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Molecular chaperones or heat-shock proteins (HSPs) play essential roles in safeguarding struc-
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that many such disorders are linked to protein misfolding processes, unleashing the roles and 
mechanisms of chaperones in the context of neurodegeneration has become a prime scientific 
goal. This e-book contains a diversity of reviews, perspective and original research articles high-
lighting the importance and potential of this emerging subject.
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Editorial on the Research Topic

Molecular Chaperones and Neurodegeneration

Molecular chaperones, including heat-shock proteins (HSPs), or stress proteins, are highly
conserved proteins that play a critical role in the regulation of cellular protein homeostasis
(proteostasis). Proteostasis is essential for the maintenance of the functionality of the proteome
and, ultimately, of cells. Disruption of proteostasis leads to the accumulation of aberrantly folded
proteins that typically lose their function. The accumulation of misfolded and aggregated proteins,
due to genetic mutations, posttranslational modifications, or due to an age-related decline in
cellular functions, can be also cytotoxic and has been linked to the pathogenesis of various
degenerative diseases including those affecting the nervous system, such as Alzheimer’s (AD),
Parkinson’s (PD) and Huntington’s diseases (HD), or amyotrophic lateral sclerosis (ALS).

In addition to essential roles in de novo protein folding and the refolding of misfolded
proteins, molecular chaperones are functionally diverse and participate in a myriad of cellular
processes. These functions include preventing or resolving protein aggregation, and regulating
proteostasis through fundamental processes such as the unfolded protein response (UPR), the

heat shock response (HSR), chaperone-mediated autophagy (CMA), and the ubiquitin-proteasome
system (UPS). Chaperones are important components of multiple cellular networks, as they form
functional complexes with each other, with numerous co-chaperones regulating their function,
and with hundreds of other cellular proteins. Therefore, they promote the crosstalk between
various signaling pathways and regulate transcriptional networks. Finally, certain stress proteins
display diverse roles in immunity. Given their ubiquitous cellular roles, the potentially common
mechanisms of action that may apply, and the widespread consequences of their dysfunction,
there is great interest in understanding how molecular chaperones function and how they may
be manipulated to prevent or resolve protein aggregation linked to degenerative diseases, and
particularly, in neurodegenerative disorders.

In this special issue, we have gathered 14 articles covering novel and significant aspects about
the connection between chaperones and neurodegeneration, providing a series of updated and
insightful views of the mechanisms and functions of a wide variety of molecular chaperones in the
context of health and disease. Furthermore, this compilation offers a comprehensive overview of the
most recent findings, advances, and implications as putative targets for therapeutic intervention.
More specifically, we have arranged this special issue into three broad subjects, as follows: (A)
General mechanisms of molecular chaperones in the maintenance of cellular proteostasis in health
and disease; (B) Heat-shock proteins in aging, amyloid disease and cancer; (C) Functions and
mechanisms of molecular chaperones within the nervous system.
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A. GENERAL MECHANISMS OF

MOLECULAR CHAPERONES IN THE

MAINTENANCE OF CELLULAR

PROTEOSTASIS IN HEALTH AND DISEASE

Ciechanover and Kwon provide an updated general overview
of the protein quality control mechanisms in the cell, with
a focus on HSP functions in refolding and degradation of
terminally misfolded proteins. Their review carefully covers
the main protein degradation mechanisms, including the
UPS, macroautophagy, and CMA. They also analyse our
current understanding of the protective roles of chaperones
and recent therapeutic studies in various neurodegenerative
diseases. Lackie et al. focus on the HSP70/HSP90 HSPs, their
structures, molecular mechanisms, and their cellular functions
in combination with other chaperones, co-chaperones, and other
protein partners, including the FKBP family members, the PPIase
Cyp40, p23, and CHIP. Special attention is paid to the HSP90
co-chaperone Sti/Hop and its multiple roles in HSP90/HSP70-
mediated functions in modulating protein misfolding, followed
by an update on the main players and mechanisms of the
chaperone machinery in the context of the synucleinopathies,
HD, ALS, prion disease, and AD. On the other hand, Dubnikov
and Cohen provide an insightful review on the emerging
links between failure in early protein folding and maturation
of secreted proteins and the development of neurodegerative
disorders. They carefully analyse the early maturation events and
the quality control mechanisms for terminally misfolded proteins
within the ER, including ER-associated degradation (ERAD), the
unfolded protein response (UPR), the formation of aggresomes,
and other types of protein deposition sites, and their emerging
association with neurodegenerative disease. Finally, Jackrel and
Shorter describe our current knowledge and recent discoveries of
molecular chaperones as protein-remodeling factors, to prevent
or even reverse, protein aggregation processes in metazoans.
In particular, they give a detailed overview of the recently
characterized HSP110/HSP70/HSP40 disaggregase system, the
NMNAT2 NAD-synthesizing enzyme, and the HtrA1 serine
protease, from recent studies with misfolding disease models,
while evaluating the therapeutic potential of yeast Hsp104
disaggregase for treating human misfolding diseases.

B. HEAT-SHOCK PROTEINS IN THE

CONTEXT OF AGING, AMYLOID DISEASE

AND CANCER

The review by Stroo et al. provides a comprehensive account
of our current understanding of amyloid aggregates formation
and its cellular regulators in health, disease and aging, including
chaperone “disaggregases,” the role of chaperones in the main
protein degradation pathways (UPS, macroautophagy, CMA),
UPR, and protein compartmentalization. It also focuses on
key aspects linking amyloidogenesis and neurodegeneration,
such as amyloid formation modulators, the dysregulation
of protein homeostasis processes, and the mechanisms of
amyloid toxicity in neurodegenerative disease. The mini-review

by Kuiper et al. focuses on polyglutamine (polyQ) protein
aggregation associated to certain neurodegenerative disorders
such as HD, as well as on the various factors affecting the
aggregation process, particularly binding partners and molecular
chaperones, e.g., CHIP and members of the DnaJ family. In
addition to analyzing the multifactorial and complex nature of
the process leading to disease initiation, the authors discuss
the possibility that proper assessment of the different factors
could help predict the age of onset of disease. Buxbaum
and Johansson discuss the puzzling anti-amyloid activity of
amyloidogenic transthyretin (TTR) protein and the BRICHOS
domain on the AD-linked Aβ peptide, with a structural and
mechanistic focus. The review also analyses the emerging
links between TTR and BRICHOS-containing proteins and
disease through amyloid formation, and also discusses potential
therapeutic avenues for these amyloid precursors based on
their anti-Aβ oligomerization properties. The review by Casas
is a comprehensive and updated characterization of the ER
stress-related chaperone GRP78 (also known as Bip), its
multiple intracellular locations, interacting partners, and newly
discovered functions including its key participation in ERAD,
macroautophagy and the UPR. Furthermore, the author also
elaborates a comparative analysis between the roles of Bip/GRP78
in tumor cytoprotection and neuroprotection in the context of
neurodegenerative disease and aging. Finally, Calderwood and
Murshid analyse the exacerbation or decline of HSP expression
levels in cancer and AD, in the context of disease pathogenesis.
In addition, their review provides an updated overview of the
regulation mechanisms of the heat-shock response by HSF1
transcription factor, the key effector of HSP expression. The
authors further discuss the emerging evidence of the HSF1-based
dysregulation that might contribute to explain the intriguing
negative epidemiologic correlation observed between cancer
and AD.

C. FUNCTIONS AND MECHANISMS OF

MOLECULAR CHAPERONES WITHIN THE

NERVOUS SYSTEM

López-Ortega et al. report that long-term moderate reduction
of the essential co-chaperone, cysteine string protein
(CSPα/DnaJC5), reduces neuromusclar function. CSPα is
essential for synapse maintenance and severe functional and
structural changes occur in its absence. Through careful and
detailed analysis, they demonstrate that 1 year old CSPα

heterozygous mice, previously considered to be phenotypically
normal, have impairment in neuromuscular function. Their
findings imply that challenges lie ahead in identifying reduced
levels of chaperones (like CSPα) that lead to mild synaptic
impairment in patients. Gorenberg and Chandra provide an
insightful review of four main players in synaptic proteostasis:
CSPα/DnaJC5, auxilin/DnaJC6, RME-8/DnaJC13, and HSP110.
Their review covers the unique features of proteostasis at
the synapse highlighting both the current knowledge and
current questions. Special attention is paid to the HSP110
disaggregase system and mutations in synaptic chaperones
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that cause human neurodegenerative diseases. On the other
hand, Deane and Brown provide new information on HSPA6,

a member of the HSPA chaperone family that is induced
in neurons following heat shock. They carefully document

the unique induction and localization of neural HSPA6 in

comparison to two other HSPA family members, HSPA1A
and HSP8. Given this differential targeting, they highlight

the possible role of HSPA6 in human neurodegenerative
disorders, emphasizing that while HSPA6 is present in the

human genome it is absent from current mouse and rat models
of neurodegenerative disease thereby creating a gap in our
current understanding of HSPA6 function. Jung et al. provide an
insightful review on the links between neurodegeneration and
endoplasmic reticulum lipidostasis, proteostasis and calcium
homeostasis. Special attention is paid to the role of calnexin,
PDDIA3, BiP/GRP78 and cholesterol in the pathological
sequence of events underlying neurodegeneration. Finally,
Ousman et al. review the current knowledge of molecular
chaperones following nerve injury, focusing on neuron
survival, myelination, neuropathic pain, axon regeneration,
and inflammation. They address how changes in molecular
chaperone expression play an active role in injury or repair
processes and highlight the therapeutic challenges involved
in harnessing the beneficial properties while reducing the

injurious functions of chaperones to enhance CNS and PNS
recovery.
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Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins

and their aggregates by protein quality control (PQC), of which molecular chaperones

are an essential component. Compared with other cell types, PQC in neurons

is particularly challenging because they have a unique cellular structure with long

extensions. Making it worse, neurons are postmitotic, i.e., cannot dilute toxic substances

by division, and, thus, are highly sensitive to misfolded proteins, especially as they

age. Failure in PQC is often associated with neurodegenerative diseases, such as

Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and

prion disease. In fact, many neurodegenerative diseases are considered to be protein

misfolding disorders. To prevent the accumulation of disease-causing aggregates,

neurons utilize a repertoire of chaperones that recognize misfolded proteins through

exposed hydrophobic surfaces and assist their refolding. If such an effort fails,

chaperones can facilitate the degradation of terminally misfolded proteins through

either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system

(hereafter autophagy). If soluble, the substrates associated with chaperones, such

as Hsp70, are ubiquitinated by Ub ligases and degraded through the proteasome

complex. Some misfolded proteins carrying the KFERQ motif are recognized by

the chaperone Hsc70 and delivered to the lysosomal lumen through a process

called, chaperone-mediated autophagy (CMA). Aggregation-prone misfolded proteins

that remain unprocessed are directed to macroautophagy in which cargoes are

collected by adaptors, such as p62/SQSTM-1/Sequestosome-1, and delivered to the

autophagosome for lysosomal degradation. The aggregates that have survived all these

refolding/degradative processes can still be directly dissolved, i.e., disaggregated by

chaperones. Studies have shown that molecular chaperones alleviate the pathogenic

symptoms by neurodegeneration-causing protein aggregates. Chaperone-inducing

drugs and anti-aggregation drugs are actively exploited for beneficial effects on

symptoms of disease. Here, we discuss how chaperones protect misfolded proteins from

aggregation andmediate the degradation of terminally misfolded proteins in collaboration

with cellular degradative machinery. The topics also include therapeutic approaches

to improve the expression and turnover of molecular chaperones and to develop

anti-aggregation drugs.

Keywords: proteolysis, protein aggregation, ubiquitin-proteasome system, autophagy-lysosome system,

chaperon-mediated autophagy, macroautophagy, protein quality control
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INTRODUCTION

Proteins may lose their folding when cells are exposed to
stresses, such as oxidative stress, heat, and toxic chemicals.
Misfolded proteins and their aggregates grow into intracellular
or extracellular amyloid plaques or neurofibrillary tangles
(Taylor et al., 2002). Eukaryotic cells operate the PQC system
to remove these cytotoxic agents in a timely fashion. The
excessive formation of protein aggregates and their fibrillar
structures are universally observed in at least 30 different human
diseases (Taylor et al., 2002; Broersen et al., 2010). These
protein misfolding disorders include various neurodegenerative
diseases, such as Alzheimer’ disease (AD), Parkinson’ disease
(PD), Huntington disease’ (HD), transmissible spongiform
encephalopathies (TSE), and amyotrophic lateral sclerosis (ALS)
(Moreno-Gonzalez and Soto, 2011; Doyle et al., 2013; Hetz and
Mollereau, 2014; Valastyan and Lindquist, 2014).

One essential component of PQC ismolecular chaperones that
enhance the refolding of misfolded proteins and, thus, counteract
their aggregation (Hartl et al., 2011; Kim et al., 2013). Molecular
chaperones constitute up to 10% of the proteome and play
important functions in proteostasis under normal conditions
as well as during cellular stress responses (Kastle and Grune,
2012). The majority of molecular chaperones are called heat-
shock proteins (HSPs) because they are induced by various
stresses such as heat shock, oxidative stress, toxic chemical, and
inflammation (Garrido et al., 2001). HSPs are divided into several
subgroups based on their sizes, such as Hsp70, Hsp90, Hsp60,
Hsp40 (DnaJ), and small HSPs. These molecular chaperones can
assist the refolding of misfolded proteins through three distinct
action modes. First, most chaperones such as Hsp70 can hold the
clients in an unfolded state until spontaneous fold is achieved
(Rudiger et al., 1997; Hartl et al., 2011; Kastle and Grune, 2012).
Second, some molecular chaperons such as Hsp70 and Hsp60s
can use ATP to unfold stable misfolded proteins and convert
them into natively refoldable species (Ranford et al., 2000; Itoh
et al., 2002; Tutar and Tutar, 2010). Third, some chaperones, such
as yeast Hsp104 and human Hsp70 in complex with Hsp40 and
Hsp110, can act as “disaggregases” because they use the energy
of ATP hydrolysis to forcefully unfold and solubilize preformed

aggregates into natively refolded proteins (Mosser et al., 2004;
Shorter and Lindquist, 2004; Arimon et al., 2008; Lo Bianco et al.,
2008; DeSantis et al., 2012). Despite distinct action modes, they
share general properties to recognize and bind the hydrophobic
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amyloid-β; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; BBB,

blood brain barrier; C-domain, C-terminal dimerization domain; CHIP, C-

terminus of Hsc70-interacting protein; CMA, chaperone-mediated autophagy;

DUBs, deubiquitination enzymes; ERAD, ER-associated degradation; HD,

Huntington’s disease; Hsc70, heat shock cognate 70; HSF1, heat-shock factor 1;

HSP, heat-shock protein; HSR, heat-shock response; M-domain, mid-domain;

mHTT, mutant huntingtin; N-domain, N-terminal ATP-binding domain; NEF,

nucleotide exchange factor; PD, Parkinson’s disease; PDI, protein disulfide
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sequences which are not normally exposed in the native folding
(Buchner, 1996). Their binding to and dissociation from clients
can be driven by adenosine-5′-triphosphate (ATP) hydrolysis.
The ATPase and chaperone activity are typically regulated
through their cooperation with cochaperones. In addition to
ATP-dependent chaperones, neurons express ATP-independent
chaperons that bind misfolded proteins and promote refolding
(D’Andrea and Regan, 2003). These chaperones typically form
a coordinated network with cochaperones and the machinery in
proteolytic pathways.

While the primary function of molecular chaperones is to
assist misfolded or unfolded proteins to regain or acquire the
normal folding, they can facilitate the degradation of terminally
misfolded proteins in collaboration with proteolytic machinery
(Hoffmann et al., 2004; Ellis, 2006, 2007; Ellis and Minton,
2006; Pauwels et al., 2007). Eukaryotic cells operate two major
proteolytic systems, the UPS and autophagy. In principle,
terminally misfolded proteins are ubiquitinated by E3 Ub ligases
and processively degraded by the proteasome. If the substrates
are prone to aggregation or escape the surveillance of the UPS,
however, they are redirected tomacroautophagy in which cargoes
are separated in the double membrane structure, called the
autophagosome, and degraded by lysosomal hydrolases (Cha-
Molstad et al., 2015). Some misfolded proteins carrying the
KFERQ pentapeptide sequence can be sorted out by molecular
chaperones and directly delivered to the lysosome through
chaperone-mediated autophagy (CMA) (Chiang et al., 1989;
Dice, 1990; Cuervo et al., 1997).

The UPS is an intracellular proteolytic system that mediates
the degradation of more than 80% of normal and abnormal
intracellular proteins (Wang and Maldonado, 2006). The
importance of molecular chaperones in the UPS was initially
proposed and demonstrated by Ciechanover and colleagues who
showed that the molecular chaperone Hsc70 is required for
Ub-dependent degradation of several substrates (Ciechanover
et al., 1995; Bercovich et al., 1997). The UPS involves a
cascade of E1, E2, and E3 enzymes whose cooperative activities
mediate the conjugation of Ub to target proteins (Pickart,
2001). In this cascade, Ub with a size of 76 residues is
activated by the Ub activating enzyme E1 and transferred to
the Ub conjugating enzyme E2. The Ub moiety carried by E2
is conjugated to substrates, which requires the ubiquitination
activity of the Ub ligase E3. In PQC, most E3s cannot recognize
misfolded proteins and rather depend on molecular chaperones
for substrate recognition. Ubiquitinated substrates are degraded
by the proteasome into short peptides, typically with sizes of
8–12 amino acids. These peptides are displayed on the cell
surface for immunosurveillance (Kloetzel and Ossendorp, 2004)
or degraded into free amino acids by aminopeptidases. The UPS
plays a pivotal role in proteostasis during neurodegeneration
and prevents protein misfolding and aggregation (Morawe et al.,
2012). In addition to PQC, the UPS regulates a variety of
biological processes, including cell cycle, transcription, DNA
repair, and apoptosis (Eldridge and O’Brien, 2010; Xie, 2010).

Autophagy is a process by which cytosolic materials are
degraded by the lysosome. Depending on the mechanism of
cargo delivery to the lysosome, autophagy can be divided into
three pathways: microautophagy, CMA, and macroautophagy.
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In macroautophagy, terminally misfolded proteins in complex
with molecular chaperones are collected by autophagy adaptors,
such as p62 and NBR1. Cargo-loaded p62 undergoes self-
polymerization and are deposited to the autophagosome through
the interaction of p62 with LC3 (Lamark et al., 2009; Stolz et al.,
2014). The autophagosome is fused with the lysosome to form
the autolysosome wherein cargoes along with p62 are degraded
by lysosomal hydrolases. Virtually all the misfolded proteins
including those prone to aggregation in neurodegenerative
diseases can be degraded by macroautophagy. In contrast to
macroautophagy, CMA targets a subset of misfolded cytosolic
proteins, especially those containing the KFERQ pentapeptide
sequence (Fuertes et al., 2003; Massey et al., 2006; Kaushik and
Cuervo, 2012). The substrates of the CMA are recognized by
the molecular chaperone Hsc70 belonging to the Hsp70 family
(Chiang et al., 1989). The cargo-Hsc70 complex is translocated
into the lysosomal lumen and degraded by lysosomal hydrolases
(Cuervo and Dice, 1996). Overall, lysosomal proteolysis through
macroautophagy and CMA plays an important role in the
removal of misfolded proteins that cannot be readily degraded
by the UPS.

