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Editorial on the Research Topic

Clinical application of artificial intelligence in emergency and critical

care medicine, volume IV

Integrating artificial intelligence (AI) into the realm of emergency and critical care

medicine marks a transformative stage in healthcare delivery. In Volume IV of the

research compilation titled “Clinical application of artificial intelligence in emergency and

critical care medicine,” a collection of 16 articles highlights the burgeoning intersection

between advanced technology and acute medical interventions. This compilation looks at a

spectrum of innovative applications, ranging from diagnostic support systems to predictive

analytics, all poised to reshape the dynamics of emergency medical response and critical

patient care.

Guiot et al. presented an interesting retrospective study on COVID-19 patients. Over

the last few years, there have been millions of COVID-19 cases with many deaths (1).

To help manage the load on radiologists, an artificial intelligence (AI) based analysis

(CACOVID-CT) was implemented to evaluate the severity of the disease on the basis of CT

chests performed on those patients. Progress in machine learning and artificial intelligence

has led to the creation of tools that can augment the diagnostic skills of radiologists (2).

The area of the lung affected by COVID-19 Affected Area (%AA) and CT severity score

(total CT-SS) were quantified to help evaluate outcome and prognosis. It is interesting to

note that both %AA and CT-SS had a high correlation with length of stay, risk for invasive

ventilation, ICU admission, and death during hospital stay. It alleviated the workload of

radiologists by measuring the severity of lung damage.

As the pandemic continued to grow, there was an increased number of COVID-19

patients with acute respiratory distress syndrome (ARDS) in the ICU (3). However,

there was limited information about predictive studies of ARDS in those patients. Zhou

et al. attempted to create predictive models to establish a correlation between ARDS and

COVID-19. One hundred three critically ill COVID patients were included in the study,

and the development of ARDS in patients admitted to ICUwas the primary outcome. Based

on convolutional neural network (CNN) and extreme gradient boosting (XGBoost), two
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predictive models were established. Out of 104, 23 (22.3%) of

patients developed ARDS. In critically ill COVID-19 patients, an

integrated deep-learning model can be helpful to predict ARDS.

As the healthcare industry embarks on a paradigm shift

toward a more data-driven and technologically enhanced

future, this volume is a comprehensive exploration of AI’s

profound impact in optimizing clinical decision-making,

resource allocation, and patient outcomes within the high-

stakes environments of emergency and critical care settings.

Saqib et al. carried out a comprehensive search in PubMed,

Google Scholar, PLOS One, and Scopus to develop an

understanding of AI applications in critical illness in a

narrative review. They concluded that it is vital to ensure

that AI systems are made robust and reliable in the care of

critically ill patients. Also, there should be transparent and

comprehensible reasoning behind recommendations generated

by AI. Quality control measures must be in place to ensure safety

and effectiveness.

Nonvariceal upper gastrointestinal bleeding (NVUGIB) in

patients with decompensated cirrhosis can be critically ill and

has been associated with a higher rate of readmissions and

mortality (4). For patients with NVUGIB, Ungureanu et al.

developed an artificial neural network with mortality as the

primary outcome. Over 1000 NVUGIB patients hospitalized were

divided into training and testing groups in this retrospective

study. Glasgow Blatchford (GBS), AIM65, and admission Rockall

(Rock) are non-endoscopic risk scores used in the past. In the

study, four machine learning algorithms, Quadratic Discriminant

Analysis (QDA), logistic regression (LR), Linear Discriminant

Analysis (LDA), and K-Nearest Neighbor (K-NN) were used

with GBS, Rock, AIM65, and others. It was noted that the

machine learning models had more accuracy in identifying patients

with a higher mortality risk than the current risk scores. An

accuracy of 98% was seen with K-NN classifier, proving that

there is scope for using machine learning in NVUGIB patients to

predict mortality.

In hospitals, length of stay (LOS) indicates the efficiency

of management (5). Zeleke et al. attempted to compare and

develop various models to estimate LOS and prolonged LOS in

patients admitted through the emergency room. Six algorithms

(Random Forest (RF), Support Vector Machines (SVM), Gradient

Boosting (GB), AdaBoost, K-Nearest Neighbors (KNN), and

logistic regression (LR) were used, and they analyzed a total

of 12,858 patients. Out of them, 61% had a prolonged LOS.

The models were evaluated using the Brier score with the area

under the curve, sensitivity, accuracy, precision, specificity, and

F1 score.GB algorithm best predicted the accuracy of prolonged

LOS, and there was tremendous potential seen in the machine

learning-based methods to assess for LOS. They also give

insights to help understand the risks behind increased LOS. If

combined with provider expertise, they can be used to make

informed decisions.

In conclusion, examining “Clinical application of artificial

intelligence in emergency and critical care medicine,” Volume

IV, has provided a nuanced insight into the transformative

potential of artificial intelligence within the critical domains of

emergency and critical care medicine. It encapsulates a diverse

array of AI applications, ranging from real-time diagnostics to

prognostic modeling, each contributing to an evolving landscape

where technology complements and enhances the capabilities of

healthcare professionals. Although most topics have been covered

in the collection of articles, we should be cognizant of the fact that

technological advancement with AI does bring to light an acute

need to address ethical considerations. Healthcare industry needs

to protect the values of medicine and follow fundamental ethical

principles. The future calls for papers for this special topic may

consider including it. As we move forward, a collaborative effort

between clinicians, technologists, and policymakers is crucial to

harness the full potential of artificial intelligence for improving

patient care in these critical settings.
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The pandemic of COVID-19 led to a dramatic situation in hospitals, where staff

had to deal with a huge number of patients in respiratory distress. To alleviate

the workload of radiologists, we implemented an artificial intelligence (AI) -

based analysis named CACOVID-CT, to automatically assess disease severity

on chest CT scans obtained from those patients. We retrospectively studied

CT scans obtained from 476 patients admitted at the University Hospital of

Liege with a COVID-19 disease. We quantified the percentage of COVID-

19 affected lung area (% AA) and the CT severity score (total CT-SS). These

quantitative measurements were used to investigate the overall prognosis

and patient outcome: hospital length of stay (LOS), ICU admission, ICU LOS,

mechanical ventilation, and in-hospital death. Both CT-SS and % AA were

highly correlated with the hospital LOS, the risk of ICU admission, the risk of

mechanical ventilation and the risk of in-hospital death. Thus, CAD4COVID-

CT analysis proved to be a useful tool in detecting patients with higher

hospitalization severity risk. It will help for management of the patients flow.

The software measured the extent of lung damage with great efficiency, thus

relieving the workload of radiologists.

KEYWORDS

SARS-CoV-2, CT scan analysis, artificial intelligence, mechanical ventilation risk,
severity of hospital stay prediction, COVID-19, in-hospital death, ICU length of stay

Frontiers in Medicine 01 frontiersin.org

9

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.930055
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.930055&domain=pdf&date_stamp=2022-08-29
https://doi.org/10.3389/fmed.2022.930055
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.930055/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-930055 August 25, 2022 Time: 6:19 # 2

Guiot et al. 10.3389/fmed.2022.930055

Introduction

The rapid outbreak of coronavirus disease 2019 (COVID-
19), originating from severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection, has become a public
health emergency of international concern (1). During the
first wave, a high proportion of infected patients required
hospitalization in the intensive care unit (ICU) (2).

Since the onset of the COVID-19 pandemic, chest CT
imaging has been widely used to help clinicians in the
identification of patients infected with COVID-19 (3, 4). CT
scans capture imaging features from the lung associated with
COVID-19 since the earliest stages of the disease. CT scan
could, thus, serve as an efficient and effective way to diagnose,
and possibly prognosis patients with COVID-19 admitted
to the hospital.

Visual assessment of disease severity by CT scoring usually
includes ground-glass opacity, consolidation, air bronchogram,
crazy paving, nodular opacities, and pleural effusion (5). This
method is time-consuming, requires experienced radiologists,
and could be error-prone when the workload is heavy. CT
scoring methods may produce different severity levels, while
some effort has been made to get a common lexicon and scoring
(6, 7).

However, visual scoring of CT scans is known to be
susceptible to high inter-reader variability (8, 9) and allows
only for qualitative or semiquantitative assessment of the
parenchymal involvement of the disease, even if a major effort
has been made to standardize the description of CTs used
for diagnostic purposes (6). Furthermore, in a context of a
high burden on healthcare institutes during the COVID-19
pandemic, visual scoring of many CT scans could be highly
challenging for radiologists (10).

The Dutch Radiological Society developed the coronavirus
disease 2019 (COVID-19) Reporting and Data System (CO-
RADS) as a categorical assessment scheme for pulmonary
involvement of COVID-19 at unenhanced chest CT (9, 11–
13). This method performs well in predicting COVID-19
in patients with moderate-to-severe symptoms and has a
substantial interobserver agreement. Thus, it is helpful in
COVID-19 diagnosis and the evaluation of disease severity and
prognosis (14).

The CO-RADS artificial intelligence (AI) system consists
of three deep learning algorithms that automatically segment
the five pulmonary lobes, assign the CO-RADS score for the
suspicion of COVID-19, and assign a CT severity score for the
degree of parenchymal involvement per lobe. This algorithm
proved to be in accordance with diagnoses obtained from
experienced radiologists (10), exhibiting a high performance for
diagnosis and disease prognosis.

Artificial intelligence-based models can aid the radiologist
in assessing CT scans, providing rapid and quantitative
information on disease-related parenchymal involvement (15).

These models may help to provide precise and reproducible
quantitative information on lung parenchyma affected by
COVID-19, while relieving some of the burden on healthcare
professionals (9, 11–13). CT scan analysis with deep learning
methods even allowed for the diagnosis of COVID-19 disease
earlier than reverse transcriptase-PCR (RT-PCR) (8).

Besides the chest imaging effectiveness in COVID-19
diagnosis, multiple prognosis models have been developed,
without making it possible to establish a strong predictive model
of the clinical evolution (3).

Computed tomography scores have been combined with
other clinical or biological parameters, either directly related to
lung function, or inflammation or infection [C-reactive protein
(CRP), D-dimer, alkaline phosphatase, etc.,] (16–19) with a
good correlation with disease severity and death risk. However,
we must note a lack of consistency, as the considered laboratory
data differ between studies.

One of the key questions when caring for hospitalized
patients with COVID-19 infection remains to determine the
risk of deterioration leading to ICU admission. It is even more
important to predict the need for mechanical ventilation, given
the limited number of ventilators and the need for specialized
staff to monitor closely these patients.

In this study, CT quantification of COVID-19-
related parenchymal abnormalities was performed using
CAD4COVID-CT (Thirona, Nijmegen, Netherlands).
CAD4COVID-CT is a CE (0344) class IIa certified AI-
based software package that automatically quantifies the lobar
extent of COVID-19 using state of the art deep learning
techniques. The algorithm provides a quantitative assessment of
the categorical CT severity score (CT-SS) such as the CO-RADS
severity scoring system, and, in addition, quantifies the volume
percentage of COVID-19-related affected areas (% AA) on
the lobar level.

The main goal of this retrospective study was to explore
the prognostic value of CAD4COVID-CT severity scores on
hospitalization severity indicators of patients with COVID-19.

Materials and methods

Study design and participants

During the COVID-19 pandemic, our hospital expanded its
total ICU capacity from 58 to 68 beds during wave 1 (W1) (from
10 March to 22 June 2020) and 71 beds during wave 2 (W2)
(from 31 August to 12 October 2020), with 10–12 beds dedicated
to non-COVID-19 critically ill patients. In the whole hospital,
196 beds were dedicated to patients with COVID-19 during the
two waves, out of a total of 878 beds.

All the adult patients admitted to the University Hospital
of Liege for acute respiratory failure related to SARS-CoV-2
pneumonia between 13 March 2020 and 18 April 2021 were
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included, if they had undergone a chest CT scan at most
1 day before or after hospital admission. Patients primarily
hospitalized for scheduled or urgent surgery with positive SARS-
CoV-2 PCR were excluded.

Patients were diagnosed with a positive PCR for SARS-
CoV-2 in nasal swabs or other respiratory samples during the
5 days of their admission to the hospital or the 14 days before
admission. When performed in our hospital, the detection of
SARS-CoV-2 was performed by reverse transcription PCR using
the Cobas SARS-CoV-2 Assay (Roche, Switzerland) for the
detection of the ORF1ab and E genes. The results were reported
as cycle thresholds to have a semiquantitative measurement
of the viral load.

Chest CT scans at maximum 1 day before or after hospital
admission were considered for image analysis at admission.
For some patients, we obtained multiple CT scan data.
For these patients, we compared the data collected during
hospitalization with those obtained after hospital discharge (1–7
CT scans/patient).

Imaging

All the CT images used in the study were acquired on one of
our five multidetector CT scanners [Siemens Edge Plus (2), GE
Revolution CT (1), and GE Brightspeed (2)]. Since CT images
were collected retrospectively, no standardized scan protocol
was available over the complete dataset.

All the acquired CT scans were analyzed using the CE
0344 certified Class IIa medical device CAD4COVID-CT
(Thirona, Nijmegen, Netherlands). This AI-based software
package analyses the lungs and each of the individual lobes
for automatic quantification of COVID-19-related pulmonary
parenchymal involvement. The software uses state of the art
deep learning and image normalization techniques to provide
robust and repeatable quantitative information in CT scans
acquired with varying scanner parameters, typically found
in a clinical setting. The analysis starts by identifying the
lungs and each of the pulmonary lobes to provide their
volumes. Within each of these areas of interest, emphysematous
areas and COVID-19-related abnormality areas are identified
and quantified. Emphysema is a pathological situation that
worsens hypoxemia. Since hypoxemia is a critical factor in
determining admission to the intensive care unit, it is important
to distinguish whether the hypoxemia observed is due to
emphysema or viral pneumonia.

This information is presented as the volume percentage of
emphysema and volume percentage of the affected area for the
whole lung and each of the pulmonary lobes. For each lobe, the
percentage of the affected area (% AA) is used to calculate a
severity score per lobe.

This lobar CT-SS is a categorization of the percentage
of affected area defined as: 0 (affected area: 0%), 1 (affected

area: 0.1–5.0%), 2 (affected area: 5.1–25.0%), 3 (affected area:
25.1–50.0%, 4 (affected area: 50.1–75.0%), and 5 (affected
area: over 75.0%).

The total CT-SS is the accumulation of each of the individual
lobar scores. Two examples of CAD4COVID-CT report with all
the quantitative information and an example of a coronal section
of the CT scan are shown in Figure 1.

Statistical methods

Quantitative variables were expressed by mean and SD, or
median and P25 and P75 quartiles. Qualitative variables are
presented using frequency tables (number and percentage).

The univariate linear regression models were used to study
the relationship between the patient’s characteristics and CT-
severity score (total CT-SS) and% affected area (% AA) at
hospital admission.

The impact of the CAD4COVID-CT scores on the hospital
length of stay (LOS) and the ICU length of stay was studied
using the multiple linear regression models on the log-
transformed lengths of stay. Results were presented as adjusted
estimated coefficients ± SEs and p-values. The impact of the
CAD4COVID-CT scores on the risk of ICU stay, the risk of
ventilation, and the risk of in-hospital death was studied using
the multiple logistic regression models. Results were expressed
as adjusted odds ratios (ORs) and 95% CI. All the multiple
models were adjusted for age, gender, BMI, and wave.

Optimal total CT-SS cutoff points to predict ICU admission
and the need for mechanical ventilation were calculated on the
data of wave 2 using Youden’s index method. The predictive
models based on the data of W2 were recommended for
optimal cutoff point estimation, since the risk of the considered
outcomes had changed between W1 and W2. As the number of
cases increased significantly during W2, it was also imperative
to adapt the ICU admission procedure, to preserve resources for
the most severe cases.

Generalized linear mixed models (GLMMs) were used to
analyze the evolution of the CAD4COVID-CT scores with time
during and after the hospital stay.

The results were considered significant at the 5% uncertainty
level (p < 0.05). Statistical analyses were performed on all
the available data and the missing data were not replaced.
Calculations were done using SAS software (version 9.4) and
graphics with R software (version 3.6.1).

Results

Patients characteristics

A total of 476 patients with COVID-19 hospitalized at the
CHU Hospital of Liège between 13 March 2020 and 18 April
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FIGURE 1

Example of the CAD4COVID-CT reports of two patients with COVID-19. (A) The left side of each report provides the quantitative assessment,
including the lobar volume, the total and lobar CT severity scores and% affected area, and the lobar emphysema scores. (B) The right side of
each report shows two coronal sections with a color-coated overlay of the identified affected areas, where each color represents a different
lobe matching the colors indicated in the lobar CT assessment table.

2021 were included in the study. Patients’ characteristics are
given in Table 1.

Within our cohort, we identified that 37.1% of them were
suffering from obesity, defined as a body mass index (BMI)
above 30 kg/m2.

The relationship between the characteristics of the patients
and total CT-SS and% AA at hospital admission was calculated.
They were significantly correlated with BMI and obesity
(p < 0.001). We observed that older patients had lower%
AA (p < 0.0001) and CT-SS (p < 0.001) at admission.
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TABLE 1 Patients’ characteristics.

Characteristics Results Mean ± SD, Median
(P25 – P75), or N (%)

Age (years) 67.3 ± 14.7

Gender, Men 311 (65.3)

BMI (kg/m2) 28.5 ± 6.3

Chronic kidney disease 52 (14.2)

Diabetes 204 (48.7)

Arterial hypertension 293 (64.5)

Cardio-vascular disease 138 (38.3)

Chronic respiratory disease 114 (27.8)

Immunosuppressive therapy 22 (6.0)

Obesity 153 (37.1)

Oncological condition 63 (13.2)

Wave 1 229 (48.1)

Inter Wave 1-Wave 2 8 (1.7)

Wave 2 226 (47.5)

Wave 3 13 (2.7)

Hospital LOS (days) 11 (7 – 19)

ICU 240 (50.4)

Time between hospital admission and
ICU admission (days)

2 (1 – 3)

ICU LOS (days) 8 (4 – 18)

Mechanical Ventilation 134 (28.1)

Dialysis 22 (4.6)

In-hospital death 144 (30.2)

Patients with the oncological conditions had lower% AA
(p < 0.01) and CT-SS (p < 0.05) at admission. Neither CT-SS
at admission nor% AA was related to gender (Supplementary
Data, Tables 1, 2).

We also analyzed the relationship between BMI, age, wave,
and the severity of hospitalization indicators (Supplementary
Data, Table 3). Patients with higher BMI had higher LOS
(p < 0.05), higher risk of ICU admission (p < 0.05), higher
ICU LOS (p < 0.05), and higher risk of mechanical ventilation
(p < 0.05).

Hospital and ICU LOS were lower when diagnosis occurred
after wave 1 (p < 0.05 and p < 0.0001, respectively).

Older patients have a higher risk of ICU admission
(p < 0.01) and a higher risk of death during their hospital stay
(p < 0.0001).

Gender was not related to the risk of hospitalization severity
in this study for none of the severity parameters measured.

CT Scans at admission:
CAD4COVID-CT analysis

The 476 CT scans at a maximum 1 day before or after
hospital admission were analyzed. A corresponding severity
score was assigned to each scan (Table 2), depending on% AA.

We also analyzed CT-SS and% AA for each lobe. We
observed that the most affected lobes were the lower ones for
both the analyses (Supplementary Table 4).

Relationship between CAD4COVID-CT
analysis and hospitalization severity
indicators

An increased total CT-SS at admission, as well as the%
AA, was closely associated with a higher risk of prolonged
hospital LOS, ICU admission, mechanical ventilation, or in-
hospital death. Of note, there was no specific correlation with
ICI LOS (Table 3).

When we considered the scores obtained from the
individual lobes, we observed that the highest order of% AA
and CT-SS was reached in the left and right lower lobes.
However, the association with patients’ outcomes was in the
same range of statistical significance for LOS, risk of ICU
admission, ICU LOS, and risk of mechanical ventilation, except
for the risk of in-hospital death, where the p-values were > 0.05
(Supplementary Table 5).

Specificity and sensitivity of
CAD4COVID-CT as a predictive tool of
intensive care unit admission and
mechanical ventilation risks

The predictive models based on the data of wave 2 (W2)
were recommended for optimal cutoff point estimation since the
risk of the considered outcomes had changed between waves 1
(W1) and W2. As the number of cases increased significantly

TABLE 2 CT scans analyses by Thirona (n = 476).

Mean ± SD Median (p25-p75) Extremes

Volume (mL) 3411 ± 1184 3386 (2637 – 4105) 1340; 8578

Emphysema score (%) 0.74 ± 2.8 0.024 (0.0001 – 0.22) 0.00; 31.7

% AA 26.1 ± 22.4 19.0 (6.3 – 42.2) 0.00; 84.1

Total CT-SS 11.4 ± 6.0 11 (7 – 16) 0; 25
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TABLE 4 The CT-SS cutoff points (wave 2, n = 226).

ICU admission Mechanical ventilation

AUC (95%CI) 0.84 (0.79; 0.90) 0.71 (0.63; 0.78)

Optimal cut-off point 14 16

during W2, it was also imperative to adapt the ICU admission
procedure, to preserve resources for the most severe cases.

We calculated Youden’s index to maximize specificity and
sensitivity, for the CT-SS for the 226 patients who experienced
COVID-19 during W2 (Table 4). Results showed a CT-SS
cutoff of 14 to predict the risk of ICU admission and 16 for
mechanical ventilation. Figure 2 shows the area under the curve
(AUC) (95% CI) and optimal cutoff determination for CT-SS to
predict the risk of ICU admission (A) and risk of mechanical
ventilation (B).

External validation should be necessary for cutoff validation.
Even if the W1 group was not representative of the current
situation of the patients (most of the outcomes were improved
between W1 and W2) to test the cutoff values, we nevertheless
applied the cutoffs to the W1 group as internal validation (n
patients = 229).

The CT-SS cutoff of 14 to predict the risk of ICU admission
led to a sensitivity of 87% (95% CI: 81 to 92%) and a specificity
of 58% (95% CI: 47 to 68%); the CT-SS cutoff of 16 to predict the
risk of mechanical ventilation led to a sensitivity of 88% (95% CI:
83 to 93%) and a specificity of 48% (95%CI: 35 to 60%). These
results are very similar to those obtained with W2 patients.

Computed tomography scan evolution
over time

Of the 476 patients, 84 patients had repeated chest CT scans
during hospitalization and follow-up period. Figures 3, 4 show
the evolution of total CT-SS and% AA after hospital discharge
(GLMM model). Value considered at hospital discharge
(time = 0 in the figure) was the maximum CT-SS or% AA during
the hospital stay (n = 20 patients with at least one CT scan after
hospital discharge).

We observed that both the measured values are decreasing
after discharge, with a significant evolution over time (p < 0.001
and p < 0.01, respectively).

Discussion

In our study, we showed that CAD4COVID-CT was able
to help in the risk stratification of patients suffering from
acute COVID-19 infection, based on chest CT images. Both the
total CT-SS and% AA were able to predict hospital LOS, ICU
admission risk, risk of mechanical ventilation, and in-hospital

Frontiers in Medicine 06 frontiersin.org

14

https://doi.org/10.3389/fmed.2022.930055
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-930055 August 25, 2022 Time: 6:19 # 7

Guiot et al. 10.3389/fmed.2022.930055

FIGURE 2

The ROC curve predicts ICU admission based on the initial CAD4COVID-CT evaluation. The AUC (95% CI) and optimal cutoff determination for
the CT-SS to predict (A) risk of ICU admission and (B) risk of mechanical ventilation.

FIGURE 3

CT-SS evolution after hospital discharge. Generalized linear mixed models (GLMMS) were used to analyze the evolution of the CT’s Thirona
scores with time during and after the hospital stay.

death. This means that AI can be used with great efficiency
to predict the risk of worsening the patient’s condition, thus
allowing for better management of patient flow in the hospital.

Our analysis showed that this CT scan image analysis tool
can be of interest to better stratify the risk of ICU for patients
acutely infected with COVID-19. This approach can help in the
global management of patients in an in-hospital setup.

We also analyzed the relationship between patients’
characteristics and the% AA or total CT-SS. Patients with higher
BMI had higher% AA and CT-SS at admission, and the severity
indicators were all significantly related to this condition. The
mean BMI of our cohort (28.5) was higher than in the whole
Belgian population (being 25.5) (20). About half of the Belgian

population is overweight, making it one of the top five factors
associated with mortality in our country. The Belgian adult
population has an obesity rate of 15.9% (20), while our cohort
showed a 37.1% obesity rate. This is consistent with much-
published data associating age and BMI with the risk of severe
COVID-19 (2, 21–24).

In a counterintuitive way, we observed that older
patients had lower% AA and CT-SS at admission, while
they died more frequently. This could be explained by the
comorbidities found in this population, which can increase
the global risk of experiencing complications associated with
COVID-19 infection. Similarly, patients with oncological
conditions had lower% AA and CT-SS at admission,
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FIGURE 4

% Affected area evolution after hospital discharge. Generalized linear mixed models (GLMM) were used to analyze the evolution of the CT’s
Thirona scores with time during and after the hospital stay.

which can also be explained by non-COVID-19-related
associated complications.

We showed that hospital LOS, ICU admission risk, and ICU
LOS were lower when diagnosis occurred after W1. At this time,
more effective care had been setup in our hospital, including
early treatment with dexamethasone and remdesivir, as well
as high-flow nasal oxygen therapy. This resulted in a decrease
in ICU admission risk, ICU length of stay, and mechanical
ventilation risk, among other indicators (25).

The secondary aim of this study was to determine whether
CAD4COVID-CT was able to help in disease monitoring and
follow-up. Some patients benefited from a long-term follow-
up, with several CT scans after discharge from the hospital
(5, 26). For those patients, we showed that the total CT-SS
and% AA decreased over time. This finding was consecutively
strongly correlated with health improvement as expected (27).
Importantly, chest CT should not be considered as a follow-
up tool for COVID-19 infection due to radiation-associated risk
and the lack of rationale for systematic follow-up.

CAD4COVID-CT provides two main AI-based scores: (1)
the percentage of the affected area (% AA) and (2) the categorical
CT severity score derived from the affected area (total CT-SS).
Although these two scores are highly related to each other,
both provide a specific value for the CT assessment. The% AA
is the most precise measure, which is calculated at the voxel
level. This allows for an exact delineation and quantification
of the percentage of affected lung tissue. The CT-SS score is
derived from the% AA similar to the CO-RADS, in which
certain cutoff points are used to make severity categories.
Evidently, by categorizing a continuous variable, precision
information is lost. However, categorical scores allow for a direct
comparison to a visual assessment, as it mimics how a human
would score disease severity, where true quantification for
humans is virtually impossible. Therefore, using AI for precise

quantification of COVID-19-affected lung areas gives reliable
results, and a good correlation with disease severity, while
scoring may reassure clinicians and radiologists, who are used
to visually assigning severity scores when reviewing CT scans
(13). An additional advantage of using AI-based quantification
is in statistical analysis and risk stratification. Moreover, an
AI-based algorithm provides consistent and objective output,
while allowing avoiding potential discrepancies in inter- and
intraobserver variability.

An important aspect of CAD4COVID-CT is that the entire
analysis was designed to handle the considerable amount of
CT scan variability, typically encountered in clinical practice
and especially during the COVID-19 pandemic. Different
sources of CT scan variability (such as differences in scanner
manufacture, reconstruction kernels, and dose levels) can have
a substantial impact on the quantitative score if not properly
mitigated during algorithm development. This may lead to poor
clinical correlations and conflicting longitudinal assessments.
The design of CAD4COVID-CT allows the algorithm to deal
with CT scan variability in two main ways. First, the AI-based
algorithms were trained with a well-balanced set of CTs coming
from various sources. This allowed the algorithms to learn
from CT scan variations that they would likely encounter in a
clinical setting. Second, CT scan normalization techniques are
used to standardize each CT before the scan is presented to
the AI algorithms. This procedure greatly reduces the inherent
variability between scans and allows the AI algorithms to
provide consistent results in a clinical setting.

A limitation of the CAD4COVID-CT analysis is the
lack of separation of different textures within the identified
affected areas. The AI-based algorithm was trained to identify
COVID-19-related abnormalities as a single class, meaning
that both the ground-glass opacities and consolidations are
combined into the% AA and CT-SS scores. Although this
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approach follows the severity scoring of the CO-RADS,
separating ground-glass opacities and consolidation could
provide additional clinically relevant information on disease
severity and prognosis. Furthermore, the current quantification
is lobar-based, allowing a quantitative assessment of the
lobar disease distribution. With only the lobar information,
quantification of the ventral vs. dorsal disease distribution is
not possible, while this information may be clinically relevant
in patients that require mechanical ventilation. However, since
CAD4COVID-CT is identifying the abnormalities on a voxel
level, and the relationship between the voxels and the lung and
lobar boundaries is known, this information could be extracted
and added as an additional feature.

Another limitation of this study comes from the fact that this
is a retrospective study performed in a single center. It should
also be validated on external data.

Conclusion

In conclusion, our study showed that the CAD4COVID-CT
AI-based quantification of lung injury in COVID-19 infection
was highly correlated with major clinical indicators and helped
to predict ICU admission and the risk of mechanical ventilation.
This method can be used as a clinical decision support system
for patients’ triage, to better manage the intrahospital flow, and
to guide the indicated therapy promptly. Further clinical studies
for validation are needed to confirm the added value of this
model depending on the variant modification over time.
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Background: Non-endoscopic risk scores, Glasgow Blatchford (GBS) and

admission Rockall (Rock), are limited by poor specificity. The aim of this study was

to develop an Artificial Neural Network (ANN) for the non-endoscopic triage of

nonvariceal upper gastrointestinal bleeding (NVUGIB), with mortality as a primary

outcome.

Methods: Four machine learning algorithms, namely, Linear Discriminant Analysis

(LDA), Quadratic Discriminant Analysis (QDA), logistic regression (LR), K-Nearest

Neighbor (K-NN), were performed with GBS, Rock, Beylor Bleeding score (BBS),

AIM65, and T-score.

Results: A total of 1,096 NVUGIB hospitalized in the Gastroenterology

Department of the County Clinical Emergency Hospital of Craiova, Romania,

randomly divided into training and testing groups, were included retrospectively

in our study. The machine learning models were more accurate at identifying

patients who met the endpoint of mortality than any of the existing risk scores.

AIM65 was the most important score in the detection of whether a NVUGIB would

die or not, whereas BBS had no influence on this. Also, the greater AIM65 and GBS,

and the lower Rock and T-score, the higher mortality will be.

Conclusion: The best accuracy was obtained by the hyperparameter-tuned

K-NN classifier (98%), giving the highest precision and recall on the training and

testing datasets among all developed models, showing that machine learning can

accurately predict mortality in patients with NVUGIB.
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UGIB, Rockall score, Beylor Bleeding score, machine learning, Glasgow Blatchford score
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Introduction

Upper gastrointestinal bleeding (UGIB) still represents a
common cause of gastroenterological admission and usually
requires risk stratification for the level of care determination as
well as rapid decision management (1). In order to differentiate the
high-risk groups of patients in the emergency department, multiple
guidelines developed pre-endoscopic risk assessment scores which
combine both clinical features and biological parameters (2).
Both the American Society of Gastroenterology (ASGE) and
the European Society of Gastrointestinal Endoscopy (ESGE)
recommend Glasgow-Blatchford (GBS), Rockall admission score
(Rock), and AIM65 as possible tools to assess UGIB patients on
their first presentation (3, 4). However, some studies suggested
that the most accurate score for patient risk differentiation is GBS
with multiple outcomes such as necessary transfusions, endoscopic
reintervention, and death (5, 6).

Postponing endoscopy is also recommended whenever low-risk
patients are identified, however, delaying endoscopy could also lead
to dramatic consequences if patient selections are not done well.
Several studies have proposed a hierarchy of patients who present
with UGIB by defining patients that might be delayed till endoscopy
(7, 8). While many centers, still need to reschedule endoscopy until
the next morning or over the weekend, new methods should be
proposed for a better discerning of patient’s evolution.

Artificial intelligence in gastroenterology is on continuous
path-breaking development, especially on imaging recognition
patterns with already proposed techniques for daily practice (9,
10). The term AI covers machine learning (ML) and specific
techniques such as deep learning (DL) by using data sets for pattern
recognition by combining several variables which will further allow
transposing new data that uses the same variables. Available clinical
models for UGIB allow patients’ features and predictors to suggest
the prognostic. By involving an artificial neural network (ANN),
the data trained to determine the desired outcome may be used to
predict the output on input data of newly identified cases that may
be encountered. Thus, by doing a repetitive learning technique, the
ANN will be able to foretell the outcomes of the patient’s prognosis.

The development of new models of patient triage and follow-
up should be promoted to reduce medical exposure, thus managing
possible complications. Moreover, by using ANN the results might
be even more effective since the human factor is bypassed. The
patient’s prognosis presented with non-variceal UGIB (NVUGIB)
should be assessed as early as possible in order to determine the
proper timing of endoscopy. The aim of our study was to provide
a new ANN that sums up all available pre-endoscopic risk scores
for patients with UGIB for predicting mortality, thus promoting
patients for new endoscopic procedures or even surgery.

Abbreviations: GBS, Glasgow Blatchford; ANN, artificial neural network;
QDA, quadratic discriminant analysis; LR, logistic regression; K-NN,
K-nearest neighbor; Rock, Rockall; BBS, Beylor Bleeding score; UGIB,
upper gastrointestinal bleeding; NVUGIB, non-variceal upper gastrointestinal
bleeding; ASGE, American Society of Gastroenterology; ESGE, European
Society of Gastrointestinal Endoscopy; DL, deep learning; ML, machine
learning; LDA, linear discriminant analysis; SD, standard deviation; AUC, area
under the curve; TN, true negative; FP, false positive; TP, true positive; FN,
false negative.

Materials and methods

Patients

The Ethics Committee of the University of Medicine and
Pharmacy of Craiova, Romania approved this retrospective study
and informed consent from all patients were acquired in the County
Hospital before patient enrolment in the study (11977/24.03.2020).
We selected 1,096 patients who were admitted for UGIB from
March 2018 to December 2021within the Gastroenterology
Department of the Emergency County Hospital of Craiova,
Romania. The selection was based on the criteria: (1) patients
with NVUGIB, (2) age ≥ 18 years old, (3) existing information
as mortality, GBS, Rock, Beylor Bleeding score (BBS), AIM65,
and T-score. Furthermore, the following exclusion criteria were
considered: (1) patients with variceal UGIB, (2) patients with
any type of cancer, (3) patients with important missing data (for
example, data for calculating the scores).

Machine learning analysis framework

We adopted multiple machine-learning (ML) models,
including Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), logistic regression (LR), K-Nearest
Neighbor (KNN). We tried GridSearch, RandomSearch as
model tuning techniques to see if that improves the model’s
final performance. Confusion matrix was used to check model
performance with or without standardization and we recorded
accuracy, precision, recall, and f1-score. These classifiers were
compared in terms of predicting the likelihood of mortality. The
data was split into 70% train and 30% test sets, using the stratified

TABLE 1 Socio-demographic and clinical characteristics of
the study subjects.

Characteristics Frequency in the
population study

(N = 1096)*

Age (years), mean± SD, range 63.9± 14.6, 17–92

Gender, male 738 (67.34%)

Urban residence 530 (48.36%)

Hospital days 8± 7.2

Mortality 82 (7.48%)

Rebleeding 32 (2.92%)

Surgery 11 (1%)

Hematemesis 472 (43.07%)

Platelets (no/mcL) 211,096.1± 97,621.5

Creatinine (mg/dL) 1.2± 1.3

Cirrhosis, yes 121 (11.04%)

Comorbidities

Cardiovascular diseases 65 (5.93%)

Chronic kidney diseases 34 (3.1%)

*Continuous variables are expressed in mean ± SD and discrete variables are expressed in
frequency and percentages.
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sampling technique to ensure that relative class frequencies are
approximately preserved in each train and validation fold. We used
descriptive statistics to summarize the patients’ characteristics:
counts (percentages) for categorical variables and mean± standard
deviation (SD) for continuous variables.

The models predicted whether a NVUGIB patient would
experience mortality by learning a number of five clinical scoring
systems: GBS, Rock, BBS, AIM65, and T-score. Covariance matrix
was introduced in the equation to consider the variation among
the independent variables (GBS, Rock, BBS, AIM65, T-score). The
ROC curve (receiver operating characteristic curve) and the area
under this curve (AUC) for every single scoring system were
used to quantify the visual profile of the ability of a model that
includes only one score.

The confusion matrix shows clockwise from top left: True
Negative (TN, model predicts that a NVUGIB patient would live

and the patient does not die), False Positive (FP, model predicts
that a NVUGIB patient would die but the patient actually does
not die), True Positive (TP, model predicts that a NVUGIB patient
would die and the patient dies) and False Negative (FN, model
predicts that a NVUGIB patient would live but the patient actually
dies). The recall [the fraction of total actually positive cases that
are predicted correct = TP/(TP+FN)] will predict the need for
intervention without high westing of hospital resources. It is
preferred to use recall because the healthcare system cannot afford
to make false-negative errors. The greater the Recall, the higher the
chances of minimizing FN. Precision is the fraction of total positive
predictions that are actually correct [TP/(TP+FP)]. F1-score is used
when both precision and recall seem to be important.

Linear Discriminant Analysis draws one hyperplane and
projects the data onto this hyperplane in such a way as to maximize
the separation of the patients who died, according to two criteria:

TABLE 2 Statistical characteristics of the two groups divided by the mortality in the study population.

Characteristics Total (n = 1096) Mortality p-value

No (n = 1014) Yes (n = 82)

Glasgow Blatchford 9.9± 3.6
10 (8–12)

9.76± 3.56
10 (8–12)

12.26± 3.2
12 (10–14.25)

<0.001

Rockall score 3.7± 1.9
4 (2–5)

3.64± 1.89
4 (2–5)

4.34± 1.74
4 (4–5)

0.001

Beylor Bleeding score 7.6± 4.1
8 (4–11)

7.5± 4.14
8 (3.75–11)

8.32± 3.93
8.5 (6–11)

0.099

AIM65 1.1± 0.9
1 (1–1)

1.02± 0.83
1 (0-1)

1.8± 1.05
1 (1–2.25)

<0.001

T-score 9.3± 2.0
9 (8–10)

9.34± 2.01
9 (8–11)

8.85± 1.91
9 (7–9.25)

0.024

Data are presented as mean± SD and median (interquartile range).

FIGURE 1

The correlation heatmap between measured scores (colors range from dark blue for strong positive correlations, to bright yellow, for strong
negative correlations).
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maximizing the distance between the means of the two classes and
minimizing the variation between each category (11).

Quadratic Discriminant Analysis is a probabilistic parametric
classification technique that represents an evolution of LDA
for nonlinear class separations. QDA, like LDA, is based on
the hypothesis that the probability density distributions are
multivariate normal but, in this case, the dispersion is not the same
for all of the categories (12).

Logistic regression is a supervised learning algorithm where we
used the sigmoid function to calculate the probability of dying given
the five scores, using also Lasso regularization (13).

K-Nearest Neighbor is a non-parametric algorithm, it does
not make any assumption on underlying data. Because all the
variables are continuous, we can apply LDA, assuming normality
assumption for P(X|Y = 1) and P(X|Y = 0), and homoscedasticity
(the covariance matrices are equal among the 2 classes) and QDA if
the class variance are not the same (14).

Statistical analysis

The models were implemented using an open-source program
language (Python 3.7.1), using its packages (numpy, scikit-
learn, matplotlib). Continuous numerical variables were expressed
as means (± standard deviation) and median (interquartile

range, 25% quantile–75% quantile) and categorical variables were
expressed as percentages. We used the Mann–Whitney U test for
continuous variables. The p-value less than 0.05 was significant.

Results

Patients characteristics

This study implied 1,096 patients with NVUGIB (738 men,
67.3%; mean age ± SD, 63.9 ± 14.6). Socio-demographic and
clinical features of patients are shown in Table 1. A percentage
of 11% of these patients had cirrhosis and 7.5% mortality was
registered.

Performance of models and classifiers

The five scores for the class groups of mortality are summarized
in Table 2 and no significant differences were observed only for
BBS (p-value = 0.099). The values for GBS, Rock, and AIM65 were
significantly higher, and T-score was significantly lower for patients
that died.

Statistically significant correlations were found between the
five scores, even if they are low or very low, as in Figure 1.

FIGURE 2

Receiver operating characteristic (ROC) Curve and Area under the curve (AUC). Mean AUC and its 95% confidence interval of the scores are shown
in the legends of the subplots.
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TABLE 3 Comparison of the confusion matrix and evaluation measures
among prediction models.

Precision Recall F1-
score

Support

LDA

Survival 0.95 0.95 0.95 709

Death 0.32 0.31 0.32 54

Accuracy 0.90 763

Macro avg 0.63 0.63 0.63 763

Weighted avg 0.90 0.90 0.90 763

QDA

Survival 0.94 0.97 0.95 709

Death 0.32 0.19 0.24 54

Accuracy 0.91 763

Macro avg 0.63 0.58 0.60 763

Weighted avg 0.90 0.91 0.90 763

LG

Survival 0.95 0.95 0.95 709

Death 0.32 0.28 0.30 54

Accuracy 0.91 763

Macro avg 0.63 0.62 0.62 763

Weighted avg 0.90 0.91 0.90 763

K-NN

Survival 0.98 1.00 0.99 709

Death 1.00 0.78 0.88 54

Accuracy 0.98 763

Macro avg 0.99 0.89 0.93 763

Weighted avg 0.98 0.98 0.98 763

The reported average includes the macro average which averages the unweighted mean per
label, and the weighted average which averages the support-weighted mean per label.

Positive correlation coefficients were observed, except by making
the T-score where they were negative correlated (rho for T-score
and GBS = −0.12, p-value < 0.001; rho for T-score and
Rock =−0.30, p-value < 0.001; rho for T-score and AIM65 =−0.16,
p-value < 0.001). the strongest correlation was observed between
Rock and BBS (rho = 0.56, p-value < 0.001).

The AUC for GBS, Rock, BBS, AIM65, and T-score was low,
the highest value was observed for AIM65 (AUC = 0.71, 95% CI:
0.66–0.77), as in Figure 2.

Classification accuracy of each machine-learning model (LDA,
QDA, LR, and K-NN) was evaluated and summarized in Table 3.

The LDA model is performing well in terms of accuracy on
the training data, as in Figure 3A1. The recall for death is quite
low (0.31), which implies that this model will not perform well
in differentiating the patients who have a high chance of survival,
and hence this model would not help reduce the mortality rate.
The model is giving a decent average recall when we balanced the
precision and the recall for a threshold of about 0.25. A recall of 0.63
suggests that there is a 37% chance that the model will predict that a
person is going to die even though he/she would not, and the health
system would waste their time and money on these patients who are

not at risk of mortality. We have built the LDA model. Furthermore,
checking the coefficients, we found which variables are leading to
mortality and which can help to reduce the mortality. The scores
which positively affect the mortality are AIM65 (coefficient = 0.93)
and GBS (coefficient = 0.57) and the ones that negatively affect it
are T-score (coefficient = –0.31) and Rock (coefficient = –0.25).
Based on LDA model, AIM65 is the most important feature in
detecting whether a NVUGIB patient would die or not and BBS has
almost no effect in predicting this (coefficient = 0.04). We checked
the performance on the test data in Figure 3A2. The model was
giving a similar performance on the test and train data, meaning
the model has generalized well. The average recall, the precision
and the accuracy are good, but we evaluated if we could get a better
performance using other algorithms.

The QDA model did not obtained different outcomes from the
LDA model (even worse recall), as in Figure 3B.

The LR model was giving a similar performance on the test
and the train datasets (Figure 3C). The recall of the test data
has increased while at the same time, the precision has decreased
slightly, which was to be expected while adjusting the threshold
at 0.18. The accuracy was of 0.91 on the train and of 0.90 on the
test datasets. Checking the coefficients of the model, we observed
the same variables that are leading to mortality rate: AIM65
(coefficient = 0.60) and GBS (coefficient = 0.57) and which can help
to deduce the mortality rate: T-score (coefficient =−0.17) and Rock
(coefficient =−0.21). The coefficients that positively and negatively
affect the mortality rate were similar for LR and LDA. This means
they capture the same pattern and give the same conclusions from
the dataset.

Performing the KNN model from the Figure 3D, we selected
the best value of k for which the error rate is the least in the
validation data and k = 14 gave us the generalized model with very
similar train and test errors, as in Figure 4.

We used GridSearchCV for hyperparameter tuning and we
used them to find a better recall of the model. The recall and the
precision have significantly increased by tuning the K-NN classifier.
This is a high-performing model that a physician can use to control
the mortality rate. There is a 98% chance that the model will detect
NVUGIB patients who are likely to die, and the physician can take
the appropriate action.

Discussion

Patient stratification in UGIB has been considered for
prognosis assessment by differentiating high-risk patients (15).
So far, available prediction scores use only some variables, both
clinical or biological, and are based on conventional statistical
analysis. While some of them are used for rebleeding or death
prediction, a high precision rate has not been achieved. Ensuring
a risk stratification at patient admission might be helpful in
choosing the proper time for endoscopy, especially in small regional
hospitals which do not provide a full-time endoscopy service.
Moreover, probably a turning point in medicine in the last years,
the COVID-19 pandemic almost changed patients’ presentation in
the emergency room, as well as patients’ admission (16). A general
decrease in patients’ admission has been observed in the first
months of the pandemic for all types of disease, and also for UGIB
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FIGURE 3

Checking model performance of (A1) LDA on training data, (A2) LDA on test data, (B1) QDA on training data, (B2) QDA on test data, (C1). LR on
training data, (C2) LR on test data, (D1) K-NN on training data, (D2) K-NN on test data. Reading the confusion matrix (clockwise from top left): True
Negative (Actual = Alive, Predicted = Alive): Model predicts that the patient would live and the patients’ lives, False Positive (Actual = Alive,
Predicted = Death): Model predicts that the patient would die and the patients actually lives, True Positive (Actual = Death, Predicted = Death):
Model predicts that the patient would die and the patients dies, False Negative (Actual = Death, Predicted = Alive): Model predicts that the patient
would live and the patients actually dies.

patients. While the first consideration was that endoscopy was
a high-risk procedure and should be performed only if patients
required it, due to the lack of medical materials as well as the
fear of contamination or hospital circuit reorganization, many

patients still required rapid endoscopic assessment due to UGIB
(17). Providing a tool to delay endoscopy or to predict the death
secondary to UGIB might organize better the endoscopist decision-
making process in choosing the right time for endoscopy.
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FIGURE 4

Test and train error for the K-NN model. As the number of neighbors increases, the test error and the train error are the same.

European Society of Gastrointestinal Endoscopy updated
guidelines on NVUGIB recommend the use of GBS as the main
risk stratification after patient admission (18). As stated, patients
with a GBS ≤ 1 may be successfully managed as outpatients and
may be discharged, however, patients require to be notified of
the possibility of rebleeding, thus they should maintain contact
with the discharging hospital. When discussing high-risk patients,
there is a low probability of discharging and GBS score has shown
a specificity of 12% for transfusions, hemostatic interventions as
well as death (19). Also, when NVUGIB is associated with liver
cirrhosis, mortality might increase due to the underlying disease
complications such as hepatic encephalopathy and spontaneous
bacterial peritonitis (20).

Our study provides a non-endoscopic ML model as an
alternative tool to predict mortality in patients with NVUGIB at
their admission to the emergency department. We obtained a high
accuracy for death prediction and surpassed the available scores
used for the initial assessment. There are some other studies that
used AAN to predict mortality in UGIB, showing also better results
than the current clinical scores (21–24). Available studies suggest
that risk assessment tools have an AUC of 0.77 for mortality
as mentioned in two multicenter studies (25, 26). However, our
study points out that ANN might be more efficient in highlighting
patients’ prognoses related to mortality, with an AUC of 0.99.
Moreover, the results are even more optimistic than the available
ANN used so far for UGIB assessment by ANN or ML models.

A systematic review showed that ML models were more
effective in predicting rebleeding, intervention, and mortality, with
an AUC ranging from 0.80 to 0.90 (27). The ANN we propose
focuses on five non-endoscopic scores used as an initial assessment
to stratify the risk of UGIB. We combined GBS, AIMS65, Rock,

T-score as well as BBS in a ML model, thus trying to better
identify patients with a dismal prognosis. Our study end-point
was mortality as we focused on exploring the potential of all five
scores combined within a newly developed ML. Noteworthy is that
taken separately all risk scores were definitely less accurate than our
prediction model. Thus, our model might enable new opportunities
for non-invasive tools to predict the NVUGIB mortality rate.

Risk assessment represents a cornerstone for the healthcare
system, as it may provide high-quality care for patients and
may also help save resources and direct them to more precise
interventions. Even though there is a long distance to implementing
this type of model in clinical practice, the potential of ML for
UGIB assessment should not be downplayed (28, 29). We do
acknowledge that it may be challenging to transfer an ML to a
clinical setting, however, AI depicting background may attempt to
integrate into clinical care and provide more reliable measures for
UGIB assessment.

Nonetheless, our study has certain limitations. Firstly, this is
a single-center experience study, thus we validated our AAN only
on patients admitted to our Clinic. Secondly, we had a small
sample size, but without missing data, and the Precision and
Recall obtained in the validation dataset were not low. Finally,
we prepared our dataset from the retrospective database, but the
outcomes could not have changed over time due to the update
of treatment guidelines in the last years. Testing the algorithm in
a multicenter setting will surely help validate and improve our
objective. On the other hand, we focused only on patients’ mortality
prediction and did not consider other important factors that might
be encountered in day-to-day practice such as the rebleeding rate
or surgical interventions.
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The data we used were retrospectively collected from our
registry which suggests heterogeneous information.

Conclusion

Our study suggests that a machine learning program based
on the available pre-endoscopic bleeding scores might provide a
more accurate prediction for patients’ mortality rate after NVUGIB
admission. By combining the results of the five scores in a ML
algorithm, our tool might be considered useful, not only for
endoscopists but also for emergency physicians to assess patients’
prognosis at their presentation. While our single-center study may
not be sufficient to validate and implement this tool, it may be a
starting point for future integration in the healthcare system.
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Background: Disseminated intravascular coagulation (DIC) can lead to multiple

organ failure and death in patients with heatstroke. This study aimed to identify

independent risk factors of DIC and construct a predictive model for clinical

application.

Methods: This retrospective study included 87 patients with heatstroke who were

treated in the intensive care unit of our hospital from May 2012 to October

2022. Patients were divided into those with DIC (n = 23) or without DIC

(n = 64). Clinical and hematological factors associated with DIC were identified

using a random forest model, least absolute shrinkage and selection operator

(LASSO) regression and support vector machine-recursive feature elimination

(SVM-RFE). Overlapping factors were used to develop a nomogram model, which

was diagnostically validated. Survival at 30 days after admission was compared

between patients with or without DIC using Kaplan-Meier analysis.

Results: Random forest, LASSO, and SVM-RFE identified a low maximum

amplitude, decreased albumin level, high creatinine level, increased total

bilirubin, and aspartate transaminase (AST) level as risk factors for DIC. Principal

component analysis confirmed that these independent variables differentiated

between patients who experienced DIC or not, so they were used to construct

a nomogram. The nomogram showed good predictive power, with an area under

the receiver operating characteristic curve of 0.976 (95% CI 0.948–1.000) and

0.971 (95% CI, 0.914–0.989) in the internal validation. Decision curve analysis

indicated clinical utility for the nomogram. DIC was associated with significantly

lower 30 days survival for heatstroke patients.

Conclusion: A nomogram incorporating coagulation-related risk factors can

predict DIC in patients with heatstroke and may be useful in clinical decision-

making.

KEYWORDS

heatstroke, disseminated intravascular coagulation, predictor, nomogram,
thromboelastography
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1. Introduction

Heatstroke is a life-threatening illness manifesting as extreme
hyperthermia (>40◦C), dysfunction in the central nervous system,
and multiple organ failure (1, 2). Although the treatment of
heatstroke has improved, heatstroke-related deaths are increasing
worldwide, which may worsen due to global warming (3, 4).

A substantial proportion of patients with heatstroke, from 22
to 45%, experience disseminated intravascular coagulation (DIC),
which further increases risk of multiple organ dysfunction and
mortality (5, 6). DIC is difficult to diagnose and challenging to treat.
Reliable prediction of which heatstroke patients are at greater risk
of DIC could help clinicians monitor such patients more closely
and initiate preventive or therapeutic measures earlier. However,
the conventional coagulation tests typically used to diagnose DIC
are poor predictors of the complication (7).

Several studies have explored potentially better predictors of
DIC, such as thromboelastography maximum amplitude, activated

clotting time and clot rate as determined with a Sonoclot@ device
(8–10). However, these biomarkers reflect primarily coagulation,
so they may identify patients already in early stages of DIC rather
than predict the complication before it occurs. Due to the complex
pathogenesis of DIC, a more comprehensive panel of biomarkers
may be needed to predict DIC in heatstroke patients.

The current study explored a range of potential risk factors of
DIC and selected the best to create a predictive nomogram, which
we validated using a 10 years retrospective dataset that included
survival at 30 days after admission.

2. Materials and methods

2.1. Study design and patients

This retrospective study was approved the Ethics Committee
of the 908th Hospital of Logistic Support Force (Nanchang,

FIGURE 1

Flowchart of patient selection and analysis. DCA, decision curve analysis; LASSO, least absolute shrinkage and selection operator; RF, random forest;
SVM-RFE, support vector machine-recursive feature elimination.
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China), which waived the requirement for consent because all
participants, at the time of treatment, signed written consent for
their anonymized medical data to be analyzed and published for
research purposes. All procedures involving human participants
were performed in accordance with the 1975 Helsinki Declaration
and its later amendments.

We screened for eligibility all patients with heatstroke who were
admitted to the intensive care unit of the 908th Hospital from May
2012 to October 2022. Eligible patients had a history of exposure

to hot and humid weather or high-intensity activity, and they met
at least one of the following criteria based on the Chinese Expert
Consensus on the Diagnosis and Treatment of Heatstroke (1): (1)
neurological dysfunction, including coma, convulsions, delirium,
or abnormal behavior; (2) core temperature ≥ 40◦C; (3) functional
impairment of at least two organs; or (4) severe coagulopathy or
DIC. Severe coagulopathy was defined as the presence of at least
two of the following criteria: platelet count < 100,000 cells per µL,
international normalized ratio > 1.5, fibrinogen level < 1.50 g/L,

TABLE 1 Clinicodemographic characteristics of patients with heatstroke at admission to the intensive care unit, stratified by disseminated intravascular
coagulation (DIC) diagnosis.

Characteristics Total
(n = 87)

No DIC
(n = 64)

DIC
(n = 23)

P

Male 76 (87.4) 55 (85.9) 21 (91.3) 0.72

Age, yr 43 (22, 64) 28 (21.8, 64) 48 (40, 61) 0.211

Core temperature, ◦C 37.6 (36.8, 38.6) 37.4 (36.7, 38.4) 38.4 (37.6, 39) 0.006

R, min 7.4 (5.7, 12.4) 6.5 (5.2, 9.4) 14.9 (10.6, 28.6) <0.001

K, min 3.2 (2.2, 6.2) 2.6 (2, 4.2) 10.6 (5.9, 22) <0.001

Angle, ◦ 50.3 (31.4, 60.5) 54.9 (43.8, 62.4) 22 (9.4, 35.1) <0.001

MA, mm 49.8 (38.4, 56.5) 53.1 (46.3, 59.4) 30.2 (19.5, 40.1) <0.001

PT, s 16.9 (13.7, 19.8) 14.8 (13.3, 17.4) 27.6 (21.8, 43.5) <0.001

INR 1.4 (1.2, 1.6) 1.2 (1.1, 1.4) 2.2 (1.8, 3.2) <0.001

APTT, s 36.1 (28.8, 48.4) 31.6 (28, 40.4) 46.3 (39.8, 97.8) <0.001

Fibrinogen, g/L 2.0 (1.5, 2.7) 2.2 (1.8, 2.9) 1.4 (1.0, 2.1) 0.002

TT, s 16.8 (14.8, 20.5) 16.4 (14.6, 18.2) 22.0 (16.8, 26.2) 0.002

FDP, µg/L 8.1 (2.2, 26.4) 3.2 (1.2, 9.9) 34.0 (24.5, 65.9) <0.001

D-dimer, µg/L 2.3 (0.5, 6.7) 1.0 (0.3, 2.7) 8.1 (4.1, 28.1) <0.001

WBC, ×109/L 11.7 (8, 16.6) 11.4 (7.8, 16.8) 12.5 (8.9, 14.6) 0.733

NLR 10.3 (5.0, 17.4) 10.2 (4.3, 14.7) 11.7 (6.9, 22.6) 0.075

CRP, µg/L 2.4 (0.6, 15.1) 2.2 (0.6, 10.8) 5.7 (1.0, 31.6) 0.192

RBC, ×1012/L 4.3 ± 0.7 4.4 ± 0.6 4.1 ± 0.7 0.058

HGB, g/L 133 (118, 143) 136 (121, 145) 119 (109, 133) 0.003

HCT, % 39.4 ± 5.9 40.4 ± 5.3 36.6 ± 6.5 0.018

Platelet, ×109/L 115 (52, 202) 155 (101, 228) 35 (22, 58) <0.001

AST, U/L 49.1 (21.0, 164.9) 30.4 (18.6, 62.8) 443.1 (98.6, 1105.0) <0.001

ALT, U/L 75.7 (28.5, 306.0) 41.5 (23.7, 134.4) 687.8 (157.9, 1543.4) <0.001

Tbil, µmol/L 16.4 (12.3, 25.3) 15.1 (11.3, 19.1) 28.0 (19.3, 78.2) <0.001

Albumin, g/L 37.9 (34.3, 43.8) 40.0 (36.8, 44.5) 33.2 (25.6, 35.5) <0.001

Cr, µmol/L 105.9 (77.4, 150.3) 91.0 (72.4, 123.9) 207.9 (113.7, 250.5) <0.001

MYO, ng/mL 632.9 (118.6,926.9) 445.7 (48.0, 915.1) 834.8 (570.9, 944.5) 0.052

CK, U/L 696 (226, 1975) 402 (192, 1224) 2216 (702, 10179) <0.001

HR, min−1 100 (81, 110) 90 (73, 105) 116 (102, 134) <0.001

PH 7.4 (7.3, 7.4) 7.4 (7.4, 7.5) 7.3 (7.3, 7.4) <0.001

PaCO2 , mmHg 33.5 (28.0, 39.6) 33.8 (28.2, 39.0) 33 (28.1, 42.8) 0.535

PaO2 , mmHg 145 (86.5, 187) 143.5 (88.6, 182) 158 (82.2, 204.5) 0.765

Lac, mmol/L 2.4 (1.1, 4.9) 1.6 (1.0, 3.2) 4.9 (3.4, 7.6) <0.001

GCS score 6 (4, 14) 10 (5, 15) 4 (3, 5) <0.001

APACHE II score 21 (12, 26) 19 (11, 24) 28 (23, 34) <0.001

Values are n (%), mean ± SD, or median (interquartile range), unless otherwise noted. R, reaction time; K, kinetics of clot development; MA, maximum amplitude; PT, prothrombin time;
APTT, activated partial thrombin time; INR, international normalized ratio; TT, thrombin time; FDP, fibrinogen degradation product; WBC, white blood cell count; NLR, neutrophil to
lymphocyte ratio; CRP, C-reaction protein; RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; ALT, alanine transaminase; AST, aspartate transaminase; Tbil, total bilirubin; Cr,
creatinine; MYO, myoglobin; CK, creatine kinase; HR, heart rate; Lac, lactate; GCS, glasgow coma scale; APACHE II, acute physiology and chronic health evaluation II.
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FIGURE 2

Least absolute shrinkage and selection operator (LASSO) regression
to identify clinical features that may predict disseminated
intravascular coagulation (DIC) in heatstroke patients. (A) LASSO
coefficient profiles. (B) LASSO regression using 10-fold
cross-validation and the “minimum plus one standard error”
criterion to identify the optimal penalization coefficient lambda (λ).

and D-dimer value above 10 times the upper limit of normal (11).
Patients were excluded if they were younger than 18 years, if they
had a congenital coagulopathy or severe chronic disease of the liver
or kidney, or if they were using anticoagulant drugs at admission.

Included patients were divided into two groups based on
presence or absence of DIC at admission, which was diagnosed
based on the scoring system proposed by the International Society
of Thrombosis and Hemostasis (12). DIC was diagnosed if a patient
had a total score of at least five after summing the points for the
following four parameters: platelet count, scored as one point if
<100 × 109/L or two points if <50 × 109/L; prothrombin (PT)
prolongation time, scored as one point if >3 s, or two points if >6 s;
fibrinogen level, scored as one point if <1.0 g/L; fibrin degradation
products or D-dimer level, scored as two points if ≥5-fold the upper
limit of the normal range, or three points if ≥10-fold the upper
limit (13).

FIGURE 3

Random forest analysis to identify clinical features that may predict
disseminated intravascular coagulation (DIC) in heatstroke patients.
(A) Boxplot for all features in random forest analysis. Green
indicates important variables; red, blue, or yellow, rejected variables.
(B) Rejection or acceptance of factors during random forest
classification runs. (C) Support vector machine-recursive feature
elimination (SVM-RFE) to identify clinical predictors of DIC.

2.2. Data collection

Baseline clinicodemographic data were extracted from
electronic medical records, including age, sex, core temperature
(rectal temperature), heart rate, Glasgow coma scale score, and the
Acute Physiology and Chronic Health Evaluation II score. Data
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FIGURE 4

Venn diagram showing overlap of clinical factors that least absolute
shrinkage and selection operator (LASSO), random forest, and
support vector machine-recursive feature elimination (SVM-RFE)
methods identified as predictors of disseminated intravascular
coagulation (DIC) in heatstroke patients.

on the following routine coagulation indicators were collected:
PT, activated partial thrombin time, fibrinogen, international
normalized ratio, thrombin time, and levels of fibrin degradation
product and D-dimer. Data on the following TEG indexes were
collected: reaction time (R time), kinetics of clot development
(K time), angle, maximum amplitude (MA). Data were collected
on the following whole blood characteristics: counts of platelets
and red and white blood cells, neutrophil-to-lymphocyte ratio,
hemoglobin range and hematocrit percentage. In addition, data
were collected on levels of C-reactive protein, alanine transaminase
(ALT), AST, total bilirubin (Tbil), albumin, creatinine (Cr),
myoglobin, and creatine kinase.

2.3. Statistical analysis

All statistical analyses were performed using R 4.2.1 software
for windows (Chicago, IL), and all analyses were two-sided.
Continuous variables with normal distribution were presented as
mean ± standard deviation, while continuous data with a skewed
distribution were expressed as median with interquartile range
(IQR). Categorical variables were expressed as percentages (%).
Pairwise comparisons were conducted using Student’s t-test or
the Mann-Whitney U test for continuous variables, while the chi-
squared test or Fisher’s exact test was used for categorical variables
with normal or skewed distributions, as appropriate. Differences
were considered significant if P < 0.05.

Potential risk factors of DIC were identified using three
algorithms: least absolute shrinkage and selection operator
(LASSO) regression, support vector machine-recursive feature
elimination (SVM-RFE), and random forest. Risk factors identified
by all three models were used to construct a nomogram
using the rms package in R 4.2.1 software for windows. The
discriminatory ability of the nomogram was evaluated in terms
of areas under receiver operating characteristic curves (AUCs)
and calibration curves. Principal component analysis was used to

FIGURE 5

(A) Principal component analysis to assess the ability of the five
selected variables to differentiate heatstroke patients with or
without disseminated intravascular coagulation (DIC). (B) Heatmap
of pairwise correlations among the five variables. ALT, alanine
transaminase; Cr, creatinine; MA, maximum amplitude; Tbil, total
bilirubin.

assess the ability of DIC biomarkers. The bootstrapping method
(resampling = 500) was used for internal validation. The net benefit
rate of the nomogram was assessed using decision curve analysis.
Kaplan–Meier curve describing survival at 30 days after admission
was compared between patients with or without DIC using the log-
rank test.

3. Results

3.1. Patient characteristics

Of the 122 patients considered for enrollment, 87 were included
into the final analysis, of whom 23 had DIC, while 64 did not
(Figure 1). There were no significant differences between the two
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FIGURE 6

Assessment of a nomogram based on five predictors of disseminated intravascular coagulation (DIC) in patients with heatstroke. (A) Nomogram for
predicting DIC in patients with heatstroke. (B) Receiver operating characteristic curves assessing the ability of the nomogram to predict DIC.
(C) Internal validation using the bootstrap method (resampling = 500). (D) Calibration curve of the predictive model showing the degree of
consistency between the predicted probability and actual probability (the Hosmer–Lemeshow test, P > 0.05, suggesting that it is of
goodness-of-fit). (E) Decision curve analysis to assess the clinical benefit of the predictive nomogram. ALT, alanine transaminase; AUC, areas under
receiver operating characteristic curves; Cr, creatinine; MA, maximum amplitude; Tbil, total bilirubin.

groups in terms of sex distribution, age, counts of white or red
blood cells, or myoglobin levels (Table 1). Patients with DIC
were more likely to have a higher core temperature and increased

levels of the following: fibrinogen degradation product, D-dimer,
AST, ALT, Tbil, Cr and creatine kinase. As expected, indicators of
coagulation were also altered in patients with DIC, reflected by
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FIGURE 7

Rates of (A) multiple-organ dysfunction syndrome (MODS) and (B)
overall survival at 30 days after admission. Both panels show data
for all 87 patients in the sample.

longer R time and K time; longer PT, activated partial thrombin
time and thrombin time; and a higher international normalized
ratio. Conversely, compared to non-DIC patients, those with DIC
had lower levels of angle, MA, fibrinogen, hemoglobin, hematocrit,
albumin and platelet count. Overall, DIC patients showed more
severe illness and injury to the central nervous system than patients
without DIC.

3.2. Identification of DIC biomarkers

Least absolute shrinkage and selection operator regression
analysis identified eight clinical features as potential predictors of
DIC in patients with heatstroke: core temperature, ALT, maximum
amplitude, hemoglobin, creatinine, albumin, total bilirubin, and
creatine kinase (Figure 2). Random forest analysis identified the
same six features as LASSO well as the following eight: AST,
reaction time, kinetics of clot development, Angle, heart rate,
lactate, PaCO2, and pH (Figures 3A, B). SVM-RFE identified five of
the same features as LASSO and random forest, as well as another
eight: AST, reaction time, kinetics of clot development, Angle,
heart rate, lactate, PaO2, and pH (Figure 3C). The five factors
overlapping across all three methods - MA, Cr, Tbil, albumin, and

ALT - were considered potential predictors of DIC and used in
further analyses (Figure 4).

3.3. Verification of DIC biomarkers

Principal component analysis was used to assess the ability
of the five variables identified by LASSO, random forest, and
SVM-RFE methods to differentiate patients with or without DIC
(Figure 5A). There were no significant correlations among the
five variables, suggesting that they had no function similarities
(Figure 5B).

3.4. Development and validation of a
predictive nomogram

We developed a nomogram to predict DIC based on the
five verified factors (Figure 6A). Our nomogram showed good
predictive power, with an AUC of 0.976 (Figure 6B), which was
internally validated by bootstrapping, which gave an AUC of 0.971
(Figure 6C). A calibration curve of the predictive model showed a
high degree of consistency between the predicted probability and
actual probability and confirmed that the nomogram accurately
predicted DIC (Figure 6D). Furthermore, decision curve analysis
demonstrated that our nomogram had an extensive range of cutoff
probabilities and excellent net benefits for threshold probabilities,
which showed the potential clinical utility of the predictive model
(Figure 6E).

3.5. Patient outcomes

Across all patients in our study, 95.6% in the DIC group
experienced multiple-organ dysfunction by 30 days after admission,
compared to only 33.3% in the non-DIC group (P < 0.05)
(Figure 7A). DIC patients also showed a significantly lower overall
survival rate at 30 days (47.8 vs. 6.3%; Figure 7B).

4. Discussion

To our knowledge, this article firstly reported a nomogram
for prediction of heatstroke induced DIC. Patients suffering from
heatstroke are at high risk of developing DIC, which remains
a major cause of mortality (14). In this retrospective study, the
incidence of DIC was 26.4% and the rate of mortality in patients
with DIC was 47.8%. In an effort to predict DIC in order to improve
management and timely treatment, we used three complementary
methods including SVM-RFE, LASSO and random forest to screen
for clinical factors that could reliably predict the complication, and
we validated a nomogram for this purpose. SVM is a novel small
sample method and a rather robust classification tool. Random
forest and lasso can well deal with the high-dimensional data.
The resulting model incorporates five routine clinical indexes that
are easily acquired within 24 h of hospital admission and that
capture complementary aspects of DIC pathophysiology, which
may make our nomogram more reliable than other DIC predictors.
Result from PCA analysis further showed these variables can clearly

Frontiers in Medicine 07 frontiersin.org34

https://doi.org/10.3389/fmed.2023.1150623
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1150623 March 9, 2023 Time: 16:55 # 8

Zeng et al. 10.3389/fmed.2023.1150623

distinguished DIC and non-DIC, which indicated that
they may play important roles in the prediction
of DIC.

