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The brain is composed of many interconnected 
neurons that form a complex system, from which 
thought, behavior, and creativity emerge through 
self-organization. By studying the dynamics of 
this network, some basic motifs can be identified. 
Recent technological and computational advances 
have led to rapidly accumulating empirical evidence 
that spontaneous cortical activity exhibits scale-
free and critical behavior. Multiple experiments 
have identified neural processes without a preferred 
timescale in the avalanche-like spatial propagation 
of activity in cortical slices and in self-similar time 
series of local field potentials. Even at the largest 
scale, scale-free behavior can be observed by looking 
at the power distributions of brain rhythms as 

observed by neuroimaging. These findings may indicate that brain dynamics are always 
close to critical states – a fact with important consequences for how brain accomplishes 
information transfer and processing. Capitalizing on analogies between the collective 
behavior of interacting particles in complex physical systems and interacting neurons in 
the cortex, concepts from non-equilibrium thermodynamics can help to understand how 
dynamics are organized. In particular, the concepts of phase transitions and self-organized 
criticality can be used to shed new light on how to interpret collective neuronal dynamics. 
Despite converging support for scale-free and critical dynamics in cortical activity, the 
implications for accompanying cognitive functions are still largely unclear. This Research 
Topic aims to facilitate the discussion between scientists from different backgrounds, 
ranging from theoretical physics, to computational neuroscience, brain imaging and 
neurophysiology. By stimulating interactions with the readers of Frontiers in Physiology, we 
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hope to advance our understanding of the role of scale-freeness and criticality in organizing 
brain dynamics. What do these new perspectives tell us about the brain and to what extent 
are they relevant for our cognitive functioning?

For this Research Topic, we therefore solicit reviews, original research articles, opinion and 
method papers, which address the principles that organize the dynamics of cortical activity. 
While focusing on work in the neurosciences, this Research Topic also welcomes theoretical 
contributions from physics or computational approaches.
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The brain is composed of many interconnected neurons that
form a complex system, from which thought, behavior, and
creativity emerge. The organizing principles of complex net-
works can be investigated using approaches developed by mod-
ern complexity science (Albert and Barabási, 2002). Activity
in many large networks including the brain has been shown
to be scale-free, e.g., the spatiotemporal propagation of activ-
ity in multi-electrode local field potentials (LFP) obeys a
power-law distribution—termed “neuronal avalanches” (Beggs
and Plenz, 2003). Moreover, fluctuations in electrophysiological
and neuroimaging signals reveal prevalent scale-free dynamics
(Linkenkaer-Hansen et al., 2001; He, 2011). These studies have
sparked resurgent interests in scale-free brain dynamics and raise
the question whether the brain might be operating in a perma-
nently critical state (Chialvo, 2004). These topics were discussed
in a symposium at the 17th Annual Meeting of the Organization
for Human Brain Mapping in Quebec City in 2011 and form the
basis of this Research Topic in Frontiers in Fractal Physiology.

Notwithstanding recent advances, whether the brain is in a
critical state remains unanswered. In a Socratic dialog, Beggs and
Timme (2012) review recent literature providing evidence for
this hypothesis. A central issue is whether power-law scaling can
be convincingly shown in neural data and whether this is suffi-
cient proof for criticality, as other processes may also produce
power-law distributions. Solutions may include experimentally
steering the system away from the critical point and investigating
changes in scaling behavior. Despite increasing evidence support-
ing this hypothesis, the presence of critical states in the awake
brain remains controversial.

Indeed, using high-density electrode array recordings of cor-
tical activity in cats, monkey, and human subjects, Dehghani
et al. (2012) showed that avalanche sizes derived from spiking
data never revealed clear power-law scaling but scaled exponen-
tially or displayed intermediate scaling. In contrast, simultane-
ously recorded LFPs did reveal evidence for power-law scaling
in local peak sizes. Although their finding does not contradict
those for criticality in neuronal slices (Beggs and Plenz, 2003)
and anesthetized states (Hahn et al., 2010), it clearly argues
against criticality as an encompassing principle for different brain
systems.

The Research Topic revealed a broad range of recording tech-
niques to assess scale-free dynamics. Monto (2012) investigated

the dynamics of phase synchrony in magnetoencephalography
(MEG). Nested synchrony was investigated by considering the
phase coupling between faster oscillations in two distinct brain
regions as a function of the phase of slow oscillations. Nested syn-
chrony was sparsely but robustly present in MEG recordings of
human brain activity. Although these data do not directly speak
to the presence of scale-free dynamics, nested synchrony may be
a candidate for organizing neuronal oscillations across time and
spatial scales.

Hemodynamic responses are also a candidate modality for
testing the presence of criticality in the brain. Ciuciu et al. (2012)
examined the scaling properties of the temporal dynamics of
fMRI signals. They employed multi-fractal analysis that quantifies
a collection of scaling exponents rather than a single exponent.
Scaling behavior during rest was compared to brain activity in
an auditory detection task and revealed multi-fractal dynam-
ics in functional networks as well as in artifacts. However, only
functional components showed significant modulations of the
multi-fractal attributes between rest and task.

Fraiman and Chialvo (2012) investigated the statistical proper-
ties of spatio-temporal dynamics in fMRI data. They considered
three novel statistical features, which reveal the type of fluctua-
tions generated by systems in a critical state. Their results showed
that the variance of the fMRI signal remained constant across a
wide range of observed cluster sizes, that this behavior originated
from bursts of synchronized activity across regions, and that cor-
relation length diverged so that clusters of different sizes exhibit
the same collective dynamics.

The development of analytical techniques for the detection of
scale invariance played a central role in many contributions. The
review article by Hardstone et al. (2012) provides a comprehen-
sive account of detrended fluctuation analysis (DFA), a method
that has been widely used for analyzing scaling behavior. The
review gives a detailed explanation of the underlying concepts and
provides basic examples to clarify different types of scaling behav-
ior. They then applied DFA to amplitude fluctuations in EEG
data and provided an open-source software toolbox to encourage
further use of this technique.

Several models have been investigated to understand mecha-
nisms that may underlie scale-free dynamics. In a review article,
de Arcangelis and Herrmann (2012) considered a new family of
networks, the Apollonian networks (Andrade et al., 2005), which
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are scale-free and have small-world topology. Integrate-and-fire
type neurons were connected as an Apollonian, a scale-free, or
a fully connected network and synaptic strengths were modi-
fied according to a Hebbian learning rule. Once a percentage of
connections were pruned, plastic adaption was stopped and the
avalanche statistics and power spectral densities were assessed.
Power-law behavior was observed for all models except for the
fully connected networks showing supercritical behavior.

Aburn et al. (2012) investigated the scaling behavior of the
Jansen-Rit model, a mean-field model that describes the aver-
age firing rate of interconnected neural populations. The bifur-
cation dynamics was studied as extrinsic input was delivered
to different subpopulations. Long-range temporal correlations
were assessed as a statistical indicator of linear instability and
showed an increase of the autocorrelation length depended on
the direction of the input fluctuations. Hence the detection of
scale-free dynamics was dependent on the subpopulation that
was stochastically perturbed, which has implications for applying
these indicators to EEG recordings.

Finally, Van Orden et al. (2012) investigated the functional
implications of critical brain dynamics by considering the body-
brain relationship. Haken (1977) described that close to a phase
transition, the components partition in two distinct groups in
which slow macroscopic processes enslave fast microscopic pro-
cesses. Hence the authors speculated that slow bodily processes
may in fact control faster brain processes. They reviewed studies

showing power-law scaling in human performance data and con-
cluded that “metastable system can commit to a region of the state
space of possibilities for action, without otherwise narrowing its
options.”

This Research Topic reflects the heterogeneity of research on
critical phenomena in cortical activity. The studies point out that
the wide-ranging findings may not be reconciled with a single
unifying theory. The theory of critical brain dynamics may be
more like a searchlight theory (Popper, 1972), shedding new light
on well-known things and creating new problems and observa-
tions. We should hence anticipate that the current theory may
prove too coarse and requires further adjustments. The empha-
sis on network dynamics and the statistics of spatiotemporal
fluctuations have provided key insights in brain organization
and inspired new research directions. Unfortunately not all of
us will be able to explore these new exciting possibilities. Guy
van Orden passed away on 11 May 2012 while working on his
manuscript for this Research Topic. His contributions will be truly
missed.
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Relatively recent work has reported that networks of neurons can produce avalanches of
activity whose sizes follow a power law distribution. This suggests that these networks
may be operating near a critical point, poised between a phase where activity rapidly dies
out and a phase where activity is amplified over time. The hypothesis that the electrical
activity of neural networks in the brain is critical is potentially important, as many simula-
tions suggest that information processing functions would be optimized at the critical point.
This hypothesis, however, is still controversial. Here we will explain the concept of criticality
and review the substantial objections to the criticality hypothesis raised by skeptics. Points
and counter points are presented in dialog form.

Keywords: criticality, scale-free, avalanche, network, multi-electrode array, statistical physics, Ising model

INTRODUCTION
The scene: Two scientists, Critio and Mnemo, are attending a
neuroscience conference. They happen to sit at the same table
for lunch and strike up a conversation. This paper contains a
record of that conversation. In turn, the scientists discuss criti-
cality, evidence for criticality in neural data, various objections
to this evidence, and several responses to those objections.

Critio: Hello professor. I enjoyed your presentation this morning.
Your group is doing some fascinating work on synaptic plastic-
ity. I was particularly interested in your thoughts on how synaptic
changes underlie memory.

Mnemo: Thank you! I can see from your badge that you are
in a physics department. What brings you to a neuroscience
conference?

Critio: Well, I have been using ideas from statistical mechanics
to try to explain how groups of neurons collectively behave. One
of my primary research interests is determining whether or not
the brain is operating at a critical point.

Mnemo: I’ve seen several papers in that area and they seem to
show some interesting results. There also appears to be a great deal
of controversy about criticality in biology (Gisiger, 2001; Mitzen-
macher, 2004) and in neural systems (Bedard et al., 2006; Touboul
and Destexhe, 2010; Dehghani et al., 2012). However, I must admit
that I haven’t had the time to follow that research topic very closely.

Critio: It is definitely true that there is significant disagreement
in the research community about the role criticality plays in neural
dynamics (Stumpf and Porter, 2012). I happen to believe that
criticality plays an important role, but other researchers disagree.

Mnemo: Well, that’s to be expected. Many topics in science are
hotly debated and that’s part of the fun of being a scientist!

Critio: Oh, I agree! I just want to say that, even given my view
that criticality does play an important role in neural dynamics, I
recognize that it is completely possible that criticality, in fact, does

not play an important role in neural dynamics. Other method-
ologies, such as non-linear systems might better explain neural
dynamics (May, 1976; Nicolis and Prigogine, 1989).

Mnemo: Well, this certainly sounds like an interesting topic.
But since we have a few minutes here, why don’t you give me a
quick description of your research? I probably won’t read a review,
but I could learn a few things from you over lunch. Do you mind
if I pick your brain, so to speak?

Critio: Not at all! I guess I could give you an overview of criti-
cality and how it might apply to the brain. I am somewhat biased,
but I’ll do my best to present arguments from researchers who dis-
agree with my view of criticality in neural systems. You can help
me by being as skeptical of my arguments as possible.

TOPOLOGY AND CRITICALITY
Mnemo: That sounds great! But before we get started, I would
like to clear one thing up that has been bugging me. Several of
the other researchers at my institution study network topology. I
always hear them talking about scale-free networks, power laws,
and criticality. Are those all the same thing?

Critio: That is an excellent question and I think it gets at a
point that isn’t widely made in the literature. If we’re interested
in network topology, we’re interested in how the nodes of a net-
work are connected to each other. A scale-free network has nodes
that are connected in a certain way. If we’re interested in crit-
icality, we’re interested in how the network behaves. The two
topics are certainly related, but it is possible for non-scale-free net-
works to exhibit critical behavior and it is possible for scale-free
networks to not exhibit critical behavior. The network connectiv-
ity affects the critical behavior of that network (Haldeman and
Beggs, 2005; Beggs et al., 2007; Gray and Robinson, 2007; Hsu
et al., 2007; Teramae and Fukai, 2007; Larremore et al., 2011;
Rubinov et al., 2011), as we can discuss if you have the time,
but network connectivity and criticality are conceptually quite
different.
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FIGURE 1 | A simple diagram of spins in the Ising model. (Left) At low
temperature, nearest neighbor interactions dominate over thermal
fluctuations. As a result, almost all the spins align in the same direction,
producing a very ordered state. (Right) At high temperature, thermal
fluctuations dominate over nearest neighbor interactions. As a result, the
spins point in different directions, producing a very disordered state.
(Center) At some critical temperature, nearest neighbor interactions and
thermal fluctuations balance to produce a complex state.

EXPLAINING CRITICALITY
Mnemo: That sounds complicated! But, since I hear most people
discussing criticality, let’s discuss that first. So, what is criticality?

Critio: Criticality is a phenomenon that has been observed in
physical systems like magnets, water, and piles of sand. Many sys-
tems that are composed of large numbers of interacting, similar
units can reach the critical point. At that point, they behave in
some very unusual ways. Some people, including myself, suspect
that cortical networks within the brain may be operating near the
critical point.

Mnemo: This all sounds intriguing, but I have no idea what you
mean by the critical point. Can you give me a simple example?

Critio: Sure, let’s use a well explored model in this field: the
Ising model (Brush, 1967; Cipra, 1987). [Critio grabs a napkin
and sketches the left panel of Figure 1.]

This model will illustrate the critical point pretty well. See these
circles? They represent lattice sites in a piece of iron. At each site,
there is an electron whose “spin” is either up or down. You can
think of these arrows as little bar magnets, with the arrowhead
being the North pole of the magnet. In a piece of iron, these bar
magnets influence their nearest neighbors to align in the same
direction. I will represent their influence on each other by drawing
lines between the circles. So, when the temperature T is low, as
in the left panel of Figure 1, these nearest neighbor interactions
dominate and all the spins point in the same direction. This gives
the piece of iron a net magnetization, and makes it behave like
a magnet, sticking to your refrigerator. It is extremely ordered,
almost boringly so. I have a movie here on my laptop from a talk
I gave recently. [Critio opens up his laptop and plays Movie S1 in
Supplementary Material.]

This movie shows a simulated piece of iron as the temperature
is cooled. Each black square represents a spin pointed up, and each
white square is a spin pointed down. See how, over time, all of the
spins begin to point in the same direction? Pretty soon the whole
sample will be either all black or all white. That behavior is caused
by the nearest neighbor interactions.

Mnemo: So all iron is magnetic?

Critio: No, certainly not. Being ordered like that is just one
phase that the piece of iron can be in. And that happens only at
low T. If you heat it up, you can make it change into another phase.

Mnemo: Oh, I have heard some things about a “phase transi-
tion.” Is that where this is going?

Critio: Well, yes. If you heat up the iron quite a lot, then this
increased thermal energy will begin to “jostle around” the spins.
Even though they still have a tendency to align with each other,
this will be overwhelmed by the added heat. [Critio sketches the
right panel of Figure 1.] Now you have no order at all and things
look like random static on a TV screen when it is disconnected
from a cable. Here is the movie of the disordered phase. [Critio
plays Movie S2 in Supplementary Material from his laptop.]

Mnemo: So is this why a magnet loses its ability to stick when
it is heated up too much?

Critio: Exactly. All the spins are pointing in different directions
and they cancel each other. There is no net magnetic field produced
by the sample any more.

Mnemo: So now you have shown me the ordered and the disor-
dered phases. What happens between them, at the so called “phase
transition point?” Is this the same thing as the “critical point?”

Critio: Yes it is. If you add just the right amount of heat to
get to the critical temperature, then the tendency for the spins to
align is exactly counterbalanced by the jostling caused by the heat.
Now you no longer have global order. Instead, there will be local
domains where a group of spins are pointed up, and other domains
where the spins are pointed down (Stanley, 1971; Yeomans, 1992).
[Critio sketches the middle panel of Figure 1 above.] The sizes of
these domains vary widely at this temperature; many are small but
a few are quite large. So, this state is an interesting mix of order
and disorder, and constantly changing over time. You can see that
in this movie of a simulated piece of iron at the critical tempera-
ture. [Critio plays Movie S3 in Supplementary Material from his
laptop.]

Mnemo: Wow, that is really interesting – some of the domains
almost look like amoeba crawling across the screen, with bound-
aries that are extending and contracting. I can see that there are
many different sized domains too. OK, you have been telling me a
lot about this piece of iron, but how does this relate to the brain?

CRITICALITY AND COMMUNICATION
Critio: Good question, but before we get to neural data, we need to
understand a few more things about criticality. You certainly must
agree that communication between neurons is very important for
the brain. If we continue with the magnet analogy, we could ask
how two spins at different lattice sites might communicate with
each other.

Mnemo: Ok, go on. . .
Critio: A simple way to measure this would be to look at the

dynamic correlation between two lattice sites. This is not the corre-
lation that is usually used in statistics, but something that depends
on coordinated fluctuations. Here is the equation for the dynamic
correlation. Critio then writes down Eq. 1:

Cij = 〈(i − 〈i〉)(j − 〈j〉)〉 (1)

The angled brackets here indicate a time average, so 〈i〉 is the
average value of the spin at site i. If the spin is pointed up, we
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could represent the state of the lattice site with a +1. Similarly, if
the spin is pointed down, it would be represented with a −1. The
average over a long time might be something like +0.2, say. So
the term in the left parenthesis, (i − 〈i〉), represents the amount by
which the spin at site i fluctuates from its average at a given time.
Likewise, the term (j − 〈j〉) represents the amount by which site j
fluctuates from its average at a given time. To make Cij large, both
i and j must fluctuate, and they must do so in a coordinated man-
ner, at the same time and in the same direction. So you need both
fluctuations and coordination to have a large dynamic correlation.

Mnemo: Ok, that seems to make sense. Now I see why it is called
the dynamic correlation – if both i and j are stuck pointing up,
the dynamic correlation would be 0, but a static correlation would
still give 1.

Critio: Great, you get it! Now let’s take a look at what happens
to the dynamic correlation for the three different cases we talked
about: low T, high T, and critical T. In the low T case, the piece of
iron is extremely ordered and all the spins are pointed in the same
direction. The dynamic correlation is low because there are no
fluctuations and the terms in parentheses are both nearly 0 all the
time. In contrast, for the high T case, there are plenty of fluctua-
tions, as the spins are constantly deviating from their averages, but
there is no coordination between sites i and j. One term in paren-
thesis might be positive, while the other might be negative. On
another occasion, they might both be positive. So on average the
dynamic correlation is again low. But at critical T, there is enough
heat to allow fluctuations, but not so much heat that it destroys
coordination between spin sites. The spins deviate from their aver-
ages, and they often do so together because the nearest neighbor
influence is not completely overwhelmed by the added heat. Here,
there is both fluctuation and coordination. When one of those
“amoeba-like” domains that you saw in Movie S3 in Supplemen-
tary Material crawls across the screen, it might cause nearby spins
to flip one after the other, setting up a dynamic correlation. I could
sketch the positions of the spins, either up or down or in between,
over time for the three different cases. [Critio now pulls out red
and green markers, grabs another napkin and sketches Figure 2.]

Mnemo: So there is dynamic correlation between spins only at
the critical temperature?

Critio: Well, there might be some dynamic correlation in all
three cases, but it is certainly strongest at the critical tempera-
ture. Another key difference is that the distance over which these
correlations extend is greatest at the critical temperature.

Mnemo: Can you show me what you mean by that?
Critio: Sure. If we were to measure the dynamic correlation

between two spin sites i and j as a function of distance, we would
find out that it decreases with distance in all cases. Remember that
in this model, we have only built in connections between nearest
neighbor spins. So you wouldn’t expect the correlation to extend
much beyond that, at least when the temperature is very high or
very low. But at the critical temperature, we find that the dynamic
correlation is above 0 well beyond the nearest neighbor distance.
[Critio sketches Figure 3.]

Critio: In this example from a simulation, the dynamic correla-
tion at the critical temperature extends about 15 lattice sites before
it drops down to near 0. We call the distance at which the dynamic
correlation first reaches 0 the “correlation length” and it is often

FIGURE 2 | Hypothetical positions of two spins as a function of time.

(Top) At high temperature, the spin orientations fluctuate greatly, but
independently of one another, producing a low dynamic correlation value.
(Middle) At the critical temperature, the spin orientations fluctuate
somewhat and the fluctuations are coordinated, producing a high dynamic
correlation value. (Bottom) At low temperature, the spin orientations do not
fluctuate very much, yielding a low dynamic correlation value.

FIGURE 3 | Average dynamic correlation as a function of distance. At
high and low temperatures, the average dynamic correlation between two
lattice sites decreases rapidly toward 0 as the distance between the lattice
sites is increased. At the critical temperature, the average dynamic
correlation also decreases toward 0 as the distance is increased, but much
more gradually.

given by the Greek capital letter gamma, Γ; in this case the correla-
tion length is 15 lattice sites long. We didn’t build this length into
the model – it merely emerged at the critical temperature. At this
temperature, when one spin flips from down to up, for example,
it might influence one of its nearest neighbors to also flip, which
might in turn influence one of its nearest neighbors and so on. In
this way, the movement at one lattice site can propagate beyond
the nearest neighbor length. You could draw the correlation length
as a function of temperature, and it would show a sharp peak at
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the critical point. [Critio asks another person sitting at the table
for a fresh napkin and draws Figure 4.]

Critio: Again, this shows the separation of phases nicely. On
the left you have the ordered phase, with low temperature. This is
sometimes called the subcritical regime. On the right you have the
disordered phase, with high temperature, and this is sometimes
called the supercritical regime. Between them you have the phase
transition region, which is very narrow and occurs at the critical
temperature.

Mnemo: I think I see what is going on. Only at the critical tem-
perature can you have communication that spans large distances.
So if I were to make an analogy with a neural network, it would
be that at the critical point, the neurons can communicate most
strongly and over the largest number of synapses, right?

Critio: Exactly!
Mnemo: But wait, what do you mean by “communication?”

When the model is at low temperatures, the state of one lattice site
strongly influences the state of lattice sites throughout the whole
network. So, it would seem to me that communication is maxi-
mized when the temperature is low, not when the system is at the
critical point.

Critio: Ah, that is a subtle point. Clearly, we haven’t been very
rigorous with our definition of “communication,” but let me see if
I can clarify my point. When the model is at low temperatures, the
coupling between the lattice sites is strong, so coordination is high.
However, the state of each lattice site doesn’t change very much
through time, so fluctuations are low. Communication requires
both coupling and variability, or in other words, both coordina-
tion and fluctuation. If communication is to take place, lattice
sites must be able to influence each other and that influence must
actually affect changes. Does that make more sense?

Mnemo: Yes, I see your point about the distinction between
communication and coupling.

Critio: Great! So, at the critical point these two qualities of
the system – coupling and variability – are balanced to produce
long distance communication. And it turns out that it is not

FIGURE 4 | Correlation length as a function of temperature for a

simulation of the Ising Model. Near the critical temperature the
correlation length rapidly approaches a maximum value. This sharp peak
separates the ordered phase from the disordered phase and occurs at the
phase transition point.

just communication that would be optimized at the critical point
(Beggs and Plenz, 2003; Bertschinger and Natschlager, 2004; Maass
et al., 2004; Ramo et al., 2007; Tanaka et al., 2009; Chialvo, 2010;
Shew et al., 2011). Many other researchers have pointed out, with
very general models, that information storage (Socolar and Kauff-
man, 2003; Kauffman et al., 2004; Haldeman and Beggs, 2005)
and computational power (Bertschinger and Natschlager, 2004)
are expected to be optimized there as well (Chialvo, 2004, 2010;
Plenz and Thiagarajan, 2007; Beggs, 2008). In addition, the ability
of the network to respond to inputs of many different sizes, called
its dynamic range, is expected to be optimal at the critical point
(Kinouchi and Copelli, 2006; Shew et al., 2009). Phase synchrony
also appears to be optimized at the critical point (Yang et al., 2012).

Mnemo: So this sounds pretty reasonable to me so far. But it
is only an analogy. You haven’t shown me any evidence to suggest
that the brain might be doing this. What evidence, if any, do you
have to make me think that this is connected to real neurons?

CRITICALITY AND POWER LAWS
Critio: Again, a very fair question. Before we can get to the neural
data, I first need to show you how I got interested in this topic. Let
me return for a moment to the plot of the average dynamic cor-
relation length. If I were to change the axes by making them both
logarithmic, then I would get something like this for the dynamic
correlation, plotted now only for the critical case. [Critio draws
Figure 5.]

Critio: When plotted this way, the dynamic correlation approx-
imates a straight line over part of its range. This suggests that it
could be described by a so-called “power law,” where the dynamic
correlation, C, is related to the distance, D, raised to some negative
power, say −α. Note that the slope of the power law line when
plotted logarithmically is given by −α. Well, the physics of criti-
cal phenomena tells us that near the critical point, a system will
have many variables that can be described by power law functions
(Stanley, 1971; Goldenfeld, 1992; Yeomans, 1992; Nishimori and
Ortiz, 2011). In addition to the dynamic correlation as a function

FIGURE 5 | Hypothetical relationship between the average dynamic

correlation between two lattice sites and the distance between those

lattice sites at the critical temperature in a small simulation of the

Ising model.
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of distance, the distribution of domain sizes that we talked about
earlier would also follow a power law at the critical point. The rea-
son the straight line does not extend to larger distances is because
the simulation had a limited size. The bigger the simulation, the
further the power law line would extend.

Mnemo: Ok, for the moment I will assume you are right that
this power law would extend to indefinitely large distances if the
system were large enough. What is so special about a power law,
besides the fact that it might suggest your system is critical?

Critio: An interesting feature of power laws is that they show
no characteristic scale. When plotted in log-log coordinates, they
produce a straight line that has the same slope everywhere. This
implies that the data will have a fractal structure. For example,
imagine what the distribution of correlation strength would look
like if you were only able to sample separation distances from
101 to 102 units. It would be a straight line with a slope of −α

when plotted logarithmically. Interestingly, this would look just
like the distribution that you would observe if you were only able
to sample separation distances from 102 to 103 units. Again, the
exponent would be −α. This has caused some people to use the
phrase “scale-free” when describing power law distributions (Stam
and de Bruin, 2004). If you zoom in or zoom out, things look very
similar (Teich et al., 1997). This self-similarity is a characteristic
of fractals.

Mnemo: So is where the name“scale-free”network comes from?
Critio: Yes! In scale-free networks, the degree distribution – the

distribution of the number of connections each node possesses –
follows a power law. But notice, in the Ising model, the nodes are
connected in a lattice and the Ising model exhibits critical behav-
ior. So, here we can see the distinction between criticality and
scale-free networks in action. The nodes are not connected as in a
scale-free network, yet the activity is scale-free.

Mnemo: That is certainly interesting, but I am still searching
for a strong argument, not nice pictures. So power laws are an indi-
cator of criticality? And you are going to tell me that you see some
power laws in your neural data? This is the argument? It must be
more substantial than that! After all, this is science, not just loose
associations!

Critio: A critical system will produce power laws, yes, but power
laws do not prove criticality! There are many ways to get power
laws, and I can tell you more about that in a minute. The key thing
to remember here is that exhibiting power laws is strongly sugges-
tive of criticality. However, power laws alone are not sufficient to
establish criticality.

Mnemo: Ok, I want to ask about these other ways to get power
laws in a minute. But to return to the issue I raised earlier, you are
going to tell me about some neural data that display power laws?

Critio: Yes, I can tell you about that first and then we can get to
all the potential objections.

Mnemo: That sounds fine. Proceed with the data.

POWER LAWS AND NEURAL DATA
Critio: Well, there were several early reports that the nervous
system could produce power law distributions (Chen et al.,
1997; Teich et al., 1997; Linkenkaer-Hansen et al., 2001; Wor-
rell et al., 2002). These data all came from “one-dimensional”
measurements, were a single variable, like spike count, temporal

correlation, or total energy, was found to follow a power law dis-
tribution. While these important findings were very suggestive,
they did not immediately provide insight as to what the underly-
ing network was doing to produce these distributions. The earliest
data to explore power law distributions at the network level came
from recordings from microelectrode arrays that had 60 electrodes.
There, the experimenters were able to observe bursts of sponta-
neous activity. They found that if they counted the number of
electrodes activated in each distinct burst, that the burst sizes were
distributed according to a power law (Beggs and Plenz, 2003).
Because the statistics of these bursts followed the same equations
used to describe avalanche sizes in critical systems, they called
these events “neuronal avalanches.” I have on my laptop here a
figure from one of their papers that shows the power law distri-
bution of avalanche sizes, measured either as the total number
of electrodes activated per avalanche, or as the total amplitude of
local field potential (LFP) signal measured at all the electrodes
involved in the avalanche. [Critio shows Figure 6 to Mnemo.]

Since these initial results, power law distributions of avalanche
sizes have been reported in awake monkeys (Petermann et al., 2006,
2009), anesthetized rats (Gireesh and Plenz, 2008), isolated leech
ganglion (Mazzoni et al., 2007), and dissociated cultures (Maz-
zoni et al., 2007; Pasquale et al., 2008), suggesting that this is a very
general and robust phenomenon. It is interesting to mention that
some of these reports have relied on spike data, and not just LFP
data (e.g., Beggs, 2007, 2008; Mazzoni et al., 2007; Pasquale et al.,
2008; Hahn et al., 2010; Friedman et al., 2011, 2012). Avalanche
dynamics also have been reported in human brain oscillations
(Poil et al., 2008) and there are several reports of power law scaling
(Miller et al., 2009) even though these are not necessarily attrib-
uted to avalanches. In addition, the size of phase locking intervals
in human fMRI has been reported to follow a power law, and the
authors have related this to criticality in the awake, healthy human
brain (Kitzbichler et al., 2009). This is intriguing, despite the fact
that the temporal resolution of fMRI is much lower than that of

FIGURE 6 | Probability distribution of neuronal avalanche size. (Black)
Size measured using the total number of activated electrodes. (Teal) Size
measured using total LFP amplitude measured at all electrodes
participating in the avalanche (Beggs and Plenz, 2003).

www.frontiersin.org June 2012 | Volume 3 | Article 163 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Beggs and Timme Being critical of criticality in the brain

electrophysiological signals from extra-cellular electrodes, so it is
not yet clear if these power laws are directly related to neuronal
avalanches at the local network scale.

MNEMO’s FIRST OBJECTION: DO THE NEURAL DATA REALLY
SHOW POWER LAWS?
Mnemo: That is an impressive list of neural systems in which power
laws have been observed. However, I seem to recall hearing that
other researchers have found that these power laws were actually
better fit by exponentials. Is that true?

Critio: That is true. Using sophisticated statistical tests, several
researchers have shown that some data sets, none of which were
from neuroscience, that were previously thought to be power law
distributed are actually better fit by an exponential distribution
(Clauset et al., 2009). Using analysis methods from that work,
some researchers in neuroscience have argued that the supposed
power laws associated with neural activity are not actually power
laws, or that the power laws that have been found are artifacts
(Bedard et al., 2006; Bedard and Destexhe, 2009; Touboul and
Destexhe, 2010; Dehghani et al., 2012).

Mnemo: How do you escape that objection? It seems like so
much of your argument is based on power laws. If those really
aren’t there or if they are artifacts, then your system certainly isn’t
operating at the critical point, is it?

Critio: You are right; this is a very important part of my argu-
ment. Let’s talk about each paper separately since they present
distinct arguments and evidence. First, let’s discuss the papers that
argue the observed power laws are artifacts. Some researchers have
produced strong theoretical models that indicate that the extra-
cellular medium may behave as a 1/f filter (Bedard and Destexhe,
2009). If the extra-cellular medium does, in fact, behave this way,
that only explains the observed power law distribution in the LFP
spectrum. But it does not necessarily explain the power law dis-
tribution in other neural phenomena, like the size distribution of
neuronal avalanches. Another paper has made a notable argument
that the power laws observed in avalanche size distributions are
actually artifacts (Touboul and Destexhe, 2010). In that work, the
authors analyzed avalanches using both positive and negative LFP
peaks and found that both were fit by power laws. However, posi-
tive LFP peaks are significantly less correlated with neuron spiking
activity than negative LFP peaks. So, those authors concluded that
the power law avalanche size distribution is not associated with
neuron spiking activity. In response, I think it is important to
point out that the form of this argument is fallacious. The power
law observed in the positive LFP peaks avalanche size distribu-
tion may be due to some other phenomenon and it could still be
the case that the power law observed in the negative LFP peaks
avalanche size distribution is related to spiking activity.

Mnemo: I see your point, what about the other papers?
Critio: Those papers argue that the power laws associated

with neural phenomena that have been observed are not actu-
ally present. Several of the investigators who claimed to show
that neural event size distributions were better fit by exponen-
tials did not use many electrodes in their recordings. In some
of their papers, they only had about eight electrodes (Bedard
et al., 2006; Touboul and Destexhe, 2010). To really assess whether
or not something follows a power law, you should have many

closely-spaced electrodes. A recent paper showed that if you under-
sample a critical process, you can get distributions that deviate
substantially from power laws (Priesemann et al., 2009). The basic
idea is that if your electrodes are too far apart, it will be extremely
rare for an avalanche to occur that will span the distance between
them. This will make it look like all the events are occurring inde-
pendently, and this leads to a distribution with a short tail that
is not a power law, even if the underlying process is indeed crit-
ical (Ribeiro et al., 2010). When people who do have data sets
from large numbers of electrodes tested their data, they found
contradictory results. A paper from 2011 showed that the data
were better fit by power laws than by exponential distributions
using the advanced statistical method I mentioned before (Clauset
et al., 2009; Klaus et al., 2011). They performed this analysis using
recordings taken from acute slices, in vivo recordings from rats,
and in vivo recordings from primates. A more recent work used
the same analysis method and found the opposite result using
in vivo data from cats, monkeys, and humans (Dehghani et al.,
2012). That study used a closely spaced 96 electrode array. So, at
least for that study, it is very unlikely that under-sampling pre-
vented the appearance of a power law. Therefore, it seems that this
point about power laws is still somewhat controversial, and may
take a few years to resolve. But remember, power laws are sugges-
tive of criticality. They are not proof, and there may be better ways
to establish criticality than by looking only at power laws. Hope-
fully we can talk later about these other ways of testing whether a
system is critical or not.

MNEMO’s SECOND OBJECTION: THE ISING MODEL IS AN
EQUILIBRIUM MODEL, BUT NEURAL NETWORKS ARE
DYNAMIC
Mnemo: Ok, but first let me understand this a bit more. You just
told me about a magnetic model – the Ising model – and how that
would settle into different equilibrium states at different tempera-
tures. Now you are jumping to a network of neurons, where things
do not settle at all. In fact, the Ising model seems like it would be
pretty poor at describing how one neuron excites another, leading
to cascades of activity spreading through the network.

Critio: As a neuroscientist, you have a very keen intuition for the
physics! You are absolutely right to point out the potential prob-
lem. The Ising model is an equilibrium model, appropriate for
describing how the system will settle at different temperatures, but
this model does not explicitly account for time. To try to extend
the Ising model into the range of dynamics, some people have
applied a perturbation to the model – a slowly changing magnetic
field for example – and watched how the system responds. Typ-
ically, when the model is at the critical temperature, applying a
local magnetic field will cause several nearby spins to flip, so as to
align with the applied field. These spins will in turn cause a change
in the orientation preference for other nearby spins, and so will
cause them to flip, leading to avalanches of spin flips. This is called
the Barkhausen effect. In both theoretical work (Sethna et al.,
2001) and in experiments (Papanikolaou et al., 2011), the sizes of
these avalanches are distributed according to a power law when the
system is at the critical temperature (Perkovic et al., 1995). Also,
the exponents found in neuronal avalanches, typically near −1.5,
are solidly in the range of exponents reported for the Barkhausen
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effect, which range from −1 to −2.8. These Barkhausen exponents
vary because they apply to many different metals under various
geometries and different models. It seems that there is a reason-
able connection, then, between the equilibrium Ising model and
dynamic avalanches (Liu and Dahmen, 2009).

Mnemo: So to follow your analogy, the neurons in the brain
could be thought of as spins in a magnet at the critical point.
When something comes along and delivers an input, this prop-
agates through the system with maximum distance, because the
correlation length is greatest at the critical point. The avalanches
of activity have sizes distributed as a power law, and you mentioned
that some experimenters have observed power law distributions of
avalanche sizes in neural tissue as well.

Critio: That is a good summary of what I have said so far. Even
though impressive progress has been made recently in applying
the Ising model to neuronal activity patterns found in actual data
(Schneidman et al., 2006; Shlens et al., 2006, 2009; Tang et al., 2008;
Yu et al., 2008, 2011; Tkacik et al., 2009; Yeh et al., 2010) you are
entirely right to say that the Ising model is far too simple to com-
pletely capture all neural phenomena. One problem with the Ising
model is that, without applying an external magnetic field, all states
of an individual lattice site are equally likely. Real neurons are far
more likely to be in one state (quiescent) over another state (spik-
ing). Researchers have developed many models to attempt to more
fully incorporate neural behavior, and specifically to deal with tem-
poral dynamics (Maass et al., 2002). Also, models have been created
to better simulate damaged or malfunctioning neural behavior,
such as models to simulate Alzheimer’s disease (Horn et al., 1993)
and epilepsy (Netoff et al., 2004; Hsu et al., 2008)1. However, I
believe the Ising model serves as an excellent introductory system
for the topic of criticality.

Mnemo: I understand that no model is perfect and that it is
easier to start with a simplified system, but I’m still dissatisfied.

Critio: What’s bothering you?

MNEMO’s THIRD OBJECTION: POWER LAWS DO NOT PROVE
CRITICALITY
Mnemo: You’ve given me a nice story, but this is hardly proof. As
you said, the existence of power laws is a necessary, but not suffi-
cient condition for criticality. So, just because we’ve found some
power laws in neural data, the existence of those power laws not
prove that the neural systems are operating at the critical point. I
don’t know about you, but I don’t like to affirm the consequent.

Critio: You are right to be skeptical. As I said, the power laws are
consistent with the idea that the neural networks that have been
studied are operating near the critical point, but the existence of
these power laws is not proof.

Mnemo: Sure, it seems like now would be a good time for you
to tell me about the many other ways in which power laws can be
generated.

1Critio: As a brief aside, I’m very interested in models of Epilepsy. In epileptic tis-
sue, seizures exist that take the form of widespread coordinated activity. So, when
modeling epileptic neural activity, we must be careful to incorporate seizures into
our understanding of when the model is critical. For instance, during seizures, the
activities of many neurons are highly correlated, so the dynamic correlation between
model neurons is very high, but, by examining other parameters of the network, the
network is not at a critical point.

Critio: There are so many ways to generate power laws that it
is hard to know where to begin. People have written entire arti-
cles devoted largely to this topic (Mitzenmacher, 2004; Newman,
2005; Stumpf and Porter, 2012). Perhaps the simplest mecha-
nism to start with would be successive fractionation. Consider
a stick of some length. Now break it into two parts at a ran-
domly chosen location. Then break each of these parts in two,
again at randomly chosen locations. If you keep successively doing
this, you will eventually produce a power law distribution of
fragment lengths. Related to this, multiplicative noise can also
produce power laws (Sornette, 1998). In one of the papers that
challenged the existence of power laws in neural data that we
discussed earlier, the authors used a random process that, when
thresholded, also produced power law distributions (Touboul and
Destexhe, 2010). Another way to get power laws is through a
combination of exponentials (Reed and Hughes, 2002). As you
know, exponential processes are ubiquitous. If you have a process
that grows exponentially over time, but is terminated at random
times drawn from a negative exponential distribution, then you
will also get a power law distribution of sizes. Reed and Hughes
explored this in a paper whose title included “. . .Why power laws
are incredibly common in nature” (Reed and Hughes, 2002). As
just one more example, consider an array of processes that all
decay exponentially, but with different time constants. Under the
right conditions you can add these decay processes together and
they will produce a power law as well (Fusi et al., 2005). There
are several other mechanisms proposed to generate power laws
(Mitzenmacher, 2004). So you are completely right to be skep-
tical. Just showing a power law by itself doesn’t tell you all that
much.

Mnemo: It now seems that you have dug yourself into a hole
from which you cannot escape. If power laws are so unexceptional,
then why should I be so excited about seeing them in neural data?

CRITIO’s RESPONSE TO MNEMO’s THIRD OBJECTION: EVIDENCE FOR
CRITICALITY BEYOND POWER LAWS
Critio: The fact that other non-critical systems also produce power
laws is very important. Fortunately, recent experiments by several
groups have addressed this issue directly. There are three main
ways to demonstrate that the power laws observed in neural tissue
are the result of a critical mechanism: the ability to tune the net-
work from a subcritical regime through criticality to a supercritical
regime, the existence of mathematical relationships between the
exponents of the power laws for a system, and the existence of a
data collapse within neural data.

Tuning the network through criticality
Critio: First, recall that in a system that displays criticality, the
power law will only occur when the system is between phases, in
other words, at the phase transition point. So, for systems that
really are critical, we should be able to observe different phases on
either side of the critical point and get distributions there that do
not follow power laws.

Mnemo: And you have evidence of this?
Critio: Actually, yes. By blocking excitatory synaptic transmis-

sion, you can dampen network excitability, leading to smaller
avalanches (Mazzoni et al., 2007). Here is a figure I saw from a
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poster at the conference. [Critio pulls out a small copy of the
poster and points to Figure 7.]

In Figure 7A, the resulting distribution of avalanche sizes is
curved downward and has a smaller mean than in the control case
shown in Figure 7B. In Figure 7A, the distribution is beginning to
deviate from a power law. This looks like the subcritical or damped
phase of the system, where activity dies out quickly. Conversely, by
blocking inhibitory synaptic transmission, in Figure 7C, it is pos-
sible to make the tissue hyperexcited, leading to larger avalanches
(Beggs and Plenz, 2003). The resulting distribution here is not a
power law either, but has a big bump out in the tail, indicating that
many extremely large avalanches occur. This looks like the super-
critical phase, where activity is often amplified until it spans the
entire system. The existence of these two phases, on either side of
the critical point, which is shown in Figure 7B, strongly suggests
that the power law arises from a mechanism that is related to a
phase transition.

Critio: Related to this, there have been some very elegant exper-
iments that have shown how information processing functions in
the tissue approach optimal behavior near the critical point (Shew
et al., 2009, 2011). This also suggests that different phases can be
produced in the network.

Mnemo: What do you mean by that? And how is it related to
the idea of phases?

Critio: Shew and colleagues looked at information transmis-
sion through cortical slice networks under three different condi-
tions: where excitatory transmission is reduced; where there is no
manipulation; and where inhibitory transmission is reduced. They
showed that there was a peak in information transmission in the
unperturbed condition, and that information transmission fell to
either side of this point as perturbations increased. In many ways,
they observed behavior just like that seen in the correlation func-
tion in the Ising model that we talked about earlier from Figure 4.
Remember the plot that showed a sharp peak in the middle? – Their
results are similar. In other experiments from the same group, they
demonstrated that dynamic range in the network – similar to sus-
ceptibility in the Ising model – peaks in the unperturbed condition
and declines as perturbations are increased. All of this suggests
that these networks can be tuned from one phase to another, or

left between phases at the critical point. And it underscores why
it would be advantageous for brains to operate near the critical
point, because that is where information processing is optimal.
The presence of different phases indicates that the power law is
related to a phase transition, because the power law is only seen
between the phases. These peaks in information processing func-
tions also occur between the phases, under the same conditions
where the power law occurs.

Mnemo: So it seems that you need to be able to move the system
from one phase to another if it is going to show a critical point.
What you have been telling me is that these neural systems can be
moved in this way.

Critio: That’s right. If a system displays criticality, then it must
be tunable in some sense. Typically, a “control parameter” can be
adjusted to determine the phase of the system. In the Ising model
that we discussed earlier, the temperature is the control parame-
ter. Sweeping the temperature from 0 to some high value would
bring the system from the subcritical, ordered, phase, up to the
critical point, and then into the supercritical, disordered, phase.
The “order parameter” is what tells you the phase. In the case of
the Ising model, the order parameter would be the net magnetic
field produced by all the spins, called the magnetization. In the
subcritical phase, all the spins are aligned and the magnetization
has a large magnitude. In the supercritical phase, all the spins are
pointing in random directions and the magnetization is 0. Near
the critical point, we see the transition of the magnetization from
some large magnitude toward 0. If a system is indeed critical, then
all of the variables that could indicate its phase will depend on the
control parameter.

Mnemo: To continue with the analogy, what would be the
control parameter in neural systems?

Critio: That is a very good question. At the moment, it seems
that the balance between excitation and inhibition can serve as a
control parameter (Mazzoni et al., 2007; Shew et al., 2009; Benay-
oun et al., 2010; Hobbs et al., 2010). Too much inhibition will
cause the system to be subcritical. Too much excitation will cause
the system to be supercritical. A balance between them would lead
to the critical point. But I must say that there is still a lot of work
to be done in this area. Other things, like connection strengths

A B C

FIGURE 7 | Avalanche size distributions in local field potential data

collected with a 60-channel microelectrode array from rat cortical

slice networks. (A) Subcritical regime; excitatory antagonist (3 mM

CNQX) applied. (B) Critical regime; normal network. (C) Supercritical
regime; inhibitory antagonist (2 mM PTX) applied (Haldeman and Beggs,
2005).
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(Haldeman and Beggs, 2005; Beggs et al., 2007; Chen et al., 2010),
or the density or pattern of connections in the network (Gray
and Robinson, 2007; Larremore et al., 2011; Rubinov et al., 2011),
might also serve as control parameters. The key point is that exper-
iments have shown the system can indeed display different phases,
so it is tunable.

Mnemo: So you cannot tune the other, non-critical stochas-
tic systems, like successive fractionation, or a combination of
exponentials?

Critio: Well, you could tune them in some sense, but such tun-
ing would only change the exponent of the resulting power law
distribution. For example, let’s return to the combination of expo-
nentials model proposed by Reed and Hughes (2002). Recall that
there is a process that grows exponentially, let’s say with exponent
α, and it is terminated at random times that are drawn from a
distribution that has exponential decay, let’s say with exponent β.
If you increase α or decrease β, you will decrease the exponent of
the size distribution (thereby making the slope of the size distrib-
ution less steep when plotted logarithmically), but it will still be a
power law. As long as such a process is adequately sampled, it will
never curve downward or curve upward to produce a hump at the
end of the distribution. So this type of non-critical process fails to
show different phases. Therefore it cannot serve as a good model
for what has been observed in the neural data, where clear phases
exist. All of the non-critical models that have been proposed to
generate power laws are like this – they fail to show phases.

Mnemo: I think I get it: if they don’t have different phases, then
they are not operating at a phase transition point, even though
they may produce power laws. That all sounds reasonable. But
you told me that there were additional arguments to support your
point, right?

Mathematical relationships between power law exponents
Critio: Yes, the second main argument comes from a slightly dif-
ferent aspect of critical phenomena. It will take me a minute or
two to explain, but I think it will be helpful. As I said previously,
if a system is truly critical, it will display power law distribu-
tions in more than one variable of interest (Stanley, 1971, 1999;
Goldenfeld, 1992; Nishimori and Ortiz, 2011). For example, recall
that in the Ising model the correlation as a function of distance
followed a power law at the critical point. The domain size dis-
tribution also follows a power law at the critical point. Also, the
susceptibility, the specific heat, and other variables will exhibit
power laws as well. All of these power laws may have differ-
ent exponents, and so will have different “characteristic” expo-
nents. Far away from the critical point, these power laws break
down. Right near criticality, though, there are multiple power
laws.

Mnemo: Why are there multiple power laws?
Crito: Remember how I said that the phase of a critical system

can be determined by a control parameter? Let me describe how
important that parameter is. If we go back to that curve of the
correlation length, recall that it had a sharp peak near Tc, the crit-
ical temperature. This type of curve is observed experimentally in
diverse critical systems (Stanley, 1971; Yeomans, 1992) and would
be expected to go to infinity right at Tc if you had an infinitely
large system. A simple way to describe such a curve would be with

an equation like this:

Γ =
[

Tc

T − Tc

]ξ

(2)

As T approaches Tc, the denominator goes to 0, and the corre-
lation length, Γ, shoots up to infinity. The exponent ξ is another
value that would be obtained from experimental data, and in gen-
eral it would not always be 1. For convenience, physicists often
use something called the “reduced temperature” given here by t, in
describing critical phenomena:

t ≡ T − Tc

Tc
(3)

In general, we don’t know precisely how the correlation length
will depend on the reduced temperature, but I am able to write the
correlation length as a power series in t, like this:

Γ = Atλ
(
1 + Btλ2 + Ctλ3 + · · ·) (4)

Near the critical point, the reduced temperature t approaches
0, so all the higher-order terms of this series become very small.
We can then approximate the whole power series by something
like this:

Γ ≈ Atλ (5)

And you should recognize that this as a power law relationship.
Using similar methods, other power laws can be found that relate
other variables associated with the system, such as the relationship
between the dynamic correlation value and distance between lat-
tice sites in the Ising model (Figure 6). Furthermore, in the process
of deriving these power laws, mathematic relationships between
the exponents of the power law distributions can also be derived. It
would take me a while to explain the details of how these exponent
relationships come to be (Griffiths, 1965; Stanley, 1971; Yeomans,
1992), but for now it should be enough to say that near the critical
point, many power laws exist, and they are mathematically related
to one another.

Mnemo: Why wouldn’t successive fractionation produce a
relationship between exponents?

Critio: In that simple, one-dimensional system, there is only one
power law, and that is related to the lengths of the sticks. There is
only one exponent, so it can’t be related to other exponents.

Mnemo: But what about something like a combination of
exponentials?

Critio: Recall that in that model the exponents α and β are the
rates at which exponential processes increase and decrease, not
exponents of power laws observed in variables associated with the
system. The event size distribution is a power law whose exponent
is related to the ratio of α/β. So, again there is only one exponent,
so it can’t be related to other exponents. In addition, α and β are
independent input parameters in the model, so there can be no
relationship between them.

Mnemo: Let us assume for the moment that I agree that you
should have exponent relationships if your system is truly critical.
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Is there any evidence for this type of relationship in neural data
collected so far?

Critio: In fact there is. There is a recent article (Friedman et al.,
2012) where the investigators were recording neuronal avalanches
of spikes from individual neurons. They showed that the expo-
nent for the avalanche size distribution, α, and the exponent for
the avalanche lifetime distribution, β, could be used to predict the
exponent of the power law that related avalanche size to avalanche
lifetime, γ, using Eq. 6.

γ = (β − 1)

(α − 1)
(6)

They found that the exponent γ, predicted in this way, fit rea-
sonably well to the actual data. So, this is another piece of evidence
suggesting that the system can display critical behavior (Friedman
et al., 2011, 2012).

Mnemo: Alright, this makes sense. It seems to be another way
to assess whether or not the system is critical. But I would still like
to hear more. What is your third argument that the neural data are
collected from a critical process?

Data collapse
Critio: Remember when I said that power law distributions were
scale-free? Recall that this was related to fractals that showed
self-similarity?

Mnemo: Yes, I do. I have read some popular articles about frac-
tals, so I am not completely new to this (Mandelbrot, 1982; Stewart,
2001).

Critio: Good, then I can build on your existing knowledge
to explain my last argument about why the neural data suggest
criticality. It goes like this: The critical point is characterized by
power laws in many variables, all of which express fractal rela-
tionships. We know that neural activity propagates dynamically
through networks of neurons in cascades of activity. If these cas-
cades, or avalanches, are truly critical then there should be some
way to capture a relationship between the avalanches in a frac-
tal way. What if we could take something like avalanche shapes
and show that they were fractal? If we could do this, it would
allow us to go beyond power laws, and show a scaling rela-
tionship that captured the dynamics of these non-equilibrium
systems.

Mnemo: This sounds pretty abstract! Could you give me a more
concrete example of what you are talking about?

Critio: Yes, of course. Let me describe what I mean by the
avalanche shape. Consider how an avalanche of neural activity
might evolve. It could start with one or a few spiking neurons.
These could activate others, so the number of active neurons would
increase over time. Eventually this would decline to 0, marking
the end of the avalanche. If we plotted the average number of
active neurons over time, we might get something that looked
like an inverted parabola. This is what I mean by the average
avalanche shape. Now if the network is at the critical point, then
I should be able to take average avalanche shapes from differ-
ent durations and show that they are all fractal copies of each
other. In other words, I should be able to rescale them with
the appropriate critical exponents and get them all to lie on top

of each other, in what is called a data collapse. [Critio sketches
Figure 8.]

Critio: These are average avalanche shapes taken from
avalanches of different durations. See how they look like they
might have roughly the same shape?

Mnemo: Yes, sort of. They could be copies of one another at
different scales, but how are you going to show this?

Critio: Well, if we divide each curve by its duration, then they
will be rescaled to all have the same length. Then if we rescale their
heights by their duration raised to an exponent, γ from Eq. 2, that
is related to the critical exponents α and β that we discussed earlier,
then we get a picture that looks like this. [Critio draws Figure 9.]

FIGURE 8 | Average avalanche shapes for avalanches of three distinct

durations (Friedman et al., 2012).

FIGURE 9 | Rescaled avalanche shapes from Figure 8 (Friedman et al.,

2012).
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Mnemo: The curves do seem to lie on top of one another pretty
closely. Each curve is an average of how many avalanches?

