
Edited by

Huajin Tang, Lei Deng and Kaushik Roy

Published in

Frontiers in Neuroscience

Frontiers in Computational Neuroscience

Understanding and
bridging the gap between
neuromorphic computing
and machine learning,
volume II

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/50392/understanding-and-bridging-the-gap-between-neuromorphic-computing-and-machine-learning-volume-ii/overview
https://www.frontiersin.org/research-topics/50392/understanding-and-bridging-the-gap-between-neuromorphic-computing-and-machine-learning-volume-ii/overview
https://www.frontiersin.org/research-topics/50392/understanding-and-bridging-the-gap-between-neuromorphic-computing-and-machine-learning-volume-ii/overview
https://www.frontiersin.org/research-topics/50392/understanding-and-bridging-the-gap-between-neuromorphic-computing-and-machine-learning-volume-ii/overview
https://www.frontiersin.org/research-topics/50392/understanding-and-bridging-the-gap-between-neuromorphic-computing-and-machine-learning-volume-ii/overview
https://www.frontiersin.org/journals/computational-neuroscience

August 2024

Frontiers in Neuroscience frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is

a pioneering approach to the world of academia, radically improving the way

scholarly research is managed. The grand vision of Frontiers is a world where

all people have an equal opportunity to seek, share and generate knowledge.

Frontiers provides immediate and permanent online open access to all its

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review,

selection and dissemination processes in academic publishing. All Frontiers

journals are driven by researchers for researchers; therefore, they constitute

a service to the scholarly community. At the same time, the Frontiers journal

series operates on a revolutionary invention, the tiered publishing system,

initially addressing specific communities of scholars, and gradually climbing

up to broader public understanding, thus serving the interests of the lay

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include

some of the world’s best academicians. Research must be certified by peers

before entering a stream of knowledge that may eventually reach the public

- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely

delivering the most outstanding research, evaluated with no bias from both

the academic and social point of view. By applying the most advanced

information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers

journals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from

Original Research to Review Articles, Frontiers Research Topics unify the

most influential researchers, the latest key findings and historical advances

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or

contribute to one as an author by contacting the Frontiers editorial office:

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject
to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under
the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements
in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers’ Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-5363-3
DOI 10.3389/978-2-8325-5363-3

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

August 2024

Frontiers in Neuroscience 2 frontiersin.org

Understanding and bridging
the gap between neuromorphic
computing and machine learning,
volume II

Topic editors

Huajin Tang — Zhejiang University, China

Lei Deng — Tsinghua University, China

Kaushik Roy — Purdue University, United States

Citation

Tang, H., Deng, L., Roy, K., eds. (2024). Understanding and bridging the gap

between neuromorphic computing and machine learning, volume II.

Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-5363-3

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-5363-3

August 2024

Frontiers in Neuroscience frontiersin.org3

04 Approaching the mapping limit with closed-loop mapping
strategy for deploying neural networks on neuromorphic
hardware
Song Wang, Qiushuang Yu, Tiantian Xie, Cheng Ma and Jing Pei

17 Spiking neural network with working memory can integrate
and rectify spatiotemporal features
Yi Chen, Hanwen Liu, Kexin Shi, Malu Zhang and Hong Qu

27 Direct learning-based deep spiking neural networks: a review
Yufei Guo, Xuhui Huang and Zhe Ma

41 BIDL: a brain-inspired deep learning framework for
spatiotemporal processing
Zhenzhi Wu, Yangshu Shen, Jing Zhang, Huaju Liang,
Rongzhen Zhao, Han Li, Jianping Xiong, Xiyu Zhang and
Yansong Chua

59 Efficient SNN multi-cores MAC array acceleration on
SpiNNaker 2
Jiaxin Huang, Florian Kelber, Bernhard Vogginger, Chen Liu,
Felix Kreutz, Pascal Gerhards, Daniel Scholz, Klaus Knobloch and
Christian G. Mayr

75 Learnable axonal delay in spiking neural networks improves
spoken word recognition
Pengfei Sun, Yansong Chua, Paul Devos and Dick Botteldooren

87 STCA-SNN: self-attention-based temporal-channel joint
attention for spiking neural networks
Xiyan Wu, Yong Song, Ya Zhou, Yurong Jiang, Yashuo Bai, Xinyi Li and
Xin Yang

97 Enhanced representation learning with temporal coding in
sparsely spiking neural networks
Adrien Fois and Bernard Girau

113 An FPGA implementation of Bayesian inference with spiking
neural networks
Haoran Li, Bo Wan, Ying Fang, Qifeng Li, Jian K. Liu and Lingling An

128 Training multi-layer spiking neural networks with plastic
synaptic weights and delays
Jing Wang

140 Information bottleneck-based Hebbian learning rule naturally
ties working memory and synaptic updates
Kyle Daruwalla and Mikko Lipasti

Table of
contents

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

TYPE Original Research

PUBLISHED 18 May 2023

DOI 10.3389/fnins.2023.1168864

OPEN ACCESS

EDITED BY

Huajin Tang,

Zhejiang University, China

REVIEWED BY

Liliana Ibeth Barbosa Santillan,

University of Guadalajara, Mexico

Joseph Friedman,

The University of Texas at Dallas, United States

*CORRESPONDENCE

Jing Pei

peij@mail.tsinghua.edu.cn

RECEIVED 18 February 2023

ACCEPTED 26 April 2023

PUBLISHED 18 May 2023

CITATION

Wang S, Yu Q, Xie T, Ma C and Pei J (2023)

Approaching the mapping limit with

closed-loop mapping strategy for deploying

neural networks on neuromorphic hardware.

Front. Neurosci. 17:1168864.

doi: 10.3389/fnins.2023.1168864

COPYRIGHT

© 2023 Wang, Yu, Xie, Ma and Pei. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Approaching the mapping limit
with closed-loop mapping
strategy for deploying neural
networks on neuromorphic
hardware

Song Wang, Qiushuang Yu, Tiantian Xie, Cheng Ma and Jing Pei*

Department of Precision Instrument, Center for Brain-Inspired Computing Research (CBICR), Tsinghua

University, Beijing, China

The decentralized manycore architecture is broadly adopted by neuromorphic

chips for its high computing parallelism and memory locality. However, the

fragmented memories and decentralized execution make it hard to deploy neural

network models onto neuromorphic hardware with high resource utilization and

processing e�ciency. There are usually two stages during the model deployment:

one is the logical mapping that partitions parameters and computations into small

slices and allocate each slice into a single core with limited resources; the other

is the physical mapping that places each logical core to a physical location in

the chip. In this work, we propose the mapping limit concept for the first time

that points out the resource saving upper limit in logical and physical mapping.

Furthermore, we propose a closed-loop mapping strategy with an asynchronous

4D model partition for logical mapping and a Hamilton loop algorithm (HLA) for

physical mapping. We implement the mapping methods on our state-of-the-

art neuromorphic chip, TianjicX. Extensive experiments demonstrate the superior

performance of our mapping methods, which can not only outperform existing

methods but also approach the mapping limit. We believe the mapping limit

concept and the closed-loop mapping strategy can help build a general and

e�cient mapping framework for neuromorphic hardware.

KEYWORDS

neuromorphic chip, logical mapping, physical mapping, mapping limit, closed-loop

mapping

1. Introduction

Deep neural networks (DNNs) have made a series of breakthroughs in many fields.

With the exponential growth (Vaswani et al., 2017; Gholami et al., 2021) of parameters and

computations of DNN models, the memory and computational costs are unaffordable for

conventional (Von Neumann, 1993) architectures. To overcome the memory wall problem,

the decentralized manycore architecture emerges in recent years for performing neural

network workloads, which presents massive processing parallelism, memory locality, and

multi-chip scalability (Painkras et al., 2013; Akopyan et al., 2015; Han et al., 2016; Jouppi

et al., 2017; Parashar et al., 2017; Shin et al., 2017; Davies et al., 2018; Chen et al., 2019; Pei

et al., 2019; Shao et al., 2019; Deng et al., 2020; Zimmer et al., 2020). Each functional core

Frontiers inNeuroscience 01 frontiersin.org4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1168864
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1168864&domain=pdf&date_stamp=2023-05-18
mailto:peij@mail.tsinghua.edu.cn
https://doi.org/10.3389/fnins.2023.1168864
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1168864/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

contains independent computation and memory resources with

close distance, and cores communicate through a flexible routing

fabric (Wu et al., 2020). Due to the limited hardware resources

in each core, a large neural network model has to be partitioned

and mapped onto cores during deployment. The mapping process

experiences two stages: logical mapping and physical mapping.

In the logical mapping stage, the requirements for computation

and memory resources are important consideration factors for

allocating cores. The parameters and the associated computations

are divided into small slices through tensor dimension partition

and each slice is allocated into a single core with limited hardware

resources (Shao et al., 2019; Deng et al., 2020; Wu et al., 2020). For

a convolutional layer, most previous work adopts the 2D partition

to split the input channel (Cin) and the output channel (Cout)

dimensions. However, partitioning the input channel dimension

would generate partial sums (psum), which might degrade the

model accuracy. To avoid the accuracy loss, the bit-width of

psum has to be enlarged, which unfortunately results in longer

communication latency and larger memory overhead.

The logical mapping only partitions a neural network and

allocates the partitioned sub-networks to cores logically. This stage

does not care the physical locations of cores on real hardware. The

physical mapping places each logical core to a physical location

in the chip, which greatly affects the communication latency and

might cause the deadlock problem (Wu et al., 2020). The core

placement optimization for minimized latency is actually an NP-

hard problem (Myung et al., 2021) and the search space grows

rapidly as the number of cores increases. Existing algorithms for

physical mapping on a 2D mesh topology are usually heuristic.

In this work, we find that there exists a limit in mapping

a neural network model onto the decentralized multi-core

architecture widely used by neuromorphic hardware. To approach

this limit for fully utilizing hardware resources, we propose the

closed-loop mapping strategy. Specifically, in logical mapping, we

propose an asynchronous 4D partition between input activations

(IA) and weights (W) from four dimensions for reducing execution

latency; in physical mapping, we propose a Hamilton Loop

Algorithm (HLA) for deadlock-free core placement with reduced

communication latency. With our optimization, the running speed

and computing efficiency can be improved by 7.6 and 8.8×,

respectively via the integration of the logical mapping and the

physical mapping, compared with the synchronous partition.

Moreover, the running speed and computing efficiency can

approach the performance limit of hardware, which is validated on

the TianjicX chip (Deng et al., 2018).

2. Preliminaries and related works

2.1. Graph representation

As aforementioned, mapping a neural network model onto a

decentralized multi-core architecture has two stages: the logical

mapping and the physical mapping, as illustrated in Figure 1.

The logical cores can be represented by a graph G(V , E), thus

the physical mapping can be viewed to place G(V , E) on a circuit

graph T(U, S). V and U denote the sets of nodes, i.e., logical cores

and physical cores, respectively; E and S denote the sets of edges, i.e.,

connections between logical cores and physical cores, respectively.

Specifically, the physical mapping can be described as follows:

V → U, s.t. =

|V| ≤ |U|,

∀vi ∈ V ,map(vi) ∈ U,

∀vi 6= vj ∈ V ,map(vi) 6= map(vj).

(1)

where vi and vj denote the i-th and j-th nodes (i.e., core) in V ,

respectively; |V| and |U| represent the numbers of logical and

physical cores, respectively. Above constraints imply one-to-one

mapping from logical cores to physical cores. Furthermore, we

denote the weighted edges (#packets) between vi and vj as cij and

denote the Manhattan distance between map(vi) and map(vj) as

Mij, i.e.,Mij = |xi − xj| + |yi − yj| where (xi, yi) and (xj, yj) are the

coordinates of the two physical cores on the 2D physical plane. Let’s

define E|h| as the energy of transmitting a routing packet through

a single hop distance, and define Lij as the communication latency

with a routing packet between map(vi) and map(vj), respectively.

With the above definitions, the total communication cost Ccost

(Myung et al., 2021), the average communication latency L (Amin

et al., 2020), and the average power consumption P (Pei et al., 2019;

Ma et al., 2020) can be calculated by

Ccost =
∑

∀vi ,vj∈V
cij ×Mij, (2)

L = avg(
1

Ni

∑

j
cij × Lij), (3)

P =
Ccost × E

∣

∣

∣
h
∣

∣

∣

T
. (4)

where the Ni is the number of routing packets received by the

physical coremap(vi). The working period T can be approximately

viewed as a fixed variable.

2.2. Logical mapping

At present, most researchers adopt 2D partition in logical

mapping by splitting both input and output channel dimensions.

The partition of the input channel dimension would compromise

accuracy due to the accumulation of psums, while the partition of

the output channel dimension would cause the requirement for

data reshaping in the next layer. Besides the 2D partition, some

works such as Simba (Shao et al., 2019; Zimmer et al., 2020) and

Tianjic (Pei et al., 2019; Deng et al., 2020) can support 4D partition

further on the feature map width and height. However, current

mapping strategies face some challenges as shown in Figure 2,

including the data overlap between the feature map partition, the

psum accumulation in the input channel partition, and the data

reshaping in the output channel partition.

The additional storage overheads in a core can be generated

by the row-wise overlap Srow_add, the column-wise overlap Scol_add,

the psum Sp_add, and the reshaped data Sre_add, which also result

in additional computation latency. The additional storage and

computation latency can be obtained by

Sadd = Srow_add + Scol_add + Sp_add + Sre_add, (5)

Frontiers inNeuroscience 02 frontiersin.org5

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 1

Illustration of mapping (A) a neural network onto neuromorphic hardware with two stages: (B) logical mapping; (C) physical mapping.

FIGURE 2

Typical challenges in neural network partition: (A) column-wise overlap; (B) row-wise overlap; (C) psum accumulation; (D) data reshaping. The

symbol * means convolution.

tadd_1 = f1(Srow_add)+ f2(Scol_add)

+f3(Sp_add)+ f4(Sre_add).
(6)

where Sadd denotes the additional storage overhead in a core. fi(·)

represents the function for processing the additional data. Note that

we have fi(0) = 0. tadd_1 is the additional computation latency

of a core neglecting the additional latency caused by the physical

mapping. Because the partition depth of input channels is equal to

that of each weight filter, all of these partition methods are viewed

as the synchronous partition in this work.

2.3. Physical mapping

The optimal physical mapping is acknowledged to be an NP-

hard problem (Myung et al., 2021). The 2D mesh topology is

widely adopted by neuromorphic hardware owing to its high

throughput and scalability (Painkras et al., 2013; Akopyan et al.,

2015; Davies et al., 2018; Pei et al., 2019; Shao et al., 2019; Deng

et al., 2020; Zimmer et al., 2020). And the deadlock occurs in

the 2D mesh usually. When the requested number of packets

is more than that of the packet buffer size, the cores wait

each other infinitely, thus deadlock occurs. To avoid deadlock

Frontiers inNeuroscience 03 frontiersin.org6

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 3

Example for helping understand communication latency caused by

physical mapping.

and optimize the communication latency and energy in physical

mapping, reinforcement learning (Ma et al., 2019; Barrett et al.,

2020; Feng et al., 2020; Cappart et al., 2021; Mazyavkina et al.,

2021) is used by some researchers (Wu et al., 2020; Myung et al.,

2021). Moreover, Figure 3 explains the communication latency in a

multi-core architecture after physical mapping (Amin et al., 2020).

Because the 8-th and the 9-th cores send data to the 11-th core

concurrently, the 10th core is crossed twice by them due to the

physical route. Thus, the latency is generated by the 10th core.

There aremany heuristic solutions to physical mapping, such as

the genetic algorithm (GA) (Lei and Kumar, 2003; Zhou et al., 2006)

and the simulated annealing (SA) (Ma et al., 2020) algorithm. Some

teams (Davies et al., 2018; Shao et al., 2019; Zimmer et al., 2020) also

use the greedy algorithm to optimize the communication latency

and energy. We use tadd_2 to denote the additional computation

latency of a core when considering the physical mapping. It can be

obtained by

tadd_2 = g1(Srow_add)+ g2(Scol_add)

+g3(Sp_add)+ g4(Sre_add).
(7)

where gi(·) represents the function for processing above additional

data under the condition of physical mapping. Similarly, we have

gi(0) = 0.

3. Mapping limit

3.1. Logical mapping limit

For logical mapping, we introduce a theoretical description.We

denote the sets of weights (W), input activations (IA), and output

activations (OA) of the i-th and j-th core as Wi, Wj, IAi, IAj, OAi,

and OAj, and further denote the storage volume of W and IA in

each core as SW and SIA, respectively. Then, the logical mapping

can be described as

∀i, ∪i IAi = IA, ∪i Wi = W, (8)

∀i, OAi = IAi ∗Wi, OA = IA ∗W, (9)

∀i 6= j, ∪i OAi = OA, OAi ∩ OAj = ∅, (10)

SIA + SW ≤ Smem, (11)

where Smem represents the total memory volume of a core. The non-

overlap of OA indicates each output activation is calculated only

once. Because OAwill be transmitted to the IAmemory of the cores

for the next layer, Smem does not take SOA into account.

The additional storage overhead for a core generated in

partition can be calculated by:

Scol_add =
HinCin

Jm
(Kw − s) · µ(I − 2), (12)

Srow_add =
WinCin

Im
(Kh − s) · µ(J − 2), (13)

Sre_add =
HoutWoutCout

IJm
· µ(n− 2), (14)

Sp_add =
HoutWoutCout

IJm
·
bp

b
· µ(m− 2). (15)

where µ(·) represents the unit step function, s represents the stride

of the filter,Hin,Win,Hout , andWout represent the height and width

sizes of IA and OA, respectively. kw and kh are the width and height

sizes of each weight kernel. And bp and b represent the bit-width of

psum and IA, respectively. The logical mapping limitmeans that the

logical mapping does not produce any additional storage overhead,

which can be described as

∀i 6= j, IAi ∩ IAj = ∅, Wi ∩Wj = ∅ (16)

Sadd = 0. (17)

When we approach the logical mapping limit, the values of Srow_add,

Scol_add, Sp_add, Sre_add, tadd_1, and tadd_2 should be zero.

3.2. Physical mapping limit

After the logical mapping stage, the logical cores would

be mapped onto the physical cores in a real chip. With the

aforementioned graph representation, we optimize the average

communication latency (L) and power consumption (P) without

deadlock. The physical mapping limit here implies all logical cores

are physically placed very close, especially being neighbors with

Manhattan distance equal to one, which can be described as

∀vi, vj, Mij = 1. (18)

Then, the communication cost can be reduced to

Ccost =
∑

∀vi ,vj∈V
cij ×Mij =

∑

∀vi ,vj∈V
cij. (19)

Because W and IA must be put in cores, the minimum of Ccost

is the sum ofW and IA. Now, the communication cost can be given

as follows:

Ccost =
∑

∀vi ,vj∈V
cij

=
∑

∀vi∈V
(IAi +Wi) = IA+W.

(20)

Frontiers inNeuroscience 04 frontiersin.org7

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 4

Closed-loop mapping based on (A) IA or (B) W.

The average communication latency and power consumption

can be the communication latency and power consumption by

transmitting a routing packet between two neighboring cores due

toMij = 1.

In short, integrating the logical mapping limit and the physical

mapping limit, the overall mapping limit follows

∀i 6= j, IAi ∩ IAj = ∅, Wi ∩Wj = ∅, (21)

Sadd = 0, (22)

∀vi, vj, Mij = 1. (23)

To approach themapping limit, a closed-loopmapping strategy

is proposed in the next section.

4. Approaches

4.1. Closed-loop mapping strategy

To approach the logical mapping limit, we propose a closed-

loop mapping strategy with two forms. As illustrated in Figure 4,

one form is based on IA, and the other is based on W. Taking

four cores and the IA-based form as an example (see Figure 4A),

the computing process can be described as follows. In the first

phase, each core performs the convolution operation between IAi

and Wi. At the end of the first phase, each core keeps its Wi

stationary and sends its IAi to the downstream core. In the next

phase, each core performs the convolution operation between Wi

and its newly received IA. This loop would be closed when all cores

have performed a complete convolution operation between its local

Wi and all IAs. In this example, the loop needs four phases to close,

and then we can get all OAs distributed in the four cores. The

computing process can be summarized as

OA(i−t+N)%N =

N−1
∑

t=0

IA(i−t+N)%N ∗Wi. (24)

where N denotes the number of cores used for the layer and t is

the index of phases. It can be seen that the above mapping strategy

does not consume any additional memory overhead, satisfying the

logical mapping limit given in Equations (21)–(22). For the W-

based closed-loop mapping, the overall flow is similar. The only

difference is that each core keeps IA stationary and exchanges W

between cores.

In order to implement the closed-loop mapping on hardware,

a 4D partition with synchronous and asynchronous methods is

proposed for logical mapping, which is more flexible and general

than the existing 2D synchronous partition. Here “4D” refers toCin,

Cout , and two dimensions of each feature map.

First, we try the 4D synchronous partition, as illustrated in

Figure 5. Note that I, J,m, and n represent the number of partition

groups in feature map height, feature map width, Cin, and Cout

dimensions, respectively. kw and kh are the width and height sizes

of each weight kernel. In the synchronous partition, W should be

broadcasted along the feature map dimensions I × J times, and IA

should be broadcasted along the output channel dimension n times.

Therefore, the redundancy of storage caused by this partition is

Ssync =
n(HinWinCin)+ IJ(kwkhCinCout)

HinWinCin + khkwCinCout
− 1. (25)

Moreover, the number of allocating cores is

N = IJmn. (26)

The resulting storage overheads for IA and W in each core

should be

Frontiers inNeuroscience 05 frontiersin.org8

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 5

Illustration of the 4D synchronous mapping.

FIGURE 6

Illustration of the 4D asynchronous closed-loop mapping: (A) exchanging IA as Figure 4A; (B) exchanging W as Figure 4B.

SIA =
HinWinCin

IJm
, SW =

kwkhCinCout

mn
. (27)

In short, the additional storage overhead on hardware given the

4D synchronous partition can be

Shw_add = (IJ − 1)kwkhCinCout + (n− 1)HinWinCin + IJmnSadd.

(28)

Apparently, Equation (21) can only be satisfied under the

condition IJn = 1, but Equation (22) cannot be satisfied under this

case because psums exist. Therefore, the synchronous 4D partition

fails to approach the logical mapping limit.

In order to approach the logical mapping limit described in

Equations (21)–(22), we further propose an asynchronous partition

method based on the closed-loopmapping strategy. Corresponding

to the IA-based closed-loop mapping, the asynchronous partition

method selects Cin of IA and Cout of W to partition. Taking N = 4

as an example, it can be seen from Figure 6A that both Cin of IA

and Cout of W are partitioned into m = n = N groups. Then, the

resulting IA and W in each core can satisfy Equation (21) without

duplication. The reshaping overhead does not exist because the

shape of OA is consistent with that of IA. Because psums can be

accumulated locally, the psum communication also does not exist.

Therefore, all additional storage overheads are zero and Equation

Frontiers inNeuroscience 06 frontiersin.org9

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 7

HLA-based physical mapping: (A) even number of cores; (B) odd number of cores.

(22) is satisfied. For theW-based closed-loopmapping in Figure 6B,

the overall idea is similar to the IA-based case while Hin of IA and

Cin ofW are selected to partition. For the asynchronous closed-loop

mapping, the storage overheads for IA and W in each core are

SIA =
HinWinCin

N
, SW =

kwkhCinCout

N
. (29)

With the above knowledge, we make an explanation for

the words “synchronous” and “asynchronous.” In this work,

“synchronous” means both the partitioning dimensions of IA and

W involve Cin. In contrast, “asynchronous” means the partitioning

dimensions of IA and W are different, for example in Figure 6A

partitioning IA along theCin dimension while partitioningW along

the Cout dimension, and in Figure 6B partitioning IA along the Hin

dimension while partitioning W along the Cin dimension. In the

asynchronous closed-loop mapping, one of IA and W in each core

has a complete Cin dimension, and the other is gradually acquired

by exchanging data between cores without any redundant data

copy.

4.2. Hamilton loop algorithm for physical
mapping

To satisfy Equation (23) of the physical mapping limit, the

Hamilton Loop Algorithm (HLA) is proposed for the closed-loop

mapping strategy with asynchronous partition. Taking 12 cores as

an example, it can be seen from Figure 7A that the Manhattan

distance of every two logically neighboring cores equals 1, i.e.,

satisfyingMij = 1 as given in Equation (23). The physical mapping

form can be flexibly arranged according to the array form of the

available physical cores, e.g., 4 × 3, 3 × 4, and 6 × 2. Notice that

the number of cores cannot be odd, as illustrated in Figure 7B.

In those cases, Equation (23) cannot be satisfied unless there is a

diagonal communication path. Usually, only one Hamiltonian loop

is needed. A fast algorithm is proposed to find a Hamiltonian loop,

whose pseudo-codes are given in Algorithm 1.

for i in range(m): //row

//x direction communication distance

dx[i][0] = 1 if i == 0 else 0

//y direction communication distance

dy[i][0] = 0 if i == 0 else -1

if n == 2:

dx[i][n - 1] = -1 if i == m-1 else 0

dy[i][n - 1] = -1 if i == m-1 else 0

else:

dx[i][n - 1] = 0 if i % 2 ==0 else -1

dy[i][n - 1] = 1 if i % 2 ==0 else 0

for j in range(1,n-1): //column

if j = =1 and i != m - 1:

dx[i][j] = 1 if i % 2 ==0 else 0

dy[i][j] = 0 if i % 2 ==0 else 1

else:

dx[i][j] = 1 if i % 2 ==0 else 1

dy[i][j] = 0

Algorithm 1. Fast algorithm to find a Hamiltonian loop.

5. Experimental results

The mapping methods are implemented on a 28nm

neuromorphic chip, TianjicX (Ma et al., 2022), which adopts

a decentralized manycore architecture with 160 functional cores.

Each core has 128 multipliers and accumulators (MACs) for

parallel execution operations in neural networks. To maintain

accuracy as high as possible, the precision for accumulating psums

is 32-bit. TianjicX supports the aforementioned 4D partition

methods. The testing system includes a host computer, an Intel

Arria 10 FPGA, four TianjicX chips, and an oscilloscope, as

presented in Figure 8. The parameters and inputs of neural

networks can be downloaded onto the chip by the configuration

software on the host computer. The oscilloscope (RIGOL

MSO8104) is used to measure the running time. Notice that the

results of logical mapping are produced by the TianjicX simulator,

while the results involving physical mapping are measured from

the real chip.

Frontiers inNeuroscience 07 frontiersin.org10

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 8

Testing system based on the TianjicX neuromorphic chip.

5.1. Analysis of logical mapping

We focus our application measurements on the ResNet50 (He

et al., 2016), which is often used to benchmark by many hardwares

(Jiao et al., 2020; Zimmer et al., 2020; Jouppi et al., 2021). However,

as we do not have an automatic mapping tool at the current

stage, we select a portion of the ResNet50 convolutional network

for experimental analyses. In essence, the methodology can be

extended to the whole convolutional networks in principle. To

optimize the running time of each dimension, the synchronous

partition method is selected as a baseline for investigation. The

benchmarking layers are the 5-th and 6-th layers of ResNet50. The

dimension settings of synchronous mapping are listed in Table 1. J,

I, m and n represent the numbers of partition groups in the width,

height, input channel, and output channel dimensions, respectively.

First, from Model 1 to Model 6, I × J is set to a constant, 28, to

explore the influence of partitioning I, J on the running clocks.

Second, fromModel 7 toModel 12, J×m = const and I×m = const

are set to compare the influence priority of J, I, andm in dimension

partition. Third, fromModel 13 to Model 15, the influence priority

is further compared among I, J, m, and n. Finally, we analyze the

impact of changing partition dimensions on the running latency

and computing efficiency.

The experimental results of partitioning different dimensions

are provided in Figure 9. From Figure 9A, it can be seen that the

close the values between J and I, the shorter running time can be

achieved. Meanwhile, we observe that the latency results of Model

1–6 present small variance, which implies that the partition of

feature map dimensions has a negligible impact on the execution

latency. From Figure 9B, it can be seen that the running time would

be increased when we partition Cin, which introduces additional

accumulation of psums and extra inter-core communication. As

Figure 9C shows, althoughModel 7 introduces reshaping latency as

n increases, it still reduces the total running clocks by 8000 owing to

the decrease of m. It indicates that the partition of Cin has a larger

impact on the running time than the partition of Cout . Similarly, by

comparing Model 14 and Model 15, we find the partition of Cout

has larger impact than the partition of feature map dimensions.

Overall, the accumulation and communication of psums caused by

partitioning Cin has the greatest impact on the execution latency,

TABLE 1 Dimension settings of synchronous partition.

No. of cores J I m n Model

28 28 1 1 1 Model 1

28 14 2 1 1 Model 2

28 7 4 1 1 Model 3

28 4 7 1 1 Model 4

28 2 14 1 1 Model 5

28 1 28 1 1 Model 6

56 28 1 1 2 Model 7

56 14 1 2 2 Model 8

56 7 1 4 2 Model 9

56 1 28 1 2 Model 10

56 1 14 2 2 Model 11

56 1 7 4 2 Model 12

56 28 1 2 1 Model 13

28 14 1 1 2 Model 14

28 1 28 1 1 Model 15

while reshaping caused by partitioning Cout has a greater impact

than overlapping caused by partitioning feature map dimensions.

With the above knowledge, it is possible to optimize execution

latency by elaborating partition method.

As aforementioned, the asynchronous partition based on the

closed-loop mapping strategy can approach the mapping limit. To

demonstrate its superior performance, we compare the running

latency and computing efficiency of both synchronous partition

and asynchronous partition. We use two types of layers: one is the

15-th layer of ResNet50 with 3× 3 weight kernels, and the other is

the 16-th layer of ResNet50 with 1 × 1 weight kernels. The model

settings for the two benchmarking layers are respectively listed in

Tables 2, 3.

The experimental results are depicted in Figures 9D, E. Due

to the limited number of primitive instructions in TianjicX, the

maximum number of nodes in a closed loop cannot be larger

Frontiers inNeuroscience 08 frontiersin.org11

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 9

The logical mapping of running clocks and computing e�ciency (A) synchronous partition of changing I and J; (B) synchronous partition of

changing m, (I, J); (C) synchronous partition of changing m, n, and (I, J) (D) asynchronous partition with the 15-th layer of ResNet50; (E)

asynchronous partition with the 16-th layer of ResNet50.

TABLE 2 Dimension setting of synchronous and asynchronous partition

for the 15-th layer of ResNet50.

No. of cores J I m n Model

28 7 1 1 4 limit

28 7 1 2 2 S(m = 2)

28 7 2 1 4 A(#nodes = 2)

28 7 1 4 1 S(m = 4)

28 7 4 1 4 A(#nodes = 4)

S, synchronous mapping; A, asynchronous mapping; No. of nodes, number of nodes in a

closed loop.

TABLE 3 Dimension setting of synchronous and asynchronous partition

for the 16-th layer of ResNet50.

No. of cores J I m n Model

112 7 1 1 16 limit

112 7 1 2 8 S(m = 2)

112 7 2 1 16 A(#nodes = 2)

112 7 1 4 4 S(m = 4)

112 7 4 1 16 A(#nodes = 4)

S, synchronous mapping; A, asynchronous mapping; No. of nodes, number of nodes in a

closed loop.

than four. As Figure 9E presents, the running latency under

asynchronous partition based on the closed-loop mapping is faster

than that of synchronous mapping. For example, the running

latency of the 16-th layer can be improved by 4.12× under

four nodes in a loop. Without the communication of psums, the

communication latency of asynchronous mapping can also be

greatly reduced.

5.2. Analysis of HLA physical mapping

To test the latency of HLA, we select all-to-all communication

to conduct experiments. The 15-th layer of ResNet50 with 98KB

parameters is the target workload. The all-to-all communication

topology is illustrated in Figure 10A. The communicating latency

is tested on TianjicX by enabling 4, 8, 16, or 32 cores. The

energy consumption is estimated through simulation. Each case is

tested with multiple physical mapping methods, including HLA,

sequential neighboring placement with and without multicast

(Myung et al., 2021), and several prior placement methods,

including sequential placement (BS) (Wu et al., 2020), random

search (RS) (Wu et al., 2020), simulated annealing (SA), and the

RL-based approach (Wu et al., 2020). Due to the deadlock issue, we

do not give the results of the zigzag physical mapping (Ma et al.,

2020).

The communication latency results can be found in

Figures 10B, C. As predicted, the communication latency of HLA

is the shortest among all tested physical mapping methods, which

is quite close to the mapping limit. The communication latency

of HLA can be reduced by 4.22× compared to the neighboring

placement with broadcast, and reduced by 84.1, 80.1, 74.1, and

67.9% compared to BS, RS, SA, and RL, respectively. Due to the

launching delay of chip primitives, the communication latency

increases as the number of used cores grows. The communicating

Frontiers inNeuroscience 09 frontiersin.org12

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

latency of HLA approaches that of the mapping limit if there is no

launching overhead. When using the HLA physical mapping, all

cores are parallel to communicate without deadlock.

Assuming the number of cores is N and the data of a core for

communication is V , the total energy consumption of the mapping

limit, HLA and the neighboring placement with broadcast and

without broadcast can be calculated as follows:

EHLA = Elimit = N(VE|h|

N−1
∑

i=0

1)

= VE|h|
N(N − 1)

T
,

(30)

EN_B = VE|h|

N−1
∑

i=0

i+ N(VE|h|

N−1
∑

i=0

1)

= VE|h|
(N − 1)(3N − 2)

2T
,

(31)

EN_W_B = VE|h|

N
∑

i=0

(

i
∑

t=0

t +

N−i
∑

j=0

j)

= VE|h|
2N3 − 3N2 + N

6T
,

(32)

where EHLA, Elimit , EN_B, and EN_W_B represent the energy

consumption of under HLA, the mapping limit, the neighboring

placement with broadcast, and the neighboring placement without

broadcast, respectively. The energy results can be found in

Figure 10D. The energy consumption of all methods increases as

the number of the allocated cores grows. Obviously, the energy

consumption under the neighboring placement is much higher

than that under the mapping limit, while the energy consumption

under HLA is equal to that under the mapping limit.

In short, the HLA physical mapping based on the closed-

loop mapping strategy shows significant superiority on reducing

communication latency and energy consumption compared with

other methods. More importantly, the HLA physical mapping can

approach the mapping limit.

5.3. Integration of logical and physical
mapping

To demonstrate the performance of asynchronous logical

mapping and HLA physical mapping based on the closed-

loop mapping strategy, we deploy neural layers on TianjicX.

The experimental results are provided in Figure 11. Again,

Figures 11A, B evidence the superior latency of our closed-loop

mapping strategy compared to the conventional synchronous

mapping with Cin partition adopted by Simba (Shao et al., 2019;

Zimmer et al., 2020), Tianjic (Pei et al., 2019; Deng et al., 2020), and

other neural network accelerators (Han et al., 2016; Jouppi et al.,

2017; Parashar et al., 2017; Shin et al., 2017; Chen et al., 2019). The

FIGURE 10

The physical mapping of latency and consumption (A) all-to-all communication between cores; (B) comparing communication latency between the

neighboring placement, the mapping limit, and HLA; (C) comparing communication latency between prior methods, the mapping limit, and HLA; (D)

comparing energy consumption between the neighboring placement, the mapping limit, and HLA.

Frontiers inNeuroscience 10 frontiersin.org13

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

FIGURE 11

Running time and computing e�ciency by integrating the logical and physical mapping under the closed-loop mapping strategy: (A) running time

for the 15-th layer of ResNet50; (B) running time for the 16-th layer of ResNet50; (C) computing e�ciency for the 15-th layer of ResNet50; (D)

computing e�ciency for the 16-th layer of ResNet50.

better computing efficiency of the closed-loop mapping strategy is

also evidenced by Figures 11C, D. Specifically, with four nodes in a

closed loop, the running time can be reduced by 7.6× for the 15-th

layer of ResNet 50, and the computing efficiency can be improved

by 8.8× for the 16-th layer. The proposed closed-loop mapping

strategy implemented by integrating the asynchronous partition

and the HLA placement can approach the mapping limit.

6. Conclusion and discussion

In this work, we propose the mapping limit concept for

neuromorphic hardware based on the decentralized manycore

architecture, which points out the resource saving upper limit

during model deployment. To approach the mapping limit, we

further propose the closed-loop mapping strategy that includes

the asynchronous 4D partition for logical mapping and the HLA

placement for physical mapping. Our experiments demonstrate

the superiority of the proposed mapping methods. For example,

compared to conventional synchronous Cin partition, our mapping

methods improve the running time and computing efficiency by

7.6× and 8.8×, respectively, which can approach the mapping

limit.

Generally, the mapping schemes for multi-core system can be

divided into two processes: the first is the logical mapping process

and the second is the physical mapping process. Furthermore, the

logical mapping can be divided into two sets of models, which

are synchronization and asynchronization. Most of the previous

researches adopt the synchronization model based on the 2D

mapping system (Shao et al., 2019; Ma et al., 2020; Wu et al., 2020;

Myung et al., 2021), which only partitions the in-channel and out-

channel of the neural network. And these researches focus on the

physical mapping based on the 2D mapping system, while the 4D

mapping system is a general model that has wider applications.

Based on our 4D mapping system, we propose the mapping limit

concept for the multi-core system. In the 4D mapping system,

both the synchronization model and asynchronization model

are demonstrated through intensive experiments. To achieve the

mapping limit, we adopt the asynchronization mode to integrate

the logical process and the physical process by the closed-loop

mapping strategy.

Since the GPU is not a distributed architecture, the optimized

result may be slightly rather than significantly improved in

terms of energy consumption and computational speed. With the

emergence of the decentralized architecture, the multi-core system

is expected to be widely adopted due to its high-parallelism and

memory locality (Painkras et al., 2013; Akopyan et al., 2015; Han

et al., 2016; Parashar et al., 2017; Shin et al., 2017; Davies et al.,

2018; Chen et al., 2019; Pei et al., 2019; Shao et al., 2019; Deng

et al., 2020; Zimmer et al., 2020). Therefore, we are convinced that

our proposed methods will provide a systematic solution to map

neural networks onto multi-core systems, and provide guidance

Frontiers inNeuroscience 11 frontiersin.org14

https://doi.org/10.3389/fnins.2023.1168864
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

for further development of auto-mapping tools. Moreover, with the

proposed mapping limit and the closed-loop mapping strategy, it

is possible to build a general and efficient mapping framework for

multi-core system in the future.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SW proposed the idea, designed and did the experiments,

and wrote the manuscript. SW and QY conducted the algorithm

modeling work, contributed to the analysis, and interpretation of

results. SW, QY, and TX conducted the design and implementation

of the hardware testing platform. CM led the discussion and

revised it. JP directed the project and provided overall guidance.

All authors contributed to the article and approved the submitted

version.

Funding

This work was partially supported by Science and Technology

Innovation 2030—New Generation of Artificial Intelligence, China

Project (No. 2020AAA0109100).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Amin, W., Hussain, F., Anjum, S., Khan, S., Baloch, N. K., Nain, Z., et al. (2020).
Performance evaluation of application mapping approaches for network-on-chip
designs. IEEE Access 8, 63607–63631. doi: 10.1109/ACCESS.2020.2982675

Barrett, T., Clements, W., Foerster, J., and Lvovsky, A. (2020). “Exploratory
combinatorial optimization with reinforcement learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34 (New York, NY), 3243–3250.
doi: 10.1609/aaai.v34i04.5723

Cappart, Q., Moisan, T., Rousseau, L.-M., Prémont-Schwarz, I., and Cire, A.
A. (2021). “Combining reinforcement learning and constraint programming for
combinatorial optimization,” in Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35 (Palo Alto, CA), 3677–3687. doi: 10.1609/aaai.v35i5.16484

Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. (2019). Eyeriss v2: a flexible accelerator
for emerging deep neural networks on mobile devices. IEEE J. Emerg. Select. Top.
Circuits Syst. 9, 292–308. doi: 10.1109/JETCAS.2019.2910232

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, L., Liang, L., Wang, G., Chang, L., Hu, X., Ma, X., et al. (2018).
Semimap: a semi-folded convolution mapping for speed-overhead balance on
crossbars. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 39, 117–130.
doi: 10.1109/TCAD.2018.2883959

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: A unified
and scalable chip bridging spike-based and continuous neural computation. IEEE J.
Solid-State Circuits 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Feng, K., Wang, Q., Li, X., and Wen, C.-K. (2020). Deep reinforcement learning
based intelligent reflecting surface optimization for miso communication systems.
IEEE Wireless Commun. Lett. 9, 745–749. doi: 10.1109/LWC.2020.2969167

Gholami, A., Yao, Z., Kim, S., and Mahoney, M. W. (2021). AI and Memory Wall[j].
RiseLab Medium Post.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., et al. (2016).
EIE: efficient inference engine on compressed deep neural network. ACM SIGARCH
Comput. Architect. News 44, 243–254. doi: 10.1145/3007787.3001163

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision[0mm][8mm]
and Pattern Recognition (Las Vegas), 770–778. doi: 10.1109/CVPR.2016.90

Jiao, Y., Han, L., Jin, R., Su, Y.-J., Ho, C., Yin, L., et al. (2020). “7.2 a 12nm
programmable convolution-efficient neural-processing-unit chip achieving 825tops,”
in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (San Francisco,
CA), 136–140. doi: 10.1109/ISSCC19947.2020.9062984

Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G.,
et al. (2021). “Ten lessons from three generations shaped Google’s tpuv4i: industrial
product,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA) (Valencia), 1–14. doi: 10.1109/ISCA52012.2021.00010

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017).
“In-datacenter performance analysis of a tensor processing unit,” in Proceedings of the
44th Annual International Symposium on Computer Architecture (Toronto, ON), 1–12.
doi: 10.1145/3140659.3080246

Lei, T., and Kumar, S. (2003). “A two-step genetic algorithm for mapping task
graphs to a network on chip architecture,” in Euromicro Symposium on Digital System
Design, 2003 (Belek-Antalya), 180–187.

Ma, C., Zhao, Q., Li, G., Deng, L., and Wang, G. (2020). A deadlock-free physical
mapping method on the many-core neural network chip. Neurocomputing 401,
327–337. doi: 10.1016/j.neucom.2020.03.078

Ma, Q., Ge, S., He, D., Thaker, D., and Drori, I. (2019). Combinatorial optimization
by graph pointer networks and hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936.

Ma, S., Pei, J., Zhang, W., Wang, G., Feng, D., Yu, F., et al. (2022). Neuromorphic
computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots. Sci.
Robot. 7:eabk2948. doi: 10.1126/scirobotics.abk2948

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2021). Reinforcement
learning for combinatorial optimization: a survey. Comput. Oper. Res. 134:105400.
doi: 10.1016/j.cor.2021.105400

Myung, W., Lee, D., Song, C., Wang, G., and Ma, C. (2021). Policy gradient-based
core placement optimization for multichip many-core systems. IEEE Trans. Neural
Netw. Learn. Syst. 1–15. doi: 10.1109/TNNLS.2021.3117878

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C., et al.
(2013). Spinnaker: a 1-w 18-core system-on-chip for massively-parallel neural network
simulation. IEEE J. Solid State Circuits 48, 1943–1953. doi: 10.1109/JSSC.2013.2259038

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B.,
et al. (2017). SCNN: an accelerator for compressed-sparse convolutional neural
networks. ACM SIGARCH Comput. Architect. News 45, 27–40. doi: 10.1145/3140659.
3080254

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid tianjic chip architecture.Nature 572, 106–111.
doi: 10.1038/s41586-019-1424-8

Frontiers inNeuroscience 12 frontiersin.org15

https://doi.org/10.3389/fnins.2023.1168864
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/ACCESS.2020.2982675
https://doi.org/10.1609/aaai.v34i04.5723
https://doi.org/10.1609/aaai.v35i5.16484
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/TCAD.2018.2883959
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/LWC.2020.2969167
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ISSCC19947.2020.9062984
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1016/j.neucom.2020.03.078
https://doi.org/10.1126/scirobotics.abk2948
https://doi.org/10.1016/j.cor.2021.105400
https://doi.org/10.1109/TNNLS.2021.3117878
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1145/3140659.3080254
https://doi.org/10.1038/s41586-019-1424-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al. 10.3389/fnins.2023.1168864

Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N.,
et al. (2019). “SIMBA: scaling deep-learning inference with multi-chip-module-based
architecture,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (New Jersey, NJ), 14–27. doi: 10.1145/3352460.3358302

Shin, D., Lee, J., Lee, J., and Yoo, H.-J. (2017). “DNPU: an 8.1 tops/w reconfigurable
CNN-RNN processor for general-purpose deep neural networks,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC) (San Francisco, CA), 240–241.
doi: 10.1109/ISSCC.2017.7870350

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, 30 (Long Beach, CA).

Von Neumann, J. (1993). First draft of a report on the EDVAC. IEEE Ann. Hist.
Comput. 15, 27–75. doi: 10.1109/85.238389

Wu, N., Deng, L., Li, G., and Xie, Y. (2020). Core placement optimization
for multi-chip many-core neural network systems with reinforcement
learning. ACM Trans. Design Autom. Electron. Syst. 26, 1–27. doi: 10.1145/
3418498

Zhou, W., Zhang, Y., and Mao, Z. (2006). “An application specific
NOC mapping for optimized delay,” in International Conference on Design
and Test of Integrated Systems in Nanoscale Technology, 2006 (Tunis),
184–188.

Zimmer, B., Venkatesan, R., Shao, Y. S., Clemons, J., Fojtik, M., Jiang,
N., et al. (2020). A 0.32-128 tops, scalable multi-chip-module-based deep
neural network inference accelerator with ground-referenced signaling in
16 nm. IEEE J. Solid State Circuits 55, 920–932. doi: 10.1109/JSSC.2019.29
60488

Frontiers inNeuroscience 13 frontiersin.org16

https://doi.org/10.3389/fnins.2023.1168864
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1109/ISSCC.2017.7870350
https://doi.org/10.1109/85.238389
https://doi.org/10.1145/3418498
https://doi.org/10.1109/JSSC.2019.2960488
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 14 June 2023

DOI 10.3389/fnins.2023.1167134

OPEN ACCESS

EDITED BY

Huajin Tang,

Zhejiang University, China

REVIEWED BY

Mikhail A. Mishchenko,

Lobachevsky State University of Nizhny

Novgorod, Russia

Shuangming Yang,

Tianjin University, China

*CORRESPONDENCE

Hong Qu

hongqu@uestc.edu.cn

RECEIVED 16 February 2023

ACCEPTED 26 May 2023

PUBLISHED 14 June 2023

CITATION

Chen Y, Liu H, Shi K, Zhang M and Qu H (2023)

Spiking neural network with working memory

can integrate and rectify spatiotemporal

features. Front. Neurosci. 17:1167134.

doi: 10.3389/fnins.2023.1167134

COPYRIGHT

© 2023 Chen, Liu, Shi, Zhang and Qu. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Spiking neural network with
working memory can integrate
and rectify spatiotemporal
features

Yi Chen, Hanwen Liu, Kexin Shi, Malu Zhang and Hong Qu*

School of Computer Science and Engineering, University of Electronic Science and Technology of

China, Chengdu, China

In the real world, information is often correlated with each other in the time

domain. Whether it can e�ectively make a decision according to the global

information is the key indicator of information processing ability. Due to the

discrete characteristics of spike trains and unique temporal dynamics, spiking

neural networks (SNNs) show great potential in applications in ultra-low-power

platforms and various temporal-related real-life tasks. However, the current SNNs

can only focus on the information a short time before the current moment, its

sensitivity in the time domain is limited. This problem a�ects the processing ability

of SNN in di�erent kinds of data, including static data and time-variant data, and

reduces the application scenarios and scalability of SNN. In this work, we analyze

the impact of such information loss and then integrate SNNwith working memory

inspired by recent neuroscience research. Specifically, we propose Spiking Neural

Networks with Working Memory (SNNWM) to handle input spike trains segment

by segment. On the one hand, this model can e�ectively increase SNN’s ability

to obtain global information. On the other hand, it can e�ectively reduce the

information redundancy between adjacent time steps. Then, we provide simple

methods to implement the proposed network architecture from the perspectives

of biological plausibility and neuromorphic hardware friendly. Finally, we test

the proposed method on static and sequential data sets, and the experimental

results show that the proposed model can better process the whole spike train,

and achieve state-of-the-art results in short time steps. This work investigates

the contribution of introducing biologically inspired mechanisms, e.g., working

memory, and multiple delayed synapses to SNNs, and provides a new perspective

to design future SNNs.

KEYWORDS

spiking neural network, workingmemory, convolutional neural network, CIFAR10, multi-

dendrite

1. Introduction

Artificial Neural Networks (ANNs) learned from biological neural networks achieved

huge success in these years. Spiking Neural Networks (SNNs) as a step forward to biological

neural networks caught up with their ANNs counterparts and even outperform in computer

vision (Meng et al., 2022; Zhu et al., 2022), sound recognition (Pan et al., 2020, 2021), and

so on (Lobo et al., 2020; Li et al., 2022). Theoretically, SNNs, which are more similar to

biological neural networks, should have more advantages in dealing with real tasks. On the

Frontiers inNeuroscience 01 frontiersin.org17

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1167134
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1167134&domain=pdf&date_stamp=2023-06-14
mailto:hongqu@uestc.edu.cn
https://doi.org/10.3389/fnins.2023.1167134
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1167134/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

contrary, there is still a certain gap between SNN and ANN in

terms of the scope of application and performance in general.

The reason is that ANN’s synchronicity in processing simulated

information allows it to fully consider every detail. In contrast,

SNN’s asynchronous processing of discrete information makes

it better in power consumption performance, but it cannot

comprehensively consider the complete information. In fact, SNNs’

advantages in complex temporal dependence have not been fully

discovered. A classic spiking neuron can only accumulate the

most recent spike train it has received and fails to integrate

comprehensive spatiotemporal features, as shown in Figure 1. For

the static image with rate-based coding, the one-way aggregation of

SNN itself makes it unable to judge based on valid information. The

effect of this problem is evenmore pronouncedwith latency coding,

where neurons see only a small part of the picture. The same is true

for dynamic sequential data. For example, if a video of a long jump

contains two consecutive actions, namely a run-up, and a jump, the

traditional SNN structure may make a judgment during the run-up

and ignore the subsequent jump.

Previously, researchers have tried to increase the temporal

receiver domain of SNNs in various ways to improve the ability of

SNNs to process spatiotemporal data. According to the different

ideas of their methods, they can be divided into two categories:

training more parameters of neurons and changing the structure

of neural networks.

In addition to the weights that can be trained as in ANN,

spiking neurons have many different parameters that determine the

dynamic characteristics of neurons. In Luo et al. (2022), by training

synaptic delay, the neuron obtains the ability to rearrange and

integrate the spike train, which further increases the ability of SNN

to process timing data based on the original learning algorithm. In

Fang et al. (2021b), by training the time constant of the neuron, the

spike response function of the neuron is changed, and the spiking

neuron can obtain the time receiving field length and attenuation

coefficient more suitable for the current task through learning. In

Rathi and Roy (2023), the threshold is changed into a trainable

parameter. However, the above algorithm is only optimized at the

neuron level, and a single neuron can still only obtain limited

information and cannot obtain a global perspective.

In order to expand spiking neurons’ temporal receptive fields,

researchers have made various works according to specific tasks by

referring to various ANN structures that already exist. In Zhang

and Li (2021), the author added circular connections to SNN, but

the weight of phantom connections was manually set. Zhang and Li

(2019), the author also changed the network into a loop structure

and proposed an effective training method. El-Assal et al. (2022),

the author takes the 3D convolution kernel as the input weight.

However, this method will extract a large amount of redundant

information between adjacent time periods, so compared with the

2D convolution method commonly used in SNN, the improvement

is limited. In Yao et al. (2021), the author introduced the attention

structure into SNN and proposed the SNN network based on

temporal attention. This kind of network is a hybrid network of

ANN and SNN. In the forward inference stage, in addition to the

original SNN operation, the network also needs to pass a fully

connected network with a multi-layer sigmoid function as the

activation function, which increases the computation amount.

In the biological brain, cortical neurons process information

on multiple timescales, and areas important for working memory

contain neurons capable of integrating information over a long

timescale (Kim and Sejnowski, 2021). In terms of vision, working

memory is already involved in the early part of the whole

visual pathway. The distinct visual stimuli (oriented gratings and

moving dots) are flexibly recorded into the same working memory

format in visual and parietal cortices when that representation

is useful for memory-guided behavior (Kwak and Curtis, 2022).

Therefore, working memory is very important for the extraction of

temporal information. Introducing working memory into SNN can

effectively improve the processing ability of SNN on spatiotemporal

data. Although the specific structure of working memory in the

brain has not been determined, we can still combine the properties

of SNN to propose a working memory block suitable for SNN.

Based on this, we integrate multiple delayed synapses in spiking

neural networks and propose a simple but effective structure

Spiking Neural Network with Working Memory (SNNWM).

Compared with traditional SNN, SNNWM adds multiple groups of

dendrites with different delays. These dendrites effectively increase

SNN’s receptive field in the time domain, enabling SNN to gradually

acquire global vision with the deepening of network layers. After

that, we provide a simple method to implement the proposed

network architecture in both software and hardware. Among

them, we analyze the differences between SNNWM and traditional

SNN in hardware implementation and draw the conclusion

that SNNWM can increase a small number of storage resource

access operations without increasing the extra consumption in

computation. Finally, we test our method on two different data:

static image, and dynamic event sequence. Experimental results

show that working memory increases SNN’s power dealing with

spike trains and reaches the state of the art with low latency.

In summary, our main contributions are as follows:

1) We propose the spiking neural network with working memory

by introducing multiple delayed synapses and offer a simple

method to reduce the number of parameter increases.

2) For the model proposed in this paper, we give the

implementation methods of software and hardware and

further demonstrate that the proposed model will not generate

excessive resource consumption when implemented by

hardware.

3) We further validated the effectiveness of adding working

memory to SNN by testing the effectiveness of the proposed

model on static and dynamic data, respectively.

2. Materials and methods

In this section, we first introduce the spiking neuron model and

later propose our spiking neural network with working memory

based on this neuron model. After that, we propose a practical

implementation of SNNWM for neuromorphic hardware as well as

FPGAs (Field Programmable Gate Arrays). Subsequently, to further

enhance the temporal aggregation ability of the model and simplify

the computational burden, we propose a temporal fusion layer.

Finally, we introduce the training algorithm used in this paper.

Frontiers inNeuroscience 02 frontiersin.org18

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

FIGURE 1

Information loss with di�erent coding methods. (A) Original image. The pixel value of the image will be directly input into ANNs, so the ANNs see the

full image. (B) Latency coding. At 3 ms, the neurons “see” only part of the background grass in the picture, not the horse, and the color was distorted.

(C) Rate coding. At 3 ms, the neurons “see” the shape of the horse, but the color was distorted.

2.1. Spiking neuron models

The Leaky Integrate and Fire (LIF) model and Integrate and

Fire (I&F) model are the two most commonly used spiking neuron

model at present, which is more optimized for neuromorphic

hardware design due to their lower complexity and iterative

representation. In general, the I&F model can be regarded as the

LIFmodel with the leaky term set to 1. Therefore, for simplicity and

generality, we adopt the discrete representation LIF model in Wu

et al. (2018). In LIF model, the membrane potential Vj of neuron j

at time t is updated as follow:

Vj(t) = e−
1
τ Vj(t − 1)+

Ni
∑

i=1

wijK(si(t)), (1)

where wij is the synaptic weight between neuron i and j, K(s) is the

spike response function and here we chose K(s) = s for simplicity,

si(t) ∈ {0, 1} is the spike train from presynaptic neuron i and

s(t) = 1 means neuron i fires a spike at time t. When the membrane

potential exceeds the threshold θ from below, the spiking neuron j

fires a spike sj(t) at this time t, and its membrane potential is set to

resting potential Vrest . This procedure can be described as:

sj(t) = H(Vj(t)− θ), (2)

Vj(t) = Vj(t)(1− sj(t))+ Vrestsj(t), (3)

where H is the Heaviside step function:

H(x) =

{

1, x ≥ 0

0, else
. (4)

It can be found by Equation (1) that SNN can process simple

time-series information naturally, and its temporal reception field

is closely related to constant τ , namely leaky term. Specifically, the

previous spikes can affect the membrane potential at that moment,

dotted arrows from layer l to layer l + 1 in Figure 2A, and then

indirectly affect the membrane potential at the current moment by

leaky term, the solid arrows on the bottom in Figure 2A. Moreover,

this indirect effect may be eliminated by firing a spike that causes

the membrane potential to reset. Spiking neurons themselves have

limited temporal information processing ability, so it is necessary to

make some changes in the network structure to improve the ability

of SNN.

2.2. Spiking neural network with working
memory

Working memory is defined as a processing resource of

limited capacity, involved in the preservation of information while

simultaneously processing the same or other information. There

are a variety of theories about the formation mechanism and

storage structure of workingmemory. Still, here we only focus on its

main function, which is to store a piece of related information for

other modules to use. Here, we expect the spiking neuron to change

its membrane potential mainly based on the spikes over a period of

time, rather than on the spikes at the present moment. This means

that we need to modify the spike train over a period of time so that

it can reach the neuron at the same time.

In the biological brain, there are multiple synapses between

neurons, and these diverse synapses increase the brain’s ability

to process complex spatial-temporal signals. In ANNs, there is

only one synaptic connection between two neurons to simplify the

model and facilitate calculation. Even if there are multiple synapses,

because of the way ANN works synchronously, multiple synapses

can be equivalent to one synaptic connection. On the contrary,

in SNN, the spiking neurons’ temporal dynamics enable multiple

delayed synapses effectively increasing the ability of SNN to process

complex spatial-temporal data.

Inspired by multiple delayed synapses in Bohte et al. (2000), we

integrate multiple groups of dendrites with different delays based

on the original LIF model and proposed a multi-dendrite spiking

Frontiers inNeuroscience 03 frontiersin.org19

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

FIGURE 2

Temporal dependence of the spiking neuron. (A) The classic spiking neuron model. The output spike train is directly a�ected by the current input and

indirectly by the previous input. (B) Spiking neuron with overlapping working memory. The output spike train is directly a�ected by both the current

and the previous input. (C) Spiking neuron with individual working memory. The output spike train in the same working memory window is rectified.

neural network with delay. Equation (1) becomes:

Vj(t) = e−
1
τ Vj(t − 1)+

Nk
∑

k=1

Ni
∑

i=1

wijksi(t − dk), (5)

where wijk and dk is the weight and transmission delay of dendrite

group k, respectively. Multiple groups of dendrites with different

delays effectively increase the time domain exploration of the

neuron’s input spikes at the same synapse. As shown in Figures 2B,

C, Multiple dendrites help spiking neurons explore many different

combinations of spike trains simultaneously, without having to wait

for all inputs to proceed to the next layer of computation as in

ANN-SNN hybrid networks that introduce the attention.

This multi-dendrite structure would increase the number of

SNNs’ parameters and further reduce usage in resource-restricted

edging platforms. Inspired by spatial factorization in Inception-

V2 (Szegedy et al., 2016), we split the weight matrix wijk of size

Ni×Nj×Nk in Equation (5) into twomatrices of sizeNi×Nj×1 and

1×Nk, respectively. In this way, the number of network parameters

is reduced from the original Ni×Nj×Nk to Ni×Nj+Nk and only

increased byNk compared with classical SNN. In this way, Equation

(5) becomes:

Vj(t) = e−
1
τ Vj(t − 1)+

Nk
∑

k=1

wk

Ni
∑

i=1

wijsi(t − dk), (6)

To further enhance the global processing capability of SNN, we

introduce an additional memory mechanism to rectify spike train

through working memory to increase synchronization, as shown in

Figure 2C. The rectified output spike train can effectively increase

the stability of the neural network and improve the ability to handle

static data, and Equation (6) becomes:

Vj(t) = e−
1
τ Vj(t − 1)+

Nk
∑

k=1

wk

Ni
∑

i=1

wijsi(t − dk −m), (7)

m = ⌊t/mem_len⌋, (8)

FIGURE 3

Temporal fusion layer. Instead of using the dynamic processes inside

the SNN, the temporal fusion layer combines pulses at all times to

give the SNN a global view.

where mem_len is the length of working memory. The working

memory that operates in this way takes into account all the spikes

within mem_len and continuously feeds them into the spiking

neuron for mem_len. This method can effectively alleviate the

information loss caused by uneven spike distribution in the time

domain for data that do not need fast time-varying information.

2.3. Temporal fusion layer

At present, most SNNs take the spike frequency or average

membrane potential of the last layer as output when processing

tasks. We designed the final layer based on the proposed SNNWM.

For spike sequences with fixed input length T, we set the

dendrite groups’ transmission delay of neurons at the last layer as

Frontiers inNeuroscience 04 frontiersin.org20

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

{0, 1, 2...,T}, as shown in Figure 3 and only the mode potential of

the Tth time step is used as the output. According to Equation (4),

the decoding scheme can be expressed as:

oj =

T
∑

k=1

wk

Ni
∑

i=1

wijsi(T − dk). (9)

In this way, on the one hand, the neurons in the last layer obtain

spike information at all times at the time step T, thus enhancing

the performance of SNN; on the other hand, the computation at

the previous T − 1 time step is reduced, effectively reducing the

computation cost.

2.4. Implementation in software and
hardware

Our goal is to make the most of the SNN’s low-power,

high-dynamic processing capabilities, without having to be the

same as biological neurons. Therefore, in the process of practical

application, the {0, 1} sequence is often used to encode the spike

sequence. A 0 or 1 in each bit represents whether there is a spike

event, and each position represents a small period. For example,

a spike train 010110 can represent a spike train with a simulation

duration of 6 ms and each period of 1 ms.

To further simplify the model, we use an arithmetic sequence as

the delay in SNNWM. That is, the synaptic delay between the two

neurons is {0, 1, 2, 3...L}, where L represents the length of working

memory. And the synaptic delay between the two adjacent layers

of neurons was the same. In this way, SNNWM with overlapping

working memories can be achieved by a simple one-dimensional

convolution operation with an additional convolution kernel W1,

or wk in Equation (6), in the time dimension.

The implementation method of SNNWM without overlap is

shown in the pseudo-code of Algorithm 1. Firstly, the input spike

train Sin is divided into N segments of length L in the time

dimension. These segments can be processed in parallel with each

other before calculating changes in membrane potential V . The

change in membrane potential Iseg from the input is obtained by

multiplying the spike segments with the synaptic weights of sizes

Ni × Nj and Nk, respectively. The change in membrane potential

from the input is obtained by multiplying the spike segment with

the synaptic weightW1 of size Ni ×Nj × 1 and the synaptic weight

W2 of size 1× Nk.

The method of SNNWM’s hardware implementation,

specifically FPGA, is shown in Figure 4. The traditional SNN

will input the spike train at each moment (the sequence in the

green box) into the LIF unit, and extract the weight matrix and

the membrane potential at the last moment from BRAM. After

completing the calculation of the membrane potential at the

current moment, the obtained spike train at the current moment

will be output, and then the new neuron membrane potential will

be stored in V_BRAM.

The total input spike data size remains the same, and the

output spike train data size remains the same. It is worth noting

that since the introduction of working memory will simultaneously

participate in the calculation of spikes within eachworkingmemory

Input: Input spike train: Sin, Synaptic weights:

W1,W2, Working memory length: L, Constant:

τ, Threshold: Vth, Resting potential: Vrest

Output: Output spike train: Sout

1 Initialization: Sout ← []

2 Split Sin into N segments of length L;

3 Sseg = split(Sin)

4 foreach n← 0 to N do

5 Iseg [n] = Sseg [n]×W1×W2

6 end

7 for n← 0 to N do

8 for t← 0 to L do

9 if n is 0 AND t is 0 then

10 V = Iseg [n]

11 else

12 V = V · e−
1
τ + Iseg [n]

13 end

14 if V ≥ Vth then

15 V = Vrest;

16 spike = 1;

17 else

18 V = V;

19 spike = 0;

20 end

21 Concat spike into output spike train Sout;

22 Sout = concat(Sout , spike)

23 end

24 end

Algorithm 1. Pseudo code of SNNWM.

window size, the fetch operation of V_BRAM only occurs at the

beginning of this window time, and the save operation only occurs

at the end of this window time. Compared with the previous SNN,

the number of V_BRAM accesses is saved.

2.5. Training

For the optimization of network parameters, we choose the

STBP (Spatio-Temporal BackPropagation) (Wu et al., 2018) in

the surrogate gradient learning method. At present, there are

many opinions about the selection of approximate functions. Wu

et al. (2018) believes that the parameters of the function are

more important than the selection of the function, while Fang

et al. (2021a) believes that the approximate function with different

shapes can bring better results. In this work, we chose the surrogate

function:

∂H(x)

∂x
= e−2x

2
(10)

for gradient learning. Compared with the triangular or rectangular

surrogate function, the exponential surrogate function can ensure

that some gradient information can be transmitted even when

the membrane potential is far from the threshold, rather than no

gradient at all. At the same time, we found in the experiment

Frontiers inNeuroscience 05 frontiersin.org21

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

FIGURE 4

Implementation of working memory in hardware. Compared with classical methods, this method does not consume too much in global data

transmission and processing. The computation cost by the input spike train and the change of neuron state remains unchanged.

that using hard Tan as an approximation function would slightly

increase the training time and have no effect on the final result.

3. Results

To verify the ability of our proposed model to extract temporal

and spatial features, we designed a variety of different experiments

on two different data types: images and event streams. We

compared the proposed method with other different methods

with the same or similar network structure and scale. These

networks include conventional network structures or are optimized

according to the characteristics of SNNs, introducing particular

neurons or layer structures. The training methods adopted by

them include transform-based methods and BP-based methods.

The details of the implemented methodology and the experimental

setup are presented below. After that, we carried out experiments

for different types of data sets and comprehensively tested the

influence of preprocessing methods and network working memory

size on the model’s performance.

3.1. Implementation details

In the following experiments, we implemented the proposed

model on two NVIDIA RTX 3090s using the Pytorch training

framework. For CIFAR10 (Krizhevsky et al., 2017) and

CIFAR100 (Krizhevsky et al., 2017), we utilize the SGD optimizer

with the momentum of 1e−4 to accelerate the training process,

and for DVS128 Gesture (Amir et al., 2017) and CIFAR10-DVS (Li

et al., 2017), we utilize the Adam optimizer. The hyperparameters

used for training are shown in Table 1 for different data sets.

Compared with some other SNN-related works, we adopt the

conventional training parameter setting here, and all experimental

results are the average values obtained after 5 repetitions with

different random seeds.

To ensure the fairness of the comparison, we choose different

network structures for different tasks to test, as shown in Table 2.

In this table, C represents the convolutional layer, MP represents

the max pooling layer, AP represents the average pooling layer,

GAP represents the global average pooling layer, and pure numbers

represent the fully connected layer. The number before all symbols

represents the number of output channels or neurons, and the

number after symbols represents the size of the kernel. Among

them, for the task of image class, spatial information is more

important than temporal information, and we adopt the residual

structure of Fang et al. (2021a). In the training process of the

SNN network, compared with the layer-by-layer stacked VGG

structure, the gradient information of the residual structure can be

transmitted through shortcuts, which can effectively alleviate the

gradient error caused by the surrogate gradient function. For the

event stream data, time characteristics and spatial characteristics

are equally important, we use the VGG structure network to avoid

the time characteristics in the event stream being disrupted.

3.2. Static data

As previously analyzed, SNNs are limited in their ability to

process even static data if they cannot make valid judgments based

on the entire spike train. Here, we select the benchmark of two

static image classification tasks: CIFAR10 and CIFAR100 to verify

that the proposed model is simple and effective. For the still image

data, we did not adopt additional data augmentation methods for

pulse sequences according to the time-dependent characteristics of

SNN and only used data augmentation methods for the original

image data. Specifically, we use Autoaugment (Cubuk et al., 2019)

as an augmentation to improve the accuracy of image classification

models. Compared to the classical crop adopted in most previous

works, With random horizontal flipping and normalization, using

auto augmentation improves the final classification result on

CIFAR10 by about 0.4%.

3.2.1. Comparison with prior works
For image-type data, the main factor affecting the classification

results is the spatial feature extraction ability of the model.

Therefore, most of the work in this area focuses on ensuring

the accuracy of the information represented by the spike train

during the forward propagation or the accuracy of the gradient

Frontiers inNeuroscience 06 frontiersin.org22

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

TABLE 1 Hyper parameters.

Hyper parameter CIFAR10 CIFAR100 DVS128 Gesture CIFAR10-DVS

Training epoch 200 300 300 300

Batch size 128 128 16 32

Learning rate 1e−1 1e−1 1e−3 1e−3

Time steps 6 6 16 10

TABLE 2 Network structures.

Dataset Architecture Detail

CIFAR10 SEW ResNet18 64C3-MP2-64SEWblock*2-128SEWblock*2 - 256SEWblock*2-512SEWblock*2-GAP-10

CIFAR100 SEW ResNet18 64C3-MP2-64SEWblock*2-128SEWblock*2 - 256SEWblock*2-512SEWblock*2-GAP-100

DVS128 gesture VGG-small 128C3-MP2-128C3-MP2-128C3-MP2- 128C3-MP2-512-11

DVSCIFAR10 VGG 16C3-AP2-32C3-AP2-64C3-64C3-AP2-128C3- 128C3-AP2-128C3-128C3-AP2-256-10

TABLE 3 Classification accuracy on static data.

Dataset Proposals Architecture Timesteps Accuracy(%)

CIFAR10 Rathi and Roy, 2023 VGG16 10 93.44

Rathi and Roy, 2023 ResNet20 10 92.54

Wu J. et al., 2021 CifarNet 8 90.98

Fang et al., 2021a VGG 8 93.50

Zheng et al., 2021 ResNet19 6 93.16

Deng et al., 2022 ResNet19 256 94.50

This work SEW-ResNet18 6 95.41

CIFAR100 Rathi et al., 2020 VGG11 125 67.87

Rathi and Roy, 2023 ResNet20 5 64.09

Deng et al., 2022 ResNet19 6 74.72

This work SEW-ResNet18 6 78.77

information in the backward propagation. As shown in Table 3,

compared with other methods, our method only needs 6 timesteps

to achieve the classification accuracy of 95.41% on CIFAR10 and

78.77% on CIFAR100.

3.2.2. E�ects of di�erent encoding methods
The commonly used static data coding methods include direct

coding, rate coding, and latency coding. To be specific: (1) Direct

coding is to input the pre-processed data directly into SNN as the

current at every moment. (2) The commonly used method in rate

coding is to encode the preprocessed data into the pulse train of

Poisson distribution, where the expectation of Poisson distribution

is related to the data value. (3) Latency coding is to map the pre-

processed data size directly to the specific pulse firing moment,

in which case the neuron fires only once. As mentioned before in

this paper, different coding schemes have a significant impact on

the classification results of the model in the classical SNN model,

here, we test the effect of different coding methods on the CIFAR10

dataset as shown in Figure 5.

FIGURE 5

E�ects of encoding methods in CIFAR10.

It can be found that, on the one hand, the direct encoding

approach achieves the best results. The direct encoding scheme is

more biologically interpretable. The photoreceptor neurons used

to convert light signals into spike trains already have preliminary

feature extraction capabilities in biological retinas. On the other

Frontiers inNeuroscience 07 frontiersin.org23

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

FIGURE 6

E�ects of working memory length in CIFAR100.

hand, the proposed model achieves better classification results with

different coding schemes. In particular, when latency coding is

used, there is less drop in accuracy relative to direct encoding. This

is attributed to the fact that the working memory in the proposed

method integrates the input information at multiple time steps,

allowing the model to obtain a larger field of view.

3.2.3. E�ects of working memory length
The length of the working memory will affect the number of

parameters that the model has, as well as its ability to integrate

temporal information. We tested different working memory

lengths separately on CIFAR100 with direct codingmethod, and the

results are shown in Figure 6. It can be seen that the classification

accuracy (solid black line) increases with memory length. For

static data, longer working memory can give the model more time

integration ability, which is also beneficial to the stability of the

model. Therefore, the best classification results were obtained for

networks with memory lengths up to 6 timesteps of the simulation

duration. On the other hand, the reasoning time for a single batch

(blue dashed line) increases with memory length.

3.3. Sequence data

Furthermore, we verify the effect of the proposed model

on sequential data where time correlation is more important.

Here, we choose two datasets, DVS128 Gesture and CIFAR10-

DVS, for testing. In the CIFAR10-DVS dataset, the information of

the original picture in the CIFAR10 dataset is obtained through

motion, and the short-term information is more critical.

3.3.1. DVS data encoding
A variety of coding schemes exist for event streams, including

time-surface (Lagorce et al., 2017), timestamp (Huang, 2021), and

so on (Sabater et al., 2022; Wang et al., 2022). Here we use the

more common approach in SNNs. Specifically, we use the encoding

method in SpikingJelly (Fang et al., 2020) to convert the event

stream data intomultiple consecutive pictures. After that, the direct

input coding method was used, that is, the image pixels were

normalized and directly fed into the SNN as the input current.

The data augmentation method’s impact on the results of event

stream data is important. In this paper, to reduce the training cost

and save time, we convert the event stream data into image data and

then use the data augmentation method. In this article, we will use

a data augmentation approach similar to that commonly used for

still images. Specifically, for the DVS128 Gesture dataset, we used

a random crop. For the CIFAR10-DVS data set, random crop and

random horizontal flipping were used.

3.3.2. Comparison with prior works
For sequential event stream data, local and global temporal

information is equally important. Local temporal information can

be captured by using the time-varying property of spiking neurons,

but the long-term information may disappear due to discrete

neuron firing. Therefore, most works enhance the ability of SNN

to process event streams by changing the neuron model or adding

modules that can obtain long-term information, such as recurrent

structures or attention modules.

It can be seen from Table 4 that our proposed method achieves

a classification accuracy of 98.26% on the DVS128 Gesture data set

and 80.1% on the CIFAR10-DVS data set.

3.3.3. E�ects of working memory length
Event stream data is different from static images in that in

addition to spatial features, temporal features are also always

required, so the model’s ability to extract temporal features has a

significant impact on the final classification results. The working

memory size affects the model’s ability to extract temporal features.