Heatstroke directly affects platelet function and can induce
organ function damage (15, 16). Previous studies reported
that platelet abnormality and hypofibrinogenemia in heatstroke
patients increases risk of multiple-organ dysfunction syndrome and
heatstroke-induced coagulopathy, with the latter often progressing
to DIC (17–19). Therefore, it was not completely surprising
that we detected maximum amplitude, a measure of interaction
between platelets and fibrinogen used in thromboelastography,
as an independent risk factor for DIC (20, 21). We also found
that low albumin level, elevated creatinine, high glutamic-pyruvic
transaminase, and total bilirubin were positively related to the
progression to DIC. Heatstroke patients suffer damage to the
liver and kidney, and both organs produce hormones that affect
coagulation homeostasis (22–24).

ROC analysis is a traditional method that evaluates the
performance of a model (25). The predictive nomogram
constructed in our study has a better ability for predicting
DIC based on the value of AUC. However, an AUC alone is
insufficient to determine that a model has good performance in
improving decision-making. DCA and calibration curve were
also introduced to estimate the clinical utility and predictive
capacity of a nomogram, respectively (26, 27). Results showed the
prediction model exhibited acceptable calibration and DCA gave
the heatstroke population net benefit of nomogram at different
threshold probabilities. Overall, the current predictive model
exhibited good performance regarding DIC prediction.

Our model should be further developed and optimized in
light of the fact that it is based only on the first 24 h in the
intensive care unit, so it does not take into account dynamics in
indicator levels. The model was developed with data from patients
at a single medical center, so it should be validated in other
patient populations.

This work establishes the feasibility of accurately predicting
DIC in heatstroke patients on the basis of a few carefully selected
clinical variables that are accessible to most medical centers. Our
nomogram may become increasingly useful as the incidence of
heatstroke increases worldwide.
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Background: Artificial intelligence (AI) and machine learning (ML) models continue 
to evolve the clinical decision support systems (CDSS). However, challenges arise 
when it comes to the integration of AI/ML into clinical scenarios. In this systematic 
review, we  followed the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, 
and study design (PICOS), and the medical AI life cycle guidelines to investigate 
studies and tools which address AI/ML-based approaches towards clinical 
decision support (CDS) for monitoring cardiovascular patients in intensive care 
units (ICUs). We further discuss recent advances, pitfalls, and future perspectives 
towards effective integration of AI into routine practices as were identified and 
elaborated over an extensive selection process for state-of-the-art manuscripts.

Methods: Studies with available English full text from PubMed and Google 
Scholar in the period from January 2018 to August 2022 were considered. 
The manuscripts were fetched through a combination of the search keywords 
including AI, ML, reinforcement learning (RL), deep learning, clinical decision 
support, and cardiovascular critical care and patients monitoring. The manuscripts 
were analyzed and filtered based on qualitative and quantitative criteria such as 
target population, proper study design, cross-validation, and risk of bias.

Results: More than 100 queries over two medical search engines and subjective 
literature research were developed which identified 89 studies. After extensive 
assessments of the studies both technically and medically, 21 studies were 
selected for the final qualitative assessment.

Discussion: Clinical time series and electronic health records (EHR) data were 
the most common input modalities, while methods such as gradient boosting, 
recurrent neural networks (RNNs) and RL were mostly used for the analysis. 
Seventy-five percent of the selected papers lacked validation against external 
datasets highlighting the generalizability issue. Also, interpretability of the AI 
decisions was identified as a central issue towards effective integration of AI in 
healthcare.
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1. Introduction

Complications due to clinical deterioration and medical errors are 
often caused by human error, either due to forgetfulness, inattention, 
or inexperience and are far greater than technical failures (1, 2). 
Furthermore, intensive care units (ICUs) are prominent sources of 
large bulk of data collected from each patient. For the special case of 
cardiovascular ICU patients who mostly attribute higher complication 
rates and longer ICU stays (3, 4), it becomes even more challenging 
for the medical staff to spot certain complications or symptoms of 
patients. Considering the promising impact of artificial intelligence 
(AI) for clinical decision support (CDS) (5, 6), implementing AI into 
the cardiovascular ICUs could help minimize the number of medical 
errors by being able to guide the clinician to the correct diagnosis and 
ultimately to an appropriate therapy.

In the context of medical AI, the two major disciplines of 
Medicine and AI need to come together. Recent discoveries in 
medicine and medical technology as well as new advancement in AI 
modeling and computational power increased the application of 
ML-based methodologies in healthcare domains, such as disease 
diagnosis, prognosis and treatment planning (7–10), and overall/
disease-free survival prediction (11–13). In particular, in intensive 
patient monitoring, AI methods have been used for different purposes 
such as prediction of readmission (3, 14–16) and sepsis (17–19) and 
mortality risk assessment (20, 21).

Despite the large body of evidence illustrating the promising 
relevance of AI methodologies in medical domains, there are some 
common challenges which limit the integration of AI-based 
methodologies in daily routines. For instance, trained classifiers may 
make biased predictions due to various sources of bias, such as gender 
bias, present in medical datasets (22, 23). Another challenge is the 
‘black box’ nature of most of the modern deep and recurrent neural 
network models, which necessitates solutions to address explainability 
of these methods when applied to medical domains (24). Furthermore, 
ensuring consistency between the characteristics of open access data 
sets used for training and real clinical data is crucial for the successful 
integration of AI in intensive care routine practice (25). We aimed to 
draw attention to the limitations stemming from bias, interpretability, 
and data set shift issues, which expose a gap in the integration of AI 
in clinical decision making. This gap is mostly caused by medical 
staff ’s lack of trust in AI.

There are already a number of impactful articles which closely 
relate to the current systematic review. Fleuren et al. (26) conducted 
a systematic review and meta-analysis of AI models to predict sepsis 
onset in different wards including normal, emergency and ICU 
stations. Although their findings illustrate that ML models can 
achieve high accuracy in predicting sepsis in their corresponding 
experimental setups and might be considered as alternatives to some 
established scoring systems in clinical routines, they identify a lack 
of systematic reporting and clinical implementation studies in the 
domain which should be overcome in the future. Giordano et al. (27) 

argued that patient risk stratification and patient outcome 
optimization would be the first venues in which AI can practically 
contribute to routine practices. However, the mentioned work 
emphasizes the necessity for medical staff to receive extracurricular 
training on the mechanics of AI decision making and improved 
interpretability. This can ultimately lead to increased trust in AI in 
healthcare scenarios. Syed et  al. (28) identified that predicting 
mortality, sepsis, acute kidney injury (AKI), and readmissions were 
the most common tasks for applied AI in patient monitoring in 
ICUs. Greco et al. (29) identified inconsistencies in diagnosis and 
treatment protocols between different health centers and countries 
as well as the lack of emotional intelligence to be the most critical 
aspects which confine the successful integration of AI driven 
approaches for patient monitoring. Antoniadi et al. (24) addressed 
interpretability as one of the most critical issues towards integration 
of ML-based approaches for CDS, identifying tabular data processing 
XAI-enabled systems and XAI-enabled CDS tools for text analysis 
as the most and the least common approaches in the literature, 
respectively. Also, Yang et al. (30) addressed the medical XAI aspects 
in multi-modal and multi-center scenarios in a mini-review study. 
They further showcased an XAI framework integrated for automated 
classification of corona virus disease (COVID)-19 patients and 
ventricle segmentation using computed tomography (CT) and 
magnetic resonance imaging (MRI) scans. Finally, Abdellatif et al. 
(31) reviewed the applications of reinforcement learning (RL) for 
intelligent healthcare (I-Health) systems, focusing on large networks 
of Internet of mobile things (IoMT) and software defined networks 
(SDNs) producing big data. In the realm of this evolving field, our 
work distinguishes itself by emphasizing the strategies and 
knowledge necessary to bridge the gap and successfully integrate AI 
for clinical decision support in daily intensive care routines, with a 
particular focus on cardiac diseases.

In this systematic review, following the PRISMA (32) and PICOS 
(33) guidelines, we  designed the study in four steps including: 
identification of initial manuscripts through search engine queries and 
subjective searches, screening of original articles upon availability of 
full text in English, eligibility with regard to domain of interest and 
technical significance as well as medical relevance of the studies. 
We  considered the most well-known publisher databases in the 
clinical and medical research domains to search and select high 
quality original research articles. We mainly focused on shortlisting 
the works that aimed at analyzing the applications of AI-assisted 
methodologies for automated patient monitoring in cardiovascular 
ICUs. We further analyzed most common data types as well as mostly 
applied AI algorithms for decision support in patient monitoring. The 
main contributions of this manuscript can be listed as following:

 • Performing a systematic review over patient monitoring articles 
following PRISMA and PICOS guidelines

 • Covering the technical foundations according to the medical AI 
life cycle (34)
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 • Providing an extensive factual and narrative analysis of the 
selected articles

 • Providing expertise from both data science and medical science 
points of view

 • Discussing limitations and insights for the successful integration 
of AI-driven methods for decision making in cardiac ICUs

 • Recommending additional standardization and risk of bias 
criteria applicable to novel medical AI tools with regards to 
generalization and external validation aspects.

In the next sections, first, we discuss the basic concepts which are 
fundamental to be  able to follow the reported findings from the 
selected articles. The Methods section provides the details on the 
screening and selection criteria of the papers followed by the Results 
and Discussion sections which provide a comprehensive outline of the 
findings from the selected contributions. Finally, a short conclusion of 
the findings is given.

2. Background and fundamental 
concepts

According to the best practices (34), the life cycle of medical AI 
includes (a) model development and evaluation, (b) data creation and 
collection, and (c) AI Safety. Therefore, we covered the current state 
of the methods used in major related work, the data used in the 
studies, and the recent advances in the interpretability and explainable 
AI for medicine. The rest of this section briefly describes some of the 
most important concepts in these three aspects which are critical for 
better understanding of the topics that are covered in the next sections. 
Note that, the choice of methods which are discussed in this section 
reflects the methodology implemented in the selected articles as a 
result of the systematic review process.

2.1. Common AI methods applied to 
clinical data for patient monitoring

From a high-level perspective, machine learning (ML) techniques 
can be categorized in three main groups: supervised, unsupervised 
and reinforcement learning. If ground truth labels are available and 
used to train and fit the model (e.g., binary classification using known 
classes), the model corresponds to supervised ML paradigm. 
Otherwise, if the model is trained without prior knowledge on the 
target variable (e.g., clustering), the model corresponds to 
unsupervised ML paradigm. Another ML paradigm that has been 
frequently used for clinical decision support is Reinforcement 
Learning (RL).

Reinforcement learning: In RL, a computational agent is trained 
to maximize the cumulative reward it receives over a series of time-
steps by taking observations of the current state of the environment 
and by evaluating the feedback it receives after taking an action in 
that state (35). More formally, RL is founded on a Markov Decision 
Process (MDP) (36), where the RL agent is trained to learn an 
optimal policy pi* that maximizes the cumulative reward by 
exploring the environment defined by p(s, a, s’) and r, and exploiting 
its knowledge of the environment represented by V_pi or Q_
pi and y.

There is a long history of clinical decisions being formulated as an 
MDP. Initial efforts in this direction focused on dynamic programming 
solutions, while in recent work, variations of the Q-Learning 
algorithm have become more prominent, such as fitted-Q-iteration 
(FQI) (37) or deep Q-networks (DQN) (38). Areas where RL has been 
applied, that are relevant for cardiovascular monitoring include 
targeting of measurements during monitoring and choosing, timing 
and dosing of treatment steps. Many diagnostic and prognostic tasks 
in the healthcare domain are facilitated through the use of a variety of 
supervised ML models including logistic regression (LR), support 
vector machines (SVM), and ensemble methods such as random 
forest (RAF) and extra trees (39–42). This group of AI algorithms are 
often applied on time-independent tabular patient information. For 
textual, higher dimensional data, and grid like data types such as time 
series data and medical images, natural language processing (NLP), 
deep learning, convolutional neural networks (CNNs), and recurrent 
neural networks (RNNs) models are widely applied (25, 43, 44). It is 
quite common in this domain that basic classifiers such as LR and 
decision tree based methods are applied to simplified representations 
of datasets to provide baselines for comparison to more sophisticated 
methods (3, 14).

Logistic regression: As a supervised ML algorithm, logistic 
regression (LR) (45) is a predictive model leveraging the concept of 
probability to solve binary classification problems. Fundamentally, LR 
is a linear regression model with a special type of activation function, 
the so-called sigmoid function or logistic function which, based on a 
given decision boundary, quantifies the probability of belonging to 
each of the binary labels.

Support vector machines: Support vector machines (SVMs) (46) is 
a supervised ML algorithm that aims to find the optimal hyperplane 
which separates data points in one, two, or multi-dimensional space, 
depending on the complexity of the feature space. To maximize the 
probability of true classification of unseen data points, the chosen 
hyperplane has to expose the maximum possible distance, i.e., margin, 
between the data points of different classes, increasing the impact of 
the data points locating nearest to the hyperplane (i.e., support vectors).

Decision trees and ensemble algorithms: Decision trees employ 
tree-structured flowcharts of decisions based on the values of the 
input features to solve classification problems (47). At each node of 
such trees, a decision is made based on a single feature whether to 
make the final prediction or make another decision based on another 
feature. The leaves of a decision tree are the target labels. Ensemble 
algorithms such as random forest (RAF) (48) apply different 
randomized groups of decision trees, denoted as ensembles of trees, 
as well as different bootstrapping mechanisms to come up with the 
final decision on the target labels.

Gradient boosting and categorical boosting: Gradient boosting, 
which is used for classification and regression tasks, draws predictions 
as ensembles of some weak learners, mostly decision trees or random 
forests (49). When it comes to the analysis of categorical data, 
categorical boosting or CatBoost algorithm outperforms other 
gradient boosting methods (50).

Recurrent neural networks: In contrast to conventional feed-
forward neural network models which are mostly used for 
processing time-independent datasets, RNNs are well-suited to 
extract non-linear interdependencies in temporal and longitudinal 
data as they are capable of processing sequential information, 
taking advantage of the notion of hidden states h. In such a model, 
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at each timestamp t, the input data is processed alongside the 
information which was processed in the previous timestamp t-1 
(51). Also, for patient monitoring, a variety of RNN-based models 
such as long short-term memory (LSTM) and gated recurrent unit 
(GRU) are commonly applied.

First introduced by Hochreiter and Schmidhuber in 1997, 
LSTM (52) aims at identifying both short-term and long-term 
dependencies in the sequential data such as clinical time series data. 
LSTMs consist of cells with input, output, and forget gates which 
regulate the flow of information to remember values over arbitrary 
time intervals.

Natural language processing: When it comes to automated 
processing of textual patient data, such as electronic health records 
(EHRs), natural language processing (NLP) comes into action. NLP 
[Allen2003] denotes the set of AI based approaches which are capable 
of identifying underlying patterns in the textual data, hence 
understanding human languages. Taking the examples of EHRs and 
temporal textual patient information stored in medical databases such 
as Medical Information Mart for Intensive Care (MIMIC) (53, 54), 
clinical and medical domains also take advantage of NLP (15).

2.2. Established conventional scoring 
systems used in critical care

Alongside continuous monitoring of patients by the intensivists 
and medical staff during patients stays at ICUs, several scoring systems 
are widely used in critical care units to monitor and manage patients 
states such as the acute physiologic and chronic health evaluation 
(APACHE), the sequential organ failure assessment (SOFA), and the 
mortality prediction model (MPM) (55–57). Such scoring systems 
become handy in studies which aim at analyzing emerging AI 
methods for clinical decision making as they provide established 
baselines for comparison.

Mortality Prediction Models (MPMs) (56) and APACHEs (55) 
are mathematical models that estimate the probability of death for 
critically ill patients in ICUs based on patient data such as 
demographics, diagnoses, and physiological measurements. Each 
of MPM and APACHE use a different set of variables and algorithms 
to predict mortality risk. These models are useful in guiding clinical 
decision-making, evaluating ICU performance, and identifying risk 
factors for mortality. However, they have limitations and should 
be used alongside clinical judgment as they are not designed to 
replace it or provide definitive prognoses. The accuracy of MPMs 
may vary depending on the patient population and the specific 
model used, and they should be validated and calibrated before use 
in clinical practice.

Sequential Organ Failure Assessment (SOFA) (57) is a scoring 
system used to track the progression of organ dysfunction in critically 
ill patients in the intensive care units. It is based on the evaluation of 
six organ systems: respiratory, cardiovascular, hepatic, renal, 
coagulation, and neurological, with the score ranging from 0 to 4 for 
each organ system, and higher scores indicating greater dysfunction. 
The total SOFA score is the sum of the scores for all six organ systems, 
ranging from 0 to 24, and is calculated daily for each patient in the 
ICU. SOFA score is often used in clinical research and quality 
improvement initiatives in ICUs, and it has been shown to be a useful 
predictor of mortality in critically ill patients.

2.3. Medical data modalities for intensive 
patient care

From a general perspective, one can subdivide medical data 
modalities into the following subgroups: structured data (with and 
without timestamp) and unstructured data such as medical image 
modalities and electronic health records (EHR). Like other fields of 
data science, numerical tabular information such as patient 
demographic information (e.g., age and weight) can be used to form 
feature vectors for AI- and ML-based methods. In case of time-
dependent measurements such as lab values and vital signs, the 
dimension of time (i.e., timestamp) should be  integrated in the 
corresponding analysis pipeline, hence the clinical time series data. 
This section provides a brief overview of different data modalities used 
in the scope of this systematic review.

Numerous kinds of data in diverse modalities are processed by 
medical experts and intelligent systems for patient monitoring in 
ICUs. Clinical time series and electrocardiograms (ECGs) are among 
the most common types of data applied in this domain. Furthermore, 
open access databases facilitate objective performance analyses of the 
implemented AI methods.

Clinical time series data: Continuous patient monitoring leads to 
a magnitude of measurements captured and stored at discrete 
timestamps. Regardless of the disease type, a variety of temporal 
datasets such as Electronic health records (EHR), lab values, vital 
signs, diagnoses and treatments records can be  used for patient 
monitoring (58).

Electrocardiograms (ECGs): First invented by William Eindhoven 
in 1902, electrocardiograms (ECGs) (59) are recorded non-invasively 
from the patient’s body surface and are used to represent the heart’s 
electrical activity. ECGs are widely applied for diagnosing heart 
complications also in cardiac ICUs.

2.3.1. Open access datasets
Ensuring that methodology can be  replicated is a key 

consideration in data science, which typically necessitates the sharing 
of data. However, in the medical and clinical field, there are often 
additional ethical limitations and considerations when it comes to 
sharing patient data, which is considered highly sensitive and 
confidential. These ethical concerns must be balanced with the need 
for reproducibility in research. This highlights the importance of open 
access datasets for medical and clinical research. This subsection 
briefly introduces some of the most applied publicly available datasets 
for intensive patient care.

One of the majorly used information platforms in biomedical 
research and education is PhysioNet which offers free access to large 
collections of physiological and clinical data and related open-source 
software, and educational tutorials (60). Among the recently published 
extensive clinical data collections that are present in PhysioNet, 
datasets of High time-Resolution ICU Dataset (HiRID) (61), Medical 
Information Mart for Intensive Care (MIMIC-II, MIMIC-III and 
MIMIC-IV) (53, 54, 62), and eiCU (63) are the ones majorly used for 
studies about intensive care units.

MIMIC is a public database of de-identified electronic health 
records of over 60,000 adult patients admitted to the intensive care 
units at the Beth Israel Deaconess Medical Center. It contains 
information on demographics, diagnoses, laboratory tests, 
medications, and clinical notes collected from various sources such as 

40

https://doi.org/10.3389/fmed.2023.1109411
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Moazemi et al. 10.3389/fmed.2023.1109411

Frontiers in Medicine 05 frontiersin.org

bedside monitors, clinical documentation, and hospital information 
systems. The database has been widely used in clinical research and 
machine learning applications to develop predictive models, identify 
risk factors, and improve clinical outcomes. Access to the database 
requires an application process and approval from the Institutional 
Review Board at BIDMC, but it is publicly available through 
PhysioNet, a repository of physiological data and clinical information 
maintained by MIT.

Intensive care units (ICU) are a prominent source of time series 
data, as the nature of intensive care usually requires close and regular 
monitoring of patients and thereby produce a high density of 
measurements. Instances of time-dependent measurement data that 
can be found in publicly available ICU datasets include time-stamped 
nurse-verified physiological measurements such as hourly 
documentation of heart rate, arterial blood pressure, or respiratory 
rate. Other examples include documented progress notes by care 
providers, continuous intravenous drip medications, and fluid 
balances (53).

2.4. Interpretability and explainability of AI 
in healthcare

Usually, in intensive patient care, the mission of AI systems is to 
provide risk estimates and assist in decisions by providing predictions, 
which then need to be  understood, interpreted and validated by 
clinicians. To assess the trustworthiness, the AI developers together 
with clinicians have different sorts of higher-order evidence at hand 
(64). Most importantly, as identified by related work (24) and 
discussed in some of the selected manuscripts (25, 65–67), before an 
AI system is being implemented in clinical settings, it is being 
technically and clinically validated. The validation yields evidence of 
a system’s accuracy and reliability through a standard procedure. 
Besides these evaluations, it is important to transfer the knowledge 
about what the AI system has focused its attention on through some 
post hoc explanations. This AI transparency is crucial in medical AI, 
especially in the use case of patient monitoring (68). Transparency 
refers to algorithmic procedures that make the inner workings of a 
‘black box’ algorithm interpretable to humans (69). Another factor is 
traceability that intersects with the concepts of method and results in 
reproducibility and replicability of underlying data analysis. Covering 
these aspects relates to providing sufficient detail about procedures 
and data so that the same procedures could be  exactly repeated. 
Auditability of AI shapes itself more and more as a necessary tool in 
achieving innovation in a secure, transparent way.

To interpret decisions made by AI models with deep architectures 
and to cope with their ‘black box’ nature, recursive feature elimination 
(RFE) and SHapley Additive exPlanations (SHAP) methods are 
commonly applied also in the medical AI domain. RFE takes an ML 
classifier and the desired number of features as input and starts from 
the entire input feature set. Then at each recursion step, the features 
are ranked based on an importance metric and the least relevant 
variables are removed. This procedure continues until the desired 
number of features are chosen (70). Inspired by game theory, SHAP is 
used to explain the output of any machine learning model by 
connecting optimal credit allocation with local explanations, assigning 
each input feature an importance value for a particular prediction 
(71). Nevertheless, the explainability provided by most of conventional 

methods such as RFE and SHAP is rather located on model level and 
addresses understanding of how a model derives a certain result, 
lacking the semantic context which is required for providing human-
understandable explanations. In medical applications, the quest for 
explainability is usually motivated by medical semantic understanding, 
thus explainability on e.g., syndrome level which is the language of 
physicians (72).

3. Methods

3.1. Search strategy and screening

We followed the preferred reporting items for systematic reviews 
and meta-analyses (PRISMA) (32) and the population, intervention, 
comparator, outcome, and study design (PICOS) (33) guidelines. 
However, as meta-analysis was not originally intended for this study, 
we only followed the parts of PRISMA that only apply to systematic 
reviews. As this had led to a group of studies covering a diverse 
selection of datasets and algorithms, a comprehensive meta-analysis 
was not feasible. From the PubMed and Google Scholar databases, the 
following keywords are searched: (“artificial intelligence” OR “AI” OR 
“machine learning” OR “ML”) AND (“ICU” OR “intensive care” OR 
“intensive care unit” OR “intermediate care unit” OR “IMC” OR 
“IMU” OR “patient monitoring”) AND (“cardiovascular” OR 
“cardiac”). Moreover, a subjective literature research according to most 
relevant related studies complement results of the search engine 
queries. The publications dated from January 2018 to August 2022.

In the screening phase, original studies focusing on clinical 
decision support for adult subjects (age ≥17 years) visiting 
cardiovascular ICUs were analyzed. Thus, studies focusing on 
pediatric cohorts and review articles were removed from the results of 
search in the screening process. The summary of PICOS scheme 
containing the inclusion as well as exclusion criteria is outlined in 
Table 1.

3.2. Quality assessment, selection criteria, 
and risk of bias assessment

All the papers collected as results of search engine queries were 
assessed whether they held enough significance and relevance from 
both data science and medical points of view. First, each of the 
papers underwent qualitative reviews by two independent reviewers 
which were selected randomly from a group of reviewers with data 
science and AI background. In case of agreement about selecting the 
manuscript between the two assigned reviewers, the manuscript 
would be  short-listed or eliminated from the systematic review 
accordingly. On the contrary, in case of a mismatch between the 
assessments carried out by the first two reviewers, a third reviewer 
with higher qualification would decide whether to select or reject the 
manuscript. Consecutively, the selected papers underwent another 
assessment step by a group of medical experts whether they fit 
within the scope of this study: patient monitoring in cardiovascular 
ICUs. The technical criteria to assess the manuscripts qualitatively 
include proper research concept, representative train/test cohorts, 
and proper cross-validation either within the dataset or against 
external cohorts.
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To visualize the risk of bias assessment results, the robvis 
package (73) is used. As the criteria for risk of bias, the following 
seven items have been considered: reasonable cohort size (D1), 
proper cross-validation (D2), external validation set (D3), blinding 
of participants and personnel (D4), blinding of outcome assessment 
(D5), incomplete outcome data (D6), and selective reporting (D7). 
To account for subjectivity, the bias assessment was conducted with 
the same approach as for the study selection, i.e., with random 
assignments to two reviewers followed by a final validation by a 
third expert.

4. Results

In this section, the results of the systematic review are 
elaborated. First, a summary of the screening step is given followed 
by narrative reviews of the selected papers. Afterwards, a 
comprehensive analysis of the papers is provided which comprise a 
risk of bias analysis and assessments of studies outcomes, used 
datasets, and applied algorithms. Furthermore, if existing, relevant 
discussions on the integration of AI in cardiovascular ICUs 
are reported.

4.1. Study selection

The search engine queries have resulted in 89 papers in total. 
Out of these papers, 60 were from PubMed database and 25 were 
from Google Scholar. Another four papers were selected from 
subjective literature research from most relevant related articles. In 
the screening phase, 12 papers were excluded due to not available 
full text and three studies were excluded because of being review 
articles. In the eligibility assessment step, 11 papers were eliminated 
as they analyzed non-adult cohorts, 27 studies were excluded as 
considered not to be of proper significance from data science point 
of view, and 15 papers eliminated because they did not particularly 
focus on cardiovascular ICU cohorts (see Figure 1). As a result, 21 
papers have been selected for the qualitative and 
quantitative analyses.

4.2. Summary of the included studies

Table 2 provides a summary of the important contents of the 21 
included papers. This subsection presents a narrative review of 
these studies.

Zhao et al. (65) integrated a categorical boosting ML model to 
predict extubation failure resulting in in-hospital or 90-day mortality 
in patients visiting ICUs. To train their model, they used clinical time 
series data from the MIMIC-IV database. For the test purposes, they 
applied an external data set. To identify the most important predictive 
factors, they applied RFE and SHAP methods. Their results suggest 
that critically ill patients might benefit from AI assisted mechanical 
ventilation. They also provide an UI for model validation which is 
freely accessible online. They mention interpretability and 
inconsistency in train and test datasets as the most critical challenges 
towards integrating AI in clinical practice.

Jentzer et  al. (66) used multivariate logistic regression on 
numerical clinical variables extracted from ECGs from their own 
facilities to quantify mortality risk due to left ventricle systolic 
dysfunction in patients staying at ICUs. Their findings suggest the 
relevance of the AI-driven methodology for the quantification of 
cardiac patients’ survival potential and identify lack of explainability 
as a challenge to be  handled before it can be  integrated in 
prognostic pipelines.

Gandin et al. (74) investigated the interpretability of an RNN 
model with long short-term memory (LSTM) architecture as used for 
survival prediction in a cohort of patients visiting cardiovascular 
ICUs. They analyzed the MIMIC-III dataset for both training and test 
purposes. The results of their study demonstrate that incorporating an 
attention layer into the LSTM model can enhance the interpretability 
of the AI model’s decisions, leading to greater reliability in AI 
decision making.

Andersson et al. (67) took advantage of artificial neural networks 
(ANNs) to anticipate neurological outcomes due to out-of-hospital 
cardiac arrest (OHCA). They analyzed clinical variables and 
biomarkers from a cohort of patients from their own hospital and used 
SHAP method for identifying the most relevant factors. They showed 
that the clinical parameters captured in the first 3 days of ICU stay 
contribute to OHCA prognostication. Although their results suggest 

TABLE 1 Population, intervention, comparator, outcome, and study design (PICOS) criteria for the systematic review.

Parameter Inclusion criteria Exclusion criteria

Population
 • Adults (age ≥ 17)

 • Patients admitted to cardiovascular ICU

 • Age < 17

 • No cardiovascular patients

 • No ICU patients

Intervention Any No restriction

Comparator
 • At least one AI/ML algorithm

 • At least one control group

 • No AI/ML algorithm

 • No control group

Outcomes Any No restriction

Study designs
 • Retrospective, prospective, or ambispective data analysis

 • Hold enough data scientific significance

 • Hold enough medical relevance

 • No proper statistical analysis significance

 • No proper cross-validation

 • No enough medical relevance
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reliable predictions, they insist on external validation with larger 
cohorts to assess generalizability of their methods.

Parsi et al. (39) took advantage of supervised machine learning 
methods such as support vector machines (SVM) to analyze data 
extracted from ECGs to predict paroxysmal atrial fibrillation in ICU 
patients with high accuracy. For their training and test, they applied 
open access data from the atrial fibrillation prediction database 
(AFPDB) of PhysioNet. Their primary contribution involves 
integrating an AI model with high performance onto implantable 
devices with low computational power.

Yu et  al. (40) evaluated several ML models including logistic 
regression, random forest, and adaptive boosting (Ada) as applied to 
clinical time series data (from MIMIC-III database) for the prediction 
of long-term survival of patients after cardiac surgery, highlighting the 
significance of Ada model. As the generalizability plays an important 
role in integration of AI-assisted methods, they also provide a freely 
accessible online platform for the validation of their model against 
external sets of data.

To predict noninvasive ventilation (NIV) failure in cardiac ICU 
patients, Wang et  al. (75) took advantage of categorical boosting 
alongside RFE and SHAP methods for analyzing most important 
factors among clinical time series data. They used open access data 
from the eICU-CRD database for training and data from their own 
hospital for test purposes. They have shown the relevance of the AI 
model and provide an online tool for model validation, while 
identifying lower specificity in predictions of AI as the most 
challenging issue which limits generalizability of their findings.

Chen et  al. (41) analyzed different supervised ML classifiers 
(including logistic regression, SVM, random forest, artificial neural 

networks and XGBoost) for the task of predicting ventilator weaning 
in the next 24-h time windows, given non-time series clinical data 
corresponding to a cohort of cardiac ICU stays in their facilities. Their 
key finding is that ventilator weaning can be  anticipated using a 
limited number of clinical factors such as expiratory minute 
ventilation, expiratory tidal volume, ventilation rate set, and heart rate. 
As they only applied data from their own center, generalizability of 
their findings remains in question.

Dutra et al. (76) applied a variety of statistical and ML methods 
including Cox and Kaplan–Meier estimators as well as ElasticNet (85) 
and survival trees to quantify mortality risks of ICU patients due to 
heart failure with mid-range ejection fraction (EF). Their findings 
suggest that there is no significant correlation between EF and survival 
probability of the patients. As they only analyzed data from a single 
center, their findings are subject to bias, hence the need for follow-up 
generalizability assessments.

Bodenes et al. (42) applied and compared AI classifiers such as 
k-NN, SVM, and decision trees to predict survival of the ICU patients 
due to heart rate variability (HRV). They analyzed clinical time series 
from a single center and proposed a low cost and efficient model for 
HRV analysis. However, their findings are subject to further 
assessments against external data cohorts. They also identified the lack 
of global standardization of HRV measurement methods and 
interpretability of AI models as limitations to overcome in the future.

Moazemi et al. (25) evaluated two alternative long short-term 
memory (LSTM)-based models to predict readmission risks in 
cohorts of cardiovascular ICU patients, analyzing clinical time series 
data as well as patient level information. They used a cohort of cardiac 
ICU stays from MIMIC-III as well as a dataset from their own hospital 

FIGURE 1

The PRISMA diagram. From a total of 89 papers identified by the search queries from the three sources, 15 and 53 papers were excluded in the 
screening and eligibility assessment phases, respectively. Accordingly, 21 papers were included to be reported.
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TABLE 2 The summary of the included studies. The most important contents of the 21 studies are summarized.

Study Population Study 
designs

Predicted 
outcome(s)

Data 
type(s)

Method(s) Main 
contribution(s)

Identified 
challenge(s) 
towards 
integration of 
AI in practice

Zhao et al. 

(65)

16,189 adult 

(age > 18) patients 

from MIMIC-IV

Retrospective 

training, 

prospective 

validation

Extubation 

failure

Clinical time 

series 

(MIMIC-IV 

and domestic)

Categorical 

boosting with 

SHAP and RFE

Well-performing AI 

model (up to 0.83 

AUROC), increased 

interpretability, open 

access UI for model 

validation

Interpretability, 

dataset shift 

problem

Jentzer et al. 

(66)

11,266 adult (Mean 

age 68 ± 15 years) 

patients from 

Mayo Clinic ICU

Retrospective 

data analysis

Mortality risk Numerical 

clinical data 

extracted from 

ECGs 

(domestic)

Multivariate 

logistic regression

Well-performing AI 

model (up to 0.83 

AUROC)

Interpretability

Gandin et al. 

(74)

10,616 patients 

from MIMIC III

Retrospective 

data analysis

Mortality risk EHR (MIMIC-

III)

RNN (LSTM with 

attention layer)

Well-performing AI 

model (up to 0.79 

AUROC), attention layer 

to increase the 

interpretability of LSTM

Interpretability and 

reliability

Andersson 

et al. (67)

932 adult 

(age ≥ 18) patients 

from 36 ICUs 

across Europe and 

Australia

Retrospective 

data analysis

Neurological 

outcome 

following out-of-

hospital cardiac 

arrest (OHCA)

Clinical 

variables and 

biomarkers 

(domestic-

multicenter)

ANN with SHAP Reliable AI model (up to 

0.94 AUROC) using 

cumulative clinical data 

from first 3 days of ICU 

stay

Generalizability, 

effect of outliers

Parsi et al. 

(39)

53 patients from 

PhysioNet

Retrospective 

data analysis

Paroxysmal atrial 

fibrillation

ECG 

(PhysioNet)

SVM, k-NN, RF, 

MLP

High performance AI (up 

to 0.79 accuracy) on 

implantable defibrillator 

with low computation 

power

Low computational 

power on wearable 

and implantable 

devices

Yu et al. (40) 7,368 adult 

(age > 18) patients 

from MIMIC-III

Retrospective 

data analysis

4-year mortality 

risk after cardiac 

surgery

Clinical time 

series 

(MIMIC-III)

LR, ANN, Ada, 

NB, RF, etc. with 

RFE

Well-performing AI 

model (up to 0.80 

AUROC), open access UI 

for model validation

Generalizability

Wang et al. 

(75)

929 adult (age > 18) 

patients from 

eICU-CRD

Retrospective 

training, 

prospective 

validation

Noninvasive 

ventilation (NIV) 

failure

Clinical time 

series (eICU-

CRD and 

domestic)

Categorical 

boosting with RFE 

and SHAP

Well-performing AI 

model (up to 0.87 

AUROC) applied to easily 

available clinical variables, 

open access UI for model 

validation

Generalizability, 

low specificity of AI 

predictions

Chen et al. 

(41)

1,439 adult (mean 

age 

65.05 ± 12.53 years) 

patients from 

Cheng Hsin 

General Hospital

Retrospective 

data analysis

Ventilator 

weaning time

Non-time 

series clinical 

data 

(domestic)

LR, SVM, RF, 

ANN, XGBoost

Well-performing AI 

model (up to 0.88 

AUROC), identify most 

simplified key parameters

Generalizability

Dutra et al. 

(76)

519 adult (age > 18, 

mean age, 

74.87 ± 13.56 years) 

patients admitted 

to a Brazilian 

cardiac ICU

Ambispective 

data analysis

Mortality risk 

from heart failure 

with mid-range 

ejection fraction 

(EF)

Non-time 

series clinical 

data 

(domestic)

Cox, Kaplan–

Meier, ElasticNet, 

survival tree

EF is not significantly 

correlated with mortality

Generalizability

(Continued)
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TABLE 2 (Continued)

Study Population Study 
designs

Predicted 
outcome(s)

Data 
type(s)

Method(s) Main 
contribution(s)

Identified 
challenge(s) 
towards 
integration of 
AI in practice

Bodenes 

et al. (42)

540 adult patients 

admitted to Brest 

University 

Hospital’s cardiac 

ICU

Prospective data 

analysis

Mortality risk 

and heart rate 

variability (HRV)

Clinical time 

series 

(domestic)

k-NN, SVM, LR, 

decision trees

Low cost and efficient AI 

model for HRV analysis

Generalizability, 

interpretability, lack 

of standardized 

HRV measurement 

methods

Moazemi 

et al. (25)

11,513 patients 

from MIMIC-III 

and 502 from 

University Hospital 

Düsseldorf ’s 

cardiac ICU 

(age ≥ 17)

Retrospective 

data analysis

ICU readmission Clinical time 

series 

(MIMIC-III 

and domestic)

RNN (LSTM) Well perforing AI (up to 

0.82 AUROC), data-

driven approach, 

validation with external 

cohort

Interpretability, 

dataset shift 

problem

Baral et al. 

(44)

7,611 patients 

(age > 15) from 

MIMIC-III cardiac 

ICUs

Retrospective 

data analysis

Cardiac arrest Clinical time 

series 

(MIMIC-III)

Multi-layer 

perceptron (MLP), 

RNN 

(bidirectional 

LSTM)

Well-performing AI model 

(up to 0.94 AUROC) to 

reduce false alarm for 

cardiac arrest, improved 

model compared to 

normal LSTM

Generalizability

Qin et al. 

(43)

49,168 patients 

from MIMIC-III

Retrospective 

data analysis

Sepsis Textual and 

structured 

clinical data 

(MIMIC-III)

NLP (BERT), 

Amazon 

Comprehend 

Medical for data 

processing, 

XGBoost (for 

classification)

Outperform PhysioNet’s 

sepsis prediction challenge 

winner (up to 0.89 

AUROC)

Generalizability

Nanayakkara 

et al. (77)

Adult (age ≥ 17) 

septic patients 

from MIMIC-III

Retrospective 

data analysis

Sepsis treatment 

planning

Clinical time 

series 

(MIMIC-III)

RL Introducing a novel 

physiology-driven 

recurrent autoencoder, 

highly interpretable, 

uncertainty quantification

Lack of 

standardization, 

how/when AI is 

considered safe 

enough for clinical 

routine

Zheng et al. 

(78)

1,362 critically ill 

COVID patients 

(mean age 69.7) 

from New York 

University 

Langone Health

Retrospective 

data analysis

Managing oxygen 

flow rate to 

reduce mortality 

risk

EHR 

(domestic)

RL AI model to identify 

optimal personalized 

oxygen flow rate to reduce 

mortality rate

Generalizability

Peine et al. 

(79)

61,532 and 200,859 

ICU stays of adult 

patients from 

MIMIC-III and 

eICU datasets

Retrospective 

data analysis

Optimization of 

mechanical 

ventilation to 

reduce mortality 

risk

Clinical time 

series 

(MIMIC-III 

and eICU)

RL Introduce VentAI to 

dynamically optimize 

mechanical ventilation for 

individual patients

Generalizability, 

algorithm bias, 

missing/false data

Akrivos et al. 

(80)

162 adult patients 

(18 < age < 90 on) 

from MIMIC-II

Retrospective 

data analysis

Cardiac arrest Transformed 

clinical time 

series 

(MIMIC-II)

integrated model of 

sequential contrast 

patterns using 

Multichannel 

Hidden Markov 

Model

High sensitivity (with the 

average of 0.78) and 

specificity to identify high 

risk patients

False positive rate in 

classification results

(Continued)
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for train and test purposes, respectively. Their findings highlight the 
benefit of RNN models in general, and the need for consistency in 
train and validation cohorts in particular. They further highlight the 
dataset shift problem and interpretability of deep learning models as 
critical future challenges for AI in CDS.

Baral et  al. (44) applied multi-layer perceptrons (MLP) and 
bidirectional LSTM models for the prediction of cardiac arrest and 
have shown the superiority of the enhanced bidirectional model to the 
normal LSTM. They analyzed a cohort of data from MIMIC-III for 
both training and test purposes. Their proposed RNN model showed 
reasonable performance in predicting cardiac arrest, reducing the false 
alarm rate significantly. As they did not validate their model with 
external data, their findings are subject to further 
generalizability assessments.

Qin et  al. (43) applied Bidirectional Encoder Representations 
from Transformers (BERT) (86) and Amazon Comprehend Medical 
techniques (as natural language processing (NLP) approaches) to 
process textual data and XGBoost method to classify patients with 
high risk of sepsis. They leveraged open access and structured clinical 
data from the MIMIC-III database for training and test. Their 
proposed pipeline outperformed the winner of PhysioNet challenge 
for sepsis prediction in 2019 which had applied XGBoost and Bayesian 

optimization without processing textual data (87). However, their 
findings lack validation against independent external cohorts, hence 
the generalizability issue.

Nanayakkara et al. (77) took advantage of reinforcement learning 
approaches to introduce a novel recurrent autoencoder for the task of 
sepsis treatment planning. They used clinical time series data from the 
MIMIC-III database for their analysis which include interpretable 
uncertainty quantification of clinical factors. They further discussed 
the lack of globally agreed standards in the assessments of safeness of 
AI methodologies as one of the most critical challenges in the field.

Zeng et al. (78) also applied reinforcement learning methodologies 
to quantify the optimal personalized oxygen flow rate to minimize the 
risk of mortality in cardiac ICU patients. To this end, they analyzed 
electronic health record (EHR) data from cardiovascular patients’ 
stays at their hospital in a single center study. Thus, their findings 
might be subject to future external validation.

In another study leveraging reinforcement learning 
methodologies, Peine et al. (79) introduced VentAI, an RL based 
pipeline for personalized optimization of mechanical ventilation 
in patients staying at cardiovascular ICUs. They analyzed clinical 
time series data from two open access databases (MIMIC-III and 
eICU) and identified generalizability, bias in AI algorithms, and 

TABLE 2 (Continued)

Study Population Study 
designs

Predicted 
outcome(s)

Data 
type(s)

Method(s) Main 
contribution(s)

Identified 
challenge(s) 
towards 
integration of 
AI in practice

Aushev et al. 

(81)

75 adult (age > 18)

patients from 

ShockOmics 

European database

Retrospective 

data analysis

Mortality due to 

septic and 

cardiogenic 

shock

ECG 

(ShockOmics 

Dataset)

SVM, Random 

Forest, RFE, 

Bayesian networks

Apply feature selection to 

identify the most relevant 

predictors of mortality 

due to septic and 

cardiogenic shock using 

ECG with high certainty 

(up to 0.84 AUROC)

–

Kim et al. 

(82)

29,181 adult 

(age > 18) ICU 

patients from 

Yonsei Health 

System (Severance 

and Gangnam 

Severance 

Hospitals)

Retrospective 

data analysis

Acute respiratory 

failure and 

cardiac arrest

Time series 

(domestic)

Deep Learning 

(LSTM)

Introduce FAST-PACE for 

preparing immediate 

intervention in emergency 

situations, outperforming 

some established scoring 

systems (e.g., SOFA) (up 

to 0.88 AUROC)

Lack of relevant 

input data to AI 

models, lack of 

external validation, 

imbalanced 

datasets, lack of real 

time measurements 

of vital signs

Meyer et al. 

(83)

11,492 ICU stays 

from 9,269 adult 

(age ≥ 18) patients 

from a German 

cardiovascular 

tertiary care center

Retrospective 

data analysis

Mortality, renal 

failure, 

postoperative 

bleeding leading 

to operative 

revision

Time series 

(domestic)

Deep learning 

(RNN)

Predict severe 

complications after 

cardiothoracic surgery 

with a higher certainty (up 

to 0.96 AUROC), 

validation against 

MIMIC-III dataset

Dataset shift, biased 

data, 

generalizability, 

transparency and 

interpretability of 

AI decision making

Yoon et al. 

(84)

2,809 Adult 

(age > 18) patients 

from MIMIC-II

Retrospective 

data analysis

Tachycardia as a 

surrogate for 

cardiorespiratory 

instability (CRI)

Vital signs 

time series 

(MIMIC-II)

Regularized 

logistic regression 

(LR), Random 

Forest

Developed a risk score for 

predicting tachycardia 

episodes, AI model with 

high accuracy (up to 0.86 

AUROC)

Timestamp 

mismatching and 

data sparsity, 

specificity of 

predictions, lack of 

external validation
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missing and false entries in the measured clinical parameters as the 
most important challenges towards integration of AI in 
clinical practice.

Applying regularized logistic regression and random forest 
algorithms to vital signs from MIMIC-II dataset, Yoon et  al. (84) 
suggest that predicting tachycardia could increase clinical awareness 
of a higher risk of future hypotension and subsequently other forms 
of cardiorespiratory instability (CRI). But they did not directly 
compare their model to conventional scoring systems or conduct 
validation studies against independent sets of data.

Meyer et al. (83) applied a deep recurrent model to analyze time 
series data for the task of predicting severe complications in critical 
care units after cardiovascular surgery such as mortality, renal failure, 
and postoperative bleeding leading to operative revision. Their model 
outperforms clinical reference tools and is available to be integrated 
in EHR systems. They further validate the performance of their model 
which is trained using domestic data against external data from the 
MIMIC-III database and highlight the importance of generalizability 
and interpretability of AI methods in clinical practice.

Kim et al. (82) introduced Feasible Artificial Intelligence with 
Simple Trajectories for Predicting Adverse Catastrophic Events 
(FAST-PACE), an LSTM model to process clinical time series data, to 
predict events of acute respiratory failure and cardiac arrest. They fit 
their model using a domestic cohort of data and show the superiority 
of their model compared to some established scoring systems such as 
sequential organ failure assessment (SOFA) and mortality prediction 
model (MPM). Their findings further identify lack of external 
validation and inconsistencies in real time measurement schemes in 
critical care units as some limitations of data-driven approaches 
towards clinical decision making.

Aushev et al. (81) applied different feature selection techniques 
such as recursive feature elimination (RFE) in combination with 
SVM and random forest classifiers to identify most relevant features 
that could predict mortality due to shock in the intensive care unit. 
To this end, they analysed ECG data from ShockOmics dataset as 
part of an Europe funded project. As their patient cohort with 75 
subjects is relatively small, their findings might be  subject to 
further assessment.

Akrivos et al. (80) took advantage of the MIMIC-II dataset to 
integrate a model of sequential contrast patterns using the 
Multichannel Hidden Markov Model which is able to predict cardiac 
arrest in cardiovascular ICUs. Their approach takes advantage of 
clinical time series data after transforming them to sequential patterns. 
Their model achieves high performance, while suffering from a 
relatively low false positive rate in classifier predictions. This identifies 
rooms for follow-up studies including data from 
independent databases.

4.3. Risk of bias assessment

Figure  2 provides an overview of the risk of bias analysis 
results. Most of the studies conducted proper cross-validation 
methods. However, only five studies used independent external 
datasets for the validation of their models (Figure  3), which 
identifies lack of generalizability as a common issue towards 
integration of AI methodologies across different research groups 
and medical centers.

4.4. Studies’ outcomes

As illustrated in Figure 4, mortality as well as cardiac, sepsis and 
respiratory complications rank amongst the most common clinical 
outcomes analyzed by the selected literature. This is justified as most 
of the patients visiting cardiovascular ICUs have had cardiac surgeries 
beforehand or are subject to higher cardiac and 
respiratory complications.

4.5. Analyzed data types

Figure 5 shows an overview of the data modalities analyzed in the 
selected papers. Clinical time series is the most common group, while 
EHR and textual data are the least common groups. Moreover, as 
presented in Table 2, 13 studies out of 21 selected studies utilized open 
access datasets with 10 studies using different versions of MIMIC 
database either for training or validation purposes.

4.6. AI algorithms and models

Figure 6 outlines the AI methods for model development and 
interpretation of the models’ decisions as utilized by the included 

FIGURE 2

The risk of bias diagram for the selected studies. Each row 
corresponds to a selected study. The columns D1–D7 correspond to 
different risk criteria. The subjective judgements are color-coded as 
explained in the legend. The final column represents the overall 
judgement for the corresponding study.
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studies. The most common group of algorithms are linear or decision 
tree-based methods, followed by recurrent models. Only five studies 
included feature selection or explainable AI methods. Although the 
high level of diversity in the datasets and algorithms which are utilized 
in the selected papers hinders us from conducting comprehensive 
performance meta-analysis, as outlined in Table 2, area under the 
receiver operating characteristics curve (AUROC) ranging from 79 to 
96% throughout the entire cohort of papers, is the most commonly 
reported metrics item.

4.7. Concerns towards integration of AI in 
clinical routine

Figure 7 provides an overview of the concerns and limitations for 
the integration of AI for CDS in cardiac ICUs as discussed in the 
included papers, highlighting generalizability, interpretability, and 
dataset shift as the most central issues.

5. Discussion

Conventionally, patients visiting different care units undergo 
continuous examinations and interventions during their stays at the 

corresponding units. Thus, the physicians and medical staff are 
required to proactively monitor all the patients’ critical signs and 
examination results regardless of their types and frequencies. In 
particular, for cardiovascular patients who are subject to higher 
complication rates and longer stays at intensive care units (ICUs) (4, 
14), the increasing amounts of propagated and interconnected health-
related factors captured along the patients’ stays expose challenges 
towards taking appropriate and timely decisive actions for the 
physicians. These challenges are signified as many of the sources of 
multimodal temporal data used to make diagnostic or prognostic 
decisions, such as EHR extracted laboratory variables and vital signs, 
might be non-linearly correlated. Therefore, to assist the physicians 
and to complement their decision-making routines, there is an 
evolving need for appropriate clinical decision support systems 
(CDSS) leveraging modern AI-driven methodologies which are 
capable of investigating and identifying non-linear correlations in the 
multimodal patient data.

Advancements in AI are taking place continuously. Their presence 
in medicine is ever growing, and they could soon be present in cardiac 
ICUs. AI has the ability to assist clinicians in diagnosing arrhythmias, 
as shown in Parsi et al. where they were able to detect atrial fibrillation 
with a sensitivity and specificity >96% (39). Atrial fibrillation is a very 
common complication post cardiac surgery, which if not recognized, 
can have a significant negative impact on a patient’s health. The sooner 

FIGURE 4

The overview of the outcomes of the selected studies. The bar chart shows how frequent each study outcome has been, with the X axis quantifying 
the number of studies. Note that some studies analyzed multiple outcomes.

FIGURE 3

The summary of the risk of bias analysis. Each bar chart corresponds to one criteria of bias, stacked along the Y axis. The X axis quantifies the 
percentage of the studies with the corresponding color-coded subjective assessment as explained in the legend.
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atrial fibrillation is detected and treated, the higher are the chances of 
conversion into sinus rhythm. Another role AI can play is predicting 
therapeutic outcomes and thereby helping plan for further treatment. 
In the paper by Andersson et  al. the authors showed their ANN 

provided good prognostic accuracy in predicting neurological 
outcomes in comatose patients post out-of-hospital cardiac arrest (67). 
By having the capability to predict neurological outcomes, AI can help 
physicians decide whether further treatment would be beneficial for 

FIGURE 5

The overview of the data modalities analyzed in the selected studies. The bar chart shows how frequent each data modality has been, with the X axis 
quantifying the number of studies. Note that some studies analyzed multiple data modalities.

FIGURE 6

The overview of the AI methods and models applied for outcome prediction or interpretability. The bar chart shows how frequent each AI method has 
been, with the X axis quantifying the number of studies. Note that some studies applied multiple algorithms or methods (LR, logistic regression; SVM, 
support vector machine; DT, decision trees; RF, random forest; ANN, artificial neural networks; CatBoos, categorical boosting; XGBoost, extreme 
gradient boosting; RNN, recurrent neural networks; LSTM, long short-term memory; RL, reinforcement learning; NLP, natural language processing; 
RFE, recursive feature elimination; SHAP, SHapley Additive exPlanations).

FIGURE 7

The overview of the concerns towards integration of AI-driven decision support tools in clinical routines as discussed in the selected studies. The bar 
chart shows how frequent each concern has been, with the X axis quantifying the number of studies. Note that some studies mentioned multiple 
concerns.
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patients with neurological complications post cardiac arrest in the 
form of neurological rehabilitation for instance. Thus, it could help 
improve patient quality of life in those who would benefit, as well as 
filtering those who would not, thus ideally lowering the demand for 
neurological rehabilitation spots in clinics, which are already 
oversaturated with patients on waiting lists. Finally, AI is capable of 
optimizing and fine tuning therapies, as shown in Peine et  al. 
concluding AI was capable of delivering high performance 
optimization of mechanical ventilation in critical care, sometimes 
even exceeding physicians in comparison (79), and in Zheng et al. 
where AI was able to calculate the optimal oxygen therapy in 
COVID-19 patients, which was shown to be less on average than the 
amount recommended by physicians (78). This goes to show how AI 
is capable of improving general treatment and patient outcomes in 
ICUs while at the same time reducing the usage of costly materials, 
resources and services.

As illustrated in Figures 2, 3, our risk of bias analysis shows that 
most of the studies pass the criteria regarding blinding of the 
assessments and reporting bias. However, the findings revealed rooms 
for further consideration of universal validation guidelines, 
highlighting the lack of validation against external data cohorts. Thus, 
compared to conventional risk of bias criteria, we included three extra 
criteria (D1–D3) which address data-driven aspects of bias 
considering cohort size, proper cross-validation, and external datasets 
for validation purposes. We  believe, integrating these extra bias 
assessment criteria should be followed in systematic reviews in the 
medical AI field.

To provide an overview of the results of this systematic review, 
most of the selected studies focused on critical cardiac and 
respiratory complications resulting in mortality of patients visiting 
cardiac ICUs (Figure  4). To this end, as illustrated in Figure  5, 
numerical measurements (either singular or time-dependent) 
captured during patients’ stays at ICUs are extensively used for 
model training and evaluation in most of the studies, while textual 
data are the least used modality in this regard. Consecutively, 
depending on the input data, suitable AI-methods are utilized for 
model development. As shown in Figure 6, supervised ML classifiers 
such as SVM and random forest alongside XGBoost and CatBoost 
and reinforcement learning (RL) are the most common methods. 
Moreover, when it comes to analyzing clinical time series data and 
textual data, recurrent neural networks (RNNs) and natural 
language processing (NLP) come to action, respectively. For the 
special case of integrating NLP for processing textual health 
records, the lack of systematic guidelines for reporting EHRs 
becomes critical when no persistent vocabulary exists, especially for 
the non-English speaking centers for which less data is available for 
training and validation purposes.

Our findings further highlight the importance of utilizing open 
access datasets to provide AI-assisted clinical decision support in 
cardiovascular ICUs. While there are clear benefits to using open 
access datasets such as MIMIC in the field of critical care, it is 
important to consider the potential limitations of such datasets. Open 
access datasets may not fully capture the nuances of specific 
healthcare systems or populations in certain regions, which may 
impact the generalizability of the AI models trained on them. 
Therefore, researchers and clinicians should carefully evaluate the 
suitability of open access datasets for their particular use case and 

consider supplementing them with domestic datasets if necessary. 
Nonetheless, open access datasets can facilitate collaboration and 
knowledge sharing, which are essential for advancing the field of 
AI-assisted clinical decision making. Also, open access datasets are 
often rigorously curated and annotated by experts, ensuring the data 
is of high quality and can be  used reliably. On the other hand, 
domestic datasets may not have the same level of diversity and may 
be limited in size, leading to suboptimal AI models. Nevertheless, 
regardless of the fact that which kind of data is used to fit AI agents, 
a proper cross-validation scheme should be  applied to account 
for generalizability.

As illustrated in the analysis results, logistic regression (LR), 
SVM, decision trees, random forests, neural networks, and 
recurrent deep learning models are all popular machine learning 
algorithms used for various tasks in the field. Each of these 
algorithms has its own strengths and weaknesses, and the choice of 
algorithm depends on the specific task at hand and the available 
data. Most of the time, LR, SVM, and often tree-based methods are 
used as baseline methods to complement other more complex 
methodologies such as deep or recurrent neural networks (RNNs). 
Furthermore, decision trees and random forests are good choices 
when dealing with small to medium-sized datasets that have both 
categorical and numerical features. They work well when the data 
has a clear and interpretable structure, and when the decision-
making process can be represented as a sequence of simple if-then-
else rules. Decision trees are also good when there is a need to 
explain the reasoning behind a model’s decision-making process. 
Neural networks, including deep learning models, are ideal for large 
and complex datasets with many features, such as image, speech, 
and text data. They are especially powerful when the relationships 
between input and output data are highly nonlinear and difficult to 
capture with simple models. However, neural networks can 
be computationally expensive to train and require a lot of data to 
generalize well. Recurrent deep learning models are a type of neural 
network that are well-suited for sequential and longitudinal data, 
such as time series, speech, and text data. They can capture long-
term dependencies and patterns in the data and are especially useful 
when the output depends on past inputs. However, they can 
be  more difficult to train than linear or tree-based models and 
require more specialized expertise. In summary, it’s important to 
evaluate the strengths and weaknesses of each machine learning 
algorithm carefully and select the one that is best suited to the 
specific needs.

The findings from the selected articles have shown the predictive 
potential of different AI approaches including RNNs and RL. While 
many of the included studies integrated supervised ML classifiers like 
SVMs or RNNs for continuous patient monitoring in cardiac ICUs, 
one general advantage reinforcement learning provides over other 
paradigms of ML is that this way of defining the problem allows RL to 
take into account long-term rewards. This characteristic makes it 
especially appealing for clinical applications since, in numerous 
healthcare issues, the response to treatment decisions is frequently 
delayed (88). Additionally, the exploration-exploitation approach 
shares similarities with the actual clinical setting, where treatment 
responses can be  heterogeneous (89) and finding the optimal 
treatment regime can also be characterized by trade-offs between 
exploration and exploitation.
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Based on the findings of the included literature, the most 
critical limitations towards integration of AI-driven methods in 
routine clinical decision making are generalizability and 
explainability issues. As illustrated in Figure 3, more than 75% of 
the studies lack validation against external datasets which 
highlights the lack of generalizability associated with their 
findings. Nevertheless, as presented in Table 2, only three of the 
21 included studies provided open access web-based user 
interfaces to facilitate validating their models with external 
datasets. Although providing freely accessible tools for external 
validation should be marked as a benefit for novel AI tools, the 
lack of standardization of external validation schemes considering 
the high levels of privacy and confidentiality associated with 
medical data cohorts rank amongst the most important 
limitations towards integration of AI in clinical routines, 
especially in multicentric and federated scenarios (90).

Furthermore, despite all the promising achievements of AI in the 
medical domain, the medical experts are still responsible for 
patients’ lives. Therefore, to reduce the burden of responsibility and 
to provide further support, it is of critical importance to build trust 
in decisions made by the AI-assisted agents. As discussed in the 
related work (24), interpretability facilitated by explainable AI (XAI) 
best practices plays an important role to build further trust in AI in 
the medical domain. Although the authors of most of the reported 
articles recognize interpretability as a central issue in this domain, 
only five studies integrated methods such as RFE and SHAP to 
provide a level of transparency to complement their proposed 
models’ decisions (Figure  6). In a related work, Asan et  al. (91) 
identified transparency, robustness, and fairness as the most 
important criteria to enhance trust when it comes to human-AI 
collaboration in the healthcare domain which is confirmed by our 
risk of bias analysis as well. This emphasizes the evolving need for 
extra efforts to identify and mitigate different sources of bias since 
the early stages of designing and developing AI models for the 
clinical and medical domains.

Another concern which affects the effective integration of AI 
methodologies in the healthcare domain is the certification of the 
established models and products upon proper evaluations and 
clinical trials. Although an increasing number of approved AI/ML 
products has been traceable since 2015  in the united states and 
Europe in domains such as radiology, related works urge for more 
transparency on the criteria for the approval of AI/ML-based 
products facilitated through publicly accessible databases from 
authorities such as the food and drug association (FDA) of united 
states of America (United States) and Conformité Européene (CE) 
of Europe (92). As an insightful example, Zanca et al. suggest some 
practical guidelines for the medical physicists (MPs) who 
conventionally act as responsible authorities to ensure safety and 
quality of emerging diagnostic and therapeutic technologies in 
healthcare. They empathize that MPs need to acquire enough 
knowledge about AI tools and how they conceptually differ from 
traditional medical software and hardware devices, because they 
often attribute higher levels of autonomy compared to traditional 
medical products (93).

The current study presents a comprehensive overview of the 
most widely used AI-related methodologies as reported in recent 
literature, which were selected in a systematic and objective manner. 

As a result, the majority of the methodology employed is based on 
modern machine learning solutions. However, as per some other 
studies such as Roller et al. (94), there is a suggestion to begin with 
simpler systems which make the use of explicit, structured 
knowledge such as guidelines, decision-making procedures, and 
thresholds which are commonly found in clinical environments. As 
our comprehensive analysis outlined, these often simpler “rule-
based” processes have been mostly overlooked in the selected 
articles. This is an important concern which needs to be  further 
addressed in follow-up studies.

As a limitation of current study, due to diverse datasets and 
algorithms used in the selected cohort of studies, it was not feasible to 
conduct comprehensive meta-analysis covering comparison of all the 
methods across all the databases. Nonetheless, we  reported 
performance results from all the articles in Table 2. Although the 
results are not directly comparable with each other, area under the 
receiver operating characteristics curve (AUROC), ranging from 0.79 
to 0.96, was the most universal performance metric across all the 
selected studies.

In this study, we included studies from PubMed and Google 
Scholar databases alongside additional papers chosen from 
subjective search queries within impactful related works. Also, 
we focused on the studies written in the English language. Thus, our 
findings might be  biased with regard to the choices of search 
engines and text language and might not be fully comprehensive. 
However, we covered the application oriented, model-driven, and 
data-driven aspects of AI-assisted methodologies utilized for 
patient monitoring and medical intervention in cardiovascular 
ICUs, following the PRISMA (32) and medical AI life cycle (34) 
paradigms.

6. Conclusion and future work

Technical conclusion: Recent advancements in AI-driven 
methodologies in intensive patient monitoring open up new horizons 
for the integration of clinical decision support in practice. However, 
regardless of being totally automated or requiring an expert’s input or 
annotation, AI assisted methodologies for clinical decision support 
are meant to operate as a complementary aid to physicians and 
intensivists’ subjective decisions rather than acting in complete 
autonomy. To achieve this, certain limitations should be mitigated. 
Most importantly, to address the generalizability issue which has been 
highlighted by our findings to be a common source of bias, proper 
validation against independent unseen sets of data should be taken 
care of. This becomes more critical as the medical datasets attribute 
high levels of confidentiality, affecting multicentric and federated 
learning scenarios.

Medical conclusion: AI has the potential to simplify part of the 
decision making in intensive patient monitoring by reducing the 
burden of processing huge amounts of information available from 
different sources of vital signs and critical patient parameters. 
However, still efforts need to be made to enhance interpretability of 
state-of-the-art AI methods for clinicians. In addition, proper training 
and understandable insights should be provided for the medical staff 
to enhance the level of trust in AI decisions. Moreover, AI algorithms 
should be tested in prospective clinical trials similar to other new 
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medical devices under observation of legal instances such as FDA in 
the United States and CE in Europe.

Future work: For the future, we plan to conduct studies on the 
integration of eXplainable AI (XAI) best practices for patient 
monitoring in cardiac ICUs, focusing on federated learning scenarios 
in which data from multiple hospitals are processed.
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Background: Sepsis-associated acute kidney injury (S-AKI) is considered to be

associated with high morbidity and mortality, a commonly accepted model to

predict mortality is urged consequently. This study used a machine learning

model to identify vital variables associated with mortality in S-AKI patients in the

hospital and predict the risk of death in the hospital. We hope that this model can

help identify high-risk patients early and reasonably allocate medical resources in

the intensive care unit (ICU).

Methods: A total of 16,154 S-AKI patients from the Medical Information Mart for

Intensive Care IV database were examined as the training set (80%) and the

validation set (20%). Variables (129 in total) were collected, including basic patient

information, diagnosis, clinical data, and medication records. We developed and

validated machine learning models using 11 different algorithms and selected the

one that performed the best. Afterward, recursive feature elimination was used to

select key variables. Different indicators were used to compare the prediction

performance of each model. The SHapley Additive exPlanations package was

applied to interpret the best machine learning model in a web tool for clinicians

to use. Finally, we collected clinical data of S-AKI patients from two hospitals for

external validation.

Results: In this study, 15 critical variables were finally selected, namely, urine

output, maximum blood urea nitrogen, rate of injection of norepinephrine,

maximum anion gap, maximum creatinine, maximum red blood cell volume

distribution width, minimum international normalized ratio, maximum heart rate,
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maximum temperature, maximum respiratory rate, minimum fraction of inspired

O2, minimum creatinine, minimum Glasgow Coma Scale, and diagnosis of

diabetes and stroke. The categorical boosting algorithm model presented

significantly better predictive performance [receiver operating characteristic

(ROC): 0.83] than other models [accuracy (ACC): 75%, Youden index: 50%,

sensitivity: 75%, specificity: 75%, F1 score: 0.56, positive predictive value (PPV):

44%, and negative predictive value (NPV): 92%]. External validation data from two

hospitals in China were also well validated (ROC: 0.75).

Conclusions: After selecting 15 crucial variables, a machine learning-based

model for predicting the mortality of S-AKI patients was successfully

established and the CatBoost model demonstrated best predictive performance.
KEYWORDS

sepsis, acute kidney injury, mortality, predictive model, machine learning
Introduction

Sepsis, which is one of the principal causes of mortality

worldwide and affects more than 19 million people every year (1–

3), is defined as a sequential fatal organ dysfunction after infection

with a dysregulated host response by the Third International

Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

Similarly, the Kidney Disease: Improving Global Outcomes

(KDIGO) group integrated previous diagnostic criteria and

proposed an international consensus for acute kidney injury (AKI)

to be defined as (i) an increase in SCr level by more than 26.5 mmol/L

(0.3 mg/dl) within 48 h; (ii) an increase in SCr level by more than 1.5

times the baseline (confirmed or presumed to occur within 7 days);

and (iii) urine volume <0.5 ml/(kg·h) lasting for more than 6 h (4). In

critically ill patients, the main cause of AKI has been considered to be

sepsis for a long time, and 45%–70% of AKI patients are considered

to have sepsis (5). Thus, sepsis-associated acute kidney injury (S-

AKI) should be defined as a syndrome that meets the Sepsis-3 and

KDIGO criteria simultaneously (6).

The epidemiology of S-AKI has not been fully clarified probably

because of uncoordinated epidemiology of sepsis and AKI criteria,

but the global incidence is estimated to be 6 million cases annually

(6). The mortality of S-AKI was reported to be 45.99% in the

intensive care unit (ICU) (7), and a retrospective cohort study

discovered that S-AKI was correlated with a significantly higher

mortality rate compared to sepsis without AKI (71.7% vs. 21.3%)

(8). At present, many studies have shown that S-AKI imposed a

heavy burden on patients. In a review, Hoste et al. summarized that

the occurrence of AKI was related to the severity of sepsis and that

S-AKI was responsible for the increase in disease acuity and burden

of organ dysfunction (9). Bagshaw et al. conducted an observational

cohort study spanning multiple nations and centers, which reported

that S-AKI was associated with a high-crude in-hospital case fatality

rate (51.8%) (5). Furthermore, a multicenter retrospective cohort

study in China concluded that sepsis resulted in 32.0% of hospital-

acquired AKI and 15.2% of community-acquired AKI. In addition,
0256
AKI was correlated with high mortality, longer length of stay, and

heavier daily expenses while in the hospital (10). Additionally, an

observational study of 618 ICU patients with AKI, the Program to

Improve Care in Acute Renal Disease (PICARD), revealed that the

in-hospital mortality rate of S-AKI was noticeably high, regardless

of sepsis occurring before AKI (48%) or after AKI (44%) (11).

Considering that S-AKI patients experience high morbidity and

mortality, the precise prediction of their prognosis is necessary.

Novel biomarkers like tissue inhibitor of metalloproteinases-2

(TIMP-2), neutrophil gelatinase-associated lipocalin (NGAL), and

insulin-like growth factor binding protein-7 (IGFBP-7) have been

evaluated to forecast the prognosis of S-AKI; however, their

sensitivity has not been verified in large multicenter studies (12).

Conventional scoring systems of severity, such as Sequential Organ

Failure Assessment (SOFA) and Acute Physiology and Chronic

Health Evaluation II (APACHE II), have been widely used in the

ICU to predict outcomes. Regrettably, they lack discrimination and

prediction accuracy, and external validation is required before

application to S-AKI cohorts (13). Consequently, it is essential to

establish a new model that efficiently and accurately predicts the

outcomes of S-AKI.

