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Editorial on the Research Topic
Pharmacoinformatics: new developments and challenges in drug design

Pharmacoinformatics represents a crucial nexus between computational sciences and
pharmacology, aiming to leverage advanced data analysis and machine learning techniques
to streamline drug discovery and development. The Research Topic, “Pharmacoinformatics:
New Developments and Challenges in Drug Design,” brings together 10 original research
articles contributed by more than 57 authors with over 18,000 views and downloads in all of
the time until July 2024, that exemplify the transformative potential of computational
approaches in modern pharmacology. The articles in this Research Topic underscore the
diverse methodologies and applications of pharmacoinformatics, addressing a broad range
of therapeutic areas and offering novel insights into drug design, efficacy, and mechanism
of action.

One of the key contributions to this Research Topic is the study by She et al., titled
“Deep learning-based multi-drug synergy prediction model for individually tailored anti-
cancer therapies.” This paper presents a sophisticated deep learning model to predict
synergistic multiple-drug combinations for cancer treatment. The model’s ability to tailor
therapies to individual patients marks a significant step towards personalized medicine,
demonstrating how machine learning can optimize therapeutic regimens and potentially
improve clinical outcomes. The wide and appropriate use of artificial intelligence techniques
such as machine learning techniques continues to revolutionize drug-disease association
predictions, as demonstrated by Luo et al. in “Prediction of drug–disease associations based
on reinforcement symmetric metric learning and graph convolution network.” The
innovative use of reinforcement learning and graph convolution networks in this study
highlights the evolving landscape of computational drug discovery, offering new avenues for
identifying potential therapeutic applications of existing drugs.
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Another compelling study, “Network pharmacology-based
approach to explore the underlying mechanism of sinomenine on
sepsis-induced myocardial injury in rats” by Sun et al., utilizes
network pharmacology to unravel the mechanisms by which
sinomenine exerts its protective effects against myocardial injury
in sepsis. This research highlights the utility of network-based
analyses in identifying key molecular interactions and pathways,
providing a holistic understanding of drug action and facilitating the
discovery of new therapeutic targets. The potential of network
pharmacology is further exemplified by Li et al., where the
authors studied the potential mechanisms of the anti-
osteoporotic effects of the Achyranthes bidentata–Dipsacus asper
herb pair. This research combines network pharmacology with
experimental validation to decode the anti-osteoporotic
mechanisms of a traditional herb pair, showcasing a robust
approach to studying complex herbal formulations.

The investigation by Tran et al., “Identifying target organ location of
Radix Achyranthis Bidentatae: a bioinformatics approach on active
compounds and genes,” exemplifies the integration of bioinformatics
in phytomedicine research. By identifying the target organs of herbal
therapies this study not only advances our understanding of traditional
medicinal herbs but also illustrates the broader applicability of
pharmacoinformatics in natural product research.

In the field of antiviral drug discovery, Castillo-Campos et al.
contribute a comprehensive computational analysis titled
“Computational study of the binding orientation and affinity of
noncovalent inhibitors of the papain-like protease (PLpro) from
SARS-CoV-1 considering the protein flexibility by using molecular
dynamics and cross-docking.” This work underscores the importance
of accounting for protein flexibility in docking and molecular dynamics
studies and provides valuable insights into the development of inhibitors
against viral proteases, crucial for combating viral pathogens like SARS-
CoV-1. In the same field, Castillo et al. discovered novel Mpro
destabilizers with scope as broad-spectrum antivirals. They illustrate
the innovative use of pharmacoinformatics for drug repurposing. By
identifying Mpro destabilizers with potential broad-spectrum antiviral
activity, this study contributes to the ongoing efforts to find effective
treatments for viral infections.

Exploring the field of chemical libraries, Ginex et al. present two
novel chemical libraries, MBC and ECBL as outstanding tools for
drug discovery. Both libraries are designed to enhance the efficiency
of drug discovery. The strategic design and diverse chemical space
covered by these libraries are poised to accelerate the identification
of promising drug candidates. The design of focused chemical
libraries is further elaborated in Saldívar-González et al.’s work,
“Design of a multi-target focused library for antidiabetic targets
using a comprehensive set of chemical transformation rules.” By
employing a multi-target approach, this study aims to address the
multifactorial nature of diabetes, providing a valuable resource for
the development of antidiabetic therapies.

Finally, in the synthesis and evaluation of novel compounds,
Martín-Encinas et al.’s article, “Synthesis, biological and
computational evaluation of novel cyanomethyl vinyl ether
derivatives” stands out. This research integrates computational
and experimental approaches to characterize new compounds,
showcasing a comprehensive strategy for drug development.

Collectively, the contributions of the Research Topic,
“Pharmacoinformatics: New Developments and Challenges in

Drug Design,” highlight the dynamic and interdisciplinary nature
of pharmacoinformatics. The integration of advanced
computational methods with pharmacological research not only
accelerates drug discovery but also enhances our understanding of
complex biological systems. As we continue to navigate the
challenges and opportunities in this field, the studies presented in
this Research Topic open new avenues for future innovations in
drug design and therapeutic interventions.

We hope that this Research Topic of articles inspires further
research and collaboration, ultimately leading to the development of
more effective and personalized therapeutic strategies.
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Deep learning-based multi-drug
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While synergistic drug combinations are more effective at fighting tumors with

complex pathophysiology, preference compensating mechanisms, and drug

resistance, the identification of novel synergistic drug combinations, especially

complex higher-order combinations, remains challenging due to the size of

combination space. Even though certain computational methods have been

used to identify synergistic drug combinations in lieu of traditional in vitro and in

vivo screening tests, the majority of previously published work has focused on

predicting synergistic drug pairs for specific types of cancer and paid little

attention to the sophisticated high-order combinations. The main objective of

this study is to develop a deep learning-based approach that integrated multi-

omics data to predict novel synergistic multi-drug combinations (DeepMDS) in

a given cell line. To develop this approach, we firstly created a dataset

comprising of gene expression profiles of cancer cell lines, target

information of anti-cancer drugs, and drug response against a large variety

of cancer cell lines. Based on the principle of a fully connected feed forward

Deep Neural Network, the proposed model was constructed using this dataset,

which achieved a high performance with a Mean Square Error (MSE) of 2.50 and

a Root Mean Squared Error (RMSE) of 1.58 in the regression task, and gave the

best classification accuracy of 0.94, an area under the Receiver Operating

Characteristic curve (AUC) of 0.97, a sensitivity of 0.95, and a specificity of 0.93.

Furthermore, we utilized three breast cancer cell subtypes (MCF-7, MDA-MD-

468 and MDA-MB-231) and one lung cancer cell line A549 to validate the

predicted results of our model, showing that the predicted top-ranked multi-

drug combinations had superior anti-cancer effects to other combinations,

particularly those that were widely used in clinical treatment. Our model has the

potential to increase the practicality of expanding the drug combinational space

and to leverage its capacity to prioritize the most effective multi-drug

combinational therapy for precision oncology applications.

KEYWORDS

anti-cancer combination therapy, high-order drug combinations, cancer cell subtype-
specific models, deep learning framework, precision oncology
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1 Introduction

Various carcinogenic factors and pathogenesis have been

linked to cancer, which has been identified as a collection of

complex diseases (Tolomeo and Simoni, 2002). This complicates

the application of a single treatment for a single target, as it

activates redundant activities in cancer cells such as various

downstream factors and parallel pathways due to

compensatory mechanisms (Alexander and Friedl, 2012).

Inter-tumor and intra-tumor heterogeneity are a major

contributor to drug resistance and disease progression in

clinical cancer treatment, ultimately leading to disease relapse

(Holohan et al., 2013). Combination therapy has been shown to

be a well-established and superior solution to these problems

because of its improved clinical efficacy and lack of development

of drug resistance. Since the dose of each drug is smaller than

what is used in monotherapy, it is possible that the side effects

will be minimized (Mahase, 2019). So far, significant efforts have

been undertaken to systematically evaluate the synergistic

combinations from a large pool of chemical compounds

(MacGowan et al., 1990; Wiesner et al., 2002; Sopirala et al.,

2010). Finding successful drug combinations is still incredibly

difficult, especially with today’s high-throughput screening

technologies (Sun et al., 2013). Furthermore, high-order

combinations have the potential to regulate biological systems

more powerfully than drug pairs because they favor

compensatory mechanisms, which tumors greatly exploit;

however, the number of experiments run to identify

promising high-order combinations would explode by several

orders of magnitude, which is far beyond the current exploration

ability. There is a pressing need for systemic methodologies, and

an urgent need to make it feasible to find new therapeutic

combinations of more than two agents, including synthetic

chemicals, biological molecules and natural products.

An extensive range of computational methods spanning a

large area of methodologies (Bansal et al., 2014; Gayvert et al.,

2017; Chen et al., 2018; Huang et al., 2019) has tremendously

aided research into anti-cancer drug combinations in the recent

years. Different machine learning models and the burgeoning

field of deep learning are examples of possible approaches. A

machine learning based classification model could extract

features from multiple drug profiles including drug targeted

proteins and Anatomical Therapeutic Chemical Classification

System (ATC) codes, and, as a result, it enabled the prediction of

potential synergistic drug pairs (Iwata et al., 2015). But ATC code

is available only for marketed drugs, suggesting that the

processing of uncharacterized drugs or new candidate

compounds is considerably beyond the power of this

approach. In another method, two machine learning

algorithms, random forest (RF) and extreme gradient boosting

(XGBoost), were applied to establish models for drug

combination prediction, indicating that XGBoost resulted in a

better perform than the RF model (Sidorov et al., 2019). As

trained on a pre-cell line, these two models should be rebuilt

when applying for another cell line. Recent impressive

breakthroughs of deep neural networks, which profit from the

explosion of big data and the ability to automatically extract key

features, have produced greatly enhanced performance in

biomedical research. A deep learning approach, DeepSynergy,

proposed by Preuer et al., integrated the chemical descriptors of

drugs and genomic data of cell lines of interest for predicting

synergistic drug combinations (Preuer et al., 2018). Following

this, numerous techniques based on deep learning framework,

such as AuDNNsynergy (Zhang T. et al., 2021), MatchMaker

(Kuru et al., 2021) and Deep Signaling Synergy (Zhang H. et al.,

2021), have been suggested with multi-omics data to prioritize

drug combinations, revealing their benefits on the prediction of

paired drug combination. However, the existing deep learning

models mainly focused on predicting drug pairs which might not

be efficient to inhibit the aggressive growth of tumors driven by

complex mechanisms (Holohan et al., 2013; Dry et al., 2016).

With the approval of multi-drug combinations for a variety

of diseases such as cancers and tuberculosis (Gotwals et al., 2017;

Davies et al., 2019), the focus of the search for combinational

therapies has shifted partially away from pairwise combinations

and toward high-order ones containing three or more drugs. Yet

there are limited tools to predict multi-drug synergy in diseases.

A recent web application, Synergy Finder 2.0, is developed to

analyze the drug combination screen data and provide the best

multi-drug synergy patterns (Ianevski et al., 2020). However, this

tool is based on the dose-response data collected by a huge

number of multi-drug screening activities, which make it

infeasible to find prospective high-order combinations in a

labor- and time-saving manner. So far, we lack deep learning-

based approaches to predict the synergy of high-order

combinations by integrating multi-omics data, and this is a

problem.

The methodological advances of deep learning-based models

have made it easier to investigate the best possible high-order

combinations within the defined disease module. In this study,

we developed a deep learning-based model for the prediction of

synergistic multi-drug combinations (DeepMDS) through using

a large-scale dataset that integrated by targets information, drug

response data and large-scale genomic profile of cancer cell lines

from varied tissues. DeepMDS can generate predicted pseudo-

IC50 values, which can be used to quantify and, by extension,

rank the synergistic anti-cancer effect of drug combinations. As a

comparison, we used some of the most advanced machine

learning algorithms as reference models, including K Nearest

Neighbor (KNN), Random Forest (RF), Support Vector Machine

(SVM) and Gradient Boosting Machine (GBM). These

algorithms have all been succeeded in modeling drug synergy

and were among the top winning methods of the

2019 AstraZeneca-Sanger drug combination prediction

DREAM Challenge (Menden et al., 2019). More importantly,

the performance of our DeepMDS were further extensively
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validated by published literatures and rigorous studies based on

biologically heterogeneous breast cancer cell subtypes (MCF-7,

MDA-MD-468 and MDA-MB-231) as well as lung cancer cell

line A549.

2 Materials and methods

2.1 Data collection

In this work, we collected, pre-processed, and combined gene

expression profiles of cancer cell lines and target information of

anti-cancer drugs to generate modeling dataset. Then, data on

drug response against a large variety of cancer cell lines were also

collected for the purpose of labeling modeling samples. Herein,

the precise process of datasets construction was described in

detail in this section.

2.1.1 Gene expression features
Based on Affymetrix Human Genome U219 Array plates,

basal gene expression profiles of 1,000 human cancer cell lines

were measured and identified utilizing a wide variety of anti-

cancer therapeutics in the Genomics of Drug Sensitivity in

Cancer (GDSC) project (Iorio et al., 2016). The gene

expression data of cancer cell lines were demonstrated to be

useful information, which faithfully recapitulated cancer-driven

alterations in 11,289 tumors from 29 tissues. Meanwhile, many of

the genomic information were highly associated with drug

sensitivity or resistance and thus it could be efficiently applied

to predict drug response as sample features. The public available

transcriptional profiles of 1,000 human cancer cell lines were

carefully retrieved from the ArrayExpress database (Parkinson

et al., 2005) and then the data pre-processing was conducted

based on the platform R v3.5.0. To begin, oligo-package was

applied to convert the downloaded raw data (CEL files) into

standard genomic profiles. Then missing and invalid values were

filled and replaced using the impute 1.52.0 package from

Bioconductor Library (Gentleman et al., 2004). In further,

Robust Multichip Average (RMA) algorithm was used to

normalize the refilled datasets, preventing erroneous results

generated by maxima and minima as well as decreasing

computing burden. Next, based on the annotation file of gene

chip, each probe ID was matched with its corresponding gene

symbol and the mean expression value of the multiple probe IDs

matched the same official gene symbol was computed to reflect

the expression intensity. A phenomenon known as the “curse of

dimensionality” may cause prediction models to perform poorly

due to the large number of genes covered by the expression

profiles (Aliper et al., 2016). To avoid this difficulty, genes in

cancer-related pathways were selected to lower the size of gene

expression features. In practice, 14 gene sets, which were defined

by cBioPortal, consisted of cancer-related pathways (Cerami

et al., 2012), such as DNA damage response or RTK signaling

pathways (Jeon et al., 2018). Finally, a total number of 215 genes

were selected as genomic features and their corresponding gene

expression data were used as the feature representations of cancer

cell lines (Supplementary Data Sheet S1).

2.1.2 Target information
Along with gene expression features, this study gathered

information on the targets of anti-cancer drugs. To begin, we

obtained target information for 265 chemical compounds from

DrugBank (Wishart et al., 2018) and PubChem (Wang et al.,

2009). This information was merged with determined drug

sensitivity of cancer cell lines from the GDSC project. On the

other hand, 1,574 naturally occurring anticancer compounds

were obtained from the Naturally occurring Plant based

Anticancerous Compound-Activity-Target DataBase

(NPACT), and the related target information for each

compound was retrieved from TCMSP (Ru et al., 2014),

DrugBank and PubChem. Finally, a total of 1,093 targets were

obtained as target features of compounds. The target information

of each compound was used to generate the feature

representation of the compound. More specifically, the target

feature values corresponding to the targets of the compound were

encoded as “1” and the others were encoded as “0”

(Supplementary Data Sheet S2).

2.1.3 Drug response information
Drug response information, also called as monotherapy

information, assessed drug effects on cell lines and was used in

this study to label samples. The GDSC project experimentally

determined and quantified the drug responses of over

265 chemical compounds to 1,000 cancer cell lines using

the half maximum inhibitory concentration (IC50) (Iorio

et al., 2016). Additionally, we gathered equivalent data for

1,574 natural chemicals in response to distinct cell lines from

NPACT, PubChem and related literatures. In total, the drug

responses of 201,405 drug-cancer cell line pairs were collected

and used as the labels (IC50 in the regression task and binary

value in the classification task) (Supplementary Data

Sheet S3).

2.1.4 Data integration
Gene expression profiles of cancer cell lines, target

information of anti-cancer compounds and drug responses

against a large variety of cancer cell lines were integrated into

201405 modeling samples (Figure 1). Specifically, each sample

was represented as a vector consisting of a 215-dimensional

genomic feature representation of cancer cell line and a 1093-

dimensional target feature representation of compound.

Following that, the drug response was used to label the

sample. Due to the considerable dimension disparity between

gene expression features and target information, all samples’ data

were adjusted using zero-centered processing and normalized

square deviation.
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2.2 Model construction

Among the processed datasets, 80% (161,124) of samples

were randomly chosen for the training dataset, while 20%

(40,281) were used as the test dataset. Then, using the

training and test datasets, a deep learning prediction model

and other models based on various machine learning

algorithms were constructed and optimized, and their

performances were compared.

2.2.1 Deep learning prediction model
The deep learning prediction model (DeepMDS) was built

sequentially in Python (version 3.6) using the Keras platform,

which is a high-level neural networks API running on top of

Theano (Feng et al., 2019). The basic architecture of deep

learning models was illustrated in Figure 2. To begin, gene

expression data from cell lines and target information of

drugs as input were loaded in the nodes (also called neurons)

of the input layer. Then the loaded information from input layer

FIGURE 1
Schematic illustration of the construction of our modeling dataset.

FIGURE 2
The architecture diagram of deep learning prediction model showing data sources and workflow.
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was propagated through the neighboring hidden layers, including

the dense layer and the dropout layer. Finally, the output layer

could provide the predicted IC50 values for each sample. To

address sophisticated regression problems, each layer among the

deep learning architecture was followed by non-linear activation

functions (Feng et al., 2019). The Rectified Linear Unit (ReLU)

activation function was used to activate the input layer and

hidden layer in this study because it has the capacity to

reduce the vanishing gradient problem and has a rapid

computing speed (Eq. 1) (Feng et al., 2019). Then for the

output layer, a linear activation function was applied in the

regression model to fit the distribution of predicted IC50 values

better (Eq. 2). Meanwhile, the classification model was developed

using the deep learning architecture, which enables a similar

assessment of model performance. The construction of

classification model constructed in the same manner as stated

previously, except that the Sigmoid activation function (Eq. 3)

was applied to produce the classification labels in the output layer

(Eq. 3). Here, the samples labeled with IC50 values ≤10 nM were

considered positive samples, whereas those labeled with

IC50 values >10 nM were considered negative samples.

y � ReLU Wx + b( ) (1)

where y was the activation value of the hidden layer, x was the

input data, W was weight matrix and b was bias.

z � linear W′y + b′( ) (2)

where z was the predicted IC50 values, y was the activation value

of the hidden layer,W′ was transposed weight matrix and b’ was

transposed bias.
z � sigmoid W′y + b′( ) (3)

where z was the classification labels, y was the activation value of

the hidden layer, W′ was transposed weight matrix and b’ was

transposed bias.

In order to train the model, the loss functions of MSE (mean

square error) and binary cross-entropy were used to estimate

performance of regression and classification models, respectively,

by comparing the difference between the actual label of input

data in input layer (x) and the predicted label of output layer (z),

where SGD (stochastic gradient descent) was applied to search

the optimal parameters (Eq. 4).

LH x, z( ) � −∑d

k�1 xklogzk + 1 − xk( )log 1 − zk( )[ ] (4)

where xwas the actual value of input data in input layer, zwas the

predicted value of output layer, d was the epoch number.

In addition, Adam (adaptive moment estimation) and

RMSprop (Root Mean Square prop) were selected as

optimization functions for the construction of regression and

classification models, respectively. Throughout the training

process, the aforementioned processes were repeated in order

to update the weights and bias until the optimal weight matrixW

and bias b were obtained.

2.2.1.1 Optimization of deep learning prediction model

The performance of a deep learning prediction model is

determined not only by its architecture of deep learning but also

by its hyper parameters. Traditionally, the ideal parameter

combination for a deep learning model was established by

human experience, which was neither accurate nor objective.

To obtain the optimal DeepMDS, a grid search algorithm was

used to find the best combination from a parameter space

including epoch number, batch size, learning rate, dropout

rate and hidden units of hidden layers. Finally, using the same

datasets, 5,625 (5 × 5×3 × 3 × 5 × 5) regression and classification

models were developed individually to seek their own optimal

parameter combinations using 10-fold cross validation.

According to the optimization results, the conic architecture

with two hidden layers having 200 nodes in the first layer and

100 nodes in the second layer was the optimal regression and

classification model.

Also, a big dropout rate of 0.5 followed behind each dense

layer to avoid the overfitting problems. Furthermore, a smaller

learning rate of 10−5, a batch size of 128 and an epoch number of

200 were set up to constitute the optimal regression model.

Meanwhile, a learning rate of 10–3, a batch size of 32 and an epoch

number of 500 were chosen for the best classification model

(Supplementary Table S2, Supplementary Data Sheet D4).

2.2.2 Model evaluation and comparison
To compare the performance of deep learning model to that

of other models based on state-of-the-art machine learning

algorithms, the same datasets were used to develop a k nearest

neighbor (KNN) model, a random forest (RF) model, a support

vector machine (SVM) model and a gradient boosting machine

(GBM) model. Also, each model was allowed to optimize hyper

parameters using a grid search algorithm and cross validation.

2.2.2.1 K nearest neighbor model

The variable selection k nearest neighbor (KNN) algorithm

was applied to develop the prediction model based on Python

(version 3.6). Regarding hyper parameter setting, number of

neighbors, types of weight functions and algorithms were tuned

to achieve the optimal KNN model. Following a grid search in a

value space of considered parameters, the optimal parameters for

the KNN regression model were 6 neighbors, a “uniform” weight

function and a ‘auto’ algorithm. In addition, for the KNN

classification model, the optimal model consisted of

5 neighbors, a “uniform” weight function, and a “auto”

algorithm (Supplementary Table S3, Supplementary Data

Sheet S4).

2.2.2.2 Random forests model

Based on random forest (RF) algorithm and Bagging

architecture, Random Forest Regressor and Random Forest

Classifier functions were used to develop RF regression and

classification models using Python (version 3.6) respectively.
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In terms of hyper parameter setting, the number of features

considered in each split, the number of estimators (trees), and the

minimal number of leaved samples were all adjusted. As a

consequence, the RF regression model’s optimized parameters

were 200 estimators, ‘auto’ for features considered, and a min_

samples_leaf of 50. The best settings for the RF classification

model were set at 100 estimators, ‘auto’ for features considered,

and a min_samples_leaf of 10 (Supplementary Table S4,

Supplementary Data Sheet S4).

2.2.2.3 Support vector machine model

Based on Support Vector Machine (SVM) algorithm,

Support Vector Regression (SVR) and Support Vector

Classification (SVC) functions were applied to develop SVM

regression and classification models using Python (version 3.6)

respectively. During the process of hyper parameter setting, the

type of kernel function, penalty factor C and gamma were tuned

to achieve the optimal SVM model. According to the

optimization results, the optimal SVM regression model was

determined to be the RBF kernel function, a penalty factor C of

10 and a gamma of 0.01. Then, for the SVM classification model,

the optimal parameters were determined to be the RBF kernel

function, a penalty factor C of 1 and a gamma of 0.1

(Supplementary Material S5, Supplementary Data Sheet S4).

2.2.2.4 Gradient boosting machine model

Based on Gradient Boosting Machine (GBM) algorithm and

Boosting architecture, Gradient Boosting Regressor and Gradient

Boosting Classifier functions were applied to construct GBM

regression and classification models via Python (version 3.6),

respectively. When setting the hyper parameters, number of

trees, learning rates, number of features in each split, min_

samples_ split and min_ samples_ leaf were took into

consideration. According to the optimization results, the

optimal GBM regression model consisted of 500 estimators, a

min_ samples_ split of 1,000, a learning rate of 0.01, and a min_

samples_ leaf of 60. Also, the optimal parameters for the GBM

classification model were then adjusted as 200 estimators, a min_

samples_ split of 600, a learning rate of 0.01, and a min_

samples_ leaf of 60 (Supplementary Material Table S6,

Supplementary Material Data D4).

2.2.3 Performance metrics
In order to assess and compare the performances of above

optimized prediction models, the mean square error (MSE, Eq.

5), the root mean square error (RMSE, Eq. 6) and R-Square (R2_

score, Eq. 7) were used as metrics to evaluate their ability to

predict IC50 values of drug combinations in the regression task.

Meanwhile, the standard criteria for classification work including

Sensitivity (SEN, Eq. 8), Specificity (SPE, Eq. 9), Accuracy (ACC,

Eq. 10) and Matthews correlation coefficient (MCC, Eq. 11) were

also applied to evaluate model performance for the classification

task.

MSE � 1
m
∑m

i�1 y i( )
true − y i( )

pre( )2 (5)

RMSE �
																		
1
m
∑m

i�1 y i( )
true − y i( )

pre( )2√
(6)

R2 score � 1 −
1
m∑m

i�1 y i( )
true − y i( )

pre( )2
1
m∑m

i�1 y i( )
true − y

−( )2 (7)

where ytrue was the actual values of samples, ypre was the

predicted values of samples, m was the number of samples.

SEN � TP

TP + FN
(8)

SPE � TN

FP + TN
(9)

ACC � TP + TN

TP + FN + FP + TN
(10)

MCC � TP*TN − FP*FN																																							
TP + FN( )* TP + FP( )* TN + FN( )* TN + FP( )√

(11)
where TPmeant true positive; TNmeant true negative; FP meant

false positive; FN meant false negative.

Furthermore, the area under the Receiver Operating

Characteristic (ROC) curve (AUC) was also used to evaluate

the model performance for the classification task. Specifically, the

best possible prediction was 100% sensitivity and 100%

specificity with area under the curve (AUC) of 1, while an

AUC value of ≤0.5 represented random selection.

2.2 Prediction and validation with
literature synergy data

To further verify the performance of constructed DeepMDS

model built above, literature validation was carried out. Sun’s work

(Sun et al., 2015) rated 17 drug pairs comprised of 12 single agents

(sorafenib, erlotinib, gefitinib, tamoxifen, everolimus, dasatinib,

sunitinib, BIBW-2992, thalidomide, PD98059, flavopiridol and

toremifene) based on their RACS model-predicted synergy.

Meanwhile, to confirm the predicted results, each drug pair was

experimentally tested at four different concentration ratios (4:1, 3:2,

2:3, and 1:4) using MCF-7 cell line. The synergistic effect of these

17 drug pairs was also predicted and ranked by DeepMDS using

target information and gene expression data of MCF-7 cell line.

DeepMDS’s predicted results were then compared to experimental

results from the literature to determine the model’s performance.

2.3 Prediction and validation by in vitro
cellular experiments

To further evaluate the capability of DeepMDS to predict the

synergy effect of multi-drug combinations, seven recommended

chemotherapy drugs (docetaxel, paclitaxel, doxorubicin,
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epirubicin, gemcitabine, 5-fluorouracil, and methotrexate) from

breast cancer clinical treatment guidelines (Telli and Carlson,

2009) were randomly grouped to generate drug combinations,

including drug pairs and high-order combinations. Following

that, the synergy effect of drug combinations was then predicted

using DeepMDS and evaluated using an in vitro cell viability

assay. In brief, 120 drug combinations were constructed using

seven chemotherapeutic agents (II2-II28 indicated two-drug

combinations, III10-III56 indicated three-drug combinations,

Ⅳ16–Ⅳ70 indicated four-drug combinations,

Ⅴ21–Ⅴ56 indicated five-drug combinations,

Ⅵ16–Ⅵ28 indicated six-drug combinations, Ⅶ7 indicated

seven-drug combinations).

Following the collection of target information for each

medication from GDSC, PubChem, and DrugBank, the

datasets were pre-processed to construct prediction samples.

To examine the synergistic effect of the aforementioned drug

combinations, three distinct subtypes of breast cancer cell lines

were used: MCF-7, MDA-MB-468, and MDA-MB-231.

Furthermore, to validate DeepMDS’s robustness and

applicability, this model was used to predict another cancer

cell line A549 from lung tissue. Each cell line’s gene

expression data were analyzed and then utilized to construct

prediction samples. Finally, DeepMDS was used to predict the

sample datasets. For each cell line, the optimized DeepMDS

model predicted and ranked the IC50 values of 120 drug

combinations.

The corresponding validation experiments were carried out

in vitro. MCF-7, MDA-MB-468, MDA-MB-231, and A549 cell

lines were obtained from the Cell Bank of Type Culture

Collection of Chinese Academy of Sciences (CBTCCCAS).

Four cancer cells were cultured in DMEM medium

supplemented with 10% fetal bovine serum, and kept at 37°C

and 5% CO2 in a humidified incubator. Docetaxel, paclitaxel,

doxorubicin, epirubicin, gemcitabine, 5-Fluorouracil and

methotrexate were purchased from Meryer (Shanghai, China),

and the purity of each drug (compound) is above 98%. Each drug

(compound) was dissolved in DMEM medium and then used

alone or in combination with other drugs at various

concentration ratios so that we could ensure each drug

attained its best synergistical ratio throughout a wide

concentration range (Table 1). Then, exponentially growing

cells were seeded in 96-well plates at a density of 5×103 per

well and cultured for 24 h.

Afterward, the cells were then treated for 72 h with a variety

of single drugs or multi-drug combinations at a series of diluted

concentrations. There are three replicates for each measurement,

and the cytotoxicities of individual drugs or combinations were

determined using the cell counting kit-8 (CCK-8) assay.

IC50 values for each sample was calculated in line with the

manufacturer’s instructions. In addition, the combination index

(CI) (Chou and Talalay, 1984) was calculated using the

CompuSyn software (Chou and Martin, 2007), and then CI

values were applied to define and quantify the synergistic

effect of each drug combination. In general, a drug

combination is synergistic if the CI value is less than 0.9,

additive if the CI value is between 0.9 and 1.1, and

antagonistic if the CI value is greater than 1.1 (Sun et al.,

2016). In this study, a drug combination was considered

synergistic if the CI values for all concentration ratios were all

less than 0.9.

2.4 Pathway enrichment analysis of drug
combinations

To explore the synergistic mechanism of predicted

combinations in given cell lines, KEGG pathway enrichment

analysis was performed on the specific feature genes of cancer cell

lines and the target information of drug combinations, and the

pathways of synergistic combinations against different cancer cell

lines were compared.

3 Results

3.1 Overview of DeepMDS model

Here, we present DeepMDS, a Deep Neural Network (DNN)-

based methodology for the prediction of the pseudo-IC50 values

of a series of drug combinations in a given cell line. Figure 2

illustrates the framework of the DeepMDS, which contains two

main features: 1) identification of top-ranked drug combinations

from a pool of drug pairs and combinations of three or more

compounds, that is, high-order combinations, and 2) cancer cell

line-specific prediction by integrating gene expression profile,

target information of drugs, and drug responses. In other words,

DeepMDS not only allows us to predict the most potent

combination, but it also allows us to deliver the best

prospective combination susceptible to a specific molecular

subtype of cancer cells, which mimics the way that precision

medicine is utilized in clinical trials.

3.2 Model comparison

We first validated our DeepMDS using the test dataset and

compared it to four other machine learning-based methods

(Table 2 and Table 3). In terms of performance metrics,

regardless of whether the regression task is used to predict he

pseudo-IC50 values or the classification task is used to identify

positive results, it is clear that our deep learning model

outperformed those developed using traditional machine

learning algorithms. In specific, DeepMDS achieved a test

MSE of 2.50 in the regression task, while GBM, SVM, RF and

KNN models performed poorly with MSEs of 5.75, 8.66,

Frontiers in Pharmacology frontiersin.org07

She et al. 10.3389/fphar.2022.1032875

13

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1032875


13.11 and 16.73, respectively. Along with MSE, two more

evaluation metrics, RMSE and R2_score, showed a similar

trend. It is worth mentioning that the square root of R2_score

equals the Pearson correlation coefficient in this case, as R2_score

was used to determine the linear correlation between predicted

and actual values in this regression task. In the classification

challenge, DeepMDS also outperformed the competition,

increasing the ACC to 0.94 and the AUC to 0.97, while the

second-best approach, the GBM model, achieved an ACC of

0.86 and an AUC of 0.92.

Additionally, we compared the performance of DeepMDS

to that of DeepSynergy, a deep learning-based model for

predicting synergy in a given cell line. DeepSynergy achieved

an ACC of 0.92 and an AUC of 0.90 for classification, and an

MSE of 255.49 and an RMSE of 15.91 for regression. As shown

in Table 2 and 3, our DeepMDS still performed well. Also,

DeepMDS achieved a SEN of 0.95 and a SPE of 0.93 for the

classification task, compared to 0.57 and 0.95 for DeepSynergy.

Moreover, we compared the performance of DeepMDS against

other deep learning-based methods. DeepMDS predictions

showed a significant correlation with actual combination

viabilities (Pearson’s r = 0.93, Supplementary Table S1),

outperforming other four models developed in the last

2 years. These findings demonstrated that the strength of our

deep learning-based model, which was able to achieve steady

and robust model performance in both regression and

classification tasks, as well as superior accuracy in drug

synergy prediction.

TABLE 1 The settings of concentration ratios for different drug combinations.

The number of drugs in a combination Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

Two 1:1 2:1 1:2 — — —

Three 1:1:1 2:1:1 1:2:1 1:1:2 — —

Four 1:1:1:1 2:1:1:1 1:2:1:1 1:1:2:1 1:1:1:2 —

Five 1:1:1:1:1 2:1:1:1:1 1:2:1:1:1 1:1:2:1:1 1:1:1:2:1 1:1:1:1:2

Note: roman numerals, including Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, and Ⅵ, indicated different drug molar ratios in a drug combination.

TABLE 2 Model performances of prediction models for regression task.

Model MSE RMSE R2_score

DeepMDS 2.50 1.58 0.86

GBM 5.75 2.40 0.81

SVM 8.66 2.94 0.75

RF 13.11 3.62 0.72

KNN 16.73 4.09 0.67

DeepSynergy 255.49 15.91 0.73

Note: The columns showed mean square error (MSE), root mean square error (RMSE) and R-Square (R2_score).

TABLE 3 Model performances of prediction models for classification task.

Model SEN SPE MCC ACC AUC

DeepMDS 0.95 0.93 0.88 0.94 0.97

GBM 0.87 0.85 0.72 0.86 0.92

SVM 0.81 0.85 0.66 0.83 0.89

RF 0.74 0.82 0.56 0.78 0.83

KNN 0.75 0.71 0.46 0.73 0.76

DeepSynergy 0.57 0.95 NA 0.92 0.90

Note: The columns showed sensitivity (SEN), specificity (SPE), Matthews correlation coefficient (MCC), accuracy (ACC), and the performance measures area under ROC, curve (AUC).

“NA” indicated that no MCC, data was provided in literature.
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3.3 Literature validation

To verify our DeepMDS’s predictive power, we first focused

on previously published drug combinations, the majority of

which were paired combinations. Seventeen drug pairs and

twelve single agents were predicted using DeepMDS and were

shown to be consistent with published literature (Sun et al., 2015)

(Supplementary Data Sheet S5). Notably, the output layer of the

DeepMDS was the predicted pseudo-IC50 value for each

combination, which did not represent the actual therapeutic

efficacy but was used to rank the therapeutic efficacies of

multi-drug combinations. Here we confined the predicted

outcomes to pairwise drug combinations and ranked 17 drug

pairs according to their increasing pseudo-IC50 values, followed

by a comparison to experimental data from the literature

(Figure 3).

Four of the seventeen drug pairs in the reference data were

validated as having significant synergistic antitumor effects at

optimal dose ratios (Sun et al., 2015), as seen by the dark green

coloration in Figure 3. DeepMDS re-ranked these drug

combinations, revealing that three highly synergistic couples

were correctly predicted in the top five combinations.

Sorafenib and dasatinib and gefitinib and toremifene, the next

two most effective medication combinations, also revealed

synergistic mechanisms at all drug ratios. Notably, the

bottom-ranked combination was verified to exhibit additive or

even antagonistic effects, as predicted by DeepMDS. Collectively,

the ranking of pairwise combinations predicted by DeepMDS

was largely comparable with experimental data from the

literature (Sun et al., 2015), demonstrating our model’s

adeptness at filtering and enriching synergistic medication

combinations.

3.4 De novo prediction of multi-drug
combinations for specific cancer cell lines

To further explore DeepMDS’s ability to predict novel high-

order combinations, we chose seven anticancer drugs that have

been approved by the FDA for breast cancer (National

Comprehensive Cancer Network, 2021). These drugs were

randomly assigned into 120 combinations, ranging from

simple drug pairs to more sophisticated three- or more-drug

combinations. The anticancer activity of these combinations was

then predicted using our DeepMDS on four cancer cell lines,

followed by in-house experimental validation.

Regarding the heterogeneous biological markers of breast

cancer cell lines, we chose three representative subtypes: MCF-7

FIGURE 3
The comparison results between DeepMDS and literature. The synergy effect of each drug pair was retrieved from literature (Sun et al., 2015),
and described using combination index (CI). The left ranking was predicted using RACSmodel, validated by in vitro experiments onMCF-7 (Sun et al.,
2015). Dark green indicated strong synergy (CI < 0.3); pale green indicated synergy (0.3 < CI < 0.9); yellow indicated additive (0.9 < CI < 1.1); and red
indicated antagonism (CI > 1.1). The different CI values of each drug pair were calculated at four dual-drug ratios, including 4:1, 3:2, 2:3, and 1:4.

Frontiers in Pharmacology frontiersin.org09

She et al. 10.3389/fphar.2022.1032875

15

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1032875


for luminal A subtype (ER+, PR+/−, HER2−), MDA-MB-468 for

basal subtype (ER−, PR−, HER2−), and MDA-MB-231 for

claudin-low subtype (ER−, PR−, HER2−), the latter two of

which were also referred to as triple-negative cell lines

(Holliday and Speirs, 2011). For the sake of comparison, one

lung cancer cell line A549 was chosen to assess the prediction

ability of DeepMDS. Then, 120 drug combinations were ranked

according to their predicted pseudo-IC50 values for each cell line.

According to the findings (Table 4), the top three synergistic

combinations for MCF-7 and MDA-MB-468 shared

commonalities, including III12 and III7. When compared to

MDA-MB-468, the top three choices for another triple-negative

MDA-MB-231 had no similar result. The top three regimens for

MDA-MB-231 were combinations of more than three drugs,

includingⅣ33, Ⅴ32 andⅣ59. On another A549 lung cancer cell

line, Ⅱ28, Ⅲ12 and Ⅲ52 were the top three.

3.5 Experimental validation of predicted
synergistic combinations

Subsequently, an in vitro cell viability study was undertaken

on each cancer cell line to evaluate the predicted findings.

IC50 values for individual drugs were first obtained for each

TABLE 4 The top three predicted combinations for a variety of cancer cell lines.

Predicted
ranking

MCF-7 MDA-MB-468 MDA-MB-231 A549

1 III12 (doxorubicin, docetaxel,
and gemcitabine)

Ⅲ12 (doxorubicin, docetaxel
and gemcitabine)

Ⅳ33 (doxorubicin, gemcitabine,
methotrexate, and paclitaxel)

Ⅱ28 (epirubicin and
paclitaxel)

2 Ⅲ7 (doxorubicin, 5-
Fluorouracil, and docetaxel)

Ⅱ3 (doxorubicin and docetaxel) Ⅴ32 (doxorubicin, docetaxel, gemcitabine,
methotrexate, and paclitaxel)

Ⅲ12 (doxorubicin,
epirubicin, and paclitaxel)

3 Ⅲ18 (doxorubicin, gemcitabine,
and paclitaxel)

Ⅲ7 (doxorubicin, 5-
Fluorouracil and docetaxel)

Ⅳ59 (5-Fluorouracil, docetaxel,
methotrexate and epirubicin)

Ⅲ52 (docetaxel, epirubicin,
and paclitaxel)

FIGURE 4
The anti-cancer effects of seven single drugs on four cancer cell lines (A). The anti-cancer effects of seven single drugs on three breast cancer
lines, including luminal A subtype MCF-7 (A), basal subtype MDA-MB-468 (B), and claudin-low subtypeMDA-MB-231 (C). Also, the anti-tumor ability
of seven individual drugs were examined on a lung cancer cell A549 (D).
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cancer cell line (Figure 4). Then, in a similar fashion, the

synergistic effects of predicted drug combinations were

measured for each cell line.

3.5.1 Synergistic effects of predicted
combinations on luminal a breast cancer cell line

For MCF-7 cell line, the results indicated that realistic

IC50 values for single drugs ranged from 138.3 nM to

97.25 μM, with docetaxel exhibiting the best anti-cancer ability

and 5-fluorouracil exhibiting the least (Figure 4A). In light of the

ranked combinations, several combinations containing the top

three (Ⅲ12, Ⅲ7 and Ⅲ18), the middle level ones (Ⅲ40, Ⅲ43 and

Ⅲ47), and the bottom three (Ⅲ9, Ⅲ44 and Ⅲ41) were examined

on MCF-7 cell line using the defined drug ratios listed in Table 1.

As a result, the lowest IC50 value for each combination across

all drug ratios was considered the best experimental result and

was used to rank the synergistic effect (Table 5). Except for the

bottom combinations Ⅲ9 and Ⅲ44, the rest of experimental

results were identical to the predicted order. With respect to the

combinationsⅢ9 andⅢ44, the actual IC50 values reversed their

ranking, which could be explained in part by the fact that both

combinations elicited strong antagonistic responses on MCF-7

cell line, and DeepMDS may be insensitive to negative examples

with additive or antagonistic effects. Additionally, the associated

CI values of drug combinations were also calculated

(Supplementary Figure S1). The top three combinations had a

clear synergy impact on MCF-7 cell line (0.3 < CI < 0.9), with

Ⅲ12 exhibiting the strongest synergy effect (CI < 0.3). By

contrast, the middle three and the bottom three demonstrated

antagonism effect (CI > 1.1).

To further evaluate DeepMDS’s accuracy and robustness,

the best synergistic combination, III12, was compared to

different combinations including either two or all three

drugs from III12 at the optimal drug ratio. For example, we

chose Ⅱ19 (docetaxel/gemcitabine, 2:1), Ⅱ3 (doxorubicin/

docetaxel, 1:2), and Ⅱ4 (doxorubicin/gemcitabine, 1:1) as

components of III12 (Figure 5A); and other groups,

IV27 and IV28, contained the whole combination setting of

TABLE 5 The anti-cancer effects of nine combinations of three drugs on MCF-7 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅲ12 90.43 31.37 30.88 42.94 30.88

2 Ⅲ7 290.99 101.66 56.52 85.66 56.52

3 Ⅲ18 102.14 128.37 88.62 168.34 88.62

62 Ⅲ40 2268.13 535.42 5823.46 308.97 308.97

63 Ⅲ43 640.90 6386.59 4144.85 598.10 598.10

65 Ⅲ47 10584.30 827.17 18532.30 10219.80 827.17

118 Ⅲ9 23145.90 11,675.80 2121.31 2784.08 2121.31

119 Ⅲ44 2606.11 2197.47 1499.70 1523.97 1499.70

125 Ⅲ41 6022.00 354825.00 84020.00 24170.00 6022.00

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

FIGURE 5
The comparison of anti-cancer effect on MCF-7 cell line
between III12 and related combinations. (A). The comparison of
anti-cancer effect on MCF-7 cells between III12 and related
pairwise combinations that were extracted from III12. (B). The
comparison of anti-cancer effect on MCF-7 cells between
III12 and four-drug combinations which included the entire
III12 composition.
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III12 (Figure 5B). In addition, the commonly used clinical

combinations (Ⅲ55: gemcitabine, epirubicin and paclitaxel,

and Ⅱ3: doxorubicin and docetaxel) (Telli and Carlson, 2009)

were assessed under the same circumstance as combination

Ⅲ12. Not unexpectedly, in vitro cellular experimental results

indicated that Ⅲ12 continues to exhibit the best anti-cancer

synergistic activity when compared to any other combination

(Table 6 and Supplementary Figure S2). Taking all the above

validation data into account, the predicted Ⅲ12 (doxorubicin,

docetaxel and gemcitabine) was the most synergistic

combination for the MCF-7 cell line.

3.5.2 Synergistic effects of predicted
combinations on triple-negative breast cancer
cell line

Additionally, for the MDA-MB-468 cell line (triple-

negative basal subtype), IC50 values for various drugs

ranged from 881.6 nM to 536.2 μM, with paclitaxel

exerting the greatest anti-cancer ability (Figure 4B). Then,

the synergy impact of the top three combinations at various

drug ratios was evaluated on MDA-MB-468. Similarly, Ⅲ12

(doxorubicin, docetaxel, and gemcitabine) achieved the best

IC50 value of 115.5 nM when used in a 2:1:1 M ratio

(Table 7). Additionally, the clinically used drug

combinations Ⅲ55 (gemcitabine, epirubicin, and paclitaxel)

(Telli and Carlson, 2009) was evaluated, and its best

IC50 value was 774.2 nM, ranking 27th in the predicted

results.

However, another triple-negative claudin-low subtype,

MDA-MB-231, showed different drug responses. For example,

monotherapy demonstrated that epirubicin had the lowest

IC50 value of 2.81 μM while 5-fluorouracil remained the

worst one (Figure 4C). Experiments indicated that IV33, a

four-drug combination, was the best of the predicted top

three. Two commonly used drug combinations (Ⅲ55 and Ⅱ3)
in clinical treatment were also compared, and it was discovered

that Ⅲ55, which was ranked 27th, and Ⅱ3, which was ranked

70th, had significantly higher IC50 values and inferior anticancer

activity (Table 8).

In addition, the synergistic mechanisms of all combinations

were calculated for MDA-MB-468 and MDA-MB-231,

respectively. With regards to MDA-MB-468, all three top

combinations indicated strong synergy at each drug ratio,

with CI values smaller than 0.3. Besides, the clinically used

Ⅲ55 showed strong synergy (CI = 0.27) and modest synergy

(CI = 0.74) at 2:1:1 and 1:2:1 ratios, respectively; however, this

regime had additive effect and antagonistic effect at the ratio of 1:

1:2 (CI > 0.9) and 1:1:1 (CI > 1.1), respectively (Supplementary

Figure S3). For the MDA-MB-231 cell line, the top two, IV33 and

V32, exhibited strong synergistic effect at all drug ratios.

However, the ranked third combination IV59 would exhibit

some antagonistic activity at the ratio of 1:1:1:1 and 1:2:1:1,

while still presenting strong synergy at other ratios. By contrast,

II3 and III55, both of which have been used in clinical practice,

had at least modest synergistic effects at each drug ratio

(Supplementary Figure S4).

TABLE 6 The comparison results of anti-cancer effect between clinically used combinations and Ⅲ12 on MCF-7 cell line.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅲ12 90.43 31.37 30.88 42.94 30.88

60 Ⅱ3 570.00 440.00 377.18 — 377.18

92 Ⅲ55 3695.00 7789.00 9444.00 814.10 814.10

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

TABLE 7 The anti-cancer effects of drug combinations on MDA-MB-468 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅲ12 137.80 115.50 410.50 468.50 115.50

2 Ⅱ3 353.90 207.60 443.30 — 207.60

3 Ⅲ7 3497.00 522.90 1561.00 2767.00 522.90

27 Ⅲ55 3095.00 774.20 1056.00 1613.00 774.20

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

Frontiers in Pharmacology frontiersin.org12

She et al. 10.3389/fphar.2022.1032875

18

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1032875


3.5.3 Validation of predictive specificity for
various breast cancer subtypes

The predicted result’s specificity for cancer cell lines was

further confirmed. Ⅳ33, the best drug combination for MDA-

MB-231, was evaluated using other subtypes of breast cancer cell

lines such as MCF-7 and MDA-MB-468. Rather than that, Ⅲ12,

which shown the greatest anticancer activity against MCF-7 and

MDA-MB-468, was evaluated in a similar manner against MDA-

MB-231. IV33 was predicted to rank 66th for MCF-7 and 33rd

for MDA-MB-468, respectively, and Ⅲ12 was predicted to rank

10th for the MDA-MB-231 (Table 9). Experiments proved the

anticancer abilities of various combinations predicted for each

specific subtype. And regardless of the drug ratio,Ⅳ33 exhibited

antagonistic activity against MCF-7; however, Ⅳ33 had

synergistic anti-cancer effects on MDA-MB-468 at all but 1:1:

1:1 and 1:1:1:2. Compared with the outcomes of IV33 on 2 cell

lines, Ⅲ12, which performed slightly better on MDA-MB-231,

exhibited synergy effect at all ratios.

To identify the potential synergistic mechanism of Ⅲ12 and

Ⅳ33 on various breast cancer subtypes, KEGG pathway

enrichment analysis was carried out with a p-value cutoff of

0.01 (Supplementary Figure S7). The enrichment analysis

showed that pathway in cancer, PI3K-Akt signaling pathway

and notch signaling pathway were the common pathways of

Ⅲ12 and Ⅳ33 on three breast cancer subtypes. More

importantly, MAPK signaling pathway may be a special

mechanism for the synergistic anti-cancer effect of Ⅲ12 on

MCF7 and MDA-MB-468, and Rap1 signaling pathway may

be another important mechanism forⅢ12 onMCF7. In addition,

MAPK signaling pathway was the common pathway of Ⅳ33 on

three breast cancer subtypes. Further analysis revealed that Gap

junction may not contribute significantly to the synergistic anti-

cancer effect of Ⅳ33. Collectively, each subtype of breast cancer

cell lines had its own best synergized drug combinations,

indicating an excellent specificity of DeepMDS for cell line

subtypes that reflect dramatic genetic and epigenetic changes

during the development of cancer.

3.5.4 Synergistic effects of predicted
combinations on lung cancer cell line

An additional lung cancer cell line, A549, was used to examine

the applicability of DeepMDS. It first predicted the synergistic

anticancer effects of 120 drug combinations using DeepMDS

(Supplementary Data Sheet D6), and then six combinations that

ranked at the top two (Ⅱ28 andⅢ21), middle level (Ⅲ12 andⅢ47),

or bottom two (Ⅲ41 and Ⅲ42) were examined in terms of cellular

TABLE 8 The anti-cancer effects of drug combinations on MDA-MB-231 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

1 Ⅳ33 177 52 139 2152 167 — 52

2 Ⅴ32 1087 743 868 852 219 552 219

3 Ⅳ59 147,600 1952 19,260 244 850 — 244

27 Ⅲ55 1506 5757 1793 5019 — — 1506

70 Ⅱ3 7983 9414 4567 — — — 4567

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

TABLE 9 The anti-cancer effect of Ⅲ12 and Ⅳ33 on MCF-7, MDA-MB-231 and MDA-MB-468 cells.

Group number Cell line The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

Ⅲ12 MCF-7 90.4 31.3 30.8 42.9 — 30.8

MDA-MB-468 137.8 115.5 410.5 468.5 — 115.5

MDA-MB-231 15,720 8044.0 887.0 4666.0 — 887.0

Ⅳ33 MCF-7 8090.0 787.6 4355.0 788.9 1296.0 787.6

MDA-MB-468 2803.0 1275.0 1988.0 1451.0 2665.0 1275.0

MDA-MB-231 177.5 52.3 139.8 2152.0 167.5 52.3
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toxicity. IC50 values of individual drug ranged from 0.44 μM to

50.23 μM, with doxorubicin exerting the best anti-cancer ability and

5-fluorouracil still having the weakest efficacy (Figure 4D). It was

shown that the anti-cancer capacity of various combinations at their

optimal drug ratios was compatible with the predicted results of

DeepMDS, thereby proving the reliability of this model for

predicting potential multi-drug combinations (Table 10).