We tested it on the DVS128 Gesture dataset and the results are

shown in Figure 7. It can be seen that with the increase in working

memory size, the classification accuracy (solid black line) of the

model shows a trend of decreasing now and then increasing. This is

partly because the size of the working memory matches the length

of key features of the data itself. When the working memory size is

small, the model mainly classifies by spatial features. As working

memory size grows, models tend to make judgments based on

certain key short-term features, ignoring global information. As the

working memory grows, the model acquires a global view and can

classify actions based on the sequence. This is also in line with the

example given at the beginning of the article. On the other hand, the

inference time for a single batch (blue dashed line) increases with

memory length.

4. Discussion

In this paper, we first analyze the key problems that affect

SNN network processing spatiotemporal data, namely, SNN can

only aggregate information in one direction, and the temporal

receiver field is limited. To solve this problem, we introduce

working memory into SNN, propose a new network structure

by combining multi-delay synapses, and give an effective method

to reduce the number of parameters. Then, we provide the

implementation method of the proposed model in software and

hardware. Finally, we test the performance of the proposed model

on several static and dynamic datasets. Experimental results show

Frontiers inNeuroscience 08 frontiersin.org24

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

TABLE 4 Classification accuracy on sequence data.

Dataset Proposals Architecture Timesteps Accuracy (%)

DVS128 gesture Zheng et al., 2021 CifarNet 40 96.87

Wu Z. et al., 2021 VGG 60 97.56

Fang et al., 2021b ResNet19 20 97.57

Fang et al., 2021a ResNet19 16 97.92

This work VGG-small 16 98.26

CIFAR10-DVS Wu Z. et al., 2021 VGG 10 70.4

Fang et al., 2021b VGG 20 74.8

Yao et al., 2021 VGG 10 72.0

Fang et al., 2021a Wide-7B-Net 16 74.4

This work VGG 10 80.1

FIGURE 7

E�ects of working memory length in DVS128 Gesture.

that SNN with working memory can effectively aggregate and

rectify spatiotemporal features, thus improving the ability of SNN

to process spatiotemporal data. Next, we discuss the effects of

different encoding schemes on SNNWM, the effects of working

memory length on SNNWM’s inference speed and storage, and

potential improvements for future SNNWM.

First, for static data, we analyzed the effects of three different

coding schemes on SNNWM and found that direct coding had

the best effect, while delayed coding had the worst effect, which

was consistent with the results of most SNN-related studies. For

direct coding, SNNWMachieved the highest classification accuracy

because the same full precision value is stably entered at every

moment. For rate coding and latency coding, since the input is

a binary spike train and the simulation length determines the

precision of the data received by SNNWM, so there will be certain

performance degradation. The performance gap between the two is

mainly due to the fact that rate coding has more input spikes than

latency coding and the randomness in coding. For example, the

Poisson distribution-based method used in this paper is equivalent

to an augmentation of the training data and reduces overfitting.

Secondly, the length of Memory has a certain influence on

the SNNWM’s inference speed and storage. The introduction

of working memory adds additional data slice and matrix

multiplication operations and the storage grows as memory length

increases. In particular, the additional memory consumption

caused by working memory is approximately the same as adding

an additional matrix multiplication of the size related to memory

length to the original spiking neuron. Therefore, there is a trade-

off between performance and resource consumption. At the same

time, it can be found in the experiment on sequence data that the

influence of memory length on model performance is not linear, so

it is important to choose the appropriate memory length according

to specific tasks.

Finally, SNNWM, as a neuron-level model refinement, can

be used in various SNN network structures, such as the latest

transformer-based model. At the same time, the learning algorithm

used in this paper is based on BPTT (Back-Propagation Through

Time) method, and the gradient needs to be transmitted step

by step in time. Since SNNWM can be regarded as processing

the spike train segment by segment, it is possible to try the

gradient feedback at a segment level to reduce the training time

and cost. Besides, this work is only a preliminary attempt at the

visual classification, which can be extended to other types of data,

such as speech, natural language processing, automatic driving,

etc.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YC proposed the idea, performed the experiments, and wrote

the manuscript. All authors contributed to the experiment’s design,

result interpretation, and writing. All authors contributed to the

article and approved the submitted version.

Funding

This work was partially supported by the Science and

Technology Support Program of Sichuan Province under Grant

Frontiers inNeuroscience 09 frontiersin.org25

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2023.1167134

2022YFG0313 and theNational Science Foundation of China under

Grant 62106038 and 61976043.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Amir, A., Taba, B., Berg, D. J., Melano, T., McKinstry, J. L., di Nolfo, C., et al. (2017).
“A low power, fully event-based gesture recognition system,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (Honolulu, HI: IEEE Computer Society),
7388–7397. doi: 10.1109/CVPR.2017.781

Bohte, S. M., Kok, J. N., and La Poutré, J. A. (2000). “Spikeprop: backpropagation
for networks of spiking neurons,” in ESANN (Bruges), 419–424.

Cubuk, E. D., Zph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019).
“Auto augment: Learning augmentation strategies from data,” in IEEE Conference
on Computer Vision and Pattern Recognition (Long Beach, CA: Computer Vision
Foundation; IEEE), 113–123. doi: 10.1109/CVPR.2019.00020

Deng, S., Li, Y., Zhang, S., and Gu, S. (2022). “Temporal efficient training of spiking
neural network via gradient re-weighting,” in The Tenth International Conference on
Learning Representations (OpenReview.net).

el Assal, M., Tirilly, P., and Bilasco, I. M. (2022). “2D versus 3D convolutional
spiking neural networks trained with unsupervised STDP for human action
recognition,” in International Joint Conference on Neural Networks (Padua: IEEE), 1–8.
doi: 10.1109/IJCNN55064.2022.9892063

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). Spikingjelly.
Available online at: https://github.com/fangwei123456/spikingjelly (accessed February
02, 2023).

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a). “Deep
residual learning in spiking neural networks,” in Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, eds M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan.
p. 21056-21069. Available online at: https://proceedings.neurips.cc/paper/2021/hash/
afe434653a898da20044041262b3ac74-Abstract.html

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y.
(2021b). “Incorporating learnable membrane time constant to enhance learning
of spiking neural networks,” in 2021 IEEE/CVF International Conference on
Computer Vision (Montreal, QC: IEEE), 2641–2651. doi: 10.1109/ICCV48922.2021.
00266

Huang, C. (2021). “Event-based timestamp image encoding network for
human action recognition and anticipation,” in International Joint Conference
on Neural Networks (Shenzhen: IEEE), 1–9. doi: 10.1109/IJCNN52387.2021.953
4386

Kim, R., and Sejnowski, T. J. (2021). Strong inhibitory signaling underlies stable
temporal dynamics and working memory in spiking neural networks. Nat. Neurosci.
24, 129–139. doi: 10.1038/s41593-020-00753-w

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet Classification
with Deep Convolutional Neural Networks. New York, NY: Association for Computing
Machinery. doi: 10.1145/3065386

Kwak, Y., and Curtis, C. E. (2022). Unveiling the abstract format of mnemonic
representations. Neuron 110, 1822.e5–1828.e5. doi: 10.1016/j.neuron.2022.03.016

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R. B. (2017). HOTS:
a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). CIFAR10-DVS: an event-stream
dataset for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Li, J., Li, D., Jiang, R., Xiao, R., Tang, H., and Tan, K. C. (2022). Vision-
action semantic associative learning based on spiking neural networks for
cognitive robot. IEEE Comput. Intell. Mag. 17, 27–38. doi: 10.1109/MCI.2022.
3199623

Lobo, J. L., Del Ser, J., Bifet, A., and Kasabov, N. (2020). Spiking neural networks
and online learning: an overview and perspectives. Neural Netw. 121, 88–100.
doi: 10.1016/j.neunet.2019.09.004

Luo, X., Qu, H., Wang, Y., Yi, Z., Zhang, J., and Zhang, M. (2022).
Supervised learning in multilayer spiking neural networks with spike
temporal error backpropagation. IEEE Trans. Neur. Netw. Learn. Syst. 1–13.
doi: 10.1109/TNNLS.2022.3164930

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z. Q. (2022). “Training
high-performance low-latency spiking neural networks by differentiation on spike
representation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(New Orleans, LA: IEEE), 12434–12443. doi: 10.1109/CVPR52688.2022.01212

Pan, Z., Chua, Y., Wu, J., Zhang, M., Li, H., and Ambikairajah, E. (2020). An
efficient and perceptually motivated auditory neural encoding and decoding algorithm
for spiking neural networks. Front. Neurosci. 13, 1420. doi: 10.3389/fnins.2019.01420

Pan, Z., Zhang, M., Wu, J., Wang, J., and Li, H. (2021). Multi-tone phase
coding of interaural time difference for sound source localization with spiking
neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 2656–2670.
doi: 10.1109/TASLP.2021.3100684

Rathi, N., and Roy, K. (2023). DIET-SNN: A low-latency spiking neural network
with direct input encoding and leakage and threshold optimization. IEEE Trans. Neur.
Netw. Learn. Syst. 34, 3174–3182. doi: 10.1109/TNNLS.2021.3111897

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). “Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent backpropagation,”
in 8th International Conference on Learning Representations (OpenReview.net).

Sabater, A., Montesano, L., and Murillo, A. C. (2022). “Event Transformer. A
sparse-aware solution for efficient event data processing,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (New Orleans, LA: IEEE),
2676–2685. doi: 10.1109/CVPRW56347.2022.00301

Szegedy, C., Vanhucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (Las Vegas, NV: IEEE Computer Society), 2818–2826.
doi: 10.1109/CVPR.2016.308

Wang, Y., Zhang, X., Shen, Y., Du, B., Zhao, G., Cui, L., et al. (2022). Event-stream
representation for human gaits identification using deep neural networks. IEEE Trans.
Pattern Anal. Mach. Intell. 44, 3436–3449. doi: 10.1109/TPAMI.2021.3054886

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021). A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE
Trans. Neur. Netw. Learn. Syst. 34, 446–460. doi: 10.1109/TNNLS.2021.3095724

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Z., Zhang, H., Lin, Y., Li, G., Wang, M., and Tang, Y. (2021). LIAF-Net:
Leaky integrate and analog fire network for lightweight and efficient spatiotemporal
information processing. IEEE Trans. Neur. Netw. Learn. Syst. 33, 6249–6262.
doi: 10.1109/TNNLS.2021.3073016

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z. -X. et al. (2021). “Temporal-
wise attention spiking neural networks for event streams classification,” in 2021
IEEE/CVF International Conference on Computer Vision (Montreal, QC: IEEE), 10201–
10210. doi: 10.1109/ICCV48922.2021.01006

Zhang, W., and Li, P. (2019). “Spike-train level backpropagation for training deep
recurrent spiking neural networks,” in Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, eds H.
M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alche-Buc, E. B. Fox, and R. Garnett
(Vancouver, BC: NeurIPS), 7800–7811. Available online at: https://proceedings.
neurips.cc/paper/2019/hash/f42a37d114a480b6b57b60ea9a14a9d2-Abstract.html

Zhang, W., and Li, P. (2021). “Spiking neural networks with laterally-inhibited
self-recurrent units,” in International Joint Conference on Neural Networks (Shenzhen:
IEEE), 1–8. doi: 10.1109/IJCNN52387.2021.9533726

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). “Going deeper with directly-
trained larger spiking neural networks,” in Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021 (AAAI Press), 11062–11070.

Zhu, L., Wang, X., Chang, Y., Li, J., Huang, T., and Tian, Y. (2022). “Event-
based video reconstruction via potential-assisted spiking neural network,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (New Orleans, LA: IEEE),
3584–3594. doi: 10.1109/CVPR52688.2022.00358

Frontiers inNeuroscience 10 frontiersin.org26

https://doi.org/10.3389/fnins.2023.1167134
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/IJCNN55064.2022.9892063
https://github.com/fangwei123456/spikingjelly
https://proceedings.neurips.cc/paper/2021/hash/afe434653a898da20044041262b3ac74-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/afe434653a898da20044041262b3ac74-Abstract.html
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/IJCNN52387.2021.9534386
https://doi.org/10.1038/s41593-020-00753-w
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.neuron.2022.03.016
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/MCI.2022.3199623
https://doi.org/10.1016/j.neunet.2019.09.004
https://doi.org/10.1109/TNNLS.2022.3164930
https://doi.org/10.1109/CVPR52688.2022.01212
https://doi.org/10.3389/fnins.2019.01420
https://doi.org/10.1109/TASLP.2021.3100684
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1109/CVPRW56347.2022.00301
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/TPAMI.2021.3054886
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/TNNLS.2021.3073016
https://doi.org/10.1109/ICCV48922.2021.01006
https://proceedings.neurips.cc/paper/2019/hash/f42a37d114a480b6b57b60ea9a14a9d2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f42a37d114a480b6b57b60ea9a14a9d2-Abstract.html
https://doi.org/10.1109/IJCNN52387.2021.9533726
https://doi.org/10.1109/CVPR52688.2022.00358
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Review

PUBLISHED 16 June 2023

DOI 10.3389/fnins.2023.1209795

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Jibin Wu,

Hong Kong Polytechnic University,

Hong Kong SAR, China

Zhaofei Yu,

Peking University, China

*CORRESPONDENCE

Zhe Ma

mazhe_thu@163.com

RECEIVED 21 April 2023

ACCEPTED 01 June 2023

PUBLISHED 16 June 2023

CITATION

Guo Y, Huang X and Ma Z (2023) Direct

learning-based deep spiking neural networks: a

review. Front. Neurosci. 17:1209795.

doi: 10.3389/fnins.2023.1209795

COPYRIGHT

© 2023 Guo, Huang and Ma. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Direct learning-based deep
spiking neural networks: a review

Yufei Guo1,2, Xuhui Huang1,2 and Zhe Ma1,2*

1Intelligent Science & Technology Academy of CASIC, Beijing, China, 2Scientific Research Laboratory of

Aerospace Intelligent Systems and Technology, Beijing, China

The spiking neural network (SNN), as a promising brain-inspired computational

model with binary spike information transmission mechanism, rich

spatially-temporal dynamics, and event-driven characteristics, has received

extensive attention. However, its intricately discontinuous spike mechanism

brings di�culty to the optimization of the deep SNN. Since the surrogate gradient

method can greatly mitigate the optimization di�culty and shows great potential

in directly training deep SNNs, a variety of direct learning-based deep SNN works

have been proposed and achieved satisfying progress in recent years. In this

paper, we present a comprehensive survey of these direct learning-based deep

SNN works, mainly categorized into accuracy improvement methods, e�ciency

improvement methods, and temporal dynamics utilization methods. In addition,

we also divide these categorizations into finer granularities further to better

organize and introduce them. Finally, the challenges and trends that may be faced

in future research are prospected.

KEYWORDS

spikingneural network, brain-inspired computation, direct learning, deepneural network,

energy e�ciency, spatial-temporal processing

1. Introduction

The Spiking Neural Network (SNN) has been recognized as one of the brain-inspired

neural networks due to its bio-mimicry of the brain neurons. It transmits information by

firing binary spikes and can process the information in a spatial-temporal manner (Wu

et al., 2019a; Wu Y. et al., 2019; Zhang et al., 2020a,b; Fang et al., 2021b). This event-driven

and spatial-temporal manner makes the SNN very efficient and good at handling temporal

signals, thus receiving a lot of research attention, especially recently.

Despite the energy efficiency and spatial-temporal processing advantages, it is a challenge

to train deep SNNs due to the firing process of the SNN is undifferentiable, thus making it

impossible to train SNNs via gradient-based optimization methods. At first, many works

leverage the spike-timing-dependent plasticity (STDP) approach (Lobov et al., 2020), which

is inspired by biology, to update the SNN weights. However, STDP cannot help train large-

scale networks yet, thus limiting the practical applications of the SNN. There are two widely

used effective pathways to obtain deep SNNs up to now. First, the ANN-SNN conversion

approach (Han and Roy, 2020; Li et al., 2021a; Bu et al., 2022, 2023; Li and Zeng, 2022; Liu

et al., 2022; Wang Y. et al., 2022) converts a well-trained ANN to an SNN by replacing the

activation function from ReLU with spiking activation. It provides a fast way to obtain an

SNN.However, it is limited in the rate-coding scheme and ignores the rich temporal dynamic

behaviors of SNNs. Second, the surrogate gradient (SG)-based direct learning approach (Wu

Y. et al., 2018; Fang et al., 2021a; Li et al., 2021b; Guo et al., 2022a) tries to find an alternative

differentiable surrogate function to replace the undifferentiable firing activity when doing

back-propagation of the spiking neurons. Since SG can handle temporal data and provide

decent performance with few time-steps on the large-scale dataset, it has received more

attention recently.

Frontiers inNeuroscience 01 frontiersin.org27

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1209795
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1209795&domain=pdf&date_stamp=2023-06-16
mailto:mazhe_thu@163.com
https://doi.org/10.3389/fnins.2023.1209795
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1209795/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

Considering the sufficient advantages and rapid development

of the direct learning-based deep SNN, a comprehensive and

systematic survey on this kind of work is essential. Previously

related surveys (Ponulak and Kasinski, 2011; Roy et al., 2019;

Tavanaei et al., 2019;Wang et al., 2020; Yamazaki et al., 2022; Zhang

D. et al., 2022) have begun to classify existing works mainly based

on the key components of SNNs: biological neurons, encoding

methods, SNN structures, SNN learning mechanisms, software and

hardware frameworks, datasets, and applications. Though such

classification is intuitive to general readers, it is difficult for them

to grasp the challenges and the landmark work involved. While

in this survey, we provide a new perspective to summarize these

related works, i.e., starting from analyzing the characteristics and

difficulties of the SNN, and then classify them into (i) accuracy

improvement methods, (ii) efficiency improvement methods, and

(iii) temporal dynamics utilization methods, based on the solutions

for corresponding problems or the utilization of SNNs’ advantages.

Further, these categories are divided into finer granularities:

(i) accuracy improvement methods are subdivided as improving

representative capabilities and relieving training difficulties; (ii)

efficiency improvement methods are subdivided as network

compression techniques and sparse SNNs; (iii) temporal dynamics

utilization methods are subdivided as sequential learning and

cooperating with neuromorphic cameras. In addition to the

classification by using strengths or overcoming weaknesses of

SNNs, these recent methods can also be divided into the neuron

level, network structure level, and training technique level,

according to where these methods actually work. The classifications

and main techniques of these methods are listed in Tables 1, 2.

Finally, some promising future research directions are provided.

The organization of the remaining part is given as follows,

Section 2 introduces the preliminary for spiking neural networks.

The characteristics and difficulties of the SNN are also analyzed

in Section 2. Section 3 presents the recent advances falling into

different categories. Section 4 points out future research trends and

concludes the review.

2. Preliminary

Since the neuronmodels are not the focus of the paper, here, we

briefly introduce the commonly used discretized Leaky Integrate-

and-Fire (LIF) spiking neurons to show the basic characteristic and

difficulties in SNNs, which can be formulated by

Ut
l = τUt−1

l
+WlO

t
l−1, Ut

l < Vth, (1)

where Ut
l
is the membrane potential at t-th time-step for l-th

layer, Ot
l−1

is the spike output from the previous layer, Wl is the

weight matrix at l-th layer,Vth is the firing threshold, and τ is a time

leak constant for the membrane potential, which is in (0, 1). When

τ is 1, the above equation will degenerate to the Integrate-and-Fire

(IF) spiking neuron.

Characteristic 1. Rich spatially-temporal dynamics. Seen from

Equation (1), different from ANNs SNNs enjoy the unique spatial-

temporal dynamic in the spiking neuron model.

Then, when the membrane potential exceeds the firing

threshold, it will fire a spike and then fall to resting potential,

given by

Ot
l =

{

1, if Ut
l
≥ Vth

0, otherwise
. (2)

Characteristic 2. Efficiency. Since the output is a binary tensor,

the multiplications of activations and weights can be replaced by

additions, thus enjoying high energy efficiency. Furthermore, when

there is no spike output generated, the neuron will keep silent. This

event-driven mechanism can further save energy when implemented

in neuromorphic hardware.

Characteristic 3. Limited representative ability. Obviously,

transmitting information by quantizing the real-valued membrane

potentials into binary output spikes will introduce the quantization

error in SNNs, thus causing information loss (Guo et al., 2022b;

Wang et al., 2023). Furthermore, the binary spike feature map from

a timestep cannot carry enough information like the real-valued

one in ANNs (Guo et al., 2022d). These two problems limit the

representative ability of SNN to some extent.

Characteristic 4. Non-differentiability. Another thorny problem

in SNNs is the non-differentiability of the firing function.

To demonstrate this problem, we formulate the gradient at the

layer l by the chain rule, given by

∂L

∂Wl
=

∑

t

(
∂L

∂Ot
l

∂Ot
l

∂Ut
l

+
∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l

)
∂Ut

l

∂Wl
, (3)

where
∂Ot

l

∂Ut
l

is the gradient of firing function at t-th time-step

for l-th layer and is 0 almost everywhere, while infinity at Vth. As

a consequence, the gradient descent (Wl ← Wl − η ∂L
∂Wl

) either

freezes or updates to infinity.

Most existing direct learning-based SNN works focus on

solving difficulties or utilizing the advantages of SNNs. Boosting the

representative ability and mitigating the non-differentiability can

both improve SNN’s accuracy. From this perspective, we organize

the recent advances in the SNN field as accuracy improvement

methods, efficiency improvementmethods, and temporal dynamics

utilization methods.

3. Recent advances

In recent years, a variety of direct learning-based deep spiking

neural networks have been proposed. Most of these methods fall

into solving or utilizing the intrinsic disadvantages or advantages

of SNNs. Based on this, in the section, we classify these methods

into accuracy improvement methods, efficiency improvement

methods, and temporal dynamics utilization methods. In addition,

these classifications are also organized in different aspects with a

comprehensive analysis. Tables 1, 2 summarizes the surveyed SNN

methods in different categories.

Note that the direct learning methods can be divided into time-

based methods and activation-based methods based on whether

the gradient represents spike timing (time-based) or spike scale

(activation-based; Zhu Y. et al., 2022). In time-based methods,

the gradients represent the direction where the timing of a spike

should be moved, i.e., be moved leftward or rightward on the

time axis. The SpikeProp (Bohte et al., 2002) and its variants

Frontiers inNeuroscience 02 frontiersin.org28

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

TABLE 1 Overview of direct learning-based deep spiking neural networks: part I.

Type Method Key technology On the level⋆

NL NSL TTL

Accuracy improvement

Improving

representative

capabilities

LSNN (Bellec et al., 2018) Adaptive threshold X

LTMD (Wang S. et al., 2022) Adaptive threshold X

BDETT (Ding et al., 2022) Dynamic threshold X

PLIF (Fang et al., 2021b) Learnable leak constant X

Plastic synaptic delays (Yu et al.,

2022a)

Learnable leak constant X

Diet-SNN (Rathi and Roy, 2020) Learnable leak constant& threshold X

DS-ResNet (Feng et al., 2022) Multi-firing & Act before Add-ResNet X X

SNN-MLP (Li W. et al., 2022) Group LIF X

GLIF Yao et al., 2022 Unified gated LIF X

Augmented spikes (Yu et al., 2022b) Augmented spikes X

InfLoR-SNN (Shen et al., 2023) Leaky integrate and fire or burst X

MT-SNN (Wang et al., 2023) Multiple threshold approach X

SEW-ResNet (Fang et al., 2021a) Act before ADD form-based ResNet X

MS-ResNet (Hu et al., 2021) Pre-activation form-based ResNet X

AutoSNN (Na et al., 2022) Neural architecture search X

SNASNet (Kim et al., 2022a) Neural architecture search X

TA-SNN (Yao et al., 2021) Attention mechanism X

TCJA-SNN (Zhu et al., 2022) Attention mechanism X

Real spike (Guo et al., 2022d) Training-inference decoupled structure X

IM-loss (Guo et al., 2022a) Information maximization loss X

RecDis-SNN (Guo et al., 2022c) Membrane potential distribution loss X

Distilling spikes (Kushawaha et al.,

2021)

Knowledge distillation X X

Local tandem learning (Yang et al.,

2022)

Tandem learning X

sparse-KD (Xu et al., 2023a) Knowledge distillation X

KDSNN (Xu et al., 2023b) Knowledge distillation X

SNN distillation (Takuya et al., 2021) Knowledge distillation X

Relieving training

difficulties

SuperSpike (Zenke and Ganguli,

2018)

Fixed surrogate gradient X

LISNN (Cheng et al., 2020) Fixed surrogate gradient X

IM-Loss (Guo et al., 2022a) Dynamic surrogate gradient X

Gradual surrogate gradient (Guo

et al., 2022a)

Dynamic surrogate gradient X

Differentiable spike (Li et al., 2021b) Learnable surrogate gradient X

SpikeDHS (Leng et al., 2022) Differentiable surrogate gradient search X

DSR (Meng et al., 2022) Differentiation on spike representation X

STDBP (Zhang M. et al., 2022) Rectified postsynaptic potential function X

SEW-ResNet (Fang et al., 2021a) Act before ADD form-based ResNet X

MS-ResNet (Hu et al., 2021) Pre-activation form-based ResNet X

NeuNorm (Wu Y. et al., 2019) Constructing auxiliary feature maps X

(Continued)

Frontiers inNeuroscience 03 frontiersin.org29

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

TABLE 1 (Continued)

Type Method Key technology On the level⋆

NL NSL TTL

tdBN (Zheng et al., 2021) Threshold-dependent batch

normalization

X

BNTT (Kim and Panda, 2021) Temporal batch normalization through

time

X

PSP-BN (Ikegawa et al., 2022) Postsynaptic potential normalization X

TEBN (Kim and Panda, 2021) Temporal effective batch normalization X

RecDis-SNN (Guo et al., 2022c) Membrane potential distribution loss X

TET (Deng et al., 2022) Temporal regularization loss X

Tandem learning (Wu et al., 2021a) Tandem learning X

Progressive tandem learning (Wu

et al., 2021b)

Progressive tandem learning X

Joint A-SNN (Guo et al., 2023) Joint training of ANN and SNN X

⋆NL, neuron Level; NSL, network structure level; TTL, training technique level.

(Booij and tat Nguyen, 2005; Xu et al., 2013; Hong et al., 2019) all

belong to this kind ofmethod and they adopt the negative inverse of

the time derivative of membrane potential function to approximate

the derivative of spike timing to membrane potential. Since most of

the time-based methods would restrict each neuron to fire at most

once, in Zhou et al. (2021), the spike time is directly taken as the

state of a neuron. Thus the relation of neurons can be modeled by

the spike time and the SNN can be trained similarly to an ANN.

Though the time-based methods enjoy less computation cost than

the activation-basedmethods andmanyworks (Zhang and Li, 2020;

Zhu Y. et al., 2022) have greatly improved the accuracy of the field,

it is still difficult to train deep time-based SNN models and apply

them to large-scale datasets, e.g., ImageNet. Considering the limits

of the time-based methods and the topic of summarizing the recent

deep SNNs here, we mainly focus on activation-based methods in

the paper.

3.1. Accuracy improvement methods

As aforementioned, the limited information capacity and the

non-differentiability of firing activity of the SNN cause its accuracy

loss for wide tasks. Therefore, to mitigate the accuracy loss in

the SNN, a great number of methods devoted to improving the

representative capabilities and relief training difficulties of SNNs

have been proposed and achieved successful improvements in the

past few years.

3.1.1. Improving representative capabilities
Two problems result in the representative ability decreasing of

the SNN, the process of firing activity will induce information loss,

which has been proved in Guo et al. (2022b) and binary spike maps

suffer the limited information capacity, which has been proved

in Guo et al. (2022d). These problems can be mitigated on the

neuron level, network structure level, and training technique level.

3.1.1.1. On the neuron level

A common way to boost the representative capability of the

SNN is to make some hyper-parameters in the spiking neuron

learnable. In LSNN (Bellec et al., 2018) and LTMD (Wang S.

et al., 2022), the adaptive threshold spike neuron was proposed to

enhance the computing and learning capabilities of SNNs. Further,

a novel bio-inspired dynamic energy-temporal threshold, which

can be adjusted dynamically according to input data for SNNs was

introduced in the BDETT (Ding et al., 2022). Some works adopted

the learnable membrane time constant in spiking neurons (Zimmer

et al., 2019; Yin et al., 2020; Fang et al., 2021b; Luo et al., 2022; Yu

et al., 2022a). Combining these two manners, Diet-SNN (Rathi and

Roy, 2020) simultaneously adopted the learnable membrane leak

and firing threshold.

There are also some works focusing on embeddingmore factors

in the spiking neuron to improve its diversity. A multi-level firing

(MLF) unit, which contains multiple LIF neurons with different

level thresholds thus could generate more quantization spikes with

different thresholds was proposed in DS-ResNet (Feng et al., 2022).

A full-precision LIF to communicate between patches in Multi-

Layer Perceptron (MLP), including horizontal LIF and vertical LIF

in different directions was proposed in SNN-MLP (Li W. et al.,

2022). SNN-MLP used group LIF to extract better local features.

In GLIF (Yao et al., 2022), to enlarge the representation space of

spiking neurons, a unified gated leaky integrate-and-fire Neuron

was proposed to fuse different bio-features in different neuronal

behaviors via embedding gating factors. In augmented spikes (Yu

et al., 2022b), a special spiking neuron model was proposed to

process augmented spikes, where additional information can be

carried from spike strength and latency. This neuronmodel extends

the computation with an additional dimension and thus could be

of great significance for the representative ability of the SNN. In

LIFB (Shen et al., 2023), a new spiking neuron model called the

Leaky Integrate and Fire or Burst was proposed. The neuron model

exhibits three modes including resting, regular spike, and burst

spike, which significantly enriches the representative capability.

Similar to LIFB, MT-SNN (Wang et al., 2023) proposed a multiple

Frontiers inNeuroscience 04 frontiersin.org30

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

TABLE 2 Overview of direct learning-based deep spiking neural networks: part II.

Type Method Key technology On the level⋆

NL NSL TTL

Efficiency improvement

Network

compression

techniques

Spatio-temporal

pruning (Chowdhury et al., 2021)

Spatio-temporal pruning X

SD-SNN (Han et al., 2022) Pruning-regeneration method X

Grad R (Chen et al., 2021) Pruning-regeneration method X

Temporal pruning (Chowdhury

et al., 2022)

Temporal pruning X

Autosnn (Na et al., 2022) Neural architecture searching X

SNASNet (Kim et al., 2022a) Neural architecture searching X

Lottery ticket hypothesis (Kim et al.,

2022b)

Lottery ticket hypothesis X

Distilling spikes (Kushawaha et al.,

2021)

Knowledge distillation X X

Local tandem learning (Yang et al.,

2022)

Tandem learning X

sparse-KD (Xu et al., 2023a) Knowledge distillation X

KDSNN (Xu et al., 2023b) Knowledge distillation X

SNN distillation (Takuya et al., 2021) Knowledge distillation X

Sparse SNNs

ASNN (Zambrano and Bohte, 2016) A lot of adaptive spiking neurons X

Correlation-based

regularization (Han and Lee, 2022)

Correlation-based regularizer X

Superspike (Zenke and Ganguli,

2018)

Heterosynaptic regularization term X

RecDis-SNN (Guo et al., 2022c) Membrane potential distribution X

Low-activity SNN (Pellegrini et al.,

2021)

Regularization term X X

Temporal dynamics

utilization

Sequential learning

Sequence approximation (She et al.,

2021)

Dual-search-space optimization X

Sequential learning (Ponghiran and

Roy, 2022)

Improved recurrence dynamics X

SNN_HAR (Li Y. et al., 2022) Spatio-temporal extraction X

Robust SNN (Nomura et al., 2022) Temporal penalty settings X

Tandem learning-based SNN

model (Wu et al., 2020)

Tandem learning X

SG-based SNN model (Bittar and

Garner, 2022b)

Surrogate gradient method X

Combination-based SNN (Bittar and

Garner, 2022a)

Combination of many techniques X X

Low-activity SNN (Pellegrini et al.,

2021)

Regularization term X

SNNCNN (Sadovsky et al., 2023) Combination of CNNs and SNNs X X

RSNNs (Yin et al., 2021) activity-regularizing SG X X

Cooperating with

neuromorphic

cameras

daptive-spikenet (Kosta and Roy,

2022)

Learnable neuronal dynamics X

StereoSpike (Rançon et al., 2021) Modified U-Net-like architecture X X

SuperFast (Gao et al., 2022) Event-enhanced frame interpolation X

E-SAI (Yu L. et al., 2022) Synthetic aperture imaging method X

EVSNN (Zhu L. et al., 2022) Potential-assisted SNN X X

Spiking-Fer (Barchid et al., 2023) Deep CSNN X

(Continued)

Frontiers inNeuroscience 05 frontiersin.org31

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

TABLE 2 (Continued)

Type Method Key technology On the level⋆

NL NSL TTL

Automotive detection (Cordone

et al., 2022)

PLIF & SG & Event encoding X X

STNet (Zhang J. et al., 2022) Spiking transformer network X

LaneSNNs (Viale et al., 2022) offline supervised learning rule X

HALSIE (Biswas et al., 2022) Hybrid approach X

SpikeMS (Parameshwara et al., 2021) Spatio-temporal loss X

Event-based pose tracking (Zou et al.,

2023)

Spiking spatiotemporal transformer X

∗NL, neuron Level; NSL, network structure level; TTL, training technique level.

threshold approach to firing different spike modes to alleviate the

quantization error, such that it could reach a high accuracy at

fewer steps.

Different from these works, InfLoR-SNN (Guo et al., 2022b)

proposed a membrane potential rectifier (MPR), which can adjust

the membrane potential to a new value closer to quantization

spikes than itself before firing activity. MPR directly handles

the quantization error problem in SNNs, thus improving the

representative ability.

3.1.1.2. On the network structure level

To increase the SNN diversity, some works advocate for

improving the SNN architecture. In SEW-ResNet (Fang et al.,

2021a) and DS-ResNet (Feng et al., 2022), the widely used

standard ResNet backbone is replaced by activation before addition

form-based ResNet. In this way, the blocks in the network will

fire positive integer spikes. Its representation capability will no

doubt be increased, however, the advantages of event-driven and

multiplication-addition transform in SNNs will be lost in the

meantime. To solve the aforementioned problem, MS-ResNet (Hu

et al., 2021) adopted the pre-activation form-based ResNet. In this

way, the spike-based convolution can be retained. The difference

between these methods is shown in Figure 1. However, these

SNN architectures are all manually designed. For designing well-

performed SNN models automatically, AutoSNN (Na et al., 2022)

and SNASNet (Kim et al., 2022a) combined the Neural Architecture

Search (NAS) approach to find better SNN architectures. And

TA-SNN (Yao et al., 2021) and TCJA-SNN (Zhu et al., 2022)

leveraged the learnable attention mechanism to improve the

SNN performance.

Different from changing the network topology, Real Spike (Guo

et al., 2022d) provides a training-inference decoupled structure.

This method enhances the representation capacity of the

SNN by learning real-valued spikes during training. While in

the inference phase, the rich representation capacity will be

transferred from spike neurons to the convolutions by a re-

parameterization technique, and meanwhile, the real-valued spikes

will be transformed into binary spikes, thus maintaining the event-

driven and multiplication-addition transform advantages of SNNs.

Besides, increasing the timestep of SNN will undoubtedly

improve the SNN accuracy too, which has been proved in many

works (Wu Y. et al., 2018, 2019; Fang et al., 2021a). To some

extent, increasing the timestep is equivalent to increasing neuron

output bits through the temporal dimension, which will increase

the representation capability of feature map (Feng et al., 2022).

However, using more timesteps achieves better performance at the

cost of increasing inference time.

3.1.1.3. On the training technique level

Some works attempted to improve the representative capability

of the SNN on the training technique level, which can be

categorized as regularization and distillation. Regularization is a

technique that introduces another loss term to explicitly regularize

the membrane potential or spike distribution to retain more useful

information in the network that could indirectly help train the

network as follows,

LTotal = LCE + λLDL (4)

where LCE is the common cross-entropy loss, LDL is the

distribution loss for learning the proper membrane potential or

spike, and λ is a coefficient to balance the effect of the two

types of losses. IM-Loss (Guo et al., 2022a) argues that improving

the activation information entropy can reduce the quantization

error, and proposed an information maximization loss function

that can maximize the activation information entropy. In RecDis-

SNN (Guo et al., 2022c), a loss for membrane potential distribution

to explicitly penalize three undesired shifts was proposed. Though

the work is not designed for reducing quantization error

specifically, it still results in a bimodal membrane potential

distribution, which has been proven can mitigate the quantization

error problem.

The distillation methodology aims to help train a small student

model by transferring knowledge of a rather large trained teacher

model based on the consensus that the representative ability of a

teacher model is better than that of the student model. Recently,

some interesting works that introduce the distillation method in

the SNN domain were proposed. In Kushawaha et al. (2021), a big

teacher SNN model is used to guide the small SNN counterpart

learning. While in Yang et al. (2022), Takuya et al. (2021), and

Xu et al. (2023a,b) an ANN-teacher is used to guide SNN-student

learning. In specific, Local Tandem Learning (Yang et al., 2022) uses

the intermediate feature representations of the ANN to supervise

the learning of SNN. While in sparse-KD (Xu et al., 2023a),

the logit output of the ANN was adopted to guide the learning

of the SNN. Furthermore, KDSNN (Xu et al., 2023b) and SNN

Frontiers inNeuroscience 06 frontiersin.org32

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

FIGURE 1

Di�erent SNN ResNet architectures.

distillation (Takuya et al., 2021) used both feature-based and logit-

based information to distill the SNN.

3.1.2. Relieving training di�culties
The non-differentiability of the firing function impedes the

deep SNN direct training. To handle this problem, recently,

using the surrogate gradient (SG) function for spiking neurons

has received much attention. SG method utilizes a differentiable

surrogate function to replace the non-differentiable firing activity

to calculate the gradient in the back-propagation (Neftci et al., 2019;

Wu Y. et al., 2019; Rathi and Roy, 2020; Fang et al., 2021a). Though

the SG method can alleviate the non-differentiability problem,

there exists an obvious gradient mismatch between the gradient of

the firing function and the surrogate gradient. And the problem

easily leads to under-optimized SNNs with severe performance

degradation. Intuitively, an elaborately designed surrogate gradient

can help to relieve the gradient mismatch in the backward

propagation. As a consequence, some works are focusing on

designing better surrogate gradients. In addition, the gradient

explosion/vanishing problem in SNNs is severer over ANNs, due

to the adoption of tanh-like function for most SG methods.

There are also some works focusing on handling the gradient

explosion/vanishing problem. Note that, these methods in this

section can also be classified as the improvement on the neuron

level, network structure level, and training technique level, which

can be seen in the Table 1. Nevertheless, to better introduce these

works, we still organize them as designing the better surrogate

gradient and relieving the gradient explosion/vanishing problem.

3.1.2.1. Designing the better surrogate gradient

Most earlier works adopt fixed SG-based methods to handle

the non-differentiability problem. For example, the derivative of

a truncated quadratic function, the derivatives of a sigmoid, and

a rectangular function were respectively adopted in Bohte (2011),

Zenke and Ganguli (2018), and Cheng et al. (2020). However, such

a strategy would limit the learning capacity of the network. To this

end, a dynamic SG method was proposed in Guo et al. (2022a) and

Chen et al. (2022), where the SG could change along with epochs

as follows,

ϕ(x) =
1

2
tanh(K(i)(x− Vth))+

1

2
(5)

where ϕ(x) is the backward approximation function for the

firing activity and K(i) is a dynamic coefficient that changes along

with the training epoch as follows,

K(i) =
(10

i
N − 100)Kmax + (101 − 10

i
N)Kmin

9
(6)

where Kmin and Kmax are the lower bound and the upper bound

of K, and i is the index of epoch starting from 0 to N − 1. The

ϕ(x) and its gradient can be seen in Figure 2. Driven by K(i), it

will gradually evolve to the firing function, thus ensuring sufficient

weight updates at the beginning and accurate gradients at the

end of the training. Nevertheless, the above SG methods are still

designedmanually. To find the optimal solution, in Li et al. (2021b),

the Differentiable Spike method that can adaptively evolve during

training to find the optimal shape and smoothness for gradient

estimation based on the finite difference technique was proposed.

Then, in Leng et al. (2022), combined with the NAS technique, a

Frontiers inNeuroscience 07 frontiersin.org33

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

differentiable SG search (DGS) method to find the optimized SGs

for SNN was proposed. Different from designing a better SG for

firing function, DSR (Meng et al., 2022) derived that the spiking

dynamics with spiking neural models can be represented as some

sub-differentiable mapping and trained the SNNs by the gradients

of the mapping, thus avoiding the non-differentiability problem in

SNN training.

3.1.2.2. Relieving the gradient explosion/vanishing

problem

The gradient explosion or vanishing problem is still severe in

SG-only methods. There are three kinds of methods to solve this

problem: using improved neurons or architectures, improved batch

normalizations, and regularization. In Zhang M. et al. (2022), a

simple yet efficient rectified linear postsynaptic potential function

(ReL-PSP) for spiking neurons, which benefits for handling the

gradient explosion problem, was proposed. On the network

architecture level, SEW-ResNet (Fang et al., 2021a) showed that

standard spiking ResNet is inapplicable to overcome identity

mapping and vanishing/explosion gradient problems and advised

using ResNet with activation before addition form. Recently, the

pre-activation form-based ResNet was explored in MS-ResNet (Hu

et al., 2021). This network topology can simultaneously handle the

gradient explosion/vanishing problem and retain the advantages of

the SNN.

The normalization approaches are widely used in ANNs to train

well-performed models, and these approaches are also introduced

in the SNN field to handle the vanishing/explosion gradient

problems. For example, NeuNorm (Wu Y. et al., 2019) normalized

the data along the channel dimension like BN in ANNs through

constructing auxiliary feature maps. Threshold-dependent batch

normalization (tdBN; Zheng et al., 2021) considers the SNN

normalization from a temporal perspective and extends the scope

of BN to the additional temporal dimension. Furthermore, some

works (Kim and Panda, 2021; Duan et al., 2022; Ikegawa et al., 2022)

argued that the distributions of different timesteps vary wildly,

thus bringing a negative impact when using shared parameters.

Subsequently, the temporal Batch Normalization Through Time

(BNTT), postsynaptic potential normalization (PSP-BN), and

temporal effective batch normalization (TEBN) that can regulate

the spike flows by utilizing separate sets of BN parameters on

different timesteps were proposed. Though adopting temporal BN

parameters on different timesteps can obtain more well-performed

SNN models, this kind of BN technique can not fold the BN

parameters into the weights and will increase the computations and

running time in the inference stage, which should also be noticed.

Using the regularization loss can also mitigate the gradient

explosion/vanishing problem. In RecDis-SNN (Guo et al., 2022c), a

new perspective to further classify the gradient explosion/vanishing

difficulty of SNNs into three undesired shifts of the membrane

potential distribution was presented. To avoid these undesired

shifts, a membrane potential regularization loss was proposed in

RecDis-SNN, this loss introduces no additional operations in the

SNN inference phase. In TET (Deng et al., 2022), an extra temporal

regularization loss to compensate for the loss of momentum in the

gradient descent with SG methods was proposed. With this loss,

TET can converge into flatter minima with better generalizability.

Since ANNs are fully differentiable to be trained with gradient

descent, there is also some work utilizing ANN to guide the SNN’s

optimization (Wu et al., 2021a,b; Guo et al., 2023). In Wu et al.

(2021a) a tandem learning framework was proposed, that consists

of an SNN and an ANN that share the same weight. In this

framework, the spike count as the discrete neural representation

in the SNN would be presented to the coupled ANN activation

function in the forward phase. And in the backward phase, the

error back-propagation is performed on the ANN to update the

shared weight for both the SNN and the ANN. Furthermore, in

Wu et al. (2021b), a progressive tandem learning framework was

proposed, that introduces a layer-wise learningmethod to fine-tune

the shared network weights. Considering the difference between the

ANN and SNN, Joint A-SNN (Guo et al., 2023) developed a partial

weight-sharing regime for the joint training of weight-shared ANN

and SNN, that applies the Singular Value Decomposition (SVD) to

the weights parameters and keep the same eigenvectors while the

separated eigenvalues for the ANN and SNN.

3.2. E�ciency improvement methods

An important reason why have SNNs received extensive

attention recently is that they are seen as more energy efficient

than ANNs due to their event-driven computation mechanism and

the replacement of energy-consuming weight multiplication with

addition. To further explore the efficiency advantages of SNNs so

that they can be applied to energy-constrained devices is also a

hot topic in the SNN field. This kind of method can be mainly

categorized into network compression techniques and sparse SNNs.

3.2.1. Network compression techniques
Network compression techniques have been widely used in

ANNs. There are also some works applying these techniques in

SNNs. In the literature, approaches for compressing deep SNNs

can be classified into three categories: parameter pruning, NAS, and

knowledge distillation.

3.2.1.1. Parameter pruning

Parameter pruning mainly focuses on eliminating the

redundant parameters in the model by removing the uncritical

ones. SNNs, unlike their non-spiking counterparts, consist

of a temporal dimension. Along with considering temporal

information, a spatial and temporal pruning of SNNs is proposed

in Chowdhury et al. (2021). Generally speaking, pruning will

cause accuracy degradation to some extent. To avoid this, SD-

SNN (Han et al., 2022) and Grad R (Chen et al., 2021) proposed

the pruning-regeneration method for removing the redundancy

in SNNs from the brain development plasticity mechanism. With

synaptic regeneration, these works can effectively prevent and

repair over-pruning. Recently, an interesting temporal pruning,

which is specific for SNNs, was proposed in Chowdhury et al.

(2022). This method starts with an SNN of T timesteps and reduces

T every iteration of training, which results in a continuum of

accurate and efficient SNNs from T timesteps, down to 1 timestep.

Frontiers inNeuroscience 08 frontiersin.org34

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

FIGURE 2

The approximation function (left) under di�erent values of the coe�cient, k and its corresponding gradient (right). The blue curves represent the

firing function (left) and its true gradient (right).

3.2.1.2. Neural architecture searching

Obviously, a compact network carefully designed can reduce

the storage and computation complexity of SNNs. However, due

to the limitations of humans’ inherent knowledge, it is difficult

for people to jump out of their original thinking paradigm and

design an optimal compact model. Therefore, there are some

works using NAS techniques to let the algorithm automatically

design the compact neural architecture (Kim et al., 2022a; Na

et al., 2022). Furthermore, in Kim et al. (2022b), the lottery ticket

hypothesis was investigated which shows that dense SNN networks

contain smaller SNN subnetworks, i.e., winning tickets, which can

achieve comparable performance to the dense ones, and the smaller

compact one is picked as to be used network.

3.2.1.3. Knowledge distillation

The knowledge distillationmethods aim at obtaining a compact

model from a large model. In Kushawaha et al. (2021), a larger

teacher SNN model is used to distill a smaller SNN model. And

in Yang et al. (2022), Takuya et al. (2021), and Xu et al. (2023a,b),

the same architecture ANN-teacher is used to distill SNN-student.

3.2.2. Sparse SNNs
Different from ANNs, SNNs transmit information by spike

events, and the computation occurs only when the neuron receives

spike events. Benefitting from this event-driven computation

mechanism, SNNs can greatly save energy and run efficiently

when implemented on neuromorphic hardware. Hence, limiting

the firing rate of spiking neurons to achieve a sparse SNN is also a

widely used way to improve the efficiency of the SNN. These kinds

of methods can limit the firing rate of the SNN on both the neuron

level and training technique level.

3.2.2.1. On the neuron level

In ASNN (Zambrano and Bohte, 2016), an adaptive SNN

based on a group of adaptive spiking neurons was proposed.

These adaptive spiking neurons can optimize their firing rate using

asynchronous pulsed Sigma-Delta coding efficiently.

3.2.2.2. On the training technique level

In Han and Lee (2022), a correlation-based regularizer, which

is incorporated into a loss function, was proposed to minimize

the redundancies between the features at each layer for structural

sparsity. Obviously, this method is beneficial for energy-efficient.

Superspike (Zenke and Ganguli, 2018) added a heterosynaptic

regularization term to the learning rule of the hidden layer weights

to avoid pathologically high firing rates. RecDis-SNN (Guo et al.,

2022c) incorporated a membrane potential loss into the SNN to

regulate the membrane potential distribution to an appropriate

range to avoid high firing rates. In Pellegrini et al. (2021), to enforce

sparse spiking activity, a l1 or l2 regularization on the total number

of spikes emitted by each layer was applied.

3.3. Temporal dynamics utilization methods

Different from ANNs, SNNs enjoy rich temporal dynamics

characteristics, which makes them more suitable for some

particular temporal tasks and some vision sensors with high

resolution in time, e.g., neuromorphic cameras, which can capture

temporally rich information asynchronously inspired by the

information process form of eyes. Given such characteristics,

a great number of methods falling in sequential learning and

cooperating with neuromorphic cameras have been proposed

for SNNs.

3.3.1. Sequential learning
As aforementioned in Section 2, SNNs maintain a dynamic

state in the neuron memory. In Ponghiran and Roy (2022), the

usefulness of the inherent recurrence dynamics of the SNN for

sequential learning was demonstrated, that it can retain important

information. Thus, SNNs show better performance on sequential

learning compared to ANNs with similar scales in many works.

In She et al. (2021), a function approximation theoretical basis

was developed that any spike-sequence-to-spike-sequencemapping

functions can be approximated by an SNN with one neuron per

Frontiers inNeuroscience 09 frontiersin.org35

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

layer using skip-layer connections. And then, based on the basis,

a suitable SNN model for the classification of spatio-temporal

data was designed. In Li Y. et al. (2022), SNNs were leveraged to

study the Human Activity Recognition (HAR) task. Since SNNs

allow spatio-temporal extraction of features and enjoy low-power

computation with binary spikes, they can reduce up to 94%

energy consumption while achieving better accuracy compared

with homogeneous ANN counterparts. In Nomura et al. (2022),

an interesting phenomenon was found that SNNs trained with

the appropriate temporal penalty settings are more robust against

adversarial images than ANNs.

As the common sequential signal, many preliminary works on

speech recognition systems based on spiking neural networks have

been explored (Tavanaei and Maida, 2017a,b; Wu et al., 2018a,b,

2019b, 2020; Zhang et al., 2019; Hao et al., 2020). In Wu et al.

(2020), a deep spiking neural network was trained by the tandem

learning method to handle the large vocabulary automatic speech

recognition task. The experimental results demonstrated that the

deep SNN trained could compete with its ANN counterpart while

requiring as low as 0.68 times total synaptic operations to their

ANN counterparts. There are also some works training deep SNN

directly with SG methods for the speech task. In Ponghiran and

Roy (2022), inspired by the LSTM, a custom version of SNNs was

defined that combines a forget gate with multi-bit outputs instead

of binary spikes, yielding better accuracy than that of LSTMs,

but with 2× fewer parameters. In Bittar and Garner (2022b), the

spiking neural networks trained like recurrent neural networks

only using the standard surrogate gradient method can achieve

promising results on speech recognition tasks, which shows the

advantage of SNNs to handle this kind of task. In Bittar and Garner

(2022a), a combination of adaptation, recurrence, and surrogate

gradient techniques for spiking neural networks was proposed.

And with these improvements, light spiking architectures that are

not only able to compete with ANN solutions but also retain a

high degree of compatibility with them were yielded. In Pellegrini

et al. (2021), the dilated convolution spiking layers and a new

regularization term to penalize the averaged number of spikes were

used to train low-activity supervised convolutional spiking neural

networks. The results showed that the SNN models can reach an

error rate very close to standard DNNs while very energy efficient

for speech tasks. In Sadovsky et al. (2023), a new technique for

speech recognition that combines convolutional neural networks

with spiking neural networks was presented to create an SNNCNN

model. The results showed that the combination of CNNs and

SNNs outperforms both MLPs and ANNs, providing a new route

to further improvements in the field. In Yin et al. (2021), an

activity-regularizing surrogate gradient method combined with

recurrent networks of tunable and adaptive spiking neurons for

SNNs was proposed, and the method performed well on the speech

recognition task.

3.3.2. Cooperating with neuromorphic cameras
Neuromorphic camera, which is also called event-based

cameras, have recently shown great potential for high-speed

motion estimation owing to their ability to capture temporally

rich information asynchronously. SNNs, with their spatio-temporal

and event-driven processing mechanisms, are very suitable for

handling such asynchronous data. Many excellent works combine

SNNs and neuromorphic cameras to solve real-world large-scale

problems. In Hagenaars et al. (2021) and Kosta and Roy (2022),

an event-based optical flow estimation method was presented.

In StereoSpike (Rançon et al., 2021) a depth estimation method

was provided. SuperFast (Gao et al., 2022) leveraged an SNN and

an event camera to present an event-enhanced high-speed video

frame interpolation method. SuperFast can generate a very high

frame rate (up to 5,000 FPS) video from the input low frame

rate (25 FPS) video. Furthermore, Based on a hybrid network

composed of SNNs and ANNs, E-SAI (Yu L. et al., 2022) provided

a novel synthetic aperture imaging method, which can see through

dense occlusions and extreme lighting conditions from event

data. And in EVSNN (Zhu L. et al., 2022) a novel Event-based

Video reconstruction framework was proposed. To fully use the

information from different modalities, HALSIE (Biswas et al., 2022)

proposed a hybrid approach for semantic segmentation comprised

of dual encoders with an SNN branch to provide rich temporal

cues from asynchronous events, and an ANN branch for extracting

spatial information from regular frame data by simultaneously

leveraging image and event modalities.

There are also some works that apply this technique in

autonomous driving. In Cordone et al. (2022), fast and efficient

automotive object detection with spiking neural networks on

automotive event data was proposed. In Zhang J. et al. (2022),

a spiking transformer network, STNet, which can dynamically

extract and fuse information from both temporal and spatial

domains was proposed for single object tracking using event

data. Besides, since event cameras enjoy extremely low latency

and high dynamic range, they can also be used to handle

the harsh environment, i.e., extreme lighting conditions or

dense occlusions. LaneSNNs (Viale et al., 2022) presented an

SNN-based approach for detecting the lanes marked on the

streets using the event-based camera input. The experimental

results show a very low power consumption of about 1 W,

which can significantly increase the lifetime and autonomy of

battery-driven systems.

Based on the event-based cameras and SNNs, some works

attempted to assist the behavioral recognition research. For

examples, Spiking-Fer (Barchid et al., 2023) proposed a new

end-to-end deep convolutional SNN method to predict facial

expression. SpikeMS (Parameshwara et al., 2021) proposed a

deep encoder-decoder SNN architecture and a novel spatio-

temporal loss for motion segmentation using the event-based

DVS camera as input. In Zou et al. (2023), a dedicated end-

to-end sparse deep SNN consisting of the Spike-Element-Wise

(SEW) ResNet and a novel Spiking Spatiotemporal Transformer

was proposed for event-based pose tracking. This method

achieves a significant computation reduction of 80% in FLOPS,

demonstrating the superior advantage of SNN in this kind

of task.

4. Future trends and conclusions

The spiking neural networks, born in mimicking the

information process of brain neurons, enjoy many specific

Frontiers inNeuroscience 10 frontiersin.org36

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

characteristics and show great potential in many tasks, but

meanwhile suffer from many weaknesses. As a consequence,

a number of direct learning-based deep SNN solutions for

handling these disadvantages or utilizing the advantages of

SNNs have been proposed recently. As we summarized in

this survey, these methods can be roughly categorized into (i)

accuracy improvement methods, (ii) efficiency improvement

methods, and (iii) temporal dynamics utilization methods.

Though successful milestones and progress have been achieved

through these works, there are still many challenges in

the field.

On the accuracy improvement aspect, the SNN still faces

serious performance loss, especially for the large network and

datasets. The main reasons might include:

• Lack of measurement of information capacity: it is still unclear

how to precisely calculate the information capacity of the

spike maps and what kind of neuron types or network

topology is suitable for preserving information while the

information passing through the network, even after firing

function. We believe SNN neurons and architectures should

not be referenced from brains or ANNs completely. Specific

designs in regard to the characteristic of SNNs for preserving

information should be explored. For instance, to increase the

spiking neuron representative ability, the binary spike {0, 1},

which is used to mimic the activation or silence in the brain,

can be replaced by ternary spike {-1, 0, 1}, thus the information

capacity of the spiking neuron will be boosted, but the event-

driven and multiplication-free operation advantages of the

binary spike can be preserved still. And as aforementioned, the

widely used standard ResNet backbone in ANNs is not suitable

for SNNs. And the PreAct ResNet backbone performs better

since the membrane potential in neurons before the firing

function will be added to the next block, thus the complete

information will be transmitted simultaneously. While for

the standard ResNet backbone, only quantized information

is transmitted. To further preserve the information, adding

the shortcut layer by layer in the PreAct ResNet backbone

is better in our experiment, which is much different from

the architectures in ANNs and is a promising exploration

direction.

• Inherent optimization difficulties: It is still a difficult problem

to optimize the SNN in a discrete space, even though many

novel gradient estimators or approximate functions have been

proposed, there are still some huge obstacles in the field.

Such as the gradient explosion/vanishing problem, with the

increasing timestep, the problem along with the gradient

errors will become severer and make the network hard to

converge. Thus, how to completely eliminate the impact of

this problem to directly train an SNN with large timesteps is

still under exploration. We believe more theoretical studies

and practical tricks will emerge to answer this question in the

future.

It is also worth noting that accuracy is not the only criterion

of SNNs, the versatility is another key criterion, that measures

whether a method can be used in practice. Some methods proposed

in prior works are very versatile, such as learnable spike factors

proposed in Real Spike (Guo et al., 2022d), membrane potential

rectifier proposed in InfLoR-SNN (Guo et al., 2022b), temporal

regularization loss proposed in TET (Deng et al., 2022), etc. These

methods enjoy simple implementation and low coupling, thus

having become common widely used practices to improve the

accuracy of SNNs. Some methods improve the accuracy of SNNs

by designing complex spiking neurons or specific architectures.

Such improvements usually show a stronger ability to increase

performance. However, as we have pointed out before, some of

them suffer complicated computation and even lose the energy-

efficiency advantage, which violates the original intention of SNNs.

Therefore, purely pursuing high accuracy without considering

versatility has limited significance in practice. The balance between

accuracy and versatility is also an essential criterion for SNN

research that should be considered in the following works.

On the efficiency improvement aspect, some prior works ignore

the important fact, that the event-driven paradigm and friendly

to the neuromorphic hardware make SNNs much different from

ANNs. When implemented on the neuromorphic hardware, the

computation in the SNN occurs only if the spiking neuron receives

spike events. Hence, the direct reason for improving the efficiency

of the SNN is reducing the the number of the firing spikes,

not reducing network size. Some methods intending to improve

the efficiency of SNNs by pruning inactive neurons as doing

in ANNs can not make sense. We even think that under the

condition the SNN network size does not exceed the capacity of the

neuromorphic hardware, enlarging the network size but limiting

the number of the firing spikes at the same time may be a potential

route to improve the accuracy and efficiency simultaneously. In this

way, different weights of the SNN may respond to different data,

thus being equivalent to improving the representative capabilities

of the SNN. However, a more systematic study needs to be done in

the future.

On the temporal dynamics utilization aspect, a great number

of interesting methods have been proposed and shown wide

success. We think it is a very potential direction in the SNN

field. Some explainable machine learning-related study indicates

that different network types follow different patterns and enjoy

different advantages. In this sense, it might be more meaningful

to dive into the temporal dynamics of the SNN deeply, but not

to pursue higher accuracy as ANNs. Meanwhile, considering the

respective advantages, to use ANNs and SNNs together needs to be

studied further.

Last but not least, more special applications for SNNs also

should be explored still. Though SNNs have been used widely

in many fields, including the neuromorphic camera, HAR task,

speech recognition, autonomous driving, etc., as aforementioned

and the object detection (Kim et al., 2020; Zhou et al., 2020),

object tracking (Luo et al., 2020), image segmentation (Patel et al.,

2021), robotic (Stagsted et al., 2020; Dupeyroux et al., 2021), etc.,

where some remarkable studies have applied SNNs on recently,

compared to ANNs, their real-world applications are still very

limited. Considering the unique advantage, efficiency of SNNs,

we think there is a great opportunity for applying SNNs in the

GreenArtificial Intelligence (GAI), which has become an important

subfield of Artificial Intelligence and has notable practical value.

Frontiers inNeuroscience 11 frontiersin.org37

https://doi.org/10.3389/fnins.2023.1209795
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

We believe many studies focusing on using SNNs for GAI will

emerge soon.

Author contributions

YG and XH wrote the paper with ZM being active contributors

toward editing and revising the paper as well as supervising the

project. All authors contributed to the article and approved the

submitted version.

Funding

This work was supported by grants from the National Natural

Science Foundation of China under contract Nos. 12202412

and 12202413.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Barchid, S., Allaert, B., Aissaoui, A., Mennesson, J., and Djéraba, C. (2023). Spiking-
FER: spiking neural network for facial expression recognition with event cameras.
arXiv preprint arXiv:2304.10211.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long
short-termmemory and learning-to-learn in networks of spiking neurons,” inAdvances
in Neural Information Processing Systems, Vol. 31. (Montréal, QC: Palais des Congrés
de Montréal).

Biswas, S. D., Kosta, A., Liyanagedera, C., Apolinario, M., and Roy, K. (2022).
Halsie-hybrid approach to learning segmentation by simultaneously exploiting image
and event modalities. arXiv preprint arXiv:2211.10754.

Bittar, A., and Garner, P. (2022a). A surrogate gradient spiking baseline for speech
command recognition. Front. Neurosci. 16:865897. doi: 10.3389/fnins.2022.865897

Bittar, A., and Garner, P. N. (2022b). Surrogate gradient spiking neural networks
as encoders for large vocabulary continuous speech recognition. arXiv preprint
arXiv:2212.01187.

Bohte, S. M. (2011). “Error-backpropagation in networks of fractionally predictive
spiking neurons,” in International Conference on Artificial Neural Networks (Espoo:
Springer), 60–68. doi: 10.1007/978-3-642-21735-7_8

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation
in temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.
doi: 10.1016/S0925-2312(01)00658-0

Booij, O., and tat Nguyen, H. (2005). A gradient descent rule for
spiking neurons emitting multiple spikes. Inform. Process. Lett. 95, 552–558.
doi: 10.1016/j.ipl.2005.05.023

Bu, T., Ding, J., Yu, Z., and Huang, T. (2022). “Optimized potential initialization
for low-latency spiking neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36 (Columbia), 11–20. doi: 10.1609/aaai.v36i1.19874

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2023). Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv
preprint arXiv:2303.04347.

Chen, Y., Yu, Z., Fang, W., Huang, T., and Tian, Y. (2021). Pruning of deep
spiking neural networks through gradient rewiring. arXiv preprint arXiv:2105.04916.
doi: 10.24963/ijcai.2021/236

Chen, Y., Zhang, S., Ren, S., and Qu, H. (2022). “Gradual surrogate gradient
learning in deep spiking neural networks,” in ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 8927–8931.
doi: 10.1109/ICASSP43922.2022.9746774

Cheng, X., Hao, Y., Xu, J., and Xu, B. (2020). “LISNN: improving spiking neural
networks with lateral interactions for robust object recognition,” in IJCAI, 1519–1525.
doi: 10.24963/ijcai.2020/211

Chowdhury, S. S., Garg, I., and Roy, K. (2021). “Spatio-temporal pruning and
quantization for low-latency spiking neural networks,” in 2021 International Joint
Conference on Neural Networks (IJCNN), 1–9. doi: 10.1109/IJCNN52387.2021.9534111

Chowdhury, S. S., Rathi, N., and Roy, K. (2022). “Towards ultra low latency spiking
neural networks for vision and sequential tasks using temporal pruning,” in Computer
Vision-ECCV 2022, eds S. Avidan, G. Brostow,M. Cissé, G.M. Farinella, and T. Hassner
(Cham: Springer Nature Switzerland), 709–726. doi: 10.1007/978-3-031-20083-0_42

Cordone, L., Miramond, B., and Thierion, P. (2022). Object detection with
spiking neural networks on automotive event data. arXiv preprint arXiv:2205.04339.
doi: 10.1109/IJCNN55064.2022.9892618

Deng, S., Li, Y., Zhang, S., and Gu, S. (2022). Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946.

Ding, J., Dong, B., Heide, F., Ding, Y., Zhou, Y., Yin, B., et al. (2022). “Biologically
inspired dynamic thresholds for spiking neural networks,” in Advances in Neural
Information Processing Systems, eds A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho
(New Orleans, LA).

Duan, C., Ding, J., Chen, S., Yu, Z., and Huang, T. (2022). “Temporal effective
batch normalization in spiking neural networks,;; in Advances in Neural Information
Processing Systems, eds A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho.

Dupeyroux, J., Hagenaars, J. J., Paredes-Vallés, F., and de Croon, G. C. (2021).
“Neuromorphic control for optic-flow-based landing of MAVs using the loihi
processor,” in 2021 IEEE International Conference on Robotics and Automation (ICRA),
96–102. doi: 10.1109/ICRA48506.2021.9560937

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a). Deep
residual learning in spiking neural networks. Adv. Neural Inform. Process. Syst. 34,
21056–21069. doi: 10.48550/arXiv.2102.04159

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021b).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2661–2671. doi: 10.1109/ICCV48922.2021.00266

Feng, L., Liu, Q., Tang, H., Ma, D., and Pan, G. (2022). “Multi-level firing
with spiking DS-ResNet: enabling better and deeper directly-trained spiking neural
networks,” in Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI 2022, ed L. D. Raedt (Vienna), 2471–2477. ijcai.org.
doi: 10.24963/ijcai.2022/343

Gao, Y., Li, S., Li, Y., Guo, Y., and Dai, Q. (2022). Superfast: 200x video frame
interpolation via event camera. IEEE Trans. Pattern Anal. Mach. Intell. 45, 7764–7780.
doi: 10.1109/TPAMI.2022.3224051

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X., et al. (2022a). “IM-loss:
information maximization loss for spiking neural networks,” in Advances in Neural
Information Processing Systems, eds A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho
(New Orleans, LA).

Guo, Y., Chen, Y., Zhang, L., Wang, Y., Liu, X., Tong, X., et al. (2022b). “Reducing
information loss for spiking neural networks,” in Computer Vision-ECCV 2022, eds S.
Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Cham: Springer Nature
Switzerland), 36–52. doi: 10.1007/978-3-031-20083-0_3

Guo, Y., Peng,W., Chen, Y., Zhang, L., Liu, X., Huang, X., et al. (2023). Joint a-SNN:
joint training of artificial and spiking neural networks via self-distillation and weight
factorization. Pattern Recogn. 2023:109639. doi: 10.1016/j.patcog.2023.109639

Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z., et al. (2022c). “RECDIS-
SNN: rectifying membrane potential distribution for directly training spiking neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 326–335. doi: 10.1109/CVPR52688.2022.00042

Guo, Y., Zhang, L., Chen, Y., Tong, X., Liu, X., Wang, Y., et al. (2022d).
“Real spike: learning real-valued spikes for spiking neural networks,” in Computer

Frontiers inNeuroscience 12 frontiersin.org38

https://doi.org/10.3389/fnins.2023.1209795
https://doi.org/10.3389/fnins.2022.865897
https://doi.org/10.1007/978-3-642-21735-7_8
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1016/j.ipl.2005.05.023
https://doi.org/10.1609/aaai.v36i1.19874
https://doi.org/10.24963/ijcai.2021/236
https://doi.org/10.1109/ICASSP43922.2022.9746774
https://doi.org/10.24963/ijcai.2020/211
https://doi.org/10.1109/IJCNN52387.2021.9534111
https://doi.org/10.1007/978-3-031-20083-0_42
https://doi.org/10.1109/IJCNN55064.2022.9892618
https://doi.org/10.1109/ICRA48506.2021.9560937
https://doi.org/10.48550/arXiv.2102.04159
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.24963/ijcai.2022/343
https://doi.org/10.1109/TPAMI.2022.3224051
https://doi.org/10.1007/978-3-031-20083-0_3
https://doi.org/10.1016/j.patcog.2023.109639
https://doi.org/10.1109/CVPR52688.2022.00042
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

Vision-ECCV 2022: 17th European Conference (Tel Aviv: Springer), 52–68.
doi: 10.1007/978-3-031-19775-8_4

Hagenaars, J., Paredes-Vallés, F., and De Croon, G. (2021). Self-supervised learning
of event-based optical flow with spiking neural networks. Adv. Neural Inform. Process.
Syst. 34, 7167–7179. doi: 10.48550/arXiv.2106.01862

Han, B., and Roy, K. (2020). “Deep spiking neural network: energy efficiency
through time based coding,” in European Conference on Computer Vision (Glasgow:
Springer), 388–404. doi: 10.1007/978-3-030-58607-2_23

Han, B., Zhao, F., Zeng, Y., and Pan, W. (2022). Adaptive sparse structure
development with pruning and regeneration for spiking neural networks. arXiv
preprint arXiv:2211.12219. doi: 10.48550/arXiv.2211.12219

Han, C. S., and Lee, K. M. (2022). “Correlation-based regularization for fast and
energy-efficient spiking neural networks,” in Proceedings of the 37th ACM/SIGAPP
Symposium onApplied Computing, SAC ’22 (NewYork, NY: Association for Computing
Machinery), 1048–1055. doi: 10.1145/3477314.3507085

Hao, Y., Huang, X., Dong, M., and Xu, B. (2020). A biologically plausible supervised
learning method for spiking neural networks using the symmetric STDP rule. Neural
Netw. 121, 387–395. doi: 10.1016/j.neunet.2019.09.007

Hong, C., Wei, X., Wang, J., Deng, B., Yu, H., and Che, Y. (2019). Training
spiking neural networks for cognitive tasks: a versatile framework compatible with
various temporal codes. IEEE Trans. Neural Netw. Learn. Syst. 31, 1285–1296.
doi: 10.1109/TNNLS.2019.2919662

Hu, Y., Wu, Y., Deng, L., and Li, G. (2021). Advancing residual learning towards
powerful deep spiking neural networks. arXiv preprint arXiv:2112.08954.

Ikegawa, S.-I., Saiin, R., Sawada, Y., and Natori, N. (2022). Rethinking the role
of normalization and residual blocks for spiking neural networks. Sensors 22:2876.
doi: 10.3390/s22082876

Kim, S., Park, S., Na, B., and Yoon, S. (2020). “Spiking-yolo: spiking neural
network for energy-efficient object detection,” in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34, 11270–11277. doi: 10.1609/aaai.v34i07.6787

Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022a). “Neural architecture
search for spiking neural networks,” in Computer Vision-ECCV 2022: 17th European
Conference (Tel Aviv: Springer), 36–56. doi: 10.1007/978-3-031-20053-3_3

Kim, Y., Li, Y., Park, H., Venkatesha, Y., Yin, R., and Panda, P. (2022b). “Exploring
lottery ticket hypothesis in spiking neural networks,” in European Conference on
Computer Vision (Springer), 102–120. doi: 10.1007/978-3-031-19775-8_7

Kim, Y., and Panda, P. (2021). Revisiting batch normalization for training low-
latency deep spiking neural networks from scratch. Front. Neurosci. 2021:1638.
doi: 10.3389/fnins.2021.773954

Kosta, A. K., and Roy, K. (2022). Adaptive-spikeNet: event-based optical flow
estimation using spiking neural networks with learnable neuronal dynamics. arXiv
preprint arXiv:2209.11741. doi: 10.48550/arXiv.2209.11741

Kushawaha, R. K., Kumar, S., Banerjee, B., and Velmurugan, R. (2021).
“Distilling spikes: Knowledge distillation in spiking neural networks,” in 2020
25th International Conference on Pattern Recognition (ICPR), 4536–4543.
doi: 10.1109/ICPR48806.2021.9412147

Leng, L., Che, K., Zhang, K., Zhang, J., Meng, Q., Cheng, J., et al. (2022).
“Differentiable hierarchical and surrogate gradient search for spiking neural networks,”
in Advances in Neural Information Processing Systems, eds A. H. Oh, A. Agarwal, D.
Belgrave, and K. Cho (New Orleans, LA).

Li, W., Chen, H., Guo, J., Zhang, Z., and Wang, Y. (2022). “Brain-
inspired multilayer perceptron with spiking neurons,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 783–793.
doi: 10.1109/CVPR52688.2022.00086

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021a). “A free lunch from
ANN: towards efficient, accurate spiking neural networks calibration,” in International
Conference on Machine Learning, 6316–6325.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021b). Differentiable spike:
Rethinking gradient-descent for training spiking neural networks. Adv. Neural Inform.
Process. Syst. 34, 23426–23439.