Misfolded proteins that survive the attempts of molecular
chaperones to refold or degrade eventually form aggregates. As
the last defense mechanism of PQC, molecular chaperons can
directly resolve, i.e., disaggregate the already formed aggregates
(Parsell et al., 1994; Mogk et al., 1999; Doyle et al., 2013).
The disaggregation activity has been characterized in yeasts
and mammals (Weibezahn et al., 2005; Hodson et al., 2012;
Winkler et al., 2012). In yeasts, Hsp104 in collaboration with
Hsp70, Hsp40, Hsp110, and sHSPs can directly disaggregate and
reactivate proteins deposited in high order aggregates (Shorter,
2011; Torrente and Shorter, 2013). In mammals, Hsp110,
Hsp105, Hsp100, and Hsp70/Hsp40 have been implicated in
disaggregation (Lindquist and Kim, 1996; Glover and Lindquist,
1998; Doyle and Wickner, 2009). Through these multi-step
defense processes, molecular chaperones play a key role in
proteostasis.

Recent studies using mouse models suggest that molecular
chaperones play a protective role in the pathogenesis of
neurodegenerative disorders (Wyatt et al., 2012; Carman et al.,
2013; Witt, 2013). By using disease models, HSPs have been
shown to inhibit the aggregation of aggregation-prone proteins,
such as Aβ , tau, HTT, and α-synuclein, and facilitate their
degradation by the UPS or autophagy (Wyttenbach, 2004).
As such, small molecule compounds that can modulate HSPs
and proteolytic machinery are emerging as a means to treat
neurodegenerative diseases. Below, we discuss the current
understanding on the functions of HSPs in neurodegenerative
diseases, including the recent results obtained from animal
models of neurodegeneration.

REFOLDING OF MISFOLDED PROTEINS

BY MOLECULAR CHAPERONES

Neurons express various molecular chaperones which forms
a complicated network of PQC to prevent aggregation. Their

primary function is to assist the folding and assembly of newly
synthesized polypeptides and the refolding of misfolded or
damaged proteins. Depending on their sizes and action modes,
molecular chaperones can be divided into several classes based
on their sizes, such as Hsp70, Hsp90, Hsp60, Hsp40 (DnaJ), and
small HSPs. Although themajority ofmolecular chaperones share
similarity in action modes, such as substrate recognition and
ATP hydrolysis-driven substrate binding, they are also different
in substrate specificity, localization, and mechanistic details.

The Hsp70 Family
The cytosolic chaperone Hsp70 is evolutionarily conserved and
one of the most abundant chaperones. The homologs of Hsp70
are found in various subcellular compartments, including heat
shock cognate 70 (Hsc70) in the cytosol and BiP/GRP78 in
the ER. Hsp70 shows a broad range of activities in folding
newly synthesized polypeptides, refolding misfolded proteins,
the degradation of terminally misfolded proteins, and directly
resolving already formed aggregates (Kastle and Grune, 2012).
They commonly recognize diverse misfolded proteins through
the interaction with a four to five residue stretch of hydrophobic
amino acids exposed on the surface (Rudiger et al., 1997). The
hydrophobic signatures occur on average every 30–40 residues
in most misfolded proteins. Central to the chaperone activity
of Hsp70 proteins is the transition between open and closed
conformations of their substrate binding domain (SBD). In the
ATP-bound open conformation, the SBD has low affinity to
the client (Hartl et al., 2011). Once ATP hydrolysis is induced
by cochaperones, Hsp70 acquires high affinity to the clients.
The resulting ADP-bound form of Hsp70 facilitates the client’
refolding by holding them in an unfolded state until spontaneous
fold is achieved. The client that achieved the correct folding
no longer has the exposed hydrophobic patches and, thus,
is released from Hsp70. Extensive studies have shown that
Hsp70 directly binds various pathogenic misfolded proteins in
neurodegenerative diseases and facilitate their refolding. Such
substrates of Hsp70 proteins include mutant huntingtin (mHTT)
in HD and other polyQ diseases, α-synuclein in PD, amyloid-β
(Aβ) and hyperphosphorylated tau in AD, and mutant SOD1 in
ALS (Choo et al., 2004; Dedmon et al., 2005; Liu et al., 2005; Evans
et al., 2006; Dompierre et al., 2007; Luk et al., 2008).

The Hsp40 (DnaJ) Family
The Hsp40 proteins, also called J-proteins, form a large
cochaperone family composed of 49 members (Odunuga et al.,
2003). Amongst these, DnaJB6 and DnaJB8 are mainly expressed
in neurons and can suppress polyglutamine aggregation and
toxicity (Cheetham et al., 1992; Hageman et al., 2010). Although
these cochaperones have the activity to bind and counteract
protein aggregates or refold them, they also can modulate the
ATP hydrolysis of Hsp70. The 70-residue J domain of Hsp40
binds misfolded proteins and interacts with the ATPase domain
of Hsp70, which induces the ATP hydrolysis of Hsp70. ATP
hydrolysis, in turn, brings the Hsp40-bound substrate close to
the SBD of Hsp70 and increases Hsp70 affinity to the substrate,
leading to Hsp40 release from the substrate and Hsp70 (Summers
et al., 2009). As a consequence of this allosteric conformational
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change, the substrate is transferred fromHsp40 to Hsp70. Besides
the conserved J domain, Hsp40 proteins carry diverse domains
that mediate specific biological processes, such as intracellular
localizations and client binding for proteolysis (Cheetham and
Caplan, 1998; Kampinga and Craig, 2010). In neurodegenerative
disease, Hsp40 proteins can act as cochaperones for Hsp70
proteins to assist the refolding of soluble misfolded proteins
(Choo et al., 2004; Dedmon et al., 2005; Liu et al., 2005; Evans
et al., 2006; Dompierre et al., 2007; Luk et al., 2008).

The Hsp90 Family
The ATP-dependent chaperone Hsp90, which forms a dimer,
is universally present in various cellular compartments, such
as the cytosol, nucleus, ER, and mitochondria (Lindquist,
2009). Hsp90 is constitutively expressed in normal conditions,
accounting for 1–2% of cellular proteins, and its level can
increase to 4–6% if cells are exposed to stresses (Picard, 2002;
Whitesell and Lindquist, 2005; Taipale et al., 2010; Finka and
Goloubinoff, 2013). The activity of Hsp90 can be regulated
by the HSR (heat-shock response) regulator HSF1 (heat-shock
factor 1) (McLean et al., 2004; Putcha et al., 2010). Human
neurons have a stress-inducible Hsp90α (Hsp90AA1) and a
constitutively expressed Hsp90β (Hsp90AB1) that share 86%
identity in protein sequence (Ammirante et al., 2008). These
Hsp90 proteins bind a variety of clients and hold their folding,
including kinases, nuclear receptors, transcription factors and
cell surface receptors (Kastle and Grune, 2012). Remarkably,
Hsp90 is thought to interact with approximately 2,000 proteins
(Garnier et al., 2002), which accounts for up to 10% of total
cellular proteins (Ratzke et al., 2010). Structural studies have
shown that Hsp90 is composed of an N-terminal ATP-binding
domain (N-domain), a mid-domain that binds the substrate (M-
domain), and a C-terminal dimerization domain (C-domain)
(Picard, 2002; Whitesell and Lindquist, 2005; Taipale et al., 2010;
Finka and Goloubinoff, 2013). The substrate binding-release
cycle of Hsp90 is regulated by ATP hydrolysis, which induces a
large conformational transition between an open vs. closed form.
In a free form, Hsp90 is in an open V-shaped conformation and,
thus, binds clients. The ATP binding to the N-domain of client-
loaded Hsp90 induces a conformational transition (Pearl and
Prodromou, 2006). This results in a closed conformation where
the N-domains of twoHsp90molecules dimerize with each other.
Following ATP hydrolysis, the substrate is released, and Hsp90
returns to an open conformation. The conformational transition
of Hsp90 is regulated by various cochaperones, such as Hop,
p23/Sba1, and Cdc37 (Picard, 2002; Whitesell and Lindquist,
2005; Taipale et al., 2010; Finka and Goloubinoff, 2013). Overall,
the ability of Hsp90 to support the folding/refolding and stability
of proteins is a double edge blade in neurodegeneration because
it can also favor the accumulation of toxic protein aggregates
(Schulte and Neckers, 1998; Boland et al., 2008; Eskelinen and
Saftig, 2009; Chouraki and Seshadri, 2014).

The Hsp60 Family
Hsp60, also called chaperonins, is a 60 kDa mitochondrial
chaperone (Ranford et al., 2000; Itoh et al., 2002; Tutar and
Tutar, 2010). GroEL, a well characterized bacterial chaperone,

also belongs to this class. Although the primary location of Hsp60
is mitochondria, it can migrate to the cytosol under certain
cellular stresses (Ranford et al., 2000; Itoh et al., 2002; Tutar
and Tutar, 2010). Hsp60 forms a double ring complex, in which
each rich is composed of seven subunits. Clients are fed into
the central cavity of the double ring complex, in which their
exposed hydrophobic residues are sequestered during refolding
process (Ranford et al., 2000; Tutar and Tutar, 2010). The folding
process by Hsp60 is modulated by a lid, which are formed by
cochaperones such as Hsp10 in mitochondria. Following ATP
hydrolysis, the unfolded client is released through the opening
of the Hsp10 lid, now with a native folding (Ranford et al., 2000;
Tutar and Tutar, 2010). Hsp60 works together with Hsp70 for
protein folding of unfolded proteins. Neurons contain another
type of chaperonins in the cytosol, which do not depend on
cochaperones. They form a homotypic or heterotypic double
ring complex, each of which is composed of eight subunits. The
members of this group include the TCP-1 Ring Complex (TRiC),
alternatively called TCP1 complex (CCT) (Lopez et al., 2015).
Although, studies have shown that Hsp60 interacts with mutant
α-synuclein in PD (Irizarry et al., 1998; Spillantini et al., 1998),
the physiological importance of Hsp60 proteins in the refolding
of pathogenic misfolded proteins in neurodegeneration remains
poorly characterized.

The Small HSP Family
Different from other types of HSPs, small HSPs are ATP
independent. To date, 10 small HSPs with sizes ranging from 12
to 42 kDa are known in humans. In mouse brain, five small HSPs
are prominently expressed (Quraishe et al., 2008). Amongst these,
the neuronal expression of Hsp27 and αB crystallin is selectively
induced under stresses (Quraishe et al., 2008). Members of this
family are characterized by a 100-residue α-crystallin domain
flanked by variable N-terminal and C-terminal extensions. These
extensions are responsible for substrate recognition andmediates
the formation of oligomers. As holding factors, small HSPs bind
to unfolded or misfolded proteins and prevent their aggregation
until the clients are delivered to other chaperones, such as Hsp70
and Hsp40 system (Carra et al., 2012). Amongst these, Hsp27 is
the most abundant and well characterized. Their expression is
selectively induces by various stresses that perturb proteostasis
(Sarto et al., 2000; Sun and MacRae, 2005).

DEGRADATION OF MISFOLDED

PROTEINS BY MOLECULAR

CHAPERONES THROUGH THE UPS

While the primary functions of molecular chaperones relate
refolding and unfolding of nascent and misfolded proteins, they
can facilitate the degradation of terminally misfolded clients,
either through the UPS or autophagy (Lanneau et al., 2010).
The majority of these clients are tagged with Ub chains for
degradation by the proteasome complex. However, the substrates
prone to aggregation are redirected to autophagy. In either case,
molecular chaperones are involved in the recognition and/or
delivery of terminally misfolded substrates.
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Ub-Dependent Selective Proteolysis

through the Proteasome
The UPS mediates selective proteolysis of short-lived proteins by
the proteasome and accounts for more than 80% of intracellular
proteolysis (Hershko and Ciechanover, 1998). In the UPS, Ub
is first activated by its conjugation to the ubiquitin activating
enzyme E1. This conjugation involves the ATP-dependent
formation of a thioester bond between the C-terminal glycine
residue of Ub and an active site cysteine of E1 (Hershko and
Ciechanover, 1998; Ciechanover, 2013). The activated Ub is
transferred to the Ub conjugating enzyme E2 through a thioester
bond. The Ub ligase E3 promotes the transfer of Ub from
E2 to the lysine (Lys) residue of substrates. This generates an
isopeptide bond between the C-terminal glycine residue of Ub
and lysine residues on the substrate (Hershko and Ciechanover,
1998; Ciechanover, 2013). The human genome encodes more
than 500 E3s. These E3s can be divided into three groups
depending on their ubiquitination domains, including the really
interesting new gene (RING) finger, the homologous to E6-AP
(HECT) domain, and the U-box domain (Qian et al., 2006).
Occasionally, E4 enzymes enhance the conjugation of additional
Ub molecules to form a Ub chain, typically through the K48
linkage (Upadhya andHegde, 2007). Once the first Ub is attached
to substrate, subsequent Ub conjugations may use any of its
seven Lys residues (Peng et al., 2003). This can generates a
Ub chain with many different topologies, each of which has
distinct functions. Amongst these topologies, the most widely
used Lys48 linkage typically leads to proteasomal degradation.
The Lys63 linkage mediates nonproteolytic processes, such as
Ub-dependent protein-protein interactions (Hadian et al., 2011).
Human cells also use the Lys11 linkage for cell cycle regulation
and cell division as well as ERAD (Matsumoto et al., 2010) and
K27 for ubiquitin fusion and degradation (Morawe et al., 2012).
Ub moieties conjugated to substrates are reversible and can be
detached and adjusted by deubiquitination enzymes (DUBs). The
substrates conjugated with polyubiquitin are degraded by the
26S proteasome (Hershko and Ciechanover, 1998). This 2.5-MDa

protease complex is composed of the 20S core particle with a
size of 700 kDa associated with two 19S regulatory particles
(Ravikumar et al., 2008; Douglas et al., 2009; Ciechanover
and Kwon, 2015). The Ub chains conjugated to substrates are
recognized by RPN10 and RPN13 of the 19S particle and stripped
off by DUBs such as RPN11, USP14, and UCHL5 (ubiquitin C-
terminal hydrolase L5; Ravikumar et al., 2008; Douglas et al.,
2009; Ciechanover and Kwon, 2015). Deubiquitinated substrates
are unfolded into a nascent polypeptide through ATP hydrolysis
in the 19S particle and fed into the 20S particle for degradation,
generating short peptides with average sizes of 8–12 amino
acids (Hershko and Ciechanover, 1998). These peptides are
degraded into amino acids by aminopeptidases, which are
recycled for protein synthesis, or presented on the cell surface for
immunosurveillance (Kloetzel and Ossendorp, 2004).

Molecular Chaperones and Ub Ligases

Work Together in the UPS
Several cytosolic or nuclear Ub ligases are known to be involved
in degradation of misfolded proteins in collaboration with
molecule chaperones, including UBR1, UBR2, San1, Hul5, E6-
AP, C-terminus of Hsc70-interacting protein (CHIP) and Parkin
(Gardner et al., 2005; Heck et al., 2010; Kettern et al., 2010;
Figure 1). CHIP is a 35 kDa protein that has dual functions,
one as a cochaperone of Hsp70 and Hsp90, and the other as
a Ub ligase that mediates ubiquitination of misfolded proteins
using its the RING-like U-box domain (Ballinger et al., 1999;
McDonough and Patterson, 2003). The E3 activity of CHIP
requires the interaction with the E2 Ub conjugating enzyme
UBCH5 (Cyr et al., 2002). When interacting with the Hsp70-
or Hsp90-client complex, CHIP in collaboration with UBCH5
captures and ubiquitinates the misfolded clients for proteasomal
degradation (Demand et al., 2001). To facilitate the delivery of the
ubiquitinated substrates to the proteasome, CHIP also interacts
with the S5a component (also known as Rpn10) of the 19S
proteasome particle (Connell et al., 2001). In this process, CHIP
indirectly recognize misfolded proteins through the interaction

FIGURE 1 | Protein degradation by molecular chaperones through the UPS. Molecular chaperones such as Hsp70 recognizes the hydrophobic sequences of

misfolded proteins as degrons. The Ub ligase CHIP guides the chaperone-client complexes to the UPS and mediates the clients’ ubiquitination. The UPS involves a

cascade of E1, E2, and E3 enzymes whose cooperative activities mediate the conjugation of Ub to target proteins. In PQC, most E3s cannot recognize misfolded

proteins and rather depend on molecular chaperones for substrate recognition. Ubiquitinated substrates are degraded by the proteasome into short peptides, typically

with sizes of 8–12 amino acids.
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between its TPR (tetratricopeptide repeat) domain with Hsp70
or Hsp90 (Lanneau et al., 2010). The substrates of CHIP include
hyperphosphorylated tau and mutant SOD1 (Lanneau et al.,
2010). CHIP-mediated degradation of Hsp70 clients is further
facilitated by the cochaperone BAG-1 (Takayama et al., 1997).
BAG-1 uses its C-terminal region to bind the ATPase domain of
Hsp70 and acts as a nucleotide exchange factor (NEF), inducing
the release of substrates from Hsp70 (Takayama et al., 1997).
On the other hand, BAG-1 has also a Ub-like (UBL) domain
at its N-terminal region that supports the interaction with the
proteasome (Alberti et al., 2003). BAG-1 directly interacts and
cooperates with CHIP to guide the terminally misfolded clients
to the UPS. In addition to BAG-1, Hsp27 belonging to the small
HSP family can directly interact with the proteasome tomodulate
the ubiquitination of clients (Garrido et al., 2006). Hsp27 also
binds the Ub chain of clients and, thus, increase the degradation
of ubiquitinated proteins (Garrido et al., 2006).

The clients of Hsp90 can also be degraded through the UPS
if they are no longer chaperoned by Hsp90, for example, owing
to misfolding. These misfolded clients dissociated form Hsp90
are ubiquitinated by E3 ligases, such as CHIP, and degraded by
the proteasome (Didelot et al., 2007). However, CHIP is mainly
associated with Hsp70, and there should be additional E3 ligases
that target the misfolded clients of Hsp90. One such candidate
is the E3 ligase Triad3A which forms a complex with Hsp90
and receptor interacting protein 1 (RIP-1) and mediates the
ubiquitination of RIP-1 and proteasomal degradation following
Hsp90 inhibition by geldanamycin (Fearns et al., 2006).