When we looked at the mechanisms of action for these

combinations, it was clear that the synergy effect at every

drug ratio was the most noticeable benefit of the top two

combinations. Combinations in the middle (III47), as well as

those at the bottom, showed additive or antagonistic effects at the

majority of the ratios, but the 30th-ranked combination (III12)

also demonstrated a strong synergistic mechanism in some cases

(Supplementary Figure S6). It is possible that some underlying

drug-target interactions, which were part of the overall

synergistic mechanism, were not collected in the current

training dataset because the predicted rank for Ⅲ12 and

Ⅲ42 differed from the experimental results. Big biomedical

data, which is becoming more widely available, could help us

better predict the best combination for a given cancer cell line.

4 Discussion

Although it is now well established that combination therapies

are significantly more effective at treating complicated disorders,

experimentally assessing novel combinations is difficult due to the

huge number of possible drug combinations. In this study, a deep

learning-based model (DeepMDS) was successfully built to expedite

the development of novel synergistic multi-drug combinations for

clinical cancer treatment. DeepMDS enabled the ranking of all

multi-drug combinations constructed randomly from a pool of

medications using large-scale integrated features taken from gene

expression profiles of human cancer cell lines, the multiscale

interactome, and drug response data. Also, the predicted ranking

of drug combinations revealed the likely mechanisms of action; for

example, the higher ranked combination had a significantly greater

synergy impact, whereas the lower ranked combination would have

an antagonistic effect. DeepMDS performed admirably in terms of

accuracy. For the classification job, it earned an ACC of 0.94, an

AUC of 0.97, a SEN of 0.95, and a SPE of 0.93. When facing a

regression task, this model achieved a MSE of 2.50 and a RMSE of

1.58. A lack of experimental validation for some deep learning-based

models may result in erroneous and/or unprofitable predictions

when evaluating combinations of unknown druggable chemicals,

natural products, and/or new cell lines. So, an in vitro cell

experiment with seven clinically used anti-cancer drugs was used

to test the ranked drug combinations predicted by DeepMDS in this

work. In comparison to other drug combinations, it is clear that all of

the predicted optimal synergistic combinations had a significant

synergistic anti-cancer effect on each individual cell line.

As per the knowledge of authors, one of the biggest advantages

of our model is to accurately predict the most promising three- or

more-drug combinations for a certain cancer cell line. High-order

combinations of drugs, as opposed to simple drug pairs, can regulate

many anti-cancer networks simultaneously, hence improving tumor

growth inhibition efficacy while avoiding drug resistance. Results

indicated that DeepMDS leveraged its ability to rank high-order

combinations which were randomly formed in the training space

and so far untested. In addition, another advantage of DeepMDS is

to predict synergistic combinations specific to a cancer cell line and

even to a subtype of cell line. Experiments demonstrated that

DeepMDS consistently gained high prediction performance

across various subtypes of breast cancer cells and tissue-specific

cancer cell lines. For example, III12 (doxorubicin, docetaxel and

gemcitabine) had the best synergistic anti-cancer activity on

hormone-responsive breast cancer cell line MCF-7, but Ⅳ33

(doxorubicin, gemcitabine, methotrexate and paclitaxel) and

Ⅲ12 were the most effective combinations against claudin-low

MDA-MB-231 and basal MDA-MB-468, respectively, for triple-

negative breast cancers. A549, a lung cancer cell line, was also used to

evaluate the cell line specificity of DeepMDS, and one drug pair

(Ⅱ28) was found to be the best regimen. Therefore, it doesn’t matter

what the multi-drug combinations are, DeepMDS was able to

accurately predict and rank synergistic combinations against the

TABLE 10 The anti-cancer effects of drug combinations on A549 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅱ28 181.5 140.9 73.8 — 73.8

2 Ⅲ21 240.6 194.2 240.3 234.1 194.2

30 Ⅲ12 215.1 135.4 128.4 191.1 128.4

41 Ⅲ47 1353.0 696.8 750.7 3213.0 696.8

119 Ⅲ41 9304 15,100 4739 15,110 4739

125 Ⅲ42 1353 3807 1112 1223 1112

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.
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cell line of interest, showing a wide range of applications. DeepMDS,

in particular, makes it easier in the future to give targetedmulti-drug

combinations when taking into account the heterogeneity in

genomic data of each patient.

To further validate the prediction power of DeepMDS for

unseen combinations, clinically used breast cancer drug

combinations, including II3 (doxorubicin and docetaxel) and

Ⅲ55 (gemcitabine, epirubicin, and paclitaxel), were tested in

three subtypes of breast cancer cell line and, by extension,

compared with the predicted best combinations. As a result, the

IC50 values of Ⅱ3 and Ⅲ55 against MCF-7 increased about tenfold

to twentyfold when compared to the predicted best combination

(III12). Also, for triple-negative MDA-MB-468, this triple-drug

combination (III12) was predicted to be the best, with an

IC50 value of approximately 55.6 percent of II3’s and

14.9 percent of III55’s, respectively. In another triple-negative

MDA-MB-231, we observed that the IC50 values of II3 leaped

by about 88-fold, of III55 by 28.9-fold, when compared to the best

combination IV33. Thus, it is possible to apply the novel synergistic

drug combinations predicted by DeepMDS for breast cancer clinical

trials, especially with regard to the triple negative breast cancer.

During the construction of machine learning and deep

learning models, data are of critical relevance. In some cases,

low quality predictive performance was mainly due to the

incomplete dataset. For example, DeepSynergy was unable to

accurately predict the response of novel medications and novel

cell lines; more specifically, DeepSynergy indicated MSEs

between 414 and 500 for novel drugs, and MSEs between

387 and 461 for novel cell lines. Because there were only

38 training instances of chemical compounds and cell lines,

the authors speculated that the low prediction performance

was due to a lack of training data (39 examples). In this case,

the larger-scale integrated modeling datasets (201,405), which

include 1,000 human cancer cell lines and 1839 chemicals, could

substantially improve the performance and increase the accuracy

of ranking the combinations. Another characteristic is the

incorporation of drug-target data into modeling data. Rather

than relying on descriptors of chemical structures to compare the

structure similarity of two drugs, the drug-target information

drives our prediction model to produce more accurate results in a

biomedical context, which is beneficial for elucidating the

underlying mechanisms of synergy action.

However, one limitation of our suggested strategy is that the

modeling data contains insufficient information on drug targets. As

a result, in some situations, a portion of a drug’s target information

may be omitted from the existing features, resulting in a discrepancy

between predicted and actual outcomes. Notably, we did not feel that

this constraint would eliminate the clinical use of our DeepMDS. By

updating experimental drug targets data or adding predicted drug

targets, this problem can be solved and the prediction accuracy of

DeepMDS can be further enhanced. In addition, drug concentration

ratio is also important for the synergistic effect of drug combination.

Due to the lack of available data on drug concentration ratios of drug

combinations and the corresponding synergies, in this model, it was

assumed that the drug concentration of each drug was sufficient to

act on their targets and produce efficacy. We will continue to

develop a computational method to predict the optimal drug

concentration ratio for drug combination in future studies.

Despite the limitations, our prediction model was able to

translate monotherapy data into clinically useful predictions and

expand the Universe of possible synergistic medication

combinations, prioritizing promising multi-drug combinations for

distinct types of cancer.

5 Conclusion

In this study, we developed a deep learning-based model that

could aid in the discovery of the probable best combinations for a

certain cell line or cell subtype. With regard to the high-cost

experimental screening of drug combinations, our DeepMDS

would significantly simplify the process of prioritizing the most

promising multi-drug combinations for future pre-clinical

studies. More importantly, our experimental validation proved

that high-order combinations including three or more drugs, in

most of cases, consistently outperformed drug pairs typically

utilized in clinical treatment. Also, precise and robust prediction

of drug combinations could identify the possible targeted

combinations for personalized medicine, thereby expediting

the development of combination therapy to combat against

drug resistance and to improve efficacy.
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Network pharmacology-based
approach to explore the
underlying mechanism of
sinomenine on sepsis-induced
myocardial injury in rats

Linggang Sun, Zhiyun Chen, Yunjie Ni and Zhengfei He*

Department of Cardiology, The First People’s Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China

Background: Sepsis, a systemic disease, usually induces myocardial injury (MI),
and sepsis-induced MI has become a significant contributor to sepsis-related
deaths in the intensive care unit. The objective of this study is to investigate the
role of sinomenine (SIN) on sepsis-induced MI and clarify the underlying
mechanism based on the techniques of network pharmacology.

Methods: Cecum ligation and puncture (CLP) was adopted to induce sepsis in
male Sprague-Dawley (SD) rats. Serum indicators, echocardiographic cardiac
parameters, and hematoxylin and eosin (H&E) staining were conducted to
gauge the severity of cardiac damage. The candidate targets and potential
mechanism of SIN against sepsis-induced MI were analyzed via network
pharmacology. Enzyme-linked immunosorbent assay was performed for
detecting the serum concentration of inflammatory cytokines. Western blot
was applied for evaluating the levels of protein expression. Terminal
deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay was
applied to assess cardiomyocyte apoptosis.

Results: SIN significantly improved the cardiac functions, and attenuated
myocardial structural damage of rats as compared with the CLP group. In total,
178 targets of SIN and 945 sepsis-related geneswere identified, and 33 overlapped
targets were considered as candidate targets of SIN against sepsis. Enrichment
analysis results demonstrated that these putative targets were significantly
associated with the Interleukin 17 (IL-17) signal pathway, inflammatory
response, cytokines-mediated signal pathway, and Janus Kinase-Signal
Transducers and Activators of Transcription (JAK-STAT) pathway. Molecular
docking suggested that SIN had favorable binding affinities with Mitogen-
Activated Protein Kinase 8 (MAPK8), Janus Kinase 1 (JAK1), Janus Kinase 2
(JAK2), Signal Transducer and Activator of Transcription 3 (STAT3), and nuclear
factor kappa-B (NF-κB). SIN significantly reduced the serum concentration of
Tumor Necrosis Factor-α (TNF-α), Interleukin 1 Beta (IL-1β), Interleukin 6 (IL-6),
Interferon gamma (IFN-γ), and C-X-C Motif Chemokine Ligand 8 (CXCL8),
lowered the protein expression of phosphorylated c-Jun N-terminal kinase 1
(JNK1), JAK1, JAK2, STAT3, NF-κB, and decreased the proportion of cleaved-
caspase3/caspase3. In addition, SIN also significantly inhibited the apoptosis of
cardiomyocytes as compared with the CLP group.
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Conclusion: Based on network pharmacology analysis and corresponding
experiments, it was concluded that SIN could mediate related targets and
pathways to protect against sepsis-induced MI.

KEYWORDS

sinomenine, sepsis, myocardial injury, network pharmacology, pathway

1 Introduction

Sepsis is a potentially fatal organ failure resulted from aberrant
or dysfunctional host response to infection (Salomao et al., 2019).
According to epidemiological investigations, 270,000 of the
1.7 million sepsis patients in the U.S. died in 2014, and sepsis
has emerged as a prominent contributor to mortality among patients
admitted to hospitals (McLaughlin et al., 2020). The incidence of
sepsis is rising in China at a rate of 1.5% each year. Besides, the aging
population and the wide application of invasive surgery contribute
to the increase of morbidity and mortality of severe sepsis year by
year (Corrales et al., 2022). Clinical and fundamental research
showed that sepsis affects the cardiovascular system of patients,
with myocardial injury (MI) occurring in about 40%–50% of them
and leading to a death rate of 70%–90% (Xie et al., 2021). Sepsis-
induced MI is first characterized by dysfunctions including
decreased myocardial contractility and biventricular dilatation
with decreased left ventricular ejection fraction (LVEF), followed
by morphological changes such as myocardial cell degeneration,
focal necrosis, and blurred myocardial striated lines. However, no
targeted treatments are now available for sepsis-induced MI.
Currently, multiple studies have linked the elevated inflammatory
cytokines with sepsis-induced MI, and inflammation inhibition has
been regarded as a promising therapeutic strategy for sepsis-
induced MI.

Recently, the application of traditional Chinese Medicine
(TCM) in treating sepsis-induced MI is attracting increasing
attention. For instance, ShenFu injection showed favorable
efficacy in treating sepsis-induced MI by reducing mitochondrial
apoptosis (Xu et al., 2020). Sinomenine (SIN), as an alkaloid isolated
from the root and stem of Sinomenium acutum (Thunb.) Rehder et
Wilson or S. acutum var. cinereum., has been utilized extensively in
the treatment of rheumatic diseases and arrhythmia (Liu et al.,
2018). Accumulating evidence revealed that SIN exhibits diverse
pharmacological effects, for instance, it is anti-inflammatory (Zeng
and Tong, 2020), anti-cancer (Song L. et al., 2021), and analgesic
(Jiang et al., 2020). Recently, SIN was reported to ameliorate lung
injury in sepsis. The Nuclear factor erythroid 2-related factor 2-
Kelch Like ECH Associated Protein 1 (Nrf2-Keap1) axis (Wang
et al., 2020) or altering intestinal homeostasis through the aryl
hydrocarbon receptor/Nrf2 axis (Song W. et al., 2021) are two
potential mechanisms by which SIN could reduce septic acute
lung damage in rats. Liu et al. claimed that SIN could improve
lipopolysaccharide (LPS)-induced cardiomyocyte injury in vitro
(Liu et al., 2021). Therefore, it is necessary to investigate the
potential application and underlying mechanisms of SIN in
treating sepsis-induced MI.

Network pharmacology has been developed by integrating
biochemistry, bioinformatics, and system biology for studying the
complex mechanism of TCM and discovering potential targets and

mechanisms associated with various TCM monomers, such as
artemisinin (Lin et al., 2021), melatonin (Song W. et al., 2021),
and SIN (Li et al., 2021). In this study, the effects of SIN on cardiac
dysfunctions was evaluated based on a rat model of sepsis. Network
pharmacology was employed to identify SIN’s possible targets and
pathways against sepsis-induced MI, and the binding affinity
between SIN and corresponding candidate targets was simulated
by molecular docking. Furthermore, the candidate targets and
pathways were also validated in vivo.

2 Materials and methods

2.1 Prediction of SIN targets

The structure of SIN (CID: 5459308) was downloaded from the
database of PubChem (https: https://pubchem.ncbi.nlm.nih.gov/).
The candidate targets of SIN were predicted by the online tools of
PharmMapper database (http://www.lilab-ecust.cn/pharmmapper/
), Swiss Target Prediction (http://www.swisstargetprediction.ch/),
HERB database (http://herb.ac.cn/), and TCM potential target
database (TCM-PTD, http://tcm.zju.edu.cn/). After merging the
results obtained from the four databases and excluding non-
human genes, the rest genes were regarded as potential targets
of SIN.

2.2 Screening sepsis-related genes

Sepsis-related genes were screened out fromGeneCards (https://
www.genecards.org/), Online Mendelian Inheritance in Man
(OMIM, https://www.omim.org/), and Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/). “Sepsis”
was used as a keyword for searching. After removing duplicates,
the rest were identified as sepsis-related genes.

2.3 Network and enrichment analysis

The protein-protein interaction (PPI) of the shared targets
between SIN and sepsis were retrieved from STRING (https://
string-db.org/) with a medium confidence, and the PPI network
was constructed with the use of Cytoscape software (https://
cytoscape.org/). The topological parameters were calculated by
the “Network Analyzer” plug-in. The “clusterprofiler” R package
was used to analyze the enrichment of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The
default threshold was set at a Bonferroni-corrected p-value of ≤0.05.
The SIN-pathway-gene network was then established using
Cytoscape software.
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2.4 Molecular docking

Molecular docking analysis of SIN and its related targets was
conducted with the use of AutoDock Vina software (version
1.1.2) to anticipate the strength of their interaction. The 2D
structure of SIN was obtained from PubChem. The crystal
structure of SIN-targets was obtained from RCSB protein data
bank (RCSB PDB: https://www.rcsb.org/), including Mitogen-
Activated Protein Kinase 8 (MAPK8, 3elj), nuclear factor kappa-
B (NF-κB, 7RG5), Janus Kinase 1 (JAK1, 4ei4), Janus Kinase 2
(JAK2, 7f7w), and Signal Transducer And Activator of
Transcription 3 (STAT3, 6nuq). Before the docking, PyMoL
(version 4.5.0) software was used for protein preparation by
removing water molecules, solvent molecules, and other
protein chains. Then, the software of AutoDock Tools 1.5.
6 was used to add nonpolar hydrogens and calculate Gasteiger
charges of protein structures. The Lamarckian Genetic algorithm
was used to perform the conformational search and generate
100 conformations. The conformation with the best affinity was
selected as the final docking conformation. The 2D diagrams of
the SIN-targets complex were generated using LigPlus (version 2.
24), and the 3D complex was visualized by PyMoL.

2.5 Animal model and SIN treatment

The Institutional Animal Care and Use Committee of Zhejiang
Center of Laboratory Animals approved the animal procedures
and experimental protocols (Approval Number: ZJCLA-IACUC-
20020101). Male Sprague-Dawley (SD) rats (180–200 g) were
obtained from Hangzhou Medical College Laboratory Animal
Center, and maintained in a specified pathogen-free
environment with unlimited availability of food and water on a
12-h day and night cycle. The sepsis model was induced by cecum
ligation and puncture (CLP), following the previously described
procedures (Mishra and Choudhury, 2018). The four
groups—sham, CLP, CLP + LSIN, and CLP + HSIN
groups—each containing ten experimental rats, were randomly
allocated. The exposed cecum of the rats was sutured with 3–0 silk
suture 1.2 cm to its distal end and punctured twice with a 22-gauge
needle to create sepsis model. Following the surgical procedure, all
rats received a subcutaneous injection of 50 mL/kg compound
sodium chloride. The rats in the sham group underwent
identical procedures as described above, excluding the CLP
treatment. In the CLP + LSIN and CLP + HSIN groups, rats
received SIN administration via tail vein injection at doses of
50 mg/kg and 100 mg/kg, respectively, 15 min prior to sepsis
induction. After 24 h of sepsis, the hearts were extracted and a
total of 500 mL blood was collected to obtain serum.

2.6 Determination of serum biochemical
parameters

After blood collection from each group of rats, serum obtained
by subjecting the blood samples to centrifugation at 3,000 g/min for
30 min. An automated analyzer (Modular DPP H7600; Roche
Diagnostics, Basel, Switzerland) was employed to assess the

serum concentration of lactate dehydrogenase (LDH) and
creatine kinase and its MB isoenzyme (CK-MB). Enzyme linked
immunosorbent assay (ELISA)-based assay was performed for the
concentration detection of cardiac troponin I (cTnI, mlbio, China,
Shanghai), cardiac myosin light chain-1 (cMLC1, EK-Bioscience,
China, Shanghai), as well as several inflammatory cytokines such as
Tumor Necrosis Factor-α (TNF-α, Applygen, China, Beijing),
Interleukin 1 Beta (IL-1β, wksubio, China, Shanghai), Interleukin
6 (IL-6, Thermo Fisher Scientific, USA, Massachusetts), C-X-C
Motif Chemokine Ligand 8 (CXCL8, Shanghai yiyan bio-
technology Co. Ltd., China, Shanghai), and Interferon gamma
(IFN-γ, Sino Biological, China, Beijing) in plasma.

2.7 Echocardiography

The cardiac parameters were evaluated after 12 h of CLP by
echocardiography according to the methodology reported
previously (Bayer et al., 2021). The rats were anesthetized with a
mixture of 2% isoflurane and 0.5 L/min 100% O2 before they were
positioned on a warming pad (37 °C). A Vevo 2,100 Imaging System
was used to take echocardiographic measures (FUJIFILM
VisualSonics, Inc., Toronto, Ontario, Canada). To evaluate heart
functioning, the ejection fraction (EF) and left ventricular interior
dimension (LVID) were calculated. All measurements were
conducted by a cardiologist who was unaware of the
experimental details, ensuring a blinded assessment.

2.8 Hematoxylin and eosin (H&E) staining

The rat myocardial tissues were collected from every group 24 h
after CLP and immediately fixed with 4% paraformaldehyde
overnight at room temperature to facilitate subsequent
histological analysis. The materials were then divided into 4 μm-
thick slices and embedded in paraffin. After that, the slices
underwent H&E staining and onserved under a light microscope
at a magnification of ×400.

2.9 Western blot

The myocardial tissues were homogenized using Radio
Immunoprecipitation Assay (RIPA, Thermo Fisher Scientific,
USA, Massachusetts) lysis buffer, and subsequently centrifuged
at 13,200 g at 4°C for 30 min. To determine the protein
concentrations, the Bradford assay was conducted, and the
supernatant was collected for total protein analysis.
Subsequently, the extracted proteins (25 μg) were subjected to
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) for seperation, blotted and probed with the following
antibodies: anti-c-Jun N-terminal kinase 1 (JNK1, ab199380,
Abcam, UK, Cambridge, 1/2,500), anti-phospho-JNK1
(ab215208, Abcam, UK, Cambridge, 1/1,000), anti-NF-κB
(ab16502, Abcam, UK, Cambridge, 1/1,000), anti-phospho-NF-
κB (ab76302, Abcam, UK, Cambridge, 1/1,000), anti-JAK1
(ab133666, Abcam, UK, Cambridge, 1/1,000); anti-phospho-
JAK1 (ab215338, Abcam, UK, Cambridge, 1/5,000); anti-JAK2
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(ab108596, Abcam, UK, Cambridge, 1/1,000); anti-phospho-
JAK2 (ab32101, Abcam, UK, Cambridge, 1/1,000); anti-STAT3
(ab68153, Abcam, UK, Cambridge, 1/2000); anti-phospho-
STAT3 (ab76315, Abcam, UK, Cambridge, 1/1,000); anti-
Caspase-3 (9662S, Cell Signaling Technology, USA,
Massachusetts 1/1,000); anti-Cleaved Caspase-3 (9664S, Cell
Signaling Technology, USA, Massachusetts). For loading
control, the blots were probed with antibody for GAPDH
(ab8245, Abcam, UK, Cambridge, 1/500). The blots were
measured by the chemiluminescence system (Millipore,
Billerica, MA, USA), and the signals were quantified by
densitometry. Use ImageJ 1.8.0 (https://imagej.nih.gov/ij/) to
read the density of the bands.

2.10 Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) staining

TUNEL test was used to ascertain the rate of cardiomyocyte
apoptosis in the heart tissues of rats according to relevant
instructions (Roche, USA). The heart tissue sections were fixed
and permeated, followed by co-staining of TUNEL and 4′,6-
diamidino-2-phenylindole (DAPI).

2.11 Statistical analysis

Statistical analyses were performed using SPSS 25.0 software,
and the results were reported as the mean ± standard deviation. A
p-value ≤0.05 is considered to be statistically significant.

3 Results

3.1 SIN improved the cardiac function of
septic rats

To determine whether SIN has cardioprotective effects, the rats
that developed sepsis via CLP were examined using
echocardiography. SIN demonstrated a dose-dependent effect in
significantly increasing the low EF in rats with CLP-induced sepsis,
whereas significantly reduced the elevated LVID of septic rats in the
CLP group. These findings suggested that SIN ameliorated cardiac
function in septic rats (Figures 1A–C). Moreover, histopathological
changes in the rat myocardial tissues were observed via H&E
staining to assess the beneficial effect of SIN on MI in septic rats.
As shown in Figure 1D, there was no degeneration, necrosis, or
aberrant alterations in the myocardial interstitium of rats in the

FIGURE 1
SIN increased the survival of rats with sepsis brought on by CLP and reduced the severity of the cardiac dysfunction those animals experienced. (A)
Representative images of echocardiography for each group. Ejection fraction (B) and left ventricular internal dimension (C) were assessed using
echocardiography as indicators of cardiac function. (D) Rat cardiac tissues’ histological alterations at 12 h after CLP (H&E staining, ×40). n = 6. *p < 0.05,
**p < 0.01.

Frontiers in Pharmacology frontiersin.org04

Sun et al. 10.3389/fphar.2023.1138858

27

https://imagej.nih.gov/ij/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1138858


sham group, although they did have obvious transverse stripes of
myocardial fibers. Rats in the CLP group showed significant
pathological changes in their myocardial tissues, including
myocardial fiber partial rupture and breakdown, myocardial
stripe blur partial disappearance, and interstitial edema. Notably,
administration of 50 and 100 mg/kg SIN considerably reduced these
pathogenic alterations.

3.2 SIN attenuated the myocardial injuries of
septic rats

Four serum biomarkers were used in this study for evaluation of
the myocardial injuries of rats: LDH, CK-MB, cMLC1, and cTnI
(Shiroorkar et al., 2020). Twelve hours after CLP surgery, the
concentrations of LDH, CK-MB, cTnI, and cMLC1 in the serum
were measured in each group. As shown in Figure 2, the
concentration of LDH, CK-MB, cMLC1, and cTnI in the serum
of septic rats was obviously elevated as compared with the normal
rats, indicating the presence of CLP-induced MI. Importantly, SIN
demonstrated a dose-dependent effect in significantly decreasing the

aforementioned injury in rats with CLP-induced sepsis. These data
suggested that SIN can attenuate MI and ameliorate myocardial
function.

3.3 Potential targets and pathways of SIN
against sepsis-induced MI

Figure 3A depicts the chemical structure of SIN. In total,
178 targets of SIN were identified (Supplementary Table S1),
including 55 in SwissTargetPrediction, 103 in PharmMapper,
16 in HERB, and 10 in TCM-PTD. Meanwhile, 945 sepsis-related
genes were screened out from GeneCard (902), OMIM (77), and
Therapeutic Target Database (TTD) (67) (Supplementary Table S2).
There were 33 shared targets between the targets of SIN and sepsis-
related genes, as shown in Figure 3B. These proteins were identified
as candidate targets of SIN against sepsis. Figure 3C shows the PPI
network of these common targets, and the top 4 nodes with a greater
degree were TNF, IL6, IL1β, and STAT3, respectively. These data
indicated that the four targets play more crucial roles in the
treatment of sepsis-induced MI by SIN.

FIGURE 2
SIN reduced the cardiac dysfunction brought on by CLP. (A) Rat serum LDH response to SIN. (B) Rat serum CK-MB response to SIN. (C) Rat serum
cMLC1 response to SIN. (D) Rat serum cTnI response to SIN. n = 6. *p < 0.05, **p < 0.01.
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To reveal the potential functions and pathways of the
candidate targets, functional enrichment analyses were
conducted accordingly, and the findings are summarized in
Supplementary Tables S3, S4. Figure 4A displays the top
10 GO terms for biological process, cellular component, and
molecular function. It was demonstrated that the candidate
targets were primarily associated with cytokines mediation,
inflammatory response, and phosphorylation of STAT protein.
The enriched KEGG pathways primarily included Interleukin 17
(IL-17) signaling pathway, nucleotide-binding oligomerization
domain (NOD)-like receptor signaling pathway, as well as
various pathways related to viral or inflammatory diseases
(Figure 4B). To better understand the correlations between
candidate targets and enriched pathways, a gene-pathway
network was established. Figure 4C illustrates that the larger
the node font is, the more pathways the corresponding target are
involved in.

3.4 Binding affinity of SIN with target
proteins

The candidate targets’ possible binding modes with SIN were
evaluated using molecular docking analysis (Figure 5). The autodock
scores were summarized in Table 1, and a lower score indicated a
better binding affinity between SIN and the proteins. Our data
indicated that SIN was most tightly bound to JAK1 and loosely
bound to JNK1. Additionally, hydrogen bonds were observed in all
SIN-target complexes and the O3 in SIN was prone to form
hydrogen bonds with residues. The main groups that bind
residues with H donor moieties at the terminal are believed to be
the carbonyl, methoxy, and hydroxy groups. The 2D and 3D
docking images showed that SIN interacted with JAK1, JAK2,
STAT3, JNK1, and NF-κB via hydrogen bonds and hydrophobic
contacts. These data indicated that SIN can interact with JAK1,
JAK2, STAT3, JNK1, and NF-κB to form compact complexes.

FIGURE 3
The candidate targets of SIN against sepsis-induced MI. (A) The structure of SIN. (B) Venn diagram of the genes associated with sepsis and SIN
targets. (C) The PPI network of the 33 candidate targets was generated by Cytoscape.

Frontiers in Pharmacology frontiersin.org06

Sun et al. 10.3389/fphar.2023.1138858

29

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1138858


Therefore, the influence of SIN on the protein expression of these
targets was further validated in vivo.

3.5 SIN regulated the inflammatory response
via JNK/NF-κB pathway

The IL-17 pathway was found to be implicated in the effects of
SIN on mitigating sepsis-induced cardiac dysfunction in this study
via network pharmacology and KEGG enrichment analysis. The
targets of SIN involved in the IL-17 signal pathway, including JNK1,
NF-κB, IL-1β, etc., were found and illustrated in Figure 4C.

Therefore, the effect of SIN on these targets were detected in
vivo. As shown in Figure 6A, SIN demonstrated a significant
dose-dependent effect in significantly reversing the increased
inflammatory cytokines induced by CLP, including TNF-α, IL-1β,
IL-6, IFN-γ, and CXCL8. Based on molecular docking simulations,
SIN was found to exhibit binding affinity with JNK1 and NF-κB, and
may have potential impacts on the phosphorylation of these targets.
The expression levels of p-JNK1 and p-NF-κB were shown to be
significantly elevated by CLP, but reduced after treatment with SIN
(Figure 6B). Taken together, these findings implied that the IL-17
signal pathway is expected to attenuate the effect of SIN on sepsis-
induced MI.

FIGURE 4
A network pharmacology approachwas used to determine the fundamentalmechanisms of SIN against sepsis. (A) The top 10 terms of GO analysis of
the candidate targets of SIN against sepsis-induced MI. CC: cellular component, BP: biological process, MF: molecular function. (B) The top 20 pathways
of KEGG pathway enrichment analysis that ranked by gene count. (C) The SIN-targets-pathway network showed detailed interactions between the hub
targets and pathways. Orange cycles stand in for hub targets, while green circles represent the top 20 pathways that SIN uses to combat sepsis.
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FIGURE 5
The 3D and 2D diagrams showing the molecular docking pose of SIN with (A) STAT3, (B) JAK1, (C) JAK2, (D) NF-κB, and (E) JNK1.

TABLE 1 The autodock score and hydrogen bonds of putative targets with sinomenine from molecular docking analysis.

Genes PDB accession number Autodock score (kcal/mol) Hydrogen bonds

JAK1 4ei4 −6.23 Asn1008(OD1):SIN(O3)

Arg1007(NH1):SIN(O3)

JAK2 7f7w −5.54 Thr636(OG1):SIN(O2)

Thr636(OG1):SIN(O1)

Leu551O):SIN(O3)

JNK1 3elj −5.25 Asp112O):SIN(O3)

Met111O):SIN(O3)

NF-κB 1ikn −6.06 Asp297N):SIN(O1)

Phe295N):SIN(O3)

STAT3 6nuq −5.59 Glu638N):SIN(O4)

Tye640(OH):SIN(O1)

Glu638O):SIN(O4)

Abbreviation: SIN, sinomenine; PDB, protein data bank.
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3.6 SIN decreased cardiomyocyte apoptosis
by regulating JAK/STAT signal pathway

The JAK/STAT axis was associated with the progress of MI,
and the biological processes involving JAK/STAT axis were found
to be related to the protection of SIN from sepsis-induced MI.
Here, we evaluated the impact of SIN on the phosphorylation
levels of JAK1, JAK2, and STAT3, along with the apoptosis of
myocardial tissues. The findings revealed a notable increase in
the apoptotic level of cardiomyocytes and the expression of
p-JAK1, p-JAK2 and p-STAT3 in the septic rats as compared
with normal rats, whereas SIN treatment exhibited a dose-
dependent effect in reducing cardiomyocyte apoptosis and
phosphorylation of JAK1, JAK2 and STAT3 (Figures 7A,B).
TUNEL assay performed on heart slices revealed an elevated
number of TUNEL-positive nuclei in septic rats induced by CLP,
whereas SIN demonstrated a dose-dependent effect in reducing
the elevated number of TUNEL-positive nuclei in septic rats
(Figure 7C). The ratio of cleaved-casp3/caspase-3 was
significantly increased in the septic rats compared to the
normal rats, but rats with sepsis that received SIN treatment
showed a lower ratio of cleaved casp3/caspase-3 (Figures 7D,E).
These data corroborated the apoptosis results detected by
TUNEL assays. These finding suggested that SIN treatment
might ameliorate activated cardiomyocyte apoptosis in rats
with sepsis via the JAK/STAT signal pathway.

4 Discussion

Sepsis, a major contributor to infection-related death, poses a
challenge for healthcare systems around the world. The key to
treating sepsis in clinical settings revolves around the
administration of antimicrobial medicines to combat underlying
infection. In recent decades, natural compounds exhibiting
antibacterial and anti-inflammatory properties have been
increasing utilized for the prevention of human diseases during
the past few decades (McBride et al., 2020). Natural alkaloid SIN,
having anti-inflammatory, immunoregulatory (Liu et al., 2020),
anti-angiogenic (Feng et al., 2019) and other diverse
pharmacological effects, is obtained from Sinomenium acutum
Rehder. Previous studies have confirmed that SIN improved lung
injury in sepsis by mediating gut homeostasis (Wang et al., 2020),
and its hydrochloride salt could protect against polymicrobial sepsis
via autophagy (Jiang et al., 2015). However, the potential therapeutic
effects of SIN on sepsis-induced MI remain unclear. The findings of
the present study suggested that SIN was favorable to improve the
cardiac dysfunction of rats with sepsis, which was specifically
manifested in the aspects of reducing the mortality rate,
improving the cardiac functions, as well as ameliorating the MI
of septic rats. Accumulating evidence has demonstrated the multiple
and diverse mechanisms underlying the diverse functions of SIN in
different diseases. SIN has a significant inhibitory effect on
Glioblastoma multiforme (GBM) in advanced gliomas (Zheng

FIGURE 6
The regulation of SIN on the targets in the IL-17 signal pathway. (A) Comparison of serum concentration of inflammatory cytokines in each
group. (B,C) The expression levels of JNK1/NF-κB and phosphorylated JNK1/NF-κB were examined. n = 6. *p < 0.05, **p < 0.01.
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et al., 2021). It prevents acute lung injury in sepsis by regulating
intestinal microbiota and restoring intestinal barrier through aryl
hydrocarbon receptor/NRF2-dependent pathway (Song W. et al.,
2021), and also regulates the rationality of neuroimmune interaction
to exert analgesic effects (Lai et al., 2022). Nonetheless, the specific
mechanism of the action of SIN on sepsis-induced MI remains
poorly understood.

In this study, a total of 33 putative targets were obtained by
merging the SIN-targets and sepsis-related targets, and there were
3 genes with a higher degree: TNF-α, IL-6, and IL-1β. Many studies
have confirmed the regulation of SIN on the gene expression or
secretion of these 3 cytokines in sepsis (Deng et al., 2022; Pei et al.,
2022). The results of the current study also confirmed that SIN could
induce increased secretion of TNF-α, IL-6, and IL-1β in CLP-
induced sepsis. TNF-α is a vital pro-inflammatory cell cytokine
that can trigger inflammatory cascades and cause multiple clinical
symptoms in patients with sepsis, such as hypotension, disseminated
intravascular coagulation, and organ failure. Recent studies
suggested that TNF-α (−238 G/A) polymorphism was associated
with the progression of sepsis (Georgescu et al., 2020). It has been
considered as promising therapeutic target for treating sepsis and
MI (Jin et al., 2013), and anti-TNF-α immunotherapy has been
developed for treating sepsis (Qu et al., 2018). IL-6 is another pro-
inflammatory cytokine that is critical in immune and inflammatory

responses. High levels of IL-6 have been shown to be associated with
an increased risk of severe sepsis and a higher mortality rate (Deng
et al., 2022). Additionally, IL-6 (174G/C) polymorphism was proved
to be associated with an increased susceptibility to sepsis (Hu et al.,
2019). Uncoupling of IL-6 signaling and Microtubule-associated
protein 1 light chain 3 (LC3)-associated phagocytosis was reported
to cause immunoparalysis during sepsis (Akoumianaki et al., 2021).
Genetic variants in IL-1β has been confirmed to be a risk factor for
sepsis and MI (Varljen et al., 2020; Pan et al., 2021), and contribute
to the clinical course of sepsis (Montoya-Ruiz et al., 2016).
Therefore, it suggested that SIN might protect against sepsis-
induced MI via targeting TNF-α, IL-6, and IL-1β.

Multiple pathways, including the IL-17 signal pathway, the
NOD-like receptor signaling pathway, and the TNF signaling
pathway, were identified to be prospective targets of SIN against
sepsis. IL-17 is a pro-inflammatory cytokine that could activate
Interleukin 16 (IL-16) production (Yao et al., 1995). It is crucial in
the development of several malignancies, inflammatory and
autoimmune diseases, and infectious diseases. It is of great
pathophysiological significance in sepsis via IL-17-mediated
response and signal transduction (Ge et al., 2020). In sepsis,
recent investigations suggested that IL-17 may function as a
biomarker and a therapeutic target (Bosmann and Ward, 2012;
Ahmed Ali et al., 2018). In this study, there were nine targets of SIN

FIGURE 7
The effects of SIN on the JAK/STAT pathway and cardiomyocyte apoptosis. (A,B) The expression levels of JAK1, JAK2, STAT3, and phosphorylated
JAK1, JAK2, and STAT3 were assessed via Western blot. (C) The apoptosis level of cardiomyocytes was detected by TUNEL staining. (D,E) The protein
expression of caspase-3 and cleaved-caspase-3 were evaluated. n = 6. *p < 0.05, **p < 0.01.
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involved in the IL-17 signal pathway, including JNK1, NF-κB,
CXCL8, IL-6, TNF-α, cyclooxygenase-2 (COX2), IL-1β, IFN-γ,
and Matrix metalloproteinase-9 (MMP9). According to the
results of this study, SIN administration reduced the elevated
secretion of inflammatory cytokines, including CXCL8, IL-6,
TNF-α, COX2, IL-1β, and IFN-γ in the CLP model, and reversed
the increased phosphorylation levels of JNK1 and NF-κB induced by
CLP. It has been reported that SIN can reduce the phosphorylation
levels of JNK1 and NF-κB in macrophages, thus slowing down the
inflammatory response caused by Lipopolysaccharides (LSP)-
induced sepsis (Teng et al., 2012). A series of compounds were
revealed to be effective in improving the LSP-induced sepsis via
activation or deactivation of JNK1 and NF-κB (Hsu et al., 2013;
Rocca et al., 2021). Meanwhile, JNK1 and NF-κB are closely related
to cardiac pathologies (Xia et al., 2016; Singh et al., 2020). As a result,
it can be inferred that SIN regulated the inflammatory cytokines via
targeting JNK1 and NF-κB in the IL-17 signal pathway, which could
eventually contribute to the its protective role in sepsis-induced MI.
This finding may be helpful in determining new therapy directions
for sepsis-induced MI.

GO analysis demonstrated that the candidate targets of SIN
against sepsis were mainly associated with biological processes of
cytokines, inflammation, and protein phosphorylation. Notably, our
findings indicate a robust engagement of the Janus Kinase-Signal
Transducers and Activators of Transcription (JAK-STAT) axis of
the candidate targets of SIN against sepsis-inducedMI. Western blot
analysis showed a significant regulation of the phosphorylation of
JAK2 and STAT3 after SIN exposure in CLP rats. JAKs-STATs
signal pathways, known as the pivotal downstream signaling
components of cytokine receptors, play a crucial role in
mediating the biological effects of cytokines (Villarino et al.,
2017). It contributes to organ damage and other dysfunctions in
sepsis and offers novel therapeutic possibilities for sepsis (Cai et al.,
2015; Clere-Jehl et al., 2020). Moreover, the JAK-STAT pathway is
an integral part of myocardial response to various cardiac injuries
and plays a prominent role in cardioprotective therapies (Barry et al.,
2007). Cardiomyocyte apoptosis is robustly confirmed to be
associated with the development of sepsis (Li et al., 2019), and
regulated via the JAK-STAT pathway (Zhang et al., 2022).
Therefore, we detected the cardiomyocyte apoptosis in each
group in this study, and the findings demonstrated that the level
of cardiomyocyte apoptosis in SIN groups was much lower than that
in the CLP group. These findings suggested that SINmay preventMI
in sepsis by controlling cardiomyocyte apoptosis through the JAK-
STAT pathway.

5 Conclusion

In conclusion, SIN improved the mortality rate and cardiac
function of septic rats, and ameliorated sepsis-induced MI. Potential
targets and pathways of SIN against sepsis were identified through
network pharmacology analysis integrating molecular docking

simulation. The proposition that SIN protects against sepsis-
induced MI via targeting multiple proteins and regulating
cytokine secretion and cardiomyocyte apoptosis was finally
experimentally validated.
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binding orientation and affinity of
noncovalent inhibitors of the
papain-like protease (PLpro) from
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protein flexibility by using
molecular dynamics and
cross-docking
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The papain-like protease (PLpro) from zoonotic coronaviruses (CoVs) has been
identified as a target with an essential role in viral respiratory diseases caused by
Severe Acute Respiratory Syndrome-associated coronaviruses (SARS-CoVs). The
design of PLpro inhibitors has been proposed as an alternative to developing
potential drugs against this disease. In this work, 67 naphthalene-derived
compounds as noncovalent PLpro inhibitors were studied using molecular
modeling methods. Structural characteristics of the bioactive conformations of
these inhibitors and their interactions at the SARS-CoV-1 PLpro binding site were
reported here in detail, taking into account the flexibility of the protein residues.
Firstly, a molecular docking protocol was used to obtain the orientations of the
inhibitors. After this, the orientations were compared, and the recurrent
interactions between the PLpro residues and ligand chemical groups were
described (with LigRMSD and interaction fingerprints methods). In addition,
efforts were made to find correlations between docking energy values and
experimentally determined binding affinities. For this, the PLpro was sampled
by using Gaussian Accelerated Molecular Dynamics (GaMD), generating multiple
conformations of the binding site. Diverse protein conformations were selected
and a cross-docking experiment was performed, yielding models of the
67 naphthalene-derived compounds adopting different binding modes.
Representative complexes for each ligand were selected to obtain the highest
correlation between docking energies and activities. A good correlation (R2 =
0.948) was found when this flexible docking protocol was performed.
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1 Introduction

Zoonotic coronaviruses (CoVs) are important viral pathogens
whose most recent species, the Severe Acute Respiratory Syndrome
(SARS)-CoV-2, has been causing a worldwide emergency due to its
rapid spread since the end of 2019. Previous CoV events caused by
the SARS-CoV-1 (2002–2003) and the Middle East Respiratory
Syndrome (MERS)-CoV (2012) were antecedents that showed the
danger constituted by CoVs. After the SARS-CoV-1 appeared in
Guangdong province in China in November 2002, affecting three
continents and causing many deaths (Wang and Chang, 2004),
researchers investigated the mechanisms of viral infection to
discover options to provide treatment for patients infected with
zoonotic CoVs. The results of these investigations made it possible to
identify molecular targets currently being investigated to find
specific drugs against CoVs. Research to modulate these targets
has included the repurposing of already approved drugs (De Savi
et al., 2020; Gordon et al., 2020; Indari et al., 2022; Khataniar et al.,
2022) and the design of new specific drugs (Cannalire et al., 2022).

Infection with CoVs triggers the encoding of several protein
targets with recognized functions relevant to the virus infection. The
proteases 3CLpro and PLpro were identified as responsible for
preprocessing translated multidomain polyproteins from the viral
RNA genome (Hilgenfeld, 2014; Zhu et al., 2021). Since 2003, details
of the structure and functions of 3CLpro have been reported; its
structural and mechanistic aspects have been elucidated, offering
multiple avenues as starting points for the design of antiviral
compounds directed against CoVs (Ullrich and Nitsche, 2020).
On the other hand, the less studied PLpro also plays critical
biochemical events for coronavirus replication. It is vital in viral
pathogenesis and is associated with processes of deubiquitination
and deISGylation of host cell proteins (Báez-Santos et al., 2015). In
association with viral protein processing, its enzymatic activity
triggers the host antiviral immune response antagonism.

The architecture of PLpro consists of four domains: the palm
domain, the thumb, the fingers, and an independent terminal
domain similar to the ubiquitin domains. The binding site of
PLpro is at the intersection between the palm and thumb
domains (Ratia et al., 2006), formed by a catalytic triad
composed of the residues Cys112-His273-Asp287 (in the SARS-
CoV-1 PLpro) and subsites that can be specifically occupied by the
substrate RLRGG (the C-terminus of ubiquitin). Closed and open
conformations of the binding site are available because of structural
changes in the six-residue BL2 loop, modulating substrate
recognition (Chaudhuri et al., 2011).

Targeting PLpro has become an attractive strategy to stop the
viral replication and infection caused by CoVs. In this sense, the
design of PLpro inhibitors has been proposed (Calleja et al., 2022).
In recent years, Ratia et al. synthesized a series of noncovalent
naphthalene-derived compounds as SARS-CoV-1 PLpro inhibitors
by high-throughput screening (Ratia et al., 2008; Ghosh et al., 2009;
Ghosh et al., 2010; Báez-Santos et al., 2014a). They act as reversible
competitive PLpro inhibitors by binding to the S3-S4 subsites
(Supplementary Figure S1). When bound, these compounds
induce the reorientation of the Y269 side chain, generating the
closure of the BL2 loop. Some of these compounds were co-
crystallized with PLpro, allowing an initial source to generate
more structural information explaining what structural aspects

contribute to the differences in the reported activities. With this
in mind, we carried out computational modeling studies of the
congeneric family of 67 naphthalene-derived compounds reported
by Ratia et al. (2008); Ghosh et al. (2010), Báez-Santos et al. (2014a),
Ghosh et al. (2009), providing relevant information about their
binding modes and the causes of their differential activities. We
assumed this information could be helpful for designing new
potential PLpro inhibitors.

2 Materials and methods

2.1 Preparation of naphthalene-derived
compounds

The 67 structures of naphthalene-derived compounds and their
IC50 values were collected from references of Ratia et al. (2008), Ghosh
et al. (2010), Báez-Santos et al. (2014a), Ghosh et al. (2009). The
chemical structures for each compound are in Table 1. Each compound
has a name formed by the letters A, B, C, and D to differentiate the
article of origin, followed by the compound identification in the article
(compounds from references (Ratia et al., 2008; Ghosh et al., 2010;
Báez-Santos et al., 2014a), and (Ghosh et al., 2009) are namedA_x, B_x,
C_x, and D_x, respectively). Table 1 represents a set of 24 inhibitors
(compounds A_x and D_x) that contain a benzamide and a set of
43 compounds (compounds B_x and C_x) that contain a
piperidine ring.

The structures were drawn in Maestro Molecular Editor
(Maestro 12.8.117, Schrödinger LLC, New York, NY, USA, 2021)
and processed using theMaestro’s module LigPrep. The protonation
states were estimated using Epik (Shelley et al., 2007) under a
physiological pH value of 7. In the case of compounds
containing two possible enantiomers or presented in racemic
form, both were chosen for molecular docking experiments to
explore interactions at the PLpro binding site.

2.2 Preparation of SARS-CoV-1 PLpro
structures

The three-dimensional (3D) crystallographic structures of the
SARS-CoV-1 PLpro were obtained from the Protein Data Bank
(PDB). We selected those structures co-crystallized with non-
covalent inhibitors derived from naphthalene in the S3 and S4
sub-sites of the protease. Four PLpro-ligand structures were
selected with the PDB IDs 3E9S (with GRL0617, resolution
2.50 Å) (Ratia et al., 2008), 3MJ5 (with B_15g, resolution 2.63 Å)
(Ghosh et al., 2010), 4OVZ (with C_3j, resolution 2.50 Å), and
4OW0 (with C_3k, resolution 2.10 Å) (Báez-Santos et al., 2014a).
The Protein Preparation Wizard (Schrödinger LLC, New York, NY,
USA, 2021) was used to improve PDB models. Missing atoms were
assigned, and hydrogen atoms were added to have all the atoms
represented and positioned explicitly. Crystallographic water
molecules were removed, and native zinc ions were retained.
Hydrogen bonding networks were optimized by reorienting
hydroxyl groups, thiol groups, asparagine and glutamine amide
groups, and histidine imidazole rings. Predictions of the
protonation states of the ionizable groups were performed.
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TABLE 1 Structures and activities of naphthalene-derived compounds as SARS-CoV-1 PLpro inhibitors.

Compound R1 R2 R3 R4 R5 IC50 (µM)

7724772 (S) Me 2-naphthyl H ____ ____ >200

7724772 (R) Me 2-naphthyl H ____ ____ 8.7 ± 0.7

A_3 (R) Me 2-naphthyl H ____ ____ 14.5 ± 0.9

A_4 (R) Me 2-naphthyl H ____ ____ >200

A_5 (R) Me 1-naphthyl H ____ ____ 2.3 ± 0.1

A_6 (R) Me 1-naphthyl NHAc ____ ____ 2.6 ± 0.1

A_7 (R) Me 1-naphthyl NO2 ____ ____ 7.3 ± 0.9

GRL0617 Me 1-naphthyl NH2 ____ ____ 0.6 ± 0.1

65778771 1-naphthyl H H 2-OMe ____ 59.2 ± 7.8

B_7a 1-naphthyl H H 4-OMe ____ 116 ± 30

B_7b 1-naphthyl H H 3-OMe ____ 30 ± 3

B_15a 1-naphthyl Me H 4-OMe ____ 1.21 ± 0.04

B_15b 1-naphthyl Me H 3-OMe ____ 0.34 ± 0.01

B_15c 1-naphthyl Me H 2-OMe ____ 0.34 ± 0.01

B_15d 2-naphthyl Me H 3-OMe ____ 13.2 ± 0.6

B_15e 2-naphthyl Me H 4-OMe ____ 34.8 ± 4.0

B_15f 2-naphthyl Me H 3-OMe ____ 5.8 ± 0.1

B_15g (R) 1-naphthyl Me H 3,4-O-CH2-O ____ 0.32 ± 0.01

B_15h (S) 1-naphthyl Me H 3,4-O-CH2-O ____ 0.56 ± 0.03

B_15i 1-naphthyl H H 3,4-O-CH2-O ____ ~45

B_15j 2-naphthyl H H 3,4-O-CH2-O ____ ~100

B_15k 1-naphthyl Gem-dimethyl H 3,4-O-CH2-O ____ >200

C_1a (R,S) 1-naphthyl CH2Me H 3,4-O-CH2-O ____ 17.2 ± 0.03

C_1b (R,S) 1-naphthyl CH2OH H 3,4-O-CH2-O ____ 32.0 ± 4.5

C_1c (R,S) 1-naphthyl CH2OMe H 3,4-O-CH2-O ____ >100

C_1d (R,S) 1-naphthyl CH2Ph H 3,4-O-CH2-O ____ >100

C_2a (R) 1-naphthyl Me H H ____ 2.2 ± 0.1

C_2b (R) 1-naphthyl Me (R)-Me H ____ 13.5 ± 1.2

C_2c (R) 1-naphthyl Me (S)-Me H ____ 12.7 ± 0.3

(Continued on following page)
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TABLE 1 (Continued) Structures and activities of naphthalene-derived compounds as SARS-CoV-1 PLpro inhibitors.