Critio: Yes, each average avalanche shape is produced by hun-
dreds of avalanches. So this data collapse is highly unlikely to
have occurred by chance. In fact, when the spike train times from
the original data are randomly jittered by 50 ms, the curves no
longer look like copies of each other, suggesting that this scal-
ing relationship has relatively tight temporal precision (Friedman
et al., 2012). This type of data collapse, based on average avalanche
shape, has been explored for several years in a variety of dif-
ferent systems (Perkovic et al., 1999; Kuntz and Sethna, 2000;
Mehta et al., 2006), and has recently been applied to Barkhausen
noise experiments with good success (Papanikolaou et al., 2011).
The fact that it also can be applied to some neural networks
strongly suggests that these networks are operating near the critical
point.

Mnemo: Although I can’t claim to understand all the math
behind this, it certainly seems like your argument does not now
rest on power laws alone. You have shown me a fractal relationship
that ties together both space and time in the dynamic evolution of
the avalanches. From all that you have told me, this should only
occur near the critical point.

Critio: Yes, but it again sounds like you are not fully convinced!

MNEMO’s FOURTH OBJECTION: INFLUENCE OF LOWER
LEVEL PROCESSES THAT EXHIBIT POWER LAWS
Mnemo: You are correct – I still have another question about all
this. In particular, I seem to recall reading somewhere that fractals
are everywhere in neuroscience.

Critio: That’s right. Some have shown that a plot of the number
of spikes produced by a neuron looks roughly the same at all inter-
vals (Teich et al., 1997). When you zoom out to very large time
scales, this pattern of on and off firing appears to be just a copy
of the pattern you see at short intervals. In addition, researchers
have found that neurotransmitter secretion is fractal (Lowen et al.,
1997), and that intervals between sodium channel openings follow
a power law (Toib et al., 1998).

Mnemo: If all this is true, then I guess I shouldn’t be so sur-
prised when you tell me that some networks of neurons also
display fractal behavior. The activity in the network could just
be reflecting power law statistics that appear at other scales
below it.

Critio: You are right to bring this up – with so many frac-
tals out there, why should I get excited about a power law dis-
tribution of activity in small, local networks of neurons? Well,
I have two answers to this. First, I could say that all the evi-
dence I just mentioned about fractals in phenomena related
to individual neurons is actually in favor of my general argu-
ment. We might expect the brain and its underlying systems
to operate near a critical point to optimize information pro-
cessing. However, the existence of the expectation is certainly
not an argument against that which is expected. It seems that
many biological systems would approach optimality by oper-
ating in a regime where they produce power laws (Mora and
Bialek, 2011). That could be why so many biological systems
exhibit power laws. To give my second answer to your point, I
first want to clarify what I think you are saying. It sounds like

you are saying that these power laws at other scales might not
be produced by criticality, and that the power laws that have
been observed in neuronal avalanches are just a reflection of
these non-critical processes at other scales. Is that what you are
saying?

Mnemo: Yes, I think that is a fair description of my objection.
Critio: Ok, let us assume for the sake of argument that power

laws in spike counts, transmitter secretion and channel dynam-
ics are all produced by processes that are not critical. Is it really
clear that if we combined such processes that the resulting cas-
cades of activity on a network also would have to follow a power
law? Would the resulting network therefore not be critical? We
know from computer simulations that the pattern of network
connectivity can have a profound effect on whether the network
produces power laws or not (Teramae and Fukai, 2007; Tanaka
et al., 2009; Rubinov et al., 2011). Not every pattern of connec-
tions leads to a power law. In addition, from experiments we
know that the relative strength of inhibition to excitation can
influence whether or not a network produces power law distri-
butions (Beggs and Plenz, 2003; Stewart and Plenz, 2006; Shew
et al., 2009). These manipulations are done globally at the net-
work level, not at the lower levels, and yet they seem to have
the effect of tuning the network. If it were true that power law
behavior at the network level was simply a result of power law
behavior on the cellular level, then we shouldn’t observe such
effects by altering network level parameters. Furthermore, if the
power law behavior observed at the network level is found to
be critical using the methods discussed previously, then the net-
work level behavior is critical regardless of whether or not the
power law behavior of the underlying systems is also critical. Still,
we don’t know why the network level behavior is critical, or at
the very least why it exhibits power laws. Nor do we know how
this behavior is related to network structure and the underlying
systems.

Mnemo: Oh, is this where all that “self-organized criticality”
literature comes in (Bak et al., 1987; Bak, 1996; Jensen, 1998)? I
have heard that some physicists are extremely skeptical of that
work. So I suppose I should approach your work with similar
caution.

Critio: It is still an open question as to how the network oper-
ates at the critical point, if it is indeed operating a critical point,
and there have been several interesting proposals and experiments
related to this topic (Bienenstock, 1995; Chialvo and Bak, 1999; de
Carvalho and Prado, 2000; Bak and Chialvo, 2001; Eurich et al.,
2002; Freeman, 2005; Kozma et al., 2005; de Arcangelis et al., 2006;
Hsu and Beggs, 2006; Abbott and Rohrkemper, 2007; Buice and
Cowan, 2007, 2009; Juanico et al., 2007; Levina et al., 2007, 2009;
Pellegrini et al., 2007; Hsu et al., 2008; Stewart and Plenz, 2008;
Allegrini et al., 2009; Magnasco et al., 2009; Tanaka et al., 2009;
Buice et al., 2010; de Arcangelis and Herrmann, 2010; Kello and
Mayberry, 2010; Millman et al., 2010; Tetzlaff et al., 2010; Rubi-
nov et al., 2011; Droste et al., 2012). Whether the network gets
to criticality through self-organization or not, it does seem that
at least some networks of neurons can operate at the critical
point. But I would be surprised if this does not involve some
form of self-organization, as synaptic strengths are constantly
in flux.
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Mnemo: I suppose we will have to settle this over another lunch,
as I have to go to another talk!

Critio: Wow, it is late! Hey, do you mind if I write this up and
submit it to a journal? I think you have raised some very interesting
objections, and you have forced me to think through my positions
more thoroughly.

Mnemo: Sure, go ahead. But I am still skeptical, so don’t plan
to include me as a co-author.

Critio: Not a problem. Thanks for sharing lunch.
Mnemo: My pleasure. Good bye.

SUPPLEMENTARY MATERIAL
The Movies S1–S3 for this article can be found online
at http://www.frontiersin.org/Fractal_Physiology/10.3389/fphys.
2012.00163/abstract

Movie S1 | Simulation of an Ising model at low temperature.

Movie S2 | Simulation of an Ising model at high temperature.

Movie S3 | Simulation of an Ising model at the critical temperature.
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Self-organized critical states are found in many natural systems, from earthquakes to forest
fires, they have also been observed in neural systems, particularly, in neuronal cultures.
However, the presence of critical states in the awake brain remains controversial. Here,
we compared avalanche analyses performed on different in vivo preparations during wake-
fulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor
cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal
cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up
to 160 single units), the size of avalanches never clearly scaled as power-law, but rather
scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of
local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the differ-
ent electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and
premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law
scaling in double logarithmic representations, as reported previously in monkey. However,
avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal
firing, also displayed apparent power-law scaling. Closer examination of this scaling using
the more reliable cumulative distribution function (CDF) and other rigorous statistical mea-
sures, did not confirm power-law scaling.The same pattern was seen for cats, monkey, and
human, as well as for different brain states of wakefulness and sleep. We also tested other
alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche
dynamics with bi-exponential distributions. Collectively, these results show no clear evi-
dence for power-law scaling or self-organized critical states in the awake and sleeping brain
of mammals, from cat to man.

Keywords: criticality, self-organization, brain dynamics, scale invariance, complexity, power-law

INTRODUCTION
Self-organized criticality (SOC) is a dynamical state of a system
which maintains itself at (or close to) a phase transition point. This
family of systems were initially described by Bak et al. (1987), and
have been found in many natural systems (reviewed in Bak, 1996;
Jensen, 1998). SOC systems are characterized by scale invariance,
which is usually identified as a power-law distribution of charac-
teristics of the system’s dynamics such as event size or the waiting
time between events. The temporal fingerprint of SOC systems is
often 1/f or 1/f 2 noise. These features are interesting because they
show the presence of long-lasting or long-range correlations in the
system.

The dynamics of SOC systems are structured as “avalanches” of
activity, separated by silent periods. Avalanche sizes are typically
distributed as a power-law, where the probability of occurrence
p(x) of a given avalanche size x scales as:

p (x) ∼ x−α ,

where α is the scaling exponent of the distribution.
SOC systems have been observed in many different natural

phenomena, from sandpiles, to rice piles, in forest fires, and earth-
quakes (Bak and Paczuski, 1995; Bak, 1996; Frette et al., 1996;
Jensen, 1998; Malamud et al., 1998; Peters and Neelin, 2006).
Evidence of SOC was also demonstrated in circuits of neurons
in vitro (Beggs and Plenz, 2003), where network activity was
found to alternate between active and quiescent periods, form-
ing “neuronal avalanches.” The presence of avalanches, although
clear in vitro, is more controversial in vivo. Since power-laws fit
neuronal avalanches better than other alternative probability dis-
tributions (Klaus et al., 2011), their presence has been taken as
evidence for neuronal avalanches in vivo. In anesthetized cats
(Hahn et al., 2010) and awake monkeys (Petermann et al., 2009),
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power-law distributed avalanches have been found in the peaks of
local field potentials (LFP). However, LFP peaks are only statisti-
cally related to neuronal firing. In a study on awake and naturally
sleeping cats, no sign of avalanches were found in neuronal fir-
ing (Bedard et al., 2006), and the apparent power-law scaling of
LFP peaks could be explained as an artifact induced by the thresh-
olding procedure used to detect LFP peaks. Previous studies have
shown that even purely stochastic processes can display power-
law scaling when subjected to similar thresholding procedures
(Touboul and Destexhe, 2010). It was also stressed that power-
law statistics can be generated by stochastic mechanisms other
than SOC (Giesinger, 2001; Chialvo, 2010; Touboul and Destexhe,
2010). Similarly, if exponentially growing processes are suddenly
killed (or “observed”), a power-law at the tail ends will emerge
(Reed and Hughes, 2002). This case, would be similar to a non-
stationary Poisson processes, or combining Poisson processes at
different rates, a situation that is likely to happen in the nervous
system. Such scenarios can give rise to spurious power-laws.

These contrasting results correspond to different preparations
and recording techniques, single units or LFPs, or different species,
so that it is difficult to compare them. In the present paper, we
attempt to overcome these shortcomings by providing a systematic
analysis of both units and LFPs for different species and different
brain states.

MATERIALS AND METHODS
RECORDINGS
Cat
Recordings of local field potentials (LFPs) and action poten-
tials (APs) were obtained from motor cortex in 2 felines (M1
and approximately hindlimb region). Commercially obtained 96
electrode sputtered iridium oxide film arrays (Blackrock Microsys-
tems, Inc., Salt Lake City, UT, USA) were chronically implanted
and recordings were performed in the awake, unrestrained feline
(as described in Parker et al., 2011). Electrodes on the array were
arranged in a square with 400 micron spacing and 1 mm shank
length. LFPs and APs were recorded using a Cerebus data acqui-
sition system (Blackrock Microsystems). Spike sorting on AP data
was performed using the t-dist EM algorithm built into Offline
Sorter (Plexon, Inc.). All animal procedures were performed in
accordance with University of Utah Institutional Animal Care and
Use Committee guidelines.

We also compared these data with previously published mul-
tielectrode data on cat parietal cortex (Destexhe et al., 1999).
In this case, a linear array of 8 bipolar electrodes (sepa-
rated by 1 mm) was chronically implanted in cortical area 5–7,
together with myographic and oculographic recordings, to insure
that brain states were correctly discriminated (quiet wakeful-
ness with eyes-open, slow-wave sleep, REM sleep). Through-
out the text, this cat will be referred to as “cat iii” LFP sig-
nals were digitized offline at 250 Hz using the Igor software
package (Wavemetrics, OR, USA; A/D board from GW Instru-
ments, MA, USA; low-pass filter of 100 Hz). Units were dig-
itized offline at 10 kHz, and spike sorting and discrimination
was performed with the DataWave software package (DataWave
Technologies, CO, USA; filters were 300 Hz high-pass and 5 kHz
low-pass).

Monkey
Recordings from three monkeys were used in this study. Each
monkey was chronically implanted with 100-electrode Utah arrays
(400 m inter-electrode separation, 1.0 mm electrode length; Black-
Rock Microsystems, Inc., Salt Lake City, UT, USA). In two monkeys
(i) and (ii), we used recordings made during the performance of
motor tasks. The motor tasks involved moving a cursor to visually
presented targets in the horizontal plane by flexing and extending
the shoulder and elbow of the arm contralateral to the cerebral
hemisphere that was implanted. In monkey (iii), sleep recordings
were used to test avalanche dynamics. Monkey i was implanted
with one 96 electrode array in primary motor cortex (MI) and a
second 96 electrode array in dorsal premotor cortex (PMd) from
which recordings were made on 64 electrodes in each cortical area.
Monkey ii had an array implanted in MI from which 96 electrodes
were recorded and monkey iii had two arrays in MI and PMd from
which 96 electrodes were recorded in PMd cortex and 32 electrodes
were recorded in MI area. During a recording session, local field
potential (LFP) signals were amplified (gain, 5000), band-pass fil-
tered (0.3–250 or 0.3–500 Hz), and recorded digitally (14-bit) at
1 kHz per channel To acquire extracellular action potentials, sig-
nals were amplified (gain, 5000), band-pass filtered (250–7.5 kHz)
and sampled at 30 kHz per channel. For each channel, a threshold
was set above the noise band: if the signal crossed the threshold, a
1.6-ms duration of the signal – as to yield 48 samples given a sam-
pling frequency of 30 kHz – was sampled around the occurrence
of the threshold crossing and spike-sorted using Offline Sorter
(Plexon, Inc., Dallas, TX, USA). All of the surgical and behavioral
procedures performed on the non-human primates were approved
by the University of Chicagos IACUC and conform to the prin-
ciples outlined in the Guide for the Care and Use of Laboratory
Animals (NIH publication no. 86–23, revised 1985).

Human
Recordings were obtained from two patients with medically
intractable focal epilepsy using NeuroPort electrode array as dis-
cussed previously (Truccolo et al., 2010; Peyrache et al., 2012).
The array, 1 mm in length, was placed in layers II/III of the mid-
dle temporal gyrus with informed consent of the patient and with
approval of the local Institutional Review Board in accordance
with the ethical standards of the Declaration of Helsinki. This
array is silicon-based, made up of 96 microelectrodes with 400-
µm spacing, covering an area of 4 mm× 4 mm. Since the corners
are omitted from the array, the furthest separated contacts are
4.6 mm apart. Data were sampled at 30 kHz (Blackrock Microsys-
tems, Salt Lake City, UT, USA). The continuous recording was
downsampled to 1250 Hz to obtain LFPs. The dataset we analyzed
was devoid of any form of identifiable epileptic activity (such as
interictal spikes), and there was no seizure in the analyzed dataset.
The implantation site was included in the therapeutic resection
in both patients. For details on spike sorting, see Peyrache et al.
(2012).

AVALANCHE DETECTION
Avalanches are defined by temporally contiguous clusters of activ-
ity among the different electrodes, separated by periods of silence.
Either trains of neuronal action potentials (spikes) or LFP peaks
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can be analyzed for the occurrence of avalanches. There are two
empirical limits on bin duration. The smallest bin size is set by the
duration of the action potential. The upper boundary, is limited by
how many unique values of the aggregate ensemble activity occur
in a window. When the number of unique values approaches 1,
avalanche loses its definition, because there is no silent period left.
In the cat data, where there are 160 cells, we reach this limit at
a bin-width of 16 ms. So, we have stayed within the 1- to 15-ms
regime in which an avalanche could be well defined.

Spike avalanche
In each set of recordings, regardless of the spatial location of a
given electrode in the multielectrode array, its spiking activity was
put in the same pool with all other spikes recorded from other
electrodes of the same array. This ensemble trace was then binned
and coarse grained for different δt ranging from 1 to 16 ms in
2 ms steps. This created a series of bins containing the ensemble of
activity across all neurons for that δt. The sum of spiking in that
bin represents the total bin activity. The sum of all bin activities
between two quiescent bins, represents the avalanche size, which
was later used for statistical analyses. Notice that in the case of
the minimum δt= 1, avalanche size would range between 0 and
maximum number of neurons present as this bin approximates
the size unity of spiking period. Figure 1A shows the definition of
avalanche in spike series from human recordings.

LFP avalanche
Each LFP trace was first detrended through a least-squares fit
of a straight line to the data and subsequent subtraction of the
resulting function from all the sample points. After this detrend-
ing removed the mean value or linear trend from a LFP vector, it
was then normalized (Z score) to have a common reference frame
for discretization across channels, recordings, states, and species.
The z-scored LFP, was then discretized through a local maxima
peak detection. An optimizing small running average filter was
designed and 3 passes of the filter were applied to the data in order
to remove small spurious peaks in each LFP deflection. Next, by
comparing each element of data to its neighboring values, if that
sample of data was larger than both of its adjacent ones, that ele-
ment was considered as a local peak. Next, all the peaks were sorted
in descending order, beginning with the largest peak, and all iden-
tified peaks not separated by more than minimum peak distance
(of 3 samples) from the next local peak were discarded.

The threshold was fixed and defined as a multiple of the stan-
dard deviation (STD) of the LFP signal. Different thresholds were
tested, starting at 1.25× STD and increasing in 0.25 steps up to
5× STD for both negative and positive maxima. This procedure
was realized on each LFP channel, state, species (Figure 1B). Such
matrix of discrete events (for a given polarity and a given thresh-
old), was then treated the same way the spike matrix was used to
create avalanche vectors of quiescent and active periods.

LFP PEAK AND SPIKING RELATIONSHIP
Wave-triggered-average (WTA)
We used wave-triggered averaging (WTA) to analyze the differ-
ences in the relationships of spikes to nLFP vs. pLFP. In WTA,
the individual negative LFP peaks (nLFP) were used to epoch the

FIGURE 1 | Definition of avalanches. (A) Comparison of avalanche
definition for 8 vs. 16 ms binning; green vertical lines define the boundaries
of 16 ms binning; naturally, each 16 ms bin is composed of 2 independent
8 ms bin (depicted with red dotted lines). Accolades point to the avalanches,
separated by quiescent periods. Top, 8 ms avalanches and their sizes,
bottom, 16 ms avalanches and their corresponding size. Please note that
last avalanche continues after of the limits in this figure. (B) Negative local
maxima obtained from the grid of electrodes for a period of 10 s. Each row
represents negative maxima of a single LFP channel of a selected threshold
level ≥1.75×STD of the normalized LFP. The red dots in the bottom refer to
ensemble presence of nLFP maxima.

ensemble spike series. The epoched ensemble spike series were
normalized by the number of epochs (triggered by nLFPs). This
procedure was performed for the three different thresholds (low,
medium, and high) and the results were averaged across these
thresholds to obtain cross-threshold WTA percentage firing to
quantify the spike-nLFP relationship. An identical procedure was
applied to pLFPs. The red and blue solid lines in Figure 6 refer to
nLFP-spike and pLFP-spike WTA percentage firing, respectively.

Controls and randomization Methods
We used 4 methods of surrogate/randomization in order to evalu-
ate the statistical robustness of the comparative relation of spike-
nLFP vs. spike-pLFP. Each of the following 4 methods, was first
performed on all 3 chosen thresholds and then the results were
averaged to obtain the overall randomization effect.
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Poisson surrogate data. At the first step, we wanted to test
whether the observed nLFP and pLFP differences could be repro-
duced by surrogate spike series. For this type of control, first,
each individual channel’s spike rate was calculated. Then, using
a renewal process, a surrogate Poisson spike series for that channel
was created (matching the firing rate and duration of the exper-
imental data from that channel). Then, all Poisson spike series
(across all channels) were aggregated together to create the ensem-
ble spike series (similar to the experimental data). Next, for each
pLFP (or nLFP), the WTA of this Poisson aggregate series was cre-
ated. This procedure was repeated 1000 times and then averaged
across the 1000 trials. The results were close to a constant WTA
percent firing and did not fluctuate according to the timing of
the peak LFP that was used to epoch each individual WTA event.
This control test showed that the simple aggregate of surrogate
Poisson spikes can not reproduce the observed relation between
nLFP and spikes in the WTA or mimic the behavior of natural
peak(positive or negative)-induced percentage firing. This proce-
dure was also repeated with Poisson spikes without a refractory
period and provided similar results.

Random permutation. In a follow up test, we wanted to ver-
ify that randomizing the aggregate spike series by itself can not
mimic the observed the LFP-spike relation. For this procedure, we
performed a random permutation on the aggregate spike series
and then calculated the nLFP(and pLFP)-based WTA. This pro-
cedure was repeated 1000 times. The observations are similar to
the Poisson randomization, verifying that the nLFP peak is not
reproducible by randomization of spikes and the fluctuations of
WTA percentage firing are not results of random events.

Local jitter randomization of LFP peaks. Next, we wanted to
evaluate the effects of randomization based on the statistics of the
individual channel’s LFP peak times (before aggregating them into
the ensemble LFP peak train). First, each channel’s nLFP IPI (inter-
peak-interval) were calculated. Then these IPIs from all channels
were put in the same pool and the, 0.25, 0.5, and 0.75 quantiles
IPI for the aggregate nLFPs were extracted. Next, we created a nor-
mal distribution with 0.5 percentile as the mean, the interquartile
range (0.75− 0.25 quantile) as the standard deviation of the pdf,
and N events matching the number of aggregate nLFPs. This set
of values, were used to jitter nLFPs in the following manner. Each
sample from the aggregates nLFP peak series was shifted accord-
ing to one drawn sample (without replacement) from the nLFP
jitter pool. The direction of the shift was to the right if the drawn
jitter value was negative (and to the left for the positive value).
The magnitude of the shift was defined by the value of the jitter
itself. The same procedure was repeated for pLFPs. The results of
this randomization are shown in Figure 6A. As can be appreci-
ated, with this tightly regulated data-driven local randomization,
the structure of the WTA is preserved except for the peak curve
around 0 for the nLFP case.

Fixed-ISI circular shift of spikes. In this procedure, we kept the
ISI (inter-spike interval) of the aggregate spike series as well as
the IPI (inter-peak intervals) of the nLFP and pLFP intact but
randomized the relation between the aggregate spike and aggre-
gate peak series. In each of the 1000 trials, a circular shift with

the magnitude chosen randomly between 1 and the range of the
ISI, was performed. The results, shown in Figure 6B, show that
by destroying the relation between ensemble spikes and ensemble
peaks while preserving their internal structure, the observed fluc-
tuations and most importantly, the tightly bound relation of nLFP
and spikes, is lost.

TESTING POWER-LAW DISTRIBUTION IN EMPIRICAL DATA
For testing the power-law behavior, usually a simple least square
method is applied to fit a power-law on the data. If such fit in a log-
log scale, follows a straight line, the slope of the probability density
function (PDF) line is taken as the scaling exponent. Such method
is widely practiced but is highly inaccurate in its estimation of true
existence of power-law in a given dataset. It has been argued that,
for obtaining statistically sound results in estimating power-law in
empirical data, one has to rely on rigorous statistical methods. In
a detailed analysis of the problem (Newman, 2005; Clauset et al.,
2009), it was proposed that the cumulative distribution function
(CDF) is much more accurate to fit the power-law exponent, as
well as to identify if the system obeys a power-law.

If the initial distribution of the PDF is power-law, i.e.,

p (x) = Cx−α ,

then CDF is defined as

Pr (X > x) = C

∫ inf

x
x ′−αdx ′ =

C

α− 1
x−(α−1) .

Thus, the corresponding CDF also behaves as a power-law, but
with a smaller exponent

α− 1

being 1 unit smaller than the original exponent (Newman, 2005).
Generally, in fitting the power-law to the empirical data, all the

initial values (left hand of the distribution histogram, i.e., smallest
sizes of avalanches) are included in the used decades to obtain the
slope of the fit (scaling exponent α). The inclusion of these initial
parts may cause significant errors, and should be removed (Gold-
stein et al., 2004; Bauke, 2007; Clauset et al., 2009). Thus, before
calculating the scaling exponent, it is essential to discard the values
below the lower bound (Xmin). It is only above this lower bound
that, a linear PDF or CDF can be reliably used for estimation of
the scaling exponent. There are different methods for proper esti-
mation of the Xmin. We used a Kolmogorov-Smirnov (KS test)
optimization approach that searches for the minimum “distance”
(D) between the power-law model and the empirical, where for
Xi>Xmin, “D” is defined as

D = max|S (x)− P (x) |,

S(x) the CDF of the empirical data and P(x) the CDF of the
best matching power-law model. The Xmin value that yields the
minimum D, is the optimal Xmin. The Xmin is used in a maxi-
mum likelihood estimate (MLE) of power-law fit to the CDF of
the avalanches in order to obtain the scaling exponent. This fitting,
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however, does not provide any statistical significance on whether
the power-law is a plausible fit to the data or not. After the esti-
mation of Xmin and the exponent, we generated N (N= 1000)
power-law distributed surrogate data with the exact same features
of Xmin and exponent. Each of these surrogate series are then fitted
with power-law and KS-statistics of distance D (to the surrogate
power-law), is performed. The fraction of N that the resultant sta-
tistics was bigger than the one obtained from the empirical data,
comprises the p-value. If p-value 60.1, the power-law is ruled out.
However, even if p-value is larger than this threshold, the data is
not necessarily guaranteed to be generated by a power-law process
unless no better distribution is found to estimate the properties of
the data. For this, the alternative test was adapted as following.

Generating power-law distributed random numbers with high
precision
It is essential to use high precision and reliable algorithms to
generate random numbers from a given probability distribution;
otherwise the statistical tests based on such distributions may be
erroneous. For initializing the generator with an “Integer Seed,”
we adapted the reliable Mersenne Twister algorithm (known as
MT19937AR) with full precision of Mersenne prime (219937

− 1)
(Matsumoto and Nishimura, 1998). This algorithm provides a
proper method for running Monte Carlo simulations. After ini-
tialization, “Transformation algorithm” was used to generate the
desired distribution (Press et al., 2007a; Clauset et al., 2009). All
the random number generations and analyses were performed on
a 16-core Intel 48 GB Linux platform equipped with 448 core
Tesla C2050 GPU with double precision of 515 Gflop and single
precision of 1.03 Tflops. The custom code was based on Matlab
(Mathworks) and CUDA (NVIDIA) wrapper Jacket (Accelreyes)
for parallel computing on GPU.

ALTERNATIVE FITS
The power-law fit was compared with alternative hypotheses to
test which distribution best fits the data. The alternatives included
exponential distribution (as predicted by a Poisson type stochastic
process), “Discretized log-normal distribution” (which is repre-
sented as a linear fit in log-normal scale), as well as fit of “Discrete
exponential distribution” nature. These fits had two general types
of simple exponential, defined as: f(x)= aexp(bx) as well as sum
of exponential set as: f(x)= aexp(bx)+ cexp(dx) In each case,
residual analyses, goodness of fit as well as confidence and pre-
diction bounds were used to evaluate the properties of each fit vs.
power-law. In case of a good fit model, Residual, defined as the
difference between data and fit, should approximate random error
and behave randomly.

Goodness of fit comparison of exponential models
A measure of “goodness of fit,” R-square, is the ratio of the sum of
squares of the regression (SSR) and the total sum of squares (SST).
This measure, represents the square of the correlation between the
observed and predicted response values, and indicates what per-
centage of the variance of the data is explained by the chosen fit
(values of R-square range from 0, worst fit, to 1, the best pos-
sible fit). If we have SSR as: SSreg =

∑
i (ŷi − ȳ)2, and SSE as:

SSerr =
∑

i (yi − ŷ)2, and SST as: SStot =
∑

i (yi − ȳ)2, where,

yi , ȳ , ŷ are the original data values, their mean and modeled values
respectively. Then, it follows that:

R2
= SSreg/SStot = 1−

SSerr

SStot
.

Correction by “total degree of freedom” and “error degree of
freedom,” defines adjusted R-square:

R̄2
= 1−

(
1− R2) N − 1

N −M − 1
= 1−

SSerr

SStot

dft
dfe

.

where “N” is the sample size, and “M” is the number of fitted
coefficients (excluding constants). Usage of R̄2 in the comparison
of “simple exponential” and “sum of exponential” is warranted
by the fact that by an increase in the fitted number of the com-
ponents, from one model to the other, the degrees of freedom
changes. Both R2 and R̄2 measures were estimated through non-
linear least square optimization of exponential curve fitting. In the
optimization process for estimating the coefficients of the models,
we adapted Levenberg-Marquardt algorithm with a tolerance of
10−8 (Press et al., 2007b).

Test of linearity in log-normal scale
Linearity in log-normal scale, is a hallmark of an exponen-
tial family process. In order to test the linearity of the PDF in
log-normal scaling, we used Root mean square error (RMSE),

RMSE(θ̂) =

√
MSE(θ̂) where MSE is: SSerr

dfe
. This measure ranges

from 0 to 1, where closer value to 0 is an indicator of a better fit.
This test was performed by fitting y = log [P(x)] with a lin-

ear least square first degree polynomial. As shown in Figure 13C,
sometimes, the initial values in the left tail may slightly devi-
ate from a simple 1st degree polynomial. Therefore, we tested
whether the linearity was improved or worsened when the data
range was reduced to above some Xmin. For doing so, we adapted a
more stringent regression, bi-square robust 1st degree polynomial
(Press et al., 2007b). This method is an iteratively reweighted least-
squares, based on R̄2, and assigns less weight to the values farther
from the line. This procedure was repeated after excluding conse-
quent single values from the left tail (up to 20% of the points). For
each new shortened series, the RMSE (based on bi-square method)
was re-calculated. The rational behind using RMSE for testing the
linearity range in these datasets (with variable N) is that when a
distinct point is removed from the dataset, 2 other reductions fol-
low: (a) the sum of squares and (b) degrees of freedom. Thus, if
after limiting the range, the error remains the same, SSerr would
increase. Similarly, when the error is significantly reduced, SSerr

would increase. Therefore, any change in the error, should only
be considered significant if it is compensated by the amount of
change in the degree of freedom. For quantifying this, we defined
two measures for linearity improvement after limiting the data
above Xmin. The first measure, “overall RMSE change” (oRMSE),
was defined as:

oRMSEi =
RMSEn − RMSEn−i

RMSEn
∗ 100.
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In parallel, “relative RMSE change” (rRMSE), was defined as:

rRMSEi =
RMSEn−i+1 − RMSEn−i

RMSEn
∗ 100,

where RMSEn was the RMSE of the full length data. Next stan-
dard deviation of the, these measures were normalized to their
maximum (noRMSE and nrRMSE) and a 3rd dimension was cre-
ated by the distance of each pair (noRMSEi, nrRMSEi), from the
geometrical diagonal defined as

D =
det [(Q2− Q1) · (P − Q1)]

‖(Q2− Q1)‖

where P was the coordinates of a point (noRMSEi, nrRMSEi)
while Q1= [0 0] and Q2= [1 1] were the vertices of the geo-
metrical diagonal of the RMSEs pair space. The point that had
the maximum “(1−Di)+ noRMSEi+ nrRMSEi” (this value can
range between 0 and 3), was taken as the optimal linearizing short-
ening index (Xmin; Figure 13D). Next, we fitted all data ranges
(from N sample points to N −Xmin) with the two exponential
models as described above.

RESULTS
In this study, we used data from multielectrode recordings in 3
species: cat motor cortex (cats i and ii with a 96 channel multielec-
trode array in primary motor cortex, hindlimb area), cat parietal
cortex (cat iii, 8 bipolar electrodes), monkey motor cortex (three
monkeys with a 64 or 96 recordings from 96 channel multielec-
trode arrays in motor and/or premotor cortex), and humans (2
patients with a 96 multielectrode array in middle temporal gyrus).
In the following, we briefly address definition of avalanche, then
describe the results of power-law analyses on spike avalanche,
state-dependence, regional differences, and polarity-dependence
of LFP maxima avalanche. At the end, we briefly discuss alternative
fits to the data.

AVALANCHE DEFINITION
Figure 1 illustrates the definition of avalanche for discrete (spike)
and continuous (LFP) data, as they are used in this study. For both
spikes and LFP, we used bins of 1–15 ms (in 2 ms steps) for defining
the quiescent vs. active periods. Avalanches are defined by contigu-
ous bins of non-zero activity, separated by periods of quiescence
(empty bins). The size of the avalanche is defined as the sum of all
activities (spikes or LFP peaks) within that active period. Thus, the
avalanches depend on the bin size (as illustrated in Figure 1A for
spikes). For LFPs, we first discretized the continuous data based on
its local maxima. Both positive and negative maxima were exam-
ined in our study. For each polarity, 17 levels of thresholds were
chosen (see Methods for details). After discretization, the obtained
matrix (Figure 1B) was used for the same binning and avalanche
definition as used for spike series.

POWER-LAW FIT
It has been shown that that CDF provides a better measure than
PDF as it avoids erroneous measures at the far end of the dis-
tribution tail of probability curve (Newman, 2005; Clauset et al.,

2009). It is also necessary to exclude the values below the valid
lower bound, or else the calculated coefficient could be highly
biased (Clauset et al., 2009). In each of the following estimates
of power-law distribution, based on the methods described pre-
viously, we adapted the following steps on analyzing the CDF of
avalanches: Values above a given Xmin are used in a maximum
likelihood estimate (MLE) of the exponent α. For each CDF, the
proper lower bound of Xmin is selected using a KS test. We also
used 1000 semi-parametric repetitions of the fitting procedure for
obtaining estimates of uncertainty and goodness of fit.

AVALANCHE ANALYSIS FROM SPIKES
Next, we studied whether the spike avalanches follow power-law
distributions.

Avalanche analysis in wakefulness
We first studied avalanche dynamics in awake resting recordings
from cats and humans. As depicted in Figure 2, neither of these
species, showed a dominant power-law behavior in their spike
avalanche size distribution. The average scaling exponent of awake
recordings for the decades that could be considered to follow
power-law (i.e., >Xmin), was to high to be related to SOC sys-
tems (see Tables 1 and 2; Figures 2i,ii,iii). These values not only
are distant from those of 1/f noise, but also only apply to partial
parts of the CDF (cumulative distribution function) of avalanche
sizes. These lack of clear power-law characteristics is shown with
Xmin lower boundary (green dotted lines in Figure 2). Only values
above Xmin could “statistically” follow a power-law regime and as
mentioned, even in those cases, the exponent values were too high
to be considered a signature of SOC systems. It is important to
note that the CDF representation is cumulative, and thus the left
tail is not excluded from the data but its influence is shifted to the
right (see details in Clauset et al., 2009; see also Methods).

Interestingly, representing the size distributions in log-linear
scale revealed a scaling very close to linear for all species (Figure 3),
indicating that avalanches defined from spikes scale close to an
exponential, as would be predicted by a Poisson type stochastic
process. This conclusion was also reached previously by analyzing
units and LFP recordings in cats (Bedard et al., 2006). Also, as can
be seen in the inset of Figure 2A, the same analyses done on the
awake recording from the parietal cortex (albeit spatially sampled
at only 8 electrodes) shows similar scaling behavior.

In addition to wake resting recordings, we also considered
recordings made while monkeys engaged in cognitive motor tasks.
Similar to awake resting recordings in cat and man, the lower
bound was variable between different binning sizes, thus exclud-
ing parts of the “invalid” initial avalanche sizes, which are usually
used as evidence of existence of power-law (Beggs and Plenz, 2003;
Petermann et al., 2009; Klaus et al., 2011). The inclusion of these
initial parts may cause errors, and were removed here; however,
their cumulative effects are still present in the tested regimen above
Xmin of the analyzed“cumulative distribution function”(Goldstein
et al., 2004; Newman, 2005; Bauke, 2007; Clauset et al., 2009).
Above the lower bound value, all the CDF curves showed signifi-
cant high exponent values. Interestingly, the MI (in both monkeys
A and B) had similar mean to PMd (Table 1; Figures 2D–F),
suggesting similar dynamics in the two areas.
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FIGURE 2 | Avalanche analysis on spiking activity during wakefulness. In
idle awake (A). Cat i (96 electrode array) and Cat iii (inset, 8 electrode array).
(B) Human i (96 electrode array). (C) Human ii (96 electrode array). Different
line colors refer to different bin sizes as shown in the legend. The lower bound
(Xmin, shown in green dotted line), shows that the CDF of avalanche size, only
partially, may follow power-law distribution. Even in such cases, the

exponents had very high values, well above the criticality regime that is
hypothesized for 1/f noise. (D–F) Show the same type of curves for monkeys
engaged in cognitive motor task (96 electrode array; augmented with a 64
electrode array). Same pattern is observed; it also seems MI has slightly
higher values than PMd in the plausible power-law regime. For the mean/STD
exponent values, seeTables 1 and 2.

Table 1 | Summary spike avalanche.

Species Loc State CDF exponent Pval gof

Monkey i MI Awake 3.4413±0.7616 0.0419±0.1152 0.0442±0.0216

Monkey i Pmd Awake 4.1660±0.6590 0.1130±0.2140 0.0180±0.0050

Monkey ii MI Awake 4.6250±0.4730 0.4550±0.3600 0.0330±0.0120

Monkey iii MI SWS 4.5560±0.7980 0.0030±0.0100 0.0220±0.0080

Monkey iii Pmd SWS 3.7760±0.8660 0±0 0.0430±0.0170

Cat ii MI Awake 2.8412±1.2184 0.3056±0.3844 0.0599±0.0368

Cat iii Parietal Awake 3.1410±0.8720 0.2010±0.3680 0.0270±0.0180

Cat iii Parietal SWS 4.2110±0.7930 0.3290±0.3620 0.0350±0.0140

Cat iii Parietal REM 1 3.3240±0.8150 0.2990±0.2170 0.0290±0.0110

Cat iii Parietal REM 2 3.4050±0.8250 0.4250±0.4470 0.0230±0.0140

Human i Temporal Awake 3.5490±0.8790 0.3870±0.3650 0.0210±0.0080

Human i Temporal SWS 1 3.6340±0.6410 0.3790±0.3150 0.0250±0.0100

Human i Temporal SWS 2 3.2550±0.5770 0.1710±0.2670 0.0330±0.0150

Human i Temporal REM 1 3.3740±0.8560 0.0930±0.1720 0.0300±0.0090

Human i Temporal REM 2 3.6430±0.5540 0.0960±0.1950 0.0320±0.0170

Human i Temporal Awake 3.9200±0.7970 0.0080±0.0230 0.0090±0.0070

Human i Temporal SWS 3.8950±0.7630 0.0070±0.0140 0.0100±0.0070

Cross species summary of spike avalanche.

Avalanche analysis during natural sleep
It has been claimed that wakefulness may not be the best state to
display SOC, and that avalanches may be more naturally related
to brain states with oscillations, and slow-wave oscillations in par-
ticular (Hahn et al., 2011). In contrast to this, a previous study
in cat found that like wakefulness, slow-wave sleep (SWS) did
not display power-law scaling as defined from spike avalanches

(Bedard et al., 2006), but this latter study suffered from a limited
spatial sampling. To further investigate the issue, we have exam-
ined SWS and Rapid Eye Movement (REM) sleep periods with
more dense sampling of spike activity. Figures 4 and 5, show the
analyses for cat, human i and ii as well as monkey iii (MI and
PMd) for SWS and REM periods. In none of these cases we, see
clear sign of power-law scaling. In all cases (except human ii), the
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variability of lower bound between different bin sizes is robust. All
the curves represent “partiality of power-law” with high exponent
values. During SWS, cat, human subjects, and monkey iii (MI and
PMd) all manifested either lack of significant power-law scaling,
or had such higher exponent values that makes it highly unlikely
for power-law to be the generating process of spike dynamics

Table 2 | Detailed awake spike avalanche.

Loc Bin size (ms) CDF exponent Pval gof

MI 1 2.5 0 0.036

MI 3 5 0.008 0.020

MI 5 3.36 0 0.029

MI 7 3.63 0 0.039

MI 9 3.03 0 0.047

MI 11 3.83 0.327 0.034

MI 13 3.35 0 0.060

MI 15 2.83 0 0.089

PMd 1 4.1 0 0.006

PMd 3 2.81 0 0.021

PMd 5 5 0 0.018

PMd 7 4.85 0.061 0.017

PMd 9 4.03 0 0.022

PMd 11 4.21 0.018 0.024

PMd 13 4.25 0.216 0.019

PMd 15 4.08 0.61 0.017

Monkey i detailed table.

(Table 1). Similarly, in REM periods, there was no evidence for
power-law scaling in human i’s first and second REM episodes.
Together, with Cat REMs’ high exponents values, power-law scal-
ing appears to be an unlikely candidate to describe the statistics of
neural firing (Table 1). Taken together, these various tests all based
on proper statistical inferences, show that spike avalanches do not
follow power-law scaling, for any brain state or sampling density.

Detailed numerical values for spike avalanche CDF exponents
and their goodness of fit are provided in Tables 1 and 2.

AVALANCHE DYNAMICS FROM LOCAL FIELD POTENTIALS
Next,we investigated the occurrence of avalanche type of dynamics
from the local field potentials, which were simultaneously recorded
with unit activity, in all datasets.

Relation between LFP peaks and spiking activity
Calculation of neuronal avalanches from LFP data is based on
the assumption that statistically speaking, in comparison with the
positive LFPs (pLFP), the negative LFP (nLFP) peaks are more
strongly related to neuronal activity (e.g., see Destexhe et al., 1999
and references therein). Indeed, the 8-electrode cat LFP data ana-
lyzed here show such a relation (Destexhe et al., 1999; Touboul and
Destexhe, 2010). To further test this relation, we also examined the
simultaneous LFP and unit recordings in the ensemble recordings
in cat,man,and monkey. We used a wave-triggered-average (WTA)
procedure, where the ensemble of nLFPs were used to epoch the
ensemble spike activity. Averaging across these WTAs across dif-
ferent thresholds, show that there is indeed a weak relationship
between nLFP and spiking (Figure 6A). However, repeating the

FIGURE 3 | Spike avalanche distributions in log-linear representation.
(A–D) Show results for different subjects. Different line colors refer to different
bin sizes as shown in the legend. An exponential process has a linear trend in

log-linear scale. Spike avalanches for all coarse graining levels, showed a linear
trend. Please notice that bin sizes 11 and 15 are not shown because for the
clarity in the line plot, but showed similar linear trend in this scale (not shown).
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FIGURE 4 | Avalanche analysis of spiking activity during slow-wave
sleep. (A) Cat iii, (B) Human i, (C) monkey iii MI, and (D) monkey iii
PMd. Different line colors refer to different bin sizes as shown in the
legend. In parallel to awake dynamics (Figure 2), there is no sign of

criticality, the curves follow different partial power-law with high
exponents and variable lower bound values. The avalanche dynamics do
not show a state-dependent trend. For the mean/STD exponent values,
seeTable 1.

same procedure for positive LFP (LFP) peaks, did not display any
relation (Figure 6B), in agreement with the same analysis in cats
(Touboul and Destexhe, 2010). Through four different types of
control and randomization, we show that the relation between
nLFP and spike is robust and is not attributable to randomness of
the spiking events or spurious fluctuations in the LFPs. For details
of these control/randomization, see methods and Figure 6. This
fundamental difference between nLFP and pLFP peaks provides a
very important test to infer if a given power-law observation from
LFPs is related to the underlying neuronal activity, as we will, see
below.

nLFP avalanches
Similar to previous studies, we investigated the avalanche dynam-
ics from nLFPs. The nLFPs were detected using a fixed threshold,
defined as a multiple of the standard deviation (STD) of the LFP
signal (see Methods), and several thresholds were tested. In the
following, we use “high,” “medium” and “low” thresholds, which
correspond to 2.25, 1.75, and 1.25 multiples of the standard devi-
ation, respectively. As shown in Figures 7 and 8, the distributions
defined for avalanches at different bin sizes and thresholds seem
to display power-law scaling, both for human and monkey. This
result seems to be in agreement with similar analyses done on
awake monkey (Petermann et al., 2009). However, plotting the
same data as CDF revealed that the scaling as power-law was very
narrow (Figure 9). While Monkey ii displayed apparent power-law
over more than one decade, the other cases from cats and humans,

did not display any convincing power-law scaling. For details of
nLFP avalanches for an example subject, and its comparison with
pLFP avalanches, see Table 3. One can also note that in some of
the CDFs (and their counterpart PDF), there is a possibility that
the distribution can be segmented into two regions each covering
certain decades of avalanche size. In such cases, relying on a single
scaling exponent to describe the totality of the functional dynamics
of the network does not seem adequate. This could be an indication
that the space of the distributions is not uniform and the underly-
ing mechanisms could be of metastability nature (Mastromatteo
and Marsili, 2011). In such scenario, interaction with the external
world could push the system from the “currently most stable state”
to a new “most stable state.” Such constant changes may lead to
the formation of non-uniform distribution of the neural events
at different temporal scales. Therefore it is essential to emphasize
that, in some cases, one scaling exponent may not be sufficient to
describe the complexity of the spiking or oscillations.

pLFP avalanches
Next, we investigated the avalanche dynamics of positive LFP
peaks, which, as we have seen above, is not statistically related to fir-
ing activity (Figure 6). Similar to nLFP peaks, the pLFP avalanches
defined for human wakefulness did not display power-law scaling
(Figure 10). Both nLFP and pLFP had similar CDF of avalanche
size across different species and cortices. The example shown in
Figure 10 (awake human) shows that across different thresholds,
both nLFP and pLFP had variable lower bounds and high scaling
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FIGURE 5 | Avalanche analysis of spiking activity during REM sleep.
(A) Cat iii REM episode 1, (B) cat iii REM episode 2, (C) human i REM episode
1, (D) human i REM episode 2. Different line colors refer to different bin sizes

as shown in the legend. Similar to awake and SWS, the lack of criticality,
variability through different coarse graining thresholds, and lower bounds is
the universal finding. For the mean/STD exponent values, seeTable 1.

exponents for the region of the data that could statistically be con-
sidered for power-law properties. Moreover, the absence of any
region with clear linear scaling in the logarithmic coordinates fur-
ther confirms that there is no power-law scaling in this case. For
details, see Table 3.

Avalanches in different cortical regions
In the cases that we had simultaneous, dual array multielectrode
recordings from PMd and MI, the analyses showed that these two
cortical areas do not show signs of criticality but have slight differ-
ences in their exponent values for MI and for PMd (Tables 1 and 2;
Figure 11). Such findings show that the fact that these two cortices
directly interact with each other, and one acts as input and one as
the output of motor processing unit, is reflected in their slightly
different CDF features. Thus, two different cortical areas seem to
display similar features, although no sign of power-law scaling.

STATISTICAL ANALYSIS OF THE AVALANCHE DISTRIBUTIONS
Goodness of fit
Given data x and given lower cutoff for the power-law behav-
ior Xmin, we computed the corresponding p-value for the
Kolmogorov-Smirnov test, according to the method described in
Clauset et al. (2009). See methods for details. The results are given
in Tables 1, 2, and 3 (“gof” columns).

Avalanche size boundaries
Imposing lower or upper bounds when fitting avalanche distri-
butions can greatly affect the outcome of the fit (Clauset et al.,

2009). In many cases, the analyses have been limited to the lower
boundary of avalanche size= 1 and Xmax of N, where N is the
number of channels. Using such bounds improves the fitting of
the data by power-law compared to other distributions, as con-
firmed by KS-statistics (Klaus et al., 2011). The pitfalls of such an
approach are two-fold: (a) the lower boundary is set to 1, therefore
the avalanches that are below the acceptable lower bound of Xmin

are erroneously fitted with the power-law, thus reducing the reli-
ability of the fit while producing mis-estimated scaling exponents
(see Clauset et al., 2009 for details of lower bound selection). (b)
Xmax is set to the maximum active channels, and any return to
a given channel is counted in the avalanche, but the maximum
allowed avalanche size is limited to N, based on the argument that
the large avalanches are infrequent and their inclusion implies
misfit. This type of approach, limits the number of avalanches
to an extreme degree and introduces a bias. Below we investigate
this bias.

Avalanche size distribution and upper boundary limits
Figure 12 tests the effect of enforcing an upper boundary to
the avalanche analysis. The red color shows the excluded (satu-
rated) avalanches enforced by limiting the Xmax to N (number
of independent measures), while cyan represents the acceptable
avalanches below this upper threshold. This figure shows that set-
ting the Xmax to a cutoff value of N, produces variable biases based
on the bin size. Importantly, in simultaneously recorded regions,
the majority of avalanches will be included in one case (like in
PMd as shown in Figure 12A) but not in the other (like MI, as
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FIGURE 6 | Relation between unit firing and LFP peaks in wakefulness.
nLFP (red) and pLFP(blue)-based wave-triggered-average (WTA) of
percentage unit activity, showing that the negative peaks have closer
association with an increase of neuronal firing. (A) Tightly regulated local
jitter of nLFP peaks destroys the large nLFP peak. Inset shows the zoom
around 0. (B) Preserving the internal structure of aggregate spike train and
ensemble LFP peaks, but destroying the relation between the two leads to
the disappearance of the nLFP peak. See text for details of randomization
and controls. The WTA traces in this figure are from Human i, (based on
183127, 98520, and 47451 nLFP and 158737, 79225, and 36020 pLFP peaks
for low, medium, and high threshold respectively.)

depicted in Figure 12B). Such discrepancy emphasizes that setting
a cutoff will necessarily introduce a bias and causes variable results
from region to region and from bin size to bin size.

Comparison of exponential and power-law fit: Model
Mis-specification and lower boundary problem
It has been argued whether neuronal avalanches are better fitted
by an exponential or power-law distribution. Here we tested two

aspects, exponential vs. power-law comparison, as well as the effect
of setting a lower boundary to the fit. It has been shown that defin-
ing a proper lower boundary improves the maximum likelihood
that the distribution could be fit by a power-law (Clauset et al.,
2009). In agreement with this, Klaus et al. (2011) used a lower
boundary of 1 and showed that using KS-statistics, the power-law
indeed provides a better fit to the data in comparison to expo-
nential distribution. Here, we systematically tested whether such
practice would return erroneous results in avalanche analysis. The
results shown in Figures 13A,B, are from cat spikes data. For
each bin size, we first defined the optimal lower boundary after
Clauset et al., 2009; see Methods), called Xmin. We started with a
lower boundary set to 1, and reduced the distribution of avalanche
data gradually up to Xmin. For each newly produced set, we calcu-
lated the empirical CDF (ECDF) as well as the provisional fitted
probability’s CDF (based on direct maximum likelihood) for both
exponential as well as power-law. The results for a sample bin size
are shown in Figure 13A. Power-law at the lower boundary of 1
provides a bad fit. However, overall, power-law outperforms the
exponential fit, specially after limiting the range of the data by
increasing the lower boundary. The best power-law fit is obtained
when the lower boundary approaches Xmin.

This finding matches the results of the KS test (based on Clauset
et al., 2009) as we report in this manuscript. However, from our
analyses, we know that when we reach the best power-law fit, the
estimated scaling exponents are too high for any known natural
system to follow a self-organized criticality regime. Therefore, we
have a situation where either one gets unreliable but desired scaling
exponent by setting the lower boundary to 1, or one obtains reli-
able but undesired scaling exponent by setting the lower boundary
to Xmin > 1.

Next, we quantified the goodness of fit with a more rigorous
approach than the simple KS test. If the parametric CDF is close
to the probabilities from the ECDF, then the depicted line should
approach the diagonal (1:1) line with minimal drift from it. For
quantifying this, we measured the integral of the distance of each
point on the p-p curves from the 1:1 diagonal line. This value
should be zero in a perfect fit; its non-zero value shows departure
from a perfect fit. Figure 13B shows the results for all bin sizes.
Similar to Klaus et al. (2011), the power-law provides a better fit
in comparison to exponential. However, there are two aspects that
can not be ignored for this condition to be true: (a) the distance
improves only as we tighten the lower bound criteria to be close to
Xmin, but it does not mean that this is a proper fit; (b) there is no
rule of thumb for such an improvement; in almost all of the cases,
a linear relationship in the normal probability plot distribution of
the distance was not found. This shows that power-law provides a
better fit than the exponential distribution, but that both fits are
not satisfactory. We consider alternative distributions below.

Alternative distributions for avalanche dynamics
Although previously, at the microcircuit scale, some studies have
asserted the existence of criticality as a universal characteristic of
neural dynamics in both spike and LFP avalanches (Beggs and
Plenz, 2003; Ribeiro et al., 2010), other evidence suggest that
same behavior can also be observed through stochastic processes
(Bedard et al., 2006; Touboul and Destexhe, 2010). In this study,
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FIGURE 7 | Avalanche analysis in awake monkey LFPs in logarithmic
representation. A power-law process has a linear trend in log-log scale.
LFP (negative or positive) maxima avalanches for all coarse graining
levels, as well as all thresholds, showed a linear trend. Upper row (A–C),
shows the nLFP for low, mid, and high thresholds respectively. Lower

row (D–F), shows the same for pLFP. Please notice that bin sizes 11 and
15 are not shown because for the clarity in the line plot; however, they
too, also showed a very clear linear trend in this scale. Such trend is
necessary but not sufficient for a process to be power-law. See text and
Figure 9.