The N-end rule pathway is a proteolytic system in which a
single N-terminal residue acts as an essential component of a
class of degrons, called N-degrons (Bachmair et al., 1986; Tasaki
and Kwon, 2007; Sriram and Kwon, 2010; Sriram et al., 2011;
Varshavsky, 2011). In mammals, these N-terminal degrons are
recognized by the N-recognin family, including UBR1, UBR2,
UBR4, UBR5, and p62 (Kwon et al., 1999a, 2002; Tasaki et al.,
2005, 2009; An et al., 2006). Amongst these, the Ub ligases UBR1
and UBR2 have been shown to mediate the ubiquitination of
misfolded cytosolic proteins, leading to proteasomal degradation
(Eisele and Wolf, 2008; Heck et al., 2010; Prasad et al., 2010).
These RING finger E3 ligases indirectly recognize misfolded
proteins through molecular chaperones such as Hsp110 and
Hsp70 (Heck et al., 2010; Nillegoda et al., 2010). Misfolded
proteins targeted by N-recognins include TDP43 in ALS and
tau and amyloid β in AD (Brower et al., 2013). Interestingly,
in addition to the exposed hydrophobic residues, some of
their misfolded clients are post-translationally conjugated with
the amino acid L-Arg of Arg-tRNAArg by ATE1-encoded R-
transferases (Grigoryev et al., 1996; Balogh et al., 2000, 2001;
Kwon et al., 2000; Lee et al., 2005). The resulting N-terminal Arg
residue acts as N-degron which is recognized by N-recognins
such as UBR1 and UBR2 (Kwon et al., 1999b; Lee et al., 2008;
Sriram et al., 2009; Meisenberg et al., 2012). In yeasts, the
cytosolic E3 ligase Ubr1 has been shown to work with the
nuclear E3 ligase San1 if cytosolic misfolded proteins overwhelm
the capacity of E3 ligases (Heck et al., 2010; Prasad et al.,
2010). In this collaboration between cytosolic and nuclear PQC
systems, San1 associated with Hsp70 brings excessive cytosolic

misfolded proteins to the nucleus for proteasomal degradation
(Heck et al., 2010; Prasad et al., 2010). Different from other
E3 ligases, San1 has many disordered structures and stretches
of hydrophobic residues and, thus, can directly bind misfolded
proteins (Rosenbaum et al., 2011). In mammals, the nuclear Ub
ligase UHRF2 has been proposed to be a functional homolog of
the yeast San1 (Nielsen et al., 2014).

Eukaryotic cells operate various degradative machinery
designated to specific types of misfolded proteins. In yeasts,
misfolded proteins generated by heat shock are specifically
ubiquitinated by the E3 ligase Hul5 that has a HECT
ubiquitination domain (Fang et al., 2011). In mammals,
mislocalized membrane proteins are ubiquitinated by the
Ub ligase RNF126 (RING finger 126) in collaboration with
the BAG6 chaperone system (Rodrigo-Brenni et al., 2014).
Proteins synthesized from aberrant mRNAs without stop
codons are ubiquitinated by Listerin/Ltn1 (Bengtson and
Joazeiro, 2010). Moreover, in the ER, membrane-associated
misfolded proteins are ubiquitinated by the Ub ligase DOA10
(Nielsen et al., 2014). By contrast, misfolded proteins in the
ER lumen are ubiquitinated by the Ub ligases Hrd1 and
Gp78 mediates through a process called ERAD (ER-associated
degradation) (Vembar and Brodsky, 2008). Except for San1
and Hul5, most of these E3s indirectly recognize misfolded
proteins through cooperating molecular chaperones. Overall,
the mechanistic details and clinical importance of these various
PQC machinery in neurodegenerative diseases remains largely
unexplored.

Deubiquitination Enzymes (DUBs) in the

Degradation of Misfolded Proteins
DUBs detach Ub molecules from substrates and, thus, can
modulate the proteasomal degradation of Ub-conjugated
substrates. The proteasome is associated with DUBs such as
RPN11, UCHL5, and USP14. RPN11 is a stoichiometric subunit
of the proteasome and detaches Ub molecules en bloc from
substrates (Hao et al., 2013). The free, unanchored Ub chains are
deposited to aggresomes and recognized by HDAC which brings
misfolded protein aggregates to aggresomes (Hao et al., 2013).
The interaction between HDAC and unanchored Ub chains is
essential for cargo-loaded HDAC to see where aggresomes are
(Hao et al., 2013). In contrast to RPN11, USP14 is a conditionally
recruited to the proteasome through its UBL domain. This
enhances its activity up to 800-folds and, thus, modulates the
degradation rate of substrates (Crosas et al., 2006). The treatment
of the USP14 inhibitor IU1 has been shown to facilitate the
degradation of aggregation-prone misfolded proteins such as
tau and polyQ-expanded mutant ataxin-3 (Lee et al., 2010). The
functions of DUBs in neurodegenerative diseases remain largely
unexplored.

The UPS Is Impaired during

Neurodegeneration
The pathogenesis of most neurodegenerative diseases, such as
AD, PD, ALS, HD, and prion diseases commonly involves the
downregulation of the components of the UPS. One prominent
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risk factor is aging. The activities of UPS components, such as
the proteasome, are often progressively declined as neurons age
(Keller et al., 2000; Hwang et al., 2007; Tydlacka et al., 2008;
Low, 2011). This may reduce the ability to degrade misfolded
proteins, contributing to the accumulation of pathological
protein aggregates. Making it worse, the accumulated aggregates
as a consequence of reduced UPS activities now further inhibit
the activities of UPS components, including the proteasome.
The proteasome is particularly vulnerable to protein aggregates
because its narrow chamber has a diameter of as small as
13 angstroms. Therefore, proteasome cannot digest protein
aggregates that cannot be easily unfolded. For example, β-
sheet-rich PrP aggregates were shown to block the opening
of the 20S proteasome particle, further reducing proteasomal
activity (Andre and Tabrizi, 2012). Following ubiquitination
and aggregation, tau in AD binds the recognition site of
the 19S catalytic particle and block its gate (Dantuma and
Lindsten, 2010; Tai et al., 2012). Aggregates of many other
pathogenic proteins in neurodegenerative disorders can directly
inhibit proteasome activity (Gregori et al., 1995; Snyder et al.,
2003; Lindersson et al., 2004; Kristiansen et al., 2007). The
resulting proteotoxicity has adverse effects on neurons (Hegde
and Upadhya, 2011). Indeed, the reduced UPS activity has
been associated with neuronal damage in AD, HD, PD,
ALS, ataxia, Angelman syndrome, Wallerian degeneration, and
gracile axonal dystrophy (Hegde, 2010; Hegde and Upadhya,
2011).

DEGRADATION OF MISFOLDED

PROTEINS BY AUTOPHAGY

Autophagy is a process by which cytosolic materials are
degraded by the lysosome. Depending on the mechanism of
cargo delivery to the lysosome, autophagy can be divided into
three pathways: microautophagy, CMA, and macroautophagy.
Terminally misfolded proteins in neurodegenerative diseases
can be degraded through macroautophagy or CMA (Figure 2).
The role of autophagy in proteostasis is vitally important for
postmitotic neurons with long extensions, in which cytotoxic
proteins cannot be diluted by cell division.

Macroautophagy
Misfolded proteins prone to aggregation can be directed to
macroautophagy for lysosomal degradation. These substrates,
typically as a Ub-conjugated form, are collected by autophagy
adaptors, such as p62 and NBR1 (Cha-Molstad et al., 2015).
P62 is normally inactive and can be activated by binding to
the N-terminally arginylated form of the molecular chaperone
BiP/GRP78, the ER counterpart of cytosolic Hsp70 (Cha-
Molstad et al., 2015). Upon the accumulation of non-degradable
autophagic cargoes, BiP and other ER-residing chaperones,
such as calreticulin and protein disulfide isomerase (PDI),
are N-terminally arginylated by ATE1-encoded R-transferase.
The resulting N-terminally arginylated BiP, R-BiP, locates
in the cytosol where R-BiP binds the ZZ domain of p62

FIGURE 2 | The role of molecular chaperones in PQC. Molecular chaperones, such as Hsp70 in combination with the cochaperone Hsp40, facilitate the refolding

of misfolded proteins. If the clients fail to refold, molecular chaperones can also mediate their degradation in collaboration with cellular proteolytic pathways. In

principle, soluble misfolded proteins are targeted by the UPS, in which the clients are ubiquitinated by E3 Ub ligases followed by degradation through the 26S

proteasome. However, if the clients are prone to aggregation or escape the surveillance of the UPS, they can be degraded by lysosomal hydrolases, either through

macroautophagy or CMA. As the last step of PQC, molecular chaperones can disaggregate already formed aggregates. Also shown are misfolded proteins induced

by oxidative stress in mitochondria.
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through its N-terminal arginine residue. This binding induces
a conformational change in p62, facilitating the polymerization
of p62 as well as the interaction of p62 with LC3-II which is
anchored on the membrane of autophagosomes (Cha-Molstad
et al., 2015). It is generally assumed that p62 and other
autophagic adaptors recognize the Ub moieties conjugated to
misfolded proteins and delivers them to the autophagosome
through specific interaction with LC3 (Lamark et al., 2009; Stolz
et al., 2014). The cargo-loaded autophagosome is fused with the
lysosome to form the autolysosome wherein cargoes along with
p62 are degraded by lysosomal hydrolases.

CMA
CMA is a selective proteolytic system and does not involve vesicle
formation (Chiang et al., 1989; Dice, 1990; Cuervo et al., 1997).
The selectivity enables the degradation of misfolded or damaged
cytosolic proteins without interfering with the same kinds of
proteins with normal functions (Fuertes et al., 2003; Massey
et al., 2006; Kaushik and Cuervo, 2012). The target substrates
of the CMA include cytosolic proteins that carry the KFERQ
pentapeptide which functions as a degron. The CMA degron,
found in approximately 30% of cytosolic proteins (Chiang and
Dice, 1988; Dice, 1990), is recognized by chaperones associated
with cochaperones such Hsc70 belonging to the Hsp70 family
(Chiang et al., 1989) (Figure 3). The function of Hsc70 requires
cochaperones, such as Hsp40, Hsp90, HIP, HOP, and BAG-1
(Agarraberes and Dice, 2001). The substrates associated with
the Hsc70 chaperone system are translocated to the lysosomal
membrane through the interaction of Hsc70 with LAMP2A, a
single-span membrane protein (Cuervo and Dice, 1996). The
stability of LAMP2A requires its association with Lys-Hsc70, a
lysosomal homolog of Hsc70. Once the substrate is targeted to
the lysosome, Lys-Hsc70 assists the active LAMP2A complex
to be disassembled into the inactive monomeric form, which

FIGURE 3 | Chaperone-mediated degradation of misfolded proteins.

CMA is a selective proteolytic system in which cytosolic proteins carrying the

KFERQ pentapeptide are targeted by Hsc70. The function of Hsc70 requires

cochaperones, such as Hsp40, Hsp90, HIP, HOP, and BAG-1. The substrates

associated with the Hsc70 chaperone system are translocated to the

lysosomal membrane through the interaction of Hsc70 with LAMP2A, a

single-span membrane protein. L2A, LAMP2A.

is now available for the next round of the CMA process
(Bandyopadhyay et al., 2008). The levels of LAMP2A and Lys-
Hsc70 are important underlying the rate of CMA degradation
(Cuervo et al., 1995; Agarraberes et al., 1997; Cuervo and Dice,
2000). Although a large number of cytosolic proteins contain
the CMA degron sequence, only a limited number of these
proteins were demonstrated to be degraded by the CMA (Wing
et al., 1991). Post-translational modifications can generate the
substrates of the CMA (Chiang and Dice, 1988; Dice, 1990).
Studies have shown that CMA is essential for the survival of
neurons by degrading misfolded or damaged cytosolic proteins
(Cuervo et al., 2004). The misregulation of the CMA has been
shown to correlate to the pathogenesis of neurodegeneration
(Cuervo et al., 2004).

DISAGGREGATION OF AGGREGATES BY

MOLECULAR CHAPERONES

Misfolded proteins may form aggregates if the PQC system
is overwhelmed, for example, under severe stress conditions
or by genetic mutations that allows the accumulation of
non-degradable polypeptides. Yeast and mammalian cells have
molecular chaperones (disaggregases) that can disaggregate the
already formed aggregates (Parsell et al., 1994; Mogk et al., 1999;
Doyle et al., 2013). Proteins recovered from aggregates are either
refolded or degraded (Ravikumar et al., 2008; Douglas et al., 2009;
Ciechanover and Kwon, 2015).

Yeast Hsp104 belonging to the Hsp100 family is a powerful
AAA+ ATPase that has a hexameric ring structure with a central
channel (Shorter, 2011; Torrente and Shorter, 2013). Once
guided to protein aggregates by Hsp70, Hsp104 retrieves proteins
from aggregates and threads them into nascent polypeptides
(Seyffer et al., 2012; Lee et al., 2013; Lipinska et al., 2013; Carroni
et al., 2014). During threading, Hsp70 and Hsp40 assist the
unfolding of substrates to generate surface loops that are fed into
the core of Hsp104 (Zietkiewicz et al., 2006). This disaggregation
activity of Hsp104 was demonstrated to be effective for various
aggregates (Mosser et al., 2004; Shorter and Lindquist, 2004;
Arimon et al., 2008; Lo Bianco et al., 2008; DeSantis et al.,
2012). Despite the disaggregase activities, Hsp104 exhibited
the modest efficacy for the pathogenic misfolded proteins in
human neurodegenerative diseases (DeSantis et al., 2012). The
introduction of a few point mutations markedly increased its
disaggregase activity for the preformed aggregates of α-synuclein
in PD (Jackrel and Shorter, 2014), and TDP-43 and FUS in ALS
(Jackrel and Shorter, 2014; Jackrel et al., 2014). Compared with
wild-type Hsp104, the engineered form had increased ATPase
activity with reduced dependence on the Hsp70/Hsp40 and,
thus, exhibited enhanced activities in protein translocation and
remodeling (Jackrel and Shorter, 2014; Jackrel et al., 2014).

In humans, Hsp70 and Hsp40 interact with the cochaperone
Hsp110 to facilitate the disaggregation of protein aggregates
(Gao et al., 2015; Nillegoda et al., 2015). Hsp110 belonging to
the conserved Hsp70 superfamily has structural and functional
similarity to Hsp70 including the nucleotide binding domain
and acts as an NEF of Hsp70 (Polier et al., 2008). Although
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the action mechanism of the Hsp110-containing disaggregase
complex remains unclear, it appears that the NEF activity of
Hsp110 facilitates ADP release from Hsp70 (Rampelt et al.,
2012). This ability to facilitate disaggregation in vitro has been
equally observed with all three types of human Hsp110 isoforms:
Hsp105α/HSPH1, Apg-2/HSPH2, and Apg-1/HSPH3 (Rampelt
et al., 2012). The importance of Hsp110 in disaggregation
has been demonstrates with various amyloids and prefibrillar
oligomers and reactivate proteins from aggregates (Lo Bianco
et al., 2008). Loss-of-function studies of Hsp110 have also shown
its disaggregation activity in C. elegans (Rampelt et al., 2012),
mouse cells (Yamagishi et al., 2010) and Plasmodium falciparum
(Zininga et al., 2016).

PROTECTIVE ROLE OF CHAPERONES IN

NEURODEGENERATION

Many neurodegenerative diseases are directly caused by
the excessive accumulation of misfolded proteins and their
aggregates. During the pathogenesis, molecular chaperones play
a central role in the refolding, degradation, and disaggregation of
these pathogenic protein species. Extensive studies have shown
that molecular chaperones promote the removal of pathogenic
misfolded proteins and their aggregates.

HD and Other PolyQ Diseases
HD is a progressive neurodegenerative disease associated with
the accumulation of mutant huntingtin (mHTT) that has the
excessive repetition of glutamine residues, called polyQ, which
causes misfolding (Shastry, 2003; Lee et al., 2011). These
misfolded mHTT causes selective neuronal damage and death,
leading to cognitive and motor defects (Gusella and MacDonald,
1998; Ramaswamy et al., 2007; Roos, 2010). Studies have shown
that Hsp70 in a complex with Hsp40 plays a major role in
inhibiting the formation of mHTT aggregates. Specifically, the
Hsp70/Hsp40 machinery binds misfolded mHTT and holds its
folding state to attenuate the formation of mHTT oligomers
(Jana et al., 2000). The neuroprotective role of Hsp70 in the
pathogenesis of PD is highlighted by a genetic screening of
Drosophila PD model, which identified Hsp70 and Hsp40 as
two major suppressors of the neurotoxicity caused by mHTT
(Kazemi-Esfarjani and Benzer, 2000). Consistently, the knockout
of Hsp70 in R6/2 transgenic HD mice has been shown to
aggravate the symptoms in neurodegeneration (Wacker et al.,
2009). A similar neuroprotective efficacy was observed with
the neuronal chaperone HSJ1a (DNAJB2a) belonging to the
Hsp40 family (Labbadia et al., 2012). In addition to the Hsp70-
Hsp40 machinery, other members of the Hsp70 family have also
been shown to counteract mHTT cytotoxicity. Specifically, the
cytosolic chaperone Hsc70 binds and directly delivers mHTT to
the lysosome via CMA, leading to selective degradation of mHTT
and reduced toxicity (Bauer et al., 2010). This finding is further
supported by in vivo studies using mice (Bauer et al., 2010) as
well as flies (Gunawardena et al., 2003) overexpressing Hsc70. An
ER counterpart of Hsp70, BiP/GRP78, has also been shown to
counteract the accumulation of mHTT aggregates and apoptosis

(Jiang et al., 2012). Besides the Hsp70 family members and their
cochaperones, several other chaperones have been implicated in
the refolding and/or degradation of polyQ protein aggregates,
including Hsp84 (Mitsui et al., 2002), Hsp104 (Vacher et al.,
2005), Hsp104/Hsp27 (Perrin et al., 2007), the chaperonin TRiC
(Nollen et al., 2004; Behrends et al., 2006; Kitamura et al., 2006),
and the cochaperone Prefoldin (Tashiro et al., 2013). Finally,
HSPB7 belonging to small HSPs (Vos et al., 2010) and CHIP (Al-
Ramahi et al., 2006) were shown to counteract the formation of
polyQ aggregates in disease models.

PD
PD is the second most common neurodegenerative disease after
AD, affecting up to 10% of humans over 65 years. This protein
misfolding disorder is associated with the loss of dopaminergic
neurons in the substantia nigra pars compacta of brain
(Wirdefeldt et al., 2011). PD is characterized by the formation of
insoluble α-synuclein aggregates which are deposited as nuclear
inclusions (Goedert, 2001; Ross and Poirier, 2004; Hasegawa
et al., 2016) as a ubiquitinated form (Hasegawa et al., 2002).
These inclusion, called Lewy bodies, are mainly composed of
α-synuclein aggregates (Irizarry et al., 1998; Spillantini et al.,
1998) together with various components of PQC, including
Ub (Kuzuhara et al., 1988) and molecular chaperones such as
Hsp70, Hsp90, Hsp60, Hsp40, Hsp27, and CHIP (McLean et al.,
2002). This co-aggregation pattern indicates that α-synuclein
aggregates deposited in Lewy bodies are the remnants that
survived the attempts of molecular chaperones to maintain
proteostasis. Specifically, Hsp70 recognizes the hydrophobic
degron of misfolded α-synuclein through its substrate binding
domain (Dedmon et al., 2005; Luk et al., 2008). By holding the
folding status, Hsp70 facilitates the refolding of misfolded α-
synuclein and inhibits the formation of its oligomers (Outeiro
et al., 2008). The in vivo efficacy of Hsp70 was demonstrated with
overexpressed Hsp70 in flies (Auluck and Bonini, 2002; McLean
et al., 2004; Zhou et al., 2004; Opazo et al., 2008; Danzer et al.,
2011) and mice (Klucken et al., 2004). Moreover, the depletion of
molecular chaperones was shown to aggravate the degeneration
of neurons caused by proteotoxicity (Ebrahimi-Fakhari et al.,
2011).