Compound R1 R2 R3 R4 R5 IC50 (µM)

C_2d (R) 1-naphthyl Me (R)-CH2OMe H ____ 18.0 ± 1.9

C_2e (R) 1-naphthyl Me (S)-CH2OMe H ____ 1.9 ± 0.1

C_3a (R) 1-naphthyl Me H 4-Et ____ 0.47 ± 0.01

C_3b (R) 1-naphthyl Me H 4-CO-NH-Me ____ 0.60 ± 0.02

C_3c (R) 1-naphthyl Me H 3-CO-NH-Me ____ 0.63 ± 0.01

C_3d (R) 1-naphthyl Me H 4-NH-CO-Me ____ 5.7 ± 0.5

C_3e (R) 1-naphthyl Me H 3-NH-CO-Me ____ 0.39 ± 0.01

C_3f (R) 1-naphthyl Me H 3-CH2-NH-CO-Me ____ 20.4 ± 1.2

C_3g (R) 1-naphthyl Me H 3-Cl ____ 27.2 ± 4.1

C_3h (R) 1-naphthyl Me H 4-Cl ____ 0.58 ± 0.02

C_3i (R) 1-naphthyl Me H 3,4-diF ____ 29.2 ± 2.1

C_3j (R) 1-naphthyl Me H 4-F ____ 0.49 ± 0.01

C_3k (R) 1-naphthyl Me H 3-F ____ 0.15 ± 0.01

C_4a (R,S) 8-quinolinyl 3-F-Ph-CH2 ____ ____ ____ 7.0 ± 0.7

C_4b (R,S) 5-quinolinyl 3-F-Ph-CH2 ____ ____ ____ 4.5 ± 0.2

C_4c (R,S) 5-isoquinolinyl 3-F-Ph-CH2 ____ ____ ____ 6.8 ± 0.3

C_4d (R,S) 1-isoquinolinyl 3-F-Ph-CH2 ____ ____ ____ 30.8 ± 2.6

C_5a (R) 1-naphthyl 3-pyridinyl-CH2 ____ ____ ____ 26.3 ± 2.3

C_5b (R) 1-naphthyl 4-pyridinyl-CH2 ____ ____ ____ 18.3 ± 0.9

C_5c (R) 1-naphthyl 2-methoxy-4-pyridinyl-CH2 ____ ____ ____ 0.35 ± 0.02

C_6a (R) 1-naphthyl 4-Cl-Ph-CH2CH2 ____ ____ ____ 1.6 ± 0.3

C_6b (R) 1-naphthyl 3-F-Ph-CH2CH2 ____ ____ ____ 1.9 ± 0.1

D_2 1-naphthyl Me H H 2-Me and 5-CH2NH2 0.46 ± 0.03

D_5a 2-naphthyl Me H H 3-Me 14.8 ± 5.0

D_5b 2-naphthyl Me H H 4-Me 29.1 ± 3.8

D_5c 2-naphthyl Me H H 2-OMe 90 ± 26

D_5d 2-naphthyl Me H H 3-OMe 13.5 ± 6.8

D_5e 2-naphthyl Me H H 4-OMe 149 ± 43

D_5f 2-naphthyl Me H H 2,6-diMe 12.1 ± 0.7

(Continued on following page)
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Finally, the structures were minimized using the OPLS force field
(Harder et al., 2016).

Given the conformational diversity of the binding site of the
naphthalene derivatives, we performed a previous analysis of the
structures to know in more detail about the flexibility of the binding
site of these compounds. For that, we aligned the structures coded
3MJ5, 4OVZ, and 4OW0 with the 3E9S structure and compared the
orientation of the residues distributed at 5 Å from the ligand with
root-mean-square deviation (RMSD) calculations (details in the
Supplementary Table S1). This information was used as material
for the development of subsequent analyses. In the comparison
between structures, very little variation was observed in the
conformations of the active site residues. Two orientations for
Gln270 were observed: the first orientation at 3E9S and the
second orientation at 3MJ5, 4OVZ, and 4OW0. The remaining
residues did not show significant differences among them.
Therefore, we selected 3E9S and 4OW0 (the latter having a
better resolution than its analogues) to perform the docking
calculations.

2.3 Docking calculations

Ligand-receptor docking calculations were performed using Glide
from the Schrödinger suite to obtain binding modes (Friesner et al.,
2004). The ligand arraywas docked inside the protein binding site using a
20 Å × 20 Å x 20 Å grid centered on residues corresponding to PLpro
subsites S3 and S4. Glide standard (SP) and extra precision (XP) modules
were used. Glide SP is a more indulgent function and allows the
identification of ligands with a reasonable tendency to bind. On the
other hand, the extra precision module (XP) is a more strict function,
which penalizes poses that violate physical-chemistry principles (Friesner
et al., 2006). Using these modules together allowed access to good quality
solutions. Glide SP was used to evaluate the ability of the protocol to find
poses with similar interactions to those present in the crystallographic
structures; meanwhile, the less indulgent XP function was used to obtain
the final docking poses, which were used to start the analysis.

Default settings were used, where a flexible ligand was sampled
in a rigid protein. Firstly, conformers were generated for each ligand.
During this process, ring conformations were discarded if their

energies were higher than that of the lowest conformation by more
than 2.5 kcal/mol. No more than 5000 poses per ligand were selected
to pass to the grid refinement calculation. The rough-score cutoff
(relative to the best rough score accumulated so far) for keeping
poses for refinement was 100. Then, at most 400 poses (in SP) or
800 poses (in XP) per ligand were kept for energy minimization.
During minimization, the distance-dependent dielectric constant
setting was 2.0, and the maximum number of minimization steps
(conjugate gradient minimization algorithm) was 100. The best five
poses were considered for selecting the best pose.

The best pose for each ligand was chosen by employing two
criteria. The first one corresponds to a score-based criterion, where
the Emodel score was considered to find the best pose for a given
ligand and the GlideScore to rank compounds based on their
binding to the receptor. After this, an interaction-based criterion
was considered, i.e., we selected poses that present interactions
similar to that of the co-crystallized naphthalene-derived
compounds.

2.4 LigRMSD

When docking congeneric compounds, we expect the binding
mode to be conserved with respect to those of co-crystallized
compounds in the PLpro structures selected for this study.
Therefore, we compared the binding poses obtained by
molecular docking calculations using the LigRMSD web server
(Velázquez-Libera et al., 2020). LigRMSD allows selecting the
maximum common substructure between the molecules being
compared, establishing matching graphs between them, and
calculating the RMSD between the equivalent atoms with
respect to the reference. The match is defined using the values
“%Ref” and “%Mol”. “%Ref” indicates the percentage of common
graphs between a docked compound and a selected reference,
related to the total number of atoms of the selected reference. On
the other hand, “%Mol” is the percentage of common graphs
between the docked compound and the selected reference, with
respect to the total number of atoms of the docked compound.
These values obtained from the LigRMSD server represent the
maximum similarity between the compounds being compared, so

TABLE 1 (Continued) Structures and activities of naphthalene-derived compounds as SARS-CoV-1 PLpro inhibitors.

Compound R1 R2 R3 R4 R5 IC50 (µM)

D_9 2-naphthyl Me H H 4-NH2 46.1 ± 13.0

D_21 1-naphthyl Me H Me 2-Me 22.6 ± 6.9

D_23 1-naphthyl Me H H 4-NH2 24.8 ± 1.0

D_29 1-naphthyl Me Me H 2-Me and 5-NH2 11.1 ± 1.3

D_33 1-naphthyl Me H H 2-Me and 5-CN 5.2 ± 0.5

D_40 1-naphthyl Me H H 2-CH2OMe and 5-NH2 2.7 ± 0.1

D_32 1-naphthyl Me H H 2-Me and 5-I 1.4 ± 0.3

D_47 1-naphthyl Me H H 2-Me and 5-CH2NHBoc 4.8 ± 0.4

D_49 1-naphthyl Me H H 2-Me and 5-CH2NHMe 1.3 ± 0.1
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high values of “%Ref” and “%Mol” are associated with high
similarity between the compared compounds.

Based on this, we compared the poses obtained using multiple
references. The poses of the co-crystallized ligand GRL0617 and
6577871 were used as references for compounds docked inside the
PDB with code 3E9S. In addition, the poses of the co-crystallized
compound C_3k and 7724772 were used as references for
compounds docked inside the PDB with code 4OW0.

2.5 Interaction fingerprint (IFP)

Recurrent chemical interactions between the docked poses of
ligands and residues in the SARS-CoV-1 PLpro binding site were
captured by Interaction fingerprints (IFPs) (Deng et al., 2004).
Maestro’s Interaction Fingerprint panel was used to build them.
This method describes the presence or absence of chemical
interactions between ligands and binding residues using bits
for the subsequent construction of an interaction matrix. Each
bit describes if a specific type of interaction takes place between
the ligand and a protein residue, considering hydrophobic (H),
polar (P), and aromatic (Ar) interactions. It is also possible to
detect whether a residue is acting as a hydrogen bond (HB)
acceptor (A) or donor (D) and electrostatic interactions with
charged groups (Ch). For this study, it was counted as an
interaction when a PLpro residue is within a maximum cutoff
distance of 4.0 Å between the heavy atoms with respect to the
ligand atoms.

2.6 Gaussian accelerated molecular
dynamics (GaMD) and correlation analysis

Molecular dynamics (MD) simulations were performed to
obtain a diverse sampling of the SARS-CoV-1 PLpro binding site.
They had to be carried out with ligands at the binding site to ensure
that the site remained open, allowing for the inclusion of other
ligands in the subsequent cross-docking calculations. When placing
a ligand, induce-fit effects may occur due to a specific ligand. To
mitigate the induced effects resulting from a single ligand, the PDB
protein structures with codes 3E9S and 4OW0, complexed with the
ligands GRL0617 and C_3k, were used to generate four PLpro-
ligand models (in the case of the structure with code 4OW0, only the
first chain was used). Two of these models were the original
structures 3E9S and 4OW0, containing the ligands GRL0617 and
C_3k, respectively. The other two models were the structures
previously obtained by docking 3E9S with C_3k and 4OW0 with
GRL0617. This approach aimed to introduce greater variation in the
starting structures.

Protein structures were prepared using the Protein Preparation
Wizard (Schrödinger LLC, New York, NY, USA, 2021). From this,
force field parameters and coordinate files were constructed using
LEAP from Amber (Case et al., 2005). A regular truncated
octahedral TIP3P water box with 12 Å between the solute and
the edges of the box was used for the simulations. The system
minimization was carried out for 10,000 steps. Two rounds of
equilibration were then performed. The system was heated to
310K for 1 ns using an isothermal-isovolumetric (NVT)

assembly, followed by an isothermal-isobaric (NPT) equilibration
for 80 ns.

To perform Gaussian accelerated molecular dynamics (GaMD)
(Miao and McCammon, 2017), the pmemd.cuda implementation of
Amber20 was used to generate four trajectories. We used the
LiGaMD method (Miao et al., 2020), based on GaMD, which was
necessary for more efficient sampling simulations of protein-ligand
complexes’ binding and unbinding process. First, a 60-ns MD
simulation was performed. The first 10 ns correspond to a
conventional preparatory MD, without statistical collection,
followed by 50 ns of LiGaMD. Next, a production simulation
was performed, which starts at 50 ns and extends up to 150 ns.
The VMD (Humphrey et al., 1996) and CPPTRAJ (Roe and
Cheatham, 2013) tools were used to analyze the trajectories.

The trajectories generated for all systems were grouped
using the K-means participle algorithm to obtain greater
conformational diversity. An internal script using the scikit-
learn library (Varoquaux et al., 2015) was used to perform the
protocol. The different clusters were obtained considering six
distance descriptors; (a) RMSD value of the Q270 residue; (b)
distance between the more proximal carboxylate oxygen of the
side chain of D165 and the nitrogen at the side chain of Q270; (c)
distance between the hydroxyl group of Y269 and the nitrogen
of the side chain of Q270; (d) distance between the nitrogen in
the side chain of K158 and the oxygen at the side chain of Q270;
(e) distance between the backbone oxygen of residue N268 and
the nitrogen of C271, and (f) distance between the hydroxyl
group of Y265 and the oxygen backbone of N268. Based on this,
the possible clusters were represented by a dendogram or
“cluster tree,” where the root corresponds to the largest
cluster containing all the sampled states, and each leaf refers
to a single cluster.

The clustering process allowed us to find representative protein
structures from the trajectories. The obtained protein structures
were used as receptors of molecular cross-docking with each of the
compounds under study, resulting in different poses for each ligand.
The same docking settings described in Section 2.3 were employed
for cross-docking. An in-house Python script (Muñoz-Gutierrez
et al., 2016) was used to select a representative complex for each
ligand to best fit the correlations between the energy values
calculated from the docking process and the logarithmic activities
of the series of naphthalene-derived compounds. The result of the
protocol corresponds to protein-ligand complexes showing the
highest correlations.

3 Results and discussion

3.1 Docking predictions

The ligands were docked to study the molecular basis of the
interactions between the naphthalene-derived compounds and the
SARS-CoV-1 PLpro (docking scoring energies are reported in the
Supplementary Table S2). It can be seen that all ligands in the series
adopt the same binding mode, placing the naphthylmethylamine
group at the S4 subsite of the enzyme (Figure 1). It has been
previously verified that this subsite is specific for leucine and can
accommodate large hydrophobic groups (Rut et al., 2020). Olsen
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et al. observed that the 2-benzothiazolyl and (4-hydroxyphenyl)
ethyl groups of the covalent inhibitors VIR250 and VIR251 occupy
opposite sides of the broad S4 pocket of SARS-CoV-1 and SARS-
CoV-2 PLpro (Rut et al., 2020; Patchett et al., 2021); chemical groups
at S4 can be oriented closer to the Pro249 or closer to the Pro248.
Our docking results show that the naphthylmethylamine group can
occupy both sides of the S4 subsite.

The observed interactions are consistent with those reported
for crystals having co-crystallized naphthalene-derived
compounds (Ratia et al., 2008; Báez-Santos et al., 2014a).
Compounds from series A, D, 7724772, and GRL0617 have
HB interactions between the benzamide carbonyl of the
inhibitors and the backbone NH of Gln270 (Figure 2A); the
same interaction is absent in the poses obtained for compounds
from series B, C, and 6577871 (Figure 2B). This occurs since the
BL2 hinged loop exists in different conformations for each of the
studied protein states. For the structure with PDB code 4OW0,
the side chain of the Gln270 residue is moved away from the
inhibitors, preventing HB formation between its backbone and
compounds from series B, C, and 6577871 (Báez-Santos et al.,
2014b). On the hand, the residue Tyr269 (also at the BL2 loop)
does not have a considerable displacement between the
structures with codes 3E9S and 4OW0 and is involved in pi-
pi stacking interactions. This residue, and the residue Asp165
(forming HBs with donors of the ligands), are of great
importance for stabilizing the naphthalene-derived
compounds (Figure 2). Asp165 also forms a salt bridge with
the protonated piperidine of compounds from series B, C, and
6577871. The aromatic group of the residue Tyr265 forms a pi-
cation interaction with the same protonated piperidine groups
(Figure 2B). It is also pertinent to point out that the residue
Lys158 establishes pi-cation interactions with several aromatic
substituents placed in its vicinity (Figure 2B to the right).

FIGURE 1
Docked structures within the SARS-CoV-1 PLpro binding site. Docked ligands are represented by sticks. Relevant residues at S3 and S4 subsites are
represented by spheres.

FIGURE 2
Docking poses for congeneric series of naphthalene-derived
compounds at the SARS-CoV-1 PLpro binding site. (A) Compounds from
series A, D, 7724772, and GRL0617 docked inside the structure with PDB
code 3E9S. (B) Compounds from series B, C, and 6577871 docked
inside the structurewithPDBcode4OW0 (a rotationof a selection is at the
right to observe interactionswith Lys158). Ligands are represented by cyan
sticks, while protein residues involved in interactions are represented with
white sticks. Interactions are represented by dashed lines with the
following coloring scheme: red color lines correspond to pi-pi stacking
interactions, yellowcolor lines topi-cation interactions, black color lines to
HBs, and magenta color lines to salt bridges.
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The poses obtained from the molecular docking of the
67 naphthalene-derived inhibitors were compared with their
similar inhibitors GRL0617 and C_3k co-crystallized on the
structures with codes 3E9S and 4OW0, respectively. This
comparison was carried out using the LigRMSD server, which
identifies common graphs between molecules and calculates the
RMSD between the equivalent atoms in each graph (Velázquez-
Libera et al., 2020). It is accepted in the literature that RMSD values
less than 2 Å reflect a meaningful spatial relationship between the
compared structures (Warren et al., 2006; Plewczynski et al., 2011;
Sasmal et al., 2020). The results of this analysis are detailed in the
Supplementary Table S3. The comparisons where the co-crystallized
inhibitor GRL0617 in 3E9S was used as reference helped to
characterize the orientations of the ligands from series A and D.
When GRL0617 is used as reference, these compounds exhibited %

Ref values higher than 85%, likewise the %Mol values in most of the
cases (except for compound D_47 with %Mol = 70.97). Most RMSD
values in the range of 0.25 Å to 1.5 Å were obtained, with only five
compounds (A_6, D_21, D_33, D_40, and the redocked
conformation of GRL0617) showing RMSD values between
2.30 and 2.51 Å. The naphthalene groups in these five
compounds were positioned opposite to the same group in the
reference, but their main scaffolds were oriented correctly.
Therefore, docking poses of the complete set of ligands from
series A and D were oriented similarly to the co-crystallized
compound GRL0617. On the other hand, compound C_3k, co-
crystallized in 4OW0, was used as a reference to characterize the
orientations of the ligands from series B and C. When C_3k is used
as reference, these compounds exhibited %Ref values higher than
84%, likewise the %Mol values in most of the cases (except for

FIGURE 3
Structural similarity of the docking poses with respect to references 3E9S and 4OW0. (A) Compounds from series A and D compared to compound
GRL0617 co-crystallized on 3E9S as reference. (B)Compounds from series B and C compared to compoundC_3k co-crystallized on 4OW0 as reference.
For each of the cases, the reference is represented as white sticks, while the poses obtained by docking are shown in cyan.

FIGURE 4
IFPs that describe interactions between docked compounds and SARS-CoV-1 PLpro crystals. (A, B) Interactions of compounds from series A, D,
7724772, and GRL0617 with residues at the PLpro crystal with code 3E9S. (C, D) Interactions of compounds from series B, C, and 6577871 with residues at
the PLpro crystal with code 4OW0. Interactions in the graphs at the left (A, C) are presented as percentage of occurrence of contacts [C], interactions with
the backbone of the residue [B], and interactions with the side chain of the residue [S]. Interactions in the graphs at the right (B, D) are presented as
percentage of occurrence of chemical interactions: contacts [C], polar [P], hydrophobic [H], HBs where the residue is an acceptor [A], HBs where the
residue is a donor [D], aromatic [Ar], and electrostatic with charged groups [Ch].

Frontiers in Molecular Biosciences frontiersin.org08

Castillo-Campos et al. 10.3389/fmolb.2023.1215499

44

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1215499


compound C_1d with %Mol = 75.68). As an exception, compounds
C_6a and C_6b have %Ref and %Mol values of 75.86 and
73.33 respectively; these values also indicate that there is
similarity with C_3k. Compounds from series B had RMSD
values < 2 Å with only the compound B_15j showing RMSD =
4.04 Å. The majority of compounds from series C had RMSD
values < 2 Å; however, six of the non-optically active compounds
(C_2d, C_3i, C_5b, C_5c, C_6a, and C_6b) had higher values, and
the optically active compounds C_1a (S), C_1b (R), C_1c (R), C_1d
(R and S), C_4a (R and S), C_4c (R), and C_4d (R) have also RMSD
values > 2 Å. In some cases, the aromatic groups from the
benzylamine (or similar substituents in C_5a-c and C_6a-b) of
the studied compounds from series B and C, rotated in the
opposite direction with respect to the reference, inducing pi-
cation interactions with Lys158 (Figure 2B to the right). This
greater flexibility led to higher RMSD values; however, a visual
analysis shows that a similar orientations with respect to the
reference compound were obtained, which was reflected in the
coincidence between the scaffolds of the compared compounds
(Figure 3).

For a better understanding of the interactions between the
docked ligands and PLpro, an IFP was performed. This analysis
allows annotating the recurrent chemical interactions observed
between the compounds of the congenic series and the protease
binding site. The graphs of the types of chemical interactions
occurring per residue are reported. The IFPs for the
24 compounds from series A, D, 7724772, and
GRL0617 docked in the PLpro crystal with code 3E9S are in
Figures 4A, B, and the IFPs for the 43 compounds from series B,
C, and 6577871 docked in the PLpro crystal with code 4OW0 are
in Figures 4C, D.

For both protein crystal structures, the residues implicated in
the formation of interactions at the protein-ligand interface are
similar (Figure 4). Hydrophobic contributions and aromatic
contacts with residues Tyr265, Tyr269, and Tyr274 occur in
100% of the docked structures. These residues form an
aromatic box that contribute to attraction and stabilization of
the naphthalene-derived inhibitors; specifically, Tyr269 is essential
for closing the BL2 loop to adopt the closed conformation of the
binding site (Báez-Santos et al., 2014b). IFPs show that Tyr269 was
also identified as an HB donor with ~5% of compounds from series
A and D, and as an HB acceptor with ~25% of compounds from
series B and C. These roles can be present when including
substituents with specific polar groups (Figure 2).

The residues Pro248 and Pro249 favored the occurrence of
hydrophobic contacts at the protein-ligand interface.
Hydrophobic contacts of Pro249 had 100% of occurrence, while
Pro248 also had high hydrophobic contributions, with ~55% and
~90% of occurrence in the structures 3E9S and 4OW0, respectively.
Several residues were also identified that contributed to form
electrostatic interactions at the SARS-CoV-1 PLpro binding site.
Asp165 has polar interactions with the docked poses with 100% of
occurrence. This residue acts as HB acceptor with more than 90% of
occurrence in 3E9S and 4OW0, respectively. It reflects that this
residue forms HBs with benzamide NH group of compounds from
series A and D, and also forms HBs (and salt bridges) with the
protonated piperidine of compounds from series B and C (Figure 2).
The residue Gln270 from the BL2 loop had 100% of occurrence of

polar contacts and is an HB donor in ~95% of the docked
compounds in 3E9S. It had ~40% of occurrence of polar contacts
when forming complexes between ligands and the structure with
code 4OW0.

Other noteworthy IFPs are detailed as followed. Gly164 had
contacts with 100% of occurrence in 3E9S and 4OW0. Leu163, its
backbone, had contacts with all the ligands, and its side chain had
hydrophobic interactions with ~75% and ~80% of occurrence in
3E9S and 4OW0, respectively. Lys158 had polar and charged
contributions in ~5% of the structures docked in 3E9S, and the
same contributions in ~30% of the structures docked in 4OW0.
Glu168 had polar and charged contacts with ~30% of occurrence
and acted as HB acceptor with ~10% of occurrence in 3E9S; in
contrast, it had polar and charged contacts with ~10% of occurrence
in 4OW0. Finally, Thr302 had polar contributions in ~80% of the
structures docked in 3E9S, and the same contributions in ~70% of
the structures docked in 4OW0.

The analysis presented with the IFPs shows two variants of how
two sets of non-covalent inhibitors bind to the S3-S5 subsites. It is
possible to observe some interactions that seem essential and others
that appear occasionally. The IFPs show how substituents of the
studied sets are distributed at S4. The naphthalene group can be

FIGURE 5
Regression plots of the docking scoring energies versus
experimental activities (pIC50) for the docking experiments performed
in structures with codes 3E9S and 4OW0 (A), and for the cross-
docking protocol (B).
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oriented closer to Pro249 or in the opposite direction, closer to
Pro248 (similar to the structures of complexes between PLpro with
the covalent inhibitors VIR250 and VIR251) (Rut et al., 2020;
Patchett et al., 2021).

3.2 Binding site flexibility and correlation
results

In order to increase the conformational sampling of the SARS-
CoV-1 PLpro binding site in the presence of naphthalene-derived
inhibitors, four GaMD simulations were performed following the
protocol described in the Materials and Methods section. Two of
them were carried out on the solvated PDB structure with code 3E9S
in complex with GRL0617 and C_3K, while the others two
simulations were developed on the solvated structure with code
4OW0 coupled to the same ligands. Stability of the GaMD
trajectories using the RMSD of the positions for the backbone
PLpro atoms as a function of simulation time was evaluated;
RMSD was reasonably stable during the production simulation
for all the systems (Supplementary Figure S2).

From the GaMD simulations, six distance descriptors (Materials
and Methods section) were considered to perform a partition
clustering process by means of the K-means algorithm. This
clustering algorithm assigns all MD conformations into one large
grouping. The largest cluster was divided into two subclusters
iteratively until each conformation forms a single cluster
(Abramyan et al., 2016). The value of k in the algorithm was
defined using the “elbow method” as well as a dendrogram or
cluster tree plot, thus confirming that the data set contains five
clusters (Shi et al., 2021). This process, applied to four GaMD
simulations, resulted in twenty representative and structurally
diverse PLpro conformations, named c0-c19 in this manuscript
(c0-c9 and c10-c19 were derived from GaMD simulations of the
models constructed from structures with codes 3E9S and 4OW0,
respectively). These structures were used to perform the cross-
docking methodology (67 compounds were docked in twenty
PLpro structures with diverse conformations of the binding site).
It is important to remark that significative variations were identified
in the binding sites for c0-c19, mainly in the BL2 loop
(Supplementary Figure S3).

The cross-docking yielded twenty different poses for each
ligand. The orientations of these poses were verified with
LigRMSD (Velázquez-Libera et al., 2020) to ensure the presence
of reasonable solutions. Representative PLpro-inhibitor complexes

for each ligand were selected after application of the in-house Python
script (Muñoz-Gutierrez et al., 2016) that optimize correlations
between the calculated and experimental activities. This script
yielded the set of PLpro-inhibitor complexes that produce the
best correlation between the docking scoring energies and
experimental PLpro inhibitory activities (scoring energies for the
representative complexes are reported in the Supplementary
Table S2).

The results for correlations are depicted in Figure 5. The
correlation considering the docking experiments performed in
these structures with codes 3E9S and 4OW0 is poor (R2 = 0.144;
Figure 5A). This result is expected. It is well-known in literature that
current docking scoring functions such as GlideScore have
demonstrated satisfactory performance in docking and screening
power tests; however, these functions may not be as effective when it
comes to evaluating scoring power, which reflects the ability to
establish a strong linear correlation between predicted and
experimental binding affinities (Ferrara et al., 2004; Plewczynski
et al., 2011; Su et al., 2019). To address this issue, one approach is to
incorporate a flexible receptor binding site (Baumgartner and Evans,
2018). Our script employs various conformational states obtained
through GaMD simulations, which allows for flexibility in the
binding site. As demonstrated in Figure 5B, our method has
significantly improved the correlation between predicted and
experimental binding affinities, achieving an R2 value of 0.948.

The high correlation reflects a successful explanation of the
structure-activity relationship through the proposed protocol.
Eleven of the twenty PLpro conformations were selected by the
model, these conformations are listed in Table 2. This table also
shows the list of compounds docked in each PLpro conformation to
obtain the structure-activity relationship model with the highest R2

value.
The GaMD and clustering process was performed to obtain

different conformations of the SARS-CoV-1 PLpro binding site, and
this was achieved mainly due to large changes in the BL2 loop
(Supplementary Figure S3). Different versions of the binding site
were obtained, which in turn differ from the binding sites in the PDB
structures coded 4OW0 and 3E9S. There are some differences in the
BL2 loop when comparing the 4OW0 and 3E9S structures. The
residues Tyr269 and Gln270 adopt different conformations between
these structures, representing a more opened (4OW0) and more
closed (3E9S) state of the BL2 loop (Supplementary Figure S4). The
MD and clustering protocol produced other binding site variation
options, increasing flexibility, and creating new structural
conformations that were a starting point for the cross-docking

TABLE 2 List of structures used as receptors for cross-docking experiments andmolecules involved in the structure-activity relationshipmodel with the highest R2.

Model Conformation Ligands Model Conformation Ligands

3E9S c2 B_7b, B_15j, B_15k, C_2c, C_3d, C_4d 4OW0 c13 B_7a, B_15i, C_1c, C_1d, D_21, D_23

c3 B_15d, C_1b, D_32 c15 7724772(R), B_15b, C_3h, C_3j, C_4a, C_4b, D_5a, D_5f

c4 C_1a, C_2a, C_3g, C_3i, C_5b, D_2 c16 A_7, B_15h, C_4c, D_5b, D_29, D_33, D_47

c6 7724772(S), A_4, C_2b, D_5c c17 A_6, C_3b, C_3k, C_5c, C_6a, D_40, GRL0617

c8 6577871, A_3, B_15e, C_2d, C_3f, D_9 c19 A_5, B_15c, B_15g, C_2e, C_3a, C_3c, C_6b, D_5d, D_49

c9 B_15a, B_15f, C_3e, C_5a, D_5e
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calculations. The structural conformations c0-c19 have differences
in the SARS-CoV-1 PLpro binding site. The analysis of the
conformational variations observed for the residues that
constitute this site is reported in the Supplementary Table S4.
From this table, it can be seen that most of the structural units
being compared have RMSD values greater than 2.0Å, reflecting
displacements between the parts being compared. In some cases,
these variations are related to specific fluctuations that do not reflect
the fluctuations of the macromolecule or the portion being
compared as a whole. Consequently, a root mean square
fluctuation (RMSF) analysis was performed considering the
residues that are part of the binding site (Supplementary Figure
S5). RMSF shows that the BL2 loop residues Tyr269 and Gln270 are
the most mobile residues within the binding site. Therefore, RMSD
analyses were performed on these residues (Supplementary Table
S5). It is observed that most of the structures presented RMSD values
higher than 2.0Å reflecting the conformational diversity of the
BL2 loop between the conformations c0-c19. The high RMSD
values in this part of the binding site reflect the possibility of
great flexibility that justify the use of our GaMD and clustering
protocol, instead of the rigid structures coming from PDB.

From the twenty conformations c0-c19, eleven participated in the
model thatmaximizes the structure-activity correlation, when six and five
were derived from the 3E9S and 4OW0 structures, respectively. RMSD
analyses for these eleven conformations were performed considering the
residueswith the highest fluctuations (Tyr269 andGln270) in the binding
site (using values in Supplementary Table S5), and high RMSD values for
most cases were observed. The Figure 6 shows a visual inspection of the
residues Tyr269 and Gln270 in the eleven conformations that are in the
model that maximizes the structure-activity correlation. Gln270 presents
four different orientations named I, II, III, and IV (Figures 6B–E), while

Tyr269 can be grouped in three different orientations named I, II, and III
(represented in the Figures 6F–H). The remaining residues at the binding
site do not present considerable changes. Three structures (c2, c3, and c4)
adopted conformation I for Tyr269 and I for Gln270, including
15 inhibitors. Four structures (c15, c16, c17, and c19) adopted
conformation I for Tyr269 and III for Gln270, including 31 inhibitors.
Two structures (c8 and c9) adopted conformation II for Tyr269 and II for
Gln270, including 11 inhibitors. The combination of conformations II of
Gln270 and III of Tyr269was present in c6 that contains 4 inhibitors, and
the combination of conformations IV of Gln270 and II of Tyr269 was
present in c13 that contains 6 inhibitors. In all cases, the ligand poses
included in the model with the highest R2 value had the expected
interactions with the residues corresponding to the BL2 loop. A visual
analysis shows that the complexes in this model share interaction profiles
similar to each other and concordant with the crystallographic structures.
Table 2 shows that the most active compounds (c_3k, B_15g, B_15c, and
B_15b) were selected in the PLpro conformations c15, c17, and c19,
which adopt conformation I for Gln270 and conformation I for Tyr269,
as previously mentioned (Figures 6B, F). Consequently, these receptor
conformations are proposed as the most suitable for a potential
exploration of new potent compounds.

Compound interactions with PLpro binding site residues for
protein-ligand complexes in the highest correlation model were
verified using IFPs. Previously, the most important residues
were shown in an IFP analysis made on the complexes obtained
by docking. It was expected that such important residues should
be maintained in the complexes obtained by cross-docking. The
Supplementary Figure S6 shows that the recurrent chemical
interactions between the compounds and the PLpro binding site
were kept in the protein-ligand complexes present in the model
with the highest correlation. The most important interactions

FIGURE 6
Residues conforming the BL2 loop in different clusters. (A) Representation of the BL2 loop for the 11 structures that maximize the structure-activity
correlation. (B) Conformation I for Q270. (C) Conformation II for Q270. (D) Conformation III for Q270. (E) Conformation IV for Q270. (F) Conformation I
for Y269. (G) Conformation II for Y269. (H) Conformation III for Y269.
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with the residues Leu163, Gly164, Asp165, Pro248, Pro249,
Tyr265, Tyr269, Gln270, Tyr274, and Thr302 previously
identified, were also present in the IFPs in Supplementary
Figure S6. Interestingly, both series of compounds have
remarkably increased polar interactions with the side chain
of Arg167 (30% of occurrence). On the other hand, compounds
from series B, C, and 6577871 have remarkably increased polar
interactions with the side chain of the residue Glu162 (with
more than 40% of occurrence).

The high conformational variation of the two residues
composing the BL2 loop implies changes in the volume and
shape of the binding site, which has an influence on the specific
interactions of the studied compounds. The conformational
diversity in the receptor binding site contributes to the ligands
adopting conformations that maximized the correlation between
docking scoring and pIC50 values.

Our results suggest that it is very relevant to consider the flexibility
of the PLpro binding site for the study of its inhibitors. The flexibility
of proteins poses a significant challenge when it comes to ligand
docking, as the binding site can exist in various conformations
(Caballero, 2021). Docking protocols in the literature widely
employ combinations of docking and MD simulations (Munoz
et al., 2012; Sharma et al., 2016; Śledź and Caflisch, 2018). These
methods have shown that incorporating multiple protein
conformations enhances the results. For instance, Strecker and
Meyer conducted a recent study in which they compared docking
using several crystal structures and structures obtained from MD
simulations (Strecker and Meyer, 2018). They assessed the impact of
structure selection and discovered that binding site shapes not
observed in any crystal structure in the PDB were accessible
through 500-ns MD simulations. They demonstrated that these
structures significantly contributed to accurate binding pose
predictions, improved ability to distinguish active compounds
(screening utility), and enhanced scoring accuracy. Our results are
in agreement with what was shown in this study.

Before 2019, there were few studies on SARS-CoV-1 PLpro
inhibitors using computational methods; however, some recent
studies have focused on the study of SARS-CoV-2 PLpro; in some
of these works, the flexibility of the PLpro binding site was studied
in some way (Ferreira et al., 2022; Santos et al., 2022; Singh et al.,
2022). Among the recent studies, we would like to highlight the
work of Garland et al. (Garland et al., 2023). The authors virtually
examined the ZINC20 database (Irwin et al., 2020) using a docking
method and filtering with a pharmacophore to identify possible
noncovalent PLpro modulators. Using this methodology, the
authors discovered the compound VPC-300195 (IC50 = 15 μM).
The authors found a limited diversity of active compounds, which
they attributed to the rigidity of the PLpro active site in crystal
structures. In part, this report proposes that the inclusion of
flexibility in the binding site is necessary for future designs.

4 Conclusion

A set of 67 naphthalene-derived compounds as noncovalent PLpro
inhibitors were studied using a flexible molecular docking protocol. In
summary, the following four steps were carried out: i) the structures of
the protein-ligand complexes were obtained with a rigid docking, ii)

multiple conformations of the PLpro binding site were obtained by
using GaMD, iii) a cross-docking was performed between the
67 compounds and selected PLpro conformations, and iv) protein-
ligand complexes that represent the highest correlation between
docking energies and experimental activities were selected. As a
result, a set of complexes was identified where the ligands interact
with a flexible binding site of PLpro. The proposedmethodology proved
successful, and a correlation value of R2 = 0.948 was obtained in the
aforementioned last step. Considering the flexibility of the protein by
using various PDB structures and the GaMD sampling of the receptor
was fundamental to achieving the proposed objective. When using a
rigid docking, it is ignored that ligands can be bound with significant
protein conformational changes, therefore taking into account flexibility
of the binding site results in a more rational approach. Overall, the
strategy employed in this article serves as a good approach to studying
PLpro ligands with computational tools, and the method reflects a
possible conformational selection approach. Performing a detailed
structural study of the inhibitory role of naphthalene derivatives
acting against the SARS-CoV-1 PLpro allows us to contribute
positively to the research field aimed at the design and
computational evaluation of more potent candidates against this
protease.
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Identifying target organ location
of Radix Achyranthis Bidentatae: a
bioinformatics approach on active
compounds and genes
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Background: Herbal medicines traditionally target organs for treatment based on
medicinal properties, and this theory is widely used for prescriptions. However, the
scientific evidence explaining how herbs act on specific organs by biological
methods has been still limited. This study used bioinformatic tools to identify the
target organ locations of Radix Achyranthis Bidentatae (RAB), a blood-activating
herb that nourishes the liver and kidney, strengthens bones, and directs
prescription to the lower body.

Methods: RAB’s active compounds and targets were collected and predicted
using databases such as TCMSP, HIT2.0, and BATMAN-TCM. Next, the RAB’s target
list was analyzed based on two approaches to obtain target organ locations.
DAVID and Gene ORGANizer enrichment-based approaches were used to enrich
an entire gene list, and the BioGPS and HPA gene expression-based approaches
were used to analyze the expression of core genes.

Results: RAB’s targets were found to be involved in whole blood, blood
components, and lymphatic organs across all four tools. Each tool indicated a
particular aspect of RAB’s target organ locations: DAVID-enriched genes showed
a predominance in blood, liver, and kidneys; Gene ORGANizer showed the effect
on low body parts as well as bones and joints; BioGPS and HPA showed high gene
expression in bone marrow, lymphoid tissue, and smooth muscle.

Conclusion:Our bioinformatics-based target organ location prediction can serve as a
modern interpretation tool for the target organ location theory of traditional medicine.
Future studies should predict therapeutic target organ locations in complex
prescriptions rather than single herbs and conduct experiments to verify predictions.

KEYWORDS

bioinformatics, Radix Achyranthis Bidentatae, target organ location, enrichment analysis,
gene expression analysis

1 Introduction

The rapid growth of biological data, the development of algorithms, and the increase in
computer power have made bioinformatics an important contributor to a deeper
understanding of existing drugs and to the development of new drugs, in both
traditional and modern medicine. Furthermore, herbal medicine-related ‘omics’ data and
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methods for analyzing molecular mechanisms and biological
pathways of herbal medicine have been used to provide
innovative ideas (Gu and Chen, 2014). Several bioinformatics-
based methods such as network pharmacology, herbal genomics,
molecular dynamics simulation, and molecular docking provide
knowledge and insight into herbal medicine from different
perspectives. The mechanisms underlying herbs and prescriptions
have been revealed and further detailed through “multi-
target–multi-pathway” paradigms of network pharmacology
(Liang et al., 2014; Zhang et al., 2019; Tran and Lee, 2022).
These methods are also useful for understanding specific
concepts of traditional medicine at the molecular scale such as
the synergism of herbal pairs (Wang et al., 2017), or the Qi and
Blood-tonifying effects of a group of herbs (Sun et al., 2016; Tran
et al., 2022). The common feature of these studies is that the
molecular mechanisms were determined using databases to
generate large gene sets of interest analyses. Although these types
of lists are now frequently produced by biological research, it is still a
challenging task to comprehend how gene sets affect an organism’s
biology at the tissue and organ level (Brookes and Robinson, 2015).

To overcome this obstacle, multiple tools have been established,
allowing researchers to directly or indirectly identify the target organ
or tissue locations connected to the genes of interest. For example,
Database for Annotation, Visualization and Integrated Discovery
(DAVID) is a popular tool that allows lists of genes to be enriched
for shared biological pathways, disease associations, as well as tissue
expressions (Sherman et al., 2022). Another tool based on gene list
enrichment is the Gene ORGANizer, which, unlike DAVID,
considers gene–phenotype associations to directly link genes to
the human body parts affected by those genes (Gokhman et al.,
2017). BRITE (Kanehisa et al., 2016) and Organ System
Heterogeneity DB (Mannil et al., 2014) also provide direct
linkages between genes and body parts; however, they consider
only a few organs and tissues and were not developed for gene list
analysis (Gokhman et al., 2017). A further approach for indirectly
associating genes to organs is based on expression, which uses
mRNA levels to identify the tissues and cell types in which a
gene is active, rather than analyzing the enrichment in a list of
genes. For instance, the Human Protein Atlas (HPA) is a database
that contains localization and expression data for all essential human
organs or tissues (Uhlén et al., 2015), and BioGPS provides
abundance gene expression data corresponding to tissues or cells
based on microarray analyses (Wu et al., 2016). Gene expression is
influenced by physiological factors that differ depending on tissue
type, and developmental stage. The particular gene expression
patterns in organs and tissues provide critical insights regarding
gene function (Su et al., 2004; Pan et al., 2013). Therefore, it is critical
to assess the tissue mRNA expression patterns of diverse genes at the
organ level to investigate the therapeutic effects of herbal target
proteins on organs. However, to date, only few studies have used
BioGPS to analyze target organ/tissue location for herbs and
prescriptions such as Rhodiola rosea L. (Zhang X. et al., 2020),
Acori Tatarinowii Rhizoma (Song et al., 2018), and Sanhe Decoction
(Zhang et al., 2016). Furthermore, the use of BioGPS and the
interpretation of its results in these studies remain insufficient.
Additionally, other tools that have not been integrated to link
herbs to anatomical body parts present an unexplored aspect of
this line of research.

Target organ locations, including herbal channel tropism
(HCT), is a foundational theory that has influenced traditional
treatment for thousands of years (Liu et al., 2013). As per this
theory, the therapeutic actions of an herb have selective effects on
particular physiological organs or channels (World Health
Organization, 2007). Numerous recent studies have demonstrated
the value of using systems biology to assess the scientific significance
of herbal medicine (Buriani et al., 2012). Radix Achyranthis
Bidentatae (RAB), also known as Niuxi, is a blood-activating
medicinal herb obtained from the dried roots of Achyranthes
bidentata Bl. Traditionally, RAB is considered to enter and
supplement the liver and kidneys, invigorate blood circulation,
and reinforce tendons and bones; directing effects of the
prescription to the lower part of the body have also been
reported (Chinese Pharmacopoeia Commission, 2015). Research
on RAB in modern medicine mostly focused on its pharmacological
effects on the bone metabolism, nervous system, and immune
system; joint-protection properties; and antioxidation and
antitumor effects (He et al., 2017). Using a bioinformatics-based
approach, the mechanisms underlying the effects of RAB in the
treatment of diseases such as rheumatic arthritis (Fu et al., 2021),
osteoarthritis (Zhang et al., 2020), bone trauma (Wu et al., 2021),
and breast cancer (Ju et al., 2021) have been elucidated. Nevertheless,
the understanding of pathology still differs between traditional and
modern medicines, as the terms used for diseases are not identical
between the two fields. Specifically, traditional medicine often
divides disease models into patterns related to body components
or organs, such as Liver and Kidney yin deficiency or Qi and Blood
deficiency (Lam et al., 2019). Therefore, principles behind herb-
based treatments of diseases are to apply the HCT theory to
rebalance body constituents and organ systems. Understanding
how multi-organ systems respond to medicinal herbs at a
biological system level may assist in the development of
improved diagnosis and treatment strategies for complex
diseases. However, the application of bioinformatic tools to the
association of herbs with organs has not been sufficiently
investigated.

Therefore, in this study, we used different bioinformatic tools to
analyze the target organ/tissue location of herbs, considering RAB as
an example. Using gene expression and enrichment-based tools to
analyze the targets of RAB, we provided new insight into the HCT
mechanisms at the organ/tissue level. The flowchart of this study is
shown in Figure 1.

2 Methods

2.1 Predicting the RAB targets

The RAB targets were predicted in two steps: first, the active
compounds were screened, and second, different databases were
utilized to predict the targets of the active compounds.

The compounds associated with RAB were retrieved from the
Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP) version 2.3 (Ru et al., 2014) and the
Herbal-Ingredient-Target Platform (HIT) version 2.0 (Yan et al.,
2022) using “Niuxi” or “Niu Xi” as keywords. Subsequently, the
synonym names, Chemical Abstracts Service (CAS), PubChem
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compound IDs (CID), and International Chemical Identifier
(InChIKey) numbers of the compounds were introduced into the
PubChem database to obtain the compound structures and ensure
that the compounds are recognizable for further steps (Kim et al.,
2021). The duplicated compounds between databases or those with
no information on the PubChem database were removed from
further analysis. Next, to evaluate absorption, distribution,
metabolism, and excretion, the oral bioavailability (OB) and
drug-likeness (DL) of compounds were obtained from the
TCMSP. The active compounds with an OB ≥ 30% and DL ≥
0.18 were selected (Xu et al., 2012).

Targets of RAB active compounds were obtained from the
TCMSP version 2.3 (Ru et al., 2014), HIT version 2.0 (Yan et al.,
2022), and Bioinformatics Analysis Tool for Molecular mechANism
of TCM (BATMAN-TCM) databases (Liu et al., 2016). From
TCMSP, compound-target linkages were acquired via two
different approaches: 1) experimentally verified compound-target
pairings were obtained from the HIT version 1.0 database; 2) For
compounds lacking verified targets, the potential targets were
predicted using the SysDT model (Ru et al., 2014). The HIT
version 2.0 contains completely updated data compared to HIT
version 1.0 by calibrating literature data from 2000 to 2010 and
adding experimental data from 2010 to 2020; thus, yielding nearly
twice as much data compared to that yielded by the previous version
and additional features of target confidence indicators (Yan et al.,
2022). The names, CIDs, and CASs of compounds were introduced
in the HIT 2.0 database to obtain targets. The targets with levels of A,
B, and C were selected for this study. BATMAN-TCM, a similarity-
based approach that ranks probable compound-target linkages
based on their similarity to the known drug-target interactions,

was used to predict potential targets of compounds (Liu et al., 2016).
The CIDs for each compound were inputted into the BATMAN-
TCM, and the predicted potential targets (including known targets)
with a Score_cutoff = 30 were selected. Targets were collected from
the three databases. The official gene symbol of the “Homo sapiens”
genes was obtained from the UniProt database (The UniProt
Consortium, 2020), duplicate targets were deleted, and the
remaining targets were used for enrichment-based analysis to
identify target organ or tissue location.

Core targets were identified by importing all RAB targets into
the Search Tool for the Retrieval of Interacting Genes (STRING)
database to generate a protein-protein interaction (PPI) network
(Szklarczyk et al., 2021). Further, targets were imported into
Cytoscape software for topology analysis (Shannon et al., 2003).
The PPI network was set up in the STRING database with a high
confident interaction score >0.9, homo sapiens as species, and FDR
stringency = 5%. The disconnected nodes were hidden in the
network. Based on the topological analysis in Cytoscape software,
targets with degree >2 times the average were selected as core targets.
These targets were used for gene expression-based analysis to
identify target organ or tissue location.

2.2 Linking genes to the organs using
enrichment-based analysis approaches

2.2.1 Tissue expression assessment using the
DAVID tool

DAVID is a well-known bioinformatics tool that includes a web
server as well as a platform for enrichment analyses and functional

FIGURE 1
Flow chat of the study.
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annotation of gene lists. From the version released in 2006, a gene
tissue expression annotation category was added in DAVID and
continued to be updated (Huang et al., 2007b). Fisher’s exact test is
used in DAVID to calculate the gene enrichment within the
annotation categories with EASE score (p-value). Importantly, the
individual EASE scores were adjusted by multiple testing correction
(adjusted p-value), such as Bonferroni, Benjamini, and false
discovery rate (FDR) tests (Huang et al., 2007a).

In this study, the official names of RAB targets were imported
into DAVID (version 2021) to analyze tissue expression
annotations, with Homo sapiens as species and a p-value <0.05
(after Benjamini correction). Uniprot keyword annotations (UP_
TISSUE) were chosen for the Tissue expression category. The
significant tissues were plotted as a bubble chart using the R
package “ggplot2.”

2.2.2 Gene ORGANizer tool
The phenotype-based tool Gene ORGANizer directly connects

genes to the bodily parts they influence. It is based on a
comprehensive curated database linking more than 7,000 genes
to 150 anatomical parts utilizing more than 150,000 gene-organ
associations based on DisGeNET and Human Phenotype Ontology
databases. These data were converted into relationships between
genes and anatomical regions where the phenotype was observed.
Overall, the Gene ORGANizer connected 146 different body parts to
target genes. The hypergeometric distribution was used in Gene
ORGANizer to calculate the significance level of enrichment or
depletion, and the mid-range correction was utilized to obtain
p-values (Gokhman et al., 2017).

In this study, the list of RAB targets was imported into the Gene
ORGANizer to analyze gene-organ associations, with a
p-value <0.05, confident in curation level (inferred from data on
humans), typical in frequency of phenotypes (appear in >50% of sick
individuals), and FDR in multiple testing corrections. The
significant organs and body parts were plotted as a bubble chart
using the R package “ggplot2.” The significantly enriched or
depleted body parts were visualized as a heat map based on their
enrichment or depletion level obtained from the Gene ORGANizer
web platform.

2.3 Linking genes to the organs using gene
expression-based approaches

2.3.1 BioGPS tool
BioGPS is a database for accessing and managing genomic

annotation tools. It offers gene expression data from tissues or
cells, based on microarray analyses (Wu et al., 2009). BioGPS
provides a ‘Gene expression/activity chart’ plugin with a dataset
collection function that allows pre-loading of approximately
8,000 datasets from EBI’s ArrayExpress and NCBI’s GEO
repositories. These datasets are derived from nine microarray
platforms containing data on humans, mice, and rats (Wu et al.,
2016).

We constructed the gene-organ localization network using the
GeneAtlas U133A gcrma dataset. First, 84 organ tissue samples were
used to determine the mRNA expression patterns of each RAB core
targets. Second, the overall expression average value across all organs

was calculated. Third, genes were linked in the relevant organs where
the mRNA expression level was higher than the average. Finally,
gene-organ networks were constructed using Cytoscape 3.4.0.

2.3.2 HPA tool
The HPA is a crucial tool for identifying single gene expression

patterns in tissue, blood, brain, and cell lines. It contains spatial data
regarding the human proteome based on integrated omics methods.
This database was generated based on 44 samples from the major
tissues and organs of the human body, which were examined using
24,028 antibodies and 16,975 protein-encoding genes, together with
RNA-sequencing data for 32 tissues (Uhlén et al., 2015).

In this study, we first downloaded RNA consensus tissue data for
RAB core targets. Based on transcriptomics data from HPA (Uhlén
et al., 2015) and the Genotype-Tissue Expression (Lonsdale et al.,
2013), consensus transcript expression levels per gene were
summarized in 54 tissues. The highest transcripts per kilobase
million (TPM) value for each gene across the two data sources
was used to compute the consensus normalized expression (nTPM)
value. The gene expression was then converted to a Z-score for
comparing the expression of each gene in different tissues. The R
package “ComplexHeatmap” was used to generate a heat map of the
core gene expression levels. Lastly, a gene-tissue location network
was established by linking the gene to the relevant organs or tissues
where it was overexpressed, using Cytoscape. Gene expressions with
Z-score >0 were considered to represent overexpression.