Li, Y., Yin, R., Park, H., Kim, Y., and Panda, P. (2022). Wearable-based human
activity recognition with spatio-temporal spiking neural networks. arXiv preprint
arXiv:2212.02233. doi: 10.48550/arXiv.2212.02233

Li, Y., and Zeng, Y. (2022). Efficient and accurate conversion of
spiking neural network with burst spikes. arXiv preprint arXiv:2204.13271.
doi: 10.24963/ijcai.2022/345

Liu, F., Zhao, W., Chen, Y., Wang, Z., and Jiang, L. (2022). “Spikeconverter: an
efficient conversion framework zipping the gap between artificial neural networks
and spiking neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36 (Columbia), 1692–1701. doi: 10.1609/aaai.v36i2.20061

Lobov, S. A., Mikhaylov, A. N., Shamshin, M., Makarov, V. A., and Kazantsev, V.
B. (2020). Spatial properties of STDP in a self-learning spiking neural network enable
controlling a mobile robot. Front. Neurosci. 14:88. doi: 10.3389/fnins.2020.00088

Luo, X., Qu, H., Wang, Y., Yi, Z., Zhang, J., and Zhang, M. (2022).
Supervised learning in multilayer spiking neural networks with spike
temporal error backpropagation. IEEE Trans. Neural Netw. Learn. Syst. 1–13.
doi: 10.1109/TNNLS.2022.3164930

Luo, Y., Xu, M., Yuan, C., Cao, X., Xu, Y., Wang, T., et al. (2020). SiamSNN: spike-
based siamese network for energy-efficient and real-time object tracking. arXiv preprint
arXiv:2003.07584. doi: 10.1007/978-3-030-86383-8_15

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-Q. (2022). “Training
high-performance low-latency spiking neural networks by differentiation on spike
representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 12444–12453. doi: 10.1109/CVPR52688.2022.01212

Na, B., Mok, J., Park, S., Lee, D., Choe, H., and Yoon, S. (2022). AutoSNN:
towards energy-efficient spiking neural networks. arXiv preprint arXiv:2201.12738.
doi: 10.48550/arXiv.2201.12738

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Nomura, O., Sakemi, Y., Hosomi, T., and Morie, T. (2022). Robustness of spiking
neural networks based on time-to-first-spike encoding against adversarial attacks. IEEE
Trans. Circuits Syst. II 69, 3640–3644. doi: 10.1109/TCSII.2022.3184313

Parameshwara, C. M., Li, S., Fermüller, C., Sanket, N. J., Evanusa, M. S.,
and Aloimonos, Y. (2021). “Spikems: deep spiking neural network for motion
segmentation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 3414–3420. doi: 10.1109/IROS51168.2021.9636506

Patel, K., Hunsberger, E., Batir, S., and Eliasmith, C. (2021). A spiking
neural network for image segmentation. arXiv preprint arXiv:2106.08921.
doi: 10.48550/arXiv.2106.08921

Pellegrini, T., Zimmer, R., and Masquelier, T. (2021). “Low-activity
supervised convolutional spiking neural networks applied to speech commands
recognition,” in 2021 IEEE Spoken Language Technology Workshop (SLT), 97–103.
doi: 10.1109/SLT48900.2021.9383587

Ponghiran, W., and Roy, K. (2022). “Spiking neural networks with improved
inherent recurrence dynamics for sequential learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 36 (Columbia), 8001–8008.
doi: 10.1609/aaai.v36i7.20771

Ponulak, F., and Kasinski, A. (2011). Introduction to spiking neural networks:
Information processing, learning and applications. Acta Neurobiol. Exp. 71, 409–433.

Rançon, U., Cuadrado-Anibarro, J., Cottereau, B. R., and Masquelier, T.
(2021). Stereospike: depth learning with a spiking neural network. arXiv preprint
arXiv:2109.13751.

Rathi, N., and Roy, K. (2020). Diet-SNN: direct input encoding with leakage
and threshold optimization in deep spiking neural networks. arXiv preprint
arXiv:2008.03658.

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Sadovsky, E., Jakubec, M., and Jarina, R. (2023). “Speech command
recognition based on convolutional spiking neural networks,” in 2023 33rd
International Conference Radioelektronika (RADIOELEKTRONIKA) (Pardubice),
1–5. doi: 10.1109/RADIOELEKTRONIKA57919.2023.10109082

She, X., Dash, S., and Mukhopadhyay, S. (2021). “Sequence approximation
using feedforward spiking neural network for spatiotemporal learning: theory and
optimization methods,” in International Conference on Learning Representations.

Shen, G., Zhao, D., and Zeng, Y. (2023). Exploiting high performance spiking
neural networks with efficient spiking patterns. arXiv preprint arXiv:2301.12356.
doi: 10.48550/arXiv.2301.12356

Stagsted, R., Vitale, A., Binz, J., Renner, A., and Sandamirskaya, Y. (2020). “Towards
neuromorphic control: a spiking neural network based PID controller for UAV,”
in Robotics: Science and Systems 2020 (Corvallis, OR: Oregon State University).
doi: 10.15607/RSS.2020.XVI.074

Takuya, S., Zhang, R., and Nakashima, Y. (2021). “Training low-latency
spiking neural network through knowledge distillation,” in 2021 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS), 1–3.
doi: 10.1109/COOLCHIPS52128.2021.9410323

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Tavanaei, A., and Maida, A. (2017a). “Bio-inspired multi-layer spiking neural
network extracts discriminative features from speech signals,” in Neural Information
Processing, eds D. Liu, S. Xie, Y. Li, D. Zhao, and E. S. M. El-Alfy (Cham: Springer
International Publishing), 899–908. doi: 10.1007/978-3-319-70136-3_95

Tavanaei, A., and Maida, A. S. (2017b). A spiking network that learns
to extract spike signatures from speech signals. Neurocomputing 240, 191–199.
doi: 10.1016/j.neucom.2017.01.088

Frontiers inNeuroscience 13 frontiersin.org39

https://doi.org/10.3389/fnins.2023.1209795
https://doi.org/10.1007/978-3-031-19775-8_4
https://doi.org/10.48550/arXiv.2106.01862
https://doi.org/10.1007/978-3-030-58607-2_23
https://doi.org/10.48550/arXiv.2211.12219
https://doi.org/10.1145/3477314.3507085
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1109/TNNLS.2019.2919662
https://doi.org/10.3390/s22082876
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1007/978-3-031-20053-3_3
https://doi.org/10.1007/978-3-031-19775-8_7
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.48550/arXiv.2209.11741
https://doi.org/10.1109/ICPR48806.2021.9412147
https://doi.org/10.1109/CVPR52688.2022.00086
https://doi.org/10.48550/arXiv.2212.02233
https://doi.org/10.24963/ijcai.2022/345
https://doi.org/10.1609/aaai.v36i2.20061
https://doi.org/10.3389/fnins.2020.00088
https://doi.org/10.1109/TNNLS.2022.3164930
https://doi.org/10.1007/978-3-030-86383-8_15
https://doi.org/10.1109/CVPR52688.2022.01212
https://doi.org/10.48550/arXiv.2201.12738
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/TCSII.2022.3184313
https://doi.org/10.1109/IROS51168.2021.9636506
https://doi.org/10.48550/arXiv.2106.08921
https://doi.org/10.1109/SLT48900.2021.9383587
https://doi.org/10.1609/aaai.v36i7.20771
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/RADIOELEKTRONIKA57919.2023.10109082
https://doi.org/10.48550/arXiv.2301.12356
https://doi.org/10.15607/RSS.2020.XVI.074
https://doi.org/10.1109/COOLCHIPS52128.2021.9410323
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1007/978-3-319-70136-3_95
https://doi.org/10.1016/j.neucom.2017.01.088
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Guo et al. 10.3389/fnins.2023.1209795

Viale, A., Marchisio, A., Martina, M., Masera, G., and Shafique, M. (2022).
“LaneSNNs: spiking neural networks for lane detection on the loihi neuromorphic
processor,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 79–86. doi: 10.1109/IROS47612.2022.9981034

Wang, S., Cheng, T. H., and Lim, M.-H. (2022). “LTMD: learning improvement of
spiking neural networks with learnable thresholding neurons and moderate dropout,”
in Advances in Neural Information Processing Systems, eds A. H. Oh, A. Agarwal, D.
Belgrave, and K. Cho (New Orleans, LA).

Wang, X., Lin, X., and Dang, X. (2020). Supervised learning in spiking neural
networks: a review of algorithms and evaluations. Neural Netw. 125, 258–280.
doi: 10.1016/j.neunet.2020.02.011

Wang, X., Zhang, Y., and Zhang, Y. (2023). MT-SNN: enhance spiking neural
network with multiple thresholds. arXiv preprint arXiv:2303.11127.

Wang, Y., Zhang, M., Chen, Y., and Qu, H. (2022). “Signed neuron with memory:
towards simple, accurate and high-efficient ANN-SNN conversion,” in International
Joint Conference on Artificial Intelligence. doi: 10.24963/ijcai.2022/347

Wu, J., Chua, Y., and Li, H. (2018a). “A biologically plausible speech recognition
framework based on spiking neural networks,” in 2018 International Joint Conference
on Neural Networks (IJCNN). doi: 10.1109/IJCNN.2018.8489535

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021a). A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE
Trans. Neural Netw. Learn. Syst. 34, 446–460. doi: 10.1109/TNNLS.2021.3095724

Wu, J., Chua, Y., Zhang, M., Li, H., and Tan, K. C. (2018b). A spiking
neural network framework for robust sound classification. Front. Neurosci. 12:836.
doi: 10.3389/fnins.2018.00836

Wu, J., Chua, Y., Zhang, M., Yang, Q., Li, G., and Li, H. (2019a). “Deep spiking
neural network with spike count based learning rule,” in 2019 International Joint
Conference on Neural Networks (IJCNN), 1–6. doi: 10.1109/IJCNN.2019.8852380

Wu, J., Pan, Z., Zhang, M., Das, R. K., Chua, Y., and Li, H. (2019b). “Robust sound
recognition: a neuromorphic approach,” in Interspeech, 3667–3668.

Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., et al. (2021b). Progressive
tandem learning for pattern recognition with deep spiking neural networks. IEEE
Trans. Pattern Anal. Mach. Intell. 44, 7824–7840. doi: 10.1109/TPAMI.2021.3114196

Wu, J., Yılmaz, E., Zhang, M., Li, H., and Tan, K. (2020). Deep spiking neural
networks for large vocabulary automatic speech recognition. Front. Neurosci. 14:199.
doi: 10.3389/fnins.2020.00199

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12:331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33, 1311–1318. doi: 10.1609/aaai.v33i01.33011311

Xu, Q., Li, Y., Fang, X., Shen, J., Liu, J. K., Tang, H., et al. (2023a).
Biologically inspired structure learning with reverse knowledge distillation for
spiking neural networks. arXiv preprint arXiv:2304.09500. doi: 10.48550/arXiv.2304.
09500

Xu, Q., Li, Y., Shen, J., Liu, J. K., Tang, H., and Pan, G. (2023b).
Constructing deep spiking neural networks from artificial neural networks with
knowledge distillation. arXiv preprint arXiv:2304.05627. doi: 10.48550/arXiv.2304.
05627

Xu, Y., Zeng, X., Han, L., and Yang, J. (2013). A supervised multi-spike learning
algorithm based on gradient descent for spiking neural networks. Neural Netw. 43,
99–113. doi: 10.1016/j.neunet.2013.02.003

Yamazaki, K., Vo-Ho, V.-K., Bulsara, D., and Le, N. (2022). Spiking neural networks
and their applications: a review. Brain Sci. 12:863. doi: 10.3390/brainsci12070863

Yang, Q., Wu, J., Zhang, M., Chua, Y., Wang, X., and Li, H. (2022). Training
spiking neural networks with local tandem learning. arXiv preprint arXiv:2210.04532.
doi: 10.48550/arXiv.2210.04532

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., et al. (2021). “Temporal-
wise attention spiking neural networks for event streams classification,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 10221–10230.
doi: 10.1109/ICCV48922.2021.01006

Yao, X., Li, F., Mo, Z., and Cheng, J. (2022). GLIF: a unified gated leaky integrate-
and-fire neuron for spiking neural networks. in 36th Conference on Neural Information
Processing Systems (NeurIPS 2022). (New Orleans, LA).

Yin, B., Corradi, F., and Boht, S. (2021). Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3,
905–913. doi: 10.1038/s42256-021-00397-w

Yin, B., Corradi, F., and Bohté, S. M. (2020). “Effective and efficient computation
with multiple-timescale spiking recurrent neural networks,” in International
Conference on Neuromorphic Systems 2020, 1–8. doi: 10.1145/3407197.3407225

Yu, L., Zhang, X., Liao, W., Yang, W., and Xia, G.-S. (2022). Learning
to see through with events. IEEE Trans. Pattern Anal. Mach. Intell. 1–18.
doi: 10.1109/TPAMI.2022.3227448

Yu, Q., Gao, J., Wei, J., Li, J., Tan, K. C., and Huang, T. (2022a). Improving
multispike learning with plastic synaptic delays. IEEE Trans. Neural Netw. Learn. Syst.
1–12. doi: 10.1109/TNNLS.2022.3165527

Yu, Q., Song, S., Ma, C., Pan, L., and Tan, K. C. (2022b). Synaptic learning
with augmented spikes. IEEE Trans. Neural Netw. Learn. Syst. 33, 1134–1146.
doi: 10.1109/TNNLS.2020.3040969

Zambrano, D., and Bohte, S. M. (2016). Fast and efficient asynchronous neural
computation with adapting spiking neural networks. arXiv preprint arXiv:1609.02053.
doi: 10.48550/arXiv.1609.02053

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning in multilayer
spiking neural networks. Neural Comput. 30, 1514–1541. doi: 10.1162/neco_a_01086

Zhang, D., Zhang, T., Jia, S., Wang, Q., and Xu, B. (2022). Recent advances
and new frontiers in spiking neural networks. arXiv preprint arXiv:2204.07050.
doi: 10.24963/ijcai.2022/790

Zhang, J., Dong, B., Zhang, H., Ding, J., Heide, F., Yin, B., et al. (2022).
“Spiking transformers for event-based single object tracking,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8801–8810.
doi: 10.1109/CVPR52688.2022.00860

Zhang, M., Luo, X., Chen, Y., Wu, J., Belatreche, A., Pan, Z., et al.
(2020a). An efficient threshold-driven aggregate-label learning algorithm for
multimodal information processing. IEEE J. Select. Top. Signal Process. 14, 592–602.
doi: 10.1109/JSTSP.2020.2983547

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z.,
et al. (2022). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Zhang, M., Wu, J., Belatreche, A., Pan, Z., Xie, X., Chua, Y., et al. (2020b).
Supervised learning in spiking neural networks with synaptic delay-weight plasticity.
Neurocomputing 409, 103–118. doi: 10.1016/j.neucom.2020.03.079

Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., Liu, D., et al. (2019).
MPD-Al: an efficient membrane potential driven aggregate-label learning
algorithm for spiking neurons. Proc. AAAI Conf. Artif. Intell. 33, 1327–1334.
doi: 10.1609/aaai.v33i01.33011327

Zhang, W., and Li, P. (2020). Temporal spike sequence learning via
backpropagation for deep spiking neural networks. Adv. Neural Inform. Process.
Syst. 33, 12022–12033.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). “Going deeper with directly-
trained larger spiking neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35, 11062–11070. doi: 10.1609/aaai.v35i12.17320

Zhou, S., Chen, Y., Li, X., and Sanyal, A. (2020). Deep SCNN-based real-time
object detection for self-driving vehicles using lidar temporal data. IEEE Access 8,
76903–76912. doi: 10.1109/ACCESS.2020.2990416

Zhou, S., Li, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2021). “Temporal-
coded deep spiking neural network with easy training and robust performance,” in
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 11143–11151.
doi: 10.1609/aaai.v35i12.17329

Zhu, L., Wang, X., Chang, Y., Li, J., Huang, T., and Tian, Y. (2022). “Event-based
video reconstruction via potential-assisted spiking neural network,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3594–3604.
doi: 10.1109/CVPR52688.2022.00358

Zhu, R. -J., Zhao, Q., Zhang, T., Deng, H., Duan, Y., Zhang, M., et al. (2022). TCJA-
SNN: Temporal-channel joint attention for spiking neural networks. arXiv [Preprint].
arXiv: 2206.10177. Available online at: https://arxiv.org/pdf/2206.10177.pdf

Zhu, Y., Yu, Z., Fang, W., Xie, X., Huang, T., and Masquelier, T. (2022). “Training
spiking neural networks with event-driven backpropagation,” in 36th Conference on
Neural Information Processing Systems (NeurIPS 2022) (New Orleans, LA).

Zimmer, R., Pellegrini, T., Singh, S. F., and Masquelier, T. (2019). Technical report:
supervised training of convolutional spiking neural networks with pytorch. arXiv
preprint arXiv:1911.10124.

Zou, S., Mu, Y., Zuo, X., Wang, S., and Cheng, L. (2023). Event-based human
pose tracking by spiking spatiotemporal transformer. arXiv preprint arXiv:2303.09681.
doi: 10.48550/arXiv.2303.09681

Frontiers inNeuroscience 14 frontiersin.org40

https://doi.org/10.3389/fnins.2023.1209795
https://doi.org/10.1109/IROS47612.2022.9981034
https://doi.org/10.1016/j.neunet.2020.02.011
https://doi.org/10.24963/ijcai.2022/347
https://doi.org/10.1109/IJCNN.2018.8489535
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.3389/fnins.2018.00836
https://doi.org/10.1109/IJCNN.2019.8852380
https://doi.org/10.1109/TPAMI.2021.3114196
https://doi.org/10.3389/fnins.2020.00199
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.48550/arXiv.2304.09500
https://doi.org/10.48550/arXiv.2304.05627
https://doi.org/10.1016/j.neunet.2013.02.003
https://doi.org/10.3390/brainsci12070863
https://doi.org/10.48550/arXiv.2210.04532
https://doi.org/10.1109/ICCV48922.2021.01006
https://doi.org/10.1038/s42256-021-00397-w
https://doi.org/10.1145/3407197.3407225
https://doi.org/10.1109/TPAMI.2022.3227448
https://doi.org/10.1109/TNNLS.2022.3165527
https://doi.org/10.1109/TNNLS.2020.3040969
https://doi.org/10.48550/arXiv.1609.02053
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.24963/ijcai.2022/790
https://doi.org/10.1109/CVPR52688.2022.00860
https://doi.org/10.1109/JSTSP.2020.2983547
https://doi.org/10.1109/TNNLS.2021.3110991
https://doi.org/10.1016/j.neucom.2020.03.079
https://doi.org/10.1609/aaai.v33i01.33011327
https://doi.org/10.1609/aaai.v35i12.17320
https://doi.org/10.1109/ACCESS.2020.2990416
https://doi.org/10.1609/aaai.v35i12.17329
https://doi.org/10.1109/CVPR52688.2022.00358
https://arxiv.org/pdf/2206.10177.pdf
https://doi.org/10.48550/arXiv.2303.09681
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 26 July 2023

DOI 10.3389/fnins.2023.1213720

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Guozhang Chen,

Graz University of Technology, Austria

Yishu Zhang,

Zhejiang University, China

*CORRESPONDENCE

Zhenzhi Wu

zhenzhi.wu@lynxi.com

Yansong Chua

caiyansong@cnaeit.com

RECEIVED 28 April 2023

ACCEPTED 22 June 2023

PUBLISHED 26 July 2023

CITATION

Wu Z, Shen Y, Zhang J, Liang H, Zhao R, Li H,

Xiong J, Zhang X and Chua Y (2023) BIDL: a

brain-inspired deep learning framework for

spatiotemporal processing.

Front. Neurosci. 17:1213720.

doi: 10.3389/fnins.2023.1213720

COPYRIGHT

© 2023 Wu, Shen, Zhang, Liang, Zhao, Li,

Xiong, Zhang and Chua. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

BIDL: a brain-inspired deep
learning framework for
spatiotemporal processing

Zhenzhi Wu1*, Yangshu Shen1,2, Jing Zhang1, Huaju Liang3,

Rongzhen Zhao1, Han Li1, Jianping Xiong2, Xiyu Zhang4 and

Yansong Chua3*

1Lynxi Technologies, Co. Ltd., Beijing, China, 2Department of Precision Instruments and Mechanology,

Tsinghua University, Beijing, China, 3Neuromorphic Computing Laboratory, China Nanhu Academy of

Electronics and Information Technology (CNAEIT), Jiaxing, Zhejiang, China, 4School of Automation

Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Brain-inspired deep spiking neural network (DSNN) which emulates the function

of the biological brain provides an e�ective approach for event-stream

spatiotemporal perception (STP), especially for dynamic vision sensor (DVS)

signals. However, there is a lack of generalized learning frameworks that can

handle various spatiotemporal modalities beyond event-stream, such as video

clips and 3D imaging data. To provide a unified design flow for generalized

spatiotemporal processing (STP) and to investigate the capability of lightweight

STP processing via brain-inspired neural dynamics, this study introduces a training

platform called brain-inspired deep learning (BIDL). This framework constructs

deep neural networks, which leverage neural dynamics for processing temporal

information and ensures high-accuracy spatial processing via artificial neural

network layers. We conducted experiments involving various types of data,

including video information processing, DVS information processing, 3D medical

imaging classification, and natural language processing. These experiments

demonstrate the e�ciency of the proposed method. Moreover, as a research

framework for researchers in the fields of neuroscience and machine learning,

BIDL facilitates the exploration of di�erent neural models and enables global-local

co-learning. For easily fitting to neuromorphic chips and GPUs, the framework

incorporates several optimizations, including iteration representation, state-

aware computational graph, and built-in neural functions. This study presents a

user-friendly and e�cient DSNN builder for lightweight STP applications and has

the potential to drive future advancements in bio-inspired research.

KEYWORDS

spatiotemporal processing framework, spiking neural network, global-local co-learning,

synaptic plasticity, video recognition, brain-inspired computing, leaky integrate and fire,

reward-modulated STDP

1. Introduction

Humans can perceive the continuously changing world, including static features such

as object shapes and colors, as well as dynamic features such as motion trajectories and

waveforms. These perceptions require high processing precision and need to be performed in

real time with low computational power requirements. It is worth noting that brain-inspired

computing features rich neural dynamics for efficiently processing temporal signals (Carlos

et al., 2019) and deep learning technologies provide the capability for high-precision spatial

information processing, which leads to the widespread development of the deep spiking

Frontiers inNeuroscience 01 frontiersin.org41

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1213720
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1213720&domain=pdf&date_stamp=2023-07-26
mailto:zhenzhi.wu@lynxi.com
mailto:caiyansong@cnaeit.com
https://doi.org/10.3389/fnins.2023.1213720
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1213720/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

neural networks (DSNNs) be deployed for spatiotemporal

processing (Gu et al., 2019; Wu et al., 2021, 2022b). However,

most of the current DSNN research focuses on dynamic vision

sensor (DVS) processing or image recognition tasks. For most non-

event-stream scenarios, a DSNN still lacks satisfactory accuracy.

There are also many high-accuracy spatiotemporal networks,

including two-stream networks (Simonyan and Zisserman,

2014a), convolutional 3D networks (Tran et al., 2015), and

video transformer networks (Neimark et al., 2021) for video clip

processing, networks (Han et al., 2019) for 3D imaging (image

sequence) processing, long short-term memory (LSTM) (Greff

et al., 2016), and transformer (Vaswani et al., 2017) networks for

natural language processing (NLP) etc. The key issue is that the

computational complexity and parameter size of these networks

are much larger than pure spatial processing, which makes them

hard for real-time high-throughput perception. Therefore, in

this study, we aim to extend DSNN to lightweight generalized

STP. The bio-inspired neurons are integrated into deep artificial

neural networks (ANNs) and enable spatiotemporal processing

with a computational complexity approaching pure spatial

processing level, by introducing lightweight neural dynamics. It

is revealed that temporal processing can be achieved with limited

computational cost and memory footprint. We further verified

that the accuracy can be improved by advanced neural models,

especially for video clip processing. From this point, we develop

a generalized spatiotemporal processing methodology via neural

dynamics and deep neural networks (DNNs) and then designed

a framework named brain-inspired deep learning (BIDL) that

can adapt to a variety of modalities, such as video, DVS, text,

sensor signals, etc., and finally achieves a real-time high accuracy

processing. Therefore, this study extends the DSNN application

domain to a much wider scope.

In another aspect, BIDL aims to provide a research platform for

DSNNs. Existing frameworks mostly cater to either neuroscience

researchers or machine learning researchers but not both. For

computational neuroscience researchers, it is essential to have

the flexibility to configure neural models, synaptic plasticity,

and network structure in a research platform. Additionally,

realistic applications are crucial for validating their ideas. From

the perspective of neural simulators, there are already several

simulators available, ranging from high-accuracy simulation

(Carnevale and Hines, 2006) to large-scale simulation (Gewaltig

and Diesmann, 2007). Some frameworks also accelerate network

simulation using GPUs (Yavuz et al., 2016; Golosio et al., 2021). In

terms of applications, Bekolay et al. (2014) and Wang et al. (2022)

provided rich examples of bio-inspired networks and dynamics.

BIDL offers similar design flexibility to these frameworks and

enables vectorized acceleration for neuron populations and synapse

connections using PyTorch. Furthermore, BIDL enables back

propagation through time (BPTT) training for advanced neural

models.

Machine learning researchers require a fast development

platform for DSNNs with a deep neural network (DNN) design

style. Support for global-local learning is essential for validating

brain-inspired local learning with gradient-based global learning.

Among the frameworks that fulfill these requirements, some

frameworks such as Hazan et al. (2018), Rasmussen (2019),

and Bohte et al. (2000) enable spiking neural network (SNN)

designs using deep learning frameworks such as Jax, PyTorch,

and TensorFlow. Among them, Fang et al. (2020) enabled

BPTT learning, which achieves high accuracy. Inspired by these

frameworks, BIDL provides a rapid development platform for

designing and training DSNNs using a DNN-style approach. BIDL

also introduces a configuration file that integrates networks with

datasets and pre-processing pipelines, similar to OpenMMLab

(MMCV-Contributors, 2018), enabling efficient DSNN design.

Additionally, BIDL introduces a unified flow for global-local co-

learning in DSNNs, including BPTT learning and programmable

generalized synaptic plasticity. Therefore, BIDL serves as a unified

research framework for both neuroscience and machine learning

researchers.

Moreover, BIDL incorporates a range of optimizations to

fit the designed network to neuromorphic chips, particularly

focusing on the iteration representation. Since most neuromorphic

chips operate in a timestep-driven manner, some frameworks are

specifically designed for such cases (Gewaltig and Diesmann, 2007;

Davison et al., 2009; Wang et al., 2022). However, for speeding up

GPU processing, an iteration within each temporal layer proves

to be a better choice, as applied in SpikingJelly (Fang et al.,

2020). Consequently, BIDL supports both internal and external

iteration methods, allowing training within a single framework

while utilizing the same design flow.

The main contributions of this study are as follows:

(1). BIDL provides a unified DSNN design flow for a range

of STP applications, including video clip processing, moving

trajectory processing, dynamic vision sensor (DVS) recognition, 3D

medical imaging classification, and NLP task. These experiments

demonstrate the efficiency of BIDL, achieving high accuracy

while consuming significantly less computation than traditional

convolutional 3D (Conv3D) or LSTM approaches. Finally, real-

time processing of these experiments on embedded platform is

realized.

(2). As a research framework for neuroscience and machine

learning researchers, BIDL facilitates the exploration of various

differentiable neural models such as the leaky integrate-and-

fire (LIF) and LIF+ models. It also supports different neural

configurations, including analog spike and residual membrane

potential (RMP). Furthermore, BIDL enables global-local co-

learning through the use of back-propagation through Time

(BPTT) for global learning and generalized synaptic plasticity

rules for local learning. To demonstrate the exploration capability

of BIDL, we provide an anti-noise example utilizing BPTT and

localized plasticity co-learning as well as a DVS recognition

example employing various LIF+ neurons.

(3). To ensure compatibility with neuromorphic chips and

GPUs, the BIDL framework incorporates both internal iteration

and external iteration of timesteps into a unified design flow.

Additionally, we propose a state-variable indicated computational

graph as a representation of the networks, which facilitates seamless

integration with downstream SNN compilers.

The article is organized as follows: Section 2 illustrates the

generalized spatiotemporal processing network through neural

dynamics. Section 3 discusses the characteristics of the BIDL

research platform, catering to the needs of researchers in the field.

Frontiers inNeuroscience 02 frontiersin.org42

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

Section 4 presents optimizations and considerations for deploying

BIDL on neuromorphic chips. Section 5 provides diverse examples

of spatiotemporal processing, advanced neural models, and global-

local co-learning. Section 6 presents a discussion on the design

choices of the BIDL framework. Finally, Section 7 concludes the

study.

2. Generalized spatiotemporal
processing via neural dynamics

Generalized lightweight spatiotemporal processing requires

several criteria. First, it needs to be a generalized method that can

adapt to a variety of modalities, such as video, DVS, text, and sensor

signals. Second, it should have high accuracy in processing both

spatial and temporal information. Third, it should be lightweight in

terms of computation and memory usage, enabling real-time low-

latency processing. In this section, we will discuss how BIDL meets

these requirements.

For a generalized spatiotemporal framework, the neural

networks in BIDL treat all spatiotemporal source signals as

spatiotemporal tensors. These tensors contain both spatial and

temporal information, forming a spatio-temporal (ST) tensor with

the shape [B,T,C,H,W]. In this study, B represents the batch

size, T denotes the total timesteps, H and W represent height

and width, respectively, and C denotes the number of channels.

This spatiotemporal tensor format allows the representation of

spatial information in [C,H,W] and temporal information with T

timesteps.

BIDL requires a data pre-processing procedure to convert the

source data into the ST tensor format, as illustrated in Figure 1. For

a video clip, the temporal tensor represents a sequence of frames.

The video frames undergo a sampling rate conversion followed by

image preprocessing to derive the temporal tensor. For DVS signals,

the event format represented as (x, y, t, ps) over a time duration

t ∈ ts is collected and forms a frame. In this study, x and y denote

the pixel location, and two channels represent the increase and

decrease of light intensity, respectively. Each pixel is represented

by an integer value indicating the count of events at that location.

To satisfy the spiking format for SNN, it can also be transformed

into a binary format, where one or several neurons represent a

pixel. For 3D imaging data, each slice of the 3D imaging can be

treated as a “frame,” allowing the 3D data direct transformation into

a temporal tensor. For purely temporal signals, such as text or voice,

they can be represented in the 5D format with H = 1 and W = 1.

However, for easier understanding inmost cases, we use a 3D tensor

format with the shape [B,T, S], where S represents the dimension

of hidden states. Therefore, multiple modalities can be converted

into a unified ST tensor format for neural network processing. BIDL

also provides a set of data pre-processing pipelines for converting

data formats into the unified ST format. It is important to note

that this procedure is defined by the user, and the methods for

processing new data sources may vary. Detailed information about

the pre-processing for each experiment can be found in Section 5.

For high-accuracy spatiotemporal processing, BIDL utilizes

a DSNN, where ANN layers and SNN layers are interleaved

and stacked in a network. With the advantages of deep

learning technologies, ANN layers, including convolution, batch

normalization, pooling, dropout, linear, residual connections, and

attention mechanisms, are proficient in spatial (image) processing,

as shown in Figure 1. Additionally, the backbone network of

DSNN can be directly adopted from DNN, such as ResNet (He

et al., 2016) or VGG (Simonyan and Zisserman, 2014b). On the

contrary, SNN layers, such as LIF, can be inserted into these

DNNs to introduce temporal processing capability. Therefore,

ANN layers are responsible for spatial processing, while SNN layers

handle temporal processing. It has been demonstrated that the

neural dynamics of these neural models can effectively extract

temporal information (Wu et al., 2021, 2022a). In particular,

the ConvLIF is an ST block that incorporates convolution,

batch normalization, and LIF, making it suitable for lightweight

spatiotemporal processing. The ConvLIAF block is an improved

ST block that replaces spike activations with analog activations

while maintaining the neural dynamics of LIF (Wu et al.,

2021), thereby enhancing spatial signal transfer accuracy. These

ConvLIF/ConvLIAF blocks can be considered as the fundamental

building blocks for constructing spatiotemporal networks, as

shown in Figure 2. We can also leverage basic backbone networks

from DNN designs and insert neural models to enable temporal

processing, such as ResNet-LIF or VGG-LIAF. These networks can

be trained in BIDL using global learning methods, such as BPTT,

or learned through local learning methods, such as Hebb or spike-

timing-dependent plasticity (STDP). BPTT provides high-accuracy

processing through supervised learning, while local methods offer

unsupervised or weakly supervised learning, which can be used for

adapting to new tasks or environments. The top-level architecture

of the proposed framework is illustrated in Figure 3.

2.1. Definition of the LIF/LIAF neural model

The definition of LIF, Leaky Integrate and Analog Fire (LIAF),

and Residual Membrane Potential (RMP) applied in this study has

been previously illustrated in Han et al. (2020), Wu et al. (2021),

and Wu et al. (2022b). For an easy understanding of the proposed

framework, we reintroduced the definitions as follows.

The original LIF model is described in a differential function

(Ferré et al., 2018; Roy et al., 2019) to reveal the neural dynamics,

following the equation

τ
dVj(t)

dt
= −(Vj(t)− Vrest)+ RIj(t), (1)

where j represents the neuron index. τ is the timing factor of the

neuron, Vrest is the resting potential, and Ij(t) is the input current.

When Vj(t) reaches a certain threshold Vth, a spike is emitted, and

the Vj(t) is reset to an initial value Vreset .

We introduce the Euler method (Wu et al., 2018; Neftci et al.,

2019) on Eq. 1 to obtain an iterative representation in discrete-

time for easy inference and training. We define 1t as the sampling

duration which is a small fraction of time, with the Euler method,

the equation can be solved numerically:

Vj(t) = Vj(t − 1t)+
1t

τ

(

−Vj(t − 1t)+ Vrest + RIj(t − 1t)
)

.

(2)

Frontiers inNeuroscience 03 frontiersin.org43

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 1

Proposed ST processing on various input modalities, including event-stream, video clip, 3D imaging, and 1D signals (including text). The data are first

converted to an ST tensor via a conversion pipeline and then processed by a DSNN with ST blocks. The ST block consists of synaptic processing,

such as convolution or linear layers, homeostasis, such as batch normalization, and neural dynamics, including LIF/LIAF/LIF+. The event-stream

demonstration sub-figure is modified from Hinz et al. (2017).

After sampling with a sampling rate of 1/1t, we denote the

timestep as tn, where t = tn1t, then we have

Vj(tn1t) = Vj((tn−1)1t)(1−
1t

τ
)+

1t

τ
Vrest+

1t

τ
RIj((tn−1)1t).

(3)

For simplicity, we further define α = 1− 1t
τ
, β = 1t

τ
Vrest , and

r = R
α

1t
τ
, then Eq. 3 can be written as

Vj(tn1t) = α(Vj((tn − 1)1t)+ rIj((tn − 1)1t))+ β (4)

In the discrete form, we skip the notation 1t, therefore, we get

V
tn
j = α(V

tn−1
j + rI

tn−1
j)+ β . (5)

Therefore, we obtained the LIF representation in a discrete

form. In the remaining part of this article, all the expressions are in

a discrete form, and we use t instead of tn to represent the timestep

for simplicity.

We further pack a group of neurons in a tensor for a more

compact expression, where I
t , V t , V th, Vreset , α, β , and r are all

in a tensor format, and we have re-written LIF/LIAF in following

calculation procedure:

(a). Accumulate input current with the previous membrane

potential:

V
t
m = V

t−1 + r · It , (6)

where V
t−1 and V

t refer to the previous and current membrane

potential, respectively. The input current usually comes from

convolutional synaptic calculation or linear (fully connected)

synaptic calculation.

(b). Compare with the threshold and fire:

F
t = V

t
m ≥ V th, (7)

where Ft is the fire signal. For each Ftj in F
t , Ftj = 1 indicates a firing

event; otherwise, Ftj = 0.

(c). Reset the membrane potential when fired:

R
t = F

t · Vreset + (1− F
t) · V t

m (8)

When using residual membrane potential (RMP) (Han et al.,

2020), a soft reset instead of a hard reset is applied:

R
t = F

t · (V t
m − V th)+ (1− F

t) · V t
m (9)

(d). Perform leakage:

V
t = α · Rt + β (10)

where α and β represent the multiplicative decay and additive

decay, respectively.

(e). Output:

Y
t =

{

F
t , for LIF

f (V t), for LIAF,
(11)

where f (x) is the analog activation function.

Frontiers inNeuroscience 04 frontiersin.org44

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 2

Proposed spatiotemporal processing by utilizing neural dynamics for temporal processing. (A) Traditional spatiotemporal processing via 3D

convolution or Convolutional LSTM. (B) The proposed ST block (such as ConvLIF/ConvLIAF) is applied for spatiotemporal processing, where 2D

convolution or linear operations are employed for spatial processing, and bio-inspired neurons with dynamics are introduced for temporal

processing. Due to the lower computational requirements of 2D convolution and bio-inspired neurons compared to Conv3D or ConvLSTM, the

network becomes lightweight and enables real-time processing.

In the following illustrations, we term convolutional integration

with LIAF/LIF as ConvLIAF/ConvLIF, respectively. We use an

RMP flag (such as ConvLIF-RMP) when a soft reset is used. In

addition, parameters V th, Vreset , α, and β may vary for each

convolutional channel termed as channel sharing mode (CSM)

or be the same for all neurons termed as all sharing mode

(ASM). Since r is a resistance to the input current, and the

input current is derived from synaptic integration, we discarded

it since it can be represented as a gain factor of the synaptic

weights. There are also many variations for the proposed LIF,

which are noted as LIF+. Please refer to Section 3.1.1 for

details.

2.2. Lightweight processing

To verify the lightweight characteristics of the proposed

networks in BIDL, we summarized the computational cost and

memory cost of the proposed ST block, comparing it with

traditional ST blocks such as Conv3D and ConvLSTM. The

comparison is shown in Table 1.

We assume that the hidden state and output have the same

spatiotemporal tensor size, denoted as [B,T,H,W,C], where

B = 1. (I, J) represents the convolution kernel size of Conv2D,

ConvLIF, ConvLIAF, and ConvLSTM, while (U, I, J) represents the

convolution kernel size of Conv3D. The variable K denotes the size

of input channels. For the sake of comparison, in Table 1, we use

R and Q to represent T · H · W · C and I · J · K, respectively.

We also fix these parameters to a set of typical values and plot

the corresponding values of computational operations and weight

parameters, as shown in Figure 4.

The results from Table 1 and Figure 4 reveal that the

computational overhead of ConvLIAF is not significantly different

from that of Conv2D (time-distributed). Furthermore, ConvLIF

consumes fewer multiplications thanks to its spiking format. It

can be observed that, for the same temporal tensor shape, both

ConvLIAF and ConvLIF achieve a computational reduction of 3x

compared to Conv3D and 8x compared to ConvLSTM, as shown

in Figure 4. Therefore, compared with Conv3D and ConvLSTM,

Frontiers inNeuroscience 05 frontiersin.org45

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 3

Top-level architecture of BIDL. BIDL is based on PyTorch and OpenMMLab (MMCV-Contributors, 2018). It consists of learning modules, a layer library

(neural models), a network library, datasets, and demo applications. The networks designed by BIDL can be ported to the neuromorphic compiler via

a state-aware computational graph representation.

ConvLIAF can save a significant amount of computational

resources and storage overhead. The impact on accuracy is reported

in literature Shi et al. (2020) and Wu et al. (2021), and is also

discussed in our experiment section.

3. BIDL: an easy-to-use platform for
SNN researchers

The BIDL platform is designed to cater to two main types of

researchers: computational neuroscience researchers and machine

learning researchers.

3.1. For computational neuroscience
researchers

Computational neuroscience researchers primarily focus on

building various neural models, exploring synaptic plasticity

rules, and studying network structures. Hence, BIDL provides

support for these features, and spatiotemporal applications serve

as experimental examples to support their theoretical viewpoints.

3.1.1. Neural model support
Unlike most computational neuroscience frameworks

such as Nest (Gewaltig and Diesmann, 2007) and Neuron

(Carnevale and Hines, 2006), where neurons cannot be directly

trained using gradient-based learning methods, BIDL introduces

a group of neurons called LIF+ that can be trained directly using

backpropagation through time (BPTT) with surrogate gradients.

The LIF+ neurons are derived from the original leaky integrate and

fire (LIF) model by incorporating improvements in key aspects of

the differential equations to enhance neurodynamics, as inspired

by Lee et al. (2018). Figure 5 illustrates the decomposition of

LIF+ into five stages, each offering several choices for improving

the similarity to biological neural dynamics. Detailed definitions

of each mode can be found in Lee et al. (2018). Additionally,

BIDL supports customized neural models, allowing users to

define their own models expressed as sub-networks in PyTorch.

3.1.2. Generalized synaptic plasticity rules
Exploring various synaptic plasticity approaches is

common among computational neuroscience researchers.

In BIDL, we introduce a local learning module, which is

a customizable programmable module that supports Hebb,

spike-timing dependent plasticity (STDP), and reward-

modulated STDP (R-STDP), as shown in Figure 6. This

module receives spikes and optionally membrane potentials

from the current neuron population (e.g., a LIF layer) as

well as the previous neuron population. It also receives the

reward signal from the external environment and reads the

Frontiers inNeuroscience 06 frontiersin.org46

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

TABLE 1 Formulas for calculating the computational complexity and the weights of di�erent spatiotemporal layers.

Layer MUL ADD Weights

ConvLIAF (Q+ 1) · R (Q+ 2) · R (Q+ 1) · C

ConvLIF R (Q+ 2) · R (Q+ 1) · C

Conv2D (TD) Q · R Q · R (Q+ 1) · C

Conv3D U · Q · R U · Q · R (U · Q+ 1) · C

ConvLSTM (4 · (Q+ I · J · C)+ 3) · R (4 · (Q+ I · J · C)+ 1) · R (Q+ I · J · C + 1) · 4 · C

TD refers to the time-distributed operation, i.e., duplicate over time.

FIGURE 4

Computational complexity and number of weights of a

representative ST block for an example parameter setting (T = 8, H =

W = 16, C = K = 64, U = I = J = 3). It reveals that ConvLIF/ConvLIAF

consumes similar computational resources and parameters to

(time-distributed) Conv2D, while much fewer than Conv3D and

ConvLSTM.

previous weights of the synaptic array. Using the user-defined

update function SP, the module calculates the weight update

value 1w.

3.2. For machine learning researchers

3.2.1. A deep learning style SNN builder
For machine learning researchers, their focus is on how

SNNs can assist DNNs in efficient spatiotemporal processing

and designing SNNs using a DNN building approach. BIDL

leverages popular DNN designing frameworks such as PyTorch

and OpenMMLab (MMCV-Contributors, 2018) to provide a

familiar development environment. Researchers can reuse DNN

backbones such as ResNet and VGG for building SNNs in BIDL.

The networks can be trained using backpropagation through

time (BPTT) similar to pure DNNs, enabling DNN researchers

to seamlessly transition to SNN work with minimal adaptation

required.

3.2.2. Global-local learning support
Global learning methods such as BPTT excel in learning

from supervised information and achieve high accuracy for many

applications. However, they come with a high computational

burden and memory usage since the membrane potentials and

activations of each timestep in the forward propagation need

to be recorded for the backward propagation. On the contrary,

local learning methods based on synaptic plasticity rules offer

better computational energy efficiency but often suffer from lower

accuracy. In this regard, we propose a hybrid training approach

that integrates global-local learning into a unified flow, allowing

interleaved operation of global learning and local learning.

During global learning, the synaptic plasticity learning module

is detached, and the network is trained using BPTT. During local

learning, the weights are adjusted via local plasticity, and BPTT is

not required. This hybrid approach is particularly useful in pre-

training-finetuning scenarios, where the network is first trained

globally using BPTT and then fine-tuned using reward-modulated

STDP (R-STDP) to adapt to changes in the environment.

4. Mapping optimizations for
neuromorphic chips

BIDL can also serve as an application builder for neuromorphic

chips, taking into consideration their unique characteristics and

constraints. It generates a computational graph that can be

used by subsequent neuromorphic compiling tools. Currently,

neuromorphic chips accept computational descriptions with

specific constraints, including being timestep driven, caching state

variables (membranes) for use in the next timestep, and parameter

quantization for memory savings.

(1). Most neuromorphic chips operate in a timestep driven

manner, where a timestep iteration is located outside the neural

network. The device computes all the layers in each timestep and

then switches to the next timestep. In contrast, GPU-based SNN

frameworks usually locate the timestep iteration within each layer,

resulting in outputs with an extra temporal dimension. To address

this difference, we designed two modes of operation: internal

iteration mode (IIM) and external iteration mode (EIM), shown in

Figure 7.

In IIM, single-step layers such as convolutions and LIF neurons

are wrapped by a timestep iteration and a reset phase, forming

iterated layers. The network is built based on these iterated layers,

which have a temporal dimension on both the input and output.

In EIM, the single-step network is built directly using single-step

Frontiers inNeuroscience 07 frontiersin.org47

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 5

LIF+ neuron with configurable modes. Each mode can be treated as an improvement of the original simplified LIF model, including A: decay, B: spike

accumulation, C: spike trigger condition, D: inhibitory, and E: refractory. Detailed definitions can be found in Lee et al. (2018).

FIGURE 6

Generalized local learning module, which can be configured to support STDP, R-STDP, Hebb, or user-defined synaptic plasticity rules. The two LIF

populations and synaptic connections are part of the neural network, while the remaining parts of the neural network are denoted as “Network” for

simplicity. This also indicates that only a subset of the synaptic weights of interest are adjusted during local learning.

layers, and the network is invoked T times, where T is the number

of timesteps. Both modes can be trained using BPTT and achieve

similar accuracy.

IIM offers more flexibility as each iterated layer can have its

own total number of timesteps, and temporal transforms (such as

decreasing the number of timesteps) or attention operations can be

applied between timesteps for temporal information aggregation.

For classification tasks, where there is a single timestep at

the end of the network, a temporal aggregation layer (e.g., sum

or average) is applied before the classification head to reduce

Frontiers inNeuroscience 08 frontiersin.org48

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 7

Processing flow of internal iteration (IIM) (A) and external iteration (EIM) (B). In IIM, a loop and reset wrapper is introduced in each spatiotemporal (ST)

block, and all the timesteps for the current block are calculated before moving to the next block. In EIM, the timestep iteration is located outside the

network, and all the layers in the network are processed before moving to the next timestep.

the number of timesteps to 1. This is straightforward in IIM,

but for EIM, all layers share the same timestep setting, making

direct temporal aggregation impractical. In such cases, we use

an accumulator instead of temporal aggregation. Mathematically,

instead of calculating the output as the sum of inputs over

timesteps, i.e.,Out =
∑T−1

i=0 Input(i), we use an accumulator Acc(i)

defined as Acc(i) = Acc(i − 1) + Input(i), with a reset value of

Acc(−1) = 0, and the output is obtained as Out = Acc(T − 1).

(2). When compiling the network for neuromorphic chips, we

utilize EIM, and only a single-iteration network is compiled. We

represent the network in a computational graph format, where each

node corresponds to a functional layer, and each edge represents

an intermediate tensor. In a traditional computational graph, these

tensors can be destroyed after the graph computation is finished,

meaning all the variables survive only at the current timestep.

However, some state tensors, such as membrane potentials, need

to be carried over to the next timestep and updated in place. To

handle this, we introduce two additional nodes to the graph: the

load node and the save node. The load node can be associated

with a constant tensor node, which provides the initial value

during the initialization stage or is reset by the user. Resetting

is typically done when calculating a new sample and requires

erasing the membrane potential from the previous sample. To

distinguish between different state tensors in the graph, we assign

them unique string identifiers, generated as universally unique

identifiers (UUIDs). The load and save nodes are represented as

customized layers in PyTorch.

(3). The compiled network is executed on the neuromorphic

chip using a runtime tool.Within a single input sample, the runtime

tool iterates through each timestep, provides input data to the

device, performs the network inference, and obtains the output.

The input data consists of a sequence of frames, with one frame

processed at each timestep. For networks that generate single-step

outputs (e.g., classification or detection), only the output of the last

timestep is required. After executing all the timesteps, a state reset

command is issued to reset the membrane potential, preparing for

the next sample.

(4). Using PyTorch layers to represent the computational

process of neurons may introduce additional nodes to the graph,

making it more complex and less recognizable for optimization on

neuromorphic chips. In most devices, basic neural models such as

LIF neurons have dedicated circuits for implementation. Therefore,

we rewrote the LIF neuron in PyTorch using two customized

layers specifically for inference (not for training). These layers,

cmp_and_fire and reset_with_decay, represent the compare-to-

threshold and firing process and the membrane reset and decay

process, respectively. These blocks can be treated as black boxes in

the computational graph and recognized directly by neuromorphic

chips, enabling circuit-level optimization.

Figure 8 illustrates the implementation of LIF neurons

using the hardware-defined built-in blocks for acceleration

on neuromorphic chips. The previous membrane potential is

loaded and then added to the input post-synaptic current.

The cmp_and_fire block is used to calculate the spike, and

Frontiers inNeuroscience 09 frontiersin.org49

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 8

LIF neuron implementation with hardware-defined built-in blocks

for neuromorphic chip acceleration.

the reset_with_decay block is applied to update the membrane

potential and perform decay.

(5). To reduce memory footprint and computational energy,

quantization is applied. BIDL provides float16 training, which

utilizes the float16 support in PyTorch with the loss amplified by

a user-defined setting, such as 512. These mechanisms discussed

in this sub-section have been deployed in the brain-inspired chip

Lynchip KA200.1

5. Experiments

In this section, we demonstrate several spatiotemporal

applications in BIDL across multiple modalities, including video,

DVS, 3D imaging, and NLP. We also evaluate several models

in LIF+ with various neuronal variations to illustrate the neural

modeling capabilities. Finally, we showcase local-globalized co-

learning for high-accuracy transfer learning.

5.1. Applications

5.1.1. Video processing
Video gesture recognition (Jester): Currently, there is limited

literature discussing video processing with spiking neural networks,

and most existing networks for video processing have high

computational complexity, consuming more power than image

processing. In this study, we propose an SNN approach, ResNet18-

LIF, which achieves a similar computational cost as the traditional

ResNet-18, to demonstrate its lightweight processing capability.

We chose Jester dataset (Materzynska et al., 2019) for our

experiments. Jester is a dataset of video clip gesture recognition

1 The commercial version of BIDL with Lynchip support is named LYNBIDL.

collected using an ordinary camera, consisting of 27 types of

hand gestures recorded by 1,376 participants in unconstrained

environments, including different rooms, rotating fans, and

moving animals. To the best of our knowledge, this is the

largest video clip dataset showing human gestures, with 1,48,092

short video clips, each lasting for 3 s. We split the dataset

into training/validation/test sets with a ratio of 80%/10%/10%.

Many of the actions in this dataset are symmetric, such as

“move finger to the left" and “move finger to the right," which

require strong temporal modeling capabilities for accurate action

recognition.

We conducted two versions of experiments with different image

resolutions and network architectures. Version 1 focuses on low-

cost processing, while version 2 prioritizes high accuracy.

Each action is represented as a sequence of multi-frame RGB

images. For each frame, the image is resized to 112 × 112 for

version 1 and 224 × 224 for version 2. We take 16 frames (T

= 16) and perform simple data augmentation before inputting

them into the network. The input data format for the network

is [B, 16, 3, 112, 112] for version 1 and [B, 16, 3, 224, 224] for

version 2.

The neural network architecture follows a structure similar to

ResNet-18, with LIAF used as the neural module for temporal

processing (Figure 9). In version 1, the results of all timesteps are

summed at the SumLayer and then divided by T for temporal

dimension aggregation. The classified output is obtained through

the fully connected (FC) layer. In version 2, we refine the

network by substituting LIAF with the electrical coupling LIAF-

RMP neural model (Wu et al., 2022b). Although the LIAF-RMP

model achieves better accuracy, it incurs higher computational

cost and a larger parameter size (the electrical synapses lead

to a network weight size increase from 12 × 106 to 24 ×

106).

We trained the network on the training set using a learning

rate of 1e-1, weight decay of 1e-4, and momentum stochastic

gradient descent (SGD) optimizer with a momentum value

of 0.9. The training process utilized a cosine annealing

learning rate tuning strategy. After training for 200

epochs, the top-1 classification accuracy reached 93.7% and

95.0% on the validation set for version 1 and version 2,

respectively.

Moving trajectory processing (RGB-gesture): In some cases,

we are only interested in the trajectory of the target and do not

focus on static image features. In such situations, we can use the

differential frame sequence as input, resulting in a simpler network.

In this study, we propose the RGB-gesture dataset for this purpose.

The dataset is collected using an ordinary camera and contains 10

moving gestures captured for each person similar to the DVS128

Gesture dataset (Amir et al., 2017). The video is decoded into frame

data at a frequency of 25 frames per second and stored. The RGB-

gesture dataset includes 760 training samples and 102 validation

samples.

The RGB frames are first converted to grayscale images. We

obtain a differential image by subtracting the corresponding

pixel values of adjacent frames. If the pixel value changes

are below a threshold, they are considered as background.

Significant changes indicate moving objects and are marked

Frontiers inNeuroscience 10 frontiersin.org50

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 9

Designed neural network structures for the proposed experiments.

as foreground. The differential results in two image channels:

enhancement and weakening. After preprocessing, each

sample in RGB-gesture has a dimension of [B, 60, 2, 40, 40],

with T = 60.

The model is trained using the Adam optimizer with a learning

rate of 1e-3 and weight decay of 1e-4. We also use the pre-trained

model trained on the DVS128 Gesture dataset. The model is trained

for 50 epochs, achieving a top-1 classification accuracy of 97.7% on

the validation set.

5.1.2. DVS signal processing
DVS is a silicon retina device that mimics the human retina’s

perception mechanism to perform information acquisition. The

data preprocessing for converting event flow to spatiotemporal

(ST) tensor is as follows: A sliding window is used to slide

along the time, and an event set contains the timestamp range

of events within the sliding window. Then, all events in an

event set are extended into a three-dimensional vector called a

frame based on their coordinate and polarity information. The

positive/negative polarity events are filled in a H × W matrix

according to their coordinate information in the positive/negative

polarity channel, while the unfilled coordinates are set to

zero. After T timesteps, an ST tensor with T frames can

be obtained.

DVS classification (CIFAR10-DVS): CIFAR10-DVS (Li et al.,

2017) is a dataset derived from the CIFAR10 dataset and

collected using the DVS. We follow the event-to-ST tensor

conversion methods described above. The ST tensor has a

shape of [B, 10, 2, 128, 128], where T = 10, and the temporal

sliding window is 5 ms. The proposed network contains

five Conv2DLIF layers, followed by a SumLayer for time

aggregation, and two FcBlock layers. We use the Adam optimizer

with a learning rate of 1e-2 and weight decay of 1e-4 to

train this network. The network’s neuron parameters are set

to all-share mode. The model is trained for 100 epochs,

achieving a top-1 classification accuracy of 68.2% on the

validation set.

DVS recognition (DVS128 gesture): The DVS128 Gesture

dataset (Amir et al., 2017) is recorded directly from real-world

scenes using a DVS camera. The DVS128 Gesture dataset has a

raw spatial pixel resolution of 128 × 128. We chose a subsampled

resolution of 40 × 40 (1/3.2) to save memory. To use the network

structure for training, we generated event frames of size 40 × 40

by accumulating spike sequences within each 25 ms. Then, each

frame was expanded into two channels depending on whether the

brightness of each pixel was weakened or strengthened. Finally,

multiple adjacent event frames were stacked in chronological order

to obtain samples of shape [B, 60, 2, 40, 40]. This network structure

includes three Conv2DLIF modules and two FCLIF modules. The

Frontiers inNeuroscience 11 frontiersin.org51

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

neuron parameters were trained in the all-share mode. We used the

Adam optimizer with a learning rate of 1e-2 and weight decay of 1e-

4 to train this network and employed a learning rate tuning strategy

during training. The network was trained for 100 epochs, achieving

a top-1 classification accuracy of 94.6% (ASM) and 95.1% (CSM)

on the validation set.

5.1.3. 3D medical imaging
The Luna16Cls dataset is derived from the Lung Nodule

Analysis 2016 (LUNA16) dataset (Setio et al., 2017). It contains

CT images of 888 patients and 1, 186 nodule labels (malignant and

benign) annotated by radiologists.

The preprocessing steps for the Luna16Cls dataset are as

follows: (1) convert all raw data to Hounsfield Units (HU); (2)

mask extraction; (3) convex hull and dilation processing; (4)

gray normalization: linearly transform HU values [–1,200, 600] to

grayscale values within the range of 0 to 255; and (5) downsample

the dataset to a 32 × 32 image resolution to obtain samples with

shape [8, 1, 32, 32]. A total of 3,795 samples are processed, with

3,416 samples used for training and the remaining samples for

validation.

The Luna16Cls classification network consists of three

Conv2DLIF blocks. After that, a temporal average layer is used

to aggregate information along the time dimension. The model

ends with an FcBlock, containing three fully connected layers for

classification.

We use an SGD optimizer with a learning rate of 0.03, weight

decay of 1e-4, and momentum of 0.9 to train the model on the

training set. The learning rate is fine-tuned during the training

process. The neural parameters are set to all-sharemode. Themodel

is trained for 20 epochs, achieving a top-1 classification accuracy of

90.4% on the validation set.

5.1.4. NLP task
To test the capability of the proposed method on long sequence

signal processing, such as text, a simple natural language processing

(NLP) task was conducted using the IMDB dataset (Maas et al.,

2011). The dataset contains 50,000 highly polarized reviews from

the Internet Movie Database (IMDb). Each word in the sample data

was converted into a numeric representation using a dictionary

of size 1,000. Each sample data was padded to a size of 500

timesteps, resulting in a dimension of [B, 500] for each sample.

Binary classification was used for labeling, with 0 representing

negative sentiment and 1 representing positive sentiment.

The data are embedded in a tensor with shape [B, 500, 256],

followed by an FCLIAF layer, and finally, classification is performed

using a fully connected layer. This model does not have a time

aggregation layer and only outputs the result of the last timestep.

For training, the Adam optimizer with a learning rate of 1e-3

and weight decay of 1e-4 is used. The learning rate is adjusted based

on the epoch during training. The model is trained for 50 epochs,

achieving a classification accuracy of 82.9% on the validation set. T
A
B
L
E
2

L
is
t
o
f
th
e
e
x
p
e
ri
m
e
n
ts
.

S
o
u
rc
e

D
a
ta
se
t

N
e
tw

o
rk

It
e
r.
m
o
d
e

C
o
m
p
u
ta
ti
o
n
s

(×
10

9
O
p
s)

W
e
ig
h
ts

(×
10

6
)

A
c
c
u
ra
c
y
(%

)
G
P
U
V
1
0
0

sp
e
e
d
(f
p
s)

X
a
v
ie
r
sp

e
e
d

(f
p
s)

G
P
U
V
1
0
0

p
o
w
e
r
(W

)
X
a
v
ie
r
p
o
w
e
r

(W
)

V
id
eo

Je
st
er

(v
er
.1
)

R
es
N
et
18
-

L
IA

F

E
IM

A
D
D
:7
.8
M
U
L
:7
.8

11
93
.7
±

0.
1

13
3±

5
65
±

4
26
.6
±
5.
9

9.
4±

2.
6

V
id
eo

Je
st
er

(v
er
.2
)

R
es
N
et
18
-

L
IA

F
-R
M
P

II
M

A
D
D
:3
7.
07

M
U
L
:

37
.0
7

24
95
.0
±
0.
1

88
±
5

47
±
1

29
.7
±
6

18
±
3

V
id
eo

R
G
B
-G

es
tu
re

C
o
n
vL

IA
F

E
IM

A
D
D
:1
.0
M
U
L
:1
.0

2
97
.7
±
0.
1

53
8±

90
27
0±

3
34
.8
±
3.
3

7.
7±

1.
4

D
V
S

D
V
S1
28

G
es
tu
re

C
o
n
vL

IF
E
IM

A
D
D
:1
.0
M
U
L
:1
.0

2
94
.6
±
0.
6

50
8±

75
27
4±

2
34
.8
±
3.
7

7.
7±

1.
4

D
V
S

D
V
S1
28

G
es
tu
re

C
o
n
vL

IF
+
C
SM

E
IM

A
D
D
:1
.0
M
U
L
:1
.0

2
95
.1
±
0.
8

55
8±

22
25
8±

6
36
.1
±
2.
8

7.
8±

1.
1

D
V
S

C
IF
A
R
10
-D

V
S

C
o
n
vL

IA
F

E
IM

A
D
D
:0
.8
4
M
U
L
:

0.
84

2.
6

68
.2
±
0.
5

38
9±

65
19
2±

1
35
.4
±
2.
9

7.
6±

1.
3

3D
Im

g.
L
u
n
a1
6C

ls
C
o
n
vL

IA
F

E
IM

A
D
D
:0
.0
89

M
U
L
:

0.
08
9

1.
2

90
.4
±
0.
2

62
0±

91
26
7±

4
34
.5
±
3.
5

7.
4±

0.
9

T
ex
t

IM
D
B

F
C
L
IA

F
E
IM

A
D
D
:0
.0
02
4
M
U
L
:

0.
00
24

0.
00
51

82
.9
±
0.
1

21
40
±
29
0

10
55
±
22

34
.9
±
3.
7

6.
5±

0.
3

W
e
ev
al
u
at
ed

im
p
le
m
en
ta
ti
o
n
s
in

B
ID

L
w
it
h
d
iff
er
en
t
ap
p
li
ca
ti
o
n
s,
n
et
w
o
rk

st
ru
ct
u
re
s
(W

e
u
se

A
SM

b
y
d
ef
au
lt
),
n
eu
ra
l
m
o
d
el
s,
it
er
at
io
n
m
o
d
es
,
an
d
p
la
tf
o
rm

s.
It
sh
o
w
s
th
at

al
l
th
es
e
im

p
le
m
en
ta
ti
o
n
s
ac
h
ie
ve

re
al
-t
im

e
p
ro
ce
ss
in
g
o
n
G
P
U

se
rv
er
s
an
d
em

b
ed
d
ed

p
la
tf
o
rm

s
w
it
h
st
re
am

in
g
p
ro
ce
ss
in
g
se
tt
in
gs

(b
at
ch
si
ze

=
1)
.N

o
te
th
at
fr
am

es
p
er

se
co
n
d
(f
p
s)
is
eq
u
al
to

ti
m
es
te
p
s
p
er

se
co
n
d
.

Frontiers inNeuroscience 12 frontiersin.org52

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

TABLE 3 Comparison of proposed solutions with other approaches in terms of accuracy and computational costs.

Proposals Network Computations (×109 Ops) Accuracy (%)

Video processing (Jester)

Meng et al. (2021) LSTM ADD: 14.7 MUL: 14.7 93.5

Meng et al. (2021) AdaFuse (TSN+ResNet18) ADD: 7.6 MUL: 7.6 93.7

Jiang et al. (2019) STM (ResNet50) - 96.7

Zhang et al. (2020b) STSNN (Optical flow+RGB) - 95.7

Zhang et al. (2020a) PAN (TSM+ResNet101) ADD: 503.4 MUL: 503.4 97.4

This study (version 1) ResNet18-LIAF ADD: 7.8 MUL: 7.8 93.7

This study (version 2) ResNet18-LIAF-RMP ADD: 37.07 MUL: 37.07 95.0

Video processing (RGB-Gesture)

This study ConvLIAF ADD: 1.0 MUL: 1.0 97.7

DVS signal processing (DVS128 Gesture)

Massa et al. (2020) SNN converted from CNN on Loihi - 89.6

Amir et al. (2017) CNN on TrueNorth - 94.6

Kugele et al. (2020) SNN converted from ANN - 95.6

Khoei et al. (2020) Converted CNN - 95.1

Wang et al. (2019) PointNet++ - 95.3

Bi et al. (2020) Residual graph CNN+Res.3D ADD: 14 MUL: 14 97.2

Wu et al. (2021) ConvLIF ADD: 6.8 MUL: 0.013 94.1

Wu et al. (2021) ConvLIAF ADD: 6.8 MUL: 6.8 97.6

This study ConvLIF ADD: 1.0 MUL: 1.0 94.6

This study ConvLIF+CSM ADD: 1.0 MUL: 1.0 95.1

DVS signal processing (CIFAR10-DVS)

Cannici et al. (2019) Attention Mechanisms - 44.1

Sironi et al. (2018) HATS - 52.4

Wu et al. (2019) iterative LIF + NeuNorm ADD: 8.1 MUL: 8.1 ∗ 60.5

Wu et al. (2021) ConvLIF ADD: 3.8 MUL: 0.21 63.5

Wu et al. (2021) ConvLIAF ADD: 3.8 MUL: 3.3 70.4

This study ConvLIAF ADD: 0.84 MUL: 0.84 68.2

3D medical imaging processing (Luna16Cls)

Yan et al. (2017) Vanilla 3D CNN - 87.3

Shen et al. (2017) Multi-crop CNN - 87.4

Zhu et al. (2018) Deep 3D DPN ADD: 26 MUL: 26 ∗ 87.1

Dey et al. (2018) DenseNet ADD: 0.14 MUL: 0.14 ∗ 88.4

Dey et al. (2018) MoDenseNet ADD: 0.14 MUL: 0.14 ∗ 90.4

Shi et al. (2020) LIF-classification Net - 94.1

This study ConvLIAF ADD: 0.089 MUL: 0.089 90.4

Text processing (IMDB)

This study LSTM ADD: 0.4 MUL: 0.4 85.7

This study FCLIAF ADD: 0.0024 MUL: 0.0024 82.9

∗ Indicates that we calculate the data based on the network structure of the corresponding study.

Frontiers inNeuroscience 13 frontiersin.org53

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

5.2. Experiment results analysis

We chose these examples since they include multiple

modalities, different network structures (ResNet-LIF and

sequential LIF), iteration modes (IIM and EIM), neural parameter

sharing mode (CSM and ASM), and various application domains,

which are listed in Table 2. We also evaluated the streaming

processing speed (with batch size = 1) vs. the accuracy performance

of these models. It can be revealed that all the applications can

work in real time both in Nvidia GPU V100 and Nvidia Jetson

Xavier with streaming processing capability. Jester version 2

achieves better performance than version 1 while it suffers more

computational cost. The two DVS128 Gesture implementations

show that CSM achieves slightly better performance than ASM.

We further compared the accuracy and the computational

complexity of the proposed implementations with other related

work, and the comparison is revealed in Table 3. For the Jester

dataset, our implementation (version 1) achieves lightweight

processing which consumes half of the computations compared to

the LSTM approach and similar computation to the lightweight

CNN approach AdaFuse (Meng et al., 2021). Higher accuracy

can also be achieved via Jester version 2, which has comparable

performance to other high accuracy approaches. For DVS128

Gesture, we also achieve a better balance of performance and

computational cost. For CIFAR10-DVS, we achieve better accuracy

than most of the other approaches while reducing the computation

by more than 4 times. For Luna16Cls, we achieve the smallest cost

while maintaining accuracy. For IMDB, the proposed approach

consumes only 7% of the computation compared to LSTM

while maintaining accuracy (with less than 3% performance

loss). In conclusion, the proposed framework can process various

spatiotemporal signals with guaranteed performance and better

computational efficiency.

5.3. Global-local co-learning

Recent studies have shown that global-local co-learning is more

resistant to noise (Wu et al., 2022a). In this study, we conducted

an experiment to demonstrate the application of co-learning on

a spatiotemporal network to achieve improved noise resistance

performance.

To introduce noise into the data, we added background noise to

the preprocessed frames of the DVS128Gesture validation set. First,

we defined a noise ratio α ∈ [0, 1]. For each validation sample, we

randomly selected n = α ×W ×H pixels on each channel of every

frame and set their values to 1, thereby introducing background

noise. The training set remained unchanged. The network used

FIGURE 10

An example implementation of the BPTT and R-STDP co-learning for improved anti-noise performance. (A) Network architecture with R-STDP

finetuning. (B) Visualization of the three ST frames with di�erent noise ratios.

Frontiers inNeuroscience 14 frontiersin.org54

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

FIGURE 11

Accuracy versus noisy ratio (alpha) curves of the three approaches:

BPTT without population coding (original), BPTT with population

coding (BPTT finetuned), BPTT+STDP with population coding (STDP

finetuned). When population coding is introduced, seven neurons

represent one classification category; otherwise, one neuron

represents a category.

for co-learning is similar to the one described in Section 3.2.2 and

Section 5.1.2.

The experiment followed the procedure outlined below. First,

we trained the network using BPTT, as described in Section

3.2.1. For comparison purposes, we performed inference on this

network directly without local training on the noisy validation set,

varying the value of α, and recorded the corresponding inference

accuracies.

Next, we employed a local learning method to further refine the

trained network. We adjusted the weightsW of the last FCLIF layer

using R-STDP. In the figure, W is represented by a 256x11 matrix,

and we used seven neurons to represent each category, resulting in a

total of 11 categories. The weight update process was streamed, with

each sample being updated at every timestep and a batch size of one.

The specific architecture of the R-STDP local learning is depicted in

Figure 10A, and the noisy frames are visualized in Figure 10B.

The R-STDPmethod we propose consists of the following three

steps:

(1) Reward calculation: Calculate the mean spikes of neurons

belonging to each category as Oi =
1
N

∑N−1
i=0 Oij, where i ∈ [0, 10]

represents the 11 categories, and N = 7 indicates the seven

neurons in each category (i.e., population coding). Then, calculate

the reward rij as the difference between the label and the output

spikes: rij = L− Oi, where L denotes the label.

(2) Weight update based on R-STDP: Calculate 1W using the

input spike Sin and output spike Sout as follows:

1W = tin · Sout − Sin · tout . (12)

Here, the traces tin and tout are derived from spikes and are updated

as

tin/out = 2 · tin/out + η · Sin/out . (13)

(3) Update weights: w = w+ lr · 1w.

TABLE 4 LIF+ performance with selected configurations on the

CIFAR10-DVS dataset, where the “All default” configuration is equivalent

to a LIF model, and other configurations are defined in Section 3.1.1.

Configuration Accuracy (%)

All default (A=0, B=0, C=0, D=0, E=0) 67.86

A=0, B=3, C=0, D=0, E=0 67.43

A=0, B=3, C=1, D=0, E=0 67.63

A=0, B=3, C=2, D=0, E=0 67.56

We set lr = 0.001, 2 = 0.95 and η = 1.0.

After the training, we evaluated the accuracy of the noisy

validation set. The accuracies obtained by the two methods

are plotted in Figure 11. The three approaches compared are

BPTT training without fine-tuning and 11 output neurons

(original curve); BPTT with R-STDP fine-tuning and 77 output

neurons (STDP fine-tuned curve); and BPTT with BPTT fine-

tuning and 77 output neurons (BPTT fine-tuned). The results

demonstrate that in a noisy environment, global-local co-learning

achieves better anti-noise performance compared to a pure BPTT-

trained network with the same number of output neurons

and significantly outperforms the non-population coding BPTT

version.

5.4. LIF+ neural models

To verify the performance impact of various neural models, we

re-implemented CIFAR10-DVS using several LIF+ configurations

while keeping all other settings the same as illustrated in

Section 3.1.1. We tested a subset of configurations and present

the results in Table 4. While some neural dynamics are not

compatible with gradient backpropagation and result in lower

performance, certain configurations still achieve similar results

to the default LIF model. This indicates the admissibility

of exploring neural models for spatiotemporal tasks. Future

studies can focus on identifying neural models with improved

performance.

6. Discussions

6.1. Single frame (image) processing

Processing images within this framework is possible by

encoding the image into a sequence of specialized frames

using a coding scheme, such as binary frames for SNN

processing. However, we assume that SNN’s multiple timestep

processing may require more computation compared to single-

frame processing in CNNs. Since most of the computation in

CNNs is attributed to the convolutional operation, which does

not benefit significantly from sparse (event-driven) processing,

the computational cost of an SNN for processing a frame

is unlikely to be significantly lower than an equivalent-sized

CNN. Therefore, our framework does not aim to process image

sources.

Frontiers inNeuroscience 15 frontiersin.org55

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

6.2. Neural coding

For the entire network, spikes are emitted based on neural

dynamics and trained using gradient-based or local algorithms.

Thus, no dedicated neural coding is assigned to any neuron, and

the neurons fire based on their dynamics. Regarding input data, it

is possible to represent temporal-free data using neural coding in

the temporal domain. For instance, a pixel in the input image can

be represented by a spike train with a corresponding firing rate (rate

coding) or first firing time (temporal coding). The network’s output

in BIDL is primarily in analog format, but it can be encoded into a

spike train.

6.3. Direct training vs. conversion methods

In this framework, we utilize direct training for DSNN.

Conversely, there are approaches (Tran et al., 2015; Xingjian et al.,

2015) that convert artificial neural networks (ANNs) to SNNs,

achieving high accuracy. However, these conversion methods are

primarily designed for image processing without temporal domain

information in the source data. The temporal domain is generated

using neural coding during the conversion stage. Our study focuses

on spatiotemporal processing, where the temporal information

already exists in the source data. Additionally, direct training

achieves better performance and enables fine-tuning, offering more

flexibility compared to post-training conversion methods.

6.4. Strengths and limitations of BIDL

Prior studies (Chen and Gong, 2022; Chen et al., 2022) have

also proposed spatiotemporal investigations aiming to establish

brain-inspired models and verify visual processing functions

with biological evidence. In comparison, BIDL focuses more on

solving real-world spatiotemporal tasks with DSNNs. It explores

the utilization of brain-inspired technologies for spatiotemporal

applications, emphasizing computational efficiency and real-time

processing. Unlike some DSNN works (Wu et al., 2018; Shen

et al., 2022), BIDL incorporates multiple modalities such as video

and 3D imaging data, flexible neuron models, and global-local

co-learning. However, BIDL has limitations in modeling sparse

brain networks, especially with synaptic delays, as the computation

is performed in a dense tensor format. Furthermore, it does

not gain significant benefits from event-driven processing due

to tensor-based convolution/linear operations. Nevertheless, BIDL

achieves better efficiency through neural dynamics, which serve

as lightweight processors of temporal information compared to

Conv3D and ConvLSTM.

7. Conclusion

This study introduces a brain-inspired deep learning

framework, BIDL, which provides a foundation and design flow

for rapidly developing spatiotemporal applications, particularly

lightweight real-time video clip analysis and dynamic vision

sensor (DVS) applications. BIDL also serves as a research platform

for investigating neuron models, synaptic plasticity, global-local

co-learning, and network structure. Networks designed using BIDL

can be easily deployed on GPU platforms and neuromorphic chips.

We hope that BIDL will inspire further research in the design,

exploration, and application development of bio-inspired neural

networks.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

ZW: conceptualization, methodology, investigation, and

writing. YS: software development and investigation. JZ:

software development, investigation, and data curation. HLia:

writing and conceptualization. RZ: software development

and methodology. HLi: software development (neuromorphic

mapping). JX: review and editing. XZ: investigation (jester). YC:

project administration, conceptualization, and supervision.

All authors contributed to the article and approved the

submitted version.

Funding

This study was supported by the Science and Technology

Innovation 2030 - Key Project of New Generation Artificial

Intelligence under Grant No. 2020AAA0109100, the National

Key Research and Development Program of China (Grant No.