The ER chaperone BiP belonging to the Hsp70 family
can interact with α-synuclein and reduce its neurotoxicity
(Gorbatyuk et al., 2012). Overexpressed BiP has been shown
to protect nigral dopaminergic neurons in a rat model of
PD, which correlates to reduced ER stress mediators and
apoptosis (Gorbatyuk et al., 2012). The anti-aggregation and
neuroprotective activity of BiP was further demonstrated
with photoreceptor cells expressing aggregation-prone mutant
rhodopsin (Gorbatyuk et al., 2010; Athanasiou et al., 2012). In
addition to Hsp70 proteins, αB-crystallin belonging to small
SHPs can interact with α-synuclein and inhibit the elongation
of its fibrillar seeds by forming nonfibrillar aggregates (Kudva
et al., 1997; Stege et al., 1999; Rekas et al., 2004; Shammas et al.,
2011). Another small HSP, Hsp27, can arrest the aggregation of α-
synuclein in the initial phage, perhaps by binding to the partially
folded monomers (Rekas et al., 2007; Bruinsma et al., 2011).
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AD
AD is the most common neurodegenerative disorder caused
by aggregation-prone proteins and selective loss, inactivation,
or shrinkage in the mature nervous system (Regeur et al.,
1994). The pathogenesis involves the deposit of amyloid-β (Aβ)
both outside and inside the neurons as well as intracellular
neurofibrillary tangles of hyperphosphorylated tau (Shankar
et al., 2008; Honjo et al., 2012). Self-assembly of Aβ, which is
not misfolded, generates its neurotoxic oligomers, which, in turn,
grows into amyloid fibrils (Shankar et al., 2008; Honjo et al.,
2012). Studies have shown that various molecular chaperones
interact with intracellular Aβ species, which has been internalized
by endocytosis, as well as tau and regulate their degradation.
Specifically, αB-crystallin (HSPB5) and DnaJB6 bind to Aβ fibrils
and inhibit their elongation and growth (Shammas et al., 2011;
Mansson et al., 2014). In addition, Hsp70, Hsp40, and Hsp90
interact with the oligomer form of Aβ peptides (Evans et al.,
2006). When overexpressed, Hsp70 and Hsp40 were shown to
reduce the formation of Aβ aggregates and redirected it from
growing into fibrillar to soluble circular structures (Evans et al.,
2006). In contrast to Hsp70, Hsp90 supports the folding of
tau and, thus, stabilizes this neurotoxic protein, facilitating tau
pathology in AD model (Carman et al., 2013). The cochaperone
BAG-1 forms a complex with Hsp70 and tau and can inhibit
tau degradation in cultured cells, leading to the accumulation of
both tau and APP (Elliott et al., 2007, 2009). Given the opposing
roles of Hsp70 and Hsp90, the Hsp90 inhibitor 17-AAG was
successfully used to induce the expression of various chaperones,
such as Hsp70, Hsp40, and Hsp60 (Chen et al., 2014). The
induction of these chaperones reduced Aβ toxicity in neurons
(Chen et al., 2014). Another line of evidence supporting the
protective role of chaperones in AD is provided by a study with
UBB+1, a frameshift mutation of ubiquitin B (Hope et al., 2003).
UBB+1 can inhibit the proteasome and, thus, can be deposited
into intracellular protein inclusions in AD. The overexpression
of UBB+1 induced the expression of HSPs, which, in turn,
protected cells against oxidative stress.

ALS
ALS is the most common adult onset motor neuron disease that
affects the brainstem, cortex and spinal cord. It is characterized
by the atrophy, weakness, and paralysis of muscles, leading
to death within 3–5 years post diagnosis (Robberecht and
Philips, 2013). The majority of ALS patients are sporadic,
whereas 5–10% are familial, i.e., linked to mutations in specific
genes. Numerous genetic mutations are linked to ALS, either
genetically and/or pathologically. Amongst these, the mutations
of SOD1, a free radical scavenger enzyme, accounts for 20%
of familial ALS cases (Rosen et al., 1993). Several other ALS-
linked mutated proteins form intracellular aggregates, including
C9ORF72 (DeJesus-Hernandez et al., 2011), transactive response
DNA binding protein (TDP-43), fused in sarcoma/translocated
in liposarcoma (FUS), vesicle associated protein B (VAPB),
ubiquilin-2, optineurin, and protein disulphide isomerase 1 and
3 (PDIA1 and PDIA3) (Robberecht and Philips, 2013). The
majority of ALS cases are considered protein misfolding disorder
because these mutations cause the accumulation of misfolded
proteins and their aggregates.

Various molecular chaperones are implicated in the formation
of these protein aggregates in ALS. For example, Hsp70/Hsp40,
Hsp27, Hsp25, and αB-crystalline can form complexes with an
ALS-causing mutant form of SOD, SOD1G93A. However, the
overexpression of Hsp70 alone was not sufficient to reduce
mutant SOD1 toxicity in ALS mouse model (Liu et al.,
2005). Instead, PDI proteins exhibit a protective role in ALS
models (Walker et al., 2010; Jeon et al., 2014). PDI assists the
rearrangement of incorrectly arranged disulfide bonds of ER
clients. It can also act as a chaperone that not only counteracts
the aggregation of proteins independent of disulfide bonds but
also delivers terminally misfolded proteins to ERAD (Quan et al.,
1995). Over 15 missense mutations of PDIA1 and ERp57/PDIA3
were linked to ALS (Yang and Guo, 2016). Various in vitro and
animal studies showed that PDI is deposited to the aggregates
formed by the mutant forms of TDP-43 and FUS (Honjo et al.,
2011; Farg et al., 2012), TDP-43 (Honjo et al., 2011; Walker
et al., 2013), and VAPB (Tsuda et al., 2008). The overexpression
of PDI reduces mutant SOD1 inclusions in vitro whereas PDI
knockdown facilitates the formation of ALS inclusions (Walker
et al., 2010).

Hsp27 also plays a protective role in the pathogenesis of
ALS. Hsp27 binds mutant SOD1 in vitro and inhibits its fibril
elongation (Yerbury et al., 2013). The overexpression of Hsp27
was shown to inhibit mutant SOD1-induced cell death (Patel
et al., 2005). Hsp27 exhibited a synergistic efficacy when Hsp70
was coexpressed (Patel et al., 2005). In addition to Hsp27, HSJ1a
shows a similar protective activity against the formation of
mutant SOD aggregates at the late stage of the disease (Novoselov
et al., 2013). HSJ1a interacts with SOD1G93 and facilitates its
ubiquitination and proteasomal degradation.

THERAPEUTIC APPLICATION TARGETING

MOLECULAR CHAPERONES IN

NEURODEGENERATION

Given the protective role of molecular chaperones against
pathogenic protein aggregates in neurodegenerative diseases,
molecular chaperones are logical targets for drug development
to modulate aggregation and clearance of the aggregates. Indeed,
pharmaceutical induction of molecular chaperones has been
demonstrated to effectively inhibit the formation of pathogenic
aggregates in disease models.

Hsp90 supports in the folding/refolding and stability of
a number of clients, including pathogenic misfolded protein
aggregates in neurodegenerative diseases. While these activities
are overall beneficial for refolding, however, Hsp90 also assists in
the stability of neurotoxic proteins, favoring the accumulation of
toxic protein aggregates (Schulte andNeckers, 1998; Boland et al.,
2008; Eskelinen and Saftig, 2009; Chouraki and Seshadri, 2014).
Therefore, one such strategy is the pharmaceutical inhibition
of Hsp90. Geldanamycin competes with ATP and inhibits the
folding and stabilization of neurotoxic proteins (Schulte and
Neckers, 1998; Boland et al., 2008; Eskelinen and Saftig, 2009;
Chouraki and Seshadri, 2014). In addition, upon binding to
geldanamycin, Hsp90 releases a HSP-inducing transcript factor,
HSF1 (McLean et al., 2004; Putcha et al., 2010). The dissociated

Frontiers in Neuroscience | www.frontiersin.org April 2017 | Volume 11 | Article 185 | 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Ciechanover and Kwon Chaperones in Protein Quality Control

HSF1 which otherwise would be sequestered by Hsp90 move to
the nucleus and transcriptionally induces HSPs, such as Hsp70
(McLean et al., 2004; Putcha et al., 2010). Geldanamycin was
successfully used to inhibit protein aggregation in the Drosophila
(McLean et al., 2004; Putcha et al., 2010) and mouse PD model
(Shen et al., 2005) and in a primary culture model of familial ALS
(Batulan et al., 2006).

Despite its therapeutic efficacy, geldanamycin is toxic and
cannot penetrate the blood brain barrier (BBB). A number
of geldanamycin derivatives or the compounds that target
HSF1 are now available, including geranylgeranylacetaone,
celastrol, arimoclomol, withaferin A, 17-N-allylamino-17-
demethoxygeldanamycin (17-AAG), and PU-DZ8 (Kieran
et al., 2004; Niikura et al., 2006; Hoogstra-Berends et al.,
2012; Khan et al., 2012; Kalmar et al., 2014; Sharma et al.,
2015). Amongst these, celastrol is an anti-inflammatory and
antioxidant compound extracted from a perennial creeping
plant belonging to the Celastraceae family (Cleren et al., 2005).
The treatment of celastrol in HD model mice resulted in the
induction of Hsp70 expression associated with reduced loss of
dopaminergic neurons induced by MPTP in the substantia nigra
pars compacta (Cleren et al., 2005). Celastrol protected neurons
against polyglutamine toxicity in vivo and in vitro (Zhang and
Sarge, 2007) and reduced the β-amyloid level in mouse AD
(Paris et al., 2010) and HD (Zhang and Sarge, 2007) models.
BBB-permeable Hsp90 inhibitors, 17-AAG and PU-DZ8, were
used to decrease the levels of phosphorylated tau in the AD
model (Luo et al., 2007) and to inhibit neurodegeneration in
a fly HD model (Fujikake et al., 2008). In addition, as Hsp90
inhibition causes undesirable proteotoxicity, HSF1A, a small
benzyl pyrazole-based compound, has been developed to activate
Hsf1 without inhibiting Hsp90 (Neef et al., 2010). Overall,
studies using these HSP-inducing compounds in animal models
of neurodegenerative diseases demonstrate that this strategy has
potential for therapeutic application.

CONCLUDING REMARKS

Neurodegenerative diseases are caused by failure in PQC, which
can be attributed to genetic mutations or alternatively an age-
related decline in proteolytic activities. Molecular chaperones are
an essential component of PQC in that they recognize unfolded

or misfolded proteins, hold their folding status, and release
them for spontaneous refolding. These nanoscale molecular
machines can also facilitate the degradation of terminally
misfolded proteins either through the UPS and autophagy. As
the last defense mechanism of PQC, molecular chaperons can
disaggregate the already formed aggregates. Thus, molecular
chaperones play a pivotal role to protect neurons from the
accumulation of pathogenic protein aggregates. It is therefore not
surprising that pharmaceutical means are exploited to modulate
the activities and functions of molecular chaperones. Indeed,
small molecule compounds that target molecular chaperones
such as Hsp90 have been successfully demonstrated to be
effective in various neurodegenerative diseases. There is now
an emerging consensus that proteostasis in diseases could
be restored by using small molecule compounds or RNA
interference that modulates chaperone expression or activities.
A better understanding of chaperone functions in neurons
will help the development of therapeutic means to restore
proteostasis.
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The accumulation of misfolded proteins in the human brain is one of the critical features

of many neurodegenerative diseases, including Alzheimer’s disease (AD). Assembles

of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and

of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD.

Chaperones and co-chaperones regulate protein folding and client maturation, but they

also target misfolded or aggregated proteins for refolding or for degradation, mostly

by the proteasome. They form an important line of defense against misfolded proteins

and are part of the cellular quality control system. The heat shock protein (Hsp) family,

particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to

regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD.

However, the role of Hsp90 in regulating protein misfolding is not yet fully understood.

For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans

model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90

inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function.

Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the

transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate

aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1

can be secreted by diverse cell types, including astrocytes and microglia and function

as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC).

Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC

and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1

in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss

the role of intracellular and extracellular STI1 and the Hsp70/Hsp90 chaperone network in

mechanisms underlying protein misfolding in neurodegenerative diseases, with particular

focus on AD.

Keywords: STIP1, HOP, Alzheimer’s disease, tau, ALS, Parkinson’s disease, Huntington’s disease, TDP-43
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BRIEF INTRODUCTION TO CHAPERONES
AND CO-CHAPERONES

A major requirement for cellular growth, function, and survival
is the proper folding, maturation, and degradation of proteins.
These activities are carried out by molecular chaperones, many
of which are heat shock proteins (Hsps). The heat shock response
was first discovered in the early 1960s in Drosophila that
displayed changes in salivary gland transcriptional activity in
response to different incubation temperatures (Ritossa, 1962). It
was not until 1974 that Hsps were discovered and interest in
this field of biology became widespread (Tissieres et al., 1974).
Transcription of heat shock genes is mostly regulated by heat
shock factor 1 (HSF1). Inactive HSF1 is localized in the cytosol,
but upon heat stress translocates to the nucleus and binds to
promoters of heat shock elements, inducing transcription and
leading to an increase in Hsp expression (Morimoto, 1998).
Activation of HSF1 and subsequent shuttling to the nucleus is a
typical stress response and also allows for control of cell cycle,
protein translation and glucose metabolism (Dai et al., 2007).
It is now well-accepted that Hsps not only aid in mediating
cellular responses to stress, but are also critical in general protein
quality control. Some of the major roles of molecular chaperones
include the regulation of the unfolding protein response due
to stress, degradation of misfolded or aggregated proteins,
regulation of macromolecular complexes, and protein-protein
interactions.

There are several major classes of Hsps involved in the
protein quality control machinery: Hsp60, Hsp70 and Hsp90,
Hsp40, Hsp100, Hsp110, as well as the ATP-independent small
heat shock proteins (sHsps) such as Hsp20, αA-crystallin,
and αB-crystallin. Hsp40, also known as DnaJ, is commonly
found acting as a co-chaperone for Hsp70 and regulates
ATP-dependent polypeptide binding to Hsp70, prevention of
premature polypeptide folding, and ATPase activity of Hsp70
(Cyr et al., 1992; Frydman et al., 1994; Tsai and Douglas,
1996). In yeast, the family of Hsp100 proteins protect cells
from extreme physiological and environmental stress (Sanchez
et al., 1992; Glover and Lindquist, 1998) and have the unique
ability to re-solubilize aggregated insoluble proteins (Parsell
et al., 1994). In metazoans disaggregase activity is carried out
by the tricomplex of Hsp70, a J Protein and Hsp110 (Shorter,
2011; Rampelt et al., 2012; Gao et al., 2015). For the purpose
of this review, we will focus mainly on the roles of Hsp70
and Hsp90 as well as of the critical co-chaperone stress-
inducible phosphoprotein I (STI1, STIP1) and their regulation
of protein misfolding and signaling in neurodegenerative
diseases. Comprehensive discussion of different chaperones
including their roles in the ER can be found in excellent
recent reviews elsewhere (McLaughlin and Vandenbroeck, 2011;
Marzec et al., 2012; Melnyk et al., 2015; Ellgaard et al.,
2016).

Hsp70 and Hsp90 and homologs are both widely expressed
in some lower order prokaryotes and in all eukaryotes, with
Hsp90 constituting ∼1% of all cellular proteins in eukaryotes
(Borkovich et al., 1989). Hsp90 activity is regulated through
interactions with a large network of co-chaperones providing

quality control of a wide range of client proteins. Initially,
client proteins are recruited by Hsp40 and Hsp70 and
then transferred to Hsp90 by the co-chaperone STI1 (the
human homolog is also known as Hsp-organizing protein or
HOP; Lassle et al., 1997; Chen and Smith, 1998; Johnson
et al., 1998; Taipale et al., 2010). Recent studies suggest
that Hsp90 has an important role in neurodegeneration.
Pharmacological inhibition of Hsp90 results in Hsp70 and
Hsp40 upregulation, which can control the expression of several
synaptic proteins, but it can also channel misfolded protein
for degradation by the proteasome (Luo et al., 2007; Chen
et al., 2014; Wang et al., 2016). Protein aggregation is a
major hallmark of several neurodegenerative diseases, including
Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS),
Parkinson’s disease (PD), Huntington’s disease (HD), and
Creutzfeldt-Jakob disease (CJD). Therefore, the chaperone
machinery is becoming a major therapeutic target across these
diseases.

HSP70

The Hsp70 family of proteins is a class of highly abundant
and ubiquitously expressed chaperones that participate in many
biological processes, including protein trafficking, early stages
of nascent polypeptide folding and the refolding or degradation
of aggregated peptide products (Bukau et al., 2006). There
are several eukaryotic Hsp70 isoforms (reviewed in Kabani
and Martineau, 2008). Hsp70 is composed of two distinct
domains, a 40 kDa N-terminal nucleotide-binding domain
(NBD) that regulates client association and a 25 kDa C-
terminal substrate-binding domain (SBD), which recognizes
exposed hydrophobic stretches in the early stages of client
protein folding (Rudiger et al., 1997; Bukau et al., 2006).
A short, flexible hydrophobic linker joins both domains
(Jiang et al., 2005). ATP binding and hydrolysis is coupled
to allosteric changes in Hsp70, which influence protein-
client interactions in the Hsp70 chaperone cycle (Mayer
et al., 2000). Post-translational modification of Hsp70 by
phosphorylation at T504 and/or acetylation at several serine
residues promotes dimerization of Hsp70 (Morgner et al.,
2015). Furthermore, presence of a client and Hsp40 supports
dimerization of Hsp70 and substrate binding (Morgner et al.,
2015).

ATP binding to the NBD results in the opening of a SBD
α-helical lid, stimulating binding of substrate proteins through
interactions with the NBD and SBD (Jiang et al., 2005). The
ADP-bound state results in the closing of the α-helical lid
over the substrate-binding cleft and stabilizes client association
(Schlecht et al., 2011). The Hsp70 chaperone cycle is inherently
slow due to the low ATPase activity of Hsp70 (Swain et al.,
2007). Thus, a family of J proteins recruits the client to
Hsp70 and stimulates the Hsp70 ATPase activity (Misselwitz
et al., 1998). The J protein then dissociates from the ternary
complex and a nucleotide-exchange factor releases the bound
ADP from Hsp70 returning it to the apo-conformation. This
leaves the NBD available for recruitment of ATP, upon which the
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α-helical lid can “open” and release the client peptide (Misselwitz
et al., 1998; Schlecht et al., 2011). The cycle repeats in an
interactive process until the client peptide adopts its native
structure or is passed on to another part of the chaperone
machinery.