FIGURE 8 | Avalanche analysis in awake human LFP in logarithmic
representation. A power-law process has a linear trend in log-log scale.
LFP (negative or positive) maxima avalanches for all coarse graining
levels, as well as all thresholds, showed a linear trend. Upper row (A–C),
shows the nLFP for low, mid, and high thresholds respectively. Lower

row (D–F), shows the same for pLFP. Please notice that bin sizes 11 and
15 are not shown because for the clarity in the line plot; however, they
too, also showed a very clear linear trend in this scale. Such trend is
necessary but not sufficient for a process to be power-law. See text and
Figure 9.

after rigorous testing, we showed that the avalanches do not follow
power-law as a universal feature. Thus we also tested whether an
alternative probability distribution could provide a better estimate
for the experimental observations.

We first tested a simple exponential fitting of the spike
avalanches, by fitting straight lines in a log-linear plot. As seen
from Figure 13C, a linear fit (“exp1”) can only fit part of the
data, as the initial points (for small size) do not scale linearly. In
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FIGURE 9 | Avalanche analysis based on LFP negative peaks in
wakefulness. (A) Cat ii (96 electrode array) and Cat iii (inset, 8 electrode
array), (B) Human i, (C) Human ii, (D) Monkey ii MI. In all cases, different
binnings lead to variable lower bound and scaling exponents. Lack of linear

trend in CDF shows that the observed linear trend in log-log scale, as
shown in Figures 7 and 8, are not sufficient for showing that avalanche
dynamics are power-law processes. For the mean/STD exponent values,
seeTable 3.

detection of the lower bound of linearity, i.e. (Xmin), the robust
bi-square method is more stringent than simple least square fits
and leaves behind more data points for exponential fitting (see
different lines in Figure 13C; errors based on bi-square are plotted
in Figure 13D; see Methods for details on linearity optimization).

Next, we tested a multiple exponential fitting of the data. The
rationale is that two exponential processes may represent dif-
ferences in two populations of cells, for example excitatory and
inhibitory cells. The fit resulting from a “sum of exponential
processes” was extremely good in minimum residual and reliable
prediction bounds for the data (Figure 13E). This “sum of expo-
nential” model (“exp2”) gave a very good performance in both full
length (dark blue) and reduced above “Xmin” (red). The “simple
exponential” model (exp1) reaches a very good fit only for the
reduced set (cyan) but not for the full length of the avalanches
(light brown). For comparison of “exp1” and “exp2” on differ-
ent spike avalanches, with and without “linearity improvement,”
see Figure 13F. Overall, it seems that both exp1 and exp2 exhibit
comparably high values of goodness of fit for the reduced sets.
However, only the double exponential fit was able to fit the entire
dataset.

DISCUSSION
In the present paper, we have analyzed and compared the avalanche
dynamics obtained from multielectrode recordings of spikes and
LFPs, for three species, cat, monkey, and human. In each case,
we used recordings exclusively made in non-anesthetized brain
states, including quiet and active wakefulness, SWS (slow-wave

sleep), and REM (Rapid eye movement). The primary result of
our analysis is that there is no power-law scaling of neuronal
firing, in any of the examined recordings, including “desynchro-
nized” EEG states (wakefulness), SWS, and REM sleep. All species
consistently showed distributions which approached exponential
distributions. This confirms previous findings of the absence of
power-law distributions from spikes in cats (Bedard et al., 2006),
and extends these findings to monkeys and humans. An obvious
criticism to that prior study is that a set of 8 electrodes is too low
to properly cover the system, and the absence of power-law may
be due to this subsampling. We show here that the same results are
obtained when a significantly higher density of recording is used,
confirming the absence of power-law.

In contrast, avalanche dynamics built from nLFPs displayed
more nuanced results. In some cases, the avalanche size distrib-
utions appear to draw a straight line in log-log representations,
but the more reliable CDF based tests did not show clear evi-
dence for power-law scaling. Indeed, statistical tests such as the
KS test did not give convincing evidence that these data are uni-
versally distributed according to a power-law. More importantly,
while nLFP are related to firing activity, we showed that a sim-
ilar behavior was also observed for pLFP peaks. The avalanche
analysis from positive peaks displayed similar results as for neg-
ative peaks, although positive peaks displayed a weaker statistical
relation to firing activity. Using 4 types of control/randomization
we provide very robust evidence that the fundamental differences
between nLFP and pLFP are not attributable to random behavior
of spikes or LFP peaks. Yet still, the discretized thresholded LFPs,
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Table 3 | Detailed awake LFP avalanche.

Bin size (ms) Polarity Threshold CDF exponent Pval gof

1 Neg Low 1.71 0 0.019

3 Neg Low 2.99 0.056 0.051

5 Neg Low 2.55 0 0.052

7 Neg Low 2.84 0.074 0.052

9 Neg Low 2.42 0 0.053

11 Neg Low 2.37 0 0.059

13 Neg Low 2.43 0 0.054

15 Neg Low 2.36 0 0.052

1 Neg Mid 1.83 0.002 0.015

3 Neg Mid 2.79 0.425 0.040

5 Neg Mid 2.84 0.55 0.042

7 Neg Mid 2.81 0.376 0.048

9 Neg Mid 2.84 0.345 0.050

11 Neg Mid 2.84 0.435 0.048

13 Neg Mid 2.71 0.098 0.058

15 Neg Mid 2.74 0.204 0.056

1 Neg High 1.9 0 0.018

3 Neg High 1.55 0 0.029

5 Neg High 2.44 0.645 0.036

7 Neg High 2.43 0.201 0.046

9 Neg High 2.41 0.672 0.036

11 Neg High 2.39 0.67 0.035

13 Neg High 2.3 0.496 0.036

15 Neg High 2.3 0.36 0.040

1 Pos Low 1.68 0 0.020

3 Pos Low 1.37 0 0.073

5 Pos Low 3.03 0 0.066

7 Pos Low 4.21 0.762 0.051

9 Pos Low 3.59 0.585 0.048

11 Pos Low 3.39 0.43 0.047

13 Pos Low 2.98 0.079 0.046

15 Pos Low 2.9 0.032 0.052

1 Pos Mid 1.74 0 0.018

3 Pos Mid 3.67 0.128 0.062

5 Pos Mid 3.79 0.047 0.069

7 Pos Mid 5 0.827 0.061

9 Pos Mid 3.78 0.797 0.041

11 Pos Mid 3.68 0.926 0.036

13 Pos Mid 3.87 0.797 0.049

15 Pos Mid 3.51 0.553 0.046

1 Pos High 1.76 0.009 0.020

3 Pos High 1.47 0 0.061

5 Pos High 3.19 0.169 0.067

7 Pos High 3.17 0.063 0.066

9 Pos High 3.07 0.251 0.061

11 Pos High 3.09 0.325 0.059

13 Pos High 3.18 0.286 0.062

15 Pos High 2.74 0.033 0.061

Human i detailed Table.

show strikingly similar behavior in their avalanche statistics. These
findings render any conclusions about self-organized criticality
based on simple power-laws of PDFs as phenomenological.

Together, these results suggest that the power-law behavior
observed previously in awake monkey (Petermann et al., 2009;
Ribeiro et al., 2010) cannot be reproduced in awake humans’ tem-
poral cortex or cat and monkey motor cortex. This conclusion also
extends to slow-wave sleep and REM sleep, which we found did not
display power-law distributed avalanches, as defined from either
spikes or LFPs. In searching for the linear domains in CDF based
on the KS test, one can force the scaling exponent to fall within
the range of the plausible values (comparable to those observed
in known physical phenomena). Doing so, of course, yields more
conservative values of scaling, but means that such scaling would
be applicable to only a limited range of data. In fact, unless the
system has universal scaling, there is always a tradeoff between the
range to which a scaling exponent can be extended (i.e., the linear
regime in the data) and the proximity of the scaling exponent value
to those of a narrow range (in this case, values of the SOC systems
are of interest). Our tests, did not force the scaling exponent to be
limited to values between 1 and 2, therefore it had a more stringent
emphasis on the linearity of more decades of the avalanche sizes.
In some cases where the data showed statistically significant lin-
earity, the obtained scaling exponents were an order of magnitude
higher than what falls in the range of the critical regime of known
physical phenomena. Conversely, these observations imply that,
a single scaling exponent is not sufficient to explain the complex
dynamics of ensemble activity.

A possibility worth exploring is that some form of power-law
in LFPs is the result of volume conduction associated with LFPs
recorded in high density arrays. When a peak is detected, it is
often also present in many different channels. A possibility worth
to explore is whether the same event could be volume-conducted
across many channels in the array, which may lead to an arti-
ficial increase the large-size avalanches. This possibility should
be examined by mathematical models of the volume conduction
effect.

It must be noted that the evidence for self-organized criticality
in neuronal cultures or in slices (Beggs and Plenz, 2003), as well
as in anesthetized states (Hahn et al., 2010) is not contradictory
with the present findings. The wiring of in vitro preparations, as
well as the network dynamics in anesthesia, are evidently different
than in the intact brain (Steriade, 2001). We find here that there is
no evidence for SOC in wakefulness and natural sleep states, and
for 3 different species. On the other hand, the report of power-law
scaling of nLFPs avalanches in awake monkey (Petermann et al.,
2009) seems in contradiction with the present findings. Many pos-
sibilities exist to reconcile these observations, such as differences
between brain region, recording method, cortical layer, or vol-
ume conduction effects. These possibilities should be investigated
in future studies. Moreover, in a recent report (Friedman et al.,
2012), it has been shown that data from high density recordings
(up to 512 electrodes) from from neural culture show elements
of universality and that avalanches can be collapsed into a uni-
versal scaling function (Papanikolaou et al., 2011). Such findings
confirm that brain circuits in vitro operate near criticality. Further
studies should examine how to reconcile such evidence with the
present in vivo findings.

Due to the high dimensionality of neural data, it is crucial to
separate the features of the inferred models that are induced solely

Frontiers in Physiology | Fractal Physiology August 2012 | Volume 3 | Article 302 | 34

http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Dehghani et al. A multi-state multi-species investigation of criticality

FIGURE 10 | Comparison of Avalanche analysis based on negative and
positive peaks. (A–C) Show the CDF for different thresholds of pLFP and
(D–F) are related to nLFP. LFP (negative or positive) maxima avalanches for all
coarse graining levels, as well as all thresholds did not show linear trend in

CDF, therefore negate power-law as the generating process. These curves
show while nLFP has a closer relation with spiking, the avalanche dynamics
of nLFP and pLFP are strikingly similar in their lack of robust criticality when
tested with rigorous statistical tests.

FIGURE 11 | Avalanche analysis in different cortical areas
recorded simultaneously. Avalanche dynamics in nLFP shows that
the CDF of the input and output units of two interacting cortices have
slightly different characteristics but neither follow criticality regime.

(A) Monkey i, MI, low threshold (B) Monkey i, MI, medium threshold,
(C) Monkey i, MI, high threshold, (D) Monkey i, PMd, low threshold
(E) Monkey i, PMd, medium threshold, (F) Monkey i, PMd, high
threshold.
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FIGURE 12 | Effects of setting upper boundaries on avalanche size
distribution. Each column shows avalanches of a different bin size
(increasing from left to right). (A,B) Show the results of spike avalanche
size distribution of the PMd and MI (respectively). For each bin size, the
distributions of different avalanche sizes are shown in circles; the
avalanche size increases from the bottom to the top, while the size of each
circle represents the ratio to the overall number of avalanches. Red color
shows the excluded (saturated) avalanches enforced by limiting the Xmax to

N (number of independent measures; i.e., units in the case of spike
avalanches and electrodes in the case of LFP avalanches). Cyan color
shows the included avalanches. Y axis is in logarithmic scale for better
visualization and the values of Y represent the orders of magnitude of N for
proper comparison between different bin sizes (i.e., a given circle at y=2,
represents the avalanches that their size=2 log(N), its diameter shows the
number of avalanches that had that size and its color shows whether it is
included or excluded according to the Xmax =N rule).

by the inference scheme from those that reflect natural tenden-
cies of the studied system (Mastromatteo and Marsili, 2011). In
some cases, one could fit the data with different lines by limiting
the range of the decades within which a fit is analyzed. While it
is indeed possible, and highly likely, that neural data at this level
follow a multi-scale regime, albeit such a property would push
the system away from cohesively operating at self-organized criti-
cality because the relation between microscopic interaction of the
(neural) elements and collective behavior (of the cortical network)
no longer manifests in single valued features, like a single scaling
exponent.

Finally, it is important to emphasize that the present results
were obtained using statistical tests similar to previous statistical
analyses (Newman, 2005; Clauset et al., 2009). In particular, the use

of the CDF distribution rather than simple log-log representations
of the size distribution is a particularly severe test to identify if a
system scales as a power-law. The use of statistical measures such as
the Kolmogorov-Smirnov test (Tables 1, 2, and 3) also constitutes
a good quantification of which distribution fits the data, and is
largely superior to the least square fit in double logarithmic scale
(Clauset et al., 2009). The uncertainty and goodness of fit were
estimated by 1000 repetitions of each fitted distribution. We also
showed that setting bounds to the fit can introduce biases in favor
of power-law fits, as analyzed previously (Clauset et al., 2009). In
agreement with this, it was found with bounded fits that power-
law provides a better match to data compared to exponential
distributions (Klaus et al., 2011). Our analysis shows that nei-
ther power-law nor exponential distributions provide acceptable
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FIGURE 13 | (A,B) Fits comparison and lower boundary. (C–F) Alternative fits
for avalanche size distributions. (A) Probability-Probability plot (ECDF vs.
provisional CDF) for a sample bin size (cat i spike avalanche). Green colors are
p-p plot for ECDF vs. exponential, and blue colors are for p-p plot for ECDF vs.
power-law. In each color family, as the lower boundary is increased (from 1 to
Xmin), the color saturation fades; i.e., darkest color shows lower boundary of 1
and the lightest shows lower boundary of Xmin (where Xmin is based on the
Clauset method for fitting power-law to empirical data). (B) Integral of p-p
distance to the 1:1 diagonal (perfect match of the parametric CDF to ECDF).
The colors (blue to red) are related to bin sizes (from smallest to biggest).
Cross signs represents exponential distance and circles represents power-law
distance to the ECDF. (C) Simple exponential fitting of spike avalanche data.
The data points (purple and green) are plotted in a log-linear representation,
together with a simple polynomial fit (blue), a robust fit calculated on the full
length data (red) and a robust fit on the reduced data (magenta). The two
vertical lines indicate the lower bound of the region of linearity, i.e., “Xmin,”
calculated based on the simple polynomial fit (black) and the bi-square
method (gray). (D) Comparison of the goodness of fit of different exponential

fits to different reductions of the same dataset. The 3 coordinates are
“normalized overall improvement of RMSE” (noRMSE), “normalized relative
improvement of RMSE” (nrRMSE) and distance of a point from the diagonal
in (noRMSE,nrRMSE) plane. Each point in this 3D space, is the result of a
bi-square robust fit after elimination of the first i elements of the data (best fit
in red). (E) Bi-exponential fitting of the same data. The “sum of exponential”
model (exp2) gave a very good performance in both full length (dark blue) and
reduced above “Xmin” (red). The “simple exponential” model (exp1) reaches a
very good fit only for the reduced set (cyan) but not for the full length of the
avalanches (light brown). (F) Effects of linearity improvement on exponential
fits. Each set of four colors refer to the spike avalanche of Monkey i (MI),
Monkey ii (MI), Human A(Temporal), and Monkey i (PMd). In each set, green
colors refer to the simple exponential family (exp1) and the red colors depict
the sum of exponentials (exp2). Light green and light red, refer to the
calculated R̄2 on full length avalanche sizes, while dark green and red show
the average R̄2 for the dataset ranging from N −1 to N −Xmin where the
optimized length Xmin was 5 [see (C,D)]. (C–E) Were obtained from 15 ms bin
avalanches from human i awake spikes.
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fits to the datasets analyzed here. Multi-exponential fits suggest
that bi-exponential processes provide a particularly good fit to the
distributions, which suggests that the underlying neuronal dynam-
ics is most compatible with two exponential processes, which could
be for example excitation and inhibition, both scaling as exponen-
tial distributions. Such a possibility should be tested by further
studies, and seem in agreement with the complementary excitatory
and inhibitory dynamics found in the awake and sleeping brain
(Peyrache et al., 2012).
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Neuronal interactions form the basis for our brain function, and oscillations and synchrony
are the principal candidates for mediating them in the cortical networks. Phase synchrony,
where oscillatory neuronal ensembles directly synchronize their phases, enables precise
integration between separated brain regions. However, it is unclear how neuronal
interactions are dynamically coordinated in space and over time. Cross-scale effects
have been proposed to be responsible for linking levels of processing hierarchy and to
regulate neuronal dynamics. Most notably, nested oscillations, where the phase of a
neuronal oscillation modulates the amplitude of a faster one, may locally integrate neuronal
activities in distinct frequency bands. Yet, hierarchical control of inter-areal synchrony
could provide a more comprehensive view to the dynamical structure of oscillatory
interdependencies in the human brain. In this study, the notion of nested oscillations is
extended to a cross-frequency and inter-areal model of oscillatory interactions. In this
model, the phase of a slower oscillation modulates inter-areal synchrony in a higher
frequency band. This would allow cross-scale integration of global interactions and, thus,
offers a mechanism for binding distributed neuronal activities. We show that inter-areal
phase synchrony can be modulated by the phase of a slower neuronal oscillation using
magnetoencephalography (MEG). This effect is the most pronounced at frequencies below
35 Hz. Importantly, changes in oscillation amplitudes did not explain the findings. We
expect that the novel cross-frequency interaction could offer new ways to understand the
flexible but accurate dynamic organization of ongoing neuronal oscillations and synchrony.
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INTRODUCTION
Neurons are capable of synchronizing their activity to a collective
rhythm. These neuronal oscillations vary in frequency, amplitude,
and source topography (Buzsaki and Draguhn, 2004). Theoretical
(Singer and Gray, 1995) and experimental (Womelsdorf et al.,
2006) work converge on the idea that synchronous neuronal
assemblies are central for neuronal communication. Distinct
oscillatory assemblies are able to synchronize their activities, and
it has been proposed that such coherent oscillations provide
temporal windows for efficient communication between distinct
brain regions (Fries, 2005). Indeed, cortical oscillations and syn-
chrony have been found to regulate stimulus processing in the
neuronal (Cardin et al., 2009) and behavioral (Hamidi et al.,
2009) level. Furthermore, it has been shown that such oscillation
synchrony is related to neuronal spiking activity (Canolty et al.,
2010). Thus, oscillatory neuronal populations and their synchro-
nization play a key role in integrating activities in single cells and
in the system level.

In monkey recordings, neuronal rhythms have been shown to
provide windows of increased excitability that enhance processing
of rhythmic stimuli (Schroeder and Lakatos, 2009). Interestingly,
several experiments have found that these oscillations are orga-
nized so that the amplitude of a higher frequency oscillation
correlates with the phase of a slower rhythm (Lakatos et al.,
2005). This cross-frequency model of an oscillatory interaction,

phase-modulated amplitude, is called a nested oscillation. Such
hierarchical organization of nested rhythmic activities has been
observed in a wide frequency range in human intracranial record-
ings as well, and these data support the functional significance
of nested oscillations by showing that experimental conditions
modulate the nested relationships (Canolty et al., 2006; He
et al., 2010). Also extracranially recorded magnetoencephalogra-
phy (MEG) data from resting humans has previously revealed a
nested interaction between alpha and gamma frequency bands
(Osipova et al., 2008).

In theoretical accounts of nested oscillations, the low-
frequency oscillation has often been associated with periodic
excitability changes, which then affects the amplitude of oscil-
lations in higher frequency bands (Jensen and Colgin, 2007;
Lakatos et al., 2008). The increased oscillation amplitude, which
is observed in the higher frequency band, is considered to reflect
not only increased levels of synaptic or spiking activity, but also
enhanced neuronal synchronization. Based on this interpreta-
tion, we suggest a novel model of a non-local cross-frequency
interaction, where the phase of the slower oscillation regulates
inter-areal synchrony in the higher frequency band (Figure 1).
In the above context this is analogous to the model of nested
oscillations, as they both are then related to phase-modulation of
neuronal synchrony, albeit in different spatial scales. Our model,
which we term nested synchrony, includes both a cross-frequency
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FIGURE 1 | Illustration of nested oscillations and nested synchrony.

In nested oscillations, the phase of the slower oscillation modulates the
higher-frequency amplitude measured at the same scalp location (two
upper traces), but not that measured at a different location (lower trace).
In contrast, nested synchrony means that the two faster oscillations
become more tightly coupled in certain phases of the slow oscillation
(around solid vertical lines) than in other phases (around dashed vertical
lines).

interaction and an inter-areal interaction. Thus, it could be
one candidate for mediating the complex dynamic relationships
of neuronal oscillations across time scales and brain regions.
Regulation of synchrony dynamics could be achieved through
coordinating inter-areal synchrony in a higher frequency band
by possibly meta-stable and scale-free dynamics provided by the
lower frequencies. The aim of this study is to demonstrate the
presence of nested synchrony in the human brain using MEG data
recorded at rest.

METHODS
EXPERIMENT
We recorded MEG (Elekta Neuromag Oy, Finland) data from nor-
mal, consent subjects (N = 4; age 28–35 years, 1 female) in a
silent, magnetically shielded room. The experiment was approved
by the Ethical Committee of Hospital District of Helsinki and
Uusimaa. The experiment consisted of one session of 20 min, dur-
ing which the subjects were at rest, eyes closed. The sampling rate
was 600 Hz, and the high-pass and low-pass acquisition filters
were at 0.03 and 172 Hz. Data was recorded with 306 channels,
of which the 204 planar gradiometer channels were used for this
study.

PRE-PROCESSING
The data was first subjected to noise reduction by spatial Signal
Space Separation (SSS) filtering and temporal projection of
noise components by the temporal extension of SSS (Taulu and
Simola, 2006) using the MaxFilter software (Elekta Neuromag
Oy, Finland). Subsequent analyses were performed with custom-
made software running in Matlab (MathWorks Inc, Natick, MA,
U.S.A.).

Part of the cardiac artifact was not removed by SSS, and was
therefore treated by applying ICA to the data. The component(s)
corresponding to heart-related activity were recognized by hand
based on their temporal dynamics, and projection in temporal
domain was then applied to project them away. The data was
then windowed to 4 s epochs, and bad epochs were discarded if
peak-to-peak amplitude was larger than 10−10 T/m and by visual
inspection.

After artifact rejection, data epochs were band-pass filtered
to five distinct frequency bands using 6th-order elliptic filters.
The pass-bands were 2–4 Hz, 4–8 Hz, 8–17 Hz, 17–34 Hz, and
35–70 Hz. After filtering, the data were downsampled to approx-
imately six times the highest frequency component included in
each filter. Each signal was first forward and then backward
filtered to eliminate phase distortion.

NESTED SYNCHRONY ANALYSIS
To find out if the MEG data showed nested synchrony between
two frequencies, fX < fY, the phase locking value (Lachaux et al.,
1999) between data from two gradiometer channels, xi and xj,
at frequency fY was computed in 20 bins. The bins were deter-
mined by the phase of xi at frequency fX, φi

X, so that each bin
included 5% of the samples—thus, the amount of data was uni-
form across the bins. The continuous phase of the signal xi in
frequency fX, or xi

X, was computed with its Hilbert transform (H)
as φi

X = arg[H(xi
X)], where arg(x) is the argument, or phase, of

a complex-valued x. Because estimation of PLV (phase-locking
value) in short time windows suffers from high variance, we
first computed the phase difference time series between chan-

nels xi and xj at frequency fY: �φ
i,j
Y = arg[H(xi

Y)H(x
j
Y)∗], where

∗ denotes complex conjugate. Then, each phase difference sam-
ple was sorted to one of the 20 bins according to the concurrent
phase of xi at frequency fX, φi

X. After sorting the phase differ-
ence data to phase bins, PLV was computed within each bin as

PLV
i,j
Y = abs[� exp(i�φ

i,j
Y )]/N, where i = (−1)1/2 and N is the

number of samples in one bin. The result from this procedure is
the higher-frequency PLV in the 20 consecutive bins of the lower
oscillation phase range (Figure 2B). Then, a non-uniform PLV
distribution would signify nested synchrony between channels xi

and xj and between frequencies fX and fY. We characterized the
non-uniformity, or modulation, of the PLV distribution by fitting
a sinusoidal period ai,j × sin[{φi

X} + fi,j] + bi,j to the PLV data;
here, ai,j is the magnitude of sinusoidal modulation of synchrony
between xi and xj, fi,j is the phase shift of the sine function, bi,j

is the constant term (roughly equal to the mean PLV across all
bins), and {φi

X} are the centers of the 20 phase bins of φi
X. The

sinusoidal fit was adopted to ensure that possible non-uniformity
of the distribution was not due to stochastic fluctuations. In addi-
tion, the modulation was expected to be 2π-periodic, at most
one peak or trough was expected in the distribution, and the
model is simple (two non-trivial parameters, ai,j and fi,j). The
sine model was found to be acceptable by visual inspection of the
data and the degree-of-freedom-adjusted R2 goodness-of-fit val-
ues (see Figure 2). This nested synchrony analysis procedure was
repeated for all pairs of channels (204 channels) and for frequency
pairs that were not adjacent (six pairs). The sampling frequency
in nested analysis was roughly six times of the highest frequency
component in the higher frequency band data.

Nested amplitude modulation was analyzed in the same way
as nested synchrony, except that the amplitude A of the single
channel xi in the higher frequency band fY, instead of the phase
difference of two channels, was estimated using Hilbert trans-
form, Ai

Y = abs[H(xi
Y)], and averaged in the bins determined by

the phase of the lower-frequency oscillation, φi
X.
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FIGURE 2 | (A) The grand average power spectrum pooled over all
gradiometer channels and subjects. Only the 8–17 Hz frequency band
coincides with peaks in the spectrum. (B) Modulation of beta-band
(17–34 Hz) phase synchrony (above) and oscillation amplitude (below) as a
function of theta-band (4–8 Hz) phase. Data are sorted to 20 phase bins and
modeled with sinusoidal fits to the data (thin lines with dots at bin centers).
Data are from a single subject: nested synchrony of MEG channel 190 with
channels 16 (black line) and 35 (gray line), illustrating antagonist synchrony
modulation, and nested oscillation in channel 190. The adjusted R2

goodness-of-fits were 0.97 and 0.95 (above) and 0.95 (below).

To ensure that the possible findings of nested synchrony are
not due to complicated data processing, similar pre-processing
and data analyses were performed for noise data, which were
recorded in a magnetically shielded room where no subject was
present.

STATISTICAL EVALUATION
The significance of individual sinusoidal fits was checked by esti-
mating the 95% confidence interval for the sinusoidal modulation
amplitude, ai,j, and inspecting that the confidence interval did
not include 0. Significance of nested synchrony was then evalu-
ated by generating 100 sets of surrogate data. These were created
by permuting the order of epochs when choosing the phase bins
from the lower-frequency data, while keeping the phase differ-
ence data itself intact. The real PLV data were then z-transformed
(by subtracting the mean and dividing by standard deviation of
the surrogate PLV values) to see if it differed significantly from
the surrogate data. We used Bonferroni-corrected α = 0.05 as the
level of significance. The number of tests was n = 204 × 203 =
41,412, so corrected level of significance was αn = α/n = 1.21 ×
10−6. The z-score required for a significant nested synchrony was
then obtained from the cumulative standard normal distribution
at the value 1-αn, resulting in z = 4.7. In the case of nested oscil-
lation, or amplitude modulation, the number of tests is n = 204,
and the level of significance became z = 3.5.

SIMULATIONS OF CROSS-FREQUENCY COUPLING
We simulated two time series to represent recordings of neuronal
activity at two distinct channels. The aim of these simulations was
to inspect if nested oscillations and nested synchrony can be reg-
ulated independently, under varying levels of noise. The recorded
signals were simulated with 10,000 samples of white noise, which
was then filtered to two distinct frequency bands with a 5-fold fre-
quency difference. The effects from nested interactions were then
simulated by making the amplitude (in the case of nested oscilla-
tions) or the phase (in the case of nested synchrony) of the faster
oscillations correlate with the phase of the slower oscillation.
Separate parameters controlled the strength of nested oscilla-
tions, nested synchrony, and noise level. We then analyzed the
resulting signals for nested oscillations and nested amplitude, like
explained above (section “Nested Synchrony Analysis”).

RESULTS
PRESENCE OF NESTED OSCILLATIONS IN RESTING-STATE MEG DATA
We first aimed at replicating earlier findings of nested oscillations.
We evaluated the presence of cross-frequency amplitude mod-
ulations, or nested oscillations, in each gradiometer channel by
computing the mean amplitude of a higher frequency oscillation
in 20 bins determined by the phase of a lower frequency oscil-
lation, by fitting a sinusoid to those data, and then comparing
the amplitude modulation to that found in 100 sets of shuffled
surrogate data and empty-room data (see Methods). The mean
number of channels with significant nested oscillations (z > 3.5;
Bonferroni correction with n = 204 and p < 0.05) per subject
and frequency pair was 11 for the real data, whereas it was only
2 for the empty-room data (Figure 3A). Nested oscillations were
the most prominent between frequency pairs 2–8 Hz, 2–17 Hz,
and 4–17 Hz.

PRESENCE OF NESTED SYNCHRONY IN RESTING-STATE MEG DATA
We evaluated cross-frequency modulation of a higher-frequency
phase synchrony as a function of the phase of a slower oscilla-
tion, or nested synchrony, between all MEG gradiometer channel
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FIGURE 3 | (A) Number of channels that display significant nested
oscillations (mean ± S.E.) in each frequency band pair. The black line is for
the mean over subjects, and the gray line is for empty-room data. (B) As in
(A), but the number of channel pairs that display significant nested
synchrony in each frequency band pair is indicated.

pairs. We computed PLV in 20 bins, which were determined
by the phase of the slower oscillation, estimated the sinusoidal
modulation over these bins, and confirmed the statistical signifi-
cance of observed effects using a surrogate distribution from 100
sets of shuffled data, as well as empty-room data (see Methods).
The mean number of channel pairs with significant nested syn-
chrony (z > 4.7; Bonferroni correction with n = 204 × 203 and
p < 0.05) per subject and frequency pair was 132 for the real
data, whereas it was only 9 for the empty-room data (Figure 3B).
Nested synchrony was the strongest between frequency pairs
2–8 Hz, 2–17 Hz, and 4–17 Hz. Although statistically significant
nested synchrony was found in the data, it was present only in a
small fraction of channel pairs. There was, on average, less than
one significant connection per gradiometer channel after correc-
tion for multiple comparisons. We then checked if the real data
were better fitted with the sinusoidal function than the surrogate
data by inspecting the number of significant sinusoidal fits. As
expected, this number was generally higher for the real data than
for the shuffled data (grand average z-score = 2.6), and individu-
ally significant (z > 2.32, corresponding to p < 0.01) in 9 out of
24 subject-frequency pairs. The sinusoidal fits of original empty-
room data were not significantly better than those of shuffled

empty-room data (mean z-score = 0.9). These findings provide
evidence for nested synchrony in human brain activity.

NESTED SYNCHRONY AND CHANGES IN OSCILLATION AMPLITUDE
Phase synchrony among recording channels is known to be sen-
sitive for artefacts due to volume conduction. Although we use
planar gradiometer sensors with local sensitivity profiles to reduce
this effect, there is still some artefactual contribution. However,
the fact that we are inspecting modulation of synchrony reduces
the vulnerability of our results to volume conduction. With fixed
sources, the analyses are affected only when the amplitude of
oscillations changes, which leads to changing patterns and magni-
tudes of artefactual synchrony. Furthermore, PLV estimates may
be affected by two potential mechanisms of amplitude-caused
bias: either higher oscillation amplitudes lead to enhanced SNR
(signal-to-noise ratio) for oscillations, which then causes higher
PLV estimates for the same underlying neuronal synchrony, or
signals with low amplitude can become buried under common-
form noise, which may then lead to higher noise-induced syn-
chrony between those channels. Taken that nested oscillations, or
amplitude modulation by low-frequency phase, has been estab-
lished previously and was reproduced here, nested synchrony
could potentially be related to such amplitude effects. However,
there are several findings that point to a different direction. First,
the relative modulation of amplitude is smaller than the rela-
tive modulation of phase synchrony (p < 10−10, t-test across all
significant connections in each subject and frequency pair), and
it is not conceivable that small amplitude changes would cause
relatively larger changes in phase synchrony. Furthermore, the
preferred phases of amplitude and synchrony modulation are
not the same: although linear regression between the preferred
phases of amplitude and synchrony suggest significant correlation
(p < 0.001 for all significant connections in each subject and fre-
quency pair), the dependency is very weak (mean slope = 0.06).
This means that amplitude and synchrony are enhanced at dis-
tinct times of the oscillatory cycle, thus the changes in oscillation
amplitude via nested oscillations could not cause the nested syn-
chrony observed here. Finally, it is established that artefactual syn-
chrony due to volume conduction and measurement geometry
is concentrated to the shortest inter-sensor distances. We found
that the modulation of synchrony by lower-frequency phase often
decreases as a function of inter-sensor distance, but the effect is
very small (Figure 4A): it explains at most 1% of variability in
the data (mean slope = −0.003). Furthermore, connectivity pat-
terns typical for synchrony generated by volume conduction are
not apparent in the spatial reconstructions (Figure 4B). Together,
these analyses suggest that nested synchrony observed in this
study is not an artifact due to volume conduction.

NESTED OSCILLATIONS AND NESTED SYNCHRONY ARE INDEPENDENT
To confirm that nested oscillations in two channels can be reg-
ulated independently of their nested synchrony, we performed
simulations of two time series that were coupled via these cross-
frequency relationships with different signal-to-noise levels (see
section “Simulations of Cross-Frequency Coupling”). These sim-
ulations showed that it is possible to vary each of the three inter-
actions simultaneously without affecting the others (Table 1).
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FIGURE 4 | (A) The modulation of PLV among higher-frequency (17 Hz)
oscillations by the phase of an oscillation at lower frequency (4 Hz) is
plotted against inter-sensor distance. This subject and frequency pair was
selected, because it had the strongest correlation between distance and
nested synchrony strength. For clarity, we visualize only those nested
synchrony data that are significant and have adjusted R2 goodness-of-fit
higher than 0.75 (3418 data points). (B) Spatial visualization of the data in
(A), but with R2-criterion of 0.9 (308 connections). The connections (lines)
are depicted between sensors (small spheres) that are visualized in their 3D
positions. The large sphere demonstrates the head inside the MEG helmet;
the occipital pole is in the lower left corner, nose pointing to the right.

DISCUSSION
We have introduced and tested a novel cross-frequency interac-
tion model of nested synchrony. In this model the neuronal inter-
areal oscillatory interactions are modulated by a lower-frequency
oscillation, in an analogous fashion to nested oscillations dis-
covered previously (Lakatos et al., 2005; Canolty et al., 2006;
Monto et al., 2008; Osipova et al., 2008; He et al., 2010). Our
data indicate that nested synchrony is robustly, although sparsely,
present in extracranial recordings of human brain activity. Nested
synchrony was present in several frequency pairs, but it turned
out that there was practically no nested synchrony or nested
amplitude modulation in the gamma-band. This is probably
because of poor SNR of gamma-band oscillations (Figure 3A).

Table 1 | Simulations of two coupled time series show that nested

oscillations and nested synchrony can be controlled independently.

amp1 amp2 sync1 nestAmp1 nestAmp2 nestSync1 SNR

0 0 0 0,002 0,003 0,013 ∞
1 0 0 0,623 0,005 0,017 ∞
0 0 1 0,002 0,005 0,279 ∞
1 1 1 0,628 0,612 0,287 ∞
0 0 0 0,003 0,006 0,011 5

1 0 0 0,610 0,006 0,021 5

0 0 1 0,004 0,007 0,277 5

1 1 1 0,610 0,588 0,275 5

0 0 0 0,010 0,013 0,013 1

1 0 0 0,440 0,015 0,024 1

0 0 1 0,010 0,012 0,156 1

1 1 1 0,439 0,420 0,220 1

Changing the parameters controlling coupling within each signal (nested oscil-

lations, amp1 and amp2) or coupling between the signals (nested synchrony,

sync1) only affects the interaction (nestAmp1, nestAmp2, and nestSync1) that

parameter is controlling. Changing the level of noise (SNR) does not affect the

results remarkably.

Another explanation could be that inter-areal gamma-band syn-
chrony is difficult to observe consistently with scalp recordings, as
high-frequency synchronization is often attributed to short-range
neuronal communication.

There are some potential caveats in our analyses of nested
synchrony. PLV as a measure of oscillatory phase synchrony is sen-
sitive not only to genuine phase correlations but also to artefacts
from volume conduction and/or field spread. There are, however,
grounds to believe that volume conduction does not play a signif-
icant role here. Our analysis has internal control for such artifacts,
because we are not characterizing patterns of synchrony directly
but the modulation of synchrony by the phase of a slower oscil-
lation. Thus, artefactual synchrony could only play a role if the
faster oscillatory amplitudes were modulated by the slower oscil-
lation in the same fashion. However, we found that the relative
modulation of synchrony was larger than the relative modula-
tion of amplitude, and that the preferred phases of synchrony and
amplitude were not identical (see section “Nested Synchrony and
Changes in Oscillation Amplitude”). In addition, the lengths of
nested synchrony connections (Figure 4A) and their spatial pat-
terns (Figure 4B) support the view that volume conduction is
not causing the nested synchrony found in this study, although
its effect cannot be entirely neglected. Another possible caveat is
the rather complicated data analysis methodology, which could
produce some unintended effects. To rule out the possibility
that nested synchrony would arise as an artifact of data process-
ing, we recorded empty-room data, where no neuronal activity
is present, and subjected these data to the same analyses than
the subject data. We found no evidence of nested synchrony in
the empty-room data (Figure 3B). This absence of nested syn-
chrony in the absence of a subject suggests that recorded neuronal
activity underlies the observed nested synchrony. Finally, it can
be suspected if nested modulation of amplitude and phase can
take place simultaneously in two signals. We addressed this issue
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by performing simulations of two time series, and modulated
these cross-frequency interactions parametrically. Our simula-
tions indicate that it is possible to independently control the
modulation of amplitude within two signals and the modulation
of phase synchrony between them, although underlying phys-
iological mechanisms are not reached with these simulations
(Table 1).

Nested oscillations have been investigated in many studies pre-
viously. Perhaps the most popular subject in this field has been
short-term memory, where the idea of temporal segmentation
of memory contents by nested oscillations has been proposed
(Lisman and Idiart, 1995). In a more recent line of research,
the functional significance of nested oscillations in perception
and attention has been elucidated, and the nested relationships
are proposed to mediate a coupled hierarchy of oscillation fre-
quencies (Lakatos et al., 2005, 2008). Furthermore, robust and
widespread nested temporal relationships were discovered in
arrhythmic (non-oscillatory) data as well (He et al., 2010), which
might indicate the presence of fractal organization in brain back-
ground activity. Yet, complementary to studies above, modulation
of spatial patterns of nested oscillations according to experimen-
tal tasks has been described, suggesting that these patterns may
play a role in cognitive operations (Canolty et al., 2006).

Our results support the idea that phase synchrony dynamics
are not regulated in isolation for each brain region and frequency
band, but are intimately linked to neuronal oscillations in other
brain regions and frequency bands. The findings also suggest
that oscillatory inter-areal synchronization may be coordinated in
varying time scales. If there are, indeed, oscillations in several fre-
quency bands that contribute to changes in oscillation synchrony
via the mechanism of nested synchrony, they may together play a
significant role in dynamically coordinating the strength of inter-
actions between oscillatory neuronal ensembles. This idea would
consolidate the view of brain function being composed of hier-
archically coupled scales (Lakatos et al., 2005; Palva and Palva,
2011). However, nested relations have been found even between
non-oscillatory, or arrhythmic, activities (He et al., 2010). If the
same holds true for nested synchrony as well, there arises a pos-
sibility for scale-free modulation of neuronal synchrony through
the entire continuum of temporal and spatial scales. It must be
noted here that the frequency ratio is not a limiting factor in
the formulation of nested synchrony. In the current study, only a
limited selection of frequency pairs was inspected. More detailed
analysis would be required to determine if nested synchrony exists
specifically between a set of narrow frequency bands or if it gener-
alizes over several frequencies, including those where no peak in
the amplitude spectrum can be seen.

While studies of nested oscillations have been successful in
elucidating cross-frequency relationships in neuronal oscillations,
the notion of nested synchrony proposed here could extend and
corroborate these findings by combining cross-frequency inter-
actions to inter-areal synchrony. Of particular interest here are
the studies on the cross-frequency model of working memory,
where slow (theta) oscillations phase controls faster (gamma)
oscillations to store memories in their temporal patterns (Lisman
and Idiart, 1995; Jensen and Lisman, 2005). As it is known
that both theta and gamma oscillations participate in mediating

information between hippocampal regions as well as between
hippocampus and neocortex (Sirota et al., 2008; Colgin et al.,
2009; Colgin, 2011), it would be interesting to see if nested
modulations could be the mechanism for keeping the com-
plex dynamics of multi-frequency oscillations and interactions
in the hippocampo-neocortical system organized. Intriguingly,
tight synchronization between hippocampal and cortical neu-
ronal spikes has been linked to the theta oscillation generated
in the hippocampus in rats (Siapas et al., 2005). Along similar
lines, cortical gamma-band coherence was found to be corre-
lated with hippocampal theta oscillations (Sirota et al., 2008).
These data offer a putative example of rhythmically occurring
inter-areal synchrony that is mediated by a slower oscillation, par-
tially validating the idea of nested synchrony in a more detailed
scale. The synchronization of intrinsic rhythmical activities in
the brain to rhythmic external stimuli and related enhancement
in stimulus processing (Schroeder and Lakatos, 2009) also point
toward nested synchrony, because attention and processing of
stimulus features are often promoted by synchronization of high-
frequency oscillations. Another interesting and related example
can be found in processing of speech: there, a coordinated hierar-
chy of feature processing levels and timescales is needed to execute
and integrate the multitude of sub-tasks that are required to com-
prehend all aspects of speech (Hickok and Poeppel, 2007). Indeed,
there exist interesting data on theta-entrained phase coding and
spatio-temporally distributed processing of speech stimuli (Luo
and Poeppel, 2007; Giraud et al., 2007). It remains to be seen if
processing of speech is organized by nested relationships within
and between specialized processing streams.

Local excitability changes are thought to underlie nested oscil-
lation amplitude modulations, due to mechanisms related to
either neuronal network properties or local environmental con-
ditions (Jensen and Colgin, 2007; Lakatos et al., 2008). However,
nested synchrony does not follow straightforwardly from local
excitability changes, which have been related to slow oscillations,
because it specifically requires coordination of phases among
the higher-frequency activities. Even tight correlation between
the slow oscillations is not an adequate condition for nested
synchrony in the higher frequency band, unless there is direct
n : m phase locking. On the mechanistic side, nested oscillations
and nested synchrony need not be entirely separate phenomena,
because they both are related to changes in neuronal synchrony:
whereas enhanced inter-areal synchrony can often be deciphered
with scalp recordings, enhanced local synchrony is effectively
seen as increased oscillation amplitude. The neuronal basis of
phase-accurate synchronization over a distance is currently under
investigation, and it might rely on different cellular mechanisms
than synchronization over short distances (Kopell et al., 2000).
The generation mechanisms of nested synchrony depend on the
neuronal mechanisms that establish and sustain oscillation syn-
chrony in the first place. Interneuron networks have been credited
a central role in neuronal synchronization, and their properties
might change depending on the phase of the slower oscillation.
However, interneuron projections are mostly local, so this mod-
ulation would be expected to affect the local oscillations instead
of long-distance synchrony. A more plausible mechanism could
thus be related to long-range pyramidal cell projections, where
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changes would allow local oscillations to continue as driven by
the interneuron network but would affect long-distance synchro-
nization (Kopell et al., 2000). Here, pyramidal cell membrane
conductances would be the favored target for modulations by the
slow oscillation.

We have so far investigated solely how slow oscillations in
one area modulate phase synchrony between that area and
another one. Yet, even more complex patterns may emerge
from nested interactions. First, the individual pair-wise inter-
areal synchronies are probably a part of at least one larger
network. Second, sub-networks may in turn be regulated by
different phases of distinct slower oscillations. Third, synchro-
nization among the slower oscillations could provide another
means to integrate different networks, all of which may carry
different functionalities for information processing. These pos-
sibilities demonstrate the potential versatility of nested effects in
mediating relationships between oscillatory activities in the brain,

as well as the high number of possible combinations of cross- and
within-frequency oscillatory interactions in brain dynamics.

In this article, we have described the model of nested syn-
chrony, validated its existence in human neuronal activity, and
proposed that it could be a viable candidate for mediating inter-
actions between oscillatory networks at different frequencies and
separated neuronal populations. In particular, it offers the pos-
sibility for a local neuronal network to participate in distinct
neuronal interactions through simultaneously active mechanisms
using phase-based coding only. In future, intracranial recordings
will be needed to shed light on the extent and more detailed
features of nested synchrony. Furthermore, this model could be
applied to further investigate the interrelations between very slow
brain activities, as observed with fMRI or full-band EEG, and
faster neuronal oscillations (Monto et al., 2008). In addition, the
subject’s state could be manipulated experimentally to assess the
functional significance of nested synchrony.
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Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a
decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently,
scaling properties were shown to fluctuate across brain networks and to be modulated
between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory,
decreases under task in activating and deactivating brain regions. In most cases, such
results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence
focusing on specific cognitive systems such as Resting-State Networks (RSNs) and rais-
ing the issue of the specificity of this scale-free dynamics modulation in RSNs. Second,
using analysis tools designed to measure a single scaling exponent related to the sec-
ond order statistics of the data, thus relying on models that either implicitly or explicitly
assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly
depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008).
To address these issues, the present contribution elaborates on the analysis of the scaling
properties of fMRI temporal dynamics by proposing two significant variations. First, scaling
properties are technically investigated using the recently introduced Wavelet Leader-based
Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling
exponents, thus enables a richer and more versatile description of scale invariance (beyond
correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved
estimation performance compared to tools previously used in the literature. Second, scal-
ing properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a
broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-
Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a
set of spatial components that appear more sparse than their Independent Component
Analysis (ICA) counterpart. These tools are combined and applied to a fMRI dataset com-
prising 12 subjects with resting-state and activation runs (Sadaghiani et al., 2009). Results
stemming from those analysis confirm the already reported task-related decrease of long
memory in functional networks, but also show that it occurs in artifacts, thus making this
feature not specific to functional networks. Further, results indicate that most fMRI sig-
nals appear multifractal at rest except in non-cortical regions. Task-related modulation of
multifractality appears only significant in functional networks and thus can be considered
as the key property disentangling functional networks from artifacts.These finding are dis-
cussed in the light of the recent literature reporting scaling dynamics of EEG microstate
sequences at rest and addressing non-stationarity issues in temporally independent fMRI
modes.

Keywords: scale invariance, self-similarity, multifractality, wavelet Leader, fMRI, brain dynamics, rest, task

1. INTRODUCTION
Much of what is known about brain function stems from studies in
which a task or a stimulus is administered and the resulting changes
in neuronal activity and behavior are measured. From the advent
of human electroencephalography (EEG) to cognitive activation
paradigms in functional Magnetic Resonance Imaging (fMRI),

this approach proved very successful to study brain function, and
more precisely functional specialization in human brain. It has
relied, on one hand, on contrasting signal magnitude between
different experimental conditions (Rosen et al., 1998) or task-
specific hemodynamic response (HRF) shape (Dale, 1999) and,
on other-hand, on statistical methods often framed within linear
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or bilinear modeling strategies (Friston et al., 1995; Makni et al.,
2005, 2008).

Spontaneous modulations of neural activity in Blood Oxygena-
tion Level Dependent (BOLD) fMRI signals however arise without
external input or stimulus and thus depict intrinsic brain activ-
ity (Damoiseaux et al., 2006). This ongoing activity constitutes a
major part of fMRI recordings and is responsible for most of brain
energy consumption. It has hence been intensively studied over the
last decade using various methods ranging from univariate, i.e.,
Seed-based linear Correlation Analysis (SCA; Biswal et al., 1995;
Greicius et al., 2003), to multivariate methods such as Independent
Component Analysis (ICA; Calhoun et al., 2001; Beckmann and
Smith, 2004), group-level ICA (Cole et al., 2010; Varoquaux et al.,
2010b), or more recent dictionary learning techniques (Varoquaux
et al., 2011). All these methods have revealed that interactions
between brain regions, also referred to as functional connectivity,
occur through these spontaneous modulations and consistently
vary between rest and task (Damoiseaux et al., 2006; Fox et al.,
2007). Resting-State Network (RSN) extraction from resting-state
fMRI time series is thus achieved either by thresholding the cor-
relation matrix computed between voxels or regions (seed-based
or univariate approach) or by identifying spatial maps in ICA-
based algorithms that closely match RSNs such as somato-sensory
systems (visual, motor, auditory), the default mode, and atten-
tional networks (ventral and dorsal; Fox et al., 2007; Smith et al.,
2009). For a recent review about the pros and cons of the SCA and
ICA approaches to RSN extraction, the reader can refer to Cole
et al. (2010). Once RSNs are extracted, their topological prop-
erties can be analyzed with respect to small-world or scale-free
models (Chialvo, 2004; Eguiluz et al., 2005; Zemanová et al., 2006;
Bullmore and Sporns, 2009).

In parallel and alternatively to brain topology, the temporal
dynamics of brain activity have also been extensively studied. It is
now well accepted that brain activity, irrespective of the imaging
technique involved in observation, is always arrhythmic and shows
a scaling, or scale invariant or scale-free, time dynamics, which
implies that no time scale plays a predominant or specific role.
Often, scale invariance or scale-free dynamics is associated with
long-range correlation in time (Linkenkaer-Hansen et al., 2001;
Stam and de Bruin, 2004; Van de Ville et al., 2010), and accord-
ingly, in the frequency domain, related to a power-law decrease
of the power spectrum (�( f )∝1/f β with β > 0) in the limit of
small frequencies ( f → 0). Interestingly, it is generally admitted
that only low frequencies (<0.1 Hz) convey information related to
neural connectivity in fMRI signals (Cordes et al., 2001; Leopold
et al., 2003; Achard et al., 2006). Evidence of fractal or scale-free
behavior in fMRI signals has been demonstrated for a long while
(Zarahn et al., 1997; Bullmore et al., 2001; Bullock et al., 2003)
though it was initially regarded as noise. Deeper investigations
of the temporal scale-free property in fMRI have demonstrated
that this constitutes an intrinsic feature of ongoing brain activity
(c.f., e.g., Thurner et al., 2003; Shimizu et al., 2004; Maxim et al.,
2005; Ciuciu et al., 2008; Wink et al., 2008; He et al., 2010; He,
2011). First attempts to identify stimulus-induced signal changes
from scaling parameters were proposed in Thurner et al. (2003),
Shimizu et al. (2004), where a voxel-based fluctuation analysis
was applied to high temporal resolution fMRI data. Interestingly,

fractal features of voxel time series have enabled to discriminate
white matter, cerebrospinal fluid, and active from inactive brain
regions during a block paradigm (Shimizu et al., 2004). Further,
it was shown that scaling properties can be modulated in neu-
rological disorder (Maxim et al., 2005) or between rest and task
(Thurner et al., 2003; Shimizu et al., 2004; Ciuciu et al., 2008;
Wink et al., 2008; He, 2011): It was shown that long memory, as
quantified by the Hurst exponent, decreases during task in acti-
vating and deactivating brain regions. Analyzing scale invariance
in temporal dynamics may thus provide new insights into how
the brain works by mapping quantitative estimations of parame-
ters with good specificities to cognitive states, task performance
(Shimizu et al., 2004; Wink et al., 2008; He et al., 2010; He,
2011).

Small-world and scale-free topology led to model brain as a
complex critical system, that is as a large conglomerate of interact-
ing components, with possibly non-linear interactions (Bak and
Paczuski, 1995; Chialvo, 2010). Further, these complex systems
were then regarded as potential origins for long-range correlation
spatio-temporal patterns, as critical systems, i.e., complex systems
driven close to their phase transitions, constitute known mecha-
nism yielding scaling time dynamics and generic 1/f power spectral
densities (see e.g., Chialvo, 2010). They however so far failed to
account for the existence of possibly richer scaling properties (such
as, e.g., multifractality). At a general level, scale invariance in time
dynamics and scale-free property of brain topology are, in essence,
totally independent properties that must not be confused one with
the other. Whether or not and how these two scale-free instances
are related one to the other in the fMRI context remains a difficult
and largely unsolved issue, far beyond the scope of the present
contribution, that concentrates instead on performing a thorough
analysis of scale invariance temporal dynamics in fMRI signals.

