whole-
body lipolysis is mediated by STAT3 signaling to upregulate skel-
etal muscle but not adipose tissue lipolysis. Similarly, Petersen 
et al.(64) found that IL-6 infusion resulted in an increased rate 
of palmitate appearance and disappearance in human serum 
of both normal glucose tolerant and T2D patients. In vitro 
experiments confirmed increased lipolysis in adipocytes and 
FA oxidation in L6 myotubes (60). These data suggest IL-6 plays 
a beneficial role in fat metabolism through the upregulation of 
lipolysis in skeletal muscle and an increase in FA oxidation that 
is maintained in T2D.

IL-15
IL-15 administration to rodents resulted in a 35% decrease in 
WAT and a 20% decrease in circulating triglycerides, suggesting 
a role for IL-15 in lipid metabolism (65). Overexpression and 
oversecretion of IL-15 in a transgenic mouse model resulted in 
decreased total body and visceral fat (66). Treatment of adipocytes 
with IL-15 resulted in decreased deposition of lipids (67). Pierce 
et  al. (68) perfused human subcutaneous adipose tissue with 
IL-15 via a microdialysis probe and observed an increase in adi-
pose tissue lipolysis of lean participants. However, this effect was 
lost in obese participants, whereby, IL-15 perfusion suppressed 
lipolysis. Interestingly, muscle-derived IL-15, induced by exercise 
did not have an effect on adipose tissue lipolysis in either lean 
or obese (68). Therefore, the role of IL-15 in regulating lipolysis 
in humans remains equivocal and requires further investigation. 
Little information exists on a role for IL-15 in lipid oxidation; 
however, Almendro et al. (69) demonstrated an effect of chronic 
IL-15 administration to rodents on the fate of an exogenous 
lipid bolus. IL-15 reduced de novo lipogenesis in adipose tissue 
in response to an exogenous lipid load and favored oxidation 
in muscle and liver via the upregulation of FA transport genes. 
Further evidence for IL-15 and lipid oxidation in both healthy 
and T2Ds is required.

Brain-Derived Neurotrophic Factor
Brain-derived neurotrophic factor treatment of L6 myotubes 
and intact ex vivo muscle results in increased FA oxidation via 
activation of AMPK (59). Chronic BDNF treatment reduces 
circulating FAs, total cholesterol, and phospholipids in a diabetic 
rodent model (60). Chronic intracerebroventricular BDNF 
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which exercise can protect against the onset or progression of 
T2D. To harness the actions of contraction-induced myokines, 
we must establish the types, intensity, and volume of contrac-
tion required to maximize these regulators to inform future 
exercise protocols for the prevention and treatment of T2D. 
Table  1 summarizes what we currently know with respect to 
the contraction-induced myokines discussed, in terms of how 
they are modulated by exercise and their actions in metabolic 
regulation. The role for aerobic exercise is clear, with evidence 
for an increase in circulating concentrations post-exercise for all 
myokines discussed, except IL-13, which appears to be acting in 
an auto/paracrine manner in response to resistance training only. 
This aligns with current recommendations that aerobic exercise 
is the primary component of any regimen in the prevention/
treatment of T2D (80). It is logical to expect a dose response 
to contraction; but so far, few studies have demonstrated an 
effect or a minimum duration of exercise (12, 27). Similarly, 
few studies have demonstrated an effect for intensity, with 
higher intensity exercise generally eliciting a greater increase 
in circulating myokines (8, 35, 41, 43, 44, 57, 58). Resistance 
exercise effectively enhances circulating concentrations of the 
majority of myokines discussed (Il-6, IL-15, BDNF, CHI3L1, 
irisin) confirming the rationale for inclusion in prevention/
treatment protocols.

In order to optimize future exercise prescription and policy to 
maximize the response and effect of myokines on metabolism, it 
is clear from this mini-review that there is a need to definitively 
characterize the following in both healthy and T2D participants: 
(i) the myokine response to an acute bout of aerobic exercise of 
varying durations (as low as 10 min); (ii) the myokine response 
to aerobic exercise of varying intensities; and (iii) the myokine 
response to resistance exercise of varying volume and intensities. 
To date, much of the evidence describing the mechanism through 
which recently identified myokines modulate metabolic function 
have been characterized using in vitro cell models which do not 
necessarily translate to the in vivo human situation. Though this is 
a necessary preliminary approach, it is important to acknowledge 
this as a significant limitation when interpreting the findings of 
the current literature.

Finally, this review has focused predominantly on tissue 
crosstalk by myokines released to the circulation; however, it is 
likely that more myokines are secreted post-exercise exclusively 
to the interstitium where they are exerting a local effect. More 
work is required to identify the entire in vivo contraction-induced 
secretome by techniques such as interstitial microdialysis. 
Furthermore, there is a need to establish the bioactivity of con-
traction-induced myokines for both local and systemic tissues.
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administration is also shown to decrease body weight, fat mass, 
adipocyte size, and serum triglycerides and promote lipolysis 
(70). Exercise induced increases in plasma BDNF are equivalent 
in obese and non-obese individuals but are not associated with 
increases in either whole-body glucose or FA oxidation (71). 
Further work is required to determine the effect of contraction-
induced BDNF on fat metabolism in muscle, adipose, and liver.

Irisin
Irisin treatment of 3T3-L1 adipocytes in vitro induces increased 
gene expression of lipolysis-related genes including adipose 
triglyceride lipase, hormone-sensitive lipase (HSL), and protein 
expression of fatty acid-binding protein 4, suggesting irisin has 
potential to increase lipolysis (72). By contrast, Wang et al. (73) 
found no effect of irisin on HSL or ATGL protein expression or 
expression of lipolysis-related genes in 3T3L-1 adipocytes. Irisin 
perfusion in HFD mice resulted in decreased serum cholesterol, 
triglycerides, and free FAs (48). FNDC5 overexpression in 
obese and HFD mice led to increased serum irisin resulting in 
decreased serum triglycerides and free FAs in obese and HFD 
mice (48). Irisin treatment of adipocytes resulted in increased 
expression of UCP-1 and increased energy expenditure. Irisin 
also induced expression of metabolic genes (CPT-1, PPARα, 
HSL) and prevented lipid accumulation (74). Irisin treatment of 
myocytes also elevated FA oxidation suggesting a protective effect 
against progression of T2D (75).

Myonectin
Myonectin, a member of the C1q/TNF-related protein family, is 
expressed in skeletal muscle and released to the circulation in 
response to exercise in animal studies (76). In vivo myonectin 
administration reduced circulating levels of free FAs without 
altering adipose tissue lipolysis in mice. This reduction in circu-
lating free FAs is purported to occur by an increase in FA uptake 
upregulated by increased expression of FA transport genes such 
as CD36, FATP1, Fabp1, and Fabp4 (76).

Fibroblast Growth Factor-21
Fibroblast growth factor-21 treatment of 3T3L-1 adipocytes 
attenuates lipolysis and expression of perilipin (77) and has 
also been shown to increase hepatic FA oxidation (78). Chronic 
FGF21 treatment reduces serum and hepatic triglyceride levels in 
diet-induced obese mice (79). These data suggest an influential 
role for FGF-21 in regulation of lipid metabolism.

OPTiMiZinG THe MYOKine ReSPOnSe 
FOR THe PRevenTiOn AnD TReATMenT 
OF T2D

This review has outlined the role of myokines in regulating 
glucose and fat metabolism as potential mechanisms through 
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