Hsp70 class of chaperones typically recognizes client proteins
in the early stages of folding through short hydrophobic
sequences rich in leucine residues (Rudiger et al., 1997).
Such hydrophobic stretches are greatly exposed during the
early stages of protein translation and folding, leading to
unfavorable intra- and inter-molecular interactions (Hartl and
Hayer-Hartl, 2009). Hsp70 binding to client proteins in the
early stages of protein folding controls the availability of such
regions, facilitating formation of the proper protein fold, while
inhibiting aggregate formation. If proper folding of the client is
not possible, Hsp70 association with additional co-chaperones
promotes degradation of the misfolded protein (Meacham
et al., 2001; Petrucelli et al., 2004; Jana et al., 2005; Dickey
et al., 2007; Muller et al., 2008). The abundance of exposed
hydrophobic stretches in proteins prone to self-association
in neurodegenerative diseases draws parallel to proteins in
early stages of folding, which indicates a potential role of the
Hsp70/Hsp90 machinery in modulating pathogenic aggregate
formation (Muchowski and Wacker, 2005; Hartl and Hayer-
Hartl, 2009).

HSP90

Hsp90 is a highly conserved molecular chaperone from yeast to
mammals and it is essential for proper folding and maintenance
of its client proteins in eukaryotic cells (see Figure 1). Over
500 physical and genetic interactions have been identified
in yeast spanning diverse families of cellular proteins, which
include transcription factors, steroid hormone receptors, and
protein kinases (Zhao et al., 2005; McClellan et al., 2007).
Through concerted efforts involving other chaperones and co-
chaperones it drives the final maturation of client proteins.
There are two major isoforms of Hsp90 identified in the
cytosol, inducible Hsp90α and constitutively expressed Hsp90β,
as well as Grp94 in the endoplasmic reticulum (Csermely et al.,
1998).

Hsp90 forms a homodimeric biologically functional unit
composed of three distinct regions connected by flexible
linker. Each protomer contains a highly-conserved N-terminal
domain (NTD) responsible for nucleotide binding, a middle
domain (MD) important for client recognition and ATP
hydrolysis and a C-terminal domain (CTD), which is the
primary site responsible for dimerization (Pearl and Prodromou,
2006; Taipale et al., 2010). Additionally, the CTD contains a
conserved “MEEVD” sequence used for interactions with the
large tetratricopeptide repeat domain class of co-chaperone
proteins, which regulate Hsp90 protein activity (Young et al.,
1998).

The NTD contains a deep ATP/ADP binding pocket
evolutionarily conserved amongst the GHKL (gyrase, Hsp90,
histidine kinase, MutL) ATPase superfamily (Meyer et al., 2003).

The binding pocket is composed of multiple α-helices and a β-
sheet flanking the bound ATPmolecule (Prodromou et al., 1997).
Intramolecular recruitment of the MD on each protomer brings
critical residues into contact forming the required split ATPase
active site necessary for ATP hydrolysis (Ali et al., 2006). The N-
terminal region contains an additional molecular lid mechanism,
which crosses over the nucleotide-binding pocket in the ATP-
bound state and holds the nucleotide in place, but remains in
the open conformation upon ADP-binding (Ali et al., 2006).
See Figure 1 for an overview of the Hsp90 conformations when
bound to ADP or ATP.

Nucleotide binding and hydrolysis are directly coupled to
large structural rearrangements in Hsp90 that are regulated
through interactions with client and co-chaperone proteins
(Csermely et al., 1993; Kirschke et al., 2014; Lavery et al.,
2014). Apo-Hsp90 presents an “open” conformation where the
two protomers form a V-shaped dimer (Vaughan et al., 2010).
Nucleotide binding induces an intermediate-state where the N-
terminal lid cradles ATP within the nucleotide-binding pocket.
This results in a second repositioning of the N-terminal region
favoring its dimerization and recruitment of the MD for ATP
hydrolysis through a conserved arginine (R380 in yeast) that
contacts the γ-phosphate of ATP (Cunningham et al., 2012).
Finally, ATP is hydrolyzed and Hsp90 reverts to the “open”
conformation where the N-terminal domains dissociate, allowing
for the repetition of the cycle. ATP hydrolysis and the structural
rearrangements in Hsp90 during client refolding are influenced
and regulated by a diverse set of co-chaperones (Zuehlke and
Johnson, 2010). These co-chaperones have varying effects on the
ATPase activity and conformational rearrangements in Hsp90.
Post-translational modifications of Hsp90 include acetylation,
nitrosylation, phosphorylation, and methylation, which has been
elegantly reviewed by Li and Buchner (2013).

While ATPase induced conformational rearrangements in
Hsp90 are well-understood, their influence on client protein
folding remains enigmatic. Hsp90-directed folding occurs late
during the folding of nascent peptides. Structural studies
involving binding to intrinsically disordered tau suggest that
substrate recognition occurs through low-affinity hydrophobic
interactions between the client protein and a large substrate-
binding interface onHsp90 (Zuehlke and Johnson, 2010; Karagoz
et al., 2014). This mechanism allows for detection of scattered
exposed hydrophobic patches in protein folding intermediates.
Interestingly, Hsp90 affinity for tau appears to be independent of
ATP binding as both the apo and ATP-bound forms possess equal
affinities for tau (Karagoz et al., 2014).

The prominent role and poor prognosis of Hsp90
overexpression in various cancers has led to the development
of a number of Hsp90 inhibitors (Roe et al., 1999; Trepel
et al., 2010). Hsp90 inhibition results in the downregulation
of many oncogenic client proteins that require Hsp90 for
maturation. The most prominent drugs inhibit the ATPase
activity of Hsp90 and are based on the geldanamycin,
radicicol, or purine derivatives, which function as competitive
inhibitors of ATP binding to Hsp90 (Roe et al., 1999; Sidera
and Patsavoudi, 2014). Initial geldanamycin and radicicol
derivatives proved to be potent inhibitors of Hsp90; however,
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FIGURE 1 | Schematic of the ATPase cycle of Hsp90. Hsp90 homodimer initially adopts an open V-shaped conformation. Binding of ATP to the N-terminal

ATPase domain induces a conformational change where the N-terminal lids close and ATP is cradled in the nucleotide-binding pocket. This induces dimerization of

the N-terminal domains of each homodimer followed by closure of Hsp90 and recruitment of the M domain for ATP hydrolysis. The dimers dissociate into a semi-open

intermediate state with ADP bound. Release of ADP dissociates the N-termini to allow repetition of the ATPase cycle. Common Hsp90 inhibitors (geldanamycin,

radicicol, and purine derivatives) bind to the N-terminus of Hsp90 and compete with ATP for binding.

their therapeutic value is low due to severe toxicity by targeting
Hsp90 in normal cells (Jhaveri et al., 2012; Trendowski,
2015).

Co-chaperones along with individual Hsps comprise
a chaperone network that is altered in malignancy and
neurodegeneration (Workman et al., 2007; Moulick et al.,
2011; Lindberg et al., 2015; Rodina et al., 2016). Targeting
specific co-chaperones or chaperone complexes may help
to avoid cytotoxicity by directly targeting Hsp90 activity (Yi
and Regan, 2008; Moulick et al., 2011; Rodina et al., 2016).
The purine derivative PU-H71 possesses unique selectivity
amongst Hsp90 inhibitors, preferentially targeting high-
molecular-weight complexes composed of Hsp70/90 and
various co-chaperones and client proteins, which are enriched
in numerous malignant cell models, but absent in non-
oncogenic tissue (Moulick et al., 2011; Rodina et al., 2016).

The formation of these large stable chaperone species appears
to be cancer specific and diagnostic proteomic approaches
may serve as a method to clinically screen patients that are
most likely to benefit from targeting such species. Whether
large and stable chaperone complexes with misfolded proteins
occur in different neurodegenerative diseases is currently
unclear. Indeed, therapeutic approaches targeting chaperones
in neurodegeneration still fall behind from those in cancer
cells.

Hsp70 and Hsp90 both interact with many co-chaperones
containing tetratricopeptide repeat (TPR) domains, which
consist of three or more 34-amino acid residues (Lamb et al.,
1995). These motifs form anti-parallel α-helices (Allan and
Ratajczak, 2011) that bind to the C-terminus of the chaperone
and are themain interaction site for co-chaperones (Smith, 2004),
along the EEVD peptide motif on Hsp70 and Hsp90 (Kajander
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et al., 2009). Proteins containing TPR domains typically share
no other sequence homology, but are commonly found to be
involved in regulation of cell cycle, protein trafficking, phosphate
turnover, and transcriptional events (Blatch and Lassle, 1999).
TPR domain-containing co-chaperones regulate the ATP cycle
of chaperones and aid in client transport to binding pockets,
where they are folded. Hsp40 may help coordinate other
co-chaperones in binding Hsp70, such as Hsp70-interacting
protein (Hip; Hohfeld et al., 1995) in the early stages of
the chaperone cycle, as well as STI1 and SGT (Allan and
Ratajczak, 2011). STI1 is also a co-chaperone for Hsp90, along
with p23, Cdc37, and the immunophilins peptidyl-prolyl cis-
trans (PPIases) isomerases FKBP51 and FKBP52, phosphatase
PP5 and the cyclophillin Cyp40 (Allan and Ratajczak, 2011).
Some of these co-chaperones inhibit Hsp90 ATP turnover
(Rehn and Buchner, 2015). C-terminal Hsp70-interacting protein
(CHIP) is also a co-chaperone for both Hsp70 and Hsp90.
In this review, we will focus mainly on the roles of Hsp70,
Hsp90, and the co-chaperone STI1 in protein misfolding. We
will also discuss the unique cytokine-like activities of STI1.
Importantly, both the extracellular and intracellular activities of
STI1 seem to converge to increase cellular resilience (Beraldo
et al., 2013). Moreover, we will briefly describe some of
the co-chaperones that may also have a role in protein
misfolding diseases, such as CHIP and high molecular weight
immunophilins.

HSP70/HSP90 PARTNERS IN
NEURODEGENERATIVE DISEASES

There is a number of Hsp70 and Hsp90 co-chaperones
that have implications for neurodegenerative diseases. High
molecular weight FK506-binding proteins (FKBPs) FKBP51
and FKBP52 impose a variety of effects on tau structure
and function, which will be discussed further in the AD
subsection of this review. Another co-chaperone, a high
molecular weight PPIase Cyp40, can bind Aβ and regulate
import of Aβ into mitochondria. Interestingly, inhibiting
Cyp40 was found to be protective against Aβ-toxicity in
mitochondria and neurons in an amyloid-precursor protein
(APP) transgenic mouse model (Du and Yan, 2010). This
suggests that Aβ may be regulated by an Hsp90/PPIase
complex, but further investigation is required. For a more
extensive review on PPIases in regulating the levels and
toxicity of proteins in AD, see excellent review by Blair et al.
(2015).

The Hsp90 co-chaperone p23 typically comes into play in a
mature Hsp90-client complex (Felts and Toft, 2003), whereby it
inhibits ATP turnover on Hsp90 (Rehn and Buchner, 2015). In
the context of AD, p23 has been found to bind γ-secretases and to
promote the non-amyloidogenic pathway of amyloid precursor
protein (ultimately reducing production of Aβ species; Vetrivel
et al., 2008) and silencing of p23 gene expression reduced the
levels of total tau and phosphorylated tau (Dickey et al., 2007).

Hsp70 and Hsp90 are critical to folding and maturation of
a number of clients, but they are also key players in regulation

of the proteasome, a simplified representation of this activity
can be found in Figure 2. CHIP, a Hsp70-Hsp90 co-chaperone,
is an E3 ubiquitin ligase (Ballinger et al., 1999; McDonough
and Patterson, 2003) that promotes client degradation via the
proteasome. CHIP contains three TPR motifs at its N-terminus,
a middle domain of charged residues (Ballinger et al., 1999)
and a C-terminus containing a U-Box domain (Zhang et al.,
2005). U-Box domains are characteristic of proteins involved in
ubiquitination (Aravind andKoonin, 2000).Within this pathway,
ubiquitin molecules are covalently attached to the protein of
interest, and then recruited to the proteasome complex for
degradation. CHIP interacts with Hsp70 and Hsp90 via TPR
domain and then can bind with the substrate protein of interest,
promoting substrate ubiquitination. Of note, CHIP is capable of
binding tau and is responsible for its ubiquitination (Petrucelli
et al., 2004), a critical activity that may be of importance for
tauopathies.

Transcriptional regulation of the heat shock response is
mediated by HSF1. HSF1 activity is dependent upon levels of
chaperones and misfolded proteins, and other environmental
stressors such as heat, aging, and changes in osmosis.
Alternatively, Hsp70 and Hsp90 can negatively regulate the
activation of HSF1, suppressing the heat shock response, allowing
for a recovery period after the stressor is no longer present. Once
in the nucleus, HSF1 trimerizes and binds Hsp gene promoters to
activate transcription. Dai et al. (2003) further showed that this
trimerization of HSF1 is mediated by CHIP, since both localize to
the nucleus in response to cellular stress and form a complex once
HSF1 is bound toDNA.Moreover, once degradation ofmisfolded
proteins is complete, CHIP begins to degrade Hsp70 (unbound
to any client). Therefore, CHIP stimulates HSF1 upregulation of
Hsp70 in stress conditions and mediates its degradation to basal
levels in the recovery period from stress.

STI1/HOP Co-chaperone Structure and
Function
STI1 was discovered in 1989, as a protein that is upregulated
during cellular stress in yeast (Nicolet and Craig, 1989). STI1 is a
modular protein composed of three TPR domains (TPR1, TPR2A
and TPR2B) and two domains rich in aspartate and proline
residues (DP1 and DP2, see Figure 3). The TPR domains of STI1
bind Hsp70 and Hsp90 to facilitate client protein transfer. While
the C-terminal domain of Hsp90 is critical for the binding of TPR
domains, additional contacts aremadewith themiddle domain of
Hsp90 (Lee et al., 2012; Schmid et al., 2012). Binding of Hsp90 by
STI1 results in non-competitive inhibition of its ATPase activity
through interaction with TPR2A-TPR2B fragment and stabilizes
Hsp90 in an open conformation. However, the human homolog
of STI1, HOP, appears to be ∼10-fold less potent as an inhibitor
of the Hsp90 ATPase activity (Prodromou et al., 1999; Richter
et al., 2008). Hsp70 and Hsp90 engagement is facilitated through
sequential interactions with the individual TPR domains of STI1
(Rohl et al., 2015b). The function of the DP domains (DP1 and
DP2) is less clear. The minimal fragment of STI1 that supports
client activation is composed of TPR2A-TPR2B-DP2 (Schmid
et al., 2012; Rohl et al., 2015b). The Caenorhabditis elegans
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FIGURE 2 | Outline of the chaperone response in protein folding. Chaperones facilitate proper folding of a diverse array of client proteins and prevent oligomer

and aggregate formation. If folding is not possible, misfolded proteins are targeted for protein degradation to maintain proper protein homeostasis. Degradation is

achieved through the ubiquitin-proteasome system (UPS) or the autophagy-lysosome pathway. A list of diseases and the associated aggregate discussed in this

review are outlined.

STI1 homolog, CeHOP, contains only the TPR2A-TPR2B-DP2
module, but is still capable of binding Hsp70 and Hsp90, though
not simultaneously (Gaiser et al., 2009). Deletion of CeHOP is
not lethal, but mutant worms have deficits in sexual development
and reduced resistance to heat stress (Gaiser et al., 2009; Song
et al., 2009). Functionality of CeHOP suggests the TPR1-DP1
module may be dispensable for client activation in vivo (Gaiser
et al., 2009).

Interestingly, STI1-based constructs lacking the DP2 domain
did not support glucocorticoid receptor activation, one of
STI1 functions in yeast cells (Schmid et al., 2012). X-
ray crystallographic structures of the TPR2A-TPR2B domain
revealed the linker between these domains is quite rigid. As
a result, the TPR domains adopt an S-shaped form with their

hydrophobic clefts responsible for binding the C-terminal Hsp90
residues oriented in opposite directions (Schmid et al., 2012).
Complementary NMR spectroscopy experiments revealed that
additional inter-domain contacts are formed between the C-
terminal helix of TPR2B, the linker connecting TPR2B to the
DP2 domain and α-helices 1 and 2 of the DP2 domain (Rohl
et al., 2015b). These additional contacts form a rigid C-terminus
composed of TPR2A-TPR2B-DP2. These results indicate that
DP2 contributes to the quaternary structure of STI1, underlying
its importance in STI1 function.

STI1 possesses two Hsp70 binding sites located in TPR1
and TPR2B; however, it binds to Hsp70 in a 1:1 stoichiometry
(Scheufler et al., 2000; Rohl et al., 2015b). The current model
for STI1 function in Hsp70 and Hsp90 coordination proposes
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FIGURE 3 | Domain structure of STI1 and sites of post-translational

modifications (PTM). STI1 is composed of three structurally similar

tetratricopeptide repeat domains (TPR1, TPR2A, and TPR2B) and two regions

rich in aspartate and proline residues (DP1 and DP2). The protein is subject to

phosphorylation (S16, S189, T198, Y354, and S481). CK2 phosphorylation at

S189 induces STI1 accumulation in the nucleus. In contrast phosphorylation

by cdc2 at T198 localizes STI1 to the cytoplasm. Five possible SUMOylation

sites have been identified (K123, K210, K312, K395, and K486). SUMOylation

by PIAS1 at K210 may stimulate SUMOylation at the alternate sites.

Association of PIAS1 with STI1 by a SUMO-independent mechanism

increases STI1 nuclear accumulation. Regions that bind HSP70, HSP90, and

PrPC are illustrated.

that in the absence of Hsp90, the TPR2B domain represents
the high-affinity binding site for Hsp70, these interaction sites
are shown in Figure 3. Hsp90 binding induces a more “open”
conformation between TPR1-DP1 fragment and the functional
C-terminal TPR2A-TPR2B-DP2 domains. Hsp90 binding to
TPR2A reduces accessibility of Hsp70 binding to TPR2B, thus the
TPR1 domain becomes the predominant binding site for Hsp70
in the ternary complex (Rohl et al., 2015b). Binding of Hsp90
may also reorient the TPR1-DP1 module into close proximity to
TPR2B, presumably facilitating transfer of client protein (Rohl
et al., 2015b). Thus, the length of the linker bridging TPR1-
DP1 to TPR2A-TPR2B-DP2 impacts STI1 function in client
refolding (Rohl et al., 2015b). Deletion of the linker results in
decreased formation of ternary complexes of STI1-Hsp70-Hsp90
and decreased protein client activation in vivo (Rohl et al., 2015b).