As a novel technology, machine learning has been utilized in

various medical fields owing to its ability to develop robust risk

models and improve prediction power (14, 15). The accuracy of

predicting the occurrence of S-AKI utilizing machine learning has

been confirmed (16–18). However, this radical new technology has

not been applied to predict the mortality of patients with S-AKI,

which is equally noteworthy. Gradient boosted decision trees

(GBDTs) are powerful machine learning ensemble techniques,

particularly when massive amounts of data are involved in

classification and regression tasks. As one of the GBDT families,

CatBoost is perfectly suited to processing categorical, heterogeneous

data (19). Since its debut, CatBoost has been used in some medical

studies and demonstrated its excellent predictive ability.

This study aimed to identify the risk factors associated with

mortality in patients with S-AKI and develop a machine learning
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model to predict death in hospitals on the basis of primary research

emphasizing the prediction of occurrence. The performance of this

machine learning model was compared with 10 other machine

learning models to validate the superiority of the proposed model.
Materials and methods

Study subjects

The Medical Information Mart for Intensive Care IV (MIMIC-

IV) is a database containing patient data from all ICU and

emergency departments at Beth Israel Deaconess Medical Center

from 2008 to 2019. The contents of the database include basic

patient information, diagnosis, clinical data, and medication

records, among others. We extracted the data of patients with

sepsis and AKI after admission from the MIMIC-IV database as

training and validation sets. Then, we collected the data of patients

with sepsis and AKI in the ICU of Xiangya Hospital (from 2015 to

2022) and Third Xiangya Hospital (from 2022) of Central South

University, Changsha, China as an external validation set (Figure 1).

According to the KDIGO guidelines, AKI is characterized by

one or more of the following: (i) an increase in SCr level by more
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than 26.5 mmol/L (0.3 mg/dl) within 48 h; (ii) an increase in SCr

level by more than 1.5 times the baseline (confirmed or presumed to

occur within 7 days); and (iii) urine volume <0.5 ml/(kg·h) lasting

for more than 6 h. According to the Third International Consensus

Definitions for Sepsis and Septic Shock (Sepsis-3), sepsis is

characterized by life-threatening organ dysfunction as a result of

infection coupled with an impaired host response. According to the

SOFA, organ dysfunction is a change in the total SOFA score of 2

points caused by infection. As part of this study, patients who were

younger than 18 years of age, had stayed in the ICU for less than

24 h, and missed essential data were excluded. We used multiple

imputations to supplement the missing values of patients. The

death group is composed of patients who died in the hospital,

and the alive group consists of patients who did not die

during hospitalization.

According to the ethical standards of the responsible committee

on human experimentation in China and to the Helsinki

Declaration of 1975, all procedures in this study were conducted

in accordance with the ethical standards of the responsible

committee. The study was initiated under the guidance of

Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) (Supplementary

Figure 1). The Xiangya Hospital of Central South University
A

B

FIGURE 1

(A) The workflow of the study. (B) The algorithm chart of the study.
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Ethics Committee reviewed and approved this study on 27 April

2022 (protocol number 202204101), which used machine learning

to predict all-cause mortality among patients with S-AKI

while hospitalized.
Study design and data collection

We collected 129 variables within 24 h of admission. The

collected variables included patients’ basic information, diagnosis,

medication records, clinical data such as temperature, blood

pressure, concomitant disease, laboratory indicators, urine output

(24-h urine volume after diagnosis of S-AKI), injection rate of

norepinephrine (initial concentration of norepinephrine after

diagnosis of S-AKI), and commonly used scores such as

Simplified Acute Physiology Score II (SAPS-II), SOFA score, and

Glasgow Coma Scale (GCS). The external validation set was derived

from the electronic health record systems of Xiangya Hospital and

Third Xiangya Hospital. The data were collected by two authors (LL

and HZ). Data collected by different hospitals were converted and

unified. As an example, the injection rate of norepinephrine at 1

mcg/kg/min equaled 1 mg/kg/min. The concentration of creatinine

in the blood was 88.4 mmol/L per mg/dl.
Statistical analysis

As appropriate, continuous variables were compared between

the death and alive groups using either Student’s t-test or the rank-

sum test. A chi-square test or Fisher’s exact test was used to

compare categorical variables.

Then, the data were standardized such that the mean value was

0 and the standard deviation was 1. The K-nearest neighbor (KNN)

algorithm was used to impute missing values. Next, the dataset was

randomly split into a training set (80%) and a validation set (20%).

On the training set, the recursive feature elimination (RFE)

algorithm was utilized to identify crucial variables, and we

developed a machine learning model based on categorical

boosting (CatBoost) (20). Basically, RFE is a way of selecting

features that recursively fit a model derived from smaller feature

sets until a given termination criterion is reached. A feature’s

importance in the trained model is graded in each loop. In an

RFE model, dependencies and collinearities are eliminated by

recursively eliminating the lowest-priority feature. As a final step,

the most important features were screened out, and the CatBoost

model was developed based on the final set of features. Other

features were not included because they only brought a small

increment in the area under the receiver operating characteristic

(AUROC) curve but significantly increased the difficulty of model

applications. The trained model was validated on the validation set,

and the AUROC curve was calculated correspondingly.

This study compared 10 other machine learning models to the

proposed one, namely, KNN, AdaBoost, multilayer perceptron

(MLP), support vector machine (SVM), logistic regression (LR),

NaiveBayes, gradient boosting decision tree (GBDT), random

forest, light gradient boosting (LightGBM), and extreme gradient
Frontiers in Immunology 0458
boosting (XGBoost). These models were also developed on the

training set and validated on the validation set. AUROC curves were

compared between these models and our CatBoost model.

Additionally, other performance measures were examined, such

as accuracy (ACC), Youden index, sensitivity, specificity, F1 score,

positive predictive value (PPV), and negative predictive

value (NPV).

To explain the model, the SHapley Additive exPlanations (SHAP)

package in Python was used. A game-theoretic approach is used by

the SHAP package to interpret the output of the machine learning

model (21). The model was able to connect optimal credit allocation

to local explanations for each prediction sample. Two cases were

analyzed by using SHAP values to examine model interpretability.

The statistical analyses that were carried out in the present study were

performed using Python (version 3.7.6); a significance level of p <

0.05 was considered to be statistically significant.
Results

Study population

There were 16,154 patients included in the MIMIC-IV set, and

relevant information of the cohort can be viewed in Table 1. The

average age of the patients was 67.7 years, men accounted for 42.3%,

and the average body mass index (BMI) was 30.9. In the cohort,

20.5% of the patients died in the hospital, and their length of stay in

the ICU was 3.7 days, longer than that of patients in the alive group.

Information of external validation cohort is shown in

Supplementary Table 1 and overall workflow and algorithm chart

are shown in Figure 1.
Key variables

After utilizing the RFE algorithm, 15 essential variables were

selected, namely, urine output, maximum blood urea nitrogen

(BUN), rate of injection of norepinephrine, maximum anion gap,

maximum creatinine, maximum red blood cell volume distribution

width (RDW), minimum international normalized ratio (INR),

maximum heart rate, maximum temperature, maximum

respiratory rate, minimum fraction of inspired O2 (FiO2),

minimum creatinine, minimum GCS score, and diagnosis of

diabetes and stroke (Figure 2).

Then, machine learning was used for predicting hospital death

of patients. The AUC of the proposed CatBoost model was 0.827,

which is shown in Figure 3. The CatBoost model markedly

outperformed conventional LR (AUC: 0.788) and nine other

machine learning models. As described in Table 2, the ACC, best

cutoff, Youden index, sensitivity, specificity, F1 score, PPV, and

NPV of the CatBoost model were 75%, 19.5%, 50%, 75%, 75%, 56%,

44%, and 92%, respectively. These indicators of LR were 73%,

20.1%, 44%, 71%, 74%, 52%, 41%, and 90%, respectively. In

addition, the ROC curve of the validation set reached 0.75,

indicating the good applicability of our model (Supplementary

Figure 2). To compare with the conventional scoring system, a
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TABLE 1 Most of the variables that differ between the two groups in the MIMIC-IV set.

Variable All (n = 16,154) Alive group (n = 12,836) Death group (n = 3,318) p-Value

N 16,154 12,836 3,318

Charlson Index, median [Q1,Q3] 6.0 [4.0,8.0] 6.0 [4.0,8.0] 7.0 [5.0,9.0] <0.001

Age, mean (SD) 67.7 (15.2) 67.1 (15.2) 70.3 (14.8) <0.001

Gender, n (%) F 6,836 (42.3) 5,362 (41.8) 1,474 (44.4) 0.006

M 9,318 (57.7) 7,474 (58.2) 1,844 (55.6)

Ethnicity, n (%) Asian 377 (2.3) 294 (2.3) 83 (2.5) <0.001

Black 1,733 (10.7) 1,421 (11.1) 312 (9.4)

Hispanic 538 (3.3) 443 (3.5) 95 (2.9)

Other 2,586 (16.0) 1,839 (14.3) 747 (22.5)

White 10,920 (67.6) 8,839 (68.9) 2,081 (62.7)

Liver disease, n (%) 3,253 (20.1) 2,096 (16.3) 1,157 (34.9) <0.001

Stroke, n (%) 1,014 (6.3) 666 (5.2) 348 (10.5) <0.001

BMI, mean (SD) 30.9 (8.8) 31.2 (8.7) 29.5 (8.7) <0.001

SAPS-II, median [Q1,Q3] 42.0 [34.0,52.0] 40.0 [32.0,49.0] 54.0 [44.0,66.0] <0.001

SOFA, median [Q1,Q3] 6.0 [4.0,9.0] 5.0 [4.0,8.0] 9.0 [6.0,12.0] <0.001

GCS, median [Q1,Q3] 15.0 [13.0,15.0] 15.0 [13.0,15.0] 15.0 [12.0,15.0] <0.001

Heart rate max, mean (SD) 106.1 (21.6) 104.3 (20.5) 113.0 (23.9) <0.001

Heart rate min, mean (SD) 72.0 (15.9) 71.3 (15.0) 74.6 (18.9) <0.001

Respiratory rate max, mean (SD) 28.7 (6.7) 28.1 (6.4) 30.7 (7.1) <0.001

Respiratory rate min, mean (SD) 12.5 (3.9) 12.2 (3.7) 13.4 (4.5) <0.001

MBP max, mean (SD) 105.0 (28.7) 104.7 (27.3) 106.3 (33.6) 0.016

MBP min, mean (SD) 54.6 (13.4) 55.9 (12.5) 49.7 (15.3) <0.001

SBP max, mean (SD) 146.4 (23.9) 147.2 (23.3) 143.4 (25.7) <0.001

SBP min, mean (SD) 85.9 (16.4) 87.6 (15.4) 79.2 (18.3) <0.001

PaO2 max, median [Q1,Q3] 174.0 [104.0,321.0] 188.0 [109.0,343.0] 144.0 [94.0,227.0] <0.001

PaO2 min, median [Q1,Q3] 84.0 [65.0,111.0] 87.0 [68.0,115.0] 73.0 [56.0,96.0] <0.001

SpO2 max, median [Q1,Q3] 100.0 [100.0,100.0] 100.0 [100.0,100.0] 100.0 [100.0,100.0] <0.001

SpO2 min, median [Q1,Q3] 92.0 [90.0,95.0] 93.0 [90.0,95.0] 91.0 [86.0,94.0] <0.001

Temperature max, mean (SD) 37.5 (0.8) 37.5 (0.8) 37.4 (1.0) <0.001

Temperature min, mean (SD) 36.2 (0.8) 36.3 (0.7) 36.0 (1.1) <0.001

AST max, median [Q1,Q3] 54.0 [28.0,161.0] 47.0 [26.0,121.0] 91.0 [37.0,345.0] <0.001

AST min, median [Q1,Q3] 48.0 [26.0,123.0] 42.0 [24.0,97.0] 72.0 [32.0,217.0] <0.001

PTT max, median [Q1,Q3] 34.4 [29.3,46.4] 33.4 [28.8,42.7] 40.9 [31.7,64.5] <0.001

PTT min, median [Q1,Q3] 30.7 [27.1,36.7] 30.0 [26.8,35.1] 34.4 [28.8,43.6] <0.001

Platelet max, median [Q1,Q3] 189.0 [135.0,257.0] 190.0 [139.0,255.0] 183.0 [114.0,268.0] <0.001

Platelet min, median [Q1,Q3] 160.0 [107.0,226.0] 162.0 [112.0,226.0] 151.0 [84.0,228.0] <0.001

RBC max, mean (SD) 3.6 (0.7) 3.6 (0.7) 3.5 (0.8) <0.001

RBC min, mean (SD) 3.2 (0.7) 3.3 (0.7) 3.2 (0.8) <0.001

WBC max, median [Q1,Q3] 13.5 [9.5,18.6] 13.2 [9.4,18.0] 15.0 [10.0,21.2] <0.001

(Continued)
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CatBoost model for the SOFA score was made, and the results show

that the prediction ability of SOFA is inferior to the proposed model

in the training and validation set (Supplementary Figure 3). As AST

was almost double in the death group, and in the raw data, the

number of patients with AST greater than 45 U/L was almost

equal to the number of patients with liver disease. Therefore, a

CatBoost model was also established to conduct a liver disease

subgroup analysis that also demonstrates a good prediction power

on the mortality of S-AKI among these subgroup patients

(Supplementary Figure 4).
Application of the model

Analyzing the integral cohort by the SHAP package showed the

crucial variables for predicting death (Figure 4). Input the

information of a patient into the model: history of stroke,

minimum GCS score of 15, maximum heart rate of 121 beats per

minute, maximum temperature of 36.56°C, maximum respiratory

rate of 68 breaths per minute, maximum BUN level of 73 mg/dl,

minimum INR of 2.9, maximum creatinine level of 3 mg/dl,

minimum creatinine level of 2.1 mg/dl, maximum RDW of
Frontiers in Immunology 0660
16.8%, minimum FiO2 of 100%, maximum anion gap of 31 mEq/

L, urine output of 405 ml/day, and a rate of injection of

norepinephrine of 0.499 mcg/kg/min. The model showed that the

risk of hospital mortality was 28.9% (higher than the best cutoff),

suggesting that the patient had a high risk of death (Example 1,

Figure 4). Input the information of another patient into the model:

no history of stroke or diabetes, minimum GCS score of 15,

maximum heart rate of 86 beats per minute, maximum

temperature of 36.94°C, maximum respiratory rate of 28 breaths

per minute, maximum BUN level of 74 mg/dl, minimum INR of 1.1,

maximum creatinine level of 4.1 mg/dl, minimum creatinine level

of 3.5 mg/dl, maximum RDW of 14.9%, minimum FiO2 of 70%,

maximum anion gap of 18 mEq/L, urine output of 1,060 ml, and a

rate of injection of norepinephrine of 0 mcg/kg/min. The

probability of hospital mortality was predicted to be 18.37%,

suggesting a good prognosis (Example 2, Figure 4).
Discussion

Machine learning has been widely applied to solve medical and

clinical problems, by which it has become a popular research topic.
TABLE 1 Continued

Variable All (n = 16,154) Alive group (n = 12,836) Death group (n = 3,318) p-Value

WBC min, median [Q1,Q3] 10.4 [7.3,14.5] 10.2 [7.2,13.8] 11.7 [7.4,17.0] <0.001

RDW max, mean (SD) 15.9 (2.5) 15.6 (2.4) 16.9 (2.8) <0.001

RDW min, mean (SD) 15.5 (2.4) 15.3 (2.3) 16.5 (2.7) <0.001

Glucose max, median [Q1,Q3] 143.0 [115.0,194.0] 140.0 [114.0,186.0] 162.0 [122.0,225.2] <0.001

Glucose min, median [Q1,Q3] 115.0 [95.0,141.0] 115.0 [96.0,139.0] 114.0 [88.0,148.0] 0.017

Lactate max, median [Q1,Q3] 2.3 [1.5,3.8] 2.2 [1.5,3.3] 3.5 [1.9,7.2] <0.001

Lactate min, median [Q1,Q3] 1.6 [1.2,2.3] 1.5 [1.1,2.1] 2.2 [1.4,3.8] <0.001

BUN max, median [Q1,Q3] 27.0 [18.0,45.0] 25.0 [17.0,41.0] 38.0 [25.0,58.0] <0.001

BUN min, median [Q1,Q3] 23.0 [15.0,39.0] 22.0 [15.0,35.0] 32.0 [21.0,52.0] <0.001

Creatinine max, median [Q1,Q3] 1.4 [0.9,2.5] 1.3 [0.9,2.2] 1.9 [1.2,3.1] <0.001

Creatinine min, median [Q1,Q3] 1.2 [0.8,2.1] 1.1 [0.8,1.9] 1.6 [1.0,2.6] <0.001

Urine output, median [Q1,Q3] 1,040.0 [537.0,1,665.0] 1,150.0 [675.0,1,760.0] 605.0 [186.0,1,110.0] <0.001

RRT, n (%) 1,633 (10.1) 1,135 (8.8) 498 (15.0) <0.001

IMV, n (%) 9,518 (58.9) 7,398 (57.6) 2,120 (63.9) <0.001

Vasopressor support, n (%) 5,912 (36.6) 3,942 (30.7) 1,970 (59.4) <0.001

Rate of norepinephrine, median [Q1,Q3] 0.0 [0.0,0.1] 0.0 [0.0,0.0] 0.1 [0.0,0.4] <0.001

IMV durations, median [Q1,Q3] 0.4 [0.0,2.6] 0.2 [0.0,1.9] 1.6 [0.0,5.1] <0.001

Hospital mortality, n (%) 3,318 (20.5) 0(0.0) 3,318 (100.0) <0.001

Length of ICU stay, median [Q1,Q3] 3.0 [1.7,6.0] 2.9 [1.7,5.6] 3.7 [1.7,7.5] <0.001

Length of hospital stay, median [Q1,Q3] 8.7 [5.2,15.1] 9.1 [5.8,15.7] 6.3 [2.4,13.3] <0.001
fron
SD, standard deviation; BMI, body mass index; SAPS-II, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment; GCS, Glasgow Coma Scale; MBP, mean blood
pressure; SBP, systolic blood pressure; PaO2, partial pressure of oxygen; SpO2, saturation of pulse oxygen; AST, aspartate aminotransferase; PTT, partial thromboplastin time; RBC, red blood cell;
WBC, white blood cell; RDW, red blood cell volume distribution width; BUN, blood urea nitrogen; RRT, renal replacement therapy; IMV, intermittent mandatory ventilation; ICU, intensive
care unit.
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Based on their shortcomings, novel biomarkers and conventional

scoring systems lack enough power to estimate the mortality of S-

AKI patients (12, 13). In this article, we discussed whether machine

learning improves the mortality prediction of S-AKI patients and

then selected the model with the strongest prediction ability.
Frontiers in Immunology 0761
From the MIMIC-IV database used as a training set, 15 crucial

variables were selected using the RFE algorithm. These variables are

common in various clinical settings, which means information on

them can be easily obtained, and the application of machine

learning models will not be limited to a variable that is difficult to
FIGURE 2

The importance of each feature to the machine learning model.
FIGURE 3

Receiver operating characteristic curves for the machine learning model and logistic regression in the training set. CatBoost, categorical boosting;
GBDT, gradient boosting decision tree; LightGBM, light gradient boosting; AdaBoost, adaptive boosting; XGBoost, extremely gradient boosting; KNN,
K-nearest neighbor; MLP, multilayer perceptron; LR, logistic regression. SVM, support vector machine.
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TABLE 2 Performance of machine learning models.

Model AUC ACC (%) Best cutoff Youden index (%) Sensitivity
(%)

Specificity
(%)

F1 score PPV (%) NPV (%)

CatBoost 0.83 75 0.195 50 75 75 0.56 44 92

GBDT 0.82 71 0.16 48 79 69 0.53 40 93

LightGBM 0.82 74 0.183 49 75 74 0.55 43 92

AdaBoost 0.82 79 0.494 48 65 83 0.57 51 90

Random
Forest 0.82 78 0.28 47 66 81 0.55 48 90

XGBoost 0.81 77 0.204 47 68 79 0.55 46 90

KNN 0.8 72 0.176 45 73 72 0.52 41 91

MLP 0.79 73 0.162 43 70 73 0.52 41 90

LR 0.79 73 0.201 44 71 74 0.52 41 90

NaiveBayes 0.76 68 0.092 41 74 67 0.49 37 91

SVM 0.76 74 0.149 45 69 75 0.53 43 90
F
rontiers in Immu
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CatBoost, categorical boosting; GBDT, gradient boosting decision tree; LightGBM, light gradient boosting; AdaBoost, adaptive boosting; XGBooST, extremely gradient boosting; KNN, K-nearest
neighbor; MLP, multilayer perceptron; LR, logistic regression. SVM, support vector machine; ACC, accuracy, PPV, positive predictive value; NPV, negative predictive value.
FIGURE 4

Two examples of website tool usage. Enter the values of 15 key variables to predict the risk of death and show the contribution of each value to the
outcome. Example 1 has a higher risk of death, and example 2 may have a better prognosis.
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detect. Some studies have focused on the relative importance of each

variable in predicting prognosis. For example, a retrospective study

from a prospective cohort conducted by Sukmark et al. suggested

that a lower GCS score was associated with in-ICU mortality with

an adjusted odds ratio of 4.16 (3.10, 5.60) (22). Serum creatinine has

been extensively utilized as a predictor in severity scores that assess

renal function and adverse effects of renal dysfunction, such as

SOFA and APACHE II. In addition, it has been reported that BUN

is associated with multiorgan failure of ICU patients regardless of

admission diagnosis, including kidney failure and long-term

mortality (23). Sukmark also elaborated that BUN possibly

reflected multiorgan failure better than serum creatinine (22). As

mentioned before, some variables were found to be correlated with

prognosis. However, few have put them into one prediction model

and successfully quantified their ability to predict mortality.

After identifying these 15 variables, machine learning was

applied to predict the mortality of patients during hospitalization.

CatBoost is an open-source package and a new GBDT algorithm

announced in 2017. Compared to other GBDT algorithms, it

outperformed in handling categorical variables and reducing

overfitting (24). To prove the efficiency of the CatBoost model, it

was compared with 10 other machine learning models and SOFA.

Satisfactorily, the proposed model significantly outperformed the

others with an AUC of 0.827. Furthermore, we collected data from

Xiangya Hospital and Third Xiangya Hospital, Central South

University, China, to use as an external validation set. The ROC

curve of the validation set was also as high as 0.754.

Compared with several other S-AKI-related clinical model

studies (16–18), the innovation of this study is that the fourth

edition of the MIMIC database used includes more patients from

2017 to 2019 than the third edition, with a larger amount of data

and more recent data. In addition, in contrast to the related studies,

emphasis was placed on predicting the mortality of S-AKI patients

for the first time. Second, this study not only utilized data from the

database but also collected data from other hospitals for validation,

making the model more reliable. In addition, our training set is

from Western countries, while the validation set is from China,

indicating that the model has applicability among different

populations. Moreover, instead of just using one machine

learning algorithm to build the model, we compared multiple

machine learning algorithms and selected the one that performed

the best. Finally, since the chosen variables are easily accessible, the

prediction model has a wide range of applications in areas with

different medical levels.

However, our study has some limitations. First, the training set

data originated from only one database, while the validation set data

came from two hospitals in one region; thus, selection bias may

have occurred. Even in view of this, the proposed model constructed

by the MIMIC-IV database still passed the validation set from

China, which, in turn, proved the superiority of our model.

However, we must admit that more external validations are

needed. Second, the variables were selected by the RFE algorithm,

but the underlying mechanism was not discussed in our study.

As found in previous studies, S-AKI patients were treated with

mechanical ventilation and vasoactive therapy with greater

possibility (9), so was dialysis (70%) (11), which was
Frontiers in Immunology 0963
simultaneously associated with a longer hospital stay (5).

Prolonging hospital stays and expensive treatments mean an

increasingly larger economic burden on patients and medical

insurance. Meanwhile, it is sometimes challenging for clinicians

to decide the priority treatment in the next step when condition

deteriorates rapidly. Consequently, applying the CatBoost-based

model to discern high-risk S-AKI patients and predict prognoses in

a timely and accurate manner and providing clinicians with optimal

treatment decision-making suggestions may help reduce these

burdens. In conclusion, we hope that the proposed model will

assist clinicians with better decision-making and allocating medical

resources reasonably.
Conclusions

This study demonstrates that predicting the mortality of S-AKI

patients in the ICU is critical and that the CatBoost-based model we

proposed outperformed conventional LR and nine other machine

learning models. Further validations across diverse study centers

will help verify the reliability and improve the validation efficiency

of this model.
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Accuracy of non-invasive cuffless 
blood pressure in the intensive 
care unit: Promises and challenges
Sondre Heimark 1,2*, Kasper Gade Bøtker-Rasmussen 3,4, 
Alexey Stepanov 3, Øyvind Gløersen Haga 4, Victor Gonzalez 4, 
Trine M. Seeberg 3,4, Fadl Elmula M. Fadl Elmula 5 and 
Bård Waldum-Grevbo 1

1 Department of Nephrology, Oslo University Hospital, Ullevål, Oslo, Norway, 2 Institute of Clinical 
Medicine, University of Oslo, Oslo, Norway, 3 Aidee Health AS, Oslo, Norway, 4 Department of Smart 
Sensors and Microsystems, SINTEF Digital, Oslo, Norway, 5 Cardiorenal Research Centre, Oslo University 
Hospital, Ullevål, Oslo, Norway

Objective: Continuous non-invasive cuffless blood pressure (BP) monitoring 
may reduce adverse outcomes in hospitalized patients if accuracy is approved. 
We  aimed to investigate accuracy of two different BP prediction models in 
critically ill intensive care unit (ICU) patients, using a prototype cuffless BP device 
based on electrocardiogram and photoplethysmography signals. We compared a 
pulse arrival time (PAT)-based BP model (generalized PAT-based model) derived 
from a general population cohort to more complex and individualized models 
(complex individualized models) utilizing other features of the BP sensor signals.

Methods: Patients admitted to an ICU with indication of invasive BP monitoring 
were included. The first half of each patient’s data was used to train a subject-
specific machine learning model (complex individualized models). The second 
half was used to estimate BP and test accuracy of both the generalized PAT-based 
model and the complex individualized models. A total of 7,327 measurements of 
15 s epochs were included in pairwise comparisons across 25 patients.

Results: The generalized PAT-based model achieved a mean absolute error (SD 
of errors) of 7.6 (7.2) mmHg, 3.3 (3.1) mmHg and 4.6 (4.4) mmHg for systolic 
BP, diastolic BP and mean arterial pressure (MAP) respectively. Corresponding 
results for the complex individualized model were 6.5 (6.7) mmHg, 3.1 (3.0) 
mmHg and 4.0 (4.0) mmHg. Percentage of absolute errors within 10 mmHg for 
the generalized model were 77.6, 96.2, and 89.6% for systolic BP, diastolic BP 
and MAP, respectively. Corresponding results for the individualized model were 
83.8, 96.2, and 94.2%. Accuracy was significantly improved when comparing the 
complex individualized models to the generalized PAT-based model in systolic BP 
and MAP, but not diastolic BP.

Conclusion: A generalized PAT-based model, developed from a different 
population was not able to accurately track BP changes in critically ill ICU patients. 
Individually fitted models utilizing other cuffless BP sensor signals significantly 
improved accuracy, indicating that cuffless BP can be measured non-invasively, 
but the challenge toward generalizable models remains for future research to 
resolve.
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cuffless, blood pressure, pulse arrival time, machine learning, intensive care unit
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1. Introduction

At present, blood pressure (BP) monitoring in hospitalized 
patients is limited to either intermittent cuff-based measurements 
or invasive arterial catheterization. Invasive arterial BP monitoring 
is the only method capable of accurate in-hospital continuous BP 
monitoring and is considered the gold standard given correct 
operating conditions. However, it is only available during surgery, 
post-operatively or in intensive care units (ICU) and requires 
specialized personnel. In addition, arterial catheterization carries 
risk such as bleeding, arterial occlusion and infection. For the 
remainder of hospitalized patients, BP is taken intermittently at 
varying intervals. Undetected hypotensive episodes may lead to 
organ damage such as acute kidney injury, and undetected clinical 
deterioration may delay adequate treatment and lead to adverse 
outcomes (1, 2). Studies indicate that adverse events are related to 
the intermittent nature of vital signs monitoring on hospital wards 
(3, 4). Thus, there is a clear need for non-invasive continuous 
cuffless BP monitoring in hospitalized patients to bridge the gap 
between intermittent cuff-based measurements and invasive 
arterial catheterization.

Despite substantial research on methods to enable non-invasive 
cuffless BP monitoring, its general accuracy remains uncertain, and 
few studies have investigated accuracy in critically ill patients. In 
addition, non-invasive cuffless BP methods use different approaches 
such as pulse wave propagation-based measurements (such as pulse 
arrival time (PAT)) and photo-plethysmography (PPG) waveform 
features. Studies, including research performed by our 
multidisciplinary team, have shown strong correlations between PAT 
and BP, particularly during various exercise methods (5–9) but its 
accuracy across differing populations and hemodynamic conditions 
are uncertain (6). New advances in non-invasive cuffless BP indicate 
that complex modeling by machine learning methods of sensor-based 
measurements are key toward improved results (6). In the present 
study, we aimed to investigate accuracy of two different BP-prediction 
models using the signals from a prototype chest belt BP sensor in 
critically ill patients. Specifically, we investigated a PAT-based model, 
derived from a general population cohort (generalized PAT-based 
model) compared to continuous invasive BP measurements and 
compared it with accuracy of individually fitted machine learning 
models (complex individualized models) that utilized other features 
of the signals obtained by the cuffless BP sensor.

2. Materials and methods

2.1. Subjects

Patients older than 18 years admitted to the general medical ICU 
at Oslo University Hospital, Ullevål were considered for inclusion. 
Inclusion criteria were signed consent and an inserted arterial line. 
Exclusion criteria were ongoing arrythmias generating irregular R-R 
intervals, failure to obtain adequate signals from the cuffless device or 
any medical contraindication to having a chest belt mounted. Each 
patient was monitored for a duration of 1–12 h, depending on length 
of stay, discontinuation of the intra-arterial catheter or other 
clinical interruptions.

2.2. Reference blood pressure

Reference BP was measured continuously with a radial artery 
catheter connected by a fluid filled tube to a pressure transducer 
(Xtrans; Codan, Forstinning, Germany). The pressure transducer was 
leveled at the phlebostatic axis and had a saline flush connected with 
a counterpressure of approximately 300 mmHg. The system was 
connected to a Philips IntelliVue MX 800 patient monitor (Philips, 
Böblingen, Germany). Zeroing was performed every 8-h according to 
the ICUs procedures. All vital signs, including the raw arterial 
waveform and the monitor-generated absolute BP values sampled 
every 5 s, were recorded directly to a laptop via an RS-232 connection 
using the Vital Recorder software (10).

2.3. Cuffless blood pressure device

A prototype cuffless BP sensor (cuffless BP device) was used in 
this study (7–9). It consists of a one-channel electrocardiogram 
(ECG) sensor, a photo-plethysmography (PPG) sensor and an 
inertial measurement unit (3D accelerometer and 3D gyroscope) 
integrated in a wearable chest belt. Raw signals from the ECG and 
PPG sensors were sampled at 1,000 Hz, while accelerometer data 
was sampled at 208 Hz and gyroscope data that were sampled at 
26 Hz. The gyroscope data was not used. The cuffless BP device was 
fitted as illustrated in Figure 1. The generalized PAT-based model 
was developed from BP changes during isometric exercise in a 
general population cohort (9), using PAT and HR as cuffless 
surrogates but not any demographic information. A linear best fit 
equation with a coefficient for PAT, a coefficient for interaction 
between PAT and HR (this term was negligible) and a coefficient for 
HR was used. Additionally, we computed a best fit linear model 
using only PAT. The complex individualized models, utilizing other 
signal features, were trained using the first half of each patient’s 
data. Thus, the test period for both models were defined as the 
second half of each patient’s data. The cuffless BP device was 
calibrated against the first three minutes of reference BP at the start 
of each test period. This was a simple static calibration to correct 
the offset between average reference BP and cuffless BP across the 
initial three minutes. Since the pressure transducer was mounted 
on a bracket next to the patient bed, temporary periods occurred of 
which the pressure transducer moved relative to the phlebostatic 
axis. To reliably exclude such periods, an investigator continuously 
observed all data collections. In addition, if the pressure transducer 
moved significantly during such a period and was relevelled by the 
ICU staff, the cuffless BP device was re-calibrated against reference 
BP during the test period. Recalibration occurred in 14 patients 
(once in seven patients, twice in four patients and three times in 
two patients). Reasons for recalibration were related to nursing care, 
changing from supine bed rest to seated position or temporary 
detachment from the invasive monitoring system because of 
imaging studies or bathroom visits. Recalibration was decided 
necessary to avoid systematic biases introduced during relevelling. 
For example, if the pressure transducer was relevelled one time 
during a patient’s data collection with an offset of 5 cm relative to 
the previous leveling, a systematic bias of 3.7 mmHg would 
be introduced for the remaining observation time.
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2.4. Data analysis

2.4.1. Patient selection
Of 44 patients, 25 were available for the present study after 

exclusions (Figure  2). Prior to data analysis six patients were 
excluded due to the following reasons: (1) excessive movement 
causing the transducer to move relative to the leveling set point and 
excessive noise (n = 2), (2) arterial catheter failure (n = 2), (3) 
irregular RR intervals from pacemaker (n = 1) and (4) erroneous 
vital recorder data capture (n = 1). Thus, 38 patients were included 
in the formal data analysis. Next, the cuffless BP device data was 
processed to allow for proper training of the complex individualized 
models and 13 of the 38 patients were excluded because one or more 
of three criteria were met: (1) Ratio of valid device signals to 
reference data above 0.6 (n = 9), (2) short recordings (total number 
of reference and cuffless datapoints below 200) (n = 11) and (3) to 
ensure that adequate BP variation was available for the machine 
learning algorithm, the standard deviation of reference BP in the 

first half had to be at least 50% of the standard deviation of the 
reference BP for the whole duration of each individuals data (n = 3). 
Most patients met the criteria related to signal quality and number 
of reference and device measurement pairs.

2.4.2. Data filtering and processing
Filtering and processing of the data was performed post-hoc in a 

custom-made database using the Python programming language. 
Reference BP values were extracted from the raw arterial waveforms. 
The raw arterial waveform signals were filtered both manually and 
automatically to reliably remove artefacts from around arterial blood 
sampling, detachments and re-attachments to the arterial monitoring 
system, compression of waveforms from wrist flexion, cuff 
measurements taken at the same arm and high frequency noise. After 
filtering, reference BP and cuffless BP estimations from the two 
models were averaged on 15 s epochs. To allow for direct comparison 
between the two cuffless models, pairwise comparisons between 
cuffless BP and reference BP were made on the same data in each 

FIGURE 1

A simplified illustration of the chest belt device (cuffless device) fitted on a patient in the intensive care unit alongside basic monitoring equipment. 
Parts of the figure were created by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons 
Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

67

https://doi.org/10.3389/fmed.2023.1154041
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://creativecommons.org/licenses/by/3.0/


Heimark et al. 10.3389/fmed.2023.1154041

Frontiers in Medicine 04 frontiersin.org

patient, i.e., the test period defined as the last 50% of data for 
each patient.

2.4.3. Statistical analyses
Statistical analyses were performed using Stata (StataCorp. 2019. 

Stata Statistical Software: Release 16. College Station, TX: StataCorp 
LLC). Data is presented as mean (standard deviation (SD)) or median 
(interquartile range) if non-normal distribution. We computed mean 
errors, mean absolute errors (MAE), SD of errors and Bland–Altman 
plots with bias and 95% limits of agreement (LOA). We are aware that 
pooling all measurement pairs across all patients may violate the 
Bland–Altman assumption of independent measurements (11). 
However, all comparable studies have pooled all measurements in 
Bland–Altman analyses (12–15). Thus, we chose same methodology 
for comparative purposes. We also computed Bland–Altman bias and 
LOA using a proposed method for repeated measures (16) which 
resulted in bias and LOA (not reported) with negligible differences 
from the pooled analyses. Correlation analysis was performed using 
repeated measures correlation as proposed by Bland and Altman (17). 
In this way the dependency of repeated within subjects are correctly 
handled. To be  able to compare with similar studies, Pearson’s 
correlation coefficients were also calculated for all measurements 
across all subjects pooled together.

Comparison of model performance was analyzed in three steps. 
First, we  compared error estimations to determine if they were 
different from each other. The absolute errors of all measurement pairs 
(n = 7,327) were compared by a non-parametric test for equality of 
means. Equality of the standard deviation of the errors were compared 
using a variance comparison test. Second, aggregated BP means per 
subject from reference BP, the generalized PAT-based model, and the 
complex individualized model were computed. These means were 

fitted with the corresponding reference values in a linear regression 
model for the two models. As these models are not nested, they could 
not be  directly compared by any statistical test. Thus, they were 
compared numerically on the coefficient of determination (R2), root 
mean squared error and Akaike’s and the Bayesian information 
criterion. Finally, the predictive accuracy of the two models were 
tested using the Diebold-Mariano predictive accuracy test. The 
stationary assumption was tested using the augmented Dickey-Fuller 
test. Sensitivity of the predictive accuracy test, as the stationary 
assumption may not hold regardless of the result of the augmented 
Dickey-Fuller test because the data is comprised of different subjects, 
were tested by performing the Diebold-Mariano test in each subject 
separately. The overall significance was tested using Fisher’s method 
of combining p values. To test the influence of HR as an additional 
parameter in the PAT-based model, we also predicted BP using a 
PAT-only model derived from the data as the PAT and HR-based 
model. A value of p below 0.05 was considered statistically significant.

3. Results

Patient characteristics are presented in Table 1 and distribution of 
reference BP across all patients are presented in Table 2. The average 
number of pairwise comparisons (SD) between reference and the 
cuffless BP device per subject were 293.2 (161.2), ranging from 124 to 
754 with a total of 7,327. Median (Interquartile range) observation 
time was 4.0 (3.1–4.6) hours with a range from 1.4–8.0 h. Performance 
of the generalized PAT-based model compared to the complex 
individualized models are presented in Table  3. The complex 
individualized models were numerically superior to the generalized 
PAT-based model across all parameters. Particularly when comparing 

FIGURE 2

Flow chart of patient selection.
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the repeated measures correlation, more covariation was captured by 
the complex individualized models compared to the generalized 
PAT-based model for SBP and MAP where repeated measures 
correlation coefficients were 0.23 vs. 0.39 and 0.25 vs. 0.37. Results 
were more similar for DBP compared to SBP and MAP with 
correlation coefficients of 0.29 (generalized PAT-based model) vs. 0.33 
(complex individualized models). Bland–Altman plots with bias and 
LOA are presented in Figure  3. Bias was close to zero for all BP 
parameters in both models; −0.2 mmHg vs. −1.4 mmHg, −0.2 vs. 
0.0 mmHg and 0.1 mmHg vs. −0.9 mmHg for the generalized 
PAT-based model vs. the complex individualized models regarding 
SBP, DBP, and MAP, respectively. LOA favored the complex 
individualized models for SBP [−21.5, 21.1 mmHg] vs. [−19.2, 
16.2 mmHg] and MAP [−13.4, 13.5 mmHg] vs. [−13.9, 11.4 mmHg] 
but were similar for DBP [−9.8, 9.8 mmHg] vs. [−9.6, 9.6 mmHg]. 
Percentages of absolute errors within 15, 10 and 5 mmHg (Table 4) 
also favored the complex individualized models where all percentages 
were numerically higher for the complex individualized models except 
for within 15 mmHg regarding DBP. The complex individualized 
models were significantly different from and outperformed the 
generalized PAT-based model for SBP and MAP. To the contrary, for 
DBP, the SD of the errors were not significantly different, and the 
Diebold-Mariano test of predictive accuracy was not significant. 
Comparison of the PAT and HR-based model to a PAT-only model 
showed negligible differences. Pearson’s correlation coefficient and R2 
between the two models were 0.999 and 0.997, respectively.

An important difference between the generalized PAT-based 
model and the complex individualized models appeared during the 
detailed data inspection The generalized PAT-based model performed 
inadequately in cases of decreasing BP with corresponding heart rate 
(HR) increase. Therefore, we plotted four different timeseries plots 
(Figure 4) of four different patients where reduction in BP was coupled 

with a rise in HR. In the first case (upper left panel) both models were 
unable to predict the BP reduction, while for the remaining cases, only 
the complex individualized models correctly predicted the direction 
of change in BP. Importantly, regarding periods of reduction in BP 
coupled with a rise in HR, the generalized PAT-based model compared 
to the PAT-only model showed negligible differences.

4. Discussion

Continuous and cuffless non-invasive BP monitoring may 
improve in-hospital patient monitoring by early detection of clinical 
deterioration and reduction of adverse outcomes (18). The present 
study investigated the accuracy of two different predictive BP models 
using sensor data from a prototype cuffless BP chest belt against intra-
arterial measurements in a critically ill ICU cohort. Specifically, 
we compared a PAT-based model derived from a general population 
cohort to complex individualized models. The present study had two 
main findings. First, the generalized PAT-based model did not achieve 
high accuracy results, indicating that PAT-based BP monitoring in 
critically ill patients may not be  possible, particularly when 
considering the inability to detect periods of hypotension and 
tachycardia. Second, the complex individualized models significantly 
improved accuracy of the cuffless BP device for SBP and MAP, but not 
DBP, and were able to better track BP changes during hypotension 
and tachycardia.

The significantly improved accuracy by the complex individualized 
models sheds light on important challenges regarding non-invasive 
cuffless BP devices. PAT is frequently cited as a potential non-invasive 
cuffless surrogate feature in recent years (5). Our results, however, 
suggests that PAT may not be  adequate as cuffless surrogate 
measurement alone to achieve high accuracy non-invasive BP 
measurement in critically ill patients. An underlying assumption for 
general accuracy is stability of the relationship between changes in 
PAT and changes in BP across individuals, populations and across 
differing hemodynamic conditions. One or more of these factors likely 
affect generalizability of PAT as a cuffless surrogate measurement. 
Several studies have shown that varying between-individuals 
relationships between PAT and BP are a major limitation (9, 18, 19). 
The improved accuracy of the complex individualized models 
indicates that features extracted from ECG and PPG sensors can 
enable non-invasive cuffless BP monitoring, but these models are 
patient-specific (and potentially cannot be generalized for all subjects) 
and rely on machine learning without any a priori physiological 
knowledge. In addition to improved errors, an important finding was 
the ability of the complex individualized models to better track BP 
fluctuations, reflected by correlations corrected for repeated within 
subjects’ measurements (0.23 for the generalized PAT-based model vs. 
0.39 for the complex individualized models regarding SBP). It should 

TABLE 1 Patient characteristics.

Sex, male no (%) 18 (72)

Age, years (SD), range 62.0 (15.4), 27–89

Body mass index, Kg/m2(SD) 27.1 (6.4)

Cardiovascular Disease, no (%) 10 (40)

Hypertension, no (%) 17 (68)

Diabetes mellitus type I or II, no (%) 9 (36)

Ongoing intravenous vasopressor 

treatment, no (%)

2 (8)

Ongoing intravenous vasodilator treatment, 

no (%)

4 (16)

Ongoing non-invasive continuous or bi-

level positive airway pressure, no (%)

2 (8)

TABLE 2 Blood pressure distribution.

Systolic blood pressure Diastolic blood pressure Mean arterial pressure

Mean (SD), mmHg 131.0 (25.7) 61.2 (14.6) 83.9 (18.1)

Range, min-max, mmHg 70.6–194.3 34–100.3 50.9–136.3

Within subject change, median 

(IQR), mmHg
29.3 (25.0–42.1) 13.4 (12.0–17.0) 18.6 (25.8–27.7)
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be kept in mind that correlation across all the data is suppressed by 
the fact that there were stable periods where BP had low variation.

A concerning finding in our analyses was the inability of the 
generalized PAT-based model to predict BP changes during some 
periods of BP reductions coupled with elevation in HR (Figure 4). In 
our data, the complex individualized models estimated BP better in 
these situations. In the first scenario in Figure 4 (upper left panel) all 
models fail, whereas for the next three scenarios the complex 
individualized models predict the correct direction of BP change 
while the generalized PAT-based model and the PAT-only model 
predicts an increase in BP during reduction of reference BP and 

increases of HR. Our findings suggest that PAT is dependent on HR; 
an increase in HR causes PAT to decrease independently of the 
underlying change in BP (a decrease in PAT should always indicate an 
increase in BP according to the theory). Although conflicting results 
exists, HR has been shown to affect pulse wave propagation 
independently of BP similarly to our observations (20, 21). It is also 
possible that elevated HR is an indication of elevated sympathetic 
tone, which is shown to increase pulse wave propagation speed 
independently of central aortic BP (22). This can mask the true BP 
change in cases were HR and BP change in opposite directions. It 
should be noted that this was not a pre-specified analysis nor tested in 

TABLE 3 Performance of the generalized PAT-based model, the complex individualized models and comparison of the two.

Generalized PAT-
based model

Complex 
individualized models

p value for 
comparison

Systolic blood pressure

Mean error, mmHg −0.2 −1.4

Mean absolute error (SD), mmHg 7.6 (5.3) 6.5 (4.8) <0.001*

SD of errors, mmHg 7.2 6.7 <0.001**

Median of absolute errors (IQR), mmHg 5.3 (4.5–10.7) 5.8 (4.7–7.3)

Repeated measures correlation coefficient 0.23 0.39

Correlation coefficient, all subjects pooled 0.91 0.94

Linear regression of aggregated data between model and reference***, R2 0.91 0.96

Akaike’s information criterion*** 173 154

Bayesian information criterion*** 175 156

Diebold-Mariano comparison of predictive accuracy Individualized model is significantly better 0.001

Diastolic blood pressure

Mean error, mmHg 0.2 0.0

Mean absolute error, mean (SD), mmHg 3.3 (3.3) 3.1 (2.2) <0.001*

SD of errors, mmHg −3.1 3.0 0.56**

Median of absolute errors (IQR), mmHg 2.7 (1.8–4.1) 2.2 (1.7–3.5)

Repeated measures correlation coefficient 0.29 0.33

Correlation coefficient, all subjects pooled. 0.94 0.94

Linear regression of aggregated data between model and reference***, R2 0.94 0.94

Akaike’s information criterion*** 131 130

Bayesian information criterion*** 134 133

Diebold-Mariano comparison of predictive accuracy Individualized model is non-significantly better 0.14

Mean arterial pressure

Mean error, mmHg 0.1 −0.1

Mean absolute error, mean (SD), mmHg 4.6 (3.2) 4.0 (2.9) <0.001*

SD of errors, mmHg 4.4 4.0 <0.001**

Median of absolute errors (IQR), mmHg 3.3 (2.4–6.4) 3.3 (2.5–4.5)

Repeated measures correlation coefficient 0.25 0.37

Correlation coefficient, all subjects pooled. 0.93 0.95

Linear regression of aggregated data between model and reference***, R2 0.93 0.95

Akaike’s information criterion*** 146 138

Bayesian information criterion*** 149 140

Diebold-Mariano comparison of predictive accuracy Individualized model is significantly better 0.006

*Compared using non-parametric test of difference in means of all absolute errors between the two models. **Compared using variance comparison test of equality of standard deviations. 
***Means of predicted BP from each model for each subject fitted in a linear regression model against reference BP.

70

https://doi.org/10.3389/fmed.2023.1154041
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Heimark et al. 10.3389/fmed.2023.1154041

Frontiers in Medicine 07 frontiersin.org

any statistical model, merely, an indication of a potential serious 
limitation of cuff-based BP monitoring. We interpret this as a need for 
more data to develop robust models that can accurately estimate BP 
across differing hemodynamic conditions.

The generalized PAT-based model and complex individualized 
models achieved LOA of [−21.5, 21.1 mmHg] vs. [−19.2, 16.2 mmHg] 
regarding SBP and [−13.4, 13.5 mmHg] vs. [−13.9, 11.4 mmHg] 
regarding MAP. Corresponding results of MAE (SD of errors) were 
7.6 (7.2) vs. 6.5 (6.7) and 4.6 (4.4) vs. 4.0 (4.0) regarding SBP and MAP, 
respectively. These results fall short of accuracy demands required in 

potentially unstable ICU patients. Particularly when considering the 
inability of the generalized PAT-based model to predict BP reductions 
coupled with elevated HR, which is critical in hospitalized patients as 
such circulatory changes may suggest onset of shock. On the other 
hand, considering more stable patients and that 78% (generalized 
PAT-based) and 84% (complex individualized models) of the absolute 
differences were below 10 mmHg regarding SBP, one may argue that 
our results are acceptable. It should also be kept in mind that the 
accuracy of the “gold standard” itself is dependent on appropriate 
damping as well as leveling and zeroing of the pressure transducer. In 

FIGURE 3

Bland–Altman plots. Mean of reference and model (x-axis) plotted against the difference between reference and model (y-axis). Horizontal lines 
indicate bias and upper and lower 95% limits of agreement. SBP, systolic blood pressure. DBP, diastolic blood pressure. MAP, mean arterial pressure.
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FIGURE 4

Time series plots from four different patients of reference mean arterial pressure (MAP), heart rate (HR) and predicted MAP from the two models in 
addition to predicted MAP from a PAT-only model.

everyday management of patients in the ICU, brachial oscillometric 
cuff BPs are taken regularly. Our LOA were considerably narrower 
compared to SBP LOA of [−30.2, 31.7 mmHg] revealed in a 
retrospective analysis comparing oscillometric cuff measurements to 
invasive measurements in 736 ICU patients (23).

We did not pre-specify any cut-off error statistic because we were 
evaluating a prototype of the cuffless BP device and the anticipated 
ISO 81060-3 validation standard applicable to cuffless BP devices was 
not completed at the time of study planning and data analysis. 
Acceptance criteria from validation standards aimed at cuff-based 
devices are not appropriate (24). As a consequence of lack of 
appropriate validation requirements regarding cuffless BP devices, 
many have compared against the Association for the Advancement of 
Medical Instrumentation/European Society of Hypertension/
International Organization for Standardization (AAMI/ESH/ISO) 
criterion; mean error less than 5 mmHg and SD of errors less than 

8 mmHg regarding SBP (12, 14, 15). Both our models satisfy this 
criterion as all mean errors were close to zero. This criterion is, 
however, intended for standardized cuff measurements seated at rest. 
Thus, it is difficult to specify clinically accepted accuracy in the study 
setting. Validation of novel cuffless BP devices dependent on 
calibration, of which all are at present, should be performed according 
to the new AAMI/ESH/ISO consensus validation protocol (24). 
Cuffless BP devices that pass the cuff-intended AAMI/ESH/ISO 
criterion may not be interpreted as accurate until also passing the new 
protocol intended to validate initial stability, accuracy during BP 
changes and reproducibility of stability within the time window of 
intended use.

Our device performances were comparable to the few similar 
studies that have investigated accuracy in a cuffless BP device, based 
on either ECG and PPG or PPG alone, against invasive measurements 
(12–15). Three of these devices are available on the market (12–14) 

TABLE 4 Percentage of absolute errors within 15, 10, and 5 mmHg.

Model Systolic blood 
pressure

Diastolic blood 
pressure

Mean arterial 
pressure

≤5 mmHg
Generalized PAT-based model, % 53.1 78.9 69.2

Complex individualized models, % 59.2 85.3 78.8

≤10 mmHg
Generalized PAT-based model, % 77.6 96.2 89.6

Complex individualized models, % 83.8 97 94.2

≤15 mmHg
Generalized PAT-based model, % 87.9 99.7 95.9

Complex individualized models, % 92.9 98.5 97.8
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and one is a prototype (15). It is however difficult to compare results 
from those directly due to heterogenicity. Our results demonstrated 
the least narrow LOA compared to SBP LOA of [−10, 10 mmHg] in 
10 post cardiac surgery patients (Biobeat wrist watch) (13), [−11.9, 
12.2 mmHg] in 23 ICU patients (Aktiia wrist band, PPG) (12), [−11, 
16 mmHg] during cardiac catheterization in 17 patients (Senbiosys 
prototype finger ring, PPG) (15) and [−7.4, 12.8 mmHg] in 20 cardiac 
ICU patients during controlled short-term supine and in bed 
measurements (Vitaliti continuous vital signs monitor, ECG and PPG) 
(14). However, while not achieving as narrow LOA, our study had the 
most subjects, 25 vs. 10 (Biobeat, ECG and PPG), 23 (Aktiia), 17 
(Senbiosys) and 20 (Vitaliti) and by far the largest number of pairwise 
comparisons of 7,327 compared to 4,000 (Biobeat), 326 (Aktiia), 708 
(Senbiosys) and 120 (Vitaliti). Sampling rate also varied between 
studies from 10 s epochs by Senbiosys to 1-min epochs by Biobeat. All 
studies excluded a large proportion of patients of which the majority 
were related to signal selection by algorithms or noise. A particularly 
important factor regarding cuffless BP devices is the degree of BP 
change within each patient during data collection. As all devices are 
dependent on initial calibration, a low change in BP within subjects 
may result in narrow LOA but the actual ability of these devices to 
track changes in BP remains unknown. Vitaliti reported measurements 
only from a stable period immediately following calibration, and 
Biobeat reported that their subjects were relatively stable as a 
limitation (within subject ranges not reported). Our subjects had 
reasonable within subject variations in BP with median SBP (IQR) of 
29.3 (25.0–42.1) mmHg with a maximum of 63.2 mmHg. A related 
issue is reporting of Pearson’s correlation coefficients which are pooled 
across all subjects, particularly when the devices are calibration 
dependent and there are repeated measurements within individuals. 
For comparative purposes we also computed Pearson’s correlation 
coefficients from all measurements pooled and achieved 0.91 
(generalized PAT-based model) and 0.94 (complex individualized 
models) for SBP compared to 0.94 (Biobeat), 0.87 (Aktiia) and 0.93 
(Senbiosys). However, Pearson’s correlation coefficients in this setting 
does not reflect device accuracy. In contrast, one study found a cuffless 
BP device using ECG and PPG inaccurate during coronary 
angiography with SBP LOA of [−2, 70 mmHg] (25). The study was, 
however, criticized by the manufacturer for incorrect calibration (26).

5. Strengths and limitations

A strength in our study is that neither model used any 
demographic information. The use of demographic information in 
cuff less research is criticized (27) because demographics itself are 
known to correlate with BP. Thus, when evaluating accuracy, it is not 
known how much is related merely to demographics as input in a 
model. We also provided, to the best of our knowledge, the most 
datapoints to date in a study evaluating accuracy of a cuffless BP 
device against invasive arterial measurements. Testing on critically ill 
patients admitted to an ICU enabled us to reveal the weaknesses of a 
PAT-based model and the strengths of complex individually 
fitted models.

We excluded many subjects (43%). However, the majority were 
related to criteria for developing the complex individualized 
models and we  had comparable proportions and reasons for 
exclusion to similar studies. Algorithm selection imposes potential 

limitations on which patients may benefit from cuffless BP in the 
future. Re-calibration during the data collection in 14 patients may 
have introduced some overestimation of accuracy. If the device 
estimation of BP had drifted from reference BP, recalibration 
would artificially improve error estimates. However, as stated in 
the methods section, not recalibrating could introduce systemic 
errors and since the majority only had one recalibration it was 
decided to recalibrate if the transducer was relevelled. We did not 
formally test quality of the arterial line by for example the square 
wave test and calculation of damping coefficients. Since the 
transducer is levelled on a bracket next to the patient, arterial line 
BP accuracy is vulnerable to patient movement. We cannot exclude 
that some variations in reference BP were introduced in this 
manner. To reliably exclude all periods of which the pressure 
transducer was out of system, all data collection were observed by 
an investigator. The critically ill cohort is heterogenous. With a 
limited number of subjects, we cannot determine which, if any, 
clinical parameters affected accuracy. PAT can be  measured at 
various places and we  are limited to infer our findings to PAT 
measured at chest level.

6. Conclusion

Cuffless BP monitoring is promising, but challenges remain. In 
the present study, we  demonstrated that a generalized PAT-based 
model measured on the chest did not achieve high accuracy results in 
critically ill ICU patients and failed to detect clinically important 
situations. We  further demonstrated that more complex and 
individually fitted models, utilizing more information from the ECG 
and PPG signals, significantly outperformed the generalized 
PAT-based model. More data is needed to build robust general models 
based on machine learning to enable cuffless BP in 
hospitalized patients.
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Artificial intelligence (AI) has great potential to improve the field of critical care 
and enhance patient outcomes. This paper provides an overview of current and 
future applications of AI in critical illness and its impact on patient care, including 
its use in perceiving disease, predicting changes in pathological processes, and 
assisting in clinical decision-making. To achieve this, it is important to ensure that 
the reasoning behind AI-generated recommendations is comprehensible and 
transparent and that AI systems are designed to be reliable and robust in the care 
of critically ill patients. These challenges must be addressed through research and 
the development of quality control measures to ensure that AI is used in a safe and 
effective manner. In conclusion, this paper highlights the numerous opportunities 
and potential applications of AI in critical care and provides guidance for future 
research and development in this field. By enabling the perception of disease, 
predicting changes in pathological processes, and assisting in the resolution of 
clinical decisions, AI has the potential to revolutionize patient care for critically ill 
patients and improve the efficiency of health systems.

KEYWORDS

artificial intelligence, intensive care units, critical illness, risk assessment, decision 
making

1. Introduction

The word Artificial Intelligence (AI) describes the methods by which a system may imitate 
human cognitive functions, such as reasoning capacity, decision-making, generalization, or 
learning from past experiences, to achieve goals without being expressly programmed for 
specific activities. AI is characterized as intelligent machines, as opposed to the intelligence of 
individuals or other living things (1). The areas of learning algorithms, processing natural 
languages, and robotics may thus fall under the umbrella of artificial intelligence (AI), which 
has the potential to advance biomedical research, primary care, and health systems. These fields 
can be adapted to almost any area of medicine.

One of the most hotly contested uses of artificial intelligence (AI) in the healthcare industry 
has been the development of technology. The use of software, algorithms for machine learning, 
or artificial intelligence (AI) to simulate mental abilities in the interpretation, evaluation, and 
comprehension of healthcare data is referred to as AI in healthcare. For instance, AI-based 
medical algorithms used in mammograms help radiologists by providing a second opinion while 
aiding in the diagnosis of breast cancer (1).
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AI was used in the healthcare industry to produce well-performing 
medicine. For instance, Insilico Medical has created AI algorithms 
that can halt viral infection. By providing nutritional guidance to 
expectant mothers based on their health state and algorithm estimates, 
another proposal seeks to safeguard them. Epileptic seizure detection, 
another excellent use of AI, assisted in lessening the severity of 
epileptic convulsions. With AI and the creation of a cutting-edge 
movement-detecting device, early stroke might also be 
accurately predicted.

Although using AI in medical healthcare seems to have the 
potential to drastically increase the effectiveness of clinical diagnosis 
and biomedicine in general, it has also raised some ethical questions. 
One of the main obstacles for medical AI is safety. IBM Watson for 
oncology is a very good example. It uses AI algorithms to analyse data 
from patient records and assist physicians in exploring cancer options 
for treatment for their patient populations. However, it has since come 
under fire for allegedly making risky and unreliable cancer 
therapy recommendations.

The quality of medical treatment for critically ill patients has greatly 
improved due to advancements in care standards (1). Despite this 
progress, traditional critical care has limitations in fully understanding 
and addressing the complexities of patients’ health, predicting 
deterioration, and providing timely treatment. The advent of advanced 
monitoring systems and non-invasive and invasive treatments has 
improved bedside care, but it is yet to be determined if these advancements 
represent the next step in critical care medicine. Artificial intelligence (AI) 
aims to help computers identify patterns in complex and diverse data, 
which was once only possible in limited fields like physics or astronomy 
due to limited computing resources. However, with the recent growth in 
computing power, AI can now be applied to other fields, including critical 
care medicine, where there is an abundance of complex data (2). 
According to a recent study (3), the number of articles about AI in the 
field of critical care medicine (CCM) has been increasing rapidly, 
particularly from 2018 to 2020. The majority of these articles are of high 
quality and come from top-ranked journals. Research into artificial 
intelligence (AI) has shown promise in terms of predicting disease 
outcomes and improving patient care (3).

While there are increasing numbers of studies using AI-powered 
models in the intensive care unit (ICU), our understanding of AI’s 
potential in critical care is still limited. Additionally, there are challenges 
that AI must overcome before becoming a routine part of clinical practice. 
Using the most recent literature, this review aims to improve 
understanding of the applications of AI in critical illness and its impact 
on patient care, and it makes recommendations for the future.

2. Methods

A comprehensive search was carried out in PubMed, Google 
Scholar, PLOS One, and Scopus for all relevant literature using the 

following terms: “critical care,” “intensive care medicine,” “ICU 
medicine,” “artificial intelligence,” “AI,” “machine learning,” and 
“critical illness” from January 2018 through February 2023  in the 
English language. Similar articles were also reviewed using the 
suggested articles for each paper, and gray literature was also searched 
using relevant terms. All papers were imported into reference 
management software, and duplicates were removed. Older versions 
of the same papers were not included if newer versions were available. 
All relevant papers were read, and corresponding authors were 
contacted using email if the full text of a paper was not available. No 
unpublished papers were included in our review.

3. Applications of AI in critical care 
patient management

AI has a multitude of diverse applications for the care of critically 
ill patients. The Figure  1 includes the recognition of disease, the 
prediction of disease progression, and the recognition of unique 
patterns in complex patient data. AI can also significantly aid 
caregivers in complex decision-making, as shown in Figure 1.

3.1. Recognition of disease

Diagnosing the source of a critically ill patient’s clinical decline 
can be a complex task due to the subtle onset of the disease or the 
presence of other conditions that obscure the main issue. Properly 
understanding the underlying context can be a challenging feat. For 
example, the presence of pulmonary infiltrates does not always 
indicate an excessive accumulation of fluid in the air sacs; it could be a 
sign of cardiac-related pulmonary edema, fluid in the pleural cavity, 
inflammation- or infection-related fluid buildup, or blood collections 
from trauma. Without proper clinical context and additional testing, 
appropriate and prompt treatment may be  hindered. Artificial 

FIGURE 1

Artificial intelligence in critical care patient management.

Abbreviations: AI, Artificial intelligence; ML, Machine learning; RL, Reinforcement 

learning; ICU, Intensive care unit; CCM, Critical care medicine; RF, Random forest; 

SHAP, Shapley additive explanations; HAPrI, Hospital-acquired pressure-related 

injury; COVID-19, Coronavirus disease – 2019; HDF5, Hierarchical data format-

version 5; AUC, Area under the curve; REMAP-CAP, Randomized embedded 

multifactorial adaptive platform for community-acquired pneumonia.
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intelligence (AI) can aid in the medical diagnosis of critically ill 
patients by utilizing its advanced text and image processing abilities 
(4). A machine learning model, for instance, can differentiate 
congestive heart failure from other lung diseases and quantify 
pulmonary edema using a technique that provides a probabilistic 
manner for describing an observation (5). Furthermore, recent 
advancements in image analysis using convolutional neural networks 
have enabled the evaluation of traumatic brain injury with more 
accuracy than manual methods when viewed on head computed 
tomography scans (6). In a retrospective analysis by Prasad et al. (7), 
a reinforcement learning (RL) approach was used to develop a 
treatment protocol for electrolyte replacements in an ICU setting. This 
system provides recommendations for patient care that can 
be continuously updated based on the patient’s specific needs. The RL 
algorithm used available data from electronic health records, including 
vital signs, lab test results, and information about administered drugs 
and procedures, to estimate a patient-specific protocol for electrolyte 
repletion at six-hour intervals. The recommendations were presented 
by the AI algorithm in an interpretable and hierarchical manner, with 
the system first suggesting whether electrolyte replacement is needed 
and the best route for it, followed by the most appropriate dosage if 
the clinician chose to administer it. The RL system provided a more 
controlled and data-driven approach to electrolyte repletion as 
compared to traditional provider- or protocol-driven methods, which 
are often prone to error and deviation. This system also allows for 
greater flexibility and adaptability, considering patient context and 
clinical priorities. Optimal RL policy is reported to be  able to 
recommend electrolyte replacements in a more targeted manner, 
potentially reducing the number of repletion events and the cost and 
time associated with unnecessary or repeat orders. Additionally, the 
system uses a reward and punishment system, reducing the costs and 
risks associated with intravenous delivery (7). This is not to underscore 
the value and significance of care-givers in the critical care setting; 
instead, it is a remarkable example of how new technologies such as 
AI can have a significant impact on the care of critically ill patients.

3.2. Prediction of disease progression using 
random forest models

Predicting disease progression is crucial for critically ill patients, 
as a delay in detecting clinical instability can result in harm or death 
(4). A dynamic random forest model is a type of machine learning 
algorithm that can be used to predict outcomes in the critical care 
setting. It works by using an ensemble of decision trees that can adapt 
and update in real-time as new data becomes available. A study by 
Yoon et  al. (2) found that a dynamic model using random forest 
classification could predict cardiorespiratory instability, defined as a 
combination of hypotension, tachycardia, respiratory distress, or 
decreased oxygen saturation 90 min before it occurred in reality (2, 4). 
The use of AI and machine learning has expanded across various fields 
such as public health, disease prediction, and drug development, 
including the ability to predict viral mutations before they arise (4). 
The power of AI approaches continues to be utilized in a wide range 
of disease prediction and drug development applications (8). In a 
study by Davoudi et al. (9), tachycardia, which frequently precedes 
shock, was predicted 75 min before its onset using a random forest 
model (9). Although not in the critical care setting, hypotension was 

also predicted prior to its occurrence in the operating room and 
confirmed by a randomized controlled trial, reducing the rate of 
intraoperative hypotension to 1.2% (10, 11). In the critical care space, 
the prediction of hypotension events in the ICU has already been 
achieved using a random forest model that analyzed electronic health 
records and vital signs data, with 92.7% sensitivity, 15 min before the 
event even occurred (12). Another area where machine learning, a 
subset technology of artificial intelligence is in the assessment of pain 
in critically ill patients. In a study by Kobayashi et  al. (13) which 
focused on using machine learning to assess the pain experienced by 
ICU patients, reported that vital signs, which are measured 
continuously in the ICU, can be used to predict pain with an accuracy 
upwards of 85% using a random forest (RF) model. This shows that 
machine learning can be used to continuously evaluate pain, which is 
important for pain management and the use of pain medication in 
ICUs. Their study also suggests that the use of an automated and 
continuous pain assessment algorithm may help relieve pain in 
patients who cannot communicate which could improve their life 
expectancy (13). All these examples show how the utilization of such 
models can prove significantly useful for management of critically 
ill patients.

3.3. Recognition of unique patterns in 
complex data

Critical illness is a complex condition that presents itself in various 
and unpredictable ways, leading to organ dysfunction and complicating 
the disease and recovery processes. To effectively manage these critical 
states, a careful consideration of underlying etiologies and clinical 
conditions is necessary. AI can help by recognizing unique patterns within 
complex data and identifying specific phenotypes or endotypes that 
reflect the individual’s critical state, leading to more personalized 
treatment plans (14). This relies heavily on access to large amounts of 
training data and phenotypic information. The complexity of medical care 
is highlighted by the fact that the same symptoms can be caused by 
different underlying conditions, making it difficult to provide personalized 
treatment. Diseases such as brain disorders, cardiovascular issues, and 
digestive problems are examples of this complexity. Innovative techniques 
and tools have been used to achieve personalized phenotyping in patients, 
combining practical experiences and scientific knowledge to realize the 
potential for using AI in a systems medicine approach to personalize 
medical care (15). The advancement of AI techniques has enabled 
researchers to uncover the underlying causes of various phenotypes, 
including genetic variations and cancer diseases, and by utilizing these 
tools and combining them with other methods, the biomedical field will 
be able to advance their knowledge and understanding of the relationship 
between genomics and expressions in diseases, promising faster and more 
accurate discoveries (16). This exemplifies how AI can serve as an aid to 
personalized patient care for critically ill patients.

3.4. Aid to complex decision-making in 
critical care

AI has the potential to assist doctors in the complex process of 
assessing patient risk levels for treatments, determining those who are 
most likely to experience a sudden deterioration, and analyzing 
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multiple small outcomes to enhance overall patient outcomes. 
However, the complexity of AI techniques can affect physician 
comprehension and interpretation of results (17). To overcome this 
challenge, it is important for medical education to involve physicians 
in model creation and educate them in this field. AI platforms have 
the potential to be  more efficient in some aspects compared to 
caregivers. For example, when compared to senior consultants, an AI 
platform such as Childhood Cataract Cruiser has proven to be more 
efficient and time-efficient for diagnoses, with high patient satisfaction 
rates (18). Such platforms can also be tested in the critical care setting. 
If they prove successful, it could significantly increase the efficiency of 
care delivery in the ICU. One-size-fits-all solutions are not effective in 
dealing with complex problems, as evidenced by the lack of 
improvement in septic shock outcomes in recent years despite various 
treatment guidelines (19, 20). Utilizing the concept of reinforcement 
learning has the potential to offer individualized solutions to the 
diverse nature of septic shock and varying host responses. A study by 
Komorowski et al. (21) used reinforcement learning on time series 
data with 44 features collected from mechanically ventilated patients, 
which resulted in improved outcomes compared to standard clinical 
care, reducing 90 day and ICU mortality rates (21). AI can also 
perform real-time electrocardiogram analysis to detect myocardial 
infarctions. A study by Chen et al. (22) reported using AI-assisted 
real-time analysis of electrocardiograms in the prehospital setting and 
found that it was feasible and had the potential to reduce delays in 
treatment times for patients requiring percutaneous coronary 
interventions (22). These examples demonstrate the use of AI for 
therapeutic guidance in medical decision-making for critically ill 
patients with good efficacy.