In the existing literature, the analysis of scale invariance in fMRI
signals suffers from two limitations: First, it has often been per-
formed at the voxel or region level, thus consisting of a collection
of univariate analyses, suffering from the classical bias of voxel
selection or region definition. Moreover, although the fluctua-
tion of scale-free dynamics with tissue type has been studied in
Shimizu et al. (2004), Wink et al. (2008) to derive that stronger
persistency occurs in gray matter and that this background activ-
ity might represent neuronal dynamics, no systematic analysis has
been undertaken to disentangle the scale-free properties of RSN
and non-RSN components, such as artifacts. This investigation
can be better handled using multivariate or ICA-like approaches.
Second, scale invariance in fMRI signals has mostly been based
on spectral analysis and/or Detrended Fluctuation Analysis (c.f.,
e.g., Thurner et al., 2003; Stam and de Bruin, 2004; He, 2011). This
amounts to considering that scaling is associated only with the cor-
relation or the spectrum (hence with the second order statistics)
of the data and thus, implicitly and sometimes even explicitly, to
assuming Gaussianity and (asymptotic) self-similarity for the data
(cf., e.g., Eke et al., 2002) for a survey in the fMRI context). Also, it is
now well-known that such technics lack robustness to disentangle
stationarity/non-stationarity versus true scaling property issues
and do not allow simple extension to account for richer scaling
properties such as those observed in multifractal models. It is well
accepted that wavelet analysis based analysis of scaling (cf., e.g.,
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Abry et al., 1995, 1998; Bullmore et al., 2001;Veitch and Abry, 2001;
Fadili and Bullmore, 2002) yield not only better estimation per-
formance, but also show significant practical robustness, notably
to non-stationarity, while paving the way toward the analysis of
scaling properties beyond the strict second order (hence beyond
Gaussianity and asymptotic self-similarity).

In this context, the present contribution elaborates on ear-
lier works dedicated to the analysis of scale invariance in fMRI
temporal dynamics by proposing two significant variations.

First, scale invariance dynamics is not investigated at the voxel
or region spatial scale level independently. Instead, group-level
resting-state networks are segmented by an exploratory multi-
variate decomposition approach, namely the MSDL algorithm
(Varoquaux et al., 2011), detailed in Section 3: It produces both
a set of spatial components and a set of times series, for each
component and each subject, that conveys ongoing dynamics in
functional networks but also in artifacts. As shown in Varoquaux
et al. (2011), the sparsity promoting regularization involved in
the MSDL algorithm enables to recover less noisy spatial maps
than group-level or canonical ICA (Varoquaux et al., 2010b). This
makes their interpretation easier in the context of small group of
individuals. This technique is detailed in Section 3.

Second, to enable an in-depth analysis of the scaling properties
of the temporal dynamics in fMRI signals, we resort to multifrac-
tal analysis, that measures not a single but a collection of scaling
exponents, thus enabling a richer and more versatile description of
scale invariance (beyond correlation and Gaussianity), referred to
as multifractality. It is thus likely to better account for the variety
and complexity of potential scaling dynamics, as already suggested
in the context of fMRI in, e.g., Ciuciu et al. (2008), Wink et al.
(2008). However, in contrast to Wink et al. (2008), and following
the track opened in Ciuciu et al. (2008), we use a recent statisti-
cal analysis tool, the Wavelet Leader-based Multifractal formalism
(WLMF; Wendt et al., 2007). This formalism benefits from better
mathematical grounding and shows improved estimation perfor-
mance compared to tools previously used in the literature. This
framework is introduced in Section 4, after a review of the intu-
ition, models, and methodologies underlying the definition and
analysis of scaling temporal dynamics, thus, to some extend, con-
tinuing, and renewing the surveys provided in (Eke et al., 2002;
Ciuciu et al., 2008).

These tools are combined together and applied to two datasets,
corresponding to resting-state and activation runs. They are
described in Section 2 (see also Sadaghiani et al., 2009). Modula-
tions of scale-free and multifractal properties in space, i.e., between
functional and artifactual components but also between rest and
task, are statistically assessed at the group-level in Section 5.

In agreement with findings in He (2011), the results reported
here confirm that fMRI signals can be modeled as stationary
processes, as well as the decrease of the estimated long memory
parameter under task. However, this is found to occur everywhere
in the brain and not specifically in functional networks. Moreover,
evidence for multifractality in resting-state fMRI signals is demon-
strated except for non-cortical regions. Task-related modulations
of multifractality appear only significant in functional networks
and thus become the key property to disentangle functional net-
works from artifacts. However, in contrast to what happens for

the long memory parameter, this modulation is not monoto-
nous across the brain and varies between cortical and non-cortical
regions. These results are further discussed in Section 6 in the light
of recent findings related to scale-free dynamics of EEG microstate
sequences and non-stationarity of functional modes. Conclusions
are drawn in Section 7.

2. DATA ACQUISITION AND ANALYSIS
2.1. DATA ACQUISITION
Twelve right-handed normal-hearing subjects (two female; ages,
19–30) gave written informed consent before participation in
an imaging study on a 3-T MRI whole-body scanner (Tim-
Trio; Siemens). The study received ethics committee approval
by the authorities responsible for our institution. Anatomi-
cal imaging used a T1-weighted magnetization-prepared rapid
acquisition gradient-echo sequence [176 slices, repetition time
(TR) 2300 ms, echo time (TE) 4.18 ms, field of view (FOV)
256, voxel size 1 mm × 1 mm × 1 mm]. Functional imaging used
a T2∗-weighted gradient-echo, echo-planar-imaging sequence
(25 slices, TR = 1500 ms, TE = 30 ms, FOV 192, voxel size
3 mm × 3 mm × 3 mm). Stimulus presentation and response
recording used the Cogent Toolbox (John Romaya, Vision Lab,
UCL1) for Matlab and sound delivery a commercially available
MR-compatible system (MR Confon).

The rs-fMRI dataset we consider in this study has already been
published in Sadaghiani et al. (2009). Eight hundred-twenty vol-
umes of task-free “resting-state” data (with closed, blind-folded
eyes) were acquired before getting experimental runs of 820 vol-
umes each. These experimental runs,which have not been analyzed
in Sadaghiani et al. (2009), involve an auditory detection task (run
2, motor response), and make use of a sparse supra-threshold
auditory stimulus detection.

The auditory stimulus was a 500-ms noise burst with its fre-
quency band modulated at 2 Hz (from white noise to a narrower
band of 0–5 kHz and back to white noise). Inter-stimulus intervals
ranged unpredictably from 20 to 40 s, with each specific inter-
val used only once. Subjects were instructed to report as quickly
and accurately as possible by a right-hand key press whenever
they heard the target sound despite scanner’s background noise.
Details about the definition of each subject’s auditory threshold
are available in Sadaghiani et al. (2009).

2.2. DATA ANALYSIS
We used here statistical parametric mapping (SPM5, Wellcome
Department of Imaging Neuroscience, UK2. For image pre-
processing (realignment, coregistration, normalization to MNI
stereotactic space, spatial smoothing with a 5-mm full-width at
half-maximum isotropic Gaussian kernel for single-subject and
group analyses) and our own software developments for subse-
quent analyses. More precisely, the MSDL algorithm relies on the
scikit-learn Python toolbox3 and the multifractal analysis
on the WLBMF Matlab toolbox4.

1www.vislab.ucl.ac.uk
2www.fil.ion.ucl.ac.uk
3http://scikit-learn.org/stable/
4http://perso.ens-lyon.fr/herwig.wendt/
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3. MULTIVARIATE DECOMPOSITION OF RESTING-STATE
NETWORKS

3.1. MULTI-SUBJECT SPATIAL DECOMPOSITION TECHNIQUES
The fMRI signal observed in a voxel reflects many different
processes, such as cardiac or respiratory noise, movement effects,
scanner artifacts, or the BOLD effect that reveals the underlying
neural activity of interest. We separate these different contribu-
tions making use of a recently introduced multivariate analysis
technique that estimates jointly spatial maps and time series char-
acteristic of these different processes (Varoquaux et al., 2011).
Formally, this estimation procedure amounts to finding K spatial
maps Vs ∈ R

p×K and the corresponding time series Us ∈ R
n×K,

whose linear combination fits well the observed brain signals,
Ys ∈ R

n×p, of length n, measured over p voxels, for subject s:

Ys = Us Vt
s + Es , (1)

with Es ∈ R
n×p the subject-level noise, or residuals not explained

by the model. Finding Vt
s enables the separation of the contribu-

tions of the different process that are mixed at the voxel level, but
implies to work on spatial maps rather than on specific voxels. The
number of spatial maps, K, is not chosen a priori, but selected by
the procedure.

This problem can be seen as a blind source separation task in
the presence of noise, and has often been tackled in fMRI using
ICA, combined with principal component analysis (PCA) to reject
noise (McKeown et al., 1998; Kiviniemi et al., 2003; Beckmann
and Smith, 2004). In the multi-subject configuration, estimat-
ing the spatial maps on all subjects simultaneously makes it easy
to relate the factors estimated across the different subjects. This
can be done by concatenating the data across subject, modeling
a common distribution (Calhoun et al., 2001), or by extending
the data-reduction step performed in the PCA by a second level
capturing inter-subject variability (Varoquaux et al., 2010b). More
recently, it was proposed that the key to the success of ICA on
fMRI data, is to recover sparse spatial maps (Daubechies et al.,
2009; Varoquaux et al., 2010a). This hypothesis can be formulated
as a sparse prior in model (1), which can then be estimated using
sparse PCA or sparse dictionary learning procedures. With regards
to our goal in this study, extracting time series specific to the vari-
ous processes observed, a strong benefit of such procedures is that
they can perform data-reduction, i.e., estimation of the residuals
not explained by the model, and extraction of the relevant signals
in a single step informed by our prior. On the opposite, with ICA-
based procedures, the residuals are selected by the PCA step, and
not the ICA step.

3.2. MULTI-SUBJECT DICTIONARY LEARNING ALGORITHM
In addition, Varoquaux et al. (2011) have adapted the dictionary
learning procedures to a multi-subject setting, in a so-called multi-
subject dictionary learning (MSDL) framework. On fMRI datasets,
the procedure extracts a group-level atlas of spatial signatures
of the processes observed, as well as corresponding subject-level
maps, accounting for the individual specificities. They show that,
with a small spatial smoothness prior added to the sparsity prior on
the maps, the extracted patterns correspond to the segmentation of
various structures in the signal: functional regions, blood vessels,

interstitial spaces, sub-cortical structures. . . In these settings,
the subject-level maps Vs are modeled as generated by group-
level maps V ∈ R

p×K with additional inter-subject variability that
appears as residual terms, Fs ∈ R

p×K, at the group-level:

∀s ∈ {1, . . . , S} , Vs = V + Fs .

The model is estimated by finding the group-level and subject-
level maps that maximize the probability of observing the data at
hand with the given prior. This procedure is known as a Maximum
A Posteriori (MAP) estimate, and boils down to minimizing the
negated log-likelihood of the model with an additional penalizing
term. If the two sources of unexplained signal, i.e., subject-level
residuals Es and inter-subject variability Fs are modeled as Gauss-
ian random variates, the log-likelihood term is the sum of squares
of these errors. The prior term appears as the sum of the sparsity-
inducing �1 norm of V, and the �2-norm of the gradient of the
map, enforcing the smoothness. This prior has been used pre-
viously in regression settings under the name of smooth-Lasso
(Hebiri and van de Geer, 2011). Estimating the model from the
data thus consists of minimizing the following criterion:

J (Us , Vs , V) =
S∑

s=1

(∥∥Ys − Us Vt
s

∥∥2 + μ‖Vs − V‖2
)

+ λ
(‖V‖1 + VtL V/2

)

where, ||V ||1 is the �1 norm of V, i.e., the sum the absolute values,
L is the image Laplacian −Vt LV is the norm of the gradient. λ
is a parameter controlling the amount of prior set on the maps,
and thus the amount of sparsity, that is set by Cross-Validation
(CV). μ is a parameter controlling the amount of inter-subject
validation, that is set by comparing intra-subject variance in the
observations with inter-subject variance. For more details about
the estimation procedure or the parameter setting, we refer the
reader to Varoquaux et al. (2011).

3.3. RESTING-STATE MSDL MAPS
rs-fMRI runs were analyzed for S = 12 subjects, consisting of
n = 820 volumes (time points) with a 3-mm isotropic resolution,
corresponding to approximately p = 50000 voxels within the brain.
The automatic determination rule of the number of maps exposed
in Varoquaux et al. (2010a) converges to K = 42. Also, the CV pro-
cedure gives us the best CV criterion for λ= 2. The group-level
maps V are shown in Figure 1. They have been manually classi-
fied in three groups: Functional (F), Artifactual (A), and Undefined
(U) maps that appear color-coded in red, blue, and green, respec-
tively. The undefined class appeared necessary to introduce some
confidence measure in our classification and disambiguate well-
established networks (e.g., dorsal attentional network) from inho-
mogeneous components mixing artifacts with neuronal regions
(e.g., like in v9). The anatomo-functional description of these
group-level maps and their class assignment is given in Table 1.
The same rules applied for individual maps Vs. In what follows, we
will denote by F , A and U the index sets of F/A/U-maps, respec-
tively and by Card (F) = 25, Card (A) = 13, and Card (U) = 4
their respective size.
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FIGURE 1 | From left to right and top to bottom, group-level MSDL

maps V = |v 1|. . .|v 42| inferred from the multi-subject (S = 12)

resting-state fMRI dataset (Neurological convention: left is left).

Functional (F), Artifactual (A), and Undefined (U) maps appear
color-coded boxes in red, blue, and green, respectively. Let us denote

F , A, and U the index sets of F/A/U-maps, respectively and Card
(F ) = 25, Card (A) = 13, and Card (U ) = 4 their respective size. Each
map v k consists of loading parameters within the (−1, 1) range where
positive and negative values are depicted by the hot and cold parts of
the color bar.

To compare spontaneous and evoked activity, the same spa-
tial decomposition was used on resting-state (run 1, Rest) and
task-related data, which were acquired during an auditory detec-
tion task (run 2, Task). In practice, this consists of projecting the
task-related fMRI data Ỹs onto the inferred spatial maps Vs by

minimizing the following least square criterion,
∥∥Ỹs −Ws Vt

s

∥∥2
,

with respect to Ws. The time series solution admits a closed-form

expression: Ũs = Ỹs Vs
(
Vt

s Vs
)−1

. The subsequent scale-free analy-
sis is applied to the two sets of n × K map-level fMRI time series

US = [us,1|. . .|us,K ]t and Ũs = [̃
us,1 |. . .| ũs,K

]t
in a univariate

manner, that is to each time series us,k and ũs,k for Rest and Task,
respectively.

4. SCALE-FREE: INTUITION, MODELS, AND ANALYSES
4.1. INTUITION
In the analysis of evoked brain activity, it is common to seek cor-
relations of BOLD signals with any a priori shape of the hemody-
namic response convolved with the experimental paradigm. In the
frequency domain, this amounts to seeking response energy con-
centration in pre-defined spectral bands, as induced for instance
by periodic stimulation (e.g., flashing checkerboards). In resting-
state fMRI, it is now well admitted that intrinsic brain activity
is characterized by scale-free properties (Zarahn et al., 1997; He,
2011). This constitutes a major change in paradigm as it implies
that brain activity is not to be analyzed via the amounts of energy
it shows within specific and a priori chosen frequency bands, but
instead via the fact that all frequencies are jointly contributing
in an equivalent manner to its dynamics. Scale-free dynamics are
usually described in the spectral domain by a power-law decrease:
Let Y (t ) denote the signal quantifying brain activity and �Y (f )

its Power Spectral Density (PSD). Scale-free property is classically
envisaged as:

M0 : �Y
(
f
) � C

∣∣f ∣∣−β , β ≥ 0, (2)

with fm ≤ |f | ≤ fM, fM/fm � 1. Such a power-law behavior over
a broad range of frequencies implies that no frequency in that
range plays a specific role, or equivalently, that they are all equally
important. To analyze brain activity, this power-law relation thus
becomes a more important feature than the energy measured at
some specific frequencies. For instance, it implies that energy at
frequency f1 can be deduced from energy at frequency f2 according
to He (2011):

�Y
(
f2

) = �Y
(
f1

) (∣∣f2∣∣/∣∣f1∣∣)−β
. (3)

In the scale-free framework, one therefore tries to quantify brain
activity by considering the scaling exponent β (or variants) as the
key descriptor. Let us moreover note that the terminology scale-
free is equivalent to scale invariance or simply scaling, encoun-
tered in other scientific fields, where this property has also been
found to play a central role (c.f., Abry et al., 2002; Ciuciu et al.,
2008).

4.2. SCALE-FREE MODELS
4.2.1. From spectrum to increments
Though appealing, equations (2) and (3) do not provide practi-
tioners with a versatile enough definition of scale-free with respect
to real-world data analysis. Indeed, they concentrate only on the
second order statistics and hence account neither for the marginal
distribution (first order statistics) of the signal Y, nor for its higher
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Table 1 | Classification of group-level V = |v1|. . .|v 42| maps according

to the F/A/U labeling.

Index Anatomo-functional description Label Network

v 1 Ventral primary sensorimotor cortex F ( f 1) Mot.

v 2 Dorsal primary motor cortex or

edge of recorded volume

U (u1)

v 3 Midbrain A (a1) Oth.

v 4 Precuneus, posterior cingulate

cortex

F (f 2) DMN

v 5 Calcarine cortex (V1) F (f 3) Vis.

v 6 Anterior cerebellar lobe F (f 4) N-c

v 7 Ventricles A (a2) Ven.

v 8 Caudate, thalamus, and putamen F (f 5) N-c

v 9 Pre- and supplementary motor

cortex

U (u2)

v 10 Occipital cortex F (f 6) Vis.

v 11 Ventricles A (a3) Ven.

v 12 Median prefrontal cortex F (f 7) DMN

v 13 Right lateralized fronto-parietal

cortex

F (f 8) Fr.-par.

v 14 Ventricles A (a4) Ven.

v 15 Superior temporal and inferior

frontal gyrus

F (f 9) Lang.

v 16 Primary sensorimotor cortex F (f 10) Mot.

v 15 Artifact A (a5) Oth.

v 18 Dorsal occipital cortex F (f 11) Vis.

v 19 Supratemporal cortex F (f 12) Aud.

v 20 Semioval center (white matter) A (a6) WhM.

v 21 Anterior insula and cingulate cortex F (f 13)

v 22 Frontal Eye Fields (FEF),

intra-parietal cortex

F (f 14) Att.

v 23 Ventral occipital cortex F (f 15) Vis.

v24 Semioval center (white matter) A (a7) WhM.

v 25 Lateral occipital cortex F (f 16) Vis.

v 26 Parieto-occipital cortex F (f 17) Vis.

v 27 Extracerebral space A (a8) Oth.

v 28 Left lateralized ventral

fronto-parietal cortex

F (f 18) Fr.-par.

v 29 Retrosplenial and anterior occipital

cortex

U (u3)

v 30 White matter A (a9) WhM.

v 30 Left lateralized fronto-parietal

system

F (f 19) Fr.-par.

v 32 Right lateralized ventral

fronto-parietal system

F (f 20) Att.

v 23 Mesial temporal system F (f 21)

v 34 Dorsomedian frontal cortex F (f 22) DMN

v 35 White matter A (a10) WhM.

v 36 Motion-related artifact A (a11) Mov.

v37 Bilateral prefrontal cortex and

anterior Caudate

F (f 23)

v 38 Left lateralized temporo-parietal

junction and inferior frontal gyrus

F (f 24) Att.

v 39 Right lateralized temporo-parietal

junction and inferior frontal gyrus

F (f 25) Att.

(Continued)

v 40 Bilateral superior parietal lobe U (u4)

v 41 White matter A (a12) WhM.

v 42 Artifact A (a13) Oth.

The F-maps have been subdivided in different functional networks: Attentional,

Default Mode Network, Motor, Visual. Basal Ganglia (Thalamus, Caudate, and

Putamen) and cerebellum have been put together under the Non-cortical label.

They will be considered together in the following set: N = {Att, DMN, Mot, N-c,

Vis}. The artifacts have been distinguished in four types: Ventricles, White Matter,

Movement, and Other. The corresponding set will be denoted T = {Ven, WhM,

Mov, Oth}.

order dynamics (or dependence structure). For instance, it does
not indicate whether data are jointly Gaussian or depart, weakly,
or strongly, from Gaussianity.

To investigate how to enrich Model M0, let us assume for now
that Y consists of a stationary jointly Gaussian process, with PSD
as in equation (2). Equivalently, this implies that the covariance
function behaves as CY (τ ) ∼ σ 2

Y (1 + C ′|τ |−α), for τm ≤ τ ≤ τM,
with α= 1 −β. A simple calculation hence shows that
E(Y (t + τ ) − Y (t ))2 = EY (t + τ )2 + EY (t )2 − 2EY (t + τ )Y (t ) =
c2|τ |−α . The Gaussianity of Y further implies that ∀q>−1:

E|Y (t + τ)− Y (t )|q = cq |τ |−
qβ
2 , τm ≤ τ ≤ τM . (4)

Defining X(t )=
∫

t Y (s)ds, equation (4) straightforwardly implies
that, as long as τm ≤ τ 1,τ 2 ≤ τM:

{
X (t + τ1)− X(t )

τH
1

}
t∈R

fdd=
{

X(t + τ2)− X(t )

τH
2

}
t∈R

, (5)

with H = (−α/2) = (β + 1)/2,and where f dd means equality of all

joint finite dimensional distributions: i.e., (X(t + τ1)− X(t ))/τH
1

and (X(t + τ2)− X(t ))/τH
2 have the same joint distributions. In

turn, this implies that ∀q>−1, such that E|X(t )|q<∞:

E|X (t + τ)− X(t )|q = cq |τ |qH , τm ≤ τ ≤ τM , or (6)

E|X (t + τ2)− X (t )|q = E|X (t + τ1)− X (t )|q
( |τ2|

|τ1|
)qH

, (7)

with τm ≤ τ 1,τ 2 ≤ τM, which are reminiscent of equations (2)
and (3).

4.2.2. Self-Similar processes with stationary increments
Equations (6) and (7) turn out to hold not only for jointly Gaussian
1/f-processes but for a much wider and better defined class, that
of self-similar processes with stationary increments, referred to as
H -sssi processes, and defined as, c.f., Samorodnitsky and Taqqu
(1994):

M1 : {X (t )}t∈R

fdd= {
aH X (t/a)

}
t∈R

, (8)

∀a> 0, H ∈ (0, 1). Essentially, it means that X cannot be distin-
guished (statistically) from any copy, dilated by scale factor a> 0,
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on condition that the amplitude axis is scaled by aH. Parameter
H is referred to as the self-similarity exponent. A major practical
consequence of this definition consists of the fact that equations
(6) and (7) hold for all τ (resp., τ 1,τ 2).

The central benefit of such a definition is that it does not
require the data to be Gaussian but provides both theoreti-
cians and practitioners with a well-defined model. For analy-
sis, fMRI data can hence be envisaged as the increment process
Y (t ) = X(t + τ 0) − X(t ) of an H -sssi process X (where τ 0 is an
arbitrary constant chosen to make sense with respect to physiol-
ogy and data acquisition set up, e.g., τ 0 = TR). This constitutes
a second model to account for scale-free properties in data, that
encompasses the simpler 1/f-spectrum first model.

Further, if joint Gaussianity is assumed, the model becomes
even more precise as the only Gaussian H -sssi process X is the
so-called fractional Brownian motion (fBm), c.f., e.g., Mandelbrot
and van Ness (1968), hereafter labeled X(t ) ≡ BH(t ). The corre-
sponding increment process Y (t ) = GH(t ) = BH(t + 1) − BH(t ) is
termed fractional Gaussian noise (fGn). Additionally, note that
it may sometimes constitute a practical and relevant challenging
issue to decide whether brain activity is better modeled by the H -
sssi process X (hence a non-stationary process) or by its increment
process Y (hence a stationary process; c.f., e.g., Ciuciu et al., 2008;
He et al., 2010; He, 2011).

4.2.3. Multifractal processes
In a number of situations, it has been actually observed on a vari-
ety of real-world data of very different nature (c.f., e.g., Abry et al.,
2002 for reviews) that equation (6) holds over a wide range of τ s,
however, with scaling exponents that depart significantly from the
theoretical linear behavior qH :

E|X (t + τ)− X (t )|q = cq |τ |ζ(q), τm ≤ τ ≤ τM . (9)

The generic behaviors modeled by equation (9) can be considered
as a practical or operational, definition of scale-free property. Let
us note that, by nature, ζ (q) is necessarily a concave function of q
(c.f., e.g., Wendt et al., 2007).

Scaling exponents ζ (q) that are strictly concave rule out the
use of H -sssi process as models. Instead, a broader class should be
used, referred to as that of multifractal processes. This is however a
large and not-well-defined class of processes. For the purposes
of this contribution, let us use a particular subclass of multi-
fractal processes defined as fBm subordinated to a multiplicative
Compound Poisson cascade:

M2 : X(t ) := BH (A(t )) , where A(t ) =
∫ t

W (s)ds, (10)

with W (s) a multiplicative Compound Poisson cascade (or mar-
tingale), such as those defined in Barral and Mandelbrot (2002).
The complete definition of these cascades has been given and stud-
ied with details elsewhere and is hence not recalled here (c.f., Bacry
et al., 2001; Barral and Mandelbrot, 2002; Chainais et al., 2005).
It is enough to emphasize that they rely on the choice of posi-
tive random variables whose moments of order q define the ζ (q).
The process X thus defined satisfies equation (9) with strictly con-
vex tunable scaling exponents ζ (q), has stationary increments Y,

and has distributions that depart from strict jointly Gaussian laws.
Such departures, that may however turn subtle and hard to detect
in practice, are precisely quantified by the departure of ζ (q) from a
linear behavior in q. The ζ (q) therefore convey a rich information
about data X, and hence about Y, as they account for the entire
dependence structure of the data, hence both to the time dynamic
and distributions of data. Their accurate estimation from real-
world data therefore naturally constitutes an important practical
challenge discussed below.

4.3. SCALE-FREE ANALYSIS
4.3.1. From spectrum to wavelet analysis
Assuming that data Y have a power-law spectrum behavior as in
equation (2), it is natural to rely on spectral estimation to measure
β. A classical tool in spectrum analysis is the Welch estimator that
consists in splitting data Y into blocks and in averaging the squared
Fourier transforms computed independently over each block. For
scale-free data, it is hence expected that:

�̂Y
(
f
) =

∑
k

∣∣〈Y , gf ,k
〉∣∣2 � C

∣∣f ∣∣−β , (11)

where the gf,k = g 0(t − k)e ι2π ft are translated into time and into
frequency templates of a reference pattern g 0(t ). This relation can
be further used to estimate β.

It has been shown that wavelet transforms can achieve bet-
ter performance both in the analysis of scale-free properties in
real-world data, and in the estimation of the corresponding scal-
ing parameters (c.f., Abry et al., 1995, 1998; Veitch and Abry,
2001). The discrete wavelet transform (DWT) coefficients of Y
are defined as:

dY
(
j , k

) =
∫

R

Y (t ) 2−jψ0

(
2−j t − k

)
dt ≡ 〈

Y ,ψj ,k
〉
, (12)

where the ψ j,k = 2−jψ0(2−j t − k) consists of templates of a refer-

ence patternψ0 translated in time and dilated (by a factor a = 2j).
It is referred to as the mother-wavelet : an elementary function,
characterized by fast exponential decays in both the time and fre-
quency domains, as well as by a strictly positive integer Nψ ≥ 1,
the number of vanishing moments, defined as ∀k = 0, 1,. . ., Nψ − 1,∫

Rt kψ0(t )dt ≡ 0, and
∫

Rt Nψ0(t )dt �= 0. Note the choice of the
L1-norm (as opposed to the more common L2-norm choice) that
better matches scaling analysis. For further introduction to wavelet
transforms, the reader is referred to, e.g., Mallat (2009).

Defining Sd
Y (j , 2) = 1

nj


nj

k=1

∣∣dY (j , k)
∣∣2

(with nj the number of

dX(j,k) available at scale 2j), one obtains (c.f. Abry et al., 1995):

ESd
Y

(
j , 2

) =
∫

R

�Y
(
f
) ∣∣∣�0

(
2j f

)∣∣∣2
df (13)

where �0 denotes the Fourier transform of ψ0. This indicates
that Sd

Y (j , 2) can be read as a wavelet based estimate of the PSD
and is hence referred to as the wavelet spectrum. It measures the
amount of energy of Y around the frequency fj = f0/2j where f0

is a constant that depends on the explicit choice of ψ0 (for the
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Daubechies wavelet used here, f0 � 3fs/4 with fs the sampling fre-
quency). This correspondence between the Fourier and wavelet
spectra is illustrated on fMRI signals in Figure 2. For scale-free
processes satisfying equation (2), it implies:

Sd
Y

(
j , 2

) ≡ 1

nj

nj∑
k=1

∣∣〈Y ,ψj ,k
〉∣∣2 � C22j(β−1), am ≤ 2j ≤ aM .

While this formally looks like equation (11), it has been shown
in detail how and why the wavelet spectrum yields better esti-
mates of the scaling exponents β than Welch based-ones, both in
terms of estimation performance and robustness to various forms
of non-stationarity in data that may be confused with scale-free
behaviors (Abry et al., 1995, 1998; Veitch and Abry, 2001). Notably,
it was shown how wavelet analysis enables to disentangle non-
stationarity, stemming from fMRI environment, from true long
memory in brain activity. Also, the wavelet spectrum avoids the
potentially difficult issue that consists of deciding a priori whether
empirical data are better modeled by Y or X, needed by classical
spectrum estimation, that can only be applied to stationary data.
In a nutshell, these benefits stem from the use of the change of
scale operator to design the analysis tool, that intuitively matches
scale-free behavior more naturally than a frequency shift operator.

4.3.2. From 2nd to other statistical orders: Wavelet leaders
As discussed in Section 4.2, analyzing in-depth scale-free proper-
ties implies investigating not only the spectrum (i.e., the second
order statistics of data) but rather the entire dependence structure,
i.e., the whole range of available statistical orders q. It had initially
been thought that this would amount to extending the definition

of Sd
Y (j , 2) to other orders q, Sd

Y (j , q) ≡ 1
nj

∑nj

k=1

∣∣〈Y ,ψj ,k
〉∣∣q

. It has

however recently been shown that this approach, though intuitive
and appealingly simple, fails to yield satisfactory estimation of the
ζ (q). Notably, wavelet coefficients show little power in enabling
practitioners to decide whether ζ (q) is a linear or strictly concave
function of q. Instead, it is now well documented that the estima-
tion of the ζ (q) should be based on Wavelet Leaders (Wendt et al.,
2007).

Let us now assume that ψ0 has a compact time support
and introduce the global regularity of Y, hm, defined as: hm =
lim inf 2j→0 log(supk |dY (j , k)|)/ log(2j). Therefore, hm can be
estimated by a linear regression of the log of the magnitude

FIGURE 2 | (A) Welch (blue curves) vs. Wavelet (black curves) spectra
associated with a F-map (f 18). Solid and dashed lines correspond to rest and
task, respectively. (B) Corresponding multifractal spectra D(h).

of the largest wavelet coefficient at scales 2j versus the log of
the scales 2j (Wendt et al., 2007). Let γ ≥ 0 be defined as,
with ε > 0: γ = 0 if hm> 0, and γ = −hm + ε otherwise. Fur-
ther, let λj,k denote the dyadic interval λj,k = [k2j, (K + 1)2j),
and denote by 3λj,k the union of λj,k and its 2 closest neighbors,

3λj,k = [(k − 1)2j, (k + 2)2j). The wavelet leaders L(γ )Y are defined

as L(γ )Y (j , k) = supλ′⊂3λj ,k
2γ j

∣∣dY (λ
′)
∣∣. In practice, L(γ )Y (j , k) sim-

ply consists of any of the largest coefficients 2γ j |dY (λ′)| located
at scales finer or equal to 2j and within a small time neighbor-
hood. It is then necessary to form the so-called wavelet Leader
structure functions that reproduce the scale-free properties in Y
according to:

SL
Y

(
j , q, γ

) ≡ 1

nj

nj∑
k=1

(
L(γ )Y

(
j , k

))q � cq2jζ(q,γ ), (14)

Moreover, for a large class of processes,one has:ζ (q,γ ) = ζ (q) + γ q.
For all real-world data analyzed so far with WLMF, this relation is
found to hold, by varying γ (c.f. Wendt et al., 2007 for a thorough
discussion). This has also been verified empirically for fMRI data.
Further, because it can take any concave shape, the function ζ (q,γ )
is often written as a polynomial expansion (Arneodo et al., 2002):

ζ(q, γ ) = p≥1 c (γ )p qp/p !. Notably, the second order truncation

ζ(q, γ ) � c (γ )1 q + c (γ )2 q2/2 (with c (γ )2 ≤ 0 by concavity) can be
regarded as a potentially interesting approximation that captures
the crucial information regarding whether the ζ (q,γ ) are linear
in q (hence indicating H -sssi models) or strictly concave (hence
suggesting multiplicative cascade models). Interestingly, the coef-

ficients c (γ )p entering the polynomial expansion of ζ (q,γ ) are not
abstract figures but rather turn out to be quantities deeply tied to
the scale-free properties of Y, as they are related to the scale depen-

dence of the cumulants of order p ≥ 1, C (γ )
Y (j , p), of the random

variable ln L(γ )Y (j , k):

∀p ≥ 1, C (γ )
(
j , p

)
Y = c (γ )0,p + c (γ )p ln 2j . (15)

Equations (14) and (15) suggest that the ζ (q,γ ) or c (γ )p can

be efficiently estimated from linear regressions: ζ̂ (q, γ ) =


j2
j=j1

wj log2 SL
Y (j , q, γ ) and ĉ (γ )p = log2 e

j2
j=j1

wj Ĉ
L
Y (j , p, γ ).

The weights wj are chosen to perform ordinary (or non-weighted)
least squares estimation (c.f. Veitch and Abry, 2001 for discussion).

Further, ζ (q,γ ) = ζ (q) + γ q obviously implies that c1 = c (γ )1 − γ

and ∀p ≥ 2, cp = c (γ )p .
This wavelet Leader-based analysis of scale-free properties

is intimately and ultimately related to multifractal analysis, the
detailed introduction of which is beyond the scope of the present
contribution. We restate here only its essence. Multifractal analyses
describe globally the fluctuations along time of the local regularity
of a signal Y (t ). This local regularity is measured by the so-called
Hölder exponent h(t ), that essentially compares Y around time
t 0 against a local power-law behavior: |Y (t ) − Y (t 0)| ≤ |t − t 0|h,
|t − t 0| → 0. The variations of h along time are then described
globally via the multifractal spectrum, consisting of the collection
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of Hausdorff dimensions, D(h), of the sets of points {t,h(t ) = h}.
In practice, the multifractal spectrum is estimated indirectly via
(a Legendre transform of) the function ζ (q). The approximation
ζ (q) � c1q + c1q2/2 translates into D(h) � 1 − (h − c1)2/(2|c2|).
For thorough and detailed introductions to multifractal analysis,
the reader is referred to, e.g., Wendt et al. (2007). Examples of
such multifractal spectra estimated using the WLMF from real
fMRI signals are illustrated in Figure 2B. An outcome of the
mathematical theory underlying multifractal analysis, of key prac-
tical importance and impact, is the following: the function D(h)
theoretically constitutes a rich characterization of the scale-free
properties of a signal Y and its complete and entire estimation
requires the use, in equation (14), of both positive and nega-
tive order qs, concentrated left and right around 0 (Wendt et al.,
2007).

5. MULTIFRACTAL ANALYSIS OF MSDL MAPS
5.1. SINGLE-SUBJECT ANALYSIS
5.1.1. Scaling range
For analysis, orthonormal minimal-length time support
Daubechies’s wavelets were used with Nψ = 3. Scale-free prop-
erties are systematically found to hold within a 4-octave range
((j1,j2) = (3,6)), corresponding to a frequency range of [0.008,
0.063] Hz5, which is hence consistent with the upper limit
0.1 Hz classically associated with the hemodynamics boundary
and scaling in fMRI data (Cordes et al., 2001).

5.1.2. Fourier vs. wavelet spectra
For illustrative purposes, two time series corresponding to a func-
tional map (k = 28, f 18 in Table 1), were selected in the rest
and task runs from the first subject. In Figure 2A, the Fourier
spectrum estimate (log2�̂us,k (f )) based on Welch’s averaged peri-

odogram and its wavelet spectrum counterpart (log2Sd
us,k
(j , 2))

are found to closely match, as predicted by equation (13). Inter-
estingly, Figure 2A shows that the β exponent, measured within
frequency range [0.008, 0.063] Hz, in equation (2) (i.e., the neg-
slope of the log-spectra log2 �̂us,k (f )) decreases with task-related
activity in f 18. This amounts to observing lower Hurst expo-
nent H = (β − 1)/2 in the task-related dataset: Ĥ R

f18
� 0.66 and

Ĥ T
f18

� 0.5. As shown in the following, this decrease of self-

similarity is not specific to functional maps and will be observed in
artifactual and undefined maps. Following He (2011), the station-
arity of fMRI signals is confirmed since we systematically observed

Ĥ
R,T
k < 1.

5.1.3. Multifractal spectrum
For the same time series, MF spectra D(h), estimated using
the WLMF tool described above, are depicted in Figure 2B.
The decrease of self-similarity between rest and task is captured
by a shift to the left of the position ĉ1 of the maximum of
D(h): ((̂c1)

R
f18

, (̂c1)
T
f18
) = (0.75, 0.5) It should also be noted that

parameter ĉ1 systematically takes values that are close to those
of the Hurst exponent. This is consistent with the theoretical

5The scale and band-specific central frequency are related according to fj = 3fe/(42j).

modeling of scale-free property that establishes a clear connec-
tion between c1 and H and predicts c1 � H (c.f. Wendt et al.,
2007). Therefore, in the following, c1 will be referred to as the
self-similarity parameter although this is a slight misnomer. Fur-
ther, Figure 2B confirms the presence of multifractality in fMRI
data as strictly negative c2< 0 are almost always observed. Indeed,
parameter c2 quantifies the width of D(h; as a curvature radius
of D(h) around (̂c1): ĉ2 < 0. Multifractality is however not spe-
cific to a given brain state since we measured ((̂c2)

R
f18

, (̂c2)
T
f18
) =

(−0.07, −0.06). In this example, multifractality, as measured by
the width of the multifractal spectra, is decreased from rest to
task. However, opposite fluctuations will be also observed amongst
F-maps.

The sole two self-similarity and multifractality parameters c1

and c2 are therefore used from now on as sufficient and relevant
descriptors of the scale-free properties of fMRI signals (super-
script γ is dropped for the sake of conciseness, while γ has been
systematically set to γ = 2).

5.2. GROUP-LEVEL ANALYSIS
5.2.1. Group-level scale-free properties
Let c

j ,s
i,k denote the ĉ1 and ĉ2 estimates (index i = 1:2) for dif-

ferents maps (index k = 1:K ), runs (index j = R,T for Rest and
Task, respectively) and for different subjects (index s). The map-

dependent group-level values have been computed as μ
j
i,k =

S
s=1 ĉ

j ,s
i,k/S and sorted according to their labeling (F/A/U-maps)

given in Table 1. Then, global spatial averaging of the means

μ
j
i,k has been performed so as to derive global F/A/U-average

parameter estimates: μ̄
j
i,F = k⊂F μ

j
i,k/Card(F) , μ̄

j
i,A , and

μ̄
j
i,U are defined equivalently. In the same spirit, group-level

multifractal attributes μ̄
j
i,v�

are derived for each functional net-

work v� ∈ N = {Att, DMN, Mot, N-c, Vis} such that μ̄
j
i,n�

=
k∈n� μ

j
i,k/Card(n�), ∀�= 1:5, and j = (R,T). We proceed in the

same way for analyzing artifact types tr ∈ T = {Ven, WhM, Mov,

Oth}, and computing μ̄
j
i,tr

for r = 1:4.
As shown in Figure 3[top], the group-averaged values of self-

similarity μ
j
1,k lie approximately in the same range [0.55, 1],

indicating long memory, for all components (F/A/U-maps). An
almost systematic decrease of self-similarity is observed in the
task-related dataset (δ1,k = μT

1,k − μR
1,k < 0), for k ∈ F∪A∪ U .

This trend is therefore not specific to F-maps. Moreover, the
average decrease computed over F-maps is about the same as
the one estimated for A and U-maps (δ̄1,F = −0.125, δ̄1,A =
−0.11 and δ̄1,U = −0.13). Also, the averaged standard devia-
tions (σ̄R

1,F , σ̄R
1,A , and σ̄R

1,U ) computed over the F/A/U-maps, are

close to each other (σ̄R
1,F/A/U ≈ 0.18) and systematically increase

with the task-related activity(σ̄T
1,F/A/U > σ̄R

1,F/A/U ).
Figure 3[bottom] illustrates that the group-averaged values of

μ
R,T
2,k are almost all negative in the F/A/U-maps indicating multi-

fractality in fMRI time series irrespective of the map type or brain
state. Between rest to task-related situation minor changes in the A
and U-maps are also observed since |δ2,k |< 0.03 for k ∈ U ∪ A)
while we measured |δ2,k |< 0.08 for k∈F (δ2,k = μT

2,k − μR
2,k).
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FIGURE 3 | From left to right: Group-averaged map-dependent MF parameters μ
j
1,k (top), μ

j
2,k (bottom) specific to F/A/U-maps defined inTable 1. Black

and red curves code for j = R (Rest) and j =T (Task).

Hence, the level of multifractality does not change much between
rest and task in irrelevant maps. In contrast, large changes in the
multifractal parameters are observed in F-maps, while not system-
atically in the same direction. For instance, in cerebellum ( f 4),
basal ganglia ( f 5), DMN ( f 7) and fronto-parietal network ( f 8)
evoked activity induces a large increase of multifractality (δ2,k < 0)
while in the auditory and attentional systems (e.g., f 12 and f 24,
respectively), which are supposed to be involved in the audi-
tory detection task, the converse observation holds, i.e. (δ2,k > 0.
Also, it is worth noticing that the averaged standard deviations
computed over the A/U-maps increase when switching from rest
to task (σ̄R

2,A = 0.06 < σ̄T
2,A = 0.09 and σ̄R

2,U = 0.05 <

σ̄T
2,U = 0.085) while they remain at the same level in the F-maps:

σ̄R
2,F ≈ σ̄T

2,F ≈ 0.08.
We computed the grand means of the self-similarity parame-

ters μ̄R,T
1,F/A/U over the F/A/U-maps, respectively, and draw the

same conclusion at this macroscopic level, as demonstrated in
Figures 4A–C: the decrease of self-similarity from rest to task is
not specific to functional components and only slightly fluctu-
ates between networks and artifact types. Moreover, we did not
observe any significant modification of the grand means of mul-

tifractal parameter estimates μ̄R,T
2,F/A/U between rest and task, as

illustrated in Figure 4D. This motivated deeper investigations at
the network and artifact levels, especially concerning the fluctu-
ation of multifractality induced by task. Figure 4E reveals that a
major increase of multifractality (μ̄T

2,n4
< μ̄R

2,n4
) occurred only in

the non-cortical regions while no major change appeared in the
artifacts (μ̄T

2,tr
� μ̄R

2,tr
, ∀r ∈ T ) as shown in Figure 4F.

5.2.2. One-sample statistical tests
To assess the statistical significance of the multifractal parame-
ters for the rest and task-related datasets at the group-level, we
used one-sided tests associated with the following null hypotheses
∀k ∈ F∪A ∪ U :

H (1,k)
0,j : μ

j
1,k ≤ 0.5, (White noise or SRD)

H (2,k)
0,j : μ

j
2,k = 0., (H − sssi process).

}
(16)

We also conducted similar tests at the macroscopic level

(k ∈ N ∪ T ) by replacing μ
j
i,k with μ̄

j
i,k in the null hypothe-

ses (16). Because there is no definite proof nor evidence that

MF parameter estimates ĉ
j ,s
i,k should be normally distributed

across subjects, we investigated different statistics (Student-t,
Wilcoxon’s signed rank (WSR) statistic). Indeed, other statis-
tics may provide more sensitive results in presence of out-
liers. To account for multiple comparisons (K tests per-
formed simultaneously) and to ensure correct specificity con-
trol (control of false positives), the Bonferroni correction was
applied.

Rejecting H (1,k)
0,j clearly amounts to localizing brain areas or

components eliciting significant long memory or self-similarity.

Rejecting H (2,k)
0,j enables to discriminate multifractality from self-

similarity. Similar tests involving μ̄
j
i,F/A/U , μ̄

j
i,n�

, and μ̄
j
i,tr

in
the definition of null hypotheses(16) for (i = 1, 2) were also
performed.
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FIGURE 4 |Top: Group-level grand-mean self-similarity parameter μ̄
j
1,k

averaged over the F/A/U-maps, i.e., k ∈ F/A/U (A), the functional

networks, k ∈ N (B) and the artifact types, k ∈ T , (C). Bottom: Group-level

grand-mean multifractality parameter μ̄j
2,k averaged over the F/A/U-maps, i.e.,

k ∈ F/A/U (D), the functional networks, k ∈ N (E) and the artifact types,
k ∈ T , (F). Black and red curves code for j = R (Rest) and j =T (Task).

Analysis of statistical significance of F-maps regarding H (1),k
0,R

showed that most components (22/25) rejected this null hypoth-
esis at rest using T -test and thus were significantly self-similar
(see blue curves in Figure 5A). The task effect then induced a loss
of significance in the vast majority of components as shown in
Figure 5B: only four maps ( f 10, f 14, f 18, and f 24) demonstrated
a significant level of self-similarity using T-test in the task-related
dataset. These maps are related to the motor, fronto-parietal, and
attentional (parieto-temporal junction and IPS/FEF) networks.
Two out of them are lateralized in the left hemisphere. Statisti-

cal analysis of F-maps regarding H (2),k
0,R demonstrated that only six

components ( f 15, f 17, f 18, f 21, f 23, f 24) rejected this null hypothe-
sis at rest: see red curves in Figure 5A. The task-related modulation
tends to reduce the number of significant F-maps: As depicted
in Figure 5B, only 3 components survived the T-test ( f 10, f 15,
and f 19) in the task-related dataset. Interestingly, f 10 and f 19 are
likely to be involved in the auditory detection task and the motor
response since they belong to the Motor and Attentional networks.
Hence, a significant level of multifractality is observed during task
in components that were monofractal at rest. Besides, the level of
multifractality remains significant in the ventral occipital cortex
( f 15) irrespective of the brain state and that a few components in
the visual ( f 17), fronto-parietal ( f 18), temporal ( f 21), prefrontal
( f 23), and attentional ( f 24) networks became monofractal under
the task effect.

Statistical analysis of A and U-maps regarding H (1),k
0,j showed

the same behavior when switching from rest to task, namely a
strong decrease of the number of significant self-similar compo-
nents (from 10 to 4 and 4 to 2 for A/U-maps, respectively): see
blue curves in Figures 5C–F, respectively. Statistical analysis of

A and U-maps regarding H (2),k
0,j also demonstrated a reduction

of the number of multifractal components in A/U-maps. Two
artifactual components (a10 and a12) located in the white mat-
ter remained consistently multifractal in both datasets and one
undefined component (u3) became significantly multifractal when
switching from rest to task. In all cases, a loss of significance is
observed using WSR tests (dash dotted curves) instead of T-tests
(solid curves) indicating that there is no outlier in this group and
thus that the Gaussian distribution hypothesis is tenable.

Then, we focused on the statistical analysis at different macro-
scopic scales, first by averaging all F/A and U-maps respectively so
as to derive a mean behavior for F/A/U-maps. Finally, we looked
at functional networks and artifact types in more details. Blue
curves in Figures 6A,B report such results for the rest and task-
related datasets, respectively. We still observed a significant level
of self-similarity in all averaged groups (blue curves) irrespective

of the brain state: H̄
(1,F/A/U )
0,j is systematically rejected for j = (R,

T). However, we still noticed a reduction of statistical significance
induced by task irrespective of the map type. More interestingly,
we found at this macroscopic level that all averaged maps were
multifractal at rest whereas only the functional one remained
multifractal during task: see red curves in Figures 6A,B. Fur-
ther, statistical analysis of functional networks defined in Table 1
was conducted to understand which network drives this effect.
When comparing p-values in Figures 6C,D on functional net-
works, we observed that all remained significantly self-similar
in both states, while the DMN is close to the significance level
α= 0.05 during task (blue curves). Regarding multifractality, only
the non-cortical regions appeared monofractal at rest and all net-
works kept a significant amount of multifractality during task. In
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FIGURE 5 | Corrected p-values associated with one-sample

Student-t (–,–) and WSR (-.,-.) tests performed on resting-state ([A,C,E])

and task-related multifractal parameters ([B,D,F]) for assessing

H (1,·)
0,j (blue curves) and H (2,·)

0,j (red curves) on the functional ([A-B]),

artifactual ([C-D]) and undefined maps ([E-F]), respectively. Significance
level (α = 0.05) is shown in - -.

FIGURE 6 | Corrected p-values associated with one-sample

Student-t (–,–) and WSR (-.,-.) tests performed on resting-state ([A,C,E])

and task-related multifractal parameters ([B,D,F]) for assessing H (1,·)
0,j

(blue curves) and H (2,·)
0,j (red curves) on the averaged map types ([A-B]),

networks N ([C-D]) and artifact types T ([E-F]), respectively. Significance
level (α = 0.05) is shown in - -.

contrast, this observation did not hold for artifacts: when looking
at Figures 6E,F in detail, the signal related to ventricles became
monofractal during task.

5.2.3. 2-way repeated measures ANOVA
In order to assess any significant change of self-similarity or multi-
fractality between rest and task, we entered the subject-dependent

parameter estimates (ĉ
j ,s
i,k) in several 2-way repeated measures

ANOVAs involving two factors: brain state (two values: j = R, T)
and map type (with varying number of values). These ANOVAs
were conducted separately for assessing self-similarity (i = 1) and

multifractality (i = 2) changes. First six ANOVAs (three for each
parameter) were carried out by considering the F/A/U-maps as
the second factor, respectively. This second factor thus took a
number of values that depends on the set under study: F , A,
or U . Results are summarized in Table 2. Regarding the analysis

of self-similarity (ĉ
j ,s
1,k parameters), a significant brain state effect

appeared in all F/A/U-maps, and a significant map effect in the F
and A-sets. Significant interactions were found for the F and U-
maps. This confirms that the level of self-similarity is not sufficient
to disentangle functional networks from artifactual or undefined
maps.
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Table 2 | 2-way repeated measures ANOVA results based on the ĉ
j,s
i,k

parameters for i = {1, 2}, j = (R,T), s = 1:S, and k ∈ F (top), k ∈ A
(middle), k ∈ U (bottom).

Level Param. Source F score p-val.

F-maps ĉ j ,s
1,k State 9.54 0.01

Map 4.31 1e-09

State × Map 1.76 0.02

F-maps ĉ j ,s
2,k State 0.13 0.73

Map 1.19 0.25

State × Map 1.56 0.04

A-maps ĉ j ,s
1,k State 5.73 0.03

Map 2.4 0.008

State × Map 1.32 0.21

A-maps ĉ j ,s
2,k State 0.09 0.77

Map 2.4 0.007

State × Map 0.71 0.74

U-maps ĉ j ,s
1,k State 5.39 0.04

Map 2.91 0.06

State × Map 3.16 0.04

U-maps ĉ j ,s
2,k State 2.43e-05 0.99

Map 0.68 0.57

State × Map 0.63 0.6

Bold font indicates statistically significant results i.e., p-value< 0.05.

As regards ANOVAs based on ĉ
j ,s
2,k parameters, a significant

interaction for F-maps is found, thus indicating that the aver-
aged change in multifractality between rest and task is significant
for functional maps only. In summary, only F-maps exhibited
significant interactions for both multifractal attributes.

Akin to the one-sample analyses above, we looked at a larger
spatial scale, the functional network, and artifact type levels and
performed similar ANOVAs, corresponding results are reported
in Table 3. While both functional networks and artifacts demon-
strate a significant change in the self-similarity parameter between
rest and task, only functional networks made the map type effect
significant. More importantly, the key feature for discriminating

functional networks from artifacts relied on ANOVAs based on ĉ
j ,s
2,k

parameters. Indeed, a significant network effect and more impor-
tantly a significant interaction between rest and task are observed
in functional networks.

5.2.4. Two-sample statistical tests
To localize which maps are responsible for statistically significant
ANOVA results, we finally performed two-sample T-tests in which
we tested the following null hypotheses:

{
H̃
(1,k)
0 : μR

1,k = μT
1,k , ∀k ∈ F ∪ A ∪ U

H̃
(2,k)
0 : μR

2,k = μT
2,k , ∀k ∈ F ∪ A ∪ U .

(17)

We also conducted similar tests at the macroscopic level

(k ∈ N∪T ) by replacing μ
j
i,k with μ̄

j
i,k in the null hypotheses

(17). The fluctuations in self-similarity being systematically in the
same direction between rest and task, we performed one-sided

tests as regards the μ
j
1,k ’s while two-sided tests were considered

Table 3 | 2-way repeated measures ANOVA results based on the ĉ
j,s
i,k

parameters for i = {1,2}, j = (R,T), s = 1:S, and k∈N (top) and k∈T
(bottom).

Level Param. Source F score p-val.