STI1 is widely expressed in most tissues and is typically
localized in the cytoplasm, but can be found associated with
the Golgi (Honore et al., 1992) and in the nucleus (Longshaw
et al., 2004; Beraldo et al., 2013; Soares et al., 2013). Nuclear
accumulation of STI1 is characteristic of stressed cells (Beraldo
et al., 2013).

STI1 is subject to posttranslational modifications, which
regulate its co-chaperone activity (Rohl et al., 2015a). Five
different phosphorylation sites have been identified in the human
STI1 homolog HOP corresponding to S16, S189, T198, Y354, and
S481, see Figure 3 for simplified STI1 structure and respective

phosphorylation sites. Phosphomimetic mutations resulted in
decreased glucocorticoid receptor activation in vivo and Hsp70
binding affinities indicating that phosphorylation regulates STI1
co-chaperone function (Rohl et al., 2015a). Interestingly, Y354E
phosphomimetic variant located in the loop joining TPR2A-
TPR2B appeared to disrupt the rigid linker joining the two
domains and promotes a more dynamic flexibility causing loss
of function (Rohl et al., 2015a).

STI1 is typically found in the cytosol, but it can shuttle
between the nucleus and cytoplasm (Longshaw et al., 2004), due
to the presence of a nuclear localization signal (NLS) at amino
acids 222–239 (of mouse STI1). Specifically, phosphorylation of
STI1 by casein kinase II (CKII) and cell division cycle kinase
II (cdc2) at S189 and T198 (respectively), contiguous to STI1
NLS (Longshaw et al., 2000) regulates nuclear localization of
STI1 (Longshaw et al., 2004). CKII stimulates cellular growth by
promoting cells to enter G1 phase of cell cycle (Pyerin, 1994),
whereas cdc2 favors cell division (Matsumoto and Fujimoto,
1990). The rate of STI1 export from the nucleus is much higher
than import, which can be inhibited with leptomycin B, a
nuclear export inhibitor (Longshaw et al., 2004). Of particular
interest, STI1 interacts with the nuclear small ubiquitin-like
modifier (SUMO) E3 ligase family protein inhibitor of activated
STAT (PIAS) and many other components of the SUMOylation
machinery (Soares et al., 2013), suggesting potential STI1
regulation of genotoxic stress responses. STI1 was retained in
the nucleus of astrocytes overexpressing PIAS1 (Soares et al.,
2013) and Hsp90 was also found to be appreciably colocalized
with STI1 and PIAS1 in the nucleus. Specifically, PIAS1 can
poly-SUMOylate STI1 at several lysine residues: K123, K210,
K312, K395, and K486 (depicted in Figure 3; Soares et al.,
2013) and it is proposed that K210 hierarchically regulates
SUMOylation of the other sites. Co-transfection of HEK293 cells
with SUMO, PIAS1, and STI1 increased SUMOylation of STI1,
but it was the interaction between PIAS1 and STI1 that supported
nuclear retention, not SUMOylation. This suggests that nuclear
localization of STI1 may alter its co-chaperone activities with
Hsp90 and can help with nuclear protein crowding in particular
sites that facilitate protein-protein interactions, such as PML
nuclear bodies (Soares et al., 2013). However, STI1 has also been
shown to function as a scaffold to recruit Hsp90 for other nuclear
functions, including regulation of canalization or developmental
robustness, by controlling Piwi and regulating Piwi-interacting
RNA and impacting transposons (Gangaraju et al., 2011; Karam
et al., 2017).

Deletion of STI1 is not lethal in yeast (Flom et al., 2007)
and in C. elegans elimination of STI1 caused reduced lifespan
(Song et al., 2009). Interestingly, knockout of STI1 in mice is
embryonically lethal by E10.5 (Beraldo et al., 2013). Half of STI1-
null blastocysts also failed to thrive, suggesting a key role for
STI1 early in development (Beraldo et al., 2013). Homozygous
embryos have a 50% reduction in Hsp90 client protein expression
(p53, GRK2, STAT3—all clients that when knocked out are
embryonically lethal; Beraldo et al., 2013). Mouse embryonic
fibroblast lacking STI1 also failed to thrive in culture. Moreover,
astrocytes derived from STI1 haplo-sufficient mice are also less
resilient to irradiation (Soares et al., 2013), and neurons are less
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resistant to oxygen-glucose deprivation (Beraldo et al., 2013)
or β-amyloid toxicity (Ostapchenko et al., 2013). This indicates
that in higher organisms, STI1 is essential for regulating cellular
resilience.

Cytokine-Like Activity of STI1
STI1 is a critical co-chaperone in the functionality of the
Hsp70/Hsp90 machinery in cells. However, there is also a large
body of literature that focuses on the extracellular effects of
STI1, specifically the consequences of interaction with the cellular
prion protein (PrPC; Zanata et al., 2002; Lopes et al., 2005;
Caetano et al., 2008; Arantes et al., 2009; Beraldo et al., 2010,
2013; Roffe et al., 2010; Hajj et al., 2013; Ostapchenko et al., 2013;
Maciejewski et al., 2016), which is illustrated in Figure 4. PrPC

is anchored to cell membranes by a glycosylphosphatidylinositol
(GPI) moiety and it is thought to serve as a molecular scaffolding
protein organizing signaling complexes (Linden et al., 2008).

STI1 must be secreted in order to interact with PrPC at the cell
surface. Like Hsp70 and Hsp90 (Clayton et al., 2005; Lancaster
and Febbraio, 2005), STI1 can be secreted via exosomes (Hajj
et al., 2013). PrPC is also secreted by exosomes and both PrPC and
STI1 can be found on the surface of the exosomes derived from
astrocytes (Hajj et al., 2013). Secreted STI1 can then interact with
and bind to the surface of neurons (Hajj et al., 2013), having a
variety of effects on cell growth and survival, in a PrPC-dependent
manner.

Martins, Linden and Brentani (Chiarini et al., 2002; Zanata
et al., 2002) were the first to report the interaction between
STI1 and PrPC and to describe STI1 as a signaling molecule.
Notably, interaction between STI1 and PrPC reduced apoptotic
cell death induced by the protein synthesis inhibitor anisomycin.
These effects were confirmed to be PrPC-dependent using
PrP-null neurons or exogenous treatment with a truncated
form of STI1 lacking a critical PrPC binding site (STI11230–
245). Lopes et al. (2005) found that cultured neurons treated

with exogenous STI1 are more resilient to protein synthesis
inhibitors, but this increased neuronal resilience required
activation of cAMP-PKA pathway. STI1-PrPC engagement is
also capable of stimulating neuronal differentiation and this
was dependent upon activation of the mitogen-activated protein
kinase (MAPK/ERK) signaling pathway (Lopes et al., 2005).
Roffe et al. (2010) showed that STI1-PrPC interaction increased
protein synthesis in hippocampal neurons viamTOR and this was
dependent upon the MAPK/ERK and PI3K signaling pathways.
STI1 and PrPC interact briefly at the cell surface and are quickly
internalized by distinct cellular pathways, limiting the levels of
signaling activation by STI1 (Caetano et al., 2008). Activation
of PKA and ERK signaling cascades by STI1-PrPC interaction
is in part due to calcium signaling (Beraldo et al., 2010). STI1-
PrPC signaling in hippocampal neurons requires α7 nicotinic
acetylcholine receptors and inhibition of these receptors with
α-bungarotoxin or use of knockout neurons eliminates STI1-
PrPC neuroprotection (Beraldo et al., 2010; Ostapchenko et al.,
2013). Finally, STI1-PrPC association supports proliferation and
pluripotency of neural stem cells and promotes neurosphere
formation (Santos et al., 2011). These findings altogether suggest
that STI1 is critical for proper growth, development, and
resilience to cellular stress.

Decreased STI1 levels significantly reduces cellular tolerance
and cells display stress phenotypes, such as increased STI1
nuclear localization and nuclear labeling for γ-H2AX, a
marker for double stranded DNA breaks, as seen in germ-line
knockdown of STI1 in Drosophila (Karam et al., 2017) and in
mouse embryonic fibroblasts (Beraldo et al., 2013). Astrocytes
derived from STI1 haplo-insufficent mice also secrete 50% less
STI1, which has consequences on PrPC-dependent resilience.
Exogenous treatment with recombinant STI1 in neuronal
cultures subjected to oxygen-glucose deprivation (OGD) reduced
levels of cellular death in a PrPC and α7 nicotinic receptor-
dependent manner (Beraldo et al., 2013), further supporting the

FIGURE 4 | STI1 signaling mediated by the cellular prion protein (PrPC). (Right) PrPC binding to extracellular STI1 induces neuroprotective and neuro-

differentiation through Ca2+ influx via α7-nAChR. (Left) Aβ oligomers transmit toxic signaling events through PrPC. STI1 inhibits Aβ oligomer binding to PrPC and/or

activate protective signaling events.
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notion that extracellular STI1 is responsible for inducing some
of these neuroprotective effects. Neuronal cultures from PrP-null
animals were not protected from OGD upon STI1 treatment,
further indicating that these effects are indeed PrPC-dependent.

Middle cerebral artery occlusion, a model for ischemic stroke
was conducted on STI1-haplosufficient mice (Beraldo et al.,
2013), which had increased mortality and a reliably larger infarct
volume compared to control littermates. Additionally, Lee et al.
(2013) found an upregulation of STI1 immunoreactivity in brains
from MCAO rats and post-mortem tissue of stroke patients.
STI1 contains a hypoxia response element within its promoter
region, which can be activated by hypoxia-inducible factor 1-α
(HIF1-α; Lee et al., 2013). This binding event is responsible for
the elevated STI1 levels post-stroke, as knockout for HIF1-α or
lentiviral shRNA administration to mice inhibited the increase in
STI1 immunoreactivity around the infarct. Lee et al. (2013) also
showed that STI1 increases proliferation of bone-marrow derived
cells and recruits these cells to the areas of damage, as a means to
promote and accelerate recovery. Together, these studies provide
strong evidence that extracellular STI1 is required for recovery
of post-ischemic insult and that exogenous treatment with STI1
could potentiate the recovery process.

It is educational also to learn how STI1 can signal in cancer
cells, as some of the signaling pathways may be similar to those
in neurons. In the context of cancer, increased proliferative
capacity due to STI1 is a major problem. Wang et al. (2010)
found that levels of STI1 were much higher in malignant vs.
benign ovarian tumors. Additionally, serum levels of STI1 were
∼6 times higher in ovarian cancer patients (Wang et al., 2010)
and were being secreted by the cancerous cells. Activation of
the ERK signaling pathway by secreted STI1 was responsible
for the increased proliferative capacity of these cancerous cells.
Elevated levels of STI1 were correlated with worsened prognosis
in ovarian cancer patients (Chao et al., 2013), making this a
useful biomarker for this type of cancer. Recently, Wang et al.
(2017) found increased intracellular and extracellular levels of
STI1 in renal cell carcinoma (RCCs) tumor cells. Increased
proliferation was mediated by the activin A receptor, type II-like
kinase 2 (ALK2), and the receptor regulated SMAD1/5 protein
signaling cascade, independent of PrPC. Only differentiation of
the osteoclasts from the RCCs was dependent upon STI1-PrPC

signaling. These studies provide further evidence that STI1 acts
as a cytokine-like signaling molecule, promoting cellular growth
by activating PrPC dependent and independent pathways.

PROTEIN QUALITY CONTROL IN
NEURODEGENERATIVE DISEASES

Protein misfolding can lead to the formation of aggregates
in diverse neurodegenerative diseases, such as AD, PD, ALS,
frontotemporal dementia (FTD), HD, and prion diseases
(Knowles et al., 2014). Protein aggregates are formed by highly
ordered filamentous inclusions with β-sheet conformation in
the core. Deposits can be fibrillar and insoluble (Chiti and
Dobson, 2006), fibrillary but with some degree of solubility
(Han et al., 2012), or amorphous. The composition of these

deposits is often specific for each disease and composed of
one predominant protein in each of these diseases, such as β-
amyloid, tau, huntingtin, α-synuclein or prion protein (Goedert
and Spillantini, 2006). These proteins will be further discussed in
following subsections with relation to the disease the misfolded
species are typically found in.

Degradation of misfolded proteins by the ubiquitin-
proteasome system (UPS) or the autophagy-lysosome pathway
(ALP; Labbadia and Morimoto, 2015; Yerbury et al., 2016) have
been regarded as potential therapeutic targets for the treatment
of neurodegenerative diseases, as aging leads to decreased
efficiency of protein quality control (Ben-Zvi et al., 2009; Wang
J. et al., 2009). Ubiquitination of misfolded proteins ultimately
leads to degradation of proteins by the 26S proteasome and
release of the ubiquitin chain (Pickart, 2001).

Proteins with longer half-life are predominantly degraded via
the ALP. The role of chaperone-independent macroautophagy
(which leads to the formation of autophagosomes) in the
central nervous system of mammals is well-documented (Grant
and Donaldson, 2009; He and Klionsky, 2009). In addition,
chaperone-mediated autophagy (CMA) has been shown to
protect against accumulation of tau, α-synuclein, and polyQ-
huntingtin (Htt) in models of tauopathy, PD, and HD,
respectively (Wang Y. et al., 2009; Qi et al., 2012; Xilouri et al.,
2013). As shown by Agarraberes and Dice (2001), CMA requires
the formation of complexes of chaperones and co-chaperones,
including Hsp40, Hsp70, STI1/HOP, Hsp70-interacting protein
(Hip), and Bcl2-associated athanogene 1 protein (BAG-1).
Increasing evidence has shown that disrupted autophagy—either
through autophagosomes or CMA—and lysosomal mechanisms
contribute to the pathogenesis of AD, PD, HD, ALS, and FTD
(Anglade et al., 1997; Nagata et al., 2004; Yu et al., 2005;
Morimoto et al., 2007; Hu et al., 2010; Cuervo and Wong, 2014;
Nah et al., 2015).

The following subsections will briefly discuss PD, HD, ALS,
prion diseases and AD, and the effects of Hsp70, Hsp90, and
STI1 (if investigated) on the misfolded protein species in each
of these diseases and it is also summarized briefly in Table 1. We
will also discuss how modulating the levels or activities of these
chaperones affects protein toxicity and aggregative-capacity.

Chaperones in Synucleinopathies
PD is the second most common neurodegenerative disease
characterized mainly by loss of dopaminergic neurons that
project from the Substantia nigra, although several other
neuronal groups are also affected (Davie, 2008). Several genes
have been linked to genetic forms of PD, and amongst them
SNCA, that codes for α-synuclein is of particular interest.
α-synuclein, a protein associated with neuronal membranes
(Maroteaux and Scheller, 1991), can aggregate in plaques in
AD, termed the non-amyloid component (Ueda et al., 1993).
However, α-synuclein is more commonly associated with PD,
where it forms filamentous intraneuronal inclusions composed
of ubiquitinated and phosphorylated α-synuclein, a component
of Lewy bodies (Trojanowski et al., 1998; Goedert, 1999). This
results in loss of neurons, and of importance to symptoms in PD,
dopaminergic neurons in the Substantia nigra are particularly
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TABLE 1 | Overview comparing Hsp70, Hsp90, STI1, and/or Hsp40 protein quality control in various model organisms of neurodegenerative disease.

Disorder Model Hsp70 Hsp90 STI1 Hsp40

Parkinson’s

disease

In vitro or cell line

or yeast

↓ α-synuclein fibril formation

in vitro (Roodveldt et al.,

2009). Heat shock-induced ↑

Hsp70, ↓ α-synuclein

inhibition of proteasome in

human fibroblasts

(Lindersson et al., 2004);

Hsp70 overexpression in

neuroglioma cells ↓

α-synuclein oligomerization

(Outeiro et al., 2008)

Hsp90 ↓ α-synuclein fibril

formation in vitro (Falsone

et al., 2009); ↑ ROS in

Hsp90 haploid deletion yeast

mutants by α-synuclein

(Liang et al., 2008); Hsp90

inhibition in neuroglioma ↓

α-synuclein oligomerization

and toxicity (Putcha et al.,

2010)

STI1 ↓ monomeric A53T

α-synuclein aggregation in vitro

(Daturpalli et al., 2013)

Animal model ↑ Synuclein inclusions in Hip

knockdown (Roodveldt et al.,

2009), dependent on Hsp70

Hsp70 deletion in D.

melanogaster ↑ α-synuclein

(Auluck et al., 2002); ↑

Hsp70 in mice ↓ α-synuclein

oligomerization (Klucken

et al., 2004); Hsp70 injection

into s.nigra ↓ dopaminergic

cell loss in rats (Dong et al.,

2005)

Huntington’s

disease

In vitro or cell line

or yeast

Hsp70 overexpression ↓ Htt

aggregates and toxicity in

yeast and various cell lines

(Warrick et al., 1999;

Carmichael et al., 2000; Jana

et al., 2000; Krobitsch and

Lindquist, 2000; Wacker

et al., 2004)

STI1 overexpression in yeast ↓

Htt toxicity, promoted

reorganization to foci,

Hsp70/TPR1-dependent

(Wolfe et al., 2013)

Hsp40 overexpression ↓ Htt

aggregates and toxicity in

yeast and various cell lines

(Warrick et al., 1999;

Carmichael et al., 2000;

Jana et al., 2000; Krobitsch

and Lindquist, 2000;

Wacker et al., 2004)

Animal model Deletion of Hsp70 in mice ↑

inclusion body size (Wacker

et al., 2009); Hsp70

overexpression ↓ Htt

aggregates and toxicity;

Hsp70 silencing in C. elegans

↑ Q35 aggregation (Brehme

et al., 2014)

Hsp90 silencing in C.

elegans ↑ Q35 aggregation

(Brehme et al., 2014)

STI1 silencing in C. elegans ↑

Q35 aggregation (Brehme

et al., 2014)

Hsp40 silencing in C.

elegans ↑ Q35 aggregation

(Brehme et al., 2014);

Hsp40 expression in D.

melanogaster ↓ Htt toxicity

(Kazemi-Esfarjani and

Benzer, 2000)

ALS In vitro or cell line

or yeast

Hsp70 binds and regulates

TDP43 nuclear accumulation

in HeLa (Freibaum et al.,

2010; Udan-Johns et al.,

2014); Hsp70 knockdown in

N2a ↑ phospho-TDP43 and

C-terminal fragment (Zhang

et al., 2010); Heat

shock-induced Hsp70 in

HEK293 ↓ insoluble and

hyperphosphorylated

TDP-43 species (Chen et al.,

2016)

Pharmacological Hsp90

inhibition in HeLa ↓ levels of

full length TDP43 (Lotz et al.,

2003)

Hsp40 binds and regulates

TDP43 nuclear

accumulation in HeLa

(Freibaum et al., 2010;

Udan-Johns et al., 2014); ↑

DnaJC5 in HEK293 ↑

disease-associated cleaved

TDP43 secretion (Fontaine

et al., 2016); Heat

shock-induced Hsp40 in

HEK293 ↓ insoluble and

hyperphosphorylated

TDP-43 species (Chen

et al., 2016); ↓ Hsp40 in

N2a ↑ phospho-TDP43 and

C-terminal fragment (Zhang

et al., 2010)