3.5. Intelligent decision making 
intervention in critical illness

By assisting in decision-making and enabling healthcare 
professionals to concentrate their efforts on investing more time with 
patients, artificial intelligence can help to promote shared decision-
making (SDM) (22). AI technologies offer a wide range of information 
and have the capacity to evaluate enormous amounts of data and find 
correlations that scholars and healthcare professionals would have 
overlooked (23). The bioethics of employing AI for health decision-
making, the challenges involved, patients’ and healthcare practitioners’ 
perspectives of AI-based decision aids, and how it should be included 
to provide patient-centered healthcare are all topics of developing 
study. Nevertheless, little is known about the actual application of AI 
in SDM or how it may help with the decision-making phase of SDM.

4. Challenges and obstacles to AI in 
critical care patient management

Despite the potential benefits of AI in healthcare, particularly in 
the critical care setting, it is important to be aware of the potential 
challenges and obstacles that may arise when implementing AI models 
for critically ill patients. These roadblocks should not be ignored or 
overlooked, as they can have significant consequences for patient care 
and outcomes. The Figure 2 includes interpretability, data privacy and 
sharing, decreased clinical readiness and sub-optimal adherence to 

standard. A figure depicting the challenges and ethical concerns of AI 
in critical care patient management is shown in Figure 2.

4.1. Interpretability of AI in the intensive 
care unit

The deployment of AI in a healthcare setting, specifically at the 
bedside, requires careful planning and consideration of key factors 
such as usability and trustworthiness. The involvement of all relevant 
stakeholders, including patients, clinicians, researchers, and hospital 
administrators, is crucial for the success of the deployment. To ensure 
that the AI systems are effective and well-received, the implementation 
strategy should focus on creating models with a manageable amount 
of information that is presented in an understandable and visually 
appealing manner. This can be  achieved through the use of 
interpretable logic and a user-friendly graphic interface. One of the 
key challenges in deploying AI systems at the bedside is ensuring that 
the AI-generated alerts are accurate and not overwhelming, so as to 
prevent alarm fatigue (23). In recent research on predicting 
hypotension in the ICU, the use of a stacked random forest model was 
found to reduce the number of alerts tenfold while still maintaining 
accuracy (12). To build trust and acceptance of AI systems among end 
users, it is important to understand the AI-generated predictions and 
recommendations. Despite the complex nature of many AI models, 
researchers are working to enhance their interpretability. The creation 
of a graphic user interface is essential for the effective deployment of 
AI systems at the bedside, as it helps to improve hospital workflow and 
reduce the burden on healthcare workers. Additionally, the use of deep 
learning in the analysis of patient behavior and environmental stimuli 
can provide useful information for detecting delirium in ICU patients 
(9). Care-takers are keen to understand how machines arrive at 
predictions that involve patient care. There are different software 
technologies that can help caregivers to understand how machines 

FIGURE 2

Challenges and ethical concerns of AI in critical care patient 
management.
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arrive at these predictions. One such example is the Shapley additive 
explanation (SHAP), a method that explains how machines arrive at 
individual predictions. In a study by Alderden et al. (24), the risk of 
developing hospital-acquired pressure-related injury (HAPrI) was 
analyzed in COVID-19 patients who were hospitalized in the ICU. The 
study aimed to utilize machine learning algorithms to create a 
predictive model for HAPrI risk and ensure that the model was 
transparent and understandable for medical professionals. The best-
performing model was an ensemble SuperLearner, which showed 
good discrimination in HAPrI risk assessment. The use of explainable 
AI methods such as SHAP plots was a novel approach in this study 
and provided a way to visualize the relationships between the patient’s 
characteristics and the predictions made by the model. This study 
found that COVID-19 positive critical care patients have a higher risk 
of HAPrI compared to non-COVID patients. The use of machine 
learning algorithms to evaluate HAPrI risk in COVID-19 patients in 
the ICU is reported to be a feasible approach, and explainable AI 
methods such as SHAP plots provide a means of ensuring that the 
model is understandable and trustworthy for medical professionals. 
Medical professionals need to understand how the model reached its 
decisions for each individual patient to decide whether the model is 
trustworthy for that patient (24). Care-takers generally have a positive 
attitude towards the adoption of AI. Mlodzinski et al. (25) set out to 
examine the perspectives of both healthcare providers and 
non-providers regarding the use of machine learning (ML) in critical 
care. The study found that both groups generally have positive 
attitudes towards the use of ML in healthcare; however, non-providers 
with more knowledge about ML and AI are more likely to feel 
favorable towards its use. The study also found that there were no 
major differences in the level of comfort or knowledge among 
providers, regardless of their level of experience. Furthermore, the 
study identified common concerns such as systemic bias in data, 
patient safety, negative effects on the doctor-patient relationship, and 
data privacy an security. Among providers, workflow interruptions 
were also identified as a major concern, while limited knowledge of 
ML and AI was a concern among non-providers. It provided 
important insights into provider and non-provider perspectives on 
ML-based tools and will play a crucial role in optimizing their clinical 
utility (25). In the future, it will be important to design ICU systems 
that embrace the capabilities of AI and address caregiver concerns in 
order to enable early detection of patient deterioration and improve 
the accuracy and trustworthiness of AI-generated predictions. The 
complex nature of many AI models often makes it difficult to 
understand the rationale behind the computation and output, leading 
to resistance among healthcare professionals to adopting these models 
in daily practice. The fear of performing unnecessary interventions or 
changing treatment strategies without scientific evidence can have 
serious consequences, especially in critical care where patient 
outcomes are directly linked to such decisions (26, 27). However, there 
are efforts underway to address the issue of complex AI models. ML 
techniques are being used to determine what kinds of strategies 
caregivers use to make their decisions. For example, using game 
theory to measure the importance of features in predicting near-term 
hypoxic events during surgery has helped explain the contribution of 
various features to the AI model’s output. This approach has been 
shown to provide consistent results with prior knowledge and 
literature, leading to improved clinical decision-making and 
preventing hypoxia during surgery (28). This can also be extrapolated 

to the critical care setting to explain the contribution of different 
features in the output of AI models. Additionally, providing detailed 
methodologies for model validation, robustness of analysis, and expert 
knowledge can help alleviate concerns and increase the reliability and 
trust in AI models (4).

In this study, in contrast to SHAP, we will concentrate on two 
more example post-hoc model accuracy techniques that have gained 
minimal attention in the physical scientific world, namely breakDown 
(BD) research and Ceteris-Paribus (CP) analyses. The BD technique, 
like the SHAP method, is founded on the variety attribution principle, 
which divides each observation’s estimate into its individual variable 
components (29, 30). The BD values offer action descriptions of the 
impacts of variables in a clever way, in contrast to the SHAP values. 
The independence and non-interaction of the input characteristics 
(factors or descriptors) constitutes a component of the BD method’s 
presumptions (31). For BD evaluation, there are two algorithms: 
step-up and step-down. The step-down approach begins with a 
complete collection of input characteristics.

Finally, in order to minimize the proximity to the prediction 
models, each selected feature contribution is determined by 
successively eliminating one characteristic from a set accompanied by 
variable relaxation. In contrast to the step-down approach, the step-up 
method begins with a null set and proceeds in the other manner. In 
feature contributions, both techniques have been proved to deliver 
consistent results.

On the contrary hand, the CP profiles, also known as individual 
conditional expectancies (ICE) plots, assess the impact of a variable 
from a learned ML model while assuming that the levels of all other 
variables remain constant (akin to what-if analysis).

Using CP profiles, one can quickly see how the source and 
responses are connected and how the projected response depends on 
a characteristic (e.g., in a non-linear, linear or complex). In this 
approach, the CP analysis aids in quantifying the influence of a 
particular variable on the conclusions drawn from a black version and 
offers a brief, visual description of the functional form linking an input 
with an output. From either the SHAP or BD analysis, it is difficult to 
draw conclusions regarding this type of functional reliance. Hence, 
adding CP profile plots to SHAP and BD studies is of great utility.

4.2. Reproducibility issues of AI systems 
during application

Frequently, determining the causative factors of deteriorating 
patients from the complete list of differential diagnoses is tough, 
because of the subtle feature of early illness progression or the 
existence of co-existing disorders disguising the underlying problem. 
Above all, it is important to accurately interpret the underlying 
context, which is sometimes difficult to do. For instance, it is not 
enough to infer that pulmonary infiltrates are caused by an excessive 
amount of alveolar fluid. These may signify pleural effusion, 
pulmonary embolism fluid from an infection or inflammation, 
pulmonary edema with a cardiac origin, collections of blood due to 
trauma, or any of these conditions. Lacking clinical context and 
additional testing, proper and prompt care might be delayed. AI 
might aid in such circumstances by obtaining a more exact diagnosis, 
given enhanced text and picture processing power. Using a machine 
learning algorithm, congestive heart failure (CHF) could 
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be  distinguished from other cause of lung illness (32), and the 
quantity of pulmonary edema brought on by the CHF could 
be measured using semi-supervised machine learning and a finite 
difference autoencoder. An AI model was used to evaluate imaging 
data from hospitalized patients in during acute pulmonary syndrome 
coronavirus 2 (SARS-CoV-2) epidemic in order to identify 
coronavirus disease 2019 (COVID-19) (33).

The application of AI in the clinical setting is hindered by a lack 
of sufficient clinical trials and experiments, leading to a low rate of 
reproducibility and future analysis. A review of 172 AI solutions 
created from chart data revealed that the clinical readiness level of AI 
was low, with 93% of the analyzed solutions falling below stage 4 for 
real-world application and only 2% undergoing prospective validation 
(29). The reproducibility of AI solutions is uncertain due to limitations 
in data openness and algorithmic complexity, and there are no clear 
protocols in place to examine this thoroughly. A study showed that 
attempting to reproduce mortality prediction projects resulted in large 
sample size differences in half of the experiments, highlighting the 
importance of accurate labeling, clinical context, and precise reporting 
methods (30). Adherence to reporting standards and the risk of bias 
are also sub-optimal, as a study of 81 non-randomized and 10 
randomized trials using deep learning showed that only 6 of the 81 
non-randomized studies had been tested in a real-world clinical 
setting, and 72% of the studies had high risks of bias (31). Even more 
complex AI models, such as reinforcement learning, face challenges 
as they require significant computational resources and are difficult to 
test on patients in a clinical environment. However, new approaches 
such as inverse reinforcement learning may offer a solution by 
inferring information about rewards, potentially making decision-
assisting engines more robust and reliable with varying input data, 
which is crucial in critical care data science where data is vast and 
extremely diverse (34).

5. Ethical concerns

The use of AI in critical care is a new and developing field, and 
the ethical issues that may arise from its use are not fully 
understood. However, there are a few aspects that can be discussed 
to anticipate potential ethical dilemmas. One issue is data privacy 
and sharing. The process of collecting and manipulating data to 
find patterns could lead to the leakage of confidential information, 
particularly during the pre-processing stage and external 
validation. De-identification and novel models such as federated 
learning might help to minimize data leakage and increase the 
speed of the validation process (4). Another ethical concern is the 
safety of AI models in patient care. The maturity metric used for 
self-driving cars has been used to describe the safety of AI models, 
with 6 levels ranging from no automation to full automation (35). 
Based on this scale, most AI-driven solutions would currently fall 
into the categories of partial or no automation, meaning that 
human oversight and decision-making are still required. This also 
raises questions about patient autonomy and informed consent, as 
AI recommendations may not always align with a patient’s 
preferences. In order to address these ethical issues and overcome 
the limitations of AI, researchers and clinicians need to be aware 
of the potential problems and develop solutions to mitigate them. 
This also includes understanding patient perspectives and 

incorporating them into the development of practical and ethical 
AI solutions (4).

6. Guidance for future

The Figure 3 includes efficient data transfer, data de-identification, 
rapid processing, quality control, and decentralized federated learning. 
The field of AI has the potential to greatly impact critical care, but there 
are several steps that must be taken in order to make this happen, as 
highlighted in Figure  3. Many of the recommendations have either 
already been implemented or are in the process of being implemented.

One of the most important is ensuring that the data used for 
training AI models is properly de-identified and standardized. This is 
important for both privacy and data quality, as data from different 
hospitals may be structured differently and contain different amounts 
of personal information. The Society of Critical Care Medicine and the 
European Society of Intensive Care Medicine have developed a process 
for de-identifying data, that involves separating personal data from 
anonymous data, conducting a risk-based process to de-identify the 
personal data, and conducting an external review to ensure that all 
privacy and legal considerations are met (36). Another important step 
is standardizing the data in order to facilitate efficient exchange between 
different hospitals. This requires developing a standard format for 
storing and exchanging clinical and physiological data. One such 
format, the Hierarchical Data Format, Version 5 (HDF5), allows for the 
storage, compression, and real-time streaming of multiparameter data. 
This would allow for the integration of other types of large-scale 
datasets, such as those in imaging or genomics (37). Another solution 
is the use of federated learning, where models can be trained locally at 
different hospitals rather than having the data sent to a central location 
for training. This helps to preserve privacy and can be particularly useful 
when the data distribution is imbalanced or skewed. A successful 
example of this approach was seen during the COVID-19 pandemic, 
where 20 academic centers collaborated to predict clinical outcomes 

FIGURE 3

Guidance for future.
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from COVID-19 using a federated learning approach. The AI model 
was trained on chest X-ray data, and achieved an average area under the 
curve (AUC), of 0.92 for predicting 24–72 h outcomes (4). The task of 
labeling events for AI models can be  labor-intensive and resource-
intensive, but novel AI models, such as weakly supervised learning, are 
being developed to make the process more efficient. This type of 
learning can build desired labels with only partial participation of 
domain experts, which preserves resources. Additionally, clinical trials 
can also be designed with AI models to maximize benefits and minimize 
risks to participants, as well as to make the best use of limited resources. 
One example of this is the Randomized Embedded Multifactorial 
Adaptive Platform for Community-Acquired Pneumonia 
(REMAP-CAP) trial, which uses a Bayesian inference model, to identify 
the optimal treatment for community-acquired pneumonia and has 
contributed to improved survival among critically ill COVID-19 
patients (38). The labeling process for AI models can be a difficult and 
resource-intensive task. To make this process more efficient, new AI 
models such as weakly supervised learning have been developed. This 
method of learning allows for the partial involvement of domain experts 
and can reduce resource usage. For example, in the case of COVID-19 
patients visiting the emergency department, weakly supervised learning 
was used in conjunction with medical ontologies and expert-driven 
rules to classify patients with related symptoms. This combination of 
weakly supervised learning and pretrained language models improved 
performance compared to a majority vote classifier, reducing the cost of 
creating classifiers in a short period of time, especially during a 
pandemic when experts may not be available for labeling. Innovative 
trial designs can also be developed with AI models to make the best use 
of resources and minimize risks to participants (39). This platform, 
initially developed for community-acquired pneumonia, has continued 
to enroll patients during the COVID-19 pandemic and has contributed 
to improved survival among critically ill patients (4, 40–42). For an AI 
model to be useful in real-life settings, it needs to provide important 
information in a timely manner, especially for critically ill patients who 
require quick feedback. The AI model should have a fast data 
pre-processing platform, parsimoniously feature input data, and deliver 
output rapidly. To date, no such model has been developed that can 
successfully do the above-mentioned tasks in such a quick manner. 
Although true real-time prediction is a challenging task, the application 
of a real-time AI model in the critical care environment could offer 
significant benefits without delay. Once the AI model is deemed useful 
in a clinical setting, quality assessment efforts should follow to ensure 
its maturity and integration with healthcare. The National Academy of 
Medicine of the United States has published a white paper on AI use in 

healthcare, emphasizing the development of guidelines and legal terms 
for safer, more effective, and personalized medicine (43).

7. Conclusion

The utilization of artificial intelligence (AI) in critical care presents 
numerous opportunities for enhancing outcomes in critically ill patients 
by enabling the perception of disease, predicting changes in pathological 
processes, recognizing unique patterns in disease presentations, and 
assisting in the process of clinical decision-making in a symbiotic fashion 
with care-givers. Moreover, AI can facilitate the understanding of 
medical processes by presenting recommendations for patient care in an 
interpretable and hierarchical manner through techniques such as 
reinforcement learning. The technology has the potential to improve 
understanding of the diverse clinical needs of critically ill patients, risk 
assessment for treatments, and the analysis of patient outcomes.
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Identification of subphenotypes in 
critically ill thrombocytopenic 
patients with different responses 
to therapeutic interventions: a 
retrospective study
Xuandong Jiang *, Weimin Zhang , Yuting Pan  and Xuping Cheng 

Intensive Care Unit, Dongyang Hospital of Wenzhou Medical University, Jinhua, Zhejiang Province, 
China

Introduction: The causes of thrombocytopenia (TP) in critically ill patients are 
numerous and heterogeneous. Currently, subphenotype identification is a 
popular approach to address this problem. Therefore, this study aimed to identify 
subphenotypes that respond differently to therapeutic interventions in patients 
with TP using routine clinical data and to improve individualized management of 
TP.

Methods: This retrospective study included patients with TP admitted to the 
intensive care unit (ICU) of Dongyang People’s Hospital during 2010–2020. 
Subphenotypes were identified using latent profile analysis of 15 clinical variables. 
The Kaplan–Meier method was used to assess the risk of 30-day mortality for 
different subphenotypes. Multifactorial Cox regression analysis was used to 
analyze the relationship between therapeutic interventions and in-hospital 
mortality for different subphenotypes.

Results: This study included a total of 1,666 participants. Four subphenotypes were 
identified by latent profile analysis, with subphenotype 1 being the most abundant 
and having a low mortality rate. Subphenotype 2 was characterized by respiratory 
dysfunction, subphenotype 3 by renal insufficiency, and subphenotype 4 by 
shock-like features. Kaplan–Meier analysis revealed that the four subphenotypes 
had different in-30-day mortality rates. The multivariate Cox regression analysis 
indicated a significant interaction between platelet transfusion and subphenotype, 
with more platelet transfusion associated with a decreased risk of in-hospital 
mortality in subphenotype 3 [hazard ratio (HR): 0.66, 95% confidence interval (CI): 
0.46–0.94]. In addition, there was a significant interaction between fluid intake 
and subphenotype, with a higher fluid intake being associated with a decreased 
risk of in-hospital mortality for subphenotype 3 (HR: 0.94, 95% CI: 0.89–0.99 per 
1 l increase in fluid intake) and an increased risk of in-hospital mortality for high 
fluid intake in subphenotypes 1 (HR: 1.10, 95% CI: 1.03–1.18 per 1 l increase in fluid 
intake) and 2 (HR: 1.19, 95% CI: 1.08–1.32 per 1 l increase in fluid intake).

Conclusion: Four subphenotypes of TP in critically ill patients with different 
clinical characteristics and outcomes and differential responses to therapeutic 
interventions were identified using routine clinical data. These findings can help 
improve the identification of different subphenotypes in patients with TP for 
better individualized treatment of patients in the ICU.
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1. Introduction

Thrombocytopenia (TP) is generally defined as having a platelet 
count of <100 × 109/L. This condition is common among critically ill 
patients in both medical and surgical intensive care units (ICUs), with 
a global prevalence of 21–77% (1, 2). The causes of TP in ICU patients 
vary, including sepsis, trauma, surgery, and medication (2, 3). Most 
patients develop TP within 4 days of admission to the ICU. A long 
duration of TP is associated with a poor prognosis (4, 5). Numerous 
studies have demonstrated that TP is an independent risk factor for 
mortality in ICU patients, being associated with severe bleeding 
events and increased transfusion requirements as well as with the 
duration of ICU stay and an increased incidence of acute kidney 
injury (AKI) (6, 7). Unfortunately, the efficacy of current interventions 
and treatment methods for TP in ICU patients is limited (8, 9).

Previous studies based on standardized treatment regimens for 
patients with TP have failed to yield satisfactory treatment outcomes. 
For example, a meta-analysis of the therapeutic efficacy of recombinant 
human thrombopoietin in patients with TP with sepsis by Zhang et al. 
revealed no significant difference in 28-day mortality (10). A recent 
review reported that the use of platelet transfusion, glucocorticoids, and 
intravenous immune globulin for the treatment of immune TP requires 
further study (11). The possible reasons for the unsatisfactory treatment 
outcomes in patients with TP include the significant heterogeneity of 
TP, which is associated with the presence of multiple pathogenic factors, 
such as inflammation, endothelial dysfunction, coagulopathy, 
hemodilution, and altered platelet production, in critically ill patients 
(12). Subphenotyping, a precision medicine-based treatment option, is 
currently a very common approach for addressing disease heterogeneity 
and has been applied to common critical illnesses, such as sepsis, AKI, 
and acute respiratory distress syndrome (ARDS) (13–15).

Most studies have focused on determining prognosis by staging, 
and only few studies have focused on different responses to treatment 
after staging. For example, Zhang et al. retrospectively analyzed 14,993 
patients with severe sepsis and identified four subphenotypes of sepsis 
using latent profile analysis, each of which responded differently to 
fluid resuscitation (16). Bhatraju et al. used latent class analysis to 
classify a critically ill AKI population and applied it to AKI patients in 
the Vasopressin and Septic Shock Trial. The result of the initial analysis 
was negative, but subphenotyping revealed that vasopressin therapy 
had survival benefits in patients with subphenotype 1 (17). However, 
only few studies have reported on the subphenotypes of severe TP, and 
even fewer studies have reported on its response to different 
therapeutic interventions (12).

Therefore, this study aimed to identify different subphenotypes 
in TP patients admitted to the ICU of our hospital over the last 
10 years with different clinical outcomes and different responses to 
therapeutic interventions, using latent profile analysis based on 
routine clinical data, with the aim of improving prognosis 
prediction and treatment of critically ill patients and providing 
guidance for clinicians to achieve individualized management 
of patients.

2. Materials and methods

2.1. Study design

This study followed the Strengthening the Reporting of 
Observational Studies in Epidemiology guidelines 
(Supplementary Table S1). In this retrospective study, 1,666 patients 
with TP who were first admitted to the ICU of Dongyang People’s 
Hospital between January 1, 2010, and October 31, 2020, were 
included. The inclusion criteria were first admission to the ICU and 
ICU stay of ≥48 h. The exclusion criteria were age < 18 years, 
hematological malignancy, liver cirrhosis, or previous splenectomy.

2.2. Data collection and grouping

2.2.1. Data collection
Data were collected using the medical record information mining 

software provided by Shanghai Le9 Healthcare Technology Co., Ltd. 
(Shanghai, China). The following information was collected: (1) age, 
sex, Acute Physiology and Chronic Health Evaluation (APACHE)-II 
score, complications, vasopressor use, renal replacement therapy, fluid 
intake and urine output for 24 h after ICU admission; and biochemical 
indexes and first vital signs at ICU admission.

The therapeutic interventions include glucocorticoid use, 
immunoglobulin use, platelet transfusion during ICU stay, and fluid 
intake for 24 h after ICU admission.

The primary outcome was hospital mortality. The secondary 
outcomes included duration of mechanical ventilation, length of ICU 
stay, length of hospital stay, and hospitalization cost.

2.2.2. Diagnostic criteria
We defined TP as a platelet count of <100 × 109/L in the first 48 h 

after ICU admission (2, 3).

2.3. Data processing

Variables with >20% missing values were deleted. If the incidence 
of missing values was <2%, the mean value of the variable was 
substituted for the missing values. The missing values of variables with 

Abbreviations: AKI, Acute kidney injury; APACHE, Acute physiology and chronic 

health evaluation; ARDS, Acute respiratory distress syndrome; BIC, Bayesian 

information criterion; CI, Confidence interval; ICU, Intensive care unit; LPA, Latent 

profile analysis; LRT, Likelihood ratio test; HR, Hazard ratio; TP, Thrombocytopenia.
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loss rates of >2 and < 15% were replaced using multiple imputations. 
Outliers were handled as missing values.

2.4. Latent profile analysis

Latent profile analysis (LPA), an unsupervised machine learning 
algorithm, is a modeling approach for classifying latent variables that 
focuses on identifying potential subgroups within a population, based 
on a specific set of variables, using an expectation–maximization 
algorithm to estimate the parameters of the latent class model (18). The 
variables included in LPA modeling are clinical and are incorporated 
from domain expertise and from the relevant literature (16, 19, 20). 
Pearson’s correlation analysis was used to determine the correlations 
among characteristic variables, and variables with correlation coefficients 
>0.7 were removed. Finally, the following 15 common clinical variables 
were selected: platelet count at initial admission to ICU, age, creatinine 
level, glucose concentration, systolic blood pressure, respiratory rate, 
oxygen saturation, heart rate, white blood cell count, hematocrit level, 
lactate level, pH, partial pressure of oxygen, partial pressure of carbon 
dioxide, and bicarbonate level. The number of categories was determined 
using the Bayesian information criterion (BIC), entropy, and bootstrap 
likelihood ratio tests. Lower BIC values indicated a better model fit. 
Entropy ranged from 0 to 1, with higher values indicating higher 
accuracy of categorization. The Vuong–Lo–Mendell–Rubin likelihood 
ratio test (LRT) was used to assess the number of mixture components 
in a given finite mixture model parameterization, and value of ps were 
reported to compare n-class and (n − 1)-class models (21). A value of p 
of <0.05 indicated statistical significance in the LRT. In addition, the 
proportion of patients in each potential class with a number of patients 
of >5% of any other potential class should be assigned to a class with a 
minimum probability greater than 0.8, otherwise members of this class 
were considered unstable (22). The number of potential classes was 
determined in conjunction with clinical interpretation.

2.5. Statistical analyses

Descriptive statistics were analyzed conventionally using the 
CBCgrps package in R1 (23). Normally distributed measurement data 
are expressed as mean and standard deviation (x ± s), and non-normally 
distributed data are expressed as median [interquartile range (IQR): 
P25, P75]. Comparisons across groups on baseline characteristics were 
performed using analysis of variance for continuous variables and the 
chi-square tests for categorical variables. All statistical analyses were 
performed using R (software version 4.1.3; https://www.r-project.
org/). A value of p <0.05 was considered statistically significant.

The Kaplan–Meier method was used to analyze the relationships 
of the four subphenotypes with in-hospital 30-day mortality. 
Multivariate Cox regression models were used to investigate the 
independent association between therapeutic interventions and 
mortality. Variables with p < 0.1 in the univariate regression analysis 
and the important clinical variables were selected for the Cox model 
to test for interactions between different categories and therapeutic 

1 https://www.r-project.org/

interventions. The model was adjusted for the following covariates: 
age, sex, APACHE II score, vasopressor used, surgery, sepsis and white 
blood cell count. Platelet transfusion and fluid intake separately 
interacted with each category. The hazard ratio (HR) and associated 
95% confidence interval (CI) for the effect of platelet transfusion and 
each 1 l increase in fluid intake on mortality outcomes are reported.

2.6. Ethics approval

This study was approved by the Ethics Committee of Dongyang 
People’s Hospital (DRY-2023-YX-016) and followed all related local 
guidelines and regulations, including the human genetics-related 
regulations. The need for obtaining informed consent was waived by 
the Ethical Committee of Dongyang People’s Hospital, due to the 
retrospective nature of this study, and the study involved no human 
tissue collection and storage process. The data were analyzed 
anonymously by removing personal information of the patients.

3. Results

3.1. Study population

The flow diagram of this study is shown in Figure  1. After 
excluding 8,702 patients, 1,666 participants with a mean age of 
61.5 ± 16.6 years were finally included. Of these, 61.6% were male. The 
overall mortality rate was 23.4%.

3.2. Selection of optimal categories

The Akaike information criterion and sample size-adjusted BIC 
value decreased from the 2-class model to the 10-class model, but the 
decrease began to slow from the 4-class model to the 5-class model. 
The 4-class model had the largest entropy and minimum probability 
of <0.8, starting at the 5-class model, suggesting that the minimum 
probability assigned to this class was <0.8, and the 5–10-class models 
were considered unstable (Figure 2). Therefore, the optimal selection 
was a 4-class model.

3.3. Clinical characteristics and outcomes 
of subphenotypes

The characteristics of the four subphenotypes are shown in Figure 3 
and Table 1. Subphenotype 1 was the most abundant one of the four 
categories, with a total of 1,097 patients, accounting for 66% of all 
patients. The values of all variables were approximate of the means. 
Thus, subphenotype 1 was considered as the baseline category. 
Subphenotype 2 was characterized by low oxygen saturation [94, IQR: 
93–96%], low partial pressure of oxygen (97.4 ± 41.9 mmHg), and the 
highest partial pressure of carbon dioxide (36.1 ± 8.2 mmHg) and was 
considered as the respiratory failure category. Subphenotype 3 was 
characterized by the highest serum creatinine level (272, IQR: 
216–272 mmol/L) and low bicarbonate levels (17.6 ± 3.7 mmol/L) and 
was considered as the renal insufficiency category. Subphenotype 4 was 
characterized by the highest lactate level (7.90, IQR, 6.40–10.05 mmol/L), 
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low systolic blood pressure (116.4 ± 23.8 mmHg), and low bicarbonate 
level (17.0 ± 2.7 mmol/L) and was considered as the shock category.

Table 2 shows a comparison of clinical outcomes. Subphenotype 
1 had the lowest mortality rate (17.4%), the lowest duration of 
mechanical ventilation, the shortest duration of ICU stay and hospital 
stay, and the lowest hospitalization cost. Subphenotype 3 had the 
highest mortality rate (47.4%), the highest APACHE II score 
(25.0 ± 8.1), and the highest proportion of renal replacement therapy 
(47.4%). Subphenotype 4 had a mortality rate of 31.3%, the longest 
duration of hospital stay (23 days, IQR: 12–34 days), and the highest 
hospital cost (CNY 108 × 103, IQR: CNY 52 × 103–149 × 103). 
Subphenotypes 2 and 4 had similar mortality rates (Figure 4).

3.4. Therapeutic interventions

There were significant differences in the proportion of platelet 
transfusion among the four subphenotypes (p < 0.001). Subphenotype 
1 had the lowest platelet transfusion rate (11.9%), and others had a 

platelet transfusion rate of >20%. After adjusting for age, sex, APACHE 
II score, vasopressor used, white blood cell count, surgery, and sepsis, 
multivariate Cox regression models indicated that there was a 
significant interaction between platelet transfusion and each category, 
with higher platelet transfusion associated with a decreased risk of 
in-hospital mortality in subphenotype 3 (HR: 0.66, 95% CI: 0.46–0.94; 
Table 3). The total fluid intake at 24 h after admission to the ICU was 
4.0 (IQR: 3.3–5.2) L, and the total urine output was 2.3 (IQR: 1.6–3.1) 
L in all patients. Subphenotype 1 had the lowest fluid intake (3.91, 
IQR: 3.28–4.84) L and highest urine output (2.4, IQR: 1.7–3.1) 
L. Subphenotype 4 had the highest fluid intake (4.66, IQR: 3.72–6.51) 
L, and subphenotype 3 had the lowest urine output (1.3, IQR: 0.4–2.3) 
L (Table 2). However, a significant interaction was noted between fluid 
intake and each category, with higher fluid intake associated with a 
decreased risk of in-hospital mortality in subphenotype 3 (HR: 0.94, 
95% CI: 0.89–0.99 per 1 l increase in fluid intake) but associated with 
an increased risk of in-hospital mortality in subphenotypes 1 (HR: 
1.10, 95% CI: 1.03–1.18 per 1 l increase in fluid intake) and 2 (HR: 
1.19, 95% CI: 1.08–1.32 per 1 l increase in fluid intake; Table  4). 
Figure 5 shows platelet transfusion and risk of hospital mortality, 
stratified by four subphenotypes, whereas Figure 6 shows fluid intake 
and risk of hospital mortality, stratified by four subphenotypes.

3.5. Sensitivity analysis

We deleted 203 patients with missing data, retained outliers for 
sensitivity analysis, and obtained similar results in LPA analysis 
(Supplementary Figure S1). The maximum value of entropy was in 
four categories; therefore, the best classification was four categories, 
and the features of the four categories were also similar.

4. Discussion

In this study, we identified four clinical subphenotypes of TP, with 
different physiological characteristics and in-hospital mortality, using 
only routine clinical data. We  also found an interaction between 
subphenotypes and platelet transfusion and fluid intake, suggesting 
the involvement of these subphenotypes in precision medicine-based 
approaches to the treatment of TP.

FIGURE 1

Flow chart of the study. ICU, intensive care unit.

FIGURE 2

Best number of classes for latent profile analysis. The value of p was reported for the bootstrap likelihood ratio test comparing the current model (k 
class) to the model with k-1 class. AIC, Akaike information criterion; SABIC, sample size-adjusted Bayesian information criteria.
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Platelet transfusion is a common treatment for patients with PT, 
but it can be  ineffective for various reasons, such as infection, 
medication, disseminated intravascular coagulation, etc. (24–26). In 
some cases, platelet counts transiently increase after transfusion, and 
several studies have demonstrated that platelet transfusion does not 
improve patient outcomes (27). Our study demonstrated that platelet 
transfusion can improve in-hospital mortality rates in patients with 
subphenotype 3 of TP, indicating that identifying subphenotypes is a 
potential method for addressing platelet transfusion in critically 
ill patients.

Intravenous fluids are the cornerstone of patient care in the ICU; 
both inadequate fluid intake and fluid overload increased mortality. 
Overall, in-hospital mortality increased with higher fluid intake in our 
study, which is consistent with the finding of previous studies (28, 29). 

However, in subphenotype 3 cases, increased fluid intake was 
associated with improved outcomes. This may be associated with the 
clinical characteristics of subphenotype 3, including renal dysfunction, 
metabolic acidosis. Most clinicians are now aware that AKI patients 
require fluid restriction; however, excessive fluid restriction may lead 
to insufficient effective blood volume (30, 31). Therefore, a more 
precise volume assessment is necessary for this patient subpopulation. 
Subphenotype 4 exhibited the highest lactate level, a high fluid intake, 
and a high urine output but lower mortality than that exhibited by 
subphenotype 3, which may be related to less fluid overload. Previous 
studies have demonstrated that fluid overload is positively correlated 
with mortality in critically ill patients (32, 33). Therefore, we believe 
that precise fluid management based on subphenotypic classification 
is a promising future direction.

FIGURE 3

Characteristics of the four subphenotypes identified by latent profile analysis. All numeric values were scaled for better visualization on the vertical axis. 
Profile 1 is the largest class over all study days with all variables in average value (the baseline class). Profile 2 is characterized by low oxygen saturation 
and partial pressure of oxygen, the highest partial pressure of carbon dioxide (the respiratory failure class). Profile 3 is characterized by the highest 
serum creatinine and low bicarbonate levels (renal dysfunction class). Profile 4 is characterized by the highest lactate level, and low systolic pressure 
and bicarbonate level (the shock class). FMM, finite mixture modeling; WBC, white blood cell; PO2, partial pressure of oxygen; PCO2, partial pressure of 
carbon dioxide. *p < 0.05, ****p < 0.001.

TABLE 1 Continuous variables included in the mixture modeling.

Characteristic Profile 1 (n = 1,097) Profile 2 (n = 209) Profile 3 (n = 114) Profile 4 (n = 246) p

Age (years) 61.3 ± 16.6 65.0 ± 15.8 68.2 ± 14.2 56.2 ± 16.5 <0.001

Platelet (×109/L) 87.1 ± 28.7 83.0 ± 33.1 91.7 ± 38.2 89.8 ± 36.8 0.041

White blood cell (×109/L) 11.2 ± 5.0 12.3 ± 6.7 13.7 ± 7.7 15.2 ± 6.1 <0.001

Hematocrit 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 <0.001

pH 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 7.3 ± 0.1 <0.001

PO2 (mmHg) 171.0 ± 54.9 97.4 ± 41.9 126.6 ± 49.0 169.6 ± 57.8 <0.001

PCO2 (mmHg) 34.8 ± 6.4 36.1 ± 8.2 31.5 ± 7.0 34.8 ± 7.4 <0.001

Bicarbonate (mmol/L) 21.4 ± 2.9 19.7 ± 4.1 17.6 ± 3.7 17.0 ± 2.7 <0.001

Lactate (mmol/L) 2.20 (1.50, 3.20) 2.70 (1.50, 5.00) 2.60 (1.50, 3.68) 7.90 (6.40, 10.05) <0.001

Creatinine (mmol/L) 70 (55, 91) 106 (70, 170) 272 (216, 272) 90 (71, 121) <0.001

Glucose (mmol/L) 8.3 (6.8, 10.1) 8.9 (7.2, 11.5) 9.2 (7.2, 11.5) 11.4 (8.9, 13.9) <0.001

Systolic pressure (mmHg) 133.1 ± 28.8 116.7 ± 26.1 121.9 ± 24.7 116.4 ± 23.8 <0.001

Heart rate (/min) 88.0 ± 19.0 105.4 ± 19.9 99.8 ± 21.2 103.6 ± 20.2 <0.001

Respiratory rate (/min) 14 (12, 16) 18 (14, 26) 18 (14, 25) 14 (12, 19) <0.001

Oxygen saturation (%) 100 (100, 100) 94 (93, 96) 100 (99, 100) 100 (99, 100) <0.001

Continuous variables are described by means and quarterbacks. Categories variables are analyzed by χ2 test and continuous variables are analyzed by Wilcoxon rank sum test. PO2, partial 
pressure of oxygen; PCO2, partial pressure of carbon dioxide.
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Previous classifications of TP were based only on the severity of 
platelet count decrease, and some critically ill patients often 
presented with transient TP that was not well reflective of patient 
prognosis or therapeutic efficacy. Wu et  al. reviewed three 
subphenotypes based on possible mechanisms of sepsis-associated 
TP: increased platelet consumption, decreased platelet production, 
and increased platelet destruction (34). In a similar study, Bedet et al. 
used hierarchical clustering of 60 patients with septic shock and 
identified five subphenotypes of patients with septic TP, which 
facilitated further understanding of the mechanisms of TP (12). 

However, their study included 27 endogenous mediators associated 
with sepsis, and the clinical applicability of this classification system 
may be limited.

In the present study, the classification of clinical subphenotypes of 
TP was based on LPA, which can be  used to assess continuous 
indicators commonly measured in clinics. In contrast to cluster 
analysis, LPA considers measurement errors and uses objective criteria 
to determine the optimal categories, making it more robust and 
reliable, with a minimum class membership probability of >0.8 
indicating good model stability (35). Similar techniques have been 

TABLE 2 Categorical variables and outcome variables not included in the mixture modeling.

Characteristic Profile 1 (n = 1,097) Profile 2 (n = 209) Profile 3 (n = 114) Profile 4 (n = 246) p

Male [n(%)] 646.0 (58.9%) 143.0 (68.4%) 90.0 (78.9%) 147.0 (59.8%) <0.001

Smoking [n(%)] 377.0 (34.4%) 89.0 (42.6%) 49.0 (43.0%) 90.0 (36.6%) 0.056

Alcohol drinking [n(%)] 404.0 (36.8%) 83.0 (39.7%) 48.0 (42.1%) 91.0 (37.0%) 0.637

Comorbidities [n(%)]

Hypertension 312.0 (28.4%) 78.0 (37.3%) 60.0 (52.6%) 58.0 (23.6%) <0.001

Diabetes 86.0 (7.8%) 28.0 (13.4%) 24.0 (21.1%) 27.0 (11.0%) <0.001

Congestive heart failure 32.0 (2.9%) 15.0 (7.2%) 13.0 (11.4%) 16.0 (6.5%) <0.001

Chronic obstructive pulmonary 

disease

75.0 (6.8%) 35.0 (16.7%) 17.0 (14.9%) 9.0 (3.7%) <0.001

Input_24h (L/h) 3.91 (3.28, 4.84) 4.02 (3.27, 5.14) 4.27 (2.98, 5.97) 4.66 (3.72, 6.51) <0.001

Uo_24h (L/h) 2.4 (1.7, 3.1) 2.3 (1.3, 3.2) 1.3 (0.4, 2.3) 2.3 (1.6, 3.1) <0.001

APACHE-II score 18.2 ± 7.0 21.9 ± 8.3 25.0 ± 8.1 20.8 ± 7.4 <0.001

Vasopressor used [n(%)] 651.0 (59.3%) 167.0 (79.9%) 98.0 (86.0%) 202.0 (82.1%) <0.001

Glucocorticoid used [n(%)] 460 (41.9) 104 (49.8) 38 (33.3) 123 (50) 0.004

Immunoglobulin used [n(%)] 9 (0.8) 13 (6.2) 4 (3.5) 3 (1.2) <0.001

Platelet infusion [n(%)] 130 (11.9) 43 (20.6) 29 (25.4) 59 (24) <0.001

Renal replacement therapy [n(%)] 20.0 (1.8%) 31.0 (14.8%) 54.0 (47.4%) 28.0 (11.4%) <0.001

Biochemical indexes on ICU admission

Red blood cell (×109/L) 3.4 ± 0.6 3.6 ± 0.8 3.3 ± 0.8 3.3 ± 0.8 <0.001

Potassium (mmol/L) 4.1 ± 0.5 4.1 ± 0.6 4.5 ± 0.7 4.0 ± 0.6 <0.001

Sodium(mmol/L) 142.0 ± 4.1 142.5 ± 4.6 141.8 ± 5.4 144.5 ± 4.3 <0.001

Calcium (mmol/L) 2.0 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 0.013

Urea (mmol/L) 7.3 (5.5, 9.3) 10.3 (7.1, 15.2) 19.6 (14.6, 20.7) 7.9 (6.0, 10.3) <0.001

Prothrombin time (s) 15.6 (14.5, 16.8) 15.9 (14.4, 18.5) 17.0 (14.9, 19.4) 16.7 (15.0, 20.0) <0.001

International normalized ratio) 1.25 (1.13, 1.38) 1.28 (1.13, 1.55) 1.38 (1.18, 1.65) 1.35 (1.19, 1.68) <0.001

Activated partial thromboplastin 

time (s)

40 (36, 46) 46 (40, 55) 47 (41, 58) 43 (37, 59) <0.001

D.dimer (μg/L) 5.3 (2.1, 13.6) 7.0 (2.6, 16.0) 6.6 (2.7, 16.0) 8.1 (2.6, 16.0) 0.001

Outcome

Hospital_mortality [n(%)] 191.0 (17.4%) 68.0 (32.5%) 54.0 (47.4%) 77.0 (31.3%) <0.001

Ventilation duration (days) 2 (1, 7) 4 (1, 9) 4 (0, 10) 3 (1, 10) 0.017

ICU length of stay (days) 5 (3, 11) 7 (4, 13) 7 (3, 14) 7 (4, 13) <0.001

Length of hospital stay (days) 21 (13, 31) 17 (10, 30) 16 (8, 26) 23 (12, 34) <0.001

Cost (×103 yuan) 67 (40, 101) 57 (32, 99) 57 (32, 97) 108 (52, 149) <0.001

Continuous variables are described by means and quarterbacks. Categories variables are analyzed by χ2 test and continuous variables are analyzed by Wilcoxon rank sum test. APACHE, acute 
physiology and chronic health evaluation; Input_24h, fluid input for 24 h on ICU admission; Uo_24h, urine volume for 24 h on ICU admission; ICU, intensive care unit; Hosp. LOS, length of 
hospital stay.
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successfully applied to analyze therapeutic heterogeneity among 
subgroups of ARDS patients (36, 37).

This study had some limitations. First, the nature of the study was 
retrospective, and no causal inferences could be drawn. Moreover, the 
variables investigated were selected with reference to previous studies. 
Information on some underlying variables (such as height and weight) 
and inflammation-related variables (such as C-reactive protein and 
procalcitonin levels) was not available. Thus, further validation of our 

results in prospective studies is required. Second, the study was 
conducted at a single center and lacked external validation, which 
may limit the generalizability and reproducibility of the findings. 
Future research may explore external validation to ensure the 
robustness and reliability of the subphenotypes identified. Third, 
while LPA is a useful technique for identifying subgroups within a 
population, it is still a relatively new and evolving methodology. 

FIGURE 4

Kaplan–Meier curves for 30-day survival, stratified by four subphenotypes.

TABLE 3 Cox’s proportional hazard models for platelet transfusion and 
hospital mortality in different profiles.

Characteristic HR 95% CI p

Age 0.84 0.68, 1.03 0.10

Sex 1.14 0.92, 1.42 0.2

APACHE-II score 1.10 1.08, 1.11 <0.001

Vasopressor used 3.43 2.42, 4.84 <0.001

White blood cell 0.97 0.95, 0.99 <0.001

Surgery 0.47 0.38, 0.59 <0.001

Sepsis 0.71 0.56, 0.88 0.002

Class

Profile 1 — —

Profile 2 1.01 0.71, 1.44 0.9

Profile 3 1.48 1.03, 2.13 0.036

Profile 4 1.38 1.00, 1.91 0.053

Interaction between profile and platelet transfusion

Profile 1 1.17 0.81,1.67 0.4

Profile 2 0.88 0.48, 1.64 0.7

Profile 3 0.66 0.46, 0.94 0.023

Profile 4 0.69 0.39, 1.23 0.2

HR, hazard ratio; CI, confidence interval; APACHE, acute physiology and chronic health 
evaluation; Input_24h, fluid input for 24 h on ICU admission; ICU, intensive care unit.

TABLE 4 Cox’s proportional hazard models for fluid input and hospital 
mortality in different profiles.

Characteristic HR 95% CI p

Age 0.88 0.72, 1.09 0.2

Sex 1.12 0.90, 1.40 0.3

APACHE-II score 1.09 1.08, 1.11 <0.001

Vasopressor used 3.38 2.39, 4.79 <0.001

White blood cell 0.97 0.95, 0.99 <0.001

Surgery 0.47 0.38, 0.59 <0.001

Sepsis 0.72 0.57, 0.90 0.005

Class

Profile 1 — —

Profile 2 0.81 0.44, 1.48 0.5

Profile 3 2.30 1.21, 4.36 0.011

Profile 4 1.76 0.94, 3.28 0.077

Interaction between profile 

and Input_24h

Profile 1 1.10 1.03, 1.18 0.005

Profile 2 1.19 1.08, 1.32 0.001

Profile 3 0.94 0.89, 0.99 0.029

Profile 4 1.02 0.93, 1.11 0.7

HR, hazard ratio; CI, confidence interval; APACHE, acute physiology and chronic health 
evaluation; Input_24h, fluid input for 24 h on ICU admission; ICU, intensive care unit.
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FIGURE 6

Fluid intake and risk of hospital mortality, stratified by four subphenotypes.

Further validation and refinement of this technique may be required 
to ensure its accuracy and reproducibility. Finally, we were unable to 
exclude patients with specific types of TP, such as TP due to 
pharmacological factors and immune-related TP. Fortunately, the 
overall proportion of such cases was small and did not affect the 
final results.

5. Conclusion

We identified four subphenotypes of patients with TP in the ICU, 
with different prognoses and different responses to therapeutic 
interventions, using common biochemical indicators and vital signs. 
These findings can improve our understanding of the heterogeneity of 

FIGURE 5

Platelet transfusion and risk of hospital mortality, stratified by four subphenotypes.
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patients with TP and can be  used as a basis for future studies. In 
addition, these findings may facilitate the identification of different 
subphenotypes of TP for better individualized treatment of patients in 
the ICU.
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Background: Sepsis-associated acute kidney injury (S-AKI) is a major contributor

to mortality in intensive care units (ICU). Early prediction of mortality risk is crucial

to enhance prognosis and optimize clinical decisions. This study aims to develop a

28-day mortality risk prediction model for S-AKI utilizing an explainable ensemble

machine learning (ML) algorithm.

Methods: This study utilized data from the Medical Information Mart for Intensive

Care IV (MIMIC-IV 2.0) database to gather information on patients with S-AKI.

Univariate regression, correlation analysis and Boruta were combined for feature

selection. To construct the four ML models, hyperparameters were tuned via

random search and five-fold cross-validation. To evaluate the performance of

all models, ROC, K-S, and LIFT curves were used. The discrimination of ML

models and traditional scoring systems was compared using area under the

receiver operating characteristic curve (AUC). Additionally, the SHapley Additive

exPlanation (SHAP) was utilized to interpret the ML model and identify essential

variables. To investigate the relationship between the top nine continuous

variables and the risk of 28-day mortality. COX regression-restricted cubic splines

were utilized while controlling for age and comorbidities.

Results: The study analyzed data from 9,158 patients with S-AKI, dividing them

into a 28-day mortality group of 1,940 and a survival group of 7,578. The results

showed that XGBoost was the best performing model of the four ML models

with AUC of 0.873. All models outperformed APS-III 0.713 and SAPS-II 0.681. The

K-S and LIFT curves indicated XGBoost as the most effective predictor for 28-

day mortality risk. The model’s performance was evaluated using ROCpr curves,

calibration curves, accuracy, precision, and F1 scores. SHAP force plots were

utilized to interpret and visualize the personalized predictive power of the 28-

day mortality risk model. Additionally, COX regression restricted cubic splines

revealed an interesting non-linear relationship between the top nine variables and

28-day mortality.

Conclusion: The use of ensemble ML models has shown to be more effective

than the LR model and conventional scoring systems in predicting 28-day
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mortality risk in S-AKI patients. By visualizing the XGBoost model with the best

predictive performance, clinicians are able to identify high-risk patients early on

and improve prognosis.

KEYWORDS

sepsis-associated acute kidney injury, ensemble machine learning, prediction model,
XGBoost, MIMIC-IV database

Introduction

Sepsis continues to be a major cause of life-threatening
conditions in critically ill patients. The excessive pro- or anti-
inflammatory response can lead to cellular and organ dysfunction,
ultimately resulting in death (1, 2). The most significant sepsis-
associated organ disorder is acute kidney injury (AKI), which
has a high prevalence (2, 3). AKI is an independent risk factor
for high mortality (3, 4), and contributes to 58.6% of the excess
attributable mortality (5). Sepsis-associated acute kidney injury (S-
AKI) can be caused by microvascular dysfunction, inflammation,
and metabolic reorganization. These play a crucial role in the
development of S-AKI (3). However, the high heterogeneity in
S-AKI is associated with multiple pathogenic mechanisms (3, 4),
and there are currently no effective preventive or therapeutic
measures available. The treatment for S-AKI is reactive and non-
specific, which can result in a high mortality rate due to the
difficulty in predicting AKI at the time of patient presentation. As
such, salvage therapy is often the primary treatment option (3).
However, providing early warning to patients at high mortality risk
can help clinicians stratify patient management and improve the
prognosis of patients with S-AKI.

Acute kidney injury, is a frequently encountered clinical
syndrome that often accompanies critical illness. Its developmental
process is complex and multifaceted. It is not sufficient to rely
on a single variable to predict the mortality rate associated with
AKI. Instead, combining multiple factors would be a more accurate
way to forecast the prognosis of AKI (3). In the field of intensive
care, conventional scoring systems that integrate clinical symptoms
and laboratory data have been extensively utilized to forecast the
prognosis of severely ill patients. Notably, the Sequential Organ
Failure Assessment (SOFA), Acute Physiology Score III (APS-III),
and Simplified Acute Physiology Score II (SAPS-II) scores have
demonstrated robust predictive capabilities (6, 7). The prediction

Abbreviations: DM-without-cc, diabetes mellitus without complications;
DM-with-cc, diabetes mellitus with complications; AMI, acute myocardial
infarction; CHF, congestive heart failure; LMR, lymphocyte to monocyte
ratio; CeVD, cerebrovascular disease; NLR, neutrophil to lymphocyte ratio;
SBP, systolic blood pressure; DBP, diastolic blood pressure; MBI, body mass
index; ROX_HR, the ratio of ROX index over HR (beats/min), multiplied by a
factor of 100; PF_ratio, PaO2/FiO2 ratio; M_solid_tumor, metastatic solid
tumor; BUN, blood urea nitrogen; S-AKI, sepsis-associated acute kidney
injury; ICU, intensive care units; ML, machine learning; MIMIC-IV, the Medical
Information Mart for Intensive Care IV; SMOTE, The Synthetic Minority
Oversampling Technique; RF, random forest; GBM, Gradient Boosting
Machine; XGBoost, Extreme Gradient Boosting; LR, logistic regression; AUC,
the area under the receiver operating characteristic curve; SHAP, SHapley
Additive exPlanation.

of 90-day mortality caused by severe infection-related AKI in China
was carried out using COX regression analysis. The study identified
several independent predictor variables including age, emergency
ICU admission, post-surgical cases, admission diagnosis, AKI
etiology, disease severity score, mechanical ventilation, use of
boosters and blood outcomes such as albumin, potassium, and
pH (8). In a study analyzing 30-day mortality in elderly patients
with sepsis, a multivariate logistic regression-based analysis was
conducted and resulted in a more accurate prediction with an
AUC of 0.831 (9). Additionally, a multivariate prediction model for
ICU and in-hospital death in AKI patients undergoing continuous
renal replacement therapy found to be more accurate than SOFA,
APACHE-II, and SAP-II scores (10). Recent trends suggest that the
implementation of big data technologies in healthcare, specifically
machine learning, has led to an improvement in the quality of
care and optimization of healthcare processes and management
strategies (11, 12). Studies have shown that machine learning
prediction models have been successful in early warning of AKI
occurrence and mortality risk (13, 14), with the XGBoost model
achieving a high performance in predicting S-AKI (AUC 0.821)
(15). Zhou et al. utilized data from the MIMIC III database to create
a machine learning model for predicting AKI within 48 h of sepsis-
related ARDS cases. Their model outperformed the discriminatory
ability of SOFA (16). This highlights the potential of machine
learning algorithms in accurately predicting the development
of S-AKI.

Recent studies have shown that machine learning algorithms
have achieved better performance in predicting S-AKI prognosis.
For instance, the XGBoost model was constructed in a recent
study to outperform the SOFA score and SAP-II in predicting
mortality at different periods based on dynamic data of S-AKI cases
updated every 12 h in the MIMICIV public database (14). However,
there is a lack of research comparing multiple ensemble machine
learning algorithms for early predict on of the high risk of 28-day
mortality in S-AKI. Ensemble ML algorithms differ from traditional
prediction models like logistic regression in that they do not involve
rigorous screening of variables or adjustment for data imbalance
during the construction process. This can lead to overfitting and
classification boundary shifting in the resulting models. Previous
studies on ML models have not extensively explored the linear or
non-linear relationships between significant individual variables of
the prediction model and the resulting outcomes.

This project aims to train and test multiple ensemble ML
models using S-AKI data from the MIMIC-IV library. The goal
is to select the best model that can provide early warning of
the 28-day mortality risk in S-AKI cases. The interpretation and
visualization of the prediction models are done using SHAP
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values. Specifically, SHAP force plots are analyzed to identify
important mortality-related variables for individual cases. We
utilized COX regression-restricted cubic spline plots to analyze
the correlation between crucial, independent variables and 28-
day mortality. Our ultimate goal is to develop a prediction model
that can aid in treatment decisions for patients with S-AKI who
are at a high risk of 28-day mortality, ultimately improving their
chances of survival.

Materials and methods

Participants

The subject case dataset was obtained from the Medical
Information Mart Intensive Care IV (MIMIC IV 2.0)
database, which provides extensive information on more
over 250,000 patients who were admitted to Beth Israel
Deaconess Medical Center in Boston, Massachusetts, USA,
from 2008 to 2021. The MIMIC IV public database was
approved by the Institutional Review Board (IRB) and has
undergone a thorough deidentification process. The database
is freely available to researchers worldwide after receiving joint
approval from the ethics review boards of MIT and Harvard
Medical School. Informed consent was waived as the study
was retrospective. To request access to the database, one
of the investigators (HP) obtained a certificate (certification
number 50527660) by passing the Human Research Participant
Protection Examination.

Patients

The study included adult patients aged ≥18 years or older
who met the Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3) criteria (2), which requires
the presence of known or suspected infection along with organ
dysfunction wand a Sequential Organ Failure Assessment (SOFA)
score of 2 or higher. Additionally, the study also included
patients with AKI that was diagnosed and staged according to
the 2012 Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines. The study excluded patients with renal disease,
such as glomerulonephritis, diabetic nephropathy, hypertensive
nephropathy, hereditary nephritis, and chronic renal failure caused
by various other diseases. Additionally, only the first hospitalization
was considered and patients with ICU stays (LOS) of less than 24 h
were also excluded.

The study collected a comprehensive set of data on each patient,
including their demographics (3 items), vital signs, blood gas
analysis, blood cell count, blood biochemistry, hemodialysis phase
reduction, and co-morbidities. Additionally, the study recorded
information on AKI staging, use of an invasive ventilator, and
urine output 24 h after ICU admission, resulting in a total of
60 variables. The study measured disease severity score (SOFA,
ASPIII, SAPAII) within 24 h of ICU admission, length of stay, ICU
time, 90-day mortality subgroup, in-hospital mortality subgroup,
and follow-up time from hospitalization to death. Participants
were divided into mortality and groups based on whether death
occurred within 28 days.

Outcomes

The primary outcome after ICU admission was death within
28 days. Secondary outcomes included hospital mortality, length of
stayin both the hospital and ICU, and COX regression-restricted
cubic spline analysis.

Statistical methods

In our study, we excluded any variables with missing data
greater than 20% of the case data. For the remaining missing
values, we used the random forest method to interpolate. We
recorded physiological data of patients every hour and used the
mean value. For laboratory data, we selected the maximum or
minimum value based on the basis that had the greatest impact on
outcome in the clinic.

In the baseline data table, continuous variables are presented
as median (IQR), and categorical variables as n (%). Appropriate
statistical tests such as the Mann–Whitney U test, Student’s t-test,
chi-square test, or Fisher’s exact test were used to compare baseline
characteristic variables.

In the variable screening process, we first eliminated variables
with P > 0.05 using univariate logistic regression analysis as they
were deemed less likely to be relevant for 28-day mortality. We
then removed variables with correlations greater than 0.75 through
eliminated by correlation analysis. Finally, we used the “Boruta”
package with the random forest algorithm to screen for essential
characteristic variables to be included in the final model.

To calculate the lambda value of each variable in the
right-skewed distribution, we used the Box-Cox method. We
then performed a series of transformations, including square
root, inverse, log, and inverse transformations, to obtain the
transformed data-set.

To address data imbalance, we utilized the Synthetic Minority
Oversampling Technique (SMOTE) algorithm during the ensemble
machine learning model fitting process. The data-set was divided
into training and testing sets at a 7:3 ratio. Ensemble learning
algorithms, known for their superior performance in machine
learning, were employed for the model fitting process. We utilized
four models to construct the prediction model: Logistic regression
(LR) as the baseline model, and Random Forest (RF), Gradient
Boosting Machine (GBM), and Extreme Gradient Boosting Tree
(XGBoost) representing the Bagging and Boosting algorithms. The
hyperparameters were tuned using the random search method,
and the ensemble machine learning model was fitted using the
5-fold cross-validation method. These models were automatically
constructed using the ’creditmodel’ data package. The performance
of the four ensemble learning models was evaluated using ROC,
K-S, and LIFT curves. AUC values were utilized to compare the
differentiation ability of the prediction models with two traditional
scoring systems, ASP III and SAPS II, ultimately selecting the best
prediction model Additional evaluation of the prediction models’
performance was conducted using ROCpr curves, calibration
curves, accuracy, precision, and F1-score. SHapley’s Additional
exPlanation (SHAP) is a model-agnostic technique based on
cooperative game theory. It is used to explain the predictions
filtered through the best ensemble machine learning model. The
model construction process was shown in Figure 1A.
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The study will also analyze hospital mortality, hospital length of
stay, and ICU length of stay as secondary outcomes. In particular,
the COX regression analysis will focus on the relationship between
important continuous variables and the 28-day risk of death.
To analyze the relationship between important continuous data
variables and 28-day mortality, we will use COX regression
restricted cubic splines with 3 knots. This will be done after
adjusting for age and comorbidities, based on the ranking of the
most important variables in the prediction model. Both linear and
non-linear relationships will be examined.

The analyses were conducted using R version 4.2.1. Our
findings are fully reproducible, and the data is available online
through the MIMIC-IV(2.0) database.

Result

Baseline characteristics

In this study, we extracted data from 69,639 first ICU
admissions in MIMIC IV (2.0), and identified 9,158 patients who
were diagnosed with sepsis and AKI, had no previous renal disease,
and were aged ≥18 years based on nadir criteria. The patients were
then divided into two groups: a mortality group (1,940 cases) and
a survival group (7218 cases) based on whether they died within
28 days (Figure 1B). The 28-day mortality rate for S-AKI from
the MIMIC IV (2.0) dataset was found to be 21.2%. The mortality
and survival groups showed significant differences in most baseline
variables, as indicated by Tables 1, 2. Patients who died had higher
SOFA, APSIII, and SAPS II scores compared to those who survived,
as shown in Table 1.

Data cleaning and features selection

In our study, we excluded variables with missing values greater
than 20%. For the remaining variables, we used the random
forest method to perform multiple interpolations on the missing
values (Supplementary Figure 1). The interpolation density plot
demonstrated that the five interpolated datasets closely matched
the distribution of the original data set (Supplementary Figure 2).
The complete data set, consisting of 60 independent variables, was
obtained after selecting the best-interpolated data set.

Univariate regression analysis was performed for all variables,
and those with a p-value greater than 0.05 were removed. The
following variables were excluded: ROX, Platelets, Basophils,
Lymphocytes, PLR, Peripheral vascular disease, Chronic
pulmonary disease, Rheumatic disease, Peptic ulcer disease,
AIDS, Dialysis, and Dialysis type. The study conducted a univariate
regression analysis on all variables and presented the results using
forest plots (Supplementary Figure 3). In the correlation study
of continuous variables, those with a correlation greater than
0.75 were eliminated, leaving only the variable with the most
significant impact on 28-day death. As a result, Base excess was
eliminated (Supplementary Figure 4). The Boruta algorithm,
which is based on random forest, was used to sort the importance
of variables for further variable screening. This resulted in the
identification of 38 variables that were deemed appropriate

FIGURE 1

(A) Model development process and (B) flowchart of the study.

for model fitting (as shown in Figure 2). Prior to fitting the
machine learning model, data distribution analysis was performed
on all continuous variables, and box plots were obtained (as
demonstrated in Supplementary Figure 5A). To address right-
skewed distribution, we utilized the Box-Cox method to calculate
the lambda value for each variable. For variables with a lambda
value close to -0.5, such as BMI, Pao2, Lactate, Creatinine, BUN,
and Anion gap, we performed a square root inverse conversion.
We performed log conversion for the lambda values of Glucose,
LMR, Pao2/Fio2 ratio, Urine output, WBC, Neutrophils, NLR,
ROX-HR, and Monocytes, which were close to 0. For Bicarbonate,
which had a lambda value close to 0.5, we performed square root
conversion. The lambda value of Respiration rate, Paco2, and
Potassium were close to -1, so we performed log conversion for
these variables as well. The effect after the transfer was shown
by a box plot (as demonstrated in Supplementary Figure 5B).
The transformed data were integrated with other untransformed
data to create a new dataset for building and internally validating
the model.
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TABLE 1 Demographic and clinical characteristics of 28-day survival and mortality group.

[ALL] Survival group Mortality group p-Value

N = 9,158 N = 7,218 N = 1,940

Characteristics (median [IQR] and n (%))

Age (years) 67.0 [57.0–78.0] 67.0 [56.0–77.0] 71.0 [59.0–82.0] <0.001

Gender <0.001

Female 3,916 (42.8%) 2,992 (41.5%) 924 (47.6%)

Male 5,242 (57.2%) 4,226 (58.5%) 1,016 (52.4%)

BMIa 29.2 [25.0–34.3] 29.7 [25.4–34.7] 27.6 [23.4–32.7] <0.001

Urine output (ml) 1,280 [815–1,875] 1,390 [931–1,975] 862 [439–1,415] <0.001

Severity score (median [IQR] and mean (SD))c

APSIII 52.0 [37.0–75.0] 47.0 [34.0–66.0] 79.0 [59.0–101] 0.000

SOFA 3.00 [2.00–5.00] 3.00 [2.00–4.00] 4.00 [2.00–5.00] <0.001

SAPSII 39.0 [31.0–50.0] 37.0 [29.0–46.0] 50.0 [40.0–61.0] <0.001

Vital signs (median [IQR] and mean (SD))

Respiratory rate (cpmd) 28.0 [24.0–32.0] 27.0 [24.0–31.4] 30.0 [25.0–34.0] <0.001

Heart rate (cpmd) 105 [92.0–120] 103 [91.0–118] 113 [97.0–128] <0.001

Systolic blood pressure (mmHg) 86.0 [78.0–94.0] 87.0 [79.0–95.0] 82.0 [73.0–92.0] <0.001

Diastolic blood pressure (mmHg) 44.0 [38.0–50.0] 44.0 [39.0–50.0] 43.0 [36.0–49.0] <0.001

Mean arterial pressure (mmHg) 57.0 [50.0–63.0] 57.0 [51.0–63.0] 54.0 [47.0–61.0] <0.001

Temperature (◦C) 37.4 [37.0–38.0] 37.4 [37.1–38.0] 37.3 [36.9–38.0] <0.001

SpO2 (%) 93.0 [90.0–95.0] 93.0 [91.0–95.0] 92.0 [87.0–94.0] <0.001

ROX indexb 7.11 [4.89–9.89] 7.18 [5.04–9.83] 6.81 [4.26–10.1] <0.001

ROX–HR indexb 6.82 [4.48–9.95] 6.98 [4.71–10.0] 6.12 [3.66–9.55] <0.001

Breathing assistance (median [IQR]), n (%)

Ventilation 0.001

No vetilation 3,832 (41.8%) 3,087 (42.8%) 745 (38.4%)

Ventilation 5,326 (58.2%) 4,131 (57.2%) 1,195 (61.6%)

Dialysis 0.434

No 8,753 (95.6%) 6,892 (95.5%) 1,861 (95.9%)

Yes 405 (4.42%) 326 (4.52%) 79 (4.07%)

Dialysis type 0.465

No 8,753 (95.6%) 6,892 (95.5%) 1,861 (95.9%)

CRRTe 248 (2.71%) 196 (2.72%) 52 (2.68%)

IHDe 157 (1.71%) 130 (1.80%) 27 (1.39%)

In-hospital mortality 0.000

Survival 7,467 (81.5%) 7,103 (98.4%) 364 (18.8%)

Mortality 1,691 (18.5%) 115 (1.59%) 1,576 (81.2%)

Recorded time of death (days) 24.0 [7.00–178] 202 [73.0–681] 7.00 [2.00–14.0] 0.000

Hospitalization time (days) 9.17 [5.55–16.5] 9.84 [6.05–17.8] 6.88 [3.07–12.6] <0.001

ICU time (days) 3.43 [1.92–7.11] 3.24 [1.86–6.92] 4.16 [2.20–7.94] <0.001

AKI stagef <0.001

1 2873 (31.4%) 2382 (33.0%) 491 (25.3%)

2 4765 (52.0%) 3789 (52.5%) 976 (50.3%)

3 1520 (16.6%) 1047 (14.5%) 473 (24.4%)

(Continued)
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TABLE 1 (Continued)

[ALL] Survival group Mortality group p-Value

N = 9,158 N = 7,218 N = 1,940

Comorbidities

Myocardial infarct 0.054

No 7,636 (83.4%) 6,047 (83.8%) 1,589 (81.9%)

Yes 1,522 (16.6%) 1,171 (16.2%) 351 (18.1%)

Congestive heart failure 0.011

No 6,792 (74.2%) 5,397 (74.8%) 1,395 (71.9%)

Yes 2,366 (25.8%) 1,821 (25.2%) 545 (28.1%)

Peripheral vascular disease 0.128

No 8,103 (88.5%) 6,367 (88.2%) 1,736 (89.5%)

Yes 1,055 (11.5%) 851 (11.8%) 204 (10.5%)

Cerebrovascular disease <0.001

No 7,958 (86.9%) 6,370 (88.3%) 1,588 (81.9%)

Yes 1,200 (13.1%) 848 (11.7%) 352 (18.1%)

Dementia <0.001

No 8,808 (96.2%) 6,994 (96.9%) 1,814 (93.5%)

Yes 350 (3.82%) 224 (3.10%) 126 (6.49%)

Chronic pulmonary disease 0.372

No 6,806 (74.3%) 5,380 (74.5%) 1,426 (73.5%)

Yes 2,352 (25.7%) 1,838 (25.5%) 514 (26.5%)

Rheumatic disease 1.000

No 8,841 (96.5%) 6,968 (96.5%) 1,873 (96.5%)

Yes 317 (3.46%) 250 (3.46%) 67 (3.45%)

Peptic ulcer disease 0.075

No 8,890 (97.1%) 7,019 (97.2%) 1,871 (96.4%)

Yes 268 (2.93%) 199 (2.76%) 69 (3.56%)

Mild liver disease <0.001

No 7,610 (83.1%) 6,201 (85.9%) 1,409 (72.6%)

Yes 1,548 (16.9%) 1,017 (14.1%) 531 (27.4%)

Diabetes mellitus without complications 0.015

No 6,934 (75.7%) 5,424 (75.1%) 1,510 (77.8%)

Yes 2,224 (24.3%) 1,794 (24.9%) 430 (22.2%)

Diabetes mellitus with complications 0.023

No 8,737 (95.4%) 6,867 (95.1%) 1,870 (96.4%)

Yes 421 (4.60%) 351 (4.86%) 70 (3.61%)

Paraplegia <0.001

No 8,755 (95.6%) 6,935 (96.1%) 1,820 (93.8%)

Yes 403 (4.40%) 283 (3.92%) 120 (6.19%)

Malignant cancer <0.001

No 7,917 (86.4%) 6,385 (88.5%) 1,532 (79.0%)

Yes 1,241 (13.6%) 833 (11.5%) 408 (21.0%)

Severe liver disease <0.001

No 8,314 (90.8%) 6,684 (92.6%) 1,630 (84.0%)

Yes 844 (9.22%) 534 (7.40%) 310 (16.0%)

(Continued)
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TABLE 1 (Continued)

[ALL] Survival group Mortality group p-Value

N = 9,158 N = 7,218 N = 1,940

Metastatic solid tumor <0.001

No 8,586 (93.8%) 6,933 (96.1%) 1,653 (85.2%)

Yes 572 (6.25%) 285 (3.95%) 287 (14.8%)

AIDS 0.487

No 9,117 (99.6%) 7,188 (99.6%) 1,929 (99.4%)

Yes 41 (0.45%) 30 (0.42%) 11 (0.57%)

Continuous variable data are presented as median (SD or interquartile ranges, IQR). Classified variable data are presented as n (%). Unless otherwise stated, the Mann–Whitney U test is used
for the continuous variable, the χ2 test, or the Fisher’s exact test for the categorical variable.
aBMI, body mass index.
bROX, ratio of SpO2/FIO2 to respiratory rate; ROX-HR, the ratio of ROX index over HR (beats/min), multiplied by a factor of 100.
cAPSIII, Acute Physiology Score III; SAPSII, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment.
dcpm, counts per minute.
eCRRT: continuous renal replacement therapy; IHD: Intermittent Hemodialysis.
fAKI, acute kidney injury.