3 Results

3.1 Predicting targets of Radix Achyranthis
Bidentatae

By retrieving data from the TCMSP and HIT 2.0 databases,
176 and 13 related compounds were obtained for RAB, respectively.
A total of 17 RAB active compounds were screened using OB and DL
filtering criteria (Table 1). Beta-sitosterol, β-hydroxyecdysone, and
spinasterol were active compounds present in both databases.

By entering the information of 17 active compounds into the
databases, a total of 448 RAB targets were identified (Supplementary
Table S1). Specifically, the TCMSP, HIT2.0, and BATMAN-TCM
databases identified 207, 312, and 78 targets, respectively. After
removing duplicates, 448 targets were selected. These targets were
used for enrichment analyses to identify target organ locations.

Further, the 448 RAB targets were introduced into the STRING
database to generate a PPI network (Figure 2A). Topological analysis
of this network was performed using Cytoscape, and we identified
44 core targets, which had a degree centrality two-fold higher than
the mean value (Figure 2B). Next, these targets were used for gene
expression analyses to identify the target organ location.

3.2 Linking genes to the organs using
enrichment approaches

Using the DAVID tool, various tissues were enriched from the
RAB target list as shown in Figure 3. The top five most enriched
tissues included liver, fibroblast, blood, placenta, and platelets.
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Interestingly, the liver (p = 3.1e-12) was the most enriched organ;
along with the kidneys (p = 1.4e-3), which are the two channel
tropisms of RAB in traditional medicine. In addition, blood (p =
1.5e-7) and blood-related components, including platelets (p = 5.2e-
5), peripheral blood (p = 4.6e-4), plasma (p = 1.0e-2), and
endothelial cells (p = 4.9e-2), were also significantly enriched.

Using the Gene ORGANizer, we identified several organs and
body parts that exhibited gene enrichment or depletion as shown in
Figure 4. In the bubble chart of Figure 4A, the terms were divided
into three categories, including organs, bones, and body parts.
Cranial nerves, cerebellum, lymph nodes, intestine, and
peripheral nervous system were the most significantly affected
organs. The results also showed that the RAB targets affect
several bones, including scapula, tibia, fibula, and femur.
Interestingly, depleted organs or body parts (blue color) were
mostly located within the head, specifically cranial nerves (FDR =
2.20e-05), cerebellum (FDR = 5.78e-05), outer ear (FDR = 0.01), and
nose (FDR = 0.03); in contrast, the enriched organs and body parts
(red color) were mainly distributed in the lower body and limbs,
including hip, wrist, elbow (FDR = 0.01), knee, thigh, shoulder
(FDR = 0.01), and ankle (FDR = 0.02) (Figures 4A,B). This suggests
that RAB targets tend to increase their phenotype expression in
lower parts of the body rather than the head.

3.3 Linking genes to the organs using gene
expression approaches

Specific tissue mRNA expression patterns provide vital insights
into gene function. Therefore, it is critical to know the tissue mRNA

expression patterns of numerous genes at the organ level to
investigate the HCT and traditional effects of RAB. In this study,
using gene expression data from the BioGPS and the HPA databases
for 44 core targets spread throughout several different tissues and
organs, we created target organ location networks to better
understand the effects of RAB at the organ- and tissue-level.

The expression patterns of 44 core targets in 84 normal tissues
obtained from the BioGPS database are shown in Figure 5A. These
core targets were mostly found in human tissues; however, their
mRNA expression levels varied. Networks of RAB targets-organ
locations are shown in Figure 5B, where the linkages between genes
and organs are represented using the mRNA expressions in each
organ. In particular, of 84 organ tissues, CD33+myeloid cells showed
the highest number of RAB target overexpression, with 33 of the
44 core targets being overexpressed. This was followed by 32 targets
being overexpressed in CD56+ natural killer cells, 31 in CD34+

hematopoietic stem cells, 30 in B lymphoblasts, 29 in whole
blood, 28 in smooth muscle, and 25 in CD14+ monocytes and
BDCA4+ dendritic cells. These results clearly indicate that most
targets were overexpressed simultaneously in numerous tissues.

Next, we focused and regrouped on top 15 target organs in the
network, including bone marrow (grouped by CD33+, CD34+, and B
lymphoblasts), whole blood (grouped by CD14+, CD56+, and whole
blood), lymphoid tissues (BDCA4+, Raji, CD19+, and CD4+),
prostate, smooth muscle, cardiac myocytes, thyroid, and lung.
The regrouping was based on cell location (such as lymphoblast,
CD14+, or CD4+) and organ of origin (bone marrow, blood, or
lymphoid tissues) during hematopoiesis from stem cells (Orkin and
Zon, 2008). RAB targets were linked to the tissues where their
mRNA expression levels were the highest. We specifically analyzed

TABLE 1 List of Radix Achyranthis Bidentatae active compounds.

Molecule name Pubchem ID OB (%) DL TCMSP ID HIT2.0 ID

Poriferasta-7,22E-dien-3beta-Ol 5283663 42.98 0.76 MOL001006

Spinoside A 5281325 41.75 0.4 MOL012537

B-ecdysterone 27545171 44.23 0.82 MOL012542 C0653

Berberine 2353 36.86 0.78 MOL001454

Coptisine 72322 30.67 0.86 MOL001458

Wogonin 5281703 30.68 0.23 MOL000173

Delta 7-stigmastenol 12315385 37.42 0.75 MOL002643

Baicalein 5281605 33.52 0.21 MOL002714

Baicalin 64982 40.12 0.75 MOL002776

Epiberberine 160876 43.09 0.78 MOL002897

Beta-sitosterol 222284 36.91 0.75 MOL000358 C1178

Inophyllum E 455251 38.81 0.85 MOL003847

Kaempferol 5280863 41.88 0.24 MOL000422

Spinasterol 5281331 42.98 0.76 MOL004355 C0750

Stigmasterol 5280794 43.83 0.76 MOL000449

Palmatine 19009 64.6 0.65 MOL000785

Quercetin 5280343 46.43 0.28 MOL000098
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the expression profiles of various tissues and discovered that the
14 genes (TNF, MAPK14, CTNNB1, HSP90AA1, CREB1, NFKB1,
NR3C1, TP53, PTPN11, STAT1, MYC, FOS, JAK2, and JUN) showed

higher expression levels in the bone marrow than in other tissues,
9 genes (SRC, MAPK8, ESR1, LYN, EGFR, MAPK11, RELA, CASP8,
and CASP3) were lymphoid tissue-specific, 4 were associated with

FIGURE 2
Protein-protein interaction network of (A) whole targets and (B) core targets of Radix Achyranthis Bidentatae.

FIGURE 3
Tissue enrichment analysis of Radix Achyranthis Bidentatae genes using the DAVID tool.
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whole blood (NCOA1, RXRA, MAPK1, and PRKACA), smooth
muscle (IL1B, CDKN1A, HIF1A, and IL6), and the prostate
(VEGFA, AR, AKT1, and CCND1), and 3 were associated with
lungs (EDN1, MAPK3, and STAT3), cardiac myocytes (RB1, IL10,
and SMAD3), and thyroid (CAV1, PTK2, and IRS1). Based on their
expression patterns, 17 active compounds and 44 core targets were
organized into an organ location network (Figure 5C).

As shown in Figure 6A, 44 core targets had their expression
profiles mapped onto 54 normal tissues from the HPA database.
Core targets had the highest total expression in organs such as bone
marrow (4,806.8 nTPM), adipose tissue (4,725.4 nTPM), fallopian
tube (4,271.6 nTPM), skin (3,940.5 nTPM), and cerebral cortex
(3,936.3 nTPM).

Expression profiles have been converted to Z-scores
(Figure 6B), and a network of tissue distribution-potential genes
was constructed based on the Z-scores. The network is shown in
Figure 6C, including 98 nodes and 860 edges. Each edge
represented overexpression (Z-score >0) of the potential gene in
a specific tissue or organ. The network analysis results showed that
44 targets were distributed among the adipose tissue (degree = 35),
urinary bladder (degree = 28), breast (degree = 28), esophagus
(degree = 27), lung and spleen (degree = 26), as well as bone
marrow, liver, and smooth muscle (degree = 23). In particular,
STAT3 (degree = 30) andNFKB1 (degree = 29) were the genes most
closely related to organs or tissues.

Ultimately, to obtain a general overview of RAB-related organs
following the use of four analytical tools, a comparison of the most
affected organs or tissues is described in Table 2.

4 Discussion

The target organ location represents the foundation of the
traditional theory and describes an herb’s selective effects on
specific parts of the body. In traditional medicine, RAB is a
blood-activating herb that regulates blood circulation, strengthens
bones as well as muscles, and nourishes the liver and kidneys. In
prescriptions, it can direct other herbs to have therapeutic effects on
the lower part of the body (Chinese Pharmacopoeia Commission,
2015). Classical pharmacological and emerging bioinformatics-
based studies have shown that RAB has pharmacological as well
as therapeutic effects on various diseases; however, its HCT and
effects on anatomical organs have not been adequately investigated.
This study revealed the link between RAB and target organ locations
by using four different bioinformatic tools. Collectively, RAB targets
were associated with whole blood, blood components, and
lymphatic organs. Using the DAVID tool, we showed that RAB
targets were highly enriched in whole blood, liver, and kidneys.
Furthermore, the Gene ORGANizer analysis showed the effects of
RAB on lower body parts as well as bones and joints. Alternatively,
BioGPS and HPA indicated high RAB-associated gene expression
levels in bone marrow, lymphoid tissue, and smooth muscle. Our
study revealed the similarities between the target organ locations
predicted through bioinformatics and those indicated by traditional
medicine.

In this study, we proposed two different approaches to
investigate RAB-associated genes: enrichment- and expression-
based analyses. Whereas enrichment analyses assess the entire

FIGURE 4
Phenotypical enrichment and depletion analysis for Radix Achyranthis Bidentatae gene using the Gene ORGANizer tool. (A) Bubble plot. (B) Heat
map, with red and blue colors indicating the level of enrichment or depletion, respectively. Gray color indicates non-significant body parts.
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gene list and usually result in target organ locations (e.g., heart),
expression analyses show the expression of individual genes and
typically concentrate on particular tissues or cell types (e.g.,

cardiomyocytes) instead of entire organs or systems.
Nevertheless, our results still showed a general trend for RAB-
associated genes to be associated with whole blood, blood

FIGURE 5
Linking Radix Achyranthis Bidentatae (RAB) targets to organs using the BioGPS tool. (A) Core target gene expression. (B) Gene-organ network.
Yellow and blue nodes represent genes and organs, respectively. Edges represent the gene displayed above average mRNA expressions in each organ,
whereas the node size represents the degree centrality value. (C) Compound-gene-organ network of most significant organs. The node pie chart
illustrates the organs in which each target has a high expression level.
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components, and lymphatic organs (Table 2). Previous studies as
well as the concept of traditional medicine suggested that RAB has a
close relationship with blood, blood circulation, and the immune
system. In line with previous findings, the blood-activating feature of
RAB might be mediated by the inhibition of blood coagulation and

improvements in hemorheological properties (He et al., 2017). A
water extract of RAB, for example, was shown to decrease the
erythrocyte aggregation index, hematocrit, and whole blood
viscosity in wild type rats in vivo and significantly prolonged
plasma recalcification time, kaolin partial thromboplastin time,

FIGURE 6
Linking Radix Achyranthis Bidentatae (RAB) targets to the organs using the Human Protein Atlas tool. (A) nTPM heatmap and (B) Z-score heatmap of
core target gene expression. (C) Gene-organ network, with ellipse nodes representing target genes, round rectangle nodes representing organ/tissue,
and the node size representing the degree centrality value.
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and prothrombin time in vitro (Li et al., 1990). RAB has been
demonstrated to affect the blood rheological property index of an
acute blood stasis rat model by significantly lowering the thrombus
sizes, the hematocrit, the platelet adhesion rate, the platelet adhesion
value, whole blood viscosity, shear relative viscosity, and fibrinogen
content (Si et al., 2007). RAB has also been suggested as a potential
regulator that affects a variety of immune cells, including natural
killer cells, T-lymphocytes, and macrophages (He et al., 2017). In
addition, considering whole blood, blood components, and
lymphatic organs, each approach explains a distinct aspect of
RAB target organ locations.

Enrichment is a common approach for addressing trends within
a list of genes, where gene sets are formed based on shared biological
or functional properties identified by reference knowledge of the
biological domain (Mathur et al., 2018). Our DAVID-based
enrichment analysis showed that RAB-associated genes are
involved in several blood components such as platelet, peripheral
blood, plasma, and endothelial cell (Figure 3). Plasma, with albumin
as the predominant protein, is a primary moderator of fluid flow
across body compartments and a primary regulator of oncotic
pressure in blood vessels (Fanali et al., 2012). The
mechanoreceptors of endothelial cells allow them to detect shear
stress induced by blood flow across their surface, allowing the blood
vessel to adjust its wall thickness and diameter to adapt the blood
circulation. Endothelial cells also promote quick responses to brain
impulses for blood vessel dilatation by releasing the Nitric oxide,
which causes smooth muscle in the vessel wall to relax (Alberts et al.,
2002). Alternatively, RAB-associated genes were also highly
enriched in the liver and kidney organs, which is in line with the
HCT theory and the proclaimed nourishing effect on the liver and
kidney. Although the concept of viscera in traditional and modern

medicine is not identical, experimental studies clarifying this
discrepancy are lacking. Therefore, this gap in knowledge needs
to be addressed, and further experiments should be suggested. For
the Gene ORGANizer, the list of genes is enriched or depleted
against the genome background. Interestingly, for the RAB-
associated genes, the head and neck areas were depleted, and the
lower body was enriched, with a focus on the bones (Figure 4B);
thus, indicating that RAB tends to affect the lower part of the body
rather than the upper part. RAB has been previously shown to have
an effect on muscles and bones. It can enhance bone strength, and
inhibit bone loss by adjusting phosphorus excretion and urinary
calcium (He et al., 2010; Zhang et al., 2012), as well as create an
environment that is favorable for ossification by increasing blood
flow during bone reconstruction (Jiang et al., 2014).

The gene expression-based approach, unlike the enrichment
approach that can process the entire gene list, shows the expression
of individual genes and places them in a general context. The mRNA
expression patterns in tissues provide valuable information for
deciphering gene function. In previous studies on target organ
locations of herbs, genes with high expression in certain tissues
were investigated; however, the selection of cutoff points for high
gene expression and subsequent construction of the gene-organ
network also varied widely between studies (Wang et al., 2015;
Zhang et al., 2016; Zhang et al., 2020; Wang et al., 2020). In this
study, we normalized gene expression by mean and Z-score to select
genes with high expression. The higher mRNA expression in a tissue
compared with the average expression of 84 tissues for each gene was
used for analysis using the BioGPS tool (Wang et al., 2015).
Furthermore, we selected a cutoff Z-score >0 for the HPA tool.
Both HPA and BioGPS showed high expression level for RAB-
associated genes in lymphatic organs such as bone marrow and

TABLE 2 Top 15 target organ/tissue location of the four tools.

No. Enrichment-based (sorted by p-value) Expression-based (sorted by network degree)

DAVID Gene ORGANizer BioGPS Human Protein Atlas

1 Liver cranial nerves CD33+ myeloid cells adipose tissue

2 Fibroblast cerebellum CD56+ NK cells breast

3 Blood lymph nodes CD34+ urinary bladder

4 Placenta intestine 721 B lymphoblasts esophagus

5 Platelet peripheral nervous system Whole blood spleen

6 T-cell parathyroid Smooth muscle lung

7 Peripheral blood thyroid BDCA4+ dendritic cells bone marrow

8 Fetal brain cortex large intestine CD14+ monocytes liver

9 Cajal-Retzius cell small intestine Prostate smooth muscle

10 Kidney bone marrow Cardiac Myocytes cervix

11 Leukocyte uterus Thyroid gallbladder

12 Peripheral venous blood salivary gland Lymphoma burkitts (Raji) ovary

13 Cervix carcinoma sweat gland CD19+ B Cells (neg._sel.) endometrium

14 Plasma pancreas Lung skeletal muscle

15 Osteosarcoma N/A CD4+ T cells tongue

Frontiers in Pharmacology frontiersin.org10

Tran et al. 10.3389/fphar.2023.1187896

60

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1187896


lymphoid tissues. In addition, smooth muscle was also a tissue type
with notable RAB-associated gene expression (Figures 5, 6). The
primary site of new blood cell production (hemopoiesis) is bone
marrow (Lucas, 2021) and it is similar to the role of invigorating
herbs in traditional medicine. RAB has a considerable impact on
uterine smooth muscle depending on the species and the different
physiological conditions (Guo et al., 1997; Yijun et al., 2002). This
ties in the role of RAB in the treatment of menstrual pain caused by
blood stasis (Ran et al., 2021).

While enrichment and expression-based approaches were shown
to be useful for identifying target organ locations in this study, both of
them are associated with a number of limitations. First, various tools
have different tissue resolutions. For instance, some datasets study the
brain as a whole, whereas others study various parts separately (e.g.,
thalamus, cerebellum, midbrain). Consequently, information on the
impact of entire organs is incomplete or skewed. Second, the datasets
used have a massive bias towards certain organs (e.g., skin, blood, and
brain), whereas other tissues are less explored or unavailable. Third,
samples for gene expression analyses are typically collected
postmortem, at specific developmental stages, and from selected
organ parts. As a result, the collected data rarely accounts for all
temporal and structural variations within organs. Fourth, the study
was only conducted on a single herb; hence, the results may not reflect
the accuracy and objectivity of these approaches. Future studies need
to predict target organ locations for multiple herbs in the same herbal
group or prescription.

Moreover, the use of bioinformatic tools and databases is always
associated with several inherent limitations. For example, prediction
of herbal targets by TCMSP and BATMAN-TCM can lead to false
positives. Such false positives can introduce incorrect connections in
biological networks, like protein-protein interactions; thus,
distorting the overall understanding of the biological pathways
and leading to inaccurate interpretations. To overcome this
limitation, we used two approaches: 1) We combined the
TCMSP and BATMAN-TCM databases with HIT 2.0, which
includes experimentally verified compound-target pairings (Yan
et al., 2022); TCMSP itself also incorporates experimentally
validated targets from the HIT 1.0 database (Ru et al., 2014). 2)
We used a higher cutoff score (≥30) than the recommended
threshold (≥20) for BATMAN-TCM (Liu et al., 2016). Although
the PPI network is essential for understanding cell physiology in
both normal and diseased states, it has certain drawbacks as the
interaction sets obtained from current literature are inadequate
(Menche et al., 2015) and biased toward more research protein
(Rolland et al., 2014). Future research must use objective methods to
examine PPI networks. For example, Guney et al. suggested
network-based drug-disease proximity to provide an unbiased
assessment of the therapeutic efficacy of a pharmacological
protein (Guney et al., 2016).

In conclusion, we used enrichment- and expression-based
approaches to detect the target organ locations of RAB using
different bioinformatic tools. We discovered that RAB targets were
commonly involved in whole blood, blood components, bone
marrow, and lymphoid tissue. Furthermore, each tool explained a
particular aspect of RAB’s effects on target organ locations: Enriched
genes identified using the DAVID tool were observed in whole blood
and its components, as well as the liver and kidneys. The Gene
ORGANizer showed that the effects of RAB focus on the lower body

and impacts bones as well as joints. Lastly, BioGPS and HPA showed
high RAB-associated gene expression levels in bone marrow and
lymphoid tissue and significant expression levels in smooth muscle.
Our study revealed the partial similarities between the RAB target
organ locations predicted through bioinformatics and the traditional
effects of RAB. Thus, to the best of our knowledge, our study presents
the first example for further studies attempting to link genes to target
anatomical organs and the HCT theory. In the future, this approach
can be extended to predict the target organ location of complex
prescriptions rather than individual herbs. Additionally, experimental
studies that verify the predicted target organ locations are also
necessary.
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MBC and ECBL libraries:
outstanding tools for drug
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Chemical libraries have become of utmost importance to boost drug discovery
processes. It is widely accepted that the quality of a chemical library depends,
among others, on its availability and chemical diversity which help in rising the
chances of finding good hits. In this regard, our group has developed a source for
useful chemicals named Medicinal and Biological Chemistry (MBC) library. It
originates from more than 30 years of experience in drug design and discovery
of our research group and has successfully provided effective hits for neurological,
neurodegenerative and infectious diseases. Moreover, in the last years, the
European research infrastructure for chemical biology EU-OPENSCREEN has
generated the European Chemical Biology library (ECBL) to be used as a
source of hits for drug discovery. Here we present and discuss the updated
version of the MBC library (MBC v.2022), enriched with new scaffolds and
containing more than 2,500 compounds together with ECBL that collects
about 100,000 small molecules. To properly address the improved
potentialities of the new version of our MBC library in drug discovery, up to
44 among physicochemical and pharmaceutical properties have been calculated
and compared with those of other well-known publicly available libraries. For
comparison, we have used ZINC20, DrugBank, ChEMBL library, ECBL and NuBBE
along with an approved drug library. Final results allowed to confirm the
competitive chemical space covered by MBC v.2022 and ECBL together with
suitable drug-like properties. In all, we can affirm that these two libraries represent
an interesting source of new hits for drug discovery.

KEYWORDS

drug discovery, chemical libraries, virtual screening, molecular diversity, chemical space

1 Introduction

Virtual high throughput screening (vHTS) represents a gold standard in modern drug
discovery workflows especially for Pharma and Biotech companies (Subramaniam et al.,
2008; Tanrikulu et al., 2013). Integration and complementation of in silico tools to classical
HTS has boosted the capability of rapidly exploring a wider chemical space for the effective
identification of new hits with indirect beneficial effects also on further steps of drug
discovery as hit-to-lead optimization (Bajorath, 2002). The in silico techniques generally
applied in this context are based on a common principle that is the accurate and effective
assessment of the chemical complementarity between the protein target of interest and small
molecules. In the case of ligand-based techniques as the mainstream QSAR-based (Neves
et al., 2018) or pharmacophore-based (Kim et al., 2010) virtual screening, preliminary and
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well-curated experimental data for representative chemical scaffolds
are needed. These data in conjunction with a proper selection of
relevant atomic or molecular descriptors for the compiled list of
active compounds are then used to guide the search for new
compounds. In the case of structure-based approaches as
docking-based virtual screening, each compound in the chemical
library is screened for its binding affinity toward a given target by
using properly tuned scoring functions (Neves et al., 2021). Best
scored molecular candidates from both approaches can be used for
preliminary proof-of-concept. In case active compounds are found,
they can go to further structural optimization with the ultimate goal
of maximizing both biological effect and pharmacokinetic
properties.

One strategy that can be envisaged to rise the chances to find
effective compounds is represented by the use of big non-
enumerated libraries. Nowadays, we are assisting to the growing
of huge chemical libraries with an average number of compounds
from 1010 to 1020 (Nicolaou et al., 2016). Despite they enable access
to an impressive large chemical space, a common bottleneck is still
represented here by the in silico tools since a complete structure-
based screening of such huge libraries would require unaffordable
computational costs and time. Besides, such huge chemical libraries
have a number of compounds with properties far from being
optimal to be considered as hits. To overcome these limitations,
machine learning models from the implementation of Bayesian
optimization algorithms for docking-based virtual screening
would significantly reduce the computing time making the
screening of large chemical library possible (Graff et al., 2021).

Another more feasible possibility could be represented by the use of
focused chemical libraries. These kinds of libraries are generally small,
drug-like collections and come from a focused enumeration of
compounds acting on specific targets as kinases (Kéri et al., 2005),
protein-protein interactions (PPi) (Sperandio et al., 2010), G-coupled
receptors (Jimonet and Jäger, 2004) among others. The use of such
small libraries indeed would allow to shorten the computing time. Best
candidates from preliminary screening can be then used to setup ad hoc
optimization strategies aimed at improving activity toward a specific
protein target of interest (Balakin et al., 2006; Mayr and Bojanic, 2009).
The advantage of using quality-focused libraries resides in the fact that
properties for compounds are already partially optimized. Moreover, a
clear linkage between structure and biological activity is also guaranteed.

Our laboratory has developed an in-house quality-focused
chemical library named Medicinal and Biological Chemistry
(MBC) library, that condensates more than 30 years of medicinal
chemistry research in our group. It contains compounds with a
standard chemical purity of at least 95% by HPLC and is available
both electronically and physically upon request. Since its first
publication in 2017 (Sebastián-Pérez et al., 2017), the MBC library
has grown significantly reaching a total of 2,577 curated compounds
with annotated data about activity and purity. Compounds of the first
version of the MBC library (MBC v.2016) have been designed mainly
as potential drugs for neurological and neurodegenerative diseases but
can be also used as a useful reservoir for the treatment of other
diseases. The actual version (MBC v.2022) has been enriched by novel
chemical series that have been developed for different targets as those
responsible for neglected or infectious diseases, among others. The
most representative chemical families of the new MBC v.2022 library
are reported in Figure 1.

To validate the quality of the updated MBC library, up to
44 physicochemical and pharmaceutical properties have been
calculated for all the compounds with particular attention to
drug-likeness properties. The original version of the library
(MBC v.2016) has been compared with the new one (MBC
v.2022) to quantify the level of improvement of the new version.
To exclude structural redundancy, special attention has been
deserved to the analysis of the structure (i.e., Tanimoto
similarity) and substructure (i.e., Bemis-Murcko algorithm)
variability. Finally, to provide a wider perspective, the MBC
v.2022 library has been also compared with others well-known
chemical libraries such as ZINC20 (Irwin et al., 2020), DrugBank
(Wishart et al., 2018), ChEMBL (Mendez et al., 2019), NuBBE
(Saldívar-González et al., 2019) and the Approved drug library
from Selleck Chemicals together with the European chemical
biology library (ECBL) (Horvath et al., 2014). This last library
was assembled by the European research infrastructure
consortium (ERIC) for chemical biology named EU-
OPENSCREEN (EU-OS) (Frank, 2014; Brennecke et al., 2019).
This ERIC integrates high-capacity screening platforms
throughout Europe with the ECBL (Horvath et al., 2014) and
medicinal chemistry expert laboratories making available new hit
discoveries for a selected target and the hit-to-lead optimization.

2 Materials and methods

2.1 Database’s collection

TheMBC v.2016 (1,096 compounds) (Sebastián-Pérez et al., 2017),
MBC v.2022 (2,577 compounds), ECBL (101,021 compounds; https://
www.eu-openscreen.eu/services/database.html), ZINC20 (Irwin et al.,
2020) (10,723,360 compounds; https://files.docking.org/zinc20-ML/),
DrugBank v.5.0 (Wishart et al., 2018) (10,981 compounds; https://
go.drugbank.com/releases/latest), ChEMBL v.31 (Mendez et al., 2019)
(1,908,325 compounds; https://chembl.gitbook.io/chembl-interface-
documentation/downloads), NuBBE (Saldívar-González et al., 2019)
(2,223 compounds; https://nubbe.iq.unesp.br/portal/nubbe-search.
html) and Approved drug library (3,104 compounds; https://www.
selleckchem.com/screening/fda-approved-drug-library.html) databases
downloaded from their websites in September 2022 were considered for
comparison. For comparative purposes, focused subsets of the freely
available databases ZINC20, DrugBank, ChEMBL were considered.
Briefly, the in-stock drug-like subset was used in case of the
ZINC20 database. Regarding the ChEMBL database, only small
molecules was selected, discarding other entries (as antibodies or
enzymes) out of the scope of this study. Finally, for the DrugBank
library, biotechnology products were ignored. All the material and data
produced for this study along with the python scripts used to reproduce
all the graphics are available at https://doi.org/10.5281/zenodo.8212104.

2.2 Database’s preparation

For all the databases, the 3D structures were generated with the
LigPrep module of the Schrödinger suite (Schrödinger, 2022:
LigPrep, Schrödinger, LLC, New York, NY, 2022) in accordance
with our previous study (Sebastián-Pérez et al., 2017). In brief,
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molecules were protonated according to the protonation state at
physiological pH. All counterions were removed and no tautomers
were generated. Finally, stereochemistry was retained according to
the original entries. In-house python scripts along with the pandas-
1.4.4, matplotlib-3.6.0 and seaborn-0.12.0 modules of python3 were
used to produce all the graphics and statistics reported in this study.

2.3 Properties’ calculation

Pharmaceutically relevant principal descriptors for all the
compounds (see Table 1) were calculated using the QikProp v.6.8
(Schrödinger Release, 2022: QikProp, Schrödinger, LLC, New York,
NY, 2022). As stated in the manual, QikProp is unable to calculate
properties for not neutralizable quaternary ammonium compounds,
so we were forced to exclude these compounds from all the analyzed
databases. For this reason, 7.39%, 3.14%, 0.20%, 4.13%, 0.61%,
2.97%, 4.62%, and 0.14% of the prepared compounds respectively
fromMBC v.2016, MBC v.2022, ECBL, DrugBank, ZINC, ChEMBL,
approved drug library and NuBBE were excluded. The probability of
a false readout in a screening assay was determined by HitDexter3.0
(Stork et al., 2020; Stork et al., 2021). Similarly, 3.61% and 0.15% of
MBC v.2022 and ECBL were not able to be processed.With regard to
Veber and Ghose filters, both were calculated with RDKit (Landrum,
2016; Bento et al., 2020). The corresponding measurements and
thresholds can be found elsewhere (Ghose et al., 1999; Veber et al.,
2002).

2.4 Structure similarity analysis

A wide chemical space as a result of a large chemical diversity in
chemical libraries is of utmost importance in rising the chances of
finding effective and thus promising hits in drug discovery (Gerry
and Schreiber, 2018). In this scenario, the Tanimoto coefficient has
been routinely used to evaluate chemical similarity or variability
(Bajusz et al., 2015). The Tanimoto coefficient (Tc) between two
points, a and b, with k dimensions is calculated according to Eq. 1

Tc �
∑k

j�1aj × bj∑k
j�1a

2
j +∑k

j�1b
2
j −∑k

j�1aj × bj( ) (1)

The pairwise comparison of fingerprints—one for the query and
one for the target structure - allows to obtain the global similarity
between two molecules (Tc) which can vary between 0.0 (no
similarity) and 1.0 (maximum similarity or identity).

Tanimoto similarity matrixes for the MBC v.2016, MBC
v.2022 and ECBL libraries were generated with RDKit
(Landrum, 2016; Bento et al., 2020). Accordingly, the SMILES
codes for each molecule of the previously cited datasets were first
converted in RDKit molecules and molecular fingerprints were
thus calculated. Comparison of the so generated RDKit
fingerprints allowed to generate a NxM matrix whose
dimensions depends on the length of the analyzed database.
Accordingly, 1,096 × 1,096, 2,577 × 2,577 and 101,021 ×
101,021 Tanimoto matrixes were generated respectively for the
MBC v.2016, MBC v.2022 and ECBL libraries and plotted
(Figure 4). SMILES codes for compounds bearing a quaternary
ammonium - for which QikProp was unable to calculate
properties - were retained for this analysis.

2.5 Substructure similarity analysis

A quite common scaffold representation is the Murcko
framework proposed by Bemis and Murcko (Hu et al., 2016).
Given a query molecule, the method employs a systematic
dissection into four parts: ring systems, linkers, side chains,
and the Murcko framework that is the union of ring systems
and linkers in a molecule. The information obtained by this
analysis can be used for different purpose as, for instance,
database enumeration. In this work, the Bemis-Murcko
scaffolds have been calculated for each input RDKit molecule
by using the ChemAxon Bemis-Murcko node of the KNIME
platform (https://www.knime.com/knime-analytics-platform).
The resulted scaffolds were finally clustered according to their
canonical SMILES codes.

FIGURE 1
Chemical scaffolds for the first 10 most populated clusters of the MBC v.2022 library.
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TABLE 1 Quantitative distributions for the most relevant pharmacokinetic properties of the MBC and ECBL libraries calculated with QikProp.

Property Intervals MBC v.2016 MBC v.2022 ECBL

Lipinski’s rule of 5 0 violations 85.1% 85.3% 98.7%

1 violation 13.4% 12.0% 1.0%

2 violations 1.5% 2.3% 0.2%

3 violations 0.0% 0.4% 0.1%

4 violations 0.0% 0.0% <0.1%

Jorgensen’s rule of 3 0 violations 76.0% 76.1% 92.4%

1 violation 23.5% 23.1% 7.3%

2 violations 0.5% 0.8% 0.2%

3 violations 0.0% 0.0% <0.1%

Veber filter Meet the criteria 96.4% 95.1% 95.4%

Ghose filter Meet the criteria 85.8% 85.8% 94.9%

MW (Da) 0–200 9.6% 5.9% 0.2%

201–300 36.5% 34.4% 21.0%

301–400 39.2% 42.0% 64.0%

401–500 12.9% 14.4% 14.1%

>500 1.8% 3.3% 0.7%

Nr. of rotatable bonds 0–5 82.1% 79.5% 66.9%

6–10 7.1% 17.1% 27.0%

>10 0.8% 3.4% 6.1%

donorHB (HBD) ≤5 99.9% 99.8% 99.9%

>5 0.1%) 0.2% 0.1%

accptHB (HBA) ≤10 99.4% 98.0% 94.0%

>10 0.6% 2.0% 6.0%

QPlogPo/w ≤5 91.0% 87.5% 99.5%

>5 9.0% 12.5% 0.5%

QPlogS −12.0/−7.0 11.6% 6.7% 0.4%

−6.9/−3.0 73.3% 82,9% 67.0%

−2.9/2.0 15.1% 10.4% 32.6%

QPlogBB −9.0/−5.0 0.0% 0.0% <0.1%

−4.0/−1.0 61.2% 62.0% 20.2%

−0.9/2.0 38.8% 38.0% 79.8%

Human oral absorption in GI 0%–50% 1.9% 2.1% 0.7%

51%–75% 9.6% 8.5% 12.5%

76%–100% 88.5% 89.4% 86.8%

Probability of highly promiscuous activities in target-based assays 0.00–0.50 - 93.2% 99.3%

0.51–0.75 - 0.7% 0.1%

0.76–1.00 - 2.6% 0.4%
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3 Results and discussion

Successful screening projects begin with the selection of
appropriate chemical libraries in terms of size, quality, and
chemical diversity. Unlike ultra-large libraries, which are
computationally expensive to use, quality-focused chemical
libraries represent a useful source of chemical entities enriched
with active chemotypes that may be designed to efficiently
combine chemical diversity along with a significant reduction of
the computational resources eventually required for a screening
campaign. Moreover, these libraries may be built according to drug
likeness properties (e.g., ADME/Tox properties), offering promising
starting-points that can accelerate hits finding and hit-to-lead
protocols (Gong et al., 2017).

3.1 The Medicinal and Biological Chemistry
(MBC) library from 2016 to 2022

The MBC library has originated from more than 30 years of
experience in drug discovery of our research group. It has been
conceived as a collection of focused sets of chemical probes with
common therapeutic profiles mostly in the field of
neurodegenerative and infectious diseases as such as Alzheimer’s
and Parkinson’s diseases, amyotrophic lateral sclerosis (ALS),
schistosomiasis, and leishmaniasis, among others. It represents a
source of fully accessible, ready-to-use compounds with proved
efficacy. The library has been growing from 1,096 compounds in
2016 to 2,577 compounds in 2022 with a significant exploitation in
the field of infectious diseases. The utility of the MBC library to
initiate drug discovery programs is reflected mainly in the
neurodegenerative and anti-infective fields. Particularly, successful
families of CK1 inhibitors with a benzothiazole core (Salado et al.,

2014; Martínez-González et al., 2020) and CDC7 inhibitors with a 6-
mercaptopurine scaffold (Rojas-Prats et al., 2021) useful for ALS
were developed till the in vivo proof of concept after initial hit
identification using the MBC library as reported. Very recently new
mitophagy modulators having chemically diverse scaffolds were also
discovered (Maestro et al., 2023). In the anti-infective field it is
remarkable the discovery of N′-phenylacetohydrazide derivatives as
potent Ebola virus entry inhibitors (Garcia-Rubia et al., 2023)
starting with a carbazole hit identified from the MBC library
(Lasala et al., 2021) (Figure 2). The increased potentialities of the
new version of our MBC library have been addressed here and
compared with the previous version (Sebastián-Pérez et al., 2017).

3.2 The European Chemical Biology Library
(ECBL)

The selected EU-OPENSCREEN (EU-OS) compound collection
is centrally stored and managed at the EU-OS laboratory facility on
the Research-Campus Berlin-Buch (Germany). All compound
structures and primary screening data will be published in the
open-access European Chemical Biology Database, where they
are made available to a wide scientific audience. The European
research infrastructure EU-OS collaboratively develops novel
molecular tool compounds and early therapeutic candidate
molecules together with external users from various disciplines of
the life sciences. Access to the EU-OS resources is open to
researchers from academia and industry from countries inside
and outside of the European Union. The current version (v.2022)
of the ECBL integrates 101,021 available, ready-to-use compounds
with unbiased chemical diversity, designed by five renowned
academic computational chemistry groups. To maximize the
coverage of chemical space, criteria followed by these groups in

FIGURE 2
Hit-to-lead approach followed around the carbazole hit identified as Ebola virus entry inhibitor by virtual screening using the MBC library
(Garcia-Rubia et al., 2023).
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FIGURE 3
Join scatter and distribution plots of the main principal descriptors and properties calculated with QikProp for the MBC v.2016 (A; in blue), MBC
v.2022 (B; in red) and for ECBL (C; in green) libraries.
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the molecules selection were completely different but chemical
stability, drug-likeness criteria, and practical availability were
pursued in all the cases (Horvath et al., 2014). Recently, this
library have started to be used providing valuable hits to fight
against COVID-19 (Kuzikov et al., 2021; Schuller et al., 2021).

3.3 Comparative analysis

The most relevant physicochemical and pharmaceutical
properties for each of the compound of the MBC library have
been predicted with the QikProp module of Schrödinger.
Quantitative distributions for the most relevant pharmacokinetic
properties of the two versions of the MBCs library are reported in
Table 1. For a comparative description, relative dispersion and
distribution for some salient pharmacokinetics (PK) properties as
molecular weight (MW), predicted octanol/water logP (QP logP),
predicted logS (QP logS), hydrogen-bond donor (HBD), hydrogen-
bond acceptor (HBA), predicted blood-brain barrier (BBB)
permeability (QP logBB) and human oral absorption (OA) are
showed in Figure 3.

A traditional method to evaluate drug likeness is represented by
the Lipinski’s Rule of Five (Lipinski et al., 2001; Lipinski, 2004). In
line with the previous version of the library, the 97.3% (85.3% with
0 violations and 12.0% with 1 violation) of the compounds in the
MBC v.2022 have less than 2 violations of the Lipinski’s Rule of Five.
Less than 3% have more than 2 violations. The Jorgensen’s Rule of
Three (Lionta et al., 2014) is another widely followed rule for lead
like properties and states that the aqueous solubility measured as
logS should be greater than −5.7, the apparent Caco-2 cell
permeability should be faster than 22 nm/s, and the number of
primary metabolites should be less than 7. In both versions of the
MBC library, the majority of the compounds (76.0%) have no
violations with the 23% showing only 1 violation.

Molecular flexibility, number of hydrogen-bonding donor/
acceptor groups and molecular weight are critical parameters for
drug likeness. In the MBC library, most of compounds (90.8% of the
MBC v.2022 and 88.6 of the MBC v.2016 library) have a MW
between the recommended interval of 200–500 Da (see Table 1;
Figure 3). More than 90% of the MBC compounds have up to
10 rotatable bonds. More than 98% have less than 5 hydrogen-bond
donor and less than 10 hydrogen-bond acceptor groups (see
Figure 3).

Lipophilicity (Ginex et al., 2019) and thus solubility (Bergström
and Larsson, 2018) have a great impact on the pharmacokinetic
profile of a potential drug. Most of the compounds of our MBC
library have suitable lipophilicity and solubility predicted values
(more than 80% with QP logPo/w below 5 and QP logS
between −6.5 and 0.5; see Table 1; Figure 3). This is also
reflected in a good BBB predicted permeability with about 60%
of compounds with QPlogBB values between −1 and −4 (see
Table 1). Here, a close look at the distributions for the QPlogBB
values reported in Figure 3 allows to see that most of the compounds
specifically fall within 0 and −1. Finally, more than 95% of the
compounds have a predicted oral absorption (hOA) rate in the
gastrointestinal (GI) tract higher than 50% (see Table 1; Figure 3).
Moreover, potentially promiscuous compounds should be carefully
treated and analyzed in order to avoid false-positive results. There is

a wide range of strategies to afford this, from classical substructure
detection [e.g., Pan Assay Interference Compounds (PAINS) filter
(Baell and Holloway, 2010)] to more refined machine learning
methodologies (Blaschke et al., 2019). In this sense, the
probability of triggering a positive result in a target-based
screening, understood as a false positive due to the chemical
promiscuity of the molecule, was calculated here using HitDexter
3.0 server (https://nerdd.univie.ac.at/hitdexter3), a machine learning
approach that shows how the vast majority of the MBC library (93.
2%) avoid this alert.

The analysis of the most relevant physicochemical and
pharmacokinetic properties for ECBL has been reported in
Table 1 and Figure 3C. In brief, the 98.7% and the 92.4% of the
compounds have no violations of respectively the Lipinski’s Rule of
Five and Jorgensen Rule of Three which is globally indicative of the
high pharmaceutical relevance of the dataset. As demonstrated by
the data in Table 1 and plots in Figure 3C, this dataset guarantees an
excellent coverage of the drug-like chemical space with MW lower
than 600 Da, a number of rotatable bonds lower than 10, less than
5 hydrogen-bond donor and less than 10 hydrogen-bond acceptor
atoms. QPlogBB values fall in the interval of 2 and −4 (see Table 1),
with the majority of the compounds within 1 and −2.5 (see Figure 3).
The good characterization, data curation and immediate availability
of the compounds of the ECBL make it also a good reservoir of
potential hits. Finally, the HitDexter program shows how the 99.3%
of this library present low probability of trigger a false-positive
readout in target-based assays.

3.4 Tanimoto similarity

Beside physicochemical and PK properties, a wide chemical
variability or diversity is also a pivotal feature since it could influence
the success rate of a screening protocol (López-Vallejo et al., 2012).
The use of small-sized libraries with low chemical variability and
high structural redundancy could in fact reduce the possibility to
find useful hits.

In this regard, the Tanimoto metric has been widely used to
evaluate molecule similarity thus it represents a valid way tomeasure
the qualitative chemical variability of a compound’s library (Sankara
Rao et al., 2011; Bajusz et al., 2015; Xia and Yan, 2017). The chemical
variability of ourMBC library has been subjected to Tanimoto-based
fingerprint similarity analysis (see Figure 4). With the exception of a
small cluster of structurally-related, relatively similar compounds
with values among 0.5 and 0.7 (white/pink square in the similarity
matrix for MBC v.2016 and v.2022), a clear predominance of
fingerprint values lower than 0.5 is generally observed thus
confirming the suitable chemical diversity of our library.
Regarding the ECBL, no similarity clusters were found as shown
by the low values of the Tanimoto coefficients. This once again
highlights the valuable chemical diversity of this library.

3.5 Scaffold clustering

Bemis and Murcko outlined a popular method for deriving
scaffolds from molecules by removing side chain atoms (Bemis and
Murcko, 1996). Widely speaking, the Bemis-Murcko framework
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algorithm represents an effective indicator of the chemical diversity
of the chemical libraries. The ChemAxon extended version of the
Bemis-Murcko framework algorithm implemented in KNIME (Hu
et al., 2016) has been used here to perform scaffold clustering to
check the chemical diversity of the MBC v.2022 and the ECBL.
More details about the procedure can be found in the Materials &
Methods section. For comparative purposes, the old version of the
MBC library (v.2016) has been also included in the analysis (see
Figure 5).

A total of 465 and 1123 Bemis-Murcko scaffolds have been
found respectively for the MBC v.2016 and v.2022 libraries thus
confirming the enrichment in chemical variability of the new
version. The most representative new scaffolds from MBC

v.2022 with respect to the v.2016 are depicted in Figure 6. As
observed in Figures 5A,B, a high level of chemical diversity
generally characterizes the MBC v.2022 database with only
2 Bemis-Murcko scaffolds having a population above the 2% of
the structures present in the MBC v.2022 database, showing that the
vast majority of the compounds are distributed over different
chemotyes (Figure 5B). Library expansion could be due to two
possible factors as 1) the enrichment of already present scaffolds by
means of further enumeration or 2) the introduction of totally new
chemical entities. In case of the MBC library, analysis of the
common scaffolds (see Figure 5C) between the two versions
allowed to see that the library expansion generally came from the
introduction of new chemical species with a limited enumeration of

FIGURE 4
Tanimoto-based fingerprint similarity analysis for the MBC v.2016 (A), MBC v.2022 (B) and ECBL (C) libraries.

FIGURE 5
Bemis-Murcko scaffold distribution (%) for the MBC v.2016 (A) and the MBC v.2022 (B). Analysis of the common scaffolds between MBC v.2022 and
MBC v.2016 or ECBL is reported respectively in (C, D). For clarity, only the scaffolds with a population >5 compounds have been shown.
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the scaffolds already present in the previous version
(see Bemis-Murcko scaffolds IDs 1-59 in Figure 5C). Finally, the
uniqueness of the chemical scaffolds collected in the MBC
v.2022 library has been evaluated with respect to the ECBL. On a
total of 94 scaffolds with population higher that 5 compounds, there
are 62 unique structures in the MBC v.2022 library (see Figure 5D)
and only 32 are shared with the ECBL.

3.6 Comparison with other libraries

The physicochemical and drug-like properties of the MBC
library have been also compared with those of some publicly
available chemical databases as ZINC, DrugBank, ChEMBL,
NuBBE and approved drug library from Selleck Chemicals
(henceforth referred to as Approved drug library). ZINC (Irwin
et al., 2020) is a freely available database of commercially available
compounds developed by the Department of Pharmaceutical
Chemistry at the University of California, San Francisco (UCSF).
One of the most recent versions, ZINC20 (Irwin et al., 2020),
contains over 10 millions of drug-like compounds. The
DrugBank (Wishart et al., 2018) is a freely available database that
includes drug information, drug targets, 3D structure and metabolic
pathways. The database contains about 11,000 small compounds.
ChEMBL (Mendez et al., 2019) is an open-source database
developed by the European Bioinformatics Institute (EMBL-EBI)
in Cambridge (United Kingdom). It also contains structures from
the U.S. Food and Drug Administration (FDA). Information about
approved products (from the FDA Orange Book), including dosage
information and administration routes, is also included in the
database. Currently, the database contains about 1.9 million
drug-like compounds. The NuBBE database (Saldívar-González
et al., 2019) is a natural product library created in 2013 that aims
to collect the chemical structural diversity of Brazilian natural

biodiversity, resulting in an extraordinary curated source of
2,223 natural compounds. Finally, the approved drug library used
in this work is a collection of compounds downloaded from Selleck
Chemicals that are ready to be used for HTS. The 3,104 compounds
in this library are approved by different regulatory agencies such as
the FDA or the European Medicines Agency (EMA), among others.

Density distributions relative to the molecular weight, SASA, QP
logPo/w, QP logS, donorHB (HBD) and accptHB (HBA) properties are
reported in Figure 7. As shown, most of the compounds fall within the
range of Lipinski’s rule of Five (that is, less than 500 Da) forMWwith the
MBC andECBLhaving a slightly betterfit among the analyzed databases.
The solvent accessible surface area (SASA) for ECBL, ChEMBL and
ZINC ranges between 400 and 900 Å2. A slightly shifter profile can be
seen for MBC, DrugBank and the Approved drugs library, with SASA
values from 200 to 800 Å2. Regarding NuBBE, the distribution seems to
be an intermediate case compared to the previous ones, covering wider
values from 200 to 1000 Å2 with a maximum population density close to
that of the ECBL or ChEMBL. In the case of hydrogen-bond donor
(donorHB) and acceptor (accptHB) properties, all the libraries apart from
DrugBank, Approved drug library and ChEMBL for HBD, the vast
majority agree with Lipinski’s rule of five and are in the range of
0.0–6.0 for HBD and 2.0–20.0 for HBA. This is likely due to the
presence of small peptidomimetics and complex sugars in the
previously cited libraries. Regarding lipophilicity (QP logPo/w), similar
distributions in the range of −2.5 to 7.5 have been registered for all the
libraries except for DrugBank and Approved drug library that have also
some compounds with QP logPo/w values below −2.5. Finally,
compounds from MBC, ECBL, and ZINC are in the optimal range of
solubility (−6.5 < QP logS <0.5). NuBBE and ChEMBL show a similar
distribution with a small set of compounds with QP logS values lower
than −6.5. However, the remaining compounds show an appropriate
solubility profile. DrugBank and Approved drug library slightly deviate
from the ideal range having a small number of compounds with QP logS
values than 0.5.

FIGURE 6
Most representative new scaffolds from the MBC v.2022 with respect to the MBC v.2016.
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4 Conclusion

The screening of quality-focused libraries could represent a way
to efficiently provide a useful source of probes that help characterize
the protein targets emerging from research studies. In this direction,
efficient synthetic routes, availability, good characterization, suitable
physicochemical and pharmacokinetic properties can really make
the difference since they can contribute to rise the success rate and
shorten the drug discovery process.

We here presented an updated version of our in-house MBC
library which is a unique collection of small molecules with enriched

drug-like properties and chemical diversity. From the first
publication in 2016, the library has been constantly enriched
with new compounds becoming 2.3 times bigger than the
previous version with over 2,500 ready-to-use chemical
compounds. To test its potential impact on drug discovery, the
quality and variability of the chemical structures collected in the new
version of the MBC library has been analyzed by using the QikProp
module of Schrödinger and RDKit. As official partners and active
collaborators of the EU-OPENSCREEN ERIC, we also presented
and discussed the potentialities of the open-access European
Chemical Biology Library (ECBL) that collect data from several

FIGURE 7
Probability density distribution of MW, SASA, QP logPo/w, QP logS, donorHB and accptHB properties for all the analyzed libraries.
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countries in EU. Finally, a wider comparison with other well-known
publicly available libraries has been provided and discussed. Results
of this analysis remark the high quality in terms of structural
diversity and drug-like properties of the MBC and ECBL, making
them suitable reservoirs of hits for drug discovery.
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Background:Osteoporosis is a prevalent bone metabolism disease characterized
by a reduction in bone density, leading to several complications that significantly
affect patients’ quality of life. The Achyranthes bidentata–Dipsacus asper (AB–DA)
herb pair is commonly used in Traditional Chinese Medicine (TCM) to treat
osteoporosis. This study aimed to investigate the therapeutic compounds and
potential mechanisms of AB–DA using network pharmacology, molecular
docking, molecular dynamics simulation, and experimental verification.

Methods: Identified compounds of AB–DA were collected from the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis Platform
(TCMSP), Traditional Chinese Medicine Information Database (TCM-ID), TCM@
Taiwan Database, BATMAN-TCM, and relevant literature. The main bioactive
ingredients were screened based on the criteria of “OB (oral bioavailability) ≥
30, DL (drug-likeness) ≥ 0.18.” Potential targets were predicted using the
PharmMapper and SwissTargetPrediction websites, while disease
(osteoporosis)-related targets were obtained from the GeneCards, DisGeNET,
and OMIM databases. The PPI network and KEGG/GO enrichment analysis were
utilized for core targets and pathway screening in the STRING and Metascape
databases, respectively. A drug–compound–target–pathway–disease network
was constructed using Cytoscape software to display core regulatory
mechanisms. Molecular docking and dynamics simulation techniques explored
the binding reliability and stability between core compounds and targets. In vitro
and in vivo validation experiments were utilized to explore the anti-osteoporosis
efficiency and mechanism of sitogluside.