Networks ĉ j ,s
1,k State 9.78 0.01

Network 4.18 0.006

State × Network 1.09 0.37

Networks ĉ j ,s
2,k State 1.013 0.34

Network 3.18 0.02

State × Network 2.97 0.03

Artifacts ĉ j ,s
1,k State 4.85 0.05

Artifact 2.33 0.09

State ×Artifact 1.16 0.34

Artifacts ĉ j ,s
2,k State 0.31 0.59

Artifact 1.03 0.39

State ×Artifact 1.085 0.37

Bold font indicates statistically significant results i.e., p-value< 0.05.

for the μ
j
2,k ’s: task-related positive and negative fluctuations of

μ
j
2,k were actually observed in Subsection 5.2.1. Figures 7A,B

shows the uncorrected p-values for the F-maps and networks,

respectively. We rejected H̃
(1,k)
0 for ( f 3, f 4, f 11, f 18, f 25) at a

significance level set to α1 = 0.01 and H̃
(2,k)
0 for ( f 4, f 7, f 18) at

α2 = 0.05. These components clearly explain significant results
reported in Table 2 about the changes in self-similarity and multi-
fractality that occurred in F-maps. Interestingly, among the latter,
the null hypothesis was rejected because of a large increase of
multifractality in ( f 4, f 7). In contrast, a decrease of multifrac-

tality was responsible for the rejection of H̃
(2,k)
0 in f 18. When

setting α2 =α1 = 0.01, only f 18 survived this threshold and thus
remained the single functional component for which a significant
difference of self-similarity and multifractality was found between
rest and task. This component clearly drove the significant interac-
tion reported in Table 2 for the change in multifractality in F-maps.
Figure 7B also showed that the state effect reported in Table 3 on

(ĉ
j ,s
1,k) at the network level was driven by the attentional, motor,

and visual systems. Last, the significant interaction reported in

Table 3 on (ĉ
j ,s
2,k) is explained by the non-cortical regions as shown

in Figure 7B.
Figures 7C,D shows the localization of the state effects reported

in Tables 2 and 3 for the changes in self-similarity that occurred in
artifacts at the local and global levels. No A-map enabled to reject

H̃
(1,k)
0 at the α1 significance level but a majority of A-maps (a1:4,

a6, a8, a10, a12) contributed to the significant state effect observed
in Table 2. At the global artifact level, the ventricles appear as
the main source of the significant state effect reported in Table 3
for the change in self-similarity. Also, no significant difference in
multifractality was reported for artifacts whatever the observation
level (A-maps or averaged artifacts). Similarly, Figure 7E enables
us to show that u2 and u4 were the main sources of the significant
state effect and interactions reported in Table 2 for the change
in self-similarity. At the macroscopic level, we finally observed in
Figure 7F that only the grand mean of functional maps leads to a
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FIGURE 7 | Uncorrected p-values associated with two-samples

Student-t test performed between resting-state and task-related

multifractal parameters for assessing ˜H (1,·)
0 (blue curves) and ˜H (2,·)

0 (red

curves) on the functional (A), artifactual (C) and undefined maps (E),

respectively. Similar tests were computed at a broader spatial scale on the
functional networks (B), the artifacts (D) and the averaged map types (F),
respectively. Significance levels (α1 = 0.01 and α2 = 0.05) are shown in - -

and - -, respectively.

significant modulation of self-similarity between rest and task at
level α1.

6. DISCUSSION
6.1. RESULTS INTERPRETATION
This study analyzed in-depth the scale-free properties of fMRI
signals, using multifractal methodologies, and their modulations
during rest and task both in functional networks and artifactual
regions. The underlying goal was to finely characterize which prop-
erties are specific to functional networks and which modulation
can be expected for these networks from task-related activity. Pre-
vious attempts in the literature (Cordes et al., 2001; Leopold et al.,
2003; He, 2011) focused on functional networks without compar-
ing results with the behavior of artifacts. The main reason comes
from the fact that seed region analyses were only conducted in such
studies. Hence, no comparison with vascular or ventricles-related
signals was undertaken.

Our results confirmed that fMRI signals are stationary and self-
similar but not specifically in functional networks. Also we showed
that the amount of self-similarity significantly varies between rest
and task not only in functional networks involved in our auditory
detection task with a motor response (Attentional, Motor) but
also quite surprisingly in the visual system and in some artifacts
(ventricles) and undefined maps. This observation led us to inves-
tigate the scale-free structure of fMRI signals using richer models,
namely multifractal processes, to which the WLMF toolbox is ded-
icated. Our statistical results demonstrate first that fMRI signals

are multifractal, second that interactions between brain state and
maps only occurred in F-maps and functional networks and third,
that specific F-maps such as in non-cortical regions demonstrated
a statistically significant fluctuation between rest and task. This
result shows that the concept of multifractality permits to disen-
tangle functional components from artifactual ones, in a robust
and significant manner.

However, in contrast to self-similarity that systematically
decreases with evoked activity, multifractality decreases in corti-
cal ( f 18) but increases in non-cortical ( f 4, f 7). Thus, task-related
activity has no systematic impact with respect to increase/decrease
of multifractality. Interestingly, we found a statistically non-
significant trend toward a decrease of multifractality in regions
primarily involved in the task ( f 12, f 24, f 25). However, the group
size of this study remains small (12 subjects only) to achieve signif-
icant results, mainly because of the between-subject variability and

of the difficulty in estimating ĉ
j ,s
2,k parameters on short time series.

Further investigations beyond the scope of this paper are nec-
essary to find out any general trend on the direction change
of multifractality with evoked activity by cross-correlating mul-
tifractal parameters with task-related activity (e.g., group-level
Z-scores) and task performance. However, to derive reliable results
for multifractality, a larger group of individuals will be considered
and a larger number of scans will be acquired while maintaining
the same scanning time: To this end, accelerated SENSE imaging
will be used together with recent reconstruction algorithms so as
to improve temporal resolution (Chaari et al., 2011b).
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6.2. MONOFRACTAL SCALE-FREE EEG MICROSTATE SEQUENCES VS.
MULTIFRACTAL DYNAMICS FOR RSN

The results obtained in this contribution shows multifractal tem-
poral dynamics in fMRI signals and thus naturally lead to ques-
tion the potential origins and generative mechanisms for this
departure from the more traditional long-range correlation mod-
eling of scale invariance. A natural track to inspect consists of
that of the relations between hemodynamic (fMRI) and electri-
cal (EEG) signatures for brain activity at rest. This question has
been intensively studied over the last decade (Laufs et al., 2003;
Mantini et al., 2007; Britz et al., 2010; Musso et al., 2010; Van
de Ville et al., 2010; Yuan et al., 2012), first by measuring cross
correlations between fMRI data at rest and EEG-informed regres-
sors derived from the convolution of the EEG power signal in
five well-identified frequency bands (δ ∈ (1,4) Hz, θ ∈ (4,7) Hz,
α ∈ (8,12) Hz, β ∈ (13,30) Hz, and γ > 30 Hz) with the canonical
HRF. This approach revealed the negative correlation of α-band
activity with the attentional network and the positive correlation
with β2-band with the default mode network (precuneus and pos-
terior cingulate cortex; Laufs et al., 2003). Also, Mantini et al.
(2007) showed that functional resting-state networks have differ-
ent EEG signatures which are not specific to a given frequency
band but are rather spread over several oscillations regimes (e.g.,
correlation between α and β power in specific RSN), a conse-
quence of the so-called oscillation hierarchy (Buzsáki, 2006) and
the of phase-amplitude cross-frequency coupling (He et al., 2010).
However, none of these works enable to explain the low frequency
fluctuations (<0.1 Hz) or scale-free dynamics of the fMRI signal
at rest, because this phenomenon is much more widespread than
oscillations.

Scale-free dynamics of brain electrical activity at rest has
recently been studied (Van de Ville et al., 2010) but not directly
on raw data. Instead, EEG microscates that correspond to short
periods (100 ms) during which the EEG scalp topography remains
quasi-stable, have been first segmented. Remarkably, it has been
shown that only four different EEG microstate patterns are neces-
sary to describe the ongoing electrical brain activity at rest (Britz
et al., 2010) and that these four microscates correlate with well-
known RSNs, which were classically identified from fMRI dataset
alone using group-level ICA. This demonstrated that the EEG
microstate with rapid fluctuations might be considered as the
electrophysiological signature of intrinsic functional connectiv-
ity patterns. The investigation of scale-free dynamics was thus
performed on the EEG microstate sequence to understand how
fast the microscates are changing and what kind of correlation
structure (short or long-range) they bring (Van de Ville et al.,
2010).

The recent finding that EEG microscate sequences reveal purely
monofractal dynamics (Van de Ville et al., 2010), irrespective of
the data filtering, may lead to conclude that the same monofrac-
tal behavior in the fMRI signature of RSN (strongly correlate
with these microstates) should be expected, if one assumes a
linear and time invariant HRF model for the neurovascular cou-
pling. However, the results obtained in the present contribution
can be considered not only as evidence in favor of multifrac-
tality in fMRI data, but also as evidence that this multifractal
effect is discriminant of cortical versus non-cortical regions and

characteristic of functional network with respect to modulation
under task.

Several factors may explain this apparent discrepancy. First,
an accurate comparison of both sets of result would require
a precise match of the range of scales (or frequencies) within
which scale invariance is analyzed and corresponding parame-
ters measured. Here, the selected range of frequencies corresponds
to ([0.008,0.063]Hz), while the monofractal behavior of EEG
microstate sequences was exhibited on a distinct frequency range,
i.e. ([0.063, 3.9]Hz) in Van de Ville et al. (2010). Comparison
of scaling properties requires that the same frequency range is
selected but this constraint is clearly not tenable across modalities
like EEG and fMRI given the fMRI sampling rate.

Second, it is indeed very unlikely that a linear and time invari-
ant filtering may create multifractality in fMRI starting from a
monofractal electrophysiological signal in EEG. The general issue
of the relations between (linear and non-linear) filtering and mul-
tifractality were barely studied theoretically so far but interestingly,
Abry et al. has shown that simple non-linear filter can turn mono-
into multifractality. Hence, another putative origin for the appar-
ent contradiction between our findings and those in Van de Ville
et al. (2010) lies in refined descriptions of HRF model by non-
linear dynamical systems (e.g., Balloon model; Buxton et al., 1998,
2004). Of course, linear and stationary approximations like the
canonical HRF model (Glover, 1999) or non-parametric alterna-
tives (Vincent et al., 2010; Chaari et al., 2011a) have been validated
but only on evoked activity and considering inter-stimulus inter-
vals larger than 3 s. For shorter ISIs, non-linear hemodynamics
has turned out to be a valid property (Liu and Gao, 2000). In this
context, habituation, or repetition suppression effects may occur
and induce a sublinear hemodynamic response, which would
modify scaling properties (Dehaene-Lambertz et al., 2006; Ciuciu
et al., 2009). Hence, by modeling the sequence of EEG transient
brain states as a series of short time epochs, this could induce
non-linearities in the hemodynamic system that could explain
the switch from purely fractal EEG microstates to multifractal
signatures in the corresponding RSNs.

Third, instead of segregating EEG microstates in multiple
groups based upon the maximal spatial dissimilarity between
groups (Britz et al., 2010; Musso et al., 2010), a more recent
analysis of joint EEG/fMRI resting-state data has revealed a larger
number (thirteen) of EEG microstates that show temporal inde-
pendence from each other (Yuan et al., 2012). In this latter
work, all resting-state networks including visual, motor, auditory,
attention, saliency and default mode networks were character-
ized by a specific electrophysiological signature involving several
EEG microstates. This clearly indicates that the original analy-
sis of scale-free dynamics for EEG microscates done in Van de
Ville et al. (2010) should be revisited on this larger number of
metastable states to disentangle whether multifractality in this
larger set of microstates has been discarded due to averaging
effects. It is actually clear that the sequence mixing thirteen differ-
ent microstates may generate richer singularities (abrupt changes
between microstates) than the ones relying on four microstates
only. Fourth, the temporal signatures of EEG microstates found
in Musso et al. (2010), Van de Ville et al. (2010) are correlated
in time since the spatial similarity was the key factor to identify
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them. As a consequence, the microstate sequences is correlated
too and might loose some singularities that could be found out in
the microstate sequences generated by Yuan et al. (2012). Finally,
the presence of multifractality in resting-state (and task-related)
MEG data has been evidenced in the sensor space in Zilber et al.
(2012). These findings open new research avenues: For instance, it
is natural to explore whether the observed multifractal properties
can be related multiplicative cascade processes, that is to one of the
only practical mechanism known to generate multifractal dynam-
ics, or to investigate whether this cascade takes place at meso or
macroscopic scales, as well as to figure out how brain networks
could implement such cascade mechanisms. This topic is beyond
the scope of the present contribution, however the log-normal sta-
tistics of neuronal firing rate could provide us with a first clue to
uncover any generative process underlying multifractal dynamics.

6.3. STATIONARITY VS. NON-STATIONARITY OF THE RSN DYNAMICS
Recent results in resting-state fMRI reveal temporally independent
functional modes of spontaneous brain activity (Smith et al., 2012)
and postulate the presence of temporally non-stationary modes in
part of the default mode network by resorting to high temporal
resolution fMRI. While stationarity receives a unique and clear
definition, non-stationarity can correspond to a bunch of differ-
ent situations; for example, non-stationarity might (i) refer to an
apparent change over time in the correlation between two regions
or (ii) refer to changes in the mean and/or variance in the time
course of a functional network.

The wavelet based analysis of scaling proposed here already
addresses a number of such situations. The fact that the estimated
Hurst coefficient of fMRI time series remains consistently below
1 indicates that fMRI signals at hand here are better modeled as a
stationary step process Y rather than as a non-stationary random
walk X. Further, wavelet analysis are known to bring robustness
against various forms of non-stationarities, such as smooth trends
superimposed to data, to mean or variance modulation (c.f. (ii)).
The multifractal analysis performed here is thus not impaired by

such form of non-stationarities. This leaves open issues such as
the presence of oscillations superimposed to scaling. Given that
time series are very short, the use of formal stationarity test will
lack power and are not likely to reject stationarity. Further, in all
the analysis conducted in the present work, no evidence of non-
stationarity in the fMRI time series at hand were evidenced. This
is in agreement with what has been reported in He (2011) in an
fMRI ROI-based analysis. Finally, previous attempts to scale-free
analysis of densely sampled fMRI datasets in time (using the EVI
sequence; Rabrait et al., 2008) already confirmed the validity of a
the stationarity assumption; see Ciuciu et al. (2008).

7. CONCLUSION
We uncovered multifractal scale-free dynamics of fMRI time series
over four octaves (15–125 s) both in functional networks and
in artifacts. We then disentangled functional components from
artifactual ones in a robust and significant manner by demon-
strating that only the former gave rise to significant modulations
of the multifractal attributes between rest and task-related activity.
Variability in human performance scores also generally exhibits
power-law distributions, whose strength (or exponent) is often
modulated across conditions and tasks (Holden et al., 2011).
This paves the way toward future works devoted to investigating
the extent to which behavioral properties are correlated with the
change of scale-free dynamics in neuroimaging time series (MEG,
fMRI) acquired during multisensory learning (Seitz et al., 2007).
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The study of spontaneous fluctuations of brain activity, often referred as brain noise,
is getting increasing attention in functional magnetic resonance imaging (fMRI) studies.
Despite important efforts, much of the statistical properties of such fluctuations remain
largely unknown. This work scrutinizes these fluctuations looking at specific statistical
properties which are relevant to clarify its dynamical origins. Here, three statistical features
which clearly differentiate brain data from naive expectations for random processes are
uncovered: First, the variance of the fMRI mean signal as a function of the number of
averaged voxels remains constant across a wide range of observed clusters sizes. Second,
the anomalous behavior of the variance is originated by bursts of synchronized activity
across regions, regardless of their widely different sizes. Finally, the correlation length
(i.e., the length at which the correlation strength between two regions vanishes) as well
as mutual information diverges with the cluster’s size considered, such that arbitrarily large
clusters exhibit the same collective dynamics than smaller ones. These three properties
are known to be exclusive of complex systems exhibiting critical dynamics, where the
spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings
are fully consistent with previous reports of brain critical dynamics, and are relevant for
the interpretation of the role of fluctuations and variability in brain function in health and
disease.

Keywords: brain noise, correlations length, criticality, fMRI, scaling

1. INTRODUCTION
It is now recognized that important information can be extracted
from the brain spontaneous activity, as exposed by recent analysis
(Biswal et al., 1995; Fox and Raichle, 2007; Smith et al., 2009). For
instance, the structure and location of large-scale brain networks
can be derived from the interaction of cortical regions during rest
which closely match the same regions responding to a wide variety
of different activation conditions (Fox and Raichle, 2007; Smith
et al., 2009). These so-called resting state networks (RSNs) can be
reliably computed from the fluctuations of the blood oxygenated
level dependent signal (BOLD) signals of the resting brain, with
great consistency across subjects (Xiong et al., 1999; Cordes et al.,
2000; Beckmann et al., 2005) even during sleep (Fukunaga et al.,
2006) or anesthesia (Vincent et al., 2007).

In the same direction, the information content of the brain
BOLD signal’s variability per se is receiving increasing inter-
est. Recently (Garret et al., 2010) it was shown in a group of
subjects of different age, that the BOLD signal variability (stan-
dard deviation) is a better predictor of the subject age than
the average. Furthermore, additional work focused on the rela-
tion between the fMRI signal variability and a task performance,
concluded that faster and more consistent performers exhibit sig-
nificantly higher brain variability across tasks than the poorer
performing subjects (Garrett et al., 2011). Overall, these results
suggest that the understanding of the brain resting dynamics

can benefit from a detailed study of the BOLD variability
per se.

In this work we characterize the statistical properties of the
spontaneous BOLD fluctuations and discuss its possible dynami-
cal mechanisms. The paper is organized as follow: in the next sec-
tion the origin of the data is described as well the pre-processing
of the signal. The definitions of regions of interest is described
as well as how to construct subsets of different sizes, needed to
compute fluctuations. The results section starts with the analy-
sis of the average spontaneous fluctuations for each RSN, which
identify anomalous scaling of the variance as a function of the
number of elements. Next, this anomaly is explored to determine
its origins by studying in detail the temporal correlations in clus-
ters of different sizes. Finally the analysis of the correlation length
is described, revealing a distinctive divergence with the size of the
cluster considered. The paper close with a discussion of the rele-
vance of the uncovered anomalous scaling for the current views
of large scale brain dynamics. For clarity of presentation, the cal-
culations that are not central to the main message of the paper,
are presented separately in an Appendix.

2. METHODS
2.1. DATA ACQUISITION
fMRI data was obtained from five healthy right-handed sub-
jects (21–60 years old, mean = 40.2) using a 3T Siemens Trio
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whole-body scanner with echo-planar imaging capability and the
standard radio-frequency head coil. Subjects were scanned fol-
lowing a typical brain resting state protocol (Fox and Raichle,
2007) lying in the scanner and asked to keep their mind blank,
eyes closed, and avoid falling asleep. All participants gave written
informed consent to procedures approved by the IRB Committee
of the University of Islas Baleares (Mallorca, Spain) who approved
the study.

2.2. IMAGE PRE-PROCESSING AND ANALYSIS
In each subject, 240 BOLD images, spaced by 2.5 s, were
obtained from 64 × 64 × 49 voxels of dimension 3.4375 mm ×
3.4375 mm × 3 mm. Pre-processing was performed using
FMRIB Expert Analysis Tool [FEAT, Jezzard et al., 2001, http://
www.fmrib.ox.ac.uk/fsl], involving motion correction using
MCFLIRT; slice-timing correction using Fourier-space time-
series phase-shifting; non-brain removal using BET; spatial
smoothing using a Gaussian kernel of full-width-half-maximum
5 mm. Brain Images were normalized to standard space with
the MNI 152 (average brain image at Montreal Neurological
Institute) template using FLIRT (http://www.fmrib.ox.ac.uk/
analysis/research/flirt) and resampled to 2 × 2 × 2 mm resolu-
tion. Data was band pass filtered (0.01 Hz–0.1 Hz) using a zero
lag filter to avoid scanner drift and high frequency artifacts.

2.3. CHOICE OF REGIONS OF INTEREST
It is known that the brain activity fluctuations at rest exhibit
large-scale spatial correlations. The presence of these robust
correlations is reflected on the coherent activity which deter-
mine the spatial domains of the RSN. Therefore, our analysis
is focussed on the statistical analysis of the RSN fluctuations.
At least since Beckmann et al. (2005). Probabilistic Principal
Component Analysis (PICA) is used to identify the eight most
relevant RSN. Each component corresponds to a characteris-
tic time series, and its respective spatial Z-score map. Under a
Gaussian/Gamma mixture model these Z-maps were thresholded
in order to find the locations of the voxels which significantly
contribute to each of the eight time-courses [see Figure 6 in
Beckmann et al. (2005)] and used to define the clusters here. This
is illustrated in Figure 1A, where the depicted regions correspond
to the territory covered by each of the RSN extracted in Beckmann
et al. (2005) using ICA techniques. For each independent compo-
nent Z-map we arbitrarily set a threshold that segment the map
into isolated regions of different sizes (see Figure 1B). The criteria
to select regions is arbitrary, but the present results are indepen-
dent of the selection criteria, as long as the regions belong to
the same RSN. Alternatively, functional areas (such as Brodmann
areas) can be used to define clusters of different sizes (as for a
portion of the results in Figure 3). We proceed by using a spa-
tial mask for each of the eight networks to extract the time series
of the BOLD fMRI time series. The masks, in Figure 1, corre-
spond to the eight most important RSN, namely the visual medial
(box a) and lateral (b) cortical areas, the auditory (c), sensory
motor (d), default mode (e), executive control (f), and the fronto-
parietal right (g) and left (h) regions. Each network is comprised
by a variable number of spatial clusters, each cluster composed by
a variable number of voxels. For instance the visual RSN (VIS)

includes just three relatively large clusters, each one composed
by thousand of voxels, contrasting with the Fronto-Parietal Left
(FPL) network which involves seven clusters with sizes ranging
from a few up to thousands of voxels. Table 1 shows the thresholds
used in each independent component and how many regions have
been defined. The results presented in this paper are independent
of the particular value of threshold used.

3. RESULTS
To analyze the noise properties, we look at the behavior of the
variance and correlations under various manipulations of the size
of the ensemble of voxels where these fluctuations occurs. This
is a common strategy in other statistical physics problems where
very distinctive scaling behavior can be observed depending of the
type of fluctuations the system is able to exhibit (Stanley, 1987).

3.1. ANOMALOUS SCALING OF THE VARIANCE
We start by studying the fluctuations of the BOLD signal around
its mean. The signal of interest, for the 35 RSN clusters, is
defined as

Bh(�xi, t) = B(�xi, t) − 1

NH

NH∑
i = 1

B(�xi, t), (1)

where �xi represents the position of the voxel i that belongs to
the cluster H of size NH . These signals will be used to study the
correlation properties of the activity in each cluster.

The mean activity of each h cluster is defined as

B(t) = 1

NH

NH∑
i = 1

B(�xi, t), (2)

and its variance is defined as

σ2
B(t)

= 1

T

T∑
t = 1

(B(t) − B)2, (3)

where B = 1
T

∑T
t=1B(t) and T the number of temporal points.

Please notice that the average subtracted in Equation 1 is the mean
at time t (computed over N voxels) of the BOLD signals, not to be
confused with the BOLD signal averaged over T temporal points.

Since the BOLD signal fluctuate widely and the number N of
voxels in the clusters can be very large, one might expect that the
aggregate of Equation 1 obeys the law of the large numbers. If
this was true, the variance of the mean field σ2

B(t)
in Equation 3

would decrease with N as N−1. In other words one would expect
a smaller amplitude fluctuation for the average BOLD signal
recorded in clusters [i.e., B(t)] comprised by large number of vox-
els compared with smaller clusters. However, the data in Figure 2
shows otherwise, the variance of the average activity remains
approximately constant over a change of four orders of magni-
tude in cluster’ sizes. The strong departure from the N−1 decay
is enough to disregard further statistical testing. Nevertheless,
we test a null hypothesis recomputing the variance for artifi-
cially constructed clusters having similar number of voxels but
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A

B

C D

FIGURE 1 | (A) Spatial maps of the eight most relevant brain resting
networks as described by Beckmann et al. (2005). Each map shows the
locations of each RSN (shown in sagittal, coronal, and axial views) where the
coordinates refer to mm distances from the anterior commissure. Label VIS
corresponds to visual; AUD to auditory; SM to sensory motor; DMN to
default model network; EXEC. C. to executive control; FPR and FPL to

fronto-parietal right and left, respectively. (B) Example (coronal, sagital, and
axial views) of the four regions of interest extracted from the DMN. The red
region is composed of 6611 voxels, the blue region of 761, the green one of
1308, and the yellow region contains 780 voxels. Black voxels correspond to
the ones in the original thresholded Z -map. Bottom panels depict the sizes of
the 35 clusters (C) studied here as well as its cumulative size distribution (D).
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Table 1 | Z -threshold used in each independent component for

defining the regions.

RSN Vis. 1 Vis. 2 Aud. Sens. M. D.M. E.C. F. P. R F. P. L

Threshold 4 3.3 2.4 3.4 2.2 2.7 3.2 2.2

# regions 1 2 3 4 4 9 4 8

101 102 103 104

Size (N)
100

101

102

103

104

σ 
2 - B

(t
)

0 240 480
Time (sec)

0 240 480

N=39

N=154

N=890

N=6611

A

B

RawShuffled

1/N

FIGURE 2 | Anomalous scaling of brain BOLD temporal fluctuations.

Panel A show four examples of average BOLD time series (i.e., B(t) in
Equation 2) computed from clusters of different sizes N. Note that while
the amplitude of the raw BOLD signals (right panels) remains approximately
constant, in the case of the shuffled data sets (left panels) the amplitude
decreases drastically for increasing cluster sizes. Panel B shows the
calculations for the 35 clusters (circles) plotted as a function of the cluster
size demonstrating that variance is independent of the RSN’s cluster size.
The squares symbols show similar computations for a surrogate time series
constructed by randomly reordering the original BOLD time series, which
exhibit the expected 1/N scaling (dashed line). Filled symbols in Panel B are
used to denote the values for the time series used as examples in Panel A.

composed of the randomly reordered Bk(t) BOLD raw time series
(panels in Figure 2A denoted “Shuffled”). As expected, in this
case the variance (plotted using squares symbols in Figure 2B)
obeys the N−1 law (dashed line in Figure 2B). The variance of
the average BOLD signal is directly proportional to the coor-
dination between the voxels involved. In particular, under the
hypothesis that the BOLD signal of voxel k, Bk(t), is a stationary
stochastic process (indexed by time t) with E(Bk(t)) = μk, and
Var(Bk(t)) = σ2

k , the variance of the average signal is maximum
in the case where there exist perfect coordination (i.e., all BOLD
signals are perfectly synchronized). In this last case, the value of

10
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10
3

10
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N

10
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10
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5

~ σ 
2 - B

(t
)

10
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Size (N)

10
-4
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-3
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10
-1

10
0

q

1/N

FIGURE 3 | The value of the quotient q, expressing the measured

variance relative to its maximum possible value, as a function of

cluster size N . Empty circles correspond to the 35 regions derived from
the RSN (same as in Figure 2) and filled triangles to the 41 Brodmann
areas. The filled squares, obeying the 1/N scaling (dashed line), correspond
to clusters of different sizes constructed from a random selection of voxels.
The inset shows the average maximum of the BOLD signal variance of a
cluster (σ̃2

B(t)
) as a function of N.

σ2
B(t)

is equal to the mean value of the individual time variances

defined as

σ̃2
B(t)

:= 1

N

N∑
k=1

σ2
k. (4)

The inset of Figure 3 (circles) shows that this maximum value
does not depend on N, i.e., the mean value of the variance of the
BOLD signal from a region does not depend on its size. Now we
ask how far from its maximum value is the observed variance of
the BOLD average signal. In particular, we compute the quotient

q :=
σ2

B(t)

σ̃2
B(t)

(5)

for this purpose. As it is shown in Figure 3 (empty circles) the
value of q decreases rather slowly with the size of the cluster.

In order to distinguish how much of the constancy of the vari-
ance demonstrated up until now is related with the fact that the
time series belong to clusters that are independent components
(Beckmann et al., 2005) we repeated the scaling analysis using
clusters defined by the Brodmann areas. The results in Figure 3
confirm the same anomalous scaling behavior demonstrated for
the regions selected from the RSN networks, as shown by the val-
ues of σ̃2

B(t)
and q for the Brodmann areas (filled triangles). As

before, we control the expected 1/N scaling for independent time
series by computing the quotient q for clusters of various sizes
constructed from a random selection of voxels. This is shown by
the filled square points in Figure 3.
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3.2. TEMPORAL FLUCTUATIONS AND SPATIAL CORRELATIONS
For spatio-temporal signals the relationship between the tempo-
ral fluctuations of the average signal and its space correlation
function is well defined (Ross, 1996). In our case, for the nor-
malized (see Appendix) BOLD signals, Zi(t) (Var(Zk(t)) = 1 and
E(Zk(t)) = 0), the relationship is:

σ2
Z(t)

= 1

N
(1 + (N − 1) · 〈C〉). (6)

Where 〈C〉 is the mean spatial correlation,

〈C〉 = 2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρi,j, (7)

ρi,j the correlation between voxels i and j, and σ2
Z(t)

is the vari-

ance of the average signal (defined in Equation 3). Equation 6
shows that the variance of the mean activity depends on the size
of the region, and on 〈C〉, which is determined by the shape of the
correlation function, C(r) (see Appendix for a formal discussion).

Equation 6 suggest that it can be productive to investigate the
correlations properties of the BOLD data. The point to clarify is
whether the average spatial correlation 〈C〉 is constant through-
out the entire recordings or, alternatively, its average value is
the product of a combination of some instances of high spatial
coordination intermixed with moments of dis-coordination. The
relevance of this distinction, which will be further discussed latter,
is to establish up to which point correlations are dictated by the
structural (i.e., fixed) connectivity or by the dynamics. In order
to answer this question we study the mean correlation (〈C〉) as a
function of time for regions of interest of various sizes. In partic-
ular, we compute this value using Equation 7 but estimating ρi,j

for non-overlapping periods of 10 temporal points.
Figure 4 shows the behavior of 〈C〉 over time for four differ-

ent cluster’s sizes. Notice that, in all cases, there instances of large
correlation followed by moments of week coordination, as those
indicated by the arrows in the uppermost panel. We have verified
that this behavior is not sensitive to the choice of the length of
the window in which 〈C〉 is computed (see the Appendix). These
bursts keep the variance of the correlations almost constant (i.e.,
in this example, there is a minor decrease in variance (by a factor
of 0.4) for a huge increase in size (by a factor of 170). This pecu-
liar behavior of the correlation is observed for any of the cluster
sizes as shown in the bottom panel of Figure 4 where the vari-
ance of 〈C〉 is approximately constant, despite the four order of
magnitude increase in sizes.

The results of these calculations implies that independently of
how large the size of the cluster considered, there is always an
instance in which a large percentage of voxels are highly coher-
ent and another instance in which each voxels activity is relatively
independent.

A very metaphorical way to visualize the behavior of the cor-
relations is to think of the patterns of spontaneous activity as
“clouds” of relatively higher activity moving slowly through-
out the brain’s cortex. Thus, the moments of large coordina-
tion shown in Figure 4 correspond to the passage of a “cloud”
throughout the entire region, regardless of how large the region is.
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FIGURE 4 | Bursts of high correlations are observed at all cluster sizes,

resulting in approximately the same variance, despite the four orders

of magnitude change in the cluster size. The top panels illustrate
representative examples of short-term mean correlation 〈C〉 of the
BOLD signals as a function of time for four sizes spanning four orders of
magnitude. The arrows show examples of two instances of highly
correlated and weakly correlated activity, respectively. Bottom panel shows
the variance of 〈C〉 as a function of cluster sizes. The four examples on the
top traces are denoted with filled circles in the bottom plot.

3.3. DIVERGENCE OF THE CORRELATION LENGTH
The results in the previous paragraphs indicate that the anoma-
lous scaling of the variance can be related to dynamical changes
in the correlations. A straightforward approach to understand the
correlation behavior commonly used in large collective systems
(Cavagna et al., 2010) is to determine the correlation length at
various system’s sizes. The correlation length is the average dis-
tance at which the correlations of the fluctuations around the
mean crosses zero. It describes how far one has to move to observe
any two points in a system behaving independently of each other.
Notice that, by definition, the computation of the correlation
length is done over the fluctuations around the mean, and not
over the raw BOLD signals, otherwise global correlations may
produce a single spurious correlation length value commensurate
with the brain size.

Thus, we start by computing for each voxel BOLD time series
their fluctuations around the mean of the cluster that they belong.
Recall the expression in Equation 1:

Bh(�xi, t) = B(�xi, t) − 1

NH

NH∑
i = 1

B(�xi, t), (8)
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where B is the BOLD time series at a given voxel and �xi represents
the position of the voxel i that belongs to the cluster H of size NH .
By definition the mean of the BOLD fluctuations of each cluster
vanishes,

Nk∑
i=1

Bh(�xi, t) = 0 ∀t. (9)

Next we compute the average correlation function of the BOLD
fluctuations between all pairs of voxels in the cluster considered,
which are separated by a distance r:

〈CH(r)〉 =<

(BH(
−→x , t)− < Bh(

−→x , t) >t)(BH(
−→x

+r−→u , t)− < Bh(
−→x + r−→u , t) >t)

(< BH(
−→x , t)2 >t − < BH(

−→x , t) >2
t )

1/2

(< BH(
−→x + r−→u , t)2 >t

− < BH(
−→x + r−→u , t) >2

t )
1/2

>t,−→x ,
−→u

(10)
where �u is a unitary vector, and 〈.〉w represent averages over w.
The typical form we observe for C(r) is shown in the top panel
of Figure 5. The first striking feature to note is the absence of a
unique C(r) for all clusters. Nevertheless, they are qualitatively
similar, being at short distances close to unity, to decay as r
increases, and then becoming negative for longer voxel-to-voxel
distances. Such behavior indicates that within each and any clus-
ter, on the average, the fluctuations around the mean are strongly
positive at short distance and strongly anti-correlated at larger
distances, whereas there is no range of distance for which the
correlation vanishes.

The most notorious result is the fact that correlations decay
with distance slower in larger clusters than in relatively smaller
clusters, giving rise to the family of curves shown in Figure 5
(top panel). This is condensed in the calculation of the corre-
lation length ξ, which is the zero of the correlation function,
C(r = ξ) = 0 (as in the example shown by the arrow in Figure 5,
top). The correlation length diverges with the size of the cluster,
as demonstrated in the middle panel of Figure 5. This diver-
gence extends up to the size of the brain, as shown by the ξ

values (red squares in middle panel of Figure 5) computed for
the eight unpartitioned RSN. Note that while the existence of a
zero crossing in C is warranted by the subtraction of the mean
cluster activity (in Equation 8), its divergence with cluster size
is not.

3.4. MUTUAL INFORMATION
Although the present observations can be appropriately described
solely in terms of correlations, the same concept can be also
casted in terms of information measures, which are often used to
estimate the degree of coherence between regions or neural struc-
tures. The mutual information between any two X and Y time
series from different brain voxels is defined as:

MI(X; Y) = H(X) − H(X|Y) (11)

where H(X) is the entropy of X and H(X|Y) is the entropy
of X given Y computed as usual (Press et al., 1988). In prin-
ciple, given the behavior observed for the correlations, these
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FIGURE 5 | Contrary to naive expectations, large clusters are as

correlated as relatively smaller ones: the correlation length increases

with cluster size. Each line in the top panel shows the mean
cross-correlation C(r) of BOLD activity fluctuations as a function of
distance r averaged over all time series of each of the 35 clusters shown in
Figure 1. The correlation length ξ, denoted by the zero crossing of C(r) is
not a constant. The middle panel shows, in double log plot, the functional
dependence ξ ∼ dN1/3, i.e., ξ grows linearly with the average cluster’
diameter d for all the 35 clusters (filled circles). The rightmost points
(diamonds) corresponding to the ξ values computed for each of the eight
RSN without any partitioning shows that the correlation length keep
increasing up to the size of the brain (the dotted line is a guide to the eye
with slope 1/3). The scale invariance is graphically illustrated by the bottom
panel, where all C(r) data are replotted after rescaling the horizontal axis as
x = r/ξ, showing a good overlap. Note that a perfect collapse of these
curves can not be expected because of the severe anisotropy, imposed by
the brain anatomy, affecting the estimation of the distance r .
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information measures should exhibit scale-invariant scaling as
well. This is confirmed by the results in Figure 6, which demon-
strate that the average mutual information is not affected by the
size of the cluster considered, since information decays slower
in larger clusters. This analysis shows that, as was shown for the

5 10 15 20
r (mm)

0.4

0.8

M
I(

r)

0 0.5 1 1.5 2
Rescaled x= (r /   )

0

0.4

0.8

M
I(

x)

10
1

10
2

10
3

10
4

Size (N)

10
0

10
1

FIGURE 6 | Mutual information increases with cluster size. Each line in
the top panel shows the mutual information MI(r) as a function of distance
r averaged over all time series of each of the 35 clusters shown in Figure 1.
The length at which MI(r) decreased to a given value (red line in the top
panel) denoted as ξI , is an increasing function of the size of the cluster
(middle panel). The bottom panel illustrates the good data collapse after
rescaling the horizontal axis as x = r/ξI .

correlation, the information length (determined here for an arbi-
trary threshold value of 0.4 bits) diverges with the size of the of the
clusters.

4. DISCUSSION
In this work, key statistical properties of the brain BOLD sig-
nal variability were investigated. The results are relevant to the
understanding of the brain spontaneous activity fluctuations in
health and disease. The three most relevant findings that we may
discuss are:

• the variance of the average BOLD fluctuations computed from
ensembles of widely different sizes remains constant, (i.e.,
anomalous scaling);

• the analysis of short-term correlations reveals bursts of high
coherence between arbitrarily far apart voxels indicating that
the variance’ anomalous scaling has a dynamical (and not
structural) origin;

• the correlation length measured at different regions increases
with region’s size, as well as its mutual information.

Concerning the constant variance of the BOLD activity, the
present results imply that the usual framework in which the
BOLD signal and noise are discussed need to be reconsidered.
For instance, it is commonplace to consider that the non-coherent
part of the activity (i.e., the noise) can be averaged out by enlarg-
ing the spatial (i.e., more voxels) or temporal (i.e., more samples)
scale. The presence of anomalous scaling implies that signal and
noise in the brain are at least ill defined and that filtering by aver-
aging (to improve its quality) signals with anomalous variance,
by definition, can be anomalous as well. The anomalous scaling
also has implication for the monitoring of the RSNs activity, a
topic that has received wide attention recently for its potential to
track healthy or pathological conditions. The results here imply
that, under these anomalous conditions, the signal of a few voxels
can be, asymptotically, as representative and informative as the
average of the entire RSN. It need to be noted, that the anoma-
lous scaling discussed here due to the emergence of collective
dynamics is not new, Kaneko (1990) demonstrated the breach
of law of large numbers in numerical models more than two
decades ago.

The second finding, showing that the observed dynamical
short-term changes in the correlations drives up the variance, is
relevant for the interpretation of the brain functional connec-
tivity. The evaluation of functional connectivity between regions
often uses the average correlation, and the results in Figure 4
show that, despite the relatively weak average functional connec-
tivity values, it can be instances in which the correlation reaches
high levels. In other words, under the demonstrated anomalous
scaling conditions, the usual pairwise measures has inherent lim-
itations for the proper interpretation of these collective states.
In passing, it need to be noted that these instances of high coher-
ence were recently confirmed using a different method, which
demonstrate avalanches of activity encompassing relatively large
regions of each RSN (Tagliazucchi et al., 2012). Of course, the role
of these epochs of transient synchronous states in driving percep-
tion, awareness, and consciousness are consistent with the views
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championed by Varela and coworkers more than a decade ago
(Varela et al., 2001) as discussed recently (Werner, 2010).

The third result concerning the divergence of the correlation
length with increasing cluster size is perhaps the most telling one,
because is in contrast with the prevailing viewpoints about brain
functional connectivity. Indeed it is implicit in the interpretation
of functional connectivity studies the notion that brain activity
propagates between and across brain regions. However, for such
propagating waves a constant correlation length (i.e., its wave-
length) is always expected, which is not what it is consistently
found in the present data. The divergence of correlations with size
(and its associated anomalous scaling) suggests, in addition, that
our current mathematical approaches to model cortical dynam-
ics could be ill-fated. The issue is that most of the large scale
models [for superb reviews see Rolls and Deco, 2010; Sporns,
2010] are defined by an adjacency matrix specifying the “struc-
tural connectivity” between a large number of regions and some
kind of neural dynamics assigned to each node (i.e., cortical
region). Lets imagine that such model is scaled up by increasing
the number of regions an order of magnitude, while the corre-
lation length of the activity fluctuations is measured as in the
experiments here. A reasonable conjecture is that current large-
scale brain models would have problems to replicate the present
findings, since anomalous scaling only appears at criticality (dis-
cussed below) while current models are purposely tuned to the
ordered regime.

Finally, an important question is concerned with the origin
of the statistical properties unveiled in this work. We suggest
that a candidate explanation which is able to unify all the obser-
vations presented here can be found in the context of critical
phenomena (Stanley, 1987; Bak, 1996; Christensen and Moloney,
2005). It is well known that dynamical systems composed of very
large number of interacting non-linear elements, under some
conditions, exhibit emergent collective behavior with ubiquitous
properties (Anderson, 1972). Examples of emergent phenomena
sharing common features are the collective dynamics of birds
in a flock (Cavagna et al., 2010), spins of a magnet (Stanley,
1987), water molecules in the atmosphere (Peters and Neelin,
2006), peoples financial decisions (Lux and Marchesi, 1999), or
ants traffic in a foraging swarm (Rauch et al., 1995; Beekman
et al., 2001). In all these cases, each agent in isolation may have
its own stereotypical behavior, but when placed to interact in
very large numbers, and under certain conditions, the entire

system will drift toward a type of collective dynamics which
lies in between complete order and complete disorder. At this
point [known as an order-disorder phase transition (Stanley,
1987; Chialvo, 2010)] the collective dynamics of the system
exhibit distinctive universal properties. Amongst them, the most
significant common features include the divergence of corre-
lations, the anomalous scaling, and the presence of moments
of high coordination seen here for the RSN fluctuations. Since
the emergence of these properties require conditions near an
order-disorder phase transition, its observation it is often con-
sidered a distinctive signature of critical dynamics, as reported
recently by Cavagna et al. for sterling flock dynamics (Cavagna
et al., 2010). In particular, it is known that only near a crit-
ical point ξ can grow with system size, where the collective
global effects overcomes the individuals dynamics, resulting in
the emergence of correlated domains of arbitrary size, where
information propagates equally well up to the size of the entire
system.

In summary, the analysis of the BOLD’ fluctuations of the rest-
ing brain shows anomalous statistical properties, bursts of highly
correlated states and divergence of correlation length, which are
dynamical properties known to be found only near a critical point
of a phase transition. These findings are fully consistent with pre-
vious reports of large-scale brain critical dynamics (Fraiman et al.,
2009; Kitzbichler et al., 2009; Chialvo, 2010; Expert et al., 2011;
Tagliazucchi et al., 2012) and may be one answer to the question
in the title in the sense that brain noise corresponds, rigorously
speaking, to the type of (spatial and temporal) fluctuations only
observed in systems near criticality. This view may be relevant
for the interpretation of the role of fluctuations and variability
in brain function in health and disease.
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APPENDIX
Additional information is provided here to supplement the main
results. The first item is concerned with the robustness of the
short-term correlations presented in Figure 4. The second point
deals with the generality of the divergence of correlations and the
last one discuss formally the presence of long-range correlations
in the fMRI data.

SHORT-TERM CORRELATIONS
As discussed in Figure 4, the presence of bursts of high and low
correlations observed throughout clusters of very different size
is the dynamical base for the violation of the law of the large
numbers. It is then important to demonstrate that the estimation
of the short-term correlations’ variance is robust. For that, we
recomputed the results in Figure 4 for various window lengths.
This is presented in Figure A1 which shows that the variance of
〈C〉 is independent of N regardless of the window length at which
it is estimated.

ξ SCALING
The divergence of correlation length discussed in Figure 5 pre-
dicts a functional dependence ξ ∼ dN1/3, i.e., ξ grows linearly
with the average cluster’ diameter d. The results in Figure A2,
obtained from the analysis of fMRI data from four different
subjects, confirm such scaling relation.

LONG-RANGE CORRELATIONS
In spatio-temporal data it is well known the relationship between
the temporal fluctuations of a mean magnitude and the space cor-
relation function. Let suppose we want to study a brain region
(our clusters in the main text) of N voxels. Denote a voxel of the
region as i which is characterized by its position in space (−→r i),
and by its dynamics represented in the BOLD signal [Bi(t)]. In
addition, to simplify the notation we are going to work here with
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FIGURE A1 | The variance of the mean short-term spatial correlation

〈C〉 (already shown in Figure 4) is independent of the cluster’ sizes N
regardless of the window length (10–40 time steps) at which it is

estimated.

normalized BOLD signals,

Zi(t) ≡ Bi(t) − Bi

σi
, (12)

where Bi = 1
T

∑
h=1,...,T Bi(t) and σ2

i = 1
T

∑
h=1,...,T(Bi(t) −

Bi)
2. Each voxel signal [Zi(t)] has now zero mean and variance

one. The average signal over the region, which is:

Z(t) = 1

N

N∑
i=1

Zi(t), (13)

fluctuates in time. Our interest here are the fluctuations of Z(t).
It can be shown, using the definition of the variance of a sum of
random variables, that the variance of the average signal of the
cluster is:

Var(Z) = 1

N
(1 + (N − 1)〈C〉), (14)

where 〈C〉 is the mean spatial correlation, Var(Z) =
1
T

∑T
t = 1(Z(t) − Z)2 and Z = 1

T

∑T
t = 1 Z(t).

Since we are interested also on how correlations affect variance,
let consider some cases. If there exist null variability between all
the voxels in the region, that is all voxels of the region do exactly
the same in time, the left term of Equation 14 remains equal to
one no matter the size (N) of the region is. In any other case
Var(Z) will be less than one. The variance of the mean activity
depends on the size of the region, and on 〈C〉, which is deter-
mined by the shape of the correlation function, C(r). Therefore,
in order to understand the asymptotic behavior of Var(Z) with N
we need to make some hypothesis over C(r).

First, the mean correlation,

〈C〉 = 2

N(N − 1)

∑
i<j

cor(Zi, Zj), (15)

is approximated by its continuous version

〈C〉 ≈ 2π

V

∫ r∗

0.5
C(r)r2dr, (16)

where r∗ is the radius of the spherical region under study, and V
its volume. Now, we discuss some hypothesis about the asymptotic
behavior of C(r). For example, if there exist an exponential decay,

C(r) ∼ e−λr, (17)

then the mean correlation satisfies:

〈C〉 ∼ N−1. (18)

In the case where long-range correlations are present,

C(r) ∼ 1

rα
, (19)
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the mean correlation satisfies:

〈C〉 ∼ N−α/3. (20)

Putting all together in Equation 21, the spatial decay of the fMRI
data correlations will be given by the product of N by Var(Z) as a
function of N, leading to two very different asymptotic statistical
behavior:

{
For long-range correlations NVar(Z) ∼ N1−α/3

For short-range correlations NVar(Z) ∼ k.
(21)

Figure A3 shows N.Var(Z) as a function of N for brain data.
The straight line in the log-log plot confirm that in the brain
data there exist long range correlations. In particular, we obtain a
exponent α = 0.9 (for C(r) ∼ 1

rα ) which agrees very well with the
result recently obtained by Expert et al. (2011). For completeness
we plot also the results of numerical calculations using an expo-
nential correlation function which clearly depart from the brain
data.
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FIGURE A3 | Long-range correlations. Black circles correspond to brain
data and red squares to the results from an exponential interaction model
with the same geometry for each cluster. In the exponential case as N
grows the average correlation converges, meanwhile for the brain data it
continues growing demonstrating the presence of long-range correlations
in the data. The black line corresponds to a power law fit y = kx−0.7. From
Equation 21 we obtain an exponent α = 0.9. The inset corresponds to the
variance of the mean activity as a function of N.
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Recent years of research have shown that the complex temporal structure of ongoing
oscillations is scale-free and characterized by long-range temporal correlations. Detrended
fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation,
normal development, or disease can lead to differences in the scale-free amplitude modu-
lation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the
time-averaged oscillation power, indicating that the DFA provides unique insights into the
functional organization of neuronal systems. To facilitate understanding and encourage
wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explana-
tion of the DFA algorithm and its underlying theory. Practical advice on applying DFA to
oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Tool-
box (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide
a brief overview of insights derived from the application of DFA to ongoing oscillations in
health and disease, and discuss the putative relevance of criticality for understanding the
mechanism underlying scale-free modulation of oscillations.

Keywords: long-range temporal correlations, criticality, ongoing oscillations, detrended fluctuation analysis,
scale-free dynamics

INTRODUCTION
When investigating nature we often discard the observed vari-
ation and describe its properties in terms of an average, such
as the mean or median (Gilden, 2001). For some objects or
processes, however, the average value is a poor description, because
they do not have a typical or “characteristic” scale. Such systems
are broadly referred to as “scale-free” (Bassingthwaighte et al.,
1994). There is growing evidence that physiological processes can
exhibit fluctuations without characteristic scales and that this
scale-free dynamics is important for their function (Bassingth-
waighte et al., 1994; Bak, 1996; Goldberger et al., 2002; Stam,
2005; Ghosh et al., 2008; He et al., 2010; West, 2010). Detrended
fluctuation analysis (DFA; Peng et al., 1994), a method for ana-
lyzing scaling behavior in time series, has played a critical role
in this success. We believe, however, that DFA could prove valu-
able to a wider community of neuroscientists than its current
users. Thus, the aim of this paper is to promote and facilitate
investigations of the scale-free amplitude modulation of ongoing
neuronal oscillations with the use of DFA (Linkenkaer-Hansen
et al., 2001).

Our paper is structured as follows. First, we provide a beginner’s
introduction to the Section “Fundamental Concepts Required to
Understand DFA.” This is followed by the presentation of “The
DFA”and the special requirements regarding“DFA applied to neu-
ronal oscillations.” With the theory covered, the reader is referred
to MATLAB code and tutorials in the Section“Try it Yourself Using
the Neurophysiological Biomarker Toolbox (NBT).” Finally, we

illustrate the value of DFA in “Insights from the application of
DFA to neuronal oscillations.”

FUNDAMENTAL CONCEPTS REQUIRED TO UNDERSTAND DFA
To understand how the DFA algorithm quantifies some of the
properties of scale-free fluctuations, we introduce the concepts of
self-affinity and stationarity and show how they apply to scale-free
signals.

SELF-AFFINITY
Self-affinity is a property of fractal time series (Mandelbrot, 1967;
Turcotte, 1997). It is a special case of self-similarity, according to
which a small part of a fractal structure is similar to the whole
structure. When this small part is an exact replica of the whole
then the fractal is exact, which is the case for purely mathematical
and geometrical fractals (e.g., the van Koch curve and the Mandel-
brot tree; Peitgen et al., 1992). When the self-similarity is expressed
in terms of statistical properties (e.g., the mean and standard devi-
ation for a portion of a fractal are scaled versions of the mean and
standard deviation of the whole) then the fractal is a statistical
fractal. Whilst the self-similarity property is isotropic and applies
along all the dimensions of a fractal object, self-affinity describes
anisotropic scaling where statistical properties of the fractal scale
differently along different dimensions. In the case of a time series,
the time dimension is rescaled.

Nature hosts some intriguing examples of self-similar struc-
tures, such as the Roman cauliflower (Romanesco broccoli), in
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FIGURE 1 |The Roman cauliflower is a striking example of
self-similarity in nature. (A) The cauliflower is composed of flowers that
are similar to the entire cauliflower. These smaller flowers, in turn, are
composed of flowers that are similar to the smaller flowers. The
self-similarity is apparent on at least four levels of magnification, thereby
illustrating the scale-free property that is a consequence of self-similarity
(bottom left ). A hypothetical distribution of the likelihood of flowers on a
cauliflower having a certain size. This property is captured by the power-law
function. The mean or median of a power-law, however, provide a poor
representation of the scale-free distribution (and in a mathematical sense is
not defined) (bottom right ). The power-law function makes a straight line in
double-logarithmic coordinates. The slope of this line is the exponent of the
power-law, which captures an important property of scale-free systems,
namely the relationship between the size of objects or fluctuations on

different scales. (B) As the size of apples shows smaller variation they are
well described by taking an average value such as the mean or median.
(bottom left ) Hypothetical distribution showing the likelihood of apples
having a certain size. Both the mean and median are good statistics to
convey the size of the apples. (bottom right ) Plotting the normal distribution
on double-logarithmic coordinates has little effect on the appearance of the
distribution, which still shows a characteristic scale. (C) Time-signals can
also be viewed as self-affine as they can be transformed into a set of
sine-waves of different frequencies. In a 1/f signal the lower frequency
objects have larger amplitude than the higher frequency objects which we
can compare with there being fewer large cauliflowers than there are small
cauliflowers. (D) A white-noise signal is also self-affine, but now the lower
frequency objects have the same amplitude as the higher frequency objects
meaning that only the high-frequency fluctuations are visible in the signal.

which almost exact copies of the entire flower may be recog-
nized on multiple smaller scales (Figure 1A). Physiological time
series may exhibit statistical self-affine properties (Eke et al., 2000,
2002). Self-affine processes and self-similar structures have in
common that the statistical distribution of the measured quan-
tity follows a power-law function, which is the only mathematical
function without a characteristic scale. Self-affine and self-similar
phenomena are therefore called “scale-free.”