Development of 28-day mortality risk
prediction model

Out of the total number of patients, 1,940 individuals passed
away within 28 days, resulting in a mortality rate of 21.2% in
the dataset. The balanced dataset was created using the SMOTE
algorithm and then divided into a training and testing set with
a ratio of 7:3. The AUC values for the four prediction models
in the testing set were as follows: XGBoost model had an AUC
value of 0.873 (with a range of 0.860-0.886), GBM model had
an AUC value of 0.865 (with a range of 0.851-0.878), RF model
had an AUC value of 0.849 (with a range of 0.834-0.863), and LR
model had an AUC value of 0.850 (with a range of 0.836-0.864).
The study found that all four machine learning models performed
similarly and were more accurate than the traditional scoring
systems ASPIII (0.713 95% CI 0.694-0.733) and SAPS II (0.681 95%
CI 0.661-0.701). The ROC curve analysis demonstrated that the
ensemble machine learning algorithm was significantly better than
outperforms the traditional scoring system in predicting the 28-day
mortality risk (as shown in Figure 3A). The K-S curves depicted
in Figures 3B–E indicate that XGBoost exhibits a slightly superior
differentiation ability compared to the other prediction models.
Additionally, the LIFT curve (Figure 4) demonstrates that XGBoost
outperforms the other models in the 40-50% position of the testing
set. This could be attributed to XGBoost’s algorithm, which has
demonstrated exceptional learning performance in tabular data,
and its robustness to noise, which is attributed to its regularization
technique. The ensemble machine learning algorithm, XGBoost,
was selected to build the 28-day mortality risk prediction model for
S-AKI.

XGBoost model optimization and
visualization

The XGBoost model was optimized and evaluated using the
“xgboost” package. The area under the precision-recall curve
(AUCpr) was found to be 0.873, which was similar to the area
under the ROC curve (Figure 5A). This suggests that the model

has comparable predictive ability for both death and survival. The
model’s accuracy, precision, recall, and F1-score were 0.773, 0.724,
0.896, and 0.801, respectively. The results indicate that the XGBoost
model performed well in predicting mortality and survival groups.
Additionally, the Recall metric outperformed Accuracy, which
minimizes the possibility of under diagnosing mortality cases.
The calibration curve analysis demonstrated that the model was
accurately calibrated for predicting 28-day mortality risk, with no
significant overestimation or underestimation (Figure 5B).

To determine the contribution of each variable to the XGBoost
model, SHAP values were utilized. The importance of each feature
was calculated using the Shapley value, which compared the model’s
prediction with and without the feature using the “shapviz” package
(Figure 5C). The logarithm of urine output during the first 24 h
of ICU admission was found to be the most important variable
in predicting the 28-day mortality risk in patients with S-AKI.
Among the important variables, pulse oxygen, temperature, age,
and pH et al. are included. Cerebrovascular disease is one of the
most significant comorbidities that affect the risk of death within
28 days. In Figures 5D–F, SHAP explanatory force plots were
used to analyze three cases in the test group (#266, #1066, and
#2066), Each variable’s Shapley value is represented by an arrow
that indicates an increase (red positive values) or decrease (yellow
negative values) in the prediction. The force plots also show the
main variables and their corresponding values. The variables that
have a significant influence on the prediction vary from case to case.

Secondary outcomes

Our analysis of essential patient information revealed that the
in-hospital mortality rate of S-AKI was 18.2%. Of these patients,
81.2% died within 28 days, with the primary time of death occurring
within this timeframe. Additionally, 364 cases (18.8%) resulted
in death within 28 days after discharge from the hospital. The
death group had a shorter hospitalization duration compared to the
survival group, by three days (6.88 [3.07–12.6] vs. 9.84 [6.05–17.8]).
However, the death group had a slightly longer duration of ICU stay
compared to (4.16 [2.20–7.94] vs. 3.24 [1.86–6.92]). It was observed
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TABLE 2 Laboratory results of all patients within 24 h after admission to ICU.

[ALL] Survival group Mortality group p-Value

N = 9158 N = 7218 N = 1940

Arterial blood gas analysis (median [IQR] and mean (SD))

pH 7.31 [7.24–7.36] 7.31 [7.26–7.36] 7.28 [7.17–7.36] <0.001

PaO2 (mmHg) 75.0 [46.0–103] 80.0 [52.0–108] 55.0 [39.0–84.0] <0.001

PaCO2 (mmHg) 47.0 [41.0–54.0] 47.0 [42.0–54.0] 47.0 [40.0–57.0] 0.384

PaO2/FiO2 ratio 168 [100–248] 175 [108–254] 134 [78.0–226] <0.001

Base excess (mmol/L) −3.00 [−7.00 to 0.00] −3.00 [−6.00 to 0.00] −5.00 [−10.00 to 0.00] <0.001

Lactate (mmol/L) 2.40 [1.70–3.80] 2.40 [1.60–3.50] 3.10 [1.80–5.90] <0.001

Anion gap (mmol/L) 16.0 [13.0–19.0] 15.0 [13.0–18.0] 18.0 [15.0–23.0] <0.001

Bicarbonate (mmol/L) 24.0 [22.0–26.0] 24.0 [22.0–26.0] 23.0 [20.0–26.0] <0.001

Complete blood cell count (median [IQR])

White cell count (× 109/L) 14.8 [10.8–19.8] 14.6 [10.8–19.3] 15.8 [10.9–21.8] <0.001

Neutrophil count (× 109/L) 8.87 [5.12–13.6] 8.57 [5.01–13.0] 10.3 [5.75–15.9] <0.001

Eosinophils count (× 109/L) 0.06 [0.01–0.15] 0.07 [0.01–0.16] 0.03 [0.00–0.11] <0.001

Lymphocyte count (× 109/L) 1.02 [0.58–1.65] 1.07 [0.62–1.71] 0.87 [0.47–1.42] <0.001

Monocytes count (× 109/L) 0.53 [0.31–0.85] 0.52 [0.31–0.83] 0.59 [0.34–0.97] <0.001

Platelets count (× 109/L) 155 [105–218] 155 [109–216] 154 [86.0–229] 0.018

NLR ratioa 7.88 [3.99–15.9] 7.33 [3.80–14.7] 10.5 [5.03–21.1] <0.001

PLR ratioa 145 [77.8–281] 140 [76.5–274] 167 [81.2–318] <0.001

LMR ratioa 1.90 [0.96–3.53] 2.00 [1.00–3.75] 1.44 [0.72–2.75] <0.001

Hemoglobin (g/L) 9.80 [8.30–11.3] 9.80 [8.40–11.3] 9.60 [7.97–11.4] <0.001

Blood chemistry results (median [IQR] and mean (SD))

Blood glucose (mg/dl) 101 [86.0–124] 100 [86.0–121] 107 [85.0–134] <0.001

Albumin (mg/dl) 3.20 [2.60–3.80] 3.30 [2.70–3.90] 3.00 [2.40–3.60] <0.001

Blood urea nitrogen (mmol/L) 21.0 [16.0–32.0] 20.0 [15.0–29.0] 30.0 [20.0–46.0] <0.001

Creatinine (mg/dl) 1.10 [0.80–1.60] 1.00 [0.80–1.40] 1.40 [1.00–2.20] <0.001

Blood chemistry results (median [IQR])

Calcium (mmol/L) 7.90 [7.40–8.40] 8.00 [7.40–8.40] 7.80 [7.10–8.40] <0.001

Chloride (mmol/L) 103 [99.0–106] 104 [100–107] 101 [97.0–105] <0.001

Sodium (mmol/L) 137 [134–140] 137 [135–139] 137 [133–140] <0.001

Potassium (mmol/L) 4.50 [4.10–5.00] 4.50 [4.10–4.90] 4.60 [4.10–5.30] <0.001

Continuous variable data are presented as median (SD or interquartile ranges, IQR). Classified variable data are presented as n (%). Unless otherwise stated, the Mann–Whitney U test is used
for the continuous variable, the χ2 test, or the Fisher’s exact test for the categorical variable.
aNLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; LMR, lymphocyte to monocyte ratio.

that the severity of S-AKI condition was directly proportional to the
length of ICU stay and increased the risk of early death.

The study found that the independent prediction performance
of the top nine continuous variables in the XGBoost model
for 28-day death risk was unclear. To detect non-linear or
linear relationships between these variables and 28-day mortality,
restricted cubic splines of COX regression were used. The
model was adjusted for age (67 years) and comorbidities such
as cerebrovascular disease, mild liver injury, and metastatic
solid tumors. The results are presented in Figure 6. The study
found that SpO2 and pH had a nearly linear relationship with
a higher risk of death associated lower values. Additionally,
variables such as 24-h urine volume (approximately 1500 ml),
temperature (approximately 37.3◦C), age (approximately 67 years),

glucose (approximately 100 mg/dl), and sodium (approximately
136 mmol/L) showed a U-shaped change, with the risk of death
being higher at the highest or lowest values relative to the bottom
of the curve. The initial levels of BUN (around 37 mg/dl) and WBC
(around 20 × 109/L) showed a steep increase, but later on, they
remained relatively stable. Moreover, there was no significant rise
in the mortality risk with the increase in these values.

Discussion

Acute kidney injury is a significant contributor to high
mortality rates in sepsis patients. Early recognition and
management are crucial in preventing the need for salvage
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FIGURE 2

Boruta-based feature selection results. DM-without-cc, diabetes mellitus without complications; DM-with- cc, diabetes mellitus with complications;
AMI, acute myocardial infarction; CHF, congestive heart failure; LMR, lymphocyte to monocyte ratio; CeVD, cerebrovascular disease; NLR, neutrophil
to lymphocyte ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBI, body mass index; ROX_HR, the ratio of ROX index over HR
(beats/min), multiplied by a factor of 100; PF_ratio, PaO2/FiO2 ratio; M_solid_tumor, Metastatic solid tumor; BUN, blood urea nitrogen.

FIGURE 3

(A) Using receiver operating characteristic (ROC) curve and area under the receiver operating characteristic curve (AUC) to compare the
discriminant ability of four models and traditional scoring. (B) K-S curve of 28-day mortality risk prediction model based on Logistic regression, test
K-S 0.53 and train K-S 0.6. (C) K-S curve of 28-day mortality risk prediction model based on the Random Forest, test K-S 0.54 and train K-S 0.77. (D)
K-S curve of 28-day mortality risk prediction model based on the GBM, test K-S 0.57 and train K-S 0.67. (E) K-S curve of 28-day mortality risk
prediction model based on the XGBoost, test K-S 0.58 and train K-S 0.87.
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FIGURE 4

(A) Lift curve of 28-day mortality risk prediction model based on Logistic regression. (B) Lift curve of 28- day mortality risk prediction model based
on the Random Forest. (C) Lift curve of 28-day mortality risk prediction model based on the GBM. (D) Lift curve of 28-day mortality risk prediction
model based on the XGBoost.

treatment and reducing mortality. However, traditional scoring
systems do not adequately meet clinical needs. This study proposes
using machine learning to predict the 28-day risk of death from
S-AKI in ICU inpatients, providing personalized predictions
to guide clinical stratification and grading management. The
risk of death in these patients has been a challenging aspect to
predict in the past.

Clinical symptoms and laboratory tests are frequently
employed in traditional scoring systems to predict critical patient
outcomes. Two representative methods are the ASP III and
SAPS II scores, both of which exhibit strong performance in
predicting in-hospital patient mortality (17–19). Previous research
has indicated that traditional scores were slightly less reliable
in predicting hospitalization due to Acute Kidney Injury (AKI)
or mortality within 60 days (6, 7). And it has not been used to
predict death within 28 days. In recent years, there has been a
growing interest in utilizing machine learning (ML) algorithms for
diagnostic and prognostic disease studies. These ML models have
shown to surpass traditional scoring methods in terms of predictive
accuracy (15, 16). In our study, we also observed that machine

learning models outperformed conventional scoring systems in
all 28-day mortality prediction for S-AKI patients. The XGBoost
algorithm-based 28-day mortality risk prediction model for S-AKI
achieved better prediction performance with an AUPR value of
0.873 and good calibration performance. Our XGBoost model
demonstrated a slightly better predictive performance compared to
another study that utilized the same database (MIMIC-IV), study
endpoint and ML algorithm. The area under the curve (AUC) was
0.850, while the other study achieved an AUC of 0.818 (14). Our
model’s superior performance of our model may be attributed
to the inclusion of co-morbidities in our predictor variables. It
is known that cases with co-morbidities have a higher mortality
rate in patients with sepsis. Compared with the traditional scoring
system, The use of machine learning prediction models can
potentially enhance clinicians’ decision-making and improve
disease prognosis.

The most critical step in training machine learning models
is data engineering, particularly data preprocessing. This process
plays a vital role in preventing the risk of overfitting and
classification boundary shifts, ultimately leading to improved
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FIGURE 5

(A) The precision-recall (PR) curve was used further to evaluate the classification ability of the XGBoost model; AUCPR (0.873) indicated the model
performed well in predicting case classification. (B) The calibration curve showed high coherence between the predicted and actual probability of
XGBoost model. (C) The features are ranked according to the sum of the SHAP values for all patients, and the SHAP values are used to show the
distribution of the effect of each feature on the XGBoost model outputs. (D) The sharp value force plot of case 266 was used to individually predict
the characteristic variables. (E) The sharp value force plot of case 1066 was used to individually predict the characteristic variables. (F) The sharp
value force plot of case 2066 was used to individually predict the characteristic variables.

predictive performance of the models. Despite the importance
of data preprocessing, it is often overlooked, and most machine
learning models still require thorough investigation in this
area (14–16). The S-AKI model we created to predict 28-day
mortality risk underwent thorough data processing. We utilized
a combination of univariate regression, correlation analysis, and
variable screening with Boruta of the random forest algorithm.
The Boruta algorithm is a powerful and robust variable screening
method that is sensitive to detecting causal variables while
minimizing the number of false positives, making it suitable
for both high-dimensional and low-dimensional datasets (20).
When working with unbalanced categorical datasets, machine
learning algorithms may not be reliable and their predictions
may be biased, leading to misleading accuracy. To address this
issue, we apply the SMOTE algorithm to discard the practice of
randomly oversampling replicate samples, which can prevent the
problem of random oversampling prone to overfitting. Studies
have shown that this approach can improve classifier performance
(21, 22). The synthetic data algorithm addresses the issue of data
imbalance by avoiding information loss in both undersampling and
oversampling methods.

Structured data dominates medical databases, and XGBoost
has emerged as a top-performing integrated machine learning
algorithm for prediction and classification based on this data
(15, 16, 23). Hou, et al. (24) utilized MIMIC III (V1.4) sepsis
patient data to develop an algorithm based on XGBoost for
predicting 30-day mortality in septic patients. Their algorithm
outperformed the logistic regression model and SAPS-II score
prediction model with an AUC of 0.857 compared to 0.819
and 0.797, respectively. Additionally, the XGBoost algorithm
demonstrated superior accuracy for sepsis diagnosis compared to
the SOFA score with an AUC of 0.89 versus 0.596 (25). Liu, J
and colleagues (26) utilized eICU data to develop a mortality
prediction model for ICU AKI patients. Their study found that the
XGBoost model outperformed LR, SVM, and RF machine learning
algorithms. Previous research has demonstrated the efficacy of
XGBoost as an ensemble machine learning algorithm in disease
diagnosis and prognosis studies, particularly structured data. In
this study, the performance of RF based on Bagging ensemble
machine learning algorithm and XGBoost and GBM based on
Boosting method were compared to traditional logistic regression
in predicting 28-day mortality in S-AKI. The results indicated that
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FIGURE 6

After adjusting for age and underlying disease, the COX regression-restricted cubic spline examined the nonlinear relationship between nine
continuous variables and 28-day mortality risk. (A) Urine output within the first 24 h; (B) Spo2; (C) temperature; (D) age; (E) Ph; (F) glucose; (G) BUN;
(H) sodium; (I) WBC.

the ensemble learning algorithms outperformed logistic regression.
Among the ensemble algorithms, XGBoost demonstrated the best
performance, as evidenced by the ROC, K-S, and LIFT curves.

The prediction model for 28-day mortality risk characteristics
was ranked using SHAP values, with the logarithm of the 1st 24-
h urine volume being identified as the most important variable.
According to a study conducted on 183 intensive care units in
Australia and New Zealand (27), a urine output threshold of
less than 0.5 ml/kg/h within 24 h of ICU admission was found
to be predictive of mortality in intensive care unit patients.
Furthermore, the study trained an XGBoost machine learning
model to predict in-hospital mortality, and discovered that low
urine output was strongly associated with mortality in patients
with sepsis. In patients with S-AKI receiving continuous renal
replacement therapy (CRRT), urine output within the first 24 h
of CRRT initiation was found to be a significant predictor of
death (HR 2.6 95% CI 1.6–4.3 p < 0.001)among the various
clinical variables related to mortality (28). Our study revealed
that the logarithmic value of urine volume within the first 24 h
is closely linked with the highest weight in the 28-day mortality
risk model. Additionally, utilizing COX regression-restricted cubic
splines and adjusting for age and underlying disease, we discovered
a non-linear relationship between 24-h urine volume and 28-day
mortality risk. The inflection point was observed at a 24-h urine
volume of approximately 1,800 ml. Below this threshold, the risk of
death decreased as urine volume increased, while above it, the risk
of death increased with increasing urine volume.

Previous research has established that SpO2 is a risk factor for
sepsis-related death (29). Similarly, our study discovered that SpO2

was linked to a higher likelihood of 28-day mortality in S-AKI cases.
Using COX regression-restricted cubic splines study, we observed
a near-linear negative correlation between SpO2, pH, and the risk
of 28-day mortality. The relationship between temperature, age,
glucose, BUN, sodium, and WBC and 28-day mortality risk was
found to be non-linear. Specifically, body temperature, age, blood
glucose, and sodium ions showed U-shaped changes, while BUN
and WBC exhibited a post-phase plateau.

The variables that determine death risk differ between cases
due to their non-linear relationship. In our study, SHAP force
plots provide a direct graphical illustration for ensemble learning
visualization interpretation. The color yellow represents a negative
association with 28-day mortality risk, while red represents a
positive association. The ability of machine learning predictions
to show individualization is further illustrated by the fact that the
variables that play a significant role in three different cases are not
perfectly correlated. In some cases, the same variable may have
opposite effects, such as the logarithmic value of 24-h urine volume,
which is negatively correlated in #266 and #2066 and positively
correlated in #1066. This may be due to a U-shaped relationship
between urine volume and the risk of 28-day death.

Limitations

While this study provides valuable insights, it is important to
acknowledge its limitations. It is a single-center retrospective data
modeling study that relies solely on the MIMIC-IV (2.0) database
and lacks external validation. Future studies will incorporate a
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multicenter dataset and prospective study data to optimize and
externally validate the model. Second, it is important to consider
that there may be other factors that can affect the 28-day mortality
risk in patients with S-AKI that were not measured or extracted,
such as imaging data and treatment strategy. To improve the
accuracy of predictive models, it may be beneficial to incorporate
different types of data and use multimodal algorithms. Third, the
data engineering process involves several steps, including data
interpolation, feature selection, variable transformation, and data
imbalance processing. However, these steps can sometimes lead
to model overfitting and misrepresentation of important features.
In our next study, we will focus on ensuring the completeness
of the data set. Additionally, different types of variables are
sequentially incorporated into the construction of the model
to observe the effects of different variables on the prediction
performance of the model. Finally, we utilize two integration
algorithms, bagging and Boosting, and may introduce stacking
integration algorithms in the future.

Conclusion

In this study, we have showcased the effectiveness of ensemble
machine learning algorithms in predicting the risk of mortality
within 28 days of patients with S-AKI. The SHAP approach has
been used to enhance the interpretability of these models, thereby
enabling clinicians to gain a better understanding of the underlying
reasons behind the results. This knowledge will aid clinicians in
making informed clinical decisions with regard to the stratification
and management of S-AKI patients.
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Background: The coronavirus disease 2019 (COVID-19) is an acute infectious

pneumonia caused by a severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection previously unknown to humans. However, predictive studies of

acute respiratory distress syndrome (ARDS) in patients with COVID-19 are limited.

In this study, we attempted to establish predictive models to predict ARDS caused

by COVID-19 via a thorough analysis of patients’ clinical data and CT images.

Method: The data of included patients were retrospectively collected from the

intensive care unit in our hospital from April 2022 to June 2022. The primary

outcome was the development of ARDS after ICU admission. We first established

two individual predictive models based on extreme gradient boosting (XGBoost)

and convolutional neural network (CNN), respectively; then, an integrated model

was developed by combining the two individual models. The performance of

all the predictive models was evaluated using the area under receiver operating

characteristic curve (AUC), confusion matrix, and calibration plot.

Results: A total of 103 critically ill COVID-19 patients were included in this

research, of which 23 patients (22.3%) developed ARDS after admission; five

predictive variables were selected and further used to establish the machine

learning models, and the XGBoost model yielded the most accurate predictions

with the highest AUC (0.94, 95% CI: 0.91–0.96). The AUC of the CT-based

convolutional neural network predictive model and the integratedmodel was 0.96

(95% CI: 0.93-0.98) and 0.97 (95% CI: 0.95–0.99), respectively.

Conclusion: An integrated deep learning model could be used to predict

COVID-19 ARDS in critically ill patients.

KEYWORDS

COVID-19, ARDS, deep learning, artificial intelligence, computated tomography

Introduction

The coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (1). Evidence has

shown that 33% of COVID-19 patients are at high risk of progressing into severe cases, which

are accompanied by increasing mortality and morbidity (2, 3). Moreover, severe SARS-

CoV-2 infection may directly lead to acute respiratory distress syndrome (ARDS), and the

manifestations could be viewed as a combination of pneumonia and ARDS (4).

Although significant advances have been made in understanding and managing ARDS,

the morbidity and mortality of patients diagnosed with ARDS still remain high (5).
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Unfortunately, the benefits of different therapies for established

ARDS are limited (6–8). Since then, the paradigm for the

management of ARDS has been shifted from treatment to

prevention. Identification of patients at high risk of ARDS

is important for clinicians to implement effective, preventive

therapies to reduce the burden of ARDS. It is reported that the

median time from the onset of COVID-19 symptoms to intubation

is 8.5 days when COVID-19 ARDS occurs (9). There have been

several studies focusing on the early prediction of ARDS, which

described well-known risk factors associated with ARDS (10–12).

However, COVID-19 ARDS is a serious complication of COVID-

19, which has different clinical features from pre-COVID-19 ARDS

(13). Hence, a clinical tool tailored for predicting COVID-19 ARDS

is urgently needed.

In recent years, artificial intelligence (AI) has emerged as a

promising tool in the medical field. The remarkable advantage

of artificial intelligence in handling massive data could help with

disease diagnostics and prognostics, radiographic recognition, and

personalized treatment, etc. (14). During the COVID-19 pandemic,

first-hand CT and clinical datasets helped clinicians make decisions

and better understand the viral infection. For example, elevated

levels of inflammatory cytokines and a reduction of T-cell subsets

are closely related to COVID-19 pneumonia (15). The radiology

features of COVID-19 pneumonia include a peripheral distribution

of opacification, frosted glass opacities, and vascular thickening

and enlargement (16). In spite of the distinct features observed in

COVID-19 patients, the clinician may find it hard to figure out

the underlying correlations between the clinical features and the

features of CT slices, hindering the comprehensive understanding

of the disease. Here, we aimed to provide a method pooling all the

patients’ features including CT and clinical features for improving

the precision of the prediction of COVID-19 ARDS.

Methods

This is a retrospective study approved by the institutional Ethics

Committees at Shanghai Renji Hospital, and informed patient

consent was waived.

Study patients

All patients admitted to the intensive care unit in Shanghai

Renji Hospital between April 2022 and June 2022 were screened for

eligibility. Inclusion criteria were as follows: (1) patients who were

18 years old and above; and (2) patients who met the diagnosis of

COVID-19 ARDS. Exclusion criteria were as follows: (1) patients

who were diagnosed with ARDS within the first day of admission;

(2) missing clinical data were more than 20%; and (3) without any

CT scan results.

Diagnosis of COVID-19 ARDS

SARS-CoV-2 infection can be identified by the detection of

viral RNA in nasopharyngeal secretions via PCR test. The diagnosis

of COVID-19 was confirmed by the patients’ clinical history,

epidemiological contact, and a positive SARS-CoV-2 test.

The diagnosis of ARDS followed the Berlin definition: (1)

requirement of mechanical ventilation and positive end-expiratory

pressure or continuous positive airway pressure ≥ 5 cmH2O; (2)

a certain degree of hypoxemia: severe (PaO2/FiO2 ≤ 100 mmHg),

moderate (PaO2/FiO2 between 100 mmHg and 200 mmHg), or

mild (PaO2/FiO2 between 200 mmHg and 300 mmHg); and (3)

without evidence of pleural effusion, lung collapse, lung nodules,

or cardiogenic pulmonary edema from the chest radiography (16).

A patient who satisfied the criteria of COVID-19 and ARDS was

diagnosed with COVID-19 ARDS.

Data collection

We collected the first sets of chest CT images and clinical data

after the patients’ admission to the intensive care unit. The clinical

data included demographic information, comorbidity conditions,

respiratory support methods, onset symptoms, vital signs at

admission, aeration variables, routine blood tests, inflammation

tests, biochemical tests, blood coagulation tests, lymphocyte subset

tests, and cytokine profile tests. Original CT images both in JPG

and DICOM format of the included patients were collected. In

this study, we randomly divided the patients into training and

validation cohorts in a ratio of 7:3.

Statistical analysis

The categorical variables were presented as counts and

corresponding proportions and were further compared using the

chi-square test or Fisher’s exact test. The continuous variables were

reported as the median and the interquartile range; the Mann–

Whitney U-test was applied to compare the differences between

the groups. The multivariate logistic regression was performed to

figure out the independent risk factors associated with COVID-

19 ARDS. A nomogram plot was further established based on the

result of the multivariate logistic regression. A two-tailed P-value

of <0.05 was considered significant. The data analysis in this study

was completed via Python version 3.8 and R version 4.0.5.

The COVID-19 ARDS prediction based on
clinical features

Four different machine learning algorithms were implemented

to establish the predictive models for COVID-19 ARDS, including

logistic regression (LR), support vector machine (SVM), random

forest (RF), and extreme gradient boosting (XGBoost). The training

cohort was divided into five partitions, of which four-fifths were

used to train the models, and the remaining part was used to

validate the models. The hyperparameters of all the models were

fine-tuned for the highest area under the receiver operating to avoid

the problem of overfitting. We followed two specific rules when

searching for the best hyperparameters, which were as follows: (1)

the training loss was the lowest after the test of all combinations
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FIGURE 1

The flowchart of patients’ selection.

of hyperparameters; (2) the log loss in the validation cohort was

less than –log 0.5 and higher than the training cohort. Grid search

with 5-fold cross-validation was applied to search for the most

appropriate hyperparameters in the training cohort. Finally, the

predictive performance of established models was compared in the

validation cohort.

The labeling of individual CT slices

We first manually labeled 897 slices of 30 patients to train

the classification model for individual CT slices. The CT slices

were classified into two types: (1) normal CT, in which the image

features in lungs were consistent with healthy lungs; (2) abnormal

CT, in which image features were associated with COVID-19

pneumonia. Two senior ICU clinicians (ZHand YG) independently

labeled individual CT slices. Any disagreements were resolved

through discussion. The deep learning framework was based on

the architecture of VGG-16, which consisted of 13 convolutional

layers and 3 fully connected layers. We further internally validated

the classification model and used it to label the remaining 2, 300 CT

slices. Finally, every CT slice was classified into a normal CT image

or an abnormal CT image.

The COVID-19 ARDS prediction based on
CT images

After the auto-labeling of individual CT slices, we assumed

that an abnormal CT slice classified by the model was a positive

case. Then, the possibility of being an abnormal CT slice for

every CT image was calculated. The 10 most probable abnormal

CT slices of a single patient were viewed as the representative

CT images and were input into the second VGG-16 network.

This convolutional neural network (CNN) allows for the shift

from the prediction of COVID-19 ARDS based on individual

CT slices to the prediction based on a single patient. The VGG-

16 network consists of 1 input layer, 13 convolutional layers,

3 fully connected layers, and 1 output layer. The convolutional

layers were used to handle feature extraction and presentation.

The pooling layers were used for filtering abundant information

under the max-pooling strategy. In the last three output layers,

the possibility of being a positive case was calculated for each

CT slice. For the individual CT-based prediction, the possibility

ranged from 0 to 1, representing a CT slice classified into a

normal CT image or an abnormal CT slice. For the single

patient-based prediction, the possibility ranged from 0 to 1,

representing a patient being predicted to develop COVID-19 ARDS

or not.

The integration of predictions models

The integration of two prediction models based on CT

images and clinical data was achieved by the penalized logistic

regression algorithm. The L2 regularization of the penalized

logistic regression algorithm was used. To be specific, the

machine learning model based on clinical features and the

CNN model based on CT images individually generated

two scores for the prediction of COVID-19 ARDS, which

were taken as input features for the penalized logistic

regression algorithm. At last, the penalized logistic regression

algorithm calculated a prediction score for the COVID-19

ARDS outcome.

The evaluation of model performance

We randomly divided the patients into the training cohort

and the validation cohort in a ratio of 7:3. The overall predictive

performance of the integrated model was measured in the test

cohort. The receiver operating characteristics (ROC) curve and

the confusion matrices of all established predictive models were

depicted to compare the performance of the predictive models. A

ROC curve is a graphic plot used to illustrate a binary classifier’s

diagnostic ability as the discrimination threshold varies. It is

created by plotting the true-positive rate against the false-positive

rate at different discrimination thresholds. The calibration plots

were also depicted to assess the predictive performance of all

the models.
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TABLE 1 Baseline characteristics of included patients.

Characteristics Total (n = 103) Non-ARDS cohort (n = 80) ARDS cohort
(n = 23)

P-value

Demographic variables

Age (years) 75 (64, 87) 74 (63, 87) 84 (75, 89) 0.014

Gender, n (%) 0.917

Male 48 (46.6%) 38 (47.5%) 10 (43.5%)

Female 55 (53.4%) 42 (52.5%) 13 (56.5%)

BMI (kg/m2) 26.9 (22.7, 33.5) 26.5 (23.0, 33.9) 27.2 (24.1, 34.3) 0.346

Marital status, n (%) 0.269

Single 8 (7.8%) 6 (7.5%) 2 (8.7%)

Married 93 (90.3%) 72 (90.0%) 21 (91.3%)

Other 2 (1.9%) 2 (2.5%) 0 (0%)

Comorbidities

Congestive heart failure, n (%) 30 (29.1%) 23 (28.8%) 7 (30.4%) 1.000

Hypertension, n (%) 54 (52.4%) 41 (51.2%) 13 (56.5%) 0.834

Diabetes, n (%) 25 (24.3%) 18 (22.5%) 7 (30.4%) 0.613

Chronic kidney disease, n (%) 21 (20.4%) 15 (18.8%) 6 (26.1%) 0.634

Arrhythmia, n (%) 13 (12.6%) 11 (13.8%) 2 (8.7%) 0.774

Respiratory support 0.002

Spontaneous breathing, n (%) 38 (36.9%) 38 (47.5%) 0 (0%)

Nasal cannula, n (%) 24 (23.3%) 17 (21.2%) 7 (30.4%)

Mask ventilation, n (%) 7 (6.8%) 4 (5%) 3 (13%)

High flow, n (%) 31 (30.1%) 19 (23.8%) 12 (52.2%)

Non-invasive ventilator, n (%) 1 (0.97%) 1 (1.2%) 0 (0%)

Intubation, n (%) 2 (1.94%) 1 (1.2%) 1 (4.3%)

Onset symptoms

Fever, n (%) 42 (40.8%) 37 (46.2%) 5 (21.7%) 0.062

Cough, n (%) 56 (54.4%) 43 (53.8%) 13 (56.5%) 1.000

Sore throat, n (%) 9 (8.7%) 9 (11.2%) 0 (0%) 0.206

Nausea, n (%) 2 (1.94%) 1 (1.2%) 1 (4.3%) 0.927

Headache, n (%) 7 (6.8%) 4 (5%) 3 (13%) 0.378

Chest distress, n (%) 2 (1.94%) 2 (2.5%) 0 (0%) 1.000

Vital signs at admission

T (◦C) 36.80 (36.50 to 37.30) 36.80 (36.50 to 37.50) 36.70 (36.55 to 37.05) 0.430

SBP (mmHg) 129.00 (111.00, 145.00) 126.09± 24.77 134.65± 26.13 0.152

DBP (mmHg) 69.00 (64.50 to 80.00) 72.11± 15.27 73.22± 13.43 0.754

HR (/min) 96.00 (81.00 to 113.50) 96.00 (80.00 to 111.00) 105.00 (85.00 to 125.00) 0.139

RR (/min) 20.00 (18.00 to 25.00) 20.00 (18.00 to 25.00) 21.00 (19.50 to 24.00) 0.293

Aeration variables

PaO2 (mmHg) 89 (66, 118) 94.5 (76, 137.5) 94.5 (76, 137.5) <0.001

PaCO2 (mmHg) 37.5 (32.5, 44.5) 37.2 (31.9, 44.5) 37.2 (31.9, 44.5) 0.358

SpO2 (%) 97 (95, 99) 98 (95, 99) 98 (95, 99) 0.022

PaO2/FiO2 192.0 (159.0, 252.0) 201.0 (171.0, 265.9) 201.0 (171.0, 265.9) <0.001

(Continued)
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TABLE 1 (Continued)

Characteristics Total (n = 103) Non-ARDS cohort (n = 80) ARDS cohort
(n = 23)

P-value

Routine blood test 38 (34.1, 45.3)

White blood cell (K/UL) 8.59 (6.30, 13.21) 8.16 (6.03, 13.14) 96 (91, 98) 0.152

Neutrophil (K/UL) 7.30 (4.96, 12.25) 6.36 (4.41 to 11.38) 159.5 (140.0, 171.5) 0.024

Monocyte (K/UL) 0.47 (0.32, 0.74) 0.48 (0.32 to 0.74) 0.800

Reb blood cell (K/UL) 3.46± 0.90 3.47± 0.90 10.72 (7.59, 14.26) 0.988

Platelet (K/UL) 163.00 (108.50, 256.00) 158.50 (107.50, 256.00) 9.63 (7.22 to 14.98) 0.553

Hemoglobin (g/dL) 10.41± 2.92 10.34± 2.96 10.72 (7.59, 14.26) 0.835

Glucose (mg/l) 7.10 (5.70 to 10.15) 6.65 (5.55 to 9.70) 9.63 (7.22 to 14.98) 0.023

Inflammation

C-reactive protein (mg/L) 46.49 (22.49, 77.53) 38.50 (19.29 to 75.03) 0.39 (0.30 to 0.77) 0.021

Procalcitonin (ng/mL) 0.32 (0.08, 0.81) 0.26 (0.07 to 0.77) 3.46± 1.02 0.212

Serum Amyloid A (mg/L) 155.01 (49.84, 350.00) 100.26 (27.21 to 350.00) 186.00 0.004

Biochemical test

ALT (U/L) 22.00 (11.00, 43.50) 20.00 (10.50 to 45.50) 22.00 (14.50 to 37.50) 0.590

AST (U/L) 31.00 (21.50, 48.50) 29.50 (21.50 to 49.00) 37.00 (21.00 to 47.00) 0.791

LDH (U/L) 276.00 (220.00, 88.00) 263.50 (210.00 to 388.00) 291.00 (236.50 to 388.50) 0.289

Bilirubin (mg/dl) 13.70 (9.45, 19.60) 13.75 (9.65 to 19.90) 12.20 (9.05 to 17.95) 0.571

Urea (mmol/L) 8.78 (5.37, 15.85) 7.06 (4.96 to 13.77) 15.85 (9.00 to 24.14) <0.001

Creatine (mg/l) 79.00 (49.50, 146.50) 71.50 (48.00 to 126.00) 92.00 (60.00 to 193.00) 0.183

eGFR (ml/min) 76.00 (36.50, 95.50) 77.50 (38.00 to 102.00) 67.00 (19.50 to 86.00) 0.128

PH 7.40 (7.35 to 7.45) 7.42 (7.37 to 7.45) 7.35 (7.30 to 7.42) 0.003

Sodium (mmol/L) 139.00 (135.00, 144.00) 139.00 (134.00, 142.00) 141.00 (137.00, 151.00) 0.060

Potassium (mmol/L) 3.60 (3.10, 4.00) 3.50 (3.10, 4.00) 3.90 (3.50, 4.15) 0.112

Chlorine (mmol/L) 105.00 (99.00, 112.00) 102.50 (98.00, 110.50) 110.00 (104.00, 119.50) 0.003

Calcium (mmol/L) 1.09 (1.06, 1.14) 1.09 (1.04, 1.13) 1.12 (1.08, 1.17) 0.030

Albumin (g/dl) 2.8 (2.2, 3.6) 2.8 (2.3, 3.6) 2.7 (2.0, 3.5) 0.418

TG (mmol/L) 1.42 (0.88, 1.81) 1.48 (0.90, 1.80) 1.37 (0.68, 1.86) 0.568

TC (mmol/L) 3.36 (2.82, 4.55) 3.47 (2.82, 4.22) 3.28 (2.70, 5.35) 0.994

HDL (mmol/L) 0.86 (0.62, 1.06) 0.87 (0.59, 1.07) 0.84 (0.64, 1.01) 0.862

LDL (mmol/L) 2.30 (1.64 to 2.58) 2.30 (1.64, 2.57) 2.27 (1.90, 3.27) 0.724

Non-HDL (mmol/L) 2.47 (1.95, 3.05) 2.47 (1.95, 3.00) 2.56 (2.13, 3.73) 0.360

BNP (pg/ml) 190.00 (88.00, 492.50) 187.00 (86.00, 562.00) 195.00 (126.00, 313.50) 0.871

TNI (ng/ml) 0.04 (0.01, 0.07) 0.03 (0.01, 0.07) 0.04 (0.02, 0.07) 0.397

Mb (µg/L) 92.40 (43.50, 247.25) 81.50 (39.15, 233.25) 149.20 (87.50, 350.45) 0.021

CKMB (ng/ml) 2.50 (1.50, 5.10) 2.40 (1.40, 3.50) 4.60 (2.30, 8.10) 0.008

Blood coagulation test

TT (seconds) 15.20 (14.60 to 16.40) 15.15 (14.60 to 16.45) 15.30 (14.60 to 16.10) 0.994

APTT (seconds) 31.60 (27.30 to 36.15) 31.25 (27.50 to 36.30) 32.50 (27.05 to 35.90) 0.698

PT (seconds) 12.90 (11.90 to 14.80) 12.75 (11.70 to 14.75) 13.20 (12.35 to 15.45) 0.139

INR 1.10 (1.02 to 1.27) 1.10 (1.00 to 1.27) 1.13 (1.05 to 1.33) 0.212

FG (g/L) 3.98 (3.01 to 4.61) 3.76 (2.79 to 4.58) 4.54 (3.89 to 4.72) 0.005

(Continued)
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TABLE 1 (Continued)

Characteristics Total (n = 103) Non-ARDS cohort (n = 80) ARDS cohort
(n = 23)

P-value

DD (mg/L) 1.56 (0.68 to 3.19) 1.36 (0.59 to 2.48) 2.42 (1.44 to 3.58) 0.017

FDP (mg/L) 11.90 (5.90 to 20.95) 11.15 (5.40 to 20.10) 18.10 (10.55 to 24.55) 0.040

Lymphocyte subsets

Lymphocyte (10e9/L) 0.73 (0.50 to 1.01) 0.79 (0.54 to 1.26) 0.63 (0.40 to 0.76) 0.017

T lymphocyte (10e6/L) 424.30 (268.90, 679.40) 526.65 (291.05 to 858.10) 309.90 (220.00, 429.75) <0.001

B lymphocyte (10e6/L) 82.00 (41.65, 156.60) 82.05 (38.50 to 152.35) 79.50 (44.35 to 172.65) 0.994

Th lymphocyte (10e6/L) 280.90 (154.40, 434.35) 294.20 (174.15 to 482.20) 199.40 (86.80 to 361.25) 0.025

Ts lymphocyte (10e6/L) 149.90 (88.30 to 244.50) 158.30 (97.35 to 244.50) 129.10 (48.35 to 236.15) 0.167

Natural killer cell (10e6/L) 115.60 (63.40 to 184.60) 126.00 (69.30 to 201.35) 87.60 (52.90 to 143.95) 0.033

CD4/CD8 ratio 1.60 (1.14 to 2.56) 1.58 (1.12 to 2.42) 1.60 (1.14 to 2.92) 0.669

Cytokine profiles

IL1 (pg/ml) 1.22 (0.83 to 1.69) 1.22 (0.76 to 1.57) 1.37 (0.94 to 2.55) 0.224

IL2 (pg/ml) 1.03 (0.61 to 1.69) 1.03 (0.66 to 1.47) 1.06 (0.58 to 1.94) 0.571

IL4 (pg/ml) 1.45 (1.08 to 2.17) 1.35 (1.07 to 2.09) 1.67 (1.27 to 2.54) 0.132

IL5 (pg/ml) 0.79 (0.38 to 1.14) 0.76 (0.37 to 1.14) 0.97 (0.63 to 1.20) 0.226

IL6 (pg/ml) 46.91 (20.91 to 113.00) 37.58 (17.13 to 81.49) 118.00 (50.28 to 279.58) <0.001

IL8 (pg/ml) 16.07 (6.26 to 53.18) 13.13 (5.93 to 51.21) 48.32 (14.11 to 91.98) 0.034

IL10 (pg/ml) 4.12 (2.28 to 6.26) 3.58 (2.28 to 6.14) 5.16 (2.49 to 10.01) 0.328

IL17A (pg/ml) 3.28 (1.31 to 4.58) 3.02 (1.27 to 4.42) 3.44 (1.35 to 5.58) 0.542

TNF (pg/ml) 1.98 (1.26 to 2.79) 1.90 (1.26 to 2.66) 2.48 (1.06 to 3.42) 0.169

IFN-α (pg/ml) 1.04 (0.66 to 2.06) 0.98 (0.65 to 1.69) 1.36 (0.95 to 2.60) 0.083

IFN-γ (pg/ml) 1.53 (1.11 to 1.89) 1.53 (1.11 to 1.94) 1.53 (1.14 to 1.79) 0.921

Results

Baseline clinical features of included
patients

In total, 103 patients were enrolled in the study

after the screening for eligibility, of whom 23 patients

(22.3%) developed COVID-19 ARDS. The flowchart

of the patients’ selection is provided in Figure 1. The

baseline clinical features of the included patients are

presented in Table 1. There were no missing data in

our study.

A summary of collected CT images

Original chest CT images containing fields of the lung

parenchyma were obtained from 103 patients. The total number

of included CT images was 3,187, of which 690 CT slices were

from COVID-19 ARDS patients and 2,497 CT slices were from

non-COVID-19 ARDS patients. We manually classified 897 CT

slices from 30 patients into normal CT images or abnormal

CT images.

TABLE 2 Multivariate logistic regression analysis of risk factors of

COVID-19 ARDS based on selected variables in the training cohort.

Variable Coe�cient OR (95% CI) P-value

Age 0.089 1.093 (1.015, 1.177) 0.018

P/F ratio −0.024 0.977 (0.963, 0.991) 0.001

CRP 0.017 1.017 (1.001, 1.033) 0.036

T lymphocyte −0.004 0.996 (0.993, 0.999) 0.021

IL-6 0.008 1.008 (1.002, 1.017) 0.045

OR, odds ratio; CI, confidence interval.

The multivariate logistic regression analysis
of clinical features

After the multivariate logistic regression analysis, five risk

factors were figured out to be independently associated with

COVID-19 ARDS. We concluded that age (OR, 1.093; 95% CI,

1.015–1.177), PaO2/FiO2 ratio (OR, 0.977; 95% CI, 0.963–0.991),

C-reactive protein (OR, 1.017; 95% CI, 1.001–1.033), the count

of total T lymphocytes (OR, 0.996; 95% CI, 0.993–0.999), and

IL-6 (OR, 1.008; 95% CI, 1.002–1.017) were independent risk

factors of COVID-19 ARDS. The detailed results of themultivariate

logistic regression analysis are shown in Table 2. A nomogram
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FIGURE 2

The nomogram plot for the prediction of COVID-19 ARDS.

plot was illustrated based on the result of the multivariate logistic

regression model (Figure 2). We could calculate the risk score

and the corresponding possibility of COVID-19 ARDS using

the nomogram.

The predictive performance of models
based on clinical features

We developed four machine learning models to predict

COVID-19 ARDS, including logistic regression, support vector

machine, random forest, and extreme gradient boosting. The ROC

curves of all the machine learning models are shown in Figure 3A.

The area under the ROC curve of the XGBoost model was 0.94,

which outperformed the logistic regression model (AUC = 0.82),

the support vector machine model (AUC = 0.77), and the random

forest model (AUC = 0.92). We also performed the Delong test to

compare the AUCs of the XGBoost model against the other three

models (XGBoost model vs. logistic regression model, P<0.001;

XGBoost model vs. support vector machine model, P < 0.001; and

XGBoost vs. random forest model, P = 0.002). The calibration

curves are provided in Figure 3B. The XGBoost model was finally

chosen to be the best machine learningmodel to predict COVID-19

ARDS in our study.

The predictive performance of the CNN
model based on CT images

In total, 897 manually labeled CT slices were used to train

the classification CNN model based on individual CT images.

Figure 4A shows the ROC curve of the classification CNN

model (AUC = 0.99). The confusion matrix of the classification

CNN model is shown in Figure 4B. The normal CT slices and

the abnormal CT slices were correctly distinguished by the

classification CNNmodel.

The predictive performance of the
integrated deep learning model

The integrated deep learning model consisted of the XGBoost

model based on the clinical features and the CNN model based on

the selected CT slices from the individual patients. The ROC curves

of the two individual models and the integrated deep learning

model are shown in Figure 5A. The area under the ROC curve

values of the XGBoost model, the CNN model, and the integrated

model were 0.94 (95% CI: 0.91–0.96), 0.96 (95% CI: 0.93–0.98), and

0.97 (95% CI: 0.95–0.99), respectively.

The calibration curve plot indicated a good agreement between

the predicted probabilities of COVID-19 ARDS calculated by

the predictive models and the actual outcome (Figure 5B). The

confusion matrices were plotted using clinical features, CT images,

and integrated data to predict COVID-19 ARDS (Figure 6).

We found that the integrated deep learning model could yield

more accurate predictions than the individual model based on

clinical features or CT images. More details about the predictive

performance of the models are provided in Table 3.

Discussion

The outbreak of COVID-19 led to a global pandemic, and the

main causes of the deaths were pulmonary complications such as

acute respiratory distress syndrome. A comprehensive analysis of
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FIGURE 3

(A) The ROC curve of the four machine learning models. (B) The calibration curve of the four machine learning models.

FIGURE 4

(A) The confusion matrix of the predictive performance of the individual CT slices classification model. (B) The ROC curve of the classification model

of the individual CT slices.

the clinical symptoms, laboratory test results, and CT images is

crucial to help understand the scope of COVID-19. We believe that

an ensemble predictivemodel based on the integrated data from the

patients could provide more information about the risk factors of

complications such as ARDS brought on by COVID-19. Moreover,

detailed and accurate risk evaluation of COVID-19 ARDS is

important for clinicians to provide more personalized treatment to

patients. Some published studies have applied advanced artificial

intelligence methods to predict the prognosis of COVID-19 (17–

20). They demonstrated the value of machine learning algorithms

for predicting the outcomes of COVID-19, but no radiology

information was included in the studies (21, 22). Lee et al.

developed a deep learning model comprising the chest radiology

score and clinical information to predict severe illness in COVID-

19 patients (23). However, chest radiology is not suitable for the

confirmation of diagnosis or evaluation of COVID-19 outcomes

(24). Wang et al. reported an automatic quantitative model based

on CT images to predict ARDS in COVID-19 patients (25). In

this study, the infection fields of the lung were segmented for the

quantitative analysis of the volume and density. We thought the

quantitative analysis of CT images could not make the most of the

CT information and thus may yield less accurate predictions.

In this retrospective study, we developed three models for

the prediction of COVID-19 ARDS. Two individual models were

established based on the clinical features data and the CT images,

respectively; the third deep learning model was integrated by
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FIGURE 5

(A) The ROC curve of the three predictive models. (B) The calibration curve of the three predictive models.

FIGURE 6

(A) The confusion matrix of the XGBoost model. (B) The confusion matrix of the CNN model. (C) The confusion matrix of the integrated model.

TABLE 3 Predictive performance of established models in validation cohort.

Models Accuracy Precision Sensitivity Specificity AUC (95% CI)

XGB 0.84 0.29 1 0.83 0.94 (0.91, 0.96)

CNN 0.90 0.57 1 0.89 0.96 (0.93, 0.98)

XGB+ CNN 0.97 0.86 1 0.96 0.97 (0.95, 0.99)

AUC, area under curve; XGB, extreme gradients boosting; CNN, convolutional neural network; CI, confidence interval.

the two individual models. We found that the integrated deep

learning model could offer better discriminatory performance for

predicting COVID-19 ARDS than the two individual models. To

strengthen the understanding of COVID-19 ARDS, we performed

the multivariate logistic regression to find out the independent

risk factors associated with COVID-19 ARDS and depicted the

nomogram plot for it. We found that age, the concentration

of c-reactive protein, PaO2/FiO2 ratio, the count of total T

lymphocytes, and the level of IL-6 were related to COVID-19

ARDS. The inevitable deterioration in immunity response in

senior citizens may be the reason for advanced age being a risk

factor for COVID-19 ARDS (26). COVID-19 is manifested as

a multisystemic disease, and the hyperinflammatory response is

extremely associated with its outcome (27). COVID-19 ARDS also

causes typical lung pathological changes, which are accompanied

by acute and chronic inflammation (28, 29). High concentrations

of CRP and IL-6 may indicate a pro-inflammatory state, which

has been reported as a risk factor for a severe outcome (26, 27).

It is reported that critically ill COVID-19 patients exhibited a

status of immune cell hyporesponsiveness when compared to

healthy people (28). Several studies have highlighted the values

of T-lymphocyte subset absolute counts in predicting morbidity
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in COVID-19 patients (29–31). The XGBoost model was selected

as the best model to handle the clinical features data because of

the best predictive performance tested in the validation cohort.

XGBoost stands for “Extreme Gradient Boosting” and was first

proposed by Friedman (32). The XGBoost model is one of the

ensembling learning algorithms, which makes precise predictions

based on a series of weak classifiers, and it has been applied in many

studies to deal with massive medical data.

The CT scan procedure can provide more information about

the severity of lung damage and acute respiratory failure with a

much faster turnaround time (2, 33). The distinctive characteristics

of CT slices from COVID-19 ARDS patients could be captured

by the convolutional neural network. In our study, the predictive

performance of the VGG-16 model was better than that of the

model based on the clinical features data. VGG architecture was

first proposed by the Visual Geometry Group from Oxford and

ranges from 11 to 19 layers (34). The VGG models are widely used

as image classifiers or the fundamental basis of newly developed

models, which also use images as input data. The VGG-16 network

was first used to classify the individual CT slices into normal

and abnormal images. Furthermore, the individual patient-based

prediction of COVID-19 ARDS was also fulfilled by the VGG-16

network. The XGBoost model and the VGG-16 network model

are complementary to each other. The predictive performance of

the integrated model was superior to the individual ones. The

integrated deep learning model we proposed was demonstrated to

be reliable in predicting COVID-19 ARDS with high accuracy in

our study. The tremendous progress made in the field of artificial

intelligence facilitated the analysis of massive medical data. Our

deep learning model may be one example of an automatic analysis

tool that can be used for various medical data or alarming systems

of adverse events in critically ill patients. Once the integrated deep

learningmodel is fused into the information system of the hospitals,

it could rapidly and correctly identify patients at high risk of

COVID-19 ARDS without redundant operations.

There are some limitations in our study. First, this is a single-

center retrospective study with a relatively small sample size.

Second, the validation of the predictive model was only performed

in the internal cohort. It is unclear whether similar predictive

performance can be observed in other medical centers when our

models are applied.

Conclusion

In our study, we tried to establish different models to predict

COVID-19 ARDS. We found that the models based on the clinical

features or the CT images could provide accurate predictions of

COVID-19 ARDS. Moreover, the integrated model combining the

two individual models exhibited the best predictive performance

with the highest accuracy and ROC value.
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Objective: This study aims to develop and compare di�erentmodels to predict the

Length of Stay (LoS) and the Prolonged Length of Stay (PLoS) of inpatients admitted

through the emergency department (ED) in general patient settings. This aim is not

only to promote any specific model but rather to suggest a decision-supporting

tool (i.e., a prediction framework).

Methods: We analyzed a dataset of patients admitted through the ED to the

“Sant”Orsola Malpighi University Hospital of Bologna, Italy, between January 1 and

October 26, 2022. PLoS was defined as any hospitalization with LoS longer than

6 days. We deployed six classification algorithms for predicting PLoS: Random

Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GB), AdaBoost,

K-Nearest Neighbors (KNN), and logistic regression (LoR). We evaluated the

performance of these models with the Brier score, the area under the ROC curve

(AUC), accuracy, sensitivity (recall), specificity, precision, and F1-score. We further

developed eight regression models for LoS prediction: Linear Regression (LR),

including the penalized linear models Least Absolute Shrinkage and Selection

Operator (LASSO), Ridge and Elastic-net regression, Support vector regression, RF

regression, KNN, and eXtremeGradient Boosting (XGBoost) regression. Themodel

performances were measured by their mean square error, mean absolute error,

and mean relative error. The dataset was randomly split into a training set (70%)

and a validation set (30%).

Results: A total of 12,858 eligible patients were included in our study, of whom

60.88% had a PloS. The GB classifier best predicted PloS (accuracy 75%, AUC

75.4%, Brier score 0.181), followed by LoR classifier (accuracy 75%, AUC 75.2%,

Brier score 0.182). These models also showed to be adequately calibrated. Ridge

and XGBoost regressions best predicted LoS, with the smallest total prediction

error. The overall prediction error is between 6 and 7 days, meaning there is a 6–7

day mean di�erence between actual and predicted LoS.

Conclusion: Our results demonstrate the potential of machine learning-based

methods to predict LoS and provide valuable insights into the risks behind

prolonged hospitalizations. In addition to physicians’ clinical expertise, the results

of these models can be utilized as input to make informed decisions, such as
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predicting hospitalizations and enhancing the overall performance of a public

healthcare system.

KEYWORDS

emergency department, prolonged length of stay, machine learning, prediction,

classification, regression

1. Introduction

1.1. Importance of addressing
hospitalization LoS after an emergency
department visit

The Length of Stay (LoS) measures the time a patient spends

in a hospital, from admission to discharge. It is a key indicator

of the quality of hospital services, including the speed and

efficiency of patient treatment, the prevention of hospital-acquired

infections, the ability to anticipate prolonged stays due to pre-

existing medical conditions, resource utilization, and the cost

of inpatient care. LoS can also be used to evaluate the success

of surgical procedures and patient outcomes. With an in-depth

understanding of LoS and potential adverse events, hospitals can

make informed decisions and improve patients’ overall quality of

care. Accurate LoS prediction enables the efficient use of medical

resources, better clinical decision-making, and provision of useful

prognostic information. In hospital management, LoS is critical in

determining hospital costs and patient satisfaction. Furthermore,

it is associated with disease severity and mortality (Paterson et al.,

2006). During an ED visit, some predictors of hospital LoS were

known before admission to the hospital. Prior studies have shown

that patients in EDs have a longer LoS (Krochmal and Riley,

1994; Liew et al., 2003). It has been demonstrated that extended

hospital stays negatively affect clinical outcomes: according to Sud

et al. (2017), long LoS is associated with increased mortality and

readmission rates; the results of Bo et al. (2016) indicated that PLoS

is associated with cognitive impairment, functional limitations, and

higher burdens of comorbidity; the results of Emori and Gaynes

(1993) also indicated that PLoS increased the risk of hospital-

acquired infections. Patients are prioritized based on their level of

medical need in a triage plan to enhance healthcare and reduce

mortality. Models that predict patient-related outcome measures

and LoS are useful tools for maximizing healthcare utilization

(Gellman, 1974). As a result, policymakers and clinicians could

determine how to allocate resources among different approaches by

comparing treatments across disciplines.

1.2. Methodological review/predictive
modeling of PLoS

Machine learning (ML) provides innovative methods in data

predictions that are widely used. Numerous studies have examined

how different predictive models can predict LoS more accurately

(Lu et al., 2015). A prediction model based on factors affecting LoS

has been developed in previous studies using multiple supervised

learning techniques. For categorical outcomes, including logistic

regression (LoR), random forest (RF), Gradient Boosting (GB),

K-nearest neighbors (KNN), support vector machine (SVM),

decision tree (DT), and artificial neural networks (ANN; Hachesu

et al., 2013; LaFaro et al., 2015) were used to predict LoS. In

a study by Chuang et al. (2018), LoR, SVM, RF, multivariate

adaptive regression splines (MARS), classification and regression

tree (CART), etc. were used to study the prediction of PLoS in

patients undergoing general surgery. The RF classifier showed the

highest performance. In another interesting study, for a continuous

outcome, Caetano et al. (2015) used and compared regressors,

including multiple regression (MR), RF regression, decision tree

(DT), neural network (NN), and support vector machine (SVM)

regression. The RF regression showed the highest performance. The

performance of ensemble learning models (like RF, GB, AdaBoost)

is usually better than that of single learning models (Han et al.,

2019). An alternative, data-driven approach to predictive analytics

in emergency care is available through preprocessing, data mining,

and machine learning techniques applied to big data stored in

electronic health records (EHRs; Yu et al., 2018). In other clinical

data from inpatients with lower limb fractures, Colella et al. (2021)

employed similar ML techniques to predict PLoS, by dividing

the outcome variable into two classes. Kirchebner et al. (2020)

conducted an exploratory study on hospitalized schizophrenic

patients to predict PLoS. This study selected the most significant

features using a forward selection procedure. Then variousmachine

learning classification algorithms were used for binary outcomes:

with and without prolonged LoS. Overall in the literature, SVM,

GB, LoR, NN, and RF are the most common and widely used

supervised ML classifier algorithms used to estimate LoS (Jiang

et al., 2010;Morton et al., 2014). Table 1 provides a brief overview of

ML models, prediction outcomes, and the target groups for which

LoS was predicted.

1.3. Related works

Previous research has investigated various methods of

predicting LoS with varying scopes and settings. LoS can be

predicted for all patients admitted to the hospital based on non-

medical factors such as type of admission, gender, race, insurance

status, place of residence, and the cost of hospitalization, as well

as medical characteristics like risk/severity measures, primary

condition groups, emergency degree, and prior admissions. It

is also possible to predict LoS for specific diseases or surgical

procedures. The most frequently reported factors that affect

the ED LoS are patient age, gender, triage category, mode of

arrival, the requirement for an interpreter, admission, diagnostic
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TABLE 1 Brief review of ML models and patients groups for predicting hospital patients’ LoS.

References Outcome:
prediction type

ML models Target group Results

Mekhaldi et al. (2020) Regression RF Regressor, Gradient

Boosting Regressor

General patients GB performed better than RF;

performance were checked by

MSE, the R-squared and the

Adjusted R-squared.

Daghistani et al. (2019) Classification RF, ANN, SVM, BN Cardiac patients RF model outperformed all

other models: sensitivity

(0.80), accuracy (0.80), and

AUROC (0.94).

Tsai et al. (2016) Regression LR, ANN Cardiac patients LR model performed slightly

better than ANNmodels, with

a MAE value of 3.76 and 3.87

Symum and

Zayas-Castro (2020)

Classification DT C5.0, linear SVM, KNN,

RF, and multi-layered artificial

neural net

Chronic disease (congestive

heart failure, acute myocardial

infarction, COPD,

pneumonia, type 2 diabetes).

For all patient groups, LSVM

(Lagrangian SVM) with

wrapper feature selection

performed well.

Tanuja et al. (2011) Classification Naive Bayes; KNN; DT

classifiers; Multi-layer

backpropagation

General patients MLP and NB models had the

best classification accuracy of

around 85%, while KNN

performed poorly with only

63.6% accuracy

Combes et al. (2014) Regression and

classification

Two based models: Classifier:

RF, LMT (Logistical model

tree), MP, DT (C4.5-J48),

NBTree, REPTree, and SVM.

Regression: LR, SV regression,

MLP, IRM (Isotonic

regression model), M5P,

PRLM (Pace regression linear

models)

Pediatric Using 10-fold

cross-validation, obtained the

best performances in using

logistic regression, and in

continuous outcome SVM

Regression showed a lower

prediction error.

Etu et al. (2022) Classification LoR, GB, DT, and RF COVID-19 Patients The GB model outperformed

the baseline classifier (LoR)

and tree-based classifiers (DT

and RF) with an accuracy of

85% and F1-score of 0.88 for

predicting ED LoS

Alsinglawi et al. (2020a) Regression RF Regressor; GB Regressor;

Stacking Regressor; DNN

Cardiovascular patients in the

ICU

GB regressor outweighed the

other proposed models, and

showed a higher R-squared.

Kirchebner et al. (2020) Classification BT; KNN; SVM Schizophrenic patients Two factors have been

identified as particularly

influential for a prolonged

forensic LoS, namely

(attempted) homicide and the

extent of the victim’s injuries.

Thongpeth et al. (2021) Regression LR with three penalized linear

(ridge, lasso, elastic net), and

4ML model types: SVR, NN,

RF, and XGBoost

Chronic disease The RF model had the best

predictive performance with

the smallest prediction errors,

while linear ridge regression

had the poorest prediction

performance with the largest

prediction errors.

LoR, logistic regression; LR, linear regression; RF, random forest; NB, Naive Bayes; ANN, artificial neural network; SVM, support vector machine; MLP, Multi-layer backpropagation; DT,

decision tree; GB, Gradient Boosting; XGBoost, eXtreme Gradient Boosting; KNN, K-nearest neighbors; BN, Bayesian network; COPD, chronic obstructive pulmonary disease; MSE, mean

square error; ICU, intensive care unit.

complexity necessitating extra testing, and the availability of

resources, including staff and beds (Asaro et al., 2007; Biber et al.,

2013; Rahman et al., 2020). Patient characteristics influencing

LoS, such as demographics and comorbidities, are often available

at triage and admission (Tsai et al., 2016). Several studies in

the literature have examined the LoS trends in general patients

(Tanuja et al., 2011; Mekhaldi et al., 2020), or in particular

patient populations, focusing, for instance, on a certain age group

(Ackroyd-Stolarz et al., 2011; Launay et al., 2018; Marfil-Garza

et al., 2018; Sir et al., 2019) or specific health conditions (e.g.,

cardiology; García-González et al., 2014; Tsai et al., 2016; Chuang

et al., 2018; Daghistani et al., 2019), peritoneal dialysis (Wu et al.,
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2020), schizophrenia (Kirchebner et al., 2020), knee arthroplasty

(Song et al., 2020), COVID-19 (Vekaria et al., 2021; Etu et al., 2022;

Zeleke et al., 2022), abdominal pain (Dadeh and Phunyanantakorn,

2020), mental health (Wolff et al., 2015), cardiovascular diseases

(Almashrafi et al., 2016; Alsinglawi et al., 2020a), or in specific

discipline areas or specialties such as spine surgery (Basil and

Wang, 2019) and cancer surgeries (Laky et al., 2010; Gohil et al.,

2014; Jo et al., 2021). However, most of these studies have had

limited sample sizes and have not considered a wide range of

clinical factors. In-hospital adverse events are known to increase

the risk of prolonged Length of Stay (LoS) in older patients

(Ackroyd-Stolarz et al., 2011).

A study of Length of Stay (LoS) in the emergency department of

a tertiary care center (van der Veen et al., 2018) found a significant

association betweenmultiple chief complaints, including headaches

and chest pain, laboratory/radiology testing, and consultation

with prolonged hospitalization in the ED. Another population-

based study conducted in Osaka, Japan (Katayama et al., 2021)

showed that factors such as old age, traffic accidents, lack of a

permanent address, need for nursing care, and being solitary were

associated with prolonged hospitalization for patients transported

by ambulance. Another retrospective study of prolonged LoS

in a tertiary healthcare center in Mexico (Marfil-Garza et al.,

2018) showed that demographic and disease-specific differences,

such as younger age, male gender, lower physician-to-patient

ratio, emergency and weekend admissions, surgery, number of

comorbidities, and lower socioeconomic status, were associated

with a prolonged LoS. Diseases with the greatest risk for prolonged

LoS included complex conditions like bone marrow transplant,

systemic mycoses, parasitosis, and complex abdominal diseases like

intestinal fistulas.

1.4. Aims

This study used various supervised machine learning

algorithms to predict the length of stay for patients admitted

through the emergency department in general patient settings.

The outcome was analyzed as both a dichotomous (PLoS) and

continuous (LoS) variable. Data was gathered from routine

triage and ED admission processes and recorded in the hospital’s

electronic medical records. The best-performing model was

selected to make predictions and gain meaningful insights for

future patients.

2. Materials and methods

2.1. Study design and population

We screened for eligibility for all admissions to the hospital

through the ED of the public University Hospital of Bologna

Sant’Orsola-Malpighi (AOSP), Bologna, Italy, between January 1,

2022, and October 26, 2022. AOSP is a 1,500-bed tertiary care

teaching hospital in Central-Northern Italy with 70,000 emergency

department visits per year, this is one of the largest hospitals in the

country (Fridman et al., 2022). All the necessary steps of the clinical

pathway: ED triage, medical examination, hospital admission, and

hospital discharge, are shown in Figure 1. We included all patients

who visited the ED, were admitted to the hospital, and stayed

until they got formal permission to discharge. Any patients who

left the ED, were transferred to another hospital, refused the

hospitalization, died, went away after the medical examination,

left without being seen, or left without notice (detail as shown in

Figure 2) were excluded from the analysis.

2.1.1. Outcome variable
The primary outcome of this study was hospital length of stay

(LoS) and prolonged length of stay (PloS). LoS is calculated as

the number of days between admission and discharge. We defined

PLoS threshold as any LoS that is longer than the reported average

LoS (i.e., 6 days; Zoller et al., 2014; Song et al., 2020;Wu et al., 2020).

The LoS was reclassified as binary (i.e., either “without PLoS< 6

‘days’ or with PLoS” ≥6 “days”) for classification analysis, and LoS

as a continuous outcome for regression analysis.

2.1.2. Independent variables
Any information collected at triage and available from ED

admissions was considered as a predictor of LoS or PLoS. These

include demographic factors (such as gender and age), mode of

arrival/source of admission, risk categories as determined by triage

at the entrance, and current problems or chief complaints. A

detailed description of each independent feature, measure category,

and outcome is presented in Supplementary Table 1.