Results: A total of 31 compounds with 83 potential targets for AB–DA against
osteoporosis were obtained. The PPI analysis revealed several hub targets,
including AKT1, CASP3, EGFR, IGF1, MAPK1, MAPK8, and MAPK14. GO/KEGG
analysis indicated that the MAPK cascade (ERK/JNK/p38) is the main pathway
involved in treating osteoporosis. The D–C–T–P–T network demonstrated

OPEN ACCESS

EDITED BY

Xinhua Qu,
Shanghai Jiao Tong University, China

REVIEWED BY

Jun Wan,
The University of Queensland, Australia
Venkatesh Katari,
University of Toledo, United States

*CORRESPONDENCE

Zhengxiao Ouyang,
ouyangzhengxiao@csu.edu.cn

Wenzhao Li,
liwenzhao@csu.edu.cn

†These authors have contributed equally
to this work

RECEIVED 18 June 2023
ACCEPTED 07 September 2023
PUBLISHED 02 October 2023

CITATION

Li T, Li W, Guo X, Tan T, Xiang C and
Ouyang Z (2023), Unraveling the potential
mechanisms of the anti-osteoporotic
effects of the Achyranthes
bidentata–Dipsacus asper herb pair: a
network pharmacology and
experimental study.
Front. Pharmacol. 14:1242194.
doi: 10.3389/fphar.2023.1242194

COPYRIGHT

© 2023 Li, Li, Guo, Tan, Xiang and
Ouyang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 02 October 2023
DOI 10.3389/fphar.2023.1242194

76

https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1242194/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1242194&domain=pdf&date_stamp=2023-10-02
mailto:ouyangzhengxiao@csu.edu.cn
mailto:ouyangzhengxiao@csu.edu.cn
mailto:liwenzhao@csu.edu.cn
mailto:liwenzhao@csu.edu.cn
https://doi.org/10.3389/fphar.2023.1242194
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1242194


therapeutic compounds that mainly consisted of iridoids, steroids, and flavonoids,
such as sitogluside, loganic acid, and β-ecdysterone. Molecular docking and
dynamics simulation analyses confirmed strong binding affinity and stability
between core compounds and targets. Additionally, the validation experiments
showed preliminary evidence of antiosteoporosis effects.

Conclusion: This study identified iridoids, steroids, and flavonoids as the main
therapeutic compounds of AB–DA in treating osteoporosis. The underlying
mechanisms may involve targeting core MAPK cascade (ERK/JNK/p38) targets,
such asMAPK1, MAPK8, andMAPK14. In vivo experiments preliminarily validated the
anti-osteoporosis effect of sitogluside. Further in-depth experimental studies are
required to validate the therapeutic value of AB–DA for treating osteoporosis in
clinical practice.

KEYWORDS

osteoporosis, Achyranthes bidentata, Dipsacus asper, network pharmacology, MAPK

1 Introduction

Osteoporosis is a prevalent bone metabolism disease that affects
over 200 million people worldwide (McDonald et al., 2021; Grewe
et al., 2022). It is characterized by a reduction in bone density, which

greatly increases the risk of fractures (NIH Consensus Development
Panel on Osteoporosis Prevention et al., 2001). Osteoporotic
fractures and associated complications can have a significant and
lasting impact on patients’ quality of life, sometimes even
threatening their lives, and place a considerable cost on society

FIGURE 1
Study flow chart to investigate the potential underlying mechanisms for AB–DA treatment of osteoporosis.
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and individuals (Compston et al., 2019; Liang et al., 2022). With the
aging of the global population, osteoporosis has become a pressing
health problem (Jiang et al., 2020).

Anti-osteoporosis drugs such as estrogen, raloxifene,
bisphosphonates, calcitonin, and parathyroid hormone (PTH)
are commonly used in clinical practice (Chen et al., 2022). These

medications, however, have side effects and severe responses
that restrict their long-term usage. For example,
bisphosphonates may cause jaw osteonecrosis and renal
impairment (Li et al., 2021). There is, therefore, an urgent
need to identify potential anti-osteoporosis drugs that are
both more effective and safer.

FIGURE 2
Chemical structure of 31 screened bioactive compounds. (A) Chemical structure of 19 bioactive compounds derived from AB. (B) Chemical
structure of 12 bioactive compounds derived from DA; sitosterol is common to both.

FIGURE 3
Data collection and hub gene screening for AB–DA against osteoporosis. (A) Venn diagram of the identified compounds of AB; data derived from
TCMSP, TCM@Taiwan, BATMAN-TCM, and TCM-ID databases. (B) Venn diagram of the identified compounds of DA; data derived from the TCMSP, TCM-
ID, and BATMAN-TCM databases and relevant literature. (C)Overlapping targets of AB–DA and osteoporosis, representing potential therapeutic targets.
(D) PPI network analysis applied in the STRING database. (E) Plug-ins MCODE and CytoHubba of Cytoscape software to screen hub genes. (F)
Degree value of top 10 hub genes.

Frontiers in Pharmacology frontiersin.org03

Li et al. 10.3389/fphar.2023.1242194

78

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1242194


Traditional Chinese Medicine (TCM) has a rich history and has
been widely used in Asia to treat various diseases, including
osteoporosis (Huang et al., 2022). TCM is cost-effective and has
fewer side effects than chemosynthetic drugs, making it more
suitable for long-term use (Mukwaya et al., 2014). The
application of TCM in modern society provides a new pathway
for complementary and alternative medicine (CAM) treatment
(Chu et al., 2022). Over the years, many TCM treatments and
prescriptions have been used to treat various orthopedic diseases,

especially osteoporosis and fractures, with great success (Suvarna
et al., 2018; Peng et al., 2022). TCM’s prescription to treat
osteoporosis can also play a comprehensive role in regulating
body function and relieving pain (Feng et al., 2022). A Chinese
herb pair, generally composed of two kinds of herbal medicine, is the
essence of TCM prescriptions. Compared with all herbs in
prescriptions, studying and elucidating the complex
pharmacological mechanism of herb pairs is simpler and more
beneficial (Liu et al., 2020).

FIGURE 4
GO/KEGG enrichment analysis and D–C–T–P–Dnetwork of AB–DA in the treatment of osteoporosis. (A) Top 10 enriched GO items; left to right are
biological process (BP), cellular compound (CC), and molecular function (MF), respectively. (B) Bubble diagram of top 20 enriched KEGG pathways. (C)
GOchord chart presenting the corresponding relationship between core targets and pathways. (D)D–C–T networkmap; dark green diamond represents
drugs (AB and DA), light green hexagon represents 31 bioactive compounds of AB–DA, and circles colored orange to red represent targets with low
to high degrees. (E)MAPK signaling pathway mapped and colored by KEGG Mapper database; therapeutic targets of AB–DA are shown in red, targets of
AB–DA but without therapeutic effect on osteoporosis are shown in blue, and other targets of osteoporosis are shown in yellow. (F) D–C–T–P–D
network exhibits the regulatory mechanisms for AB–DA in the treatment of osteoporosis; dark green diamond represents drugs (AB and DA), light green
hexagon represents compounds of AB–DA, circles colored orange to red represent targets with low to high degrees, blue V icon represents enriched
core pathways, and yellow rectangle indicates the disease (osteoporosis). (G) the degree values of top 12 bioactive compounds.

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2023.1242194

79

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1242194


Achyranthes bidentata (AB), also known as Niu Xi, is included in
the Chinese, Japanese, and Korean pharmacopoeia (He et al., 2017).
Additionally, its dried roots are regularly used in TCM for
osteoporosis (Yan et al., 2019). A number of biological activities,
including anti-osteoporosis (He et al., 2010; Zhang et al., 2012; Jiang
et al., 2014; Suh et al., 2014; Zhang M. et al., 2018; Zhang S. et al.,
2018), anti-tumor (Jin et al., 2007), and anti-oxidant (Huang et al.,
2015), have been demonstrated by contemporary pharmacological
research on AB extracts. Dipsacus asper (DA), also known in
Chinese as Xu Duan —meaning “to rebuild fractures and unite
bones”—is discussed in Shennong’s Classic of Material Medicine,
which is the earliest source (Tao et al., 2020). DA can be used to treat
muscle pain and bone repair, golden sores, and collapses (Wu et al.,
2022). According to modern pharmacological investigations,
numerous disorders, including osteoporosis and osteoarthritis,
have been successfully treated with DA (Liu et al., 2019; Yu
et al., 2019; Zhang et al., 2019). Jiegudan capsules, which contain
AB and DA, are a common traditional Chinese medicine
prescription to treat osteoporosis. Although many compounds

have been isolated from AB and DA, the potential
pharmacological mechanisms of AB–DA herb pairs and their
interactions with osteoporosis-related targets and pathways
remain unclear and need further exploration.

In recent years, the use of network pharmacology has
become increasingly popular for exploring the interaction
network of TCM therapy (Shuai et al., 2020). Molecular
docking, a virtual screening technology that simulates the
behavior of small-molecule ligands at the binding sites of
receptor proteins, has also gained popularity for developing
novel drugs (Pagadala et al., 2017). This research aims to
elucidate the potential mechanism in TCM of the AB–DA
herb pair for treating osteoporosis, bioinformatics prediction
by network pharmacology, molecular docking, and molecular
dynamics simulation, and verify these via alkaline phosphatase
(ALP) activity, osteoblast mineralization assays, Western blot,
q-PCR, and an ovariectomy (OVX) osteoporosis mouse model.
A flow chart outlining the study’s approach is presented in
Figure 1.

FIGURE 5
Molecular docking between bioactive compounds and core targets. (A) Binding affinity heatmap of compound ligand–protein receptor complexes,
showing stronger binding affinity. (B) Binding details of the sitogluside–IGF1 complex (3D). (C) Binding details of the sitogluside–IGF1 complex (spatial
structure). (D) Binding details of intermolecular force types of the sitogluside–IGF1 complex (2D).
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FIGURE 6
The molecular dynamic simulations to calculate the binding stability of sitogluside–IGF1 complex. (A), The total energy (a) and potential energy (b)
curves of the whole ensemble in 300 ps simulation, showed the stability. (B), The temperature alteration of whole ensemble is controllable in 300 ps
simulation. (C), The RMSD curve present the conformational alternation of receptor made by ligand. (D), The RMSF curve showed the conformational
alternation of amino acid residues. (E), The hydrogen bond heat map of sitogluside–IGF1 complex.
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2 Materials and methods

2.1 Screening of bioactive compounds of
AB–DA

The TCM@Taiwan (http://tcm.cmu.edu.tw/zh-tw/) Database
(Chen, 2011), Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP
http://lsp.nwu.edu.cn/tcmsp.php) (Ru et al., 2014), BATMAN-
TCM (L et al., 2016) (a bioinformatics analytical tool for the
molecular mechanisms of TCM: http://bionet.ncpsb.org.cn/),
Traditional Chinese Medicine Information Database (Kang et al.,
2013) (TCM-ID http://bidd.group), and relevant literature were
utilized to acquire all identified AB–DA compounds. ADME
(absorption, distribution, metabolism, and excretion) properties
were applied to screen bioactive ingredients, and the screening

criteria were set as “oral bioavailability (OB)≥ 30, drug-likeness
(DL)≥ 0.18” (Gao et al., 2022) to screen the compounds from the
TCMSP database. Similarly, compounds from different sources were
screened in the SwissADME (Daina et al., 2017) database using their
pharmacokinetic properties (http://www.swissadme.ch).

2.2 Relevant targets of AB–DA compound
and osteoporosis

To predict potential targets based on their spatial configuration,
the compounds generated in the previous step were imported into
the SwissTargetPrediction (Daina et al., 2019) (http://www.
swisstargetprediction.ch/) and PharmMapper databases (Liu et al.,
2010) (http://www.lilab-ecust.cn/pharmmapper/). The UniProt ID of
the target was converted into a standardized gene name using the

FIGURE 7
In vivo OVX model and q-PCR experiments to validate the potential anti-OP effect of sitogluside. (A) μCT scanning of mice tibia showing the bone
loss alleviated by sitogluside’s efficiency. (B) Statistical results of osteoporosis phenotype parameters of OVXmice, including BMD, Tb. Th, BV/TV, and Tb.
N. (C) q-PCR results of osteogenic biomarker, which is shown to promote the osteogenic effect of sitogluside. (D) q-PCR results of OSX, which, treated
with sitogluside or combined with the specific inhibitor of JNK (SP600125) and p38 (SB203580), indicates that sitogluside could target the JNK
pathway to promote osteogenic genes in the treatment of OP.
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UniProt database (Holzhüter and Geertsma, 2022) (https://www.
uniprot.org). The keyword “osteoporosis” was searched in the
GeneCards (Barshir et al., 2021) (https://www.genecards.org/),
DisGeNET (Piñero et al., 2020) (https://www.disgenet.org), and
Online Mendelian Inheritance in Man (Li et al., 2012) (OMIM,
https://omim.org) databases to obtain relevant targets. Then, the
overlapping targets identified by Venn diagram were considered as
targets of AB–DA for the treatment of osteoporosis after merging and
removing duplicates.

2.3 PPI network for core target selection

To identify potential hub genes, a protein–protein interaction
(PPI) network was established in the STRING (Szklarczyk et al.,
2021) (http://string-db.org, Version 11.5) database, with a focus on
the anti-osteoporosis efficacy of AB–DA in Homo sapiens and an
interaction score threshold of 0.4. Topological analysis was
performed, and the core targets of AB–DA for treating
osteoporosis were accurately selected by using the Cytoscape
plug-ins MCODE (molecular complex detection) and CytoHubba
(Ye et al., 2022).

2.4 GO and KEGG pathway enrichment
analyses for the core pathways

Analysis of Gene Ontology (GO) functions, including cellular
component (CC), molecular function (MF), and biological process
(BP), and Kyoto Encyclopedia of Genome and Genome (KEGG)
pathway enrichment analysis, was utilized to clarify the key anti-
osteoporosis mechanism of the AB–DA herb pair. When entering
the targets into the Metascape database (http://www.metascape.org/),
the cut-off p-value, minimum overlap value, and concentration value
wereset to0.01,3,and1.5,respectively(Zhouetal.,2019).False-positive
rate (FPR) analysis was eliminated using the Benjamini–Hochberg
method with a q-value of 0.05 or lower (Zou et al., 2016). The enriched
findings were displayed as bar and bubble plots on the bioinformatics
website using the R package (http://www.bioinformatics.com.cn/).
Comprehensive information on the most significantly enriched
pathway was then extracted and colored (Kanehisa and Sato, 2020).
Finally, a herb–compound–target–pathway–disease network was
created using Cytoscape software (v.3.9.1, https://cytoscape.org/) to
present the complicated network of the AB–DA herb pair in the
treatment of osteoporosis.

2.5 Molecular docking to validate binding
affinity

The SwissDock platform (Grosdidier et al., 2011) (http://www.
swissdock.ch/) is an online molecular docking (MD) tool to
determine the binding affinity from each binding site between
small molecule ligands and receptor proteins. The X-ray
diffraction of the protein crystal structure of key targets were
downloaded from the Protein Data Bank (PDB) database (www.
rcsb.org) (Nakamura et al., 2022). The binding sites were ranked
based on their binding affinity scores, with the site having the

smallest score considered the best binding site. Discovery Studio
2019 software (https://www.3ds.com) was used to visualize the
binding details (Sultana et al., 2022).

2.6 Molecular dynamics simulation to
validate binding stability

To investigate the stability of the complexes between small-
molecule ligands and proteins, molecular dynamics simulations
(MDS) were performed using the Standard Dynamics Cascade
subunit of the Discovery Studio 2019 software. The
ligand–protein complex with the lowest binding affinity score
according to molecular docking analysis was selected (Hu et al.,
2022). In this simulation system, water molecules are used to fill the
solvent chamber, and Cl and Na+ ions are used to maintain an
electrically neutral state. The simulation time was set as 300 ps, and
the heating, balancing, and manufacturing phases were carried out
after the system was balanced by an NPT ensemble, which fixed the
pressure, temperature, and particle number. The analysis of the
locus was performed using root mean square fluctuation (RMSF),
root mean square deviation (RMSD), and hydrogen bond properties
to produce the results.

2.7 Reagent and cell culture

Sitogluside, identified as one of the most promising bioactive
compounds in the AB–DA herb pair, was further investigated for its
anti-osteoporotic effects and associated mechanisms. Sitogluside
was procured from the Dalian Meilunbio company and
solubilized in dimethyl sulfoxide (DMSO). Human fetal
osteoblast (hFOB) cells were obtained from the American Type
Culture Collection (ATCC) and cultured in six-well plates using
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% fetal bovine serum (FBS, Gibco, United States), 1%
penicillin–streptomycin (P/S), and 0.3 mg/mL Geneticin (G418).
The JNK-specific inhibitor (SP600125) and p38-specific inhibitor
(SB203580) were acquired from Absin (Shanghai). The cells were
maintained in a humidified sterile atmosphere at 34 °C. They were
subsequently treated with sitogluside when they reached a
confluence of 60%–80% per well.

2.8 Alkaline phosphatase activity, Alizarin red
staining mineralization, and osteoclast
differentiation assays

For alkaline phosphatase (ALP) activity analysis, the BCIP/NBT
Alkaline Phosphatase color development kit (Beyotime Institute of
Biotechnology, Shanghai, China) was used according to the
manufacturer’s procedure. Briefly, osteoblast precursor cells were
seeded at 3 × 104 cells/well in 24-well plates and grown for 14 days in
osteogenic media (DMEM +10% FBS +1% P/S +100M ascorbic acid
+2 mM 2-glycerophosphate +10 nM dexamethasone). The stained
culture plates were photographed using a microscope (Leica image
analysis system, Q500MC) and quantified using ImageJ software
(National Institutes of Health, Bethesda, MD, United States). In
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addition, a 2% ARS reagent (Beyotime Institute of Biotechnology)
was used to detect matrix mineralization, with the same protocol as
ALP assay except the dye. In addition, we also investigated the effect
of sitogluside on the osteoclast to fully illustrate the anti-OP effects.
The RAW264.7 (osteoclast precursor) cells were treated with a
different concentration of sitogluside and supplemented with
50 ng/mL receptor activator of NF-κB ligand (RANKL) as an
osteoclast formation stimulator. Cells were then fixed in
paraformaldehyde and stained with tartrate-resistant acid
phosphatase (TRAP) after the intervention.

2.9 Ovariectomized mouse model

This study received ethical approval from the Animal Care
Committee of the Second Xiangya Hospital of Central South
University. A total of 30 10-week-old female C57BL/6 mice were
procured from SLAC Laboratory Animal Co. Ltd. (SLACCAS,
Shanghai, China). They were acclimatized in specific pathogen-
free (SPF) cages for 1 week, during which measures were taken to
minimize animal suffering through the use of anesthesia and sterile
techniques during the surgical procedures. Bilateral ovariectomy
(OVX) or sham surgery (retroperitoneal incision without
ovariectomy) was performed based on group assignment, as
described in the following paragraph.

Following the surgical procedures, the mice were randomly
assigned to one of three groups: sham group (non-OVX mice,
n = 10), vehicle group (OVX mice, n = 10), and sitogluside
group (OVX mice intraperitoneally injected with sitogluside at a
dose of 10 mg/kg/day, n = 10).

After 12 weeks, all mice were euthanized by cervical dislocation,
and the right femurs were dissected and fixed in 4%
paraformaldehyde (PFA) for 48 h. High-resolution micro-
computed tomography (μCT40, Scanco, Zurich, Switzerland) was
employed for bone analysis at the following parameters: scanning
voltage = 80 kV, electric current = 80 μA, and resolution = 10 μm.
The relevant trabecular bone volume fractions (BV/TV), trabecular
number (Tb. N), trabecular thickness (Tb. Th), and trabecular
separation (Tb. Sp) were subsequently calculated to assess the
protective efficacy of sitogluside in OVX mice. In addition, to
investigate the biosafety of sitogluside in the OVX model, the
main organs were also obtained and detected using hematoxylin-
eosin (H&E) staining. The heart, liver, spleen, lung, and kidney were
hence fixed with formalin and embedded in paraffin cut to a 4 μm
section. They were dewaxed in xylene, rehydrated with
concentration gradient ethanol, and then stained with H&E for
histological examinations and morphometric analysis. The serum of
the mice was also collected to examine the biomarkers of alanine
aminotransferase (ALT), creatine kinase (CK), and blood urea
nitrogen (BUN).

2.10 Quantitative real-time PCR analysis

Human osteoblast (hFOB) cells were treated with 40 μM
sitogluside or combined with the specific inhibitor of JNK and
p38, depending on the groups, with ascorbic acid added in the
osteogenic media. The cells were then harvested using the RNeasy

Mini kit (QIAGEN, CA, United States) to extract total RNA
following the manufacturer’s protocol. Subsequently, cDNA
synthesis was performed using the reverse transcriptase kit
(Takara Biotechnology, Japan). Real-time PCR analysis was
performed using the SYBR Premix Ex Taq kit (Takara
Biotechnology, Japan). The PCR parameters were set as follows:
40 cycles (denaturation at 95 °C for 10 s and amplification at 60 °C
for 30 s). The resultant data were recorded as cycle threshold (Ct)
values, and the 2−ΔΔCT method was employed for further analysis of
RNA expression. In addition, to determine the modulated effect of
sitogluside with JNK and osteogenic genes, the knockdown and
activation of JNK expression were applied. ShRNA (shGnai3) was
thus used to downregulate the expression level of JNK, and ASM
was used as an activator to increase the p-JNK level (Meng et al.,
2021). The alterations of osteogenic biomarkers were detected via
q-PCR.

2.11 Western blot analysis

The hFOB cells were harvested by trypsin and then lysed in
RIPA for 30 min on ice. Cell lysates were centrifuged at 12,000 g for
15 min at 4 C; the supernatant was collected, and protein content
was quantified via the BSA protein assay kit following the
manufacturer’s instruction. Proteins were separated by
electrophoresis on 10%–12% SDS-PAGE at 100 V for 1.5 h and
transferred onto a 0.45 μm polyvinylidene difluoride (PVDF)
membrane at 250 mA for 1 h. The PVDF membrane was blocked
with 5% non-fat milk in TBST buffer for 1 h at room temperature
and incubated with primary antibody at 4 °C overnight. They were
then incubated with secondary antibody for 1 h at room temperature
and detected using the Chemiluminescence Kit.

2.12 Statistical analysis

Statistical analyses were conducted using GraphPad Prism
8.0.2 software (San Diego, United States). The data are presented
as means ± standard deviation (SD). Data comparisons were
performed using one-way analysis of variance (ANOVA), and
statistical significance was determined by a p-value of less than 0.05.

3 Results

3.1 Relevant targets of AB–DA compound
and osteoporosis

According to TCM databases, 185 components of AB and
82 compounds of DA were obtained in this work (Figures 3A,
B). After filtration by screening criteria, 19 potential bioactive
compounds of AB were obtained: arjunolic acid, baicalein,
baicalin, berberine, chondrillasterol, coptisine, delta-7-
stigmastenol, epiberberine, inophyllum E, kaempferol, oleanol,
palmatine, quercetin, sitogluside, spinasterol, spinoside A,
stigmasterol, wogonin, and β-ecdysterone. The 12 compounds
from DA were 2,6-dihydroxycinnamic acid, caffeate, cauloside A,
gentisin, isochlorogenic acid A, japonine, loganetin, loganic acid,
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loganin, sweroside, and sylvestroside III. Sitosterol is a common
compound of both AB and DA (details shown in Supplementary
Table S1; structures shown in Figure 2).

After merging and duplicating results, 413 potential targets
associated with 31 bioactive compounds were obtained, and
827 relevant targets of osteoporosis were acquired. Some
83 overlapped genes on Venn between AB–DA ingredients and
osteoporosis were regarded as potential therapeutic targets
(Figure 3C; details shown in Supplementary Table S2).

3.2 PPI network of AB–DA against
osteoporosis

A total of 83 targets of AB–DA against osteoporosis were
imported to the STRING database; after deleting the disconnect
targets, a PPI network with 78 nodes and 702 edges was constructed.
Cytoscape software was utilized for further visualization, and
plug-ins of MCODE and CytoHubba based on the topological
parameters were applied to screen the hub genes, including
AKT1, IGF1, CASP3, MMP9, EGFR, PPARG, ESR1, MAPK1,
MAPK8, and MAPK14 (Figures 3D–F).

3.3 GO and KEGG pathway enrichment
analyses of AB–DA against osteoporosis

GO and KEGG pathway enrichment analyses were performed in
the Metascape database, and 83 targets with 875 GO items were
enriched. It contained 772 biological processes (BP), 29 cellular
components (CC), and 74 molecular functions (MF) items (p < 0.01,
adjusted q < 0.05) (details shown in Figure 4A).

A total of 135 KEGG pathways were significantly enriched,
which mainly included the MAPK signaling pathway, osteoclast
differentiation, PI3K-Akt signaling pathway, and endocrine
resistance (Figures 4B, C). We further mapped and colored the
regulation details of the MAPK cascade in the KEGG mapper
database; in that map, red objects represent targets of AB–DA
against osteoporosis, blue objects show the targets of AB–DA
without the therapeutic effects of osteoporosis, and the other
untargeted targets of osteoporosis are colored yellow (Figure 4E).

3.4 Drug–compound–target–pathway–
disease network analysis

A drug–compound–target network was constructed using
Cytoscape to illustrate core compounds and targets (Figure 4D);
the core bioactive compounds included sitogluside, arjunolic acid,
chondrillasterol, stigmasterol, spinasterol, spinoside A, cauloside A,
sylvestroside III, β-ecdysterone, sitosterol, oleanol, and baicalin
(ranked by degree value) (Figure 4G). A
drug–compound–target–pathway–disease (D–C–T–P–D) network
was then constructed to exhibit the complex molecular mechanisms
of AB–DA anti-osteoporosis with multi-compound, multi-target,
and multi-pathway characteristics. The dark green diamond
represents the drugs (AB and DA), the light green hexagon
represents the compounds of AB–DA, the circles colored orange

to red represent targets with low to high degrees, the blue V icon
represents the core enriched pathways, and the yellow rectangle
indicates the disease (osteoporosis) (Figure 4F).

3.5 Molecular docking

The binding affinity between the core compounds and core
targets are shown by heatmap (Figure 5A). According to relevant
theories of molecular docking, the results of binding
affinity < −5.0 kcal/mol suggest that there is a good spontaneous
binding activity between molecule ligands and protein receptors,
and results < −7.0 kcal/mol are stronger. Our research results
showed that all the compounds had good binding activity with
core targets, with binding affinities ranging from −5.64 kcal/mol
to −9.43 kcal/mol. Sitogluside has the highest binding activity with
IGF1. As shown in Figures 5B–D, the molecular interaction forces
between IGF1 and sitogluside include π–donor hydrogen bond,
π–alkyl bond, conventional hydrogen bond, carbon–hydrogen
bond, and alkyl bond. The distances between the sitogluside
atoms and amino acid residues of IGF1 range from 1.72 Å
(number 1133, histidine residue) to 5.43 Å (number 1154,
phenylalanine residue).

3.6 Molecular dynamics simulation

The previous analysis of molecular docking showed the strong
binding affinity between AB–DA compounds and core targets, and
molecular dynamics simulation was utilized to identify the stability
of the ligand–protein complex after docking by conformation
alternation with potential energy under Newton’s law of motion.
After the 300 ps simulation, the energy and temperature alternate
tendency of the ensemble, hydrogen bond, RMSD, and RMSF
changes of ligand–receptor interaction were calculated for
stability analysis. RMSD was used to analyze the conformational
alternation of receptors made by the ligand, and the results showed
that curves and fluctuations only occurred at the beginning of the
80 ps simulation, and then tended to be stable (Figure 6A). The
RMSF curve was utilized to monitor the conformational alternation
of amino acid residues, and results show that the whole process is
stable with only some small random fluctuations—which also
reflects the whole ensemble’s stability to some extent (Figure 6B).
The same tendency is also observed in the hydrogen bond heatmap
(Figure 6C). The energies and temperature alternation of the whole
ensemble were also stable and controlled. Therefore, the overall
results exhibited good stability between the small-molecule
ligand–protein receptor complex.

3.7 Sitogluside promotes mineralization and
ALP activity in osteoblast without any effect
on osteoclast

To further investigate the impact of sitogluside on alkaline
phosphatase (ALP) activity and mineralization in osteoblasts, we
conducted ALP activity and ARS experiments. As illustrated in
Supplementary Figure S3D, the sitogluside group exhibited
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increased ALP activity and mineralization compared to the control
group. However, when shGnai3 intervention was introduced, the
stimulatory effect of sitogluside on ALP activity and mineralization
in osteoblasts was partially diminished. Subsequently, with the
addition of the p-JNK activator ASM, the promotion of ALP
activity and mineralization was restored. Additionally, our results
indicated that sitogluside might not have a significant effect on
osteoclast formation (Supplementary Figure S2).

3.8 Sitogluside administration protects
against OVX-induced bone loss

The OVX model was employed to further investigate the anti-
osteoporotic effects of sitogluside in vivo. As depicted in Figure 7A,
the μCT scan results demonstrated a significant loss of bone in the
vehicle group (OVXmice) compared to the sham group, confirming
the successful establishment of the OVX model. Additionally, the
sitogluside-treated group exhibited a mitigating effect on bone loss
compared to the vehicle group. Specifically, the sitogluside-treated
OVX mice demonstrated increased bone mineral density (BMD),
trabecular thickness (Tb. Th), bone volume fraction (BV/TV), and
trabecular number (Tb. N), while exhibiting a decreased bone-
surface-to-bone-volume ratio (BS/BV) and trabecular separation
(Tb. Sp). These findings collectively indicate the anti-osteoporotic
efficacy of sitogluside in the OVX mouse model (Figure 7B).
Furthermore, histological examination of major organs in the
drug-treated group, including the heart, liver, spleen, lungs, and
kidneys, was conducted using (H&E) staining. Additionally, mouse
serum was analyzed to assess cardiac, hepatic, and renal functions.
As depicted in Supplementary Figure S1, the experimental results
indicate that sitogluside did not exert significant toxic effects on
mouse organs.

3.9 Effects of sitogluside on osteoblast-
related genes

To gain further insights into the underlying mechanism of
sitogluside’s anti-osteoporotic effects, we examined the expression
of osteogenic-related genes using q-PCR and Western blot. As
shown in Figure 7, treatment with sitogluside for 48 h resulted in
a significant increase in the expression of osteogenic markers, such
as Osterix (OSX) and osteocalcin (OCN). These findings suggest
that sitogluside has the potential to promote osteogenic activity.
Additionally, we investigated the core target and pathway associated
with sitogluside in the treatment of osteoporosis via blocking the
JNK and p38 cascade (Figure 7D). Our results revealed that targeting
JNK could reduce the osteogenic efficacy of sitogluside while
blocking the p38 pathway without significant expression changes
of OSX. To further investigate whether sitogluside exerts its
osteogenic effects through the JNK pathway, we employed
shRNA to silence the JNK pathway. As shown in Supplementary
Figure S3C, compared to the sitogluside group, silencing the JNK
pathway with shRNA (shGnai3) resulted in a partial reduction in the
expression levels of osteogenic markers, including Runx2, OSX,
OCN, and ALP. However, when treated with the p-JNK activator
anisomycin (ASM), these osteogenic markers increase. Moreover, as

shown in Supplementary Figures S3A, B, the phosphorylation level
of p-JNK increases with sitogluside intervention. These further
suggest that sitogluside may promote osteoblast differentiation
through the JNK signaling pathway. We also investigated the
effect of sitogluside on the Smad 1/5/8 protein in the BMP
signaling pathway, which also showed increasing expression
(Supplementary Figures S3A, B).

4 Discussion

Osteoporosis is regarded as a silent disease without clinical
symptoms before complications are apparent (Anthamatten
and Parish, 2019). Current conventional therapy mainly
focuses on symptom prevention with long-term supplements
of calcium and on intervention to regulate bone metabolism.
The curative effects depend on the individual response and have
mild or severe side effects (Ensrud and Crandall, 2017). AB and
DA have been two of the most important herbs for bone diseases
in TCM therapy for more than 2,000 years (He et al., 2017; Tao
et al., 2020), and play an important role in many classic anti-
osteoporosis drugs. Recently, researchers have isolated more
than 100 ingredients and verified numerous bioactivities (He
et al., 2017; Tao et al., 2020). Our research obtained 31 bioactive
compounds of AB–DA based on the screening criteria and
applied the main therapeutic compounds to anti-
osteoporosis. Compounds of AB–DA such as baicalin,
kaempferol, oleanol, quercetin, and sitosterol are widespread
in herbal medicine, and many studies have shown their anti-
osteoporosis activity. It has been reported that kaempferol could
ameliorate the inhibitory effects of osteogenesis by activating
JNK and p38 pathways in the glucocorticoid-induced and
ovariectomy-induced osteoporosis model (Wong et al., 2019).
Vakili et al. (2021) also constructed an OVX osteoporosis model
treated with quercetin; results showed that it might modulate
cell autophagy and apoptosis to alleviate osteoporosis; the
potential mechanisms mainly involve Wnt, NF-κB, and
MAPK cascades. Moreover, asperosaponin VI is the quality
indicator of DA and could induce the differentiation of
osteoblastic cells by increased expression of BMP2, promote
osteogenesis and angiogenesis via regulating the OPG/RANKL
signaling pathway, and inhibit the differentiation of osteoclast
(Chen et al., 2022). β-Ecdysterone is an iconic ingredient of AB
and could upregulate the activity of alkaline phosphatase in
mesenchymal stem cells by modulating the expression of
estrogen receptors (Gao et al., 2008) and could also inhibit
apoptosis and autophagy induced by the dexamethasone of
osteoblast cells in vivo and in vitro (Tang et al., 2018). This
body of evidence suggests that the numerous bioactive
compounds retrieved from AB–DA have certain anti-OP
effects and partly confirm our findings; however, more
accurate and in-depth study is still necessary to explore the
AB–DA herb pair.

After screening the core therapeutic ingredients, a PPI network
was constructed to determine core targets; our results showed that
AKT1, CASP3, EGFR, ESR1, IGF1, MAPK1, and MAPK14 are
important for AB–DA treatment of osteoporosis. It is widely
reported that RAC-alpha serine/threonine-protein kinase (AKT1)
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regulates a series of biological processes, including cell proliferation,
growth, metabolism, and angiogenesis (Heron-Milhavet et al., 2011).
A targeted knockdown AKT1 mouse model showed that
AKT1 deficiency would induce osteoclast-osteogenesis disorder
and diminish the RANKL (NF-κB ligand) and MCSF
(macrophage colony-stimulating factor) receptors on
multinucleated osteoclasts. This is evidence for AKT1 as an
intermediator to regulate osteoblast and osteoclast differentiation
(Mukherjee and Rotwein, 2012). Wang et al. (2022) also showed that
modulating the expression of AKT1 could relieve osteoporosis.
Epidermal growth factor receptor (EGFR) could activate the
downstream of MEK-ERK, PI3K-AKT, and NF-κB signaling,
transferring extracellular cues into cellular response (Runkle
et al., 2016). It was reported that promoting the phosphorylation
of EGFR and ERK1/2 could alleviate the apoptosis induced by H2O2

of MC3T3-E1 (osteoblast cell) (Yang et al., 2019), exhibiting the
potential targeted therapeutic value of EGFR on osteoporosis.
Insulin-like growth factor I (IGF1) is the most abundant growth
promotor in the bonematrix and also regulates glycogen synthesis in
osteoblasts; it plays an important role in bone homeostasis
maintenance and osteoblast differentiation by mediating the
mTOR (mammalian target of rapamycin) signaling pathway
(Xian et al., 2012). The results of molecular docking and
molecular dynamics simulation also showed a stronger binding
affinity between AB–DA compounds and IGF1. All the
aforementioned evidence shows that the hub genes regulated by
AB–DA compounds are important and meaningful in the treatment
of osteoporosis.

The GO/KEGG pathway enrichment analysis of 83 potential
therapeutic targets showed that AB–DA anti-osteoporosis mainly
involved the MAPK signaling pathway, osteoclast differentiation,
and the PI3K-Akt signaling pathway. As shown in Figure 4E, the
colored target details of the MAPK pathway—ERK (MAPK1),
JNK(MAPK8), and p38 (MAPK14)—are three classical cascades
of the MAPK pathway, all of which were involved in the potential
mechanism of AB–DA treating osteoporosis. ERK cascade mediated
cell growth and differentiation via cytoskeletal rearrangement, and
upregulating the phosphorylation of ERK (p-ERK) might promote
osteoblast differentiation (Jing et al., 2019). The JNK and
p38 cascades would be activated by extracellular stimulation,
such as pro-inflammatory and physical stress. Lee et al. (2019)
showed that downregulated osteoclast-related gene expression was
associated with JNK cascade inhibition and that suppressing the
p38 cascade would also relieve osteoporosis (Wang et al., 2018). Liu
et al. (2022) indicated that vitexin could act against osteoporosis by
promoting osteogenesis and angiogenesis in an ovariectomized rat
model; the potential underlying mechanism might upregulate the
PI3K-AKT cascade. Regulated PI3K-AKT signaling could also
mediate the biological function of osteoclast (Jiang et al., 2022).
Thus, our research mined the herb databases and screened
therapeutic compounds of AB–DA with appropriate
pharmacokinetic properties. In summary, the 31 therapeutic
compounds have different targets and regulate different signaling
pathways with a synergistic effect against osteoporosis, showing the
complex molecular mechanisms with “multi-compound,” “multi-
target,” and “multi-pathway.”

Furthermore, in vitro and in vivo experimental validation were
both employed to explore the anti-osteoporotic effects of sitogluside

(also known as daucosterol) and its underlying molecular
mechanism. Some research has indicated the regulation of both
the osteoblast and osteoclast formation of AB–DA (He et al., 2017;
Tao et al., 2020). In this present research, our findings show the
potential effects of sitogluside with osteoblast differentiation and
mineralization, but the effects on osteoclast were not significant; this
was also verified by the collaborative therapeutic effects of AB–DA
compounds. Moreover, q-PCR and Western blot analyses showed
that sitogluside might upregulate the JNK cascade to promote
osteogenics, such as Runx2, Osx, and OCN, and knockdown or
block with the inhibitor could partly reduce its efficacy. Previous
research has also reported that daucosterol could increase the p-JNK
expression to exert an anti-prostate cancer effect (Gao et al., 2019).
Huang et al. reported that the JNK kinase pathway with downstream
OSX belonged to the non-canonical Smad-independent BMP
signaling pathway to promote osteogenics. Hence, our study
illustrated that a potential mechanism for sitogluside in the
treatment of osteoporosis was to promote the JNK pathway and
non-canonical BMP signaling to regulate downstream osteogenic
genes. In addition, the OVX mouse model also showed anti-
osteoporosis efficacy in vivo without observable toxicity. Our
results therefore highlight the potential therapeutic value of
sitogluside in the treatment of osteoporosis. However, further
systematic and in-depth research is required to explore other
bioactive compounds of the AB–DA combination.

There were some limitations to our research. First, it is based
on the bioinformatic analysis of network pharmacology,
molecular docking, and molecular dynamics simulation. The
results illustrated the core therapeutic ingredients, core
targets, and core signaling pathways of AB–DA in the
treatment of osteoporosis, although we have preliminarily
verified the anti-osteoporotic effect of sitogluside. Our findings
thus need more wet experiments in vitro and in vivo for
corroboration. The second limitation is that all the bioactive
compounds were filtered by the ADME properties; the content of
specific ingredients were not considered, and the toxicological
information was ignored. Therefore, the next task for us is to
comprehensively verify our network pharmacological findings
with experiments and evaluate the biosafety of these ingredients
for optimally utilizing AB–DA treatment of osteoporosis during
clinical practice (Zou et al., 2021).

5 Conclusion

This study represents the first comprehensive investigation
into the bioactive compounds of the AB–DA herb pair. Our
findings illustrate that the primary therapeutic compounds
responsible for treating osteoporosis are iridoids, steroids, and
flavonoids. Additionally, we propose that the underlying
mechanisms of action may involve targeting key core targets,
including MAPK1, MAPK8, and MAPK14, to modulate the
MAPK cascade (ERK/JNK/p38). Furthermore, in vitro and in
vivo experiments have provided preliminary validation of the
anti-osteoporotic effect of the most potent bioactive compound,
sitogluside. Nevertheless, further in-depth experiments are
needed to fully harness the therapeutic potential of AB–DA
for treating osteoporosis in clinical practice.
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Virtual small molecule libraries are valuable resources for identifying bioactive
compounds in virtual screening campaigns and improving the quality of libraries in
terms of physicochemical properties, complexity, and structural diversity. In this
context, the computational-aided design of libraries focused against antidiabetic
targets can provide novel alternatives for treating type II diabetes mellitus (T2DM).
In this work, we integrated the information generated to date on compounds with
antidiabetic activity, advances in computational methods, and knowledge of
chemical transformations available in the literature to design multi-target
compound libraries focused on T2DM. We evaluated the novelty and diversity
of the newly generated library by comparing it with antidiabetic compounds
approved for clinical use, natural products, and multi-target compounds tested in
vivo in experimental antidiabetic models. The designed libraries are freely available
and are a valuable starting point for drug design, chemical synthesis, and biological
evaluation or further computational filtering. Also, the compendium of
280 transformation rules identified in a medicinal chemistry context is made
available in the linear notation SMIRKS for use in other chemical library
enumeration or hit optimization approaches.

KEYWORDS
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder
characterized by hyperglycemia caused by defects in insulin
secretion and/or action due to a complex network of pathological
conditions (Galicia-Garcia et al., 2020). Currently, T2DM is one of
the diseases with the highest socio-health impact and prevalence
worldwide. Although pharmacotherapeutic options include
different mechanisms of action, they are limited by side effects
and lack of blood glucose control in the diabetic population (Shah
et al., 2021). Another problem is that patients with this disease are
prone to polypharmacy, which increases the risk of adverse effects
and makes it difficult for patients to adhere to their treatment and
receive proper follow-up from healthcare professionals (Dobrică
et al., 2019). For this reason, new biological targets have been
explored in multi-target approaches (Makhoba et al., 2020).
Similarly, virtual libraries focused on single therapeutic targets
have been developed using various computational approaches
and their application in multi-target approaches is emerging.

Recent advances in computational methods and the
incorporation of synthetic expert knowledge have inspired
research groups to develop de novo and “make-on-demand”
chemical libraries (Walters, 2019). Several companies use the so-
called “novel molecular matter” in early-phase drug discovery (Korn
et al., 2023). Specifically in the design of antidiabetic compounds,
Otava released the chemical structures of ten libraries focused on
DM-related targets designed under ligand- and structure-based

approaches or combinations of both (OTAVAchemicals, Ltd. -
synthetic organic compounds for research and drug discovery,
n.d.). ChemDiv developed methods for screening diverse and
highly specialized focused compounds. Recently, ChemDiv
released an “Annotated space library” with more than
18,000 chemical compounds covering 38 validated targets
(including targets for T2DM) across 900 drugs launched in the
last 10 years. Academic groups have also generated virtual libraries
focused on T2DM. For example, Chen et al. used a generative
method to design compounds targeted for GPR40 (Chen et al.,
2021). To our knowledge, no in silicomulti-target libraries have been
disclosed for T2DM. However, there is published information on
active compounds and pharmacophore models that can guide the
design of multi-target compounds for T2DM (Artasensi et al., 2020;
Lillich et al., 2020; Tassopoulou et al., 2022).

Figure 1 shows the structures of pharmacophores and multi-
target compounds studied in vivo models for T2DM and metabolic
syndrome (MetS). For example, dual peroxisome proliferator-
activated receptor (PPAR) α/γ agonists can improve insulin
sensitivity and reduce triglyceride and blood glucose levels
without the PPARγ-related weight gain since the latter effect is
balanced by PPARα agonistic activity (Balakumar et al., 2019).
Attempts towards developing dual agonists for PPAR α/γ yielded
promising molecules that have reached clinical trials. However,
many of these compounds have failed due to significant side
effects. Compounds such as 1 (MHY908) and 2 (LT175)
continue to be explored, as they have been shown to have

FIGURE 1
Pharmacophores and chemical structures of multi-target compounds studied in vivomodels for T2DM and MEtS. (A) PPARα/γ agonists, (B) PPARα,
PPARγ, GPR40, AR and PTP1B (C) PPARγ/SUR agonists (D) PPARγ/FFA1 agonists.
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beneficial effects on blood glucose and insulin resistance in animal
models of T2DM (Gilardi et al., 2014; Park et al., 2016).

The development of multi-target compounds for GPR40,
PTP1B, AR, PPARα, and PPARγ may provide additional
therapeutic benefits in preventing or delaying the development of
diabetic complications (Domínguez-Mendoza et al., 2021).
Navarrete’s group designed compounds 3 and 4 (Figure 1) that
showed robust in vivo antihyperglycemic activity (Domínguez-
Mendoza et al., 2021). Dual PPARγ/SUR agonists, such as
compound 5 (Ibrahim et al., 2017a), can improve insulin
sensitivity and stimulate insulin secretion simultaneously, making
them an attractive therapeutic option for patients with T2DM who
have insulin resistance and decreased insulin secretion. Another

combination that has been explored is that of PPARy and FFA1, also
known as GPR40. Dual PPARγ/FFA1 agonists (compounds 6 and 7,
Darwish et al., 2018) can improve insulin sensitivity, stimulate
insulin secretion, and lower blood glucose levels.

Table 1 shows multi-target compounds for T2DM based on
pharmacophores and virtual screening approaches that have been
reported and tested in vivo and can guide the design of new chemical
libraries. The table includes information on the combination of
targets, the number of lead compounds that hit all targets, and the
implications or outcome in T2DM and MEtS. The table indicated
that there are ninety-one multi-target compounds with in vivo
antidiabetic activity. These have been tested in a total of twenty
target combinations. Themost studied biological target inmulti-target

TABLE 1 Multi-target ligands studied in vivo models for type II diabetes mellitus.

Targets Lead
compounds

Implications in T2DM and MEtS/Outcome Reference

GLUT4, PPAR-α, PPAR-
γ, adiponectin

1 Antihyperglycemic, antidiabetic, and antidyslipidemic effects Estrada-Soto et al. (2022)

PPARα, PPARγ, GPR40*,
AR, PTP1B

2 Antihyperglycemic and antidiabetic effects. Attractive to prevent
or delay the development of diabetic complications

Colín-Lozano et al. (2018), Domínguez-Mendoza et al.
(2021)

PPARγ, GLUT-4 3 Antihyperglycemic and antidiabetic effects Gutierréz-Hernández et al. (2019)

PPARα, PPARγ, FATP-1,
GLUT-4, PTP1B

4 Antihyperglycemic and antidiabetic effects Herrera-Rueda et al. (2018)

sEH,PPARγ 2 Antidiabetic, cardioprotective, renoprotective, hypotensive
effects

Blöcher et al. (2016), Hye Khan et al. (2018)

DPP-4,GPR119 2 Antidiabetic, glucose homeostasis effects Huan et al. (2017), Fang et al. (2020)

PPAR-α,γ 21 Antidiabetic and antidyslipidemic effects (13 PPARα/γ dual
agonist compounds have reached clinical trials or the market)

Balakumar et al., 2007 (2019), Ammazzalorso et al.
(2019)

PPAR-α,d 3 Antidiabetic, antidyslipidemic and anti-fatty liver effects Hanf et al. (2014), Ren et al. (2020), Liu et al. (2021)

PPAR-d,γ 1 Antihyperglycemic and anti-fatty liver effects Li et al. (2021)

PPAR-α,d,γ 6 Antidiabetic and antidyslipidemic effcts. Therapeutic potential
for nonalcoholic steatohepatitis patients

Mahindroo et al. (2005), He et al. (2012), Boubia et al.
(2018)

PPARγ, AT1 6 Antidiabetic and antihypertensive effects Benson et al. (2004), Casimiro-Garcia et al. (2011), 2013;
Lamotte et al. (2014), Choung et al. (2018)

PPARγ, GK 7 Antihyperglycemic, antidiabetic, improves insulin resistance and
sensitize muscle cells to insulin response

Song et al. (2011), Li et al. (2014), Lei et al. (2015)

PPARγ, SUR 10 Improve insulin sensitivity and stimulate insulin secretion at the
same time

Ibrahim et al., 2017a, 2017b

FFA1a, PPARd 5 Antidiabetic and anti-fatty liver effects Li et al., 2019a, 2019b (2020), Hu et al. (2020), Zhou et al.
(2022)

FFA1, PPARγ 4 Antidiabetic and antihyperlipidemic effects Darwish et al. (2018), Hidalgo-Figueroa et al. (2021)

FFA1, PPARγ, PPARd 1 Antidiabetic and antihyperglycemic effects Li et al. (2018)

PPARγ, PTP1B 4 Antihyperglycemic and antiobesity effects Bhattarai et al., 2009 (2010), Otake et al., 2012 (2015)

PPARα/γ/PTP1B 2 Antidiabetic, antidyslipidemic and antiobesity effects Otake et al. (2011)

PARP-1 - AR 2 Nephroprotective effect and antioxidant potential Chadha and Silakari (2017), Kumar et al. (2022)

SGLT1-SGLT2 5 Antihyperglycemic and antiobesity effects Lapuerta et al. (2015), Kuo et al. (2018), Xu et al., 2018
(2020), He et al. (2019)

AT1, angiotensin II type 1 receptor; AR, aldose reductase; DPP-4, dipeptidyl peptidase-4; FATP-1, fatty acid transport protein 1; FFAR1, free fatty acid receptor 1; GK:glucokinase; GLUT4,

glucose transporter type 4; GPR119, G protein-coupled receptor 119; GPR-40, G-protein-coupled receptor 40; PARP-1, poly (ADP-ribose)polymerase-1; PPARs, peroxisome proliferator-

activated receptors; PTP1B, protein tyrosine phosphatase 1B; SGLTs: ; sEH, soluble epoxide hydrolase; SUR, sulfonylurea receptor.
aGPR40 is also known as FFAR1.

Frontiers in Pharmacology frontiersin.org03

Saldívar-González et al. 10.3389/fphar.2023.1276444

93

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1276444


approaches is PPARγ. The most successful target combination is
PPARα/γ as several compounds directed to these two targets are in
clinical studies such as ragaglitazar, imiglitazar, muraglitazar,
tesaglitazar, naveglitazar, aleglitazar, saroglitazar, netoglitazone and
lobeglitazone. In particular, PPARs have demonstrated clinical
efficacy in metabolic diseases such as T2DM and those related to
lipid metabolism, which has led to testing and optimization of
different compounds such as fibrates and TZDs to simultaneously
modulate multiple targets, with a synergistic effect on T2DM and
MetS (Ammazzalorso et al., 2019). Other compounds under
investigation or in any of the experimental phases by the FDA
include elafibranor for PPARα/δ (Schattenberg et al., 2021),
telmisartan and fimasartan for PPARγ/AT1 (Seo et al., 2022),
lanifibranor and sodelglitazar for PPARα/δ/γ (Kamata et al., 2023)
and licogliflozin and sotagliflozin for SGLT1-2, the latter already
approved by the FDA in 2023 to reduce the risk of cardiovascular
death and heart failure in adults with heart failure, T2DM, chronic
kidney disease, and other cardiovascular risk factors (Packer, 2023).