Animal model ↓ Hsp70 levels in TDP-43

transgenic mouse line (Chen

et al., 2016)

↓ Hsp40 levels in TDP-43

transgenic mouse line (Chen

et al., 2016)

(Continued)
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TABLE 1 | Continued

Disorder Model Hsp70 Hsp90 STI1 Hsp40

Humans ↓ Hsp70 in sporadic cases

post-mortem (Chen et al.,

2016)

↓ Hsp40 in sporadic cases

post-mortem (Chen et al.,

2016)

Prion

diseases

In vitro or cell line

or yeast

↓ PS+ replication and

propagation in yeast with

mutation in Hsp70 allele

(Jones et al., 2004)

STI1 deletion in yeast ↑ PS+

propagation (Jones et al.,

2004; Reidy and Masison,

2010); STI1 reduces RNQ+

prion toxicity (Wolfe et al.,

2013)

Animal model ↑ Astrocytic Hsp70 in scrapie

injected mice (Diedrich et al.,

1993); Overexpression of

human Hsp70 in mice did not

ameliorate prion pathology

(Tamguney et al., 2008)

Humans ↑ Inducible Hsp70 in CJD,

regions with less atrophy

have ↓PrPSc and ↑Hsp70

(Kovacs et al., 2001)

Alzheimer’s

disease

In vitro or cell line

or yeast

In vitro Hsp90 competes with

PrP for STI1 binding

(Maciejewski et al., 2016); in

primary murine neurons

Hsp90 decreased STI1

neuroprotection against Aβ

oligomers (Ostapchenko

et al., 2013)

STI1 ↓ PrPC-AβO binding in

vitro (Maciejewski et al., 2016);

in HEK cells and primary

neurons (Ostapchenko et al.,

2013); STI1 protected primary

murine neurons from AβO

toxicity in

PrPC/α7nAChRs-dependent

way (Ostapchenko et al., 2013)

Animal model Toxicity buffering against Aβ

in C. elegans (Brehme et al.,

2014)

Toxicity buffering against Aβ

in C. elegans (Brehme et al.,

2014); treating AD mice with

17-AAG improved synaptic

marker density and memory

Hsp90 inhibitors ↓

hyperphosphorylated tau

(Chen et al., 2014; Wang

et al., 2016)

Toxicity buffering against Aβ in

C. elegans (Brehme et al.,

2014); STI1 downregulation ↑

tau-induced neuron loss in D.

melanogaster (Ambegaokar

and Jackson, 2011); ↑ in

hippocampus in

APPswe/PS1dE9 mice

(Ostapchenko et al., 2013)

Toxicity buffering against Aβ

in C. elegans (Brehme et al.,

2014)

Humans ↑ In cortex post-mortem

(Ostapchenko et al., 2013)

affected (de Lau and Breteler, 2006; Dickson, 2012). Augmented
levels of α-synuclein or α-synuclein-containing aggregates are
also characteristic of other neurodegenerative diseases including
Lewy body dementia, multiple system atrophy and AD (Halliday
et al., 2011; Serrano-Pozo et al., 2011; Ingelsson, 2016), forming a
group of diseases termed “synucleinopathies.” The involvement
of molecular chaperones in PD was first suggested by the
observation that Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27
were localized in Lewy bodies (McLean et al., 2002; Uryu
et al., 2006; Leverenz et al., 2007). Increasing evidence has
shown protective actions of molecular chaperones against α-
synuclein-induced toxicity both in vitro and in vivo. Lindersson
et al. (2004) showed that filaments of α-synuclein are able
to bind to a component of the proteasome (the 20S subunit)
and selectively impede the chymotrypsin-like activities of the
proteasome in vitro. Recombinant human Hsp70 was capable

of binding these α-synuclein filaments and attenuating their
chymotrypsin-like inhibitory activity. Furthermore, heat shock of
fibroblasts expressing α-synuclein lead to a significant increase
in Hsp70 levels, which also reduced the inhibitory effects
of α-synuclein on the proteasome (Lindersson et al., 2004).
Roodveldt et al. (2009) found that Hsp70 and Hsp70-interacting
protein (Hip) prevented formation of α-synuclein fibrils in
vitro and in C. elegans knockdown of Hip increased synuclein
inclusions in an Hsp70-dependent manner. Interestingly, Hsp70
overexpression in human neuroglioma cells transfected with
mutant α-synuclein led to 50% less oligomeric α-synuclein
species (Outeiro et al., 2008). Transgenic expression of familial
PD mutations (A30P and A53T in α-synuclein) in fruit flies
causes a significant degeneration of dopaminergic neurons, but
co-expression of human Hsp70 abrogated this loss (Auluck et al.,
2002). Overexpression of Hsp70 in yeast and mouse models,
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and Hsp90 inhibition with geldanamycin in human cell lines
has been shown to counteract formation and accumulation of
α-synuclein oligomers and alleviate α-synuclein-induced toxicity
(Klucken et al., 2004; McLean et al., 2004; Flower et al., 2005;
Luk et al., 2008). Conversely, Auluck et al. (2002) also reported
acceleration of α-synuclein toxicity after inducing a dominant
negative mutation of fruit fly Hsp70, which further confirmed
the critical role of Hsp70 in α-synuclein regulation. Similarly,
injection of Hsp70 into the Substantia nigra of MPTP-treated rats
(a toxin that results in similar pathologies to those seen in PD)
prevented dopaminergic cell loss (Dong et al., 2005).

Much less is known about the role of Hsp90 in regulating
α-synuclein aggregation. In vitro experiments show that Hsp90
can both abolish α-synuclein binding to vesicles and promote
fibril formation in an ATP-dependent manner (Falsone et al.,
2009). More recent in vitro experiments investigating Hsp90
interaction with the A53T mutant of α-synuclein revealed that
all three Hsp90 domains bind to and prevent A53T α-synuclein
aggregation. However, Hsp90 could not bind to monomeric
or fibrillary synuclein species in this model (Daturpalli et al.,
2013). Interestingly, haploid deletion of yeast Hsp90 (Hsp82)
enhanced α-synuclein toxicity, specifically, by increasing reactive
oxygen species accumulation (Liang et al., 2008). However,
Putcha et al. (2010) showed that Hsp90 inhibition with 17-
AAG (a geldanamycin derivative), which leads to upregulation
of Hsp70, prevented α-synuclein oligomer formation and toxicity
in the H4 neuroglioma cell line. Due to STI1 ability to modulate
Hsp70/Hsp90 activity, Daturpalli et al. (2013) conducted an
in vitro experiment to assess if STI1 could have its own
effect on α-synuclein aggregation. STI1 could only attenuate
monomeric A53T α-synuclein aggregation in vitro (Daturpalli
et al., 2013). This suggests that STI1 is capable of having some
of its own chaperone-like activity, but interaction with Hsp70
or Hsp90 would have a greater effect on reorganization of
toxic α-synuclein species. The literature thus far suggests that
increasing Hsp70 levels by activating the heat shock response or
by genetic manipulation would be a suitable method for reducing
α-synuclein toxicity. This could prove beneficial in reducing
toxicity-related symptoms.

Chaperones in Huntington’s Disease
Excess CAG repeats in the IT15 gene is a heritable mutation that
causes HD and leads to the accumulation of huntingtin protein
[Huntingtons’s Disease Collaborative Research Group (1993)].
Protein deposits of mutated huntingtin form inclusion bodies
within motor neurons in the spinal cord, as well as neurons in
the cerebellum, cortex and striatum (Davies et al., 1997). Recent
work suggests that the sequestering of toxic huntingin (Htt)
into inclusion bodies may be a way to remove this toxic species
as increased formation correlated with a reduction in levels of
toxicity and neuronal death (Arrasate et al., 2004; Miller et al.,
2010).

HD is part of the polyQ group of neurodegenerative
diseases, which includes spinocerebellar ataxias, spinal and
bulbar muscular atrophy (also known as Kennedy’s disease), and
dentatorubral-pallidoluysian atrophy (Williams and Paulson,
2008). In a fly model, Kazemi-Esfarjani and Benzer (2000)

showed transgenic vector-mediated suppression of Htt toxicity
by the molecular chaperones dHDJ1, a homolog of human
Hsp40, and dTPR2, a homolog of human tetratricopeptide repeat
protein 2. Likewise, deletion of Hsp70 in mice increased the size
of polyQ inclusion bodies (Wacker et al., 2009). In addition,
overexpression of Hsp40 and/or Hsp70 suppressed polyQ-
dependent aggregation and neurodegeneration in cell cultures,
yeast, fly, and mouse models (Warrick et al., 1999; Carmichael
et al., 2000; Jana et al., 2000; Krobitsch and Lindquist, 2000;
Wacker et al., 2004). STI1 overexpression in yeast suppressed
Htt toxicity and drove the re-organization of small Htt103Q
foci into larger assemblies through interaction with Hsp70,
whereas STI1 deletion aggravated Htt toxicity and hampered
foci formation (Wolfe et al., 2013). Specifically, point mutations
(A31T or G76N) in the TPR1 domain of yeast STI1 (Hsp70
interacting domain) prevented reorganization of Htt to STI1 foci,
which resulted in a significant reduction in cell growth. This
indicates that functional STI1 interaction with Hsp70 is required
for Htt103Q reorganization and toxicity buffering. In C. elegans
expressing the Q35 aggregate prone-protein, siRNA for Hsp40,
Hsp70, Hsp90, or STI1 significantly increased the number of
Htt aggregates (Brehme et al., 2014). Therefore, there is strong
evidence for an important role of chaperones and co-chaperones
as therapeutic targets in HD.

Chaperones in Amyotrophic Lateral
Sclerosis
ALS is a fatal neurodegenerative disorder that affects motor
neurons of the brainstem, cortex and spinal cord, and results
in weakness and atrophy of voluntary skeletal muscles (Paez-
Colasante et al., 2015). ALS can be divided into two major
classes—either the disease presents sporadically, which is 90%
of cases, or it can be inherited. There are a number of proteins,
RNAs and miRNAs dysregulated in ALS. The first aggregated
protein to be identified was Cu/Zn superoxide dismutase (SOD1;
Rosen et al., 1993), then trans-active DNA binding protein-43
(TDP-43; Arai et al., 2006; Neumann et al., 2006), along with
fused in sarcoma/translocated in liposarcoma (FUS; Kwiatkowski
et al., 2009; Vance et al., 2009), see Blokhuis et al. (2013) for a
more extensive review on toxic protein accumulation in ALS.

However, in most familial or sporadic cases of ALS, the
RNA binding protein TDP-43 shows signs of mislocalization
and aggregation. TDP-43 is capable of binding to DNA and
RNA, making it a key regulator of transcription, translation
and cellular growth (Ayala et al., 2011; Polymenidou et al.,
2011). TDP-43 canmislocalize to the cytoplasm, be ubiquitinated,
hyperphosphorylated and ultimately form aggregates (Neumann
et al., 2006; Mackenzie et al., 2007; Sreedharan et al., 2008;
Brettschneider et al., 2013). Mutations in TDP-43 have been
linked to ALS and FTD (Arai et al., 2006; Neumann et al., 2006).
All together these results suggest the need to better understand
the relationship between TDP-43 and chaperones.

TDP-43 carries out most of its functions in the nucleus,
but it can be transported to the cytosol due to the nuclear
export sequence near its N-terminus (Ayala et al., 2008).
TDP-43 contains two RNA recognition motifs in the core
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of the protein and a C-terminal domain that contains a
glutamine/asparagine-rich prion-like region that cooperates in
protein-protein interactions (Ou et al., 1995; Budini et al.,
2012a,b; Mackness et al., 2014). This prion-like domain allows for
association with other TDP-43 molecules (Budini et al., 2012b)
and is becoming a major area of research in neurodegenerative
diseases involving TDP-43 associated pathology. Deletion of the
prion-like domain of TDP-43 in HeLa cells eliminated heat
shock induced nuclear aggregation, and further deletion of a
glycine-rich region in this domain significantly reduced cytosolic
mislocalization of the toxic 25 kDa TDP-43 variant (Udan-Johns
et al., 2014). Recent studies in HeLa cells showed that Hsp40 and
Hsp70 constitutively bind to and regulate the nuclear aggregation
of TDP-43 (Freibaum et al., 2010; Udan-Johns et al., 2014).

Using HEK293T cells Fontaine et al. (2016) investigated the
roles of the constitutively expressed Hsp70 homolog Hsc70 and
its co-chaperone DnaJC5 in the secretion of neurodegenerative-
disease associated proteins. Secretion of these proteins by
unconventional mechanisms is thought to contribute to their
spreading in the brain. DnaJC5 supports secretion via the
Soluble NSF Attachment Protein Receptor (SNARE) complex
at synapses in a calcium-dependent manner (Jacobsson and
Meister, 1996; Chamberlain and Burgoyne, 1997, 1998; Umbach
and Gundersen, 1997; Weng et al., 2009; Sharma et al., 2012).
Overexpression of DnaJC5 lead to significant secretion of WT
and disease associated mutants of TDP-43 from HEK cells
(Fontaine et al., 2016) and this was dependent upon functional
Hsc70. Interference with this mechanism could potentially
regulate the spreading of misfolded TDP-43 in the brain.
However, to date there has been limited experiments in neuronal
cells, neurons or in animal models to test these findings obtained
in non-neuronal cells.

Both Hsp70 and Hsp90 can be co-immunoprecipitated with
TDP-43. Moreover, knockdown of Hsp70 or Hsp90 in human
neuroblastoma cells lead to a significant increase in C-terminal
and phosphorylated TDP-43, which are toxic TDP-43 species
known to aggregate in the cytoplasm (Zhang et al., 2010).
Treating HeLa cells with celastrol, an Hsp90 inhibitor, reduced
levels of full length TDP-43, specifically by impairing Cdc37 (an
Hsp90 co-chaperone which aids in client docking; Lotz et al.,
2003)—Hsp90 interaction with TDP-43 (Jinwal et al., 2012).
Recent work by Chen et al. (2016) further supported the role of
Hsps in TDP-43 regulation, whereby activation of the heat shock
response, by overexpression of HSF1 in HEK cells increased
levels of Hsp70 and Hsp40, which lead to increased clearance of
insoluble and hyperphosphorylated TDP-43. Interestingly, TDP-
43 misregulation has also been found in a proportion of patients
with AD (Amador-Ortiz et al., 2007; Wilson et al., 2011). hnRNP
A2/B1 and A1, which are RNA-binding proteins that interact
with TDP-43, have been shown to be decreased in AD, due
to abnormal regulation of cholinergic signaling (Berson et al.,
2012; Kolisnyk et al., 2013, 2016a,b). Although we have started
to understand how chaperones and co-chaperones may regulate
TDP-43, their role in neurons and other brain cells has not yet
been examined in detail.

A significant reduction in Hsp70 and Hsp40 protein levels
is observed in the brains of TDP-43Q331K transgenic mouse

model of ALS and patients with sporadic ALS (Chen et al., 2016).
HSF1 protein levels were also reduced in mice, but not in human
brains (Chen et al., 2016). This suggests that, in disease, the heat
shock response may be compromised and thus contribute to the
accumulation of insoluble TDP-43 protein aggregates.

Chaperones and Prions
In prion diseases, PrPC is converted into PrPSc, which can
work via template-mediated misfolding to further convert host
PrPC protein into a variety of misfolded forms that aggregate
and accumulate within the nervous tissue (Will and Ironside,
1999; Budka, 2003; Soto and Castilla, 2004; Linden et al.,
2008). Misfolding of PrPC results in a class of diseases called
transmissible spongiform encephalopathies (TSEs). Prion disease
can arise sporadically, from genetic mutation or through
transmission, such as by consumption of prion-infected tissues.
TSEs include bovine spongiform encephalopathy in cattle, as well
as sheep scrapie and variant CJD in humans (Linden et al., 2008).
PrPC contains a disordered N-terminal domain and a globular
C-terminal domain that is largely α-helical (Riek et al., 1996,
1997).

In order to better understand prion propagation and
chaperone regulation in a simple eukaryotic model, yeast
prions have been extensively studied. Yeast prions are self-
propagating amyloid forms of soluble proteins that can function
as protein-based inheritable elements. The yeast prion, PSI+, is a
transmissible, self-replicating, and aggregation prone mutant of
yeast translation termination factor Sup35p (Glover et al., 1997;
King et al., 1997). Jones et al. (2004) found that a mutation in
the SSA1 Hsp70 allele (SSA1–21p) significantly impaired PSI+

self-replication and propagation. Interestingly, in this cell line,
deletion of yeast STI1 regenerated PSI+ propagation. Conversely,
overexpression of STI1 reduced the mitotic capacity of PSI+

prions (Jones et al., 2004). Additionally, overexpression of
Hsp104 is capable of eliminating PSI+ prions (Chernoff et al.,
1995), but this is dependent upon expression of STI1 (Reidy
and Masison, 2010). Deleting STI1 had no effect on levels of
Hsp104, but eliminated Hsp104 “curing” activity (Reidy and
Masison, 2010). Specifically, STI1 coordination of Hsp70 and
Hsp90 was responsible for this prion elimination activity, as
mutations in the TPR1 and TPR2 domains of STI1 lead to a
drastic increase in PSI+ propagation. This suggests that STI1
coordination of Hsp70-Hsp90 as well as Hsp104 activity is
required for disaggregation of yeast prions. Furthermore, STI1
expression and activity was also found to reduce toxicity of Rnq1
(a yeast protein with a glutamine-rich prion domain) prions,
RNQ+ (Wolfe et al., 2013). STI1 recruited RNQ+ prions to foci
containing Hsp104, amyloid like proteins and Hsp40, ultimately
buffering toxicity by these prions.

As with many of the misfolded proteins that cause
neurodegenerative diseases, knowledge of the physiological
functions of PrPC is still not complete. Knockout of PrPC in
mice affects synaptic transmission (Maglio et al., 2006), causes
gross demyelination in the sciatic nerve specifically due to PrPC

depletion in neurons (Bremer et al., 2010), and alterations in sleep
pattern (Tobler et al., 1996). Elimination of PrPC also protects
mice against infection with PrPSc (Bueler et al., 1993).
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C57BL6 mice injected with 22L strain of scrapie had a
significant increase in protein levels of inducible Hsp70 in
active astrocytes (Diedrich et al., 1993). Similarly, mice infected
with forms of scrapie known to induce plaques and increased
vacuolation, had a significant increase in Hsp70 RNA expression
toward the terminal phases of infection (Kenward et al., 1994).
Kovacs et al. (2001) found increased immunoreactivity of
inducible Hsp70 in Purkinje cells from CJD patients, and regions
with higher levels of Hsp70 had less spongiform-like atrophy
and increased levels of PrPC rather than PrPSc. This suggests a
potential neuroprotective effect of Hsp70.