2.2. Model development

2.2.1. Predictive models fitting and evaluation:
binary outcome

The diagram in Figure 3 shows the data analysis framework

we followed for developing and evaluating our predictive model.

The main objective is to predict the categorical class labels of new

data points or instances based on past observations. Based on

the literature, six common classification algorithms were selected

for comparison: GradientBoosting (GB), random forests (RF),

support vector machine (SVM), K-Nearest Neighbors (KNN),

AdaBoost, and logistic regression (LoR). The model with the

highest prediction performance was used to identify predictive

factors contributing to the outcome. We randomly divided the

data into training (70%) and testing or validation (30%) sets.

The analyses were performed in Scikit-learn in Python (Jupyter

notebook version; Pedregosa et al., 2011).

Hastie et al. (2009) provide detailed explanations, but here we

provide a brief overview of ML techniques, and hyperparameters

tuning settings.

2.2.1.1. Random Forests (RF)

In statistical applications, Random Forests (RF) are a

commonly used type of supervised machine learning that can

be utilized for both classification and regression tasks (Breiman,

2001; Genuer et al., 2010). RF predicts outcome labels for a group

of samples by building several decision trees using a random

set of covariates. The weak classifier can be transformed into a

Frontiers in Artificial Intelligence 04 frontiersin.org121

https://doi.org/10.3389/frai.2023.1179226
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zeleke et al. 10.3389/frai.2023.1179226

FIGURE 1

Clinical pathway.

FIGURE 2

Flowchart of patients selection.

strong one by taking the majority of votes for classification and

averaging in regression. To enhance the classification accuracy,

multiple decision trees are combined in RF to form an ensemble

classification algorithm. Each tree is grown using a bootstrapped

sample from the original data (Qi, 2012). An ensemble ML method

combines a series of underperforming classifiers to produce an

improved classifier. The mechanism for this combination differs

between ensemble algorithms. In this study, the RF model

was created using the sklearn.RandomForestClassifier package in

Python (Pedregosa et al., 2011).
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FIGURE 3

Proposed framework for our prediction model.

2.2.1.2. Gradient Boosting (GB)

Gradient Boosting is an ensemble learning model that employs

decision trees as its base classifier, without bootstrap sampling

(Luo et al., 2020). GB aims to create a robust predictive model

by combining weak learning models, considering the bias of

all previous decision trees in the model. Furthermore, unlike

randomization in other methods, GB focuses on fixing the target

outcomes in order to minimize errors. In this study, the GB

model was constructed using the sklearn.GradientBoostingClassifier

package in Python (Pedregosa et al., 2011).

2.2.1.3. Support vector machines (SVMs)

In SVMs, the data is separated using a large gap or hyperplane

to deal with linearly non-separable problems. It works by finding an

optimal separating hyperplane in the feature space for classification.

The Python sklearn.SVC package was used to build the SVMmodel

for this study (Pedregosa et al., 2011).

2.2.1.4. AdaBoost classifier

Similar to GB, AdaBoost classifier is also a boosting algorithm,

converting a set of weak learners into a single strong learner.

However, they differ on how they create weak learners during

the iterative process. In GB, as mentioned, it is to minimize

the cumulative predicted errors. Still, in AdaBoost it focuses

on training the prior miscalculated observations and alters the

data distribution to improve sample weight values. The Python

sklearn.AdaBoostingClassifier package was used to build the

AdaBoost model for this study (Pedregosa et al., 2011).

2.2.1.5. K-Nearest Neighbors (KNN)

KNN is an instance-based algorithm, which labels the test

record based on its distance from similar data during training

(i.e., which analyzes the similarities between the new data and the

existing data and adds the new data into the category that is highly

similar to the available categories). The only step in building the

model is storing the training dataset. Then, the algorithm finds the

closest data points in the training dataset, or its “nearest neighbors”

to predict a new data point (Keller et al., 1985). Python sklearn.

TABLE 2 Hyperparameter tuning summary.

Model
classifiers

Hyperparameter tuning
description

RF # of _estimators= 200; longest path between root

node and leaf node, max_ depth= 15; class_

weight= “balanced;” Number of maximum

features for each tree, max_ features= sqrt; min_

samples_ split= 2; min_ samples_ leaf= 1;

random_ state= 42

GB # of estimators= 200, max_depth= 4, and loss=

ls

KNN Number of neighbors= 10; algorithms= “auto;”

leaf_ size= 1; p= 1; weights= “uniform”

AdaBoost Similar to RF, define the Decision tree (Dt)

classifier first in the same setting and then boost

the Dt fit by AdaBoostClassifier.

SVM Kernel= linear; degree of similarity, gamma=

0.01; regularization, C= 10

LoR No critical hyperparameters need to be tuned.

KNeighborsClassifier package was used to build the AdaBoost

model for this study (Pedregosa et al., 2011).

2.2.1.6. Logistic regression (LoR)

The LoRmodel is widely used in binary classification problems.

The parameter of interest is estimated using maximum likelihood

estimation. Similarly, Python sklearn.LogisticRegression package

was used for this classifier.

Every machine learning (ML) technique requires the

optimization of hyperparameters to enhance its performance.

To develop a well-performing generalized model, it is crucial to

carefully select the hyperparameters. Different algorithms will have

distinct sets of hyperparameters.

The hyperparameter tuning summary for each type of classifier

and their descriptions used for this analysis are shown in Table 2.

In building a prediction model, evaluating its performance

and accuracy is important. Various metrics were used to assess

the model’s accuracy, including the Brier score, AUC, accuracy,
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sensitivity, specificity, precision, and F1-measure (Steyerberg et al.,

2010). Calibration curve plots were also employed to visualize the

calibration power of each model and ensure that the model fitted

the data optimally. By carefully evaluating the predictive power of

the model, we can ensure that the results produced by the model

are reliable and can be trusted for decision-making purposes in the

healthcare system.

Brier score is an overall performance measure, a measure of the

accuracy of a predicted probability score (i.e., mean squared error

of probability estimate). A low Brier score suggests an excellent

overall performance (Steyerberg et al., 2010).

BS =

∑

i=1

(

p̂
(

yi
)

− yi
)2

n

An evaluation metric like accuracy calculates the proportion

of correct predictions (both positive and negative) out of all the

predictions made by the model. Achieving the highest accuracy

level is important. Sensitivity or recall reflects the number of

positive predictions that were accurately identified, while specificity

measures the same for negative predictions. A higher recall

indicates that more true values were correctly predicted. The

F1-score balances precision and recall by taking the harmonic

mean of both values. The overall predictive accuracy of the

model was evaluated by determining the area under the receiver

operating characteristic curve (AUC). Calibration is crucial in

developing and validating clinical prediction models, which refers

to the match between predicted and observed risks (Steyerberg,

2019). In the case of binary outcomes, calibration measures

the agreement between estimated and observed probabilities of

occurrence. Calibration curves were used to assess calibration. A

perfect model’s calibration curve would be diagonal, meaning that

the predicted probabilities align with the observed probabilities.

2.2.1.7. Variables importance

The most effective prediction model was utilized to determine

the importance of variables. Identifying key factors in machine

learning predictions is crucial. The metric used to evaluate this is

the mean decrease in impurity, which calculates the average change

in the impurity of nodes across all trees in the ensemble, taking

into account the proportion of samples that reach each node. A

higher value generally means that the feature is more significant.

With high-dimensional datasets, it is crucial to properly select and

rank covariates for both prediction and interpretation purposes.

2.2.2. Predictive models fitting and evaluation:
continuous outcome

In order to minimize information loss in a classification task,

we also explored it as a continuous outcome and employed

regression models. Our study employed eight different learning

algorithms, including linear regression (LR) and its penalized

versions (Lasso, Ridge, and Elastic Net regression), as well as

Support Vector Regression, Random Forest Regression, K-Nearest

Neighbors (KNN), and XGBoost Regression.

2.2.2.1. Linear regression (LR)

This method involves fitting a linear equation to the data to

establish a relationship between the independent variables and the

dependent or outcome variable. The equation can then be used to

make predictions based on the input data. The linear regression

model is typically expressed in the following form:

yi = β0 +

n
∑

j=1

βjxij

where yi is the continuous outcome value of subject i, β0 is

intercept, βj is the coefficient of feature j, and xij is feature j of

subject i.

It is possible to estimate the regression parameter of a linear

regression model using the least square method by minimizing the

error term in the unknown βj.

β̂ = argminβ

{

1

n

n
∑

i=1

(

yi − ŷi
)2

}

2.2.2.2. Ridge regression

It works by finding the coefficients that minimize the sum of

error squares by applying a penalty to those coefficients (Tibshirani,

1996).

β̂ = argminβ







1

n

n
∑

i=1

(

yi − ŷi
)2

+ λ

p
∑

j=1

βj
2







λ is the regularization parameter that we are going to optimize.

2.2.2.3. Lasso regression

The same task but uses the sum of absolute values of the weights

for the penalty (Tibshirani, 1996).

β̂ = argminβ







1

n

n
∑

i=1

(

yi − ŷi
)2

+ λ

p
∑

j=1

∣

∣βj

∣

∣







2.2.2.4. Elastic-Net

A combination of lasso and ridge regression that reduces bias,

better than lasso or ridge regressions (Friedman et al., 2009).

β̂ = argminβ







1

n

n
∑

i=1

(

yi − ŷi
)2

+ λ1

p
∑

j=1

βj
2
+ λ2

p
∑

j=1

∣

∣βj

∣

∣







In contrast to prediction models, regression models focus on

estimating the relationship between a set of independent variables

and a continuous outcome variable. Instead of categorizing the

outcome into specific classes, the regression models aim to predict

the continuous value of the outcome based on the given set

of independent variables. The performance measure used in

regression models is typically the mean squared error, or the

root mean squared error, which represents the average deviation

between the predicted and actual values of the outcome variable.

Regression models aim to minimize these errors, thereby providing

a more accurate prediction of the continuous outcome.

Using a loss function helps us evaluate the performance

of a prediction model by quantifying the difference between

the predicted and the actual values. Mean square error (MSE),

mean absolute error (MAE), and mean relative error (MRE)

were calculated to measure the prediction performance of each
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TABLE 3 Presenting characteristics of patients who visited the ED of ASOP, Bologna, Italy, 2022 (n = 12,858).

Factor PLoS (i.e., ≥6 days)

Total, n (%)
(n = 12,858)

With PLoS (n =
7,828) 60.88%

Without PLoS (n
= 5,030) 39.12%

Proportion di�erence (%)
(with PLoS—without PLoS)

Age, median 72 - - -

Age categories, n (%)

(0–17) 1,170 (9.1) 329 (4.2) 841 (16.7) −12.5

(18–29) 679 (5.3) 158 (2.1) 521 (10.4) −8.3

(30–49) 1,772 (13.8) 616 (7.9) 1,176 (23.4) −15.5

(50–69) 2,364 (18.4) 1,554 (19.9) 810 (16.1) 3.8

70 or older 6,873 (53.5) 5,171 (66.1) 1,702 (33.9) 32.2

Gender, n (%)

Male 6,101 (47.4) 3,928 (50.2) 2,173 (43.2) 7.0

Female 6,757 (52.6) 3,900 (49.8) 2,857 (56.8) −7.0

Mode of arrival, n (%)

Ambulance–118 6,645 (51.7) 4,624 (59.1) 2,021 (40.2) 18.9

Own vehicle/walk-in 4,769 (37.2) 2,204 (28.2) 2,565 (51.0) −22.8

Othersa 1,444 (11.2) 1,000 (12.8) 444 (8.8) 4.0

Triage category

Red 807 (6.3) 539 (6.9) 268 (5.3) 1.6

Orange 4,360 (33.9) 2,367 (30.2) 1,993 (39.6) −9.4

Light blue 4,253 (33.1) 3,065 (39.2) 1,188 (23.6) 15.6

Green 3,224 (25.1) 1,784 (22.8) 1,440 (28.6) −5.8

White 214 (1.7) 73 (0.9) 141 (2.8) −1.9

Specialty, n (%)

General medicine 3,757 (29.2) 2,995 (38.3) 762 (15.1) 23.2

Geriatric 1,624 (12.6) 1,252 (16.0) 372 (7.4) 8.6

Astanteria/casualty department 1,450 (10.7) 809 (10.3) 641 (12.7) −2.4

Obstetrics and gynecology 1,159 (9.0) 114 (1.5) 1,045 (20.8) −19.3

Pediatrics 609 (4.7) 193 (2.5) 416 (8.3) −5.8

General surgery 571 (4.4) 276 (3.5) 295 (5.9) −2.4

Infectious and tropical diseases 533 (4.1) 372 (4.8) 161 (3.2) 1.6

Orthopedics and traumatology 481 (3.7) 378 (4.8) 103 (2.0) 2.8

Urology 405 (3.2) 99 (1.3) 306 (6.1) −4.8

Coronary unit 377 (2.9) 283 (3.6) 94 (1.9) 1.7

Pediatric surgery 376 (2.9) 77 (1.0) 299 (5.9) −4.9

Gastroenterology 308 (2.4) 237 (3.0) 71 (1.4) 1.6

Cardiology 150 (1.2) 96 (1.2) 54 (1.1) 0.1

Intensive care 141 (1.1) 113 (1.4) 28 (0.6) 0.8

Pneumology 135 (1.1) 111 (1.4) 24 (0.5) 0.9

Nephrology 105 (0.8) 91 (1.2) 14 (0.3) 0.9

Oncology 93 (0.7) 67 (0.9) 26 (0.5) 0.4

Vascular surgery 89 (0.7) 65 (0.8) 24 (0.5) 0.3

Missing values 76 (0.6) 30 (0.4) 46 (0.9) −0.5

(Continued)
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TABLE 3 (Continued)

Factor PLoS (i.e., ≥6 days)

Total, n (%)
(n = 12,858)

With PLoS (n =
7,828) 60.88%

Without PLoS (n
= 5,030) 39.12%

Proportion di�erence (%)
(with PLoS—without PLoS)

Othersb 419 (3.3) 170 (2.2) 249 (5.0) −2.8

Problems, n (%)

Dyspnea 1,954 (15.2) 1,446 (18.5) 508 (10.1) 8.4

Abdominal pain 1,268 (9.9) 739 (9.4) 529 (10.5) −1.1

Fever/hyperpyrexia/hyperthermia 1,090 (8.5) 761 (9.7) 329 (6.5) 3.2

Problems in pregnancy > 20th

week

944 (7.3) 70 (0.9) 847 (16.8) −15.9

Non-specific minor disorders 579 (4.5) 395 (5.0) 184 (3.7) 1.4

Chest pain of suspected

cardiovascular cause

524 (4.1) 329 (4.2) 195 (3.9) 0.3

Sincope/pre-sincope 344 (2.7) 220 (2.8) 114 (2.3) 0.5

Generalized asthenia 325 (2.5) 257 (3.3) 68 (1.4) 1.9

Politrauma—contusive 301 (2.3) 198 (2.5) 103 (2.0) 0.5

Pain at the side 278 (2.2) 100 (1.3) 178 (3.5) −2.3

Nausea and/or vomiting repeated 269 (2.1) 150 (1.9) 119 (2.4) −0.5

Heart palm/irregular wrist 251 (2.0) 156 (2.0) 95 (1.9) 0.1

Altered level of consciousness 234 (1.8) 165 (2.1) 69 (1.4) 0.7

State of confusion 213 (1.7) 162 (2.1) 51 (1.0) 1.1

Hematochezia/rectorrage/melena 194 (1.5) 136 (1.7) 58 (1.2) 0.6

Lower limbs injury 187 (1.5) 157 (2.0) 30 (0.6) 1.4

Cough/congestion 181 (1.4) 105 (1.3) 76 (1.5) −0.2

Lower limbs pain 160 (1.2) 137 (1.8) 23 (0.5) 1.3

Chest pain not suspected due to

cardiovascular cause

158 (1.2) 92 (1.2) 66 (1.3) −0.1

Pallor/anemia 137 (1.1) 108 (1.4) 29 (0.6) 0.8

Request for urgent specialist advice 135 (1.0) 94 (1.2) 41 (0.8) 0.4

Macro-hematuria 130 (1.0) 70 (0.9) 60 (1.2) −0.3

Diarrhea 121 (0.9) 85 (1.1) 36 (0.7) 0.4

Request for prescription or

performance

120 (0.9) 75 (1.0) 45 (0.9) 0.1

Swollen/edematous leg 119 (0.9) 104 (1.3) 15 (0.3) 1.0

Weakness of extremities/symptoms

associated with cerebrovascular

disease

118 (0.9) 89 (1.1) 29 (0.6) 0.6

Symptoms of infection of the

urinary tract

115 (0.9) 78 (1.1) 37 (0.7) 0.3

Diagnostics for biochemical

images/examinations

108 (0.8) 77 (1.1) 31 (0.6) 0.4

Head trauma 99 (0.8) 54 (0.7) 45 (0.9) −0.2

Otherc 2,212 (17.2) 1,219 (15.6) 993 (19.7) −4.2

aTaxi, helicopter 118, army ambulances, fire brigade, police, etc.
bDamages, Ent (ear, nose, and throat) problem, nephrology (enabled for transplantation), neonatology, pediatric oncology, semi-intensive therapy, maxillo facial surgery, hematology, thoracic

surgery ophthalmology, heart surgery, neonatal intensive care, pediatric heart surgery, and dermatology.
cMore than 135 cases.
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FIGURE 4

Histograms showing the distribution of Age (A) and LoS (B) in all patients.

model. MSE is the most widely used loss function for continuous

outcomes. Still, we also considered MAE and MRE to get a

more comprehensive understanding of the performance. The

lower the value of the loss function, the better the model’s

prediction performance.

MSE =

∑n
i=1(ŷi−yi)

2

n ; MAE =

∑n
i=1|ŷi−yi|

n ; and MRE =
∑n

i=1

(

|ŷi−yi|
yi

)

n where ŷi and yi are the predicted LoS and actual LoS

for the ith test data.

3. Results

3.1. Patient selection

Figure 1 illustrates a flowchart of patients’ eligibility for analysis

in the emergency department of triaging system. A total of 84,847

patient visits were recorded at the ED between January 1 and

October 26, 2022. After filtering for exclusion criteria, 12,858

patients were available for analysis.

3.2. Descriptive statistics

3.2.1. Patients characteristics summary
Of the 12,858 eligible patients included in the study, 60.88% had

a prolonged length of stay (LoS). Themedian age of the patients was

72 years, and the elderly age groups (50–69 and 70+) had longer

LoS than the other age groups. The male patients comprised 52.6%

(6,757/12,858) of the total population. 51.7% of the patients arrived

at the hospital via ambulance and had a longer stay compared

to those who arrived by car or on foot. In the triage categories,

patients with red codes, which indicate an higher severity at the

ED admission, had a longer LoS, while green and white codes

showed shorter stays. Light blue codes were also associated with

prolonged LoS.

The most common problems among the patients

were dyspnea (15.2%), abdominal pain (9.9%), and

fever/hyperpyrexia/hyperthermia (8.5%). The majority of patients

were seen by specialists in general medicine (29.2%), geriatrics

(12.6%), astanteria or casualty department (10.7%), obstetrics and

gynecology (9.0%), and pediatrics (4.7%). A detailed breakdown

of patient characteristics can be found in Table 3. The count plots

for each patient for each specialty and problems are included in

the Appendix, in Supplementary Figures 1, 2, respectively.The

distribution of length of stay (LoS) for the patients is depicted in a

histogram in Figure 4. The distribution of LoS values was found to

be right-skewed, with a majority of patients having an LoS ranging

from 1 to 20 days. To further explore the impact of different factors

on LoS, a visualization of the dichotomous outcome result for each

factor is presented in Figure 5, while Figure 6 shows the continuous

outcome for each factor. By examining these visualizations, we

can gain insights into which factors may significantly impact LoS

and further investigate the relationships between these factors

and patient outcomes. Overall, these figures provide a clear and

concise way to understand the distribution of LoS values and their

relationship with different factors.

Figure 7 displays the average LoS for each problem and

specialty. The highest average LoS was observed in Intensive

Care, Vascular Surgery, Nephrology, General Medicine,

Gastroenterology, Infectious Diseases, Orthopedics and

Traumatology, Pneumology, Geriatrics, Cardiology, Oncology,

and the Coronary Unit, respectively. The average LoS was also

higher for patients experiencing issues such as swollen/edematous

legs, lower limb pain, generalized weakness, requests for urgent

specialist advice, altered levels of consciousness, diagnostic tests

for biochemical exams or images, non-specific minor disorders,

dyspnea, lower limb injuries, requests for prescription refills, and

pallor/anemia.

3.3. Prediction and model performance
results: binary outcome

The AUCs for all machine learning methods ranged from

0.643 for AdaBoost to 0.754 for GB (see Figure 8). GB was the

best-performing classifier, followed by LoR (AUC = 0.752) and
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FIGURE 5

The results for each factor’s dichotomous outcome (0, LoS < 6, without PLoS; 1, LoS ≥ 6, with PLoS).

SVM (AUC = 0.726). The F1-scores ranged from 0.65 (AdaBoost)

to 0.73 in GB, and 0.74 in LoR (see Table 4), indicating a

high capability of these models to predict the prolonged length

of stay.

Of the six models, the Gradient Boosting (GB) classifier

demonstrated the best prediction performance in terms of accuracy

(75.4%), Area Under the Curve (AUC; 0.754), and Brier score

(0.181). The Logistic Regression (LoR) model had the second-best

performance, with an accuracy of 75%, AUC of 0.752, and a Brier

score of 0.182. Based on these results, GB and LoR were chosen

as the final models due to their better performance. However,

the Ada Boost model showed poor performance with the highest

Brier score, lowest accuracy, and lowest AUC values. Despite

attempting hyperparameter optimization, the model’s accuracy did

not significantly improve.

The calibration plots for each model are displayed in Figure 9.

The graph shows that GB and LoR have an almost ideal

calibration or optimal fit. The Random Forest (RF) and K-

Nearest Neighbor (KNN) models are well-calibrated but tend to

overestimate the probabilities of a prolonged length of stay (PLoS)

for most patients. Conversely, the Ada Boost and Support Vector

Machine (SVM) models are poorly calibrated, with Ada Boost
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FIGURE 6

Boxplots of length of stay (LoS) on demographic factors, separated into two panels. (Upper panel) Shows LoS boxplots for age groups (left) and sex

(right). (Lower panel) Shows the box plot for risk categories of triage evaluations.

underestimating the probability of a PLoS for patients identified

as low risk and overestimating it for patients in the two highest

risk deciles.

The model with the highest prediction accuracy, Gradient

Boosting (GB), was used to determine the relative importance

of features. Figure 10 displays the results of the variable

importance ranking generated by the GB model. In order of

importance, the most important features were: Age Group 5

(Individuals over 70 years old), Problems in pregnancy after 20

weeks, Sex, and Age Group 4 (Individuals between 50 and 69

years old).

3.4. Prediction and model performance
results: continuous outcome

The models used for predicting Length of Stay (LoS) were

compared in Table 5, including various linear, penalized linear, and

other machine learning models using different loss functions or

total error measures. Ridge Regression and XGBoost Regression

are identified as the best models based on their lower loss function

values. The loss function or the total error performance measure is

also visualized in Figure 11, where RMSE is on the left and MAE is

on the right.

4. Discussion

In this study, we aimed to compare and evaluate predictive

models using supervised machine learning algorithms for

predicting prolonged length of stay in patients admitted through

the emergency department (ED) in general patients settings. It

is intended to promote a specific model and suggest or propose

a decision-support tool as part of a predictive framework. It is

well-established that reducing the length of inpatient hospital stays

is one of the ways to improve the quality of life and sustainability

of healthcare systems (Baek et al., 2018). Therefore, our study aims

to assist physicians and doctors in making informed decisions that

enable personalized interventions and guide their decision-making

process to predict hospitalizations and enhance healthcare quality.

In most PLoS prediction models, predicting the outcome

relies on either classification or regression. Our study utilized two

separate modeling methods to predict the outcome, employing

both a dichotomous value (PLoS), and a continuous value

(LoS)—that is to minimize information loss in a classification

task. Adopting precise and accurate modeling techniques improves
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FIGURE 7

The average LoS for each problem (right) and for each specialty (left).

FIGURE 8

ROC curves and AUC of the six classification models for PLoS prediction.

the results and interpretations. In recent years, the prediction of

patient LoS for various diseases and scenarios has been extensively

explored using a variety of statistical andmachine learningmethods

such as Logistic Regression (LoR), Random Forest (RF), Support

Vector Machines (SVM), K-Nearest Neighbors (KNN), decision

tree-based methods, among others (Barsasella et al., 2022).

Of the six classifiers evaluated in this study (LoR, RF, SVM,

GB, AdaBoost, and KNN), five of them, excluding AdaBoost,

had AUCs > 0.7, suggesting them as effective tools to predict the

outcome (Florkowski, 2008). The predictive performance of the

classifier models was evaluated using popular statistical indicators

such as accuracy, AUC, and Brier score. GB performed the best

among the six classifier models, followed by LoR. AdaBoost

showed poor performance as it underestimated the probability

of PLoS in patients identified as low risk and overestimated

it in two patient deciles classified as high risk. Similar results

were observed in other studies (Alsinglawi et al., 2020b), which

used ML models to predict LoS for adult ICU cardiovascular
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TABLE 4 The prediction performance of the six classification models for PLoS prediction.

Classifier
algorithms

Brier score AUC Precision Recall F1-score Accuracy

LoR 0.182 0.752 0.75 0.75 0.74 0.75

RF 0.226 0.706 0.67 0.68 0.68 0.68

GB 0.181 0.754 0.75 0.75 0.73 0.75

SVM 0.192 0.726 0.74 0.74 0.72 0.74

AdaBoost 0.255 0.643 0.65 0.65 0.65 0.65

KNN 0.198 0.723 0.70 0.71 0.70 0.71

FIGURE 9

Calibration curve plots of the six classification models for PLoS prediction.
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FIGURE 10

Gradient Boosting variable importance.

TABLE 5 Comparisons of classifier methods with continuous target variables for statistical and ML models applied to our datasets.

Model Loss function

MSE RMSE MAE MRE

Linear regression 107.045 10.346 6.671 1.283

Penalized linear models - - - -

Lasso regression 109.034 10.441 6.730 1.319

Ridge regression 107.044 10.346 6.670 1.283

Elastic net regression 109.034 10.442 6.741 1.322

Other ML learning models - - - -

Support vector regression 119.103 10.913 6.188 0.854

XGBoost regression 107.209 10.354 6.589 1.213

Random forest regressor 132.899 11.528 7.393 1.332

K-nearest neighbors regression 129.045 11.359 7.331 1.315

MSE, mean square error; RMSE, root mean square error; MAE, mean absolute error; MRE, mean relative error.

The bolded values indicate the lowest values of prediction error (e.g. Ridge and XGBoost regressions) for continuous outcomes, LoS.

hospitalizations, with the best results obtained using the

GB algorithm.

Several studies, including (Kong et al., 2020; Jo et al., 2021; Wu

et al., 2021; Xiong et al., 2022), have shown that the GB classifier

outperforms other algorithms in predicting PLoS, with reported

accuracy, AUC, and Brier score ranging from 75.3 to 82.9%, 0.74

to 0.873, and 0.122 to 0.156, respectively. Our study’s findings are

consistent with these results. In contrast to some other studies,

Random Forest (RF), a widely used ensemble model, has been

shown to performwell in certain contexts. For instance, in Xue et al.

(2022), RF achieved high accuracy, AUC, and Brier scores of 0.822,

85.8%, and 0.137, respectively, suggesting its efficacy for predicting

length of stay in hospital patients. These findings highlight the

importance of carefully selecting the appropriate machine learning
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FIGURE 11

The loss function/total error visualization.

algorithm based on the specific data and problem being addressed.

While RF may be a strong choice for certain applications, it may

not necessarily be the best option in all cases. Therefore, it is crucial

to systematically compare the performance of different algorithms

and identify the optimal model for a given dataset. Such efforts

can ultimately lead to more accurate and reliable predictions for

clinical decision-making. Moreover, RF has demonstrated superior

performance in predicting the outcome in various healthcare

contexts. For example, RF has been shown to perform well in

predicting LoS in newborns (Thompson et al., 2018), patients

undergoing general surgery (Chuang et al., 2015), and individuals

with COPD (chronic obstructive pulmonary disease; Luo et al.,

2017). However, the results may vary depending on the specific

patient population, clinical variables included in the model, and

machine learning algorithm used. Moreover, we analyzed the

importance of the features used in our best models, i.e., GB. In

order of importance, the most important features were: Age Group

5 (Individuals over 70 years old), Problems in pregnancy after

20 weeks, Sex, and Age Group 4 (Individuals between 50 and 69

years old).

In addition, our study also aimed to predict continuous

outcomes using eight ML regression models, as described in

the methodology. After evaluating the models’ performance, we

found that Ridge and XGBoost regressions outperformed the

others, resulting in lower prediction errors. Our findings align

with previous studies, such as Chen and Klasky (2022), which

reported similar results with lower prediction errors or loss

functions. For instance, they reported the lowest mean absolute

error between prediction and actual duration to be around 4

days, while our study showed a similar result of around 6 days.

In addition, the XGBoost regression model also showed better

results in Gabriel et al. (2023) for spine surgery LoS prediction.

In another study on regression outcomes (Caetano et al., 2014),

which examined the general patient population, six regression

techniques were compared, including average prediction, decision

trees, multiple regression, ANN ensembles, RF, and SVM. The

RF regression model was found to yield the most accurate

results with the lowest loss. Overall, our study adds to the

existing body of literature highlighting the effectiveness of machine

learning regression models in predicting continuous outcomes in

healthcare. In particular, our results demonstrate the potential

of Ridge and XGBoost regressions in improving the accuracy of

LoS prediction.

To summarize, selecting the most appropriate ML algorithm

that matches the specific data and problem at hand and comparing

the performance of different algorithms are crucial steps in

identifying the optimal model for a given dataset to ensure accurate

and reliable clinical decisions. The best-performing models can

then be selected as the final models. As a result, GB followed by LoR

is our best-performing classification model, while Ridge Regression

and XGBoost Regression were the regression model choices. These

final models can now be utilized to make informed decisions or

derive meaningful insights for future patients. It is important to

note that the choice of the optimal model may depend on various

factors, such as the type of data, the problem being addressed, and

the specific goals of the analysis. Therefore, it is recommended to

evaluate and compare the performance of different models when

developing predictive models for various clinical applications.

One of the strengths of our study was that we used all data from

ED-admitted patients, so heterogeneous patients were included in

the analysis. Moreover, we evaluated several ML techniques for

predicting both a categorical and a continuous outcome. However,

our study has some limitations that should be recognized. One

limitation of the study is that vital signs for triage evaluation

information and laboratory test results were not available, which

is probably one of the most important indicators (Calzavacca et al.,

2010); and data was only collected from one hospital so we were

not able to validate the prediction model externally. Moreover,

the results of this study may be biased toward other normative

periods since the data were collected during the COVID-19

pandemic. Furthermore, interpreting ML results can be difficult

due to the black-box nature of some models, which can make

it challenging to understand the factors that contribute to the

final prediction. However, linear models such as LASSO, Ridge,
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Elastic-Net Regression, and Logistic Regression provide regression

coefficients, making them transparent and easily interpretable

(Kotsiantis et al., 2006; Deo, 2015). Other techniques like feature

selection and model-agnostic interpretability methods can also

improve transparency.

In future work, we will focus on a specific specialty or disease

that is prevalent in the hospital. In addition, efforts will be made to

incorporate missing features such as vital signs in triage evaluation

and laboratory test results. The aim is to enhance the dataset

by adding more information regarding features and patients to

produce better results and tackle more advanced prediction tasks

such as Length of Stay (LoS) after surgeries and utilization of critical

hospital resources.

5. Conclusions

As a result of our research, we have found that ML models

are effective in predicting outcomes. Our findings showed that

the GB classifier performed best, followed by LoR. These models

can be utilized as a decision-support tool to inform healthcare

decisions and predict new patient hospitalizations. Additionally,

for continuous outcomes, Ridge regression and XGBoost regression

displayed the best prediction performance with the lowest total

prediction error. Healthcare providers can utilize our models to

predict the hospitalization of new patients or to drive quality

improvement initiatives. It is worth mentioning that this study is

the first of its kind conducted in this hospital and can serve as a

reference for future similar studies and provide valuable insights

for informed decision-making.
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Clinical application of a body area 
network-based smart bracelet for 
pre-hospital trauma care
Wei Han 1,2*†, Jin-Yang Yuan 2†, Rui Li 2, Le Yang 2, Jia-Qin Fang 3, 
Hao-Jun Fan 1* and Shi-Ke Hou 1*
1 Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China, 2 Emergency 
Department of Shenzhen University General Hospital, Shenzhen, Guangdong, China, 3 School of 
Microelectronics, South China University of Technology, Guangzhou, Guangdong, China

Objective: This study aims to explore the efficiency and effectiveness of a body 
area network-based smart bracelet for trauma care prior to hospitalization.

Methods: To test the efficacy of the bracelet, an observational cohort study 
was conducted on the clinical data of 140 trauma patients pre-admission to 
the hospital. This study was divided into an experimental group receiving smart 
bracelets and a control group receiving conventional treatment. Both groups 
were randomized using a random number table. The primary variables of this 
study were as follows: time to first administration of life-saving intervention, 
time to first administration of blood transfusion, time to first administration of 
hemostatic drugs, and mortality rates within 24  h and 28  days post-admission 
to the hospital. The secondary outcomes included the amount of time before 
trauma team activation and the overall length of patient stay in the emergency 
room.

Results: The measurement results for both the emergency smart bracelet as 
well as traditional equipment showed high levels of consistency and accuracy. In 
terms of pre-hospital emergency life-saving intervention, there was no significant 
statistical difference in the mortality rates between both groups within 224  h 
post-admission to the hospital or after 28-days of treatment in the emergency 
department. Furthermore, the treatment efficiency for the group of patients 
wearing smart bracelets was significantly better than that of the control group 
with regard to both the primary and secondary outcomes of this study. These 
results indicate that this smart bracelet has the potential to improve the efficiency 
and effectiveness of trauma care and treatment.

Conclusion: A body area network-based smart bracelet combined with remote 
5G technology can assist the administration of emergency care to trauma 
patients prior to hospital admission, shorten the timeframe in which life-saving 
interventions are initiated, and allow for a quick trauma team response as well as 
increased efficiency upon administration of emergency care.

KEYWORDS

wearable electronic devices, body area network, pre-hospital emergency care, trauma, 
clinical application
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1. Introduction

A common term called the “golden hour,” which is based on the 
“trauma death curve” theory refers to an approximately 60-min 
window following a severe injury in which effective treatment is 
needed to reduce morbidity and mortality rates (1). In complex or 
difficult to reach areas, traditional emergency response systems may 
struggle to arrive at the scene of an accident in a timely manner, 
leading to missed opportunities for prompt care to be administered. 
In such situations, a device with more portability and effectiveness is 
needed to provide life support on site during transport to the hospital 
(2). This is especially crucial for large-scale emergencies in which a 
large number of patients require treatment within a short period of 
time or when there is potential for the limited availability of emergency 
response because the number of patients is higher than usual. As a 
result, additional methods of professional management and 
communication were needed during these events (3). Therefore, the 
development of a more efficient trauma care system pre-hospitalization 
was of great importance.

Wireless body area network (WBAN) is an emerging technology 
that allows for local area network communication while consuming 
low quantities of energy. Remote life-sign monitoring systems 
developed based on WBAN technology have been shown to 
significantly increase the data transmission rate compared to 
traditional healthcare systems (4). In traditional healthcare systems, 
information for most patients is collected and transmitted via wired 
methods, which lack flexibility and limit the users’ normal range of 
activities. WBAN technology can automatically collect and record 
physiological signals from the patient in different environments, such 
as home, office, or a hospital, without affecting normal activities. 
Various physiological parameters can be transmitted to hospitals or 
servers, promoting a more efficient and timely treatment. 
Furthermore, sensor nodes can be used to monitor the sudden onset 
of conditions in the patient and promptly notify hospitals and family 
members to provide timely treatment.

Vital signs such as blood pressure, heart rate, body temperature, 
and blood oxygen saturation are external readouts of various 
physiological activities in the human body and are basic indicators for 
judging whether the body is healthy. When abnormalities occur, vital 
signs show different degrees of change, corresponding to dynamic 
changes caused by disease occurrence, development, and resolution. 
Therefore, real-time monitoring and recording of human vital signs 
provide an important scientific basis for clinical diagnosis and timely 
treatment of patients and to ensure correct guidance is given to the 
nursing staff caring for patients. At present, conventional monitoring 
methods often require patients to stay still for a few seconds. 
Furthermore, medical staff is required to bring monitoring equipment 
to the patient’s bedside in order to measure and record specific data 
for each patient, which is quite inefficient. WBAN technology enables 
intelligent monitoring through distributed sensor nodes, collecting 
vital sign information from the human body in real-time and 
transmitting them online to hospital servers (5–9). This technology is 
particularly useful when needed in operating rooms, intensive care 
units (ICU), and other hospital wards (6, 10). However, to date, there 
have only been a few studies on applying this technology for use in 
emergency medical services (4).

Wearable devices can integrate various biosensors to monitor and 
record physiological information such as blood pressure, pulse, blood 

oxygen saturation, respiratory rate, body temperature, 
electrocardiogram data, or electromyogram data through attachment 
to the body. These devices have excellent mobility (7, 8) and use body 
area network technologies in addition to other new technologies, such 
as remote 5G interaction, to provide a remote, real-time monitoring 
solution for pre-hospitalized patients, thus informing both diagnosis 
and treatment in emergency care (8, 9). This study aimed to explore 
the impact of a multi-parameter integrated life-monitoring smart 
bracelet based on BAN technology for efficient and effective 
emergency treatment of patients prior to hospitalization. Our findings 
provided evidence for the development of wearable monitoring 
devices and remote emergency medical technology based on WBAN, 
as well as for improving the quality of trauma treatment for patients 
before hospitalization.

2. Materials and methods

2.1. General information

Clinical data from 140 pre-hospitalized trauma patients who were 
admitted to Shenzhen University General Hospital between June 10, 
2022, and January 31, 2023, were analyzed in this observational cohort 
study. Inclusion criteria were: (1) trauma patients who were 
transported by the Shenzhen University General Hospital 120 Center 
and received treatment in the emergency department; (2) aged 18 to 
80 years; (3) those who provided informed consent. Exclusion criteria 
were the following: (1) patients with mental disorders or unwilling to 
cooperate; (2) pregnant women; (3) patients who were confirmed 
dead after their initial assessments. The inclusion and exclusion 
process for this study is further detailed in Figure 1.

The sample size was calculated by GPower 3.1.9.7 software. The 
statistical method of t-test for two independent samples was applied; 
effect size (d) was set to 0.5, power of the test (1-β) was 0.8, and 
significance level (α) was set to 0.05. Each group required at least 64 
participants. Therefore, 70 participants were included in each of the 
two groups (control and test groups) in this study; the experimental 
group consisted of 70 pre-hospitalized trauma patients who were 
treated using smart bracelets containing body area network 
technology, while the control group consisted of 70 pre-hospitalized 
trauma patients who were treated using traditional methods. Before 
data collection, grouping was completed by a random method. 
Specifically, samples were numbered 1–140  in advance, and each 
sample was randomly assigned a random three-digit number using 
the random number table. Then, the samples are sorted based on their 
three-digit number. According to the sorting results, the top  70 
samples are divided into a control group, while the rest of them are 
divided into a test group. The experimenter decides whether to use the 
test equipment according to the group of patients who are 
presented sequentially.

This study was approved by the ethics committee of Shenzhen 
University General Hospital (Ethics Approval No. 
SUGHKYLL2022061001). It was conducted in strict compliance with 
relevant regulations and ethical guidelines. Informed consent was 
obtained from all patients or their family members. Obtaining written 
informed consent at the pre-hospital scene can be challenging and 
may hinder emergency rescue work. Therefore, we  only obtained 
verbal informed consent from patients or family members at the 
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scene, with written informed consent signed at the hospital. In cases 
where patients could not provide verbal consent and had no family 
members present, such as those who are unconscious, the patients still 
wore bracelets, and written informed consent was given by the family 
members at the hospital.

2.2. Experimental equipment

The experimental device used for this study was a multi-
parameter integrated life-monitoring smart bracelet based on BAN 
technology, which was independently developed by our team, as 
shown in Figure 2. This smart bracelet can simultaneously monitor 
blood pressure, heart rate, blood oxygen saturation, body 

temperature, and respiratory rate, and perform single-
lead electrocardiography.

The sensor component used in the bracelet was based on a 
Nordic52832 control chip, which includes an oxygen chip (TI high-
performance analog front end AFE4404 + 2*Osram2703 PD + Osram 
three-in-one LED), temperature sensor (CT1711 array), 
electrocardiogram chip (Ti chip  129X), photoelectric chip (Ti 
AFE4404 + double Osram2703), heart rate chip (Yiguang PD70), and 
a gravity sensor (Rome KXTJ3-1057). The installed communication 
module uses a low-power 4.2BLE Bluetooth module, which requires 
the central node device (Figure 3) to be compatible with Android 4.4 
or higher, IOS 8.0 or higher, as well as support Bluetooth 4.0. The 
hardware performance parameters were as follows: (1) the bracelet 
contains a memory of 512 KB (Flash 64 M); (2) the screen display was 

FIGURE 1

The study flow chart.

FIGURE 2

Emergency smart bracelet.
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approximately 1.3” IPS 240×240; (3) the battery capacity was 240mAh, 
which allowed for 15-day standby periods or 5–7 days of full-time 
monitoring; (4) the bracelet supported physical buttons; (5) a built-in 
motor for vibration reminders; (6) it uses magnetic charging interface; 
(7) the waterproof rating for the body of the bracelet easily met IP67 
standards. The bracelet can collect patient vital signs (blood pressure, 
blood oxygen saturation, heart rate, respiratory rate, temperature) in 
real-time. After wearing and completing the first-time measurement, 
we obtained blood pressure, blood oxygen saturation, and respiratory 
rate measurements at a frequency of 20 Hz, and obtained heart rate 
and temperature at 60 Hz.

The equipment used in this study included traditional life sign 
monitoring equipment that is commonly employed in the hospital 
prior to admission, which included: electronic blood pressure cuffs 
(Yuwell YE680A), pulse oximeters (Edan H100B), infrared 
thermometers (Fudakang KM-WD01), 12-lead electrocardiograph 
machines (Edan SE1201), as well as a vehicle-mounted defibrillator 
monitor (Mindray BeneHeart D6). The respiratory rate of patients was 
measured prior to hospital admission through visual estimation 
or stethoscope.

2.3. Emergency rescue methods

The control group underwent standard emergency rescue. Upon 
receiving a trauma emergency rescue task from the center, staff from 
the emergency department performed pre-admission vital sign 
monitoring via traditional emergency equipment upon arrival at the 
injury scene. The patients’ medical histories were obtained, their vital 
signs were measured, and a physical examination was performed to 
assess initial patient conditions. On-site treatment was provided as 
needed, and it included: the opening of patient’s airways, establishing 
venous access, oxygen supplementation, as well as other interventions 
such as tracheal intubation, cricothyroidotomy, needle decompression, 
and fluid replacement. After the staff completed on-site treatment, 
patients were transported by ambulance to the nearest trauma center. 
In the ambulance, patients’ cardiac statuses were monitored using a 

vehicle-mounted electrocardiogram measuring heart rate, blood 
pressure, pulse, oxygen saturation, and respiratory rate. The trauma 
team was activated upon arrival at the hospital, and a treatment plan 
was prepared based on the patients’ condition via phone or direct 
network communication.

For the experimental group, a smart wristband based on BAN 
technology combined with traditional equipment was applied for vital 
sign monitoring. Furthermore, remote communication was conducted 
through 5G internet technology before and after hospitalization. The 
study researchers did not interfere in any routine emergency rescue 
procedures. After obtaining consent from the patients or their family 
members upon arrival at the scene, the wristband was put on to 
monitor the patients’ blood pressure, heart rate, blood oxygen 
saturation, respiratory rate, and body temperature. The wristband data 
was connected to the BAN of the central node device and synchronized 
in real-time to the emergency physicians’ terminal in the hospital via 
5G signaling. The active emergency physician in the hospital guided 
patient treatment using an online screen video according to the 
patients’ condition. Furthermore, the emergency department doctor 
activated the trauma team while preparing a patient rescue plan based 
on their conditions.

2.4. Variable definitions

The amount of time needed to administer the patient’s first rescue 
intervention, the amount of time needed to start a blood transfusion, 
the amount of time until the first use of hemostatic drugs, as well as 
24-h and 28-day mortality rates were the primary variables. The 
secondary variables included the time necessary to activate the trauma 
team as well as the length of stay in the emergency department.

The evaluation indicators for treatment efficiency included: (1) 
rescue intervention measures, such as endotracheal intubation, 
cricothyrotomy, needle decompression, fluid replacement, use of 
hemostatic drugs (tranexamic acid), and blood transfusion; (2) the 
amount of time needed to begin patients’ first rescue intervention after 
their initial encounter with medical personnel prior to hospitalization; 
(3) amount of time necessary to begin a blood transfusion after 
emergency department admission; (4) amount of time between 
emergency department admission and the patients’ first use of 
hemostatic agents; (5) amount of time between the initial encounter 
with medical personnel prior to hospitalization to activation of the 
in-hospital trauma team.

The evaluation indicators of treatment effectiveness included: (1) 
mortality within 24-h of hospitalization, defined as the proportion of 
patients who died for any reason within 24-h after admission to the 
emergency department in each group; (2) 28-day mortality, defined 
as the proportion of patients who died for any reason within 28-days 
after injury in each group; (3) total time spent in the emergency 
department from admission to discharge.

2.5. Data collection

Data collection was performed by the research team prior to and 
after hospitalization. Pre-hospitalization data was collected in the 
ambulance and included vital signs measured by the smart bracelet 
and conventional equipment (blood pressure, heart rate, oxygen 

FIGURE 3

Wireless body area network.
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saturation, respiratory rate, and temperature), the site and type of 
injury, the injury severity score (ISS), time of arrival at the scene, time 
life-saving interventions were initiated, the time of trauma team 
contact at the hospital, the time of ambulance entry, as well as the time 
of emergency department arrival. In-hospital data was collected by a 
thorough review of patient records and nursing documents and 
included blood transfusion times, the use of hemostatic drugs, as well 
as the time patients left the operating room. The research team did not 
participate in clinical decision-making or treatment during 
these processes.

2.6. Statistical analyses

Statistical analyses were performed using SPSS Statistics 27.0 
software (International Business Machines Corporation, 
United  States). Continuous variables were expressed as 
mean ± standard deviation if normally distributed or as median 
values (interquartile range) if not normally distributed and were 
compared using student’s t-test or Mann–Whitney U test as 
appropriate. Categorical variables were expressed as frequencies or 
percentages and compared using a chi-square test or Fisher’s exact 
test. Kendall’s tau-b test was used to assess the consistency of the 
first measurement results from each type of equipment. p < 0.05 
represented statistical significance.

3. Results

3.1. Characteristics of the study population

There were no statistically significant differences (p > 0.05) in the 
general characteristics between the test and control groups. The main 
mechanism of trauma in both groups was car accident injury and 
falling injury, without a statistical difference between the two groups 
(p > 0.05). The most common trauma sites in both the control group 
(28.57%) and test group (35.71%) were the limbs. The control group 
consisted of 8 patients with head and neck trauma (11.43%), 13 
patients with thoracic trauma (18.57%), 18 patients with abdominal 
trauma (25.71%), and 6 patients with trauma in multiple areas 
(8.57%). The test group consisted of 5 patients with head and neck 
trauma (7.14%), 12 patients with thoracic trauma (17.14%), 15 
patients with abdominal trauma (21.43%), and 8 patients with trauma 
in multiple areas (11.43%). There was no significant statistical 
difference (p > 0.05) in the main trauma sites between the two groups. 
There were 30 patients (42.86%) in the control group and 28 patients 
(40.00%) in the experimental group who had severe trauma (ISS > 16 
points); there was no significant statistical difference (p > 0.05) in the 
proportion of patients with severe trauma between the two groups 
(Table 1).

3.2. Consistency and accuracy of the smart 
bracelet

Patients’ blood pressure, heart rate, blood oxygen saturation, 
respiratory rate, and temperature were measured via a smart bracelet 
and compared with the same metrics obtained via traditional devices. 

A paired rank-sum test was performed; the result is shown in Table 2. 
No significant differences were found between groups (p > 0.05), 
which indicates a high consistency between the smart bracelet and 
traditional methods. Yet, the results of the first measurements for 
blood pressure (K = 0.862), heart rate (K = 0.899), blood oxygen 
saturation (K = 0.605), respiratory rate (K = 0.751), and temperature 
(K = 0.635) prior to hospitalization measured via smart bracelet were 
more accurate, and these results were considered statistically 
significant (p < 0.001).

3.3. Comparison of rescue efficiency

The rescue interventions and treatment efficiencies of both patient 
groups were compared. The results showed that the time to 
administration of first-aid first life-saving intervention (t  = 2.040, 
p = 0.049) and blood transfusions (t = 2.310, p = 0.048), as well as the 
use of hemostatic drugs (t = 4.416, p < 0.001) were significantly shorter 

TABLE 1 Comparison of general characteristics between groups.

Project Control 
group

Test group p

N 70 70

Age [ x−  ± s, years] 43.31 ± 13.87 44.17 ± 14.48 0.721

Gender 0.290

Male [n (%)] 48 (68.57) 42 (60.00)

Female [n (%)] 22 (31.43) 28 (40.00)

Mechanism of 

trauma

0.716

Falling injury [n (%)] 21 (30.00) 23 (32.86)

Car accident injury 

[n (%)]

33 (47.14) 28 (40.00)

Violent injury [n 

(%)]

5 (7.14) 8 (11.43)

Sharp object injury 

[n (%)]

2 (2.86) 4 (5.71)

Other [n (%)] 9 (12.86) 7 (10.00)

Major site of trauma 0.888

Head and neck [n 

(%)]

8 (11.43) 5 (7.14)

Face [n (%)] 4 (5.71) 3 (4.29)

Thorax [n (%)] 13 (18.57) 12 (17.14)

Abdomen [n (%)] 18 (25.71) 15 (21.43)

Limbs [n (%)] 20 (28.57) 25 (35.71)

Surface [n (%)] 1 (1.43) 2 (2.86)

Multiple areas [n 

(%)]

6 (8.57) 8 (11.43)

ISS pre-

hospitalization score

17.36 ± 13.44 18.49 ± 12.86 0.612

Trauma severity 0.731

ISS score ≤ 16[n (%)] 40 (57.14) 42 (60.00)

ISS score >16[n (%)] 30 (42.86) 28 (40.00)

141

https://doi.org/10.3389/fmed.2023.1190125
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Han et al. 10.3389/fmed.2023.1190125

Frontiers in Medicine 06 frontiersin.org

for patients with smart bracelets compared to the control group 
(Table  3), thus suggesting that smart bracelets may improve 
pre-hospital life-saving interventions (p < 0.05). However, when the 
efficiency of pre-hospital life-saving interventions was discussed 
separately, including tracheal intubation, fluid replenishment, and 
needle decompression, there was no significant difference between the 
two groups (all p  > 0.05). The efficiency of in-hospital life-saving 
interventions, including blood transfusion (p < 0.05) and the use of 
hemostatic drugs (p < 0.05), for patients in the experimental group 
was better than that of the control group. Furthermore, the time to 
trauma team engagement for patients with smart bracelets was 3.

3.4. Comparison of treatment effects

When comparing the treatment effects in both groups of patients, 
the duration of stay in the emergency room (ER) was significantly 
shorter for patients wearing the smart bracelet compared to the 
control group (t = 2.075, p = 0.043). Furthermore, there were no 
significant differences in mortality rates between both groups within 
24-h post-admission to the ER or on day-28 of patient care (p > 0.05) 
(Table 4).

4. Discussion

This study validated the consistency and accuracy of a multi-
parameter integrated life monitoring smart bracelet based on WBAN 
technology for use prior to hospitalization and studied the impact of 
combined WBAN and remote 5G technology on treatment efficiency 
and outcomes for these trauma patients.

Compared with traditional equipment, small and integrated 
monitoring devices benefit medical personnel performing 
treatments on trauma patients while increasing overall patient 

compliance (2, 11). Wearable devices have been widely used in 
healthcare for personalized diagnosis and treatment systems, and 
their effectiveness has been demonstrated in rehabilitation 
medicine, intraoperative monitoring, sports medicine, and other 
fields of research (8, 12, 13). However, the application of a BAN to 
emergency medical care has not yet been reported. Moreover, the 
literature on the accuracy and clinical benefits of wearable devices 
is still limited (14).

The results from this study provide additional information on 
the accuracy of wearable devices for use in the field of emergency 
medical care. In this study, we  found no significant statistical 
difference (p > 0.05) between blood pressure, heart rate, blood 
oxygen saturation, respiratory rate, and temperature measurements 
in the experimental group (with smart bracelet) and control 
patients (with traditional devices) prior to hospitalization. Yet, the 
consistency of smart bracelet measurements for blood pressure 
(K = 0.862), heart rate (K = 0.899), blood oxygen saturation 
(K = 0.605), respiratory rate (K = 0.751), and temperature (K = 0.635) 
was superior compared with the measurements obtained via 
traditional devices (all p < 0.001). Although our results suggest that 
the smart bracelet demonstrates a high degree of accuracy with 
regard to the measurement of vital signs, measurement errors 
cannot be ruled out. Yet, to the best of our knowledge, no study has 
validated the accuracy of wearable devices for use in trauma 
patients prior to hospitalization.

In China, there is a shortage of the equipment used for 
emergency care before hospitalization. Therefore, using integrated 
and portable devices may significantly improve the efficiency of 
emergency care for these patients. Liu et al. showed that using a 
portable wireless life monitoring device during trauma care before 
hospitalization could improve the accuracy of predicting life-saving 
interventions for patients (15). Furthermore, wearable devices 
achieve real-time data transmission through wireless and human-
computer interaction technology, thus allowing medical staff to 

TABLE 2 Analysis of consistency and accuracy in initial measurement results between the smart bracelets and traditional devices in the pre-hospital 
setting.

Project Traditional device Smart bracelet Z/Kendall coefficient p

Differences in initial measurements between both device types

Systolic blood pressure 

[Media(IQR),mmHg]
126 (111.5–146.3) 127.5 (111.0–148.3) −1.704 0.088

Heart rate [Median(IQR),/min] 91 (77.8–106.0) 92 (78.5–104.8) −0.003 0.997

Blood oxygen saturation 

[Median(IQR),%]
97 (95.8–98.0) 97 (97.0–98.0) −1.653 0.098

Respiratory rate [Median(IQR),%] 15 (13.0–19.0) 15 (12.0–19.3) −1.238 0.216

Temperature [Median(IQR),°C] 36.6 (36.2–36.9) 36.6 (36.5–36.7) −0.281 0.779

Consistency of initial measurements between both devices in the pre-hospital setting

Systolic blood pressure 

[Media(IQR),mmHg]
126 (111.5–146.3) 127.5 (111.0–148.3) 0.862 <0.001

Heart rate [Median(IQR), /min] 91 (77.8–106.0) 92 (78.5–104.8) 0.899 <0.001

Blood oxygen saturation 

[Median(IQR),%]
97 (95.8–98.0) 97 (97.0–98.0) 0.605 <0.001

Respiratory rate [Median(IQR),%] 15 (13.0–19.0) 15 (12.0–19.3) 0.751 <0.001

Temperature [Median(IQR),°C] 36.6 (36.2–36.9) 36.6 (36.5–36.7) 0.635 <0.001
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remotely and instantaneously understand a patient’s physical 
condition. Furthermore, high levels of integration and the 
compactness of wearable devices make them more environmentally 
friendly (16). The smart bracelet used in our study not only 
monitors vital signs in real-time during emergencies but can also 
be used for remote medical assistance through the use of body area 
networks and remote 5G technology. Our results suggested that the 
use of a BAN-based smart bracelet in emergency care prior to 
hospitalization can implement life-saving interventions in a more 
timely manner compared to conventional emergency care 
techniques, including first life-saving intervention (t = 2.040, 
p = 0.049), blood transfusion (t = 2.310, p = 0.048) and the use of 
hemostatic drugs (t = 4.416, p < 0.001). When multiple life-saving 
interventions (i.e., tracheal intubation, fluid resuscitation, needle 
decompression) from our study were separately analyzed, no 
significant difference was found between the groups. On-site 
tracheal intubation is a challenging procedure, with questionable 
short-term benefits. First responders often lack experience in this 
technique, leading to delayed or repeated intubation, which 
increases the risk of death (17). Therefore, using efficient and 
portable devices to shorten on-site assessment time may lead to 
quicker intubation, fluids and needle decompression administration. 
However, the small number of patients in our study introduced 

significant variability in the results, making it impossible to draw a 
clear conclusion.

Overall, the experimental group received life-saving 
interventions faster than the control group. Furthermore, we also 
found that patients in the experimental group received assistance 
from the trauma teams in a shorter period thanks to the 5G remote 
medical assistance (t  = 2.709, p  = 0.009). Previous studies have 
shown that timely and effective life-saving interventions can reduce 
mortality rates among trauma patients and that remote 
communication with emergency surgeons significantly improves the 
effect of life-saving interventions as well as reduces overall mortality 
rates in trauma patients (18, 19). Collaborative treatment between 
on-site and intra-hospital care can improve the diagnosis efficiency 
and treatment of severely injured patients (20). It is currently 
undisputed that minimizing the time from a severe injury to 
treatment is important; however, our results showed no significant 
difference in 24-h and 28-day mortality rates between groups. The 
overall number of patients who died in our study was small, and the 
results we  obtained contained significant variation. Therefore, 
we  could draw no clear conclusion from this data. The smart 
bracelets group had shorter stays in the emergency department than 
the control group (t = 2.075, p = 0.043). This is most likely due to the 
smart bracelet technology that reduced patient admission time and 

TABLE 3 Comparison of rescue efficiencies between groups.

Project Control group Test group χ2/t p

Administration of at least one life-saving intervention prior to 

hospitalization [n (%)]
20 (28.57) 18 (25.17) 0.144 0.704

Amount of time before use of first life-saving intervention prior to 

hospitalization [ x−  ± s, Min]
6.65 ± 3.12 4.83 ± 2.24 2.040 0.049

Tracheal intubation prior to hospitalization [n (%)] 6 (8.57) 5 (7.14) 0.099 0.753

Amount of time before intubation prior to hospitalization [ x−  ± s, 

Min]
4.67 ± 3.51 3.68 ± 2.58 0.520 0.616

Fluid replenishment prior to hospitalization [n (%)] 16 (22.86) 13 (18.57) 0.391 0.532

Time to initiation of fluid replenishment prior to hospitalization 

[ x−  ± s, Min]
6.97 ± 2.84 5.27 ± 2.03 1.802 0.083

Needle decompression prior to hospitalization [n (%)] 2 (2.86) 1 (1.43) 1

Emergency blood transfusion [n (%)] 8 (11.43) 6 (8.57) 0.317 0.573

Starting time of blood transfusion [ x−  ± s, Min] 163.25 ± 83.44 91.67 ± 23.27 2.310 0.048

Emergency use of hemostatic drugs [n (%)] 33 (47.14) 29 (41.43) 0.365 0.546

Duration of emergency hemostatic drug use [ x−  ± s, Min] 36.91 ± 7.70 25.62 ± 11.72 4.416 <0.001

The situation of trauma team activation prior to arriving at the hospital

Start a Trauma Team [n (%)] 30 (42.86) 28 (40.00) 0.118 0.731

Time to trauma team activation [ x−  ± s, Min] 8.22 ± 3.76 5.80 ± 3.04 2.709 0.009

TABLE 4 Comparison of treatment effects for both groups of patients.

Project Control group Test group χ2/t p

24-h mortality rate [n (%)] 2 (2.86) 0 (0.00) 0.496

28-day mortality rate [n (%)] 3 (4.29) 1 (1.43) 0.620

Number of patients needing resuscitation [n (%)] 25 20 0.819 0.366

Patient length of stay in the emergency room [ x−  ± s，Min] 199.60 ± 71.67 159.36 ± 65.29 2.075 0.043
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increased the number of resources available to patients in the 
emergency department (20, 21). For patients receiving emergency 
care before hospitalization, BAN can be  used to perform 
simultaneous multi-user monitoring, which is more effective for 
monitoring the health statuses of patients on-site and coordinating 
large-scale casualty treatment when necessary (10, 20, 21).

The present study has a few limitations: (1) this is an 
observational study, and the results are inevitably subject to 
confounding factors. However, we  effectively controlled these 
factors by using random grouping for the experiment. The general 
conditions of both patient groups (i.e., age, gender, trauma type, 
pre-hospitalization ISS score, and trauma severity) were 
compared, showing no statistical differences. (2) Although 
we compared the baseline data of the two groups of patients and 
found no significant statistical difference in the results (Table 1), 
not all samples were subjected to life-saving interventions 
(Table 3), and there may be some bias in the baseline data of those 
who subjected to life-saving interventions between two groups. To 
some extent, group randomization reduces the possibility of such 
bias, and further study should have more specific trauma samples 
or larger samples for stratified analysis. (3) There are differences 
in clinical experience among different clinical decision-makers, 
and the difference in enthusiasm for implementing life-saving 
interventions may have a certain degree of interference with the 
results, which were not evaluated. (4) In order to identify the 
advantages of using a BAN-based smart bracelet, future studies 
should include a separate experimental group that will use this 
system so as to reduce bias. However, there is currently insufficient 
evidence to determine whether the results of wearable devices 
used in pre-hospital settings are reliable. In a major accident, 
medical staff may be  more inclined to focus on traditional 
equipment during the pre-hospital treatment period for each 
patient, which we did not evaluate during this study.

5. Conclusion

A first aid smart bracelet based on body area network technology 
can improve the treatment efficiency and effectiveness of trauma care in 
patients pre-hospitalization. Emergency smart bracelets can shorten the 
start time of a patient’s first life-saving intervention, such as a blood 
transfusion, administering hemostatic drugs, and notification of the 
trauma team, and reduce the time spent in the emergency room. 
However, the results of this study did not suggest that smart bracelets 
made a significant difference concerning patient survival. Therefore, 
we  provided an effective technical mean for emergency doctors to 
improve both efficiency and efficacy of emergency treatment; however, 
further research and verification are needed.
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Objective: Non-invasive methods for hemoglobin (Hb) monitoring can provide

additional and relatively precise information between invasive measurements of

Hb to help doctors’ decision-making. We aimed to develop a new method for Hb

monitoring based on mask R-CNN and MobileNetV3 with eye images as input.

Methods: Surgical patients from our center were enrolled. After image acquisition

and pre-processing, the eye images, the manually selected palpebral conjunctiva,

and features extracted, respectively, from the two kinds of images were used as

inputs. A combination of feature engineering and regression, solely MobileNetV3,

and a combination of mask R-CNN and MobileNetV3 were applied for model

development. The model’s performance was evaluated using metrics such as R2,

explained variance score (EVS), and mean absolute error (MAE).

Results: A total of 1,065 original images were analyzed. The model’s performance

based on the combination of mask R-CNN and MobileNetV3 using the eye images

achieved an R2, EVS, and MAE of 0.503 (95% CI, 0.499–0.507), 0.518 (95% CI,

0.515–0.522) and 1.6 g/dL (95% CI, 1.6–1.6 g/dL), which was similar to that based

on MobileNetV3 using the manually selected palpebral conjunctiva images (R2:

0.509, EVS:0.516, MAE:1.6 g/dL).

Conclusion: We developed a new and automatic method for Hb monitoring to

help medical sta�s’ decision-making with high e�ciency, especially in cases of

disaster rescue, casualty transport, and so on.

KEYWORDS

continuous hemoglobinmonitoring, deep learning, semantic segmentation,maskR-CNN,

MobileNetV3

1. Introduction

Continuous monitoring of hemoglobin (Hb) helps doctors make better decisions

regarding blood transfusions. The most frequently used methods for Hb monitoring are

automatic blood analysis and arterial blood gas (ABG) analysis, which require professional

operators and devices. Therefore, they are not ideal for continuousHbmonitoring, especially

during disaster rescue scenes, field rescue, emergent public health events (e.g., COVID-19),

casualty transport, and battlefield rescue. Pulse co-oximetry hemoglobin (SpHb) was
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developed by Masimo Corporation, which is continuous and

non-invasive and is used for providing additional and relatively

precise information between measurements of Hb by invasive

blood samples. However, its accuracy depends on the blood

flow and temperature of the tested fingers (1). Additionally, the

SpHb cannot be used with other monitors, thus restricting its

clinical application.

Recently, non-invasive methods for continuous Hbmonitoring

based on computer vision technology have shown great potential

(Supplementary Table 1). The basis of these methods is that the

palpebral conjunctiva and the nailbed pallor could be used to

diagnose anemia (2). Most of the studies focused on using

the image of the palpebral conjunctiva to detect anemia. The

typical characteristics of research in this area were as follows:

first, images were obtained using special devices (fundus cope or

macro-lens) (3–6) or consumer-grade smartphones or cameras

(7, 8), among which models based on images obtained by

fundus cope achieved the best performance (with an R2 value

of 0.52, and area under the receiver operating characteristic

curve (AUROC) of 0.93) (6); second, instead of estimating the

exact concentration of Hb, detecting anemia patients was more

common (5, 9–11), which may be associated with the small

sample size of images (Supplementary Table 1); third, most of

the model inputs were features extracted from the manually

selected palpebral conjunctiva (7, 12); however, recently semantic

segmentation algorithms were also applied to realize automatic

estimation (3, 4, 13).

Above all, new methods for continuous Hb monitoring with

the three advantages are badly needed: no requirement for a

special device or position during image acquisition, automation

presented by using eye images as model input; the ability to

estimate the exact concentration of Hb; and the ability to detect

anemia with different thresholds. Therefore, we aimed to develop

a new method that combines semantic segmentation and deep

learning algorithms to estimate the exact concentration of Hb for

surgical patients with the eye images obtained using smartphones,

to compare the model’s performance with models based on feature

engineering and solely deep learning methods using the eye

and manually selected palpebral conjunctiva images, respectively,

and to find out whether it would be promising for clinical and

special situations.

2. Materials and methods

The study protocol was approved by the institutional

ethics committee of the First Affiliated Hospital of the Third

Military Medical University (also called Army Medical University,

KY2021060) on February 20, 2021, and written informed consent

was obtained from each patient. The clinical trial was registered

on the Chinese Clinical Trial Registry (No. ChiCTR2100044138)

on March 11, 2021. The principal researcher was Prof. Bin Yi.

Patient enrollment and image acquisition were completed at the

First Affiliated Hospital of the Third Military Medical University

in Chongqing, China, between March 18, 2021, and April 26,

2021.

2.1. Patient enrollment and image
acquisition

The inclusion criteria were as follows: volunteering to

participate in the research; ABG analysis needed according

to routine clinical practice; Hb variance larger than 1.5 g/dL

perioperatively. The exclusion criteria were as follows: suffering

eye diseases, eye irradiation, or receiving facial radiation therapy,

suffering carbon monoxide poisoning, nitrite poisoning, jaundice,

or other systemic diseases that would change the color of the

palpebral conjunctiva.

There were eight researchers who participated in the research:

one for patient enrollment, two for image acquisition, two

for data collection and collation, one for palpebral conjunctiva

identification, and two for quality control. One day before the

operation, all patients who met the criteria and were willing to

participate in the study signed written informed consent. On the

surgical day, when the enrolled patients were undergoing ABG

analysis, two researchers came to the operation room or the post-

anesthetic care unit (PACU) to take pictures of the right and left

faces with the standard exposing way of the palpebral conjunctiva

in the routine light of the operation room and PACU. The time

between ABG analysis and image acquisition was within 10min. All

the images were obtained when patients were in a supine position

and by the rear camera of the same smartphone (20.00 megapixels

and f/1.8 aperture) with the same parameters. At the same time,

the other two researchers collected patients’ information. After

the whole day of image acquisition, the two researchers, for

data collection and collation, picked out images obtained from

the patients whose Hb variation was larger than 1.5 g/dL. The

unselected images were all deleted permanently. The selected half-

face images were cut as eye images following the criteria shown

in Supplementary Figure 1. During the whole process, the two

researchers for quality control checked the enrollment, images,

basic information, and so on.

2.2. Image pre-processing

As shown in Figure 1, after image acquisition, manual

palpebral conjunctiva recognition, image pre-processing, and up-

sampling were conducted. To keep the same standard of palpebral

conjunctiva identification, one researcher worked on the manual

segmentation of palpebral conjunctiva via Photoshop (Photoshop

cs 6.0, Adobe Systems, California, USA) and Colabeler (version

2.0.4, Hangzhou Kuaiyi Technology Co. Ltd., Hangzhou, China).