An attractive approach to exploring and expanding the chemical
space around the first hit compounds of single and multi-target
compounds is the computational generation of chemical libraries
that can be used in virtual screening campaigns (Walters, 2019).

Through chemical library enumeration, it is possible to find new
bioactive compounds and generate therapeutic options for emerging
and challenging molecular targets and complex diseases. It is also
possible to control features such as library size, complexity,
physicochemical properties, and structural diversity (Ruddigkeit
et al., 2012). The goal is to help design high-quality analog series
overcoming issues such as low potency, off-target activities,
metabolic stability, or poor physicochemical properties for oral
administration. One approach that can aid rigorous exploration
of the chemistry around first hit compounds is using approaches
based on transformation rules from empirical observation and
systematic identification using chemoinformatics methods. A
recent application of transformation rules was presented with
DrugSpaceX, a database with more than 100 million compounds
transformed from approved drug molecules (Yang et al., 2021).
Although transformation rules are useful for generating in silico
libraries, the list of rules currently available in the public domain is
limited, in many cases due to the difficulty in collecting, curating,
and annotating such information (Rarey et al., 2022). To address this
problem, we compiled, organized, and made freely available an
extensive list of transformation rules for generating compound
libraries, as part of this work.

FIGURE 2
Overview of the methodology implemented in this study to design a multi-target focused library for T2DM using a comprehensive set of chemical
transformation rules. First, multi-target compounds evaluated for in vivo antidiabetic activity and transformation rules were retrieved from the literature.
The latter were encoded into SMIRKS linear notation. Using MOE, the new chemical library was enumerated and compared to reference libraries of
antidiabetic compounds to assess their chemical diversity. The compounds in the enumerated library were filtered using criteria as follows: QED >
0.67, SAScore ≤ 6, rsynth > 0.5 and zero structural alerts included in the RDKit molecule catalog filter node in KNIME. These compounds were further
filtered in docking-based virtual screening with protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR). Finally, the ADME-T properties of the
best-scoring compounds in both targets were calculated.
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TABLE 2 Examples of transformation rules retrieved from the literature.

Group Transformation Transformation
type

SMIRKS Note Reference

Aminophenyl Aminophenyl_to_aminobicyclo[1.1.1]pentyl Ring substitution [*:3]-[#7:2](-[*:1])-
[c:4]1[c; D2][c; D2]
[c; D2][c; D2][c; D2]
1>>[*:3]-[#7:2](-
[*:1])[C:4]12[#6]-
[#6](-[#6]1)-[#6]2

-Metabolic
stability

Sodano et al. (2020)

-Isosteric
replacement

1,4-
diaminophenyl

1,4-diaminophenyl_to_3,6-diaminopyridazinyl Ring modification [#7H2:1]-[c; D3:2]1
[c; D2:6][c; D2:5][c;
D3:4][c; D2:3][c; D2]
1>>[#7H2:1]-[c; D3:
2]1[c; D2:6][c; D2:5]
[c; D3:4]nn1

-Metabolic
stability

Zhang et al. (2020)

Carboxyl Carboxyl_to_2,4-dioxo-1,3-thiazolidin-5-yl (ionized) Ring addition [#8; D1][#6; A; !R:
2]([*:1]) = O>>[*:1]-

[#6:2]-1-[#16]-
[#6](=O)-[#7-]-[#6]-

1 = O |s:0:1|

-Similar
acidic pKa

Hidalgo-Figueroa et al.
(2013),

Domínguez-Mendoza
et al. (2021)-Increased

sterics

Benzoylphenyl benzoylphenyl _to_(3-phenyloxetan-3-yl)phenyl] Linker modification [#6; a:1][C; $([#6:2] =
O),$([#6; A; @:2]1
[#6]-[#6]-[#6]
1),$([#6; H2])][#6; a:
3] >>[#6; a:3][#6;
A@:2]1([#6; a:1])
[#6]-[#8:4]-[#6]1

-Isosteric
replacement

Dubois et al. (2021)

*Also apply to 1,1-
diphenylmethyl and
1.1′-cyclobutane-1,1-
diyldiphenyl

-Metabolic
stability

-Reduce
phototoxicity in
benzofenones

Phenyl Phenyl_to_cyclohexyl Ring substitution [c; x2:2]1[c; x2:3][c;
x2:4][c; x2:5][c; x2:6]
[c; x2:1]1>>[#6:5]-1-
[#6:6]-[#6:1]-[#6:2]-
[#6:3]-[#6:4]-1

-Bioisosteric
remplacement

Press et al., 2012; Press
et al., 2015; Huang et al.,

2019; Subbaiah and
Meanwell, 2021-Increase

lipophilicity

-Improved
aqueous
solubility

-Enhanced oral
bioavailability

-Reproducible
PK profiles

Phenyl Phenyl_to_(propoxyimino)methyl Functional group
change

[*:3]-[c; x2D3:1]1[c;
x2D2][c; x2D2][c;
x2D2][c; x2D2][c;
x2D2]1>>[#6]-[#6]-
[#6]-[#8]\[#7] = [#6:
1]\[*:3] |rb:1:2.2:2.3:
2.4:2.5:2.6:2,s:1:3|

-Bioisostere
replacement

Piemontese et al. (2015),
Subbaiah and Meanwell

(2021)
-Modulation of
selectivity

(Continued on following page)
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This study aimed to design a multi-target focused library for
T2DM using a comprehensive set of chemical transformation rules
herein collected, curated, and annotated. As shown in Figure 2, we
evaluated the novelty and diversity of the focused library by
comparing it with antidiabetic compounds approved for clinical
use, natural products, and multi-target compounds reported with in
vivo activity. To focus the library on attractive and synthetically
feasible compounds, computational filters based on medicinal
chemistry criteria were applied. Finally, virtual screening using
molecular docking for PTP1B and AR was performed at
Molecular Operating Environment (MOE) version 2022.02
(Chemical Computing Group (CCG), 2023) and the ADME-Tox
properties of compounds with potential multi-target activity were
calculated using ADMElab 2.0 (Xiong et al., 2021). Here, we selected
PTP1B and AR considering the reference compounds used for
enumeration and the currently available hypotheses and
information from molecular dynamics models (Domínguez-
Mendoza et al., 2021). In particular, this combination could be
attractive to modulate insulin signaling, reducing insulin resistance
and preventing or delaying diabetic complications such as
nephropathies, neuropathies, and cardiomyopathies (Maccari and
Ottanà, 2015). The significance of this work is twofold: making
available a focused multi-targeted library for T2DM with full details
of the methodology used to construct the compounds and making
publicly available a general and extensive list of transformation rules
to explore the chemical space of targets of therapeutic relevance.

2 Methods

2.1 Encoding chemical transformations in
linear notation (SMIRKS format)

Transformation rules associated with hit optimization were
retrieved from the literature. These transformation rules included
modifications associated with molecular, physicochemical,
pharmacological, ADME, safety, and toxicity parameters. Other
rules are associated with structural diversity and bioisosteric
changes. Most of the transformation rules found in the literature
come from the addition, substitution or removal of a functional
group. There are also rules that include cyclization and ring
substitution by other rings or intramolecular hydrogen bonding

groups. In total, 280 transformation rules were collected and
converted into SMIRKS notation (Daylight theory: SMIRKS - A
reaction transform language, 2023) using MarvinSketck
(Chemaxon, 2023). The transformation rules were considered in
a protonation state of 7.4. Table 2 summarizes examples of the rules
identified and their SMIRKS. The Supplementary material includes
the complete list of transformation rules and the literature reference.

2.2 Enumeration of a new multi-target
focused library

Compounds 3 and 4 (Figure 1) were selected as reference
compounds to enumerate the new library focused on multi-target
compounds. These compounds have robust antihyperglycemic
activity in vivo and molecular dynamics studies with PTP1B and
AR provide relevant structure ligand-protein interaction
information for structure-based optimization studies
(Domínguez-Mendoza et al., 2021). The best predicted scoring
conformations of these compounds docked with a
crystallographic structure of the PTP1B protein obtained from
the Protein Data Bank (Berman et al., 2000) (PDB ID: 4Y14
(Krishnan et al., 2015)) and that maintained protein-ligand
interactions reported in literature were used as the basis for the
enumeration of the new library. To compare the effect on the
number of compounds and the molecular diversity generated, we
used the 175 transformation rules integrated into the MedChem
module of MOE version 2022.02 and added 273 transformation
rules that we constructed as part of this study. Two iterations were
used. Compounds that had a molecular weight (MW) < 630 and
topological surface area (TPSA) between 40 and 150 Å were kept.
The threshold values were established based on the minimum and
maximum values of the multi-target compounds designed
for T2DM.

2.3 Evaluation of the chemical diversity of
the multi-target focused library

The compounds generated in Section 2.2 were compared in
terms of physicochemical properties with antidiabetic compounds
approved for clinical use retrieved from DrugBank (Wishart et al.,

TABLE 2 (Continued) Examples of transformation rules retrieved from the literature.

Group Transformation Transformation
type

SMIRKS Note Reference

Phenyl Phenyl_to_(2-oxopyridin-1(2H)-yl) Ring modification [c; D2:2]1[c; x2:3][c;
x2:4][c; x2:5][c; x2:6]
[c; D3:1]1>>O = [#6;
x2:2]-1-[#7:1]-[#6:
6] = [#6:5]-[#6:4] =
[#6:3]-1

-Improved
potency

Subbaiah and Meanwell
(2021)

-Reduce off-
target

-Metabolic
stability

-Enhanced
solubility

-Reduced
lipophilicity
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2018); antidiabetic compounds frommedicinal plants obtained from
DiaNat-DB (Madariaga-Mazón et al., 2021), and multi-target
compounds for T2DM studied in vivo assays. Compounds in
SMILES format can be found in the Supplementary material.
Prior to analysis, each molecule was prepared using the open-
source cheminformatics toolkits RDKit (Landrum, n.d.) and
MolVS (MolVS: Molecule Validation and
Standardization—MolVS 0.1.1 documentation, n.d.). Compounds
were standardized and those containing multiple components were
split, keeping the largest component. Compounds with valence
errors or chemical elements other than H, B, C, N, O, F, Si, P, S,
Cl, Se, Br, and I were removed. The remaining compounds were
neutralized and reionized to subsequently generate a canonical
tautomer. Finally, duplicated compounds were deleted and
canonical simplified molecular-input line-entry system (SMILES)
(ignoring stereochemistry information) were generated as molecular
representation (Weininger, 1988). Table 3 summarizes the number
and source of compounds used in the comparison.

2.3.1 Property rules and synthetic accessibility
To profile the generated molecules based on common property

rules and synthetic accessibility, we calculated seven descriptors for
each molecular entity with the RDKit library: molecular weight
(MW), octanol–water partition coefficient (logP), number of
hydrogen bond acceptors (HBA), number of hydrogen bond
donors (HBD), topological polar surface area (TPSA), the
number of rotatable bonds (RotB) and the distribution of
quantitative estimate of drug-likeness (QED) (Bickerton et al.,
2012).

Among the several computational scores available to estimate
the synthetic accessibility of generated compounds, and based on
previous comparisons of scores. (Skoraczyński et al., 2023), in this
work, we calculated rsynth (a ligand-based score implemented in
MOE, version 2022.02) and SASscore (Ertl and Schuffenhauer,
2009) as a structure-based approach.

2.3.2 Chemical multiverse: visual representation
and analysis

To have a comprehensive analysis of the chemical space, we used
three well-established visualization methods and different types of
descriptors Noteworthy, analyzing the chemical space with distinct
and complementary descriptors is crucial because each one provides
a different and complementary perspective of the chemical space
(aka, a “chemical multiverse” as discussed elsewhere (Medina-
Franco et al., 2022). In this study, we used principal component

analysis (PCA) and t-distributed stochastic neighbor embedding
t-SNE based on six molecular properties of pharmacological interest,
namely,; HBD, HBA, logP, MW, RB, TPSA. As a third method to
characterize the chemical space, we used was the TreeMAP (TMAP)
algorithm (Probst and Reymond, 2020) based on ECFP4 as a
structural fingerprint. Additionally, the molecular shape of the
compounds in the newly generated library was evaluated using
the principal moments of inertia (PMI) graph, which was carried
out by calculating the lowest energy conformation of each
compound using MMFF94x as a force field in MOE, version
2022.22. Once the lowest energy conformer was calculated, values
of normalized PMI ratios, npr1 (I1/I3) and npr2 (I1/I3), were
determined in MOE. Then, npr1 and npr2 were plotted on a
triangular graph with the vertices (0,1), (0.5,0.5), and (1,1)
representing a perfect rod, disc, and sphere, respectively.

2.4 Filtering of compounds with relevance in
pharmaceutical chemistry

Various filters (e.g., calculated descriptors) can be used to
improve the selection of enumerated compounds, including the
removal of compounds with undesirable pharmaceutical properties
and molecules very difficult to synthesize. In this work, we chose to
filter by SAScore, rsynth, QED, and the filters included in the RDKit
molecule catalog filter node in KNIME. This node removes
compounds with Pan-assay interference compounds (PAINS)
(Baell and Holloway, 2010), unwanted functionality due to
potential toxicity or unfavorable pharmacokinetic properties, and
problematic functional groups. The compounds in the enumerated
library were filtered using criteria as follows: QED > 0.67, SAScore ≤
6, rsynth >0.5 and zero structural alerts. It should be noted that other
cutoff values could be used for other applications.

2.5 Structure-based filtering

Although enumeration of compounds can be performed using
the protein structure to obtain a score value in MOE, this can be
computationally expensive considering the number of compounds
that can potentially be generated. In addition, although the search
algorithm can be selected, neither an algorithm to perform the
rescoring nor a specific number of conformations to be obtained can
be selected. For this reason, we followed a structure-based filtering to
select the most promising compound subset as a multi-target library.

TABLE 3 Reference compound datasets to assess the novelty and properties of the newly designed libraries.

Database Size Note Reference

Approved antidiabetic
drugs

42 36 approved drugs and 6 under investigation. Obtained from DrugBank. Only compounds for a single
target.

Wishart et al. (2018)

DiaNat -DB 329 Antidiabetic compounds from medicinal plants Madariaga-Mazón et al.
(2021)

Multi-target compounds 91 From literature. This set includes 16 multi-target compounds under investigation or in experimental
phase by FDA.

This study. See Section 2.1

Multi-target
compMedChem

84,778 Compounds generated in MOE using 455 transformations rules This study. See Section 2.3
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In this study, compounds that showed a docking score better than
the reference compounds for PTP1B (PDB ID: 4Y14 (Krishnan et al.,
2015)), were further filtered considering docking with another
therapeutic target relevant to T2DM: AR (PDB ID: 4XZH (Ruiz
et al., 2015)). Of note, other relevant targets in T2DM can be
considered during the design of the reference compounds. Here,
we selected PTP1B and AR considering the current available
hypothesis and model information based on molecular dynamics
(Domínguez-Mendoza et al., 2021). Also, we want to point out that
several other docking programs could be used (including post
consensus scoring analysis). However, testing different docking
programs and exploring multiple consensus analysis schemes is
out of the scope of this study that is focused on proposing a general
approach to design multi-target focused libraries.

The protein preparation of PDB ID: 4Y14 and 4XZH was made
with default settings of the QuickPrep module of MOE v. 2022.02.
This module carries out the following processes: calibration of the
structure by protonation, addition of all the lacking hydrogen atoms,
elimination of water molecules 4.5 Å farther from the protein,
addition of missing amino acids residues, neutralization of the
endpoints adjoining empty residues and energy minimization.
We used AMBER14:EHT forcefield (ff14SB (Maier et al., 2015)
as parameter for the energy minimization stage for the protein. The
ligands were also prepared in MOE, we used MFF94x as forcefield.
For docking, the receptor was considered rigid and the ligands
flexible.We used the default settings for placement (method: triangle
matcher, score function: London dG) and refinement (method: rigid
receptor, score function: GBVI/WSA dG) (Vilar et al., 2008).

2.6 Prediction of ADME-Tox properties

The ADME-tox properties of the compounds that had successfully
passed the filters described in Section 2.6 and Section 2.7 were evaluated
using ADMETlab 2.0 platform (Xiong et al., 2021). This platform has
been compared with other free online ADMET tools and has significant
advantages (Dulsat et al., 2023). Based on these comparisons we used
this tool because ADMETlab is a complete platform in terms of the large
number of relevant parameters that can be predicted including
elimination parameters such as clearance and half-life (t1/2). The
latter two descriptors are particularly relevant in chronic diseases
such as T2DM, where ideally compounds with a long half-life are
sought to reduce the dose. Finally, ADMETlab 2.0 allows evaluating up
to 500 compounds at the same time.

3 Results and discussion

3.1 Encoding chemical transformations in
SMIRKS format

Based on the structures exploited in the multi-target
pharmacophores for DMT2, 280 transformation rules were
collected from the literature, of which 113 were bioisosteric
modifications of the phenyl group (Subbaiah and Meanwell,
2021), 25 for the amide bond (Kumari et al., 2020), 36 for the
carboxyl group (Bredael et al., 2022), 57 for the phosphate group,
and 49 for other moieties including ester, alcohol, alkyl,

aminophenyl, and nitro to name a few examples. Compared to
the preloaded MOE transformations (version 2022.22), these
included only 10 for the phenyl group, 7 for the amide bond
and 4 for the carboxyl group. The remaining transformations in
MOEmainly concern cyclization and substitution of rings by other
rings or intramolecular hydrogen bonding groups. It is important
to mention that some examples of the rule transformations present
in Table 2 have been applied in the optimization of antidiabetic
compounds. For example, Huang et al. reported the effect of
bioisosteric replacement of a phenyl ring in the biphenyl moiety
with cyclohexyl motif in a GPR40 agonist (Huang et al., 2019).
Another bioisosteric replacement of the phenyl ring in an
antidiabetic compound was reported by (Piemontese et al.,
2015). In that work, the authors replaced a terminal phenyl
ring in a dual PPAR α/γ agonist with the n-propyl oxime
moiety. For its part, Dr. Navarrete-Vázquez’s group has
proposed various series of thiazolidine-2,4-dione and barbituric
acid derivatives with robust antihyperglycemic activity in vivo as
acid bioisosteres (Hidalgo-Figueroa et al., 2013; Domínguez-
Mendoza et al., 2021).

3.2 Enumeration of new compounds

Using the transformation rules preloaded in MOE and
performing two iterations, 6,838 molecules were obtained from
compound 3 and 1834 from compound 4. After adding the
transformation rules collected from the literature and keeping
two iterations, the number of compounds increased to 52,185
(from compound 3) and to 32,593 (from compound 4), after
curation of the enumerated library. This large increase in the
number of compounds was expected, as it followed an iterative
process, and the transformations considered in this work are focused
on moieties that contain the reference compounds.

3.3 Evaluation of the chemical diversity of
the multi-target focused library

3.3.1 Property rules and synthetic accessibility
Figure 3 shows the distributions of each descriptor for the

compounds of the generated library and the reference libraries
using rain cloud plots (Allen et al., 2019). These plots allow
visualization of the probability density and typical boxplot
statistics such as median, mean, and confidence intervals.
According to these plots, DiaNat-DB (329 antidiabetic
compounds from medicinal plants) has a wider distribution in
terms of properties of pharmaceutical importance. Since MW
and TPSA values were used as filters to generate the new
compounds, the distributions of these values for generated
compounds are skewed and resemble the distribution of multi-
target compounds and approved drugs. Comparing the plots of the
other descriptors, we can see that the transformations used increased
the range of properties such as LogP and HBD, HBA and chirality
(Supplementary Table S1 in the Supplementary Material).

Figure 4 shows the distributions of the calculated descriptors to
quantity synthetic accessibility and drug-likeness through QED. As
can be seen in Figure 4, most of the generated compounds have a
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SAScore value of less than 6, indicating that they are, in principle,
synthesizable (Ertl and Schuffenhauer, 2009). Regarding the QED
value, which is a measure of drug-likeness based on the concept of
desirability, a value greater than or equal to 0.67 represents attractive
compounds, and the lower this value, the compounds are considered
unattractive (QED 0.49~0.67) and too complex (QED < 0.49). These
reference values were established based on the calculated
physicochemical properties of marketed oral drugs and published
human data (Bickerton et al., 2012). When we compare the QED
distribution of all antidiabetic compounds, we find that the
compounds generated by transformation rules have a higher
mean value (0.49) than the multi-target compounds obtained
from the literature (0.46). The summary statistics of these plots
can be found in the Supplementary material.

3.3.2 Chemical multiverse of generated
compounds

The concept of chemical multiverse (e.g., for the same
compound datasets, different chemical spaces, each based on a
different set of descriptors) was used to compare
comprehensively the visual representation of the chemical space
of the generated compounds with collections of reference
compounds (Figure 5). The PCA of six physicochemical
properties: MW, HBD, HBA, logP, TPSA and RB shows DiaNat-
DB is the most diverse database in terms of physicochemical
properties (Figure 5A). Using a non-linear method such as t-SNE
and the same descriptors, we obtain a different visualization that
allows us to visualize clusters or groups of data points and their
relative proximities (5b). In terms of molecular fingerprints (ECFP4)

FIGURE 3
Rain cloud plots of the six physicochemical properties of pharmaceutical relevance: (A) molecular weight (MW), (B) topological polar surface area
(TPSA), (C) partition coefficient octanol/water (log P), (D) number of rotatable bonds (RB), (E) hydrogen bond acceptors (HBA) and (F) hydrogen bond
donors (HBD).
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(5c) and molecular shapes (5d), the library generated with
transformation rules exhibited the largest structural and shape
diversity, which is even larger than that of the DiaNat-DB database.

3.4 Filtering of compounds with relevance in
pharmaceutical chemistry

To focus the library on attractive and synthetically feasible
compounds, computational filters were applied as indicated in
Section 2.6 of the Methods section. Table 4 summarizes the criteria
used and the number of compounds remaining after applying the
filters. As can be seen, the filter that considerably reduced the
number of compounds was the QED value. The filtered
compounds are characterized by not having chiral centers. If
this is an important feature, you will need to consider it when
applying the filters. Filtered compounds are listed in the
Supplementary material.

3.5 Structure-based filtering

The compounds selected from the filtering described in Section
3.6 were subjected to a docking-based virtual screening with
PTP1B and AR. The docking protocols are described in Section
2.6. The docking scores calculated with MOE for compounds 3
(PTP1B score: −7.04 kcal/mol and AR score = −8.84 kcal/mol) and
4 (PTP1B score: −7.91 kcal/mol and AR score = −8.98 kcal/mol)
were used as cut-offs to select potential multi-target compounds. It

was also checked whether the docking of these compounds
reproduced the interactions previously reported in molecular
dynamics studies (Domínguez-Mendoza et al., 2021).
Supplementary Table S2 shows the score values and interaction
plots of compounds 3 and 4 with PTP1B and AR. The first virtual
screening with PTP1B yielded 1,655 compounds with a lower score
value than the reference compounds: 1,543 from compound 3 and
112 from compound 4. The virtual screening hit compounds were
docked with AR yielding 816 hit compounds: 792 were from
compound 3 and 24 from compound 4. Figure 6 shows
examples of designed compounds that have the potential to be
used in multi-target approaches. The figure shows the parent
structure (3 and 4), the transformation rules and the
compounds designed with their corresponding calculated
docking scores with PTP1B and AR. We also include the 3D
docking models for the proposed compounds, and their overlap
with the reference compounds. The docking results for PTP1B and
AR of the 816 compounds can be found in the Supplementary
material.

3.6 Prediction of ADME-Tox properties

Table 5 shows the average and standard deviation for different
ADME-Tox properties of approved DMT2 drugs, multi-target
compounds with reported in vivo activity and the
816 compounds that showed the potential to interact with
PTP1B and AR. The values described to make an empirical
decision are taken directly from the ADMElab 2.0 documentation

FIGURE 4
Distribution of (A) quantitative estimate of drug likeness (QED) and (B) SAscore of all the antidiabetic compounds contained in approved drugs (red)
DiaNat database (green), multi-target compounds (orange) andmulti-target compounds generated bymedicinal chemistry transformation rules (purple).
Vertical dashed lines represent the mean of the distributions.
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(https://admetmesh.scbdd.com/explanatthat overlapion/index). As
can be seen, the subset of compounds selected from the multi-target
library generated in this work exhibit optimal adsorption and
distribution properties. It is also noteworthy that in terms of
metabolism, ADMETlab 2.0 predicts that the compounds
generated in this work have a lower probability of being
inhibitors of various CYPs compared to approved drugs and
multi-target compounds that have a moderate to high probability
of being inhibitors of CYP2C9, CYP2C19, and CYP3A4. Knowing
this information is important because the inhibition of some CYPs is
associated with the risk of hypoglycemia. Knowing this information

is important because the inhibition of some CYPs is associated with
the risk of hypoglycemia. For example, CYP2C9 metabolizes
nateglinide, repaglinida, rosiglitazone, and most sulfonylureas,
such as glibenclamide, glimepiride and glipizide (Holstein et al.,
2012). Other examples are pioglitazone and repaginate metabolized
with CYP3A4. ADMETlab 2.0 also predicts the probability of being
substrates of various CYPs. This data and other properties calculated
with ADMETlab 2.0 for each compound can be found in the
Supplementary material. It is important to mention that the
prediction of inhibitory activity in ADMETlab 2.0 is based on a
dataset containing information on inhibitory activity of compounds

FIGURE 5
Visual representation of the chemical multiverse of antidiabetic compounds contained in approved drugs (red) DiaNat-DB (green), multi-target
compounds (orange) and multi-target compounds generated by medicinal chemistry transformation rules (purple). (A) PCA of six physicochemical
properties: MW, HBD, HBA, logP, TPSA and RB (B) t-SNE of six physicochemical properties (vide supra), (C) TMAP based on molecular ECFP4 fingerprint.
(D) PMI space. Each corner on the triangular PMI plot indicates compounds with certain shape characteristics. The top left corner of the PMI
represents compounds with rodlike shape, the top right corner represents compounds with spherical shape, and the bottom corner represents
compounds with disc-like shape.
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obtained by high-throughput quantitative screening with an in vitro
bioluminescence assay (Veith et al., 2009). However, in the
description of these data, it is mentioned that the inhibitory

activity in the assay may be due to compounds acting as
substrates and that some weakly binding substrates may be
classified as “inactive,” so that the predictions may need further
confirmation.

In terms of excretion, clearance (CL) and half-life (T1/2) are
important pharmacokinetic parameters that allow defining a drug´s
dosing frequency. In the case of ADMETlab 2.0, the half-life is not
measured in units of time. The output value is the probability of
falling into category 1 (T1/2 ≤ 3). That is, the greater the probability
of falling into category 1, the more likely the substance is to be
classified as “poor” because its T1/2 would be lower (T1/2 ≤ 3). For
antidiabetic drugs, the average CL is 4.4716 mL/min/kg (poor) and
the T1/2 is 0.4080 (medium). The discrepancy in predictions could be
due to the difference in models or datasets. In the case of the
generated multi-target compounds, they may not be optimal for
reducing the frequency of administration. Finally, although the
probability of compounds being hERG blockers is reduced, the

TABLE 4 Filters applied and the number of compounds remaining for virtual
screening.

Filters Compound 3 Compound 4

Initial (ComMedChem rules) 72,349 33,661

Curateda 52,185 32,593

SAScore ≤ 6 52,185 32,552

Rsynth > 0.5 43,625 29,166

QED > 0.67 2,276 3,226

RDKit Molecule Catalog Filter = 0 1,543 451

aFor diversity studies, the set of curated structures was used.

FIGURE 6
Examples of compounds selected from the multi-target virtual library, transformation rules used, and the calculated docking scores. 3D docking
models for the proposed compounds (green) that overlap with the reference compounds (orange) for PTP1B and AR are included.
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likelihood of drug-induced liver injury (DILI) would remain a
challenge to optimize.

4 Conclusion

Designing multi-target compounds is an attractive approach to
develop therapeutic treatments for complex diseases such as T2DM
and MetS. Herein, we collected from the literature and analyzed ninety-
one multi-target compounds for which in vivo antidiabetic activity has
been reported, with a total of twenty target combinations. Following an
enumeration based on transformation rules, we expanded the relevant
chemical space of two of these multi-target hit compounds. More than
450 transformation rules were applied, of which 280 are made openly
available to the scientific community.We concluded that the compounds
generated with transformation rules have similar physicochemical
properties to antidiabetic drugs and multi-target compounds reported
in literature. Of the 84,778 generated compounds with valid structures,
85% are predicted to be synthetically feasible. The enumerated
compounds are also attractive considering structural and shape diversity.

To focus on attractive and synthetically feasible compounds to
perform virtual screening, various drug-likeness and quality filters were
applied, yielding a multi-target virtual library with 2037 compounds.
After a docking-based virtual screening with PTP1B and AR, 816 multi-

target compounds were selected. Compounds in this library have
favorable ADME properties, making the library an attractive source
of promising candidates for further research and development.

In line with open and democratization of science, the newly
designed multi-target focused library is freely available as a valuable
source of starting points for chemical synthesis, biological evaluation, or
further computational analysis such as virtual screening or reference
libraries in library design.
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Accurately identifying novel indications for drugs is crucial in drug research and
discovery. Traditional drug discovery is costly and time-consuming.
Computational drug repositioning can provide an effective strategy for
discovering potential drug-disease associations. However, the known
experimentally verified drug-disease associations is relatively sparse, which
may affect the prediction performance of the computational drug
repositioning methods. Moreover, while the existing drug-disease prediction
method based on metric learning algorithm has achieved better performance,
it simply learns features of drugs and diseases only from the drug-centered
perspective, and cannot comprehensively model the latent features of drugs and
diseases. In this study, we propose a novel drug repositioning method named
RSML-GCN, which applies graph convolutional network and reinforcement
symmetric metric learning to predict potential drug-disease associations.
RSML-GCN first constructs a drug–disease heterogeneous network by
integrating the association and feature information of drugs and diseases.
Then, the graph convolutional network (GCN) is applied to complement the
drug–disease association information. Finally, reinforcement symmetric metric
learningwith adaptivemargin is designed to learn the latent vector representation
of drugs and diseases. Based on the learned latent vector representation, the
novel drug–disease associations can be identified by the metric function.
Comprehensive experiments on benchmark datasets demonstrated the
superior prediction performance of RSML-GCN for drug repositioning.

KEYWORDS

drug repositioning, drug-disease association prediction, graph convolutional network,
metric learning, drug discovery

1 Introduction

Due to the high time cost, significant investment, and laborious of the traditional
drug discovery process, it is challenging to meet the needs of people facing increasingly
prevalent complex diseases such as cancer, diabetes, and cardiovascular disease (Chong
and Sullivan, 2007; Tamimi and Ellis, 2009). Therefore, more accurately and effectively
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capturing drug-related indications in drug development is of
great significance. Drug repositioning, or the new use of old
drugs, is an attractive means for discovering the new therapeutic
potential for existing drugs that have already been approved by
the Food and Drug Administration (FDA) for the treatment of
diseases (Novac, 2013), so it has the advantages of reduced drug
risk, a shortened clinical evaluation cycle, cost-effectiveness, and
efficiency (Pushpakom et al., 2019; Luo et al., 2020). Many
computational drug repositioning methods have been
proposed to identify candidate indications of drugs (Lotfi
Shahreza et al., 2017). These methods can be broadly classified
into three major categories: (i) machine learning-based drug
repositioning methods; (ii) network-based drug repositioning
methods; and (iii) recommendation system-based drug
repositioning methods.

Machine learning-based methods mainly utilize support vector
machine (SVM) (Napolitano et al., 2013), logistic regression (Gottlieb
et al., 2011; Qabaja et al., 2014), Naïve Bayes (Yang and Agarwal,
2011), and random forest (Oh et al., 2014) for classification and
prediction tasks in drug repositioning. However, these traditional
methods rely significantly on input data with features that have been
artificially set up well to represent drug and disease characteristics,
which results in a high level of implementation complexity (Yadav
and Jadhav, 2019). As an extension of machine learning, deep learning
has been popularly used in drug repositioning because it possesses
inestimable advantages in automatically capturing nonlinear features
from raw data. Zeng et al. (2019) put forward a network-based deep
learningmethod, deepDR, which uses amultimodal deep autoencoder
to learn nonlinear features of drugs from the heterogeneous networks.
Network-based methods analyze the relationship between entities via
message passing in different paths constructed bymultiple data on the
network structure, which is interpretable. Martínez et al. (2015)
designed a heterogeneous network-based prioritization method to
predict new drug-related diseases. Luo et al. (2016) proposed a bi-
random walk (BiRW) algorithm on the drug–disease heterogeneous
network to identify potential drug–disease associations. Recently,
deep learning technologies have been successfully applied to drug
repositioning and drug combination prediction. For example,
Dehghan et al. proposed a novel multimodal deep learning-based
approach called TripletMultiDTI, which incorporated multiple
sources of information and used a new architecture to predict
drug–target interaction affinity labels (Dehghan et al., 2022). Rafiei
et al. presented a deep learning approach called DeepTraSynergy,
which is designed to predict the synergistic effects of drug
combinations in cancer treatment by utilizing various data
including drug–target interactions, protein-protein interactions,
and cell-target interactions to predict the synergistic effects of drug
combinations in cancer treatment (Rafiei et al., 2023).

Recommendation system-based methods perform well in
various recommend related domains including social media,
e-commerce platforms, and personalized reading (Da’u and
Salim, 2020). Similar to the recommendation of preferring items
to users, the problem of predicting drug–disease associations can be
modeled as the problem of recommending potential drugs as
potential treatment to diseases (Yang et al., 2019a; Meng et al.,
2022). Recently, recommended methods based on matrix
factorization and matrix completion have been applied with
considerable success to drug repositioning (Yang et al., 2020).

Luo et al. (2018) proposed a drug repositioning recommendation
system (DRRS) that uses a fast singular value threshold (SVT)
algorithm (Cai et al., 2010) to fill out the unknown entries in the
drug–disease adjacency matrix. Yang et al. (2019b) used the
generalized matrix factorization method (GMF) involved in the
collaborative filtering process to uncover the potential therapeutic
relationship between drugs and diseases. Methods based on matrix
factorization or matrix completion can be applied flexibly but are
inefficient for large-scale data owing to complex matrix operations.
In particular, the inner product operation used in the most typical
matrix factorization technology violates the triangle inequality rule,
potentially leading to suboptimal performance in the recommended
models (He et al., 2017). In addition, this simple linear combination
overlooks the modeling of the drug–drug and disease–disease
relationship in a manner, and only measures the drug–disease
relationship. Hence, metric learning is proposed to offset gaps in
matrix factorization to enhance the expressiveness of the model.
Metric learning methods have been introduced to drug repositioning
in the latest studies. For instance, Luo et al. (2021) proposed a
collaborative metric learning approach (CMLDR) for drug
repositioning. CMLDR projected drugs and diseases into a joint
metric space and then predicted the potential drug–disease pairs
from the learned vectors by metric learning. While CMLDR has
achieved better prediction performance, it concentrated solely on
drug-centric learning to learn representations of drugs and diseases
based on drug–disease association information.

Graph convolutional network (GCN) (Kipf et al., 2017) extends the
convolutional neural network to solve non-Euclidean space problems.
It uses structural information on the constructed network by applying
convolutional operation to learn network topology preserving
node-level feature embeddings to reflect complex biological entity
interactions. Recently, GCN has been applied to network analysis to
efficiently extract network topology feature. For drug repositioning,
GCN can be utilized to extract drug and disease features from the drug-
disease heterogeneous network. Then, the extracted features can be
further used to calculate drug-disease association scores.

In this study, we proposed a novel computational framework for
drug repositioning based on reinforcement symmetric metric learning
and GCN. First, in order to alleviate the sparsity problem of
drug–disease association data, we utilized Graph Convolutional
Network (GCN) on drug–disease heterogeneous network to learn
the features of drugs and diseases. The drug–disease association scores
can be calculated based on the learned features and are used to further
complement the drug–disease association matrix, which can improve
the prediction performance of the model. Then, a reinforcement
symmetricmetric learningmethodwith adaptivemargins is proposed,
which combines with drug-centric and disease-centric learning
simultaneously to learn the vector representation of drugs and
diseases to predict new potential drug–disease associations. Finally,
we propose to integrate reinforcement symmetric metric learning and
GCN model to identify potential therapeutic indications of drugs,
which can provide new insights for promoting drug repositioning.

The major contributions of this study are as follows.

• This study proposed a novel framework RSML-GCN, which
integrated the symmetric metric learning algorithm and GCN
model to identify potential therapeutic indications for drugs,
which provides insights into promoting drug repositioning.
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• To relieve the problem of the sparsity of drug–disease
association data, RSML-GCN applied GCN to complement
drug–disease association information.

• The symmetric metric learning algorithm incorporating drug-
centric and disease-centric learning is proposed to predict
novel potential drug–disease associations.

2 Materials and methods

In this study, we model the drug–disease association prediction as
a recommendation problem and propose a new drug repositioning
approach, RSML-GCN, to predict new therapies for diseases. The
method combines GCN and metric learning to construct a novel
framework for accurately discovering potential drug-disease
associations, as shown in Figure 1. The proposed framework
mainly consists of three modules including drug-disease network
construction module, drug-disease complementation module and
reinforcement symmetric metric learning-based prediction module.
First, a drug–disease heterogeneous network is constructed based on
the features and association information of drugs and diseases. Then,
the low-dimensional embeddings of drugs and diseases are encoded
by applying GCN, and a decoder is trained to generate an completed
drug-disease associationmatrix by predicting drug-disease association
scores. Finally, the latent representations of drugs and diseases are
learned based on the reinforcement symmetric metric learning to
predict novel drug-disease associations.

2.1 Construction of the drug–disease
heterogeneous network

In this work, the similarity of drug pairs is calculated based on
the Jaccard similarity coefficient, and the similarity of disease pairs is
obtained by calculating the semantic similarity using medical subject
descriptors.The detailed calculations are provided in Supplementary
Material. A drug similarity network R and disease similarity
network D can be constructed based on drug similarity and
disease similarity, and the edge weight is derived from the
similarity value. Ar � r1, r2, . . . , rM{ } denotes the set of M drugs,
and Ad � d1, d2, . . . , dN{ } denotes the set ofN diseases. Sr ∈ RM×M

denotes the adjacency matrix of the drug similarity network, and
Sd ∈ RN×N denotes the adjacency matrix of the disease similarity
network. A drug–disease association network Srd can be constructed
based on the known association information between drugs and
diseases. An edge exists between ri and dj if there is a known
association between drug ri and disease dj. The binary association
matrix Y ∈ 0, 1{ }M×N corresponds to Srd, the entry yij of the matrix
Y is 1 if there is an edge between drug ri and disease dj, otherwise
yij � 0 which does not mean that there is no association between the
drug ri and disease dj, but that there may be a potential association
that has not yet been identified. For each drug ri, this study aims to
identify diseases that are potentially associated with ri. The
drug–disease heterogeneous network is constructed by integrating
three networks: drug–drug similarity network, disease–disease
similarity network, and drug–disease association network.

FIGURE 1
The workflow of the proposed method RSML-GCN.
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2.2 Complement drug–disease associations
based on GCN

To solve the problem of the sparse verified drug-disease
associations in drug repositioning, we can leverage the related
information of drugs and diseases to predict potential indications
of drugs to complement the drug–disease association data. GCN
learns the low-dimensional representations of nodes from the
irregular graph structure, and each of its layers aggregates the
neighboring node information of the target node and uses the
output of the previous layer as the input of the next layer, which
is a process of continuously recursively aggregating neighborhood
features. In this work, GCN is introduced by applying the similarity
and association information to predict new drug–disease associations,
which can complete the drug–disease association matrix from the
biological network perspective and be used as a pre-training step to
predict the likelihood of drug–disease associations.

First, the adjacency matrix G corresponding to the drug–disease
heterogeneous network is defined. S′r � E−1/2

r SrE−1/2
r and S′d �

E−1/2
d SdE−1/2

d are the normalized drug similarity matrix and disease
similarity matrix, respectively, where Er � diag(ΣjSrij) and Ed �
diag(ΣjSdij) (Srij or Sdij is (i, j)th entry of the similarity matrix)
are the degree matrices of the drug and disease similarity matrices,
respectively. The introduction of an appropriate degree of similarity
contribution can better learn the embedding representation of drugs
and diseases. Thus, a similarity penalty factor μ is introduced to
control the contribution of similarity information, which can be
expressed as Ŝ

′
r � μ*S′r, Ŝ

′
d � μ*S′d. Then, the adjacency matrix of

the drug-disease heterogeneous network is represented by

G � Ŝ
′
r Y

YT Ŝ
′
d

⎡⎢⎢⎣ ⎤⎥⎥⎦ (1)

Given the matrix G, the general process of the convolution
operation based on the GCN encoder according to the study of Yu
et al. (2020a) can be described as

Hl+1 � f G,H,W( ) � σ E−1
2GE−1

2HlWl( ) (2)

Here,Hl+1 is represented as the embeddings of nodes encoded at
layer l + 1, E(E � diag(ΣjGij)) is the degree matrix of the adjacency
matrixG, andHl represents the embeddings encoded at layer l, which
is used as the input at layer l + 1.W is a learnable weight matrix, and
σ is a nonlinear activation function (e.g., RELU activation function).

Following the rule of Eq. 2, the GCN recursively learns node
features. After l layers of iterations (l � 1, 2, . . . , L), the GCN
captures information about different structures of the heterogeneous
network at different layers. To enable theGCN to fully learn the features
of the nodes, we use the attention mechanism to connect the
embeddings of different layers of GCN learning. Different attention
weights are set at different layers. The final embeddings of the obtained
drugs and diseases are denoted as [HR HD ]T � ∑ βlH

l. Here, βl is
initialized to 1/(l + 1),HR ∈ RM×k andHD ∈ RN×k represent the final
embeddings of the drugs and diseases, respectively.

To complement the drug–disease association matrix, we feed the
final drugs and diseases embeddings into a bilinear decoder (Li et al.,
2020b) for link prediction between drugs and diseases. Thus, the
reconstruction of the drug–disease association matrix can be
represented by ~Y � ρ(HRW′HDT ), where ρ is the sigmoid activation

function, andW′ is the trainable weight matrix. Entry yij
′ in thematrix ~Y

represents the predicted score between the drug ri and the disease dj.
Ultimately, we use a binary cross-entropy loss function as the

objective function to optimize the drug–disease association continuously.

Loss � − 1
N × M

η × ∑
i,j( )∈Y+

logyij
′ + ∑

i,j( )∈Y−
log 1 − yij

′( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (3)

where (i, j) indicates the drug–disease pair, and η � |Y−|/|Y+|
indicates the ratio of the number of positive drug–disease pairs
to the number of negative drug–disease pairs to balance positive and
negative sample data.

We complement the drug–disease association information to
alleviate the data sparsity problem by adopting GCN to implement
pre-training on the drug–disease heterogeneous network. An entry
of 1 in the drug-disease association matrix indicates that the disease
is an indication for the drug and is a known association confirmed in
clinical trials. In contrast, an entry of 0 means that there may be a
potential association that has not yet been identified. GCN is utilized
to preprocess unknown drug–disease associations to obtain more
promising association information for subsequent prediction tasks.
A threshold θ is set to screen highly confident drug indications.
Specifically, we retain the original value if the drug–disease
prediction score is greater than or equal to θ. Otherwise, we set
it to 0 because a more considerable value suggests a stronger
association between the drug and disease. Then, a preprocessed
complemented drug–disease association matrix is obtained.

2.3 Reinforcement symmetric
metric learning

Previous studies based onmetric learning have considered drug-
centric metrics (Hsieh et al., 2017; Park et al., 2018), neglecting to
model drug–disease relationships from the disease perspective,
which may lead to biased learning of latent vector representation
of drugs and diseases, and limit the predictive performance of the
model. Therefore, we take the drug- and disease-centric metrics into
account for our reinforcement symmetric metric learning algorithm,
which not only considers the relationships between drugs and
diseases, but also implicitly establishes drug–drug and
disease–disease relationships, thus enhancing the representation
learning of drugs and diseases.

The goal of metric learning is to learn a metric function that pulls
similar entities closer together and pushes dissimilar ones farther apart
(Park et al., 2018; Wu et al., 2020). For example, when identifying
possible favorite items for users in the recommendation system, metric
learning assigns smaller distances to users and items with existing
interactions and larger distances to users and items with unknown
interactions. Similarly, it can be applied to the issue of predicting
potential possible indications for drugs. The metric learning algorithms
project drugs and diseases into the unified vector space and encode the
latent vectors of drugs and diseases based on associations between drugs
and diseases. This way, distances between drugs and diseases with
known associations are closer than that between drugs and diseases
without associations or with unknown associations. The likelihood of
drug–disease associations is measured by the position of drugs and
diseases in the unified metric vector space. Unvalidated diseases are
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sorted in descending order by prediction scores for a given drug, and
top-k disease recommendations can be obtained.

2.3.1 Problem formalization
In this work, the problem of recommending new indications for

drugs is formulated as below. Ar and Ad denote the set of drugs and
diseases, respectively, as described above. All known drug–disease
associations can be designated as Γ � (r, d)|r ∈ Ar, d ∈ Ad{ }, and
N+

i � dj|dj ∈ Γ and yij � 1{ } represents the set of diseases with
known associations with drug ri. N−

i � dj|dj ∉ N+
i and yij � 0{ }

represents the set of diseases without known associations with
drug ri.

Based on the completed drug–disease associations, the metric
learning projects drugs and diseases into a unified n-dimensional
metric vector space. In the unified metric vector space, αr ∈ Rn is the
latent vector of drug r and βd ∈ Rn is the latent vector of disease d.
The association probability of drug r and disease d is measured by a
simple and efficient Euclidean distance, defined as

d r, d( )�‖αr − βd‖22, (4)

where ‖ *‖2 represents the L2-normalization. The calculated
Euclidean distance for known drug–disease associations should
be smaller than that without known associations.

2.3.2 The drug-centric metric
Drug-centric metric learning is defined based on the completed

drug–disease association matrix. For a given triple (r, d, �d), (r, d) ∈ Γ
represents a known association, which is considered a positive sample,
and (r, �d) ∉ Γ represents a negative sample, which is an unknown
drug–disease pair that is randomly selected. Metric learning is a
similarity measure based on distance, where a closer distance means
two entities are more similar. Thus, the measure of similarity can be
used for the measure of correlation. Distance and correlation are two
opposite concepts in drug–disease association prediction. A closer
distance indicates a more possible therapeutic behavior of the drug
for the disease. To ensure better learning of latent vectors of drugs and
diseases, we set a margin (safe distance) m and let m> 0 (Li et al.,
2020a). We use the following formula to ensure that the distance
between drug r and negative disease �d is larger than the distance
between drug r and positive disease d:

d r, d( ) +m≤ d r, �d( ) (5)

Figure 2 illustrates the drug-centric metric learning method in a
two-dimensional space, where themargin is designed to separate positive
and negative pairs. Specifically, drugs and diseases are represented as
latent vectors in a drug–disease metric space. If the predicted drug
associated with one disease, the gradient directionmoves inward to limit
the disease within the safe margin, otherwise, the gradient direction
moves outward to keep the disease away from the drug until it exceeds
the safetymargin. Note that the positive disease is inside the ball centered
on drug r. However, the negative disease is outside this ball centered on
drug r. This guarantees that distances between drugs and positive
diseases are smaller than that between drugs and negative diseases,
and maximizes the correlation between drugs and associated diseases.

As a result, we adopt triple loss (Schroff et al., 2015) as the
objective function for drug-centric metric learning:

LR � ∑
r,d( )∈Γ

∑
r,�d( ) ∉ Γ

d r, d( ) − d r, �d( ) +m[ ]+ (6)

where [x]+ � max(x, 0) denotes the standard hinge loss, which is a
widely used loss function in the field of recommendation systems.

2.3.3 The disease-centric metric
Drug-centric metric learning considers drug–disease

associations from the drug perspective, thus bringing diseases
associated with the targeted drug closer and having no
association farther away. It is not sufficient to accurately locate
the positions of drugs and diseases in the unified metric vector space
to obtain their latent vectors only from the drug perspective.
Moreover, drugs and diseases can be projected into the unified
metric space based on the assumption that similar diseases are
related to similar drugs (Xuan et al., 2019). Consequently, we
introduce the disease-centric metric to explore the relationship
between drugs and diseases from the disease perspective.
Similarly to the drug-centric metric, for targeted disease, drugs
with known associations with it are positioned close to it, or else
far away. d and �r are uncorrelated according to the assumption of
the distance metric, so they should not be closer together and should
meet d(d, �r)> d(d, r). Likewise, a margin n is set, and n> 0. The
following equation is used to ensure that the distance between
disease d and negative drug �r is larger than the distance between
disease d and positive drug r:

d d, r( ) + n≤ d d, �r( ). (7)

Because the Euclidean distance possesses symmetry, the disease-
centric learning strategy can be replaced by d(r, d) + n≤ d(d, �r).
Figure 3 depicts the symmetric metric learning approach centered
on drugs and diseases under the explicit treatment relationship. The
disease-centric metric predicts the associated drugs from the
perspective of disease and uses the safety margin for gradient
learning. Obviously, the objective of symmetric metric learning is
to push drugs or diseases that are not associated out of the ball and
pull drugs or diseases that are associated or have potential
associations into the ball. Thus, distances of known drug–disease
pairs are smaller than distances between unknown pairs.

Ultimately, the objective function for the disease-centric
learning is defined as below:

LD � ∑
r,d( )∈Γ

∑
d,�r( ) ∉ Γ

d r, d( ) − d d, �r( ) + n[ ]+ (8)

FIGURE 2
An illustration of drug-centric metric learning.
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In this work, we aimed to identify the relationship between drugs
and diseases from the standpoint of drugs and diseases rather than
directly utilizing drug-centric metric learning.

2.3.4 Adaptive margin
Previous studies (Johannessen Landmark, 2008; Kingsmore

et al., 2020) have found that one drug may treat multiple
diseases, and that one disease may also be treated with various
drugs. Considering the inconsistency of drug–disease and
disease–drug association strengths, different margins are
introduced for drugs and diseases. To simulate complicated
drug–disease relationships better, we learn personalized margins
through adaptive training. In the learning process, we set mr and nd
as margins of the drug and disease, respectively. We prefer to use
larger mr and nd to reduce variations. Particularly for drugs or
diseases with fewer associations, more significant margins should be
given to avoid overfitting, thus pushing drugs and diseases without
associations farther to improve the accuracy of recommendations.
Adaptive margins in the objective function can be expressed as

LAM � − 1
M| |∑r mr + 1

N| |∑d nd⎛⎝ ⎞⎠ (9)

2.3.5 Optimization
The number of unknown associations in the drug and disease-

related data is significantly higher than the number of known
associations. Therefore, we optimize the model by negative
sampling. Based on known drug–disease associations, for each
drug (disease), we randomly select P diseases (drugs) that are not
associated with it as negative samples during the training process,
and P is set as the minimum value of the number of drugs and
diseases. By combining drug-centric and disease-centric metric
learning losses, we obtain the final loss function for RSML-GCN
as follows:

L � LR + LD( ) + γLAM � ∑
r,d( )∈Γ

∑
r,�d( ) ∉ Γ

d r, d( ) − d r, �d( ) +mr[ ]+
+ ∑

r,d( )∈Γ
∑

d,�r( ) ∉ Γ
d r, d( ) − d d, �r( ) + nd[ ]+

+ γLAM s.t., mr ∈ 0( , l], nd ∈ 0( , l] (10)

where l is used to prevent margins from being too large to affect the
performance of the prediction. Additionally, to avoid the curse of
dimensionality caused by the data points spread too widely, we apply

l2-norm clipping to the latent vectors of drugs and diseases learning,
so that they are confined to the Euclidean ball with the size of l
(‖α*‖2≤ l and ‖β*‖2≤ l). The objective function is then optimized by
using the AdaGrad to control the learning rate to update latent
vectors continuously until convergence (Duchi et al., 2011). After
the training procedure is completed, Euclidean distance is used to
compute the association probabilities between drugs and diseases. A
complete description about the procedure of RSML-GCN is
presented in Algorithm 1.