2021ZD0200300), Sichuan Science and Technology Program (No.

2021YFG0333), Zhongguancun Science and Technology Park

Management Committee of Disruptive Technology Research and

Development Project (202005012), Beijing Science and Technology

Plan, China (Z221100007722020), and National Natural Science

Foundation of China (U22A20103).

Acknowledgments

The authors would like to thank Xiaodong Hu, Han Yuan,

Bingyang Hou, Wei He, Yinsong Yu, Weijiao Xiang, and Hongbing

Qiu for their valuable suggestions, software development, and

software testing on this study.

Conflict of interest

ZW, YS, JZ, RZ, and HLi are employed by Lynxi Technologies,

Co. Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Frontiers inNeuroscience 16 frontiersin.org56

https://doi.org/10.3389/fnins.2023.1213720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al.
(2017). “A low power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 7243–7252.
doi: 10.1109/CVPR.2017.781

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D.,
et al. (2014). Nengo: a Python tool for building large-scale functional brain models.
Front. Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., and Andreopoulos, Y. (2020).
Graph-based spatio-temporal feature learning for neuromorphic vision sensing. IEEE
Trans. Image Proces. 29, 9084–9098. doi: 10.1109/TIP.2020.3023597

Bohte, S. M., Kok, J. N., and La Poutré, J. A. (2000). “SpikeProp: backpropagation
for networks of spiking neurons,” in ESANN (Bruges) 419–424.

Cannici, M., Ciccone, M., Romanoni, A., and Matteucci, M. (2019). “Attention
mechanisms for object recognition with event-based cameras,” in 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV) (IEEE) 1127–1136.
doi: 10.1109/WACV.2019.00125

Carlos, D., Juan, H., Antelis, J. M., and Falcón, L. (2019). Spiking neural networks
applied to the classification of motor tasks in EEG signals. Neur. Netw. 122, 130–143.
doi: 10.1016/j.neunet.2019.09.037

Carnevale, N. T., and Hines, M. L. (2006). The NEURON book. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Chen, G., and Gong, P. (2022). A spatiotemporal mechanism of visual attention:
Superdiffusive motion and theta oscillations of neural population activity patterns. Sci.
Adv. 8, eabl4995. doi: 10.1126/sciadv.abl4995

Chen, G., Scherr, F., and Maass, W. (2022). A data-based large-scale model for
primary visual cortex enables brain-like robust and versatile visual processing. Sci. Adv.
8, eabq7592. doi: 10.1126/sciadv.abq7592

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,
et al. (2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 11, 2008. doi: 10.3389/neuro.11.011.2008

Dey, R., Lu, Z., and Hong, Y. (2018). “Diagnostic classification of lung nodules
using 3D neural networks,” in 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018) (IEEE) 774–778. doi: 10.1109/ISBI.2018.8363687

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). SpikingJelly.
Available online at: https://github.com/fangwei123456/spikingjelly (accessed April 26,
2023).

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature
learning with winner-takes-all based STDP. Front. Comput. Neurosci. 12, 24.
doi: 10.3389/fncom.2018.00024

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P.
S. (2021). Fast simulations of highly-connected spiking cortical models using GPUs.
Front. Comput. Neurosci. 15, 627620. doi: 10.3389/fncom.2021.627620

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J.
(2016). LSTM: A search space odyssey. IEEE Trans. Neur. Netw. Learn. Syst. 28,
2222–2232. doi: 10.1109/TNNLS.2016.2582924

Gu, P., Xiao, R., Pan, G., and Tang, H. (2019). “Stca: Spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks,” in IJCAI
1366–1372. doi: 10.24963/ijcai.2019/189

Han, B., Srinivasan, G., and Roy, K. (2020). “RMP-SNN: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency spiking neural
network,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). doi: 10.1109/CVPR42600.2020.01357

Han, X.-F., Laga, H., and Bennamoun, M. (2019). Image-based 3D object
reconstruction: State-of-the-art and trends in the deep learning era. IEEE Transac. Patt.
Analy. Mach. Intell. 43, 1578–1604. doi: 10.1109/TPAMI.2019.2954885

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.,
et al. (2018). BindsNET: A machine learning-oriented spiking neural networks library
in Python. Front. Neuroinform. 12, 89. doi: 10.3389/fninf.2018.00089

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (IEEE) 770–778. doi: 10.1109/CVPR.2016.90

Hinz, G., Chen, G., Aafaque, M., Rohrbein, F., Conradt, J., Bing, Z., et al. (2017).
“Online multi-object tracking-by-clustering for intelligent transportation system with
neuromorphic vision sensor,” in KI 2017: Advances in Artificial Intelligence: 40th
Annual German Conference on AI, Dortmund (Springer), 142–154.

Jiang, B.,Wang,M., Gan,W.,Wu,W., and Yan, J. (2019). “STM: Spatiotemporal and
motion encoding for action recognition,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision 2000–2009. doi: 10.1109/ICCV.2019.00209

Khoei, M. A., Yousefzadeh, A., Pourtaherian, A., Moreira, O., and Tapson, J. (2020).
“Sparnet: Sparse asynchronous neural network execution for energy efficient inference,”
in IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
256–260. doi: 10.1109/AICAS48895.2020.9073827

Kugele, A., Pfeil, T., Pfeiffer, M., and Chicca, E. (2020). Efficient processing of
spatio-temporal data streams with spiking neural networks. Front. Neurosci. 14, 439.
doi: 10.3389/fnins.2020.00439

Lee, D., Lee, G., Kwon, D., Lee, S., and Kim, J. (2018). “Flexon: A
flexible digital neuron for efficient spiking neural network simulations,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
doi: 10.1109/ISCA.2018.00032

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-DVS: an event-stream dataset
for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Maas, A. L., Daly, R. E., Pham, P. T., Dan, H., and Potts, C. (2011). “Learning
word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies 142–150.

Massa, R., Marchisio, A., Martina, M., and Shafique, M. (2020). An efficient spiking
neural network for recognizing gestures with a DVS camera on the Loihi neuromorphic
processor. arXiv preprint arXiv:2006.09985. doi: 10.1109/IJCNN48605.2020.9207109

Materzynska, J., Berger, G., Bax, I., and Memisevic, R. (2019). “The jester
dataset: A large-scale video dataset of human gestures,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops.
doi: 10.1109/ICCVW.2019.00349

Meng, Y., Panda, R., Lin, C. C., Sattigeri, P., Karlinsky, L., Saenko, K., et al. (2021).
Adafuse: Adaptive temporal fusion network for efficient action recognition. arXiv
preprint arXiv:2102.05775. doi: 10.1007/978-3-030-58571-6_6

MMCV-Contributors (2018). MMCV: OpenMMLab computer vision foundation.
Available online at: https://github.com/open-mmlab/mmcv (accessed July 3, 2023).

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Proc. Magaz. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Neimark, D., Bar, O., Zohar, M., and Asselmann, D. (2021). “Video transformer
network,” in Proceedings of the IEEE/CVF International Conference on Computer Vision
3163–3172. doi: 10.1109/ICCVW54120.2021.00355

Rasmussen, D. (2019). NengoDL: Combining deep learning and neuromorphic
modelling methods. Neuroinformatics 17, 611–628. doi: 10.1007/s12021-019-09424-z

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Setio, A. A. A., Traverso, A., De Bel, T., Berens, M. S., Van Den Bogaard, C.,
Cerello, P., et al. (2017). Validation, comparison, and combination of algorithms
for automatic detection of pulmonary nodules in computed tomography images: the
luna16 challenge.Med. Image Analy. 42, 1–13. doi: 10.1016/j.media.2017.06.015

Shen, G., Zhao, D., and Zeng, Y. (2022). Backpropagation with biologically plausible
spatiotemporal adjustment for training deep spiking neural networks. Patterns 3,
100522. doi: 10.1016/j.patter.2022.100522

Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., et al. (2017). Multi-
crop convolutional neural networks for lung nodule malignancy suspiciousness
classification. Patt. Recogn. 61, 663–673. doi: 10.1016/j.patcog.2016.05.029

Shi, Y., Li, H., Zhang, H., Wu, Z., and Ren, S. (2020). Accurate and
efficient LIF-Nets for 3D detection and recognition. IEEE Access 8, 98562–98571.
doi: 10.1109/ACCESS.2020.2995886

Frontiers inNeuroscience 17 frontiersin.org57

https://doi.org/10.3389/fnins.2023.1213720
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/TIP.2020.3023597
https://doi.org/10.1109/WACV.2019.00125
https://doi.org/10.1016/j.neunet.2019.09.037
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1126/sciadv.abl4995
https://doi.org/10.1126/sciadv.abq7592
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/ISBI.2018.8363687
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.3389/fncom.2018.00024
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.24963/ijcai.2019/189
https://doi.org/10.1109/CVPR42600.2020.01357
https://doi.org/10.1109/TPAMI.2019.2954885
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2019.00209
https://doi.org/10.1109/AICAS48895.2020.9073827
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.1109/ISCA.2018.00032
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/ICCVW.2019.00349
https://doi.org/10.1007/978-3-030-58571-6_6
https://github.com/open-mmlab/mmcv
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/ICCVW54120.2021.00355
https://doi.org/10.1007/s12021-019-09424-z
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1016/j.media.2017.06.015
https://doi.org/10.1016/j.patter.2022.100522
https://doi.org/10.1016/j.patcog.2016.05.029
https://doi.org/10.1109/ACCESS.2020.2995886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1213720

Simonyan, K., and Zisserman, A. (2014a). “Two-stream convolutional networks for
action recognition in videos,” in Advance in Neural Information Processing Systems 27.

Simonyan, K., and Zisserman, A. (2014b). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Sironi, A., Brambilla,M., Bourdis, N., Lagorce, X., and Benosman, R. (2018). “HATS:
Histograms of averaged time surfaces for robust event-based object classification,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
1731–1740. doi: 10.1109/CVPR.2018.00186

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). “Learning
spatiotemporal features with 3D convolutional networks,” in Proceedings of the
IEEE International Conference on Computer Vision 4489–4497. doi: 10.1109/ICCV.20
15.510

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems 30.

Wang, C., Chen, X., Zhang, T., and Wu, S. (2022). BrainPy: a flexible,
integrative, efficient, and extensible framework towards general-purpose
brain dynamics programming. bioRxiv 2022–10. doi: 10.1101/2022.10.28.51
4024

Wang, Q., Zhang, Y., Yuan, J., and Lu, Y. (2019). “Space-
time event clouds for gesture recognition: from RGB cameras to
event cameras,” in 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV) (IEEE) 1826–1835. doi: 10.1109/WACV.2019.0
0199

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence 1311–1318. doi: 10.1609/aaai.v33i01.33011311

Wu, Y., Zhao, R., Zhu, J., Chen, F., Xu, M., Li, G., et al. (2022a). Brain-inspired
global-local learning incorporated with neuromorphic computing. Nat. Commun. 13,
65. doi: 10.1038/s41467-021-27653-2

Wu, Z., Zhang, H., Lin, Y., Li, G., Wang, M., and Tang, Y. (2021). LIAF-Net:
Leaky integrate and analog fire network for lightweight and efficient spatiotemporal
information processing. IEEE Trans. Neur. Netw. Learn. Syst. 33, 6249–6262.
doi: 10.1109/TNNLS.2021.3073016

Wu, Z., Zhang, Z., Gao, H., Qin, J., Zhao, R., Zhao, G., et al. (2022b). Modeling
learnable electrical synapse for high precision spatio-temporal recognition.Neur. Netw.
149, 184–194. doi: 10.1016/j.neunet.2022.02.006

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-C.
(2015). “Convolutional LSTM network: A machine learning approach for precipitation
nowcasting,” in Advances in Neural Information Processing Systems 802–810.

Yan, X., Pang, J., Qi, H., Zhu, Y., Bai, C., Geng, X., et al. (2017). “Classification of
lung nodule malignancy risk on computed tomography images using convolutional
neural network: A comparison between 2D and 3D strategies,” in Computer Vision-
ACCV 2016 Workshops: ACCV 2016 International Workshops (Taipei, Taiwan:
Springer) 91–101. doi: 10.1007/978-3-319-54526-4_7

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Scient. Rep. 6, 1–14. doi: 10.1038/srep18854

Zhang, C., Zou, Y., Chen, G., and Gan, L. (2020a). PAN: Towards fast action
recognition via learning persistence of appearance. arXiv preprint arXiv:2008.03462.
doi: 10.1145/3343031.3350876

Zhang, W., Wang, J., and Lan, F. (2020b). Dynamic hand gesture recognition based
on short-term sampling neural networks. IEEE/CAA J. Autom. Sinica 8, 110–120.
doi: 10.1109/JAS.2020.1003465

Zhu, W., Liu, C., Fan, W., and Xie, X. (2018). “Deeplung: Deep 3D dual path
nets for automated pulmonary nodule detection and classification,” in 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV) (IEEE) 673–681.
doi: 10.1109/WACV.2018.00079

Frontiers inNeuroscience 18 frontiersin.org58

https://doi.org/10.3389/fnins.2023.1213720
https://doi.org/10.1109/CVPR.2018.00186
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1101/2022.10.28.514024
https://doi.org/10.1109/WACV.2019.00199
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1038/s41467-021-27653-2
https://doi.org/10.1109/TNNLS.2021.3073016
https://doi.org/10.1016/j.neunet.2022.02.006
https://doi.org/10.1007/978-3-319-54526-4_7
https://doi.org/10.1038/srep18854
https://doi.org/10.1145/3343031.3350876
https://doi.org/10.1109/JAS.2020.1003465
https://doi.org/10.1109/WACV.2018.00079
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 07 August 2023

DOI 10.3389/fnins.2023.1223262

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Zhuo Zou,

Fudan University, China

Ste�en Albrecht,

The University of Auckland, New Zealand

Arindam Basu,

City University of Hong Kong, Hong Kong SAR,

China

*CORRESPONDENCE

Jiaxin Huang

Jiaxin.Huang@infineon.com

RECEIVED 15 May 2023

ACCEPTED 13 July 2023

PUBLISHED 07 August 2023

CITATION

Huang J, Kelber F, Vogginger B, Liu C, Kreutz F,

Gerhards P, Scholz D, Knobloch K and Mayr CG

(2023) E�cient SNN multi-cores MAC array

acceleration on SpiNNaker 2.

Front. Neurosci. 17:1223262.

doi: 10.3389/fnins.2023.1223262

COPYRIGHT

© 2023 Huang, Kelber, Vogginger, Liu, Kreutz,

Gerhards, Scholz, Knobloch and Mayr. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

E�cient SNN multi-cores MAC
array acceleration on SpiNNaker 2

Jiaxin Huang1*, Florian Kelber2, Bernhard Vogginger2, Chen Liu2,

Felix Kreutz1, Pascal Gerhards1, Daniel Scholz1, Klaus Knobloch1

and Christian G. Mayr2,3

1Infineon Technologies Dresden, Dresden, Germany, 2Highly-Parallel VLSI-Systems and

Neuro-Microelectronics, Faculty of Electrical and Computer Engineering, Institute of Principles of

Electrical and Electronic Engineering, Technische Universität Dresden, Dresden, Germany, 3Centre for

Tactile Internet with Human-in-the-Loop (CeTI), Cluster of Excellence, Technische Universität Dresden,

Dresden, Germany

The potential low-energy feature of the spiking neural network (SNN) engages

the attention of the AI community. Only CPU-involved SNN processing inevitably

results in an inherently long temporal span in the cases of large models and

massive datasets. This study introduces the MAC array, a parallel architecture

on each processing element (PE) of SpiNNaker 2, into the computational

process of SNN inference. Based on the work of single-core optimization

algorithms, we investigate the parallel acceleration algorithms for collaborating

with multi-core MAC arrays. The proposed Echelon Reorder model information

densification algorithm, along with the adapted multi-core two-stage splitting

and authorization deployment strategies, achieves e�cient spatio-temporal load

balancing and optimization performance. We evaluate the performance by

benchmarking a wide range of constructed SNN models to research on the

influence degree of di�erent factors. We also benchmark with two actual SNN

models (the gesture recognitionmodel of the real-world application and balanced

random cortex-like network from neuroscience) on the neuromorphic multi-core

hardware SpiNNaker 2. The echelon optimization algorithmwithmixed processors

realizes 74.28% and 85.78% memory footprint of the original MAC calculation

on these two models, respectively. The execution time of echelon algorithms

using only MAC or mixed processors accounts for ≤24.56% of the serial ARM

baseline. Accelerating SNN inference with algorithms in this study is essentially

the general sparse matrix-matrix multiplication (SpGEMM) problem. This article

explicitly expands the application field of the SpGEMM issue to SNN, developing

novel SpGEMM optimization algorithms fitting the SNN feature and MAC array.

KEYWORDS

SpiNNaker 2, SNN, MAC array, SpGEMM, multi-core load balancing deployment

1. Introduction

Coupling spatial and temporal information, the SNN shows promise in simulating

biologically related models more comprehensively and efficiently. The CPU-based system

is widely used for simulating these brain-inspired neural networks by taking advantage of

flexibility. However, the efficient input spike encoding way is still in the exploration stage,

and a gap still exists between the current encoding efficiency and that of the human brain,

which reduces the expected sparsity of the input signal and extends the CPU running time.

Moreover, to accommodate the serial operation mechanism, the model needs to introduce

additional information when deployed to the hardware, such as the storage address of

neurons, extra memory occupation owing to non-equivalent connections, and intermediate

Frontiers inNeuroscience 01 frontiersin.org59

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1223262
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1223262&domain=pdf&date_stamp=2023-08-07
mailto:Jiaxin.Huang@infineon.com
https://doi.org/10.3389/fnins.2023.1223262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1223262/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

state storage buffers. This not only burdens the memory space but

also inevitably requires more time to execute the corresponding

pre- and post-neuron matching algorithm for information transfer

and neural update, which is detrimental to the operation of real-

time SNN inference.

To address these issues caused by pure CPU systems, we

introduced the parallel computing concept into SNN inference.

The feasibility of parallel architecture processing SNN lies in the

neurons of SNN being typically governed by the same type of

equations (Yavuz et al., 2016). As a result, the single-instruction-

multiple-data (SIMD) architecture of MAC fits SNN calculation.

This study targets a wholly parallel calculation based on the

more efficient matrix parallelism. We emulate the SNN inference

on SpiNNaker 2 (Mayr et al., 2019), which integrates the MAC

array in each processing element (PE). The parallelism of this

integrated hardware component has the potential of speeding up

SNN inference in a sufficiently parallel manner. Nevertheless, there

are two challenges to tackle:

• Memory alignment: The memory alignment for catering

to the MAC array architecture triggers an issue of data volume

surges, blocking the possibility of deployingmore neurons and

synapses on limited hardware resources.

• Multi-core distribution: The unconsidered multi-

core distribution of the large-scale model can differentiate the

spatial-temporal overhead among activated PEs, wasting the

resources in space and time and affecting the performance of

applications with strict requirements.

This study addresses these two challenges by lossless densifying

the memory-aligned model information and splitting matrix

multiplication operands into multiple PEs in a spatial-temporal

load-balancing way.

Essentially, accelerating SNN inference with our algorithms

is the SpGEMM problem, as explained in Section 2.2. SpGEMM

is very popular in high-performance computing, mainly used

in algebra and graph analysis (Gao et al., 2020). The vast

majority of the relevant studies, such as Davis (2018), Zhang

et al. (2020), and An and Çatalyürek (2021), are based on

the “row-wise” algorithm proposed by Gustavson (1978), also

known as compressed sparse row format (CSR) or Yale sparse

matrix format. This traditional algorithm is unsuitable for

using MAC array accelerating SNN, so we propose a brand-

new optimization algorithm set, which can accelerate the SNN

processing when alleviating the ineffective memory footprint.

This algorithm set, consisting of four algorithms up to now,

provides an alternative to the traditional method for solving the

SpGEMM problem. To the best of our best knowledge, our work

is the first to build a bridge between the concept of SpGEMM

and SNN, expand the application field of SpGEMM to SNN,

and tackle the SNN inference using the MAC array with new

SpGEMM algorithms.

As a follow-up to our previous study that states three algorithms

of information densification (Huang et al., 2023), this study

proposes Echelon Reorder, filling in the unoptimized aspects of

that work, completing the optimization algorithm set to fully resist

the data sparsity caused by the SNN characteristics and fixed

MAC array hardware structure. The corresponding splitting and

FIGURE 1

Schematic of the MAC array (Huang et al., 2023). Pink squares

express 4× 16 MAC calculation units. In each clock cycle, the

SpiNNaker 2 bus system can convey four values from operand A and

16 from operand B and feed them into the MAC array as the arrow

indicates for executing matrix multiplication. To deploy this

structure, we should align the row and column number of operand

A to a multiple of 4 and operand B to a multiple of 4 and 16.

deployment strategies proposed in this study extend the application

range of the whole optimization algorithm set from single PE to

multi-core, enabling accelerating the larger model on SpiNNaker 2

effectively. Furthermore, the compact splitting strategy fully uses

each PE’s memory resource, paving the way for the subsequent

high-performance multiple tasks deployment on this multi-core

neuromorphic platform.

This study briefly introduces the hardware and software

cornerstones in Section 2. Then, based on them, we elaborate

on the Echelon Reorder algorithm for weight and input pure

and mixture processor splitting strategies and also multi-core

role-based SNN model deployment in Section 3. Next, Section

4 evaluates the performance of this proposed processing chain.

Finally, we conclude this article in Section 5.

2. Prerequisite

This section provides the hardware and software foundations

for the next section concerning the MAC array architecture

of SpiNNaker 2 and the stacked matrix-multiplication operands

essential for accelerating SNN inference.

2.1. MAC array

SpiNNaker 2 is a neuromorphic multi-core system. Each core

contains 64 MAC units in a 4 × 16 layout (Yan et al., 2021;

Zeinolabedin et al., 2022), which we call the MAC array. For

executing matrix multiplication, operands are supposed to be

memory aligned, as Figure 1 illustrates. The alignment shapes

originate from the fixed hardware architecture of the MAC array

and data access bandwidth of the SpiNNaker 2 system. The

precision of the operands could be 8 bits or 16 bits. For output

precision, 8 bits, 16 bits, and 32 bits can be configured.

Frontiers inNeuroscience 02 frontiersin.org60

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 2

Original processing chain of MAC array calculating SNN (left) and the schematic of Operand Stack optimization algorithm (right) (Huang et al., 2023).

2.2. Operand Stack

Conducting SNN inference generally consists of two

consecutive steps: synaptic processing and neural update.

The following equation defines the dynamics of the arguably

most prominent neuron model in the brain, that is, the leaky

integrate-and-fire (LIF):

V t+1
j = 6iWjix

t−d(j,i)
i + αV t

j − ztjVth (1)

In the synaptic processing step, weights that connect pre-

neuron i and post-neuron j are summed if the spikes arrive at

the post-neuron after traveling across the synapse for time interval

d(j, i). Then, in the neural update step, the membrane potential

decays by factor α (equals to e1/τm , τm denotes the membrane time

constant) and is updated by checking the neuron states ztj at time t.

If the sum of the first two terms exceeds the threshold Vth, neuron

states are set to 1 and neuron spikes, otherwise 0. This equation

refers to (Bellec et al., 2020) and its supplementary, with factor 1−α

removed. Unlike the original equation, the input and recurrent

synaptic processing share the same term.

Because of the high data precision requirement of the neural

update, the MAC array primarily contributes to accelerating the

synaptic processing of the SNN inference. As with the serial

synaptic processing mentioned by Rhodes et al. (2018), the parallel

synaptic processing also contains processing input spikes and

advancing the input current buffer of each delay, as shown on

the left side of Figure 2. To be specific, first, the memory-aligned

weight-delay matrix is divided into several weight matrices, each

of which has the same delay attribute. Then weight matrices is

transmitted to the MAC array one by one serving as the operand

B and simultaneously conveying the memory-aligned input spike

train to MAC as the operand A. Finally, the MAC calculated results

is added to the input current buffer to update the input current

of each delay. Here, the “delay,” or “synaptic delay” precisely, is

the time for conducting a signal across a synapse, that is, the

interval between the arrival of the spike and the start of the

membrane potential.

The delay stack algorithm proposed in our previous study

(Huang et al., 2023) simplifies these conventional synaptic

processing steps to only one step (matrix multiplication), so there

is no need to consider the weight matrix division and the input

current accumulation. As depicted on the right side of Figure 2, this

algorithm stacks sequential input spike trains of tn−3 to tn+3 into an

input-spike-train map and stacks weight matrices along the delay

into a weight-delay map. These two maps act as the new operands

for matrix multiplication on the MAC array. SNN features sparse

input to mimic the working mechanism in the mammalian brain

but decouples weight sparsity. By applying delay stack, the weight

matrix is divided into multiple sparse matrices, and the merged

Frontiers inNeuroscience 03 frontiersin.org61

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 3

Two optimization algorithms proposed in Huang et al. (2023): (A) Zero Elimination (B) Proportion Merger.

weight-delay map exhibits sparsity as a result. Thus, the issue

of accelerating SNN inference with MAC array is converted into

efficient multi-core processing SpGEMM problem.

Considering the limited SRAM space on each PE of

SpiNNaker 2 and the sparsity of the merged weight-delay map, our

last study (Huang et al., 2023) further applies the Zero Elimination

and Proportion Merger algorithms to shrink the size of the matrix-

multiplication operands, as shown in Figure 3. Basically, the Zero

Elimination algorithm removes the rows with all zero values in

the weight-delay map against the operand sparsity, and it also

removes the corresponding columns in the input-spike-train map

to guarantee the result correctness of the matrix multiplication.

The Proportion Merger merges rows that is proportional to each

other to only one row for weight-delay map and records the

proportional values (greatest common divisor), which contribute

to pre-processing the input-spike-train map at runtime. This

algorithm essentially migrates some weight-delay information into

input operand, addressing the accuracy mismatch problem of SNN

input (1-bit) and MAC operand requirement (8-bit/16-bit) and

improving the memory utilization.

These three algorithms from our last study (Huang et al.,

2023) tackle or alleviate most of the memory issues caused by

SNN characters and memory alignment, except memory alignment

alongside the column of operands B and C, as indicated in Table 1.

In other words, if only deploying these three algorithms, the part

from the 5th to 16th column of the weight-delay map in Figure 2

that has all values equal to zero has to be saved on SRAM of PE

for matrix-multiplication calculation. According to the MAC array

working mechanismmentioned in Section 2.1, the output (operand

C) also requires the same number of column reserved for storing

Frontiers inNeuroscience 04 frontiersin.org62

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

TABLE 1 Correspondence between memory issues and optimization algorithms.

Memory issues

Optimization algorithms Operand Stack Zero Elimination Proportion Merger Echelon Reorder

SNN characters
Sparse operand A ⋆ ⋆

Accuracy mismatch ⋆

MAC structure

Operand A
Row ⋆

Column ⋆

Operand B
Row ⋆

Column ⋆

operand C
Row ⋆

Column ⋆

Generated during
Sparse operand B ⋆ ⋆ ⋆

optimization

The first row lists four optimization strategies, and the first and second column state the memory issues to be solved when we want to accelerate SNN inference with MAC array. Stars mark

which optimization algorithms can solve or alleviate whichmemory issues. The first three algorithms proposed in our previous study (Huang et al., 2023) ignore the memory alignment problems

of column of operand B and C, highlighted with pink color. The Echelon Reorder algorithm proposed in this study can solve them.

FIGURE 4

An example of utilizing the Echelon Reorder algorithm, which reorders the row of weight-delay map to form the echelon matrix that the left corner

has only zeros.

matrix-multiplication results, which is unfriendly to the limited

memory space. In addition, the previous study does not discuss

multi-core MAC arrays collaborating on processing a large SNN

model. We address these two issues in the following section.

3. Method

This section elaborates on each part of the SNN multi-

core MAC array acceleration processing chain, incorporating the

information densification algorithm for the weight-delay map and

input-spike-train map, pure MAC and mixed processor splitting

strategies, as well as the multi-core deployment.

3.1. Echelon Reorder

3.1.1. Weight-delay map
The Operand Stack algorithm from Huang et al. (2023)

dilutes the original weight-delay matrix and results in a sparse

weight-delay map. Our proposed Echelon Reorder algorithm takes

advantage of this sparsity to isolate the meaningful weights for

weight-delay map, as shown in Figure 4 and Algorithm 1. In

this algorithm, we reorder the rows of the weight-delay map

to form an echelon matrix, of which the lower left part has

all values of zero so that the upper right part has a denser

distribution of non-zero weights than the weight-delay map.

The storage performance and computing power improvement are

foreseeable if only the upper right part is stored and calculated.

We will discuss the specific storage approach in Sections 3.2

and 3.3.

3.1.2. Input-spike-train map
To guarantee the correctness of thematrixmultiplication result,

it is necessary to adjust the operand A (input-spike-train map)

according to the modification of operand B (weight-delay map)

which is discussed in Section 3.1.1. To be specific, we record how

the row of operand B is reordered and apply it to the column

reorder of the operand A. Unlike the operand B, the operand A

is unknown in advance because there is no way to predict the

Frontiers inNeuroscience 05 frontiersin.org63

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

Require: weight-delay map WD_map of size row× col

Ensure: echelon matrix E_matrix, echelon matrix index

list tgt_idx_list

/∗ this algorithm reorder the rows of WD_map to

generate E_matrix ∗/

/∗ execute this algorithm on PC before inference,

and load the result E_matrix to PE of SpiNNaker 2 as

operand B ∗/

E_matrix_row_count← 0

for j ← 0 to (col− 1) do

for i ← 0 to (row− 1) do

if WD_map[i][j]! = 0 then

E_matrix[E_matrix_row_count]←WD_map[i][:]

E_matrix_row_count+ = 1

add i to tgt_idx_list

end if

end for

end for

Algorithm 1. Echelon Reorder algorithm.

input spike status, so we cannot reorder operand A offline and

have to adjust the operand A when executing the SNN inference.

This adjustment can be achieved on the host PC with Python or

on SpiNNaker 2 with C language. To make a fair comparison

with the pure ARM baseline in Section 4 and to extend the

capability of SpiNNaker 2 of directly handling the spikes from

the sensor peripheral, we propose the Circle Reverse algorithm

(Algorithm 2) to online real-time process the input-spike-train

map on SpiNNaker 2. It consists of two steps: find circles and

reverse circles.

Find circles: During the reorder process of the operand B, we get

the target index list that corresponds to the source index list, that

is, which source row of the operand B should be placed in which

target row in the generated echelonmatrix, as presented in Figure 4.

Suppose the current target index is taken as the next source index,

we can retrieve the next target index iteratively until finding out the

target index that equals the start source index. The indices found in

this process can form a circle. All the indices of a weight-delay map

can be represented by several circles. In our example, two circles are

found, as demonstrated on the left side of Figure 5.

Reverse circles: Now we consider adjustment of the operand A

(input-spike-train map). If we directly move columns of operand

A based on the order given by original circles, the previous column

overwrites the current column, and then the current column cannot

assign the correct values to the next column. To solve this issue, we

reverse the index order of each original circle and preserve the start

column before executing the column movement for the operand A,

as shown on the right side of Figure 5. Then we assign the preserved

start column to the column at which the start column points. In this

process, only a little extra memory is required to preserve the start

column instead of a whole space with the same size as the original

input-spike-train map. This algorithm does not involve the sort

and search algorithms. Thus, the runtime grows linearly with the

number of columns, and the time complexity is O(n).

Require: weight-delay map index list src_idx_list,

echelon matrix index list tgt_idx_list

Ensure: reversed_circle_list

/∗ this algorithm calculates reversed_circle_list needed

for the input-spike-train map online reorder ∗/

/∗ execute this algorithm on PC before inference,

and load the result reversed_circle_list to PE of

SpiNNaker 2. It processes input data during

inference to generate operand A ∗/

/∗ step 1: find circles ∗/

/∗ input: src_idx_list, tgt_idx_list ∗/

/∗ output: circles_list, circle_count ∗/

circle_count← 0

repeat

start_src_index← one element from src_idx_list

src_index← start_src_index

delete src_index from src_idx_list

add src_index to circles_list[circle_count]

repeat

tgt_index← tgt_idx_list[src_index]

src_index← tgt_index

delete src_index from src_idx_list

add src_index to circles_list[circle_count]

until tgt_index == start_src_index

circle_count+ = 1

until no element in src_idx_list

/∗ step 2: reverse circles ∗/

/∗ input: output of step1, that is: circles_list,

circle_count ∗/

/∗ output: reversed_circle_list ∗/

for i← 0 to circle_count do

reversed_circles_list ← reverse the elements of

circles_list[i]

end for

Algorithm 2. Circle Reverse algorithm.

3.2. Multi-core two-stage splitting

3.2.1. Pure MAC
Considering the MAC array exclusively supporting the

acceleration of the rectangular matrix, we employed a set of

rectangles to enclose all the meaningful data and as few zeros as

possible. The length of the rectangle is a consecutive integer (1, 2,

3, etc.) multiple of 16, and the width is an integer multiple of 4.

Themultipliers derive from the hardware characteristic of theMAC

array of SpiNNaker 2. Using the alignment splitting algorithm,

we obtained a set of rectangles with the smallest total area, as

Figure 6A(c) indicates.m in this figure represents the remainder of

dividing the column number of the echelon matrix by that of MAC

array (16). The data contained in this set of rectangles consume the

least memory resources when deploying on SpiNNaker 2.

Now, length and width of the rectangles meet the requirements

of the MAC calculation, and its time to discuss the load balancing

issue. The amount of data outlined by rectangles varies. All data

Frontiers inNeuroscience 06 frontiersin.org64

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 5

An example of utilizing Circle Reverse algorithm. The indices of the

weight-delay map in Figure 4 has two circles with index order 0→

3→ 0 and 1→ 4→ 5→ 2→ 1, arrows pointing at the direction of the

row movement. To avoid the row overwrite (row of weight-delay

map, equivalent to column of input-spike-train map here) and save

memory footprint, we reverse the index order to: 0← 3← 0 and 1←

2← 5← 4← 1. Preserve the start point of each circle (0 and 1,

respectively) beforehand and assign the preserved values to the row

that the start row points at (3 and 4, respectively).

in some rectangles might occupy little memory if we simply

distribute each small rectangle to one PE without combination.

In contrast, all data in other rectangles may be far beyond the

maximum available SRAM space of one PE. Even if the data

in the largest rectangle barely fit into one PE, the unbalanced

weight loading of the rectangle set among multiple PEs can

prolong the overall processing time, and partial computing

power of the core with a low weight load is wasted. Therefore,

based on the set of rectangles obtained in the above steps, we

execute the core splitting algorithm to achieve a spatial-temporal

load balancing deployment on multiple cores. This step splits

the rectangles obtained by alignment splitting into more and

smaller rectangles horizontally and then divides them into several

groups with an equal amount of weight values, as Figure 6A(e)

shows. The number of the group is the number of PEs to be

activated.

Equally distributing weights across multiple cores has many

possibilities. Here, we put weights into as few PEs as possible to fully

utilize the resources of each core.We do this for two reasons: on the

one hand, matrix multiplication withMAC array has a considerable

time advantage, and the marginal utility of dividing into more cores

is tiny; on the other hand, the full utilization of each core is also

conducive to simultaneously deploying and executing more tasks

on multi-core SpiNNaker 2 platform in future.

3.2.2. MAC and ARM mixture
By observing the biggest rectangle in Figure 6A(c), we find that

there is still a relatively large area with all values equal to zero,

arising from memory alignment alongside the column of operand

B. The concrete size of this area is subject to m, the remainder

dividing the column number of the echelon matrix by 16. Whenm

is small, these zero values employed as placeholders occupy a large

memory space. We improve this situation by abstracting only the

meaningful data, as Figure 6B(b) illustrates, and conducting matrix

multiplication for this part with the ARM core.

As for the corresponding core splitting strategy that matches

this mixture alignment splitting, we figured out the number of

required PEs with the approach mentioned above and outlined

the core splitting rectangles for the blue and pink marked area of

Figure 6B separately. For example, we needed four PEs, so we split

the whole area marked with blue into four groups equally and do

the same for the pink. Later, in the deployment step, we saved one

split rectangular group for MAC calculation and one for ARM into

one PE. Then all the activated PEs executed matrix multiplication

by leveraging the local MAC array and ARM core. Finally, the

results from all activated PEs were converged to get the synaptic

processing result.

This optimization eliminates the extra memory overhead

originating from necessary memory alignment alongside the

columns of operands B and C. When m is small, or the number of

source neurons (corresponds to the row number of echelon matrix)

is large, the optimization is particularly effective.

3.2.3. Pure or mixed?
The variable m represents a number ranging from 1 to

16 in various models. Therefore, it is necessary to analyze the

influence of m on processor selection quantitatively. In the pink

outlined area in Figure 6B(a), the memory cost of the pure

MAC approach is independent of m. In contrast, the MAC and

ARM mixture approach consumes only 6.25% of the memory

required by pure MAC in the extreme case of m being 1, as

shown in Figure 7A. With m climbs, the memory gap gradually

narrows until it disappears when m reaches the maximum value

of 16. As for the time comparison, we found that pure MAC

outperforms ARM of the mixed approach except for several cases

when m and row number are pretty small, according to Figure 7B.

Consequently, if a model has a high requirement of the real-time

reaction and fewer memory constraints, pure MAC is a better

option in the vast majority of cases; otherwise, MAC and ARM

mixture outperforms.

3.3. Multi-core authorization deployment

After the splitting process, we discuss how to deploy the

split echelon matrix and where to process the original input-

spike-train map. The MAC array of SpiNNaker 2 supports

reading operands from other PEs. Based on this feature, we

authorize the core that reads reversed input data from another

PE and preloads the split weight rectangular group as the

“Subordinate PE.” The PE that provides reversed input data

acts as the “Dominant PE.” Figure 8 illustrates the multi-

core authorization result and the whole processing chain. First,

the Dominant PE (Core 0) receives the original input spikes,

generates the reversed input-spike-train map, and waits for the

reading request from Subordinate PEs. Then, the Subordinate PE

reads the corresponding reversed input data and performs pure

MAC operation or mixture calculation. The generated synaptic

Frontiers inNeuroscience 07 frontiersin.org65

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 6

Multi-core splitting. (A) Two-stage splitting algorithm. The first splitting stage (alignment splitting) generates a set of rectangles that meet the

memory alignment requirement from MAC array hardware structure, i.e., the length of the rectangles is a multiply of MAC array column number (16

for SpiNNaker 2) and the width of MAC array row number (4). The second splitting stage (core splitting) further disassembles and reorganizes these

rectangles according to the available storage and then deploy them to multiply cores in a balanced loading way. Algorithm details (a) signifies the

memory-aligned echelon matrix. For alignment splitting, first we find the intersection of the gray vertical line and rose red echelon line and

determine the dark blue horizontal dividing lines in (b). In addition, add two light blue lines on the first and last rows. Starting from the second line,

shift the line downwards until meeting the requirement that the number of rows between two adjacent lines is the multiply of 4. Based on them, we

can outline the smallest rectangular set in (c). In the core splitting process, we divide the sum of the memory of all data in the dark blue rectangles by

the available memory per PE for getting the number of PEs (supposing 5 in this example). Purple lines in (d) cut the memory into equal five portions at

first, and a shift downwards is also necessary if two adjacent lines are not the multiply of 4. Purple rectangles surround the area as (e) depicts. Finally,

we can save weights in these rectangles into corresponding PEs for direct MAC calculating with no need for further data format adjustment. (B) Two

kinds of splitting approaches for echelon matrix. We store the weights enclosed by colored borders into PE. Approach of (a) fits pure MAC

acceleration and has the speed advantage. (b) Deploy mixed processors to execute matrix multiplication. The weights outlined in blue utilize MAC

array, while the pink area, which is di�erent from (a), uses ARM processor. This approach consumes more running time but less memory footprint.

The white area represents zero values, the orange area marks denser weights, and the rose red echelon line is the dividing line of them. m represents

the remainder of dividing the column number of the echelon matrix by that of MAC array (16). n in (c) and (e) of subfigure (A) is the non-zero integer.

processing results are eventually accumulated and written back to

the Dominant PE, serving as the input for the subsequent neural

update step.

4. Experiment and result

To evaluate the performance of the information densification

and splitting algorithms and the feasibility of the deployment

strategy from Section 3, we benchmarked it with constructed and

actual SNN models in this section.

4.1. Constructed SNN models

The optimization performance of our proposed approaches

relies on the following five factors: delay range, number

of pre-neurons, number of post-neurons, weight connection

Frontiers inNeuroscience 08 frontiersin.org66

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

density, and the selection of splitting strategy. The first four

factors are determined by the SNN model itself. Thus, we

constructed multiple SNN models based on various combinations

of these four factors and explored their influence on spatial and

temporal performance. To focus on the scope of our proposed

approaches, we experimented on the synaptic processing part

of SNN.

Figure 9 illustrates the comparison of the memory optimization

rate among 30, 31, and 32 post-neurons. We define memory

optimization rate as the ratio of the number of uncalculated

weights to the number of memory aligned weights, i.e., the ratio

of the area that is not enclosed by rectangles to the total area in

Figure 6B. Figure 9A shows that the memory optimization effect

gets better with the increase of delay range. Moreover, the two

echelon algorithms perform better inmemory cost when the weight

operand is getting more sparse, and the more sparse the weight

operand, the more obvious the effect. In addition, the mixed

splitting approach always performs better than or equal to the

pure MAC approach. This experimental result is consistent with

the analysis in Section 3.2.3. The performance difference between

these two splitting approaches depends on the remainder of post-

neurons divided by 16, that is, the value m in Figure 6. As the

remainder grows, the performance difference decreases. Until the

remainder reaches 16 (back to 0), there is no difference between the

two methods.

In addition to the impact of the remainder of post-neurons

divided by 16 on the spatial performance difference between the

two methods, the change of the post-neuron number itself also

affects the memory optimization rate. Figure 9B demonstrates a

3D plot with the projections of the contours, highlighting the

relation of memory optimization rate and two factors: the number

of pre-neurons and post-neurons. Observing the contour on the

back “wall,” we find that the memory optimization rate fluctuating

declines with a period of 16 with the post-neurons increasing. The

increase of post-neurons brings the reduction of the optimization

rate, which surges at the point where the remainder returns from

15 to 0. The reason is that the post-neuron number at this point

exactly adapts to the hardware structure of the MAC array that

no memory alignment is required. The projected contour on the

left “wall” is almost parallel to the pre-neurons axis after the

initial unstable status, implying the independence of pre-neuron

number and memory optimization rate. The following formula

briefly summarizes the relationship between memory optimization

rate and factors:

ropt ∝∼ d,
1

p
,

1

npost
(2)

ropt represents the memory optimization rate, which is

approximately directly proportional to the delay range d, and

inversely to weight connection density p and number of post-

neurons npost . The use of the approximately proportional symbol
∝
∼ is intended to qualitatively show the positive and negative

relationship of the variables before and after it. The relation details,

such as the aforementioned “the more sparse the weight operand,

the more obvious the effect” and “fluctuating declines with a period

of 16,” are not reflected in this equation.

Although the memory optimization rate is unrestricted by the

pre-neuron number, the impact of the pre-neuron number on

SNN inference performance is mainly reflected in the running

time, which basically consists of input data pre-processing (Circle

Reverse algorithm elaborated in Section 3.1.2) and synaptic

processing. The synaptic processing is accelerated by the MAC

array, and the input data pre-processing is only calculated by ARM.

Therefore, the input data pre-processing consumes most of the

temporal resources. The smaller the number of input neurons

(i.e., pre-neurons), the better the algorithms proposed in this

study performs in execution time. If only considering the synaptic

processing part, the temporal performance of the mixed echelon

approach also has an intense dependence on the number of pre-

neurons. The mixed echelon algorithm sacrifices some runtime in

exchange for a lower memory footprint, and this time is positively

correlated with the number of pre-neurons.

4.2. Actual SNN models

We selected two actual benchmarks for evaluation of our

proposed approaches: an application model from the real scenario

(radar gesture recognition SNN model) and a classic structural

modeling in neuroscience (balanced random cortex-like network).

The experiments compared serial ARM, original MAC, pure MAC

echelon, andMAC andARMmixture approaches regarding spatial-

temporal performance. The data measurement concentrates on the

part where the above four approaches behave differently during

SNN inference, that is, synaptic processing. As for the multi-core

mapping and deployment, we evenly split the weight operand

into multiple adjacent PEs and fully utilized each PE’s available

memory resources (120 KB in our configuration) in conjunction

with other necessary data (split input, temporary output, and input

current buffer) for serial ARM and original MAC. When a PE can

accommodate not less than one weight matrix of one delay, we

ensure the integrity of a computational unit, i.e., one weight matrix

of one delay, to avoid introducing additional result fusion time. For

example, if a kernel can hold 2.5 weight matrices of one delay, we

assigned pure MAC echelon and mixture approaches that adopted

supporting strategies from Section 3.2 and 3.3.

We adopted the following method to calculate memory cost

and measure the execution time of the multi-core cooperation

system:

• Two baselines: The memory cost of serial ARM and

original MAC comes from the input placeholder, weight,

output placeholder, and input current buffer in all activated

PEs. Note that the input and weight operands are supposed

to be memory aligned in advance. The execution time is

comprised of matrix multiplication, output merging from

different PEs and input current buffer update.

• Two echelon approaches: The memory cost consists

of the footprint of the Dominant PE (input placeholder,

reversed order, and output) and Subordinate PEs (weight

cost and temporary output). In addition to the matrix-

multiplication execution time (MAC or mixture processors)

and the time of accumulating output into Dominant PE,

Frontiers inNeuroscience 09 frontiersin.org67

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 7

(A) The memory usage comparison of pure and mixed processor approaches. (B) Synaptic processing execution time comparison of pure MAC array

and ARM part of the mixed approach, regarding the part that has di�erence when adopting the pure or mixed approach. Pink rectangles in Figure 6B

mark this part. m represents the remainder of dividing the column number of the echelon matrix by that of MAC array (16).

FIGURE 8

Multi-core authorization result and SNN multi-core MAC array acceleration processing chain. Core 0 is the ”Dominant PE,” and Core 1 to Core 5 are

“Subordinate PEs.” The weights deployment corresponds to the splitting outcome of Figure 6A, i.e., pure MAC splitting. This processing chain is also

applicable to the outcome of MAC and ARM mixture splitting.

the execution time also incorporates the input reorder time

to guarantee a fair comparison with serial ARM and the

original MAC baseline. Since each calculation obtains the

same number of results as the delay number instead of only

one result of the serial ARM and original MAC approach as

Figure 2 shows, we divide the tested total execution time by

the delay number to get the processing time per frame.

4.2.1. Application model from the real scenario:
radar gesture recognition SNN model

Gesture recognition is an important and active area of AI

research, with relevant models and hardware deployment acting

as the fundamental verification unit for more sophisticated real-

world scenarios. For the first benchmark, we set up the radar-

based SNN gesture recognition model with 2,048 input neurons,

20 hidden neurons, four output neurons, and four delays. This

model is similar to the study in Gerhards et al. (2022) and Huang

et al. (2022a,b) but introduces the concept of delay. We train

this benchmarking model with our own collected radar dataset

mentioned in Kreutz et al. (2021), involving three directional

gestures (left, right, and push) and one environmental reference

(random gesture or background noise). The experiment refers to

processing synapses between the input layer and hidden layer

marked with light blue in the gesture recognition model on the left

top of Figure 10.

For the Echelon Reorder optimization algorithm with only

MAC as the processor, the densified weight-delay map (i.e., echelon

matrix) can be split and deployed into two Subordinate PEs as

depicted on the right part of Figure 10A. One Dominant PE

has enough space to save the input-spike-train map and the

reversed order. The mixed echelon algorithm also consumes two

Frontiers inNeuroscience 10 frontiersin.org68

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 9

Memory optimization rate comparison. (A) Memory optimization rate comparison 2D plot. Three plots corresponds to 30, 31, 32 post-neurons.

Pre-neuron is set to 50. Delay ranges from 1 to 16. (B) Memory optimization rate comparison 3D plot with the projections of the contours.

Subordinate PEs and one Dominant PE. Both serial ARM and

original MAC baselines need more than one PE, given the available

memory of one PE. We split the weight and input operands

of these two baselines into multiple cores in a balanced and

compact way for a fair comparison purpose. According to the

operand scale, two and four PEs are required for these two

baselines, respectively.

Analyzing the performance data reported on the bottom left

of Figure 10A, the echelon optimization with mixed processors

occupies 74.28% of the memory of the original MAC calculation.

It is close to the serial ARM memory cost. As for execution

time, it accounts for 24.56% of the serial ARM calculation, i.e.,

this approach optimizes 75.44% of the runtime. The echelon

optimization with MAC even increases this percentage to 89.86%

(1−10.14%). The remainder m and row number are calculated

to be 4 and 5,500. According to the analysis in Section 3.2.3,

the mixed optimization is expected to outperform the pure MAC

regarding memory footprint but be inferior concerning execution

time. The experiment data from Figure 10 are consistent with

this deduction.

Frontiers inNeuroscience 11 frontiersin.org69

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 10

(A) Top-left is the structure of the radar gesture recognition model. The experiment part corresponds the synaptic processing of the blue-marked

components, including the neural populations and the synaptic projection. The right subfigures depict what experimental memory objects are

required and how they are split and deployed into multiple PEs of SpiNNaker 2 hardware according to four di�erent synaptic processing approaches

(two baselines and two proposed approaches). The two bar plots on the bottom left compares the execution time and memory cost of these four

approaches. The colorful legend in the middle fits the memory cost comparison bar plot and all the subfigures on the right. (B) Balanced random

cortex-like network has the same subfigure distribution as (A). Because of the limited space, we put the specific splitting result of two echelon

algorithms of the balanced random cortex-like network into Supplementary material.

4.2.2. Classic structural modeling in
neuroscience: the balanced random cortex-like
network

The balanced random cortex-like network, commonly used to

benchmark and map to neuromorphic systems (Brüderle et al.,

2010; Pfeil et al., 2013; PyNN, 2023), serves as our second

benchmark, originated from Brunel’s work (Brunel, 2000). Brunel

devoted to models of networks with simple neurons to describe

the dynamical properties of sparsely connected excitatory and

inhibitory integrated-and-fire (IF) neurons. His study reports that

Frontiers inNeuroscience 12 frontiersin.org70

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

FIGURE 11

Summary of the memory cost di�erences of delayed weight of the four approaches (two baselines and two proposed approaches) with three “rate.”

The memory alignment rate of row and column ralign_rc equals the memory aligned area in the weight matrices of delay x from Figure 2, and other

two “rate” represent the proportions of the pointed white area in the whole area of weight-delay map after using the Echelon Reorder.

the networks present rich states according to external stimulation,

the proportion of excitation and inhibition, and synaptic

features.

Similar to the cortex in the brain, the balanced random

cortex-like networks are composed of an excitatory and inhibitory

population of neurons (PyNN, 2023), which are randomly

interconnected with each other with fixed probability and

recurrently connected within the population. They are also

stimulated with excitatory populations with spikes of Poisson

distribution, as shown on the top left of Figure 10B. We choose

the main part of the model, namely, the excitatory population

projecting the inhibitory population marked with dark blue in

the Figure to benchmark the proposed approaches in this study.

Compared with the original experiment setup in Brunel (2000), the

overall number of neurons is scaled to 1,000, but the proportion of

excitation and inhibition remains the same (4:1), i.e., 800 excitatory

and 200 inhibitory neurons. The parameter delay keeps the original

value four and is uniformly distributed in the range of 0 to

3. We create the connection between excitatory and inhibitory

populations with a fixed probability of 0.1.

The pure MAC echelon and mixed echelon require one

Dominant PE and five Subordinate PEs according to the splitting

and deployment strategies mentioned in Section 3.2 and 3.3.

Both serial ARM and original MAC run on eight PEs. The

right part of Figure 10B presents the specific splitting and

deployment consequences.

The sub-graph in the lower left of Figure 10 compares

the spatial-temporal performance of four approaches.

Two echelon optimization occupies ∼86% of the memory

of the original MAC calculation, and both outperform

serial ARM. In addition, the execution time of two

echelon algorithms is smaller than 7.4% and close to the

original MAC.

4.2.3. Performance comparison of the two actual
models

The two benchmark actual models coming from different

domains have distinct structures that are suitable for comparison.

The radar gesture model features a larger number of pre-neuron

(2,048) than the balanced random cortex-like network (800),

as shown in Figure 10. According to the analysis in Section

4.1, the number of pre-neurons mainly influences the execution

time performance dominated by ARM processing parts (Echelon

Reorder and ARM calculating part of matrix-multiplication of

mixed echelon). Thus, the violet and light blue-marked areas of two

echelon algorithms on the execution time comparison subfigure of

Figure 10A is larger than that of Figure 10B. The balanced random

cortex-like network with a smaller number of pre-neuron has a

better spatial optimization result by leveraging echelon algorithms.

In addition to the distinction in pre-neuron number, these

two benchmark models structure different weight connection

densities (3.16%, 10%) and post-neuron numbers (20, 200). The

formula 2 indicates the model with smaller weight connection

densities, and post-neuron numbers deserve a better memory

optimization effect for weight-delay map. The blue bars of two

echelon algorithms relative to the original MAC in the memory

cost comparison of Figure 10A are indeed significantly smaller

than that of Figure 10B. However, the overall advantage of spatial

performance improvement of the radar gesture model is blocked

by extra memory for storing input spikes (green bars) and reversed

order (yellow bars) owing to a larger number of pre-neurons.

In addition, we introduce a definition of “memory alignment

rate of column” to account for the reason for a sharper drop of

the blue bar from echelon (MAC) to echelon (MAC + ARM).

The memory alignment rate of the column presents the impact of

memory alignment along the column of the weight-delay map for

the size of the whole memory aligned weight-delay map, that is,

Frontiers inNeuroscience 13 frontiersin.org71

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

the rate of the right side white rectangle area to the whole area in

Figure 6A(a) or

ralign_c =
16−m

npost + 16−m
(3)

where m is the reminder of post-neuron number npost divided by

16. With the increase of the post-neuron number, the memory

alignment rate decreases. This means that the extra area brought

by column memory alignment is a decreasing share of the total

weight-delay map. As a result, the echelon (MAC + ARM)

algorithm, functioning as optimizing this extra area as mentioned

in Section 3.2.2 and 3.2.3, behaves much better in the radar

gesture recognition model than in the balanced random cortex-like

network. Similarly, the different ratios (we name the ratio ralign_rc)

in comparison of serial ARM and original MAC (61.77%, 97.19%)

are caused by memory alignment along the row and column of

weight matrices of delay x shown in Figure 2. A larger post-neuron

number leads to a smaller memory increase of memory alignment

from serial ARM to original MAC.

5. Conclusion and discussion

5.1. Summary

This study describes the processing chain for accelerating

SNN inference with multi-core MAC arrays, including Echelon

Reorder information densification algorithm, Multi-core two-

stage splitting and multi-core authorization deployment strategies.

These algorithms and strategies alleviate the intrinsic memory

issue of excessive usage originating from memory alignment

and data sparsity. They also realize the multi-core spatial-

temporal load balancing for the large SNN layer. We benchmark

with constructed and actual SNN models. The former explores

how model feature and algorithm selection affect the spatial-

temporal optimization performance, and the latter demonstrates

two actual SNN models (the radar gesture recognition SNN

model and balanced random cortex-like network) on SpiNNaker 2

hardware. They prove the feasibility of the whole optimization

process and achieves performance increase. Based on the

theoretical analysis and the experiment result, we found those as

follows:

• The proposed algorithms and strategies are applicable to

various densities of matrix multiplication operands, and

the memory optimization degree increases with the weight

operand getting sparse.

• In addition to the weight sparsity, the memory optimization

rate is also positively correlated with delay range.

• The number of post-neurons periodically affects the memory

optimization rate, and the overall trend is downward.

• The number of pre-neuron is generally independent of the

memory optimization performance but has intense correlation

with running time.

• The echelon mixed processor algorithm behaves better

regarding memory but has less temporal efficiency than the

echelon pure MAC solution.

The proposed algorithms not only provide a concrete solution

for accelerating SNN on themulti-coreMAC arrays of SpiNNaker 2

but also has a referential value for hardware systems embedded with

multi-core MAC arrays that intend to solve the SpGEMM issue.

5.2. Related work

Some researchers have introduced the parallel computing

concept into SNN inference to tackle the problems caused by

CPU-based parallel processing. One of the representative works

of parallel processors accelerating SNN computation is GeNN

(Yavuz et al., 2016), a code generation framework speeding up the

SNN simulation process using the graphics processing unit (GPU).

Specifically, it speeds up the synaptic processing by utilizing a

serially executed atomic add operation to add weight to the delay

ring-buffer after reading the index of post-neuron and weight and

delay by each thread of the GPU (Yavuz et al., 2016; Knight and

Nowotny, 2018). However, this mixture of thread/vector parallel

processing and serial add operation does not take full advantage of

the parallelism of the processor.

Another related study regarding parallel processing SNN

inference is SpiNeMap (Balaji et al., 2020) and its follow-up

(Balaji et al., 2021). SpiNeMap is a design methodology to

partition and deploy SNNs to the crossbar-based neuromorphic

hardware DYNAP-SE (Moradi et al., 2018). The proposed unrolling

techniques decompose a neuron function with many presynaptic

connections into a sequence of computation nodes with two

presynaptic connections. This approach improves the crossbar

utilization but introduces spike latency, i.e., distorts interspike

intervals (ISIs) for global synapses. This issue can be relieved by

reducing the number of spikes on global synapses as reported

in Balaji et al. (2020), probably realized by modifying the model

parameters or decreasing the input spike rate, both of which can

negatively impact the accuracy of the original SNN.

Our study targets no ISIs, no accuracy loss, and a wholly parallel

calculation based on the more efficient matrix parallelism rather

than vector-based computing.

5.3. Macro significance

The proposed algorithms act on synaptic processing, which

is part of the SNN inference. The impact of algorithms on the

optimization of the whole network is a question worth discussing.

To review the motivation of our study, it is discussed in Section 1

that the serial ARM baseline suffers from a large time-consuming

issue and the naive parallel solution original MAC is unfriendly

to limited memory space, it is necessary to explore the portion of

synaptic processing of serial ARM in time and original MAC in

memory in order to have amacro view of the degree of optimization

of our proposed algorithms in the whole SNN inference.

SNN inference consists of synaptic processing and neural

update. We estimated the time consumption rate of these two steps

for the serial ARM baseline with the following equation referring to

ARM Cortex-M4 Technical Reference Manual (ARM, 2023):

Frontiers inNeuroscience 14 frontiersin.org72

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

tsynap
tneural

=
npre×npost×d×MLA

npost×(MLA+COMP)
≅ 0.67× npre × d. (4)

This equation shows that the time consumption rate depends

on the number of pre-neuron and delay range. Ameaningful model

is supposed to have more than one pre-neurons, so this rate is

always greater than 1. For the two benchmark actual models in

Section 4.2, the synaptic processing time is 5,488.64 and 2,144.0

times larger than neural update.

As for the memory comparison, suppose that the number of

pre- and post-neuron is memory aligned, the decay and threshold

values of the neural update of all neurons are identical, and only

count one output matrix for the multi-core scenario, we have the

following equations:

memsynap

memneural
=

4× npre + npre × npost × d + 4× npost + 4× npost

4× npost + 0.125× npost

≅ 1.94 + 0.24× npre × (
4

npost
+ d). (5)

This equation provides the rate of memory cost of synaptic

processing to neural update for the original MAC baseline. The

rate always greater than 1.94 means synaptic processing dominates

memory cost. For the two benchmark actual models, this rate

indicates the memory cost of synaptic processing is 2,066.32 and

773.78 times larger than neural update, respectively.

The above search confirms that synaptic processing has the

lion’s share in SNN inference, both in terms of running time and

memory storage. Therefore, the optimization of synaptic processing

is crucial and largely determines the optimization performance of

the whole SNN inference.

5.4. Limitation and future work

By analyzing formula 2 and comparing two actual models

regarding the temporal performance of synaptic processing, we

found that the larger number of pre-neuron hinders the running

time optimization degree that is primarily governed by ARM

calculation parts of the Echelon Reorder and matrix-multiplication

of the echelon mixed processor approach. Future optimization for

time can be placed on finding a more efficient algorithm for the

Echelon Reorder and further compressing the data of the serial

operation range in the echelon mixed processor approach.

The spatial performance of our proposed optimization

algorithms is limited by the smaller delay range, denser weight

connection, and the larger number of post-neuron. How to further

optimize the memory optimization rate ropt and ralign_c is defined

in Section 4.1 and Section 4.2.3 and increasing the area of the white

area of Figure 11 are the next things that are worth investigating.

This study merely elaborates on the optimization mechanism of

the Echelon Reorder that is based on the data transformation of

the Operand Stack. In fact, the other two optimization algorithms

(Zero Elimination and Proportion Merger) in Table 1 proposed in

our previous study (Huang et al., 2023) of one PE accelerating

SNN inference also fit multiply PEs. The memory optimization will

benefit from their synergy.

Although Section 3.3 provides the solution of authorizing

PEs that contain the split echelon matrix and input buffer, an

efficient multi-core deployment strategy and routing algorithm

are not included in this study. Randomly deploying the six cores

from Figure 8 on SpiNNaker 2 may cause a relatively low-efficient

communication between the “Dominant PE” and the “Subordinate

PE.” This issue will be of greater concern when we extend the

deployment of one SNN layer to an entire network. At that time,

a reasonable multi-layer deployment topology and global routing

algorithm can avoid the potential traffic congestion and reduce the

communication latency by fully utilizing the bandwidth resources

of PE to PE and PE to DRAM. Thus, improving the spatio-temporal

efficiency of the entire SNN even multiple SNNs on SpiNNaker 2

will be one of our future research priorities.

The traditional serial processing for SNN inference, as the

current mainstream method, is constantly being optimized and

iterated, and the performance has been improving. It has a good

performance in the condition of very sparse input spike train and

weight-delay operand, which is what the approaches proposed in

this study is yet to be improved. If we can find the sweet spot of SNN

model structure factors including input and weight connection

density between the traditional approach and our algorithms, it will

help the neuromorphic community to have a deeper understanding

of the serial and parallel processing methods and contribute to

the mechanism of the hybrid processors jointly processing SNN

inference in a more efficient way.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: the data that support the findings of this

study are available from the corresponding author upon reasonable

request. Requests to access these datasets should be directed at:

Jiaxin.Huang@infineon.com.

Author contributions

JH, CL, and CM conceived the study. JH implemented the

optimization system with Python (supported by FKr and PG),

carried out the experiment of constructed SNN models (supported

by DS), and performed the actual SNN models mapping and

emulating on SpiNNaker 2, based on the low-level hardware design

and communication library from FKe. BV helped JH with the

basic structure of SNN middle-ware development. KK and CM

supervised the findings of this study. All authors discussed the

results and contributed to the final manuscript.

Funding

This study was partially funded by the German FederalMinistry

of Education and Research (BMBF) within the KI-ASIC project

(16ES0993 and 16ES0996) and the German Research Foundation

(DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s

Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster

of Excellence Centre for Tactile Internet with Human-in-the-Loop

(CeTI) of Technische Universität Dresden.

Frontiers inNeuroscience 15 frontiersin.org73

https://doi.org/10.3389/fnins.2023.1223262
mailto:Jiaxin.Huang@infineon.com
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Huang et al. 10.3389/fnins.2023.1223262

Acknowledgments

We thank Infineon Technologies AG for supporting this

research.

Conflict of interest

JH, FKr, PG, DS, and KK were employed by Infineon

Technologies Dresden.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.

1223262/full#supplementary-material

References

An, X., and Çatalyürek, U. V. (2021). “Column-segmented sparse matrix-matrix
multiplication on multicore CPUS,” in 2021 IEEE 28th International Conference on
High Performance Computing, Data, and Analytics (HiPC) (Bengaluru: IEEE), 202–211.
doi: 10.1109/HiPC53243.2021.00034

ARM (2023). Cortex-m4 Technical Reference Manual. Available online at: https://
developer.arm.com/documentation/ddi0439/b/CHDDIGAC (accessed July 2, 2023).

Balaji, A., Das, A., Wu, Y., Huynh, K., Dell’Anna, F. G., Indiveri, G., et al. (2020).
Mapping spiking neural networks to neuromorphic hardware. IEEE Trans. Very Large
Scale Integr. 28, 76–86. doi: 10.1109/TVLSI.2019.2951493

Balaji, A., Song, S., Das, A., Krichmar, J., Dutt, N., Shackleford, J., et al.
(2021). Enabling resource-aware mapping of spiking neural networks via spatial
decomposition. IEEE Embed. Syst. Lett. 13, 142–145. doi: 10.1109/LES.2020.3025873

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.
(2020). A solution to the learning dilemma for recurrent networks of spiking neurons.
Nat commun. 11. doi: 10.1038/s41467-020-17236-y

Brüderle, D., Bill, J., Kaplan, B., Kremkow, J., Meier, K., Müller, E., et al. (2010).
“Simulator-like exploration of cortical network architectures with a mixed-signal VLSI
system,” in 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (Paris:
IEEE), 2784–8787. doi: 10.1109/ISCAS.2010.5537005

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Davis, T. A. (2018). “Graph algorithms via suitesparse: graphBLAS: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Computing Conference
(HPEC) (Waltham, MA: IEEE), 1–6. doi: 10.1109/HPEC.2018.8547538

Gao, J., Ji, W., Tan, Z., and Zhao, Y. (2020). A systematic survey of general sparse
matrix-matrix multiplication. arXiv. [preprint]. doi: 10.48550/arXiv.2002.11273

Gerhards, P., Kreutz, F., Knobloch, K., and Mayr, C. G. (2022). “Radar-
based gesture recognition with spiking neural networks,” in 2022 7th International
Conference on Frontiers of Signal Processing (ICFSP) (Paris: IEEE), 40–44.
doi: 10.1109/ICFSP55781.2022.9924676

Gustavson, F. G. (1978). Two fast algorithms for sparse matrices:
multiplication and permuted transposition. ACM Trans. Math. Softw. 4, 250–269.
doi: 10.1145/355791.355796

Huang, J., Gerhards, P., Kreutz, F., Vogginger, B., Kelber, F.,
Scholz, D., et al. (2022a). “Spiking neural network based real-time
radar gesture recognition live demonstration,” in 2022 IEEE 4th
International Conference on Artificial Intelligence Circuits and Systems
(AICAS) (Incheon: IEEE), 500–500. doi: 10.1109/AICAS54282.2022.98
69943

Huang, J., Kelber, F., Vogginger, B., Gerhards, P., Kreutz, F., Kelber, F., et al.
(2023). “Efficient algorithms for accelerating spiking neural networks on mac array
of SpiNNaker 2,” in 2023 IEEE 5th International Conference on Artificial Intelligence
Circuits and Systems (AICAS) (Hangzhou: IEEE). doi: 10.1109/AICAS57966.2023.
10168559

Huang, J., Vogginger, B., Gerhards, P., Kreutz, F., Kelber, F., Scholz, D.,
et al. (2022b). “Real-time radar gesture classification with spiking neural network
on SpiNNaker 2 prototype,” in 2022 IEEE 4th International Conference on
Artificial Intelligence Circuits and Systems (AICAS) (Incheon: IEEE), 362–365.
doi: 10.1109/AICAS54282.2022.9869987

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current hpc and
neuromorphic solutions in terms of speed and energy when simulating a highly-
connected cortical model. Front. Neurosci. 12, 941. doi: 10.3389/fnins.2018.00941

Kreutz, F., Gerhards, P., Vogginger, B., Knobloch, K., andMayr, C. (2021). “Applied
spiking neural networks for radar-based gesture recognition,” in 2021 7th International
Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)
(Krakow: IEEE), 1–4. doi: 10.1109/EBCCSP53293.2021.9502357

Mayr, C., Hoeppner, S., and Furber, S. (2019). SpiNNaker 2: a 10 million core
processor system for brain simulation and machine learning. arXiv. [preprint].
doi: 10.48550/arXiv.1911.02385

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (DYNAPS). IEEE Trans. Biomed. Circuits Syst. 12, 106–122.
doi: 10.1109/TBCAS.2017.2759700

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al. (2013).
Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 11.
doi: 10.3389/fnins.2013.00011

PyNN (2023). Running PyNN simulations on SpiNNaker. Available online
at: https://spinnakermanchester.github.io/spynnaker/4.0.0/RunningPyNNSimulations
onSpiNNaker-LabManual.pdf (accessed March 25, 2023).

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D.,
Gait, A., et al. (2018). sPyNNaker: a software package for running pynn
simulations on spinnaker. Front. Neurosci. 12, 816. doi: 10.3389/fnins.2018.
00816

Yan, Y., Stewart, T., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., et al. (2021).
Comparing loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and
adaptive robotic control. Neuromorphic Comput. Eng. 1, 16. doi: 10.1088/2634-4386/
abf150

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation
framework for accelerated brain simulations. Sci. Rep. 6, 18854. doi: 10.1038/srep
18854

Zeinolabedin, S. M. A., Schüffny, F. M., George, R., Kelber, F., Bauer, H., Scholze,
S., et al. (2022). A 16-channel fully configurable neural soc with 1.52 µw/ch signal
acquisition, 2.79 µw/ch real-time spike classifier, and 1.79 tops/w deep neural
network accelerator in 22 nm FDSOI. IEEE Trans. Biomed. Circuits Syst. 16, 94–107.
doi: 10.1109/TBCAS.2022.3142987

Zhang, Z., Wang, H., Han, S., and Dally, W. J. (2020). “Sparch: efficient
architecture for sparse matrix multiplication,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA) (San Diego, CA: IEEE), 261–274.
doi: 10.1109/HPCA47549.2020.00030

Frontiers inNeuroscience 16 frontiersin.org74

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/articles/10.3389/fnins.2023.1223262/full#supplementary-material
https://doi.org/10.1109/HiPC53243.2021.00034
https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://doi.org/10.1109/TVLSI.2019.2951493
https://doi.org/10.1109/LES.2020.3025873
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1109/ISCAS.2010.5537005
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1109/HPEC.2018.8547538
https://doi.org/10.48550/arXiv.2002.11273
https://doi.org/10.1109/ICFSP55781.2022.9924676
https://doi.org/10.1145/355791.355796
https://doi.org/10.1109/AICAS54282.2022.9869943
https://doi.org/10.1109/AICAS57966.2023.10168559
https://doi.org/10.1109/AICAS54282.2022.9869987
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1109/EBCCSP53293.2021.9502357
https://doi.org/10.48550/arXiv.1911.02385
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.3389/fnins.2013.00011
https://spinnakermanchester.github.io/spynnaker/4.0.0/RunningPyNNSimulationsonSpiNNaker-LabManual.pdf
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1038/srep18854
https://doi.org/10.1109/TBCAS.2022.3142987
https://doi.org/10.1109/HPCA47549.2020.00030
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 09 November 2023

DOI 10.3389/fnins.2023.1275944

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Yujie Wu,

Tsinghua University, China

Alberto Patiño-Saucedo,

Spanish National Research Council

(CSIC), Spain

Manolis Sifalakis,

Imec, Netherlands

Qi Xu,

Dalian University of Technology, China

*CORRESPONDENCE

Yansong Chua

caiyansong@cnaeit.com

RECEIVED 10 August 2023

ACCEPTED 23 October 2023

PUBLISHED 09 November 2023

CITATION

Sun P, Chua Y, Devos P and Botteldooren D

(2023) Learnable axonal delay in spiking neural

networks improves spoken word recognition.

Front. Neurosci. 17:1275944.

doi: 10.3389/fnins.2023.1275944

COPYRIGHT

© 2023 Sun, Chua, Devos and Botteldooren.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Learnable axonal delay in spiking
neural networks improves spoken
word recognition

Pengfei Sun1, Yansong Chua2*, Paul Devos1 and

Dick Botteldooren1

1Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium,
2Neuromorphic Computing Laboratory, China Nanhu Academy of Electronics and Information

Technology, Jiaxing, China

Spiking neural networks (SNNs), which are composed of biologically

plausible spiking neurons, and combined with bio-physically realistic auditory

periphery models, o�er a means to explore and understand human auditory

processing-especially in tasks where precise timing is essential. However, because

of the inherent temporal complexity in spike sequences, the performance of SNNs

has remained less competitive compared to artificial neural networks (ANNs).

To tackle this challenge, a fundamental research topic is the configuration of

spike-timing and the exploration of more intricate architectures. In this work,

we demonstrate a learnable axonal delay combined with local skip-connections

yields state-of-the-art performance on challenging benchmarks for spoken

word recognition. Additionally, we introduce an auxiliary loss term to further

enhance accuracy and stability. Experiments on the neuromorphic speech

benchmark datasets, NTIDIDIGITS and SHD, show improvements in performance

when incorporating our delay module in comparison to vanilla feedforward

SNNs. Specifically, with the integration of our delay module, the performance

on NTIDIDIGITS and SHD improves by 14% and 18%, respectively. When paired

with local skip-connections and the auxiliary loss, our approach surpasses both

recurrent and convolutional neural networks, yet uses 10× fewer parameters for

NTIDIDIGITS and 7× fewer for SHD.

KEYWORDS

axonal delay, spiking neural network, speech processing, supervised learning, auditory

modeling, neuromorphic computing

1. Introduction

Artificial neural networks (ANNs) have excelled in speech-processing tasks, relying on

optimization algorithms, deep architectures, and powerful feature extraction methods like

MFCC. Nevertheless, these typical feature extraction methods do not fully replicate the

biologically realistic model of cochlear processing (Wu et al., 2018a,b). Additionally, both

ANNs and rate-based Spiking Neural Networks (SNNs) struggle with spiking inputs from

biologically inspired cochlear models due to their sparse distribution and high temporal

complexity (Wu et al., 2021). The high energy consumption of ANNs further limits

their deployment in mobile and wearable devices, hindering the development of sound

classification systems (Davies et al., 2018; Wu et al., 2018b). Thus, there is a growing demand

for bio-inspired SNN architectures capable of handling the outputs of bio-physically realistic

cochlear models.