Subsequently, the eye and the palpebral conjunctiva images by

Photoshop and Colabeler were normalized to a fixed size (500

× 500) to avoid possible loss of useful information as previously

described (7). Due to that, different shapes and sizes of bright spots

on the images were unavoidable, and denoising was also conducted.

In the current study, K-means clustering was applied to identify

the bright spot area in the Gray-level image converted from a

corresponding RGB color image, and then the values of all pixels

in the bright spot area were replaced by the mean value of all pixels

in the non-bright spot area as previously described (7).
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FIGURE 1

Flow diagram for estimating the exact concentration of Hb based on di�erent algorithms with di�erent inputs. DTR, Decision Tree regression; LR,

Linear Regression; SVR, Support Vector regression; GBR, Gradient Boosting regression; CNN, Convolutional Neural Network.

2.3. Feature extraction for the eye and the
palpebral conjunctiva images

As shown in Figure 1, features extracted from the eye and the

palpebral conjunctiva images were inputted for regression. The

methods for feature extraction from the palpebral conjunctiva were

relatively mature, so we applied the same algorithm for feature

extraction as the study conducted by Miaou et al. (7). However,

in the current study, we utilized normalized eye images and the

palpebral conjunctiva as inputs for feature extraction, rather than

relying on a manually selected fixed rectangular area. We extracted

18 features, including Hue Ratio, Pixel Values in the Middle,

Entropy H to describe the distribution of the blood vessels and

Binarization of the High Hue Ratio.

2.3.1. Automatically segmentation of the
palpebral conjunctiva by mask R-CNN

Herein, automatic recognition of the palpebral conjunctiva

from eye images was achieved using mask R-CNN (14). Mask R-

CNN is an instance segmentation framework extended by Faster

RCNN (15), which could simultaneously perform pixel-level object

segmentation and target recognition. It operates in two stages:

the first stage scans the image and generates suggestions, and

the second stage classifies the suggestions, generates bounding

boxes, creates masks for accurate delineation of the recognized

objects. Except for the original Faster RCNN network structure,

the mask R-CNN also included the feature pyramid network (16)

and the region of interest alignment algorithm (ROI Align) (14).

Detailed information is given in the Supplementary Methods and

Supplementary Figure 2. For semantic segmentation performance.

We report the average precision (AP) and average recall (AR)

over mask Intersection-over-Union (mIoU) thresholds (50%, 75%,

50%, and 95%). The segmentation work was conducted using

ubuntu16.04TSL, Pytorch 1.3, and CUDA 11.0 platforms.

2.4. Establishment of models for the exact
concentration of Hb based on di�erent
algorithms

As shown in Figure 1, all the extracted features were inputted to

develop models. Models were fitted with decision tree regression,

linear regression, support vector regression, and gradient boosting

regression, respectively. MobileNetV3 (17) was applied to models

directly using the eye and the palpebral conjunctiva images. In the

current study, the classification structure of the mobilenetV3 tail

was changed to a regression structure for the exact concentration

of Hb. The mean square error loss function was used for training.

These experiments used the open-source PyTorch learning

framework and Python programming to realize the algorithm

network. The hardware environment is a Dawning workstation

from Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Sciences, equipped with dual NVIDIA 2080Ti

graphics cards (11 GB) and a 64-bit Ubuntu16.04 operating system
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(detailed information is shown in Supplementary Methods and

Supplementary Figure 2).

2.5. Establishment of models based on the
combination of mask R-CNN and
MobileNetV3

We attempted to estimate the exact concentration of Hb

based on the mask R-CNN and MobileNetV3 in two steps:

semantic segmentation and regression (Supplementary Figure 2).

First, semantic segmentation was performed to automatically

recognize the palpebral conjunctiva from the eye images. Then,

the recognized palpebral conjunctiva images were entered into

the MobileNetV3 network to estimate the exact concentration of

Hb. This two-step method could automatically estimate the exact

concentration of Hb with eye images.

2.6. Model evaluation

For estimating the exact concentration of Hb, we evaluated the

model’s performance with the mean absolute error (MAE), R2 and

Explained variance score (EVS). The MAE is used to describe the

average difference between the estimated value and the actual value.

The EVS describes the similarity between the dispersion degree of

the difference between all predicted values and samples. EVS was

calculated by the following formula: EVS
(

y, ŷ
)

= 1 −
Var{y− ŷ}

Var{y }
,

where y is the Hb measured by ABG analysis, ŷ is the estimated

Hb, and Var is the square of the standard deviation. R2 is also

called the coefficient of determination. The closer the value to 1,

the stronger the ability to interpret the output and the better the

model fitting. Furthermore, we paid more attention to whether

the new method could provide a relatively precise trend of Hb

and recognize anemia with different thresholds. In addition to

evaluating the model’s performance using regression parameters,

we investigated the correlation between the estimated and actual

Hb and the ability to recognize anemia patients (Hb <10.0 g/dL,

11.0 g/dL, and 12.0 g/dL) according to the estimated Hb. Moreover,

we also evaluated the accuracy when the accurate estimation was

determined by the set range of absolute value of the difference (e.g.,

within 1.5 g/dL, 2.0 g/dL) between the estimated and the actual Hb.

All the detailed information on image pre-processing and the main

code for this study has been provided on GitHub (https://github.

com/keyan2017/hemoglobin-prediction).

2.7. Statistical analysis

All the statistical analysis was conducted on the R platform

(R Studio, version 1.4.1717, USA). For quantitative variables, the

mean, standard deviation (SD), and range are presented. For the

primary effectiveness variables, 95% confidence intervals (Cis)

are presented. The correlation between estimated and actual Hb

was tested via Pearson analysis, wherein the rpearson, P, 95% CI

were provided [ggstatsplot (18), version: 0.9.0]. Meanwhile, density

distribution and scatter plots were completed with R packages

[ggplot2 (19), version: 3.3.5]. All statistical tests were two-sided, and

P < 0.05 indicated statistical significance.

3. Results

In the current study, 1,073 pieces of eye images from 284

patients with an average age of 51.5 years old for elective surgery

(M/F: 117/167) were obtained (Supplementary Table 2). Finally,

1,065 images were analyzed; three images were excluded for

inadequate exposure, and five were excluded due to overexposure.

After image pre-processing and up-sampling, 1,226 images were in

the training dataset, and 288 were in the test dataset (Figure 1). The

mean and the distribution of Hb in the training dataset were similar

to those in the test dataset (Figure 2A).

Using features extracted from the manually selected palpebral

conjunctiva as input to detect anemia was the most common in

this area. Models directly using the manually selected palpebral

conjunctiva images as input based on MobileNetV3 yielded R2,

EVS, and MAE of 0.509 (95% CI, 0.505–0.512), 0.516 (95% CI,

0.513–0.519) and 1.6 g/dL (95% CI, 1.6–1.6), which was much

better than those using features as input (Table 1). However, when

the inputs were eye images, the model’s performance was poorer,

even based on MobileNetV3.

To further improve the model’s performance with the eye

images as input, mask R-CNN was applied for automatic

segmentation of the palpebral conjunctiva from the eye images.

As shown in the representative images in Figure 2B, despite

the concentration of Hb (anemia or not) and the shape of the

palpebral conjunctiva (wide or slender), the IoU of manually

and automatically selected conjunctiva was relatively satisfied.

Meanwhile, regardless of the thresholds of the mIoU, the AP and

ARwere relatively accepted (Table 2), which was well-matched with

the existing research (4). The model based on the combination of

mask R-CNN andMobileNetV3 achieved a good consequence with

an R2 of 0.503 (95% CI, 0.499–0.507), EVS of 0.518 (95% CI, 0.515–

0.522), MAE of 1.6 g/dL (95% CI, 1.6–1.6), which was similar to the

model’s performance usingmanually selected palpebral conjunctiva

and was better than that directly using eye images (Table 1). The

correlation between the estimated and the actual Hb was 0.77 (95%

CI, 0.72–0.82); moreover, for different thresholds, the correlation

between the estimated between and actual Hb remaining satisfied

(Figures 2C–F). Meanwhile, when we determined the range of

absolute value of the difference between the estimated and actual

Hb within 2.0 g/dL as the standard of accurate estimation, the

accuracy was 72.2% (Supplementary Table 3). Moreover, according

to the estimated Hb, we re-evaluated the model’s performance for

recognizing anemia patients with different thresholds (Hb <10.0

g/dL, 11.0 g/dL, and 12.0 g/dL). When the threshold was 10.0 g/dL,

the accuracy, specificity, and AUROCwere 85.4%, 97.2%, and 0.752

(95% CI, 0.698–0.801) (Supplementary Table 4).

4. Discussion

Herein, we developed a new method that could not only

automatically estimate the exact concentration of Hb but also
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FIGURE 2

The data distribution in the training and test datasets and the performance of models are based on the combination of mask R-CNN and

MobileNetV3. (A) The distribution of concentration of Hb in the training and test datasets. The vertical dashed lines were the mean concentration of

Hb in the two datasets. (B) Representative overlay images of manually selected conjunctiva (light blue) and automatically recognized conjunctiva

(other colors) in cases of di�erent concentrations of Hb. The correlation between estimated and actual Hb was analyzed by Pearson analysis with

di�erent thresholds [(C): no threshold; (D): the threshold was 10g/dL; (E): the threshold was 11 g/dL; (F): the threshold was 12 g/dL].

achieve a similar performance using manually selected palpebral

conjunctiva as input.

As previously described, a quick and non-invasive method for

Hb monitoring that can provide additional and relatively precise

information between measurements of Hb using invasive blood

samples is badly needed, especially for situations such as disaster

rescue scenes, field rescue, emergent public health events (e.g.,

COVID-19), casualty transport, and battlefield rescue. Though
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TABLE 1 Performance of models based on di�erent methods with di�erent inputs on test dataset.

Algorithm R2 (95% CI) EVS (95% CI) MAE (95% CI), g/dL

Models with the input of manually selected conjunctiva images

Decision tree regression 0.262 (0.242, 0.283) 0.267 (0.247, 0.287) 2.1 (2.0, 2.1)

Linear regression 0.300 (0.288, 0.312) 0.304 (0.292, 0.315) 2.0 (2.0, 2.0)

Support vector regression 0.267 (0.248, 0.286) 0.270 (0.252, 0.289) 2.0 (2.0, 2.0)

Gradient boosting regression 0.296 (0.283, 0.308) 0.298 (0.287, 0.31) 2.0 (2.0, 2.0)

MobileNetV3 0.509 (0.505, 0.512) 0.516 (0.513, 0.519) 1.6 (1.6, 1.6)

Models with the input of eye images

Decision tree regression −0.013 (−0.032, 0.006) −0.001 (−0.021, 0.018) 2.4 (2.4, 2.4)

Linear regression −0.077 (−0.113,−0.041) −0.064 (−0.101,−0.027) 2.5 (2.4, 2.5)

Support vector regression −0.052 (−0.081,−0.024) −0.039 (−0.068,−0.01) 2.4 (2.4, 2.5)

Gradient boosting regression −0.053 (−0.083,−0.024) −0.037 (−0.067,−0.007) 2.4 (2.4, 2.5)

MobileNetV3 0.306 (0.296, 0.317) 0.338 (0.329, 0.348) 2.0 (2.0, 2.0)

Models with the input of conjunctiva by automatically selection from eye images

Mask R-CNN combined with MobileNetV3 0.503 (0.499, 0.507) 0.518 (0.515, 0.522) 1.6 (1.6, 1.6)

Data were presented with 95% CIs. MAE, mean absolute error; EVS, Explained Variance Score; CI, confidence interval.

TABLE 2 The average precision and recall under di�erent thresholds of

mIoU when automatically segmentation of conjunctiva.

Threshold of
mIoU

AP AR maxDets

0.5 0.989 0.996 100

0.5–0.95 0.672 0.720 100

0.75 0.845 0.891 100

mIoU, mask Intersection over Union; AP, average precision; AR, average recall;

maxDets, maxdectetions.

SpHb is a non-invasive, continuous device for Hb monitoring, its

application, and promotion were restricted due to its inability to be

used on other platforms except Massimo’s.

Numerous teams have been working on developing non-

invasive methods to detect anemia or estimate the exact

concentration of Hb based on computer vision technology in

the last few years (Supplementary Table 1). Initially, researchers

attempted to find features associated with anemia or Hb based on

the manually selected palpebral conjunctiva images. The erythema

index [EI = log (Sred) – log (Sgreen)], where S is the brightness of

the palpebral conjunctiva in the relevant color channel) was found

to be significantly associated with measured Hb (the r2 could be up

to 0.397), based on which the sensitivity and specificity for anemia

(Hb < 11.0 g/dL) were 57.0 and 83.0% (20). Meanwhile, Miaou

et al. (7) determined three important features, including entropy,

binarization of the high Hue ratio, and PVM of G components, for

detecting anemia with the palpebral conjunctiva images. Models

based on these features achieved higher sensitivity and κ values

than previous studies. Afterward, ANN (7, 21), Elman neural

network (22), and CNN (23) were applied to detect anemia or

estimate the exact concentration of Hb and achieved high accuracy.

However, most of these studies were not “real” deep learning

because the inputs were features extracted by feature engineering.

It may be associated with the sample size being too small to fulfill

the number of images needed for deep learning. However, their

studies still showed that deep learning may help elevate the model’s

performance. Herein, we used the same method as Professor

Miaou’s for feature extraction and applied selected features to

estimate the exact concentration of Hb using traditional regression

algorithms and observed poorer performance than those directly

using images as input based on MobileNetV3. It suggested that

images were more informative and effective than extracted features

when estimating the exact concentration of Hb. Meanwhile, deep

learning algorithms may be more helpful when the inputs are

images rather than features.

Despite the difference in input (features vs. images) and

estimations (classification vs. regression) between previous research

on models based on deep learning and ours, we compared

our results with previous studies in Table 3. Though models

based on MobileNetV3 with the manually selected palpebral

conjunctiva achieved the best performance in the current study,

the performance was much poorer when the eye images were

used as input. It was suggested that the palpebral conjunctiva

images as input were the most important to estimate the exact

concentration of Hb or detect anemia in patients. Thus, we applied

mask R-CNN to automatically segment the palpebral conjunctiva

to help elevate the performance of models with eye images as

input. Afterward, we got satisfactory results from segmentation,

and the two-step model achieved a similar performance to

that using the manually selected palpebral conjunctiva as input.

Dimauro et al. (13) made great efforts to develop non-invasive and

continuous Hb monitoring based on computer vision technology.

In 2019, they attempted to obtain the relevant sections of the

palpebral conjunctiva automatically by contour detection and
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TABLE 3 Performance comparison between our method with previous works.

References Inputs Sample Size Classification/
regression/segmentation

Main results

Kasiviswanathan

et al. (4)

The eye images 135 Segmentation The accuracy of the automatic segmentation was

85.7%.

Dimauro et al. (13) The eye images 65 Segmentation The correlation between feature “a” and Hb was

0.74.

Jain et al. (21) The conjunctiva images 99 Classification The accuracy, sensitivity and specificity for

prediction anemia was 97.00%, 99.21% and

95.42%.

Saldivar-Espinoza

et al. (23)

The conjunctiva images 300 Classification The Sensitivity, accuracy, and specificity were

77.6%, 43.0%, and 36.0%.

Muthalagu (22) The conjunctiva images 127 Classification The sensitivity and specificity for detecting anemia

were 77.3% and 96.1%.

Collings et al. (20) The conjunctiva images 94 Classification The sensitivity and specificity were 57.0% and 83%

in the internal validation datasets.

Our method The eye images 1065 Segmentation The accuracy of the automatic segmentation was

82.6%.

Regression The correlation, MAE between the estimated and

the actual Hb was 0.77, 1.6 g/dL. The accuracy,

specificity, and AUROC were 85.4%, 97.2%, and

0.752 (Hb threshold was 10.0 g/dL)

Hb, hemoglobin; MAE, mean absolute error; AUROC, area under the receiver operating characteristic curve.

feature extraction, of which the correlation between automatically

extracted features and the exact concentration of Hb could be

up to 0.74 (13). Recently, they attempted to apply the Biased

Normalized Cuts Approach (3) and CNN (4) to automatically

segment the palpebral conjunctiva from the eye images obtained

using the special device and consumer-grade cameras, respectively.

For images obtained using a special device, feature extraction

and regression were conducted after automatic segmentation of

palpebral conjunctiva, with similar results to those of manually

selected palpebral conjunctiva images (3). As for the images

obtained using consumer-grade cameras, the IoU score between

the ground truth and the segmented mask was 85.7% (4), which

is similar to ours (82.6%) (Table 3). Dimauro et al. (13) study

suggested that automatically estimating the exact concentration of

Hb with eye images from customer-grade cameras or smartphones

is the new trend in the area of non-invasive and continuous

Hb monitoring. Our results also showed that a combination of

semantic segmentation and deep learning methods might be a new

strategy for this area.

Our method was more convenient and simpler than previous

ones since manually selecting the conjunctiva is no longer needed

before inputting the images. There were some other advantages to

our study. First of all, the sample size of the original images was

larger compared with previous research (Supplementary Table 1),

which would reduce overfitting and increase robustness. Second,

smartphones obtained images when patients were lying on their

backs awake or anesthetized, which would be more convenient

for promotion and application in various situations. Third, herein,

we estimated the exact concentration of Hb, which was seldom

conducted in previous studies. Estimating the exact concentration

of Hb could not only indicate the trend change of Hb but

also easily detect anemia according to various thresholds without

repeated image labeling (Supplementary Table 3). In summary, the

combination of mask RCNN and MobileNetV3 to automatically

estimate the exact concentration of Hb is quite promising in the

area of non-invasive and continuous Hb monitoring in a variety

of situations.

There are some limitations to the current study. First,

though we tried to enroll more images for analysis and model

development, the amounts of images from anemia and non-

anemia were still imbalanced. The model’s performance might

be better if more images were enrolled, especially those from

patients with anemia. Second, the images were obtained from

one center, so external validation was not conducted. Multicenter

research should be conducted to further increase the model’s

performance and robustness. Third, there is a significant difference

in the mean Hb concentration between the Hb level from ABG

and the standard venous analyzers, so images labeled with Hb

measured by the standard venous analyzers should be enrolled to

correct bias.

5. Conclusion

In summary, we developed a method to estimate the exact

concentration of Hb based on a combination model of mask

R-CNN and MobileNetV3, which achieved an R2 of 0.503 (95%

CI, 0.499–0.507) and an MAE of 1.6 g/dL (95% CI, 1.6–1.6). It can

help medical staff ’s decision-making with high efficiency, especially

in disaster rescue scenes, field rescue, emergent public health

events, casualty transport, and battlefield rescue. Furthermore, our

method was more convenient and simpler than previous ones since

manually selecting the conjunctiva is no longer needed before

inputting the images.
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Doctor-patient interactions in the 
age of AI: navigating innovation 
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The integration of artificial intelligence (AI) in healthcare has the capacity to 
transform medical practice. Despite its revolutionary potential, the influence of 
AI may affect the physician-patient interaction and presents ethical challenges 
that will need to be carefully considered. This article discusses how patients may 
interact with this technology, considers how emerging technologies may alter 
the dynamics of the physician-patient relationship, and reviews some of the 
limitations that continue to exist. We identify potential challenges that may arise 
with the integration of AI into medical settings and propose solutions to help 
mitigate these issues.
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Introduction

The adoption of artificial intelligence (AI) in healthcare has the potential to revolutionize 
medical practice, improving diagnostics, treatment planning, and overall patient care (1). 
However, the integration of AI into clinical settings also presents new challenges for doctor-
patient interactions, as well as ethical concerns that must be carefully considered. In this article, 
we will explore the complexities of patients and families introducing AI-generated medical 
opinions into doctor-patient relationships and discuss strategies for effectively navigating 
these challenges.

Patients as technology consumers

With the development of the internet, patients have been increasingly empowered to 
become informed about their health, allowing them to access a wealth of medical information 
from various sources. As a result, patients can take an increasingly active role in their healthcare 
decision-making (2). This has both positive and negative implications for doctor-patient 
relationships. For instance, when patients bring internet-generated opinions to their medical 
appointments, it can promote informed discussions and better decision-making. On the other 
hand, patients may develop rigid beliefs about optimal medical management based on internet 
advice, which may not align with the doctor’s professional opinion, potentially straining the 
therapeutic alliance (3).
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Addressing the shift in dynamics

Similarly, as AI-generated medical opinions become more 
accessible and reliable, patients may turn to AI software to provide 
advice regarding their healthcare. Consequently, the rise of 
AI-generated medical opinions will likely lead to a further shift in 
dynamics between physicians, who historically held all the knowledge 
and expertise, and patients or family members, who can now access 
AI-generated opinions with increasing sophistication and accuracy 
through large language model (LLM) chatbots such as OpenAI’s 
GPT-4 or Google’s Bard. A medicine specific consumer technology, 
Glass AI, is a GPT-4 based technology where users present a clinical 
scenario and subsequently a differential diagnosis or clinical 
management plan is generated. As these technologies become more 
mainstream, it seems likely that patients will arrive to clinical 
encounters with specific expectations for next steps in their care. The 
advantage of AI lies in its ability to process large volumes of data and 
identify patterns that may not be readily apparent to human clinicians, 
which has revolutionary potential in the age of AI innovation (4, 5). 
Already these technologies have been applied to a range of clinical 
scenarios and, in select circumstances, may be  able to recognize 
biological signatures in patient data that is beyond human 
interpretation. In fact, an automated deep learning model of retinal 
fundus photographs from a UK database was able to reliably predict a 
patient’s reported sex which is beyond human capabilities (6).

While empowerment of patients and families to participate in 
health care decision is undeniably important, those who choose to 
seek AI-generated medical opinions could strain doctor-patient 
relationships if the physician feels threatened or if families do not 
accept the current limitations of these tools and believe that the 
AI-generated opinions are superior. This possibility necessitates a 
more collaborative approach in doctor-patient relationships, 
emphasizing partnership and shared decision-making with an 
openness to discussing AI-generated opinions. Physicians should 
be encouraged to embrace this shift and actively engage patients and 
families as partners in the decision-making process, acknowledging 
the value of AI-generated insights while maintaining their unique role 
as human experts (7).

Identifying ethical concerns

Amidst the evolving domain of AI ethics, its implications in 
medicine raise concerns of informed consent, training biases, and 
transparency among others. Firstly, informed consent is a core 
component of medical ethics but has the potential to be compromised 
by providing misinformation. AI algorithms are not infallible and can 
produce false or misleading information, known as AI hallucinations. 
These errors can arise from biases in the training data or limitations 
in the AI’s understanding of complex medical scenarios (8, 9). 
Overreliance on AI-generated opinions by patients may in fact lead to 
suboptimal healthcare decisions and outcomes when the uniqueness 
of individual patients, the broader clinical context, and the expertise 
of human clinicians are not appropriately considered. Further, with 
the potential for unrecognized AI hallucinations, knowledge provided 
to the patient and families has the potential to bias and misinform 
patients, in turn clouding judgement. This is particularly relevant as 
patients receive and place increasing value on AI-generated advice 

without understanding its limitations. This may in fact compromise 
patient autonomy and lead to ill-informed decision-making (7, 10). 
Additionally, LLMs are limited by their training data set. Inherent 
biases can arise when AI is trained on non-representative patient data, 
potentially leading to less accurate predictions for underrepresented 
populations or diseases (8, 11). Unfortunately, underrepresentation 
biases often further disadvantage marginalized populations. 
Consequently, physicians may be obliged to educate patients while 
relying on their expertise and judgment to interpret AI advice in the 
context of the individual patient’s condition and needs, helping to 
mitigate potential biases. Transparency is a cornerstone of the evolving 
physician-patient relationship in the era of AI-driven healthcare. As 
AI systems can sometimes be perceived as “black boxes” with their 
complex decision-making processes, physicians must highlight that 
while AI can provide useful information, it may not yet consider all 
relevant factors or nuances of a patient’s unique circumstances that are 
considered by a human physician. Lastly, the question of who bears 
the responsibility when AI-based decisions lead to poor patient 
choices or adverse patient outcomes remains an ongoing debate. Clear 
guidelines on responsibility attribution and informed consent 
procedures are needed to address this issue.

Involving patients in decision-making 
processes

Patient involvement in the decision-making process is paramount 
for promoting responsible AI integration in healthcare. By engaging 
patients with AI-generated insights, physicians can ensure that these 
are considered alongside human expertise and experience, as well as 
the patient’s preferences and unique circumstances (12). Patient-
centered care models, which focus on active collaboration between 
patients, families, and healthcare providers, can help achieve this goal 
(13). By fostering a patient-centered approach, healthcare providers 
can maintain the human element of care while leveraging the benefits 
of AI-generated medical opinions.

Healthcare providers must also be educated about AI’s capabilities 
and limitations, enabling them to effectively explain AI-generated 
opinions to their patients (14). This can be achieved through targeted 
training programs and patient education initiatives, promoting ethical 
AI adoption and informed decision-making. By enhancing patient 
awareness of AI’s capabilities and limitations, healthcare providers can 
help to ensure that patients make well-informed decisions based on a 
combination of human expertise and AI-generated insights (10). 
Nevertheless, when an AI-generated opinion that resonates with 
patients or families differs from a doctor’s recommendation, this 
discrepancy may deter patients and family members from accepting 
the medical opinion. Clinicians must be prepared to explain their 
reasoning and engage in open conversations with patients to address 
potential concerns. Transparent communication is essential in 
maintaining trust and fostering collaborative decision-making in the 
age of AI.

Future directions

It seems increasingly inevitable that AI, much like the internet 
previously, will permeate many aspects of society. Almost certainly, 
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patients be among AI consumers who will turn to these technologies 
to illicit medical advice when access to healthcare is not readily 
available. As AI tools become increasingly reliable, validated consumer 
tools should be trained and validated using data that encompasses the 
local diversity of the patient population they are meant to service. This 
approach could reduce potential underrepresentation biases and 
disparities in healthcare outcomes and enhance the tool’s relevance 
and effectiveness. One of the most compelling advantages of AI is its 
potential to alleviate limitations in healthcare access. For example, AI 
tools may eventually be  capable of triaging patient concerns, 
identifying those requiring immediate attention and those suitable for 
virtual consultations. This would not only enhance resource allocation 
but also extend the reach of healthcare to underserved populations.

Concurrently, the importance of AI training programs for medical 
professionals cannot be overstated. As we transition into an era of 
AI-augmented healthcare, it’s essential that our doctors, nurses, and 
other healthcare workers are equipped with the necessary skills to 
navigate this new landscape. They need to understand how to integrate 
AI-generated advice into their practice and communicate these 
insights effectively to patients. This training will not only augment 
their ability to provide care but also bolster their confidence as they 
navigate this new frontier in medicine. Patient education and 
engagement are equally vital. Patients, now more than ever, are active 
participants in their healthcare journey. As such, they must 
be  equipped with a basic understanding of AI’s strengths and 
limitations. Educational resources or initiatives could help patients 
make sense of AI-generated insights, promoting informed discussions 
and decision-making while promoting trust in their 
healthcare providers.

Additionally, as we grapple with the ethical and logistical aspects 
of AI deployment, longitudinal studies can offer much-needed insight 
into AI’s real-world impact over time. Concurrently, a cost–benefit 
analysis is crucial. While AI’s immense potential cannot 
be understated, the cost associated with integrating AI into healthcare 
systems must be justifiable.

Conclusion

The integration of AI into healthcare is inevitable and offers many 
benefits for patient care. However, it is crucial to address potential 
challenges in doctor-patient interactions and maintain trust in the face 
of AI-generated medical opinions. By fostering open communication, 
recognizing AI’s limitations, and valuing human expertise, clinicians 

can successfully navigate the evolving landscape of healthcare and 
ensure the best possible care for their patients. The education for 
healthcare providers and involving patients in decision-making 
processes are essential strategies for the responsible integration of AI 
in healthcare. As we move forward with integrating AI into healthcare, 
it’s paramount that we do so with a thoughtful and comprehensive 
approach. Ensuring effective regulation, standardization, and 
education will pave the way for a healthcare landscape where AI is not 
just a tool for doctors, but an ally for patients as well.
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Background: The gold standard for gathering data from electronic health records 
(EHR) has been manual data extraction; however, this requires vast resources and 
personnel. Automation of this process reduces resource burdens and expands 
research opportunities.

Objective: This study aimed to determine the feasibility and reliability of automated 
data extraction in a large registry of adult COVID-19 patients.

Materials and methods: This observational study included data from sites 
participating in the SCCM Discovery VIRUS COVID-19 registry. Important 
demographic, comorbidity, and outcome variables were chosen for manual 
and automated extraction for the feasibility dataset. We quantified the degree of 

OPEN ACCESS

EDITED BY

Gulzar H. Shah,  
Georgia Southern University, United States

REVIEWED BY

Kristie Cason Waterfield,  
Georgia Southern University, United States  
Hong Qin,  
University of Tennessee at Chattanooga,  
United States

*CORRESPONDENCE

Rahul Kashyap  
 kashyapmd@gmail.com

†These authors have contributed equally to this 
work and share first authorship

RECEIVED 20 April 2023
ACCEPTED 14 September 2023
PUBLISHED 04 October 2023

CITATION

Valencia Morales DJ, Bansal V, Heavner SF, 
Castro JC, Sharma M, Tekin A, Bogojevic M, 
Zec S, Sharma N, Cartin-Ceba R, Nanchal RS, 
Sanghavi DK, La Nou AT, Khan SA, Belden KA, 
Chen J-T, Melamed RR, Sayed IA, Reilkoff RA, 
Herasevich V, Domecq Garces JP, Walkey AJ, 
Boman K, Kumar VK and Kashyap R (2023) 
Validation of automated data abstraction for 
SCCM discovery VIRUS COVID-19 registry: 
practical EHR export pathways (VIRUS-PEEP).
Front. Med. 10:1089087.
doi: 10.3389/fmed.2023.1089087

COPYRIGHT

© 2023 Valencia Morales, Bansal, Heavner, 
Castro, Sharma, Tekin, Bogojevic, Zec, Sharma, 
Cartin-Ceba, Nanchal, Sanghavi, La Nou, Khan, 
Belden, Chen, Melamed, Sayed, Reilkoff, 
Herasevich, Domecq Garces, Walkey, Boman, 
Kumar and Kashyap. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 04 October 2023
DOI 10.3389/fmed.2023.1089087

159

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1089087&domain=pdf&date_stamp=2023-10-04
https://www.frontiersin.org/articles/10.3389/fmed.2023.1089087/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1089087/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1089087/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1089087/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1089087/full
mailto:kashyapmd@gmail.com
https://doi.org/10.3389/fmed.2023.1089087
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1089087


Valencia Morales et al. 10.3389/fmed.2023.1089087

Frontiers in Medicine 02 frontiersin.org

agreement with Cohen’s kappa statistics for categorical variables. The sensitivity 
and specificity were also assessed. Correlations for continuous variables were 
assessed with Pearson’s correlation coefficient and Bland–Altman plots. The 
strength of agreement was defined as almost perfect (0.81–1.00), substantial 
(0.61–0.80), and moderate (0.41–0.60) based on kappa statistics. Pearson 
correlations were classified as trivial (0.00–0.30), low (0.30–0.50), moderate 
(0.50–0.70), high (0.70–0.90), and extremely high (0.90–1.00).

Measurements and main results: The cohort included 652 patients from 11 
sites. The agreement between manual and automated extraction for categorical 
variables was almost perfect in 13 (72.2%) variables (Race, Ethnicity, Sex, Coronary 
Artery Disease, Hypertension, Congestive Heart Failure, Asthma, Diabetes Mellitus, 
ICU admission rate, IMV rate, HFNC rate, ICU and Hospital Discharge Status), and 
substantial in five (27.8%) (COPD, CKD, Dyslipidemia/Hyperlipidemia, NIMV, and 
ECMO rate). The correlations were extremely high in three (42.9%) variables (age, 
weight, and hospital LOS) and high in four (57.1%) of the continuous variables 
(Height, Days to ICU admission, ICU LOS, and IMV days). The average sensitivity 
and specificity for the categorical data were 90.7 and 96.9%.

Conclusion and relevance: Our study confirms the feasibility and validity of an 
automated process to gather data from the EHR.

KEYWORDS

validation, data automation, electronic health records, COVID-19, VIRUS COVID-19 
registry

Introduction

The pandemic of the coronavirus disease 2019 (COVID-19) has 
created a need to develop research resources rapidly (1). In response to 
the global demand for robust multicenter clinical data regarding patient 
care and outcomes, the Society of Critical Care Medicine (SCCM) 
Discovery Viral Infection and Respiratory Illness Universal Study 
(VIRUS) COVID-19 registry was created early in the pandemic (2–4).

Due to the surging nature of pandemic waves, and the subsequent 
workload and staffing burdens, clinical researchers have encountered 
difficulty in engaging in rapid, reliable manual data extraction from 
the electronic health record (EHR) (5). Manual chart review is the 
gold standard method for gathering data for retrospective research 
studies (6, 7). This process, however, is time consuming and 
necessitates personnel resources not widely available at all institutions 
(8, 9). Prior to the pandemic, automated data extraction from the EHR 

utilizing direct database queries was shown to be faster and less error-
pone than manual data extraction (8, 10). Nonetheless, data quality 
challenges related to high complexity or fragmentation of data across 
many EHR systems make automated extraction vulnerable (11–14). 
Both manual and automatic extraction rely on the EHR, which is an 
artifact with its own biases, mistakes, and subjectivity (15–20).

Although previous research has looked at these notions, the best 
methods for obtaining data from EHR systems for research still need 
to be  discovered. In response, we  sought to assess the feasibility, 
reliability, and validity of an automated data extraction process using 
data for the VIRUS COVID-19 registry.

Methods

VIRUS COVID-19 registry

The SCCM Discovery VIRUS COVID-19 registry (Clinical Trials 
registration number: NCT04323787) is a multicenter, international 
database with over 80,000 patients from 306 health sites across 28 
countries (21). VIRUS COVID-19 registry is an ongoing prospective 
observational study that aims at real-time data gathering and analytics 
with a feedback loop to disseminate treatment and outcome 
knowledge to improve COVID-19 patient care (3). The Mayo Clinic 
Institutional Review Board authorized the SCCM Discovery VIRUS 
COVID-19 registry as exempt on March 23, 2020 (IRB number: 
20–002610). No informed consent was deemed necessary for the 
study subjects. The procedures were followed in accordance with the 
Helsinki Declaration of 2013 (22). Among the participating sites, 30 
individual centers are collaborating to rapidly develop tools and 
resources to optimize EHR data collection. These efforts are led by the 
VIRUS Practical EHR Export Pathways group (VIRUS-PEEP).

Abbreviations: CAD, Coronary artery disease; CHF, Congestive heart failure; CI, 

Confidence interval; CKD, Chronic kidney disease; COPD, Chronic obstructive 

pulmonary disease; CRF, Case report forms; DM, Diabetes mellitus; ECMO, 

Extracorporeal membrane oxygenation; EHR, Electronic health records; HFNC, 

High flow nasal canula; HTN, Hypertension; ICU, Intensive care unit; IMV, Invasive 

mechanical ventilation; IRB, Institutional review boards; LOS, Length of stay; NIMV, 

Non-invasive mechanical ventilation; PCC, Pearson interclass correlation 

coefficient; REDCap, Research electronic data capture software; SCCM, Society 

of critical care medicine; SD, Standard deviations; SE, Standard error; SFTP, Secure 

file transfer platform; SOP, Standard operating procedure; SQL, Sequential query 

language; VIRUS, Viral Infection and Respiratory Illness Universal Study; VIRUS-

PEEP, VIRUS Practical EHR Export Pathways group; WHO, World Health 

Organization; WHO-ISARIC, World Health Organization- International Severe 

Acute Respiratory And Emerging Infection Consortium.
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Data collection

The VIRUS COVID-19 registry has over 500 variables which 
represents the pandemic registry common data standards for critically 
ill patients adapted from the World Health Organization- International 
Severe Acute Respiratory and Emerging Infection Consortium 
(WHO-ISARIC) COVID-19 CRF v1.3 24 February 2020 (23). The 
VIRUS-PEEP validation cohort was developed in an iterative, 
consensus process by a group of VIRUS: COVID-19 registry primary 
investigators to explore the feasibility of an automation process at each 
site. The Validation cohort variable was internally validated with seven 
core VIRUS COVID-19 investigators and subsequently validated from 
VIRUS-PEEP leads site’s principal investigators. Because of the 
timeline, the cohort could not be externally validated. A purposeful 
representative sample of the 25 most clinically relevant variables from 
each category (Baseline demographic and clinical characteristics of 
patient and ICU and Hospital-related outcomes) were selected and 
prioritized for this study (4). We focused on demographic data (age, 
sex, race, ethnicity, height, weight), comorbidities (coronary artery 
disease (CAD), hypertension (HTN), congestive heart failure (CHF), 
chronic obstructive pulmonary disease (COPD), asthma, chronic 
kidney disease (CKD), diabetes mellitus (DM), dyslipidemia/
hyperlipidemia), and clinical outcomes (intensive care unit (ICU) 
admission, days to ICU admission, ICU length of stay (LOS), type to 
oxygenation requirement, extracorporeal membrane oxygenation 
(ECMO), ICU discharge status, hospital LOS, and in-hospital mortality).

To avoid data extraction errors, we  utilized precise variable 
definitions [VIRUS COVID-19 registry code book, cases report form 
(CRF), and Standard Operating Procedure (SOP)], which were already 
implemented in the registry and during the pilot phase of the 
automation implementation. Additionally, all manual and automation 
data extraction personnel were educated regarding the definitions and 
procedures needed to collect and report the data.

System description

De-identified data were collected through Research Electronic 
Data Capture software (REDCap, version 8.11.11, Vanderbilt 
University, Nashville, Tennessee) at Mayo Clinic, Rochester, MN, 
United States (24). The REDCap electronic data capture system is a 
secure, web-based application for research data capture that includes 
an intuitive interface for validated data entry; audit trails for tracking 
data manipulation and export procedures; automated export 
procedures for seamless data downloads to standard statistical 
packages; and provide a secure platform for importing data from 
external sources.

Manual abstraction

The VIRUS PEEP group has implemented a comprehensive 
process for data extraction, which involves training manual data 
extractors. These data extractors are trained to identify, abstract, and 
collect patient data according to the project’s SOP. During a patient’s 
hospitalization, extractors follow them until discharge, ensuring that 
all relevant information is collected. The CRF used in this process 
includes two main sections: demographics and outcomes, composed 
of categorical and continuous variables. Extractors answer a mix of 

binary (“yes” or “no”) and checkbox (“check all that apply”) questions 
in the nominal variable portions of the CRF. They are instructed to 
avoid free text and use the prespecified units for continuous variables. 
In any disagreement, a trainer is always available for guidance and 
correction. It’s important to note that the manual extractors are 
unaware of the automated data extraction results.

Automated extraction

A package of sequential query language (SQL) scripts for the “Epic 
Clarity” database was developed at one institution and shared through 
the SCCM’s Secure File Transfer Platform (SFTP) with participating 
sites. A second site offered peer coaching on the development and utility 
of end-user Epic™ reporting functions and how to adapt and modify 
the SQL scripts according to their EHR environment and security 
firewall. Other tools included R-Studio™ scripts, Microsoft Excel™ 
macros, STATA 16, and REDCap calculators for data quality checks at 
participating sites before data upload to VIRUS Registry REDCap. 
These tools were designed to aid in data extraction, data cleaning, and 
adherence to data quality rules as provided in VIRUS COVID-19 
Registry SOPs. Institutions participated in weekly conference calls to 
discuss challenges and share successes in implementing automated data 
abstraction; additionally, lessons learned from adapting the SQL scripts 
and other data quality tools to their EHR environments were shared 
between individual sites and members of the VIRUS PEEP group.

Statistical analysis

We summarized continuous variables of manual and 
automation process data using mean ± SD and calculated mean 
difference and SE by matched pair analysis. Pearson correlation 
coefficient (PCCs) and 95% confidence intervals (CI) were 
generated for continuous data as a measure of inter-class 
dependability (25). Pearson correlations were classified as trivial 
(0.00–0.30), low (0.30–0.50), moderate (0.50–0.70), high (0.70–
0.90), and extremely high (0.90–1.00) (26). Bland–Altman mean-
difference plots for continuous variables were also provided to aid 
in the understanding of agreement (27).

Percent agreements were determined for the data collected using 
each of the two extraction techniques in a categorical variable:

 

Number of patients categorized identically by both sources
To

     
ttal number of cases examined by both sources     

The total number of agreeing outcomes divided by the total 
number of results is the summary agreement for each variable. For 
categorical variables we  used Cohen’s kappa coefficient (28). 
We used the scale created by Landis et al. to establish the degree of 
agreement (29). This scale is divided by almost perfect (ϰ =0.81–
1.00), substantial (ϰ = 0.61–0.80), moderate (ϰ = 0.41–0.60), fair 
(ϰ = 0.21–0.40), slight (ϰ = 0.00–0.20), and poor (ϰ < 0.00). 
Additionally, the sensitivity and specificity were calculated by 
comparing the results of the automated data extractions method to 
the results of manual data extraction method (gold standard). The 
95% confidence intervals were calculated using an exact test for 
proportions. We used JMP statistical software version 16.2 for all 
data analysis.
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Results

Our cohort consisted of data from 652 patients from 11 sites 
(Figure 1). A total of 25 variables were collected for each patient for 
manual and automated methods. Of these 25 variables, 16 (64.0%) 
were nominal, 7 (28.0%) were continuous, and 2 (8.0%) were 
categorical variables.

Table  1 summarizes the continuous variables. The automated 
results for three variables (age, weight and hospital LOS) agreed 
“extremely high” (>90%) to the manual extraction results. The 
agreement was “high” (70–90%) for height, days to ICU admission, 
ICU LOS, and IMV days. Figure 2 presents the Bland–Altman plots 
for seven continuous variables.

Tables 2, 3 describe the ordinal and nominal variables. The 
agreement between manual and automated extraction was almost 
perfect in 13 (72.2%) of the studied variables, and substantial in five 
(27.8%). The comorbidity “dyslipidemia/hyperlipidemia” had the 
lowest degree of agreement (moderate 0.61); however, overall percent 
agreement was high (86.9%). The only variable that showed a Kappa 
Coefficient equal to 1 was “ICU-discharge status.” The average Kappa 
Coefficient was 0.81 for the eight comorbidities collected and was 

0.86 for outcomes variables, considered almost perfect. The 
automated electronic search strategy achieved an average sensitivity 
of 90.7% and a specificity of 96.9%. The sensitivity and specificity of 
each data-extraction method for all variables are presented in Table 3.

Discussion

The automated search strategy for EHR data extraction was highly 
feasible and reliable. Our investigation observed substantial and 
almost perfect agreement between automated and manual data 
extraction. There was almost perfect agreement in two-thirds of the 
categorical variables, and all continuous variables showed Extremely 
High or High agreement.

The results of our validation study are similar to other studies that 
validated and evaluated automated data (30–33). Singh et al. (31) 
developed several algorithm queries to identify every component of 
the Charlson Comorbidity Index and found median sensitivity and 
specificity of 98–100% and 98–100%, respectively. In the validation 
cohort, the sensitivity of the automated digital algorithm ranged from 
91 to 100%, and the specificity ranged from 98 to 100% compared to 

FIGURE 1

Study flowchart.
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ICD-9 codes. These results are comparable to our study as the 
comorbidities analyzed presented a sensitivity and specificity of 90.2 
and 96.8%, respectively. Our results are superior to the results of 

Schaerfer et al. (34), who found a sensitivity of 72% and a specificity 
of 95% for comorbidities (CHF, cerebral vascular disease, CKD, 
cancer, DM, human immunodeficiency virus, HTN) in patients with 

TABLE 1 Comparison of patients in automated versus manual reviews and measures of agreement for individual responses for continuous variables.

Variable name Automation
(Mean, SD)

Manual
(Mean, SD)

Mean 
difference 

(SE)

Pearson interclass 
correlation coefficient 

(PCC), 95% CI

Strength of 
agreement 
based on PCC

Age, N = 652 57.9 (21.9) 58.5 (19.9) −0.5 (0.3) 0.95 (0.94–0.96) Extremely High

Height, N = 632 167.6 (15.6) 167 (17.2) 0.6 (0.3) 0.89 (0.87–0.90) High

Weight, N = 632 87.2 (27) 88.4 (28.5) −1.2 (0.4) 0.94 (0.93–0.95) Extremely High

Hospital LOS, N = 540 9.0 (9.1) 9.0 (9) 0.1 (0.1) 0.97 (0.96–0.97) Extremely High

Days to ICU admission, N = 176 1.3 (3.3) 1.1 (2.6) 0.2 (0.1) 0.80 (0.74–0.85) High

ICU LOS, N = 168 7.5 (9.3) 9.0 (10.5) −1.5 (0.4) 0.88 (0.85–0.91) High

IMV Days, N = 71 9.7 (9.6) 11.6 (11.1) −1.9 (0.6) 0.88 (0.81–0.92) High

CI, Confidence interval; ICU, Intensive Care Unit; IMV, Invasive Mechanical Ventilation; LOS, Length of stay; PCC, Pearson Interclass Correlation Coefficient; SD, Standard deviation; SE, 
Standard error.

A B

C D

FIGURE 2 (Continued)
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TABLE 2 Comparison of patients in automated versus manual reviews and measures of agreement for individual responses for categorical (ordinal) 
variables.

Variable name Automated vs. manual, 
percent agreement

Kappa coefficient 
(95% CI, SE)

Strength of agreement 
based on Kappa coefficient

Race, N = 652

0.91 (0.88–0.93, 0.01) Almost perfect

White Caucasian 365/372 (98.1)

Black or African American 138/139 (99.3)

Others 111/141 (78.7)

Total 614/652 (94.2)

Ethnicity, N = 652

0.88 (0.84–0.93, 0.02) Almost perfect

Non-Hispanic 506/512 (98.8)

Hispanic 97/105 (92.4)

Unknown/Not applicable 23/35 (65.7)

Total 626/652 (96)

CI, Confidence interval; SE, Standard error.

E

G

F

FIGURE 2

Agreement between manual and PEEP (Bland–Altman plot). (A) Age. (B) Weight. (C) Height. (D) Hospital Length of Stay. (E) Days to ICU admission. 
(F) ICU Length of Stay. (G) IMV Days.
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TABLE 3 Comparison of patients in automated versus manual reviews and measures of agreement for individual responses for categorical (nominal) 
variables.

Variable name Percent 
agreement, 

automated vs. 
manual

Sensitivity Specificity Kappa coefficient 
(95% CI, SE)

Strength of 
agreement based 
on Kappa 
coefficient

Sex, N = 652 99.7 99.7 0.99 (0.99–1.0, 0) Almost perfect

Male 359/360 (99.7)

Female 291/292 (99.7)

Total 650/652 (99.7)

Coronary artery disease, N = 540 98.6 97.4 0.90 (0.85–0.96, 0.03) Almost perfect

Yes 73/74 (98.6)

No 454/466 (97.4)

Total 527/540 (97.6)

Hypertension, N = 540 92.0 93.5 0.85 (0.80–0.89, 0.02) Almost perfect

Yes 298/324 (92.0)

No 202/216 (93.5)

Total 500/540 (92.6)

Congestive heart failure, N = 540 88.0 97.8 0.82 (0.74–0.90, 0.04) Almost perfect

Yes 44/50 (88)

No 479/490 (97.8)

Total 523/540 (96.7)

Chronic obstructive pulmonary 

disease, N = 540

92.7 96.3 0.80 (0.72–0.88, 0.04) Substantial

Yes 51/55 (92.7)

No 467/485 (96.3)

Total 518/540 (95.9)

Asthma, N = 540 93.7 95.8 0.81 (0.73–0.88, 0.04) Almost perfect

Yes 59/63 (93.7)

No 457/477 (95.8)

Total 516/540 (95.6)

Chronic kidney disease, N = 540 81.2 96.2 0.79 (0.72–0.85, 0.03) Substantial

Yes 95/117 (81.2)

No 407/423 (96.2)

Total 502/540 (93)

Diabetes mellitus, N = 540 92.1 96.3 0.89 (0.85–0.93, 0.02) Almost perfect

Yes 176/191 (92.1)

No 336/349 (96.3)

Total 512/540 (94.8)

Dyslipidemia/Hyperlipidemia, 

N = 540

88.9 86.4 0.61 (0.53–0.69, 0.04) Substantial

Yes 80/90 (88.9)

No 389/450 (86.4)

Total 469/540 (86.9)

ICU admission rate, N = 611 90.3 95.2 0.86 (0.82–0.90, 0.02) Almost perfect

Yes 215/238 (90.3)

No 355/373 (95.2)

Total 570/611 (93.3)

(Continued)
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COVID-19 pneumonia using ICD-10 base-data comparing to manual 
data collection. We  also successfully compared seven continuous 
variables with three extremely high agreement and four high 
agreement in comparison to Brazeal et al. (35), who compared two 
variables (age and BMI) for manual versus automation in a study 
population comprised of patients with histologically confirmed 
advanced adenomatous colorectal polyp.

Manual data extractors can overcome diverse interface issues, read 
and analyze free text, and provide clinical judgment when retrieving and 
interpreting data; however, manual data extraction is limited to human 
resources and is prone to human error (7, 32, 36). In addition to requiring 
considerable amount of time, manual data extraction also necessitates 
qualified personnel (30, 33). During the COVID-19 pandemic, where 
real-time data is paramount, automated data has proven validity and 
efficacy, and may divert personnel to patient care and other vital tasks. 
Nonetheless, automated data is not flawless. A significant limitation is 
finding a unique algorithm that can be applied to every center. Variables 
collected as free text fields are another challenge for such validations. The 
automated VIRUS COVID-19 sites had reported over a large majority of 
variables collected using this method. Currently, more than 60,000 
patients and their data variables in the registry had been collected through 

efforts of the VIRUS-PEEP group, which has allowed for updates and 
complete data in the shortest possible time.

Challenges in automation

The environment for data collection is often a shared environment 
within an institution, and there are limitations on how much data may 
be extracted and processed in one job and how much post-abstraction 
processing is necessary. Microsoft SQL and TSQL solutions process 
substantial amounts of data from many different tables and can take a 
long time to run on large populations. There are clinical 
documentation differences between the various sites requiring 
additional coding when applying the data requirements and rules. 
Establishing logic for data elements within a given EHR can be time 
consuming up front, requiring close collaboration between clinician 
and analytics teams. Data may be stored differently between multiple 
medical centers in one institution, requiring processing to comply 
with data requirements for standardization. While sites can share 
coding experience in data abstraction between similar data storage 
structure, variable coding schemes pose challenges for direct 

TABLE 3 (Continued)

Variable name Percent 
agreement, 

automated vs. 
manual

Sensitivity Specificity Kappa coefficient 
(95% CI, SE)

Strength of 
agreement based 
on Kappa 
coefficient

IMV rate, N = 582 87.7 98 0.85 (0.79–0.92, 0.03) Almost perfect

Yes 64/73 (87.7)

No 499/509 (98)

Total 563/582 (96.7)

NIMV rate, N = 581 83.3 99.3 0.80 (0.66–0.95, 0.07) Substantial

Yes 15/18 (83.3)

No 559/563 (99.3)

Total 574/581 (98.3)

HFNC rate, N = 581 100 98.9 0.86 (0.75–0.97, 0.06) Almost perfect

Yes 19/19 (100)

No 556/562 (98.9)

Total 575/581 (99)

ECMO rate, N = 581 72.7 99.3 0.69 (0.47–0.91, 0.11) Substantial

Yes 8/11 (72.7)

No 566/570 (99.3)

Total 574/581 (98.8)

ICU discharge status, N = 172 100 100 1.0 (1–1, 0.0) Almost perfect

Death 9/9 (100)

Alive 163/163 (100)

Total 172/172 (100)

Hospital discharge status, 

N = 541

90 100 0.94 (0.88–1, 0.03) Almost perfect

Death 27/30 (90)

Alive 511/511 (100)

Total 538/541 (99.4)

CI, Confidence interval; ECMO, Extracorporeal membrane oxygenation; HFNC, High Flow Nasal Canula; ICU, Intensive Care Unit; IMV, Invasive Mechanical Ventilation; LOS, Length of 
stay; NIMV; Non-Invasive Mechanical Ventilation; PCC, Pearson Interclass Correlation Coefficient; SE, Standard Error.
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translation between sites. Lastly, one information technology 
employee often works on such projects with competing priorities.

Strengths and limitations

To our knowledge this is first multicenter study to evaluate the 
feasibility of automation process during COVID-19 pandemic. This 
automation process should be applicable to any EHR vendor (EHR type 
agnostic), and these purposeful sampled representative data points would 
be relevant to any other clinical study/trial, which is a major strength of 
this study. Nonparticipation of 19 sites out of 30 sites in the VIRUS-PEEP 
group, which leads to a possibility of selection bias, is a major limitation. 
The time constraints in the ongoing pandemic at participating sites were 
the reason behind this non-participation in the validation process. 
However, extracting data across 11 different centers is one of the strengths 
of this study; it could also highlight the variations in staff, procedures, and 
patients at these institutions. Although the SQL queries could be applicable 
in most sites, some sites required a new SQL tailored to their data 
architecture. One key limitation for our group was that all sites found a 
portion of data extraction that could not be automated, including variables 
which are described in narrative, such as, patient symptoms, estimated 
duration of onset of symptoms, and imaging interpretations. Another 
limitation is a notable discrepancy between manual and EMR extraction 
for important outcomes like ICU LOS and IMV days. The automation 
process relies on procedure order date (intubation/extubation) and ADT 
(hospital/ICU admission discharge transfer) order date and time and 
discontinuation date in EHR; however the manual extractor look for first-
time documented ICU or IMV in her, which probably could account for 
such notable discrepancy in outcomes like ICU LOS and IMV days. 
Transferring a patient to a location that was not a usual ICU due to 
COVID-19 surge may be another possible explanation for the observed 
lower sensitivity of ICU admission rate. Variation in creation of make-shift 
ICUs at different institution may have caused this discrepancy in 
automation of ICU admissions documentation. It partially explains the 
lower sensitivity and high specificity of ICU admission, IMV, NIMV, and 
ECMO rates by automation process. Another noticeable issue was that the 
manual data extraction was done in real time and automation was done 
when the patient was discharged and mainly relied on billing codes and 
manually verified data available in EHR.

Future direction

Future research on this topic could involve a thorough comparison 
of all patient records extracted using two methods: manual extraction 
and automated SQL queries. The data comparison could be done by 
aligning data points across a wide range of variables for each data 
extraction method and then statistically analyzing their consistency 
and discrepancies. This detailed comparison would verify the 
reliability of automated data extraction and provide insights into areas 
that could be improved for greater accuracy.

Conclusion

This study confirms the feasibility, reliability, and validity of an 
automated process to gather data from the EHR. The use of automated 
data is comparable to the gold standard. The utilization of automated 

data extraction provides additional solutions when a rapid and large 
volume of patient data needs to be extracted.
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The development of intensive care medicine is inseparable from the diversified 
monitoring data. Intensive care medicine has been closely integrated with 
data since its birth. Critical care research requires an integrative approach 
that embraces the complexity of critical illness and the computational 
technology and algorithms that can make it possible. Considering the need 
of standardization of application of big data in intensive care, Intensive Care 
Medicine Branch of China Health Information and Health Care Big Data 
Society, Standard Committee has convened expert group, secretary group 
and the external audit expert group to formulate Chinese Experts’ Consensus 
on the Application of Intensive Care Big Data (2022). This consensus makes 
29 recommendations on the following five parts: Concept of intensive care 
big data, Important scientific issues, Standards and principles of database, 
Methodology in solving big data problems, Clinical application and safety 
consideration of intensive care big data. The consensus group believes this 
consensus is the starting step of application big data in the field of intensive 
care. More explorations and big data based retrospective research should 
be  carried out in order to enhance safety and reliability of big data based 
models of critical care field.

KEYWORDS

machine learning, intensive care medicine, big data, critical care medicine, consensus

Introduction

The development of intensive care medicine is inseparable 
from the diversified monitoring data, which specifically presents 
the clinical manifestations of patients with critical symptoms. 
These data illustrate a certain clinical phenomena, and represents 
the nature of disease behind the phenomenon. Intensive care 
medicine has been closely integrated with data since its birth. The 
complexity of critical illness makes the traditional reductionist 
approach to medical research insufficient (1). Critical care 
research requires an integrative approach that embraces the 
complexity of critical illness and the computational technology 
and algorithms that can make it possible (2). Hence, the organic 
combination of artificial intelligence and critically ill patient data 
can provide significant assistance for clinical diagnosis and 
treatment (3). Pirracchio et al. summarize the current application 
of machine learning for predictive analytics and decision support 
in the ICU and propose online learning in the future (4). 
Sanchez-Pinto et al. review the definitions, types of algorithms, 
applications, challenges, and future of Big Data and data science 

in critical care (5). There are no concenus of application of big 
data on the field of intensive care in China so far. Specifically, the 
conception, clinical research site, standard of dataset, 
methodology and limitation are not fully exhibited. In this 
experts consensus, we  would like to summarize the problem 
above and give recommendations based on evidence.

Consensus formation

This consensus is initiated and formulated by Intensive Care 
Medicine Branch of China Health Information and Health Care 
Big Data Society, Standard Committee, and is methodically 
supported by the Health Data Sciences and Research Institute of 
Lanzhou University/Research Innovation Unit of Evidence-based 
Evaluation and Guidelines of Chinese Academy of Medical 
Sciences/Guidelines for Implementation and Knowledge 
Transformation Cooperation Center of the World Health 
Organization. This consensus has been registered on the 
International Practice Guide Registration Platform (Practice 
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guideline registration for transparency, PREPARE1) with the 
registration number being PREPARE-2022CN566.

The consensus development group consists of the consensus 
expert group, secretary group, working group and external audit 
expert group. The work flow of formation of consensus are shown in 
Figure 1. The enrollment criteria and obligation of these groups are 
shown in Supplementary material S1.

For each recommendation, external audit expert used the Likert 
scale (Score range: 1–6) to evaluate recommendation degree. 
Specifically, 6 points for total agree, 5 points for general agreement, 4 
points for uncertainty, 3 points for a little disagree, 2 points for 
disagree and 1 point for total disagree. For each recommendation, if 
more than 70% external audit expert grade no less than 6 points, the 
consensus is reached. In this formula, 31 recommendations were put 
forward. Except for the two recommendations on missing value and 
outlier value, the remaining 29 recommendations were finalized. The 
degree of expert recommendation was marked with “Consensus 
Degree,” which equal to the total number of experts no less than 6 
points/total number of experts×100%.

Consensus text

The concept, significance and necessity of 
intensive care data

Recommendation 1 (5–8): The concept of intensive care big 
data (97% consensus)

Intensive care big data refers to the datasets with logical 
connotations formulated by various indicators which are large-scale, 
multi-heterogeneous, variably dynamic, high-speed and real-time 
acquisition, low-value density and difficult to analyze traditionally in 
the whole process of diagnosis and treatment of patients or potential 
ones with critical symptoms.

1 http: //www.guidelines-registry.org

Recommendation 2: The intensive care big data is multi-modal, 
massive, dynamic, continuous, and objective, and its correct 
acquisition can provide auxiliary evidential support for diagnosis 
of critical illnesses and early warning. (98% consensus)

Background and Evidence:
The monitoring methods used in the intensive care unit are 

abundant, and the data obtained by the combined use of multiple 
monitoring equipment have a multimodal characteristic (9–11). 
According to the needs, multi-parameter sampling can be performed 
at different levels and time to obtain a large amount of continuous 
data. Therefore, the intensive care data has the characteristics of 
abundance (9), dynamics, continuation, and accuracy (5, 12). Correct 
and effective data processing has a guiding and early-warning role in 
the diagnosis and treatment of critical illnesses (8). Recently, Epimed 
Monitor System®, a cloud-based ICU management system that 
includes data of more than 2.5 million hospitalization in the ICU of 
Brazil, has been deployed to predict the duration of ICU stays, provide 
guidance for risk assessment of patients becoming long-term ones in 
the ICU, and help to plan the use of hospital beds (13). Komorowski 
et al. (14) used reinforced learning techniques to guide patients with 
sepsis to use fluid or vasoactive medication, and external validation 
showed that the model made better choices for treatment than 
intensive care physicians. In the aspect of building predictive models 
by using data mining techniques, Nemati et al. (15) demonstrated that 
“AI sepsis experts” can be used for real-time data processing to predict 
new sepsis within 4–12 h. Although big data research has shown 
broad prospects for application, at this stage, the number of random 
clinical trials is small, and various technical models need to be testing 
prospectively in the clinic to prove their effectiveness and safety (15). 
In view of the characteristics of individualized and differential 
conditions in patients with critical symptoms (1), at this stage, the 
intensive care big data cannot provide maturely clinical guidance and 
can be used as an auxiliary support tool.

Recommendation 3: The establishment of a large database for 
intensive care in China should follow the principles of multiple 
center, multiple disease and automatic capture, and provide reliable 
and accurate data support for the application of big data and the 
development of artificial intelligence. (92% consensus)

FIGURE 1

Work flow of formation of consensus.
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Background and Evidence:
The establishment of a large database for intensive care in China 

is in the preliminary exploration. By drawing on the experience of 
existing databases at home and abroad and summarizing the 
deficiencies of the existing databases, the database can provide a basis 
for clinical decision-making in China, precise medicine 
implementation and formulation of medical policies in China. At 
present, a number of large databases for intensive care have been 
established abroad, such as the latest version of the Intensive Care 
Information Database (Medical Information Mart for Intensive 
Care-IV, MIMIC-IV) (16), the eICU Collaborative Research Database 
(eICU-CRD) (17), high time resolution ICU dataset (HiRID) (18) and 
Amsterdam University Medical Centers Database (Amsterdam 
University Medical Centers Database, AmsterdamUMCdb) (19), etc., 
mainly based on European and American races. The volume of data 
is large and the types of data are abundant, but the vital signs are 
regularly monitored, which are not fully automatically captured, and 
the scoring system for critical illnesses does not have functions of 
automatic data collection and integration (20), there is a general lack 
of software embedding of preliminary data analysis online. The large 
database for intensive care abroad needs improving in terms of real-
time data and availability. Based on the MIMIC database, the 
researchers conducted in-depth mining of big data to build clinical 
models. With the help of artificial intelligence and machine learning, 
artificial intelligence physicians can be used to assist clinical decision-
making and provide personalized, clinical and optimal treatment for 
patients with critical symptoms and improve the prognosis (14).

In recent years, China has been exploring large databases for 
intensive care, and has successively established a database of ICU 
infected patients (21), a pediatric intensive care database (PIC) (22), 
and HeartFailure database (23), etc. The existing large databases for 
intensive care started late, and their development is not yet mature. 
They are all single-center databases, with a single type of disease or 
population. They are limited to the initial collection of early data, and 
they do not have functions of automatic data capture and data analysis, 
and the overall quality of data is relatively low and The utilization 
efficiency is not high. It has not been integrated into clinically artificial 
intelligence and application technology of big data (24).

Table 1 shows the brief information comparison of major foreign 
intensive care databases. It can be seen that the existing databases at 
home and abroad are mainly single-center, and various illnesses may 
develop into critical one and require admission to ICU for treatment, 
so it is significant to improve the comprehensiveness of the data. 
Therefore, the existing single-center or multi-center databases 
established for certain diseases obviously cannot meet the needs of the 

vast majority of ICU patients. As we all know, the most widely used 
database such as MIMIC-III database records vital signs every hour, 
but for patients with critical symptoms who need continuous dynamic 
monitoring, this temporal resolution ratio is far from satisfactory. 
HiRID has a higher temporal resolution ratio than other published 
datasets, and data storage processes every 2 min (18), which is not yet 
possible for other databases. To sum up, the establishment of a large 
database for intensive care in China should follow the principles of 
multiple centers, multiple diseases and automatic capture to provide 
data support for the development and application of 
artificial intelligence.

Recommendation 4: Build a large database of patients with 
critical symptoms in China for their condition monitoring, the 
research and development of clinical drug and clinical trials can 
provide the standardized and individualized treatment for patients 
with critical symptoms. (97% consensus)

Background and Evidence:
Understanding the relationship between intensive care big data 

and critical clinic is crucial. The relationship between intensive care 
big data and the clinic is that: data integration can provide clinicians 
with manageable, interpretable, operational and treatment plan data, 
give certain reference to clinical treatment. Data management can 
provide better personalized and accurate medical guarantee through 
predicted and prognostic model, It can also use supervised and 
unsupervised learning algorithm to provide clinical researchers with 
handy, highly-credible and highly-utilizable database, provide 
scientific data support for drug development and exploration process, 
and finally promote the development of intensive care medicine. At 
present, the application of intensive care big data in clinical practice is 
gradually increasing, but it is mainly limited to mechanical data 
collection and manual data processing. The expert group believes that 
machine learning modeling and multi-disciplinary combination can 
be used to warn, track and summarize different clinical problems, so 
as to summarize past experience, warn current decisions and predict 
future progress.

The first is the application of intensive care big data in clinical 
decision-making. An RCT study conducted in two community 
hospitals in 2010 pointed out that remote data algorithms could 
effectively improve the medical quality of patients with critically 
symptoms (25). Meanwhile, a review in 2015 showed strategies for the 
application of big data in the use of antibiotics in patients with 
critically symptoms. They proposed the concept of AutoKinetics to 
provide decision support for clinical dosing. And through direct 
interaction with electronic medical records, they broadened the way 
to use big data and provided the right dose for each patient at the right 

TABLE 1 Brief information comparison of major foreign databases of critical illnesses.

MIMIC-III MIMIC-IV eICU HiRID Amsterdam 
UMCdb

Sources of included 

population

Single Center, Large Sample, Beth Israel 

Deaconess Medical Center in MIT

Multi-center, mainly small and medium-

sized hospitals, organized by non-intensive 

specialists, with patients in 335 ICUs in the 

United States

Single-center, ICU 

patients at the University 

Hospital of Bern, 

Switzerland

Multi-center, with 

20,109 ICU patients in 

Europe

Country/Region USA USA USA Switzerland Europe

Time 2001–2012 2008~2019 2014~2015 2008.1~2016.6 2013~2016

Number of patients 46,520 383,220 139,367 36,098 20,109
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time (26). Kindle et  al. (27) and Carra et  al. (8) summarized the 
developmental results of all remote algorithms and concluded that 
machine learning algorithms have important implications for sepsis 
detection, sepsis management, mechanical ventilation, reduction of 
false alarms, and prognosis in ICU. In addition, intensive care big data 
is also of great significance for decision making of clinical care. In 
2022, the Stanford medical team developed an unsupervised process 
mining algorithm to evaluate the quality of care. The final result of the 
patient cohort had an average compliance score of 0.36. The highest 
was 0.64, and the lowest was 0.20. The results demonstrated the 
reliability of big data algorithms for data mining of electronic medical 
records, and the scheme could also be used to evaluate the quality of 
care in other diseases (28). In 2022, Jens Michael Boss et  al. (29) 
proposed “ICU Cockpit,” an integration platform of algorithmic 
model, which pointed out the early warning effect of severe big data 
on clinical decision-making. Since 2016, the platform has processed 
over 89 billion data points (979 patients) from 200 signals and 
laboratory in the analysis, and an infrastructure-based framework has 
been proposed for deploying and validating intensive care algorithms. 
It allows algorithms to seamlessly integrate into real-time data streams 
to generate clinical decision support and predictions in clinical 
practice (29). The second is the guidance of intensive care big data for 
clinical research. Taglang and Jackson (30) and Xu et  al. (21) 
expounded the importance of big data to explore clinical trials 
systematically and, respectively. In the exploration of big data in the 
past 2 years, a number of studies have carried out analysis of 
individualized computational models constructed through big data, 
pointing out risk factors for high mortality in patients with critical 
symptoms (31–33). Finally, in terms of the relationship between 
clinical drug R&D and big data, we have not seen any evidence that 
relevant big data is used in drug R&D in the field of critical care 
medicine. However, due to the considerable progress of application in 
drug R&D and big data during recent years (34), we recommend that 
big data can also be combined with drug development in intensive 
care medicine. Therefore, the expert group recommends intensive care 
big data be  used to detect changes in clinical practice, but more 
databases and algorithms and large-scale RCT experiments are 
needed to jointly promote the development of this field, which is also 
the future path of clinical practice. We  point out that the 
multidisciplinary and interactive development of intensive care big 
data can build a large database of critical diseases in China, and 
ultimately guide the standardized treatment of patients with 
critical symptoms.

Clinical scientific issues concerned by 
intensive care big data in clinical research

Recommendation 5: It is recommended to use machine 
learning method to build modeling to make early warning of 
sepsis, acute kidney injury (AKI), and acute respiratory distress 
syndrome (ARDS). (94% consensus)

Background and Evidence:
Research on early warning models for sepsis, AKI, and ARDS is 

increasing, and most models can provide early warning with good 
sensitivity and specificity. The ability of different models to predict and 
popularize needs to be further verified. The expert group believes that 
machine learning method modeling can be  used in the early 

prediction of the risk of sepsis, AKI and ARDS in ICU patients, so as 
to reduce the possibility, improve early coping ability, and possibly 
improve prognosis.