Input: The matrix of known drug–disease associations

Y ∈ 0,1{ }M×N; The drug similarity matrix Sr ∈ RM×M;The

disease similarity matrix Sd ∈ RN×N; Hyper parameters

k, L, lr1, n, lr2 and γ.

Output: The predicted drug-disease association matrix

Ŷ.

1: Normalize drug similarity matrix S′
r and normalized

disease similarity matrix S′
d and initialize

drug–disease heterogeneous graph G.

2: repeat

3: for l � 1,2, . . . ,L do

4: Learn node features Hl with Eq. 2;

5: end for

6: Combine nodes embeddings Hl with ∑ βlH
l,

obtain the final embeddings of drugs HR

and the final embeddings of diseases HD;

7: Obtain the prediction matrix ~Y with ρ(HRW′HDT );
8: Update parameters by optimizing Eq. 3;

9: until Eq. 3 is converged, get ~Y;

10: ~Y* is obtained by screen ~Y using a threshold θ;

11: for (r,d) ∈ sampled drug–disease associations in ~Y* do

12: sample a negative drug–disease (r, �d) pairs to

build a triplet (r,d, �d);
13: Compute LR with Eq. 6;

14: sample a negative disease-drug (d, �r) pairs to

build a triplet (d,r, �r);
15: Compute LD with Eq. 8;

16: End for

17: While not converged do

18: Compute gradients;

19: Update αr and βd with AdaGrad on Eq. 10;

20: Compute the predict probability;

21: P�‖αr − βd‖22;
22: Check whether the model converges on the

validation set;

23: End while

24: Ŷ � P;

25: Return Ŷ;

Algorithm 1. RSML-GCN Algorithm.

3 Results and discussion

3.1 Comparison with other methods

To verify the effectiveness of our method in predicting
drug–disease associations, we compared RSML-GCN with

FIGURE 3
Symmetric metric learning in two-dimensional space.
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five state-of-the-art drug repositioning methods based on
recommendation system and GCN including GRGMF
(Zhang et al., 2020), DRWBNCF (Meng et al., 2022), LAGCN
(Yu et al., 2020b), DRHGCN (Cai et al., 2021) and CMLDR (Luo
et al., 2021). These methods are detailed below.

• GRGMF establishes a generalized matrix factorization model
that obtains the latent representation of each node by
adaptively learning the neighborhood information of each
node, and it introduces external similarity information to
facilitate the prediction of potential links.

• DRWBNCF is a neural collaborative filtering method
that proposes a new weighted bilinear graph convolution
operation to integrate the information of the known
drug–disease association, drug’s and disease’s
neighborhood, and neighborhood interaction into a unified
representation to infer novel potential drug–disease
associations.

• LAGCN is a layer attention GCN that uses GCN to learn
embeddings of drugs and diseases from the drug–disease
heterogeneous network. The learned embeddings are then
integrated by an attention mechanism to predict new
associations.

• DRHGCN uses GCN to extract inter-domain and intra-
domain feature information of drugs and diseases to find
new drug indications based on different network topology
information of drugs and diseases in different domains.

• CMLDR is a collaborative metric learning algorithm that
predicts the association probability of drugs and diseases by
applying metric learning. The latent vectors of drugs and
diseases are learned based on the known related
information of drugs and diseases and used to identify
candidate drug–disease associations.

For a fair comparison, we ran these competing methods with
the optimal parameters suggested in the original papers on
benchmark datasets. The complete evaluation of all methods
was performed under 10-fold cross-validation. The specific
experimental settings are described in Supplementary Material.
Also, we conducted parameter analysis and selected the best
parameters as the recommended settings for RSML-GCN
in this work.

3.2 Parameter setting

Considering that hyperparameters could affect model
performance, we further investigate the influence of
hyperparameters including that used in GCN, such as the
latent vector dimension n, the marginal value strengths γ, and
weight variables. The specific hyperparameter settings are given
in Supplementary Material. According to the previous study (Yu
et al., 2020a), we set the parameters for GCN with the embedding
dimension k � 64, number of layers L � 3, initial learning rate
lr1 � 0.008, node discard rate β � 0.6, regularize discard rate
ξ � 0.4, and penalty factor μ � 6. Moreover, we have

investigated the effect of the latent vector dimension n by
varying its value from 30 to 400, and examined the influence
of the marginal value strengths γ by varying its value from 0.01
to 100. The optimal parameters were determined by the grid
search method, and detailed information is provided in the
Supplementary Material. Finally, the latent vector dimension
of drugs and diseases in the metric space was fixed at 250, the
initial learning rate lr2 was 0.05, and the batch size was 512. In
terms of variables, refer to the settings of Li et al. (2020a), all
weight variables followed a uniform distribution [-0.01, 0.01]
and were randomly initialized, and all latent vectors (such as αr,
βd) that follow a normal distribution (mean: 0.1, variance: 0.03)
were randomly initialized. More detailed parameter settings are
described in Supplementary Figures S1–S4.

3.3 Performance of RSML-GCN in
cross-validation

To evaluate the performance of RSML-GCN, we conducted
extensive experiments on two benchmark datasets Cdataset and
Fdataset in Supplementary Table S1 and compared RSML-GCN
with five state-of-the-art association prediction methods. The
performance evaluation results of all methods under 10 times
10-fold cross-validation were reported in Table 1. The
experimental results show that RSML-GCN had good
performance in relevant metrics and was superior to other
methods. In terms of the primary metric, AUPR, RSML-GCN
achieved the highest average value of 0.7941, which surpasses
GRGMF by 33.7%, and the average AUPR values of
DRWBNCF, LAGCN, DRHGCN and CMLDR were 0.4992,
0.1562, 0.5480, and 0.2607, respectively. Additionally, RSML-
GCN outperformed other methods in terms of AUC, with an
average AUC value of 0.9077. This was 0.20% higher than the
second-best method, DRHGCN. DRWBNCF, GRGMF, LAGCN
and CMLDR have AUCs of 0.8642, 0.8994, 0.7874 and 0.7999,
respectively.

We have performed 10 times 10-fold cross-validation and
obtained AUC and AUPR values for all methods. The paired
t-test is applied to statistically test the significance between the
proposed method and other existing methods in terms of AUPR
values, which have been conducted in previous studies. The
paired t-test results including the p-values are showed in
Table 2. It can be observed that RSML-GCN is statistically
significantly better than other methods (p < 0.05).

The drug–disease prediction problem was formulated as a
top-k recommendation problem, where potential therapeutic
diseases are recommended for a specific drug. Therefore, we
used top-k prediction results as evaluation metrics, specifically
precision@K (p@K) and recall@K (r@K), which are widely used
in recommendation domains. The performance of different
models in predicting the top-k drug–disease associations on
Cdataset was reported in Supplementary Figure S5. RSML-
GCN outperformed other models in terms of r@5, r@10, p@5,
and p@10. Additionally, in Supplementary Figure S6, we can find
that RSML-GCN also achieves excellent performance in the recall
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and precision values of the top-k predictions on Fdataset, which
is much better than collaborative filtering-based, GCN-based,
and metric learning-based methods. Notably, the performance
indicators of LAGCN in these results were inferior to those of
other methods, potentially due to GCN exhibiting over-
smoothing issues stemming from dataset imbalances. The
prediction results of the matrix factorization method GRGMF
were lower than RSML-GCN, indicating that the metric learning
method can effectively compensate for the shortcomings of
matrix factorization. In contrast, CMLDR yielded significantly
lower results than our proposed method, which suggests the
usefulness of increasing the disease-centric auxiliary reuse
learning for improving the drug-centric metric. The superior
performance of RSML-GCN can be attributed to the following
aspects. First, deep learning method is utilized to learn the
potential representations of drugs and diseases and generate
high confident drug–disease associations. This effectively
alleviates the sparsity problem of drug–disease association data
and improves the performance of subsequent task predictions.
Second, we designed a reinforcement metric learning method to
learn the metric between drugs and diseases from both drug and
disease aspects, which can improve previous metric learning
methods. Finally, by integrating the deep learning method and
metric learning method, the proposed method can achieve better
performance than other drug–disease prediction methods.
Furthermore, we have avoided excessive integration of
biological data, as improper handling of such data can
introduce noise and adversely affect prediction results. These
results comprehensively demonstrate the effectiveness of our
proposed method in identifying drug–disease associations.

3.4 Ablation experiment

To evaluate the model performance of RSML-GCN, we set up
a variant of RSML-GCN, named as RSML. In RSML, we used only
reinforcement symmetric metric learning to predict drug–disease
association scores, which removes the pre-training step of
complementing the drug–disease association matrix using
GCN. In order to check the contribution of the pre-training
component, we compared RSML-GCN with RSML based
on Cdataset.

Based on the drug–disease association matrix, the RSML
projected drugs and diseases to the unified metric vector space
and learned their latent vectors based on the push–pull
mechanism. The Euclidean distance was adopted to obtain
the potential treatment probabilities of drugs for diseases. As
can be seen in Supplementary Table S2, incorporating GCN in
RSML-GCN as a pre-training step to complement the
drug–disease association matrix resulted in improved
predictive performance. The average AUPR of RSML-GCN
was 6.45% higher than that of RSML, while maintaining a
comparable AUC. Additionally, significant enhancements
were observed across all top-k prediction evaluation metrics,
as depicted in Supplementary Figure S7. This improvement can
be attributed to GCN’s ability to integrate similarity information
from drug–disease associations, enabling the learning of more
comprehensive representations and acquiring more confident
drug–disease association information. Consequently, this
approach helps address the imbalance between positive and
negative samples to serve downstream tasks better and
improve the predictive potential of metric learning method.
The results generally indicate the reliability of RSML-GCN for
predicting drug-related diseases.

3.5 Predicting candidates for new drugs or
new diseases

To assess the ability of RSML-GCN in predicting potential
indications for new drugs, we removed the associated diseases of
the test drug and predicted indications for it on Cdataset. To
more accurately display the top-k recommendation
performance of the model, we selected drugs associated with

TABLE 1 Results of different methods under 10 iterations of 10-fold cross-validation.

Datasets DRWBNCF GRGMF LAGCN DRHGCN CMLDR RSML-GCN

AUPR

Cdataset 0.4821 0.5611 0.1946 0.5562 0.1088 0.8580

Fdataset 0.5163 0.6269 0.1178 0.5397 0.4125 0.7302

Avg 0.4992 0.5940 0.1562 0.5480 0.2607 0.7941

AUC

Cdataset 0.8480 0.8638 0.8358 0.8756 0.7650 0.9309

Fdataset 0.8803 0.9350 0.7389 0.9362 0.8348 0.8846

Avg 0.8642 0.8994 0.7874 0.9059 0.7999 0.9077

TABLE 2 The statistical significance of performance improvements
achieved by RSML-GCN.

Paired t-test Fdataset Cdataset

RSML-GCN vs. DRWBNCF 8.44E-25 4.11E-29

RSML-GCN vs. GRGMF 3.92E-22 2.48E-32

RSML-GCN vs. LAGCN 1.81E-23 2.0E-28

RSML-GCN vs. DRHGCN 4.36E-17 4.83E-33

RSML-GCN vs. CMLDR 5.11E-29 2.48E-39
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at least 50 diseases to evaluate the performance of RSML-GCN
for new drug prediction. After training, the latent vectors of
drugs and diseases in the training samples were learned. For a
new drug without any known association, RSML-GCN could
obtain latent vectors of the drug by utilizing similarity
information from its h-nearest neighbors in the training set
to predict the potential drug-related diseases. In the experiment,
empirically, h was set to 5 to simplify the model.

The results of predicting unknown diseases for new drugs
are presented in Supplementary Table S3, RSML-GCN
exhibited the best performance in the primary metric AUPR
(average AUPR = 0.5555), which is higher than GRGMF and
CMLDR based on recommendation system by 49.0% and 74.4%
(AUPR value), respectively. In terms of AUC, RSML-GCN had
an average AUC of 0.6985, which is higher than that of these
state-of-the-art prediction methods. The recall and precision of
top-k recommendations of RSML-GCN for predicting potential
indications for new drugs were reported in Figure 4, which
shows the performance of RSML-GCN over other methods for
different values of K. For the average recall value, our RSML-
GCN performed better than other methods under most K
values. For example, when K = 10 and K = 50, RSML-GCN
achieved the best average recall values, 0.0807 and 0.3191,
respectively. In particular, when K = 10, DRWBNCF,
LAGCN, DRHGCN, and CMLDR obtained recall values of
0.0245, 0.0356, 0.0428 and 0.0565, respectively, the recall
values of GRGMF and RSML-GCN were almost comparable.

In addition, when K = 10 and K = 50, RSML-GCN attained
average precision values of 0.7451 and 0.6072, respectively,
which is higher than most competitive methods. Overall, the
comprehensive results demonstrate that RSML-GCN has an
excellent ability to predict related diseases for new drugs.

For a new disease without any known associations, RSML-
GCN can use the similarity information of diseases to predict
potential candidate drugs for new diseases. We also conducted
the experiments, in which all relationships for each disease were
removed to predict candidate drugs for new diseases. The results
compared with state-of-the-art methods were reported in
Supplementary Table S4 and Supplementary Figure S8.
RSML-GCN was the second-best, significantly better than
DRWBNCF, LAGCN, DRHGCN, and CMLDR. The recall and
precision of RSML-GCN also achieved the second-best
performance. The reason is that the input of GRGMF
contains both drug–drug similarity and disease–disease
similarity, while the input of RSML-GCN only contains
known drug–disease associations.

3.6 Independent test experiments

We also investigated the performance of these prediction
methods on the independent test set, another dataset released
by Luo et al. (2016) is used to assess the performance of
methods. By removing the drugs not included in Fdataset, we

FIGURE 4
The recall values (A) and precision values (B) of various methods in predicting top-k diseases new drugs.

TABLE 3 Results on independent test set.

Methods DRWBNCF GRGMF LAGCN DRHGCN CMLDR RSML-GCN

AUPR 0.0353 0.0140 0.0220 0.0520 0.0459 0.3030

AUC 0.6218 0.5313 0.6215 0.7783 0.5355 0.6842
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obtained an independent test set consisting of 89 drug–disease
associations involving 71 drugs and 313 diseases. This test set
was used to assess the performances of all prediction methods in
predicting the drug–disease associations on the Fdataset.
Overall, the performance of all the methods moderately
deteriorates relative to the 10-fold cross-validations. RSML-
GCN remained the best method, which achieved an AUPR value
of 0.3030 and an AUC value of 0.6842. DRWBNCF and LAGCN
achieved AUC values of 0.6218 and 0.6215, respectively
(Table 3). We also show the ability to correctly predict
drug–disease associations concerning given top-k thresholds,
as shown in Figure 5. Accordingly, RSML-GCN can predict
drug–disease associations more accurately than all other five
methods on almost every top-rank threshold.

3.7 Case study

In this section, we conducted a case study to further evaluate
the reliable ability of RSML-GCN to predict novel drug–disease
associations. For the analysis, we chose three representative drugs
for the treatment of high-incidence diseases, Atorvastatin Calcium,
Etoposide, and Riluzole. Atorvastatin Calcium is a commonly used
lipid-lowering drug in the clinic, which is mainly used to treat
mixed hyperlipidemia and hypercholesterolemia (Egom and
Hafeez, 2016). These diseases have a high incidence, are
difficult to diagnose and treat, and can potentially induce
Cardio-cerebrovascular disease (Yao et al., 2019). Therefore, the
analysis of Atorvastatin Calcium is of great significance. Etoposide
is a cell cycle specific antitumor drug that is primarily effective
against small cell lung cancer (Mascaux et al., 2000), acute
leukemia, and malignant lymphoma. Given cancer is
complicated and difficult to cure, it is valuable to analyze
whether Etoposide can treat other similar diseases in drug
reuse. Riluzole is a central nervous system drug that plays a
pivotal role in the treatment of Alzheimer’s disease, Parkinson’s

disease, and brain injury, which have a serious impact on patients.
Therefore, it is necessary to analyze the new therapeutic potential
for this drug to treat a variety of neurological degenerative diseases.
Specifically, we applied RSML-GCN to predict candidate diseases
for three drugs. For each of the three drugs, all predicted candidate
disease scores were ranked by priority, and then we excluded all
known drug–disease associations from the primary dataset to
generate a new top-ranked list of drug–disease associations.
Finally, we used highly reliable sources and clinical trials
(i.e., DrugBank (DB) (Law et al., 2013), CTD (Davis et al.,
2016), PubChem (Kim et al., 2015), DrugCentral (Avram et al.,
2020), and ClinicalTrials) as references to examine the predicted
drug–disease associations. Table 4 presents the predicted results of
the top 10 candidate diseases for three drugs. The results show
Atorvastatin Calcium can also be shown to treat lung disease, left
ventricular dysfunction, and is also associated with kidney failure,
which are supported by CTD, ClinicalTrials, and DrugCentral. The
discovery of Etoposide can be verified in all clinical trials, which
shows that Etoposide not only has a good therapeutic effect on a
variety of tumors but also can be used to treat Exanthema and drug
eruption. In addition, Riluzole was also found to be related to heart
failure, drug-induced liver injury, and arrhythmia. To sum up,
most of our predictions can be verified by reliable sources and
clinical trials. The case study results further demonstrate the
effectiveness of RSML-GCN in predicting novel drug–disease
associations.

4 Conclusion

In this study, we proposed a new framework for drug–disease
association prediction by incorporating GCN and reinforced
symmetric metric learning, named RSML-GCN. Firstly, in order
to alleviate the sparsity problem of drug–disease association data, the
GCN was applied to capture the structure of network topology on
the heterogeneous network constructed by the biological knowledge

FIGURE 5
The recall and precision values of the top-k recommended drug–disease associations are achieved by different methods on the independent
test set.
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TABLE 4 The top-10 candidate diseases predicted by RSML-GCN for three drugs.

Drug Rank Disease Evidences Rank Disease Evidences

Atorvastatin Calcium 1 Liver Diseases CTD/ClinicalTrials/DrugCentral 6 Headache CTD

2 Ventricular Dysfunction, Left CTD 7 Hyperalgesia CTD

3 Liver Neoplasms CTD/ClinicalTrials/DrugCentral 8 Renal Insufficiency CTD/ClinicalTrials/DrugCentral

4 Vomiting CTD 9 Edema CTD/ClinicalTrials

5 Dizziness NA 10 Weight Gain CTD

Etoposide 1 Exanthema CTD 6 Carcinoma, Squamous Cell CTD/ClinicalTrials

2 Drug Eruptions CTD 7 Skin Neoplasms CTD/ClinicalTrials

3 Uterine Cervical Neoplasms CTD/ClinicalTrials 8 Leukemia CTD/ClinicalTrials/DB/PubChem/
DrugCentral

4 Carcinoma, Transitional Cell CTD/ClinicalTrials 9 Lung Diseases, Interstitial CTD/ClinicalTrials/DrugCentral

5 Lymphoma, Large CTD/ClinicalTrials/DB/PubChem/
DrugCentral

10 Cerebellar Diseases CTD/ClinicalTrials

Riluzole 1 Heart Failure CTD 6 Drug-Related Side Effects and Adverse Reactions CTD

2 Chemical and Drug Induced Liver Injury CTD/DrugCentral 7 Myocardial Infarction CTD

3 Acute Kidney Injury CTD 8 Hypotension CTD/ClinicalTrials

4 Arrhythmias, Cardiac CTD/ClinicalTrials 9 Rhabdomyolysis NA

5 Kidney Diseases NA 10 Brady-cardia CTD
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and known association information of drugs and diseases to
complement the missing drug–disease association information,
which improves the prediction performance of the model.
Secondly, the current metric learning algorithm only learns in a
single way centered on drugs, ignoring the influence of diseases.
Therefore, a reinforcement symmetric metric learning algorithm
combined with drug-centric and disease-centric learning was
developed to project drugs and diseases into a unified metric
space, and learn their latent vector representations based on
push–pull mechanisms to identify potential indications for
known drugs and new drugs. Based on the assumption that
similar drugs can treat similar diseases, the disease-centric metric
learning mechanism was introduced symmetrically, which
improved on the previous approach. Moreover, the adaptive
margin strategy helped the model select the appropriate margin
for different drugs and diseases. Thirdly, this study proposes a new
framework integrating reinforcement symmetric metric learning
algorithm and GCN model to identify potential therapeutic
indications of drugs, which provides new insights for promoting
drug repositioning. The results of extensive experiments
demonstrated that RSML-GCN performed well and outperformed
other drug–disease association prediction methods.

RSML-GCN only utilized drug–disease association data and the
single feature information of the drug and the disease to predict
potential associations. However, there exists various drug and
disease related biological data, and the use of multiple data may
help to learn potential indications for drugs. Therefore, in the future
of work, more biological data including genes, targets, or miRNAs
can be considered and integrated to build a more comprehensive
heterogeneous network with multiple relationship types. In
addition, the metric learning algorithm only uses known
drug–disease association information as input. Future research
should design an effective way to integrate related biological data
into its learning process to predict potential drug–disease
associations.
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This work explores the biological evaluation of novel cyanomethyl vinyl ether
derivatives as antiproliferative agents. Tubulin, crucial to microtubule structure
and function, is a target for cancer therapies. In vitro cytotoxicity assessments
revealed significant activity in SKOV3 ovarian carcinoma cells and A549 lung
carcinoma cells. Structure-Activity Relationship (SAR) analysis indicated that the E
isomer and specific substitutions influenced the biological activity.
Computational assays predicted favorable ADME properties, highlighting
potential as anticancerous agents. Molecular docking studies demonstrated
that compound 12E, with the E geometry of the double bond and fused
polyaromatic rings such as phenanthrene, has robust interaction with tubulin,
suggesting enhanced stability due to diverse amino acid interactions.
Comparative spatial distributions with colchicine further indicated potential
mechanistic similarities.

KEYWORDS

cancer, chemotherapy, cyanomethyl vinyl ethers, cytotoxicity, tubulin inhibitors

1 Introduction

Cancer represents one of the greatest challenges facing our society today, with nearly
20 million new cases and 10 million deaths being observed by 2022 (GLOBOCAN, 2022). In
fact, the development of new drugs against this group of diseases is being addressed for years
(Mattiuzzi et al., 2019). Tubulin is a protein critical to the structure and function of
microtubules, which are essential components of the cell’s cytoskeleton. It consists of two
subunits, alpha and beta, that assemble to form the building blocks of microtubules. These
microtubules play a fundamental role in various cellular processes, including cell division,
intracellular transport, and cell shape maintenance (Howard et al., 2009). For all this,
tubulin is an important target for cancer therapies, as inhibiting its function can disrupt the
division of rapidly dividing cancer cells, leading to their death.

Microtubules (MTs) are crucial cellular polymers composed of tubulin dimers, playing
pivotal roles in intracellular trafficking, cell morphology, and mitotic spindle assembly
(Goodson et al., 2018). Tubulin, a 50 kDa GTP-binding protein, comprises six family
members in eukaryotic cells, with α and β tubulins forming cytoplasmic microtubules and ɣ,
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δ, and ε tubulins localizing to the centrosome. Widely distributed, α-
β tubulin heterodimers bind GTP, and β tubulin hydrolyzes GTP
during microtubule polymerization. ɣ tubulin is involved in
nucleating microtubule growth, while δ, ε, and ζ tubulins are
specific to cilia, flagella, and basal bodies (Findeisen et al., 2014).
In humans, 23 functional tubulin genes contribute to the structural
complexity of microtubules, characterized by the assembly of α-β
tubulin heterodimers into linear protofilaments. Protofilaments
laterally associate to form the pseudo-helical structure of
microtubules, with most having 13 protofilaments, though
variations exist across species (Chaaban et al., 2017).

Microtubule-targeting agents (MTAs) form a diverse group of
compounds capable of binding tubulin, influencing microtubule
(MT) dynamics by either stabilizing or destabilizing the MT
polymer (Steinmetz et al., 2018). Classified into two main
categories, MT-stabilizing agents (MSAs) and MT-destabilizing
agents (MDAs), these drugs bind to one of seven sites in tubulin
dimers. MSAs andMDAs exhibit contrasting effects onMT polymer
mass at high concentrations, inducing depolymerization or
stabilization. They alter the monomer-to-polymer ratio,
impacting cellular functions without significant changes in total
MT polymer at low concentrations. Notably, drugs targeting vinca,
colchicine, and taxane sites are extensively studied MTAs,
historically employed as medicines (Matthew et al., 2021).
Colchicine (Figure 1), derived from autumn crocus, is one of the
earliest reported MTAs, historically used for gout treatment. Over
the past century, MTAs have found applications as herbicides, anti-
parasitics, anti-fungal agents, have been explored for
neurodegenerative disease and cancer treatment (Graham et al.,
1953; Loeffler et al., 1977; Kovacs et al., 2023) and also for
antiprotozoal activities (Bethencourt-Estrella et al., 2023; Chao-
Pellicer et al., 2023).

After that, various types of tubulin inhibitors, such as
vinblastine and docetaxel (Figure 1), have been developed and
are used to treat different types of cancer (Kingston, 2001).
However, despite tubulin inhibitors have demonstrated
significant efficacy in the treatment of cancer, it is important to
note that tubulin inhibitors are not specific to cancer cells and can
affect healthy cells that divide rapidly, such as bone marrow and
gastrointestinal cells. This explains some of the side effects
associated with these drugs, such as bone marrow suppression,

peripheral neuropathy, and gastrointestinal problems (Dumontet
et al., 2010). In this way, computational tools play a pivotal role in
discovering new bioactive molecules by enabling precise and rapid
calculations of chemical and biological properties. These tools
expedite the drug design process by analyzing extensive
databases and predicting biological activity, paving the way for
the efficient development of compounds with therapeutic
potential. (Lipinski et al., 2012; Sliwoski et al., 2014).

Finally, recent investigations have provided compelling evidence
regarding the capacity of inhibiting tubulin by compounds with
vinyl ethers in their structure. Where, the compound DTA0100
(Figure 1) clearly induced microtubule depolymerization, leading to
disturbance of cell cycle kinetics and subsequent apoptosis
(Podolski-Renić et al., 2017).

Thereby, in this work we report the biological evaluation of
readily available conjugated cyanomethyl vinyl ethers prepared by
an organocatalytic multicomponent cyanovinylation of aldehydes
recently described by our group (Delgado-Hernández et al., 2021).

2 Materials and methods

2.1 Chemistry

2.1.1 General experimental information
All reagents from commercial suppliers were used without

further purification. All solvents were freshly distilled before use
from appropriate drying agents. All other reagents were
recrystallized or distilled when necessary. Analytical TLCs were
performed with silica gel 60 F254 plates. Visualization was
accomplished by UV light. Column chromatography was carried
out using silica gel 60 (230–400 mesh ASTM). NMR spectra were
obtained on a Bruker Avance 500 MHz spectrometers and recorded
at 25°C. Chemical shifts for 1H-NMR spectra are reported in ppm
downfield from TMS, chemical shifts for 13C-NMR spectra are
recorded in ppm relative to internal deuterated chloroform (δ =
77.2 ppm for 13C). Coupling constants (J) are reported in Hertz. The
terms m, s, d, t, q refers to multiplet, singlet, doublet, triplet, quartet.
13C-NMR were broadband decoupled from hydrogen nuclei. High
resolution mass spectra (HRMS) was measured by EI method with a
Agilent LC-Q-TOF-MS 6520 spectrometer.

FIGURE 1
Chemical structures of colchicine, vinblastine, docetaxel and DTA0100.
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2.1.2 Compounds purity analysis
All synthesized compounds were analyzed by HPLC to

determine their purity. The analyses were performed on
Agilent 1,260 infinity HPLC system (C-18 column, Hypersil,
BDS, 5 μm, 0.4 mm × 25 mm). All the tested compounds were
dissolved in dichloromethane, and 1 μL of the sample was
loaded onto the column. Ethanol and heptane were used as
mobile phase, and the flow rate was set at 1.0 mL/min. The
maximal absorbance at the range of 190–625 nm was used as
the detection wavelength. The purity of all the tested
compounds is >95%, which meets the purity requirement by
the Journal.

2.1.3 Synthesis of cyanomethyl vinyl ethers
All compounds were synthesized using the methodology

described in reference (Delgado-Hernández, 2021) except
compound 3 and 4 which are described below.

2.1.3.1 General procedure for the synthesis of cyanomethyl
vinyl ethers 3 and 4

To a solution of benzaldehyde (2.0 mmol), acetone cyanohydrin
(2.0 mmol) and the corresponding propiolate derivative (2.0 mmol)
in n-hexanes (6 mL) was added N-methylmorpholine (0.05 mmol)
at once and the reaction mixture was stirred for 1 h at room
temperature. The solvent was removed under reduced pressure,
and the residue was purified by flash column chromatography (silica
gel; n-hexane/ethyl acetate: 80/20) to give the desired 3-
(cyanomethoxy)acrylate.

Propyl (E)-3-(cyano(phenyl)methoxy)acrylate (3E).
(438.2 mg, 46%). White solid: 1H NMR (CDCl3, 400 MHz): 0.94
(t, 3H, 3J(HH) = 7.4 Hz), 1.62–1.71 (m, 2H), 4.08 (t, 2H, 3J(HH) =
607 Hz), 5.53 (d, 1H, 3J(HH) = 12.6 Hz), 5.64 (s, 1H), 7.46–7.53 (m,
5H), 7.55 (d, 1H, 3J(HH) = 12.6 Hz). 13C NMR (CDCl3, 100 MHz):
δ = 10.4, 22.0, 66.0, 70.2, 101.6, 115.3, 127.5 (2C), 129.4 (2C), 130.8,
131.2, 157.9, 166.4 ppm. HRMS (ESI-): m/z [M]- calculated for
C14H15NO3 244.0974, found 244.0979.

Propyl (Z)-3-(cyano(phenyl)methoxy)acrylate (3Z).
(323.0 mg, 33%). White solid: 1H NMR (CDCl3, 400 MHz): 0.92
(t, 3H, 3J(HH) = 7.4 Hz), 1.60–1.69 (m, 2H), 4.06 (t, 2H, 3J(HH) =
607 Hz), 5.08 (d, 1H, 3J(HH) = 7.1 Hz), 5.81 (s, 1H), 6.59 (d, 1H,
3J(HH) = 7.0 Hz), 7.42–7.44 (m, 3H) 7.53–7.56 (m, 2H). 13C NMR
(CDCl3, 100 MHz): δ = 10.4, 22.0, 65.7, 72.0, 101.4, 115.6, 127.4
(2C), 129.4 (2C), 130.6, 131.3, 152.6, 164.4 ppm. HRMS (ESI-): m/z
[M]- calculated for C14H15NO3 244.0974, found 244.0979.

Isoropyl (E)-3-(cyano(phenyl)methoxy)acrylate (4E).
(382.52 mg, 52%). Colorless oil: 1H NMR (CDCl3, 400 MHz):
1.25 (5, 6H, 3J(HH) = 6.2 Hz), 5.02–5.09 (m, 1H), 5.50 (d, 1H,
3J(HH) = 12.6 Hz), 5.63 (s, 1H), 7.46–7.53 (m, 5H), 7.54 (d, 1H,
3J(HH) = 12.6 Hz). 13C NMR (CDCl3, 100 MHz): δ = 21.9 67.7, 70.1,
102.0, 115.3, 127.4 (2C), 129.4 (2C), 130.7, 131.2, 157.8, 165.9 ppm.
HRMS (ESI+): m/z [M + Na]+ calculated for C14H15NO3 268.0950,
found 268.0944.

Isoropyl (Z)-3-(cyano(phenyl)methoxy)acrylate (4Z).
(259.8 mg, 35%). Light yellowish oil: 1H NMR (CDCl3,
400 MHz): 1.23 (5, 6H, 3J(HH) = 6.2 Hz), 5.00–5.07 (m, 1H), 5.06
(d, 1H, 3J(HH) = 7.0 Hz), 5.82 (s, 1H), 6.57 (d, 1H, 3J(HH) = 7.0 Hz),
7.42–7.44 (m, 3H) 7.53–7.56 (m, 2H). 13C NMR (CDCl3, 100 MHz):
δ = 21.8, 67.3, 71.9, 101.9, 115.7, 127.3 (2C), 129.3 (2C), 130.5, 131.4,

152.4, 163.6 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for
C14H15NO3 268.0950, found 268.0944.

2.2 Biology

2.2.1 Materials
Reagents and solvents were used as purchased without further

purification. All stock solutions of the investigated compounds were
prepared by dissolving the powered materials in appropriate
amounts of DMSO. The final concentration of DMSO never
exceeded 5% (v/v) in reactions. Under these conditions DMSO
was also used in the controls and was not seen to affect tested
compounds activity. The solutions were stored at 5°C until
they were used.

2.2.2 Cytotoxicity assays
Cells were cultured according to the supplier´s instructions

(ATCC technologies, A-549 (CCL-185), BT-20 (HTB-19),
SKOV3 (HTB-77), HCT116 (CCL-247), MRC5 (CCL-171). Cells
were seeded in 96-well plates at a density of 2–2.5 × 103 cells per well
and incubated overnight in 0.1 mL of media supplied with 10% Fetal
Bovine Serum (Lonza) in 5% CO2 incubator at 37°C. On day 2, drugs
were added and samples were incubated for 48 h. After treatment,
10 µL of cell counting kit-8 was added into each well for additional
2 h incubation at 37°C. The absorbance of each well was determined
by an Automatic Elisa Reader System at 450 nm wavelength.

2.3 Computational assays

2.3.1 In silico ADME
The physicochemical and pharmacokinetics properties of tested

compounds were calculated using swissADME (http://www.
swissadme.ch/) and pkCSM (http://biosig.unimelb.edu.au/pkcsm/)
online web servers. Chemical structures were imported in
swissADME and pkCSM tools to calculate molecular as well as
ADME properties of the compounds (Daina et al., 2017; Bakchi et al.
, 2022).

2.3.2 Docking studies
Tubuline complex for the docking in the Protein Data Bank

(PDB). The X-ray structure code 1SA0 (3.58 Å resolution) was
chosen, a tubuline domain complex with colchicine as a ligand.
Maestro (Frisch et al., 2016) graphic interface was used, and the
Glide 6.9 application (Schrodinger Release, 2015-1: Glide, 2015a) in
XP mode (extraprecision) (Friesner et al., 2006) was chosen for the
docking. The grid was set up in a box of 20 × 20 × 20 Å, centered in
the geometric center of colchicine (β-Chain). The colchicine region
in the active site was selected as the target for the screening. The
protein complex was optimized and minimized using the Protein
Preparation Wizard panel of Schrodinger Suites 2015.1
(Schrodinger Release, 2015-1: Protein Preparation Wizard,
2015b). Likewise, the structures of the different ligands to be
interacted with protein and the ligand initially present in the
complex, colchicine, were prepared. The binding orders and the
protonation states of residue were corrected. The complex
previously indicated and used for the different docking processes.
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3 Results

3.1 Chemistry

The compounds used for this study were chosen from the set of
compounds synthesized in our previous study or were synthesized
for the first time to include carboxylic esters with longer alkyl chains
(3–4). Thus, the reaction was implemented for the synthesis of these
3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as
substrates, acetone cyanohydrin as the cyanide anion source, and
commercially available methyl propiolate or readily synthesized
alkyl propiolates as the source of the vinyl component. The
multicomponent reaction is catalyzed by N-methylmorpholine
(2.5 mol%) to deliver the desired 3-(cyanomethoxy)acrylates in
excellent yields (84%–95% for isomer mixtures; 32%–56% for
separated isomers) for their biological evaluation (Scheme 1).

3.2 Biology

3.2.1 In Vitro cytotoxicity
The cytotoxicity of the new synthesized 3-(cyanomethoxy)

acrylates was investigated in vitro by testing the antiproliferative
activities against two human cancer cell lines: A549 (carcinomic
human alveolar basal epithelial cells), SKOV3 (human ovarian
carcinoma), BT20 (human breast carcinoma), HCT-116 (human
colorectal carcinoma) and MRC-5 (non-malignant lung fibroblasts).
The cell counting kit (CCK8) assay was employed to assess growth
inhibition and, the cell proliferation inhibitory activities of the
compounds are listed in Table 1 as IC50 values (Table 1).

Firstly, selective cytotoxicity was observed in SKOV3 and
BT20 cell lines, where most of the compounds showed

cytotoxicity. Notably, the best results were observed for
compounds 1E and 7E with IC50 values of 2.92 ± 0.28 μM and
2.62 ± 0.53 μM, respectively in the SKOV3 cell line (Table 1, entries
2 and 14) and for compound 9E in the BT20 line with IC50 of 4.98 ±
2.77 μM (Table 1, entry 18).

On the other hand, only four of the compounds studied showed
cytotoxic activity against the A549 line, where compound 12E
obtained the best result with an IC50 value of 9.89 ± 0.25 μM
(Table 1, entry 24). Precisely this compound 12E showed
interesting cytotoxicity in all the cell lines studied. Besides the
above mentioned result on the A549 cell line, it also showed
second best result among all the studied compounds on the
BT20 cell line with an IC50 = 9.89 ± 0.25 and in HCT116 cell
line with an IC50 = 16.10 ± 1.20 (Figure 2; Table 1, entry 24).

And remarkably, except for compound 12E, which showed
cytotoxicity in all cell lines, none of the tested compounds
showed cytotoxicity in the non-cancerous line MRC5. Such
behavior against the non-cancerous line MRC5 is relevant, as this
selectivity is not found in colchicine, with IC50 values = 5.72 ±
2.1 μM in the non-cancerous cell line MRC5 (Table 1, entry 1).

3.3 Structure-activity relationship (SAR)

Structure-Activity Relationship (SAR) analysis is a fundamental
approach that investigates the links between the structure of
chemical compounds and their observed biological or
physicochemical properties. By systematically studying the
relationships between structural features and activity, SAR
analysis provides valuable insights for rational compound design
and optimization. The structure-activity relationship of the
compounds observed in this study is described (Figure 3).

SCHEME 1
Chemical stluctures of synthesized cyanovinyl ether derivatives 1-12.
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Based on the obtained biological results and taking into account
the structural differences of the tested compounds, it has been
observed that the E isomer of the tested derivatives significantly
increases the biological activity, being even, in some cases, crucial for
the compound to exhibit cytotoxicity.

Furthermore, it has been observed that substituents in the ether
group (R2) can significantly modify the activity of the tested
derivatives, where the methyl group (R2 = Me) appears to be
crucial for the biological activity of the compound (Table 1,
entries 6, 8 and 10).

Finally, the nature of the substituents in α position respect to the
cyano group (R1) has no great effect on the biological activity,
observing cytotoxicity with both aromatic and aliphatic groups
(Table 1, entries 2 and 10). Furthermore, in the case of aromatic
groups, on the one hand, derivatives with a carbon atom at position
4 of the phenyl group show increased cytotoxicity (Table 1, entries

12, 14 and 18), while on the other hand, polyaromatic substituents
show loss of selectivity against non-tumorigenic cells
(Table 1, entry 24).

3.4 Computational assays

3.4.1 In silico ADME
Computer based ADME studies, also known as computer-based

studies, play a crucial role in the drug discovery and development
process. ADME stands for Absorption, Distribution, Metabolism,
and Excretion, which are key factors that determine the
pharmacokinetics and efficacy of a drug. In silico ADME studies
involve the use of computational models and algorithms to predict
the ADME properties of a drug candidate before it is tested in vitro
or in vivo. These studies not only save time and resources but also

TABLE 1 Antiproliferative activities of tested compounds.

Entry Compound IC50 (µM)

SKOV3 BT20 A549 HCT116 MRC5

1 COL 11.58 ± 2.33 21.98 ± 1.30 2.39 ± 1.40 9.32 ± 0.2 5.72 ± 2.1

2 1E 2.92 ± 0.28 7.07 ± 1.28 >50 >50 >50

3 1Z >50 >50 >50 >50 >50

4 2E 41.58 ± 2.46 15.83 ± 2.90 >50 >50 >50

5 2Z >50 17.28 ± 3.44 >50 >50 >50

6 3E >50 ND >50 >50 >50

7 3Z >50 ND >50 >50 >50

8 4E >50 ND >50 >50 >50

9 4Z >50 ND >50 >50 >50

10 5E 3.84 ± 1.56 8.31 ± 1.26 18.85 ± 1.20 >50 >50

11 5Z 29.81 ± 2.09 19.92 ± 3.42 >50 >50 >50

12 6E 12.44 ± 1.18 27.79 ± 5.31 >50 >50 >50

13 6Z 31.33 ± 4.42 12.61 ± 1.76 >50 >50 >50

14 7E 2.62 ± 0.53 10.02 ± 2.17 29.34 ± 1.10 >50 >50

15 7Z >50 >50 >50 >50 >50

16 8E >50 ND >50 >50 >50

17 8Z >50 ND >50 >50 >50

18 9E 8.08 ± 2.08 4.98 ± 2.77 21.38 ± 0.83 >50 >50

19 9Z >50 20.24 ± 3.78 >50 >50 >50

20 10E >50 ND >50 >50 >50

21 10Z >50 ND >50 >50 >50

22 11E 28.85 ± 2.15 21.67 ± 0.67 >50 >50 >50

23 11Z 38.29 ± 2.31 >50 >50 >50 >50

24 12E 7.35 ± 1.42 7.0 ± 1.96 9.89 ± 0.25 16.10 ± 1.20 14.39 ± 0.86

25 12Z 11.93 ± 1.88 11.94 ± 1.10 >50 >50 >50

ND, not determined. COL, colchicine. Bold values are numbers of synthesized compounds.
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help in the identification of potential safety concerns associated with
a drug candidate.

On the one hand, molecular properties such as partition
coefficient (Log Po/w), molecular weight, hydrogen bond donors
and acceptors, topological polar surface area (TPSA), violation of
Lipinski rule of five were assessed (Table 2).

In general, a drug candidate with a LogP value between 0 and 5 is
considered to have favorable ADME properties. A LogP value that is
too low may indicate poor lipid solubility, which can affect the
absorption and distribution of the drug in the body. On the other
hand, a LogP value that is too high may indicate poor aqueous
solubility, which can lead to poor bioavailability and potential toxicity
due to the accumulation of the drug in fatty tissues. In the case of our
compounds, they have a LogP value between 2.0 and 3.18, so they
would fall within the favorable range mentioned above (Table 2).

TPSA, or the Topological Polar Surface Area, is another
commonly used parameter in drug discovery and development to
predict the ADME properties of a drug candidate. TPSA is ameasure
of the polar surface area of a compound, which is important for its
interaction with biological targets and its ability to cross biological
membranes. In general, a drug candidate with a TPSA value between
20 and 140 Å2 is considered to have favorable ADME properties. As
shown in Table 2, all the compounds tested in this work fall within
the favorable range for good oral bioavailability.

Finally, the Lipinski’s Rule of Five, a widely used rule in drug
discovery to assess the drug-like properties of a compound, was
performed to study our compounds. It is recommended that the
orally active drug candidate should not have more than one violation
of the Lipinski’s rule. As shown in Table 2, all compounds tested
meet the established criteria.

FIGURE 2
Cytotoxic effect (pIC50 values) of cyanovinyl ether derivative 12E.

FIGURE 3
Structure-Activity Relationship (SAR) of synthesized cyanovinyl ethers.
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On the other hand, the absorption of a drug is a critical factor in
determining its efficacy and safety (Supplementary Table S1). It refers to
the process by which a drug enters the bloodstream and reaches its
target site of action. Understanding the factors that influence drug
absorption is essential for optimizing drug therapy and minimizing
adverse effects. Because of this, the absorption of drug was evaluated
based on aqueous solubility, intestinal absorption and permeability
showed in Supplementary Table S1. Thus, the aqueous solubility (Log S)
of all compounds ranges from −4.944 to −0.757 logmol/L, which shows
the moderate solubility in water of the synthesized compounds. In
addition, all of compounds show intestinal absorption above 95% that is
interesting due to the most orally administered drugs are primarily
absorbed through small intestine due to its large surface area. Finally,
the predicted Caco-2 permeability, the logarithm of the apparent
permeability coefficient (log Papp >8 × 10−6 cm/s), was studied. In
our case, all of the synthesized compounds have high Caco-2
permeability taking into account that their predicted value is >0.90.

Lastly, the synthesized compounds volume of distribution
(VDss), blood-brain barrier permeability (BBB permeability)
and the fraction of unbound was further assessed
(Supplementary Table S1). On the one hand, taking into
account that the predicted value of Log VDss >0.45 L/kg
indicates higher volume of drug distribution, we can say that all
synthesized compounds have low volume of distribution in tissues.
On the other hand, blood-Brain Barrier (BBB) property is crucial
for the effectiveness of drugs in treating central nervous system
disorders. The compound is said to be easily permeable through
BBB if the predicted value of log BB is > 0.3 and poorly distributed
if the value is < -1. It is interesting to note that all compounds show
excellent BBB parameters.

Cytochrome P450 (CYP) enzymes are a family of heme-
containing enzymes involved in the metabolism of a wide range
of endogenous compounds and xenobiotics. These enzymes play a

crucial role in drug metabolism, and their activity can influence the
efficacy and safety of many therapeutic agents. The compounds were
studied as possible CYP2D6, CYP3A4, CYP1A2, CYP2C19, and
CYP2C9 enzyme inhibitors (Supplementary Table S1). It is
noteworthy that the vast majority of compounds (3, 5, 7, 8, 9, 10,
11 and 12) show the ability to inhibit the CYP1A2 enzyme, and in
addition, only compounds 11 and 12 show the ability to inhibit the
cytochrome CYP2C9 and CYP2C19 which are primarily expressed
in the liver and plays a critical role in the metabolism of numerous
drugs, including nonsteroidal anti-inflammatory drugs (NSAIDs),
anticoagulants, and antidiabetic agents. Summarizing, the total
clearance is primarily a combination of hepatic as well as renal
clearance and is measured by the proportionality constant CLtot in

TABLE 2 ADME properties of tested compounds.

Entry Compound LogP Mol. Wt H-donor H-acceptor TPSA Lipinski #violations

1 COL

2 1 2.00 169.18 0 4 59.32 0

3 2 3.06 225.28 0 4 59.32 0

4 3 2.81 245.27 0 4 59.32 0

5 4 2.50 245.27 0 4 59.32 0

6 5 2.39 217.22 0 4 59.32 0

7 6 2.57 247.25 0 5 68.55 0

8 7 2.55 285.22 0 7 59.32 0

9 8 2.30 235.21 0 5 59.32 0

10 9 2.52 231.25 0 4 59.32 0

11 10 2.29 223.25 0 4 87.56 0

12 11 2.98 305.33 0 4 59.32 0

13 12 3.18 307.34 0 4 59.32 0

COL, colchicine. Bold values are numbers of synthesized compounds.

FIGURE 4
Boiled egg model of synthesized cyanovinyl ethers 1-12.
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log(mL/min/kg). The predicted value of all the synthesized
compounds shows lower CLtot ranging from 0.427 to 1.863.

The boiled egg model is a simple and inexpensive method that
has been used to predict the ADME parameters of drugs. This model
involves the use of a boiled egg as a surrogate for the human body,
and the measurement of the drug’s permeability through the
eggshell and its distribution within the egg. Figure 4 shows the
results of the compounds synthesized in a boiled egg projection
where the egg yolk corresponds to both the blood-brain barrier
(BBB) and human gastrointestinal absorption (HIA) compounds
and the egg white only to the HIA-positive compounds. As can be
seen in the boiled egg, all compounds tested have positive BBB
permeability and HIA, except compound 10 which only show
positive HIA.

On the other hand, the representation shows a classification of
the compounds by color according to their relationship with the
P-glycoprotein (PGP). Point colored in blue are for molecules
predicted to be substrate of the P-glycoprotein (PGP+) and
hence actively pumped up from the brain or to the
gastrointestinal lumen. If predicted non-substrate of the
P-glycoprotein (PGP-), the related point is in red. When a
compound is identified as a substrate for P-glycoprotein (PGP),
it signifies the molecular recognition by PGP of said compound as a
species earmarked for active extracellular transport. This
discernment carries profound ramifications for the
pharmacokinetic profile of pharmaceutical agents. If a drug
emerges as a PGP substrate, its processes of absorption,
distribution, and elimination stand susceptible to modulation by
the dynamic activity of this integral membrane protein (Gottesman
et al., 2002). In the case of our tested compounds, it should be noted
that all derivatives present the necessary conditions to be PGP-
substrate candidates (Figure 4). Concerning our tested compounds,
it is worth noting that none meet the necessary criteria to be

considered substrates of P-glycoprotein (PGP). As a result, these
compounds will not be expelled from the cell, potentially increasing
their cytotoxic effects.

3.4.2 Molecular docking
Molecular docking has emerged as a powerful computational

tool in drug discovery and structural biology. This technique plays a
crucial role in predicting the binding mode and affinity between a
protein target and small molecule ligands. By simulating the
interactions at the atomic level, molecular docking enables
researchers to understand the underlying molecular mechanisms
and optimize the design of potential therapeutic compounds.

The crystallographic data of tubulin in complex with modify
colchicine was retrieved from the Protein Data Bank (PDB ID:
1SA0). As it can be observed in Figure 5 docking studies of
S-colchicine demonstrated robust interactions with crucial amino
acid residues, such as Leu248, Asp251, Leu255, and Val260, within
the colchicine-binding site of tubulin. Consequently, these amino
acid residues played a pivotal role in facilitating inhibitor binding.

Among all the compounds synthesized in this work, a molecular
docking study was carried out to investigate its plausible binding
pattern and its interaction with the key amino acids in the active site
of the protein. The results obtained from molecular docking studies
(Table 3) are presented specifically focused on the ‘gScore’ and
‘geMode’ parameters. On the one hand, ‘gScore’ parameter serves as
the comprehensive affinity score calculated through docking
algorithms, reflecting the overall interaction strength between a
target molecule and a ligand with a low ‘gScore’ correlates with
an increased likelihood of a stable interaction. On the other hand,
the ‘geMode’ pertains to the global energy model, offering an
assessment of the quality and stability of the resulting docking
configuration. This parameter provides insights into the
energetics governing the ligand-receptor interaction.

FIGURE 5
Docking studies of S-colchicine.
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Thus, a molecular docking study examined the interaction of
compounds 1–12 with tubulin, taking into account both E and Z
isomeric forms. There were observed variances in the gScore
and geMode values across various compounds, as shown
in Table 3.