Frontiers inNeuroscience 01 frontiersin.org75

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1275944
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1275944&domain=pdf&date_stamp=2023-11-09
mailto:caiyansong@cnaeit.com
https://doi.org/10.3389/fnins.2023.1275944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1275944/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

Despite considerable progress in translating insights from non-

spiking ANNs to SNNs (Wu et al., 2021; Xu et al., 2023a,b)

and the emergence of enhanced architectures (Xu et al., 2018,

2021, 2022) along with sparse training methods (Shen et al.,

2023), the primary application has applied to static datasets

or non-stream datasets. While earlier research (Mostafa, 2017;

Hong et al., 2019; Zhang et al., 2021) has shown encouraging

results on such datasets using temporal encoding algorithms,

their potential for large-scale time-series datasets remains a

question. Contrastingly, noteworthy advancements has been made

by algorithms that directly handle event-driven audio tasks with

a temporal dimension (Wu et al., 2019, 2020; Zhang et al., 2019;

Blouw and Eliasmith, 2020; Yılmaz et al., 2020). A notable method

is the refinement of spike timing precision in models and the

exploration of intricate architectures that meld both ANN insights

and biological understanding. SNNs, which incorporate adjustable

membrane and synaptic time constants (Fang et al., 2021; Perez-

Nieves et al., 2021), as well as advanced and optimized firing

thresholds (Yin et al., 2021; Yu et al., 2022), have shown substantial

promise, especially in integrating precise spike timing to achieve

top-tier classification accuracy. Although past methods have

placed significant emphasis on the importance of spike-timing,

believing that information is intricately embedded within the

spatio-temporal structure of spike patterns (Wu et al., 2018c), there

has been a conspicuous gap in research concerning the specific

effects of event transmission, notably axonal delay (Taherkhani

et al., 2015). Neurophysiological studies (Carr and Konishi, 1988;

Stoelzel et al., 2017) highlight axonal delay’s potential role in

triggering varied neuronal responses. It is worth noting that axonal

delay is a learnable parameter within the brain, extending beyond

the realm of synaptic weights (Seidl, 2014; Talidou et al., 2022).

Neuromorphic chips such as SpiNNaker (Furber et al., 2014), IBM

TrueNorth (Akopyan et al., 2015), and Intel Loihi (Davies et al.,

2018) facilitate the programming of the delay module.

These developments have spurred the exploration of jointly

training synaptic weights and axonal delay in deep SNNs. While

earlier research mainly centered on fixed delays with trainable

weights (Bohte et al., 2002) and the concurrent training of synaptic

weights and delays in shallow SNNs featuring a single layer

(Taherkhani et al., 2015; Wang et al., 2019; Zhang et al., 2020),

there has recently been a degree of investigation into the joint

training of the synaptic weights and axonal delays in deep SNNs

(Shrestha and Orchard, 2018; Shrestha et al., 2022; Sun et al.,

2022, 2023a; Hammouamri et al., 2023; Patiño-Saucedo et al.,

2023). Our prior effort (Sun et al., 2022) stands as one of the

initial successful attempts in applying this method to deep SNNs,

achieving promising results in tasks characterized by high temporal

complexity.

In this current work, we focus on spiking spoken word

recognition tasks, namely NTIDIDIGITS (Anumula et al., 2018)

and SHD (Cramer et al., 2020). These tasks are temporally complex

(Iyer et al., 2021) and are encoded as spikes through an audio-

to-spiking conversion procedure inspired by neurophysiology. In

pursuit of enhancing these tasks, we introduce a learnable axonal

delay mechanism to govern the transmission process and achieve

precise synchronization of spike timing. Alongside the axonal delay

module, we delved into various intricate structures, showcasing

their synergy with the delay module. Specifically, we propose

a novel local skip-connection mechanism designed to mitigate

information loss during the reset process, an endeavor that relies

heavily on the precise availability of spike timing information.

Additionally, we integrate an auxiliary loss to curb unwarranted

neuron membrane potentials upon firing. Our results underscore

the seamless integration of these intricate components with the

delay modules, resulting in substantial performance enhancements.

Our methods achieve state-of-the-art performance while requiring

fewer parameters, as demonstrated by our experimental studies.

The rest of the paper is organized as follows. We provide

a detailed description of the proposed methods in Section 2. In

Section 3, we demonstrate the effectiveness of our algorithms

on two event-based audio data-sets and compare them with

other SNNs and ANNs. We conclude and discuss future work in

Section 4.

2. Materials and methods

In this section, we begin by introducing the spiking neuron

model utilized in this work. After that, we present the Variable

Axonal Delay (VAD) and Local Skip-Connection methods. The

introduction of the Variable Axonal Delay is loosely inspired

by neurophysiology, as we argue that the variation of delays

observed in the biological system could be advantageous for

aligning temporal information on a millisecond time scale. As a

result, transient sensory inputs can be condensed into specific spike

bursts corresponding to their transience. Next, we introduce the

concept of a local skip-connection architecture, which holds the

potential to mitigate information loss during the reset mechanism,

thereby enhancing the dynamic behavior of the neuron model.

Finally, we demonstrate that the suppressed loss further enhances

performance, improving the network’s discriminative capabilities

for target differentiation.

2.1. Spiking neuron model

An SNN employs a spiking neuron as the basic computational

unit with input and output in the form of spikes, maintaining an

internal membrane potential over time. In this paper, we adopt the

Spike Response Model (SRM) which phenomenologically describes

the dynamic response of biological neurons.

Consider an input spike, sl−1
j (t) = δ(t − t

(l−1)
j). Here t

(l−1)
j

denotes a firing time of pre-synaptic neuron j in layer l − 1 and δ

the spike function. In the SRM model, the incoming spike sl−1
j (t)

is converted into spike response signals by convolving with the

spike response kernel ǫ(t) and is then scaled by the synaptic

weight to generate the Post Synaptic Potential (PSP). Likewise, the

refractory period can be represented as (ν ∗ slj)(t) which describes

the characteristic recovery time needed before the neuron regains

its capacity to fire again after having fired at time t. The neuron’s

membrane potential, is the sum of all PSPs and refractory response

uli(t) =
∑

j

W l−1
ij (ǫ ∗ sl−1

j)(t)+ (ν ∗ sli)(t) (1)

Frontiers inNeuroscience 02 frontiersin.org76

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

where uli(t) is the membrane potential of neuron i and W l−1
ij is the

synaptic weight from neuron j to neuron i.

A firing output is generated wherever ui(t) crosses the

predefined firing threshold θu. This generation process can be

formulated by a Heaviside step function 2 as follows

sli(t) = 2(uli(t)− θu). (2)

2.2. Variable axonal delay (VAD) module

As shown in Figure 1, a VAD is added to the output of each

spiking neuron in layer l. Let N be the number of neurons at layer

l, thus, the set of spike trains sl(t) can be represented as follows

sl(t) = {sl1(t), ..., s
l
N(t)} (3)

The forward pass of the delay module can be described as

sld(t) = δ(t − d̂l) ∗ sl(t) (4)

Where d̂l is the set of learnable delays {d̂1, d̂2, .., d̂N} in layer l,

and sl
d
(t) is the spike trains output by the delay module. From the

system point of view, limiting the axonal delay of each neuron to

a reasonable range can speed up the training convergence. Thus,

we clip the delay to the specified range during training and round

down after each backpropagation.

d̂l = Min(Max(0, round(d̂)), θd) (5)

Here, the θd refers to the upper bound of the time delay of the

spiking neuron.

2.3. Local skip-connection as
compensation for loss of information due
to reset

The structure of the local skip-connection within a given

layer is depicted in Figure 2. In mapping from input spikes to

output spikes, The SRM utilizes a refractory kernel to characterize

the refractory mechanism, represented by the equation ν(t) =

−αrθu
t
τr
exp(1− t

τr
)2(t). One challenge that persists is identifying

the ideal refractory scale αr for specific tasks. If the refractory

scale is too small, its effect is diminished, while an overly large

refractory scale risks information loss at certain time junctures.

To address this, our study introduces the concept of a local skip-

connection. This design compensates for information lost during

the reset mechanism in a dynamic fashion. Our results show that

this connection can operate effectively using the same refractory

scale, offering a solution to the intricate task of selecting an optimal

refractory scale for various tasks. The output membrane potential

of the local skip-connection can be formulated as

ûli(t) =
∑

j

V l
ij(ǫ ∗ sld,j)(t)+ (ν ∗ ŝli)(t) (6)

V l
ij is the locally connected synaptic weight from neuron j to

neuron i at the same layer. Unlike a skip connection, the local skip-

connection adds an extra layer of processing to the output spikes

generated in layer l. It then directs these locally processed output

spikes, denoted as ŝl with the same index as the original output

spikes sl
d
, to follow the same axon line within layer l. As a result,

both the local spike trains ŝl and the original output spikes sl
d
utilize

the same weights W l
ij and are channeled to the succeeding layer.

This can be equivalently expressed as sl = sl
d
+ ŝl.

2.4. Loss layer

The loss of an SNN compares the output spikes with the ground

truth. However, in classification tasks, decisions are typically made

based on the spike due to the absence of precise timing. Considering

the spike rate over the time interval T, the loss function L can be

formulated as follows:

L =
1

2
(

∫ T

0
s̃(τ) dτ −

∫ T

0
snl (τ) dτ)2 (7)

Here, L measures the disparity between the target spike train s̃(t)

and output spike train snl(t) at the last layer nl across the simulation

time T. Given the lack of precise spike timing in our tasks, we

measure the output spikes through the integration of snl (t) over T.

For different task scenarios, the target firing rate is set as
∫ T
0 s̃(τ)dτ .

To further exploit temporal information in classification, an

auxiliary loss termed the suppressed loss LMem is introduced:

LMem(t) =
1

2
· (snl (t) ·Mask · (unl (t − 1t)− uθ))

2 (8)

This loss function is designed to reduce the firing probability of

incorrect neurons right when they activate. Compared to previous

lateral inhibition methods using learnable or fixed kernels, this loss

function achieves a winner-takes-all effect by acting as a regularizer.

Importantly, this loss is only applied to false neurons. Here, the

spike train snl and membrane potential unl are functions of time.

Moreover, unl (t − 1t) refers to the membrane potential right

before a spike occurs. When a neuron is activated, indicated by

snl (t) = 1, its potential is referred to as unl (t − 1t). This value

is then subtracted from a predetermined membrane potential uθ ,

controlled by the suppressing factor λu and defined as uθ = λuθu.

Lastly, to ensure that the suppressed membrane potential loss is

limited only to undesired (or false) neurons, a mask Mask ∈ R
C

is employed, where C is the number of target neurons:

Mask =

{

0 True Class

1 False Classes
(9)

2.5. Backpropagation

The surrogate gradient algorithm in combination with

the Backpropagation-Through-Time (BPTT) (Werbos, 1990) in

SNN has shown excellent performance on temporal pattern

recognition tasks.

Frontiers inNeuroscience 03 frontiersin.org77

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

FIGURE 1

Illustration of the flow chart of the axonal delay. The output spike is delayed by d̂.

In this work, we discretise the temporal dimension with the

sampling time Ts such that t = nTs where n denotes the time step

of the simulation. We also define (Ns+1)Ts as the total observation

time. For the Heaviside step function, we adapt the SLayer function

(Shrestha and Orchard, 2018) to formulate the proxy gradient,

which is defined as

f̂
′

s = τscale exp(−|u(t)− ϑ |/τϑ) (10)

Here, τscale and τϑ are two parameters that control the sharpness of

the surrogate gradient. Similarly, the gradient of the axonal delay is

given by

∇
d̂l
E = Ts

Ns
∑

n=0

∂L[n]

∂ d̂l
(11)

Using the chain rule and noting that the loss at time-step n depends

on all previous timesteps, we get

∇
d̂l
E = Ts

Ns
∑

n=0

n
∑

m=0

∂sl
d
[m]

∂dl
∂L[n]

∂sl
d
[m]

= Ts

Ns
∑

n=0

n
∑

m=0

sl
d
[m]− sl

d
[m− 1]

Ts

∂L[n]

∂sl
d
[m]

(12)

Here, the finite difference approximation
sl
d
[m]−sl

d
[m−1]

Ts
is

used to numerically estimate the gradient term
∂sl

d
[m]

∂dl
. As

part of the backpropagation process, the gradient of delay is

propagated backward, and then the delay value is subsequently

updated. Similarly, we also formulate the gradient term of the

suppressed loss.

∂LMem

∂unl
= snl ·Mask · (unl − uθ) (13)

As shown in Figure 2, beginning from the input layer, the spike

trains compute forward and the error propagates backward.

3. Experiments and results

In this section, we first evaluate the effectiveness of the

proposed delay module and novel architecture on two event-based

audio datasets: NTIDIDIGITS and SHD. Additionally, we assess

the impact of the novel auxiliary loss in boosting performance.

Finally, we compare our results with several state-of-the-art

networks, including feedforward SNNs, recurrently connected

SNNs (RSNNs), and Recurrent Neural Networks (RNNs).

3.1. Implementation details

The experiments are conducted using PyTorch as a framework,

and all reported results are obtained on 1 NVIDIA Titan XP GPU.

Each network and proposed architecture is trained with the Adam

optimizer (Kingma and Ba, 2014) and has the same training cycle.

The simulation time step Ts is 1 ms, and the firing threshold θu is set

at 10 mV. The chosen response kernel is ǫ(t) = t
τs
exp(1− t

τs
)2(t),

and the refractory kernel is ν(t) = −αrθu
t
τr
exp(1 − t

τr
)2(t). The

time constant of the response kernel τs and refractory kernel τr is

set to 5 for NTIDIDIGITS and 1 for SHD datasets. The suppressed

factor λu is set to 0.995 to suppress the membrane potential of

the firing undesired neurons below the threshold. For the proxy

gradient, we adopt the Slayer (Shrestha and Orchard, 2018). Table 1

lists other hyperparameters used.

The following notation is used to describe the network

architecture: “FC” stands for a fully-connected layer, “VAD”

means Variable Axonal Delay module, “Local” denotes the

local skip-connection architecture, and LMem implies the use

of the suppressed loss in addition to the spike rate loss. For

example, Input-128FC-VAD-Local-128FC-VAD-Local-

Output + L_{Mem}indicates that there are two dense layers

with 128 neurons, each implementing the VAD and Local module.

The loss is measured by the spike rate and suppressed membrane

Frontiers inNeuroscience 04 frontiersin.org78

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

FIGURE 2

Flow chart illustrating the proposed methods. In the forward pass, the input spikes are mapped by the SRM, axonal delay module, and local

skip-connection to the output spikes. The error consists of the spike rate loss from the last layer and the suppressed loss from the false neuron’s

membrane potential. The spiking layer consists of the Spiking neuron model and membrane potential layer. The error gradients are passed backward

through time to update the weight and axonal delay parameters.

TABLE 1 Detailed hyper-parameter settings.

Hyper-parameter N-TDIDIGITS18 SHD

Batch size 128 128

Learning rate 0.1 0.1

Time constant τs 5 1

Time constant τr 5 1

Membrane threshold θu 10 10

Refractory scale αr 2 2

Delay threshold θd 128 64

Suppressed factor λu 0.995 0.995

potential. Table 2 summarizes the abbreviations for different

architectures and methods.

The number of spikes generated from the last layer is compared

to the desired spikes in dedicated output nodes, serving as the

TABLE 2 Name and corresponding network structure. L2 denotes the l2

regularizer for delay values.

Name Network structure

D128-SNN Input-128FC-VAD-128FC-VAD-Output

DL128-SNN
Input-128FC-VAD-Local-128FC-

VAD-Local-Output

DL128-SNN-Dloss
Input-128FC-VAD-Local-128FC-VAD-

Local-Output + LMem

DL256-SNN-Dloss
Input-128FC-VAD-Local-256FC-VAD-

Local-Output + LMem

DL128-SNN-Dloss-L2
Input-128FC-L2(VAD)-Local-128FC-L2(VAD)-

Local-Output + LMem

primary loss measurement. In order to implement the suppressed

membrane potential loss function, the model is pre-trained for

20 epochs to generate the target spike trains used for LMem

definition. For a fair comparison, all the experiments are run for

5 independent trials, and the average performance and standard

deviation are reported.

Frontiers inNeuroscience 05 frontiersin.org79

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

FIGURE 3

(A) Raster plot of Spiketrains of input from a single sample (label 0) of the NTIDIDIGITS dataset. The y-axis represents the channels of the cochlear

model while the x-axis indicates the time. (B) An Illustration of one raw example (word “six”) from the SHD dataset.

TABLE 3 Comparison of classification and parameter count of proposed

methods on the NTIDIDIGITS and SHD Test sets.

Dataset Method Params Accuracy
(%)

N-TDIDIGITS18

GRU-RNN (Anumula et al.,

2018)†
0.11M 90.90

Phased-LSTM (Anumula

et al., 2018)†
0.61M 91.25

ST-RSBP (Zhang and Li,

2019)

0.35M 93.90

SrSc-SNNs-IP (Zhang and

Li, 2021)

0.61M 95.07

DL128-SNN-Dloss 0.06M 95.22

SHD Feed-forward SNN (Cramer

et al., 2020)

0.09M 48.1

RSNN (Cramer et al., 2020) 1.79M 83.2

RSNN with adaption (Yin

et al., 2020)

0.14M 84.40

Heterogeneous RSNN

(Perez-Nieves et al., 2021)

0.11M 82.78

RSNN with attention (Yao

et al., 2021)

0.14M 91.08

DMUC (Sun et al., 2023b)† 0.24 M 91.48%

CNN (Cramer et al., 2020)† 1.01M 92.40

RadLIF (Bittar and Garner,

2022)

3.9M 94.62

DCLS (Hammouamri et al.,

2023)∗
0.21M 95.07

SNN with delays

(Patiño-Saucedo et al.,

2023)

0.1M 90.04

DL128-SNN-Dloss 0.14M 92.56

DL256-SNN-Dloss 0.21M 93.55

†Non-SNN implementation.
∗Channel reduction. Bold values are the best results.

TABLE 4 Ablation studies for di�erent architecture and learning methods.

Dataset Network Params Accuracy
(%)

NTIDIDIGITS

Input-128FC-

128FC-11

26,251 78.52

Input-128FC-Local-

128FC-Local-11

59,275 79.36

D128-SNN 26,507 92.99

DL128-SNN 59,531 94.70± 0.35

DL128-SNN-Dloss 59,531 95.22± 0.08

DL128-SNN-Dloss-

L2

59,531 94.85± 0.08

SHD

Input-128FC-

128FC-20

108,820 67.05

Input-128FC-Local-

128FC-Local-20

141,844 65.55

D128-SNN 109,076 85.73

DL128-SNN 142,100 91.52± 0.84

DL128-SNN-Dloss 142,100 92.56± 0.56

DL128-SNN-Dloss-

L2

142,100 92.44± 0.09

3.2. Datasets

Tests are performed on the speech classification datasets

NTIDIDIGITS and Spiking Heidelberg Digits (SHD). Both

datasets represent events in the form of spikes, containing

rich temporal information that is naturally suited to be

directly processed by an SNN. These datasets are considered

benchmarks, allowing us to focus on the architecture and

learning algorithm of the SNN without considering the spike

generation method.

Frontiers inNeuroscience 06 frontiersin.org80

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

3.2.1. NTIDIDIGITS
The NTIDIDIGITS (Anumula et al., 2018) dataset was created

by playing the TDIDIGITS (Leonard and Doddington, 1993) to the

64 response channel silicon cochlea. The dataset includes single

digits and connected digit sequences, all of which contain the

11 spoken digits (“oh,” and the digits “0” to “9”). For the n-way

classification problem (single digits), there are a total of 55male and

56 female speakers with 2,463 training samples, and 56 male and

53 female speakers in the testing set with a total of 2,486 samples.

As shown in Figure 3A, the time resolution is in ms level and the

channel ranges from 0 to 63.

3.2.2. SHD
The SHD is the spiking version of the Heidelberg Digits (HD)

audio dataset that is converted by a biologically inspired cochlea

model (Cramer et al., 2020). There are 8,156 and 2,264 spoken

samples for training and testing, respectively. It contains 10-digit

utterances from “0” to “9” in English and German, with a total of

20 classes presented by 12 speakers. Figure 3B shows an example

of this audio spike stream. Each sample duration ranges from 0.24

to 1.17 s. Here, the time is resampled to speed up the training (Yin

et al., 2020). Each channel has at most 1 spike every 4ms and shorter

samples are padded with zeros.

3.3. Overall results

This section demonstrates the benefits of the proposed

innovations and assesses the effects of the VAD, Local skip-

connection, and Suppressed loss individually to validate their

impact on boosting performance. The basic SNN consists of 2

hidden layers, followed by the VADmodule, Local skip-connection

in each layer, and the suppressed loss module in the readout layer’s

membrane potential (Figure 2).

1) NTIDIDIGITS. As shown in Table 3, non-spiking

approaches such as GRU-RNN and Phased-LSTM (Anumula

et al., 2018) achieve 90.90 and 91.25% accuracy, respectively.

However, these RNNs rely on the event synthesis algorithm

and cannot fully exploit sparse event-based information. Zhang

and Li (2019) directly train the spike-train level features with

recurrent layers through the ST-RSBP method, and Zhang and Li

(2021) further propose the SrSc-SNNs architectures that consist

of three self-recurrent layers with skip-connections, training this

SNN using backpropagation-based intrinsic plasticity, achieving

state-of-the-art (SOTA) performance. We show that with the

proposed VAD module, local skip-connection, and suppressed

loss, our method achieves 95.30% accuracy with a mean of 95.22%

and a standard deviation of 0.08%, making it the best result in

this classification task. Furthermore, our model uses the least

parameters and is 10× smaller compared to the second-best result.

2) SHD. For this dataset, we compare our methods with recent

advancements. In Cramer et al. (2020), the single feed-forward SNN

and Recurrent SNN are both trained using BPTT. Their results

show that the recurrent architecture outperforms the homogeneous

feed-forward architecture in this challenging work, underscoring

the potential advantages of intricate SNN designs. Several studies

have ventured into specialized SNN architectures. For instance,

some explore the effectiveness of the heterogeneous recurrent SNNs

(Perez-Nieves et al., 2021), while others delved into attention-

based SNNs (Yao et al., 2021). As detailed in Table 3, our proposed

method produces a competitive performance of 92.56% in a two-

layer fully connected network of 128 neurons each. Notably, this

performance is competitive compared to these results that employ

the same data processing methods and network architecture.

Patiño-Saucedo et al. (2023) introduce axonal delays in tandem

with learnable time constants, enabling a reduction in model size

to a mere 0.1 M while preserving competitive performance.

Additionally, RadLIF (Bittar and Garner, 2022) combines an

adaptive linear LIF neuron with the SG strategy, achieving a

performance of 94.62%. This achievement is realized through

the utilization of three recurrent spiking layers, each containing

1024 neurons. On the other hand, DCLS, introduced in

Hammouamri et al.’s research (Hammouamri et al., 2023),

capitalizes on several key innovations. It incorporates learnable

position adjustments within the kernel, employs advanced data

augmentation techniques (like the 5-channel binning), and

incorporates batch normalization methods. As a result, DCLS

achieves an accuracy of 95.07% using two feedforward spiking

layers, each comprising 256 neurons. Given the sizeable 700-

input channel, we mitigated extensive parameter expansion by

augmenting the neural network’s second layer from 128 to

256 neurons. This strategic adjustment significantly improved

performance, yielding a 93.55% accuracy rate.

3.4. Ablation study

Wedelve into the contributions of VAD, Local skip-connection,

and Suppressed loss via a comprehensive ablation study (refer

to Table 4). Evaluating each method individually on two fully-

connected feed-forward SNNs provides the following insights:

• VAD: When incorporated, there is a marked enhancement

in the accuracy across datasets. Specifically, with the delay

module embedded (in the D128-SNN setup), we obtain

gains of 14.47% and 18.68% for NTIDIDIGITS and SHD,

respectively. Importantly, despite these advancements, the

parameters remain nearly unchanged. This is attributed to our

adoption of channel-wise delays, implying that the increase

in parameters corresponds only to the number of channels

in each layer. As an illustration, with the SHD dataset, the

integration of VAD results in an increment ofN parameters in

each layer, with N being set to 128 in our experimental setup.

• Local skip-connection: Its standalone application (reflected

in the Input-128FC-Local-128FC-Local-11 design) does not

bolster accuracy notably. For the SHD dataset, the outcome

is even slightly detrimental. However, this method increases

the number of trainable parameters. This can be likened to the

addition of an extra feedforward layer, resulting in a parameter

increment of N × N for each layer.

Combining VAD and Local skip-connection in the DL128-

SNN design yields significant benefits. We clinch state-of-the-art

Frontiers inNeuroscience 07 frontiersin.org81

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

FIGURE 4

Distribution of time delay on (A) NTIDIDIGITS, (B) SHD. The initial distribution are all 0. From the left to right: First layer, second layer.

accuracy levels for both datasets. This highlights that the enhanced

flexibility provided by VAD truly shines when paired with a richer

parameter landscape, as provided by the Local skip-connection.

Lastly, supplementing the above with the suppressed loss, Dloss,

results in stellar performance: 95.22% for NTIDIDIGITS and

92.56% for SHD.

3.5. Axonal delay improves the
characterization learning ability

In this section, we begin by offering a visual representation of

the axonal delay distribution (refer to Figure 4) for both datasets.

Subsequently, we employ an L2 regularizer on the delay to curtail

the magnitude of delay values, effectively reducing the number of

delayed time steps.

Utilizing the NTIDIDIGITS dataset as an illustrative example,

Figure 4A reveals a delay distribution in the first layer that

consistently encompasses both long and short delay neurons. This

may imply that certain neurons focus on the initial portion of

the input, whereas others concentrate on the latter segment of

the input features. To understand the dynamics of the VAD, we

inspect the cumulative spike count at the input of the network

and compare it to the cumulative spike count at the true decision

neuron for four different models, as depicted in Figure 5. For

illustrative purposes, we select four different English-speaking

digit utterances: “1”, “6”, “7”, and “10”. The figures clearly show

that the model without delay gradually increases its prediction

as the input spikes come in and starts to do so as soon as

input spikes start arriving. Conversely, for the other three models

equipped with delay modules, the decision to increase spike count

in the true neuron is delayed but then increases more quickly

and reaches a higher level. This phenomenon arises from the

different neurons introducing varying delays to the spikes, thereby

providing the terminal neuron with multi-scale information. This

may be interpreted as the VAD-enabled network aggregating all

information in the spoken word before triggering a decision using

all that information simultaneously. Moreover, we can observe that

Frontiers inNeuroscience 08 frontiersin.org82

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

FIGURE 5

Illustration of 4 distinct English examples (“1”, “6”, “7”, and “10”). The cumulative spike count of the input is plotted on the right y-axis (represented by

the blue line), while the true neurons’ cumulative spike count is on the left y-axis. Four models are showcased:: No delay, D128-SNN, DL128-SNN,

and DL128-SNN-Dloss.

the models with delay typically have a total of 60 time step latency,

which can be measured after the input is over. This is not only

related to the delay itself but also to the choice of loss evaluation.

As Shrestha et al. (2022) discussed, the spike-based negative log-

likelihood loss results in early classification, even 1400 time steps

faster than spike-rate based loss evaluation for NTIDIDIGITS

datasets. However, the DL-128-SNN-Dloss generates the highest

number of spikes for the true neuron compared to the othermodels,

demonstrating its superior ability to learn characterizations.

Subsequently, the L2 loss is employed to confine the range

of delay values to provide a more uniform distribution. This

leads to a reduction in delay values for some neurons (see

Figure 6), aiming to reduce the total latency and investigate whether

shorter delays contribute to a better classification system. This is

achieved by applying the L2 regularizer to
∑N

i=1 d̂i. Nevertheless,

as demonstrated in Table 4, the inclusion of the additional L2

loss results in a performance decline. This could indicate that

the learned distributions achieved through these architectures

may already be optimal within the current delay threshold,

denoted as θd.

3.6. Local skip-connection as
compensation for loss of information in
reset mechanism

The positive impact of local skip-connections on the reset

mechanism becomes evident when modulating the refractory

scale, symbolized as αr . We conduct a comparative analysis of

performance between two distinct configurations: one labeled as

VAD, which encompasses solely the delay model, and the other

designated as VAD+Local, which additionally incorporates local

skip-connections. As shown in Figure 7, the Local skip-connection

maintains high performance across a wider range of refractory

scales αr , while the performance with only the VAD module starts

to decline with high values. This observation aligns with our

earlier conjecture that larger values of αr may induce information

loss, as the neuron’s potential struggles to recover efficiently. In

contrast, the presence of local connections mitigates this loss by

dynamically triggering spiking events among local neurons. Thus,

our Local skip-connection diminishes sensitivity to parameter

selection, potentially providing more flexibility to train SNNs for

Frontiers inNeuroscience 09 frontiersin.org83

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

FIGURE 6

Application of the L2 regularizer on the distribution of time delay for (A) NTIDIDIGITS, (B) SHD. The initial distribution are all 0. From the left to right:

First layer, second layer.

FIGURE 7

The influence of the di�erent refractory scale αr on accuracy is examined under “VAD” and “VAD+Local” architecture. “VAD” refers to the

performance of using only the VAD module, while “VAD+Local” represents the performance using both VAD and local skip-connections. (A)

NTIDIDIGITS dataset. (B) SHD dataset. For this experiment, we use two dense layers with 128 neurons.

Frontiers inNeuroscience 10 frontiersin.org84

https://doi.org/10.3389/fnins.2023.1275944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

varied tasks, indicating that a consistent alpha value can be effective

for different tasks.

4. Conclusion

In this study, we introduce several innovative components

aimed at enhancing the performance of Spiking Neural Networks

(SNNs): the learnable axonal delay module, combined with a local

skip connection architecture, and augmented with an auxiliary

suppressed loss. The variable axonal delay module plays a pivotal

role in aligning spike timing, thereby enhancing the network’s

capacity for representation. The local skip-connection mechanism

compensates for the information loss during the reset process.

This enhances network dynamics and reduces the sensitivity to

refractory scale tuning, making it more versatile. The inclusion

of the suppressed loss works to suppress erroneous neuron firing,

facilitating the SNN in making more accurate label distinctions.

Importantly, these methods can be seamlessly integrated into the

existing framework through the use of backpropagation algorithms.

We demonstrate that the proposedmethods boost performance

on two benchmark event-based speech datasets with the fewest

parameters. Our methods highlight the immense potential of

employing them in tandem with a cochlear front-end that encodes

features of auditory inputs using spikes, creating a robust bio-

inspired system. Our work emphasizes the importance of delving

into different dynamic SNN architectures and learning algorithms

for tasks involving datasets with rich temporal complexity.

In future work, it will be interesting to investigate the spike

count distribution per layer and the total computational cost.

Additionally, more exploration could be focused on latency by

studying the influence of different loss evaluations and dynamic

caps for axonal delays. Since current work mainly focuses on

cochlear features with a bio-inspired approach, it would also be

intriguing to apply these methods to visual tasks that involve

inherent temporal information.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

PS: Conceptualization, Investigation, Software, Validation,

Writing—original draft, Writing—review & editing. YC:

Conceptualization, Investigation, Supervision, Writing—

review & editing. PD: Supervision, Writing—review & editing,

Conceptualization, Investigation. DB: Conceptualization, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Writing—review

& editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work was supported in part by the Flemish Government

under the “Onderzoeksprogramma Artificiële Intelligentie

(AI) Vlaanderen” and the Research Foundation - Flanders

under Grant Number G0A0220N (FWO WithMe project).

The work of YC was supported in part by the National

Key Research and Development Program of China (Grant

No. 2021ZD0200300).

Acknowledgments

The authors would express our very great appreciation

to Sumit Bam Shrestha for his valuable and constructive

suggestions and technical support during the development of this

research work.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

The author(s) declared that they were an editorial

board member of Frontiers, at the time of submission.

This had no impact on the peer review process and the

final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J.,
Merolla, P., et al. (2015). TrueNorth: design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. IEEE Trans. Comput.
Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.247
4396

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature
representations for neuromorphic audio spike streams. Front. Neurosci. 12, 23.
doi: 10.3389/fnins.2018.00023

Bittar, A., and Garner, P. N. (2022). A surrogate gradient spiking baseline for speech
command recognition. Front. Neurosci. 16, 865897. doi: 10.3389/fnins.2022.865897

Frontiers inNeuroscience 11 frontiersin.org85

https://doi.org/10.3389/fnins.2023.1275944
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.3389/fnins.2022.865897
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Sun et al. 10.3389/fnins.2023.1275944

Blouw, P., and Eliasmith, C. (2020). “Event-driven signal processing with
neuromorphic computing systems,” in ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE), 8534–8538.

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation
in temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.
doi: 10.1016/S0925-2312(01)00658-0

Carr, C. E., and Konishi, M. (1988). Axonal delay lines for time measurement in the
owl’s brainstem. Proc. Natl. Acad. Sci. U.S.A. 85, 8311–8315.

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2020). The Heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 33, 2744–2757.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
LOIHI: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (IEEE), 2661–2671.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Hammouamri, I., Khalfaoui-Hassani, I., and Masquelier, T. (2023). Learning delays
in spiking neural networks using dilated convolutions with learnable spacings. arXiv
preprint arXiv:2306.17670.

Hong, C., Wei, X., Wang, J., Deng, B., Yu, H., and Che, Y. (2019). Training
spiking neural networks for cognitive tasks: a versatile framework compatible with
various temporal codes. IEEE Trans. Neural Netw. Learn. Syst. 31, 1285–1296.
doi: 10.1109/TNNLS.2019.2919662

Iyer, L. R., Chua, Y., and Li, H. (2021). Is neuromorphic MNIST neuromorphic?
Analyzing the discriminative power of neuromorphic datasets in the time domain.
Front. Neurosci. 15, 608567. doi: 10.3389/fnins.2021.608567

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Leonard, R. G., and Doddington, G. (1993). Tidigits Speech Corpus. IEEE: Texas
Instruments, Inc.

Mostafa, H. (2017). Supervised learning based on temporal coding in
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.
doi: 10.1109/TNNLS.2017.2726060

Patiño-Saucedo, A., Yousefzadeh, A., Tang, G., Corradi, F., Linares-Barranco,
B., and Sifalakis, M. (2023). “Empirical study on the efficiency of spiking neural
networks with axonal delays, and algorithm-hardware benchmarking,” in 2023 IEEE
International Symposium on Circuits and Systems (ISCAS) (IEEE), 1–5.

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., and Goodman, D. F.
(2021). Neural heterogeneity promotes robust learning. Nat. Commun. 12, 1–9.
doi: 10.1038/s41467-021-26022-3

Seidl, A. H. (2014). Regulation of conduction time along axons. Neuroscience 276,
126–134. doi: 10.1016/j.neuroscience.2013.06.047

Shen, J., Xu, Q., Liu, J. K., Wang, Y., Pan, G., and Tang, H. (2023). ESL-SNNs: an
evolutionary structure learning strategy for spiking neural networks. arXiv preprint
arXiv:2306.03693.

Shrestha, S. B., and Orchard, G. (2018). “SLAYER: spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems 31 (IEEE).

Shrestha, S. B., Zhu, L., and Sun, P. (2022). “Spikemax: spike-based loss methods
for classification,” in 2022 International Joint Conference on Neural Networks (IJCNN)
(IEEE), 1–7.

Stoelzel, C. R., Bereshpolova, Y., Alonso, J.-M., and Swadlow, H. A. (2017). Axonal
conduction delays, brain state, and corticogeniculate communication. J. Neurosci. 37,
6342–6358. doi: 10.1523/JNEUROSCI.0444-17.2017

Sun, P., Eqlimi, E., Chua, Y., Devos, P., and Botteldooren, D. (2023a). “Adaptive
axonal delays in feedforward spiking neural networks for accurate spoken word
recognition,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (IEEE), 1–5.

Sun, P., Wu, J., Zhang, M., Devos, P., Botteldooren, D. (2023b). Delayed
memory unit: modelling temporal dependency through delay gate. arXiv preprint
arXiv:2310.14982.

Sun, P., Zhu, L., and Botteldooren, D. (2022). “Axonal delay as a short-term
memory for feed forward deep spiking neural networks,” in ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
8932–8936.

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015). DL-resume: a delay
learning-based remote supervised method for spiking neurons. IEEE Trans. Neural
Netw. Learn. Syst. 26, 3137–3149. doi: 10.1109/TNNLS.2015.2404938

Talidou, A., Frankland, P. W., Mabbott, D., and Lefebvre, J. (2022). Homeostatic
coordination and up-regulation of neural activity by activity-dependent

myelination. Nat. Comput. Sci. 2, 665–676. doi: 10.1038/s43588-022-
00315-z

Wang, X., Lin, X., and Dang, X. (2019). A delay learning algorithm
based on spike train kernels for spiking neurons. Front. Neurosci. 13, 252.
doi: 10.3389/fnins.2019.00252

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560.

Wu, J., Chua, Y., and Li, H. (2018a). “A biologically plausible speech recognition
framework based on spiking neural networks,” in 2018 International Joint Conference
on Neural Networks (IJCNN) (IEEE), 1–8.

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021). A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE
Trans. Neural Netw. Learn. Syst.

Wu, J., Chua, Y., Zhang, M., Li, H., and Tan, K. C. (2018b). A spiking
neural network framework for robust sound classification. Front. Neurosci. 12, 836.
doi: 10.3389/fnins.2018.00836

Wu, J., Pan, Z., Zhang, M., Das, R. K., Chua, Y., and Li, H. (2019). “Robust sound
recognition: a neuromorphic approach,” in Interspeech, 3667–3668.

Wu, J., Yılmaz, E., Zhang, M., Li, H., and Tan, K. C. (2020). Deep spiking neural
networks for large vocabulary automatic speech recognition. Front. Neurosci. 14, 199.
doi: 10.3389/fnins.2020.00199

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018c). Spatio-temporal
backpropagation for training high-performance spiking neural networks. Front.
Neurosci. 12, 331. doi: 10.3389/fnins.2018.00331

Xu, Q., Li, Y., Fang, X., Shen, J., Liu, J. K., Tang, H., et al. (2023a). Biologically
inspired structure learning with reverse knowledge distillation for spiking neural
networks. arXiv preprint arXiv:2304.09500.

Xu, Q., Li, Y., Shen, J., Liu, J. K., Tang, H., and Pan, G. (2023b). “Constructing deep
spiking neural networks from artificial neural networks with knowledge distillation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(IEEE), 7886–7895.

Xu, Q., Li, Y., Shen, J., Zhang, P., Liu, J. K., Tang, H., et al. (2022).
Hierarchical spiking-based model for efficient image classification with enhanced
feature extraction and encoding. IEEE Trans. Neural Netw. Learn. Syst.
doi: 10.1109/TNNLS.2022.3232106

Xu, Q., Qi, Y., Yu, H., Shen, J., Tang, H., Pan, G., et al. (2018). “CSNN: an augmented
spiking based framework with perceptron-inception,” in IJCAI, 1646.

Xu, Q., Shen, J., Ran, X., Tang, H., Pan, G., and Liu, J. K. (2021). Robust transcoding
sensory information with neural spikes. IEEE Trans. Neural Netw. Learn. Syst. 33,
1935–1946. doi: 10.1109/TNNLS.2021.3107449

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., et al. (2021). “Temporal-wise
attention spiking neural networks for event streams classification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (IEEE), 10221–10230.

Yılmaz, E., Gevrek, O. B., Wu, J., Chen, Y., Meng, X., and Li, H. (2020).
“Deep convolutional spiking neural networks for keyword spotting,” in Proceedings of
Interspeech, 2557–2561.

Yin, B., Corradi, F., and Bohté, S. M. (2020). “Effective and efficient computation
with multiple-timescale spiking recurrent neural networks,” in International
Conference on Neuromorphic Systems 2020, 1–8.

Yin, B., Corradi, F., and Bohté, S. M. (2021). Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3,
905–913. doi: 10.1038/s42256-021-00397-w

Yu, Q., Ma, C., Song, S., Zhang, G., Dang, J., and Tan, K. C. (2022).
Constructing accurate and efficient deep spiking neural networks with double-
threshold and augmented schemes. IEEE Trans. Neural Netw. Learn. Syst. 33, 1714–
1726. doi: 10.1109/TNNLS.2020.3043415

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z.,
et al. (2021). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Zhang, M., Wu, J., Belatreche, A., Pan, Z., Xie, X., Chua, Y., et al. (2020).
Supervised learning in spiking neural networks with synaptic delay-weight plasticity.
Neurocomputing 409, 103–118. doi: 10.1016/j.neucom.2020.03.079

Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., Liu, D., et al. (2019). “MPD-AL:
an efficient membrane potential driven aggregate-label learning algorithm for spiking
neurons,” in Proceedings of the AAAI Conference on Artificial Intelligence.

Zhang, W., and Li, P. (2019). Spike-train level backpropagation for
training deep recurrent spiking neural networks. arXiv preprint arXiv:1908.
06378.

Zhang, W., and Li, P. (2021). Skip-connected self-recurrent spiking
neural networks with joint intrinsic parameter and synaptic weight
training. Neural Comput. 33, 1886–1913. doi: 10.1162/neco_a_0
1393

Frontiers inNeuroscience 12 frontiersin.org86

https://doi.org/10.3389/fnins.2023.1275944
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TNNLS.2019.2919662
https://doi.org/10.3389/fnins.2021.608567
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.1016/j.neuroscience.2013.06.047
https://doi.org/10.1523/JNEUROSCI.0444-17.2017
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.1038/s43588-022-00315-z
https://doi.org/10.3389/fnins.2019.00252
https://doi.org/10.3389/fnins.2018.00836
https://doi.org/10.3389/fnins.2020.00199
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/TNNLS.2022.3232106
https://doi.org/10.1109/TNNLS.2021.3107449
https://doi.org/10.1038/s42256-021-00397-w
https://doi.org/10.1109/TNNLS.2020.3043415
https://doi.org/10.1109/TNNLS.2021.3110991
https://doi.org/10.1016/j.neucom.2020.03.079
https://doi.org/10.1162/neco_a_01393
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Frontiers in Neuroscience 01 frontiersin.org

STCA-SNN: self-attention-based
temporal-channel joint attention
for spiking neural networks
Xiyan Wu , Yong Song *, Ya Zhou *, Yurong Jiang , Yashuo Bai ,
Xinyi Li and Xin Yang

School of Optics and Photonics, Beijing Institute of Technology, Beijing, China

Spiking Neural Networks (SNNs) have shown great promise in processing spatio-
temporal information compared to Artificial Neural Networks (ANNs). However,
there remains a performance gap between SNNs and ANNs, which impedes
the practical application of SNNs. With intrinsic event-triggered property and
temporal dynamics, SNNs have the potential to effectively extract spatio-
temporal features from event streams. To leverage the temporal potential of
SNNs, we propose a self-attention-based temporal-channel joint attention SNN
(STCA-SNN) with end-to-end training, which infers attention weights along both
temporal and channel dimensions concurrently. It models global temporal and
channel information correlations with self-attention, enabling the network to
learn ‘what’ and ‘when’ to attend simultaneously. Our experimental results show
that STCA-SNNs achieve better performance on N-MNIST (99.67%), CIFAR10-
DVS (81.6%), and N-Caltech 101 (80.88%) compared with the state-of-the-art
SNNs. Meanwhile, our ablation study demonstrates that STCA-SNNs improve the
accuracy of event stream classification tasks.

KEYWORDS

spiking neural networks, self-attention, temporal-channel, neuromorphic computing,
event streams

1. Introduction

As the representatives of mimicking the human brain at the neuronal level, Spiking Neural
Networks (SNNs) have gained great attraction for the high biological plausibility, event-driven
property, and high energy efficiency (Rieke et al., 1999; Gerstner et al., 2014; Bellec et al., 2018).
Using time as an additional input dimension, SNNs record valuable information in a sparse
manner and deliver information through spikes only when the membrane potential reaches the
firing threshold (Mainen and Sejnowski, 1995). Inspired by biological visual processing
mechanisms, Dynamic Vision Sensors (DVS) encode the time, location, and polarity of the
brightness changes per pixel into event streams (Lichtsteiner et al., 2008; Posch et al., 2010).
With its unique advantages of high event rate, high dynamic range, and fewer resource
requirements (Gallego et al., 2020), DVS has broad application prospects in various visual tasks,
such as autonomous driving (Cheng et al., 2019), high-speed object tracking (Rebecq et al.,
2019), optical flow estimation (Ridwan and Cheng, 2017), and action recognition (Amir et al.,
2017). Event-based vision is one of the typical advantage application scenarios of SNNs,
providing a platform for demonstrating the capabilities of spiking neurons to process
information with spatio-temporal dynamics.

Although the intrinsic time-dependent neuron dynamics endows SNNs with the ability to
process spatio-temporal information, there remains a performance gap between SNNs and

OPEN ACCESS

EDITED BY

Lei Deng,
Tsinghua University, China

REVIEWED BY

Malu Zhang,
National University of Singapore, Singapore
Man Yao,
Xi'an Jiaotong University, China
Fangwen Yu,
Tsinghua University, China

*CORRESPONDENCE

Yong Song
 yongsong@bit.edu.cn

Ya Zhou
 zhouya@bit.edu.cn

RECEIVED 20 July 2023
ACCEPTED 23 October 2023
PUBLISHED 10 November 2023

CITATION

Wu X, Song Y, Zhou Y, Jiang Y, Bai Y, Li X and
Yang X (2023) STCA-SNN: self-attention-based
temporal-channel joint attention for spiking
neural networks.
Front. Neurosci. 17:1261543.
doi: 10.3389/fnins.2023.1261543

COPYRIGHT

© 2023 Wu, Song, Zhou, Jiang, Bai, Li and
Yang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction is
permitted which does not comply with these
terms.

TYPE Original Research
PUBLISHED 10 November 2023
DOI 10.3389/fnins.2023.1261543

87

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1261543&domain=pdf&date_stamp=2023-11-10
https://www.frontiersin.org/articles/10.3389/fnins.2023.1261543/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1261543/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1261543/full
mailto:yongsong@bit.edu.cn
mailto:zhouya@bit.edu.cn
https://doi.org/10.3389/fnins.2023.1261543
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1261543

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 02 frontiersin.org

ANNs. Recently, ANNs’ modules (Hu et al., 2021; Yang et al., 2021;
Yao et al., 2021, 2023c) have been integrated into SNNs to improve the
performance of SNNs. CSNN (Xu et al., 2018) first validated the
application of convolution structure on SNNs, promoting the
development of SNNs. Convolution-based SNNs share weights across
both temporal and spatial dimensions, following the assumption of
spatio-temporal invariance (Huang et al., 2022). This approach can
be regarded as a local way of information extraction since
convolutional operations can only process a local neighborhood at a
time, either in space or time. However, when dealing with sequential
data like event streams, capturing long-distance dependencies is of
central importance to modeling complex temporal dynamics.
Non-local operations (Wang et al., 2018) provided a solution as a
building block by computing the response at a position as a weighted
sum of the features at all positions. The range of positions can span
across space, time, or spacetime, allowing non-local operators to
achieve remarkable success in vision attention.

The attention mechanism is inspired by the human ability to
selectively find prominent areas in complex scenes (Itti et al., 1998). A
popular research direction is to present attention as a lightweight
auxiliary unit to improve the representation power of the basic model.
In the ANNs domain, Ba et al. (2014) first introduced the term “visual
attention” for image classification tasks, utilizing attention to identify
relevant regions and locations within the input image. This approach
also reduces the computational complexity of the proposed model
regarding the size of the input image. SENet (Hu et al., 2018) was
introduced to reweight the channel-wise responses of the
convolutional features, determining “what” to pay attention to. CBAM
(Woo et al., 2018) inferred attention maps sequentially along channel-
wise and spatial dimensions for refining the input feature, determining
“what” and “where” to pay attention to concurrently. In the SNNs
domain, TA-SNN (Yao et al., 2021) first extended the channel-wise
attention concept to temporal-wise attention and integrated it into
SNNs to determine ‘when’ to pay attention. MA-SNN (Yao et al.,
2023c) extended CBAM to SNNs and proposed a multi-dimensional
attention module along temporal-wise, channel-wise, and spatial-wise
separately or simultaneously. Recently, TCJA-SNN (Zhu et al., 2022)
cooperated temporal-wise and channel-wise attention correlations
using the 1-D convolution operation to present the correlation
between time-steps and channels. However, the receptive field of
TCJA-SNN is a local cross shape that is restricted by its convolution
kernels, shown in Figure 1A. Thus long-range dependencies can only
be captured when 1-D convolution operation is repeated, which
makes multi-hop dependency modeling difficult. On the other hand,
self-attention, another vital feature of the human biological system,
possesses the ability to capture feature dependencies effectively as an
additional non-local operator alongside SE and CBAM. It has sparked
a significant wave of interest and achieved remarkable success in
various tasks (Vaswani et al., 2017; Dosovitskiy et al., 2020; Liu et al.,
2021). Intuitively, there is a compelling interest in investigating the
application of self-attention in SNNs to advance deep learning, when
considering the biological characteristics of both mechanisms (Yao
et al., 2023a,b; Zhou C. et al., 2023; Zhou Z. et al., 2023).

To address the local spatio-temporal receptive field limitation of
TCJA, we first adopt self-attention, a non-local operation, to model
global temporal and channel information correlations. The self-
attention module we employed can capture the global spatio-temporal
receptive field, as shown in Figure 1B, allowing for the direct

long-range dependencies modeling, which is the highlight of our
work. We propose a plug-and-play Self-attention-based Temporal-
Channel joint Attention (STCA) module for SNNs with end-to-end
training. The STCA-SNNs can learn to focus on different features of
the input at each time-step. In other words, the STCA-SNNs can learn
‘when’ and ‘what’ to attend concurrently, enhancing the ability of the
SNNs to process temporal information. We evaluated the effectiveness
of STCA-SNNs across different architectures on three benchmark
event stream classification datasets: N-MNIST, CIFAR10-DVS, and
N-Caltech 101. Our detailed experiments show that STCA-SNNs
achieve competitive accuracy with existing state-of-the-art SNNs.

The main contributions of our work are summarized as follows:

 1. We propose STCA-SNNs for event streams that can undertake
end-to-end training and inference tasks.

 2. The plug-and-play STCA module models global temporal and
channel correlations with self-attention, allowing the network
to learn ‘when’ and ‘what’ to attend simultaneously. This
enhances the ability of SNNs to process temporal information.

 3. We evaluate the performance of STCA-SNNs on three
benchmark event stream classification datasets, N-MNIST,
CIFAR10DVS, and N-Caltech 101. Our experimental results
demonstrate that STCA-SNNs achieve competitive accuracy
compared to existing state-of-the-art SNNs.

2. Related work

2.1. Attention in SNNs

Spiking neural networks benefit from biological plausibility and
continuously pursue the combination with brain mechanisms. The
attention mechanism draws inspiration from the human ability to
selectively identify salient regions within complex scenes and has
gained remarkable success in deep learning by allocating attention
weights preferentially to the most informative input components. A
popular research direction is to present attention as an auxiliary
module that can be easily integrated with existing architectures to

FIGURE 1

Illustration of receptive fields on channel and temporal domains. T
means the temporal domain, C means the channel domain, and H,
W represent the spatial domain. (A) TCJA-SNN utilizes two local
attention mechanisms with 1-D convolution along temporal-wise
and channel-wise, respectively, then fuse them, forming a cross-
shaped receptive field. (B) STCA-SNN uses self-attention operation
to establish temporal-wise and channel-wise correlations, forming a
global receptive field.

88

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 03 frontiersin.org

boost the representation power of the basic model (Hu et al., 2018;
Woo et al., 2018; Guo et al., 2022; Li et al., 2022). Yao et al. (2021) first
suggested using an extra plug-and-play temporal-wise attention
module for SNNs to bypass a few unnecessary input timesteps. Then
they proposed a multi-dimensional attention module along temporal-
wise, channel-wise, and spatial-wise separately or simultaneously to
optimize membrane potentials, which in turn regulate the spiking
response (Yao et al., 2023c). STSC-SNN (Yu et al., 2022) employed
temporal convolution and attention mechanisms to improve spatio-
temporal receptive fields of synaptic connections. SCTFA-SNN (Cai
et al., 2023) computed channel-wise and spatial-wise attention
separately to optimize membrane potentials along the temporal
dimension. Yao et al. (2023a,b) recently proposed an advanced spatial
attention module to harness SNNs’ redundancy, which can adaptively
optimize their membrane potential distribution by a pair of individual
spatial attention sub-modules. TCJA-SNN (Zhu et al., 2022)
cooperated temporal-wise joint channel-wise attention correlations
using 1-D convolution operation. However, the temporal-channel
receptive field of TCJA is a local cross shape that is restricted by its
convolution kernels, requiring multiple repeated computations to
establish long-range dependencies of features. Therefore, it is
computationally inefficient and makes multi-hop dependency
modeling difficult.

Among the attention mechanisms, self-attention, as another
important feature of the human biological system, possesses the ability
to capture feature dependencies. Originally developed for natural
language processing (Vaswani et al., 2017), self-attention has been
extended to computer vision, where it has achieved significant success
in various applications. The self-attention module can also
be considered a building block of CNN architectures, which are
known for their limited scalability when it comes to large receptive
fields (Han et al., 2022). In contrast to the progressive behavior of
convolution operation, self-attention can capture long-range
dependencies directly by computing interactions between any two
positions, regardless of their positional distance. Moreover, it is
commonly integrated into the top of the networks to enhance high-
level semantic features for vision tasks. Recently, an emerging research
direction is to explore the biological characteristics associated with the
fusion of self-attention and SNNs (Yao et al., 2023a,b; Zhou C. et al.,
2023; Zhou Z. et al., 2023). These efforts primarily revolve around
optimizing the computation of self-attention within SNNs by
circumventing multiplicative operations, leading to performance
degradation. Diverging from these studies, our primary goal is to
explore how self-attention can enhance the spatio-temporal
information processing capabilities of SNNs.

2.2. Learning algorithms for SNNs

Existing SNN training methods can be roughly divided into three
categories: 1) the biologically plausible method, 2) the conversion
method, and 3) the gradient-based direct training method. The first
one is based on biological plausible local learning rules, like spike
timing dependent plasticity (STDP) (Diehl and Cook, 2015;
Kheradpisheh et al., 2018) and ReSuMe (Ponulak and Kasinski, 2010),
but achieving high performance for deep networks is challenging. The
conversion method offers an alternative way to obtain high-
performance SNNs by converting a well-trained ANN and mapping

its parameters to an SNN with an equivalent architecture, where the
firing rate of the SNN acts as ReLU activation (Cao et al., 2015;
Rueckauer et al., 2017; Sengupta et al., 2019; Ding et al., 2021; Bu et al.,
2022; Wu et al., 2023). Moreover, some works explored post-
conversion fine-tuning of converted SNNs to reduce latency and
increase accuracy (Rathi et al., 2020; Rathi and Roy, 2021; Wu et al.,
2021). However, this method is not suitable for neuromorphic
datasets. The gradient-based direct training methods primarily
include voltage gradient-based (Zhang et al., 2020), timing gradient-
based (Zhang et al., 2021), and activation gradient-based approaches.
Among them, the activation gradient-based method demonstrates
notable effectiveness when performing challenging tasks. This
approach uses surrogate gradients to address the non-differentiable
spike activity issue, allowing for error back-propagation through time
(BPTT) to interface with gradient descent directly on SNNs for
end-to-end training (Neftci et al., 2019; Wu et al., 2019; Yang et al.,
2021; Zenke and Vogels, 2021). These efforts have shown strong
potential in achieving high performance by exploiting spatio-temporal
information. However, further research is required to determine how
to make better use of spatio-temporal data and how to efficiently
extract spatio-temporal features. This is what we want to contribute.

3. Materials and methods

In this section, we first present the representation of event streams
and the adopted spiking neuron model and later propose our STCA
module based on this neuron model. Finally, we introduce the training
method adopted in this paper.

3.1. Representation of event streams

An event, e, encodes three pieces of information: the pixel location
(x, y) of the event, the timestamp t′ recording the time when the event
is triggered, and the polarity of each single event p ∈ {−1, +1}
reflecting an increase or decrease of brightness via +1/−1. Formally, a
set of events at the timestamp t′can be defined as:

E x y t pt k k k k

N
′ =
= []{ }′, , , 1 (1)

Assume the spatial resolution is h × w, the event set equals to the
spike pattern tensor St′∈R2 × h × w at the timestamp t′. However,
processing these events one by one can be inefficient due to the limited
amount of information contained in a single event. We follow the
frame-based representation in SpikingJelly (Fang et al., 2020) that
transforms event streams into high-rate frame sequences during
preprocessing. Each frame includes many blank (zero) areas, and
SNNs can skip the computation of the zero areas in each input frame
(Roy et al., 2019), improving overall efficiency.

3.2. Spiking neural models

Spiking neuron in SNNs integrates synaptic inputs from the
previous layer and the residual membrane potential into the latest
membrane potential. The Parametric Leaky integrate-and-fire (PLIF)

89

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 04 frontiersin.org

model can learn the synaptic weight and membrane time constant
simultaneously, which can enhance the learning capabilities of SNNs
(Fang et al., 2021). The subthreshold dynamics of the PLIF neuron is
defined as:

ττ
dV t
dt

V t V X trest
()

= − () −() + ()

(2)

where V (t) indicates the membrane potential of the neuron at
time t, τ is the membrane time constant that controls the decay of V
(t), X (t) is the input collected from the presynaptic neurons and Vrest
is the resting potential. When the membrane potential V (t) exceeds
the neuron threshold at time t, the neuron will emit a spike, and then
the membrane potential goes back to a reset value Vrest. We set
Vrest = Vreset = 0. The iterative representation of the PLIF model can
be described as follows:

H V V V X

S H V

V

t l t l t l
reset

t l

t l t l
th

t l

, , , ,

, ,

,

= + − −() +()
= −()

=

− −1 11
ττ

ΘΘ

11−() +

S H V St l t l
r set

t l, , ,
e

(3)

where superscripts t and l indicate the time step and layer index.
To avoid confusion, we use Ht,l and Vt,l to represent the membrane
potential after neuronal dynamics and after the trigger of a spike in
layer l at time-step t, respectively. Vth is the firing threshold. St,l is
determined by ()xΘ , the Heaviside step function that outputs 1 if
x ≥ 0 or 0 otherwise. The time constant τ = 1/k(a), k(a) is a sigmoid
function 1/(1 + exp(−a)) with a trainable parameter a.

3.3. Self-attention-based temporal-channel
joint attention module

The processing of temporal information in SNNs is generally
attributed to spiking neurons because their dynamics naturally
depend on the temporal dimension. However, the LIF neuron and its
variants including the PLIF neuron, only sustain very weak temporal
linkages. Additionally, event streams are inherently time-dependent
therefore, it is necessary to establish spatial–temporal correlations to
improve data utilization. The focus of this work is to model temporal-
wise and channel-wise attention correlations globally by adopting a
self-attention mechanism. We present our idea of attention with a
pluggable module termed the Self-attention-based Temporal-Channel
joint Attention (STCA), which is depicted in Figure 2.

Formally, we collect intermediate the spatial feature of l-th layer
at all time-steps Xl = [· · ·, Xt,l, · · ·]∈ RT × C × H × W as the input of STCA
module, where T is time-step, C denotes channels, H and W are height
and width of the feature, respectively. The spatial feature Xt,l can
be extracted from the original input St,l:

X t l l t l, ,= ()()−BN Conv W S 1,

(4)

where BN (·) and Conv (·) mean the batch normalization and
convolutional operation, Wl is the weight matrix, St, l-1 (l ≠ 1) is a spike

tensor that only contains 0 and 1, and X Rt l C H Wl l, ∈ × × . To simplify
the notation, bias terms are omitted. BN is a default operation
following the Conv, we also omit it in the rest of this paper. Since each
spatial feature Xt,l in Xl is time-dependent, our idea of attention is to
utilize the temporal correlation of these features. It is well known that
each channel of feature maps corresponds to a specific visual pattern.
Our STCA module aims to determine ‘when’ to attend to ‘what’ are
semantic attributes of the given input. For efficiency, STCA only
focuses on temporal and channel modeling, the spatial information of
the feature is aggregated by using both avg-pooling and max-pooling
operations as follows:

R X Xl l l= () + ()AvgPool MaxPool

(5)

where AvgPool (·) and MaxPool (·) represent the outputs of the
avg-pooling and max-pooling layer respectively, Rl∈RT × C. The
generated different temporal-channel context descriptors, avg-pooled
features and max-pooled features, are merged and then fed into a self-
attention (SA) block. We follow the convention (Wang et al., 2018) to
formulate the SA block, where the input feature in layer l is Rl∈RT × C,
and the output feature is generated as:

a

C r
f r r g ri

l

i j
i j j=

() () ()
∀
∑1 ,

(6)

where ri∈R 1 × C and ai∈R1 × C indicate the ith position of the input
feature Rl and output feature Al, respectively. Subscript j is the index
that enumerates all positions along the temporal domain, i.e., i,
j∈[1,2,…, T], and a pairwise function f (·) computes a representing
relationship between i and all j. The function g (·) computes a
representation of the input signal at time-step j, and the response is
normalized by a factor C (ri). We use a simple extension of the
Gaussian function to compute the similarity in an embedding space,
and the function f (·) can be formulated as:

f r r ei j

r ri j
T

,() = ()∅()θθ
 (7)

where θ (·) and ϕ (·) can be any embedding layers. If we consider
the θ (·), ϕ (·), g (·) in the form of linear embedding: θ (Rl) = RlWθ, ϕ
(Rl) = RlWϕ, g (Rl) = RlWg, where Wθ∈RC Ck× , Wϕ ∈ RC Ck× , Wg ∈
RC Ck× , and set the normalization factor as C r = f r ri

j
i j() ()∑

∀
, , the

Eq. 6 can be rewritten as:

a e

e
r wi

l
r w w r

j
r w w r j g j

i i j
T

j
T

i i j
T

j
T=

∅

∅∑
θθ

θθ

, ,

, ,
,

(8)

where wθ,i∈RC × 1 is the ith row of the weight matrix Wθ. For a given

index i, 1
C r

f r r
i

i j() (), becomes the softmax output along the

dimension j. The formulation can be future rewritten as:

A R W W R g Rl l T l l= () ()∅softmax θθ

(9)

90

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 05 frontiersin.org

where Al∈RT × C is the output feature of the same size as Rl. Given
the query, key, and value representations:

 Q R W K R W V R Wl Q l K l V= = =, , (10)

Once
QW = Wθ , W =WK

φ , W =WV
g , WQ∈RC × C, WK∈RC × C,

and WV∈RC × C, Eq. 9 can be formulated as:

A softmax QK Vl T= ()

(11)

In this way, the SA block is constructed. Then we employ a
residual connection around the SA block. Finally, the attention process
of STCA can be formulated as:

=

l l
STCAX f X

 (12)

where f = σ(Rl + Al) ∈ RT × C is the weight vector of STCA, ⊙ is
element-wise multiplication, σ is the sigmoid function, and
Xl

STCA∈RT × C × H × W denotes the feature extracted by the STCA module
along temporal and channel dimensions.

3.4. Training

We integrate the STCA module into networks and utilize the
BPTT method to train SNNs. Since the process of neuron firing is
non-differentiable, we use the derived ATan surrogate function
′() = +()σ x xα πα/ / .2 1 2

2 For a given input with label n, the
neuron that represents class n has the highest excitatory level while
other neurons remain silent. So the target output is defined by Y = [yt,

i] with yt, i = 1 for i = n, and yt, i = 0 for i ≠ n. Then the loss function is
described by the spike mean squared error:

L = −

=
∑y

T
oi

t

T
t i1

1

2

,

(13)

where O = [ot, i] is the average spiking events of neurons under the
voting strategy.

4. Experiments

4.1. Experimental setup

4.1.1. Implementation details
We implement our experiments with the Pytorch package and

SpikingJelly framework. All experiments were conducted using the
BPTT learning algorithm on 4 NVIDIA RTX 2080 Ti GPUs.
We utilized the Adam optimizer (Kingma and Ba, 2015) to accelerate
the training process and implemented some standard training
techniques of deep learning such as batch normalization and dropout.
The corresponding hyper-parameters and SNN hyper-parameters are
shown in Table 1. We verify our method on the following
DVS benchmarks:

CIFAR10-DVS contains 10 K DVS images of 10 classes recorded
with the dynamic vision sensor from the original static CIFAR10
dataset. We apply a 9: 1 train-valid split (i.e., 9 k training images and
1 k validation images). The resolution is 128 × 128, we resize all of
them to 48 × 48 in our training and we integrate the event data into 10
frames per sample (Li et al., 2017).

N-Caltech 101 dataset contains 8,831 DVS images converted from
the original version of Caltech 101 with a slight change in object
classes to avoid confusion. The N-Caltech 101 consists of 100 object
classes plus one background class. Similarly, we apply the 9: 1 train-
test split as CIFAR10-DVS. We use the SpikingJelly (Fang et al., 2020)
package to process the data and integrate them into 14 frames per
sample (Orchard et al., 2015).

FIGURE 2

Diagram of the STCA module. The STCA module first aggregates spatial information by average-pooling and max-pooling then merges them and
feeds it into a self-attention block to establish the correlations in both temporal and channel dimensions.

91

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 06 frontiersin.org

The neuromorphic MNIST dataset is a converted dataset from the
original static MNIST dataset (Orchard et al., 2015). It contains 50 K
training images and 10 K validation images. We integrate the event data
into 10 frames per sample using SpikingJelly (Fang et al., 2020) package.

4.1.2. Networks
The network structures with STCA for different datasets are

provided in Table 2 and the network architectures we use have been
proven to perform quite well on each dataset. Specifically, for the
CIFAR10-DVS dataset, we adopt a VGG11-like architecture. To
mitigate the apparent overfitting on the CIFAR10-DVS dataset,
we adopt the neuromorphic data augmentation, including horizontal
Flipping and Mixup in each frame, which is also used in Zhu et al.

(2022) for training the same dataset. For the N-Caltech 101 dataset,
we adopt the same architecture with Zhu et al. (2022) and N-MNIST
refers to PLIF Fang et al. (2021). The voting layers are implemented
using average pooling for classification robustness.

4.2. Comparison with existing
state-of-the-art works

Table 3 displays the accuracy performance of the proposed STCA-
SNNs compared to other competing methods on three neuromorphic
datasets, N-MNIST, CIFAR10-DVS, and N-Caltech 101. We mainly
include direct training results of SNNs with signal transmission via

TABLE 1 Hyper-parameter setting.

Hyperparameter N-MNIST CIFAR10-DVS N-Caltech 101

Max Epoch 500 1,000 500

Automatic mixed precision ✓

Batch size 64 32 8

Learning rate 1e-3 1e-3 1e-3

Time step 10 10 14

Vth 1.0 1.0 1.0

τ0 2.0 2.0 2.0

head 4 4 4

TABLE 2 The network structures with STCA for different datasets.

Dataset Network structure

N-MNIST Input-128C3-Neuron-MP2-128C3-Neuron-STCA-MP2-0.5DP-2048FC-Neuron-0.5DP-100FC-Neuron-Voting

CIFAR10-DVS
Input-64C3-Neuron-128C3-Neuron-AP2-256C3-Neuron-256C3-Neuron-STCA-AP2-512C3-Neuron -512C3-Neuron-STCA-AP2-

512C3-Neuron-512C3-Neuron-AP2-10FC-Neuron

N-Caltech 101
64C3-Neuron-MP2-128C3-Neuron-MP2-256C3-Neuron-STCA-MP2-256C3-Neuron-STCA-MP2-512C3-Neuron-0.8DP-1024FC-

Neuron-0.5DP-101FC-Neuron

xCy/MPy/APy denotes the Conv2D/MaxPooling/Avgpooling layer with output channel = x, and kernel size = y × y , n FC denotes the fully connected layer with output feature = n, MPy is the
spiking dropout layer with dropout ratio m. BN follows behind all xCy.

TABLE 3 Accuracy performance comparison between the proposed method and the SOTA methods on different datasets.

Method Binary
spikes

N-MNIST CIFAR10-DVS N-Caltech 101

T Acc. (%) T Acc. (%) T Acc. (%)

tdBN (Yang et al., 2021) ✓ – – 10 67.8 – –

Rollout (Kugele et al., 2020) ✓ 32 99.57 48 66.97 – –

LIAF-Net (Wu et al., 2019) 20 99.13 10 70.4 – –

ConvSNN (Samadzadeh et al., 2023) ✓ - 99.6 - 69.2 – –

PLIF (Fang et al., 2021) ✓ 10 99.61 20 74.80 – –

TA-SNN (Yao et al., 2021) – – 10 72.0 – –

SALT (Kim and Panda, 2021) ✓ – – 20 67.1 20 55.0

STSC-SNN (Yu et al., 2022) ✓ 10 99.64 10 81.4a – –

TCJA-SNN (Zhu et al., 2022) ✓ – – 10 80.7a 14 78.5

This work ✓ 10 99.67 10 81.6a 14 80.88

aWith data augmentation.

92

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 07 frontiersin.org

binary spike. Among them, some works (Wu et al., 2019; Yao et al.,
2021) replace binary spikes with floating-point spikes and maintain
the same forward pipeline as SNNs to obtain enhanced classification
accuracy. STCA-SNNs achieve better performance than existing state-
of-the-art SNNs on all datasets. We first compare our method on the
CIFAR10-DVS dataset. We continue to utilize MSE the loss function
and the same network architecture as TCJA-SNN (Zhu et al., 2022)
and STSC-SNN (Yu et al., 2022) to preserve the consistency of this
work, and our method reaches 81.6% top-1 accuracy, improving the
accuracy by 0.9% over TCJA-SNN (Zhu et al., 2022). We also compare
our method on N-Caltech 101dataset. Under the same condition as
TCJA-SNN (Zhu et al., 2022) with MSE the loss function, we get a
2.38% increase over it and outperform the comparable result. Finally,
we test our algorithm on the N-MNIST dataset. As shown in Table 3,
most comparison works get over 99% accuracy. We use the same
architecture as PLIF. Our STCA-SNN reaches the best accuracy
of 99.67%.

4.3. Ablation study

4.3.1. Ablation study
We performed ablation experiments based on the PLIF neuron

model to evaluate the effectiveness of the STCA module. For each

dataset, we trained three types of SNNs: STCA-SNNs, TA-SNNs
with temporal-wise attention module (Yao et al., 2023c), and
vanilla SNNs (PLIF-SNN) without any attention module. The SE
attention employed by TA-SNNs in the temporal dimension and
the Self-attention employed in this work are both non-local
operators, thus, we compared the performance of these two classic
non-local operators under the same experiment conditions.
We followed the learning process described in section 4.1 for all
ablation experiments, and the attention locations were identical
for both TA-SNNs and STCA-SNNs. Table 4 shows that all STCA-
SNNs outperformed vanilla SNNs on three event stream
classification datasets, suggesting that the benefits of the STCA
module are not limited to a specific dataset or architecture.
Furthermore, Figure 3 illustrates the accuracy performance trend
of vanilla SNN, TA-SNN, and our proposed STCA-SNN over 1,000
epochs on the N-Caltech101 dataset. As the training epoch
increased, our proposed STCA-SNN demonstrated comparable
performance with TA-SNN. This indicates that our STCA module
can enhance the representation ability of SNNs.

4.3.2. Discuss of pooling operations
To investigate the influence of the avg-pooling and max-pooling

operation, we conducted several ablation studies. As is well known,
avg-pooling can capture the degree information of target objects,

TABLE 4 Accuracy of vanilla SNN, TA-SNN, and STCA-SNN models on different datasets.

Model N-MNIST CIFAR10-DVS N-Caltech 101

Vanilla SNN 99.64 80.7 79.40

TA-SNN 99.64 81.3 80.76

STCA-SNN 99.67 81.6 80.88

FIGURE 3

Convergence of compared SNN methods on N-Caltech101 dataset.

93

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 08 frontiersin.org

while max-pooling can extract discriminative features of objects. As
shown in Figure 4, the max-pooling operation contributes significantly
to performance enhancement. Each experiment is run 3 times.
Notably, the fusion of both pooling operations exhibits improved
performance across all datasets examined, which means avg-pooling
encoded global information can effectively compensate for the
discriminative information encoded by max-pooling.

5. Conclusion

In this work, we propose the STCA-SNNs to enhance the
temporal information processing capabilities of SNNs. The STCA
module captures temporal dependencies across channels globally
using self-attention, enabling the network to learn ‘when’ to attend to
‘what’. We verified the performance of STCA-SNNs on various
neuromorphic datasets across different architectures. The
experimental results show that STCA-SNNs achieve competitive
accuracy on N-MNIST, CIFAR10-DVS, and N-Caltech 101 datasets.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

XW: Conceptualization, Investigation, Methodology, Software,
Visualization, Writing – original draft. YS: Funding acquisition,
Supervision, Writing – review & editing. YZ: Supervision, Writing –
review & editing. YJ: Supervision, Writing – review & editing. YB:
Formal analysis, Validation, Writing – review & editing. XL: Formal
analysis, Software, Validation, Visualization, Writing – review &
editing. XY: Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This
work was supported by the National Natural Science Foundation
of China General Program (No. 82272130) and the National
Natural Science Foundation of China Key Program (No.
U22A20103).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

FIGURE 4

Accuracy of different datasets obtained by avg-pooling, max-pooling, and a combination of both. Each experiment is run 3 times.

94

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 09 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

References
Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017). A low

power, fully event-based gesture recognition system. Proceedings of the IEEE conference
on computer vision and pattern recognition.

Ba, J., Mnih, V., and Kavukcuoglu, K. (2014). Multiple object recognition with visual
attention. In ICLR.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long short-
term memory and learning-to-learn in networks of spiking neurons. 32nd conference
on neural information processing systems.

Bu, T., Ding, J., Yu, Z., and Huang, T. (2022). Optimized potential initialization for low-
latency spiking neural networks, the thirty-sixth AAAI conference on artificial intelligence
(AAAI).