Considering again the example of the Romanesco broccoli, we
can say that it is a “scale-free” structure, because there is no typical
size of flower on the cauliflower, with the frequency of a certain size
of flower being inversely proportional to its size. A scale-free time
series will in a similar fashion be composed of sine-waves with
amplitudes inversely proportional to their frequency (Figure 1C),
seen as a straight line when the power spectrum is plotted on
double-logarithmic axis. This is in contrast to the wide variety of
objects that have a typical scale, e.g., the size of the apples on a
tree. None of them will be very small or very large; rather, they
will form a Gaussian distribution centered on some characteristic
size, which is well represented by the mean of the distribution.
Qualitatively, the characteristic scale is present at the expense of
rich variability. Similarly, a time series in which all frequencies are
represented with the same amplitude will lack the rich variability
of the scale-free time series and is referred to as “white-noise”

(Figure 1D). Whereas phenomena with characteristic scales are
well defined by their mean and standard deviation (Figures 1B,D),
scale-free phenomena are better described by the exponent of a
power-law function, because it captures the relationship between
objects or fluctuations on different scales (Figures 1A,C).

Let us now introduce the mathematical definitions:
A non-stationary stochastic process is said to be self-affine in

a statistical sense, if a rescaled version of a small part of its time
series has the same statistical distribution as the larger part. For
practical purposes, it is sufficient to assess the standard deviation.
Thus, the process, Y, is self-affine if for all windows of length t :

Y (Lt ) ≡ LH Y (t ) (1)

where:

• “Y (Lt )” and “Y (t )” are values of a process at time windows of
length Lt and t, respectively.
• “L”: window length factor
• “H ”: Hurst parameter, dimensionless estimator of self-affinity
• “≡”: the standard deviation on both sides of the equation are

identical (Beran, 1994).

To illustrate the implications of this definition for the property
of a self-affine process, we consider a self-affinity parameter of
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0.75 and derive the standard deviation for two and three times the
length of the time-scale. To double the time-scale, we set L= 2;

Y (2t ) ≡ 20.75Y (t )

Y (2t ) ≡ 1.68Y (t )

Therefore, the standard deviation of a signal twice the length
of y(t ) is 1.68 times larger than that of the original signal y(t ).

Tripling the window size with L= 3 gives;

Y (3t ) ≡ 30.75Y (t )

Y (3t ) ≡ 2.28Y (t )

The standard deviation increases by a factor of 2.28. In other
words, with a self-affinity parameter H = 0.75, the standard devi-
ation grows with increasing window size according to the power-
law, LH. This mathematical formulation shows another property
of self-affine processes which is scale-invariance: the scaling of
the standard deviation is not dependent on the absolute scale.
A signal exhibiting the described behavior is also said to exhibit
“scale-free” fluctuations with a “power-law scaling exponent” H.
H is the Hurst-coefficient (Mandelbrot and Wallis, 1969) and
ranges between 0 and 1. H approaching 1 describes a signal of
smooth appearance, typically meaning that high values are fol-
lowed by high values (i.e., there are dependencies over time),
while H close to 0 is a signal with rough, “hairy” appearance,
which typically means faster switching between high and low
values.

The estimation of the scaling exponent is particularly inter-
esting for neuronal oscillation dynamics, because it can reveal
the presence of long-range temporal correlations (LRTC) in neu-
ronal network oscillations (Linkenkaer-Hansen et al., 2001). In the
following sections we will show you how.

STATIONARY AND NON-STATIONARY PROCESSES
Definition: a process X(t ) is stationary if the distribution of X(t ) is
independent of t, the joint distribution of X(t 1+ τ) and X(t 2+ τ)
is independent of τ and similarly – for all k – for the joint
distributions of X(t 1+ τ) . . . X(tk+ τ) (Mandelbrot, 1982).

When performing scale-free analysis of a time series, it is essen-
tial to have a model of whether the underlying process is stationary.
This is because many of the methods used on a time series to esti-
mate H make assumptions about whether the process is stationary
or not. For example, self-affinity as described above only applies
to non-stationary processes, because by definition the variance of
a stationary process does not alter with the amount of time looked
at (Beran, 1994).

Scale-free processes which are stationary are usually modeled
as fractional Gaussian noise (fGn), and non-stationary processes
are modeled as fractional Brownian motion (fBm). Nevertheless,
there is a strong relationship between these two types of processes
in that, by definition, the increments of a fBm process are mod-
eled as a fGn process with the same Hurst parameter, for more
details on these models (see Mandelbrot, 1982; Eke et al., 2000).
This relationship allows us to apply the definition of self-affinity
given above to a stationary fGn process, by first converting it into
its non-stationary fBm equivalent as follows. Given the time series

y(t ), we define the signal profile as the cumulative sum of the
signal:

x (t ) =
t∑

k=1

y (k)− 〈y〉 (2)

where (y) is the mean of the time series. The subtraction of the
mean eliminates the global trend of the signal. The advantage of
applying scaling analysis to the signal profile instead of the signal,
is that it makes no a priori assumptions about the stationarity of
the signal. When computing the scaling of the signal profile, the
resulting scaling exponent, α, is an estimation of H. If α is between
0 and 1, then x was produced by a stationary process which can be
modeled as a fGn process with H = α. If α is between 1 and 2 then
x was produced by a non-stationary process, and H = α− 1 (Eke
et al., 2000).

SCALING OF AN UNCORRELATED STATIONARY PROCESS
We now show that the scaling of a so-called random walk
process can be used to infer whether a time series is uncorre-
lated. A random walk is a non-stationary probabilistic process
derived from the cumulative sum of independent random vari-
ables, where each variable has equal probability to take a value
of 1 or −1. Imagine a walker that at each time step can
either take one step left (−1) or right (+1) with equal prob-
abilities (Figure 2A). The sequence of the steps representing
independent random variables forms a stationary time series
as it can only take two values which do not depend on time
(Figures 2B,D). If we calculate the standard deviation of this
time series for differently sized time windows we will not see a
scaling effect as there will always on average be an equal num-
ber of 1’s and −1’s. As the probability of taking either action
does not depend on any previous actions, the process is said to
be “memory-less.”

Now, if we compute the cumulative sum of this time series,
using Eq. 2 for obtaining the random walk, we can calculate the
distance that the walker deviates from the zero line where it started
(following a given number of steps; Figures 2A,C,E). This dis-
tance changes with the number of steps that the walker has taken.
Therefore, it is possible to calculate how the standard deviation of
distance from the origin (referred to as random walk fluctuations)
changes depending on the number of steps that the walker has
taken.

We can calculate this by working out the relationship between
the displacement, x, at time t and time t + 1. If at time t the walker
is at position xt then at time t + 1 the walker will be at position
xt− 1 or xt+ 1 with equal likelihood. Therefore, we can calculate
the mean square displacement at time t + 1:

〈
x2

t+1

〉
=

〈
(xt + 1)2

+ (xt − 1)2
〉

2

=

〈
x2

t + 2xt + 1+ x2
t − 2xt + 1

〉
2〈

x2
t+1

〉
=

2
〈
x2

t

〉
+ 2

2
=
〈
x2

t

〉
+ 1

(3)
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FIGURE 2 |The “random walk”: the signal profile of a stationary time
series may reveal self-affinity. (A) At each time step a walker moves
randomly to the left (−1) or right (+1) with equal probability. At any time
step the probability of being at a certain displacement from the origin
depends on the number of different paths that could take the walker there.
(B) The walker’s steps form a time series that is stationary as its value does
not depend on time. (C) The signal profile can take arbitrarily large values as
the time increases. (D) Looking at the walker time series on a longer
time-scale the standard deviation does not change as the signal cannot take
larger values. (E) The cumulative sum, or random walk process, on a longer
time-scale shows larger variance than on the shorter time-scale (C)
therefore the walker may exhibit self-affinity or scale-free behavior.

Let us define the starting position to be 0, i.e., the mean square
displacement at time 0 is:

〈x2
0 〉 = 0

Now, we can calculate the mean square displacement after an
arbitrary number of steps by applying Eq. 3 iteratively:

〈x2
1 〉 = 〈x

2
0 〉 + 1 = 0+ 1 = 1

〈x2
2 〉 = 〈x

2
1 〉 + 1 = 1+ 1 = 2

〈x2
3 〉 = 〈x

2
2 〉 + 1 = 2+ 1 = 3

. . .(
x2

L

)
= L

Thus, the mean square displacement after a walk of length L
steps, or equivalently, the root-mean-square displacement after L
steps is the square root of L:

(〈
x2

L

〉)0.5
= L0.5 (4)

For a zero mean signal, x, the root-mean-square displacement
is the standard deviation. Thus, the cumulative sum of a randomly
fluctuating zero mean signal will have the standard deviation grow-
ing with window length, L, according to a power-law with the
exponent of 0.5. Now, recall from Eq. 1 that if the standard devi-
ation of a signal scales by a factor LH according to the length
of the signal, L, then the process exhibits self-affinity with Hurst
exponent H. Thus, we have derived that a stationary randomly
fluctuating process has a signal profile, which is self-affine with a
scaling exponent α= 0.5.

SCALING OF CORRELATED AND ANTI-CORRELATED SIGNALS
What happens to the self-affinity of a process when we add mem-
ory in the sense that the probability of an action depends on the
previous actions that the walker has made? Different classes of
processes with memory exist. Let us focus on those with positive
correlations and those with anti-correlations. Anti-correlations
can be seen as a stabilizing mechanism: any action the walker
makes means that when taking future actions the walker will be
more likely to take the opposite action (Figure 3A). This leads
to smaller fluctuations on longer time-scales than seen by chance
(Figure 3B). Positive correlations have the opposite effect: any
action the walker takes makes it more likely to take that action
in the future (Figure 3A). This leads to large fluctuations in the
integrated signal (Figure 3B). We define a fluctuation function as
the standard deviation of the signal profile:

f (L) =
(〈

x2
L

〉)0.5
= Lα (5)

We note from Eq. (4) that this function grows as a power-law
with self-affinity parameter α= 0.5 for a stationary random signal.
Using Eq. (5) – and as shown in Figure 3C – it follows that if the
fluctuations scale according to time with:

• 0 < α < 0.5 then the process has a memory, and it exhibits
anti-correlations. (can be modeled by a fGn with H = α)
• 0.5 < α < 1 then the process has a memory, and it exhibits

positive correlations. (can be modeled by a fGn with H = α)
• α= 0.5 then the process is indistinguishable from a random

process with no memory. (can be modeled by a fGn with H = α)
• 1 < α < 2 then the process is non-stationary. (can be modeled

as a fBm with H = α− 1).
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FIGURE 3 | Processes with a memory produce qualitatively, and
quantitatively, different fluctuations compared to a random walk
process. (A) Correlations occur when the “walker’s” decision to follow a
certain direction is influenced by its past actions. (Left) Path of an
anti-correlated walker shown over time. At each time step the walker makes a
decision based on a weighted choice between left and right. The weighted
choice can be seen by the sum of the areas of the arrows pointing left and
right. Each action the walker takes continues to influence future actions, with
the walker being more likely to take the opposite action. This is illustrated as a
gradual accumulation of arrows that refer to past actions, but also decrease in
size over time, because the bias contributions of those actions decay over
time. The green arrows show how the first action the walker takes (going
Right) persists over time, with the influence getting smaller as time goes on
seen by the green arrow size decreasing. (Center) Path of a random walker

shown over time. The random walker is not influenced by previous actions
and so always has equal probability of going left or right. (Right) Path of a
correlated walker shown over time. Here each action the walker takes
influences future actions by making the walker more likely to take that action.
The green arrows show that by taking the action of going right at time 0, the
walker is more likely to go right in future time steps with the influence getting
smaller as time goes on. (B) Cumulative signal for a positively correlated
process (red, circle) shows larger fluctuations over time than a random walker
(blue, triangle). An anti-correlated signal (green, square) shows smaller
fluctuations over time. (C) By looking at the average fluctuations for these
different processes at different time-scales, we can quantify this difference. A
random walker shows a scaling exponent of 0.5, with the positively correlated
process having a larger exponent, and the anti-correlated process having a
smaller exponent.

For short-range correlations the scaling exponent will deviate
from 0.5 only for short window sizes, because the standard devi-
ation of the integrated signal in long windows will be dominated
by fluctuations that have no dependence on each other. Thus, it is
important to report the range where the scaling is observed. We
return to the practical issues of identifying the scaling range in
the section on “Insights from the application of DFA to neuronal
oscillations.”

EFFECTS OF TRENDS ON SCALING
We have seen that calculating the fluctuation of signal profiles
in windows of different sizes can be used to quantify the scale-
free nature of time series. However calculating the fluctuations at

a certain time-scale is strongly influenced by whether the signal
has a steady trend on longer time-scales. This trend is unlikely to
be part of a process on the time-scale of that window and may
be removed by subtracting the linear trend in the window, and
then calculating the standard deviation. This way we know that
processes on scales larger than the given window size will only
marginally influence the fluctuation function, Eq. (5).

To illustrate this, consider a white-noise signal with and without
a slow trend (Figure 4A). The standard deviation of the integrated
signal with a trend necessarily will be larger for any window size
and, importantly, also grow faster with increasing window sizes
compared to the signal without a trend (Figure 4B). Detrend-
ing the signal profile, however, efficiently reveals the true scaling
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FIGURE 4 |Trends on longer time-scales can introduce false
correlations into the signal. (A) For a signal with a trend, the standard
deviation will be larger (σ=0.41) than the same signal with no trend
(σ=0.29). (B) Average fluctuations for a window size shown for a
white-noise signal (blue crosses) and the same signal with a trend added
(red crosses) show different scaling. By removing the linear trend of the
integrated signal from each window before calculating the standard
deviation (circles), we recover the scaling seen without the long-time-scale
trend. (C) Importantly, detrending self-similar signals with trends (red
crosses) also recovers the scaling of the original signal (blue circles). (D)
Self-similar signal (α=0.75) with trend (red ) and without trend (blue) used
in (C).

of the signal with a superimposed trend both for uncorrelated
(Figure 4B) and correlated (Figures 4C,D) signals. This is the
basis for the robust performance of the DFA algorithm which we
describe in the next section.

THE DETRENDED FLUCTUATION ANALYSIS
Detrended fluctuation analysis, was introduced by Peng et al.
(1994) to quantify LRTC with less strict assumptions about the
stationarity of the signal than the auto-correlation function.
This was supported with a set of online tutorials and datasets1

to allow researchers to investigate the method on real-life data
(Goldberger et al., 2000). Since then, the algorithm has found
widespread application as indicated by more than 1800 cita-
tions to (Peng et al., 1994; Google Scholar, September 2012),
and it is one of the most commonly used methods to quan-
tify the scale-free nature of physiological time series and their
alteration in disease (Peng et al., 1995; Castiglioni et al., 2010;
Frey et al., 2011). The DFA is based on the rationale described
in the sections presented so far, and can be summarized as
follows:

1. Compute the cumulative sum of the time series (Figure 5A) to
create the signal profile (Figure 5B).

2. Define a set of window sizes, T, which are equally spaced on
a logarithmic scale between the lower bound of four samples
(Peng et al., 1994) and the length of the signal.

a. For each window length t∈T
a.i. Split the signal profile into a set (W) of separate time

series of length t, which have 50% overlap.
a.ii. For each window w ∈ W

a.ii.1. Remove the linear trend (using a least-squares fit) from
the time series to create wdetrend (Figure 5C)

a.ii.2. Calculate the standard deviation of the detrended signal,
σ(wdetrend)

a.iii. Compute fluctuation function as the mean standard
deviation of all identically sized windows:

< F (t ) >= mean (σ (W))

3. Plot the fluctuation function for all window sizes, T, on
logarithmic axes (Figure 5D).

4. The DFA exponent, α, is the slope of the trend line in the range
of time-scales of interest and can be estimated using linear
regression (Figure 5D).

Here, we have chosen logarithmically spaced window sizes,
because it gives equal weight to all time-scales when we fit a line in
log-log coordinates using linear regression. The lower end of the
fitting range is at least four samples, because linear detrending will
perform poorly with less points (Peng et al., 1994). For the high
end of the fitting range, DFA estimates for window sizes >10%
of the signal length are more noisy due to a low number of win-
dows available for averaging (i.e., less than 10 windows). Finally,
the 50% overlap between windows is commonly used to increase
the number of windows, which can provide a more accurate esti-
mate of the fluctuation function especially for the long-time-scale
windows.

The DFA exponent is interpreted as an estimation of the Hurst
parameter, as explained with the random walker example, i.e., the

1http://www.physionet.org
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FIGURE 5 | Step-wise explanation of Detrended Fluctuation Analysis.
(A) Original time series. Taken from a 1/f signal sampled at 5 Hz with a
duration of 100 s. (B) Cumulative sum of original signal shows large
fluctuations away from the mean. (C) For each window size looked at,
remove the linear trend from the signal, and then calculate the fluctuation.
Two example window sizes shown with signal shown as solid line, and
detrended signal shown as dotted line. (D) Plot the mean fluctuation per
window size against window size on logarithmic axes. The DFA exponent is
the slope of the best-fit line (α= 1).

time series is uncorrelated if α= 0.5. If 0.5 < α < 1 then there are
positive correlations present in the time series as you are getting
larger fluctuations on longer time-scales than expected by chance.
If α < 0.5 then the time series is anti-correlated, which means that
fluctuations are smaller in larger time windows than expected by
chance.

Since DFA was first introduced several papers have tested the
performance of DFA in relation to trends (Hu et al., 2001), non-
stationarities (Chen et al., 2002), pre-processing such as artifact
rejection (Chen et al., 2002), and coarse-graining (Xu et al., 2011).
Other trend-removal techniques have been proposed, such as
higher-order polynomial (Kantelhardt et al., 2001) or adaptive
detrending (Riley et al., 2012); however, these have not yet been
tested in the DFA analysis of neuronal oscillations.

DFA APPLIED TO NEURONAL OSCILLATIONS
Synchronized activity between groups of neurons occurs in a
range of frequencies spanning at least four orders of magnitude
from 0.01 to 100 Hz (Buzsáki, 2006). The power spectral density
plotted on double-logarithmic axes roughly follows a power-law
distribution, but there are also several “peaks” seen along it, corre-
sponding to the classical frequency bands (e.g., theta, alpha, beta,
etc.; Figure 6B). In this section, we describe how to apply DFA
to the amplitude modulation in these frequency bands, and show
how they have been utilized in quantifying healthy and patholog-
ical conditions. We cannot apply DFA directly to the band-pass
filtered signal, because it will appear as a strongly anti-correlated
signal because of the peaks and troughs averaging out when com-
puting the cumulative sum. Instead, we focus on the amplitude
envelope of oscillations.

Our method consists of four steps:

1. Pre-processing of signals.
2. Create band-pass filter for the frequency band of interest.
3. Extract the amplitude envelope and perform DFA.
4. Determine the temporal integration effect of the filter to choose

the window sizes for calculating the DFA exponent.

PRE-PROCESSING OF SIGNALS
Sharp transient artifacts are common in EEG signals. These large
jumps in the EEG signal on multiple channels are, e.g., caused by
electrode movement. Leaving these in the signal is likely to affect
the DFA estimates, whereas removing them has little effect on
the estimated exponent (Chen et al., 2002). Other artifacts from,
e.g., eye movement, respiration heartbeat, sweat are also likely to
disturb the estimate, thus they should be removed.

Another factor that can influence the DFA estimate is the signal-
to-noise ratio of the signal. The lower this ratio, the more biased
the estimated scaling is toward an uncorrelated signal. Simulations
indicated that a SNR >2 is sufficient to accurately determine LRTC
(Linkenkaer-Hansen et al., 2007).

FILTER DESIGN
To filter the EEG/MEG data (Figure 6A) we use a band-pass finite-
impulse-response filter (FIR). This is used instead of an infinite
impulse response filter (IIR) to avoid introducing long-range cor-
relations in the signal before calculating the fluctuation function.
The filter order for the FIR filter is recommended to be set to two
cycles of the lowest frequency in order to accurately detect the
oscillations while also limiting the temporal integration caused by
the filter. In (Figure 6B) we can see a clear peak in the alpha band
frequency range (8–13 Hz) and therefore we would band-pass fil-
ter in this frequency range with a filter order set to two cycles
of 8 Hz.

EXTRACT THE AMPLITUDE ENVELOPE AND PERFORM DFA
When applying DFA to neuronal oscillations, we are interested in
how the amplitude of an oscillation changes over time. To calcu-
late this we extract the amplitude envelope from the filtered signal
by taking the absolute value of the Hilbert transform (Figure 6C;
Nikulin and Brismar, 2005). The Hilbert transform is easily acces-
sible in most programming languages (e.g., scipy.signal.Hilbert in
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FIGURE 6 | Step-wise explanation of applying DFA to neuronal
oscillations. (A) EEG recording from electrode Oz shows clear oscillations
during a 15 min eyes-closed rest session. Data were recorded at 250 Hz and
band-passed filtered between 0.1 and 200 Hz. (B) Power spectrum (Welch
method, zero padded) shown in logarithmic (left) and double-logarithmic
axes (right), shows clear peak in the alpha band. (C) Signal in (B) filtered in
the alpha band (8–13 Hz) using a fir filter with an order corresponding to the
length of two 8 Hz cycles (blue). Amplitude envelope (red ) calculated using
the Hilbert transform. (D) DFA applied to the amplitude envelope of
white-noise signal filtered using the same filter as in (C). At time windows
<2 s, filter-induced correlations are visible through a bend away from the
0.5 slope. (E) DFA applied to the amplitude envelope of the alpha band
filtered EEG signal shows long-range temporal correlations between 2 and
90 s with exponent α=0.71.

Python (Scipy), Hilbert in Matlab). Wavelet transforms, however,
have also been used to extract the amplitude envelope (Linkenkaer-
Hansen et al., 2001). Once you have the amplitude envelope you
can perform DFA on it. However, to decide which window sizes to
calculate the exponent from, you first need to follow step 4.

DETERMINING THE TEMPORAL INTEGRATION EFFECT OF THE FILTER
Filtering introduces correlation in the signal between the neigh-
boring samples (e.g., due to the convolution in case of FIR filter-
ing). Thus, including very small window sizes in the fitting range
of the fluctuation function will lead to an overestimation of tem-
poral correlations (Figure 6D). The effect of a specific filter on
the DFA may be estimated using white-noise signals (where a DFA
exponent of 0.5 is expected; Nikulin and Brismar, 2004):

a) Create 1000 white-noise signals each one corresponding to
∼1000 s.

b) Filter each signal using the filter designed in step 2.
c) Extract the amplitude envelopes of the filtered noise signals

(step 3).
d) Perform DFA on each signal, and average all fluctuation

functions.
e) Estimate the lowest fitting time window where the fluctuation

function starts to curve away from an exponent of 0.5.

Now that you have the window sizes that have only negligi-
ble filter effect, you are finally able to calculate the DFA exponent
(Figure 6E).

TRY IT YOURSELF USING THE NEUROPHYSIOLOGICAL
BIOMARKER TOOLBOX
The NBT was created to facilitate integration of multiple biomark-
ers and to support large-scale biomarker research in the Matlab
environment. DFA has been implemented as part of the NBT. You
can download NBT from http://www.nbtwiki.net, where you can
also find further tutorials on using this toolbox. NBT can import
various data formats (e.g., raw, .dat, .mat, .txt) into the NBT for-
mat. The NBT format is defined by three main .mat files: the first
contains the signal stored in a matrix, the second contains infor-
mation about the signal, the third contains the biomarker objects
and it is automatically created when you compute a biomarker.
The three files are named according to the NBT convention:

• projectID.subjectID.date.condition.mat for the signal
• projectID.subjectID.date.condition_info.mat for the signal infor-

mation
• projectID.subjectID.date.condition_analysis.mat for the bio-

markers.

After you have imported your data into NBT format a variety
of actions can be performed on the data, from viewing and pre-
processing data to biomarker computation, statistical analysis, and
visualization. In the following, we show how a single biomarker,
the DFA exponent, can be calculated using the MATLAB command
line or a script.

You can also find this tutorial (with more details) online: http://
www.nbtwiki.net/doku.php?id=tutorial:detrended_fluctuation_
analysis_dfa
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REMOVING ARTIFACTS
Before performing any analysis you need to load the signal
(already converted into NBT format) into the workspace. Type
the following line in the command window to load the signal:

[Signal,SignalInfo,path]=nbt_load_file;

Signal and SignalInfo are the main variables on which NBT works,
containing the signal and signal information respectively. Most of
the NBT functions have these two variables as input and produce
an updated version of them after specific internal processing.

Now you can proceed with artifacts removal. NBT provides
several functions to help in this (e.g., an interface for visual inspec-
tion of bad channels and noisy epochs, Independent Component
Analysis functions for removing periodic artifacts, and differ-
ent semi-automatic algorithms for facilitating the data cleaning
process), but we will not go into details here. However, we would
like to emphasize that large-amplitude transient artifacts will influ-
ence the temporal structure of the signal and, therefore, it is better
to remove them prior to DFA computation (Chen et al., 2002).

FILTER THE SIGNAL AND EXTRACT THE AMPLITUDE ENVELOPE
First, we use the function nbt_GetAmplitudeEnvelope to filter the
signal using a FIR filter and get the amplitude envelope using the
Hilbert transform, [AmplitudeEnvelope, AmplitudeEnvelopeInfo]=
nbt_GetAmplitudeEnvelope(Signal, SignalInfo, hp, lp, filter_order).
Let us assume that we want to find the DFA in the alpha frequency
band (8–13 Hz):

[AmplitudeEnvelope,AmplitudeEnvelopeInfo]
=nbt_GetAmplitudeEnvelope

(Signal, SignalInfo, 8, 13, 2/8);

Note the last parameter 2/8. This is the filter order (in seconds),
which we set such that at least two 8 Hz oscillations cycles are
covered by the filter window.

PERFORM DFA
The DFA exponents can be then computed using the function
nbt_doDFA defined as follow: [DFAobject,DFA_exp]=nbt_doDFA
(Signal, SignalInfo, FitInterval, CalcInterval, DFA_Overlap,DFA_
Plot, ChannelToPlot, res_logbin).

The parameters, FitInterval and Calcinterval, determine the
time windows in seconds over which we fit and calculate respec-
tively. The DFA_overlap tells how much overlap we want between
our windows (in this case 50%, see below). The plotting parame-
ters DFA_plot assumes value 1 if you want to visualize the result,
otherwise 0; in ChannelToPlot you can specify for which channel
you want to plot the fluctuation function. The last parameter is
the resolution of the logarithmic binning, which by default is 10
per decade.

Now find the DFA exponents and visualize the fluctuation
function by typing:

[DFAobject,DFA_exp]=nbt_doDFA
(AmplitudeEnvelope,AmplitudeEnvelopeInfo,
[2 25], [0.8 30], 0.5, 1, 1, []);

This instruction will calculate the fluctuation function with
50% overlapping windows from 0.8 to 30 s, and find the DFA
exponent by fitting in the interval from 2 to 25 s. The DFA expo-
nent will be stored in DFA_exp and DFA_object is a structure that
stores information such as the fluctuation for each time window
and the parameters used to calculate the DFA.

INSIGHTS FROM THE APPLICATION OF DFA TO NEURONAL
OSCILLATIONS
The discovery of LRTC in the amplitude envelope of ongo-
ing oscillations, was based on 10 subjects recorded with EEG
and MEG for 20 min during eyes-closed and eyes-open rest
(Linkenkaer-Hansen et al., 2001). In both conditions, ampli-
tude envelopes of alpha and beta oscillations exhibited power-
law scaling behavior on time-scales of 5–300 s with DFA expo-
nents significantly higher than for band-pass filtered white-noise
(Figure 7A). These results were further validated by showing
1/f power spectra and a power-law decay in the auto-correlation
function.

The robustness of LRTC in ongoing oscillations has been con-
firmed in several follow-up studies, albeit often based on shorter
experiments and scaling analysis in the range of about 1–25 s
(Linkenkaer-Hansen et al., 2007; Monto et al., 2007; Berthouze
et al., 2010; Smit et al., 2011; Figure 7B). The power-law scal-
ing behavior in the theta band is reported less often (Smit et al.,
2011), and to our knowledge LRTC in the delta band have only
been investigated in subdural EEG (Monto et al., 2007). LRTC
have also not been reported often in the gamma band due to the
low SNR obtained from EEG/MEG recordings in this band. Inva-
sive recordings in non-human primates, however, have reported
1/f spectra for the amplitude modulation in both low and high
gamma bands (Leopold et al., 2003). Recordings from the subthal-
amic nucleus in Parkinson patients even show prominent LRTC in
the very high-frequency gamma range (>200 Hz), especially when
treated with the dopamine-precursor drug Levodopa (Hohlefeld
et al., 2012).

To gain validity for LRTC it has been shown that LRTC have
a link to the underlying genetics of the subject. This link was
provided in (Linkenkaer-Hansen et al., 2007) where the scaling
of eyes-closed rest EEG from monozygotic and dizygotic twin
subjects (n= 368) showed that ∼60% of the variance of DFA
exponents in the alpha- and beta-frequency bands is attributable
to genetic factors (Figure 7C). This was an important result as it
clearly showed that the non-random patterns of fluctuations in
the ongoing oscillations are governed by low-level biological fac-
tors as opposed to uncontrolled experimental variables during the
recording sessions. The finding also provides an explanation of
the significant test-retest reliability of DFA exponents (Figure 7D;
Nikulin and Brismar, 2004).

Several studies have reported that DFA exponents of neu-
ronal oscillations are independent of oscillation power for a given
frequency band, both when the oscillations are recorded with sub-
dural EEG (Monto et al.,2007) and scalp EEG (Linkenkaer-Hansen
et al., 2007; Smit et al., 2011; Figure 7E). These results together
indicate that the DFA can be used as a robust measure of oscillatory
dynamics, which captures different features of brain activity than
those seen in classical analysis such as power in a frequency band.
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FIGURE 7 | Results of applying DFA to neuronal oscillations. (A) Robust
long-range temporal correlations are observed in the amplitude envelope of
human EEG alpha oscillations using the DFA. Circles, eyes-closed rest
condition; Dots, surrogate data (Figure modified from Linkenkaer-Hansen
et al., 2001). (B) Differences in the scale-free modulation of the amplitude
envelope of neuronal oscillations are prominent among individuals and can be
quantified using DFA. Here shown for three filtered EEG signals (6–13 Hz)
with weak (top), medium (middle), and strong (bottom) LRTC (from channel
O2). The gray lines represent the amplitude envelope (low-pass filtered, 1 Hz).
DFA fluctuation functions are shown to the right, with signal (circles), and
white-noise (crosses). The DFA exponent is the slope of the fluctuation

function. (Figure modified from Smit et al., 2011). (C) Individual differences in
long-range temporal correlations in alpha oscillations are to a large extent
accounted for by genetic variation, as seen by the difference in correlations of
DFA exponents between monozygotic and dizygotic twins (Figure modified
from Linkenkaer-Hansen et al., 2007). (D) DFA has high test-retest reliability.
DFA exponents from the amplitude modulation of alpha oscillations, two
sessions with an interval of 6–28 days, symbols indicates different subjects
(Figure modified from Nikulin and Brismar, 2004). (E) The DFA exponent is
independent of oscillation power. Data were recorded using EEG on 368
subjects during a 3 min eyes-closed rest session (Figure modified from
Linkenkaer-Hansen et al., 2007).

DFA AS A BIOMARKER OF NEUROPHYSIOLOGICAL DISORDER
We have so far discussed the results of applying DFA to healthy
subjects; however, some of the most exciting results have come
from pre-clinical studies, which indicate possible functional roles
for LRTC. For example, a breakdown of LRTC in the amplitude
fluctuations of resting-state theta oscillations detected in the left
sensorimotor region was reported for patients with major depres-
sive disorder (Linkenkaer-Hansen et al., 2005). Interestingly, the
severity of depression, as measured by the Hamilton depression
rating scale, inversely correlated with the DFA exponent of the
patients (Figure 8A). Reduction in the LRTC of oscillations has
also been reported in the alpha band in the parietal region in
patients with Alzheimer’s disease (Montez et al., 2009; Figure 8B).

Furthermore, reduction in the alpha and beta bands in the centro-
parietal and fronto-central areas has also been reported for patients
with schizophrenia (Nikulin et al., 2012).

Interestingly, it seems as though it is not only a loss of LRTC
that correlates with disorders, but also elevated levels of LRTC. A
study (Monto et al., 2007) looked at different scales of neuronal
activity by using subdural EEG to record the areas surrounding an
epileptic focus in five patients during ongoing seizure-free activ-
ity. They discovered that the LRTC are abnormally strong near the
seizure onset zone (Figure 8C). Further, it was shown that admin-
istration of the benzodiazepine lorazepam to the patients, leads to
decreased DFA exponents in the epileptic focus, suggesting that
the pharmacological normalization of seizure activity brings with
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FIGURE 8 | DFA is a promising biomarker for pre-clinical studies. (A) DFA
exponents of theta oscillations in left sensorimotor region correlate with the
severity of depression based on the Hamilton score. Data recorded from 12
depressed patients with MEG, during an eyes-closed rest session of 16 min.
(Figure modified from Linkenkaer-Hansen et al., 2005). (B) DFA of alpha
oscillations shows a significant decrease in the parietal area in patients with
Alzheimer’s disease than in controls. MEG was recorded during 4 min of
eyes-closed rest and the DFA exponent estimated in the time range of 1–25 s.

(Right ) Individual-subject DFA exponents averaged across significant channels
are shown for the patients diagnosed with early stage Alzheimer’s disease
(n=19) and the age-matched control subjects (n=16; Figure modified from
Montez et al., 2009). (C) Difference in the DFA exponent of high frequencies
(beta band) and low frequencies (alpha band) indicates the location of the
epileptic focus (white box ). Data recorded from an epileptic subject using
subdural EEG during seizure-free activity (modified from Monto et al., 2007 by
permission of Oxford University Press).

it also a normalization of LRTC. Interestingly, however, DFA expo-
nents were observed to increase in the seizure-free surrounding
areas, which may correspond to the increase in LRTC observed
in vitro after application of Zolpidem, which is also a GABAergic
modulator (Poil et al., 2011).

Overall these studies seem to indicate that there is an optimal
level of temporal structure of oscillations and any deviation from
this can result in a significant loss of function (Poil et al., 2012).
Importantly, whereas early studies have estimated the DFA expo-
nent from the scaling of the fluctuation function across almost
two orders of magnitude in time (Linkenkaer-Hansen et al., 2001,
2004; Parish et al., 2004; Monto et al., 2007), most reports have
used one decade of fitting range and found the DFA a very useful
biomarker to study neuronal dynamics in health and disease.

OUTLOOK
In the last 10 years there has been rapid progress in the field
of LRTC analysis of neuronal signals (Linkenkaer-Hansen et al.,
2001; Parish et al., 2004; Stead et al., 2005; Monto et al., 2007).
However, there are still many fundamental issues that need to be
addressed, thus presenting many exciting opportunities for apply-
ing LRTC methodology to studies of normal and pathologic brain
functioning.

It has for a long time been recognized that the brain functions
at different time-scales, ranging from a few tens of milliseconds
required for the perception of stimuli, to tens of seconds spent
on different cognitive operations (Axmacher et al., 2006; Buzsáki,
2006; Cassenaer and Laurent, 2007; Lisman, 2010). Yet, rarely were
neuronal dynamics studied with approaches incorporating differ-
ent time-scales in order to better understand integrative brain
mechanisms. In this sense LRTC represent a unique approach
describing in a succinct way how neuronal activity unfolds in time
taking into account different time-scales. Given that neuronal sig-
nals are often non-stationary, DFA has been proven to be a reliable
method for capturing LRTC. The DFA method can be successfully

applied to both resting-state and task-dependent recordings. It can
also be used for quantifying brain activity during different tasks,
such as mental counting, visual and motor imagery, or even dur-
ing presentation of different stimuli. Here the neuronal reactivity
caused by the stimuli is usually transient in the order of hundreds
of milliseconds and as such can easily be ruled out as the source for
modulation of neuronal dynamics on the scale of tens of seconds
(Linkenkaer-Hansen et al., 2004), the latter rather being related to
the attentional or vigilance states. Recently DFA has been adapted
to allow detection of time-varying scaling exponents (Berthouze
and Farmer, 2012), which could prove useful in data where brain-
state changes could be expected to produce different scaling, e.g.,
at the onset of sleep (Kim et al., 2009) or in acute response to drugs
(Monto et al., 2007; Hohlefeld et al., 2012).

In (Monto et al., 2008) it was shown that there are infraslow
oscillations with a frequency of 0.01–0.1 Hz that predict human
behavioral performance and were correlated with the amplitude
of the classical frequency bands (alpha, beta, gamma, etc.). How-
ever, it is yet to be determined whether the amplitude modulation
of the classical frequency band oscillations are the cause of infra-
slow oscillations, which is theoretically plausible, because these
oscillations often have non-zero mean (Nikulin et al., 2007). Alter-
natively, a mechanism that is not directly related to the neuronal
oscillations could produce excitability changes in the cortex, which
would be reflected in infraslow oscillations and modulate the
amplitude of all the other oscillations.

One of the main explanations for the presence of LRTC in
neuronal oscillations has been the hypothesis of a brain being
in a critical-state (Bak, 1996; Linkenkaer-Hansen et al., 2001;
Kello et al., 2010). Criticality in neuronal networks has been
related to optimal information processing using computational
models (Kinouchi and Copelli, 2006). At the level of neuronal
populations, criticality is reflected in scale-free distributions of
local field potential propagations, so-called neuronal avalanches,
and these have been observed both in vitro (Beggs and Plenz,
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2003) and in vivo (Petermann et al., 2009). Importantly, it was
recently shown in computational models of neuronal oscillations
that LRTC emerges only when networks produce critical neuronal
avalanches and this occurs when excitatory and inhibitory con-
nectivities are balanced (Poil et al., 2012). Thus, it is likely that
LRTC reflect critical-state dynamics of neuronal networks, but
more work is needed to explain how variation in DFA exponents
in different frequency bands and anatomical regions relate to
neuronal avalanches, criticality, and computation.
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Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally
found in vitro and in vivo, and exhibit a robust critical behavior: these avalanches are char-
acterized by a power law distribution for the size and duration, features found in other
problems in the context of the physics of complex systems. We present a recent model
inspired in self-organized criticality, which consists of an electrical network with threshold
firing, refractory period, and activity-dependent synaptic plasticity. The model reproduces
the critical behavior of the distribution of avalanche sizes and durations measured experi-
mentally. Moreover, the power spectra of the electrical signal reproduce very robustly the
power law behavior found in human electroencephalogram (EEG) spectra. We implement
this model on a variety of complex networks, i.e., regular, small-world, and scale-free and
verify the robustness of the critical behavior.

Keywords: neuronal model, complex networks, self-organized criticality

1. INTRODUCTION
The activity in neuronal networks consists in one or more action
potentials in a single neuron or an ensemble of neurons. The first
case is typical for small networks, as some experimental systems
in vitro, where isolated spikes can be observed. The presence of a
number of action potentials in an ensemble of neurons not always
is a consequence of an external stimulus. Neuronal systems exhibit
an intense spontaneous activity, known since a long time, whose
relation with the response to stimulation is not fully understood
yet. It is however well established that spontaneous activity can-
not be simply reduced to a background noise uncorrelated to the
system response. Indeed, experimental results for the cat visual
cortex (Arieli et al., 1996) have shown that the intensity of the
response to an external stimulus is roughly proportional to the
intensity of the spontaneous activity state of the system when the
stimulus is applied. The variability in the response provided to the
repeated application of the same stimulus is therefore caused by
the different levels of ongoing activity. A similar analysis has been
performed at the intracellular level on the same system, confirm-
ing that the spatio-temporal structure of the spontaneous activity
influences the response signal (Azouz and Gray, 1999).

The typical form of spontaneous activity consists in the almost
synchronous emission of action potentials in a large number of
neurons, followed by periods of substantial inactivity. These high
activity events, named bursts, are observed both during develop-
ment and in mature systems and can last from a few to several
hundreds milliseconds. Conversely, the quiet periods can last sec-
onds and have been attributed to a variety of mechanisms: The
decrease in the available neurotransmitter (Stevens and Tsuji-
moto, 1995; Staley et al., 1998); the presence of an inhibitory
factor leading to a disabilitation of the neurotransmitter release
(Stevens and Tsujimoto, 1995; Staley et al., 1998); the inactiva-
tion, or remodulation of the response, of the glutamate receptors
(Maeda et al., 1995). An alternative form of temporal organization

is slow oscillations between high activity and low activity states
with a typical frequency of 0.3–1 Hz. The temporal organization
of this spontaneous activity has been characterized by the distrib-
ution of inter-times, i.e., the temporal intervals between successive
bursts or successive spikes (Segev et al., 2002).

In 2003 Beggs and Plenz have identified a novel form of sponta-
neous activity, neuronal avalanches (Beggs and Plenz, 2003, 2004).
Coronal slices of rat somatosensory cortex were placed onto a 8 × 8
multielectrode array (MEA) and spontaneous activity was induced
by bath perfusion with the glutamate receptor agonist NMDA
in combination with a dopamine receptor agonist. The intrinsic
activity of the system was monitored by measuring the potential
at each electrode. This local field potential (LFP) integrates the
electrical activity of neurons placed in the region surrounding the
electrode: negative peaks in the LFP measure the influx of positive
ions and therefore the cumulative membrane potential variation
of the neurons in the region. Experimental data show that before
6 days in vitro activity is mainly composed of sparse activations but
during the second week simultaneous activations occur in several
electrodes. The novel idea was to examine this electrophysiologi-
cal signal on a finer temporal scale, which was able to evidence a
complex spatio-temporal structure. Indeed, activity starting at one
electrode may involve more, non-necessarily neighboring, elec-
trodes. Binning time in cells of duration δt, allows to create a
spatio-temporal grid reporting the active electrodes in each tem-
poral cell. A neuronal avalanche is therefore defined as a sequence
of successively active electrodes between two temporal bins with
no activity. The total number of active electrodes, or alternatively
the sum of all LFPs, is defined as the size s of an avalanche and the
time interval with ongoing activity as its duration T.

The striking result is that both size and duration have no charac-
teristic value, i.e., their distributions exhibit a power law behavior.
The analysis at a finer temporal scale is then able to enlighten the
non-synchronous character of the bursts. The exponents of these
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power law distributions depend on the choice for the temporal bin
δt. Indeed larger bins make active electrodes belonging to differ-
ent avalanches to merge into the same larger event, leading to a
smaller exponent. In order to identify the appropriate value of δt,
Beggs and Plenz (2003) verified that if δt is equal to the average
value of the time delay between two successive LFPs in the culture,
the exponent does not depend any longer on the specific culture.
They were then able to identify the universal scaling behavior.

P (s) ∝ s−σ with σ = 1.5 ± 0.1

P (T ) ∝ T −τ with τ = 2.0 ± 0.1.
(1)

The power law behavior for the size distribution is followed by
an exponential cut-off due to the finite size of the system, whereas
for the duration distribution it extends over about one decade and
the exponential cut-off sets in at about 10 ms.

The results in vitro have been confirmed by extended stud-
ies in vivo on anesthetized rats during development (Gireesh and
Plenz, 2008) and awake rhesus monkeys (Petermann et al., 2009).
Spontaneous neuronal activity recorded by MEA placed in the
rat cortical layer 2/3 at the beginning and the end of the second
week postnatal, shows higher frequency (up to 100 Hz) oscillations
nested into lower frequency (4–15 Hz) oscillations. At the end of
the first week postnatal, bursts start to organize into high frequency
oscillations and become more synchronized during the second
week. Synchronous activity in the bursts exhibits the same scaling
behavior found for neuronal avalanches in vitro [equation (1)].
This similarity between in vitro and in vivo experiments supports
the idea that the emergence of nested oscillations reflects the devel-
opment of layer 2/3 in the cortex. Ongoing activity measured in the
primary motor and premotor areas of two awake monkeys, sitting
with no behavioral task, nor under particular stimulus, exhibits
also neuronal avalanches. Their organization is independent of the
detection threshold and exhibits scale invariance. Power laws for
the size and duration distributions confirm the scaling behavior
in equation (1) and suggest that in large neuronal networks a wide
variety of avalanche sizes is possible, including clusters percolat-
ing throughout the system. This indicates that the largest cluster
is solely controlled by the system size and not by the dynamics.
This result also generalizes avalanche dynamics across species and
different cortical areas. Criticality can be therefore considered as a
generic property of spontaneous cortical activity, which may indi-
cate that networks with a larger response repertoire were selected
over others throughout evolution. A flexible spontaneous activity
could then underlie and optimize important cortical functions as
learning and memory.

The investigation on the spontaneous activity has been per-
formed also for dissociated neurons from different networks as
rat hippocampal neurons (Mazzoni et al., 2007), rat embryos
(Pasquale et al., 2008), or leech ganglia (Mazzoni et al., 2007).
Neurons are mechanically dissociated by trituration through fine-
tipped pipettes and placed onto a MEA, pre-coated with adhesion
promoting molecules, in a nutrient medium. Under fixed con-
ditions of humidity and temperature, neurons start to develop
a network of synaptic connections and, after a variable period
in vitro, exhibit spontaneous electrical activity. The electrodes
of the MEA in these experiments record the spikes, rather than

the LFPs, due to individual neurons attached to them. As a con-
sequence, the temporal scale for the data analysis has to take
into account this difference in order to properly characterize the
neuronal response. Choosing the average inter-spike time at a
single electrode as the temporal scale for data binning, the spon-
taneous activity is monitored during the development and in
mature cultures. Different behaviors are observed. Only those
systems exhibiting a medium level of synchronization between
random spikes and synchronized bursts exhibit critical behav-
ior. For those cultures the scaling behavior is very robust and
in agreement with equation (1). In particular, the emergence of
a critical state has been found to be strongly related to the aging
of the system, namely after the first few weeks in vitro, where
the behavior of the system is subcritical, some cultures may self-
organize, and reach the critical state as they mature (Pasquale et al.,
2008).

In real brain neurons are known to be able to develop an
extremely high number of connections with other neurons, that is
a single cell body may receive inputs from even a hundred thou-
sand pre-synaptic neurons. One of the most fascinating questions
is how an ensemble of living neurons self-organizes, develop-
ing connections to give origin to a highly complex system. The
dynamics underlying this process might be driven both by the aim
of realizing a well connected network leading to efficient infor-
mation transmission, and the energetic cost of establishing very
long connections. The morphological characterization of a neu-
ronal network grown in vitro has been studied (Shefi et al., 2002)
by monitoring the development of neurites in an ensemble of
few hundred neurons from the frontal ganglion of adult locusts.
After few days the cultured neurons have developed an elaborated
network with hundreds of connections, whose morphology and
topology has been analyzed by mapping it onto a connected graph.
The short path length and the high clustering coefficient measured
indicate that the network belongs to the category of small-world
networks (Watts and Strogatz, 1998), interpolating between reg-
ular and random networks. In classical small-world networks the
majority of sites have a number of connections close to the average
value in the network. Real neuronal networks behave quite differ-
ently, since neurons with quite diverse number of connections are
observed. Indeed, the properties of the functionality network have
been measured experimentally in human adults (Eguiluz et al.,
2005). Functional magnetic resonance imaging has shown that
this network has universal scale-free properties, namely it exhibits
a distribution of out-going connection number, kout, which fol-
lows a power law, i.e., n(kout ) ∝ k−2

out , independent of the different
tasks performed by the patients. This behavior suggests that in
the network few neurons are highly connected and act as hubs
with respect to information transmission. Small-world features
have been also measured for functionality networks in healthy
humans, whereas they are not present in patients affected by neu-
rological diseases: Alzheimer patients have longer path lengths
(as in regular networks; Stam et al., 2007) whereas schizophrenic
patients show a more random architecture of the underlying net-
work (Rubinov et al., 2009). Epileptic patients exhibit a more
ordered neuronal network during seizures (Ponten et al., 2007),
whereas brain tumor patients a more random one (Bartolomei
et al., 2006).
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2. THE MODEL
2.1. CONNECTIVITY NETWORKS
The first step to develop a model simulating neuronal dynamics
is the choice of the specific network of connections. The simplest
choice is a regular lattice, i.e., a square lattice for a two-dimensional
system. However, following recent experimental results, we allow
neurons to develop long range connections: Starting from a reg-
ular lattice, a small fraction of bonds, from 0 to 10%, is rewired,
namely one of the two connected neurons is chosen at random in
the system. This procedure originates long range connections and
gives rise to a small-world network (Watts and Strogatz, 1998; Shefi
et al., 2002), which more realistically reproduces the connections
in the real brain.

In a small-world networks the number of connections for
different neurons is close to an average number. In order to repro-
duce the experimental data on the connectivity distribution in
functionality networks, we implement also scale-free networks.
More precisely, we set N neurons at random positions in two-
dimensional space and to each neuron we assign an out-going
connectivity degree, kout, according to the distribution measured
by fMRI measurements of ongoing activity in humans (Eguiluz
et al., 2005). Each neuron has a degree equal to a random number
between kmin

out = 2 and kmax
out = 100 according to the probability

distribution n(kout ) ∝ k−2
out . The two neurons are chosen accord-

ing to a distance dependent probability, p(r) ∝ e−r/5<r>, where r
is their spatial distance (Roerig and Chen, 2002).

In order to consider a network with both features, small-world
and scale-free, we also implement the Apollonian network. This
has been recently introduced (Andrade et al., 2005) in a simple
deterministic version starting from the problem of space-filling
packing of spheres according to the ancient Greek mathematician
Apollonius of Perga. In its classical version the network associated
to the packing gives a triangulation that physically corresponds to
the force network of the sphere packing. One starts with the zero-
th order triangle of corners P1, P2, P3, places a fourth site P4 in the
center of the triangle and connects it to the three corners (n = 0).
This operation will divide the original triangle in three smaller
ones, having in common the central site. The iteration n = 1 pro-
ceeds placing one more site in the center of each small triangle
and connecting it to the corners (Figure 1). At each iteration n,
going from 0 to N, the number of sites increases by a factor 3 and
the coordination of each already existing site by a factor 2. More
precisely, at generation N there are

m (k, N ) = 3N , 3N−1, 3N−2, . . . , 32, 3, 1, 3

vertices, with connectivity degree

k (N ) = 3, 3 × 2, 3 × 22, . . . , 3 × 2N−1, 3 × 2N , 2N+1 + 1

respectively, where the two last values correspond to the site P4

and the three corners P1, P2, P3. The maximum connectivity
value then is the one of the very central site P4, kmax = 3 × 2N,
whereas the sites inserted at the N -th iteration will have the lowest
connectivity 3.

The important property of the Apollonian network is that it
is scale-free. In fact, it has been shown (Andrade et al., 2005)

FIGURE 1 | Apollonian network for N = 2: iterations n = 0, 1, 2 are

symbols ©, �, •, respectively.

that the discrete cumulative distribution of connectivity degrees
P(k) =�k′≥km(k, N )/NN, where NN = 3 + (3(N+1) − 1)/2 is the
total number of sites at generation N, can be fitted by a power
law. More precisely, P(k) ∝ k1−γ , with γ = ln3/ln2∼1.585. More-
over the network has small-world features. This implies (Watts
and Strogatz, 1998) that the average length of the shortest path l
behaves as in random networks and grows slower than any positive
power of N, i.e., l ∝ (lnN )3/4. Furthermore the clustering coeffi-
cient C is very high as in regular networks (C = 1) and contrary to
random networks. For the Apollonian network C has been found
to be equal to 0.828 in the limit of large N. On this basis, the
Apollonian network appears to have all the new features that we
would like to investigate: small-world property found experimen-
tally (Shefi et al., 2002) and possibility of a very high connectivity
degree (scale-free). Moreover it also presents sites connecting
bonds of all lengths. Also this last feature can be found in real
neuronal networks, where the length of an axon connecting the
pre-synaptic with the post-synaptic neuron can vary over several
orders of magnitude, from micrometers to centimeters. Finally,
most studies in the literature consider the case of a fully connected
network, where each neuron is connected to every other neuron.
Even if not completely realistic, we consider also this last case.

2.2. NEURONAL DYNAMICS
We here discuss a neuronal network model based on self-organized
criticality ideas (Bak, 1996). The model implements several phys-
iological properties of real neurons: a continuous membrane
potential, firing at threshold, synaptic plasticity, and pruning. In
order to define the model we need to specify the behavior of the
single neuron under different conditions, the dynamics then deter-
mines the system behavior (de Arcangelis et al., 2006a; Pellegrini
et al., 2007; de Arcangelis and Herrmann, 2010). We consider N
neurons at the nodes of the chosen network, characterized by their
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potential vi. The neuron positions will then be ordered in space for
regular lattices and small-world networks, organized in a hierar-
chical manner for the Apollonian network and randomly chosen
in two dimensions for the scale-free and fully connected networks.
Once the network of output connections is established, we iden-
tify the resulting degree of in-connections, kinj , for each neuron j.
To each synaptic connection we assign an initial random strength
gij, where gij �= gji, and to each neuron randomly either an excita-
tory or an inhibitory character, with a fraction pin of inhibitory
synapses. Whenever at time t the value of the potential at a site
i is above a certain threshold vi ≥ vmax, the neuron sends action
potentials which arrive to each of the kouti pre-synaptic buttons
and lead to a total production of neurotransmitter proportional
to vi. As a consequence, the total charge that could enter into con-
nected neurons is proportional to vikouti . Each of them receives
charge in proportion to the strength of the synapses gij

vj (t + 1) = vj (t )± vi (t ) kouti

kinj

gij (t )∑
k gik (t )

(2)

where the sum is extended to all out-going connections of i. In
equation (2) the membrane potential variation is obtained by
dividing the received charge by the surface of the soma of the
post-synaptic neuron, proportional to the number of in-going ter-
minals kinj . The plus or minus sign in equation (2) is for excitatory
or inhibitory synapses, respectively. In regular networks neurons
have about the same number of in-going and out-going connec-
tions, therefore equation (1) reduces to the simpler expression

vj(t + 1) = vj(t ) ± vi(t )
gij (t )∑
k gik (t )

. The same consideration holds

for small-world networks.
The firing rate of real neurons is limited by the refractory

period, i.e., the brief period after the generation of an action
potential during which a second action potential is difficult or
impossible to elicit. The practical implication of refractory peri-
ods is that the action potential does not propagate back toward
the initiation point and therefore is not allowed to reverberate
between the cell body and the synapse. In our model, once a neu-
ron fires, it remains quiescent for one time step and it is therefore
unable to accept charge from firing neighbors. This ingredient
indeed turns out to be crucial for a controlled functioning of our
numerical model. In this way an avalanche of charges can propa-
gate far from the input through the system. The initial values of the
neuron potentials are uniformly distributed random numbers and
the value of vmax is fixed equal to 6 in all simulations. Moreover, a
small fraction (10%) of neurons is chosen to be output sites, i.e.,
an open boundary, with a zero fixed potential, playing the role of
sinks for the charge. They model neurons connected to neurons
not belonging to the slice and avoid that an excess to charge influx
would lead to supercritical behavior. Each time neuronal activity
stops in the network, an external stimulus is necessary to trigger
further activity, which therefore mimics the nutrients from the
bath needed to keep a real neuronal network alive. This stimu-
lus consists in increasing the potential of a random neuron by a
random quantity uniformly distributed between 0 and vmax.