In the first place, it is noteworthy that the average energy of
geMode for E isomer (−39.931 kcal/mol) is lower than the average

energy of compounds with Z isomerism (−37.742 kcal/mol). In
other words, compounds with E isomerism tend to form a more
stable protein-inhibitor complex, in general. For example,
compound 8, in its E and Z forms, exhibited a substantial
difference in gScore (−5.176 vs. −4.571 kcal/mol) and geMode
(−36.886 vs. −35,867 kcal/mol), highlighting a pronounced
isomer-dependent effect on binding affinity.

TABLE 3 Docking studies of tested compounds.

Entry Compound E Isomer Z Isomer

gScore (kcal/mol) geMode (kcal/mol) gScore (kcal/mol) geMode (kcal/mol)

1 1 −3.685 −27.533 −3.227 −26.279

2 2 1.113 −31.899 −3.102 −31.099

3 3 −4.064 −41.695 −5.415 −38.099

4 4 −4.110 −41.695 −5.484 −43.077

5 5 −4.872 −37.238 −4.712 −37.384

6 6 −5.922 −40.470 −5.459 −41.437

7 7 −5.920 −40.470 −5.866 −41.968

8 8 −5.176 −36.886 −4.572 −35.867

9 9 −5.564 −39.392 −5.492 −36.957

10 10 −4.357 −38.398 −4.039 −32.436

11 11 −5.878 −49.124 −7.247 −51.923

12 12 −7.733 −66.097 −6.844 −52.137

13 COL −7.578 gScore (kcal/mol) −57.983 geMode (kcal/mol)

COL, colchicine. Bold values are numbers of synthesized compounds.

FIGURE 6
Docking studies of colchicine and compound 12E.
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In this context, it is noteworthy to emphasize that among the
range of compounds evaluated, the one that stands out for exhibiting
the most intense and sustained interaction with the protein is
compound 12E (Table 3, entry 12). This compound
demonstrates a remarkable gScore of −7.733 kcal/mol, indicative
of an exceptionally high affinity for the target protein. The
pronounced stability of this interaction suggests that the E
isomer of 12E is highly conducive to form a robust protein-
inhibitor complex, potentially translating into enhanced efficacy
as an inhibitory agent. Additionally, it is worth noting that this
compound exhibited cytotoxic activity across all tested cell lines.

The stability values exhibited by the tubulin-compound 12E
complex may be attributed to the formation of tight interactions
with various amino acids of the protein. As observed in Figure 6,
both colchicine and compound 12E show hydrophobic interactions
with residues such as Leu252, Asp251, and Leu255 of tubulin,
among others (Table 4). However, in addition to these

interactions, compound 12E presents weak polar interactions
with residues like Met259 and Leu313 (Table 4).

Additionally, it is worth highlighting that both molecules,
colchicine and compound 12E, engage in the formation of
complexes that exhibit comparable spatial distributions, as
illustrated in Figure 7. The spatial congruence in their complex
formations suggests a potential similarity in their binding
mechanisms and affinities for specific regions on the tubulin
structure. This could potentially explain the enhanced stability of
the tubulin-compound 12E complex.

4 Discussion

In the realm of antiproliferative agents, this groundbreaking study
on cyanomethyl vinyl ether derivatives not only unveils novel
compounds but also propels the frontier of cancer research. The
synthesis, employing a cutting-edge organocatalytic cyanovinylation
methodology, not only underscores the accessibility but also
highlights the versatility of these compounds in the pursuit of
effective antiproliferative interventions.

Biological evaluations have unearthed compelling cytotoxic
activities, particularly noteworthy in the SKOV3 ovarian
carcinoma cells, where compounds 5E and 7E exhibited
pronounced efficacy. The nuanced exploration of the Structure-
Activity Relationship (SAR) provides crucial insights, emphasizing
the pivotal role of the E isomer and specific substitutions in steering
the biological activity of these derivatives.

Concluding from the SAR study, the geometry of the double bond
of the cyanovinyl ethers is definitely important, being the E
stereochemistry of the double bond a relevant structural feature
giving the most biologically active compounds, even crucial in
several cases for activity to be observed. Another important
structural point to note in these compounds is also the R2

substituent, more interesting those with low number of carbon
atoms, in particular the most active ones with methyl group. With
respect to the R1 substituent (in position α with respect to the cyano
group), the influence of groups with fused aromatic rings such as
phenanthrene is noteworthy. Therefore, 12E derivative would be most
interesting one from a biological point of view.

Computational assays forecast a promising future for these
compounds, positioning them as potential anticancerous agents.
The Absorption, Distribution, Metabolism, and Excretion (ADME)
studies paint a favorable picture, suggesting not only efficacy but also
safety in their pharmacokinetic profile. The meticulous adherence to
Lipinski’s Rule of Five further accentuates the drug-like properties of
these compounds.

Molecular docking studies delve into the atomic-level
interactions, revealing the profound affinity of compound
12E with tubulin (with the best gScore value). The diverse
amino acid interactions, including weak polar interactions
with Met259 and Leu313, and robust polar interactions with
Thr314 and Val315, underscore the multifaceted stability of the
tubulin-compound 12E complex. This interactional richness
potentially translates into enhanced efficacy as an
inhibitory agent.

Moreover, the spatial congruence in complex formations with
colchicine provides a glimpse into potential mechanistic similarities,

TABLE 4 Type of interaction in molecular docking.

Residues (Chain B) Bond type Bond distance (Å)

ASP 251 Hydrophobic 9.11

LEU 252 Hydrophobic 7.57

ARG 233 Hydrophobic 8.61

LYS 254 Hydrophobic 9.98

PHE 319 Hydrophobic 10.3

VAL 318 Hydrophobic 9.44

ALA 317 Hydrophobic 10.4

LEU 313 Polar 6.98

MET 259 Polar 7.01

ASN 258 Polar 8.12

FIGURE 7
Superposed spatial distributions of colchicine and compound
12E in the formation of complexes.
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enriching our understanding of their binding mechanisms and
affinities for specific regions on the tubulin structure.

In summary, this work not only introduces a promising cohort
of compounds with substantial cytotoxic potential but also advances
our comprehension of their structural-functional dynamics. These
findings lay a robust foundation for future drug development
endeavors, heralding a new chapter in the pursuit of efficacious
antiproliferative therapies.
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The SARS coronavirus 2 (SARS-CoV-2) epidemic remains globally active. The
emergence of new variants of interest and variants of concern (VoCs), which are
potentially more vaccine-resistant and less sensitive to existing treatments, is evident
due to their high prevalence. The prospective spread of such variants and other
coronaviruses with epidemic potential demands preparedness that can be met by
developing fast-trackworkflows tofindnewcandidates that target viral proteinswith a
clear in vitro and in vivo phenotype. Mpro (or 3CLpro) is directly involved in the viral
replication cycle and the production and function of viral polyproteins, whichmakes it
an ideal target. The biological relevance of Mpro is highly conserved among
betacoronaviruses like HCoV-OC43 and SARS-CoV-2, which makes the
identification of new chemical scaffolds targeting them a good starting point for
designing broad-spectrum antivirals. We report an optimizedmethodology based on
orthogonal cell-free assays to identify smallmolecules that inhibit the binding pockets
of both SARS-CoV-2-Mpro and HCoV-OC43-Mpro; this blockade correlates with
antiviral activities in HCoV-OC43 cellular models. By using such a fast-tracking
approach against the Open Global Health Library (Merck KGaA), we have found
evidence of the antiviral activity of compound OGHL98. In silico studies dissecting
intermolecular interactions between OGHL98 and both proteases and comprising
docking and molecular dynamics simulations (MDSs) concluded that the binding
mode was primarily governed by conserved H-bonds with their C-terminal amino
acids and that the rational design of OGHL98 has potential against VoCs proteases
resistant to current therapeutics.
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1 Introduction

As coronaviruses continue their global spread, new variants of
concern (VoCs) are constantly being detected by genetic
surveillance. This has raised a need for the identification of
effective therapeutics that overcome the decreased success and
increased resistance to existing antivirals (Tan et al., 2022). Mpro
mediates viral replication, and it is directly linked to the infection
spread in host organisms, which makes it a straightforward target.
Rational design studies that led to the validation of the Mpro
inhibitor PF-07321332 offer proof of such a target’s druggability.
PF-07321332 (nirmatrelvir) is a peptidomimetic drug designed and
developed by Pfizer that blocks Mpro viral proteases of beta and
alphacoronaviruses, as demonstrated by a low-throughput
enzymatic confirmatory assay (Pang et al., 2023). After a couple
of years of research, that pan-inhibitory activity demonstrated
effective translation well into animal models and human patients
when delivered orally (Owen et al., 2021). Therefore, the direct
implementation of state-of-the-art cell-free/biochemical assays in
high-throughput screening (HTS) format as primary assays could
lead to a more rapid discovery of alternative drug precursors, which
may be particularly useful against currently emerging Mpro variants
resistant to current inhibitors such as Paxlovid (Ip et al., 2023).
Finding alternative drug discovery workflows to identify new
pharmacophores to block Mpro is a need that has also been
flagged by structure–activity studies with phenylbenzisoselenazol-
3(2H)-one (ebselen) derivatives, in which Mpro mutations of
concern at the so-called gatekeeper residues leading to Mpro
hyperactivity were studied by Sahoo et al. (2023).

A medium-throughput version of a cell-free FRET enzymatic
assay used on a small subset of classic natural products has led to the
identification of quercetin as a SARS-CoV-2-Mpro inhibitor, whose
mechanism of action relies on the destabilization of the Mpro target
according to the thermal shift assay and in silico structural biology
studies (Abian et al., 2020). Unfortunately, quercetin has shown a
marginal in vivo effect as an antiviral agent so far, and its mild
therapeutic benefits are hard to correlate with Mpro inhibition.
Instead, quercetin might inhibit other viral proteins, such as S
proteins, or even furin (Di Petrillo et al., 2022). Such mechanistic
ambiguity could be overcome with the use of cell-free HTS setups to
screen other chemical spaces, such as libraries of synthetic small
molecules, to detect inhibitors of higher specificity for the Mpro
target. Ideally, this approach should be coupled with secondary
assays quickly converging toward bioactive compounds with better
broad-spectrum antiviral profiles and absorption, distribution,
metabolism, and excretion (ADME) profiles than quercetin.

To test this premise, we have performed a thermal shift assay
with the Open Global Health Library (OGHL) (Merck KGaA,
Darmstadt, Germany), which is comprised of 250 bioactive
synthetic small molecules with demonstrated anti-infective
applications (Abraham et al., 2020), but it has never been assayed
against coronaviral proteases. The micromolar inhibitory activity of
the best compound, OGHL98, a SARS-CoV-2-Mpro destabilizer
(ΔTm = −4.5°C ± 0.3°C), was further validated against SARS-CoV-2-
Mpro and HCoV-OC43-Mpro (two proteases that share 48.5% of
the amino acid sequence identity) in the respective FRET enzymatic
assays. To understand how this compound was blocking both Mpro
proteases, we designed a computational pipeline including

molecular docking followed by long-term molecular dynamics
simulations (MDSs). According to such in silico structural
studies, the broad-spectrum inhibitory activity against these
betacoronaviral proteases relies on a conserved network of
intermolecular hydrogen bonds established between the
C-terminal residues of each protease and the 4-
(methylcarbamoyl) benzoic acid moiety of the
OGHL98 compound. Finally, detectable antiviral activity was
confirmed for OGHL98 against the HCoV-OC43 virus in the
micromolar concentration range (cytopathic half maximal
effective concentration, EC50 value of 33 μM; maximum viral
RNA inhibition >50% at 7.5 μM). Future studies are required to
confirm the promising ADME/Tox profile predicted in this work
and further improve the potency/selectivity of OGHL98 and its
benzoic acid moiety using medicinal chemistry tools. More
importantly, the orthogonal workflow presented here and based
on cost-effective cell-free assays has been demonstrated to be
efficient at feeding computational rational design workflows with
interesting inhibitors, which delineates a straightforward discovery
workflow to be implemented on other cysteine proteases from
viruses with pandemic potential.

2 Materials and methods

2.1 Recombinant production of SARS-CoV-
2 and HCoV-OC43 Mpro cysteine proteases

The original pGEX-6p-1 plasmid was donated by Professor
Yang’s laboratory. Each plasmid encodes an N-terminal GST tag,
followed by the SARS-CoV family autocleavage site
(TSAVLQSGFRK) that allows the in vivo release of the final
C-terminal SARS-CoV-2 and HCoV-OC43 Mpro-His6x used for
our protein studies (Xue et al., 2007). The pGEX-6p-1 plasmid
(100 ng) was transformed into 20 μL of BL21-RIPL competent cells
(Agilent™). Bacterial cultures with successful transformants were
grown in 250 mL of LB/ampicillin (100 μg/mL)/chloramphenicol
(34 μg/mL) media at 37°C overnight. Then, 4 L of LB/ampicillin
(100 μg/mL) were inoculated (1/100 dilution) and incubated at 37°C
until OD600 0.8. Overexpression was induced with 1 mM isopropyl-
1-thio-β-D-galactopyranoside (IPTG) at 18°C overnight. Cells were
harvested by centrifugation at 4°C for 10 min at 7,000 g and re-
suspended in lysis buffer (Tris 20 mM, pH 8). Cell lysis was achieved
by sonication, from which the debris were removed by
centrifugation at 4°C for 30 min at 10,000 g. Mpro-His6x protein
was captured from the filtered supernatant using a cobalt HiTrap
Column (Cytiva™) and then eluted with 250 mM imidazole. Eluted
Mpro-His6x was then buffer-exchanged in lysis buffer for further
purification using a HiTrap™ Capto™ Q ImpRes Anion Exchanger
(Cytiva™). Fractions of purity above 95% were eluted at 300 mM
NaCl, which was buffer-exchanged in phosphate-buffered saline
(PBS) before use.

2.2 OGHL compound library

The Open Global Health Library, comprising 250 synthetic
small molecules, was donated by Merck KGaA™ (Darmstadt,
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Germany) upon request via https://www.merckgroup.com/en/
research/open-innovation/biopharma-open-innovation-portal/
open-global-health-library.html. All compounds and controls in this
study were provided as 10 mM DMSO stocks and had analytically
confirmed purities >90%.

2.3 Thermal shift assay

SYPRO Orange (Thermo Fisher Scientific™) was employed as
an extrinsic fluorescent probe. An assay master mix containing 5x
SYPRO and SARS-CoV-2 Mpro 3 μM in PBS was dispensed into
384-well microplates containing the compound library, which was
assayed in 2% DMSO and 100-µM final concentration (Abian et al.,
2020). Negative controls contained the master mix and an
equivalent volume of DMSO. Positive controls contained the
master mix and 200 µM quercetin. Unfolding curves were
registered from 20°C to 95°C at a 0.5°C/min scan rate in a Bio-
Rad™ CFX 384 qPCR real-time thermal cycler using default HEX
filter settings. The midpoint unfolding temperature, Tm, was
calculated in each well as the inflection point and compared to
the controls. Primary destabilizing hits were considered using a
threshold of Tm shift ≤ −2.0°C.

2.4 Enzymatic inhibitory assay

Primary hits at 2x concentration and 2% DMSO were pre-
incubated with 4 µM SARS-CoV-2-Mpro or HCoV-OC43 enzyme
in the assay buffer (20 mM Tris-HCl, pH 7.3, 100 mM NaCl, 1 mM
EDTA, and 1 mM TCEP) for 30 min in a low-volume 384-well plate
(Qiao et al., 2021). Enzyme activity was monitored on an EnVision
Multilabel Plate Reader (PerkinElmer™) at Ex/Em of 320/405 nm
after the addition of an equivalent volume of 10 μL of a 2x
concentration of the 40 µM peptide substrate MCA-AVLQSGFR-
Lys (Dnp)-K. The labeled peptide was purchased from JPT™ as a
lyophilized powder (purity >95%). The enzymatic reaction was
monitored until reaching equilibrium, according to the end-point
inhibitory assay, using quercetin as the positive control and DMSO
as the negative control. End-point data for each compound were
expressed as fluorescence arbitrary units (y-axis) against the log of
compound concentration (x-axis), from which the IC50 values
were obtained.

2.5 Antiviral activity in a HCoV-OC43
surrogate model

Reagents and antibodies. Quercetin, bovine serum albumin,
resazurin (Sigma-Aldrich), and ribavirin (Santa Cruz
Biotechnology™) were diluted in 100% DMSO. The mouse
monoclonal anti-HCoV-OC43 antibody (MAB 2012) was
purchased from Millipore™; the Alexa Fluor 488-conjugated
anti-mouse secondary antibody and Hoechst 33342 were
purchased from Thermo Fisher Scientific™ (Martínez-Arribas
et al., 2023).

Cell culture. The cell lines used in this study were obtained from
the American Type Culture Collection (ATCC). The human lung

fibroblast cell line MRC-5 (CCL-171, ATCC) was cultured in
minimum essential medium (MEM) (Life Technologies™)
supplemented with 10% fetal bovine serum (FBS) (Life
Technologies™), 100 units/mL penicillin, and 100 μg/mL
streptomycin (Life Technologies™). Cells were incubated at 37°C
in a humidified atmosphere of 5% CO2 and were periodically
analyzed and confirmed to be mycoplasma negative.

Virus production. The human betacoronavirus HCoV-OC43
(VR-1588, ATCC) was propagated in MRC-5 human cells. In
brief, MRC-5 cells were seeded at 90% confluence and inoculated
with HCoV-OC43 in infection media (MEM, 2% inactivated FBS,
penicillin/streptomycin). Infected cells were incubated for 2 h at
33°C, rocking the flask every 15 min for virus adsorption, and the
culture was completed with infection media after adsorption.
Infected cells were incubated at 33°C for 5–7 days until more
than 50% of the cells presented a cytopathic effect (CPE),
resulting in cell death. The infected culture was subjected to
three freeze–thaw cycles and centrifuged at 3,000 g for 10 min at
4°C to spin down cells and cell debris for virus recovery. Viral
particles were recovered from the supernatant, aliquoted in
cryotubes, rapidly frozen in a dry-ice/ethanol bath, and stored
at −80°C (Martínez-Arribas et al., 2023).

Batch infection with HCoV-OC43. MRC-5 cells at 90%
confluence were infected with HCoV-OC43 at a multiplicity of
infection (MOI) of 0.1. Virus adsorption was performed for 2 h at
33°C, rocking the cells every 15 min, and then the infected cells were
incubated for 24 h at 33°C before seeding into 96-well plates
(Martínez-Arribas et al., 2023).

CPE inhibition and cytotoxicity assays. Infected cells were
washed, trypsinized, and seeded in plates containing the
compounds at a cellular concentration of 2×104 cells/well in
infection media. The plates were incubated at 37°C for 96 h in
the presence of the compounds. Infection media were aspirated
5 days after infection, and 120 μL of infection media containing 20%
resazurin was added per well. Infected cells treated with 400 µM
ribavirin and infected cells with 0.2% DMSO were used as the
positive and negative controls, respectively. MRC-5 cells were
seeded/well in 96-well plates containing the compounds. After
96 h, the cells were incubated with 20% resazurin for 2 h at 37°C.
MRC-5 cells treated with 50 μM of tamoxifen were used as the
negative control (100% cell death reference), while positive controls
corresponded to MRC-5 cells incubated in the presence of 0.2%
DMSO. Fluorescence was determined at 550–590 nm using a
Tecan™ Infinite Plate Reader (Martínez-Arribas et al., 2023).

RNA isolation and RT-PCR. Viral RNA from the supernatants
was purified using the Macherey-Nagel NucleoSpin RNA Kit. RT-
qPCR was performed in a single step using the One-Step TB Green
PrimeScript RT-PCR Kit II (Takara Bio™). The HCoV-OC43
nucleocapsid gene was amplified with the following primers: the
forward primer 5′ AGCAACCAGGCTGATGTCAATACC-3′ and
the reverse primer 5′ AGCAGACCTTCCTGAGCCTTCAAT-3. A
standard curve was generated with purified HCoV-OC43 RNA
(Vircell™) (Min et al., 2020; Martínez-Arribas et al., 2023).

Immunofluorescence of HCoV-OC43. For HCoV-OC43
detection, 4 days after infection, cells were fixed for 20 min with
4% paraformaldehyde and permeabilized for 10 min with 0.4%
Triton X-100. After 1 h of blocking with 5% BSA, the cells were
incubated O/N with anti-HCoV-OC43. Cells were washed and
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incubated for 1 h with the Alexa Fluor 488-conjugated anti-mouse
secondary antibody (Thermo Fisher Scientific™) and then washed
and incubated for 20 min with Hoechst 33342 for nuclei staining.
Digital images were captured using the Operetta CLS High Content
Analysis System (PerkinElmer™) with a ×5 air objective. The
number of nuclei and the number of cells positive for HCoV-
OC43 staining were determined, and the percentage of infection
was expressed as the ratio of HCoV-OC43 positive cells/total nuclei
(Martínez-Arribas et al., 2023).

Data analysis. CPE inhibition activities of non-cytotoxic
compounds were determined using Equation (1):

CPE Inhibition %( ) � Fluowell − Fluoneg( )
Fluopos − Fluoneg( ) x 100, (1)

where Fluowell is the measured fluorescence of each well, Fluopos is
the average fluorescence of the positive control (infected MRC-5
cells 0.2% DMSO), and Fluoneg is the average fluorescence of the
negative control (non-infected cells).

Cytotoxicity: cellular cytotoxicity was determined using
Equation (2):

Viability %( ) � Fluowell − Fluoneg( )
Fluopos − Fluoneg( ) x 100, (2)

where Fluowell is the measured fluorescence of each well, Fluoneg is
the average fluorescence of the negative control (cells treated with
50 nM tamoxifen), and Fluopos is the average fluorescence of the
positive control (0.2% DMSO) (Martínez-Arribas et al., 2023).

2.6 Computational studies

OC43 MPro modeling: given that the structure of HCoV-OC43-
Mpro has not been solved yet, a homology model was built using the
crystal structure of SARS-CoV-2-Mpro as the template (PDB code:
6LU7, (Jin et al., 2020)). Since OC43-MPro is contained in the
OC43 replicase polyprotein 1ab (Uniprot ID: P0C6X6), both the
sequences (SARS-CoV-2-1ab and OC43-1ab) were aligned. The
MPro fraction that showed the optimal sequence alignment was
used to build the final model of HCoV-OC43-Mpro, which was
optimized using Prime (Schrödinger Suite) and validated using
PROCHECK (Jacobson et al., 2004).

Molecular docking: new inhibitors, OGHL98 and OGHL43,
and control compounds, aspirochlorine and quercetin, were
prepared with Maestro and LigPrep. The prepared ligands were
docked to the HCoV-OC43-Mpro model and the SARS-CoV-2-
Mpro PDB (code: 6LU7) using Glide and Schrödinger Suite
(Halgren et al., 2004). Before docking calculations, proteins
were prepared using Maestro (Madhavi Sastry et al., 2013),
which removed the original ligands, metals, and water
molecules. Hydrogens of ionizing residues at pH 7.4 ± 2.0 were
then added, and the missing side chains were modeled by Prime.
The minimization of the corresponding protein structures was
calculated using OPLS3. The same grid box was defined for both
targets using the N3 ligand co-crystallized in SARS-CoV2-Mpro as
the center of the corresponding boxes. The docking was then
performed with the Glide standard precision (SP) function
(Friesner et al., 2006). The top 10 poses per docked ligand were

selected and subjected to rescoring by calculating the binding free
energy (ΔGbind) with Prime (Jacobson et al., 2002; 2004), which
was calculated in terms of the molecular mechanics-generalized
born surface area (MM-GBSA). This computational method
combines molecular mechanics energy and implicit solvation
models, which enables rescoring and correlation between the
experimental activities (IC50) and the predicted ΔGbind. The
corresponding ΔGbind values for each ligand–target complex
were calculated, as previously reported (Rojas-Prats et al., 2021).

Molecular dynamics simulations: the best post-processed
docking solutions between the four inhibitors of interest and
both Mpro targets (SARS-CoV-2 and HCoV-OC43) were selected
according to their best ΔGbind profiles. Such docking solutions were
subjected to MDSs using Desmond software (Bowers et al., 2006)
and OPLS3e (Roos et al., 2019). To prepare the systems, the
ligand–target complexes were solvated with pre-equilibrated
water molecules (SPC) in a periodic boundary condition box.
Then, the systems were neutralized by adding Na+ or Cl−

counter-ions at a final concentration of 0.15 M NaCl to simulate
the physiological conditions. Next, each system was relaxed using
the default Desmond relaxation protocol and then equilibrated for
25 ns with a spring constant force of 1.0 kcal×mol-1×Å-2, which was
applied to the backbone atoms of the proteins and the ligands. The
simulations were performed using the NPT ensemble at constant
pressure (1 atm), temperature (310 K), and number of atoms using
the isothermal−isobaric ensemble and the Nose−Hoover method,
with a relaxation time of 1 ps. The MTK algorithm was applied with
a time step of 2 fs. Then, the last frame was taken, and a second non-
restricted MD was extended until 3 µs if necessary, for which the
same conditions described above were applied. Systems were then
analyzed using in-house PyMol and VMD scripts.

Prediction of the ADME/Tox properties: we computed the
physicochemical descriptors, ADME, pharmacokinetic properties,
and drug-like nature of the studied compounds using the
SwissADME server (Daina, Michielin, and Zoete, 2017a). In brief,
42 descriptors were predicted, including physicochemical,
lipophilicity, water solubility, and pharmacokinetic properties.
From these descriptors, SwissADME assessed the compounds’
acceptability based on a bioavailability score (drug-likeness).

3 Results

The compound OGHL98 was characterized as a novel inhibitor
of coronaviral cysteine proteases using protein thermal shift assays
and FRET enzymatic assays. To complement the in vitro
characterization of OGHL98 beyond these cell-free setups,
biological activity tests were performed using a model
betacoronavirus, HCoV-OC43. The specific molecular interaction
profiles with coronaviral proteases used in the enzymatic assays,
HCoV-OC43-Mpro and SARS-CoV-2-Mpro, were studied using a
computational pipeline. The pipeline included molecular modeling
and docking, followed by binding free energy calculations and long-
term molecular dynamics simulations. The latest highlighted the
intermolecular contacts established by the main pharmacophoric
core of OGHL98. We also predicted a promising ADME/Tox profile
for OGHL98 to confirm the efficiency of our drug discovery
approach in identifying new and developable antiviral inhibitors.
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3.1 Identification of novel Mpro destabilizers
OGHL43 and OGHL98

Overall, the 250 screened compounds from the Open Global
Health Library were synthesized to be structurally diverse. As such,
these compounds had shown activity in anti-infective screening
campaigns against diverse targets such as amebiasis, AMR, Chagas,
visceral leishmaniasis, cryptosporidiosis, human African
trypanosomiasis, malaria, schistosomiasis, tuberculosis, or soil-
transmitted helminthiasis, but they had never been used in
screens against viral proteases.

As described in more detail in Supplementary Figure S1, the
collection of 250 diverse compounds presented the following overall
physicochemical properties: molecular weight range between
200.0 Da and 700.0 Da, partition coefficient (LogP)
between −0.1 and 8.0, number of rotatable bonds between 1 and
15, number of hydrogen bond donors between 0 and 5, number of
hydrogen bond acceptors between 2 and 12, and total polar surface
area between 0 Å2 and 180 Å2.

Such a library of 250 bioactive compounds and two reference
compounds (aspirochlorine and quercetin), previously identified
as SARS-CoV-2 antivirals (Singh, Sharma, and Nandi, 2020),
were jointly screened against purified SARS-CoV-2-Mpro by
thermal shift. The robustness of the screening results was
supported by plate quality controls using quercetin (Abian
et al., 2020) and DMSO, which yielded a Z′-factor of 0.7 (Lilly
et al., 2004). Two hits were selected because they presented a
negative Tm shift greater than 2°, which implies a significant
destabilization of the protein in the presence of the ligands of
interest. Negative shift had already been validated as a feasible
mechanism of action to block Mpro with non-covalent small
molecules like quercetin (Abian et al., 2020; Mangiavacchi et al.,
2021). Then, the two new small molecules, OGHL98 and
OGHL43, and the reference compounds aspirochlorine and
quercetin were subjected to a functional enzymatic FRET
assay with comparable resolution (Z′-factor = 0.6; assay
window >5), in which quercetin, as the positive control
compound, presented an expected IC50 of 28.2 ± 11.4 µM
(Abian et al., 2020). Unfortunately, aspirochlorine (ΔTm <
-10°C, Supplementary Figure S2B), one of the strongest
destabilizers found in the primary screen and whose antiviral
activity had been postulated by other authors (Singh, Sharma,
and Nandi, 2020), could not be orthogonally confirmed as an
Mpro inhibitor for interfering with the signal of the FRET
enzymatic assay (Supplementary Figure S3B). More
importantly, the FRET assay confirmed the blockade of SARS-
CoV-2-Mpro proteolysis by the two new destabilizing molecules,
OGHL98 and OGHL43. Furthermore, OGHL98 was defined as
the top-performing compound (ΔTm = −4.5 ± 0.3; IC50 = 19.6 ±
5.6 µM; Figures 1A–C). OGHL43 (ΔTm = −3.7 ± 0.3; IC50 ~
80 μM; Supplementary Figures S2A, S3A) was validated as
another suitable destabilizer but with lower potency. The
dose–response activity of these two new OGHL inhibitors
implied a rate of confirmed hits of 0.8% for the whole
orthogonal screen, which is in line with the expected efficiency
and quality standards of the HTS format for cell-free assays (Lilly
et al., 2004). Altogether, these results confirmed OGHL98 as the
novel SARS-CoV-2-Mpro destabilizer that demonstrated the

highest potency in two cell-free orthogonal assays, reporting a
specific impact on protein folding and activity.

Complementarily, we recombinantly expressed and purified the
HCoV-OC43-Mpro enzyme to test the inhibitory activity of
OGHL98 by a FRET enzymatic assay, in which the compound
presented an IC50 of 11.4 ± 3.1 µM (Figure 1C, blue trace). This
inhibitory activity against HCoV-OC43-Mpro is comparable to the
one observed in the SARS-CoV-2 FRET assay (IC50 of 19.6 ± 5.6 µM;
Figure 1C, orange trace). Jointly, the results pointed toward a broad-
spectrum mechanism of action for OGHL98, which was capable of
blocking, at low micromolar concentrations, two betacoronaviral
proteases with a 48.5% amino acid sequence homology. This
mechanism of action would justify potential antiviral activity in
biological assays measuring the inhibition of the infection by
different betacoronaviruses related to HCoV-OC43 and SARS-
CoV-2.

3.2 HCoV-OC43 surrogatemodel confirmed
the antiviral activity of OGHL98

The Mpro destabilizers that were identified in the thermal shift
assay were further validated in vitro using biological assays. This
way, we expected to link their already defined mechanism of action
to a specific antiviral activity in infected cells.

The biological characterization of the best compounds was first
addressed through a simple phenotypic assay, in which a successful
infection of HCoV-OC43 caused a measurable CPE in the lung cell
line MRC-5 (Smee et al., 2017; Martínez-Arribas et al., 2023). CPE
inhibition was assessed 96 h after treatment. The EC50 values
reported for antiviral activity were calculated and compared with
the corresponding CC50 (half maximal cytotoxic concentration)
values, which were obtained in parallel in non-infected MRC-5
cells treated with the same compounds so that non-specific cytotoxic
effects could be discriminated. OGHL98 presented the highest
activity and selectivity according to an EC50 value of 32.69 µM
and a CC50 value of 58.29 µM (Figure 2A). The EC50 value for
quercetin was 56.47 µM, and it presented a lower CC50 value
(28.98 µM, Supplementary Figure S4), thus indicating a lack of
selectivity that could explain the ambiguous activities described
for this compound (https://pubchem.ncbi.nlm.nih.gov/source/
hsdb/3529). In addition, aspirochlorine and OGHL43 were
deprioritized because they did not exhibit meaningful CPE
inhibition (Supplementary Figure S4).

To link the CPE inhibitory activity of the best compound,
OGHL98, to a specific blockade of viral propagation, the RNA
levels of HCoV-OC43 were evaluated in the supernatant of infected
MRC-5 cells (Min et al., 2020). At a concentration of 7.5 µM, HCoV-
OC43 RNA levels were reduced by more than 50% (Figure 2B),
orthogonally confirming the inhibitory activity observed in the
CPE assay.

Finally, we assessed whether the decrease in viral egress induced
by OGHL98 corresponded to reduced replication levels of HCoV-
OC43 within host cells. For this, we performed a complementary
immunofluorescence study with a monoclonal antibody directed
against the nucleocapsid of HCoV-OC43 (Figure 2C). The data
confirmed that the infection of MRC-5 cells decreased by 20% after
72 h of treatment with 7.5 µM of OGHL98.
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3.3 In silico studies validated the target
engagement of novel destabilizers to SARS-
CoV-2-Mpro and HCoV-OC43-Mpro

The identification and confirmation of OGHL98, which blocks
viral targets directly involved in the viral replication cycle and the
production/function of viral polyproteins like the two coronaviral
proteases studied here, could be considered a valid starting point to
design broad-spectrum antivirals. Nevertheless, the potency,
specificity, ADME, and toxicity profile of OGHL98 must be
optimized through an iterative process of rational design that
commonly begins with the identification of key pharmacophoric
factors for proper ligand binding to the target(s) of interest.

To meet the first objective and since the structure of HCoV-
OC43-Mpro has not been solved yet, a homology model was built
using the crystal structure of SARS-CoV-2-Mpro as the template
(PDB code: 6LU7 (Jin et al., 2020), both of which present 48.5% of
the amino acid sequence identity. Given that OC43-Mpro is
contained within the OC43 replicase polyprotein 1ab (Uniprot
ID: P0C6X6), the two sequences (SARS-CoV-2-1ab and OC43-
1ab) were aligned, and the Mpro fraction that presented the best
sequence alignment was used to build the final HCoV-OC43-Mpro

model. Accordingly, further computational studies were performed
with the resultingMpro structures (SARS-CoV-2 and HCoV-OC43)
to investigate the molecular determinants of the destabilization
induced by the binding of our selected compounds (Figures 3, 4;
Supplementary Figure S5).

The newly identified compounds (OGHL43 and OGHL98) were
docked into both SARS-CoV-2-Mpro and HCoV-OC43-Mpro
targets. Quercetin and aspirochlorine were also docked as control
compounds. Then, all docking poses were re-scored according to
their predicted binding free energy. Top-scoring solutions were
selected to assess the most relevant interactions between each
compound and key residues of SARS-CoV-2-Mpro (T26, E166,
and Q189), as well as the equivalent residues of HCoV-OC43-
MPro (H41, E166, and Q189) (Supplementary Figure S5), which,
in all cases, resulted in feasible contacts and geometries and, thus,
suggested a specific binding for all cases considered.

The next step was a full characterization of the interactions
between each ligand/compound and both targets, SARS-CoV-2-
Mpro and HCoV-OC43-MPro, by molecular dynamics simulations.
We ran long-termMDSs for both control compounds quercetin and
aspirochlorine (3 µs) and the novel inhibitors OGHL43 and
OGHL98 (1 µs). Root-mean-square deviation (RMSD) profiles for

FIGURE 1
Discovery and characterization of OGHL98 as a novel inhibitor of coronaviral proteases. (A) Structure of OGHL98. (B) Thermal shift validation
reporting a ΔTm = −4.5 ± 0.3 compared to DMSO control. (C) FRET enzymatic assay reporting an IC50 = 19.6 ± 5.6 µM for SARS-CoV-2-Mpro and 11.4 ±
3.1 µM for HCoV-OC43-Mpro.

FIGURE 2
Characterization of the antiviral activity of OGHL98. (A) Evaluation of the OGHL98 inhibitor in MRC-5 cells infected with HCoV-OC43 by
dose–response curves: CC50 (black) and EC50 (blue) values for CPE inhibition at 5 days and 96 h post-infection in the presence of the compound. (B)
HCoV-OC43 RNA levels in infected cells treated with increasing concentrations of OGHL98. (C) Representative immunofluorescence images and
corresponding bar plots quantifying the percentage of infection of HCoV-OC43 after 72 h in the presence of 7.5 µM OGHL98. Control conditions
0.2% DMSO.
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both protein backbones remained stable and reached equilibrium
during the whole set of MD trajectories (Figure 3, black traces). In
the RMSD profiles following quercetin’s (Figures 3A, B, red traces)
interaction with SARS-CoV-2-Mpro and HCoV-OC43-Mpro,
quercetin was observed to interact stably with the binding site
during the whole simulation. In the RMSD profiles between the
other control compound, aspirochlorine, and SARS-CoV-2-Mpro
(Figure 3G), aspirochlorine rotated ~180° at ~100 ns and then
moved toward a contiguous region of the binding site that was
richer in beta-sheet folding. This rearrangement in aspirochlorine

translated into RMSD changes of ~6 Å within the protein, after
which aspirochlorine adopted a new conformation that remained
stable until the end of the 3 µs simulation. When it comes to the
aspirochlorine/HCoV-OC43-MPro trajectory (Figure 3H), the
chlorine group of this small molecule altered its initial position
when exposed to the solvent, subsequently moved around the
perimeter of the binding site of HCoV-OC43-Mpro for the first
1.8 μs of the simulation, and then returned to its initial position, but
this time with the chlorine group pointing toward HCoV-OC43-
Mpro, which was a conformation that remained stable until the end

FIGURE 3
Time dependence of the RMSD for Mpro protein backbones (black) and ligand atoms (red) during the unrestrainedmolecular dynamics simulations.
Reference compound quercetin [panel (A, B)], OGHL98 [panel (C, D)], OGHL43 [panel (E, F)], and aspirochlorine [panel (G, H)].
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FIGURE 4
Key intermolecular interactions between Mpro destabilizers and the respective binding sites of Mpro from different betacoronaviruses that were
explored by molecular dynamics simulations. Color code is as follows: SARS-CoV-2-Mpro, orange; OC43-Mpro, cyan. Reference compound quercetin
[yellow, panel (A, B)], OGHL98 [green, panel (C, D)], OGHL43 [white, panel (E, F)], and aspirochlorine [pink, panel (G, H)] are displayed in sticks
representation.
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of the simulation. As described in the RMSD profiling of
aspirochlorine, OGHL43 also rotated ~180° when it interacted
with SARS-CoV-2-Mpro at early time points in the trajectory
(Figure 3E) and then remained in the binding site of SARS-CoV-
2-Mpro during the rest of the simulation, which meant that
OGHL43 adopted a binding mode consistent with the one
observed in the RMSD interaction profile of the same
OGHL43 compound with HCoV-OC43-Mpro (Figure 3F), and it
also matched with the corresponding RMSD profiles of OGHL98
(Figures 3C, D). Therefore, from the RMSD profiles of the newly
studied ligands, it can be inferred that both OGHL43 and
OGHL98 establish stable contacts with both Mpro targets and
have common features with the RMSD profiles of the
control compounds.

To better understand the intermolecular forces that drive the
interactions of each ligand with the binding site of SARS-CoV-2-
Mpro, we built interaction profiles where we plotted the
corresponding fraction of the trajectory during which each
interaction remained stable (Figure 4). For the main reference
compound, quercetin, the interaction pattern observed was
comparable to that of previous reports that described
quercetin as prone to interact with N-terminal β3/αA residues
of SARS-CoV-2-Mpro, such as M49 (interaction fractions >0.5,
Figure 4A). Our analysis also concurred with the literature in the
identification of frequent contacts between quercetin and β10-11
residues of the protein (N142-E166). In addition, the novel
compounds OGHL98 (Figure 4C) and OGHL43 (Figure 4E)
shared frequent intermolecular hydrogen bonds and water
bridges established with two sets of residues, M165-L167
(β11-12) and Q189-A193, located at the C-terminal of SARS-
CoV-2-Mpro. In the case of OGHL98, such intermolecular
interactions were mostly driven by the 4-(methylcarbamoyl)
benzoic acid moiety, which participated in strong water
bridges and hydrogen bonds with key residues
Q189–Q192 and with neighboring residues from the linker
T190–A191 (Figure 4C) (Abian et al., 2020; Cho et al., 2021).

To further assess whether the molecular determinants detected
in the MD simulations with our set of inhibitors and SARS-CoV-2-
Mpro could justify the enzymatic inhibition that was also observed
in vitro for HCoV-OC43-Mpro, we built similar binding profiles for
this target (45.8% sequence identity), which is considered to be
relatively conserved and for which a relatively homologous binding
site had been predicted (Berry, Fielding, and Gamieldien, 2015).
Notably, intermolecular contacts established between the benzoic
moiety of the main inhibitor OGHL98 and the key residues were
highly preserved across the whole set of trajectories for the two
proteins (Figures 4C, D).

In addition, the rest of the evaluated compounds were found
to be prone to establishing favorable hydrogen bonds with a
comparable set of C-terminal residues from both HCoV-OC43-
Mpro and SARS-CoV-2-Mpro, as shown in the rest of the panels
of Figure 4, with reference compound aspirochlorine included
(Figures 4G, H). This is important because common
intermolecular interaction patterns would justify a common
target destabilization mechanism when bound to homologous
viral proteases, enabling a match between wet and dry lab results
and paving the way for further rational design efforts
on OGHL98.

3.4 Predictive ADME profiling of
OGHL98 using physicochemical descriptors

The SwissADME server was used to predict the ADME,
pharmacokinetic properties, and drug-like properties of the best
antiviral inhibitor OGHL98, which was compared with the internal
reference compounds aspirochlorine and quercetin (Daina,
Michielin and Zoete, 2017b) plus the gold-standard inhibitors
(Antonopoulou et al., 2022; Sahoo et al., 2023) like covalent
inhibitor ebselen or specific inhibitors of Mpro from SARS-CoV-
2 like ML-188 (Tables 1, 2).

Importantly, our best inhibitor OGHL98 had amolecular weight
(MW) < 500 g/mol, which was within the optimal range for a
potential lead drug. All the remaining physicochemical
descriptors, like the number of rotatable bonds, hydrogen bond
acceptors (HB-A), donors (HB-D), topological polar surface area
(TPSA), lipophilicity index, and water solubility, were also in the
corresponding acceptable ranges (Table 1, left). A similar trend was
observed for the pharmacokinetic properties (Table 1, right). The
absence of drug-likeness violations in the complementary analysis,
which is summarized in Table 2, further confirmed the effectiveness
of our drug-discovery workflow in identifying feasible and
developable small-molecule inhibitors.

4 Discussion

During the SARS-CoV-2 pandemic, the testing of a small subset
of classic natural products led to the identification of quercetin as a
SARS-CoV-2-Mpro inhibitor, whose mechanism of action relies on
the non-covalent binding and destabilization of this macromolecule,
and it was used as a starting point to design quercetin derivatives
having a scope as antivirals (Abian et al., 2020; Mangiavacchi et al.,
2021). Unfortunately, quercetin has shown a marginal in vivo effect
as an antiviral agent (Di Petrillo et al., 2022), and its mild therapeutic
benefits are hard to correlate with Mpro inhibition. This fact,
together with the potential spread of new variants of interest and
concern, which are likely to be more vaccine-resistant and less
sensitive to existing Mpro inhibitors in the clinic (Ip et al., 2023;
Sahoo et al., 2023), raised the question of how feasible it would be to
implement cell-free HTS setups to explore alternative chemical
spaces like synthetic small molecules and quickly detect specific
destabilizers of the Mpro target with better antiviral profiles than
quercetin. Ideally, the characterization of these new destabilizers will
provide medicinal chemists with new chemical scaffolds so that they
can be optimized into broad-spectrum antivirals, which are
considered ideal preparedness tools against future pandemics.

A good starting point to meet these needs is the successful
implementation of two orthogonal thermal-shift and FRET assays in
the HTS format, which have led to the discovery of a novel small
molecule called OGHL98 by screening the Open Global Health
Library (Merck KGaA). To date, OGHL98 has been described as a
mere PDE5 inhibitor with the potential to treat erectile dysfunction
and pulmonary arterial hypertension (Ahmed, Geethakumari, and
Biswas, 2021). In this work, we have characterized a new activity for
OGHL98 by confirming its potential as a developable antiviral
against the infection of HCoV-OC43, which is a biosafety level-2
coronavirus. The mechanism of action of OGHL98 involves the
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enzymatic inhibition of two conserved viral proteases, SARS-CoV-
2-Mpro and HCoV-OC43-Mpro, as demonstrated by the cell-free
setups. Therefore, this fast-tracking methodology can lead to the
development of novel and efficient broad-spectrum antivirals.

It is important to note that the design of OGHL98 analogs that
increase EC50/CC50 selectivity is required to meet general pre-
clinical standards (Sun et al., 2022). Furthermore, medicinal
chemistry efforts will also be required to increase the potency
that OGHL98 has shown in vitro. In this line, the long-term MD

simulations suggest in silico optimization of the hydrogen bonds
between the nitrogen atoms of OGHL98 (amide groups and indole
moiety) and the backbone of the E166 residue in the wild-typeMpro.
These contacts might be further improved to efficiently block VoC
mutations within this region of Mpro, which is responsible for the
resistance against nirmatrelvir or ensitrelvir (Ip et al., 2023). It is
important to highlight that more than 50% of FDA-approved drugs
are nitrogen-containing molecules, the majority of which are
N-heterocyclic small molecules (Kerru et al., 2020), like

TABLE 1 Physicochemical and pharmacokinetic descriptors of OGHL98 and quercetin calculated with SwissADME.

Compound Physicochemical properties Lipophilicity Water
solubility

Pharmacokinetics

MWa RBb HB-
Ac

HB-
Dd

TPSAe Consensus log
Po/wf

Solubility
(mol/L)

GI
absg

BBBh log Kp
(cm/s)i

OGHL98 457.43 8 6 4 129.75 3.26 8.92E-08 High No −6.34

Quercetin 302.24 1 7 5 131.36 1.23 6.98E-04 High No −7.05

Ebselen (IC50 = 0.67 uM) 274.18 1 1 0 22.00 1.75 1-20E-04 High Yes −6.00

Aspirochlorine 360.79 1 5 2 138.7 0.78 1.42e-03 High No −7.78

Perampanel (IC50 =
100–250 uM)

349.38 3 3 0 58.68 3.71 2.33e-05 High Yes −5.99

F01 (IC50 = 54 uM) 286.71 3 3 1 59.06 2.34 6.51e-04 High Yes −6.56

ML188 (IC50 = 2.5 uM) 431.51 9 4 1 108.36 3.27 4.38e-05 High No −6.72

ML300 (IC50 = 4.99 uM) 433.54 9 4 1 75.44 4.06 3.48e-06 High No −5.42

aMolecular weight (g/mol).
bNumber of rotatable bonds.
cNumber of hydrogen bond acceptors.
dNumber of hydrogen bond donors.
eTopological polar surface area (Ertl, Rohde, and Selzer, 2000).
fAverage of iLOGP, XLOGP, WLOGP, MLOGP, and SILICOS-IT predictions (Daina, Michielin, and Zoete, 2017b).
gGastrointestinal absorption.
hBlood–brain barrier permeation.
iSkin permeation: QSPR model (Potts and Guy, 1992).

TABLE 2 Drug-likeness properties of OGHL98 and quercetin calculated using SwissADME.

Compound Lipinski #
violationsa

Ghose #
violationsb

Veber #
violationsc

Egan #
violationsd

Muegge #
violations e

OGHL98 0 0 0 0 0

Quercetin 0 0 0 0 0

Ebselen (IC50 = 0.67 uM) 0 0 0 0 0

Aspirochlorine 0 0 0 1 0

Perampanel (IC50 =
100–250 uM)

0 0 0 0 0

F01 (IC50 = 54 uM) 0 0 0 0 0

ML188 (IC50 = 2.5 uM) 0 0 0 0 0

ML300 (IC50 = 4.99 uM) 0 0 0 0 0

aLipinski (Pfizer) filter (Lipinski et al., 2001): MW ≤ 500; MLOGP ≤4.15; N or O ≤ 10; NH or OH ≤ 5.
bGhose filter (Ghose, Viswanadhan and Wendoloski, 1999): 160 ≤ MW ≤ 480; −0.4 ≤ WLOGP ≤5.6; 40 ≤ MR ≤ 130; 20 ≤ atoms ≤70.
cVeber (GSK) filter (Veber et al., 2002): rotatable bonds ≤10; TPSA ≤140.
dEgan (Pharmacia) filter (Veber et al., 2002): WLOGP ≤5.88; TPSA ≤131.6.
eMuegge (Bayer) filter (Muegge, Heald, and Brittelli, 2001): 200 ≤ MW ≤ 600; −2 ≤ XLOGP ≤5; TPSA ≤150; number of rings ≤7; number of carbon atoms >4; number of heteroatoms >1;
number of rotatable bonds ≤15.
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OGHL98, which supports the proposed strategy. Alternatively, it
might be possible to design OGHL98 analogs with strengthened
intermolecular interactions between the carboxylic acid group of the
parent compound and the Q189 residue in wild-type Mpro. This
second strategy could also be extended to another set of interesting
Mpro VoC mutants, such as Q189K, ΔQ189, Q189H, Q189L,
Q189P, Q189G, and Q189S (Najjar-Debbiny et al., 2023).

Finally, it is important to note that OGHL98 reported here
fulfills all the drug-likeness properties (similar to control
compounds) to be a potential drug (Tables 1, 2) according to the
predicted physicochemical descriptors and pharmacokinetic
properties (Daina, Michielin, and Zoete, 2017a). The
computational pipeline and the experimental design advocate for
the oral use of OGHL98 analogs of optimized potency, selectivity,
and ADME/Tox profile.

5 Conclusion

We have demonstrated that the antiviral activity of
OGHL98 exceeds the biological performance of the previously
reported Mpro destabilizer, quercetin (Abian et al., 2020). This
work reveals that OGHL98 acts as an inhibitor of two (SARS-CoV-
2 and OC43) coronaviral proteases, which supports the theory that
broad-spectrum inhibition against betacoronaviral proteases could
be achieved using rational design approaches.

More importantly, the cell-free primary assays combined here to
find hits define a cost-effective early drug-discovery workflow
amenable for the screening of massive small-molecule libraries to
feed the computational rational design campaigns and further
validate more potent pharmacophores with double-digit
selectivity indexes.

Such a future line of research is of special interest if implemented
against hyperactive Mpro variants resistant to current inhibitors or
other viral proteases from viruses with pandemic potential, for
which no specific inhibitors have been identified so far.

6 Scope statement

The emergence of new variants of concern of coronaviruses,
potentially more vaccine-resistant and less sensitive to existing
treatments, is evident due to their high prevalence. A prospective
spread of such VoCs demands a preparedness that can be met by
fast-tracking workflows aiming at viral protein targets with a clear
in vitro/in vivo phenotype. Mpro (or 3CLpro) is directly involved in
the viral replication cycle and the production and function of viral
polyproteins. These roles are conserved among betacoronaviruses
like HCoV-OC43 and SARS-CoV-2, which makes the identification
of new inhibitors for them a good starting point for designing broad-
spectrum antivirals. We report an optimized methodology based on
orthogonal cell-free assays to identify small molecules that inhibit
the binding pockets of both SARS-CoV-2-Mpro and HCoV-OC43-
Mpro, whose blockade correlates with antiviral activities in HCoV-
OC43 cellular models. By using such a fast-tracking approach
against the Open Global Health Library (Merck KGaA), we have
found evidence of new antiviral activity for compound OGHL98. In
silico molecular dynamics dissecting intermolecular interactions

between OGHL98 and both proteases concluded that the binding
mode was primarily governed by conserved H-bonds with their
C-terminal amino acids and that the rational design of OGHL98 has
potential against VoC proteases.
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