Cai, W., Sun, H., Liu, R., Cui, Y., Wang, J., Xia, Y., et al. (2023). A spatial-channel-
temporal-fused attention for spiking neural networks. IEEE transactions on Neural
Networks and Learning Systems. arXiv:2209.10837.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural networks
for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66. doi: 10.1007/
s11263-014-0788-3

Cheng, W., Luo, H., Yang, W., Yu, L., Chen, S., and Li, W. (2019). Det: a high-resolution
dvs dataset for lane extraction. Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pp. 1666–1675.

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi: 10.3389/fncom.2015.00099

Ding, J., Yu, Z., Tian, Y., and Huang, T. (2021). Optimal ANN-SNN conversion for fast
and accurate inference in deep spiking neural networks. International joint conference
on artificial intelligence.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). “An image is worth 16x16 words: transformers for image recognition at
scale” in International conference on learning representations (ICLR)

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). Spikingjelly.
Available at: https://github.com/fangwei123456/spikingjelly.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021).
Incorporating learnable membrane time constant to enhance learning of spiking
neural networks. Proceedings of the IEEE/CVF international conference on
computer vision, 2661–2671.

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al. (2020).
Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44:1. doi: 10.1109/
TPAMI.2020.3008413

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics:
From single neurons to networks and models of cognition, Cambridge University Press,
Cambridge, MA.

Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T., Mu, T. J., et al. (2022). Attention
mechanisms in computer vision: a survey. Comput. Visual Media 8, 331–368. doi:
10.1007/s41095-022-0271-y

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2022). A survey on vision
transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45, 87–110. doi: 10.1109/
TPAMI.2022.3152247

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of
the IEEE conference on computer vision and pattern recognition.

Hu, Y., Tang, H., and Pan, G. (2021). Spiking deep residual networks. IEEETrans.
Neural Netw. Learn. Syst. 34, 5200–5205. doi: 10.1109/TNNLS.2021.3119238

Huang, Z., Zhang, S., Pan, L., Qing, Z., Tang, M., Liu, Z., et al. (2022). TAda! oman.
In ICLR.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for
rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259. doi:
10.1109/34.730558

Kheradpisheh, S., Mohammad, G., Thorpe, S. J., and Masquelier, T. (2018). STDP-
based spiking deep convolutional neural networks for object recognition. Neural Netw.
99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kim, Y., and Panda, P. (2021). Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Netw. 144, 686–698. doi: 10.1016/j.neunet.2021.09.022

Kingma, D. P., and Ba, J. L. (2015). Adam: a method for stochastic optimization. ICLR
2015: International conference on learning representations.

Kugele, A., Pfeil, T., Pfeiffer, M., and Chicca, E. (2020). Efficient processing of spatio-
temporal data streams with spiking neural networks. Front. Neurosci. 14:439. doi:
10.3389/fnins.2020.00439

Li, G., Fang, Q., Zha, L., Gao, X., and Zheng, N. (2022). HAM: hybrid attention
module in deep convolutional neural networks for image classification. Pattern Recogn.
129:108785. doi: 10.1016/j.patcog.2022.108785

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset
for object classification. Front. Neurosci. 11:309. doi: 10.3389/fnins.2017.00309

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15 μs latency
asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43, 566–576.
doi: 10.1109/JSSC.2007.914337

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin transformer:
hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF
International Conference on Computer Vision.

Mainen, Z. F., and Sejnowski, T. (1995). J, reliability of spike timing in neocortical
neurons. Science 268, 1503–1506. doi: 10.1126/science.7770778

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking
neural networks: bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9:437.
doi: 10.3389/fnins.2015.00437

Ponulak, F., and Kasinski, A. (2010). Supervised learning in spiking neural networks
with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22,
467–510. doi: 10.1162/neco.2009.11-08-901

Posch, C., Matolin, D., and Wohlgenannt, R. (2010). A qvga 143 db dynamic range
frame-free pwm image sensor with lossless pixel-level video compression and time-
domain cds. IEEE J. Solid State Circuits 46, 259–275. doi: 10.1109/JSSC.2010.2085952

Rathi, N., and Roy, K. (2021). DIET-SNN: a low-latency spiking neural network with
direct input encoding and leakage and threshold optimization. IEEE Trans. Neural
Networks Learn. Syst. 34, 3174–3182. doi: 10.1109/TNNLS.2021.3111897

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep spiking neural
networks with hybrid conversion and spike timing dependent backpropagation.
International conference on learning representations.

Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). High speed and high
dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43,
1964–1980. doi: 10.48550/arXiv.1906.07165

Ridwan, I., and Cheng, H., An event-based optical flow algorithm for dynamic vision
sensors (2017) University of Lethbridge Lethbridge

Rieke, F., Warland, D., Van Steveninck, R. D. R., and Bialek, W. (1999). Spikes:
Exploring the neural code. MIT Press, Cambridge, MA.

Roy, K., Jaiswal, A., and Panda, A. (2019). Towards spike-based machine intelligence
with neuromorphic computing. Nature. 575, 607–617. doi: 10.1038/s41586-019-1677-2

Rueckauer, B., Lungu, I., Hu, Y., Pfeiffer, M., and Liu, S. (2017). Conversion of
continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Samadzadeh, A., Far, F. S. T., Javadi, A., Nickabadi, A., and Chehreghani, M. H. (2023).
Convolutional spiking neural networks for spatio-temporal feature extraction. Neural
Processing Letters. 1–7.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in spiking neural
networks: VGG and residual architectures. Front. Neurosci. 13:95. doi: 10.3389/
fnins.2019.00095

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., et al. (2017).
Attention is all you need. Adv. Neural Inf. Proces. Syst. 30, 5998–6008. doi: 10.48550/
arXiv.1706.03762

Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-local neural networks.
Proceedings of the IEEE conference on computer vision and pattern recognition.

Woo, S., Park, J., Lee, J., and Kweon, I. (2018). Cbam: convolutional block attention
module. Proceedings of the European conference on computer vision (ECCV).

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for spiking
neural networks: Faster, larger, better, in Association for the Advancement of artificial
intelligence (AAAI).

Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., et al. (2021). Progressive tandem
learning for pattern recognition with deep spiking neural networks. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 7824–7840. doi: 10.1109/TPAMI.2021.3114196

Wu, X., Zhao, Y., Song, Y., Jiang, Y., Bai, Y., Li, X., et al. (2023). Dynamic threshold
integrate and fire neuron model for low latency spiking neural networks. Neurocomputing
544:126247. doi: 10.1016/j.neucom.2023.126247

95

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.3389/fncom.2015.00099
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.1109/34.730558
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/j.neunet.2021.09.022
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.1016/j.patcog.2022.108785
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1126/science.7770778
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.48550/arXiv.1906.07165
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/TPAMI.2021.3114196
https://doi.org/10.1016/j.neucom.2023.126247

Wu et al. 10.3389/fnins.2023.1261543

Frontiers in Neuroscience 10 frontiersin.org

Xu, Q., Qi, Y., Yu, H., Shen, J., Tang, H., Pan, G., et al. (2018). Csnn: an augmented
spiking based framework with perceptron-inception. International Joint Conference on
Artificial Intelligence (Stockholm).

Yang, Z., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). Going deeper with directly-
trained larger spiking neural networks. Neural Evol. Comput. 35, 11062–11070. doi:
10.1609/aaai.v35i12.17320

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., et al. (2021). Temporal-wise
attention spiking neural networks for event streams classification. Proceedings of the
IEEE/CVF international conference on computer vision (ICCV).

Yao, M., Hu, J., Zhao, G., Wang, Y., Zhang, Z., Xu, B., et al. (2023a). Inherent
redundancy in spiking neural networks. Proceeding of the IEEE/CVF international
conference on computer vision (ICCV). arXiv preprint arXiv:2308.08227.

Yao, M., Hu, J., Zhou, Z., Yuan, L., Tian, Y., Xu, B., et al. (2023b). Spike-driven
Transformer. Advances in Neural Information Processing Systems (NeurIPS). arXiv
preprint arXiv:2307.01694.

Yao, M., Zhao, R., Zhang, H., Hu, Y., Deng, L., Tian, Y., et al (2023c). Attention spiking
neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 45, 9393–9410. doi: 10.1109/
TPAMI.2023.3241201

Yu, C., Gu, Z., Li, D., Wang, G., Wang, A., and Li, E. (2022). STSC-SNN:
Spatio-temporal synaptic connection with temporal convolution and attention for

spiking neural networks. Front. Neurosci. 16:1079357. doi: 10.3389/
fnins.2022.1079357

Zenke, F., and Vogels, T. P. (2021). The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks. Neural Comput. 33,
899–925. doi: 10.1162/neco_a_01367

Zhang, M., Luo, X., Chen, Y., Wu, J., Belatreche, A., Pan, Z., et al. (2020). An
efficient threshold-driven aggregate-label learning algorithm for multimodal
information processing. IEEE J. Sel. Top Signal Process 14, 592–602. doi: 10.1109/
JSTSP.2020.2983547

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z., et al.
(2021). Rectified linear postsynaptic potential function for backpropagation in deep
spiking neural networks. IEEE Trans. Neural Netw. Learn Syst. 33, 1947–1958. doi:
10.1109/TNNLS.2021.3110991

Zhou, C., Yu, L., Zhou, Z., Ma, Z., Zhang, H., Zhou, H., et al. (2023). Spikingformer:
Spike-driven residual learning for transformer-based spiking neural network. arXiv
preprint arXiv:2304.

Zhou, Z., Zhu, Y., He, C., Wang, Y., Yan, S., Tian, Y., et al. (2023). Spikformer: When
spiking neural network meets transformer. ICLR, 2023. arXiv preprint arXiv:2209.15425.

Zhu, R., Zhao, Q., Zhang, T., Deng, H., Duan, Y., Zhang, M., et al. (2022). TCJA-SNN:
Temporal-Channel joint attention for spiking neural networks. arXiv:2206.10177.

96

https://doi.org/10.3389/fnins.2023.1261543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1609/aaai.v35i12.17320
https://doi.org/10.1109/TPAMI.2023.3241201
https://doi.org/10.1109/TPAMI.2023.3241201
https://doi.org/10.3389/fnins.2022.1079357
https://doi.org/10.3389/fnins.2022.1079357
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.1109/JSTSP.2020.2983547
https://doi.org/10.1109/JSTSP.2020.2983547
https://doi.org/10.1109/TNNLS.2021.3110991

TYPE Original Research

PUBLISHED 21 November 2023

DOI 10.3389/fncom.2023.1250908

OPEN ACCESS

EDITED BY

Huajin Tang,

Zhejiang University, China

REVIEWED BY

Jean-Philippe Thivierge,

University of Ottawa, Canada

Sadique Sheik,

SynSense, Switzerland

*CORRESPONDENCE

Bernard Girau

bernard.girau@loria.fr

RECEIVED 30 June 2023

ACCEPTED 27 October 2023

PUBLISHED 21 November 2023

CITATION

Fois A and Girau B (2023) Enhanced

representation learning with temporal coding in

sparsely spiking neural networks.

Front. Comput. Neurosci. 17:1250908.

doi: 10.3389/fncom.2023.1250908

COPYRIGHT

© 2023 Fois and Girau. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Enhanced representation learning
with temporal coding in sparsely
spiking neural networks

Adrien Fois and Bernard Girau*

Université de Lorraine, Centre National de la Recherche Scientifique, Laboratoire lorrain de Recherche

en Informatique et ses Applications, Nancy, France

Current representation learning methods in Spiking Neural Networks (SNNs)

rely on rate-based encoding, resulting in high spike counts, increased energy

consumption, and slower information transmission. In contrast, our proposed

method, Weight-Temporally Coded Representation Learning (W-TCRL), utilizes

temporally coded inputs, leading to lower spike counts and improved e�ciency.

To address the challenge of extracting representations from a temporal code with

low reconstruction error, we introduce a novel Spike-Timing-Dependent Plasticity

(STDP) rule. This rule enables stable learning of relative latencies within the

synaptic weight distribution and is locally implemented in space and time, making

it compatible with neuromorphic processors. We evaluate the performance of W-

TCRL on theMNIST and natural image datasets for image reconstruction tasks. Our

results demonstrate relative improvements of 53% for MNIST and 75% for natural

images in terms of reconstruction error compared to the SNN state of the art.

Additionally, our method achieves significantly higher sparsity, up to 900 times

greater, when compared to related work. These findings emphasize the e�cacy

of W-TCRL in leveraging temporal coding for enhanced representation learning in

Spiking Neural Networks.

KEYWORDS

spiking neural networks, temporal code, spike-timing-dependent plasticity,

representation learning, visual representations, latency-coding, sparsity, unsupervised

learning

1 Introduction

Spiking Neural Networks (SNNs) have been gaining recognition due to their application

in supervised (Kheradpisheh and Masquelier, 2020; Lee et al., 2020), reinforcement

(Mozafari et al., 2018; Patel et al., 2019), and unsupervised learning tasks (Diehl and

Cook, 2015; Kheradpisheh et al., 2018). Compared to Artificial Neural Networks (ANNs)

that output continuous values synchronously, SNNs transmit binary outputs sparsely

and asynchronously as spikes. This event-based information transmission scheme reduces

communication channels, significantly lowers energy requirements, and offers potential

energy efficiency gains of up to 1,000 times with neuromorphic processors (Furber, 2016)

compared to traditional processors. The massively parallel architecture of neuromorphic

processors, where memory (synapses) and computational units (neurons) are co-located,

further contributes to this energy efficiency. By utilizing local event-based learning rules,

such as Spike-timing-dependent plasticity (STDP), which leverage information from

presynaptic and postsynaptic terminals, the principles of parallelism and locality can be fully

exploited at the algorithmic level.

Extracting representations from event-based and asynchronous data streams using local

rules compatible with neuromorphic processors holds great promise. In this context, King

et al. (2013) proposed a spatially local rule learning receptive fields resembling Gabor filters.

Frontiers inComputationalNeuroscience 01 frontiersin.org97

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1250908
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1250908&domain=pdf&date_stamp=2023-11-21
mailto:bernard.girau@loria.fr
https://doi.org/10.3389/fncom.2023.1250908
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1250908/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

Burbank (2015) developed a method that reproduces the behavior

of an autoencoder with an STDP rule. This STDP rule learns

encoding and decoding weights with a Hebbian and anti-Hebbian

rule, respectively. The combination of these two rules allows the

approximation of the cost function of an autoencoder. More

recently, Tavanaei et al. (2018) proposed an STDP rule, integrating

a vector quantization module and a regularization module and

provides the best performance in terms of reconstruction error.

However, all these methods operate with spike rate encoding,

where information is encoded in the number of emitted spikes.

Spike rate encoding incurs high energy costs, and leads to slow

information transmission. In contrast, temporal codes, which

transmit information based on spike times rather than spike rates,

offer a more economical alternative. Temporal encoding using

relative latencies achieves significantly higher energy efficiency,

reduces the number of spikes required, and enables faster data

transmission rates compared to rate coding. This makes temporal

codes particularly relevant for neuromorphic computing and

learning (Guo et al., 2021).

In this paper, we introduce a two-layer SNN that leverages

temporal codes, specifically population-based latency coding,

where each neuron fires a single spike. Our Weight-Temporally

Coded Representation Learning (W-TCRL) model improves the

reconstruction performance while increasing the sparsity of the

activity in the network. We propose a novel STDP rule that

adjusts synaptic weights based on spike times, operating locally

in both space and time, thus facilitating a future implementation

on neuromorphic processors (Davies et al., 2018). To the best

of our knowledge, this is the first presented method for learning

representations from a temporal encoding of inputs using an STDP-

like rule aimed at achieving low reconstruction error. We evaluate

our spiking model using the MNIST dataset and a natural image

dataset.1 Furthermore, we propose a generic parameterization of

the model to address the common adaptability issue with data of

varying dimensions.

2 Materials and methods

In this section, the various architectural and algorithmic

components of the neural model are illustrated, which will be

utilized for representation learning. The model is assessed on an

image reconstruction task, with a focus on its new STDP rule that

targets synaptic weights.

2.1 Spiking neural network

As depicted in Figure 1, our SNN architecture consists of two

fully interconnected layers: the first layer encodes input data into

relative spike latencies, generating a single spike per neuron, while

the second layer extracts representations from the resulting spiking

activity.

1 The code is released: https://github.com/afois/W-TCRL.

2.1.1 Neuron and synapse model
The network contains only LIF neurons with current-

based (CuBa) synapses. This widely-used model captures the

basic behavior of a biological neuron while maintaining low

computational cost and ease of analysis. The dynamic of a LIF

neuron is given by:

τm
dV(t)

dt
= −V(t)+ I(t)+gη(t)

Neurons face a Gaussian white noise process η, scaled by g; g

= 0 (no noise) for most tests. However, we test the robustness of

the network on MNIST dataset in Section 3.3 by varying g. We add

the output s(t) and the resetting of the membrane potential V(t)

when the firing threshold Vθ is reached, V(t) is then maintained at

0 during a refractory period Trefrac:

if V(t) < Vθ , then s(t) = 0

if V(t) ≥ Vθ , then

{

s(t) = 1

V(u) = 0 ∀u ∈]t, t + Trefrac]

Between the two layers, synaptic transmission is modeled by an

exponential synapsemodel. If at least one presynaptic neuron i fires,

the indicator function si(t) takes the value 1 (0 otherwise) and the

input to the postsynaptic neuron Ij(t) changes instantaneously by

an amount equal to the synaptic weight wji:

Ij(t)← Ij(t)+

n
∑

i=1

wjisi(t)

otherwise Ij(t) exponentially decays over time with a time constant

τf :

τf
dIj(t)

dt
= −Ij(t)

2.1.2 Synaptic traces
Synapses connect the n presynaptic neurons of the encoding

layer to the m postsynaptic neurons of the representation layer.

Each synapse has access to a local state variable xi(t) (with i =

1, 2, . . . n) that tracks recent presynaptic spikes. This variable is

known as presynaptic trace. It is commonly used for efficient and

local implementations of STDP rules, both in simulations (Pfister

and Gerstner, 2006) and neuromorphic processors (Davies et al.,

2018).

Similarly, a postsynaptic trace yj(t) (with j = 1, 2, . . .m)

accessible to the synapses tracks recent postsynaptic spikes.

When a pre (post)-synaptic spike occurs, xi(t) (yj(t))

jumps to 1 and then decays exponentially to 0 with a time

constant τx (τy):

xi(t)← 1, if si(t) = 1

τx
dxi(t)

dt
= −xi(t), otherwise (1)

yj(t)← 1, if sj(t) = 1

τy
dyj(t)

dt
= −yj(t), otherwise (2)

Frontiers inComputationalNeuroscience 02 frontiersin.org98

https://doi.org/10.3389/fncom.2023.1250908
https://github.com/afois/W-TCRL
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 1

Block diagram of the SNN architecture. Consider an input vector of k dimensions. Each dimension of the input vector is encoded by l neurons, each

of them firing a single spike. The sparse activity of the k ∗ l neurons is transmitted to the representation layer. Learning of the synaptic weights wji

takes place between these two layers, with our new STDP rule. Inhibitory lateral connections are present in the representation layer to put neurons

into competition, thereby generating competitive learning.

where s(t) is an indicator function returning 1 when a neuron fires

a spike at time t, 0 otherwise.

2.2 Encoding input data in relative spike
latencies

Let a ∈ [0, 1]k denote a normalized k-dimensional real-valued

input vector that we aim to encode into relative spike latencies

(or timing) through population coding (Ebitz and Hayden, 2021).

This can be achieved by distributing each dimension of the input

vector over the population activity of l neurons (Figure 2). We

used a population of l = 10 neurons to collectively represent

one dimension. Each neuron i ∈ {1, 2, ..., l} of the population has

an associated gaussian receptive field in a circular space in range

[0, 1], characterized by its preferential value (or center) µi and by

its width (or standard deviation) σ . The centers µi are uniformly

spread between 0.05 and 0.95. The standard deviation σ = 0.6

is the same for all neurons. This broad tuning ensures that any

neuron receives high enough activation levels to fire in response

to any input value. The resulting receptive fields overlap, covering

the entire input space.

A gaussian function Gµ,σ : a → A is then used to transform

the input vector a ∈ [0, 1]k into a vector of activations levels

A ∈ [0, 1]k×l that feed the n = k × l LIF neurons of the encoding

layer.

To illustrate the encoding process, consider a single entry of

the input vector a ∈ a. The ith neuron—with i ∈ {1, 2, ..., l}—

whose gaussian receptive field center µi is the closest to the input

value a, gets the highest activation level Ai and will thus fire first.

The other neurons fire later. The higher the distance between their

centers and the input value, the lower the activation levels they

get, and therefore the later they fire. The temporal separation of

spikes is accentuated by the non-linear integration of the received

activation levels by LIF neurons. With this mechanism, a specific

input value is encoded in a specific spike pattern in the spatio-

temporal domain. This population-based coding does not lie within

the times to first spikes, but explicitly within the relative latencies of

the spikes emitted by each neuron.

Note that in the scenario of continuous input presentation,

this circuit will disrupt the temporal representation of the analog

inputs. Inputs need to be somewhat reset to achieve spike time

reproducibility. However, it is straightforward to replace this circuit

with others such as the one proposed by Rumbell et al. (2014).

This method enables continuous input presentation to the network

by producing oscillatory firing through an inhibitory mechanism.

Thus, it generates an internal time reference through oscillations.

Both encoding methods utilize a population of Gaussian receptive

fields and yield identical spiking patterns. Rumbell’s method offers

greater flexibility at the cost of a more complex encoding circuit.

2.3 W-TCRL: STDP rule for learning
representations in weights

Non-weight-dependent Spike-Timing-Dependent Plasticity

(NSTDP) rules can produce stable receptive fields; however, they

are bistable, leading to synaptic weights saturating at minimum

andmaximum values (Song et al., 2000). Hence, the potential range

of learning parameters, the synaptic weights in this case, is not fully

utilized under NSTDP rules. This limitation significantly impedes

the expressive capacity of synaptic weights, diminishing their

capability to finely represent external states, such as environmental

states.

On the other hand, Weight-dependent Spike-Timing-

Dependent Plasticity (WSTDP) rules rectify this issue by

generating unimodal and continuous distributions of synaptic

weights, thereby leveraging the entire range of weight variation.

However, these rules fall short in generating stable receptive fields

(Billings and van Rossum, 2009).

Our STDP rule provides the dual advantages of stability

and the complete utilization of the synaptic weight range for

representation storage. The interplay between our STDP rule and

the unimodal temporal code results in a stable and unimodal

Frontiers inComputationalNeuroscience 03 frontiersin.org99

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 2

Spatio-temporal spike pattern encoding an input value of a = 0.45. Top left: The input is received by a population of l = 10 neurons, each having a

Gaussian tuning curve centered on a preferential value µi. For instance, Neuron 4 and 9 possess µ4 = 0.45 and µ9 = 0.95, respectively. Their tuning

curves and corresponding activation levels A4 and A9 for the input value are depicted in red and blue, respectively. Top right: These activation levels

remain constant over a 12.5 ms interval, followed by an equal duration of quiescence. Bottom right: The neuronal inputs are integrated into

membrane potentials V4 and V9. With a higher activation level, V4 grows faster than V9, enabling it to reach its firing threshold Vθ sooner. Upon

crossing this threshold, the neuron fires a spike, resets its membrane potential, and enters a refractory period Trefrac. Bottom left: A neuron fires a

spike when it crosses its threshold Vθ , thereby distributing an input value across a neuronal population to produce a specific spatio-temporal spike

pattern.

distribution of synaptic weights (see Figure 4). Here, the magnitude

of a synaptic weight is function of the temporal distance between a

presynaptic and a postsynaptic spike. In the encoding layer u, faster

firing neurons carry a more accurate representation of the input,

correspondingly leading to a higher value of the synaptic weight.

This, in turn, boosts the neuron’s causal influence over the emission

of a postsynaptic spike.

Our novel STDP rule, derived from a vector quantization

criterion, operates both spatially and temporally. Spatially, it

focuses on a single pair of presynaptic and postsynaptic neurons

i and j, and temporally, it operates within a defined temporal

window.

The change in synaptic weight 1wji is calculated based on the

presynaptic trace xi(t) ∈]0, 1] and the postsynaptic trace yj(t) ∈

]0, 1]. The synaptic weight wji ∈ [0, 1] is then updated by this

change wji ← wji +1wji. Our new STDP rule is defined as follows

(see Figure 3):

1wji =

{

+α+
(

1− xi(t)− wji + woffset

)

, if sj(t) = 1 and xi(t) > ǫ

−α−
(

1− yj(t)
)

, if si(t) = 1 and yj(t) > ǫ

(3)

where α+ and α− are the learning rates. This STDP rule works

in combination with the introduction of hard bounds that restrict

synaptic weights to the range 0 ≤ wji ≤ 1:

wji ← min
(

1,max(0,wji +1wji)
)

2.3.1 First case of synaptic weight adaptation
The first adaptation case (Figure 3A) is (1) triggered event-

wise by a postsynaptic spike indicated by sj(t = tpost) =

1 and (2) operates locally in time since the presynaptic trace

xi(t) is sampled at time t = tpost and must be greater

than ǫ, corresponding to a temporal window since the time

of the presynaptic spike tpre. Thus, postsynaptic spikes arriving

outside this temporal window do not trigger the rule. This rule

addresses the case of causal interactions, i.e., presynaptic spikes

emitted before or at the time of the postsynaptic spike, i.e.,

1t ≥ 0.

This first adaptation case integrates a vector quantization

module aimed at learning the distribution of relative spike

times in the distribution of synaptic weights, and thus

minimizing the reconstruction error because the neural

encoding is temporal. We can observe, by analyzing

the equilibrium solution 1wji = 0, that the weight wji

converges to a value dependent on xi(t) and thus on

the time interval 1t = tpost − tpre between pre- and

Frontiers inComputationalNeuroscience 04 frontiersin.org100

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 3

Illustration of the two synaptic weight adaptation cases under our novel STDP rule, demonstrating spatial and temporal locality. (A) The left column

presents the first case, triggered in a causal context where the presynaptic spike precedes the postsynaptic one. (B) Conversely, the right column

illustrates the second case, triggered in an anti-causal context when the postsynaptic spike precedes the presynaptic one. In both adaptation cases,

the adjustment magnitude 1wji is influenced by the presynaptic and postsynaptic traces xi(t) and yj(t), respectively. These traces are equivalent to

exponential decay kernels applied to 1t, where 1t = tpost − tpre.

postsynaptic spikes:

1wji = 0

⇔ 0 = 1− xi(t)− wji + woffset

⇔ wji = 1− xi(t)+ woffset

⇔ wji = 1− exp

(

−
t − tpre

τx

)

+ woffset

As this adaptation case is triggered by a postsynaptic spike

indicated by sj(t = tpost) = 1, we finally obtain:

⇔ wji = 1− exp

(

−
1t

τx

)

+ woffset (4)

Consider a spike pattern repeatedly presented to a postsynaptic

neuron for illustration. The synaptic weight wji will converge to

a value that depends on the presynaptic trace xi(t) and therefore

on 1t . Recall that the trace xi(t) jumps to 1 upon the emission

of a presynaptic spike, and then decays exponentially over time.

Thus, the larger the value of 1t → ∞, the smaller the

value of xi(t) → 0. The first presynaptic spikes carry most

of the information about the input, which can be interpreted

as a hidden variable. These first spikes are reflected by a large

1t and thus a small xi(t) ∈]0, 1]. Therefore we introduce the

term 1 − xi(t) in the rule, which induces high synaptic weight

values wji for the earliest firing presynaptic neurons, thereby

amplifying the causal impact of the first presynaptic spikes

on the postsynaptic neuron. Consequently, the first presynaptic

neuron that fires induces the highest weight value wji, while

the last firing neuron induces the lowest weight value wji. This

process unfolds for each presynaptic-postsynaptic neuron pair

meeting the conditions of the first adaptation case. Thus, the

order and latency of the spikes are represented in the resulting

synaptic weight distribution wji (see Figure 4). By contrast, the

traditional STDP rule (Song et al., 2000) maximally strengthens

the latest spike (tpre ≈ tpost) for causal interactions and typically

leads to weight saturation, where all weights saturate to 1.0

for instance.

We still need to address the role of the last term woffset. When

1t → 0, this is reflected by xi(t) → 1 and induces 1 − xi(t) → 0

and thus wji → 0. To avoid wji → 0 when a presynaptic spike is

emitted at a time tpre ≈ tpost, i.e., when 1t → 0, we add a positive

offset woffset > 0 to the rule.

2.3.2 Second case of synaptic weight adaptation
The second adaptation case (Figure 3B) is triggered by a

presynaptic spike indicated by si(t = tpre) = 1, and operates locally

in time because the postsynaptic trace yj(t) is sampled at time

t = tpre and must be greater than ǫ, corresponding to a temporal

window from the postsynaptic spike time tpost. Thus, presynaptic

spikes falling outside of this temporal window do not trigger the

rule. This rule handles the case of anti-causal interactions, i.e.,

presynaptic spikes emitted after or at the time of the postsynaptic

spike, i.e., 1t ≤ 0.

Frontiers inComputationalNeuroscience 05 frontiersin.org101

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 4

Illustration of the asymptotic weight distribution learned with our STDP rule for an input value of a = 0.45. Left: The input value is encoded by a

population of l = 10 neurons in the encoding layer u. Right bottom: The neuron with the nearest preferential value µi to the input (µ5 = 0.45 in this

case) fires a spike first, followed by the other neurons in the population. The spiking pattern is transmitted through synaptic connections to a

postsynaptic neuron j in the representation layer. The postsynaptic neuron j integrates the received inputs and fires a spike at time tpost (dashed line).

The sign of the time di�erence 1t between a postsynaptic and a presynaptic spike delimits two learning regimes (green and red areas) for the STDP

rule. Right top: for 1t ≥ 0, the first adaptation case is triggered, resulting in an attractive fixed point weight. The asymptotic weight value wji increases

as 1t increases (green squares). For 1t ≤ 0, the second adaptation case is triggered, leading to weight depression. The weight value wji decreases as

1t increases, tending asymptotically toward 0 (red squares).

We can reformulate this adaptation case to explicitly show the

dependence on 1t = tpost − tpre:

1wji ∝ 1− yj(t)

1wji ∝ 1− exp

(

−
t − tpost

τy

)

Since this adaptation case is triggered by a presynaptic spike

indicated by si(t = tpre) = 1, we have:

1wji ∝ 1− exp

(

−
tpre − tpost

τy

)

1wji ∝ 1− exp

(

+
1t

τy

)

1wji is proportional to 1 − exp
(

1t
τy

)

, which is multiplied

by −α−. Therefore, this second adaptation case depresses the

synaptic weights. The postsynaptic trace yj(t) behaves similarly to

the presynaptic trace xi(t), where it jumps to 1 upon emission

of a postsynaptic spike and then decays exponentially over time.

Thus, the larger the value of 1t → ∞, the smaller the value

of yj(t) → 0. Late-arriving presynaptic spikes convey minimal

information about the input. That is why we introduce 1wji ∝

1 − yj(t) into the rule: the later a presynaptic spike arrives relative

to a postsynaptic spike, the greater the depression of wji. Thus,

considering the asymptotic behavior of this synaptic depression

case, the weight wij → 0 (see Figure 4), as the lower bound of the

weight is fixed at 0 using a hard bound. This asymptotical behavior

mirrors the traditional STDP rule (Song et al., 2000) for anti-causal

interactions. However, the learning dynamics are reversed : the

latest spike (tpre≫ tpost) induces maximal weight depression, while

close anti-causal interactions (tpre ≈ tpost) result in minimal weight

depression.

2.3.3 Winner-Take-All circuit
Through afferent synaptic weight adjustments, postsynaptic

neurons progressively adapt to distinct spatiotemporal patterns (see

Figure 4). Additionally, akin to biological neurons, they emit spikes

before receiving all presynaptic inputs, thus boosting the SNN’s

processing speed.

Remember that the first spikes reduce uncertainty about the

input the most, which can be interpreted as a hidden variable. This

feature is harnessed by a temporal Winner-Take-All circuit. In this

circuit, the first neuron crossing its firing threshold Vj(t) > Vθ

in response to a spatiotemporal input pattern is identified as the

best pattern representative, termed the Spiking Best Matching Unit

(SBMU). The SBMU strongly inhibits the other neurons in the

representation layer, preventing them from firing and thus learning

the current prototype.

This self-organizing competitive learning scheme is

implemented by all-to-all lateral inhibitory connections. The

circuit induces highly sparse activity in the representation layer

and forces neurons to learn uncorrelated code vectors, two

Frontiers inComputationalNeuroscience 06 frontiersin.org102

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

important ingredients for efficient learning (Bengio et al., 2013;

Falez et al., 2019).

However, for a given input vector, a pure WTA circuit only

updates the code vector of a single neuron: the SBMU. Our aim is

to speed up learning by recruiting more than one neuron (k-WTA)

during the presentation of an input vector.

To achieve this goal, we introduce a homeostatic mechanism

that increases the value of the lateral synaptic weights in the

representation layer. Initially, lateral inhibition is minimal with

lateral weights initialized at wji = −cmin. As learning progresses,

the homeostatic mechanism raises these weights toward the target

value of wji ≈ −cmax. With appropriate values of cmin and cmax,

the circuit can dynamically transition from a k-WTA to a WTA

behavior.

The homeostatic mechanism progressively involves fewer

neurons during the learning phase, enabling gradual decorrelation

and specialization of the code vectors that neurons learn. The

mechanism is described by the following equation:

τw
dwji

dt
= −cmax − wji (5)

where τw is the time constant of the homeostatic mechanism. We

set τw to one-third of the total learning phase duration to ensure

wji ≈ −cmax is reached by the end of the learning phase. Given an

encoding time window of T and P input vectors, the time constant

is then given by τw = 1/3× T × P.

3 Experimental protocol and results

3.1 Metrics for performance evaluation

We report experiments of representation learning with visual

data in this section. A first natural objective is to evaluate

the quality of visual representations learned by neurons in the

representation layer v. For this, we use the Root Mean Square

(RMS) reconstruction error between an input vector and the

code vector of the associated SBMU, comparing the original and

reconstructed image patches.

The Structural Similarity Index Measure (SSIM) is another

measure that gauges the structural similarity between two images,

rather than pixel-by-pixel difference as done by the Peak Signal-to-

Noise Ratio (PSNR) measure based on RMS error. However, SSIM

is not used in works related to ours, making it difficult to compare

our performances. Furthermore, studies (Horé and Ziou, 2010;

Dosselmann and Yang, 2011) have revealed analytical and statistical

links between PSNR (based on RMS) and SSIM, indicating that

their differences essentially stem from their sensitivity to image

degradation. More generally, there is currently no satisfactory

visual quality measure that fully captures human perception.

Hence, in addition to the RMS reconstruction error used in

our quantitative analysis, we provide a qualitative evaluation that

visually examines the learned representations and the resulting

reconstructed images.

Related works (Burbank, 2015; Tavanaei et al., 2018) use

a correlation coefficient-based similarity measure for evaluating

visual representation quality. However, we forgo this measure

due to its high sensitivity to outliers (Jenkin et al., 1991; Yen

and Johnston, 1996), interpretational challenges (Lee Rodgers and

Nicewander, 1988), and technical limitations, such as undefined

coefficients for image patches with uniform intensity—a common

occurrence in the MNIST database, particularly with pure white

patches.

Beyond the quality of learned representations, we also evaluate

additional SNN characteristics, such as the sparsity of activity in

the representation layer and the Euclidean incoherence in the self-

organized election process of the SBMU—a new measure that we

introduce subsequently. The RMS reconstruction error, sparsity,

and incoherence provide insights into the accuracy, efficiency, and

self-organization capability of the SNN.

3.1.1 Mean squared error
We use the Root Mean Squared (RMS) error to quantify the

difference between an input image patch ap and a reconstructed

patch âp (6):

RMS =
1

P

P
∑

p=1

√

√

√

√

1

k

k
∑

i=1

(ai,p − âi,p)2 (6)

Here, k is the number of pixels in a patch and P is the number

of patches, and ai,p is the ith pixel of ap.

Recall that each dimension i ∈ 1, 2, ..., k of an input patch

is distributed among l encoding neurons in the encoding layer.

Each of the z ∈ 1, 2, ..., l encoding neurons has an associated

preferential value µz ∈ µ1,µ2, ...,µl. The encoding layer is fully

connected to the representation layer in an all-to-all relationship.

Each postsynaptic neuron in the representation layer is thus

connected to k ∗ l presynaptic neurons in the encoding layer.

Each dimension i ∈ 1, 2, ..., k of the reconstructed patch âi,p—

corresponding in our case to the intensity of a pixel—is decoded

from the distribution of l synaptic weights wi
1,w

i
2, ...,w

i
l
associated

with it. The decoding method is based on the circular mean of

neurons’ preferred directions, weighted by their weight values, as

exposed below (see Figure 5). The underlying principle is that the

neural code exhibits unimodality (convexity) due to the presence of

circular Gaussian receptive fields. This distribution of spike timings

is mirrored in a unimodal synaptic weight distribution in the

learned weights, a result of our STDP rule (see Figure 4). Therefore,

we employed a circular weighted mean to decode the empirical

mean. Interestingly, this decoding method has been successfully

employed to decode the direction of armmovement from neuronal

populations activity in the primate motor cortex (Georgopoulos

et al., 1986).

The first step of the decoding process is to transform each

preferential value µz ∈ µ1,µ2, ...,µl of the presynaptic neurons

into an angle θz (preferred direction):

θz = 2πµz

We then calculate the weighted mean of the Cartesian

coordinates xi and yi from the angles θz (angular coordinates) and

Frontiers inComputationalNeuroscience 07 frontiersin.org103

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 5

Decoding process. Left: The relative spike timing relationships of the spike patterns are stored in the weights. Middle: We can replace the index of a

neuron with its associated preferential value µ. Right: The decoding process involves using a circular mean of the encoding neuron’s preferential

values, weighted by the weights values, to map the stored representation back to the input space. In this example the value 0.41 was decoded from

the weights.

the synaptic weights wi
z associated with pixel i of the SBMU (radial

coordinates).

with wi
z = wsbmu,(i−1)l+z

xi =
1

1 i

l
∑

z=1

wi
z cos(θz)

yi =
1

1 i

l
∑

z=1

wi
z sin(θz)

1i =

l
∑

z=1

wi
z

We calculate a new angle θi from the Cartesian coordinates xi
and yi. This angle θi corresponds to the weighted circular mean:

θi = atan2
(

−yi,−xi
)

+ π

We end with an inverse transformation, transforming the angle

θi ∈ [0, 2π] into the normalized intensity of a pixel in the

reconstructed patch âi,p ∈ [0, 1] :

âi,p =
θi

2π

3.1.2 Sparsity
Sparsity is not evaluated on the encoding layer but on the

output layer, i.e., the representation layer. Sparsity corresponds to

the percentage of active neurons for an input vector during the

encoding time window T:

Sparsity =
1

m
Nimp (7)

wherem is the number of neurons, andNimp is the number of spikes

emitted by the m neurons in response to an input vector over the

time window T. A low value indicates a large number of inactive

neurons and therefore a high sparsity.

3.1.3 Coherence in the election of the SBMU
The Best Matching Unit (BMU) in traditional Vector

Quantization models like the Self-Organizing Map (Kohonen,

2013), is selected each iteration using global network information.

However, in our SNN, the Spiking Best Matching Unit (SBMU)

selection is a dynamic and self-organized process influenced by

neuron competition to represent the current input.

To assess the coherence of this self-organized SBMU selection

compared to a Euclidean distance-based selection, we introduce a

measure of incoherence. This measure evaluates if the SBMU is

among the best representatives minimizing the Euclidean distance

between the reconstructed patch from the SBMU and the input.

Firstly, we define a function d which, for a given input vector,

calculates the normalized Euclidean distance between the input

vector and the associated code vector of a neuron indexed j ∈

1, . . . ,m in the representation layer:

d : 1, . . . ,m→ [0, 1]

Then, all distances d(j) are computed, and pairs
[

j, d(j)
]

for

j = 1, . . . ,m are sorted in increasing distance order, resulting in

an ordered list
[

jp, d(jp)
]

, where p = 1, . . . ,m, and jp denotes a pair

index in the list:

∀p < m d(jp+1) ≥ d(jp) and {jp|p = 1, · · · ,m} = {1, · · · ,m}

Next, we assess if the index of the selected SBMU lies within

the top x% of the ordered list. If yes, we increment the coherent

SBMU count (sc), otherwise the paradoxical SBMU count (sp) is

incremented. This check is repeated for each input vector to classify

the elected SBMU as coherent or paradoxical. The top x% of the list

sets the tolerance threshold for distinguishing between a coherent

and paradoxical SBMU.

if sbmu ∈ jp | p ∈ 1, . . . , ⌈mx⌉, then sc← sc+ 1

else sp← sp+ 1

Frontiers inComputationalNeuroscience 08 frontiersin.org104

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

TABLE 1 W-TCRL parameters used in all simulations.

Neuronal parameters

dt τ u
m τ v

m Vu
θ Vv

θ Tu
refrac Tv

refrac

0.1 ms 10.0 ms 1.4 ms 0.5 0.25 kl 6 ms 6 ms

Synaptic parameters

τf (u to v) τf (v to v) τx τy

2.8 ms 0.3 ms 1.3 ms 4.3 ms

STDP rule parameters

α+ α− woffset ǫ

0.004 0.024 0.2 0.1

Homeostatic mechanism parameters

τw cmin cmax

1/3 TP 9 Vv
θ 91 Vv

θ

Lastly, the incoherence measure is defined, with sc and sp

denoting the total number of coherent and paradoxical SBMU,

respectively:

Incoherence = 1−
sc

sc+ sp

High incoherence may for instance potentially lead to a high

root mean square (RMS) reconstruction error.

3.2 Parameters of W-TCRL

A common challenge in training spiking neural networks

(SNNs) is their limited adaptability to varying data

dimensionalities, often requiring extensive hyperparameter

tuning.

To address this issue, we propose a generic parametrization

approach for the W-TCRL model that can handle arbitrary data

dimensionalities, denoted as k. Only three parameters in the

representation layer, namely the neuron firing threshold Vv
θ , the

initial lateral inhibition level cmin, and the final inhibition level

cmax, depend on the data dimensionality. For simplicity, we assume

a linear relationship between the data dimensionality k and these

three parameters.

In our parametrization, each encoder neuron emits a single

spike to represent a continuous input, and the total number

of spikes in the encoding layer is proportional to the data

dimensionality k, given by k × l, where l represents the number

of neurons used to represent each dimension of the input space. As

spikes are weighted by synaptic weights within the range of [0, 1],

a neuron can only fire if its firing threshold Vv
θ is set to c × k × l,

where c is a coefficient ranging from 0 to 1.

Additionally, to maintain a Winner-Take-All (WTA) behavior

in the representation layer, it is crucial to calibrate the lateral

inhibition level based on the data dimensionality. This ensures that

the inhibition level is sufficiently high to prevent other neurons

from reaching their firing threshold Vv
θ .

We determined the coefficients of the linear equations relating

these three parameters to the input data dimensionality k and

the number of encoder neurons l using the Bayesian optimization

method known as Tree-structured Parzen Estimator (TPE)

(Bergstra et al., 2011). Our objective was to minimize the root mean

square (RMS) reconstruction error on the MNIST and natural

image datasets, considering input vectors with varying dimensions.

The aim was to obtain generic and robust coefficients capable of

handling diverse input data distributions and dimensionalities.

By incorporating the optimized coefficient values into the

linear equations, the values of the three hyperparameters can be

determined as follows:

Vv
θ = 0.25kl (8)

cmin = 9Vv
θ (9)

cmax = 91Vv
θ (10)

The parameters of W-TCRL used in all simulations are given in

Table 1.

3.3 Results for MNIST

Experiments were run with varying network sizes with m ∈

{16, 32, 64, 128, 256} neurons in the representation layer and

therefore m code vectors submitted to learning. Each experiment

was evaluated with 30 independent simulations. For a fair

comparison with the state of the art set by Tavanaei et al. (2018),

we used the same experimental protocol, including the lack of

cross-validation.

Synaptic weights between the encoding layer u and the

representation layer v are randomly initialized in the interval

[0.6, 0.8]. The inputs are normalized within the interval [0.15, 0.85].

We introduce a margin due to the projection of linear input

data onto a circular space (receptive fields) where extreme values

become equivalent (2 π is equivalent to 0 radians). In addition,

MNIST is essentially composed of extreme values (black and white

pixels).

For training and testing, subsets of 15,000 and 1,000

handwritten digits were respectively used. These subsets provided

Frontiers inComputationalNeuroscience 09 frontiersin.org105

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

5 × 5 pixel patches extracted from 28 × 28 pixel digits as SNN

inputs. The dimension-dependent parameters Vv
θ , cmin, cmax were

automatically determined for 5× 5 = 25 dimensions by Equations

(8), (9), (10).

In the training phase, 60,000 image patches were utilized, while

the test phase held the lateral inhibition in the representation layer

at its maximum (cmax), with plasticity disabled.

Performance was assessed based on the three aforementioned

metrics: the RMS reconstruction error between an input vector and

the code vector of the SBMU, the sparsity of the representation layer

activity, and the incoherence in the self-organized process of SBMU

election.

3.3.1 Learning phase
Figure 6 shows that the different performance measures

consistently enhance with the progression of learning

iterations, and also with an increasing number of neurons

m ∈ {16, 32, 64, 128, 256} in the representation layer v. The RMS

reconstruction error decreases, indicating that W-TCRL learns to

compress the distribution of input data, reaching a relatively stable

plateau after 8,000 iterations with an RMS error of about 0.08 for

m ∈ {64, 128, 256} neurons. The sparsity also decreases, indicating

that the percentage of neurons firing in the representation layer

v decreases in response to an input vector. This is attributed to

heightened lateral inhibition through homeostasis and increased

neuronal specialization. Lastly, Euclidean incoherence in the

SBMU election process reduces through training iterations

for a decision threshold x at 5 and 10%, signaling fewer

paradoxical SBMUs and improved neuronal receptive field

selectivity for specific input regions. This shows that the first firing

neuron is, on average, an accurate representative of the input

spike pattern.

Figure 6 shows that the code vectors in the

representation layer gradually become selective to

FIGURE 6

Performance for MNIST during the training phase. Top: Average model performance for di�erent network size through training iterations in terms of

RMS reconstruction error, sparsity, and incoherence for a decision threshold x at 5 and 10%. Bottom: Decoded code vectors for m = 64 neurons

after 0, 100, ..., 60,000 training iterations. The blue-red gradient represent minimum and maximum values, respectively.

Frontiers inComputationalNeuroscience 10 frontiersin.org106

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 7

Performance for MNIST during the testing phase. Top left: Average model performance for di�erent network size in terms of RMS reconstruction

error, sparsity and incoherence for a decision threshold x at 5 % and 10 %. Error bars show standard error of the mean for 30 independent runs. Top

right: Set of original images presented as input to the SNN and reconstructed using the code vectors of neurons in the representation layer, with

m = 128 neurons. Bottom: Average model performance for di�erent noise levels g with m = 128 neurons. Error bars show standard error of the

mean for 30 independent runs.

various visual orientations over the course of the

learning iterations.

3.3.2 Testing phase
We now evaluate the performance of W-TCRL on the test

dataset for MNIST. The achieved performances all increase with

the capacity of the SNN (see Figure 7). The average sparsity for

m = 256 neurons reaches a value of 0.004, meaning that only 0.4%

of the neurons in the representation layer are active on average.

Self-organized SBMU selection is achieved with up to 99.0% of

coherent SBMU for a decision threshold of 5% and m = 256

neurons. The best RMS reconstruction error reaches the value of

0.08 (see Table 2). This represents a relative improvement of 53%

Frontiers inComputationalNeuroscience 11 frontiersin.org107

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

TABLE 2 Average results on 30 independent runs obtained on MNIST and natural images datasets for a given number of neuronsm ∈

{16, 32, 64, 128, 256}.

Dataset MNIST Natural images

Neurons m 16 32 64 128 256 16 32 64 128 256

RMS 0.144 0.102 0.087 0.080 0.078 0.164 0.138 0.061 0.056 0.056

Sparsity 0.062 0.032 0.016 0.009 0.004 0.255 0.234 0.141 0.076 0.043

Incoherence 5 % 0.134 0.063 0.026 0.015 0.010 0.516 0.473 0.361 0.275 0.224

Incoherence 10 % 0.092 0.031 0.012 0.005 0.003 0.378 0.344 0.271 0.176 0.064

TABLE 3 Best RMS reconstruction errors reported by Tavanaei et al.

(2018) are compared to our model W-TCRL.

Dataset Tavanaei W-TCRL (our
model)

MNIST 0.17 0.08

Natural images 0.24 0.06

Bold values represent the performances of our model.

compared to the SNN state-of-the-art (see Table 3) for learning

representations using the MNIST dataset.

The reconstruction of images from the self-organized elected

code vectors found by W-TCRL produces well-reconstructed

handwritten digits, comparable to the original images (see

Figure 7). The quality of the reconstructed digits demonstrates the

effectiveness of our SNN architecture in capturing and representing

the visual information accurately.

We also tested the robustness of our network’s ability to learn

under noise (see Figure 7). During the training phase, we varied

the white noise scaling factor g in the range [0, 1.5], resulting in

spike jitter up to around 5 ms in spikes outputted by the encoding

layer. The performance remains consistent across the different

metrics for values of g up to 0.5, demonstrating that noise doesn’t

prevent neurons in the representation layer from learning statistical

correlations from input spikes. However, with g > 1.2, the noise

becomes too strong. It destroys the temporal information contained

in the spike pattern. Consequently, the neurons fail to extract

meaningful representations (high RMS reconstruction error), tend

to fire simultaneously (low sparsity), and lose their selectivity (high

incoherence).

3.4 Results for natural images

As for MNIST, experiments for the natural images dataset were

conducted for several network sizes with m ∈ {16, 32, 64, 128, 256}

neurons in the representation layer and thus m code vectors

subject to learning. Each experiment was evaluated with 30

independent simulations.

The synaptic weights between the encoding layer u and the

representation layer v are randomly initialized in the interval

[0.6, 0.8]. Input normalization was performed to scale inputs within

the interval [0.05, 0.95]. 16 × 16 pixel patches, extracted from

natural images of 512 × 512 pixels, are provided as input vectors

to the SNN. The dimension-dependent parameters Vv
θ , cmin, cmax

were automatically determined for 16 × 16 = 256 dimensions

using Equations (8), (9), (10). A total of 60,000 image patches

are provided to the SNN during the training phase. In the test

phase, lateral inhibition in the representation layer v was set to its

maximum value, cmax, and plasticity was disabled.

Similarly to the previous section, we evaluated the performance

of W-TCRL using the same three metrics: the root mean squared

(RMS) reconstruction error, the sparsity of the representation layer

activity, and the Euclidean incoherence of the SBMU.

3.4.1 Training phase
As depicted in Figure 8 the performance measures for the

natural images dataset in the training process consistently

improve as the number of neurons in the representation layer

increases. When the network capacity is too small, specifically

with 16 and 32 neurons in the representation layer, the RMS

reconstruction error is significantly degraded. In the case of

higher network capacities, specifically with 64, 128, and 256

neurons in the representation layer, the RMS reconstruction error

exhibits a consistent decrease throughout the training process.

After approximately 6,000 iterations, the RMS error reaches a

stable plateau, converging to a value of approximately 0.06. The

sparsity of the representation layer activity decreases over the

course of training, reaching a plateau after 6,000 iterations. The

euclidian incoherence of the SBMU election decreases when

using a decision threshold of 5% and 10%, but the euclidian

incoherence exhibits more fluctuations compared to the results

obtained for the MNIST dataset. This observation can be attributed

to the high dimensionality of the input data (256 dimensions),

which causes the Euclidean distances to become concentrated

and thus difficult to distinguish. This hypothesis is further

supported by a low RMS reconstruction error and its low

fluctuation.

Figure 8 demonstrates that the code vectors in the

representation layer exhibit an increasing selectivity toward

visual patterns as the number of training iterations increases.

3.4.2 Testing phase
We now evaluate the performance of W-TCRL on the test

dataset for natural images. The obtained performance increases

as the capacity of the SNN increases, i.e., the number of

neurons m ∈ {16, 32, 64, 128, 256} in the representation layer

Frontiers inComputationalNeuroscience 12 frontiersin.org108

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 8

Performance for natural images during the training phase. Top: Average model performance for di�erent network size through training iterations in

terms of RMS reconstruction error, sparsity, and incoherence for a decision threshold x at 5 and 10%. Bottom: Decoded code vectors for m = 64

neurons after 0, 100, ..., 60,000 training iterations. The blue-red gradient represent minimum and maximum values, respectively.

(see Figure 9). The average sparsity for m = 256 neurons

reaches a value of 0.04 indicating that only 4% of the neurons

in the representation layer are active on average. The self-

organized election of the SBMU is achieved with up to 95.6%

of coherent SBMU for a decision threshold of 10% and

m = 256 neurons. The RMS reconstruction error reaches a

plateau at 0.06 for m ∈ {64, 128, 256} neurons (see Table 2).

This represents a relative improvement of 75% compared to

the SNN state of the art (see Table 3) for this dataset of

natural images.

Figure 9 demonstrates that the self-organized elected code

vectors of W-TCRL yield reconstructed images that closely

resemble the original images (though the visual quality inherently

suffers from large sizes of patches, regardless of the model used for

representation learning).

4 Discussion

In contrast to rate-based encoding methods, which require up

to 255 spikes for an 8-bit pixel value (King et al., 2013; Burbank,

2015; Tavanaei et al., 2018), our approach employs latency-based

encoding with population coding (Ebitz and Hayden, 2021). This

method uses 10 neurons per input coordinate, each emitting a

single spike, resulting in a sparse and efficient encoding with only

10 spikes.

Our encoding method diverges from the widely used Time-

To-First-Spike (TTFS) coding, which necessitates knowledge of

stimulus onset timing. This information is available to the

experimenter but not the neurons, which makes it biologically

implausible. In contrast, our use of population coding embeds

information within the spike pattern itself, specifically in the

Frontiers inComputationalNeuroscience 13 frontiersin.org109

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

FIGURE 9

Performance for natural images during the testing phase. Left: Average model performance for di�erent network size in terms of RMS reconstruction

error, sparsity and incoherence for a decision threshold x at 5 and 10%. Error bars show standard error of the mean for 30 independent runs. Right:

Set of original images presented as input to the SNN and reconstructed using the code vectors of neurons in the representation layer, with m = 128

neurons.

timing relative to other neurons in the population. This allows

downstream neurons to process these spike patterns in an event-

based manner. More generally, population-based latency coding

can be viewed as an extension of TTFS. It provides a more

flexible representation by distributing information across multiple

dimensions (population of neurons) rather than one (single

neuron). This enhances flexibility and transmission speed with

minimal extra spikes. Although population-based latency coding

does not require an external time reference, it does need an internal

one, similar to rate coding which needs a temporal window for

averaging spikes. As Zhou et al. (2012) noted, the brain may

generate several internal time references, including large-scale

oscillations (Hopfield, 1995), local field potentials (Eggermont,

1998), and population onsets (Stecker and Middlebrooks, 2003;

Chase and Young, 2007).

One limitation of latency-coding is its sensitivity to noise (Guo

et al., 2021). This issue is not exclusive to this coding scheme.

All neural codes relying on precise spike timing are vulnerable to

noise and jitter. A potential solution is to pool information from a

neuron population, as we have done, instead of relying on a single

neuron as in TTFS. Our experimental results demonstrate that

the combination of population-based latency coding with our new

STDP rule makes the model quite robust in learning from noisy

input spike patterns. The correlation among a neuron population

can establish an error-correcting code that mitigates noise effects.

This is because the spike timing jitter in relation to other neurons

could be less than the jitter referenced to the onset of the stimulus

(Zhou et al., 2012).

The extraction of representations from a temporal code

lacked event-based local learning rules aimed at achieving low

reconstruction error. Our work bridges this gap by introducing

a novel STDP rule that extracts spatio-temporal centroids.

This simple rule enables stable learning of the distribution

of relative latencies within the synaptic weight distribution.

Unlike backpropagation algorithms, which require costly global

information transport and significant memory for sequence history

storage, our STDP rule operates on an event-based and local level

in both time and space. The event-based and local operations of

our STDP rule align well with the principles of asynchrony and

locality inherent in neuromorphic processors (Davies et al., 2018).

This makes our STDP rule an ideal fit for such implementations.

Early presynaptic spikes, carrying the most input information,

trigger the first (causal) case of weight adaptation on postsynaptic

spikes, leading to synaptic weights wji > 0. The learned weight

wji is a function of the latency 1t = tpost − tpre between the

pre and postsynaptic spikes. Earlier spikes result in higher weights

and have a greater impact on postsynaptic spike emission. This

differs from the classical STDP rule, which maximizes weight

strengthening for late-arriving spikes (tpre ≈ tpost) and usually

leads to weight saturation rather than converging to a stable value.

Later presynaptic spikes, containing less information, trigger the

second (anti-causal) case of weight adaptation, causing synaptic

depression (wji → 0). Through these adaptations, a postsynaptic

neuron learns a code vector or filter in its afferent synaptic

weights. This facilitates rapid decision-making before receiving all

presynaptic spikes, thereby accelerating the SNN’s processing speed

and mirroring biological neurons.

Rank-order TTFS coding (Thorpe and Gautrais, 1998) follow

a similar approach to build detectors, where the weights decrease

linearly with the spike rank. The synaptic weights are M

(maximum) for the first spike, thenM-1, ...,1. This approach focuses

on the spike order rather than their precise timings, contrary to

the basis of our approach. An accompanying modulation function

emphasizes the importance of earliest spikes. The conjunction

of a set of weights and a modulation function allows to build

accurate detectors of spike patterns (Bonilla et al., 2022). This

modulation function concept can be related to other TTFS coding

works that utilize precise spike timing for supervised learning

Frontiers inComputationalNeuroscience 14 frontiersin.org110

https://doi.org/10.3389/fncom.2023.1250908
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

tasks (Rueckauer and Liu, 2018; Zhang et al., 2022; Sakemi et al.,

2023). These studies enhance the impact of the earliest spike by

linearly increasing the postsynaptic potential (PSP) over time. Our

model naturally achieves a similar effect through the CuBa LIF

model. The PSP shape of the CuBa LIF is determined by the

ratio τf /τm of the synapse’s exponential decay time constant to

that of the neuron (Göltz et al., 2021). By selecting τf > τm as

done in our experiments, the earliest spikes have a greater impact

on the postsynaptic neuron response due to their influence being

integrated over a longer period.

To implement competitive learning among neurons in the

representation layer, our SNN incorporates lateral inhibitory

connections. During the learning phase, a mechanism is employed

to initially recruit multiple neurons, which accelerates the

convergence of the SNN. Subsequently, the number of recruited

neurons gradually decreases to promote specialization and

decorrelation of the learned code vectors. This behavior is achieved

through a homeostatic mechanism that increases the magnitudes

of inhibitory lateral weights. As a result, the circuit transitions

dynamically from a k-winners-take-all (k-WTA) to a winner-take-

all (WTA) behavior, thereby increasing the sparsity of activity in the

representation layer.

While representation learning in ANNs is a mature field,

achieving good performance with SNNs remains challenging. Our

W-TCRL model, based on temporal coding and a novel STDP rule,

outperforms the state-of-the-art of SNNs using a rate-based coding

approach by Tavanaei et al. (2018) in terms of RMS reconstruction

error. Our method exhibits a relative improvement of 53% for

MNIST and 75% for natural images. The reconstructed images

exhibit a good visual quality compared to the original images.

The representation layer exhibits a highly sparse activity during

inference, a desirable feature (Frenkel, 2021). For instance, on the

MNIST dataset with m = 256 neurons, the average sparsity is

0.004, indicating that only 0.4% of neurons in the representation

layer fire. Notably, neurons in the representation layer fire only

once, distinguishing our approach from rate coding methods. In

the work of Tavanaei et al. (2018), sparsity was averaged over a

time window of T = 40 time steps for a given number of neurons

m. The reported best sparsity of 9% implies that, on average, 9%

of neurons fire at each time step within the encoding window

T. In contrast, in our temporal coding-based SNN, a sparsity of

0.4% means that 0.4% of neurons fire a single time during the

encoding window T. Therefore, based on the best reported sparsity

by Tavanaei et al. (2018), a neuron fires an average of 0.09∗40 = 3.6

spikes during the temporal window T. In contrast, based on our

best sparsity results, a neuron emits an average of 0.004 spikes

during the temporal window T. Thus, our method achieves up to

900 times fewer spikes emitted per neuron in the representation

layer on average, providing substantial benefits in terms of energy

consumption and bandwidth in spike communication protocols

such as AER, while improving the RMS reconstruction error. This

empirical evidence confirms the benefits of using temporal codes

compared to rate coding.

Lastly, the self-organized selection of the Spiking BestMatching

Unit (SBMU) in our SNN achieves up to 99.0% coherent SBMUs

(forMNISTwithm = 256 neurons and a decision threshold x set to

5%). The high coherence of the SBMUs indicates that the neurons

in the representation layer have developed a high level of selectivity

for specific regions within the spatio-temporal input space. This

selectivity results in an effective clustering of the spatio-temporal

input space.

Future research should prioritize implementing our spiking

representation learning model on neuromorphic processors

(Davies et al., 2018) to enable real-time, low-power, and high-

throughput processing, taking advantage of their parallelism and

efficiency. Additionally, exploring the unsupervised extraction

of hierarchical representations from sensory data by stacking

multiple layers using our STDP rule can uncover more complex

and abstract features in self-organizing SNN architectures. This

unsupervised approach is exemplified by the HOTS architecture

(Lagorce et al., 2017), which employs a three-layer stack for

unsupervised feature extraction, with the final layer’s output fed to

a simple histogram classifier that achieves near 100 % accuracy on

DVS datasets.

Data availability statement

Publicly available datasets were analyzed in this study. These

data can be found at: MNIST: http://yann.lecun.com/exdb/mnist/;

Natural Images: http://www.rctn.org/bruno/sparsenet/.

Author contributions

AF was the originator of the W-TCRL model. AF and BG

developed its formalized expression and its analysis. AF carried

out all simulations, and wrote the manuscript with contributions

of BG. Both authors contributed to the article and approved the

submitted version.

Funding

This work has been supported by ANR project SOMAANR-17-

CE24-0036.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputationalNeuroscience 15 frontiersin.org111

https://doi.org/10.3389/fncom.2023.1250908
http://yann.lecun.com/exdb/mnist/
http://www.rctn.org/bruno/sparsenet/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fois and Girau 10.3389/fncom.2023.1250908

References

Bengio, Y., Courville, A. C., and Vincent, P. (2013). Representation learning: a
review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). “Algorithms for hyper-
parameter optimization,” in Advances in Neural Information Processing Systems 24, eds
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger
(Granada: Curran Associates Inc.), 2546–2554.

Billings, G., and van Rossum,M. C.W. (2009). Memory retention and spike-timing-
dependent plasticity. J. Neurophysiol. 101, 2775–2788. doi: 10.1152/jn.91007.2008

Bonilla, L., Gautrais, J., Thorpe, S., and Masquelier, T. (2022). Analyzing time-
to-first-spike coding schemes: a theoretical approach. Front. Neurosci. 16, 971937.
doi: 10.3389/fnins.2022.971937

Burbank, K. S. (2015). Mirrored STDP implements autoencoder learning
in a network of spiking neurons. PLoS Comput. Biol. 11, e1004566.
doi: 10.1371/journal.pcbi.1004566

Chase, S. M., and Young, E. D. (2007). First-spike latency information in single
neurons increases when referenced to population onset. Proc. Natl. Acad. Sci. U.S.A.
104, 5175–5180. doi: 10.1073/pnas.0610368104

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99.
doi: 10.3389/fncom.2015.00099

Dosselmann, R., and Yang, X. D. (2011). A comprehensive assessment
of the structural similarity index. Signal Image Video Process. 5, 81–91.
doi: 10.1007/s11760-009-0144-1

Ebitz, R. B., and Hayden, B. Y. (2021). The population doctrine in cognitive
neuroscience. Neuron 109, 3055–3068. doi: 10.1016/j.neuron.2021.07.011

Eggermont, J. J. (1998). Azimuth coding in primary auditory cortex of the cat. II.
Relative latency and interspike interval representation. J. Neurophysiol. 80, 2151–2161.

Falez, P., Tirilly, P., Bilasco, I. M., Devienne, P., and Boulet, P. (2019).
Unsupervised visual feature learning with spike-timing-dependent plasticity: how far
are we from traditional feature learning approaches? Pattern Recogn. 93, 418–429.
doi: 10.1016/j.patcog.2019.04.016

Frenkel, C. (2021). Sparsity provides a competitive advantage. Nat. Mach. Intell. 3,
742–743. doi: 10.1038/s42256-021-00387-y

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng. 13,
051001. doi: 10.1088/1741-2560/13/5/051001

Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E. (1986). Neuronal population
coding of movement direction. Science 233, 1416–1419.

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., et al.
(2021). Fast and energy-efficient neuromorphic deep learning with first-spike times.
Nat. Mach. Intell. 3, 823–835. doi: 10.1038/s42256-021-00388-x

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding in
spiking neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. 15, 638474. doi: 10.3389/fnins.2021.638474

Hopfield, J. J. (1995). Pattern recognition computation using action potential timing
for stimulus representation. Nature 376, 33–36.

Horé, A., and Ziou, D. (2010). “Image quality metrics: PSNR vs. SSIM,” in 20th
International Conference on Pattern Recognition, ICPR 2010 (Istanbul: IEEE), 2366–
2369.

Jenkin, M. R. M., Jepson, A. D., and Tsotsos, J. K. (1991). Techniques for disparity
measurement. CVGIP Image Understand. 53, 14–30.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., andMasquelier, T. (2018). STDP-
based spiking deep convolutional neural networks for object recognition.Neural Netw.
99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for
spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30, 2050027:1–
2050027:16. doi: 10.1142/S0129065720500276

King, P. D., Zylberberg, J., and DeWeese, M. R. (2013). Inhibitory interneurons
decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
J. Neurosci. 33, 5475–5485. doi: 10.1523/JNEUROSCI.4188-12.2013

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Netw. 37, 52–65.
doi: 10.1016/j.neunet.2012.09.018

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R. B. (2017). HOTS:
a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

Lee Rodgers, J., and Nicewander, W. A. (1988). Thirteen ways to look at the
correlation coefficient. Am. Stat. 42, 59–66.

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front. Neurosci.
14, 119. doi: 10.3389/fnins.2020.00119

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and
Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-
modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.
doi: 10.1109/TNNLS.2018.2826721

Patel, D., Hazan, H., Saunders, D. J., Siegelmann, H. T., and Kozma, R. (2019).
Improved robustness of reinforcement learning policies upon conversion to spiking
neuronal network platforms applied to Atari Breakout game. Neural Netw. 120,
108–115. doi: 10.1016/j.neunet.2019.08.009

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a
model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682.
doi: 10.1523/JNEUROSCI.1425-06.2006

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) (Florence: IEEE), 1–5.

Rumbell, T., Denham, S. L., and Wennekers, T. (2014). A spiking self-organizing
map combining STDP, oscillations, and continuous learning. IEEE Trans. Neural Netw.
Learn. Syst. 25, 894–907. doi: 10.1109/TNNLS.2013.2283140

Sakemi, Y., Morino, K., Morie, T., and Aihara, K. (2023). A Supervised learning
algorithm for multilayer spiking neural networks based on temporal coding toward
energy-efficient VLSI processor design. IEEE Trans. Neural Netw. Learn. Syst. 34,
394–408. doi: 10.1109/TNNLS.2021.3095068

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Stecker, G. C., and Middlebrooks, J. C. (2003). Distributed coding
of sound locations in the auditory cortex. Biol. Cybernet. 89, 341–349.
doi: 10.1007/s00422-003-0439-1

Tavanaei, A., Masquelier, T., and Maida, A. (2018). Representation learning using
event-based STDP. Neural Netw. 105, 294–303. doi: 10.1016/j.neunet.2018.05.018

Thorpe, S. J., and Gautrais, J. (1998). “Rank order coding,” in Computational
Neuroscience, ed J. M. Bower (Boston, MA: Springer US), 113–118.

Yen, E. K., and Johnston, R. G. (1996). The Ineffectiveness of the Correlation
Coefficient for Image Comparisons. Technical Report LA- UR-96-2474, Los Alamos,
NM.

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z.,
et al. (2022). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Zhou, Y., Mesik, L., Sun, Y. J., Liang, F., Xiao, Z., Tao,
H. W., et al. (2012). Generation of spike latency tuning by
thalamocortical circuits in auditory cortex. J. Neurosci. 32, 9969–9980.
doi: 10.1523/JNEUROSCI.1384-12.2012

Frontiers inComputationalNeuroscience 16 frontiersin.org112

https://doi.org/10.3389/fncom.2023.1250908
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1152/jn.91007.2008
https://doi.org/10.3389/fnins.2022.971937
https://doi.org/10.1371/journal.pcbi.1004566
https://doi.org/10.1073/pnas.0610368104
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1007/s11760-009-0144-1
https://doi.org/10.1016/j.neuron.2021.07.011
https://doi.org/10.1016/j.patcog.2019.04.016
https://doi.org/10.1038/s42256-021-00387-y
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1523/JNEUROSCI.4188-12.2013
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1016/j.neunet.2019.08.009
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1109/TNNLS.2013.2283140
https://doi.org/10.1109/TNNLS.2021.3095068
https://doi.org/10.1038/78829
https://doi.org/10.1007/s00422-003-0439-1
https://doi.org/10.1016/j.neunet.2018.05.018
https://doi.org/10.1109/TNNLS.2021.3110991
https://doi.org/10.1523/JNEUROSCI.1384-12.2012
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 05 January 2024

DOI 10.3389/fnins.2023.1291051

OPEN ACCESS

EDITED BY

Priyadarshini Panda,

Yale University, United States

REVIEWED BY

Garrick Orchard,

Facebook Reality Labs Research, United States

Yujie Wu,

Tsinghua University, China

Qi Xu,

Dalian University of Technology, China

*CORRESPONDENCE

Ying Fang

fy20@�nu.edu.cn

Qifeng Li

liqf@nercita.org.cn

RECEIVED 08 September 2023

ACCEPTED 06 December 2023

PUBLISHED 05 January 2024

CITATION

Li H, Wan B, Fang Y, Li Q, Liu JK and An L (2024)

An FPGA implementation of Bayesian inference

with spiking neural networks.

Front. Neurosci. 17:1291051.

doi: 10.3389/fnins.2023.1291051

COPYRIGHT

© 2024 Li, Wan, Fang, Li, Liu and An. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

An FPGA implementation of
Bayesian inference with spiking
neural networks

Haoran Li1, Bo Wan2,3, Ying Fang4,5*, Qifeng Li6*, Jian K. Liu7 and

Lingling An1,2

1Guangzhou Institute of Technology, Xidian University, Guangzhou, China, 2School of Computer

Science and Technology, Xidian University, Xi’an, China, 3Key Laboratory of Smart Human Computer

Interaction and Wearable Technology of Shaanxi Province, Xi’an, China, 4College of Computer and

Cyber Security, Fujian Normal University, Fuzhou, China, 5Digital Fujian Internet-of-Thing Laboratory of

Environmental Monitoring, Fujian Normal University, Fuzhou, China, 6Research Center of Information

Technology, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research

Center for Information Technology in Agriculture, Beijing, China, 7School of Computer Science,

University of Birmingham, Birmingham, United Kingdom

Spiking neural networks (SNNs), as brain-inspired neural network models based

on spikes, have the advantage of processing information with low complexity

and e�cient energy consumption. Currently, there is a growing trend to design

hardware accelerators for dedicated SNNs to overcome the limitation of running

under the traditional von Neumann architecture. Probabilistic sampling is an

e�ective modeling approach for implementing SNNs to simulate the brain to

achieve Bayesian inference. However, sampling consumes considerable time. It is

highly demanding for specific hardware implementation of SNN sampling models

to accelerate inference operations. Hereby, we design a hardware accelerator

based on FPGA to speed up the execution of SNN algorithms by parallelization.

We use streaming pipelining and array partitioning operations to achieve model

operation acceleration with the least possible resource consumption, and

combine the Python productivity for Zynq (PYNQ) framework to implement the

model migration to the FPGA while increasing the speed of model operations.

We verify the functionality and performance of the hardware architecture on the

Xilinx Zynq ZCU104. The experimental results show that the hardware accelerator

of the SNN sampling model proposed can significantly improve the computing

speed while ensuring the accuracy of inference. In addition, Bayesian inference

for spiking neural networks through the PYNQ framework can fully optimize

the high performance and low power consumption of FPGAs in embedded

applications.Taken together, our proposed FPGA implementation of Bayesian

inference with SNNs has great potential for a wide range of applications, it can

be ideal for implementing complex probabilistic model inference in embedded

systems.

KEYWORDS

spiking neural networks, probabilistic graphical models, Bayesian inference, importance

sampling, FPGA

1 Introduction

Neuroscience research plays an increasingly important role in accelerating and inspiring

the development of artificial intelligence (Demis et al., 2017; Zador et al., 2022). Spikes are the

fundamental information units in the neural systems of the brain (Bialek et al., 1999; Yu et al.,

2020), which also play an important role in information transcoding and representation in

artificial systems (Zhang et al., 2020; Gallego et al., 2022; Xu et al., 2022). Spiking neural

Frontiers inNeuroscience 01 frontiersin.org113

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1291051
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1291051&domain=pdf&date_stamp=2024-01-05
mailto:fy20@fjnu.edu.cn
mailto:liqf@nercita.org.cn
https://doi.org/10.3389/fnins.2023.1291051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1291051/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

networks (SNNs) utilize spikes as brain-inspired models are

proposed as a new generation of computational framework (Maass,

1997). SNNs have received extensive attention and can utilize many

properties of artificial neural networks for deep learning in various

tasks (Kim et al., 2018; Shen et al., 2021; Yang et al., 2022).