The sepsis early warning model compared with manual screening 
and scoring, made early and accurate predictions, and achieved 
external validation. A meta-analysis of sepsis prediction models in 
2020 showed that a single machine learning model can be  an 
accurately early prediction of sepsis (AUROC 0.68–0.99) and could 
replace traditional scores, but heterogeneity between studies limited 
the evaluation of results (35). A study in 2022 (36) developed a sepsis 
screening tool by using a learning approach to gradient-boosted 
supervision that was more sensitive (84.6% vs. 80.4%) and more 
accurate (28.8% vs. 11.4%) than traditional scoring. A controlled study 
in 2021 (37) developed an algorithm that accurately predicted sepsis 
12 h in advance (AUC 0.94, sensitivity 0.87, specificity 0.87). A multi-
center study in 2021 (38) showed the use of a transfer-learning 
algorithm to enable the validity of the external validation datasets 
in sepsis.

Early warning models for AKI patients with critical symptoms can 
make early and accurate predictions, but few models have external 
validation, clinical interpretability, and high predictive performance 
in one (39). Studies have shown (40) that the early warning model of 
AKI has an AUC of 88%, which can predict AKI 6 h in advance. A 
multi-center study in 2020 showed that the AKI early warning model 
could predict AKI 48 h in advance, and performed well in both 
internal and external validation (AUC of 0.86 and 0.85, 0.86 
respectively) (41). A 2020 study (42) established a continuous 
prediction model based on the data of electronic medical record, 
which could predict AKI in real time during hospitalization, and its 
performance was significantly better than the one-time prediction 
model (AUC of 0.724 vs. 0.653).

The ARDS early warning model can make early prediction of 
ARDS efficiently, and some models can achieve external validation, 
and some incorporate variables of iconography. A study in 2020 (43) 
using the XGBoost gradient boosting tree model could accurately 
predict ARDS 48 h in advance (AUROC of 79.0%). A study in 2020 
(44) performed a secondary analysis of prospective study data using 
the text of radiology reports to build a model that performed well and 
achieved external validation (C-statistic, 0.78; 95% CI, 0.72–0.84). The 
diagnosis of ARDS is strongly dependent on iconography, which is, 
however, not necessarily available at the time of diagnosis or there is 
uncertainty in its interpretation. This information is called privileged 
information and uncertainty labels, but the model incorporating 
variables of iconography is closer to clinical practice. A study in 2021 
(44) used a transfer-learning algorithm based on radiographs to build 
a predictive model that performed well and had external validation 
(AUROC of 92 and 88%). A study in 2021 (45) successfully used 
privileged information and a learning model with uncertainty labels 
to predict ARDS (AUC of 85.78 and 87.01%).

Recommendation 6: The prediction model based on machine 
learning can effectively predict the risk of patients at high risk of 
potential organ damage in the ICU. (89% consensus)

Background and Evidence:
The proposed early warning scoring system enables medical staff 

to better identify potential patients with critical symptoms and achieve 
the purpose of early identification and intervention to improve patient 
prognosis. However, this scoring system may fail to identify patients 
until significant deterioration occurs. A systematic review in 2019 (46) 
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found that the early warning score using statistical modeling was more 
accurate in identifying high-risk patients than weighted early warning 
(mean AUC of 0.80 vs. 0.73), with one true finding of positive case 
being 4.9 and 7.1 alarm events required. A similar 2021 systematic 
review (47) also showed that an early warning system for clinical 
deterioration based on machine learning could more accurately 
predict the risk of patient with lower survival rate in the ICU, with an 
area under the model ranging from 0.57 to 0.97.

Specifically, in addition to the progression of the primary disease, 
patients with critical symptoms may develop a variety of life-
threatening comorbidities. The common ones include failure of 
circulatory function. In 2020, a study Hyland et al. (18) independently 
established an early warning system for circulatory failure, which 
could identify patients at risk of circulatory failure more than 2 h in 
advance, and successfully conducted external validation in an 
independent patient cohort. There was also a study by Broch Porcar 
et al. (48) and they considered that by using data mining, modeling, 
machine learning and other techniques to generate predictions, risk 
quantification methods could be developed to predict QTc interval 
prolongation. The QTc interval risk score showed good predictive 
performance, with good sensitivity (74% high risk, 67% intermediate 
risk), specificity (77% high risk, 88% intermediate risk), positive (79% 
high risk, 55% intermediate) and predictive value of being negative 
(high risk 76%, intermediate risk 88%). In addition to circulatory 
function and ECG function, water and electrolyte disturbances are 
also risk factors for patients with critical symptoms. The Spanish 
researchers Broch Porcar et  al. (48) developed a Spanish national 
algorithm by reviewing the management of hyponatremia in ICU 
patients to improve the standardized diagnosis and treatment of 
hyponatremia. There was also a study (49) that the analysis group of 
machine learning and the analysis library of collaborative data which 
were based on the intensive care information system were used to 
know the area under the curve could be  greater than 0.80 when 
gastrointestinal bleeding in patients was after 5 h, and it had good 
predictability. In addition to bleeding risk, ICU patients are also at risk 
of embolism. Deep vein thrombosis (DVT) is associated with high 
morbidity, mortality, and increased healthcare costs. Researchers (50) 
developed gradient boosting machine learning algorithms to predict 
the risk of DVT in patients 12 and 24 h before onset. The area under 
the curve for the diagnosis of in-hospital DVT obtained by machine 
learning predictors was 0.83 and 0.85, respectively.

Recommendation 7: It is recommended to use machine 
learning method to build modeling to conduct early screening of 
hospitalized patients, so as to provide help for clinicians intervene 
early and reduce the severity of the disease. (88% consensus)

Background and Evidence:
Compared with ordinary patients, patients with critical symptoms 

often undergo longer hospitalization time, more expense, and poorer 
prognosis. Early detection of the change of patients’ condition and 
timely intervention are of significance for preventing the progression 
of the disease. Machine learning methods can facilitate early screening 
of diseases and timely treatment of diseases. However, for different 
subjects, attention should be paid to the correction of heterogeneity 
before the model is applied, otherwise it will easily lead to wrong 
clinical guidance. Experts suggest using machine learning method to 
building modeling for early screening of patients with critical 
symptoms, so as to help clinicians intervene early and reduce the 
severity of the disease.

A study published in 2020 evaluated several machine learning 
methods by using 5-fold cross validation, and applied the XGBoost 
algorithm to make a AI prediction model for sepsis. The validation 
results showed that its accuracy = 82% ± 1%; sensitivity = 65% ± 5%; 
specificity = 88% ± 2%; area under the receiver operating characteristic 
curve (AUROC) was approximately 0.89, significantly better than the 
SOFA score (AUROC = 0.596), which might help clinicians deploy 
appropriate therapeutic regimen, so early and precise responses to this 
AI algorithm will reduce costs, improve outcomes, and benefit 
healthcare systems, medical staff, and patients (51). For example, a 
multi-center and real-world data study in 2020 confirmed that after 
applying the early warning model in the clinical setting, the in-hospital 
mortality rate of patients with sepsis decreased by an average of 39.5%, 
the length of hospital stay decreased by 32.3%, and the 30-day 
readmission rate of sepsis-related hospitalization decreased by 22.7% 
(52). In addition to sepsis, machine learning methods have also been 
used in early screening of other critical illnesses, and a study published 
in 2021 used a model built with four machine learning methods 
(Random Forest, XGBoost, GLM-Boost, and LASSO-GLM) to predict 
pediatric multiple organ dysfunction (MOD). The results showed that 
the early prediction model of all methods achieved an AUROC of 
0.91, and early prediction through risk-based patient monitoring 
could provide more than 22 h of lead time for the occurrence of MOD, 
which would play an important role in improving the prognosis of 
patients (53). However, there were also articles that suggest that 
clinicians should first calibrate the model according to the 
heterogeneity of patients before applying the relevant model, so as to 
avoid misjudgment that might affect clinical decision-making (35). 
However, in clinical work, first-line clinical staff should pay more 
attention to the existing scoring system and supervise the actual 
application, otherwise it will be  futile to simply improve the 
performance of the model without improving the clinical application 
and response speed (54).

[Diagnosis]
Recommendation 8: It is recommended that the image data of 

patients with critical symptoms be included in the intensive care 
database to provide more comprehensive, accurate and timely 
diagnostic information, so as to guide clinical decision-making 
through relevant algorithms. (92% consensus)

Background and Evidence:
There have long been studies using AI in the screening and 

diagnosis of tumors and the images of infectious foci, and have 
confirmed its advantages in rapidly processing a large amount of 
image data, moved the diagnostic “gateway” forward, and avoided 
missed diagnosis and misdiagnosis (55, 56). The disease state and 
imaging manifestations of patients with critical symptoms are more 
complex and diverse, and the optimal timing and scenarios for using 
artificial intelligence for imaging diagnosis need to be more verified. 
The expert group believes that AI-assisted imaging diagnosis of ICU 
patients has good application prospects, and recommends devoting to 
relevant exploration to improve the efficiency and accuracy of 
diagnosis and provide reference for clinical decision-making.

A study of 3,078 chest radiographs from 500 ICU patients at 
Michigan Hospital used directional measurements and deep machine 
learning features to model ARDS with an accuracy of 83% and an 
AUC value of 0.79 (57). Cerebellar model arithmetic computer 
analyzed the supine chest radiograph: the AUC values for the 
diagnosis of pneumonia and pleural effusion were 0.737 and 0.740, 
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respectively, which were similar to those of imaging experts (AUC 
values are 0.779 and 0.698) (58). In the outbreak of COVID-19, 
AI-assisted imaging diagnosis has performed well. Various machine 
learning methods could not only quickly identify the CT images of 
COVID-19 (AUC values were between 0.951 and 0.980) from a large 
number of lung CT images, but also It could predict severe 
transformation in patients (AUC value was 0.848) (59). The machine 
learning method combining classical imaging processing and deep 
learning analyzed CT images of 110 patients with severe subdural 
hematoma, and showed that the sample recall rate and precision rate 
were 78.61 and 76.12%, respectively, and the specificity judged based 
on the severity of the hematoma volume was 92.31%, which could 
help physicians save decision-making time (60).

In addition to radiological imaging, AI has also been applied in 
other ICU bedside imaging diagnosis. One study in 2019 showed that 
the neural network model could detect bedside lung ultrasound 
B-lines with a sensitivity and specificity of 0.871 and 0.930 (61); two 
studies in 2021 showed that the neural network model used ultrasound 
images to diagnose patients with Sepsis early and the accuracy and 
sensitivity of developing AKI are higher than those of professional 
radiologists (62, 63). Electrical impedance tomography (EIT) can only 
roughly show the distribution of ventilation and blood flow in various 
regions of the lung, but it cannot be quantified as a bedside monitoring 
index. The neural network model trained by deep learning can 
calculate information such as lung volume, air flow rate, normalized 
airway pressure and even transpulmonary pressure from the EIT 
signal, and AI can also optimize the output image of EIT and even 
reconstruct the chest image (64).

Recommendation 9: It is recommended to divide patients with 
sepsis, acute kidney injury, and acute adult respiratory distress 
syndrome into phenotypes with different clinical outcomes and 
treatment responses by means of cluster analysis, and identify 
patients who are most likely to benefit from specific treatment 
strategies. (91% consensus)

Background and Evidence:
Cluster analysis can identify relatively homogeneous groups 

within heterogeneous populations. Some treatments are only effective 
in certain groups of people. Clustering techniques were used to 
classify patients with critical symptoms into distinct phenotypes by 
significant differences in comorbidities, laboratory indicators, vital 
signs, clinical outcomes, and treatment responsiveness, identifying 
groups that benefit from specific therapies. At present, the 
identification of phenotypes has made research progress in sepsis, 
AKI, and ARDS, but the accuracy and generalizability of phenotypes 
still need further verification. The expert group recommends that 
patients with critically symptoms be divided into different phenotype 
by cluster analysis to identify those most likely to benefit from specific 
treatment strategies.

Clinical and/or host response data and machine learning (e.g., 
latent class analysis and K-means clustering) were used to segment 
critically-ill patients with sepsis, AKI, ARDS, etc. into distinct 
phenotypes (65–68). A RCT study in 2021 identified 4 coagulation-
based sepsis phenotypes by K-means clustering and used a machine 
learning means to determine which phenotype would benefit from 
rhTM (69); another RCT study by Cluster analysis identified 4 clinical 
phenotypes of sepsis. These phenotypes differed in demographic 
characteristics, laboratory abnormalities, patterns of organ 
dysfunction, and were not homologous to traditional patient groups 

such as site of infection, pattern of organ dysfunction, or disease 
severity (70); a latent class analysis of an AKI cohort in 2020 identified 
two phenotypes of sepsis acute kidney injury with distinct clinical 
outcomes (71); a prospective observational cohort research through 
unsupervised consensus clustering and machine learning analyzed 
expression profiles of the whole blood RNA and identified 4 sepsis 
endophenotypes (Mars 1–4), of which Mars 1 was significantly 
associated with 28-day mortality. To facilitate clinical application, the 
study also extracted accurate classification biomarkers for each 
phenotype (72). Two different ARDS phenotypes have been identified 
by the LCA method using data from randomized controlled trials of 
ARDS. These phenotypes had different clinical outcomes. And 
different treatment responses to positive end-expiratory pressure 
strategies (73), fluid therapy (74), and simvastatin (75) have 
been identified.

[Treatment]
Recommendation 10: In specific clinical scenarios, such as 

decision making for tracheal intubation and intensive care drug 
decision, it is recommended to build a decision-making model that 
can be  used for clinical treatment based on machine learning 
algorithms. (74% consensus)

Background and Evidence:
The condition of ICU patients is usually difficult and critical. 

Electronic medical record systems, monitors, ventilators and other 
instruments and equipment can generate massive amounts of vital 
information data, which far exceeds the ability of ICU doctors to 
continuously process and correctly interpret them, and affects the 
effectiveness of clinical decision-making and responsiveness. Artificial 
intelligence (AI) models can continuously clear, categorize, classify, 
calculate, and correlate a large amount of data, and make predictions 
for patients, thereby assisting clinical decision-making and improving 
the quality and efficiency of critical care.

Several studies have evaluated the clinical impact of applying 
artificial intelligence techniques such as machine learning to make 
treatment decisions. In 2018, Komorowski et al. applied reinforcement 
learning to the sepsis population, and AI clinicians could optimize 
fluid and vasoactive drug treatment and reduce the fatality rate (14). 
In 2019, a study established a model to predict urine output in patients 
with AKI. Compared with the traditional Logistic regression model, 
the XGBoost model could better distinguish whether patients had 
volume responsiveness (76).

AI technology has been tried to be applied to clinical situations 
such as extubation decision-making and optimization of drug 
treatment for patients. A 2018 retrospective study used machine 
learning to identify patients requiring prolonged mechanical 
ventilation (PMV) and those with high risk of tracheostomy (77). In 
2021, Fabregat et al. compared three classification learning methods 
(Logistic regression, XGBoost, and support vector machines) to 
predict extubation outcomes, which may potentially reduce extubation 
failure rates (about 9%) (78). Another study in 2021 established a 
predictive model for accidental extubation through a machine 
learning algorithm, in which the random forest algorithm obtained 
the best AUROC of 0.787 (79).

The application of machine learning to optimize the therapeutic 
effects of anticoagulation, anti-infection and sedation in patients 
with critical symptoms is still in the exploratory stage. Chen et al. 
(80), Su et al. (81), Li et al. (82) compared different machine learning 
methods to predict the therapeutic effect of anticoagulant drugs 
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(citrate, heparin). The scores are overall better than the other 
models. A single-center retrospective study in 2022 used machine 
learning and cluster analysis to provide guidance on antibiotic 
management in patients with critical symptoms (83). Another study 
in 2022 based on self-attention and residual structure of 
convolutional neural network (CNN) had a good predictive effect 
on anesthesia depth monitoring (84). The examples above illustrate 
the potential role of AI in guiding critical decisions in patients with 
critical symptoms. But the vast majority of developed ICU-AI 
models are still in the testing or prototyping stage, and only a few 
have actually been evaluated in clinical practice. Van de Sande et al. 
found no studies suggesting the results of integrating AI models in 
routine clinical practice (85). Research on AI used to guide clinical 
decision-making is mostly calculated from retrospective and 
observational datasets. Therefore, in order to have AI directly guide 
clinical decision-making, it is necessary to conduct a comprehensive 
analysis of the suggested sequences or strategies derived from such 
AI systems with more high-quality and prospective studies to 
be designed.

[Prognosis and follow-up]
Recommendation 11: It is recommended to use machine 

learning methods to predict the prognosis of patients with critical 
symptoms. (85% consensus)

Background and Evidence:
There are more and more predictive models for mortality in ICU 

patients. Many data models are better at than disease prediction than 
clinical scoring systems. The sensitivity and specificity of some 
predictive models still rely on the assistance of clinical scoring systems. 
AI models in intensive care medicine are mainly generated by 
retrospective data, with small sample sizes and low reproducibility of 
conclusions, which are lack of sufficient external validation or 
prospective evaluation.

There are various machine learning models and algorithms, such 
as: support vector machines (SVM), Gradient Boosting Decision Tree 
(GBDT), Logistic regression (LR), adjacent algorithms (KNN, 
K-Nearest Neighbor), and Random Forest (RF). Studies have shown 
that the SVM model is a useful tool for early prediction of patients 
with a higher risk of death upon admission to the ICU. Compared 
with the early warning score of the SAPS II score, it was better at 
predicting 7-day mortality. However, the sensitivity and specificity of 
the SVM model without SAPS II significantly decreased (86). The 
prediction performance of the machine learning method and the 
traditional scoring system was further compared according to 
different diseases. The results were as follows: (1) Sepsis; The results in 
2021 showed that GBDT is more accurate than other models (GBDT, 
LR, KNN, RF, and SVM) in predicting death in patients with sepsis 
(87). García-Gallo et al. used an assembly algorithm such as SGB to 
generate a sepsis model that was more accurate in predicting 1-year 
mortality than traditional scoring systems such as SAPS II, SOFA or 
OASIS (88). (2) Intracebral Hemorrhage (ICH); Nie et  al. (89) 
indicated that RF was the best model for predicting mortality in ICH 
patients treated in the ICU, and all machine learning algorithms used 
to predict mortality in the ICU showed better results compared to the 
APACHE-II score. (3) Severe acute pancreatitis (SAP); Halonen et al. 
(90) established an artificial neural network (ANN) model for 
predicting the severity of acute severe pancreatitis, and the results 
were better than the Rason score, Glasgow-imrie, APACHE-II, and 
SOFA scores. The article by Ding et al. (91) also showed that the ANN 

model could easily screen patients with high risk of death in the early 
stages of acute pancreatitis.

Finally, it is important to note that the study by Niven et al. (92) 
showed that a minority of critical care practices with research 
published in high-profile journals were evaluated for reproducibility; 
less than half had reproducible effects. This question highlighted the 
importance of accurate labeling and precise reporting methods, 
including data preprocessing and functionalization.

[Auxiliary decision-making system changes the clinical path]
Recommendation 12: A clinical decision support system 

(CDSS) can be used to improve compliance with guidelines for 
diagnosis and treatment of patients with critical symptoms and the 
implementation of clinical pathways. (86% consensus)

Background and Evidence:
Evidence-based clinical diagnosis and treatment guidelines 

provide standardized and homogeneous diagnosis and treatment 
strategies for the treatment of patients with critical symptoms. 
However, compliance with clinical guidelines is not high in routine 
ICU care, resulting in an increase in avoidable patient mortality (93, 
94). A clinical decision support system (CDSS) is a computer program 
that helps health care workers make decisions. With the clinical 
application of CDSS, most studies have shown that the application of 
CDSS can assist ICU physicians in decision making, improve 
compliance with diagnosis and treatment guidelines, and improve 
outcomes of patient. However, there are many types of CDSSs. One 
CDSS is aimed at a certain disease, and the development cost is high. 
The CDSS based on big data has been applied to clinical decision-
making, but it has not been used to change guideline compliance. 
Moreover, CDSS needs to be integrated with the patient electronic 
health record system. Due to the different electronic health record 
systems adopted by different regions or hospitals, the promotion and 
application of CDSS in different hospitals are limited. Therefore, the 
expert group believes that CDSS can be  used to improve the 
compliance with the guidelines for diagnosis and treatment of patients 
with critical symptoms, but CDSS based on big data is still in the stage 
of research and development. It is recommended that qualified 
hospitals take the development and clinical application of CDSS based 
on big data into consideration to improve compliance with guidelines.

As early as in 2011, CDSS, such as a “flow sheet,” can monitor 
various parameters of patients in real time at the bedside, screen 
patients with sepsis early and make a series of mandatory treatment 
measures according to SSC guidelines. The application of CDSS can 
significantly improve the compliance with SSC guideline of 
resuscitation bundle strategy, shorten the duration of antibiotic use 
(90), and reduce hospital mortality (95). In the clinical implementation 
of lung protective ventilation with low tidal volume, by using CDSS to 
guide medical staff to set the ventilator mode and support level, the 
compliance with lung protective ventilation improved, and the level 
of tidal volume increased significantly after CDSS was discontinued 
(96). In a study of delirium management, the duration of delirium 
episodes was significantly reduced, followed the adoption of the 
tailored ICU delirium guideline CDSS and the duration of coma was 
reduced, with the brain function improved (97). In another 
prospective observational study assessing the compliance with AKI 
guidelines, the CDSS for AKI was integrated into the intensive care 
information system in the ICU and found the proportion of patients 
with worse condition from stage 1 AKI, and the proportion of 
inappropriate use of enoxaparin dose as well as that of morbidity rate 
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of patients with AKI was significantly reduced (98). It can be seen that 
CDSS can improve guideline compliance. However, there is currently 
no big data-based CDSS application in clinical practice to improve 
guideline compliance, which needs to be  confirmed by further 
research in the future.

Establishment, standards and principles of 
a large database for intensive care

Recommendation 13: It is recommended to build a intensive 
care medicine database and data analysis platform. (98% 
consensus)

Background and Evidence:
The intensive care database can provide a good data foundation 

and new ideas for clinical medical research, which in turn can improve 
the understanding of diseases. For example, in Sepsis 1.0 (99), sepsis 
was defined as a systemic inflammatory response syndrome (SIRS) 
caused by infection. Although various diagnostic indicators were 
more complete in Sepsis 2.0 (100), it still continued the standard of 
Sepsis 1.0. However, the diagnostic criteria of infection and SIRS 
cannot accurately describe the disease characteristics of patients, such 
as different primary diseases, different symptoms and mortality of 
patients. In 2016, Sepsis 3.0, which was mainly based on big data 
analysis, was born (101), which defined sepsis as life-threatening 
organ failure caused by the body’s uncontrolled response to infection, 
i.e., infection and organ function diagnosis. Patterns, making the 
definition of Sepsis more adaptable to pathophysiology and easier to 
implement in clinical practice. It can be said that the intensive care 
medicine databases that have been constructed abroad, such as the 
Medical Information Mart for Intensive Care (MIMIC) and the eICU 
Collaborative Research Database (eICU-CRD) (17), are used in 
clinical practice. The role played in diagnosis and treatment has 
gradually become prominent. At present, the pace of establishing a 
intensive care big data platform has also been accelerated in China, 
but most of them are limited to individual databases in each hospital, 
and there are still some deficiencies in data exchange and influence. 
Therefore, we recommend building a intensive care medicine database 

and data analysis for Chinese people platform to strengthen discipline 
construction and improve the level of treatment for patients with 
critical symptoms.

Recommendation 14: It is recommended to form a standard 
normative intensive care dataset. (97% consensus)

Background and Evidence:
Standard and normalized datasets are the basis for big data 

applications and facilitate data collaboration between research centers 
in different regions. There is a lot of information obtained by ICU 
equipment and instruments, and the data can be  included in a 
reasonable and standardized manner and classified, so that they can 
be used more fully and conveniently. At present, there are many big 
data information systems for intensive care medicine at home and 
abroad. These information systems divide clinical data into different 
data elements according to specific classification standards, and then 
use specific data collection methods to acquire and analyze data. 
Referring to basic structure and data standard of the national 
electronic medical record (102), Beijing local standard - intensive care 
medicine dataset and the intensive care medicine database widely used 
in the field of medical research (103), the recommended standard data 
set should include the following data sets: (1) Basic information data 
of patients; (2) Diagnostic information data of patients; (3) Monitoring 
data of Patients; (4) Drug use data of patients; (5) Laboratory 
information data of patients; (6) In and out data of patients; (7) 
Imaging data of patients; (8) Etiology data of patients. See Table 2 
for details.

It is also recommended that adjustments can be  made in 
combination with actual conditions such as hospital disease 
conditions, information centers, laboratory testing items and other 
objective conditions. For example, based on acute respiratory distress 
syndrome, sepsis, acute kidney injury and other common diseases in 
intensive care medicine to build a special disease database, which is 
necessary to strengthen the sampling frequency and categories of 
intensive care information related to special diseases. For example, the 
acute respiratory distress syndrome database needs to further 
collection of biomarkers, etc.; The sepsis database requires further 
collection of vasoactive drugs, etiology collection, organ function 
assessment, etc.

TABLE 2 Standard datasets.

Basic information data of 
patients

Time information on patient admission and discharge, demographic information, 
source of admission, ICU category, time of death, etc.

Diagnostic information data of patients All disease diagnosis information during the patient’s stay in the ICU; the main diagnosis needs to be distinguished from the 

secondary diagnosis

Monitoring data of Patients Routine vital signs, ventilator parameter information, blood purification parameter information, aortic balloon counter 

pulsation parameter information, the mental state, the score information, etc.

Treatment data of patients The route of administration, use time and drug dose of all drugs during the patient’s stay in the ICU; the name, time and related 

information of the operation; the name, time and related information of the treatment operation, etc.

Laboratory information data of patients Laboratory examination information during the patient’s stay in the ICU, such as sampling time, specimen type, test items, 

reference range of normal values, etc.

In and out data of patients Data of all fluids entering and expelling from the body during the patient’s stay in the ICU, including fluid type, entry and exit 

route, time, etc.

Imaging data of patients Text reports related to radiographic imaging during patient stay in the ICU

Etiology data of patients The etiological data collected during the patient’s stay in the ICU, including sampling time, specimen type, etiological name, 

etiological drug susceptibility, etc.
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Recommendation 15: It is recommended to select automatic 
collection for objective data first. For data that cannot 
be automatically collected for the time being, targeted collection 
should be carried out in combination with research needs, data 
sources and data types. (92% consensus)

Background and Evidence:
The data collection process should follow the principles of 

comprehensiveness, multi-dimensionality, efficiency and timeliness. 
In view of the many data sources and rich data structures in the ICU, 
it is recommended to use automated data collection technology to 
realize the data collection process so as to avoid human errors affecting 
the use of subsequent data.

Data in the ICU can be broadly classified into “phenotypic data” 
and “physiologic data.” Phenotypic data include demographics, age, 
sex, laboratory values, and physician and nursing records. Phenotypic 
data collection can be queried and extracted from electronic medical 
records (EMRs). Relevant content can be obtained through Python or 
API, and the required attribute content can be  extracted from it. 
Physiological data include vital signs (blood pressure, heart rate, 
respiratory rate, core temperature) and other parameters (intracranial 
pressure, EEG) generated by bedside monitoring equipment. If the 
data interface of the device can be obtained through various software 
manufacturers, data collection and aggregation can be  realized 
through the interface docking method. If some devices cannot obtain 
the data interface, collecting all the data generated by the target device 
can be tried to acquire the underlying data exchange of the system, the 
network package between the client and the database, which can 
convert the data into with restructure and output to new database, 
based on underlying IO request and network analysis technologies.

Alarms in the ICU, such as ECG leads, blood pressure cuff 
detachment from patients, completion of infusion pump or air bubbles 
in tubing, high airway pressure, air leak, or apnea in mechanical 
ventilation ventilators, etc., which can be classified into the type of 
physiological data. This part of the data can be collected by collecting 
logs from log sources of various devices. Continuous waveform data 
is more complicated to acquire due to its continuous nature and high 
sampling rate. In recent years, many studies have used time series 
databases and unstructured databases such as InfluxDB, MongoDB, 
etc. to explore the writing, storage, and query processes of various 
continuous-time signals, which can solve the storage-transmission-
exchange-exploitation problem (104). For image data, since most of 
the images are currently stored in the PACS system, it is necessary to 
clarify whether to collect from the equipment (CT machine, 
ultrasound machine, etc.) or through the PACS docking port (105).

Recommendation 16: It is recommended to optimize standard 
system for intensive care big data, standardize multi-center source 
data, and constrain standard codes, measurement units, field 
standards, as well as naming dictionaries to ensure the homogeneity 
and standardization of the use of the large database for intensive 
care. (95% consensus)

Background and Evidence:
“Information integration, standards first” (106), the construction 

of large databases for intensive care must be  implemented in 
accordance with the corresponding norms and standards, the standard 
codes, measurement units, field standards, and naming dictionaries, 
and it is constrained by standard norms to ensure the subsequent 
modeling and application process. The consistency of data processing 
ensures the standardized production of data from the source, and lays 

the foundation for the construction, data integration, data exchange 
and data sharing of large databases for intensive care. Intensive care 
big data are multi-modal data with high privacy and diverse sources, 
and have the characteristics of multiple data dimensions, good 
timeliness, high value density and high data quality. The “phenotypic 
data” and “physiological data” in the ICU can be  classified into 
structured discrete data, time series data, and unstructured text data, 
image data, and audio-video data (107). The main contents are as 
follows: (1) Discrete data: basic information and routine data of 
patients’ physical sign, including a series of discrete data such as 
gender, age, blood type, height, weight, etc., which are mainly 
characterized data. These data volumes are small and stable. (2) Time 
series data: mainly physiological data, including time series data of 
various vital sign parameters such as blood oxygen, heart rate, and 
ECG. These data are closely related to the real-time symptoms of 
patients, with high real-time performance, strong continuity, and large 
datasets. (3) Image data: mainly physiological data, including a large 
amount of image data such as ultrasound and radiation. These image 
data are large in volume and are important reference data for diagnosis 
and operation. (4) Text data: a large amount of text data about patient 
medical records and diagnostic results, mainly for representation data, 
including electronic medical records, surgical records, inspection 
reports, etc. Among all data types of critical diseases, time series data, 
image data and text data have high information value density and play 
an important role in clinical diagnosis, treatment and decision making.

Due to the uneven level of informatization in each center and a 
wide range of coverage, the above-mentioned data formats for 
intensive care are complicated and difficult to integrate. After 
negotiation, multiple centers have formulated unified data fields, 
contents and formats for the big database for intensive care, and 
established a standard system. For example, for the standardization 
of image data, the level of imaging departments in different hospitals 
varies, and multiple centers need to negotiate the image quality 
standards for uploading compressed original images. For different 
types of data, in order to ensure the standardization of large 
databases for intensive care, data governance rules for different 
types of data can be formulated, and the system will automatically 
clean the data when it enters the database, supplemented by manual 
review if necessary to ensure data quality. For the quality assessment 
of inbound data, it can be measured from normative (the extent to 
which the data conforms to data standards, data models, business 
rules, metadata or authoritative reference data), integrity (the extent 
to which data elements are assigned values according to data rules), 
accuracy (the degree to which the data accurately represents the 
true value of the real entity, “real object” that it describes), 
consistency (the degree to which the data does not contradict the 
data used in other specific contexts), timeliness (the degree to which 
the data is correct over time), and accessibility (the degree to which 
data can be  accessed), which are six aspects to manage and 
evaluate (108).

Recommendation 17: It is recommended to establish a data 
security system to ensure the security of data storage, processing, 
sharing and use. (98% consensus)

Background and Evidence:
The information security system in China mainly includes five 

technical tasks: risk assessment and grade protection, monitoring 
system, cryptography and network trust system, emergency 
response system, and disaster preparedness. The security level of 
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information system is divided into five levels, and the levels from 
one to five are gradually increased. Centering on the “Network 
Security Law,” “Data Security Law” and “Personal Information 
Protection Law,” China carries out the construction of data 
classification system. In terms of data security, the security of the 
data itself (using modern cryptographic algorithms to actively 
protect data) and security of data protection (active protection of 
data using modern information storage methods) must both 
be paid attention to. New security issues need to be addressed in 
an environment of big data, including balancing privacy and utility, 
analyzing and governing encrypted data, and verifying 
authenticated and anonymous users. With the continuous 
expansion of the application scope of intensive care big data, the 
content is becoming richer and more valuable with a large amount 
of sensitive personal information. A security system and a safety 
management responsibility system for intensive care big data 
should be  established to ensure the security in data storage, 
opening, and processing (109, 110).

When storing data, system security reinforcement as well as 
software and hardware architecture design in a distributed 
environment (such as Apache Hadoop) should be done well. Strict 
fine-grained access control and risk registration management 
strategies should be set for static data, and privacy-related data storage 
should realize classified isolation data encryption (such as AES, RSA, 
SHA-256 and other encryption methods) and other security technical 
means, dynamic data classification and identification of important 
sensitive data should be  through encryption and dynamic audit 
capabilities, using TLS (transport layer security technology) to 
communicate between cluster nodes and maintain confidentiality 
during transmission, and enabling unified management across 
platforms (endpoints, mobile devices, networks, and storage 
systems) (106).

During data processing, the software architecture and network 
configuration should be designed according to the database volume 
and access method, especially for multi-center, and the appropriate 
hardware architecture should be designed according to the software 
architecture. And policy configuration such as network security 
should be done to ensure data security. After the data is authorized to 
be processed by other parties, the most important question is whether 
there is misuse and malicious restoration of sensitive data during the 
processing, whether it complies with laws and regulations, and 
whether it complies with the privacy clauses agreed by both parties 
(106). In multi-party computation, data leakage is avoided through 
system policy design such as data desensitization (111) and federated 
learning (112).

When sharing data, measures such as data desensitization, rights 
management, and log auditing should be taken to ensure data security. 
Data cannot be unconditionally open to the public or third parties. 
Consideration should be given to the fact that sensitive information 
can be easily restored after a single information is desensitized through 
multi-source collisions which may lead to security risks, therefore, 
only point-to-point sharing, or multilateral transactions based on 
certain special constraints, such as sharing health records, patient 
medication information, medical images and other information about 
intensive care big data. Whether the data sharing is justified or not 
should be comprehensively weighed on the occasions of the data and 
the subject’s right to know.

Ways and methods to solve big data 
problems in intensive care medicine

[Type of data]
Recommendation 18: It is recommended to use processing 

methods of digital signals such as filters to preprocess time series 
data, deep learning to process image data, use Natural Language 
Processing (NLP) technology to process unstructured text data. 
(93% consensus)

Background and Evidence:
From the perspective of machine model building, intensive care 

data can be roughly divided into four categories: numerical time series 
data, numerical non-series data, text data, and image data. Among 
them, numerical data can be divided into two categories according to 
the collection density: (1) time series data, or “streaming data,” 
including electrocardiogram, arterial and intracranial pressure, 
hemodynamic monitoring, ventilator data, brain waves and other data 
with relatively high collection frequency; (2) non-sequential data, or 
“sparse data,” including blood gas analysis, laboratory test results, 
medical history and other data with relatively low collection frequency. 
Different types of data can be combined to improve the accuracy of AI 
prediction models (113), provide decision support under complex and 
uncertain diagnostic conditions (114), and better adapt to the clinical 
real-time data environment.

For time series data, before further pattern recognition or other 
processing through different algorithms, processing methods of digital 
signals such as filters are usually used for preprocessing. The main 
purpose is to use various mathematical methods to strip components 
of different frequencies in the signal for targeted treatment. For 
example, in electrocardiogram (ECG) data processing, a five-minute 
moving average is often used for low-pass and high-pass filtering (29, 
115, 116), and when building an EEG signal model, Narula et al. also 
used a band-pass filter to remove baseline drift and high-frequency 
interference (117).

For non-series data, the processing skills are mainly reflected in 
solving the problems of data (parameter) outliers and missing values, 
screening and dimensionality reduction according to different 
algorithm models. After the corresponding preprocessing of the data, 
whether it is a simple algorithm such as linear regression and logistic 
regression, or a sophisticated algorithm such as lifting algorithm and 
reinforcement learning (14, 118), it can achieve good results in the 
corresponding scene. So no special recommendation is made.

For image data, such as CT, pathological slices, ultrasound images, 
etc., most of them are processed by deep learning (such as 
convolutional neural network CNN, etc.) and other tasks (119–122). 
In particular, Walsh et al. believed that deep learning methods can 
directly extract important features from images, which could help to 
generate novel biomarkers and more accurate image analysis 
tools (123).

For unstructured text data, such as narrative text in EMR, as well 
as radiology, pathology reports, etc., the content can be mined and 
processed through natural language processing technology to obtain 
pathological information, social environment information, etc., which 
can be combined with the existing expert knowledge base (such as the 
unified medical language system, etc.) as a supplement to improve the 
accuracy of related prediction models, and show a speed and accuracy 
that exceeds manual processing (124–126). In particular, natural 
language processing for Chinese, ICTCLAS system, THULAC toolkit, 
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etc. are all good auxiliary tools, but the Sinicization of knowledge 
bases such as UMLS (or other Chinese medical knowledge bases) 
needs to be demonstrated in the literature.

[Data preprocessing]
Recommendation 19: It is recommended to use resampling 

methods to deal with unbalanced datasets. (78% consensus)
Background and Evidence:
In intensive care medical datasets, unbalanced data is very 

common. Unbalanced data refers to the uneven distribution of the 
number of samples among each category in the classification task, and 
there will be a particularly large gap, which will greatly affect the final 
performance of the prediction model. For example, a small number of 
death samples in intensive care medicine datasets carry important 
information about mortality prediction, but are ignored because the 
model is insensitive to data imbalances. In response to the 
phenomenon of data imbalance, the expert group recommends using 
resampling methods to process imbalanced data, which are mainly 
divided into three types: undersampling, oversampling and synthetic 
oversampling. Undersampling is the random sampling of fewer 
samples from most classes so that the data tends to be  balanced. 
Edited Nearest Neighbors (ENN) is the most typical undersampling 
method. Oversampling is to generate more labeled samples according 
to the sample rules with fewer sample labels so that the data tend to 
be balanced. Synthetic Minority Over-sampling Technique (SMOTE) 
is an oversampling technique that generates synthetic samples for the 
minority class. In order to reduce the fitting problem caused by 
oversampling and undersampling, a method combining oversampling 
and undersampling is extended to deal with data imbalance on this 
basis, such as SMOTEENN, SMOTETomek, etc. In the study of using 
machine learning to predict atrial fibrillation, Tiwari et al. used a 
variety of sampling methods to deal with the imbalance problem that 
the data in the control group was much more than that in the 
experimental group, and compared the data under different sampling 
methods, and finally chose the random oversampling method 
according to the classifier effect (127). Papp et  al. used SMOTE 
sampling to synthesize samples from the minority class for the class-
imbalance problem and analyzed the synthesized new data results 
through cross validation and confusion matrix (128).

Recommendation 20: It is recommended to convert original 
categorical variables and numerical variables into variables that 
can be directly processed by machine learning algorithms through 
one-hot encoding, sequential encoding, etc. (83% consensus)

Background and Evidence:
The function of variable category transformation is to convert 

the original category of intensive care medical data containing the 
above information into a form suitable for data mining and easy 
for model understanding. The transformation of variable categories 
makes the original data more tidy and consistent through 
operations such as encoding. It is recommended to use methods 
such as one-hot encoding and sequential encoding. One-hot 
encoding is a common numerical processing method for 
unordered categorical variables, with “1” to indicate that it belongs 
to this category, and “0” to indicate that it does not belong to this 
category. One-hot encoding will add new variables to the original 
variables. The number of new variables being added is the number 
of types. Ordinal coding is a common numerical processing 
method for ordinal categorical variables. This coding makes 
numerical one according to the different degrees represented by 

the ordinal variables, such as scores about a patient’s health status 
from 0 to 5.

Recommendation 21: It is recommended to use dimensionality 
reduction methods such as principal component analysis to 
perform variable screening of high-dimensional features in 
intensive care datasets. (90% consensus)

Background and Evidence:
In most research problems of intensive care big data, the datasets 

used usually have high-dimensional feature variables, which can easily 
lead to overfitting problems and increase training costs. Therefore, it 
is necessary to extract important features through variable screening 
to achieve the purpose of data dimensionality reduction. Experts 
recommend principal component analysis, variance selection, 
univariate feature selection, regularization models, feature ranking 
based on machine learning models, and recursive feature 
elimination methods.

Principal Component Analysis (PCA) is a popular general 
feature dimensionality reduction method, which can be  used to 
reduce the dimensionality of various types of data such as numerical 
values, texts, and images. Essentially, multiple variables are 
synthesized into a few independent components, and each 
component can reflect the information of the original variable, which 
can improve the learning speed and reduce the training cost. Variance 
selection is a simple feature selection method that filters features by 
removing features with low variance. Univariate feature selection 
usually uses statistical test methods such as chi-square test and F test, 
or measures such as Pearson correlation coefficient and distance 
correlation coefficient to determine the relationship between 
variables. The regularization model is mainly divided into L1 
regularization and L2 regularization. By adding additional constraints 
or penalty terms to the loss function of the existing model, it can 
prevent overfitting and improve the generalization ability of the 
model. L2 regularization is more stable than L1 regularization and is 
more favorable for the understanding of features. Regularization 
models are often used in feature selection of medical data. In the 
study on early triage of COVID-19 patients with critical symptoms, 
Liang et al. selected 10 statistically significant variables as predictors 
by the Lasso method (129). Many machine learning methods can 
achieve feature scoring, such as feature ranking by measuring feature 
importance. Therefore, it is recommended to use the selected 
machine learning model to complete feature selection, including 
SVM, random forest, decision tree, XGBoost, LGBM and other 
models. By adjusting the calculation parameters of feature 
importance, the feature ranking of different methods can be obtained. 
This method is convenient, effective and easy to understand the 
relationship between the model and features, but it is needed to verify 
the model fitting effect by means of cross-validation. In addition, 
recursive feature elimination methods can be considered to screen 
the features of intensive care medical data.

[Model Construction]
Recommendation 22: It is recommended to select supervised 

learning, unsupervised learning and reinforcement learning 
models for critical disease prediction and identification according 
to different scenarios and different data types. (97% consensus)

Background and Evidence:
The intensive care unit monitoring system collects a large number 

of the patients’ respiratory, hemodynamic, neurological and clinical 
data, and its electronic medical record system also records the patient’s 
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clinical treatment and medication information in detail. The data 
types include types of text, digital and image. Through the processing 
and analysis capabilities of big data by machine learning algorithms, 
key features of the data can be  mined to assist in diagnosis and 
decision making. Machine learning algorithms can be classified into 
supervised learning, unsupervised learning, and reinforcement 
learning, depending on whether the dataset has labels. Among them, 
supervised learning can learn and summarize models, including 
decision trees, support vector machines, random forests, naive 
Bayesian models, artificial neural networks and other models; 
Unsupervised learning models can discover hidden patterns without 
manual annotation or data grouping, which can find potential 
similarities and differences in the data. Common algorithms include 
k-means, principal component analysis, hierarchical clustering, etc.; 
Reinforcement learning can learn the best behavior or mode that 
should be taken from experience. The model type should be selected 
according to the data type and medical task. Among them, for 
numerical data and clinical prediction problems, supervised learning 
models can be used; For text data, natural language processing models 
and unsupervised learning models can be  used; For image data, 
Convolutional Neural Networks (CNN), Recurrent Neural Network 
(RNN) can be used for medical image recognition and segmentation; 
For clinical auxiliary decision-making tasks, reinforcement learning 
models can be used. According to the literature survey, the usage 
scenarios of three different learning methods include: (1) Supervised 
learning: prognosis prediction, phenotype classification, analgesic and 
sedation strategy selection, mortality risk prediction, disease severity 
prediction, prediction for length of stay in the ICU, etc. (2) 
Unsupervised learning: disease pattern mining and representation 
based on electronic health records (EHR). (3) Reinforcement learning: 
decision making of treatment plan, recommendation of fluid volume, 
robot-assisted surgery, etc.

Specifically, examples of the usages and indications for the three 
types of learning are as follows:

 1 Supervised learning: Prognosis prediction and dose 
recommendation for heparin patients (82); monitoring and 
adjustment of Local citric acid anticoagulation (80); prediction 
of in-hospital mortality risk in patients with critical symptoms 
(124, 130) prediction of mortality risk in patients with 
candidemia (125), prediction of the severity of lung ultrasound 
in ICU patients (126), etc.

 2 Unsupervised learning: Phenotype classification and sedation 
strategy selection in mechanically ventilated patients (131); 
temperature pattern recognition in patients with critical 
symptoms (67), blood pressure pattern recognition (132); 
subtype of diseases extracted from electronic health record 
data (133, 134).

 3 Reinforcement learning: Dynamically provide optimal 
treatment plan and select intravenous fluids and vasopressor 
doses for patients in the ICU (135).

Recommendation 23: It is recommended to use a causal 
inference model to explore and discover causal relationships in the 
intensive care field. (89% consensus)

Background and Evidence:
The model system of causal inference is built on the basis of 

causal-heuristic learning and reasoning. It conducts in-depth mining 

of relevant data to extract causal structure, and conducts causal-
heuristic estimation. It studies the influence of intervention variables 
on prognosis and obtains the key index of prognosis evaluation. The 
directions involved include causal discovery, causal structure learning, 
causal inference, causal deep learning, etc. In response to the need for 
poor ICU prognosis or poor survival rate, as well as the need to 
accurately determine the influencing factors of prognosis, it is 
advisable to use the frameworks of DoWhy, CDT and CausalML and 
establish a causal-heuristic learning inference and decision-making 
evaluation system based on the database of specialized diseases and 
multi-center of intensive care.

First, implement big data-driven causal structure identification, 
mine causal relationships, and conduct feature analysis, effect analysis, 
and interpretability analysis. Richens et  al. (136) proposed a 
counterfactual diagnostic strategy for expected failure and expected 
adequacy, breaking the traditional diagnosis method of diseases based 
on symptoms and narrowing the scope of possible conditions by using 
counterfactual questions. Wei et  al. (137) described the causal 
relationship between some variables in the recommended system 
from the perspective of causal inference and solved the influence of 
popularity bias on the model from the perspective of counterfactual 
inference. Goudet et al. (138) used deep learning methods to propose 
a causal generative neural network (CausalGNN), which exploited 
conditional independence and distribution asymmetry to discover 
bivariate and multivariate causal structures, and learned functional 
causal models from observational data to figure out a causal roadmap 
between clinicopathological features.

In addition, the causal effect was further estimated on the basis of 
the causal relationship, and machine learning methods such as 
generalized random forest (GRF) (139) were used to calculate CATE 
and HTE to predict the difference in prognosis under different ICU 
intervention methods and research the degree of impact on prognosis 
by intervention variables. Tan et  al. (140) used an approach like 
adversarial training to give an interpretable means for recommended 
systems. The advantages of these methods are that the data can be used 
to reason about the source characteristics of heterogeneity to estimate 
a series of estimators, which also apply to high-dimensional data and 
missing data and have good interpretability. Through techniques 
based on causal discovery and estimation, learning the most 
discriminative characterization, discovering diagnostic basis and key 
characteristic indexes, judging prognosis accurately, and providing 
effective interventions for clinical treatment can be realized.

[Verification of the model]
Recommendation 24: It is recommended to add external 

validation to internal validation of the model. (94% consensus)
Background and Evidence:
Model validation is the process of evaluating the predictive 

performance of a model after it has been constructed. The importance 
of model validation is reflected in measuring the prediction accuracy 
of the prediction model, feeding back the model building process, and 
adjusting the model building ideas if necessary. The model verification 
idea is relatively mature at present, and there is a relatively consistent 
method consensus. In practice, model verification is mainly divided 
into internal verification and external verification. The expert group 
believes that the following methods can be used to evaluate the model 
validation process.

Internal verification: In general, verification based on their own 
data (internal verification) is required. That is, a part of the data (like 
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80% of the total) are randomly selected as the training set for building 
the prediction model, and the rest of the data are used as the test set 
to evaluate the performance of the model. In order to verify that the 
model has good performance on newly generated clinical data, 
“spatio-temporal division” can be  added to the random division, 
which is the data of the latest period specially divided as an 
independent validation set (141). In order to improve the estimation 
robustness of the evaluation indicators, K-fold cross-validation can 
be used (18). Divide the data set into K parts (such as 10 parts), use 
K-1 data to build a prediction model, use the remaining data for 
verification, repeat K times, and take the average of the K times of 
model prediction evaluation indicators as the accuracy index of the 
final model. The implementation of internal verification is relatively 
simple, but since the training set and test set are both derived from the 
same data, the model extrapolation ability (i.e., “generalization” 
ability) is relatively weak.

External verification: Different regions and hospitals may have 
differences in data distribution due to differences in population, 
disease characteristics, and diagnosis and treatment habits. In order 
to verify that the model has good extrapolation, it is recommended to 
perform external validation on multi-center data from different 
regions and different hospitals.

Recommendation 25: It is recommended to use indicators such 
as sensitivity, specificity, F1 score, and AUC to evaluate the 
performance of classification models, and indexes such as R2, MSE, 
RMSE, and MAE to evaluate the performance of regression models. 
(91% consensus)

Background and Evidence:
During model validation, a series of evaluation metrics should 

be used to measure model performance (i.e., predictive effect). For 
classification model and regression model, different indicators are 
used for evaluation.

Performance evaluation indicators of classification model: For 
classification models (models whose predicted values are categorical 
variables), sensitivity (also known as recall), specificity, F1 score, 
precision, AUC (Area Under Curve) and other metrics to evaluate the 
performance are generally used (3). Among them, the F1 score is the 
harmonic value of sensitivity and positive accuracy rate, and the larger 
the value, the better the model performance is. AUC is the area under 
the ROC curve drawn by “1-specificity” and “sensitivity.” The larger 
the value, the better the model performance is. When the sample 
categories are not balanced, it is recommended to use the area under 
the PR curve, AUPRC, to evaluate model performance.

Performance evaluation indicators of regression model: For 
regression models (models whose predicted values are continuous 
variables), R2 (R squared, coefficient of determination, coefficient of 
determination), Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), and other indicators are 
generally used to evaluate the performance. The closer the determinant 
coefficient, R2, is to 1, the better the model performance is. The closer 
MSE, RMSE and MAE are to 0, the better the model performance is.

[Model interpretability]
Recommendation 26: It is recommended to explore the 

interpretability of the model to facilitate the clinical transformation 
of complex machine learning models. The recommended model 
interpretation methods include Feature Importance, LIME, and 
Shapley. (91% consensus)

Background and Evidence:

AI models based on big data training in intensive care medicine 
are often complex, and their complexity is mainly reflected in the large 
number of parameters and the complex functional relationship 
between various parameters. Such complex models are often not 
conducive to clinicians to analyze the pathophysiological mechanisms, 
and it is difficult to determine the causal relationship between 
variables, which seriously hinders the clinical transformation of AI 
research results. The interpretability of the model is considered as an 
effective way to solve the above problems. Understanding 
characteristics, classification, and prediction of indicators, and then 
understanding why a machine learning model makes such a decision, 
and what features play the most important role in the decision allow 
us to judge whether the model is in line with common sense. For 
example, an AI doctor trained by a reinforcement learning model is 
used to treat septic shock (14). The AI prompts the need to increase 
norepinephrine while appropriately limiting fluid replacement. 
Understanding the mechanism behind such an algorithm is critical 
for the reliability of the model. If the algorithm tells you that you need 
to increase the dose of norepinephrine for the patient because their 
main contradiction is peripheral vasodilation, rather than fluid 
deficiency, it can greatly enhance the confidence of the physician in 
the use of this model, because the diagnosis and treatment made by 
AI decision-making is consistent with clinical 
pathophysiological changes.

In addition, several other methods are also used for model 
interpretability exploration (142). Feature importance can be used. Its 
main working principle is to change the arrangement of the data in a 
certain column of the data table and keep the rest of the features 
unchanged to see how much it affects the prediction accuracy.

Locally Interpretable Agnostic Modeling (LIME) is an algorithm 
(143) that provides a novel technique to interpret the results of any 
predictive model in an interpretable and trustworthy way. It works by 
training an interpretable model locally around the predictions it wants 
to explain. In layman’s terms, select a sample and a point near the 
sample, and then train a simple model to fit. Although the simple 
model cannot be  effective on the complete data set, it is at least 
effective near this point. The characteristics of this simple model are 
human-analyzable, and the trained weights can also represent 
feature importance.

The Shapley value was proposed by Loyd Shapley, a professor 
at the University of California, Los Angeles, USA, to solve the 
problem of contribution and profit distribution in cooperative 
games. In cooperation of N persons, the contribution of individual 
member is different, and the distribution of income should also 
be  different. The ideal distribution method is: 
contribution = income; Is there a quantifiable method for the 
distribution of contribution and income? The Shapley method is 
one such method, where the Shapley value of a feature is the 
average marginal contribution of that feature across all 
feature sequences.

Clinical application of intensive care big 
data

Recommendation 27: It is recommended to transform and 
promote early warning tools that meet critical needs. (91% 
consensus)
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Background and Evidence:
The construction of early warning tools can make early predictions 

for the risk of various adverse events in the ICU, thus helping clinicians 
to take timely measures to prevent problems before they occur, reduce 
the incidence of adverse events in patients effectively, and improve 
early response capabilities. At present, although early warning models 
have been constructed and verified for the occurrence and prognosis 
of a variety of critical diseases at home and abroad, there is still 
insufficient research to truly conduct large-scale clinical trials to 
evaluate their application value. A Big-data clinical trial (BCT) of an 
early warning tool was implemented in terms of injury and disease 
deterioration. However, there are still differences in the predictive 
performance of different early warning tools in different application 
scenarios, and further promotion and verification are needed. So far, 
no mature disease-targeted early warning tools have been launched at 
home and abroad. The expert group believes that it is possible to use 
AI technology to provide early warning for various adverse events in 
the ICU. At the same time, it is necessary to carry out BCT research 
to further verify the clinical practical value of early warning tools, so 
as to achieve early detection, diagnosis and treatment of diseases.

For the early warning of sepsis, Shimabukuro et  al. (144) 
conducted a BCT study in 2017 and found that patients who used the 
early warning tool for sepsis shortened the length of hospital stay 
significantly (10.3 days vs. 13.0 days, p = 0.042), and the in-hospital 
mortality rate was reduced significantly (8.96% vs. 21.3%, p = 0.018). 
However, a single-center BCT study conducted by Semler et al. (145) 
found that the application of a sepsis electronic warning system 
neither improved the completion of the 6-h bundle of sepsis 
(p = 0.159), nor improved clinical outcomes (including ICU fatality 
rate, days in ICU, days of vasoactive drug use).

For the early warning of acute kidney injury (AKI), a large multi-
center BCT study in the United States in 2021 (146) found that the 
AKI early warning system did not improve disease progression in 
patients (p = 0.67). However, BCT evidence from the United Kingdom 
(147) and China (148) found that although the AKI early warning 
system could not improve the mortality rate of patients, it could 
significantly improve the early identification rate of AKI (RR: 1.12, 
95% CI: 1.03–1.22, p < 0.01) and AKI diagnosis rate (7.9% vs. 2.7%, 
p = 0.001). Another BCT study from the United States found that the 
AKI electronic automatic alert system did not improve the composite 
outcome (maximum creatinine change, the need for dialysis or death) 
within 7 days of patients (p = 0.88) (149).

For the early warning of disease deterioration, the Escobar et al. 
(150) conducted a multi-center BCT study in 2020 that included a 
total of 43,949 people (15,487 people in the intervention group and 
28,462 people in the control group). And it found that early warning 
tool for disease progression can significantly reduce patient mortality 
rate (adjusted RR: 0.84, 95% CI: 0.78–0.90, p < 0.001).

Recommendation 28: It is recommended to use the information 
system for intensive care as a carrier to access real-time data and 
output recommendations for decision making. (91% consensus)

Background and Evidence:
The condition of patients with critical symptoms is complex and 

fast-changing, and ICU equipment and instruments have a large 
amount of information, so the data dimension and the update 
frequency is high. The application carrier should be  effectively 
integrated with the hospital information system, which can obtain 
high-dimensional information in real time, and be equipped with a 

prediction model. Based on Hadoop distributed processing 
technology, Xia et al. (33) designed a big data analysis system for 
intensive care medicine, and conducted a performance test through 
the “Study on the Effect of Xuebijing on AKI-related Sepsis” (33). The 
information system of intensive care big data can integrate ICU high-
dimensional information, obtain analysis data in real time, and use it 
as a carrier for results of intensive care big data such as prediction 
models and scores (151). Boss et al. (29) developed an online real-time 
ICU decision support platform that could be  used to collect 
multimodal waveform data and AI-based computational disease 
modeling, calling it “ICU Cockpit.” In the cohort of 979 patients 
admitted to this 12-bed neurocritical care unit since 2016, the total 
number of data points processed and stored by the “ICU Cockpit” 
platform has been approximately 88.9 billion (29). Based on the 
intensive care information system, Zhang Suzhen et  al. used the 
XGBoost model to integrate relevant parameters and performed 
machine learning to predict the risk of AKI in patients with septic 
shock. The sensitivity of the prediction results was 73.3%, the 
specificity was 71.7%, and the accuracy was 72.5%. Compared with 
the traditional score, it was significantly improved (152).

When there is no information system of intensive care medicine, 
the intensive care big data can also be  equipped with a online 
prediction tool of web page, APP, applet, or bedside form and other 
carriers. Flechet et al. developed a prediction model for acute kidney 
injury, AKI predictor, and conducted a multicenter prospective cohort 
study to verify the prediction effect of clinicians and AKI Predictor. 
The performance of the two at ICU admission was: AUROC was 0.80 
[0.69–0.92] and 0.75 [0.62–0.88] (n = 120, p = 0.25), the net benefit 
ranges were 0–26% and 0–74%. The machine learning-based AKI 
predictor achieved similar discriminative performance to physicians 
in predicting AKI-2 and AKI-3, with a higher overall net benefit 
because physicians overestimated the risk of AKI. This showed that 
AKI Predictor has added value to the doctor’s prediction. The study 
also came with an online version of the predictive model2 (153).

With the development of Internet of Things technology, 5G 
technology, database technology, etc., the carrier to realize the 
application of intensive care big data in the future should focus more 
on the “dynamic holographic prediction system” that obtains ICU 
information in a comprehensive and real-time way, analyzes the data 
and makes real-time predictions.

Recommendation 29: It is suggested that the current practice 
of intensive care diagnosis and treatment should still be  led by 
clinicians with the use of big data technology to coordinate to 
improve medical efficiency and ensure medical quality and safety. 
(98% consensus)

Background and Evidence:
In recent years, the development of applications of intensive care 

big data has made rapid progress, and a large number of articles have 
been published, including prediction of diseases, early warning of 
risks, and real-time guidance of clinical medication. In the foreseeable 
future, big data applications can assist ICU clinical diagnosis and 
treatment activities. However, at the same time, applications of big 
data still have problems such as lack of clinical integration, lack of 
high-quality verification, poor interpretability, few application 

2 https://www.akipredictor.com/en/
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TABLE 3 Summary of recommendations on the application of intensive care big data.

Part No. Recommendation contents Consensus degree

1. The concept, 

significance and 

necessity of intensive 

care data

1 The concept of intensive care big data: Intensive care big data refers to the datasets with 

logical connotations formulated by various indicators which are large-scale, multi-

heterogeneous, variably dynamic, high-speed and real-time acquisition, low-value density 

and difficult to analyze traditionally in the whole process of diagnosis and treatment of 

patients or potential ones with critical symptoms

97

2 The intensive care big data is multi-modal, massive, dynamic, continuous, and objective, and 

its correct acquisition can provide auxiliary evidential support for diagnosis of critical 

illnesses and early warning

98

3 The establishment of a large database for intensive care in China should follow the principles 

of multiple center, multiple disease and automatic capture, and provide reliable and accurate 

data support for the application of big data and the development of artificial intelligence

92

4 Building a large database of patients with critical symptoms in China for their condition 

monitoring, the research and development of clinical drug and clinical trials can provide the 

standardized and individualized treatment for patients with critical symptoms

97

2. Clinical scientific 

issues concerned by 

intensive care big 

data in clinical 

research

5 It is recommended to use machine learning method to build modeling to make early 

warning of sepsis, acute kidney injury (AKI), and acute respiratory distress syndrome 

(ARDS)

94

6 The prediction model based on machine learning can effectively predict the risk of patients 

at high risk of potential organ damage in the ICU

89

7 It is recommended to use machine learning method to build modeling to conduct early 

screening of hospitalized patients, so as to provide help for clinicians intervene early and 

reduce the severity of the disease

88

8 It is recommended that the image data of patients with critical symptoms be included in the 

intensive care database to provide more comprehensive, accurate and timely diagnostic 

information, so as to guide clinical decision-making through relevant algorithms

92

9 It is recommended to divide patients with sepsis, acute kidney injury, and acute adult 

respiratory distress syndrome into phenotypes with different clinical outcomes and 

treatment responses by means of cluster analysis, and identify patients who are most likely to 

benefit from specific treatment strategies

91

10 In specific clinical scenarios, such as decision making for tracheal intubation and intensive 

care drug decision, it is recommended to build a decision-making model that can be used 

for clinical treatment based on machine learning algorithms

74

11 It is recommended to use machine learning methods to predict the prognosis of patients 

with critical symptoms

85

12 A clinical decision support system (CDSS) can be used to improve compliance with 

guidelines for diagnosis and treatment of patients with critical symptoms and the 

implementation of clinical pathways

86

3. Establishment, 

standards and 

principles of a large 

database for 

intensive care

13 It is recommended to build a intensive care medicine database and data analysis platform 98

14 It is recommended to form a standard normative intensive care dataset 97

15 It is recommended to select automatic collection for objective data first. For data that cannot 

be automatically collected for the time being, targeted collection should be carried out in 

combination with research needs, data sources and data types

92

16 It is recommended to establish a standard system for intensive care big data, standardize 

multi-center source data, and constrain standard codes, measurement units, field standards, 

as well as naming dictionaries to ensure the homogeneity and standardization of the use of 

the large database for intensive care

95

17 It is recommended to establish a data security system to ensure the security of data storage, 

processing, sharing and use

98

(Continued)
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scenarios, and ethics. Therefore, this consensus believes that because 
of the current developmental level of big data applications, it is 
advisable to be guided by existing evidence and clinical experience to 
assist the diagnosis and treatment, and improve the quality and 
efficiency of medical care with the help of big data technology.

Big data models produce seemingly accurate results through 
complex computations, but often fail to provide end users with the 
logic behind them (154). AI is weak in determining causality, at 
least its interpretability does not meet current clinical needs. 
Models developed based on intensive care big data are often more 
accurate in predictions when validating data from the same 
population, but the results may be  unreliable when tested in 
external populations (155). In clinical practice, the diagnosis and 
treatment process is often highly subjective, especially for patients 
with critically complex symptoms, and their plans for diagnosis and 
treatment also have large individual heterogeneity, resulting in low 
reliability of the ICU model (156). In summary, most of the current 
research is still in the exploited phase and lacks effective external 
validation (157). Therefore, unnecessary interventions or changes 
in treatment strategies that are not supported by scientific evidence 
may lead to medical safety issues such as overmedication or 
treatment failure.

When these algorithms are developed into intelligent assistance 
systems deployed as alerting tools, they must be concise and accurate 
enough to prevent alert fatigue and thus avoid delays in clinical 

decision-making (158, 159). Considering the scientific preciseness, the 
maturity and stability of AI-driven models are less convincing for 
clinical practice to a certain extent, and indiscriminate development 
and use of data models may lead to overdiagnosis and waste of 
resources. In addition, the clinical application of intensive care big data 
also faces ethical issues. At present, the hidden dangers of big data 
applications in terms of patient privacy and safety responsibility cannot 
be ignored. First of all, the establishment of the database will inevitably 
involve data of patient privacy, and protecting patient privacy has 
become a problem that must be solved in the development of intensive 
care big data. It is not appropriate to develop a medical database at full 
speed without guaranteeing privacy and security. Secondly, in terms of 
application security, in the process of big data-assisted clinical 
diagnosis and treatment practice, if a medical safety accident occurs, 
computer algorithms cannot be  responsible for clinical decision-
making with the current developmental level of ethics and AI. In order 
to avoid mistakes and abuses in the big data system for diagnosis and 
treatment, the clinician must act as the person in charge of clinical 
decision-making to “be responsible for” big data applications.

Discussion

With the increase of computing power and data scale, the emergence 
of large models has enabled AI systems to handle more complex and 

Part No. Recommendation contents Consensus degree

4. Ways and 

methods to solve big 

data problems in 

intensive care 

medicine

18 It is recommended to use processing methods of digital signals such as filters to preprocess 

time series data, deep learning to process image data, use Natural Language Processing 

(NLP) technology to process unstructured text data

93

19 It is recommended to use resampling methods to deal with unbalanced datasets 78

20 It is recommended to convert original categorical variables and numerical variables into 

variables that can be directly processed by machine learning algorithms through one-hot 

encoding, sequential encoding, etc.

83

21 It is recommended to use dimensionality reduction methods such as principal component 

analysis to perform variable screening of high-dimensional features in intensive care datasets

90

22 It is recommended to select supervised learning, unsupervised learning and reinforcement 

learning models for critical disease prediction and identification according to different 

scenarios and different data types

97

23 It is recommended to use a causal inference model to explore and discover causal 

relationships in the intensive care field

89

24 It is recommended to add external validation to internal validation of the model 94

25 It is recommended to use indicators such as sensitivity, specificity, F1 score, and AUC to 

evaluate the performance of classification models, and indexes such as R2, MSE, RMSE, and 

MAE to evaluate the performance of regression models

91

26 It is recommended to explore the interpretability of the model to facilitate the clinical 

transformation of complex machine learning models. The recommended model 

interpretation methods include Feature Importance, LIME, and Shapley

91

5. Clinical 

application of 

intensive care big 

data

27 It is recommended to transform and promote early warning tools that meet critical needs 91

28 It is recommended to use the information system for intensive care as a carrier to access 

real-time data and output recommendations for decision making

91

29 It is suggested that the current practice of intensive care diagnosis and treatment should still 

be led by clinicians with the use of big data technology to coordinate to improve medical 

efficiency and ensure medical quality and safety

98

TABLE 3 (Continued)
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massive tasks, improving the model’s performance and generalization 
ability, which also brings new opportunities for critical big data 
applications. As a “double-edged sword,” the application of big data 
science in intensive care has pros and cons. This consensus reach a 
consensus on five parts: conception, important scientific issues, standards 
and principles of database, methodology in solving big data problems, 
clinical application and safety consideration of intensive care big data. All 
recommendations has been summarized in Table 3. Actually, this is the 
starting step of application big data in the field of intensive care. In order 
to ensure data security and ensure the professionalism of the model, the 
medical industry needs a medical vertical domain big language model 
based on professional mapping knowledge domain and high-quality 
data. More explorations and big data based retrospective research should 
be carried out in order to enhance safety and reliability of big data based 
models of critical care field.
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Glossary

AES Advanced encryption standard

AI Artificial intelligence

AKI Acute kidney injury

ANN Artificial neural network

APACHE-II Acute physiology and chronic health evaluation-II

API Application programming interface

ARDS Acute respiratory distress syndrome

AUC Area under curve

AUPRC Area under precision recall curve

AUROC Area under receiver operating characteristic curve

BCT Big-data clinical trial

CATE Conditional average treatment effect

CDSS Clinical decision support system

CNN Convolutional neural network

COVID-19 Corona virus disease 2019

CT Computed tomography

DVT Deep vein thrombosis

ECG Electrocardiograph

EEG Electroencephalogram

EHR Electronic health records

eICU-CRD eICU collaborative research database

EIT Electrical impedance tomography

EMR Electronic medical records

ENN Edited nearest neighbors

GBDT Gradient boosting decision tree

GRF Generalized random forest

ICH Intracerebral hemorrhage

ICTCLAS Institute of Computing Technology, Chinese Lexical 

Analysis System

ICU Intensive care unit

KNN K-nearest neighbor

LASSO-GLM Least absolute shrinkage and selection operator-

generalized linear models

LGBM Light gradient boosting machine

LIME Locally interpretable agnostic modeling

LR Logistic regression

MAE Mean absolute error

MIMIC Medical information mart for intensive care

MOD Multiple organ dysfunction

MSE Mean squared error

NLP Natural language processing

PACS Picture archiving and communication systems

PCA Principal component analysis

PIC Pediatric intensive care

PMV Prolonged mechanical ventilation

RCT Randomized controlled trial

RF Random forest

RMSE Root mean squared error

RNA Ribonucleic acid

RNN Recurrent neural network

RR Risk ratio

RSA Ron Rivest, Adi Shamir and Leonard Adleman 

Algorithm

SAP Severe acute pancreatitis

SAPS Simplified acute physiology scores

SIRS Systemic inflammatory response syndrome

SMOTE Synthetic minority over-sampling technique

SOFA Sequential organ failure assessment

SSC Surviving sepsis campaign

SVM Support vector machine

THE Heterogenous treatment effects

THULAC Thu lexical analyzer for Chinese

TLS Transport layer security technology

UMLS Unified medical language system

USA United States of America
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