During the propagation of an avalanche according to equation
(2), we identify the bonds connecting two successively active neu-
rons, namely neurons whose activity is correlated. The strength

of their connections is increased proportionally to the activity
of the synapse, namely the membrane potential variation of the
post-synaptic neuron induced by the pre-synaptic neuron

gij (t + 1) = gij (t )+ αiij (t ) (3)

where iij(t ) is the current through that synaptic connection and
α a dimensionless parameter. Once an avalanche of firings comes
to an end, the strength of all inactive synapses is reduced by the
average strength increase per bond

�g =
∑
ij ,t

δgij (t ) /Na (4)

where Na is the number of bonds active in the previous avalanche.
Here α is the only parameter controlling both the strengthening
and the weakening rule in the Hebbian plasticity and represents the
ensemble of all possible physiological factors influencing synap-
tic plasticity. By implementing these rules, our neuronal network
“memorizes” the most used paths of discharge by increasing their
strength, whereas the less solicited synapses slowly atrophy. Indeed,
once the strength of a bond is below an assigned small value
gt = 10−4, we remove it, i.e., set its strength equal to zero, which
corresponds to the so-called pruning.

We implement synaptic plasticity rules during a series of Np

stimuli in order to modify the synaptic strengths, initially set at
random. In this way we do not impose a strength configuration
but let the system activity tune their values. Once a percentage
of bonds is pruned, we stop plastic adaptation and we perform
our measurements, by applying a new sequence of stimuli with-
out modifying the synaptic strengths. The extension of the plastic
adaptation procedure then represents the level of experience, or
age, of the system, whose response we monitor over a time-scale
much shorter than the one needed for structural adaptation. All
data presented in this manuscript are averaged over long temporal
sequences in several initial network configurations. More precisely,
for regular and small-world networks we average data on 10 dif-
ferent initial configurations with a sequence of 10000 avalanches
per configuration. On the Apollonian network we average over 100
different initial configurations and a sequence of 30000 avalanches
per configuration. For scale-free and fully connected networks we
average over 60 different initial configurations and a sequence of
50000 stimulations per configuration.

3. PRUNING
The total number of pruned bonds at the end of each avalanche,
Npb, in general depends on the initial conductance g 0, therefore it
is interesting to investigate the two cases of either all initial con-
ductances equal to 0.25, or being uniformly distributed between
0 and 1. First the case of equal initial conductances is analyzed.
The strength of the parameter α, controlling both the increase and
decrease of synaptic strength, determines the plasticity dynam-
ics in the network. This homeostatic mechanism implies that the
more the system learns strengthening the used synapses, the more
the unused connections will weaken. For large values of α the sys-
tem strengthens more intensively the synapses carrying current but
also very rapidly prunes the less used connections, reaching after
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a short transient a plateau where it prunes very few bonds. On the
contrary, for small values of α the system takes more time to ini-
tiate the pruning process and slowly reaches a plateau (Figure 2).
The inset of the figure shows the asymptotic value of the fraction
of surviving bonds, calculated as the total number of bonds in
the unpruned network minus the asymptotic number of pruned
bonds, as function of α. The number of unpruned bonds asymp-
totically reaches its largest value at the value α� 0.03 for different
networks. This could be interpreted as an optimal value for the
system with respect to plastic adaptation.

For the Apollonian network it is interesting to investigate if
pruning acts in the same way on bonds created at different itera-
tions n, n = 0, . . ., N, or rather tends to eliminate bonds of some
particular iteration. The probability to prune bonds of different
n is evaluated, that is the number of pruned bonds over the total
number of bonds for each iteration stage, as function of the num-
ber of applied stimuli. Figure 3 shows that the plateau is reached
at about the same value of Np and the shape of the curve is similar
for each n. However the probability to prune bonds with large n
is higher: These are the bonds created in the last iterations and
therefore embedded in the interior of the network. This suggests
that the most active bonds are the long range ones (small n), which
therefore support most of the information transport through the
network. It is also interesting to notice that, since the total number
of bonds depends exponentially on n, the gaps between the asymp-
totic values of the probability for successive generations depend
exponentially on n. In the inset of Figure 3 we show the asymptotic
number of pruned bonds per generation on a semi-log scale, this
quantity is well fitted by the exponential behavior Npb � exp n.

The same analysis has been performed for random initial con-
ductances between 0 and 1. The results are similar to the previous
case. It can be noticed that pruning starts already at Np = 1, since
conductances close to zero are present, and the plateau is reached

FIGURE 2 | Average number of pruned bonds Npb as function of the

number of external stimuli Np for a square lattice of linear size L = 100,

equal initial conductances, and different values of α. In the inset we
show the asymptotic value of the percentage of surviving bonds as
function of α.

after about 1000 stimuli. The value of α which optimizes the num-
ber of active bonds is about 0.030 also for the Apollonian network.
In this case, the pruning behavior for different iterations is similar
to the previous case, with the pruning probability exponentially
increasing with n, as Npb � exp n.

The effect of pruning on the connectivity degree of the network
is an interesting quantity to monitor on scale-free networks. On
Apollonian networks we evaluate the number of sites with a num-
ber of out-going connections kout as function of kout in the initial
network and after application of a given number of external stim-
uli (Figure 4). After the application of few external stimuli, i.e.,
for a short plastic adaptation, the distribution n(kout) shows the
same scaling behavior of the original Apollonian network. As the
pruning process goes on, sites exhibit varying connectivity degree,
and new values of kout appear. The result is that the scaling behav-
ior is progressively lost, as well as the scale-free character of the
network, since there is a generalized decrease of the connectivity
in the network.

4. AVALANCHE STATISTICS
After “aging” the system applying plasticity rules during Np exter-
nal stimuli, we submit the system to a new sequence of stimuli
with no modification of synaptic strengths. The response of the
system to this second sequence models the spontaneous activity
of a trained neuronal network with a given level of experience. We
analyze this activity by measuring the avalanche size distribution
n(s) and the time duration distribution n(T ).

The avalanche size distribution n(s) consistently exhibits power
law behavior for different values of model parameters. Figure 5
shows the avalanche size distribution for different networks and
values of Np, including also the case Np = 0 (no plasticity adap-
tation), for random initial conductances and the optimal value of

FIGURE 3 | Probability of pruning for bonds of different iterations n of

Apollonian networks, from bottom n = 0 to top n = 9, as function of the

number of external stimuli Np for equal initial synaptic strengths. In
the inset, the asymptotic Npb (after 5000 stimuli) is shown as function of n
with the exponential fit Npb � exp 0.5n.

www.frontiersin.org March 2012 | Volume 3 | Article 62 | 92

http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


de Arcangelis and Herrmann Activity-dependent neuronal model on complex networks

α. The value of the exponent is obtained by regression of the log-
binned data and found to be σ = 1.5 ± 0.1 for all networks, except
the Apollonian network where τ = 1.8 ± 0.2. The exponent is sta-
ble with respect to variations of the parameters for both equal and
random initial conductances. More accurate methods, as maxi-
mum likelihood fitting, should verify the stability of these values
(Clauset et al., 2009).

FIGURE 4 | Connectivity degree distribution n(kout) at different pruning

stages Np for Apollonian networks with equal initial synaptic

strengths and α = 0.020. As soon as pruning starts to eliminate bonds,
new connectivity degrees appear, not present in the original network.
Conversely, two out of the three corner sites, which for the generation
N = 9 have initially a connectivity degree 1025, may loose bonds because of
pruning and, as a result, n(1025) = 1.

FIGURE 5 | Avalanche size distribution for different networks with

pin = 0.05: the square lattice (N = 106, α = 0.03); the scale-free network

(N = 4000); and the Apollonian network for different values of Np (9th

generation with α = 0.030). Initial synaptic strengths are randomly
distributed. Data are logarithmically binned. In the inset, the corresponding
behavior of the number of pruned bonds for the Apollonian network is
shown.

It is interesting to stress the importance of noise: Indeed, by
applying the external stimulation not at random but at a fixed
neuron, the scaling exponent becomes σ = 1.2 ± 0.1 (de Arcan-
gelis et al., 2006a). We notice that, for fixed size s, increasing
Np decreases the number of avalanches of that size, suggesting
that strong plasticity remodeling decreases activity. The exponent
appears to be independent of Np, as long as the number of pruned
bonds, Npb, is far from the plateau (see inset in Figure 5). Similar
results are found for equal initial conductances. The dependence
of the critical behavior on synaptic strengths has been recently
investigated in networks of integrate-and-fire neurons (Levina
et al., 2007). The value of the exponent is compatible within error
bars with the value found in the experiments of Beggs and Plenz
(2003), 1.5 ± 0.4. However, one has to notice that experimental
results for neuronal avalanches were obtained for local field poten-
tials, i.e., the underlying events correspond to local population
spikes, whereas the numerical events are single neuronal spikes.
The slightly larger value of the exponent, found on the Apollonian
network, suggests that the peculiar hierarchical structure of the
network may reduce the probability of very large avalanches but
does not change substantially the electrical activity. For larger Np,
the distribution exhibits an increase in the scaling exponent and
finally looses the scaling behavior for very large Np values, in the
plateau regime for the number of pruned bonds.

In order to investigate the role of plastic modifications on the
production of very large avalanches, simulations are performed
for fully connected networks which undergo plastic adaptation
routines of different length. All networks exhibit supercritical
behavior, namely an excess of very large avalanches, due to the
high level of connectivity in the system (Figure 6). Very large
avalanches involve almost all neurons and their large number hin-
ders pruning, namely there are only very few synapses in the system
repeatedly inactive which progressively weaken and atrophy. This
behavior is independent of the extension of the plastic adaptation.
No pruning is observed even following the application of hundred
thousand stimuli. Very large avalanches therefore seem to be sus-
tained by the high connectivity in the system and apparently do

FIGURE 6 | Avalanche size distribution for 100 configurations of fully

connected networks with N = 1000 neurons with pin = 0.05.The different
curves correspond to different durations of the plastic adaptation period Np.
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not depend on the synaptic strengths. The analysis of the effect of
pruning on very large avalanches confirms this observation. Plas-
tic adaptation of different duration is now applied to scale-free
networks, leading to pruning of synapses. Supercritical behav-
ior, that appears in the unpruned networks, survives when only
few percentage of the synapses is removed. Conversely, a more
extended pruning strongly affects connectivity and hampers the
development of very large avalanches.

At time t = 0 a neuron is activated by an external stimulus ini-
tiating the avalanche. This will continue until no neuron is at or
above threshold. The number of avalanches lasting a time T, n(T ),
as function of T also exhibits power law behavior (Figure 7) fol-
lowed by an exponential cut-off. The scaling exponent is found
to be τ = 2.1 ± 0.2 for all networks and equal and random initial
conductances. Only for the fully connected networks the distrib-
ution exhibits a bump at long durations, due to the excess of large
avalanches which all contribute to the tail of the distribution. The
value of the exponent is found to be stable with respect to dif-
ferent parameters, provided that the number of pruned bonds
Npb is lower than the plateau for that value of α. Finally this
value agrees within error bars with the value 2.0, exponent found
experimentally by Beggs and Plenz (2003, 2004).

5. POWER SPECTRUM
The power spectrum of the time signal for the overall electrical
activity can be calculated. The aim is to compare the scaling behav-
ior of the numerical spectrum with the power law observed usually
in medical data (Novikov et al., 1997; Freeman et al., 2000). For this
purpose, the number of active neurons is monitored as function of
time, which recalls the experimental condition in which electrodes
are placed on the scalp in order to study the patient’s spontaneous
electrical activity. In neuronal networks neuronal activity consists
in avalanches of all sizes generated in response to the external stim-
ulus. Here the unit time is the time for the avalanche to propagate

FIGURE 7 | Avalanche duration distribution for different networks with

pin = 0.05: the scale-free network (N = 4000); the fully connected

network with Np = 50000; the Apollonian networks for different values

of α (9th generation, Np = 500). Data are logarithmically binned. The
dotted line has slope 2.1.

from one neuron to the next one. The power spectrum is calcu-
lated as the squared amplitude of the time Fourier transform as
function of frequency, averaged over many initial configurations.
Because of the definition of the numerical time unit, the frequency
unit does not correspond to the experimental one in Hertz.

Figure 8 shows the spectrum for different networks and differ-
ent values of Np. We also show the magnetoelectroencephalogra-
phy (similar to EEG) obtained from channel 17 in the left hemi-
sphere of a male subject resting with his eyes closed, as measured
in Novikov et al. (1997), having the exponent 0.795. For Np = 0,
i.e., without plasticity adaptation, the spectrum has a 1/f behav-
ior, characteristic of SOC. For values of Np different from zero, but
before the Npb plateau, one can distinguish two different regimes: a
power law behavior with exponentβ = 0.8 ± 0.1 at high frequency,
followed by a crossover toward white noise at low frequency. The
difference between β = 1 for Np = 0 and β ; 0.8 for higher Np, sug-
gests that plasticity reduces the relevance of small frequencies in
the power spectrum, in better agreement with experimental EEG
spectra (Novikov et al., 1997; Freeman et al., 2000). The stability
of the exponent with respect to α has also been verified, finding
consistently β = 0.8 ± 0.1 at high frequency. The stability of the
spectrum exponent suggests that an universal scaling character-
izes a large class of brain models and physiological signal spectra
for brain controlled activities. Medical studies of EEG focus on
subtle details of a power spectrum (e.g., shift in peaks) to discern
between various pathologies. These detailed structures however
live on a background power law spectrum that shows universally
an exponent of about 0.8, as measured for instance in Freeman
et al. (2000) and Novikov et al. (1997). A similar exponent was
also detected in the spectral analysis of the stride-to-stride fluctu-
ations in the normal human gait which can directly be related to
neurological activity (Hausdorff et al., 2001). The measured value
for the power spectra exponent is in agreement with the expected

FIGURE 8 | Power spectra obtained for different networks: square

lattice (N = 106, α = 0.03, Np = 10); small-world networks (N = 106,

α = 0.05, Np = 1000, 1% rewired bonds); Apollonian networks for

different Np (9th generation, α = 0.020). The experimental data (black line)
are from Novikov et al. (1997) with frequency in Hertz. Experimental data
are shifted in order to be in the same frequency range of numerical data.
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relation β = 3 − τ , being the scaling exponent of the avalanche
duration distribution τ > 1 (Jensen, 1998).

The scaling behavior of the power spectrum can be interpreted
in terms of a stochastic process resulting from the superposition of
multiple inputs taking Gaussian distributed random values (Haus-
dorff and Peng, 1996). The output signal sum of different and
uncorrelated superimposed processes is characterized by a power
spectrum with power law regime, crossing over to white noise
at low frequencies and to brown noise to high frequencies. The
low crossover frequency is related to the inverse of the longest
characteristic time among the superimposed processes. 1/f noise
characterizes a superposition of processes of different frequencies
with similar amplitudes. In our case the scaling exponent is smaller
than unity, suggesting that processes with high characteristic fre-
quency are more relevant than processes with low frequency in the
superposition (Hausdorff and Peng, 1996).

6. DISCUSSION
Several experimental evidences suggest that the brain behaves as
a system acting at a critical point. This statement implies that
the collective behavior of the network is more complex than the
functioning of the single components. Moreover, the emergence
of self-organized neuronal activity, with the absence of a charac-
teristic scale in the response, unveils similarities with other natural
phenomena exhibiting scale-free behavior, as earthquakes or solar
flares (de Arcangelis et al., 2006b). For a wide class of these phe-
nomena, self-organized criticality has indeed become a successful
interpretive scheme. As in self-organized criticality, the thresh-
old dynamics ensures time-scale separation (slow external drive
and fast internal relaxation). This dynamics leads to criticality and
therefore power law behavior (Jensen, 1998). The model belongs
to the class of non-conservative models, since output neurons can
drive charge outside the system. However the model presents a
number of different features: The propagation of charge from one
neuron to the connected one is non-uniform and non-isotropic.

Moreover the connectivity network is not static but dynamically
evolves following activity. In this scenario the plastic rules intro-
duce a homeostatic regulatory mechanism between excitation and
inhibition leading to critical behavior. The ensemble of these new
ingredients is at the origin of the measured exponents, different
from the typical exponents found in SOC models. It is interest-
ing to notice that in fully connected networks the excess of very
large avalanches hampers the synaptic depression mechanisms
and therefore alters the self-organized regulation between exci-
tation and inhibition. As a consequence, supercritical behavior is
observed.

Extensive simulations of this activity-dependent model are
derived for regular, small-world, scale-free, and fully connected
lattices. The results are compared with experimental data. The
first result is that an optimal value of the plasticity strength α
exists with respect to the pruning process, optimizing information
transmission. This remark could be interpreted as the evidence
of a homeostatic mechanism between strengthening and weaken-
ing processes in the adaptation of real synapses. Moreover the
avalanche size and duration distributions exhibit a power law
behavior with stable exponents compatible with the values exper-
imentally found for neuronal avalanches. These values appear to
be independent of the model parameters and the specific connec-
tivity network. This universal behavior is also in agreement with
experimental results, which provide the same exponents for very
different systems (dissociated neurons, cortex slices, and networks
in vivo), evidently characterized by connectivity networks with
different complexity. Solely the fully connected networks consis-
tently exhibit supercritical behavior due to the high connectivity
level which sustains large avalanche activity. The stability of the
spectrum exponent suggests that a universal scaling characterizes
a large class of brain models and physiological signal spectra for
brain controlled activities. This work may open new perspectives
to study pathological features of EEG spectra by including further
realistic details into the neuron and synapse behavior.
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Computational studies often proceed from the premise that cortical dynamics operate in a
linearly stable domain, where fluctuations dissipate quickly and show only short memory.
Studies of human electroencephalography (EEG), however, have shown significant autocor-
relation at time lags on the scale of minutes, indicating the need to consider regimes where
non-linearities influence the dynamics. Statistical properties such as increased autocorre-
lation length, increased variance, power law scaling, and bistable switching have been
suggested as generic indicators of the approach to bifurcation in non-linear dynamical
systems. We study temporal fluctuations in a widely-employed computational model (the
Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany
bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background
excitatory input, we find a dramatic increase in the autocorrelation length that depends
sensitively on the direction in phase space of the input fluctuations and hence on which
neuronal subpopulation is stochastically perturbed. Similar dependence on the input direc-
tion is found in the distribution of fluctuation size and duration, which show power law
scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture
that the alignment in phase space between the input noise vector and the center manifold
of the Hopf bifurcation is directly linked to these changes. These results are consistent
with the possibility of statistical indicators of linear instability being detectable in real EEG
time series. However, even in a simple cortical model, we find that these indicators may
not necessarily be visible even when bifurcations are present because their expression
can depend sensitively on the neuronal pathway of incoming fluctuations.

Keywords: neural mass model, Hopf bifurcation, critical fluctuations, autocorrelation

INTRODUCTION
Computational models of neocortex and other brain structures
have proved very useful for a range of research problems in neu-
roscience (Braun and Mattia, 2010; Friston and Dolan, 2010).
Interpreting empirical data using dynamical models is particu-
larly fruitful in neuroimaging, where underlying processes are
obscured by the low temporal resolution of fMRI or the coarse
spatial source resolution of electroencephalography (EEG)/MEG.
This allows testing of hypotheses about internal dynamical mech-
anisms (e.g., Freyer et al., 2012) and, through model inversion, the
estimation of neural and connectivity parameters that cannot be
observed directly (Friston et al., 2003). In contrast to modeling
at the microscopic scale, where the range of dynamics of healthy
neurons is known to include non-linear behavior such as limit
cycles, modeling at the larger scale of mesoscopic neural masses,
or neural fields often assumes that the dynamics at this scale oper-
ate close to a stable fixed point where input fluctuations result in
only small and brief perturbations of the population state. This
premise is predicated on the diffusion approximation that states
that correlations amongst neuronal inputs are reduced as the size
of the population increases (for review, see Deco et al., 2008). This
approach enables the calculation of spectra from the composition

of transfer functions, a powerful technique that allows physio-
logical parameters to be estimated from non-invasive functional
neuroimaging (Friston et al., 2003) and neurophysiological (van
Albada et al., 2010) data.

Dynamic instabilities in models at the larger scale of neural
masses have typically been associated with the pathological activity
of epileptic seizures (Wendling et al., 2000; Robinson et al., 2002;
Breakspear et al., 2006). However, empirical data shows that such
instabilities may also underlie healthy neural activity (Freyer et al.,
2009, 2011). Indeed, the Jansen–Rit neural mass model (Jansen
and Rit, 1995) and its derivatives (Wendling et al., 2002; David and
Friston, 2003; Zavaglia et al., 2006; Moran et al., 2007; Sotero et al.,
2007; Spiegler et al., 2010) reach bifurcations where fixed points
become linearly unstable while still within the healthy physiolog-
ical range of parameters. In fact, oscillations in the model output
that have been identified with normal cortical alpha activity have
been shown to arise from limit cycle activity following a super-
critical Hopf bifurcation (Grimbert and Faugeras, 2006; Spiegler
et al., 2010).

The term “linear instability” here does not necessarily imply
that the dynamics of the system as a whole lose stability. Indeed,
in the case of the supercritical Hopf bifurcation, stability of
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the attractor is maintained as it deforms continuously from a
stable fixed point to a stable limit cycle, which then increases
in size in the phase space. Hence, there is no discontinuous
transition. The distinction is that the dominant dynamics in
the system are no longer linear. The presence of quadratic and
higher order flow terms that become significant in the neighbor-
hood of a bifurcating fixed point have a profound influence on
the system’s statistical properties and its response to stochastic
perturbations.

The putative presence of linear instabilities in healthy, meso-
scopic cortical activity is ultimately an empirical question that
must be answered with reference to the theory of non-linear sto-
chastic dynamical systems. For a wide range of systems, statistical
measures such as increased autocorrelation, increased variance,
and bistable switching have been proposed as generic indicators
that the system is losing linear stability on approaching a bifurca-
tion (Scheffer et al., 2009; Kelso, 2010). Increased autocorrelation
length is a direct consequence of critical slowing down, which
occurs as the strength of attraction to a stable fixed point becomes
weaker before changing to equally weak repulsion. Long-range
correlations may also reveal a transition from exponential to power
law relaxation in the vicinity of linear instabilities as a result of the
higher order (non-linear) flow terms.

Within neuroscience, statistical indicators of bifurcations have
been studied at a range of scales, in both computational models
and empirical analyses. In the context of single neuron mod-
els, increase of variance close to a bifurcation and the spectral
peak near a Hopf bifurcation have been examined (Steyn-Ross
et al., 2006). Spectral features and variance close to instability have
been explored in large-scale mean field corticothalamic models
(Robinson et al., 1997, 2002; Roberts and Robinson, 2012) and
mean field models of the brainstem and hypothalamus (Robinson
et al., 2010). Slowing down, instability, and bifurcations have also
been studied at the highest level of brain function, particularly in
human movement. For example, increased variance and critical
slowing have been observed in human bimanual motor control
(Kelso et al., 1986; Scholz et al., 1987) and are explained by a sim-
plified phenomenological model of coordination (Haken et al.,
1985).

In addition to the analyses of empirical data contained within
these computational studies, signatures of transitions in neu-
roimaging data have been the subject of a number of predomi-
nantly empirical studies. Amplitude fluctuations of human brain
oscillations have been shown to have long time autocorrelations
with power law decay in EEG (Linkenkaer-Hansen et al., 2001),
consistent with effects expected near linear instability. Scale-free
cortical activity has also been reported in surface electrocor-
ticogram (ECoG) activity, although the significance, scaling coef-
ficient, and likely mechanisms remain contested (Bedard et al.,
2006; Miller et al., 2009; He et al., 2010). Similarly, Stam and
de Bruin (2004) reported scale-free fluctuations in the degree
of synchronization between surface EEG recordings. These find-
ings are consistent with prior reports of intermittent non-linear
structure within (Stam et al., 1999) and between (Breakspear and
Terry, 2002) surface EEG channels. More recently, Freyer et al.
(2009) found that 10 Hz oscillations showed intermittent switch-
ing between two distinct bistable modes, although the dwell times

within each mode followed a stretched exponential, not a power
law decay.

The objectives of the present study are to examine linear insta-
bilities in the Jansen–Rit model, a closed set of equations describ-
ing the activity of a small cortical region and one of the simplest
cortical neural mass models. At the same time it is a base upon
which many extensions and derivative models have been built
(Wendling et al., 2002; David and Friston, 2003; Zavaglia et al.,
2006; Moran et al., 2007; Sotero et al., 2007; Spiegler et al., 2010).
The phenomena which we report in this simple model therefore
highlight the possibility of similar behavior in a wider class of
models. We focus on one key indicator of linear instability (auto-
correlation length) and one important bifurcation (supercritical
Hopf). Time series for each neural population in the model are
generated for sets of parameters approaching a bifurcation. We
then test whether the autocorrelation indicator of proximity to
bifurcation is reliably detectable in the time series of the pyrami-
dal population and also examine scaling properties of fluctuations
in this time series. In this way we explore whether simple bifur-
cations at the population scale have the potential to contribute
to indicators such as lengthened autocorrelation times and power
law scaling of fluctuations reported in human EEG data.

MATERIALS AND METHODS
JANSEN–RIT NEURAL MASS MODEL
Building on the earlier work of Lopes da Silva et al. (1974) and
Wilson and Cowan (1972), Jansen and Rit developed a simple
computational model of a small cortical region (Jansen et al., 1993;
Jansen and Rit,1995). The model produces an output signal similar
to spontaneous EEG alpha oscillations, and also shows responses
similar to evoked potentials following pulsatile input. The Jansen–
Rit model is a closed set of differential equations that describe
the local average states of three interconnected neural populations
(Figure 1), excitatory interneurons, pyramidal cells, and inhibitory
interneurons. Here we follow David and Friston (2003) in identi-
fying the excitatory interneurons in the model with layer IV spiny
stellate cells. The spiny stellate and pyramidal neurons are both
excitatory and both populations receive external input, although
only the pyramidal cells project out of the local region.

Each second order equation in the model corresponds to a
population of synapses and their postsynaptic dendritic processes
(Freeman, 1992; Deco et al., 2008). Critically damped second order
linear filters describe the time course of the population mean of
postsynaptic potentials, further dispersed due to variability of
parameters within each population. This mean behavior sum-
marizes both synaptic and dendritic dynamics of the individual
neurons. For excitatory and inhibitory synapses respectively these
filters are expressed by the differential operators

Le =
1

Heκe

(
d2

dt 2
+ 2κe

d

dt
+ κ2

e

)
, (1)

Li =
1

Hiκi

(
d2

dt 2
+ 2κi

d

dt
+ κ2

i

)
, (2)

where the scalar parameters H e and H i determine the maximum
amplitude of the postsynaptic population response to excitatory
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A B

FIGURE 1 | Schematic connectivity of the Jansen–Rit model. (A) Basic
connectivity diagram showing the three neuronal populations, their excitatory
(arrows) and inhibitory (circle) connections, and inputs from outside the local
cortical region (u and p). (B) A block diagram then summarizes how this
translates directly to a mathematical model: linear filter boxes labeled he(t )

and hi(t ) model the mean response of excitatory and inhibitory synapse
populations respectively, including their postsynaptic dendritic filtering.
Sigmoid boxes (denoted S) represent conversion of mean summed soma
membrane potential to mean output firing rate. Connectivity constants γ1 to
γ4 model the number and strength of connections between populations.

and inhibitory inputs, respectively. The rate constants κe and κi

determine the time scale of these population responses. As the
synaptic filters are linear, synapses with different source or target
populations can be merged where synapses are assumed to have
the same aggregate properties. For example Jansen and Rit (1995)
consolidated their original model to just three second order equa-
tions, as it was implicitly assumed that excitatory and inhibitory
interneuron populations would always have identical states up to a
scaling constant. Following synaptodendritic filtering,fluctuations
in membrane potential sum in the cell soma and lead to changes
in the average population firing rate. The sigmoid function

S(v) =
2e0

1+ exp[ρ1(ρ2 − v)]
, (3)

describes how the mean firing rate of a neural population depends
on the mean soma membrane potential v, incorporating the dis-
persion of responses due to variability in the parameters and
underlying neuronal states (Marreiros et al., 2008). Parameters e0,
ρ2, and ρ1 determine the maximum firing rate, threshold potential,
and sensitivity, respectively.

We express the Jansen–Rit model as a set of four second order
differential equations, thus allowing both pyramidal and spiny
stellate populations separately to receive extrinsic input. We fol-
low the variable and parameter names of Moran et al. (2007). The
dynamical variables v1, v2, and v4 represent the positive contribu-
tions to population mean soma potentials by excitatory synapses
targeting spiny stellate, pyramidal, and inhibitory interneuron
populations, respectively. Variable v3 represents the negative con-
tribution to the mean soma potential of the pyramidal population
originating from inhibitory synapses. Thus the resulting mean
soma potential of the pyramidal population is v2− v3. This is
taken as the main output of the model (Jansen and Rit, 1995;
David et al., 2005) because the size and orientation of the api-
cal dendrites of pyramidal neurons mean that pyramidal activity

is most closely associated with EEG signals. These equations are
given by

Le v1 = γ1S(v2 − v3)+ 〈u〉 + σuξu(t ), (4)

Le v2 = γ2S(v1)+ 〈p〉 + σpξp(t ), (5)

Liv3 = γ4S(v4), (6)

Le v4 = γ3S(v2 − v3). (7)

Equation 4 describes excitatory synaptic input targeting the spiny
stellate population. Eqs 5 and 6 describe excitatory and inhibitory
synaptic input to the pyramidal population, respectively. Equation
7 describes excitatory synaptic input to the inhibitory interneu-
ron population. Parameters 〈u〉 and 〈p〉 are the mean per neuron
external input firing rates to the cortical region, targeting spiny
stellate, and pyramidal populations, respectively. Langevin white
noise terms ξu(t ) and ξp(t ) in the extrinsic input represent the
fluctuations in the input firing rates, with σu and σp denoting
their standard deviations. Scalar connectivity constants γ1 to γ4

represent at the population scale the number and strength of
connections between the three neural populations.

This system of equations is equivalent to a single eight-
dimensional stochastic first order differential system:

dv = f (v)dt + G dW (t ), (8)

where matrix elements of G determine the cross-correlation of
noise inputs to the pyramidal and spiny stellate populations. This
is the equation that we integrate numerically.

Table 1 lists the values of parameters used for all simulations in
this study; they are the standard parameter values introduced by
Jansen and Rit (1995).

Jansen and Rit (1995) themselves focused on numerical simula-
tions of this non-linear model. Through a survey of the simulated
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Table 1 | Jansen–Rit standard parameter values.

Parameter Value Description

He 3.25 mV Maximum amplitude of the excitatory

postsynaptic population response

H i 22.0 mV Maximum amplitude of the inhibitory

postsynaptic population response

κe 100 s−1 Rate constant for postsynaptic

population response to excitatory input

κi 50 s−1 Rate constant for postsynaptic

population response to inhibitory input

e0 2.5 s−1 Half of the maximum population mean

firing rate

ρ2 6.0 mV Population mean firing threshold

potential

ρ1 0.56 mV−1 Firing rate sigmoid function voltage

sensitivity parameter

γ1 135 Connectivity constant: pyramidal to

spiny stellate

γ2 108 Connectivity constant: spiny stellate to

pyramidal

γ3 33.75 Connectivity constant: pyramidal to

inhibitory interneurons

γ4 33.75 Connectivity constant: inhibitory

interneurons to pyramidal

behavior with physiologically realistic parameters, they observed a
variety of noise-driven rhythmic behaviors consistent with human
alpha and beta rhythms. Wendling et al. (2000) studied the emer-
gence of “spike-wave” oscillations resembling epileptic activity
when the ratio of excitation to inhibition was increased. Bifur-
cations in this model where subsequently examined by Grimbert
and Faugeras (2006) who treated the input p as the bifurcation
parameter in order to understand better the original simulation
results of Jansen and Rit (limit cycle beyond a Hopf bifurcation
causing alpha oscillations) and Wendling et al. (the emergence of
a large amplitude non-harmonic oscillator near a sniper bifur-
cation). More recently, Spiegler et al. (2010) performed a more
general bifurcation analysis that included time scale parameters
and analyzed the presence of qualitatively different oscillatory
regimes.

BIFURCATION PARAMETERS
In the original model (Jansen et al., 1993), both pyramidal and
excitatory interneuron populations were the targets of extrinsic
inputs, with the two inputs being always proportional (fully corre-
lated). In the model of Jansen and Rit (1995), all extrinsic input was
delivered to the pyramidal neurons only, with external stimulation
of the other population dropped.

David and Friston (2003) revisited the Jansen–Rit model, in
particular explicitly identifying the “excitatory interneuron” pop-
ulation of the original model with spiny stellate cells in layer IV of
the neocortex. Their motivation was to send extrinsic input to the
layer IV spiny stellate cells in the model rather than to the pyrami-
dal cells. This was arguably a more realistic model of connectivity
for input representing thalamocortical sensory afferents. However

the equations as published retained the pyramidal-only input of
the original Jansen–Rit model.

Moran et al. (2007), in the context of Dynamic Causal Modeling
(DCM, a framework for model selection and parameter estima-
tion), extended the Jansen–Rit model with several innovations,
including firing rate adaptation, recurrent inhibition, and a dif-
ferently shaped sigmoid function. In particular Moran et al. did
change the target of the extrinsic input to be the spiny stellate pop-
ulation, as foreshadowed by David and Friston (2003). We refer to
this model as the Moran–Friston model hereafter.

For the present study we minimally extend the Jansen–Rit
model, so that extrinsic input can be delivered either to the pyra-
midal population (as in Jansen and Rit, 1995), the spiny stellate
excitatory population (as in Moran et al., 2007) or more realisti-
cally a combination of the two. In this way, the system input can
be varied continuously from the Jansen–Rit design to the Moran–
Friston design or anywhere in between. In addition, for the case
of input to both populations, these two inputs can be chosen as
uncorrelated, fully correlated, or partially correlated in their fluc-
tuations. Hence we study the bifurcations of this model as input
is varied in the combined (u, p) plane. This subset of parameter
space includes a one-dimensional space explored by Jansen and Rit
containing a supercritical Hopf bifurcation studied by Grimbert
and Faugeras (2006) that is within the physiological range of para-
meters. We present the bifurcation analysis in Section “Bifurcation
diagram.”

NUMERICAL SIMULATION AND ANALYSIS
The model is a system of stochastic differential equations (SDEs)
with additive noise. Equation 8 is integrated numerically using
the Heun algorithm, which is applicable to SDEs in Stratonovich
form (Rümelin, 1982). This ensures that noise amplitude is scaled
in appropriate proportion to the square root of the integration
time step. We use an integration time step of 0.2 ms. The first
transient 5 s of each simulation is discarded from further analysis.

As reviewed in the introduction, the approach to linear insta-
bilities in systems of equations such as Eqs 4–7 is widely assumed
to cause changes in the autocorrelation length and/or a peak in
the power spectral density function (in the case of a Hopf bifurca-
tion). This is because it is often assumed that the linear treatment
of these systems – which predicts both an enhancement of spec-
tral peaks and a lengthening of the autocorrelation time – can be
extrapolated from the setting when the system is linearly stable to
when it is in the neighborhood of a bifurcation.

To estimate the normalized autocorrelation function of the
resulting time series we first normalize each time series to a
mean of 0 and standard deviation of 1, and then compute
the cross-correlation of the series with itself applying unbiased
normalization,

R̂xx,unbiased(m) =
1

N −m

N−m−1∑
n=0

xn+mxn (m ≥ 0) , (9)

where m is the lag expressed as number of samples (Orfanidis,
1996). In each case we compute autocorrelation at lag times from
0 to 1/4 of the total time series length for further analysis. Since
time series are generated in the vicinity of Hopf bifurcations with
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natural frequency about 11 Hz, the autocorrelation functions all
have a strong 11 Hz component. Because we are primarily inter-
ested in the decay of the amplitude of this autocorrelation over
a longer time scale, each simulation is repeated 16 times with
identical parameters to generate 16 sample paths each of dura-
tion 600 or 1,800 s. The autocorrelation function is calculated as
described above for each sample path separately. The decay is then
quantified by calculating the modulus of the Hilbert transform of
the normalized autocorrelation functions computed above. The
pointwise mean and standard deviation of this autocorrelation
amplitude across 16 sample paths are then plotted. Power spectra
are estimated using the Welch algorithm with Hamming window
and a segment length of 80,000 samples or 16 s.

The full MATLAB code implementing the model, integration,
and time series analyses is available from the authors on request.

RESULTS
BIFURCATION DIAGRAM
From the earlier bifurcation analysis of Grimbert and Faugeras
(2006) the model is known to have a supercritical Hopf bifurcation
when the pyramidal input p= 89.8 s−1 and the other parameters
are set to the values used by Jansen and Rit (1995). This assumed
no input to the excitatory (spiny stellate) population. We label this
bifurcation point H1; it has mean input firing rate 〈p〉= 89.8 s−1

to the pyramidal population and zero input to the spiny stellate
population (i.e., 〈u〉= 0, σu = 0). This maps directly back to the
original Jansen–Rit model with pyramidal-only input. Matching
the effective noise level used by Jansen and Rit (correcting a scaling
error in the original paper) is achieved by allowing p to fluctuate
with standard deviation σp = 0.5390 s−1.

To examine the difference between cases where input is pro-
vided in different ratios to the spiny stellate population and pyra-
midal population, we continue the bifurcation point H1 in the
(u, p) plane in parameter space, using the numerical continuation
package MATCONT (Dhooge et al., 2003).

Figure 2 shows the bifurcation diagram in the (u, p) plane.
This plane is a two-dimensional slice through the larger parame-
ter space of the model, so that a curve in this plane corresponds to
a surface in parameter space. The Hopf curve is almost horizon-
tal for u > 0, implying that the level of pyramidal cell stimulation
required to reach the supercritical Hopf bifurcation in the model
(p ∼ 75–90 s−1) is roughly independent of the level of spiny stel-
late cell stimulation for u & 0. For comparison with H1, we select
point H2 on this same surface of supercritical Hopf points, but
this time with greater mean input to the spiny stellate population
(〈u〉= 270 s−1) than to the pyramidal population (〈p〉= 73 s−1).

The magnitude of fluctuations
√

σ2
u + σ2

p in the input is kept the

same as at H1, with a standard deviation of σu = 0.5203 s−1 in the
spiny stellate input and σp = 0.1407 s−1 in the pyramidal input.

AUTOCORRELATION INDICATOR BEHAVES DIFFERENTLY AT H1 AND H2
For each of the bifurcation points we simulate the dynamics at four
locations in parameter space: the approach to the bifurcation from
the linearly stable side (two points), at the bifurcation point (one
point), and beyond the bifurcation (one point). In each case the
output pyramidal time series (v2− v3) is the focus of our analysis.

Each simulation is performed separately with parameter val-
ues fixed at these different values, rather than performing a sin-
gle dynamic simulation with sliding parameters. This approach
allows the time series analyzed at a fixed parameter value to be
approximately stationary (provided the total time simulated is
long enough) so that statistics for the process at that parameter
point can be estimated from a finite time series. Where vari-
ance is considered as an indicator of instability this approach also
avoids any spurious short-time increases in variance due to the
dynamically shifting range of the system in phase space, as distinct
from increased noise-driven variance at the new parameter values
(Kuehn, 2011).

To determine the effect of proximity to a bifurcation on the fluc-
tuation statistics, we analyze the approach and passage through
bifurcations H1 and H2. Figure 3 shows the results for bifurca-
tion H1. An exemplar pyramidal time series (Figure 3A) reveals a
fluctuating oscillatory system, whose power spectrum (Figure 3B)
peaks at the frequency of the Hopf instability, namely 11 Hz. The
series of panels in Figure 3C shows that when approaching and
passing point H1 (from left-to-right), the autocorrelation time
stays approximately constant.

For comparison, the corresponding analyses for bifurcation
H2 are shown in Figure 4. By eye, the fluctuation envelope of
the amplitude appears smoother. As is evident in Figure 4C, the
autocorrelation amplitude decays much more slowly as the system
approaches the bifurcation. At the bifurcation point H2 the auto-
correlation remains above 20% of its zero-lag value at a lag of 15 s.

The variance of the output pyramidal time series increases as
the bifurcation H1 is approached, with standard deviations of
0.4550, 0.5344, 0.5630, and 0.6110 mV at the four parameter points
respectively. Approaching H2 this also occurs, with standard devi-
ations of 0.1454, 0.2160, 0.2582, and 0.3449 mV respectively for
the output time series. It is notable that in the vicinity of point H2,
the standard deviation of the simulated pyramidal output time
series is between 1.8 and 3.1 times smaller than in the vicinity of
point H1, while autocorrelation times are roughly 7 times longer
than at H1.

As expected for a Hopf bifurcation in a stochastic system
the dynamics change gradually and continuously through the
bifurcation (Rowat and Greenwood, 2011). The amplitude of
oscillations increases when moving toward and beyond the bifur-
cation point as revealed by increased variance of the output time
series. Close to the bifurcation point this reflects weakening of the
stability of the (fixed point) attractor while beyond the bifurca-
tion point it reflects increasing size of the (limit cycle) attractor.
The increase in power at 11 Hz is visible in the power spectrum
(Figure 3B).

The comparison of Figures 3C and 4C shows that autocorrela-
tion is a useful and clearly visible indicator of linear instability in
the vicinity of point H2, but not for point H1. This is despite these
being points on the same surface of bifurcations with the same
variance of input fluctuations.

We conjecture that the key difference between H1 and H2 is the
orientation of the input fluctuations in phase space with respect
to the two-dimensional center manifold of the bifurcation, which
determines the specific directions in which linear stability is weak-
ening. When close to the equilibrium point, the center manifold
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FIGURE 2 | Bifurcation diagram in the (u, p) parameter plane showing
Hopf curve (thick, solid curve) and the location of the chosen Hopf
bifurcation points H1, H2, and H3 on this curve. A generalized Hopf
bifurcation (GH) marks the transition from subcritical Hopf points (the curve
below GH) to supercritical Hopf points (the curve continuing beyond GH).
Regions where p < 0 or u < 0 are non-physical. Below the Hopf curve (regions

I and II) a stable fixed point exists, which gradually loses linear stability as the
curve is approached. Above the Hopf curve (region III) this point has lost linear
stability and become a stable limit cycle. The dashed line is a curve of fold
bifurcation points. In region II a single stable fixed point exists. In region I the
system is bistable with a second stable fixed point also existing, at lower
excitation.
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FIGURE 3 | (A) Example section of simulated time series at the bifurcation
point H1. (B) Power spectrum at H1. (C) Autocorrelation amplitude at points in
parameter space approaching the bifurcation point H1 (<p>=74.8 s−1,

<p>=84.8 s−1), at the bifurcation point H1 (<p>=89.8 s−1) and beyond the
bifurcation point (<p>=94.8 s−1). The line indicates the mean over 16 trials
and the gray area indicates one standard deviation.
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FIGURE 4 | (A) Example section of simulated time series at the bifurcation
point H2. (B) Power spectrum at H2. (C) Autocorrelation amplitude at points in
parameter space approaching the bifurcation point H2 (<p>=58.0 s−1,

<p>=68.0 s−1), at the bifurcation point H2 (<p>=73.0 s−1) and beyond the
bifurcation point (<p>=78.0 s−1). The line indicates the mean over 16 trials
and the gray area indicates one standard deviation.

surface can be approximated by the center eigenspace of the bifur-
cation. Since the eigenvectors of the linearized system are far from
orthogonal, the relevant reference plane to determine the noise
component projected into the center eigenspace is the plane that is
perpendicular to the stable eigenspace. For H1 the resulting projec-
tion of the noise vector onto this reference plane is cosα= 0.0031.
For H2 the projection is cosα= 0.0008; i.e., the noise input has a
projection onto that plane that is four times larger in the case of
H1 than in the case of H2.

However, the comparison between points H1 and H2 does not
by itself give strong support for this hypothesis, because there are
several other factors that are significantly different between H1 and
H2. In particular H2 has 3.1 times the total input firing rate of H1,
so that on this basis the difference in autocorrelation could simply
be due to greater level of excitation for point H2. This motivates
the comparison constructed below.

AUTOCORRELATION DEPENDS ON ORIENTATION OF INPUT
FLUCTUATIONS
In order to separate the effect of different mean firing rates from
the effect of different noise orientation, we construct two new sce-
narios H3p and H3u, where the only difference between them is
the noise orientation; all other parameters are kept identical. We
choose point H3 on the same bifurcation line of supercritical Hopf
points, but with equal mean input firing rates to pyramidal and

spiny stellate populations (mean input firing rate per neuron of
〈u〉= 〈p〉= 80.35 s−1). We simulate two scenarios at point H3 to
test the conjecture, with both scenarios using the same values for
all model parameters, and in particular with both scenarios using
the same mean input firing rates, as illustrated in Figure 5.

We define the scenario H3p as the case where only the pyra-
midal input is allowed to fluctuate about its mean, while spiny
stellate input is held steady at its mean value, corresponding to the
parameters 〈p〉= 80.35 s−1, σp = 0.5390 s−1, 〈u〉= 80.35 s−1, and
σu = 0 s−1.

Scenario H3u is defined as the case where only the spiny
stellate input is allowed to fluctuate, while pyramidal input is
held steady, corresponding to the parameters 〈p〉= 80.35 s−1,
σp = 0 s−1, 〈u〉= 80.35 s−1, and σu = 0.5390 s−1.

By using these two constructed scenarios, all parameters in
the simulation are kept identical between scenarios H3p and H3u
except for the direction of the fluctuations of input in phase space,
which is rotated in phase space from the pyramidal direction to the
spiny stellate direction. Rotating the vector of fluctuations inde-
pendently from the vector of mean inputs is non-physiological.
The simulated results of the non-physiological scenarios H3p
and H3u are used to shed light on the reason for different
autocorrelation in the original realistic scenarios H1 and H2.

Comparable analyses of these two scenarios are presented in
Figures 6 and 7. The contrast between scenarios H3p and H3u
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A

B

FIGURE 5 | One second of sample external inputs u and p, (A) for scenario H3p and (B) for scenario H3u.

is clear in Figures 6C and 7C. When the fluctuations are in the
input to the pyramidal population (scenario H3p), the decay of
autocorrelation amplitude changes little as the bifurcation point
is approached. By contrast, when the fluctuations are in the
input to the spiny stellate population (scenario H3u) the indi-
cator of increased autocorrelation length is very prominent. A
large increase in autocorrelation heralds the transition to linear
instability in scenario H3u with significant autocorrelation at lags
of up to 450 s. This indicator is much less evident in scenario
H3p.

It is also instructive to view the autocorrelation amplitude with
log scaling of the delay axes. The results for the four scenarios (H1,
H2, H3p, H3u) we have thus far considered are shown in Figure 8.
Whereas the autocorrelation length stays almost invariant across
the bifurcation in scenario H1 (Figure 8A), a clear increase is seen
in scenario H2 (Figure 8B). Where scenario H3p shows a small,
but systematic lengthening (Figure 8C), a progression through the
same points in parameter space – but now with input fluctuations
aligned with the stable eigenspace – can again be seen to lead to a
dramatic increase (Figure 8D).

In both scenarios H3p and H3u the variance of the output
pyramidal time series increases as the bifurcation point H3 is
approached, with standard deviations of 0.4884, 0.4730, 0.5134,
and 0.5339 mV for H3p and 0.0188, 0.0295, 0.0873, and 0.3033 mV
for H3u. The standard deviation is starkly different between these
two scenarios, with standard deviation between 2 and 22 times
smaller in scenario H3u than in scenario H3p. Thus changing
the noise input direction results in both reduced variance and

increased autocorrelation length. Variance also increases more
rapidly in scenario H3u than H3p as the bifurcation is approached.

Relating this to the orientation of input noise, the contrast in
alignment is even greater between scenarios H3p and H3u than
in the comparison of H1 and H2. For H3p the projection of the
input noise onto the reference plane perpendicular to the stable
eigenspace is cosα= 0.003, i.e., noise input has a non-negligible
component perpendicular to the stable eigenspace of the bifurca-
tion near the equilibrium point, whereas for H3u the projection
is cosα= 0.00006, i.e., the projection of the noise input onto
the reference plane is 50 times smaller in the case of H3u than
H3p.

INPUT CORRELATION AND OUTPUT VARIABLE NOT IMPORTANT
The results presented above are calculated from the pyramidal
time series. Applying the same process to time series for the other
two populations in the model (spiny stellate and inhibitory) shows
that in each case, the results for autocorrelation decay and vari-
ance show the same behavior as the pyramidal time series. This is
important, as it rules out the possibility that the autocorrelation
difference results from different amounts of filtering between the
noise input and the measured output.

In the case of point H2, both pyramidal input and spiny stellate
input have fluctuations. To check whether correlations between
the two input fluctuations are important to the results we exam-
ine the two extreme cases of independent and perfectly correlated
inputs. Cross-correlation of input fluctuations does not affect the
results: autocorrelation amplitude of the pyramidal output decays
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Time series for scenario H3p

FIGURE 6 | (A) Example section of simulated time series for scenario H3p.
(B) Power spectrum at H3. (C) Autocorrelation amplitude at points in
parameter space approaching the bifurcation point H3 (<p>=65.3 s−1,

<p>=75.3 s−1) at the bifurcation point H3 (<p>=80.3 s−1) and beyond the
bifurcation point (<p>=85.3 s−1). The line indicates the mean over 16 trials
and the gray area indicates one standard deviation.

over a similar time scale whether the inputs to the two populations
are independent or perfectly correlated.

SCALING PROPERTIES OF OUTPUT FLUCTUATIONS
As reviewed earlier, long-tailed fluctuation distributions have been
observed in the amplitude fluctuations of alpha (Freyer et al., 2009)
and beta oscillations in scalp EEG data (Linkenkaer-Hansen et al.,
2004). Therefore we study the statistical properties of fluctuations
at and near the bifurcation points in scenarios H3u and H3p.
In particular, we characterize fluctuations by the distributions of
sizes and durations of excursions in the amplitude envelope of
the detrended pyramidal time series. More specifically, we analyze
the squared Hilbert amplitude, which is a measure of instanta-
neous power. We extract excursions above a threshold (sometimes
termed “avalanches” in the literature) where each excursion is
delineated by the time points at which the instantaneous power
crosses the threshold from below and the next crossing from above.
Fluctuation duration is thus the length of the time interval for
which the power is above threshold, and we define fluctuation size
to be the time integral of the instantaneous power over this interval
(i.e., the area under the curve, a measure of energy in the fluctu-
ation). We choose the threshold for each time series such that it
approximately maximizes the number of identified fluctuations
and falls in a regime where the fluctuation statistics are relatively
insensitive to small changes in this value.

We analyze the fluctuation size and duration distributions fol-
lowing the methods of Clauset et al. (2009). For each set of
fluctuation statistics we calculate the inverse cumulative distri-
bution function and fit candidate distributions to the tail using
the method of maximum likelihood: power law (the Pareto dis-
tribution), power law with exponential cutoff, lognormal, and
exponential. Here the tail is all the data above a lower bound that
we identify as the value that minimizes the Kolmogorov–Smirnov
goodness-of-fit statistic between the power law model and the data
(Clauset et al., 2009). This method of determining the range of the
fit from the data strikes a balance between fitting too wide a range
(i.e., outside the power law regime) and too narrow a range (i.e.,
throwing away data unnecessarily). We use the same fitting range
for all four candidate distributions. We estimate a p-value for the
fitted power law by comparing the data to 1,000 synthetic data
sets drawn from a true power law, which accounts for whether the
deviation between the data and the fitted power law is within the
range expected for finite sampling of a true power law. The p-value
is taken to be the fraction of synthetic data sets that deviate from
the power law by at least as much as the data, and p > 0.1 indicates
plausibility of the power law hypothesis (Clauset et al., 2009). We
compare the fitted power law with alternative distributions using
likelihood ratio tests. Significant deviation of the likelihood ratio
from zero is tested using Vuong’s methods (Vuong, 1989). For the
nested hypothesis of power law versus power law with cutoff (the
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Time series for scenario H3u

FIGURE 7 | (A) Example section of simulated time series for scenario H3u.
Note the y -axis scale is much smaller than that of Figure 6A, reflecting
much smaller output variance in this case. (B) Power spectrum at H3. (C)
Autocorrelation amplitude at points in parameter space approaching the

bifurcation point H3 (<p>=65.3 s−1, <p>=75.3 s−1), at the bifurcation point
H3 (<p>=80.3 s−1) and beyond the bifurcation point (<p>=85.3 s−1). The
line indicates the mean over 16 trials and the gray area indicates one
standard deviation.

latter family includes the former), the null hypothesis is that the
power law is best-fitting distribution. For all other tests, the null
hypothesis is that both distributions are equally far from the true
distribution.