Numerous neuroscience experiments (Ernst and Banks, 2002;

Körding and Wolpert, 2004) have shown that the cognitive

and perceptual processes of the brain can be expressed as a

probabilistic reasoning process based on Bayesian reasoning. From

the macroscopic perspective, Bayesian models have explained

how the brain processes uncertain information and have been

successfully applied in various fields of brain science (Shi et al.,

2013; Chandrasekaran, 2017; Alais and Burr, 2019). In contrast,

recent studies focus on implementing SNNs using probabilistic

graphical models (PGMs) at the micro level (Yu et al., 2018a,b,

2019; Fang et al., 2019). However, the realization of PGMs is

considerably slow due to the sampling process. Since probabilistic

sampling on SNNs involves massive probabilistic computations

that can consume a lot of time and many computationally

intensive operations are involved in processing the data in the

neural network, the inference speed will be even slower with

the scale of the problem. In some practical application scenarios

such as medical diagnosis, environmental monitoring, intelligent

monitoring, etc., these problems lead to poor real-time application,

which causes a series of problems. Therefore, we want to do some

acceleration and improvements to meet the demand for speed

in real applications. At present, there are dedicated hardware

designs for SNNs (Cai et al., 2018; Liu et al., 2019; Fang et al.,

2020; Han et al., 2020; Zhu et al., 2022), and for PGMs based on

conventional artificial neural networks (Cai et al., 2018; Liu et al.,

2020; Fan et al., 2021; Ferianc et al., 2021). Yet, there are few

studies for hardware platforms to implement PGM-based SNNs.

Therefore, it is highly demanding and meaningful for hardware

acceleration of PGM-based SNNs, not only for simulation speed-

up but for neuromorphic computing implementation (Christensen

et al., 2022).

In this study, we address this question by utilizing FPGA

hardware to implement a recently developed PGM-badsed SNN

model, named the sampling-treemodel (STM) (Yu et al., 2019). The

STM is an implementation of spiking neural circuits for Bayesian

inference using importance sampling. In particular, The STM is

a typical probabilistic graphical model based on a hierarchical

tree structure with a deep hierarchical structure of layer-on-layer

iteration and uses a multi-sampling mode based on sampling

coupled with population probability coding. Each node in the

model contains a large number of spiking neurons that represent

samples. The STM process information based on spikes, where

spiking neurons integrate input spikes over time and fire a spike

when their membrane potential crosses a threshold. With these

properties, the STM is a typical example of PGM-based SNN for

Bayesian inference. The software implementation of sampling-

based SNN is very time-consuming, and actual tasks are limited

by the model running speed on CPU. Therefore, to fulfill our

requirements for the running speed of the model, it is necessary to

choose a hardware platform for designing a hardware accelerator.

Here we need to consider which hardware platform is chosen

to better implement the design of the accelerator.

ASIC-based design implementations: Compared with general

integrated circuits, ASIC has the advantages of smaller size,

lower power consumption, improved reliability, improved

performance,and enhanced confidentiality. ASICs can also reduce

costs compared to general-purpose integrated circuits in mass

production. Ma et al. (2017) designed a highly-configurable

neuromorphic hardware coprocessor based on SNN implemented

with digital logic, called Darwin neural processing unit (NPU),

which was fabricated as ASIC in SMIS’s 180 nm process for

resource-constrained embedded scenarios. Tung et al. (2023)

proposed a design scheme for a spiking neural network ASIC

chip and developed a built-in-self-calibration (BSIC) architecture

based on the chip to realize the network to perform high-precision

inference under a specified range of process parameter variations.

Wang et al. (2023) proposed an ASIC learning engine consisting of

a memristor and an analog computing module for implementing

trace-based online learning in a spiking neural network, which

significantly reduces energy consumption compared to existing

ASIC products of the same type. However, ASIC requires a long

development cycle and is risky. Once there is a problem, the whole

piece will be discarded. Consequently, we do not consider the use

of ASIC for design here.

FPGA-based design implementations: FPGA has a shorter

development cycle compared to ASIC, is flexible in use, can be used

repeatedly, and has abundant resources.

Ferianc et al. (2021) proposed an FPGA-based hardware

design to accelerate Bayesian recurrent neural networks (RNNs),

it can achieve up to 10 times speedup compared with GPU

implementation.Wang (2022) implemented a hardware accelerator

on FPGA for the training and inference process of Bayesian belief

propagation neural network (BCPNN), and the computing speed

of the accelerator can improve the CPU counterpart by two orders

of magnitude. However, RNN and BCPNN in the above two

designs are essentially traditional neural network architectures,

which are different from the hardware implementation of the

SNN architecture and cannot be directly applied to our SNN

implementation.

In addition, Fan et al. (2021) proposed a novel FPGA-

based hardware architecture to accelerate BNNs inferred through

Monte Carlo, it can achieve up to nine times better compute

efficiency compared with other state-of-the-art BNN accelerators.

Awano and Hashimoto (2023) proposed a Bayesian neural network

hardware accumulator called B2N2, i.e., Bernoulli randomnumber-

based Bayesian neural network accumulator, which reduces

resource consumption by 50% compared to the same type of

FPGA implementation. For the above two designs, the hardware

architecture proposed by Fan and Awano cannot be used for

the acceleration of the STM, because the variational inference

model and the Monte Carlo inference model are not suitable

for importance sampling, but STM needs to be sampled through

importance sampling. In other words, the hardware architecture is

different due to the different models, so we cannot use these two

hardware architectures to accelerate STM on the FPGA.

In summary, many previous designs were implemented on

FPGAs because ASIC is less flexible and complex than FPGAs

(Ju et al., 2020). GPUs often perform very well on applications

that benefit from parallelism, and are currently the most widely

Frontiers inNeuroscience 02 frontiersin.org114

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

used platform for implementing neural networks. However, GPUs

are not able to handle spike communication well in real-time,

while the high energy consumption of GPUs leads to limitations

in some embedded scenarios. Therefore, we chose the FPGA as a

compromise solution, which provides reasonable cost, low power

consumption, and flexibility for our design. Furthermore, for some

FPGA-based design implementations, due to the limitations of the

traditional ANN neural network architecture (Que et al., 2022)

and some inference models are not suitable for sampling (Fan

et al., 2022), we also need to design a hardware implementation

suitable for importance sampling (Shi and Griffiths, 2009). Based

on the above design reference and our previous work that the

STM of a neural network model for Bayesian inference, we finally

chose FPGA to complete the design of the STM accelerator, and

also complete the neural network model construction of Bayesian

inference on FPGA with the help of PYNQ framework to achieve

the acceleration of STM. The overall design idea is as follows.

Firstly, optimize the model inference part of the algorithm to make

full use of FPGA resources to improve program parallelism, thus

reducing the computing delay, and complete the design of custom

hardware IP cores. Secondly, the designed IP core is connected

to the whole hardware system, and the overall hardware module

control is realized according to the preset algorithm flow through

the PYNQ framework.

The main contributions of this work are as follows:

• We are the first work targeting acceleration of STM on

the FPGA board, and the inference results of the STM

implemented on the FPGA are similar to the inference results

implemented by the CPU;

• We implemented the acceleration of the STMon a Xilinx Zynq

ZCU104 FPGA board, and we also found that the acceleration

on the FPGA increases with the problem size, such as the

number of model layers, the number of neurons, and other

factors;

• We demonstrate that the neural circuits we implemented on

the FPGA board can be used to solve practical cognitive

problems, such as the integration of multisensory, it can

also efficiently perform complex Bayesian reasoning tasks in

embedded scenarios.

2 Related work

2.1 Bayesian inference with importance
sampling

Existing neural networks using variational-based inference

methods such as belief propagation (BP) (Yedidia et al., 2005)

and Monte Carlo (MC) (Nagata and Watanabe, 2008) can obtain

accurate inference results in some Bayesian models. However,

most Bayesian models in the real world are more complex.

When using BP (George and Hawkins, 2009) or MCMC (Buesing

et al., 2011) to implement Bayesian model inference, each or

each group of neurons generally has to implement a different

and complex computation in these neural networks. In addition,

since spiking neural networks require multiple iterations to obtain

optimal Bayesian inference results, they are more complicated to

implement. Therefore, STM employs the tree structure of Bayesian

networks to convert global inference into local inference through

network decomposition. Importance sampling is introduced to

perform local inference, which ensures that each group of

neurons works simply, making the model suitable for large-scale

distributed computing.

Unlike the traditional method of sampling from a distribution

of interest, we use importance sampling to implement Bayesian

inference for spiking neural networks, which is a method of

sampling from a simple distribution to achieve the estimation of

a certain function value. When given the variable y, the conditional

expectation of a function f (x) is estimated by importance

sampling as:

E(f (x)|y) =
∑

x

f (x)P(x|y) =

∑

x f (x)P(y|x)P(x)
∑

x P(y|x)P(x)

=
E(f (x)P(y|x))P(x)

E(P(y|x))P(x)
≈

∑

xi

f (xi)
P(y|xi)

∑

xi P(y|x
i)
, xi ∼ P(x).

(1)

where xi follows the distribution P(x). This equation transforms

the conditional expectation E(f (x)|y) into a weighted combination

of normalized conditional probabilities P(y|xi)/
∑

xi P(y|x
i).

Importance sampling can be used to draw a large number of

samples from a simple prior, and skillfully convert the posterior

distribution into the ratio of likelihood, thereby estimating the

expectation of the posterior distribution.

2.2 Sampling-tree model with spiking
neural network

To build a general-purpose neural network for large-scale

Bayesian models, the STM was proposed in the previous work (Yu

et al., 2019), as shown in Figure 1. As a spiking neural network

model for Bayesian inference, STM is also a probabilistic graph

model with an overall hierarchical structure. Each node in the graph

has a large number of neurons as sample data.

The STM is used to explain how Bayesian inference algorithms

can be implemented through neural networks in the brain, building

large-scale Bayesian models for SNN. In contrast to other Bayesian

inference methods, the STM focuses on multiple sets of neurons

to achieve probabilistic inference in PGM with multiple nodes

and edges. Performing neural sampling on deep tree-structured

neural circuits can transform global inference problems into local

inference tasks and achieve approximate inference. Furthermore,

since the STM does not have neural circuits specifically designed

for a specific task, it can be generalized to solve other inference

problems. In summary, the STM is a general neural network model

that can be used for distributed large-scale Bayesian inference.

In this model, the root node of the Bayesian network

is the problem or reason that needs to be inferred in our

experiment, the leaf node represents the information or evidence

we receive from the outside world, and the branch nodes are

the intermediate variable of the reasoning problem. From the

macroscopic perspective, the STM is a probabilistic graphical

Frontiers inNeuroscience 03 frontiersin.org115

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 1

Sampling-tree model. (A) An example of the STM in spiking neural networks. (B) A tree-structured Bayesian network corresponding to the STM in (A).

model with a hierarchical tree structure. From the neuron level,

each node in the model contains a group of spiking neurons,

and multiple connections between these neurons. Each spiking

neuron is regarded as a sample from a special distribution, and the

information transmission or probability calculation in the model is

achieved through the connections between neurons.

2.3 Hardware implementation using PYNQ
framework

PYNQ provides a Jupyter-based framework and Python API

for designing programmable logic circuits using the Xilinx adaptive

computing platform instead of using ASIC-style design tools.

PYNQ consists of three layers: application layer, software layer, and

hardware layer. The overall framework is shown in Figure 2. There

have been many works implementing neural network acceleration

on FPGAs with the help of the PYNQ framework before this.

Tzanos et al. (2019) implemented the acceleration of the

Naive Bayesian neural network algorithm on the Xilinx PYNQ-Z1

board. The hardware accelerator was evaluated on Naive Bayes-

based machine learning applications. Ju et al. (2020) proposed

a hardware architecture to enable efficient implementation of

SNNs and validate it on the Xilinx ZCU102. However, this design

directly mapped each different computing stage to a hardware

layer. Although this approach can improve the parallelism of the

program, this direct mapping method would consume a great

deal of the hardware resources or even exceed them. Awano and

Hashimoto (2020) proposed an efficient inference algorithm for

BNN, named BYNQNet, and its FPGA implementation. TheMonte

Carlo inference method that this design was based on belongs to

variational inference, which is very complicated in implementing

FIGURE 2

Overall framework of using PYNQ to develop Zynq.

larger-scale impulsive neural networkmodels, and theMonte Carlo

inference method is not suitable for sampling models.

In our work, we focus on ensuring the inference accuracy

of the STM on FPGAs while improving performance. Since

the PYNQ framework provides a Python environment that

integrates hardware Overlay for easy porting. And with the PYNQ

framework, we can implement hardware execution in parallel while

creating high-performance embedded applications, and execute

more complex analysis algorithms through Python programs,

the performance of which can be close to desktop workstations.

It also has the advantages of high integration, small size, and

Frontiers inNeuroscience 04 frontiersin.org116

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 3

The example of Bayesian network. (A) A simple Bayesian neural network model. (B) The neural network architecture of the STM for the basic network

as in (A).

low power consumption. When using the PYNQ framework,

the tight coupling between PS (Processing System, i.e., ARM

processor) and PL (Programmable Logic, i.e. FPGA part) can

achieve better responsiveness, higher reconfigurability, and richer

interface functions than traditional methods. The simplicity and

efficiency of the Python language and the acceleration provided

by programmable logic are also fully utilized. Finally, Xilinx has

simplified and improved the design of Zynq-based products on the

PYNQ framework by combining a hybrid library that implements

acceleration within Python and programmable logic. This is a

significant advantage over traditional SoC approaches that cannot

use programmable logic. Therefore, we implement the Bayesian

neural network inference algorithm on Xilinx ZCU104 with the

help of the PYNQ framework.

3 System analysis

In this section, we first summarize the basis of our work

on implementing probabilistic inference algorithms for the brain

through neural networks. We then analyze the difficulties of

accelerating the probabilistic inference algorithm for running

neural network models and briefly describe how we address

these difficulties.

3.1 Neural network implementation

In this subsection, we take the neural network shown in

Figure 3A as an example, and we consider the following two

aspects in the implementation of the neural network: First, for

the stimulus encoding problem, it is important to know how to

accomplish the activities of neurons from stimulus input. Second,

for the estimation of posterior probability, it is also necessary to

consider how the activities of neurons realize the estimation of

posterior probability because our final inference result requires the

expectation over posterior distribution.

For the first problem, we convert stimulus input information

into the activities of neurons through probabilistic population

codes (PPCs) (Ma et al., 2006, 2014). According to PPCs, the

activities of these neurons encoding stimuli inputs, I1, I2, and

others, can be obtained neuronal activity of the root node A.

For the second problem, we divide it into two steps, one is the

calculation of the posterior probability, and the other is the neural

implementation of the posterior probability. Based on importance

sampling, we can estimate the posterior probability by the ratio

approximation of the likelihood function, as shown in Eq. (2).

P(B1 = Bi1,B2 = Bi2|I1, I2) =
P(I1, I2|B

i
1,B

i
2) · P(B

i
1,B

i
2)

∫

P(I1, I2|B1,B2) · P(B1,B2)dB1,B2

≈
P(I1, I2|B

i
1,B

i
2)

∑

i P(I1, I2|B
i
1,B

i
2)
.

(2)

Then, for the neural implementation of posterior probability,

Shi and Griffiths (2009) have shown that divisive normalization

E(ri/
∑

i ri) is commonly found in the cerebral cortex by

neuroscience experiments, and Eq. (3) has been proved, where ri
is the firing rate of the ith neuron.

E(ri/
∑

i

ri) =
P(I1, I2|B

i
1,B

i
2)

∑

i P(I1, I2|B
i
1,B

i
2)
. (3)

Next, we will describe the processes and mechanisms of

probabilistic inference implemented in the neural network

(adapted from Fang et al. 2019). First, for the process of

probabilistic inference, the neural network processes external

stimulus inputs I1 and I2 together in a bottom-up manner, as

shown in Figure 3B. Second for the process of generation, which

is to generate sampling neurons and the opposite of the inference

process. Based on the generative model in Figure 3A, we can get

sampling neurons Bi1 and B
i
2 from P(B1) and P(B2), respectively. In

other words, we can get that the sampling neurons follow B1,B2 ∼

N(0, σ 2).

Frontiers inNeuroscience 05 frontiersin.org117

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 4

Data interaction architecture between PS and PL, here we use m_axi interface for data transmission.

FIGURE 5

The design idea and overall computing architecture. (A) The program flow of the model on the ZCU104 board. (B) The hardware architecture of the

model.

3.2 Di�culties in designing the accelerator

In this work, the communication settings between PS and PL

should be considered first in the design of the accelerator. Since

the design requires frequent data interactions during operation,

the selection of a suitable data interface can ensure the stability

of data transmission while improving the time required for data

transmission. The second is the design in the PL part, the design

of this part is mainly to complete the work of the FPGA, which

usually needs to achieve the purpose of acceleration by reducing

the Latency of the design.

For the communication setting between PS and PL, since the

BRAM in PL part is not enough to store a large amount of

data and parameters, it is necessary to exchange data frequently

between the PL and PS parts. Therefore, in order to achieve

high-speed read/write operations for large-scale data, we use

the m_axi interface to realize it. Figure 4 shows the data

interaction architecture between PS and PL. The m_axi interface

has independent read-and-write channels, supports burst transfer

mode, and the potential performance can reach 17GB/s, which fully

meets our data scale and transfer speed requirements.

Furthermore, for the design of the PL part, since each node in

the model contains a large number of neurons, it will take up a

lot of resources, and clocks in the process of encoding, summing,

multiplying, and normalizing neurons, in which loops may also be

nested. Although pipelines can be added to the loops to improve

the parallelism of the model operation, the optimization is not

satisfactory due to the large number of bases. Therefore, we propose

a highly parallelized structure by introducing an array division

method to divide the array into blocks, which can further unroll

the loop and make each loop execute independently to improve

the degree of program parallelization. In short, it is a method of

exchanging space for time.

4 Software and hardware
optimizations

The design idea and overall architecture of this work are

shown in Figure 5, which consists of ARM, AXI interface, and

custom IP core designed by Vivado HLS. In the IP core part,

we mainly use the structure of the streaming pipeline to reduce

Latency and thus improve the operation speed. As mentioned in

the previous section, we use the AXI master interface provided

by Xilinx for data transmission between PS and PL, and the

prior distribution and sample data that are ready to participate

Frontiers inNeuroscience 06 frontiersin.org118

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 6

Design optimization ideas consisting of on-chip BRAM and processing elements (PE) using array division.

in inference will be allocated and stored in the on-chip BRAM.

When the operation is finished, the result will also be returned to

the off-chip DDR memory through the AXI master interface for

subsequent processing.

In our work, we use the Vivado HLS tool provided by Xilinx

to complete the design of the hardware IP core. This tool allows

the synthesis of digital hardware directly using the high-level

description developed in C/C++. With this tool we can convert

C/C++ designs into RTL implementations for deployment on the

FPGA, thereby significantly reducing the time required for FPGA

development using traditional RTL descriptions. Therefore, the

hardware architecture of the STM accelerator is designed by the

programming language C++.

4.1 IP-core optimization

As mentioned in the last section, while adding the PIPELINE

directive to the loop, we also use the method of array division to

further improve the parallelism of the operation.

Here we take the sum of arrays as an example to illustrate

how to improve parallelism. Under normal circumstances, the

summation of an array is to iterate through each element of the

array and accumulate them in turn. But even if we use the pipeline

structure here, the accumulated value needs to be continuously

read and written during the accumulation process. To prevent the

emergence of dirty data, which leads to a time gap between the two

loops, thus slowing down the speed of operation. In contrast, after

we divide the original large-scale array into 10 blocks through array

division, the subscripts of the array elements are accumulated every

10. In this way, the two adjacent loops in the accumulation process

do not read and write to the same memory, thereby eliminating the

time interval that would normally occur, to achieve the degree of

parallelization of accumulation, as shown in Figure 6.

Finally, adding all blocks is the result of the array summation.

The purpose of the manual expansion is to avoid memory access

TABLE 1 Comparison of resource consumption and Latency between the

normal and the case using array division.

BRAM DSP FF LUT Latency

Normal 14 172 25,934 38,817 11,170

Array division 14 179 28,142 43,849 6,698

bottlenecks and increase the degree of parallelism while using DSP

asmuch as possible. Table 1 is based on the Bayesian networkmodel

shown in Figure 3A. In the case of setting 1,000 neurons in each

node, the resource consumption and latency of not using array

segmentation and using array segmentation are compared. It can

be seen that the resource consumption increases slightly with array

segmentation, but the Latency decreases significantly.

In addition, to further reduce resource utilization and improve

performance, we use a bit-width of 32 bits for each operation

through a simple quantization of floating-point operations. This

kind of quantization has a relatively low negative impact on

accuracy and can improve the performance of each IP core without

reducing the parameters and input accuracy. At the same time, to

alleviate the problem of the maximum frequency increase caused

by reusing the same hardware components, especially BRAM

resources, we added input and output registers to each BRAM

instance to meet the 10 ns clock cycle of each IP core. Algorithm 1

shows the pseudocode of the IP core design. By default, all

nested loops are executed sequentially. During this process, Vivado

HLS provides different pragmas to affect scheduling and resource

allocation.

4.2 Interface signal control

When we compile the PL-side custom core, we need to set up

the top-level file containing the form parameters and return values.

These parameters are mapped to the hardware circuitry to generate

Frontiers inNeuroscience 07 frontiersin.org119

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

Require: Get sample data and prior distribution b1,

b2, b3, a.

Ensure: Posterior probability post.

1. Calculate the likelihood distribution based on

sample data and prior probabilities.

for i in NumA do {Likelihood loop1}

for j in NumB do {Likelihood loop2}

la← b1, b2, b3, a

end for

end for

2. Summation by array division.

3. Calculate the Posterior probability post based on

Eq. (2).

for i in NumA do {Posterior loop1}

for j in NumB do {Posterior loop2}

post← la, sum(la)

end for

end for

4. Return calculation result.

Algorithm 1. IP-core design in pseudo-code.

interface signals, which can be controlled to not only help set better

constraints but also to better control the input and output data flow

according to the port timing. In addition, control logic needs to be

extracted to form a state machine, so some handshake signals such

as ap_start and ap_done will be formed.

Common interface constraints can be divided into Block-

Level Protocols and Port-Level Protocols. Here we mainly use the

ap_ctrl_hs signal in Block-Level Protocols, which contains four

handshake signals ap_start, ap_idle, ap_ready, and ap_done. The

ap_start signal is active high and indicates when the design starts

working. The ap_idle signal is active low and indicates whether the

design is idle. The ap_ready signal indicates whether the design is

currently ready to receive new inputs. The ap_done signal indicates

when the data on the output signal line is valid. The specific

functional timing diagram is shown in Figure 7.

According to the timing diagram, we only need to pull the

ap_start signal high and the design will automatically read or

write data through the AXI bus while performing the inference

operation. When the ap_done signal is read high, it means that the

design has been completed, and the valid operation result can be

obtained by reading the memory allocated for return.

4.3 Hardware–software streaming
architecture

After the IP core has been designed, it is added to the

Zynq block design to create the complete hardware architecture,

as shown in Figure 8. The axi_interconnection module ensures

communication between the IP core, PS system, and AXI interface.

The axi_intc module controls the communication interruption of

the interface.

Following the initialization of the design, the PS part will

be used to implement the bitstream loading of the SNN. It also

allows the PS to pass the values of external stimuli and SNN

FIGURE 7

Timing diagram of ap_ctrl_hs four handshake signal functions. We

mainly use ap_start interface to send read data commands to the

FPGA, and detect ap_dong interface in real-time to determine

whether the FPGA has completed the work.

synaptic strengths to the PL part at runtime, which implements

the specific neural network model. The main interface is used to

connect the PL and PS parts of the SoC to ensure high-performance

communication and data exchange between the IP-core and the

PS in the streaming architecture. At the same time, the interlayer

pipeline inside each IP-core is highly customized to build a Co-

design with reset and GPIO. Both external stimulus values and

synaptic strength values are stored in the cache of the BRAM in

the PL part to improve the data reading speed for STM inference.

5 Simulations

We use the Intel i7-10700 and i5-12500, two of the more

capable CPUs currently available, as benchmarks to compare

the performance of model inference implemented on FPGAs.

We test the performance and accuracy of the STM on the

FPGA board for Bayesian inference on two brain perception

problems: causal inference and multisensory integration.

The evaluation metrics include inference effectiveness and

processing speed on the model. In terms of inference

effectiveness, causal inference is evaluated by the error

rate varies with sample size, and multisensory integration

is evaluated by comparison of the inference results and

theoretical value.

5.1 Causal inference

Causal inference is the process by which the brain infers

the causal effect between cause and outcomes when it receives

Frontiers inNeuroscience 08 frontiersin.org120

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 8

Hardware streaming architecture block design targeting the Soc with the m_axi interface between the PL and PS.

external information (Shams and Beierholm, 2010). The core

problem of causal inference is to calculate the probability

of the cause, which can be expressed as the expectation

value defined on the posterior distribution. The calculation of

the posterior probability is converted into the calculation of

the prior probability and the likelihood probability through

importance sampling, to realize the simulation of the causal

inference process in the brain. In this experiment, we verify the

accuracy and efficiency of Bayesian inference in the STM on

the Xilinx ZCU104 FPGA board because probabilistic sampling

on SNNs involves a large number of probabilistic calculations

that can consume a lot of time, and the processing of the data

in the inference process involves many computation-intensive

operations, and the CPU is not able to handle these tasks very

quickly.

In this paper, the validity of the model is verified from the

accuracy of inference when different samples are input, and the

STM is modeled by the Bayesian network shown in Figure 9A.

Where B1, B2, B3, and B4 represent the input stimulus in

causal inference and A denotes the cause. The tuning curve

of each spiking neuron can be represented as the state of the

variable. We suppose that the prior and conditional distributions

are known, the distributions of these spiking neurons follow

the prior distribution P(B1,B2,B3,B4), and the tuning curve

of the neuron i is proportional to the likelihood distribution

P(Bi1,B
i
2,B

i
3,B

i
4|A). We can then normalize the output of Poisson

spiking neurons through shunt inhibition and synaptic inhibition.

Here we use yi to denote the individual firing rate of the

spiking neuron i and Y to denote the overall firing rate, and

then:

E(yi/Y = n) =
P(Bi1,B

i
2,B

i
3,B

i
4|A)

∑

i P(B
i
1,B

i
2,B

i
3,B

i
4|A)

. (4)

By multiplying and linearly combining the normalized results

with the synaptic weights, the posterior probability can be

calculated:

P(A = a|B1,B2,B3,B4) =
∑

l

I(Al = a)
∑

i

P(Bi1,B
i
2,B

i
3,B

i
4|A

l)
∑

l P(B
i
1,B

i
2,B

i
3,B

i
4|A

l)
.

(5)

The results of the accuracy test are shown in Figure 9B. The

error rate of the stimulus estimation keeps decreasing as the sample

size increases, and when there are 2,000 sampled neurons, the error

rate of stimulus estimation is already quite small. In addition, the

inference accuracy of the implementation on the FPGA is similar

to that on the PC. Therefore, the STM we run on the FPGA board

can guarantee the accuracy of inference.

In terms of performance, we compare the design with

multithreading and multiprogramming implementations on

traditional computing platforms, and the results are shown in

Table 2. It shows the processing time for each neuron sampling

when the number of sampled neurons is 4,000. It can be seen

from the results that multithreading and multiprogramming do

not achieve the desired speedup but have the opposite effect. The

possible reasons for this situation have been analyzed as follows:

(1) Multithreaded execution is not strictly parallel, and global

interpreter locks (GILs) can prevent parallel execution of multiple

threads, so it may not be possible to take full advantage of multicore

CPUs; (2) In terms of multiprogramming, perhaps the problem did

not reach a certain size, resulting in the process creation process

taking longer than the runtime. In addition, communication

between multiprocesses requires passing a large amount of sample

data, which introduces some overhead. For the above reasons, we

finally considered using vectorization operations to vectorize the

Frontiers inNeuroscience 09 frontiersin.org121

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 9

Simulation of causal inference. (A) The neural network architecture of the basic Bayesian network. (B) Comparison of error rates under PC and FPGA

platforms.

TABLE 2 Results of sampling time and speed-up of each neuron in the two-layer model.

Processing

time/neural (ms)

Platform
Intel i7-10700

2.90 GHz
Intel i5-12500

2.50 GHz
ARM

Xilinx
ZCU104

Normal 8.556 4.315 53.814 0.389

Multithreading 2 12.217 6.091

4 13.098 6.907

10 13.355 7.578

20 13.778 8.386

50 16.085 10.631

100 20.323 14.772

Multiprogramming 2 344.00 250.88

4 394.43 278.46

8 564.03 454.81

16 948.47 844.73

Vectorization 3.662 2.993

Bold values represents the optimal time on the corresponding platform.

sample data to reduce the number of loops and avoid the speed

limitations caused by nested loops.

From Table, we can see that vectorization is significantly faster

than serial execution, multithreading, and multiprogramming,

while the processing speed of the model on the FPGA is

significantly better than that of the PC.

5.2 Causal inference with multi-layer
neural network

The simulation in the previous section verified the causal

inference under a simple model. The inference speed on the

CPU decreases exponentially as the problem size increases when

the need to shorten the inference time on the network model

through improvements and optimizations becomes even more

important. In this section, we will use a multi-layer neural network

model to test large-scale Bayesian inference based on the sampling

tree on the FPGA board. The STM is modeled by the Bayesian

network shown in Figure 10A, where I1, I2 and I3 denote the input

stimuli in causal inference, A denotes the cause, and the rest are

intermediate variables.

In this simulation, we use several spiking neurons to encode

variables C1, C2, and C3 respectively, and the distribution of these

neurons follows the prior distribution P(C1,C2) and P(C3). In

addition, the tuning curves of these neurons are proportional to

Frontiers inNeuroscience 10 frontiersin.org122

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

FIGURE 10

Simulation of causal inference with a multi-layer neural network. (A) The Bayesian model for multi-layer network structure. (B) Comparison of error

rates under PC and FPGA platforms.

the distribution P(I1, I2|C
i
1,C

i
2) and P(I3|C

j
3). We can obtain the

average firing rates of spiking neurons Ci
1, C

i
2, and C

j
3, respectively:

E(Ci
1,C

i
2) =

P(I1, I2|C
i
1,C

i
2)

∑

i P(I1, I2|C
i
1,C

i
2)
, (6)

E(C
j
3) =

P(I3|C
j
3)

∑

j P(I3|C
j
3)
. (7)

The firing rate calculation of neurons in other layers is similar

to this layer. The firing rate of each layer is multiplied and fed

back to the next layer in the form of synaptic weights, and then

the posterior probability can be calculated:

P(A = a|I1, I2, I3) =

∑

l

I(Al = a)
∑

k

P(Bk1,B
k
2|A

l)
∑

l P(B
k
1,B

k
2|A

l)

∑

i,j

P(Ci
1,C

i
2,C

j
3|B

k
1,B

k
2)

∑

k P(C
i
1,C

i
2,C

j
3|B

k
1,B

k
2)

P(I1, I2|C
i
1,C

i
2)P(I3|C

j
3)

∑

i P(I1, I2|C
i
1,C

i
2)

∑

j P(I3|C
j
3)

(8)

Similar to the simple model, the result of the STM under the

multi-layer neural network on the FPGA is shown in Figure 10B.

From the figure, we can see that the model running on the

FPGA can guarantee the accuracy of the inference. Moreover, the

performance comparison is shown in Table 3, in the multilayer

network model, multithreading and multiprogramming are equally

limited to achieve the desired results, so the same vectorization

operation is used to optimize the program. We can also see

the processing speed of the STM on FPGA is also improved

compared with the traditional computing platform. In addition,

we can find that due to the increase in the problem size of the

multi-layer model, the acceleration of the model implemented on

FPGA is more pronounced than in the two-layer model, even more

than doubling.

5.3 Multisensory integration

In our daily life, we will obtain information from the

outside world from the sense such as vision, hearing, and tough

simultaneously, and the human brain can integrate this sensory

information in the optimal way to get detailed information about an

external object (Wozny et al., 2008). Some experiments have proved

that the linear combination of different neuronal population

activities with probabilistic population coding corresponds to the

process of multisensory integration (Ma et al., 2006). Here, to

demonstrate that our design can be generalized to other cognitive

problems, we show that the STM on the FPGA board can

solve multisensory integration problems with high performance

and accuracy, and the final results can demonstrate that this

work achieves good performance in the multisensory integration

problem as well.

The simulation first considers the visual-auditory-haptic

integration problem, and the STM is modeled by the Bayesian

network shown in Figure 11A. Here S denotes the position of the

object stimulus, SV , SH , and SA denote visual, auditory, and haptic

cues, respectively. We suppose that P(S) is a uniform distribution,

P(SV |S), P(SH |S), and P(SA|S) are three Gaussian distributions,

respectively. When given SV , SH , and SA, we can use importance

sampling to infer the posterior probability of S, as:

P(S = s|SV , SH , SA) =
∑

S

I(S = s)P(S|SV , SH , SA)

=
∑

iI(Si = s)
P(SV , SH , SA|Si)

∑

iP(SV , SH , SA|Si)
, Si ∼ P(s).

(9)

Frontiers inNeuroscience 11 frontiersin.org123

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

TABLE 3 Results of sampling time and speed-up of each neuron in the multi-layer model.

Processing

time/neural (ms)

Platform
Intel i7-10700

2.90 GHz
Intel i5-12500

2.50 GHz
ARM

Xilinx
ZCU104

Normal 1.103 0.635 12.75 0.024

Multithreading 2 1.048 0.622

4 1.019 0.617

10 1.006 0.617

20 1.012 0.618

50 1.012 0.618

100 1.013 0.624

Multiprogramming 2 1.174 0.749

4 1.056 0.706

8 1.113 0.762

16 1.371 1.097

Vectorization 0.569 0.403

Bold values represents the optimal time on the corresponding platform.

FIGURE 11

Simulation of multisensory integration. (A) Left: The Bayesian model for visual-auditory-haptic integration, Right: Comparison of model inference

results and theoretical values on FPGA. (B) Left: The Bayesian model for visual-haptic integration, Right: Comparison of model inference results and

theoretical values on FPGA.

Frontiers inNeuroscience 12 frontiersin.org124

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

TABLE 4 Results of sampling time and speed-up of each neuron in the simulation of multisensory integration.

Processing

time/neural (ms)

Platform
Intel i7-10700

2.90 GHz
Intel i5-12500

2.50 GHz
ARM

Xilinx
ZCU104

Normal 7.632 5.169 94.608 0.328

Vectorization 3.882 2.160

Bold values represents the optimal time on the corresponding platform.

In our simulation, multisensory integration inference is

achieved through neural circuits based on PPC and normalization.

We use 1,000 spiking neurons to encode stimuli whose states follow

the prior distribution P(S). We suppose that the tuning curve of

the neuron i is proportional to the distribution P(SV , SH , SA|Si),

and then use shunting inhibition and synaptic depression to make

the output of spiking neurons normalized, the result will be fed

into the next spiking neuron with synaptic weights I(Si = s).

Figure 11A shows the simulation results, where the inference result

obtained from the STM on the FPGA board is in good agreement

with the theoretical values. Similar to the visual-auditory-haptic

integration, we also add a simulation of visual-haptic integration

to improve the completeness, which is illustrated in Figure 11B.

Furthermore, the performance comparison is shown in Table 4,

which shows a significant improvement in the sampling speed of

each neuron on the FPGA. Since the results of multi-threading and

multi-process experiments were not ideal in previous experiments,

only vectorization methods are compared here. The results also

show that the running speed on FPGA is still better than that

on CPU.

6 Conclusion

In this work, we design an FPGA-based hardware accelerator

for PGM-based SNNs with the help of the PYNQ framework.

Firstly, the STM, as a novel SNN simulation model for causal

inference, can convert a global complex inference problem into

a local simple inference problem, thus realizing high-precision

approximate inference. Furthermore, as a generalized neural

network model, the STM does not formulate a neural network for a

specific task and thus can be generalized to other problems. Our

hardware implementation is based on this solid and innovative

theoretical model, which solves the problem of slow model

computation based on its realization of large-scale multi-layer

complex model inference.

Secondly, As the first work to realize the hardware acceleration

of the STM, we chose the FPGA platform as the acceleration

platform of the model. For CPUs and GPUs, both of them need to

go through operations such as fetching instructions, decoding, and

various branch logic jumps, and the energy consumption of GPUs

is too high. In contrast, the function of each logic unit of an FPGA

is determined at the time of reprogramming and does not require

these instruction operations, so FPGAs can enjoy lower latency

and energy consumption. Compared to hardware platform ASICs,

FPGAs are more flexible. Although ASICs are superior to FPGAs in

terms of throughput, latency, and power consumption, their high

cost and long cycle time cannot be ignored, and the design of an

ASIC cannot be easily changed once it is completed. In contrast,

FPGAs are programmable hardware that can be changed at any

time according to demand without having to remanufacture the

hardware, and this flexibility is the reason why we ultimately chose

FPGAs. FPGA is a compromise between the above two platforms,

although some aspects of the performance is not up to the two, but

it is a combination of the advantages of the two. It also provides

reasonable cost, low power consumption, and reconfigurability for

neuromorphic computing acceleration.

Thirdly, The experimental results and data on causal inference

validate our conclusion: in the two-layer model, we can then see

that the inference accuracy of the implementation on the FPGA

can approximate that of the implementation on the CPU, with an

accuracy of up to 98%, and at the same time achieve a multifold

speedup. The acceleration effect becomes more and more obvious

as the problem size increases, which is proved in the multi-layer

model, and from the results we can see that the acceleration effect

in the multi-layer model is more than twice as much as that in the

two-layer model. Moreover, in the experiments on multisensory

integration, the experimental results also demonstrate that our

design implementation can be used for other real-world cognitive

problems while guaranteeing the accuracy of reasoning and the

acceleration effect.

Finally, the hardware acceleration method proposed in the

paper can simulate the working principle of biological neurons

very well. Meanwhile, due to the characteristics of low power

consumption and real-time response of FPGA, this method can

have a wide range of applications in the embedded field. The

realized causal inference problems can be used in policy evaluation,

financial decision-making and other fields, and the multisensory

integration can be used in vehicle environment perception, medical

diagnosis and other fields. Specifically, in application scenarios

such as smart home application environments, causal inference

can be used to achieve reasoning about factors affecting health

and provide personalized health advice. Sensory cues such as

vision and hearing are combined to provide a better perceive

the home environment and thus provide intelligent control. Our

work provides a solution for such application scenarios and these

practical applications are expected to promote the progress of

the neuromorphic computing field and make it better meet the

practical application requirements. In addition, so far the STM

does not consider learning, which is an important aspect of

adaptation between tasks. All the results of our simulations are

based on inference with known prior probabilities and conditional

probabilities. Therefore, in future work, we need to combine

learning and inference into one framework and introduce some

learning mechanisms to make the model more complete and

flexible for multiple tasks.

Frontiers inNeuroscience 13 frontiersin.org125

https://doi.org/10.3389/fnins.2023.1291051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

HL: Methodology, Data curation, Investigation, Software,

Validation, Writing – original draft. BW: Methodology,

Conceptualization, Supervision, Writing – review & editing. QL:

Methodology, Writing – review & editing, Project administration.

YF: Methodology, Writing – review & editing, Conceptualization,

Formal analysis, Software, Supervision, Writing – original draft. JL:

Formal analysis, Supervision, Writing – review & editing, Project

administration. LA: Supervision, Writing – review & editing,

Conceptualization, Methodology.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work was partially supported by the National Natural

Science Foundation of China (Grant No. 62072355), the Key

Research and Development Program of Shaanxi Province of China

(Grant No. 2022KWZ-10), the Natural Science Foundation of

Guangdong Province of China (Grant No. 2022A1515011424),

the Science and Technology Planning Project of Guangdong

Province of China (Grant No. 2023A0505050126), the Outstanding

Scientist Cultivation Program of Beijing Academy of Agriculture

and Forestry Sciences (Grant No. JKZX202214), the Natural

Science Foundation of Fujian Province of China (Grant No.

2022J01656), the Foundation of National Key Laboratory of

Human Factors Engineering (Grant No. 6142222210101), and the

Key Industry Innovation Chain Projects of Shaanxi, China (Grant

No. 2021ZDLGY07-04).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alais, D., and Burr, D. (2019). “Cue combination within a Bayesian
framework," in Multisensory Processes (New York, NY: Springer), 9–31.
doi: 10.1007/978-3-030-10461-0_2

Awano, H., and Hashimoto, M. (2020). “BYNQNET: Bayesian neural network with
quadratic activations for sampling-free uncertainty estimation on FPGA," in 2020
Design, Automation and Test in Europe Conference and Exhibition (Grenoble: IEEE),
1402–1407. doi: 10.23919/DATE48585.2020.9116302

Awano, H., and Hashimoto, M. (2023). B2N2: resource efficient Bayesian
neural network accelerator using Bernoulli sampler on FPGA. Integration 89, 1–8.
doi: 10.1016/j.vlsi.2022.11.005

Bialek, W., Rieke, F., van Steveninck, R., and Warland, D. (1999). Spikes: Exploring
the Neural Code (Computational Neuroscience). Cambridge, MA: The MIT Press.

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons. PLoS
Comput. Biol. 7, 188–200. doi: 10.1371/journal.pcbi.1002211

Cai, R., Ren, A., Liu, N., Ding, C., Wang, L., Qian, X., et al. (2018). VIBNN:
hardware acceleration of Bayesian neural networks. ACM SIGPLAN Notices 53,
476–488. doi: 10.1145/3296957.3173212

Chandrasekaran, C. (2017). Computational principles and models of multisensory
integration. Curr. Opin. Neurobiol. 43, 25–34. doi: 10.1016/j.conb.2016.11.002

Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., et al. (2022).
2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput.
Eng. 2, 022501. doi: 10.1088/2634-4386/ac4a83

Demis, H., Dharshan, K., Christopher, S., and Matthew, B. (2017).
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.
doi: 10.1016/j.neuron.2017.06.011

Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and
haptic information in a statistically optimal fashion. Nature 415, 429–433.
doi: 10.1038/415429a

Fan, H., Ferianc, M., Que, Z., Liu, S., Niu, X., Rodrigues, M. R., et
al. (2022). FPGA-based acceleration for Bayesian convolutional neural
networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41, 5343–5356.
doi: 10.1109/TCAD.2022.3160948

Fan, H., Ferianc, M., Rodrigues, M., Zhou, H., Niu, X., Luk, W., et al. (2021).
“High-performance FPGA-based accelerator for Bayesian neural networks," in 2021
58th ACM/IEEE Design Automation Conference (San Francisco, CA: IEEE), 1063–1068.
doi: 10.1109/DAC18074.2021.9586137

Fang, H., Mei, Z., Shrestha, A., Zhao, Z., Li, Y., Qiu, Q., et al. (2020).
“Encoding, model, and architecture: systematic optimization for spiking
neural network in FPGAs," in Proceedings of the 39th International
Conference on Computer-Aided Design (IEEE), 1–9. doi: 10.1145/3400302.34
15608

Fang, Y., Yu, Z., Liu, J. K., and Chen, F. (2019). A unified
neural circuit of causal inference and multisensory integration.
Neurocomputing 358, 355–368. doi: 10.1016/j.neucom.2019.
05.067

Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M. (2021). “Optimizing
Bayesian recurrent neural networks on an FPGA-based accelerator," in 2021
International Conference on Field-Programmable Technology (Auckland: IEEE), 1–10.
doi: 10.1109/ICFPT52863.2021.9609847

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al.
(2022). Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44,
154–180. doi: 10.1109/TPAMI.2020.3008413

George, D., and Hawkins, J. (2009). Towards a mathematical theory of cortical
micro-circuits. PLoS Comput. Biol. 5, e1000532. doi: 10.1371/journal.pcbi.1000532

Han, J., Li, Z., Zheng, W., and Zhang, Y. (2020). Hardware implementation
of spiking neural networks on FPGA. Tsinghua Sci. Technol. 25, 479–486.
doi: 10.26599/TST.2019.9010019

Ju, X., Fang, B., Yan, R., Xu, X., and Tang, H. (2020). An FPGA implementation of
deep spiking neural networks for low-power and fast classification.Neural Comput. 32,
182–204. doi: 10.1162/neco_a_01245

Kim, J., Koo, J., Kim, T., and Kim, J.-J. (2018). Efficient synapse memory
structure for reconfigurable digital neuromorphic hardware. Front. Neurosci. 12, 829.
doi: 10.3389/fnins.2018.00829

Körding, K. P., and Wolpert, D. M. (2004). Bayesian integration in sensorimotor
learning. Nature 427, 244–247. doi: 10.1038/nature02169

Frontiers inNeuroscience 14 frontiersin.org126

https://doi.org/10.3389/fnins.2023.1291051
https://doi.org/10.1007/978-3-030-10461-0_2
https://doi.org/10.23919/DATE48585.2020.9116302
https://doi.org/10.1016/j.vlsi.2022.11.005
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1145/3296957.3173212
https://doi.org/10.1016/j.conb.2016.11.002
https://doi.org/10.1088/2634-4386/ac4a83
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1038/415429a
https://doi.org/10.1109/TCAD.2022.3160948
https://doi.org/10.1109/DAC18074.2021.9586137
https://doi.org/10.1145/3400302.3415608
https://doi.org/10.1016/j.neucom.2019.05.067
https://doi.org/10.1109/ICFPT52863.2021.9609847
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1371/journal.pcbi.1000532
https://doi.org/10.26599/TST.2019.9010019
https://doi.org/10.1162/neco_a_01245
https://doi.org/10.3389/fnins.2018.00829
https://doi.org/10.1038/nature02169
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Li et al. 10.3389/fnins.2023.1291051

Liu, K., Cui, X., Zhong, Y., Kuang, Y., Wang, Y., Tang, H., et al. (2019). A hardware
implementation of SNN-based spatio-temporal memory model. Front. Neurosci. 13,
835. doi: 10.3389/fnins.2019.00835

Liu, L., Wang, D., Wang, Y., Lansner, A., Hemani, A., Yang, Y., et al. (2020).
A “FPGA-based hardware accelerator for Bayesian confidence propagation neural
network," in 2020 IEEE Nordic Circuits and Systems Conference (Oslo: IEEE), 1–6.
doi: 10.1109/NorCAS51424.2020.9265129

Ma, D., Shen, J., Gu, Z., Zhang, M., Zhu, X., Xu, X., et al. (2017). Darwin: a
neuromorphic hardware co-processor based on spiking neural networks. J. Syst. Archit.
77, 43–51. doi: 10.1016/j.sysarc.2017.01.003

Ma, W., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inference with
probabilistic population codes. Nat. Neurosci. 9, 1432–1438. doi: 10.1038/nn1790

Ma,W., and Jazayeri, M. (2014). Neural coding of uncertainty and probability. Ann.
Rev. Neurosci. 37, 205–220. doi: 10.1146/annurev-neuro-071013-014017

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Nagata, K., and Watanabe, S. (2008). Exchange Monte Carlo sampling from
Bayesian posterior for singular learning machines. IEEE Trans. Neural Netw. 19,
1253–1266. doi: 10.1109/TNN.2008.2000202

Que, Z., Nakahara, H., Fan, H., Li, H., Meng, J., Tsoi, K. H., et al. (2022). “Remarn: a
reconfigurablemulti-threadedmulti-core accelerator for recurrent neural networks," in
ACM Transactions on Reconfigurable Technology and Systems (New York, NY: ACM).
doi: 10.1145/3534969

Shams, L., and Beierholm, U. R. (2010). Causal inference in perception. Trends
Cogn. Sci. 14, 425–432. doi: 10.1016/j.tics.2010.07.001

Shen, J., Liu, J. K., and Wang, Y. (2021). Dynamic spatiotemporal pattern
recognition with recurrent spiking neural network. Neural Comput. 33, 2971–2995.
doi: 10.1162/neco_a_01432

Shi, L., and Griffiths, T. (2009). Neural implementation of hierarchical Bayesian
inference by importance sampling. Adv. Neural. Inf. Process Syst. 22.

Shi, Z., Church, R. M., and Meck, W. H. (2013). Bayesian optimization of time
perception. Trends Cogn. Sci. 17, 556–564. doi: 10.1016/j.tics.2013.09.009

Tung, C., Hou, K.-W., and Wu, C.-W. (2023). “A built-in self-calibration scheme
for memristor-based spiking neural networks," in 2023 International VLSI Symposium
on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT) (HsinChu: IEEE), 1–4.
doi: 10.1109/VLSI-TSA/VLSI-DAT57221.2023.10134261

Tzanos, G., Kachris, C., and Soudris, D. (2019). “Hardware acceleration on
gaussian naive bayes machine learning algorithm," in 2019 8th International
Conference on Modern Circuits and Systems Technologies (Thessaloniki: IEEE), 1–5.
doi: 10.1109/MOCAST.2019.8741875

Wang, D. (2022). Design and Implementation of FPGA-based Hardware Accelerator
for Bayesian Confidence [Master’s Thesis]. Turku: The University of Turku Quality.

Wang, D., Xu, J., Li, F., Zhang, L., Cao, C., Stathis, D., et al.
(2023). A memristor-based learning engine for synaptic trace-based
online learning. IEEE Trans. Biomed. Circuits Syst. 17, 1153–1165.
doi: 10.1109/TBCAS.2023.3291021

Wozny, D. R., Beierholm, U. R., and Shams, L. (2008). Human trimodal perception
follows optimal statistical inference. J. Vis. 8, 24. doi: 10.1167/8.3.24

Xu, Q., Shen, J., Ran, X., Tang, H., Pan, G., Liu, J. K., et al. (2022). Robust transcoding
sensory information with neural spikes. IEEE Trans. Neural Netw. Learn. Syst. 33,
1935–1946. doi: 10.1109/TNNLS.2021.3107449

Yang, Z., Guo, S., Fang, Y., and Liu, J. K. (2022). “Biologically plausible variational
policy gradient with spiking recurrent winner-take-all networks," in 33rd British
Machine Vision Conference 2022 (London: BMVA Press), 21–24.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free-energy
approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory
51, 2282–2312. doi: 10.1109/TIT.2005.850085

Yu, Z., Chen, F., and Liu, J. K. (2019). Sampling-tree model: efficient
implementation of distributed Bayesian inference in neural networks. IEEE Trans.
Cogn. Dev. Syst. 12, 497–510. doi: 10.1109/TCDS.2019.2927808

Yu, Z., Deng, F., Guo, S., Yan, Q., Liu, J. K., Chen, F., et al. (2018a). Emergent
inference of hidden Markov models in spiking winner-take-all neural networks. IEEE
Trans. Cybern. 50, 1347–1354. doi: 10.1109/TCYB.2018.2871144

Yu, Z., Liu, J. K., Jia, S., Zhang, Y., Zheng, Y., Tian, Y., et al. (2020). Toward the next
generation of retinal neuroprosthesis: visual computation with spikes. Engineering 6,
449–461. doi: 10.1016/j.eng.2020.02.004

Yu, Z., Tian, Y., Huang, T., and Liu, J. K. (2018b). Winner-take-all
as basic probabilistic inference unit of neuronal circuits. arXiv [preprint].
10.48550/arXiv.1808.00675

Zador, A., Escola, S., Richards, B., Ölveczky, B., Bengio, Y., Boahen, K., et al. (2022).
Toward next-generation artificial intelligence: catalyzing the NeuroAI revolution.
arXiv [preprint]. doi: 10.1038/s41467-023-37180-x

Zhang, Y., Jia, S., Zheng, Y., Yu, Z., Tian, Y., Ma, S., et al. (2020).
Reconstruction of natural visual scenes from neural spikes with deep
neural networks. Neural Netw. 125, 19–30. doi: 10.1016/j.neunet.2020.
01.033

Zhu, Y., Zhang, Y., Xie, X., and Huang, T. (2022). An FPGA
accelerator for high-speed moving objects detection and tracking with
a spike camera. Neural Comput. 34, 1812–1839. doi: 10.1162/neco_
a_01507

Frontiers inNeuroscience 15 frontiersin.org127

https://doi.org/10.3389/fnins.2023.1291051
https://doi.org/10.3389/fnins.2019.00835
https://doi.org/10.1109/NorCAS51424.2020.9265129
https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/10.1038/nn1790
https://doi.org/10.1146/annurev-neuro-071013-014017
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/TNN.2008.2000202
https://doi.org/10.1145/3534969
https://doi.org/10.1016/j.tics.2010.07.001
https://doi.org/10.1162/neco_a_01432
https://doi.org/10.1016/j.tics.2013.09.009
https://doi.org/10.1109/VLSI-TSA/VLSI-DAT57221.2023.10134261
https://doi.org/10.1109/MOCAST.2019.8741875
https://doi.org/10.1109/TBCAS.2023.3291021
https://doi.org/10.1167/8.3.24
https://doi.org/10.1109/TNNLS.2021.3107449
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1109/TCDS.2019.2927808
https://doi.org/10.1109/TCYB.2018.2871144
https://doi.org/10.1016/j.eng.2020.02.004
https://doi.org/10.1038/s41467-023-37180-x
https://doi.org/10.1016/j.neunet.2020.01.033
https://doi.org/10.1162/neco_a_01507
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 24 January 2024

DOI 10.3389/fnins.2023.1253830

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Zihan Pan,

Institute for Infocomm Research (A*STAR),

Singapore

Pengfei Sun,

Ghent University, Belgium

*CORRESPONDENCE

Jing Wang

wangjing2012@uestc.edu.cn

RECEIVED 06 July 2023

ACCEPTED 04 December 2023

PUBLISHED 24 January 2024

CITATION

Wang J (2024) Training multi-layer spiking

neural networks with plastic synaptic weights

and delays. Front. Neurosci. 17:1253830.

doi: 10.3389/fnins.2023.1253830

COPYRIGHT

© 2024 Wang. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Training multi-layer spiking neural
networks with plastic synaptic
weights and delays

Jing Wang*

School of Computer Science and Engineering, University of Electronic Science and Technology of

China, Chengdu, China

Spiking neural networks are usually considered as the third generation of

neural networks, which hold the potential of ultra-low power consumption

on corresponding hardware platforms and are very suitable for temporal

information processing. However, how to e�ciently train the spiking neural

networks remains an open question, and most existing learning methods only

consider the plasticity of synaptic weights. In this paper, we proposed a new

supervised learning algorithm for multiple-layer spiking neural networks based

on the typical SpikeProp method. In the proposed method, both the synaptic

weights and delays are considered as adjustable parameters to improve both the

biological plausibility and the learning performance. In addition, the proposed

method inherits the advantages of SpikeProp, which can make full use of the

temporal information of spikes. Various experiments are conducted to verify the

performance of the proposed method, and the results demonstrate that the

proposed method achieves a competitive learning performance compared with

the existing related works. Finally, the di�erences between the proposed method

and the existing mainstream multi-layer training algorithms are discussed.

KEYWORDS

spikingneural networks, supervised learning, synapticweights, synaptic delays, SpikeProp

1 Introduction

Deep neural network (DNNs), as a mainstream algorithm of machine learning, has been

applied to various fields, such as compute vision (He et al., 2016), speech separation (Subakan

et al., 2021), path finding (Arulkumaran et al., 2017), etc. However, the current DNNs suffer

from the problem of excessive power consumption, which limit their applications in energy-

critical environments (Zhang M. et al., 2021). In contrast, the nervous systems in biological

brains require very little energy to handle complex tasks. As a combination of both, the

spiking neural networks (SNNs) (Maass, 1997) inherit the existing mature structures and

algorithms in the DNNs, and further learn from the way of using spike trains to transmit

information between biological neurons. As a result, SNNs have more complex spatial-

temporal dynamics and are suitable for ultra-low power devices (Lan et al., 2021; Pan et al.,

2021; Zhang et al., 2022). However, at present, there is no training algorithm for SNNs

that can give full play to their characteristics, so how to efficiently train SNNs is still an

open question.

The current training algorithms for spiking neural networks include training the

connection weights between neurons in the network and the delay in the transmission of

spike trains between neurons. The first type of training algorithm is consistent with the

goal of deep neural networks, which is to enable spiking neural networks to effectively

complete tasks by training neural network weights. The training method can be divided

into heuristic algorithms, conversion-based algorithms and BP-based algorithms. The

Frontiers inNeuroscience 01 frontiersin.org128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1253830
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1253830&domain=pdf&date_stamp=2024-01-24
mailto:wangjing2012@uestc.edu.cn
https://doi.org/10.3389/fnins.2023.1253830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1253830/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

representative algorithms of heuristic algorithms are STDP

learning algorithms (Caporale and Dan, 2008) and its variants (Yha

et al., 2020; Wu et al., 2021c). This class of algorithms is largely

based on biological neuroscience findings that when neurons fire

together, wire together. The second methods are conversion-based

methods (Wu et al., 2021a,b) and their basic idea is to first train a

DNN, and then convert the parameters in the trained network to

the corresponding SNN through a series of methods. Compared

with other state-of-the-art SNN implementations, the inference

time and total synaptic operations of the network trained by this

method are reduced by at least one order of magnitude. When

the length of the simulation time is only eight-time steps, the

conversion-based network still achieves good performance in large

datasets. The third method is the method based on the surrogate

gradient learning (Neftci et al., 2019; Zhu et al., 2021). Although

this method can achieve competitive results with DNN in short

time steps, this method needs to save the state information of

the SNN at each moment. Therefore the computing power and

storage requirements are large. The fourth is the event-driven

training algorithm (Gütig, 2016; Neftci et al., 2016; Zhang M. et al.,

2021; Luo et al., 2022), which only adjusts the network parameters

according to the spikes, greatly reducing the training costs.

The above-mentioned learning algorithms for network weights

are mostly used for processing static or periodic data and are not

effective for fast time-varying signals. The reason is that simply

adjusting the synaptic weights cannot effectively extract the rich

time-dependent relationship between spike trains in SNNs, while

in the biological nervous system, different synapses have various

delays in transmitting spike trains (Zhang et al., 2020; Han et al.,

2021). In order to further enhence the ability of the SNN model

to process fast time-varying data, based on the original synaptic

weight training, a training algorithm for the transmission delay

between synapses is added.

However, there is biological evidence that the brain’s biological

synaptic latency is not a constant and there is no uniformity

in the rules of latency variation (Sun et al., 2023), so this is

also an open area of research. The DL-ReSuMe (Taherkhani

et al., 2015a) algorithm is proposed to merge the delay shift

approach and ReSuMe-based weight adjustment to enhance the

learning performance. After that, Multi-DL-ReSuMe is proposed to

train multiple neurons to classify spatiotemporal spiking patterns

(Taherkhani et al., 2015b). Shrestha and Orchard (2018) proposes

a general backpropagation mechanism for learning synaptic

weights and axonal delays which overcomes the problem of non-

differentiability of the spike function and uses a temporal credit

assignment policy for backpropagating error to preceding layers.

Sun et al. (2022) proposes the rectified axonal delay (RAD) as

an additional degree of freedom for training that can easily be

incorporated into existing SNN frameworks. The new model

can perform well on problems where timing matters using very

few parameters. DW-ReSuMe (Han et al., 2021) is proposed to

achieve a spike train learning task, which is combined with delay

learning based on weight training. The RL-Squares-Based Learning

Rule (Zhang Y. et al., 2021) is proposed to generate the desired

spatiotemporal spike train. The gradient descent-based synaptic

delay learning algorithm (Luo et al., 2022) is proposed to improve

the sequential learning performance of single-spike neurons.

Although these methods increase the model’s ability to process

time-series-related data, they need to face the problem of exploding

or vanishing gradients in the training process. It is necessary

to select the hyper-parameters of the model and algorithm very

carefully to make the model converge effectively.

The contribution of this paper includes the following points:

1. This paper introduces synaptic delays between neurons based

on the Spike Response Model (SRM) (Gerstner, 1995) model,

and combines the SpikeProp (Bohte et al., 2002) algorithm to

propose a new learning algorithm for training synaptic delays.

This algorithm effectively increases the ability of SNN to deal

with fast time-varying tasks.

2. This paper proposes a gradient replacement strategy to

effectively reduce the impact of the gradient explosion problem

in the training process of the SpikeProp algorithm.

3. In this paper, the proposed training algorithm is applied to

several different data sets for testing. The experimental results

show that the method presented in this paper effectively

increases the ability of SNN to process fast time-varying data.

2 Materials and methods

In this section, the basic theoretical knowledge of the neuron

model that we used in this paper will be introduced first. Then,

we will further introduce the learning algorithm of the SpikeProp.

Finally, the proposed learning algorithm is presented and the

processing of algorithm derivation is given in detail.

2.1 Neuron model

Inspired by the biological brains, spiking neural networks

(SNNs) (Maass and Bishop, 2001), which are often referred to

as the third generation of artificial neural networks, employ a

spike function to replicate the information transfer observed in

biological neurons. SNNs possess the unique capacity for biological

plasticity, allowing them to encode external inputs into spike trains

(Izhikevich, 2003). When these spike trains are processed, they are

reduced to two fundamental factors (Pfeiffer and Pfeil, 2018): (1)

spike time, which involves the relative timing of pre-synaptic and

post-synaptic spikes, and (2) synaptic type, encompassing attributes

like excitatory or inhibitory properties and the strength of synaptic

connections.

In SNNs, every neuron remains silent until it receives a spike.

Once receiving incoming information, each neuron experiences

changes in membrane voltage. Output spikes are generated only

when the total membrane voltage surpasses the neuron’s threshold

θ , after which they propagate backward (Ghosh-Dastidar andAdeli,

2009). One widely utilized spiking neuron model is the spike

response model [SRM (Gerstner, 1995)]. The membrane voltage in

the SRM is calculated as shown in Equation 1:

V l+1
j (t) =

∑

i

wl+1
ij · K

(

t − tli − dl+1
i

)

, (1)

Frontiers inNeuroscience 02 frontiersin.org129

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

FIGURE 1

SRM neuron model with synaptic delay.

where V l+1
j represents the membrane potential of the jth neuron in

layer l + 1, and the tli is the firing time of the ith neuron in layer l.

wl+1
ij and dl+1

ij are the synaptic efficacy and delay between these two

neurons, respectively. The kernel K(·), which determines the shape

of postsynaptic potentials (PSPs), is defined as Equation 2:

K(x) = Vnorm

[

exp

(

−
x

τm

)

− exp

(

−
x

τs

)]

, x > 0, (2)

where τm and τs represent the membrane time constant of neurons,

respectively. Vnorm is the result of PSPs being normalized, which

makes the value of PSPs between 0 and 1 and is calculated by

Equation 3:

Vnorm =
ββ/(β−1)

β − 1
, (3)

where β = τm/τs.

Figure 1 shows the SRM neuron model with synaptic delay.

There are three pre-synaptic neurons with the weight wi and the

delay time di (i = 1, 2, 3). The delay time ensures the firing time

at the synapse is delayed, whichmakes themembrane potentialV(t)

change between t2 and t3.

2.2 Learning algorithm of the SpikeProp

The SpikeProp algorithm, an improvement upon the traditional

backpropagation algorithm for artificial neural networks (ANN),

is designed to facilitate the learning process of multi-layer feed-

forward spiking neural networks (SNN) (Bohte et al., 2002).

Notably, the algorithm imposes a constraint, allowing each neuron

to fire at most once within each layer. The SpikeProp algorithm

employs the time minimummean square error function as its error

function, which is illustrated in Equation 4:

E =
1

2

∑

k

(

tok − tdk

)2
, (4)

where to
k
represents the time at which the output neuron k emits an

actual spike, and td
k
denotes its target spike time. SpikeProp utilizes

the SRM model, which allows for the derivation of the relationship

between firing time and membrane voltage through mathematical

analysis. The weight update value is obtained by minimizing the

mean square error, as defined in Equation 5:

1wl
ij = −η

∂E

∂wl
ij

= −η
∂E

∂tlj

∂tlj

∂V(tlj)

∂V(tlj)

∂wl
ij

= −η · δljK
l
ij, (5)

where 1wl
ij stands for the gradient of the synaptic weight between

ith presynaptic neuron in layer l − 1 and jth postsynaptic neuron

in layer l. δlj is the intermediate quantity for gradient calculation,

which can be expressed as ∂E

∂tlj

∂tlj

∂V(tlj)
, and K l

ij =
∂V(tlj)

∂wl
ij

= K(tlj −

tl−1
i − dlij) represents the unweighted postsynaptic potential. η is

the learning rate. To simplify notation, we abbreviate V l
j as V .

However, when the membrane voltage reaches the firing

threshold, it promptly resets to the resting potential, resulting

in a spike emission at that specific moment, rendering it non-

differentiable. Consequently, the direct calculation of
∂tj

∂V(tlj)
within

δlj becomes unfeasible. To address this challenge, SpikeProp

introduces the concept of a linear hypothesis. This entails assuming

that within a sufficiently small neighborhood around t = tlj , the

membrane potential can be reasonably approximated as a linear

function of time, which is defined as:

∂tlj

∂V(tlj)
=

−1

∂V(tlj)/∂t
=

−1
∑

i w
l
ij

(

∂K l
ij(t

l
j)/∂t

) (6)

2.3 The proposed learning algorithm

SpikeProp primarily focuses on adjusting synaptic weights,

which is an essential aspect of biological synaptic plasticity.

However, it overlooks another crucial element, synaptic delay

plasticity, which imposes limitations on its overall performance and

diminishes its biological interpretability. Conversely, in addressing

the non-differentiability issue resulting from spike discontinuity,

SpikeProp resorts to the approach outlined in Equation 6.

Unfortunately, this solution introduces another challenge: the

possibility of a gradient explosion due to the rapid membrane

voltage change near the firing threshold. In the subsequent sections,

we present solutions to these two problems individually.

2.3.1 Learning algorithms with synaptic weights
and delay plasticity

To maintain generality, let’s assume that the network in

question is a multi-layer fully connected network, with the

final layer designated as the oth layer. Similar to the approach

employed in SpikeProp, the network adopts the loss function

defined in Equation 4. Subsequently, based on this loss function

and employing the error-backpropagation algorithm, the synaptic

adjustment rules for layer l are formulated as Equation 7:

1dlij(w
l
ij) = −ηd(w)

∂E

∂dlij(w
l
ij)
, (7)

where dlij (wl
ij) represents the synaptic delay (weight) of the

connection between the ith neuron in layer l−1 and the jth neuron

Frontiers inNeuroscience 03 frontiersin.org130

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

in layer l. ηd(w) represents the learning rate of delays (weights).

Since the adjustment of synaptic weights is the same as that of

SpikeProp (i.e., Equation 5), next, we only elaborate on the learning

of synaptic delay.

• Output layer: For the delay of the output layer do
jk
, based on

the chain rule, we have Equation 8:

∂E

∂do
jk

=
∂E

∂to
k

∂to
k

∂V(to
k
)

∂V(to
k
)

∂do
jk

. (8)

Similarly, for the convenience of description, we define the

intermediate quantity δo
k
as Equation 9:

δok =
∂E

∂to
k

∂to
k

∂V(to
k
)
=

∂to
k

∂V(to
k
)
·
(

tok − tdk

)

, (9)

where ∂to
k
/∂V(to

k
) can be solved by Equation 6 like SpikeProp,

but due to its drawbacks, we will give an alternative solution

later. And the remaining terms in Equation 8 can be computed

using Equation 10:

∂V(to
k
)

∂do
jk

= wo
jk · ξ

o
kj, (10)

where

ξ okj =
∂K

(

to
k
− to−1

j − do
jk

)

∂do
jk

= Vnorm
1

τm
exp

(

−
to
k
− to−1

j − do
jk

τm

)

− Vnorm
1

τs
exp

(

−
to
k
− to−1

j − do
jk

τs

)

,

(11)

• Hidden layer: For the delay of hidden layer dlij, we have

Equation 12:

∂E

∂dlij
=

∂E

∂tlj

∂tlj

∂V(tlj)

∂V(tlj)

∂dlij
= δlj · w

l
ij · ξ

l
ij, (12)

where tlj is the spike time of the jth neuron in layer l. δlj =

∂E

∂tlj

∂tlj

∂V(tlj)
with

∂E

∂tlj
=
∑

k

∂E

∂tl+1
k

∂tl+1
k

∂V(tl+1
k

)

∂V(tl+1
k

)

∂tlj
=
∑

k

δl+1
k

· wl+1
jk

ξ l+1
kj

.

(13)

To sum up, there are Equation 14:

{

1wl
ij = −ηw · δlj · K

l
ij,

1dlij = −ηd · δ
l
j · w

l
ijξ

l
ij,

(14)

with

δlj =

∂tlj

∂V(tlj)
·
(

tlj − tdj

)

, l = o

∂tlj

∂V(tlj)
·
∑

k δl+1
k

wl+1
jk

ξ l+1
jk

, l < o

(15)

While the majority of SNN algorithms traditionally focus

solely on updating synaptic weights, we introduce a novel

approach by incorporating the adjustment of synaptic delays.

This augmentation allows us to achieve joint training of both

synaptic weights and delays. This dual-training approach offers

two significant advantages: addressing the silent window problem

and expanding the parameter space. Silent windows, a common

occurrence in spiking neural networks, refer to time periods

where no spiking activity takes place, potentially undermining

the learning process. Weight updates alone struggle to resolve

this issue. However, incorporating delay learning can effectively

adjust the distribution of input spikes and mitigate this problem.

Moreover, the joint training of both synaptic weights and delays

provides a more extensive set of tunable parameters compared to

weight-only updates. This expanded parameter space enhances the

model’s flexibility and can lead to improved overall performance.

2.3.2 Gradient replacement strategy
According to the above process, it can be seen that the

term ∂tlj/∂V(t
l
j) in Equation 15 is very important for gradient

calculation. If its value is calculated according to Equation 6, it

means that the derivative of themembrane voltage at the firing time

will be critical. More specifically, the analysis of Figure 2A reveals

that during a gradual crossing of the membrane voltage threshold,

the derivative approaches zero. Consequently, this leads to a

significant increase in the magnitude of |∂tlj/∂V(t
l
j)|, resulting in

a phenomenon known as gradient explosion. To address this issue,

we draw upon the insights from the rectangle replacement function

(Wu et al., 2018), which has demonstrated enhanced convergence

in ablation experiments. Building upon this framework, we propose

a novel replacement function that mitigates the problem of gradient

explosion. As a result, Equation 6 can be replaced by Equation 16,

as shown below.

∂tlj

∂V(tlj)
=

exp

(

−
2
(

V(tlj)−ϑ

)2

τ

)

, |V(tlj)− ϑ | > m,

exp
(

− 2m2

τ

)

, |V(tlj)− ϑ | ≤ m.

(16)

where m (0 < m < 1) is a constant, and there is currently

no accepted theoretical method for finding the optimal m on any

dataset. But a good way to get an appropriatem for a specific task is

to use parameter search.

Figure 2B shows the shape of replaced weight. The closer the

membrane potential is to the firing time than to the threshold, the

larger ∂tlj/∂V(t
l
j), which is consistent with the characteristics of the

spike activity. However, it’s important to emphasize that this value

cannot become infinitely large since it would cause the value of

Equation 6 to approach 0, leading the gradient to disappear. In our

approach, we impose an upper limit, capping it at exp
(

−2m2/τ
)

.

This constraint ensures that the influence on ∂tlj/∂V(t
l
j) remains

bounded. Actually, the function of the surrogate gradient can be

various (Wu et al., 2018).

3 Results

In this section, we test the performance of the

proposed algorithm on several different datasets, including

Frontiers inNeuroscience 04 frontiersin.org131

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

A B

FIGURE 2

(A) Membrane potential reaches the threshold slowly, resulting in the exploding gradient. (B) The shape of the surrogate gradient function.

FIGURE 3

Schematic diagram of population encoding. Each neuron has its own Gaussian receiving function (di�erent colors). Imin and Imax are the minimum

and maximum values of the input current. When an input current Iin is fed, the corresponding value on the Gaussian function is its probability value.

Finally, these values are encoded into the spiking times distributed in [0, t]. The larger probability value corresponds to the earlier spiking time and

vice versa, and the spikes will not be emitted if the firing threshold is not reached, such as neurons “1” and “5.”

Iris, Breast Cancer, Liver Disorders, Pima Diabetes,

and Ionosphere. By comparison with other algorithms:

SpikeProp (Shrestha and Song, 2015), SpikeTemp (Wang

et al., 2015), SWAT (Wade et al., 2010), ReSuMe (Ponulak

and Kasiński, 2010), SRESN (Dora et al., 2016), and

MDL (Taherkhani et al., 2018), the proposed method has a

good performance.

The datasets can be divided into two types: real-value

datasets and image-related datasets. Samples from these

databases cannot be fed directly into the network and

need to be encoded into spike sequences. In real-value

datasets, the population encoding (Bohte et al., 2002;

Shrestha and Song, 2015; Wang et al., 2015; Taherkhani

et al., 2018) is used to convert these values to input spike

trains, as shown in Figure 3. In image datasets, the latency

encoding (Hopfield, 1995; Hu et al., 2013) is used, as shown

in Figure 4.

In the output layer each output neuron corresponds to a

category, and when a training sample is fed, the corresponding

output neuron is trained to fire at desired output spike time

td generated by the dynamic decoding method (Luo et al.,

2019; Zhang Y. et al., 2021), while the other neurons are

kept silent.

3.1 Classification of Iris dataset

As one of themost well-known pattern recognition databases, it

is divided into three categories. Each category has 50 samples with

four attributes: sepal length, sepal width, petal length, and petal

width. Among them, 25 samples of each category were used as the

training set, and the others were used as the test set. The network

structure is 25-20-3, and a sample is considered correctly classified

if either its target neuron fire the most spikes or the membrane

potential of its target neuron is the maximum when none of the

output neurons fire. The network architecture, training epochs,

train and test accuracy of our works and the contrasting methods

are all depicted in Table 1. The contrast of train and test accuracy of

all methods are further illustrated in Figure 5. From the results, the

proposed method outperforms these methods: SpikeProp, SWAT,

MDL, ReSuMe, and SpikeTemp. SRESN achieved the best test

accuracy, and the proposed model is only slightly below it.

3.2 Classification of Breast Cancer dataset

The data were collected from clinical studies conducted

between January 2014 and December 2014 and were derived from

Frontiers inNeuroscience 05 frontiersin.org132

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

FIGURE 4

Schematic diagram of latency encoding. The subfigure on the left is an original image of the digit “9” in the MNIST. Its pixel values determine the

brightness of each pixel, with higher values corresponding to whiter areas. Depending on the value, we draw five rectangles (in the middle subfigure)

of di�erent widths to represent di�erent pixel values, with wider rectangles representing larger values. The right subfigure is the spiking times of the

selected five neurons by latency encoding. The larger the pixel value, the earlier the firing time.

TABLE 1 Classification results of Iris database.

Method Architecture Epoch Train (%d) Test (%d)

SpikeProp 25-10-3 1,000 97.2 (1.9) 96.7 (1.6)

SWAT 24-312-3 500 96.7 (1.4) 92.4 (1.7)

ReSuMe 160-3 200 95.2 (1.4) 94.1 (2.0)

SRESN 24-(6-10) 102 96.9 (1.0) 97.3 (1.3)

MDL 169-360-3 100 99.8 (/) 95.7 (/)

SpikeTemp 120-87 / 100 (/) 96.7 (/)

This work (weight-only) 25-10-3 1,000 97.4 (1.2) 96.3 (1.1)

This work 25-10-3 1,000 98.1 (1.3) 97.0 (1.4)

FIGURE 5

The training accuracy and test accuracy for various methods on Iris database. The best training accuracy of all methods is SpikeTemp, but the best

test accuracy is SRESN which is 0.3% higher than the proposed algorithm.

microscopic biopsy images of breast lumps in patients with breast

cancer. Each sample has 10 attributes to describe the characteristics

of the nucleus of the mass, including radius, texture, perimeter, and

so on. It is divided into two types of data: benign and malignant

cancers. This dataset has 569 instances, of which 357 are benign and

the remaining 212 aremalignant. Among them, 179 benign samples

and 106 malignant samples make up the training set, and the rest

were used as test sets. The network architecture of the proposed

Frontiers inNeuroscience 06 frontiersin.org133

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

TABLE 2 Classification results of Breast Cancer database.

Method Architecture Epoch Train (%d) Test (%d)

SpikeProp 55-15-2 1,000 97.3 (0.6) 97.2 (0.6)

SWAT 54-702-2 500 96.5 (0.5) 95.8 (1.0)

ReSuMe 135-2 200 93.6 (0.7) 93.1 (0.8)

SRESN 54-(8-12) 102 97.7 (0.6) 97.2 (0.7)

MDL / 100 98.2(/) 96.4 (/)

SpikeTemp 135-306 / 99.1 (/) 98.3 (/)

This work (weight-only) 55-15-2 1,000 97.2 (0.9) 96.8 (0.7)

This work 55-15-2 1,000 98.5 (0.8) 97.9 (0.5)

FIGURE 6

The training accuracy and test accuracy for various methods on Breast Cancer database. The training and test accuracy of the proposed method is

the second, slightly lower than SpikeTemp.

method is 55-15-2. Two output neurons correspond to the benign

sample and the malignant sample. If the benign output neuron

fires the more spikes or has a larger membrane potential than the

malignant one, the benign sample was correctly classified; and vice

versa. The network architecture, training epochs, train and test

accuracy of our works are shown in Table 2, along with those of the

other methods. Additionally, the contrast of train and test accuracy

of all methods are further illustrated in Figure 6. Experimental

results show that this method outperforms most comparison

algorithms including SpikeProp, SWAT, ReSuMe, SRESN, and

MDL. And our model is only 0.4% lower than SpikeTemp.

3.3 Classification of Liver Disorders dataset

This dataset consisted of 345 samples of seven attributes,

amongst which the first five attributes are blood data related to

the development of liver disease, and the sixth attribute is the

number of alcoholic drinks per day. It is a binary classification, with

half of the data in each category comprising the training set and

the other half comprising the test set. The input neurons, hidden

neurons and output neurons are 37, 15, and 2, respectively. If the

target neuron of a sample fires the overwhelming spikes or has

the larger membrane potential, this sample is considered to be

correctly classified. The performance of the proposed method in

Table 3 and Figure 7 comes from the average of 20 trials with 3,000

training epochs, which outperforms other methods in terms of

test accuracy.

3.4 Classification of Pima Diabetes dataset

This dataset contains women of at least 21 years of Pima Indian

ancestry. It is also a binary classification to predict whether a

patient has diabetes or not on the basis of eight attributes, including

Pregnancy, Glucose, Glucose, etc. The data set includes 768 samples

that are divided into training/test sets in a 1:1 ratio. The network

structure is 55-20-2, and the conditions for correct classification are

as follows: (1) the target output neuron of the input sample fires

the most spikes, (2) the membrane potential of the target neuron

overwhelms the other one when firing the same spikes. After 20

training trials of 3,000 epochs, the accuracy of our model is shown

in Table 4. FromTable 4 and Figure 8, the training and test accuracy

of the proposed method are much higher than the all the other

contrasting methods.

Frontiers inNeuroscience 07 frontiersin.org134

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

TABLE 3 Classification results of Liver Disorders database.

Method Architecture Epoch Train (%d) Test (%d)

SpikeProp 37-15-2 3,000 71.5 (5.2) 65.1 (4.7)

SWAT 36-468-2 500 74.8 (2.1) 60.9 (3.2)

ReSuMe 150-2 200 69.9 (5.3) 60.1 (3.4)

SRESN 36-(6-9) 715 60.4 (1.7) 59.7 (1.7)

MDL 246-360-2 100 69.9 (/) 61.8 (/)

SpikeTemp 150-226 / 93.0 (/) 58.3 (/)

This work (weight-only) 37-15-2 3,000 80.1 (2.7) 63.7 (2.4)

This work 37-15-2 3,000 85.6 (3.4) 66.7 (3.1)

FIGURE 7

The training accuracy and test accuracy for various methods on Liver Disorders database. The training accuracy of the SpikeTemp is the best, while

the test accuracy of the proposed method is the best.

TABLE 4 Classification results of Pima Diabetes database.

Method Architecture Epoch Train (%d) Test (%d)

SpikeProp 55-20-2 3,000 78.6 (2.5) 76.2 (1.8)

SWAT 54-702-2 500 77.0 (2.1) 72.1 (1.8)

ReSuMe 80-2 200 76.4 (1.5) 69.6 (2.0)

SRESN 54-(9-14) 254 70.5 (2.4) 69.9 (2.0)

MDL / 100 72.1 (/) 70.6 (/)

SpikeTemp 80-431 / 77.5 (/) 67.6 (/)

This work (weight-only) 55-20-2 3,000 78.2 (1.7) 77.1 (0.7)

This work 55-20-2 3,000 79.2 (2.0) 77.0 (1.3)

3.5 Classification of Ionosphere dataset

This dataset contains 351 samples of radar data collected

by Johns Hopkins University. Each sample consists of 35

attributes, the first 34 attributes are contiguous, and the last

attribute is the category label. This data set has two categories,

and equal numbers of the samples from each category were

added to the training set and test set respectively. The network

architecture of this experiment is 205-25-2. When a sample

is fed into the network, the category is determined if its

target neuron emits the most spikes, or if the target neuron

has the maximum membrane potential when emitting the

same number of spikes as the other neuron. The network

is trained 3,000 epochs in each trial, and the average of 20

trials is shown in Table 5. From Table 5 and Figure 9, the test

accuracy of the proposed model ranks only below spikeTemp

with a slight gap, but obviously higher than the other five

comparison algorithms.

Frontiers inNeuroscience 08 frontiersin.org135

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

FIGURE 8

The training accuracy and test accuracy for various methods on Pima Diabetes database. The training accuracy and test accuracy of the proposed

method is the best.

TABLE 5 Classification results of Ionosphere database.

Method Architecture Epoch Train (%d) Test (%d)

SpikeProp 205-25-2 3,000 89.0 (7.9) 86.5 (7.2)

SWAT 204-2652-2 500 86.5 (7.2) 90.0 (2.3)

ReSuMe 231-2 200 94.6 (0.6) 89.5 (1.8)

SRESN 204-(16-23) 1,018 91.9 (1.8) 88.6 (1.6)

MDL / 100 96.0 (/) 90.5 (/)

SpikeTemp 231-223 / 86.8 (/) 91.5 (/)

This work (weight-only) 205-25-2 3,000 90.6 (2.7) 87.2 (1.8)

This work 205-25-2 3,000 92.7 (4.1) 90.7 (2.5)

FIGURE 9

The training accuracy and test accuracy for various methods on Ionosphere database. The proposed method gets the best test accuracy and the

smallest gap between training accuracy and test accuracy.

Frontiers inNeuroscience 09 frontiersin.org136

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

TABLE 6 Comparison with other works on MNIST dataset.

Method Architecture Learning method Acc (%d)

Mostafa (2017) 784-800-10 Temporal backpropagation 97.20

Tavanaei and Maida (2019) 784-1000-10 STDP-based backpropagation 96.60

Comsa et al. (2020) 784-340-10 Temporal backpropagation 97.9

ANN (Kheradpisheh and Masquelier, 2020) 784-400-10 Backpropagation with Adam 98.10

S4NN (Kheradpisheh and Masquelier, 2020) 784-400-10 Temporal backpropagation 97.4

This work (weight-only) 784-800-10 Temporal backpropagation 96.7

This work 784-800-10 Temporal backpropagation 97.6

3.6 Classification of MNIST dataset

To exploit and testify the image information learning capacity

of the proposed method, we conducted experiments on the widely

used MNIST dataset (LeCun et al., 1998), which is a popular

choice in deep learning research (Mostafa, 2017; Tavanaei and

Maida, 2019; Comsa et al., 2020). This dataset comprises 60,000

training samples and 10,000 testing samples, each of which has

a visual scale of 28 × 28 pixels. The pixels are encoded as

spike trains through the latency encoding method (Hopfield,

1995) and then fed in the proposed method with the architecture

784-800-10. We compare the experimental results with some

effective ANN and SNN works, as detailed in Table 6. The results

show that the proposed model has a comparable performance

on image data, which outperforms the contrasting SNN models,

and only trivially falls behind artificial neural networks in terms

of accuracy.

4 Discussion

In this paper, we proposed a new supervised learning

algorithm for multi-layer spiking neural networks, which

considers the plasticity of both synaptic weights and delays.

Various experiments are conducted to verify the performance

of the proposed learning method, and the experimental results

support its superiority. Actually, how to train multilayer spiking

neural networks remains an open question. The existing

learning rules can be classified as ANN-to-SNN, surrogate

gradient method, and spike-driven learning algorithms. In

the following, we will compare the proposed method with

these methods.

4.1 Compared to ANN-to-SNN methods

The ANN-to-SNN methods are proposed to avoid the difficult

training of deep spiking neural networks. However, most of the

ANN-to-SNN methods are based on the spike rate information,

the time information has not been fully leveraged. In addition,

the existing ANN-to-SNN conversion methods can only deal with

image datasets. Those datasets with rich temporal information like

speech and video can not be addressed by these methods. Our

algorithm adopts temporal coding to make full use of the time

information of spikes and has more potential to process these

temporal datasets.

4.2 Compared to surrogate gradient
methods

Due to the non-differentiable spike function, directly training

spiking neural networks is very difficult. To resolve this problem,

surrogate gradient-based learning algorithms are proposed. By

using a surrogate gradient, these methods do not need to

calculate the exact gradients. However, these methods need to do

backpropagation at every time step and cost a lot of computing

sources. In contrast, our algorithm holds the potential of enabling

training and inference in low-power devices.

4.3 Compared to spike-driven methods

There are various spike-driven learning methods, such as

SpikeProp and STDBP. However, most existing spike-driven

learning algorithms only consider the plasticity of synaptic weights

and ignore synaptic delay adjustment. In our algorithm, both the

synaptic weights and delays are considered adjustable variables

to improve both the biological plausibility and the learning

performance. Experimental results demonstrate that our algorithm

achieves a competitive learning performance compared with the

existing related works. In the future, we would like to further extend

the application of spike-driven learning algorithms on large-scale

datasets and other practical applications (Liu and Li, 2022; Liu et al.,

2022a,b).

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

JW: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing.

Frontiers inNeuroscience 10 frontiersin.org137

https://doi.org/10.3389/fnins.2023.1253830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

Funding

This work was supported by the

National Science Foundation of China under

Grant 61976043.

Conflict of interest

The author declares that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).
Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34, 26–38.
doi: 10.1109/MSP.2017.2743240

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation
in temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.
doi: 10.1016/S0925-2312(01)00658-0

Caporale, N., and Dan, Y. (2008). Spike timing-dependent
plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46.
doi: 10.1146/annurev.neuro.31.060407.125639

Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A.,
Alakuijala, J., et al. (2020). “Temporal coding in spiking neural networks with
alpha synaptic function,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (Barcelona: IEEE), 8529–8533.
doi: 10.1109/ICASSP40776.2020.9053856

Dora, S., Subramanian, K., Suresh, S., and Sundararajan, N. (2016). Development
of a self-regulating evolving spiking neural network for classification problem.
Neurocomputing 171, 1216–1229. doi: 10.1016/j.neucom.2015.07.086

Gerstner, W. (1995). Time structure of the activity in neural network models. Phys.
Rev. E 51, 738. doi: 10.1103/PhysRevE.51.738

Ghosh-Dastidar, S., and Adeli, H. (2009). Spiking neural networks. Int. J. Neural
Syst. 19, 295–308. doi: 10.1142/S0129065709002002

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-label
learning. Science 351, aab4113. doi: 10.1126/science.aab4113

Han, Y., Xiang, S., Ren, Z., Fu, C., Wen, A., Hao, Y., et al. (2021). Delay-weight
plasticity-based supervised learning in optical spiking neural networks. Photonics Res.
9, 119–127. doi: 10.1364/PRJ.413742

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Hopfield, J. J. (1995). Pattern recognition computation using action potential timing
for stimulus representation. Nature 376, 33–36. doi: 10.1038/376033a0

Hu, J., Tang, H., Tan, K. C., Li, H., and Shi, L. (2013). A spike-timing-
based integrated model for pattern recognition. Neural Comput. 25, 450–472.
doi: 10.1162/NECO_a_00395

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for
spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30, 2050027.
doi: 10.1142/S0129065720500276

Lan, Y., Wang, X., and Wang, Y. (2021). Spatio-temporal sequential
memory model with mini-column neural network. Front. Neurosci. 15, 374.
doi: 10.3389/fnins.2021.650430

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–2324.
doi: 10.1109/5.726791

Liu, Q., and Li, X. (2022). Efficient low-rank matrix factorization based on ℓ1,ε-
norm for online background subtraction. IEEE Trans. Circuits Syst. Video Technol. 32,
4900–4904. doi: 10.1109/TCSVT.2021.3129503

Liu, Q., Li, X., Cao, H., and Wu, Y. (2022a). From simulated to visual data: a robust
low-rank tensor completion approach using ℓp-regression for outlier resistance. IEEE
Trans. Circuits Syst. Video Technol. 32, 3462–3474. doi: 10.1109/TCSVT.2021.3114208

Liu, Q., Li, X., and Yang, J. (2022b). Optimum codesign for image denoising between
type-2 fuzzy identifier and matrix completion denoiser. IEEE Trans. Fuzzy Syst. 30,
287–292. doi: 10.1109/TFUZZ.2020.3030498

Luo, X., Qu, H., Wang, Y., Yi, Z., Zhang, J., Zhang, M., et al. (2022).
Supervised learning in multilayer spiking neural networks with spike temporal
error backpropagation. IEEE Trans. Neural Netw. Learn. Syst. 34, 10141–10153.
doi: 10.1109/TNNLS.2022.3164930

Luo, X., Qu, H., Zhang, Y., and Chen, Y. (2019). First error-based supervised
learning algorithm for spiking neural networks. Front. Neurosci. 13, 559.
doi: 10.3389/fnins.2019.00559

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Maass,W., and Bishop, C.M. (2001). Pulsed Neural Networks. Cambridge,MA:MIT
press.

Mostafa, H. (2017). Supervised learning based on temporal coding in
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.
doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Charles, A., Somnath, P., and Georgios, D. (2016). Event-driven
random back-propagation: enabling neuromorphic deep learning machines. Front.
Neurosci. 11, 324. doi: 10.3389/fnins.2017.00324

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Pan, Z., Zhang, M., Wu, J., Wang, J., and Li, H. (2021). Multi-tone phase
coding of interaural time difference for sound source localization with spiking
neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 2656–2670.
doi: 10.1109/TASLP.2021.3100684

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Ponulak, F., and Kasiński, A. (2010). Supervised learning in spiking neural networks
with resume: sequence learning, classification, and spike shifting. Neural Comput. 22,
467–510. doi: 10.1162/neco.2009.11-08-901

Shrestha, S., andOrchard, G. (2018). “Slayer: spike layer error reassignment in time,”
in Advances in Neural Information Processing Systems, Vol. 31, 1419–1428.

Shrestha, S. B., and Song, Q. (2015). Adaptive learning rate of
spikeprop based on weight convergence analysis. Neural Netw. 63, 185–198.
doi: 10.1016/j.neunet.2014.12.001

Subakan, C., Ravanelli, M., Cornell, S., Bronzi, M., and Zhong, J. (2021). “Attention
is all you need in speech separation,” in ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (Toronto, ON: IEEE),
21–25. doi: 10.1109/ICASSP39728.2021.9413901

Sun, P., Eqlimi, E., Chua, Y., Devos, P., and Botteldooren, D. (2023).
“Adaptive axonal delays in feedforward spiking neural networks for accurate
spoken word recognition,” in ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (Rhodes Island: IEEE), 1–5.
doi: 10.1109/ICASSP49357.2023.10094768

Sun, P., Zhu, L., and Botteldooren, D. (2022). “Axonal delay as a short-term
memory for feed forward deep spiking neural networks,” in ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(Singapore: IEEE), 8932–8936. doi: 10.1109/ICASSP43922.2022.9747411

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015a).
Dl-resume: a delay learning-based remote supervised method for

Frontiers inNeuroscience 11 frontiersin.org138

https://doi.org/10.3389/fnins.2023.1253830
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1016/j.neucom.2015.07.086
https://doi.org/10.1103/PhysRevE.51.738
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1364/PRJ.413742
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/376033a0
https://doi.org/10.1162/NECO_a_00395
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.3389/fnins.2021.650430
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TCSVT.2021.3129503
https://doi.org/10.1109/TCSVT.2021.3114208
https://doi.org/10.1109/TFUZZ.2020.3030498
https://doi.org/10.1109/TNNLS.2022.3164930
https://doi.org/10.3389/fnins.2019.00559
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/TASLP.2021.3100684
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1016/j.neunet.2014.12.001
https://doi.org/10.1109/ICASSP39728.2021.9413901
https://doi.org/10.1109/ICASSP49357.2023.10094768
https://doi.org/10.1109/ICASSP43922.2022.9747411
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang 10.3389/fnins.2023.1253830

spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 26, 3137–3149.
doi: 10.1109/TNNLS.2015.2404938

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015b). “Multi-
dl-resume: multiple neurons delay learning remote supervised method,” in 2015
International Joint Conference on Neural Networks (IJCNN) (Killarney: IEEE), 1–7.
doi: 10.1109/IJCNN.2015.7280743

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2018). A supervised
learning algorithm for learning precise timing of multiple spikes in multilayer
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 5394–5407.
doi: 10.1109/TNNLS.2018.2797801

Tavanaei, A., and Maida, A. (2019). Bp-stdp: approximating backpropagation
using spike timing dependent plasticity. Neurocomputing 330, 39–47.
doi: 10.1016/j.neucom.2018.11.014

Wade, J. J., McDaid, L. J., Santos, J. A., and Sayers, H. M. (2010). Swat: a spiking
neural network training algorithm for classification problems. IEEE Trans. Neural
Netw. 21, 1817–1830. doi: 10.1109/TNN.2010.2074212

Wang, J., Belatreche, A., Maguire, L. P., and McGinnity, T. M. (2015).
Spiketemp: an enhanced rank-order-based learning approach for spiking neural
networks with adaptive structure. IEEE Trans. Neural Netw. Learn. Syst. 28, 30–43.
doi: 10.1109/TNNLS.2015.2501322

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., Tan, K. C., et al. (2021a). A tandem
learning rule for effective training and rapid inference of deep spiking neural networks.
IEEE Trans. Neural Netw. Learn. Syst. 34, 446–460. doi: 10.1109/TNNLS.2021.3095724

Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., et al. (2021b). Progressive
tandem learning for pattern recognition with deep spiking neural networks. IEEE
Trans. Pattern Anal. Mach. Intell. 44, 7824–7840. doi: 10.1109/TPAMI.2021.3114196

Wu, J., Zhan, Y., Peng, Z., Ji, X., and Wang, C. (2021c). Efficient design of spiking
neural network with stdp learning based on fast cordic. IEEE Trans. Circuits Syst. I:
Regul. Pap. 68, 2522–2534. doi: 10.1109/TCSI.2021.3061766

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Yha, B., Xh, A., Meng, D. A., and Bo, X. (2020). A biologically plausible supervised
learning method for spiking neural networks using the symmetric stdp rule. Neural
Netw. 121, 387–395. doi: 10.1016/j.neunet.2019.09.007

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z.,
et al. (2021). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Zhang, M., Wu, J., Belatreche, A., Pan, Z., Xie, X., Chua, Y., et al. (2020).
Supervised learning in spiking neural networks with synaptic delay-weight plasticity.
Neurocomputing 409, 103–118. doi: 10.1016/j.neucom.2020.03.079

Zhang, Y., Chen, Y., Zhang, J., Luo, X., Zhang, M., Qu, H., et al.
(2022). Minicolumn-based episodic memory model with spiking neurons,
dendrites and delays. IEEE Trans. Neural Netw. Learn. Syst. 1–15.
doi: 10.1109/TNNLS.2022.3213688

Zhang, Y., Qu, H., Luo, X., Chen, Y., Wang, Y., Zhang, M., et al. (2021). A new
recursive least squares-based learning algorithm for spiking neurons.Neural Netw. 138,
110–125. doi: 10.1016/j.neunet.2021.01.016

Zhu, X., Zhao, B., Ma, D., and Tang, H. (2021). An efficient learning algorithm
for direct training deep spiking neural networks. IEEE Trans. Cogn. Develop. Syst. 14,
847–856. doi: 10.1109/TCDS.2021.3073846

Frontiers inNeuroscience 12 frontiersin.org139

https://doi.org/10.3389/fnins.2023.1253830
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.1109/IJCNN.2015.7280743
https://doi.org/10.1109/TNNLS.2018.2797801
https://doi.org/10.1016/j.neucom.2018.11.014
https://doi.org/10.1109/TNN.2010.2074212
https://doi.org/10.1109/TNNLS.2015.2501322
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.1109/TPAMI.2021.3114196
https://doi.org/10.1109/TCSI.2021.3061766
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1109/TNNLS.2021.3110991
https://doi.org/10.1016/j.neucom.2020.03.079
https://doi.org/10.1109/TNNLS.2022.3213688
https://doi.org/10.1016/j.neunet.2021.01.016
https://doi.org/10.1109/TCDS.2021.3073846
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 16 May 2024

DOI 10.3389/fncom.2024.1240348

OPEN ACCESS

EDITED BY

Lei Deng,

Tsinghua University, China

REVIEWED BY

Shuangming Yang,

Tianjin University, China

Desmond Loke,

Singapore University of Technology and

Design, Singapore

Zhaodong Chen,

Nvidia, United States

*CORRESPONDENCE

Kyle Daruwalla

daruwal@cshl.edu

RECEIVED 14 June 2023

ACCEPTED 26 April 2024

PUBLISHED 16 May 2024

CITATION

Daruwalla K and Lipasti M (2024) Information

bottleneck-based Hebbian learning rule

naturally ties working memory and synaptic

updates.

Front. Comput. Neurosci. 18:1240348.

doi: 10.3389/fncom.2024.1240348

COPYRIGHT

© 2024 Daruwalla and Lipasti. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Information bottleneck-based
Hebbian learning rule naturally
ties working memory and
synaptic updates

Kyle Daruwalla1* and Mikko Lipasti2

1Cold Spring Harbor Laboratory, Long Island, NY, United States, 2Electrical and Computer Engineering

Department, University of Wisconsin-Madison, Madison, WI, United States

Deep neural feedforward networks are e�ective models for a wide array of

problems, but training and deploying such networks presents a significant energy

cost. Spiking neural networks (SNNs), which are modeled after biologically

realistic neurons, o�er a potential solution when deployed correctly on

neuromorphic computing hardware. Still, many applications train SNNs o	ine,

and running network training directly on neuromorphic hardware is an ongoing

research problem. The primary hurdle is that back-propagation, which makes

training such artificial deep networks possible, is biologically implausible.

Neuroscientists are uncertain about how the brain would propagate a precise

error signal backward through a network of neurons. Recent progress addresses

part of this question, e.g., the weight transport problem, but a complete solution

remains intangible. In contrast, novel learning rules based on the information

bottleneck (IB) train each layer of a network independently, circumventing the

need to propagate errors across layers. Instead, propagation is implicit due the

layers’ feedforward connectivity. These rules take the form of a three-factor

Hebbian update a global error signal modulates local synaptic updates within

each layer. Unfortunately, the global signal for a given layer requires processing

multiple samples concurrently, and the brain only sees a single sample at a time.

We propose a new three-factor update rule where the global signal correctly

captures information across samples via an auxiliary memory network. The

auxiliary network can be trained a priori independently of the dataset being

used with the primary network. We demonstrate comparable performance to

baselines on image classification tasks. Interestingly, unlike back-propagation-

like schemes where there is no link between learning and memory, our rule

presents a direct connection between working memory and synaptic updates.

To the best of our knowledge, this is the first rule to make this link explicit.

We explore these implications in initial experiments examining the e�ect of

memory capacity on learning performance. Moving forward, this work suggests

an alternate view of learning where each layer balances memory-informed

compression against task performance. This view naturally encompasses several

key aspects of neural computation, including memory, e�ciency, and locality.

KEYWORDS

neuromorphic computing, Neural Network, learning rule, information bottleneck,

back-propagation

1 Introduction

The success of deep learning demonstrates the usefulness of large feedforward neural

networks for solving a variety of tasks, but the energy cost associated with such networks

presents an ongoing problem (Strubell et al., 2019). Neuromorphic computing platforms

and spiking neural networks (SNNs), which model the power efficient properties of

biological neural networks, offer a possible solution (Christensen et al., 2022). While recent

advances allow SNNs to be trained offline (Neftci et al., 2019), these approaches only

Frontiers inComputationalNeuroscience 01 frontiersin.org140

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1240348
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1240348&domain=pdf&date_stamp=2024-05-16
mailto:daruwal@cshl.edu
https://doi.org/10.3389/fncom.2024.1240348
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1240348/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

benefit from energy-efficient inference even though training

continues to be the dominant energy bottleneck for deep

learning. Though there are many strategies for training SNNs,

it is widely believed that the most effective technique will

be a biologically plausible learning rule (Zenke et al., 2021).

While reproducing biology is not a strict requirement, the

engineering constraints of neuromorphic hardware naturally align

with biological constraints. Namely, we identify three defining

properties of biologically plausible learning rules that directly

impact energy efficiency: locality, asynchrony, and real-time

processing. These three properties reduce the communication

overhead and coordination required by a neuromorphic chip which

are large sources of power consumption (Christensen et al., 2022).

Unfortunately, training spiking neural networks directly on

hardware is challenging, since the driving factor behind deep

learning’s success—back-propagation—is not considered to be

biologically plausible (Lillicrap et al., 2020). Specifically, it is unclear

how neurons might propagate a precise error signal within a

forward/backward pass framework like back-propagation. A large

body of work has been devoted to establishing plausible alternatives

or approximations for this error propagation scheme (Balduzzi

et al., 2015; Scellier and Bengio, 2017; Akrout et al., 2019; Lillicrap

et al., 2020). While these approaches do address some of the

issues with back-propagation, implausible elements, like separate

inference and learning phases, still persist in many cases.

Our work joins a body of recent literature that addresses

biological plausibility by suggesting fundamentally different

approaches to training networks from back-propagation (Payeur

et al., 2021; Meulemans et al., 2022; Aceituno et al., 2023).

These approaches modulate local Hebbian updates using top-

down signals based on alternative objectives such as optimizing

a control policy. Our work is similar in that we propose a

dramatically different training objective. In contrast, we rely on

recent advances in deep learning that train feedforward networks

by balancing an information bottleneck objective (Ma et al., 2019).

Unlike back-propagation, where an error signal computed at the

end of the network is propagated to the front (see Figure 1A),

this method, called the Hilbert-Schmidt Independence Criterion

(HSIC) bottleneck, applies the information bottleneck to each

layer in the network independently. Layer-wise optimization is

biologically plausible as shown in Figure 1B. Compared to related

work, where the performance of the final layer affects training

of prior layers through top-down signals, our objective is fully

localized at each layer.

Our contributions include:

1. We show that optimizing the HSIC bottleneck via gradient

descent emits a three-factor learning rule (Frémaux and

Gerstner, 2016) composed of a local Hebbian component and

a global layer-wise modulating signal.

2. The HSIC bottleneck depends on a batch of samples, and this is

reflected in our update rule. Unfortunately, the brain only sees a

single sample at a time. We show that the local component only

requires the current sample, and that the global component can

be accurately computed by an auxiliary network. The auxiliary

networks acts as a working memory with post-processing, and

the effective “batch size” corresponds to its capacity.

3. We demonstrate the empirical performance of our update

rule by comparing it against baselines on synthetic datasets

as well as MNIST (LeCun et al., 1998) and CIFAR-10

(Krizhevsky, 2009).

4. To the best of our knowledge, our rule is the first tomake a direct

connection between working memory and synaptic updates. We

explore this connection in some initial experiments on memory

size and learning performance.

1.1 Preliminaries and related work

Several works have presented approximations to back-

propagation. Variants of feedback alignment (Lillicrap et al.,

2014; Liao et al., 2016; Akrout et al., 2019) address the weight

transport problem. Target propagation (Ahmad et al., 2020;

Frenkel et al., 2021) and equilibrium propagation (Scellier and

Bengio, 2017) propose alternative mechanisms for propagating

error. Yet, all these methods require separate inference (forward)

and learning (backward) phases. More recently, deep feedback

control methods (Meulemans et al., 2022; Aceituno et al.,

2023) use top-down signaling from a controller to optimize

forward and backward weights concurrently. Unlike prior methods

which address biological plausibility piecemeal, these techniques

are plausible by design. We follow this approach to creating

plausible learning rules, but we differ by focusing on layer-

wise objectives instead of top-down control. Table 1 shows a

comprehensive comparison between learning rule definitions.

Only direct feedback control (DFC) and our work satisfy all

objectives, but they represent two different solutions to the

problem of biologically plausible learning rules. DFC is framed

as a control problem with continuous dynamics, and the

resulting weight update requires multi-compartment neurons. The

authors note that this makes their work better suited for analog

neuromorphic hardware. In contrast, our rule can be mapped

to both digital or analog hardware, since time is denoted by

sequences of samples and not physical time. Additionally, we

do not put constraints on the neurons required to implement

the rule.

Layer-wise objectives (Belilovsky et al., 2019; Nøkland and

Eidnes, 2019), like the one used in this work, offer an alternative

that avoids the weight transport problem entirely. Moreover,

our objective emits a biologically plausible three-factor learning

rule which can be applied concurrently with inference. Pogodin

and Latham (2020) draw similar intuition in their work on the

plausible HSIC (pHSIC) learning rule. But in order to make

experiments with the pHSIC computationally feasible, the authors

used an approximation where the network receives a batch of

256 samples at once. In contrast, their proposed biologically

plausible rule only receives information from two samples—the

current one and previous one—which reduces the accuracy of

the HSIC estimate. This motivates our work, in which we derive

an alternate rule where only the global component depends on

past samples, while the local component only requires the current

pre- and post-synaptic activity. Furthermore, we show that this

global component can be computed using an auxiliary network.

This allows us to achieve performance much closer to back-

propagation without compromising the biological plausibility of

the rule.

Frontiers inComputationalNeuroscience 02 frontiersin.org141

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

FIGURE 1

(A) Sequential (explicit) error propagation requires precise information transfer backwards between layers. (B) Parallel (implicit) error propagation

uses only local information in combination with a global modulating signal. Biological rules of this form are known as three-factor learning rules

(Frémaux and Gerstner, 2016).

TABLE 1 A comparison of various learning algorithms categorized by four properties.

Learning algorithm Weight transport-free? Local? Asynchronous? Real-time?

Back-propagation (BP) ✗ ✗ ✗ ✗

Feedback alignment (FA) ✓ ✗ ✗ ✗

Direct FA (DFA) ✓ ✓ ✗ ✗

Single sparse DFA (SDFA) ✓ ✓ ✓ ✗

Equilibrium propagation (EP) ✓ ✓ ✗ ✗

Target propagation (TP) ✓ ✓ ✗ ✗

Direct random TP (DRTP) ✓ ✓ ✓ ✗

Plausible HSIC (pHSIC) ✓ ✓ ✓ ✗

Direct feedback control (DFC) ✓ ✓ ✓ ✓

Our work ✓ ✓ ✓ ✓

Weight transport-free rules do not require separate forward and backward networks with aligned weight parameters. Local rules utilize only locally available information. Asynchronous rules do

not require a full forward pass before updating the weights of each layer. Real-time rules operate on samples arriving sequentially in time (not batches).

1.1.1 Other uses of information theoretic
objectives for spiking neural networks

Information bottleneck and other information theoretic

quantities have been used in the context of training SNNs

before. Yang and Chen (2023a,b) utilize an information bottleneck

objective in the final layer of an SNN to train networks that

are robust to noisy input distributions. Yang and Chen (2023a)

improves on the standard information bottleneck by considering

higher order terms. Similarly, Yang et al. (2022) trains networks

with an additional minimum entropy criterion to promote robust

learning in SNNs. Still, all works rely on back-propagation through

time (BPTT) and surrogate gradient descent to train their SNNs.

1.1.2 Hardware substrates for implementing
biological neural networks

While our work does not directly deal with hardware

implementations of biological networks, our contributions are

Frontiers inComputationalNeuroscience 03 frontiersin.org142

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

motivated by the possible power efficiency benefits of biologically

plausible learning rules. As such, we will briefly discuss various

platforms for physical realization of neuromorphic computing.

The landscape of neuromorphic hardware is vast and varied.

At one extreme, platforms like Intel’s Loihi (Davies et al., 2018,

2021) use conventional CMOS technologies to create a digital

array of biological neurons. While such systems are useful for

exploring SNN applications, it is widely accepted that the primary

power efficiency of neuromorphic hardware will come from novel

device technologies. The most common devices are memristors

(Yan et al., 2023) and resistive memory (Bianchi et al., 2023).

Less common substrates based on metal-organic transistors (Wang

et al., 2023) and thermal-guiding structures (Loke et al., 2016) exist

as well. These devices are designed to mimic various functions

of a biological synapse especially its plastic conductance. While

the specifics differ, all devices have electrical properties that allow

the conductance to be adjustable. Successful demonstrations of

neuromorphic device arrays show their ability to simulate SNNs at

a much lower power consumption than conventional computing.

Yet, all rely on purely local update rules which fail to scale to very

deep networks. Circumventing this limitation requires non-local

circuitry, and the goal of any biologically plausible rule, including

ours, is to limit the power overhead of these components.

1.1.3 Notation
We will briefly introduce the notation used in the paper.

• Vectors are indicated in bold and lower-case (e.g., x).

• Matrices are indicated in bold and upper-case (e.g.,W).

• Superscripts refer to different layers of a feedforward network

(e.g., zℓ is the ℓ-th layer).

• Subscripts refer to individual samples (e.g., xi is the

i-th sample).

• Brackets refer to elements within a matrix or vector (e.g., [x]i
is the i-th element of x).

2 Methods and materials

In this section, we describe our learning rule and its derivation

in detail. Section 2.1 introduces the information bottleneck for deep

networks. Then in Section 2.2, we derive a gradient descent rule

for this objective, as well as introduce reasonable approximations

such that the final rule is a three-factor Hebbian update. Lastly, in

Section 2.2.1 we describe how the modulating factor in our rule can

be computed using an auxiliary network.

2.1 The information bottleneck

Given an input random variable, X, an output label random

variable, Y , and hidden representation, T, the information

bottleneck (IB) principle is described by Equation (1)

min
PT|X

I(X;T)− γI(Y;T) (1)

where I(A;B) is the mutual information between two random

variables. Intuitively, this expression adjusts T to achieve a balance

between information compression and output preservation.

Since computing the mutual information of two random

variables requires knowledge of their distributions, Ma et al. (2019)

propose using the Hilbert-Schmidt Independence Criterion (HSIC)

as a proxy for mutual information. Given a finite number of

samples, N, a statistical estimate, shown in Equation (2), for the

HSIC (Gretton et al., 2005) is

HSIC(X,Y) = (N − 1)−2tr(KXHKYH)

≤
1

(N − 1)2

N
∑

p=1

k̄(xp, xp)k̄(yp, yp)
(2)

[KXH]tpq = k̄(xp, xq)

= k(xp, xq)−
1
N

∑N
n=1 k(xp, xn) (3)

[KX]pq = k(xp, xq) = exp

(

−
‖xp − xq‖

2

σ 2

)

(4)

where Equations (3) and (4) define the centered and uncentered

kernel matrices, respectively.

Using these definitions Ma et al. (2019) define the HSIC

objective—a loss function for training feedforward neural networks

by balancing the IB at each layer. Consider a feedforward neural

network with L layers where the output of layer ℓ is

zℓ = f (θℓ, zℓ−1)

where f describes the forward computation (including nonlinear

activation) of a single layer given parameters, θℓ, and inputs, zℓ−1.

For example, a fully-connected layer of artificial neurons with a

ReLU activation is described by θℓ = {Wℓ, bℓ} and f (θℓ, zℓ−1) =

relu(Wℓzℓ−1 + bℓ). In this work we will define f for both artificial

neuron layers and rate-encoded leaky-integrate neuron layers.

We train the network to minimize

LHSIC(X,Y ,Z
ℓ) = HSIC(X,Zℓ)− γHSIC(Y ,Zℓ)

∀ℓ ∈ {1, . . . , L}
(5)

where Z = {Zℓ}Lℓ=1 are the output distributions at each hidden

layer. Note that there is a separate objective for each layer. As a

result, there is no explicit error propagation across layers, and the

error propagation is implicit due to forward connectivity as shown

in Figure 1.

2.2 Deriving a biologically plausible rule for
the HSIC bottleneck

In this work, we seek to derive biologically plausible rule for

optimizing Equation (5). Computing this quantity requires a batch

of N samples, but we want a rule that operates on single samples

arriving sequentially over time. So, we will make a minor notational

change to the indexing in Equation (5) for clarity. Our indices will

range over {0,−1, . . . ,−(N− 1)} instead of {1, 2, . . . ,N}, so that x0
refers to the current input sample, x−1 refers to the previous input

Frontiers inComputationalNeuroscience 04 frontiersin.org143

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

sample, etc. We operate onN samples, but we are explicit that these

samples arrive at different points in time.

Now, we take the gradient of LHSIC with respect to θℓ and

applying gradient descent. Doing this, we obtain the following

update rule:

1θℓ ∝ ∇θℓLHSIC =
1

(N − 1)2

−(N−1)
∑

p=0

[

k̄(xp, xp)− γk̄(yp, yp)
]

∇θℓ k̄(zℓ
p, z

ℓ
p)

∇θℓ k̄(zℓ
p, z

ℓ
p) =

2

Nσ 2

−(N−1)
∑

n=0

k(zℓ
p, z

ℓ
n)(z

ℓ
p − zℓ

n)(∇θℓzℓ
p −∇θℓzℓ

n)

=
2

Nσ 2

−(N−1)
∑

n=0

k(zℓ
p, z

ℓ
n)(z

ℓ
p − zℓ

n)(∇θℓ f (θℓ, zℓ−1
p)

−∇θℓ f (θℓ, zℓ−1
n))

(6)

where∇θℓ f (θℓ, zℓ−1
p) describes how the post-synaptic activity varies

as a function of pre-synaptic activity. We call N, the batch size in

the deep learning, the effective batch size in our work. This rule

is similar to the basic rule in Pogodin and Latham (2020), except

that they replace k̄(xp, xp) with k̄(zp, zp) and do not use a centered

kernel matrix.

Without modifications, Equation (6) is not biologically

plausible. ∇θℓ k̄(zℓ
p, z

ℓ
p) cannot be called Hebbian when p is not

equal to zero, since it depends on non-local information from the

past. We solve this by making a simplifying approximation. We

assume that ∇θℓ f (θℓ, zℓ−1
p) = 0 when p 6= 0. In other words, the

weights at the current time step do not affect past outputs. With

this assumption, we find that

∇θℓ k̄(zℓ
p, z

ℓ
p)

=

{

2
Nσ 2

∑−(N−1)
n=1 k(zℓ

0, z
ℓ
n)(z

ℓ
0 − zℓ

n)∇θℓ f (θℓ, zℓ−1
0) p = 0

2
Nσ 2 k(z

ℓ
0, z

ℓ
p)(z

ℓ
0 − zℓ

p)∇θℓ f (θℓ, zℓ−1
0) p 6= 0

Notably, the local term, ∇θℓ f (θℓ, zℓ−1
0), does not depend on the

summation indices and can be factored out. This leads us to our

final three-factor update:

1Wℓ ∝ β ⊙ ξ

β = ∇θℓ f (θℓ, zℓ−1
0)

ξ =
2

σ 2N(N − 1)2

−(N−1)
∑

p=1

[

k̄(xp, xp)− γk̄(yp, yp)
]

α(zℓ
p)+

−(N−1)
∑

n=1

α(zℓ
n)
[

k̄(x0, x0)− γk̄(y0, y0)
]

α(zℓ
p) = k(zℓ

0, z
ℓ
p)(z

ℓ
0 − zℓ

p)

(7)

Note that β is now a local term that only depends on the current

pre- and post-synaptic activity. ξ is a modulating term that adjusts

the synaptic update layer-wise. This establishes a three-factor

learning rule for Equation (5). In the next section, we discuss how

ξ , despite appearing complex, is easy to compute using an auxiliary

network of neurons.

FIGURE 2

The overall network architecture. Each layer has a corresponding

auxiliary reservoir network. The synaptic update, β in Equation (7), is

modulated by a layer-wise error signal, ξ , that is the readout from

the reservoir.

To understand the behavior of our rule, we begin by focusing

on α(zℓ
p). This term drives together the layer representations zℓ

0 and

zℓ
p, but the strength is weighted by the similarity kernel, k(zℓ

0, z
ℓ
p).

This similarity drive is modulated by the term k̄(xp, xp)−γk̄(yp, yp).

Note that we are specifically focused on the diagonal terms of the

centered kernel matrices. This takes a special form:

k̄(xp, xp) = 1−
1

N

−(N−1)
∑

n=0

k(xp, xn)

The summation measures the average similarity of xp to other

samples. As a result, k̄(xp, xp) acts as a “surprise” signal. If xp is

identical to all other samples, then k̄(xp, xp) = 0. Conversely, if

xp is unlike any other sample, then k̄(xp, xp) → 1. When taken

together, the full term k̄(xp, xp)−γk̄(yp, yp) measures surprise along

a decision boundary. If both the input and output is surprising or

not surprising, this term goes to zero (where the relative surprise

signals are balanced by γ). On the other hand, if the input is

surprising, but the output is not, then the similarity drive of α(zℓ
p) is

strengthened. In effect, this compresses away the differences in the

input distribution andmore closely matches the desired output. For

the opposite case, when the input is not surprising, but the output

is, the sign is reversed on α(zℓ
p). As expected, this forces the layer to

drive the output representations apart.

2.2.1 Computing the modulating signal with an
auxiliary network

In order to compute ξ in Equation (7), we require a neural

circuit capable of storing information for future use. Recurrent

networks can provide such functionality, and Sussillo and Abbott

(2009) demonstrate how a reservoir network can be trained to

compute complex signals using a local update rule.

For each layer, we construct an auxiliary network of rate-

encoded leaky-integrate neurons whose dynamics are governed by

Frontiers inComputationalNeuroscience 05 frontiersin.org144

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

Equation (8)

τr
dur

dt
= −ur + λWrr+Wiri +Wfbro

r = tanh(ur)

ro = Wour

(8)

where ur are the recurrent neuron membrane potentials, ri is the

input signal activity, and ro is the readout activity. λ is a hyper-

parameter that controls the chaos level of the recurrent population.

Following Sussillo and Abbott (2009), we train the auxiliary

network using a least mean squares (LMS) FORCE learning rule

shown below in Equation (9) (which is a local update),

1Wo ∝ (ro − ξ)r⊤ (9)

where ξ is the true global error signal in Equation (7).

Training of the reservoir can be done a priori so that the

reservoir is fixed during the primary learning phase. Alternatively,

we can also compute ξ without needing to train the auxiliary

network. Instead, a set of buffers can be constructed to remember

that last N inputs, targets, and current layer’s activity. This can be

achieved using a delay line circuit where populations of neurons are

connected with the appropriately chosen synaptic delay. Given the

output of these buffers, computing ξ is trivial since k̄, α, and the

summation are all implementable functions using neurons.

Figure 2 illustrates the full design of the proposed learning

scheme. The reservoir serves as a working memory where the

capacity of the memory determines the effective batch size. To

the best of our knowledge, our rule is the first to modulate the

Hebbian updates of a synapse based on past information stored

in a working memory. Furthermore, having a controllable effective

batch size means we can study the effect of memory capacity on the

learning convergence.

2.2.2 Extensions to convolutional neural
networks and spiking neural networks

When feasible, we use fully-connected layers in this work,

because they are biologically plausible. Unfortunately, the best

performing artificial networks for visual tasks utilize convolution

layers. A biologically plausible implementation of convolution itself

is an open topic of research (Pogodin et al., 2021). Still, we can

support convolutional layers in our rule, since the local term β

in Equation (7) is agnostic to the layer function, f . The resulting

update is not biologically plausible, but any issues stem from f , not

the learning rule.

Similar to how we extend our rule to convolution neural

networks, we can extend it to other network types including

spiking neural networks. For spiking neural networks, the primary

challenge is the non-linearity of the spike threshold function.

Standard techniques such as surrogate gradients or probabilistic

threshold functions can be used to correctly derive β (Neftci

et al., 2019). Another important feature of SNNs is recurrence

or feedback connections. Traditionally, this is handled by back-

propagation-like algorithms by unrolling the network evaluations

over time and treating the temporal dimension spatially. A similar

approach could be done with our rule, but unlike back-propagation

through time, the HSIC update does not introduce coupling

TABLE 2 Reservoir experiment parameters.

Parameter name Symbol Value

Simulation time step 1t 1ms

Neuron time constant τr 5ms

Sample time constant 1tsample 20ms

Reservoir recurrent strength λ 1.2

Effective batch size N 10

HSIC balance parameter γ 2

HSIC scale parameter σ 0.5

Learning rate η 5× 10−4

Num. of epochs T 10

across timesteps. In this way, we are able to remain biologically

plausible even in the presence of recurrence. Yet, when dealing with

recurrent connections, the stability of weight updates is always a

concern. It is not immediately clear that our rule as given should be

stable. The analysis and potential augmentations to our approach

for recurrent networks is out of the scope of this paper, and we leave

it for future work.

3 Results

We test our approach on a variety of synthetic and benchmark

datasets. The code to reproduce each experiment is available at

https://github.com/darsnack/biological-hsic/

along with instructions. Since our method processes samples one

at a time, training networks can be a computationally intensive

process. To make experimentation tractable, our evaluation is

broken down into three stages:

1. We test the ability for a reservoir network to learn to compute

the global modulatory signal, ξ , in Equation (7) as describe in

Section 2.2.1.

2. We train multi-layer networks of rate-encoded leaky-integrate

neurons on small synthetic datasets. We avoid simulating the

reservoir for computational efficiency.

3. We train deep multi-layer networks of artificial neurons

on larger scale machine learning benchmark datasets. We

use artificial neurons instead of biological neurons for

computational efficiency.

3.1 Reservoir experiments

First, we verify the ability for the reservoir to reproduce the

true signal ξ in Equation (7). We use a recurrent population of

2,000 leaky-integrate neurons with τr = 5ms and λ = 1.2 (as

described in Section 2.2.1). For the input and output signals, we use

a hundred random samples from MNIST. Corresponding random

hidden activation signals, Z ∈ R
10×100, are drawn from Unif(0, 1).

Each sample is presented to the network for 10ms and the network

is trained for 10 epochs. For evaluation, we generate a hundred new

inputs and process them with the network with all parameters fixed

Frontiers inComputationalNeuroscience 06 frontiersin.org145

https://doi.org/10.3389/fncom.2024.1240348
https://github.com/darsnack/biological-hsic/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

FIGURE 3

The reservoir output when learning ξ in Equation (7). Each sub-panel column displays the output during a di�erent time interval of testing. The rows

in a given sub-panel correspond to each element of true/predicted ξ . In all cases, the predicted output signal matches the target signal closely.

(i.e., no learning). A complete list of experimental parameters is in

Table 2.

The results can be seen in Figure 3 which shows the reservoir

output for all elements of the predicted modulatory signal against

the target modulatory signal, ξ . The network is able to close match

the target shortly after learning begins, and it is able to persist its

performance long after learning stops. Note that this demonstrates

how the auxiliary network can be pre-trained to compute ξ—it

is not learning a data-specific computation, it is learning how to

buffer N samples of its input and post-process them to compute ξ .

3.2 Small dataset experiments

Now, we show that our learning rule is capable of training

multi-layer networks of leaky-integrate neurons to solve “small

scale” tasks. For computational efficiency, we no longer simulate

the reservoir network, but compute its readout, ξ , directly. All

networks in this set of experiments use the following neuron model

in Equation (10):

τm
duℓ

dt
= −uℓ +Wℓzℓ−1 + bℓ

zℓ = relu(uℓ)

(10)

where τm is the neuron time constant, and Wℓ and bℓ are

parameters. A full description of the experimental parameters is in

Table 3.

We consider two synthetic datasets consisting of a thousand

samples each (a hundred samples are held out for testing). First,

we generate a linearly separable set of labeled points drawn from

Unif([0, 1]×[0, 1]) and train a networkwith a single hidden layer on

them [shown in Figure 4 (top left)]. Since only a linear classifier is

required to predict this dataset, we also generate a non-linear XOR

dataset and train a network with two hidden layers on it [shown in

Figure 4 (bottom left)]. The final layer of both networks is trained

TABLE 3 Small dataset experiment parameters.

Parameter name Symbol Value

Simulation time step 1t 1ms

Neuron time constant τm 5ms

Sample time constant 1tsample 20ms

Effective batch size N 64

HSIC balance parameter γ 10

HSIC input scale

parameter

σx 0.3

HSIC layer scale

parameter

σz 2

HSIC output scale

parameter

σy 0.25

Learning rate η 1× 10−4

Num. of epochs N/A 25

Num. of random seeds N/A 30

against a task-specific cross-entropy objective. The results on both

datasets are shown in Figure 4. Within a few epochs, our rule is able

to achieve nearly 100% accuracy on both datasets. Additionally,

we also show the value of the HSIC bottleneck (Equation 5) in the

rightmost column of Figure 4 during training. This demonstrates

that our rule does reduce the HSIC bottleneck across all layers, and

this reduction corresponds to an improvement in test accuracy on

the task.

3.3 Large dataset experiments

Finally, we test our rule on two standard machine learning

benchmark vision datasets—MNIST and CIFAR-10. We use

Frontiers inComputationalNeuroscience 07 frontiersin.org146

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

FIGURE 4

Our learning rule applied to two synthetic datasets with multi-layer feedforward networks of leaky-integrate neurons (see Equation 10). (Top) A

linearly separable dataset drawn from Unif([0, 1]× [0, 1]). The network trained on this dataset consists of a single hidden layer with four neurons.

(Bottom) A non-linear XOR dataset with small Gaussian noise added around each input cluster. The network trained on this dataset consists of two

hidden layers of size ten and four, respectively. For both datasets, our models converge to nearly 100% accuracy, and this coincides with decreasing

the HSIC bottleneck at every layer.

TABLE 4 Large scale experiment parameters.

Parameter
name

Symbol MNIST
value

CIFAR-10
value

Back-propagation

learning rate

N/A 1× 10−3 5× 10−4

Our rule learning

rate

N/A 1× 10−4 5× 10−5

Effective batch size N 8 4

HSIC balance

parameter

γ 2 50

HSIC input scale

parameter

σx 0.5 1

HSIC layer scale

parameter

σz 1 0.5

HSIC output scale

parameter

σy 0.1 0.1

Num. of epochs N/A 25 50

Num. of random

seeds

N/A 30 15

feedforward networks of artificial neurons with a ReLU activation

function (this is done to keep our experiments tractable). Our rule

is compared against a back-propagation baseline.

We use a multi-layer fully-connected network on MNIST with

architecture FC(128) → FC(64) → FC(10). For CIFAR-10, we use

a convolutional neural network with architecture Conv(3 × 3 ×

128) → Avg. Pool(2) → Conv(3 × 3 × 256) → Avg. Pool(2) →

FC(10). Both the baseline and our rule are trained using an

Adam optimizer with default hyper-parameters. A complete list of

experiment parameters is in Table 4.

Figure 5 shows the test performance over the course of training.

Even though learning occurs more slowly, our rule reaches

comparable the performance with the back-propagation baseline.

While the gap between back-propagation and our rule widens on

CIFAR-10, it does reach 60% test accuracy which is higher than

training just the last layer (this reaches only 39%). Given that

each layer in our method has no explicit information about the

performance of other layers, the fact that hierarchical learning is

possible is remarkable.

3.4 E�ects of memory capacity

One of the novel features of our rule is the ability to control

the memory capacity of the update. To explore this parameter,

we repeat the same CIFAR-10 experiments as before for various

effective batch sizes. The results are shown in Figure 6. Not only

does the final training performance increase as a function of

batch size, the rate of learning also increases. Unfortunately, this

improvement is logarithmic, leading to diminishing returns.

4 Discussion

In this work, we proposed a three-factor learning rule for

training feedforward networks based on the information bottleneck

Frontiers inComputationalNeuroscience 08 frontiersin.org147

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

FIGURE 5

Average test accuracy over many trials on MNIST and CIFAR-10 for back-propagation and our method. The MNIST network is an MLP with 128 and

64 hidden neurons. The CIFAR-10 network is a CNN with 128 and 256 features followed by a single fully-connected output layer. Our rule reaches

above 91% accuracy on MNIST (within 7% of the baseline). Our rule reaches around 61% accuracy on CIFAR-10 (within 19% of the baseline).

FIGURE 6

The train accuracies on CIFAR-10 for varying number of epochs and

e�ective batch sizes. We see that accuracy improves logarithmically

as a function of batch size.

principle. The rule is biologically plausible, and we are able

to scale up to reasonable performance on MNIST. We do this

by factoring our weight update into a local component and

global component. The local component depends only on the

current synaptic activity, so it can be implemented via Hebbian

learning. In contrast to prior work, our global component uses

information across many samples seen over time. We show that

this content can be stored in an auxiliary reservoir network, and

the readout of the reservoir can be used to modulate the local

weight updates. To the best of our knowledge, this is the first

biological learning rule to tightly couple the synaptic updates with

a working memory capacity. We verified the efficacy of our rule

on synthetic datasets, MNIST, and CIFAR-10, and we explored

the effect of the size of the working memory capacity on the

learning performance.

Even though our rule does perform reasonably well, there

is room for improvement. The rule performs best when it is

able to distinguish between different high dimensional inputs.

The resolution at which it separates inputs is controlled by the

parameter, σ , in the kernel function (Equation 4). The use of a

fixed σ is partly responsible for the slow down in convergence

in Figure 5. In Ma et al. (2019), the authors propose using

multiple networks trained with the different values of σ and

averaging the output across networks. This allows the overall

network to separate the data at different resolutions. Future

work can consider a population of networks with varying σ

to achieve the same effect. Addressing the resolution issue will

be important for improving the speed and scalability of the

learning method.

Additionally, our rule is strongly supervised. While the

mechanism for synaptic updates is biologically plausible, the overall

learning paradigm is not. Note that the purpose of the label

information in the global signal is to indicate whether the output for

the current sample should be the same or different from previous

samples. In other words, it might be possible to replace the term

k̄(y0, yp) in Equation (7) with a binary teaching signal. This would

allow the rule to operate under weak supervision. Alternatively,

we could use contrastive learning, where output distribution, Y , is

replaced by the output of a different network. Ideally, this other

network should process a different, but related modality (e.g., a

visual network and auditory network that are trained against each

other using a contrastive approach).

Most importantly, while our rule is certainly biologically

plausible, it remains to be seen if it is an accurate model for circuitry

in the brain. Since rules based on the information bottleneck

are relatively new, the corresponding experimental evidence must

still be obtained. Yet, we note that our auxiliary reservoir serves

a similar role to the “blackboard” circuit proposed in Mumford

(1991). This circuit, present in the thalamus, receives projected

connections from the visual cortex, similar to how each layer

projects its output onto the reservoir. Furthermore, Mumford

suggests that this circuit acts as a temporal buffer and sends signals

Frontiers inComputationalNeuroscience 09 frontiersin.org148

https://doi.org/10.3389/fncom.2024.1240348
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

that capture information over longer timescales back to the cortex

like our reservoir.

So, while it is uncertain whether our exact rule and

memory circuit are present in biology, we suggest that an

in-depth exploration of memory-modulated learning rules

is necessary. Even in the absence of a biological counter-

part, our rule captures important properties necessary for

neuromorphic hardware—locality, asynchrony, and real-time

processing. We achieve this by suggesting a fundamentally

different objective training deep neural networks, in line

with recent work. We hope this work prompts further

exploration of novel, non-back-propagation-based approaches

for learning.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: http://yann.lecun.com/exdb/mnist/.

Author contributions

KD derived the theory and learning rule and performed the

simulations. ML helped design the experiments and provided

feedback on the theory. KD and ML contributed to writing the

manuscript. All authors contributed to the article and approved the

submitted version.

Funding

This work was funded by the US Air Force Research Laboratory

and the National Science Foundation.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aceituno, P. V., Farinha, M. T., Loidl, R., and Grewe, B. F. (2023). Learning cortical
hierarchies with temporal Hebbian updates. Front. Comput. Neurosci. 17:1136010.
doi: 10.3389/fncom.2023.1136010

Ahmad, N., van Gerven, M., and Ambrogioni, L. (2020). GAIT-prop: a biologically
plausible learning rule derived from backpropagation of error. Adv. Neur. Inf. Process.
Syst. 33, 10913–10923.

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and Tweed, D. B. (2019). Deep
learning without weight transport. Adv. Neur. Inf. Process. Syst. 31, 9.

Balduzzi, D., Vanchinathan, H., and Buhmann, J. (2015). “Kickback cuts Backprop’s
red-tape: biologically plausible credit assignment in neural networks,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 7.

Belilovsky, E., Eickenberg,M., andOyallon, E. (2019). Greedy layerwise learning can
scale to ImageNet. Proc. Mach. Learn. Res. 97, 583–593. doi: 10.48550/arXiv.1812.11446

Bianchi, S., Muñoz-Martin, I., Covi, E., Bricalli, A., Piccolboni, G., Regev, A., et al.
(2023). A self-adaptive hardware with resistive switching synapses for experience-based
neurocomputing. Nat. Commun. 14:1565. doi: 10.1038/s41467-023-37097-5

Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M.,
Redaelli, A., et al. (2022). 2022 roadmap on neuromorphic computing and engineering.
Neuromorp. Comp. Eng. 2:022501. doi: 10.1088/2634-4386/ac4a83

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P.,
et al. (2021). Advancing neuromorphic computing with loihi: a survey of results and
outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.3067593

Frémaux, N., and Gerstner, W. (2016). Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Front. Neural Circ. 9:85.
doi: 10.3389/fncir.2015.00085

Frenkel, C., Lefebvre, M., and Bol, D. (2021). Learning without feedback: fixed
random learning signals allow for feedforward training of deep neural networks. Front.
Neurosci. 15:629892. doi: 10.3389/fnins.2021.629892

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). “Measuring
statistical dependence with Hilbert-Schmidt Norms,” in Algorithmic Learning Theory,

Vol. 3734, eds. D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell (Berlin, Heidelberg: Springer Berlin Heidelberg), 63–77.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images, 60.
Available online at: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

LeCun, Y., Cortes, C., and Burges, C. J. (1998).MNIST Handwritten Digit Database.
Available online at: http://yann.lecun.com/exdb/mnist/ (accessed April 26, 2024).

Liao, Q., Leibo, J. Z., and Poggio, T. (2016). “How important is weight symmetry
in backpropagation?,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, 1837–1844.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2014). Random
feedback weights support learning in deep neural networks. arXiv [preprint].
arXiv:1411.0247 [cs, q-bio].

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G.
(2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.
doi: 10.1038/s41583-020-0277-3

Loke, D., Skelton, J.M., Chong, T.-C., and Elliott, S. R. (2016). Design of a nanoscale,
CMOS-integrable, thermal-guiding structure for boolean-logic and neuromorphic
computation. ACS Appl. Mater. Interf. 8, 34530–34536. doi: 10.1021/acsami.6b10667

Ma, W.-D. K., Lewis, J. P., and Kleijn, W. B. (2019). The HSIC Bottleneck: deep
learning without back-propagation. arXiv [preprint]. arXiv:1908.01580 [cs, stat].

Meulemans, A., Farinha,M. T., Cervera, M., Sacramento, J., and Grewe, B. F. (2022).
“Minimizing control for credit assignment with strong feedback,” in Proceedings of the
39th International Conference on Machine Learning (Baltimore, MD: PMLR).

Mumford, D. (1991). On the computational architecture of the neocortex: I. The
role of the thalamo-cortical loop. Biol. Cybernet. 65, 135–145. doi: 10.1007/BF00202389

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Nøkland, A., and Eidnes, L. H. (2019). Training neural networks with local error
signals. Proc. Mach. Learn. Res. 97, 4839–4850.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and Naud, R. (2021). Burst-
dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nat.
Neurosci. 24, 1010–1019. doi: 10.1038/s41593-021-00857-x

Frontiers inComputationalNeuroscience 10 frontiersin.org149

https://doi.org/10.3389/fncom.2024.1240348
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.3389/fncom.2023.1136010
https://doi.org/10.48550/arXiv.1812.11446
https://doi.org/10.1038/s41467-023-37097-5
https://doi.org/10.1088/2634-4386/ac4a83
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.3389/fnins.2021.629892
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1021/acsami.6b10667
https://doi.org/10.1007/BF00202389
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41593-021-00857-x
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Daruwalla and Lipasti 10.3389/fncom.2024.1240348

Pogodin, R., and Latham, P. E. (2020). Kernelized information bottleneck leads to
biologically plausible 3-factor Hebbian learning in deep networks. Adv. Neural Inf.
Process. Syst. 33:12.

Pogodin, R., Lillicrap, T. P., Mehta, Y., and Latham, P. E. (2021). “Towards
biologically plausible convolutional networks,” in 35th Conference on Neural
Information Processing Systems (NeurIPS 2021), 13.

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap
between energy-based models and backpropagation. Front. Comput. Neurosci. 11:24.
doi: 10.3389/fncom.2017.00024

Strubell, E., Ganesh, A., and McCallum, A. (2019). “Energy and policy
considerations for deep learning in NLP,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Florence: Association for Computational
Linguistics), 3645–3650.

Sussillo, D., and Abbott, L. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron 63, 544–557. doi: 10.1016/j.neuron.2009.07.018

Wang, Q., Zhao, C., Sun, Y., Xu, R., Li, C.,Wang, C., et al. (2023). Synaptic transistor
with multiple biological functions based on metal-organic frameworks combined

with the LIF model of a spiking neural network to recognize temporal information.
Microsyst. Nanoeng. 9:96. doi: 10.1038/s41378-023-00566-4

Yan, X., Jia, X., Zhang, Y., Shi, S., Wang, L., Shao, Y., et al. (2023). A low-power
Si:HfO2 ferroelectric tunnel memristor for spiking neural networks. Nano Energy
107:108091. doi: 10.1016/j.nanoen.2022.108091

Yang, S., and Chen, B. (2023a). Effective surrogate gradient learning with high-order
information bottleneck for spike-based machine intelligence. IEEE Transact. Neural
Netw. Learn. Syst. 1–15. doi: 10.1109/TNNLS.2023.3329525

Yang, S., and Chen, B. (2023b). SNIB: improving spike-based machine learning
using nonlinear information bottleneck. IEEE Transact. Syst. Man Cybernet. 53,
7852–7863. doi: 10.1109/TSMC.2023.3300318

Yang, S., Tan, J., and Chen, B. (2022). Robust spike-based continual meta-
learning improved by restricted minimum error entropy criterion. Entropy 24:455.
doi: 10.3390/e24040455

Zenke, F., Bohté, S. M., Clopath, C., Comşa, I. M., Göltz, J., Maass, W., et al. (2021).
Visualizing a joint future of neuroscience and neuromorphic engineering. Neuron 109,
571–575. doi: 10.1016/j.neuron.2021.01.009

Frontiers inComputationalNeuroscience 11 frontiersin.org150

https://doi.org/10.3389/fncom.2024.1240348
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1038/s41378-023-00566-4
https://doi.org/10.1016/j.nanoen.2022.108091
https://doi.org/10.1109/TNNLS.2023.3329525
https://doi.org/10.1109/TSMC.2023.3300318
https://doi.org/10.3390/e24040455
https://doi.org/10.1016/j.neuron.2021.01.009
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

+41 (0)21 510 17 00
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Provides a holistic understanding of brain

function from genes to behavior

Part of the most cited neuroscience journal series

which explores the brain - from the new eras

of causation and anatomical neurosciences to

neuroeconomics and neuroenergetics.

Discover the latest
Research Topics

See more

Frontiers in
Neuroscience

https://www.frontiersin.org/journals/Neuroscience/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Understanding and bridging the gap between neuromorphic computing and machine learning, volume II
	Table of contents
	Approaching the mapping limit with closed-loop mapping strategy for deploying neural networks on neuromorphic hardware
	1. Introduction
	2. Preliminaries and related works
	2.1. Graph representation
	2.2. Logical mapping
	2.3. Physical mapping

	3. Mapping limit
	3.1. Logical mapping limit
	3.2. Physical mapping limit

	4. Approaches
	4.1. Closed-loop mapping strategy
	4.2. Hamilton loop algorithm for physical mapping

	5. Experimental results
	5.1. Analysis of logical mapping
	5.2. Analysis of HLA physical mapping
	5.3. Integration of logical and physical mapping

	6. Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Spiking neural network with working memory can integrate and rectify spatiotemporal features
	1. Introduction
	2. Materials and methods
	2.1. Spiking neuron models
	2.2. Spiking neural network with working memory
	2.3. Temporal fusion layer
	2.4. Implementation in software and hardware
	2.5. Training

	3. Results
	3.1. Implementation details
	3.2. Static data
	3.2.1. Comparison with prior works
	3.2.2. Effects of different encoding methods
	3.2.3. Effects of working memory length

	3.3. Sequence data
	3.3.1. DVS data encoding
	3.3.2. Comparison with prior works
	3.3.3. Effects of working memory length

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Direct learning-based deep spiking neural networks: a review
	1. Introduction
	2. Preliminary
	3. Recent advances
	3.1. Accuracy improvement methods
	3.1.1. Improving representative capabilities
	3.1.1.1. On the neuron level
	3.1.1.2. On the network structure level
	3.1.1.3. On the training technique level

	3.1.2. Relieving training difficulties
	3.1.2.1. Designing the better surrogate gradient
	3.1.2.2. Relieving the gradient explosion/vanishing problem

	3.2. Efficiency improvement methods
	3.2.1. Network compression techniques
	3.2.1.1. Parameter pruning
	3.2.1.2. Neural architecture searching
	3.2.1.3. Knowledge distillation

	3.2.2. Sparse SNNs
	3.2.2.1. On the neuron level
	3.2.2.2. On the training technique level

	3.3. Temporal dynamics utilization methods
	3.3.1. Sequential learning
	3.3.2. Cooperating with neuromorphic cameras

	4. Future trends and conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	BIDL: a brain-inspired deep learning framework for spatiotemporal processing
	1. Introduction
	2. Generalized spatiotemporal processing via neural dynamics
	2.1. Definition of the LIF/LIAF neural model
	2.2. Lightweight processing

	3. BIDL: an easy-to-use platform for SNN researchers
	3.1. For computational neuroscience researchers
	3.1.1. Neural model support
	3.1.2. Generalized synaptic plasticity rules

	3.2. For machine learning researchers
	3.2.1. A deep learning style SNN builder
	3.2.2. Global-local learning support

	4. Mapping optimizations for neuromorphic chips
	5. Experiments
	5.1. Applications
	5.1.1. Video processing
	5.1.2. DVS signal processing
	5.1.3. 3D medical imaging
	5.1.4. NLP task

	5.2. Experiment results analysis
	5.3. Global-local co-learning
	5.4. LIF+ neural models

	6. Discussions
	6.1. Single frame (image) processing
	6.2. Neural coding
	6.3. Direct training vs. conversion methods
	6.4. Strengths and limitations of BIDL

	7. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Efficient SNN multi-cores MAC array acceleration on SpiNNaker 2
	1. Introduction
	2. Prerequisite
	2.1. MAC array
	2.2. Operand Stack

	3. Method
	3.1. Echelon Reorder
	3.1.1. Weight-delay map
	3.1.2. Input-spike-train map

	3.2. Multi-core two-stage splitting
	3.2.1. Pure MAC
	3.2.2. MAC and ARM mixture
	3.2.3. Pure or mixed?

	3.3. Multi-core authorization deployment

	4. Experiment and result
	4.1. Constructed SNN models
	4.2. Actual SNN models
	4.2.1. Application model from the real scenario: radar gesture recognition SNN model
	4.2.2. Classic structural modeling in neuroscience: the balanced random cortex-like network
	4.2.3. Performance comparison of the two actual models

	5. Conclusion and discussion
	5.1. Summary
	5.2. Related work
	5.3. Macro significance
	5.4. Limitation and future work

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Learnable axonal delay in spiking neural networks improves spoken word recognition
	1. Introduction
	2. Materials and methods
	2.1. Spiking neuron model
	2.2. Variable axonal delay (VAD) module
	2.3. Local skip-connection as compensation for loss of information due to reset
	2.4. Loss layer
	2.5. Backpropagation

	3. Experiments and results
	3.1. Implementation details
	3.2. Datasets
	3.2.1. NTIDIDIGITS
	3.2.2. SHD

	3.3. Overall results
	3.4. Ablation study
	3.5. Axonal delay improves the characterization learning ability
	3.6. Local skip-connection as compensation for loss of information in reset mechanism

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks
	1. Introduction
	2. Related work
	2.1. Attention in SNNs
	2.2. Learning algorithms for SNNs

	3. Materials and methods
	3.1. Representation of event streams
	3.2. Spiking neural models
	3.3. Self-attention-based temporal-channel joint attention module
	3.4. Training

	4. Experiments
	4.1. Experimental setup
	4.1.1. Implementation details
	4.1.2. Networks
	4.2. Comparison with existing state-of-the-art works
	4.3. Ablation study
	4.3.1. Ablation study
	4.3.2. Discuss of pooling operations

	5. Conclusion
	Data availability statement
	Author contributions
	References

	Enhanced representation learning with temporal coding in sparsely spiking neural networks
	1 Introduction
	2 Materials and methods
	2.1 Spiking neural network
	2.1.1 Neuron and synapse model
	2.1.2 Synaptic traces

	2.2 Encoding input data in relative spike latencies
	2.3 W-TCRL: STDP rule for learning representations in weights
	2.3.1 First case of synaptic weight adaptation
	2.3.2 Second case of synaptic weight adaptation
	2.3.3 Winner-Take-All circuit

	3 Experimental protocol and results
	3.1 Metrics for performance evaluation
	3.1.1 Mean squared error
	3.1.2 Sparsity
	3.1.3 Coherence in the election of the SBMU

	3.2 Parameters of W-TCRL
	3.3 Results for MNIST
	3.3.1 Learning phase
	3.3.2 Testing phase

	3.4 Results for natural images
	3.4.1 Training phase
	3.4.2 Testing phase

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	An FPGA implementation of Bayesian inference with spiking neural networks
	1 Introduction
	2 Related work
	2.1 Bayesian inference with importance sampling
	2.2 Sampling-tree model with spiking neural network
	2.3 Hardware implementation using PYNQ framework

	3 System analysis
	3.1 Neural network implementation
	3.2 Difficulties in designing the accelerator

	4 Software and hardware optimizations
	4.1 IP-core optimization
	4.2 Interface signal control
	4.3 Hardware–software streaming architecture

	5 Simulations
	5.1 Causal inference
	5.2 Causal inference with multi-layer neural network
	5.3 Multisensory integration

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Training multi-layer spiking neural networks with plastic synaptic weights and delays
	1 Introduction
	2 Materials and methods
	2.1 Neuron model
	2.2 Learning algorithm of the SpikeProp
	2.3 The proposed learning algorithm
	2.3.1 Learning algorithms with synaptic weights and delay plasticity
	2.3.2 Gradient replacement strategy

	3 Results
	3.1 Classification of Iris dataset
	3.2 Classification of Breast Cancer dataset
	3.3 Classification of Liver Disorders dataset
	3.4 Classification of Pima Diabetes dataset
	3.5 Classification of Ionosphere dataset
	3.6 Classification of MNIST dataset

	4 Discussion
	4.1 Compared to ANN-to-SNN methods
	4.2 Compared to surrogate gradient methods
	4.3 Compared to spike-driven methods

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates
	1 Introduction
	1.1 Preliminaries and related work
	1.1.1 Other uses of information theoretic objectives for spiking neural networks
	1.1.2 Hardware substrates for implementing biological neural networks
	1.1.3 Notation

	2 Methods and materials
	2.1 The information bottleneck
	2.2 Deriving a biologically plausible rule for the HSIC bottleneck
	2.2.1 Computing the modulating signal with an auxiliary network
	2.2.2 Extensions to convolutional neural networks and spiking neural networks

	3 Results
	3.1 Reservoir experiments
	3.2 Small dataset experiments
	3.3 Large dataset experiments
	3.4 Effects of memory capacity

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Back Cover