Figure 9 shows the fluctuation distributions for H3u. The
empirical distributions for both duration (Figure 9A) and area
(Figure 9B) exhibit a scaling regime over approximately four
orders of magnitude. The power law fits for duration and area
have exponents 1.56 and 1.51, and p-values p= 0.27 and p= 0.72,
respectively, and are thus consistent with the hypothesis that the
true distribution is a power law. The fitted exponents depend
weakly on the threshold value but the main finding of a broad
scaling regime is unchanged. The lognormal and power law with
exponential cutoff are also consistent with the data: the likeli-
hood ratio tests do not distinguish between the lognormal and
power law fits (duration: p= 0.15; area: p= 0.26), but favor the
power law with exponential cutoff over both power law (duration:
p= 0.016; area: p= 0.047) and lognormal (duration: p= 0.003;
area: p= 0.004). The pure exponential distribution is strongly
ruled out in all cases (p� 0.001) and so is not shown.

Approach to this bifurcation, shown in Figure 10, reiterates the
autocorrelation results of Section “Autocorrelation Depends on
Orientation of Input Fluctuations.” Near H3u (Figure 10A), the
long scaling regime of Figure 9A (black) is significantly diminished

away from the bifurcation (red), with few fluctuations having
durations >10 s. Here, the pure power law is ruled out (p < 0.001),
and the power law with exponential cutoff is strongly favored
over all the alternatives tested. For comparison, Figure 9B shows
fluctuations at the same bifurcation when noise enters almost
perpendicular to the center eigenspace (scenario H3p). At the
bifurcation (black), there is no clear scaling regime, and the distri-
bution is essentially unchanged by moving to a more stable point
in parameter space (red). The power law fit is ruled out for both
points (p < 0.001), and again the power law with cutoff is strongly
favored. Thus, as in the autocorrelation cases (Figures 7C and
8C), the fluctuation statistics clearly herald the approach to the
bifurcation for H3u but only negligibly for H3p.

DISCUSSION
The relevance of these results to physiology is twofold. Firstly,
we have demonstrated a fundamental limitation in the use of
autocorrelation as an indicator of the loss of linear stability, a
limitation which will apply when attempting to detect bifurca-
tions from actual human EEG, EMG, and MEG time series. Sec-
ondly, the demonstration of both long autocorrelation times and
scale-free temporal fluctuations in a simple, low-dimensional sto-
chastic model informs the debate about whether the brain exhibits
self-organized criticality, because it shows that these features can
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A B

C D

FIGURE 8 | Autocorrelation amplitude in log(delay)-linear(correlation) coordinates. Each panel shows step immediately before (blue), at (green), and
beyond (orange) Hopf bifurcation. (A) Scenario H1, (B) H2, (C) H3p, (D) H3u.

also arise from mechanisms other than a multi-scale critical phase
transition.

Close to the supercritical Hopf bifurcation in the Jansen–Rit
model, we have shown that when lengthened autocorrelation times
and scale-free fluctuations manifest in any one cell population as
indicators of approach to the bifurcation, then they are indeed
detectable in the pyramidal time series that is most closely asso-
ciated with EEG signals. The standard parameters of the model
provide sufficiently large coupling between the three neural pop-
ulations that lengthened autocorrelation is evident in all three
populations when it is present in any of them.

When considering long time autocorrelation and scale-free
fluctuations that are present in human EEG time series this sug-
gests that in addition to the possibility that these could arise in
the brain at the point of phase transition in a complex, multi-scale
system (Linkenkaer-Hansen et al., 2004; Stam and de Bruin, 2004),
there may also be a role for low-dimensional stochastic dynamics
at the population scale in generating these indicators.

More importantly, we have shown that even in a very simplis-
tic cortical model, these indicators can already be subtle in their
dependency on neuronal inputs. Longer autocorrelation times are

not guaranteed to be evident in the output just because there is
a bifurcation where linear stability is lost. In particular we have
shown that a change of the orientation in phase space of small
fluctuations in the input can be sufficient to enhance or almost
completely remove this indicator.

Jansen and Rit (1995) suggested that input to excitatory
interneurons could be removed from the model, as input to the
pyramidal population from coupled columns was expected to have
the same effect. Our results show that when fluctuations in the
input are taken into account, the statistical properties of the model
output are sensitive to the choice of which neural population
receives the extrinsic input.

The Jansen–Rit model is representative of a broad class of
models that mathematically can be expressed as a composition
of sigmoid functions and second order linear filters. It is worth
noting that neural field models (such as Jirsa and Haken, 1996;
Robinson et al., 1997), when restricted to spatially uniform solu-
tions, can also be expressed in this mathematical form, with an
additional critically damped second order linear filter capturing
the time characteristics of local axonal propagation with a pop-
ulation spread of sources and axon parameters (Robinson et al.,
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FIGURE 9 | Upper cumulative distributions of fluctuation statistics at
the bifurcation point H3u, using squared Hilbert amplitude thresholded
at 0.008 mV2, with power law (red), power law with exponential cutoff

(green), and lognormal (blue) fits plotted for the fitted range of the tail.
(A) Fluctuation duration. (B) Fluctuation size as given by area under the
curve.
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FIGURE 10 | Comparison of fluctuation duration distributions between
points approaching (p=65.3 s−1) and at the bifurcation point
(p=80.3 s−1) for the two noise input directions. (A) Point H3u (black,

threshold=0.008 mV2) and nearby more stable point (red,
threshold=0.0002 mV2). (B) Point H3p (black, threshold=0.4 mV2) and
nearby more stable point (red, threshold=0.18 mV2).

1997). There are no particularities of the current model that sug-
gest that the phenomena which we describe will be limited to
this setting. The present results regarding fluctuation orientation
hence speak broadly to the commonly employed neural mass and
neural field models of large-scale neuronal activity.

OPPOSITE EFFECT ON AUTOCORRELATION AND VARIANCE
Autocorrelation and variance of the output signal have been
suggested as generic indicators of the approach to local bifur-
cation, as standard linear analysis shows they are both expected
to increase as the bifurcation is approached and the real part of

bifurcating eigenvalues approaches zero. We also observed that
changing the orientation of input fluctuations can result in auto-
correlation increasing at the same time as variance is decreased.
Insight into these phenomena can be gained by considering the
behavior of a simple low-dimensional linear stochastic system.
In the one-dimensional linear case of an Ornstein–Uhlenbeck
process, dx =−axdt + bdW, the (normalized) autocorrelation is
given by exp(−aτ) and variance by 1/2 b2/a, so both increase
as the size of the eigenvalue a approaches zero. In particular,
variance increases linearly with the variance of noise input b2 (Gar-
diner, 2010). The same is true for a linearized two-dimensional
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system near a Hopf bifurcation (Steyn-Ross et al., 2006). If we
naively assume that aligning input noise with the center eigen-
space increases the amount of noise affecting the slow dynamical
system of the center manifold, we would expect variance to be
greater when the angle with the center eigenspace plane was
smaller, which was not the case. From consideration of the nor-
mal form transformation (Roberts, 2008) it is rather the plane
perpendicular to the stable eigenspace that should be relevant
in determining the magnitude of noise driving the slow dynam-
ics. Because the eigenvectors of the linearized Jansen–Rit system
are far from orthogonal, that reference plane is almost normal
to the center eigenspace plane, resulting in the observed rever-
sal of the expected relationship between noise orientation and
variance.

It may be possible to study these bifurcation indicators more
specifically in a normal form model by considering a full center
manifold reduction. Close to the bifurcation non-linear terms can
result in multiplicative noise in the slow dynamical system of the
center manifold (Roberts, 2008). These occur in addition to the
simpler additive noise that results directly from linear transforma-
tion of the input noise terms but so far we have yet to calculate the
magnitude or importance of these multiplicative noise terms in
the present system. Furthermore, any local analysis of the behav-
ior close to the equilibrium point is valid only for the case of
small noise, so that the state of the system remains local to the
equilibrium point. That is not necessarily the case for this sys-
tem, as suggested by larger output standard deviation near the
bifurcation seen in the cases of H1 and H3p, which is compara-
ble to the amplitude of the subsequent limit cycles. This implies
that the system is exploring a wider region of phase space com-
pared to the cases with high autocorrelation (H2 and H3u). Thus
the structure of flow in the phase space further from the equilib-
rium point may be directly responsible for the quickly decaying
autocorrelation in those cases. In particular if the center mani-
fold curves away from the center eigenspace, then at a sufficient
distance from the equilibrium point the directions of noise input
which are “well aligned” and “poorly aligned” with the manifold
may be reversed.

POWER LAW SCALING OF OUTPUT FLUCTUATIONS
Analyzing the distributions of fluctuation sizes and durations, we
observe the presence of a long power law scaling regime that
extends over four orders of magnitude with a rapid truncation
at the far right hand tail at the bifurcation when input fluctua-
tions are normal to the reference plane. This power law scaling is
not observed when input fluctuations have a significant projection
onto the reference plane. Further away from the bifurcation, the
power law regime extends for less than one order of magnitude so
that the lengthy power law tail provides a signature of proximity
to the bifurcation in that scenario.

A range of simple dynamical mechanisms are known to permit
production of scale-free fluctuation structure of this kind. A relax-
ation process with a fractional operator formally yields a power law
(Pareto) probability distribution of fluctuation durations (Sokolov
and Klafter, 2005). Multiplicative noise (which arises when reduc-
ing oscillation dynamics of the model to two dimensions) can
also in specific cases result in power law probability distributions

(Anteneodo and Riera, 2005). However, the cause of the power law
scaling of the distributions of fluctuations in our system is not yet
determined.

FUTURE WORK
This study considered autocorrelation in the output of a single
Jansen–Rit model region, representing a small area of cortex of
the order of 2–3 mm2. For the question of potential detectabil-
ity in EEG it remains to examine the effect on autocorrelation
of combining the output of a large number of cortical regions,
whose oscillations may be synchronized to a greater or lesser degree
and where the output measurement function relating EEG to the
combination of sources plays an important role.

Within the Jansen–Rit model we also observed indicators close
to other bifurcation types, including switching between attractors
in a bistable region near a cusp bifurcation and “flickering” or
intermittent switching away from a stable fixed point in a mono-
stable region near a sniper bifurcation, which are not explored
further in this paper. Therefore it remains to examine the sensitiv-
ity of these and other indicators, such as mean switching times as
bifurcations are approached, to noise orientation.

It is hoped that normal form analyses near the bifurcation will
shed some light on the mechanism by which the input noise affects
autocorrelation. A first step will be to examine a simpler normal
form system displaying the same behavior, where exact control
over the shape of the center manifold can be afforded, initially tar-
geting the limiting case of small fluctuations. Such an analysis will
serve to separate the generic local effects of the Hopf bifurcation
from global behavior due to excursion of the state further from
the equilibrium point.

Examination of a normal form system will also be key to
determining the reason for the power law scaling of fluctuation
statistics. The results presented in this paper show that some
of the indicators of instability reported in human EEG also
arise in the output of a simple neural mass model near linear
instability.

While similar indicators can also emerge from a critical phase
transition in a complex, multi-scale system, we have shown in
the present study that some of the same indicators can arise
in a very different way, from the low-dimensional stochastic
dynamics at a single scale: the mesoscopic scale of interacting
populations. As the field advances, it will become increasingly
important to move away from a single umbrella notion of “crit-
icality” in brain dynamics toward defining a number of exact,
and possibly distinct, mechanisms responsible for correlations and
scale-free fluctuations in the time and/or spatial domains. It is
certainly possible at this stage that multiple mechanisms play a
role.
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APPENDIX

FIGURE A1 | Power spectrum at H1, using a larger window size of 150 s (750,000 samples) to show lower frequencies from 6.7×10 −3 Hz.

FIGURE A2 | Power spectrum at H2, using a larger window size of 150 s (750,000 samples) to show lower frequencies from 6.7×10−3 Hz.
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FIGURE A3 | Power spectrum for scenario H3p, using a larger window size of 450 s (2,250,000 samples) to show lower frequencies from 2.2×10−3 Hz.

FIGURE A4 | Power spectrum for scenario H3u, using a larger window size of 450 s (2,250,000 samples) to show lower frequencies from 2.2×10−3 Hz.
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Much effort has gone into elucidating control of the body by the brain, less so the role of the
body in controlling the brain. This essay develops the idea that the brain does a great deal
of work in the service of behavior that is controlled by the body, a blue-collar role compared
to the white-collar control exercised by the body. The argument that supports a blue-collar
role for the brain is also consistent with recent discoveries clarifying the white-collar role of
synergies across the body’s tensegrity structure, and the evidence of critical phenomena
in brain and behavior.
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INTRODUCTION
Lloyd Olsen shared fame in the 1940s with Mike the celebrity
headless chicken. Mike’s head was lost when he was five and a
half months old while being prepared by Lloyd to become chicken
dinner. Mike lived on without a head for 18 months, fed through
an eyedropper and growing from two pounds, at his beheading,
to eight pounds at his death. In the mean time he traveled widely
performing in New York City, Los Angeles, Atlantic City, and else-
where. Our interest in Mike is the demonstrated coordination
among the processes of his body, despite lacking a head. What was
left of Mike’s brain – he probably still had a brainstem – would have
marked a handkerchief somewhat less than a healthy sneeze. But
he nonetheless retained the coordination among peripheral ner-
vous system, organ systems, facia, muscles, and tendons, producing
locomotion apparently indistinguishable from intact locomotion,
even walking around and “pecking” right after losing his head.

To us Mike demonstrates that high-level control of the body has
sources in addition to the central nervous system. An environment
of constant red light, in a different demonstration, created feck-
less chickens. The steady-state environment obviated the chickens’
connection to the daily cycles of sunrise and sunset, and the pace
markers or zeitgebers of the body’s circadian rhythm. Conse-
quently the chickens suffered a breakdown of healthy coordination
among the rhythms of physiology, including heart rate and cycles
of deep body temperature, and the coupling of physiology with
locomotor activities (Winget et al., 1968). Apparently, chicken
physiology and behavior include necessary sources of control in
the daily cycles of a circadian environment.

A sea squirt starts life as a rather simple tadpole-like creature,
possessing a simple nervous system, and capable of locomotion
and light detection. However, finding a surface upon which it can
affix itself, the sea squirt will do so, and promptly ingest its ner-
vous system (Birkeland et al., 1981). This sea squirt example, like
the chicken examples, speaks again to sources of control of the

body and behavior in addition to and distinct from the central
nervous system. Deprivation of sleep cycles or nutrients illustrates
this idea in human behavior. These deprivations destabilize human
emotional control, increasing emotional lability. The effect is suffi-
ciently reliable to have become a mainstay of the weekend initiation
rituals of cults and extreme self-help programs. Initiates are kept
awake in a common room without food for 24 h, which opens
them up emotionally, becoming more receptive to the program
being sold.

These examples all bear relationships to general theories of
control, whether that of cybernetics or non-linear dynamics of
self-organization (cf. Simon, 1973; Haken, 1977; Newell, 1990;
Schiepek and Haken, 2006, respectively). The feckless chickens
probably illustrate this relationship best. The faster changing
processes of physiology are constrained in their coordination by
the more slowly changing circadian rhythm – generally speaking,
more slowly changing dynamics constrain faster dynamics, not
vice versa. In self-organization, a key distinction between con-
trol and order parameters versus state dynamics is based on how
fast one changes with respect to the other. Order parameters are
defined to be particular configurations of state dynamics, which
means they must change more slowly than state dynamics.

Thus the pacing of the phenomena of the body and brain, with
respect to behavior, can tell us which processes constrain which in
enacting behavior. Nonetheless, the idea that the body or behavior
might control the brain, when first heard, may sound outrageous,
depending on what you already believe about control, the brain,
and behavior. The most widely held conventional belief is that the
brain controls behavior, not the other way around. Yet, when com-
pared with the lightening fast changes in the brain, the typically
more slowly changing body suggests the exact opposite broad-
stroke outline of control. The brain appears to take direction from
the body, just as old school blue-collar workers took direction from
white-collar counterparts in the front office.
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This issue of Frontiers of Fractal Physiology is about critical
phenomena of the brain. A close look at the critical phenome-
non of fractal time suggests that the brain serves the blue-collar
role in broad circumstances of on-going behavior. To understand
this claim, we must first make explicit the links among related
concepts of fractal physiology, criticality, non-linear dynamics,
tensegrity, synergy, and control. The integrated ideas are that con-
trol of behavior originates in constraints on behavior changing
on different timescales, and that constraints simultaneously sus-
tain and are sustained by the emergent phenomena in which they
participate.

HUMAN PERFORMANCE DATA
To begin we require an understanding of fractal time. Fractal time
is a performance phenomenon, so in this section we re-examine
the basic idea of measurement of human performance together
with the idea of critical states separating qualitatively different
modes of behavior. Following that we describe how fractal time
appears in brains and behaviors and how the body has been pro-
posed to be an excitable medium of self-organizing synergies. It
is the synergies of the body that also constrain the brain during
behavior. Finally, we summarize conclusions that appear to us to
be the logical consequences of a blue-collar perspective on the
brain.

Cognitive scientists may tell you that they study human perfor-
mance of specific cognitive functions such as memory, language,
or motor control. In actual practice we study the measurements
of a person performing a “memory” task, a “language” task, or a
“motor” task. Yet all task performances are motor performances
and language is ubiquitous in the instructions to participants,
which must tax memory to be remembered when performing
the somewhat arbitrary laboratory task. So most of the time, and
maybe all of the time, the scientists who study cognitive activities
study the coordination over time among memory, language, and
motor activities.

In particular, scientists are concerned with the reliable changes
that they observe in the measurements that they take, which is
true of cognitive scientists as well. The measurements that we
take in cognitive science range from millisecond-precise durations
of event times in human activities to nominal measurements that
tally which category an observed behavior is assumed to represent.
In all cases it is patterns of change or variation in the measured
values that are scrutinized and interpreted to motivate interesting
conclusions and to test the hypotheses that stem from scientific
theories.

Early in the twentieth century scientists derived powerful sta-
tistical tools with which to carve out the patterns in data, based
on idealized assumptions about the central tendencies of data and
uniform dispersion of data values around a central tendency – as
though an average behavior of a system could be found reliably at
the center of the noisily dispersed measured values, falling equally
on all sides, though less densely, outward from the center. With
hindsight as a crystal ball, the twentieth century the picture of
data was neatly generalized to become chaos theory or non-linear
dynamical systems theory. Linear patterns of change in data, in
which related changes were also proportional changes, one to
another, were neatly absorbed as special cases of broader categories

of non-linear disproportional change and discontinuous
change.

In bifurcation theory, a tiny external change can break a bal-
anced symmetry of possible outcomes, resulting in a qualitative
change called a bifurcation. Bifurcation theory concerns the rela-
tion between locally continuous or incremental changes in control
parameters and the abrupt fast qualitative restructuring that they
may provoke. The tipping point of a bifurcation is a critical point
and the behavior of systems near critical points is called critical-
ity. The empirical foci of this essay are the observed scale-free
behaviors of body and brain, predicted to occur near the critical
bifurcation points of complex systems.

SCALE-FREE BEHAVIOR OF THE BRAIN AND THE BODY
Multicellular living things comprise nested structures. The toes
and fingers at the small-scale periphery of the human skeleton are
composed of small toe and finger bones coupled by small artic-
ulating joints. Toes and fingers are nested within the next scale
of rigid bones of arms and legs that are coupled by larger articu-
lating joints. Arms and legs in turn sprout from the trunk of the
human body and are connected to the trunk by rotating joints
at the hips and shoulders. Similarly, viewing a tree we can see
that leaves are nested within the structure of small branches that
are nested, in turn, within the structure of larger and yet larger
branches that culminate in its largest branches, sprouting from
the tree trunk.

The anatomy of blood vessels throughout the body, the detailed
anatomy of a kidney, and the airways of a lung all comprise nested
tree-structures across multiple scales – an arrangement called frac-
tal structure that is studied using the mathematical tools of fractal
geometry. The scaling relations that define the spatial organization
of living things indicate their fractal composition. In a scaling rela-
tion, the size of a structure is inversely proportional to how often
structures of that same size recur. For example, within limits, the
diameter of each blood vessel is inversely proportional to the total
number of blood vessels of that same diameter that will be found
in the body (West, 2006).

The structure of the body provides specific physical limits on
possible behavior. Scaling relations seen in the body are accom-
panied by scaling relations in the temporal unfolding of behav-
ior. However, these constraints are not unidirectional. Physical
structure and temporal behavior are mutually dependent. Typi-
cal physiological and neural development in young children (e.g.,
Hausdorff et al., 1999; Thelen et al., 2001) and change due to
neurodegenerative disorders (e.g., Schmit et al., 2006), as well as
musculature change in adults (e.g., Schmit et al., 2005), all shape
the temporal structure of behavior. Likewise, behavior shapes
both small-scale neural structure (e.g., Maguire et al., 2000) and
larger scale muscular and cardiovascular structure, with exercise
for instance.

Event times of both human physiology and human behavior
compose temporal scaling relations. In the scaling relations of
event times, the magnitude of changes in the duration of event
times is inversely proportional to how often a change of that mag-
nitude recurs. Figure 1 portrays a physiological data series of brain
activity to illustrate a scaling relation of fractal time. Across the
top of Figure 1 we present raw electroencephalogram (EEG) data

Frontiers in Physiology | Fractal Physiology June 2012 | Volume 3 | Article 207 | 115

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Van Orden et al. Criticality and control

FIGURE 1 |The ordered series of a single EEG-electrode record, sampled

at 500 Hz (top) and the illustration of a spectral analysis of this record

(bottom, right). Specific frequencies and magnitudes of change (bottom, left)
are used to approximate the rough graph of the EEG data (top), and the

outcome is the spectral portrait (lower right) on log–log axes. The spectral
slope −α = −1.08 is close to idealized 1/f noise (−α = −1.00). The Y-axes in the
illustrated sine waves have been adjusted to make smaller amplitude sine
waves visible.

from a volunteer, collected from an electrode on his scalp while he
performed the task of repeatedly estimating a 1 s time interval.

The bottom, left side of Figure 1 portrays a subset of the peri-
odic sine waves used to simulate the aperiodic EEG signal. Arrows
extend from each sine wave to its paired coordinate point in a
power spectral graph, appearing below the raw EEG data. The
amplitude and frequency of each sine wave become the two coordi-
nates of a single point in the power spectral graph. The amplitude
of the sine wave (squared) corresponds to the power or magnitude
of changes in the data values that the sine wave simulates. The fre-
quency of the sine wave estimates how often the changes of that
magnitude recur.

Frequency of change and magnitude of change are the coor-
dinate X- and Y-axes of the power spectral graph (after logarith-
mic transformations). Thus the power spectral graph presents a
relation between the magnitude, or power, of the changes and
the corresponding frequency of changes of that magnitude. The
regression line, also portrayed in Figure 1, summarizes this rela-
tionship. The slope of the line in Figure 1 indicates scale-free
behavior because power is proportional to frequency. Data like

these are called scale-free because the data pattern will look simi-
lar whether the vantage point of the analysis zooms in, to a finer
scale, or zooms out, to a coarser scale.

The scale-free pattern of the data in Figure 1 is further illus-
trated in Figure 2 by repeatedly zooming in to examine the middle
half of the time-series of the EEG data. Each tighter frame on the
EEG data reveals another self-similar pattern in the variation. This
self-similar pattern is the predominant pattern of variation in EEG
data and begs to be explained with a high priority. An explanation
may begin with the apparent fact of the fractal pattern, that the
same pattern is observed whether the focus is one half of the origi-
nal data, one fourth of the original data, one eighth of the original
data, and so on.

Another fact begging for explanation is that, similar to the
brain data, human performance data reveal a scale-free pattern
(cf. Gilden, 2001), although it is possible to manipulate both pat-
terns, to become more like white noise or brown noise (Van Orden
et al., 2011; van Rooij and Van Orden, 2011). The performance
data of the same volunteer, whose brain data appear in Figures 1
and 2, are portrayed in Figure 3. Each Y-value of a data point in
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FIGURE 2 | Ordered series of the single EEG-electrode recording from

Figure 1 (top, left) and the resulting spectral plot (right) on log–log axes.

The top panel includes 16 min of continuous EEG recordings. All other panels
are subsets of the original data series. The first and last quarters of each data

series are both deleted in each iteration, yielding eventually a data series that
ran for 2 min (bottom). The scaling relation remains very similar for each
nested series, close to idealized 1/f noise, and demonstrating the statistical
self-similarity of the data series.

the raw data series of Figure 3 is the estimate produced by the
volunteer of the duration of 1 s – the volunteer pressed a key to
mark the time of each second’s passing. The raw data are por-
trayed across the top of Figure 3. Each datum is portrayed in the
order in which it was collected; the data value from the first esti-
mated event time is leftmost on the X-axis of the raw data and
the data value of the last estimated event time is rightmost on the
X-axis.

A subset of the sine waves that were used to simulate the raw
behavioral data series is portrayed on the left side of Figure 3. Each
sine wave yielded two coordinates defining a point on the power
spectral graph, again below the data series graph. Arrows connect
each sine wave to its point coordinates. The amplitude of each
sine wave (squared) estimates the size of changes in data values,
and the frequency of the sine wave estimates how often changes
of that size recur. The logarithms of frequency and size of change

(power) are again the respective coordinate X- and Y-axes of the
power spectral plot, and the summary regression line again has
a slope near minus 1, which translates into a scaling exponent a
close to positive 1.

Repeatedly measured data values, whether from brain activity
or behavior, are generally scale-free with exponents a ∼ 1, consis-
tent with our examples (for brain see Buzsáki, 2006; for behavior
see Newell and Slifkin, 1998; Gilden, 2001, 2009; Riley and Turvey,
2002). This fact, plus the idea of intuitive brain-to-body control,
has led to speculation that the scale-free behavior of the brain
causes the scale-free variation in behavior, in whole or in part
(Raichle and Gusnard, 2005). The speculation is likely false how-
ever because the priority of control, as we mentioned already
rests on relatively slowly changing constraints and the scale-
free behavior of the body includes several orders-of-magnitude
slower changes than the co-occurring brain activity. However, it
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FIGURE 3 |The ordered trial-series of 1000 intervals between the button

presses defining time estimates of 1 s (top) and an illustration of a

spectral analysis of this time-series (bottom, right). Specific frequencies
and magnitudes of change (lower left) are used to approximate the rough

graph of the behavioral button-press data (top), and the outcome of the
spectral analysis (lower right) on log–log axes. The spectral slope −α = −0.99
is close to idealized 1/f noise (−α = −1.00). The Y-axes in the illustrated sine
waves have been adjusted to make smaller amplitude sine waves visible.

is precisely these fast time scales of brain activity that have been
emphasized in the control of behavior. For control to flow this way,
from faster to slower time scales, control would require an extra
source of influence, in addition to brain dynamics, to amplify the
activity of the brain in such a way that it could affect the dynamics
of behavior.

Brain activity in the EEG record displays scale-free properties.
This means at least two things: first, the magnitude of fluctuations
of fast time scales in nervous activity is not sufficient to single-
handedly account for behavioral control. Second, the faster time
scales in the brain are constrained by its slower time scales (i.e.,
long-range traveling waves and neuroplasticity) as well as by the
slower time scales on which behavior unfolds. Since the dynamics
of brain and behavior both display scaling over a certain temporal
range, this might indicate they are measures of the same process
at different granularities. Although there is a relevant distinction
between behavior and brain activity insofar as our measurement
tools allow us to sample their changes at different rates, the issue
of a fundamental distinction between “behavior” and “brain activ-
ity” is less important than the point that slower changes constrain
faster changes.

We created an idealized illustration of how the range of sale-
free behavior observed across the time scales of behavior and brain
might look together on the same graph, using the duration of the
sine wave periods that would suffice to simulate the time scales of
variation in repeated measurements of behavior and brain. The
idealization appears in Figure 4. The behavioral data fill out the
slower region of low-frequency high-power change on the log-
arithmic X- and Y-axes; the longest data set, to our knowledge,
coming from a study lasting over a year (Delignieres et al., 2004).
The powerful amplitudes of change in the behavioral data are
several orders-of-magnitude larger than those of the brain data.
The low amplitude changes of the brain are thus too weak and
change too fast to be the causes of the much slower and more
strongly varying changes of the body in behavior. Perhaps then
the activities of the body somehow “cause” those of the brain.

PRESENCE OF MIND
Low amplitude changes of the brain are too weak and change too
fast to be causes of the much slower and much more strongly
varying changes in the body. This claim might sound odd when
adopting an overly exclusive “brain controls the body” way of
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FIGURE 4 |Time scales of behavior and brain were estimated from

the time scales implicated in sine wave simulations of variation

across repeated measurements (as in Figure 4). Landmarks of
durations (day, week, etc.) or brain activity (Alpha, Gamma) are placed
near their values in log10(Sec). This figure also includes the span of
brain activity observed in the BOLD signal of brain metabolism used in
fMRI studies, all to give context to the contrast between the span of

time scales observed of behavior and the span of time scales observed
of the brain (for reviews see Gilden, 2001; Buzsáki, 2006; Van Orden
et al., 2011; van Rooij and Van Orden, 2011). The question mark to the
right of the behavioral span symbolizes the fact that no upper bound
short of death has yet been discovered in longitudinal studies
estimating the presence of scaling relations in the variation across
measurements of behavior.

thinking. But it is not odd at all from an engineering perspective.
Some engineered systems produce scaling relations in their behav-
ior and the scaling relation characterizes a kind of marriage among
different functions of “memory” and “context.” The consequences
concern how engineered processes on very different timescales
constrain each other in their interaction.

Very slowly changing constraints could appear to be static if
seen from the perspective of a very rapidly changing process. But
the slow and fast changes are of course concurrent. On the one
hand, concurrence allows very slowly changing constraints to serve
a kind of memory function for more rapidly changing constraints.
Slowly changing constraints remind a rapidly changing process
of the constraints coming from the slow timescale, which may
change only slightly, or not at all, from the constraints on previous
cycles. Slower changes are in this way a means for faster changes
to “remember” what they need to know about the status of all the
more slowly changing constraints in the system (Keshner, 1982).

On the other hand, very slowly changing constraints also func-
tion as a relatively stable context, a slowly changing platform on
which rapidly changing dynamics are staged. In this emphasis,
the very slowly changing constraints limit the degrees of free-
dom available to a faster changing process, thus restricting the
degrees of freedom for what can happen on faster time scales. The
faster changing dynamics must evolve within the limited degrees
of freedom that the context leaves available.

The crucial importance of memory and context is reflected in
how the brain consumes energy. The brain alone accounts for 20%
of the body’s energy consumption (Clarke and Sokoloff, 1999). Yet
in a task performance the range of changes in energy consumption
in the brain’s activity spans less than 1% of total bodily energy
consumption (Raichle, 2010). In other words, our present state

of knowledge about energy consumption implies that a complex
brainy task requires little- or no-more energy than simply relaxing
with eyes closed. This pattern of energy use is consistent with a
brain that is primarily about updating and maintaining predictive
aspects of history and current events from the lived perspective of
the actor.

The facts about energy consumption make clear the importance
of the brain “knowing” its place in the world, at any given time.
This knowledge could be sustained in positive feedback loops of
glutamate cycling (Davia, 2005), and it is estimated that between
60 and 80% of the overall energy consumption of the brain occurs
in glutamate cycling (Raichle, 2010). If an actor’s history and
context – presence of mind – are sustained in the energy pat-
terns of feedback loops, then the amount of energy dedicated to
this blue-collar task is consistent with the importance of support
for on-going perception and action. Whether viewed as history
or context, the slower the change, the more constant, or stably
constraining is the influence of the past.

Slower dynamics thus constrain faster dynamics, which allows
the flow of visible or audible, or otherwise available, context to con-
strain the dynamics the brain. The flow of invariants across percep-
tion occurs on the slower time scales of change in brain activity (see
Figure 4), supplying constraints that reduce the degrees of free-
dom for what may happen next. The residual degrees of freedom
allowed by a visible checkerboard, for example, slowly changing
its position across the visual field on which flickering rings create
expanding or contracting traveling waves (1/32 or 1/48 Hz), gives
structure to the activity in visual cortex. These slowly changing
constraints reveal a more spatially precise picture of retinotopic
organization, compared to previous attempts (Engel et al., 1993,
1994, 1997).

Frontiers in Physiology | Fractal Physiology June 2012 | Volume 3 | Article 207 | 119

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Van Orden et al. Criticality and control

We suggest that the brain is primarily about maintaining pres-
ence of mind. In our meaning, “presence of mind” includes the
present configuration of the body as it is currently entwined in
meaningful relations with the present configuration of the world.
Relations among configurations are all themselves changing rel-
atively slowly (compared to the brain). Slower changes provide
constraints to the brain in the shape of the pattern of energy flow in
the brain. Constraints provide knowledge about possible futures,
and they are had for free in the immediate status of relations
between the body and the world (Stepp and Turvey, 2009).

A THIRD CATEGORY OF PHENOMENA
Behavior and brain share the same scaling relation, which they
also share with other measured signals of physiology such as heart
rate, colon contraction, transduction at the retina, neural firing,
and many others (Glass, 2001). We believe there are fundamental
consequences of this shared scaling relation. There are practical
advantages for a system to maintain scaling relations in its pat-
terns of change, these advantages place practical constraints on
the development of species and organisms, and have staggering
consequences for cognitive science.

An empirical scaling relation with scaling exponent a ∼ 1 is
approximately the mathematical scaling relation called fractal
time, 1/f scaling, or pink noise. It is called pink noise due to a
resemblance to the empirical spectral portrait of pink light, which
concentrates power in the lower frequencies of red light relative
to the higher frequencies of blue light. Pink noise is observed of
complex systems near the critical points of bifurcations. By staying
near to its critical points, a system sustains a poised attitude, ready
at any moment to change the organization of its behavior.

Subtle changes in the relation between the task and the per-
former are often met by qualitative changes in the organization
of performance. The relation between task and performer even
shapes the expression of learning disabilities (Hendriks and Kolk,
1997). Encouraged to read aloud very quickly, developmental
dyslexics make errors consistent with a deficit in the “lexical”
process in reading, producing symptoms of a type of dyslexia
that is defined by visual/phonological errors and semantic errors
(e.g., POND → /pool/, BUSH → /tree/). When encouraged to read
aloud accurately, the same dyslexics produce symptoms of a differ-
ent type of dyslexia, exhibiting the ponderous letter-by-letter, or
syllable-by-syllable reading associated with a “non-lexical” process
of reading.

Human performance may undergo a bifurcation between speed
versus accuracy conditions, self-organizing a different dynamical
system suited for speed than for accuracy (cf. Dutilh et al., 2011;
Wijnants et al., in press). This hypothesis is consistent with the two
types of dyslexic performance, one under speed conditions and
the other under accuracy conditions. These speed-versus-accuracy
types also closely parallel the two types of acquired dyslexia that
were featured conspicuously in a double dissociation of read-
ing processes that kicked off modern cognitive neuropsychology
(Marshall and Newcombe, 1973, 1977). And extreme speed condi-
tions also induce errors by intact readers that resemble the errors
defining acquired dyslexias (Kello and Plaut, 2000).

Different task demands elicit the symptoms of different types of
aphasia from the same brain-damaged individual(s) (Kolk et al.,

1985; Kolk and Heeschen, 1992; Hofstede and Kolk, 1994; Kolk
and Hofstede, 1994). This would seem to require brain-to-body
control, if only to guarantee performance will satisfy the task
requirements described in instructions to a brain-damaged indi-
vidual. Brain-to-body control could occur if the weaker and faster
changes of the brain could be susceptible locally, as when a weak
external perturbation can change the next stronger source of con-
straint. Local susceptibility of this sort could be passed up the
hierarchy of constraints, each pace of change in turn, to usurp the
stronger and slower dynamics of the body and change the course
of behavior.

This is a reasonable way to imagine the white-collar control
of behavior by the brain, capitalizing on the relatively unstable
dynamics near critical points. But brain-to-body control is not the
focus of this essay. Our goal is to shine more light on the blue-
collar work of the brain. Blue-collar work exploits the relatively
stable dynamics near critical points, which may at first seem to
contradict what we just supposed to be the basis for white-collar
control – that is, susceptibility stemming from relatively unstable
dynamics near critical points.

Yet a critical state has the unique feature of being simultane-
ously the locus of stability and instability, regular and random
variation, universal and singular structures – both together or nei-
ther alone – a third kind of behavior (Keshner, 1982; Ulanowicz,
2006; Nicolis and Rouvas-Nicolis,2007; Sporns,2007; Tsonis,2008;
Van Orden et al., 2011). Before complexity science the variation
in measured values was divided exclusively between the regular
changes of explainable variance and the random changes of mea-
surement error, signal versus noise. But pink noise is neither signal
nor noise, or it is both, as already noted, and so it cannot be clas-
sified within the conventional dichotomy. Pink noise is a third
category of behavior, a widely acknowledged game-changing phe-
nomenon of complexity science. It is the simultaneous presence
of instability together with stability that defines a critical state.

Thus our thesis: if white-collar control can be said to exploit the
instability of a critical state then blue-collar work depends upon
stability. Brain-to-body control by the faster changing dynamics
of the brain exploits the instability near a critical state to change
the course of the slower dynamics of the body. Blue-collar work
exploits constraints supplied by the more slowly changing “ghost”
parameter dynamics of criticality that lend stability to the faster
changing dynamics of the brain.

Additional sources of constraints for brain dynamics include
the repetitively similar behavioral trajectories of organ systems, the
expressed modes of physiological processes, the repetitive move-
ments of human gait, as well as cognitive problems that persist
over time or constraints due to intentions that remain unsatisfied.
These few examples illustrate the reservoir of constraints present
in the generally more slowly changing dynamics of behavior com-
pared to brain. We next describe the structural composition of the
body that self-organizes as movement trajectories of the body in
behavior.

TENSEGRITY STRUCTURE OF THE BODY
A mollusk’s body naturally self-organizes survivable relationships
with its environment. While slowly treading water, for instance,
the mollusk abruptly recruits interneurons within a self-ordering
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central pattern generator, allowing a rapid escape from a predator
(Nishikawa et al., 2007). In doing so, the central pattern generator
illustrates the soft-assembly of a synergy.

Synergies are “softly” (temporarily) assembled dynamical
processes. Temporary soft-assembly allows changes in control to
stay apace with the changing demands for reorganization of behav-
ior. Perpetually changing demands exist at the perpetually chang-
ing interface of an organism with its environment. Central pattern
generators stay apace by re-organizing their network connectiv-
ity (Harris-Warrick and Marder, 1991; Morton and Chiel, 1994;
Hooper, 2001). The changing relationship with an environment is
sometimes served by previously inhibitory connections that now
become excitatory connections, by neurons that are recruited into
networks in which they did not participate before, or by the fusion
of previously separate networks.

The spontaneous dynamics of the brain’s so-called default net-
work will change depending on what the participant just heard.
The volunteer’s investment of attention to a task and other task
demands can also change the soft-assembled organization of brain
activity among the regions of the default network (Hasson et al.,
2009). Almost any change pertaining to ordinary standing around
will yield uniquely soft-assembled postural dynamics (Riley et al.,
2012). The body and brain thus create of themselves unlimited
solutions, apace with the idiosyncratic local contexts in which they
find themselves.

The organism at its changing interface with the environ-
ment requires this flexible self-control, and context-sensitive soft-
assembly appears to be the vital organizing principle of brain
architecture (Nikolić, 2010). Organism-wide synergies emerge
across a tensegrity structure. The tensegrity structure is formed
by a taught web of muscles and fascia to fully connect the parts of
the skeleton, appearing to wrap it like a mummy. Similar to tenseg-
rity structures in architecture (e.g., Tomassian, 1997) or robotics
and biology (e.g., Tur and Juan, 2009), the skeleton supplies the
struts while the muscles, ligaments, and fascia form the tension
lines eliminating slack from the tensegrity structure (Levin, 2002).
The taught web of tension lines ensures that movement at any
one place in the tensegrity structure has consequences through-
out the structure, creating a robust mechanical holism that even
survives damage that has left the body paralyzed (Carello et al.,
2008). The neuromusculoskeletal structure of the body, in the
guise of this tensegrity structure, is an excitable medium of self-
organizing constraints to sustain the coordinated movements of
the body.

Synergies allow the tensegrity structure to behave in some ways
but not others, and control works as a process of elimination. Syn-
ergies are webs of constraints that limit how the body can change
in coordination. Respiratory and cardiovascular processes change
together with a change of locomotor gait, for example, ensuring
the right amount of oxygen to the cells at the right time (e.g.,
Gonzales et al., in press). Behavioral processes in a skilled tennis
player are constrained to run for the ball and make forehand shots,
backhand shots, and to serve and return serves. A swimmer is con-
strained by synergies to breath out through the nose and breath in
through the mouth apace with the strokes of swimming. A web of
constraints in each case delimits the possibilities for coordination
among the processes of the body, in the actions at hand.

Synergies and tensegrity structure also harvest energy from the
temporary contexts of the body (Kugler and Turvey, 1987). Some
good configurations of the body with its environment exploit
potential energy from inertial forces or from gravity in on-going
movement (Bernstein, 1967; Kugler and Turvey, 1987; Dickin-
son et al., 2000; Turvey, 2007; Wijnants et al., in press). Other
good configurations knit the body together, head to foot, in the
endlessly novel solutions of postural control (Riccio and Stoffre-
gen, 1988). We are two legged creatures who must balance a large
heavy head on a thin neck and, to maintain balance, our center
of mass should not exceed its base of support, approximately cir-
cumscribed within a perimeter around the feet. Lest we tip over,
remote preflexes must anticipate all overt movements (Belen’kii
et al., 1967). And yet walking is also falling because the body moves
outside of its center of mass in each step, utilizing the potential
energy from gravity in the process.

EVIDENCE OF SYNERGY
The taught tension-line coupling across the tensegrity structure
allows the body to perform as a single functional unit. To do so,
synergies tailor the available degrees of freedom for coordinated
changes among the processes of the body. In a classic example,
the lips must be in contact to say the/b/in/bob/ (Kelso et al., 1984).
Synergy ensures this contact by coupling neuromuscular processes
to exclude all non-contact relations between the lips at the time
that contact is required. As we already noted, the taught web of
tension lines ensures that change at any one place in the tenseg-
rity structure has consequences throughout the structure, allowing
synergies to contribute to presence of mind, supplying a way of
knowing about the body and brain penultimate to an action itself.

Prior to saying the/b/in/bob/, the exclusion of unlikely con-
figurations retains sufficient degrees of freedom prior to action,
to allow the lips to compensate for each other, if something goes
wrong (e.g., Scholz and Schöner, 1999; Latash et al., 2002; Riley
et al., 2012). Thus, to test for control by synergy, simply perturb
on-going speech and look whether compensation occurs in the
coupled articulators. In the classic study, a speaker’s attempt to say
the/b/in/bob/was perturbed by a sudden, unexpected, downward
tug on the speaker’s jaw. Ultrafast compensation began within 5–
10 ms – faster than the brain can compute and return a new plan
of articulation (Wallot and Van Orden, in press) – and the lower
lip, not the jaw, stretched upward to form a new configuration of
contact, producing a fully intelligible pronunciation of/bob/with
no audible distortion (Kelso et al., 1984; see also Folkins and
Zimmermann, 1982; Abbs and Gracco, 1984).

Ultrafast compensation reconfigured the bilabial and laryngeal
gestures (at least), producing compensatory lip gestures to respect
abstract phonology as well as compensations in the kinematics of
the larynx (Saltzman et al., 1998; see also Bauer et al., 1995). In
the theoretical language of cognitive psychology, bi-level coupling
of kinematic micro-dynamics and linguistic macro-dynamics is
a coupling between body and mind. Synergies in speech gener-
ally include coupling across different levels of organization (van
Lieshout, 2004) and coupling across multiple levels of organization
solves the essential problem of speech production – the on-line
coordination of about 70 muscles to stay within narrow trajectories
of legible meaningful speech (e.g., van Lieshout et al., 2007).
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In other evidence of synergetic control, the perturbation is
again sufficient to prompt a change in degrees of freedom for
reorganization of human performance. Dual-task paradigms can
be interpreted according to whether performing one task per-
turbs the performance of another task (Riley et al., 2012). For
instance, pressure to respond quickly in a cognitive task can per-
turb and decrease the stability of motor-task performance, com-
pared to performing the motor task by itself (Temprado et al.,
1999, 2001). Other times, a concurrent cognitive task is sufficient
to change the organization of the motor performance (Pellecchia
et al., 2005; Shockley and Turvey, 2005, 2006). In the latter case,
dynamical models suggest that a higher-order synergy envelops
cognitive and motor performance (Fuchs et al., 1996). However,
the motor task of walking on a treadmill takes priority over a con-
current cognitive performance, lest the participant fall, yielding a
reorganization of cognitive performance. The same dynamics of
locomotion are present with or without the cognitive task, while
cognitive dynamics are reorganized in the dual-task (Kiefer et al.,
2009).

In concurrent observations of brain and behavior, changes that
anticipate reorganization are seen in the repeated measurements
of both brain and behavior, and the coincident changes strictly
resemble those that precede known physical examples of bifurca-
tions called phase transitions (Fuchs et al., 1992; Kelso and Fuchs,
1995). Reorganization across a bifurcation point is preceded by
patterns of change called critical slowing, critical instability, and
eventually the sudden-jump in a bifurcation. The time delay from
the sudden-jump reorganization of the brain to the sudden-jump
reorganization of behavior is also about right, given our spec-
ulation about brain-to-body control, occurring within the time
required for a single jolt of activation running from brain to behav-
ior (Fabre-Thorpe et al., 2001; Thorpe, 2002; Riley et al., 2012;
Wallot and Van Orden, in press).

The coupling of processes in synergy is a refinement of the idea
of coordinative structures in motor coordination, the previous
solution to the notorious degrees of freedom problem of behavior
(Turvey, 2007): there exist incalculably more possible configura-
tions of the possible states of the body than there are smoothly
and appropriately coordinated ways to make behavior (Bernstein,
1967). Tensegrity structure and synergies reduce the degrees of
freedom of the body, limiting the possible configurations to task,
and context appropriate “symphonies” of movement for coordi-
nated change in behavior (Haken, 1977; Kugler et al., 1980, 1982;
Kelso, 1995, 1998, 2009; Juarrero, 1999; Van Orden et al., 2011;
Riley et al., 2012).

Another test for the presence of a synergy is to look for reduced
degrees of freedom in the processes that are entailed in a behavior
(e.g., Riley et al., 2011). For instance, the reduced degrees of free-
dom observed of one process may anticipate the reduced degrees
of freedom of another process not yet enacted. Raising an arm
requires anticipation by remote muscles on the opposite side of
the body prior to any change in the arm’s position – else the body
would tip over. If the arm movement were made to signal a cogni-
tive choice then the preflex of the remote muscles would “signal”
the same choice. If so then the fact of the reduced degrees of
freedom in the anticipatory preflex corroborates the synergy of
the soft-assembled choice response.

One widely used cognitive task includes a judgment of whether
a visually presented letter string correctly spells a word in a ref-
erence language – that is, standing before a screen on which
letter-strings will appear, raise one arm for each American Eng-
lish “word” and the other arm for “non-words.” Event times as
“response times” by anticipatory preflexes can be measured in the
onset of change in electromyographic activity in the right or left
thigh, the right or left paraspinal muscles of the lower back, or the
right or left shoulder muscles. If the preflexes reliably distinguish
words from non-words instead of leaving the available degrees of
freedom open, to accommodate either arm response, then the pre-
dicted, anticipatory, synergetic reduction in the degrees of freedom
would be confirmed.

Moreno et al. (2011) conducted this experiment, and the side
of the body of the preflex reliably distinguished the word from
the non-word letter-strings. The observed reduced degrees of
freedom in the corresponding preflexes corroborated synergetic
control. Otherwise, they observed typical average “word” deci-
sion times of about 649 ms in the arm movement data and an
identical advantage for “word” over “non-word” response times in
each of the anticipatory preflexes. On average, the preflex “word”
response times preceded the arm “word” response time by 120 ms
at the shoulder, 189 ms at the trunk, and fully 225 ms at the thigh.
Synergies appear to have soft-assembled a multilevel whole-body
“American English word versus non-word judgment device” (cf.
Fowler and Turvey, 1980; Turvey, 1990, 2007; Hollis et al., 2009;
Kello and Van Orden, 2009; Kloos and Van Orden, 2009).

Synergies self-organize apace with the flow of context and
behavior. This is sufficient to update on-going constraints that
anticipate the requirements for oncoming behavior. Invariant
or smoothly changing aspects of the world yield invariant or
smoothly changing constraints at a pace that is slower than brain
dynamics. These constraints inform behavior by limiting the
degrees of freedom about what can happen next, leaving open
the possible kinematic changes that the body may enact in behav-
ior. A muscle contraction here or a postural adjustment there are
nonetheless always constrained by, and constraining of, the total
configuration of the behaving body – the organism as an integrated
whole.

SUMMARY CONCLUSIONS
We began this essay with several examples of control that did
not require an intact central nervous system. Mike the celebrity
chicken may now be seen to illustrate the importance of tensegrity
as an organizing principle of behavior. Taught tension lines across
skeletal struts imbue the body with the self-organizing properties
of excitable media. Chickens who lose their circadian coordina-
tion among physiology and behavior illustrate a coupling to the
environment that contributes to control and regulation of health
and wellbeing. The sea squirt is perhaps the ultimate illustration of
how a nervous system can be necessary (although not sufficient)
for some aspects of being, and dispensable for other aspects.

The blue-collar contribution brings together the concepts of
timescale, constraint, synergy, and criticality to understand how
the brain supports on-going behavior, to anticipate forthcoming
behavior. Constraints that reduce the degrees of freedom for
behavior unfold on different timescales, and the more slowly
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changing constraints have priority over faster change constraints.
Control in this sense in non-specific, a practically unlimited set
of possible actions is reduced to a smaller subset, shaped by the
contemporary states of physiological processes, environmental
regularities, and the idiosyncratic history of the organism. The
smaller subset is sustained in a state of criticality, lacking only a
contingent discriminating circumstance to enact one of the possi-
ble actions (Järvilehto, 1998; Hollis et al., 2009; Van Orden et al.,
2011; Riley et al., 2012; Wallot and Van Orden, in press).

Criticality is thus essential; it is no accident that the body and
the brain stay near to critical states. Systems that stay near critical
states are called metastable systems and the advantages of metasta-
bility are legion. A metastable system can commit to a region of the
state space of possibilities for action, without otherwise narrow-
ing its options. This allows a healthy codetermination of action
by the actor’s history and context together with the momentary
contingencies that choose the behavior that is enacted. This code-
termination is also another pairing of regularity and randomness
or order and disorder, like those that characterize pink noise and
other aspects of complex systems.

Cognitive science is well underway as complexity science, with
wide implications for how to conceptualize and investigate human
nature. Already, changes in the organization of behavioral activ-
ity, as evidenced by the measured dynamics, are revealing of the
nature of an organ or organism (e.g., Lipsitz and Goldberger, 1992;
Vaillancourt and Newell, 2002; Van Orden et al., 2011; Dixon
et al., 2012; Riley et al., 2012). Regarding investigation, how-
ever, all aspects of widely applied measurement protocols must be
reconsidered, given the capacity of the participant to mirror our
protocols in soft-assembly. In other words, for distinct compo-
nent functions of memory, language, or motor control, substitute
constraints that can create or pick out the behaviors that we give
these names to. Practically, this way of thinking promotes research
that systematically varies a hierarchy of time scaled contexts. A

systematic understanding of control, and how it changes in differ-
ent contexts, will be had by observing changes in the organization
of behaviors estimated by scaling relations or order parameters.
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Guy Van Orden’s journey into complexity science started with
the question, “How would I ever know that I am wrong?” This
statement was aimed at what is today called classical cognitive sci-
ence. Guy reasoned that the answer was not found in particular
outcomes of studies, but in how mathematics was used to describe
observations. In particular, the identification of components of
the mind hinges on independent sources of variability, which can
be identified using linear statistics. However, the pervasiveness of
interaction effects in behavioral data suggested to him that inde-
pendent sources of variability are an exception case of human
behavior.

In his later work, complexity science provided Guy with an
alternative framework, and in particular the concepts of pink noise
and criticality were of twofold importance. Pink noise showed
what violations of independent contributions of variability look
like and criticality offered an alternative set of concepts and statis-
tics to build a science of phenomena that deviate from the classical
assumptions. This article highlights some of his last thoughts on
the role of critical fluctuations in brain and behavior, and sketches
out new routes for a complexity science of cognition.

Guy passed away on May 11th 2012. Guy was unique and won-
derful in his roles as scientist, mentor, and colleague. He will be
sorely missed.
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