Tamguney et al. (2008) conducted a seminal study on 20
potential gene candidates that could regulate the replication of
prions in mice infected with scrapie or cow 301V prions. Genes
were selected based upon known interactions with PrPC in a
diseased or non-diseased state, significant upregulation in prion
disease, post-translational modification of PrP, or involvement
in PrPC-related signal transduction (Tamguney et al., 2008).
Interestingly, overexpression of human Hsp70 had no effect on
prion disease onset.

To our knowledge there have been almost no studies
investigating the role of Hsp90 and its co-chaperones in prion
diseases. STI1 can signal via the prion protein as discussed above,
and prion infection in cells abolishes STI1 signaling via the prion
protein (Roffe et al., 2010). Interestingly, interaction of Hsp90
with STI1 also decreases PrPC-dependent STI1 neuroprotection
(Maciejewski et al., 2016), which suggests that secreted Hsp90
may interfere with STI1 interaction with PrPC. Given that
STI1 regulates protein aggregates via its co-chaperone activity
(Wolfe et al., 2013), and also has extracellular cytokine-like
neurotrophic function, it is likely that its effects on prion diseases
and other neurodegenerative diseases are complex. By further
understanding the cause and mechanism of the aggregation of
these proteins, interventions targeting the chaperone machinery
toward refolding or degradation could be utilized.

Chaperones in AD
AD is the most common form of dementia, particularly
affecting the aging population. Pathologically, it is defined by
accumulation of two types of protein aggregates in the forebrain;
extracellular plaques of Aβ, and intraneuronal neurofibrillary
tangles (NFT) of microtubule-associated protein tau (Selkoe,
1991). As is the case with other diseases associated withmisfolded
proteins, analysis of AD brains and AD animal models revealed
increased levels of Hsps and their co-chaperones, including
Hsp27 (Renkawek et al., 1994), Hsp70 (Perez et al., 1991), and
STI1 (Ostapchenko et al., 2013). A significant effort was made
by a number of researchers to test whether chaperone system
participates, directly or indirectly, in the pathogenic processes of
Aβ and tau misfolding.

Aβ Peptide Generation and Toxicity
Aβ peptides consisting of around 39–43 residues are formed
by proteolytic cleavage of its precursor, APP, by beta-site APP
cleaving enzyme (BACE, β-secretase) and by a γ-secretase
complex, formed by several proteins including presenilins
(O’Brien and Wong, 2011). Aβ peptide toxicity was originally

thought to be related mainly to the amyloid plaques that form
throughout cortex and hippocampus in AD. However, during
the last two decades it has also become recognized that soluble
Aβ oligomers (AβOs) are toxic to synapses (Lambert et al., 1998;
Walsh et al., 2002; Ferreira and Klein, 2011; Benilova et al., 2012;
Mucke and Selkoe, 2012; Lesne et al., 2013). Aβ oligomers are
thought to increase early before plaque formation and correlate
with the onset of the neurotoxic events, such as excitotoxicity,
synaptic loss as well as impairment of LTP and learning/memory
in rodent models (Lambert et al., 1998; Klein et al., 2001; Klein,
2002; Walsh et al., 2002; Wang et al., 2005). Synaptotoxicity by
AβOs depends on their interaction and corruption of multiple
neuronal receptors, an effect that seems to depend on the
initial interaction with PrPC (Lauren et al., 2009; Gimbel et al.,
2010; Caetano et al., 2011; Kudo et al., 2012; Um et al., 2012;
Ostapchenko et al., 2013; Beraldo et al., 2016). AβO/PrPC can
engage metabotropic glutamate receptor 5 (Um et al., 2012,
2013; Beraldo et al., 2016) to activate pathogenic intracellular
pathway that leads to activation of Fyn kinase, NMDA receptor
mistrafficking, excitotoxicity and LTP inhibition.

Significant effort by several research groups were aimed to
prevent AβO toxicity, employing anti-Aβ42/AβO (reviewed in
Wisniewski and Drummond, 2016) and anti-PrPC (Chung et al.,
2010; Barry et al., 2011) antibodies and N-terminal fragment of
PrPC (Beland et al., 2014). However, to our knowledge, none of
these potential therapies passed or even reached clinical trials yet.
Remarkably, extracellular STI1, can bind to PrPC and activate α7
nicotinic acetylcholine receptor (nAChR), which mediate STI1-
PrPC neurotrophic effects, efficiently preventing the binding of
AβOs to PrPC on the neuronal surface, as well as general binding
of these oligomers to neurons (Ostapchenko et al., 2013). Due
to this effect, as well as protective signaling via α7 nAChR/PrPC

complex, STI1 completely blocks AβO/PrPC toxicity in vitro
(Ostapchenko et al., 2013). Whether Hsp70/Hsp90/STI1 exist
extracellularly in AD brain separately or as a complex is
unknown, but one may expect complex effects of extracellular
chaperones on Aβ aggregation and toxicity in AD brain. To start
with, we found in a biochemical assay that Hsp90 modulates
formation of the STI1/PrPC complex, possibly resulting in
decreased STI1 neurotrophic signals (Maciejewski et al., 2016).

Many in vivo AD models, including those that employ
invertebrate and mammal species, are based on Aβ toxicity. In C.
elegans Aβ expression leads to formation of peptide deposits and
decreased motility (Link, 1995). This toxicity can be rescued by
blocking the insulin growth factor-like signaling pathway, with
a major role being played by HSF1 (Cohen et al., 2006). In this
study, Cohen and colleagues showed that treatment with HSF1
RNAi increased Aβ toxicity in worms, probably due to increased
amount of neurotoxic Aβ aggregates. The question remains,
which mechanism activated by HSF1, plays a role in increased
Aβ toxicity. Morimoto and colleagues approached this question
by analyzing the various chaperones in worms expressing Aβ

(Brehme et al., 2014). Systematic knockdown of Hsps and co-
chaperones showed that Hsp40, Hsc70, Hsp90, and STI1, while
not affecting motility in young animals, seem to normally buffer
Aβ toxicity in C. elegans, as well as to alleviate age-related
decrease in worm motility. Of interest, these chaperones and
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co-chaperones form an expression network in human brains,
but the connecting links are significantly weakened in both AD
and normal aging (Brehme et al., 2014), suggesting dysfunctional
chaperone activity with age and disease.

The role of HSF1 in AD suggested by the results in C. elegans
was recently supported by work with ADmouse models studying
the effect of Hsp90 inhibitors on Aβ synaptotoxicity and
behavioral impairment. Treatment of AD mice with 17-AAG
(Chen et al., 2014) or OS47720 (Wang et al., 2016), Hsp90
inhibitors improved synaptic markers and density, in vivo LTP
and memory loss and these effects were mediated by HSF1
activation and upregulation of synaptic genes. In contrast to
the effect of HSF1, it is remarkable that whereas in C. elegans
knockdown of Hsp90 is deleterious, in mammals inhibition of
Hsp90 can actually improve Aβ-mediated toxicity.

Interestingly HSF1, which under stress conditions induces
expression of Hsp70, Hsp90 and other chaperones, also
upregulates production of APP (Dewji and Do, 1996). HSF1,
besides its role in upregulation of heat shockmachinery, is known
as a major factor facilitating synaptic fidelity (Hooper et al.,
2016). It is possible that HSF1-induced APP upregulation may be
due to the pro-synaptogenic activity of this transcription factor.
Indeed, APP has been shown to serve as a cell adhesion molecule
(Small et al., 1999). On the other hand, synaptic activity by itself
affects APP trafficking, routing it toward synapses (Tampellini
et al., 2009). Besides, the same study showed that in neurons
overexpressing APP with the Swedish familial mutation, synaptic
activity also decreases intraneuronal Aβ. This result is paralleled
by findings that activation or de-activation of synaptic activity,
increases or decreases Aβ secretion, respectively (Kamenetz et al.,
2003; Cirrito et al., 2005; Bero et al., 2011; Li et al., 2013; Yuan
and Grutzendler, 2016). Considering the deleterious effect of Aβ

on synaptic activity and integrity, HSF1, APP, and Aβ may form
a self-regulating mechanism for controlling neuronal function.

Tau
Significant influence of Hsp70/90 machinery on AD pathology
is implemented via microtubule associated protein tau.
Physiologically, tau acts as a major regulator of microtubule
formation (Weingarten et al., 1975) and in the CNS, tau
is typically found in the cytoplasm or axons (Binder et al.,
1985), where it promotes outgrowth and stabilizes microtubule
formation. Tau is abnormally phosphorylated in AD due to
increased activity of GSK-3 and other tau kinases (Alvarez et al.,
1999; Avila et al., 2010; Tremblay et al., 2010; Cavallini et al.,
2013), likely as a result of initial Aβ toxicity (Tamagno et al., 2003;
Ryan et al., 2009; Hernandez et al., 2010). Hyperphosphorylated
tau forms paired helical filaments, which are themain component
of neurofibrillary tangles (Grundke-Iqbal et al., 1986a,b; Cao
and Konsolaki, 2011), a critical pathological hallmark in AD. A
number of studies have shown that these hyperphosphorylated
tau species can be recognized by Hsps and their co-chaperones,
including Hsp27, Hsp70, CHIP, and αB crystalline, in order
to repair malignant tau or proceed with its recycling (Dou
et al., 2003; Dabir et al., 2004; Petrucelli et al., 2004; Shimura
et al., 2004; Luo et al., 2007). Recently, the structure of
Hsp90-tau complex has been resolved (Karagoz et al., 2014). It

explained how Hsp70 and Hsp90 can simultaneously bind to
the intrinsically unstructured tau, making use of the atypically
large substrate-binding site on Hsp90, which is rather open
and accessible to clients such as tau. Of interest, low affinity
hydrophobic connections in the Hsp90 substrate binding site
could explain a general principle of Hsp90 interaction with
disordered substrates or folded proteins.

Interestingly, inhibitors of Hsp90 decrease levels of
phosphorylated tau, suggesting that Hsp90 may protect
hyperphosphorylated tau from degradation (Dickey et al.,
2006). Inhibition of Hsp90 in HeLa cells transfected with
mutant tau (P301L) increased CHIP complex formation with
phosphorylated tau (p-tau) and CHIP selectively degraded
these p-tau species, essentially preventing aggregation of p-tau
(Dickey et al., 2007). CHIP is also highly colocalized with p-tau
and neurofibrillary tangles (aggregates of hyperphosphorylated
tau; Dickey et al., 2007). These findings make CHIP a suitable
candidate for modulating tau activity in neurodegenerative
tauopathies, especially due to its ubiquitin enzyme activity. On
the other hand, a complex of Hsp90 with the co-chaperone
FKBP51 protected tau from proteasomal degradation and
correlated with the neurotoxic tau species (Jinwal et al., 2010;
Blair et al., 2013). FKBP51 overexpression decreased the amount
of tau tangles in P301L tau transgenic mice, but increased
soluble tau, including oligomeric and hyperphosphorylated
species. This in turn led to increased tau toxicity, reflected in
neuronal loss in P301L mice hippocampus and in decreased
proliferation of tau-expressing neuronal cultures (Blair et al.,
2013). Dickey and colleagues also found that FKBP51 expression
is increased with age and in AD (Blair et al., 2013). This led them
to hypothesize that Hsp90 interaction with FKBP51 is altered in
aging and AD brains, allowing for the preservation of soluble,
but possibly neurotoxic protein species. Another member of
FKBP family, FKBP52, may also be involved in tau-related
neurodegeneration. Recent evidence suggests that FKBP52 is a
key regulator of tau association with microtubules, specifically
in inhibiting this function (Chambraud et al., 2010). Moreover,
a significant reduction in tau-mediated neurite outgrowth was
observed in cells overexpressing FKBP52 (Chambraud et al.,
2010).

Alternatively, Hsp70 promotes tau stability and association
with microtubules at high levels of expression (Dou et al., 2003;
Jinwal et al., 2009). STI1 may also be important for protection
against aberrant tau species, as its downregulation in fruit
flies worsened tau-induced retinal degeneration (Ambegaokar
and Jackson, 2011). Upregulation of both Hsp70 and Hsp90
increases tau association with microtubules (Dou et al.,
2003). Of note, this study used geldanamycin-induced Hsp90
inhibition, which resulted in increased Hsp70/90 expression
due to HSF1 activation. As HSF1 activates multiple members
of Hsp machinery, it is difficult to draw conclusions as to
which particular chaperone affected tau-microtubule coupling.
Soluble levels of tau correlate with those of Hsps and their
co-chaperones, while in tauopathies where total levels of
tau increase, Hsp70/90 decrease (Dou et al., 2003). Overall,
tau regulation by the Hsp machinery is very complex and
careful analysis of all possible effects on tau is needed
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when considering an anti-AD therapy that modulates this
machinery.

CONCLUSION

In summary, the common observation of misfolded and
aggregated proteins in neurodegenerative disease suggests
dysregulation of chaperone activity. The balance between
levels of Hsp70 and Hsp90 are becoming a major area of
investigation, as both upregulation of Hsp70 and inhibition
of Hsp90 in mammals reduce protein aggregation and
toxicity. STI1 should be further investigated in models of
protein aggregation, as STI1-PrPC interaction results in
neuroprotection, attenuates AβO toxicity, and STI1 is an
irreplaceable co-chaperone for the Hsp70/Hsp90 machinery.
Ultimately, much is still unknown about how to effectively
control protein misfolding and prevent aggregation by targeting
chaperones and co-chaperones in neurodegenerative disease.
Further, investigation of chaperones and their partners

using new mouse models, could help to elucidate the
underlying mechanisms of these proteinopathies and allow
for generation of effective and unambiguous pharmacological
therapies.
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Although, protein aggregation and deposition are unifying features of various

neurodegenerative disorders, recent studies indicate that different mechanisms can lead

to the development of the same malady. Among these, failure in early protein folding

and maturation emerge as key mechanistic events that lead to the manifestation of a

myriad of illnesses including Alzheimer’s disease and prion disorders. Here we delineate

the cascade of maturation steps that nascent polypeptides undergo in the secretory

pathway to become functional proteins, and the chaperones that supervise and assist

this process, focusing on the subgroup of proline cis/trans isomerases. We also describe

the chaperones whose failure was found to be an underlying event that initiates the

run-up toward neurodegeneration as well as chaperones whose activity impairs protein

homeostasis (proteostasis) and thus, promotes the manifestation of these maladies.

Finally, we discuss the roles of aggregate deposition sites in the cellular attempt to

maintain proteostasis and point at potential targets for therapeutic interventions.

Keywords: chaperone, aggregation, endoplasmic reticulum stress, neurodegeneration, aggresome

The generation of a polypeptide by the ribosome is the first step of the long and complex process
that leads to the formation of a mature, functional protein. Cytosolic proteins maturate at the
cytosol (Hartl and Hayer-Hartl, 2002) while secreted and membrane proteins are processed at the
secretory pathway (Ellgaard and Helenius, 2003). Here we focus on protein folding and maturation
within the secretory pathway and delineate how failures in this process underlie the manifestation
of certain cases of late-onset neurodegenerative disorders.

PROTEIN MATURATION AND QUALITY CONTROL WITHIN THE
ENDOPLASMIC RETICULUM

The first domain of many nascent chains of a secretory proteins to exit the ribosome is
a hydrophobic signal sequence of 20–30 amino acids that targets the polypeptide into the
endoplasmic reticulum (ER; Hegde and Bernstein, 2006). The appearance of the signal peptide,
and its recognition by the signal recognition particle (SRP; Lauffer et al., 1985), leads to the
binding of the translating ribosome to the ER channel protein complex Sec61p (Sanders et al.,
1992) and to the co-translational insertion of the nascent polypeptide into the ER lumen. This
translocationmechanism is not exclusive as newly synthesized polypeptides can enter the ER lumen
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through alternative mechanisms that have been discovered
in recent years. A subgroup of “tail-anchored (TA) proteins”
bear a C-terminal hydrophobic trans-membrane domain that
interacts with the family of GET proteins (guided entry
of TA proteins). In yeast, the TA protein-GET interactions
promote the post-translational entry into the ER by a SRP-
independent mechanism (Schuldiner et al., 2008). Mammalian
TA proteins enter the ER through an analogous mechanism that
requires the GET orthologue Asna1/TRC40. Interestingly, under
certain circumstances, the TRC40-dependent ER translocation
mechanism cooperates with the canonical Sec61p apparatus to
orchestrate proper post-translational entry of polypeptides into
the ER (Johnson et al., 2012).

An additional ER translocation mechanism that functions
independently of SRP and GET proteins but depends upon the
activity of the Snd1, Snd2 and Snd3 proteins has been discovered
recently (Aviram et al., 2016).

Upon entry into the ER, the ER-localization signal is cleaved
(Haeuptle et al., 1989), and many of the newly synthesized
polypeptides are anchored to the ER membrane through their
transmembrane domains. Some other proteins, including the
prion protein (PrP), acquire a glycophosphatidylinositol (GPI)
lipid tail (Muñiz and Zurzolo, 2014). Oligosaccharides are
attached to asparagine residues of many newly synthesized
proteins. These modifications render the polypeptides
recognizable by lectin folding chaperones which play key
roles in the folding and maturation of glycosylated proteins
(Noack et al., 2014). These chaperones and folding-assisting
enzymes (foldases) catalyze the molecule’s maturation by a series
of sequential events that help it attain its desired spatial structure
(Figure 1). Examples of some well-characterized ER foldases
are Calnexin (CNX), Calreticulin (CRT), the protein disulfide
isomerase (PDI) ERp57 (Oliver et al., 1999), and cyclophilin B
(CypB) (Jansen et al., 2012; for a comprehensive overview on ER-
resident chaperones see (Gidalevitz et al., 2013). The interactions
of the nascent polypeptide with CNX, CRT, and additional
chaperones such as the Hsp70 family member BiP/GRP78 (Haas
and Wabl, 1983), initiate the folding process and can recruit
ERp57 (Kozlov et al., 2006) that catalyzes the formation of
disulfide bonds. CypB, a member of the peptidylprolyl cis/trans
isomerases (PPIases) family of chaperones, which utilizes
specific proline residues to convert the maturating polypeptide
from cis to trans position (Barik, 2006), emerges as a pivotal
coordinator of the folding process (Jansen et al., 2012). FKBP10,
a member of the FK506-binding proteins (FKBPs), an additional
subgroup of PPIase chaperones, is needed to mediate the
entry of certain nascent polypeptides into the ER (Stocki et al.,
2016).

Despite the assistance of the intricate nexus of expert folding
chaperones, subsets of newly synthesized proteins fail to fold
properly and expose hydrophobic domains that lead to the
aggregation of the protein. These terminally misfolded molecules
are recognized by specialized ER-chaperones which impede their
shuttling to the Golgi (Ellgaard andHelenius, 2003), and promote
their destruction by the ER-associated degradation (ERAD). This
process is executed by a conserved set of ERAD components,
including the membrane integral, ERAD E3 ubiquitin ligase

HRD1 (Bordallo et al., 1998) and the ATPase VCP/p97 that
mediate the retro-translocation of unfolded polypeptides to the
cytosol (Ye et al., 2004), and confer their degradation by the
proteasome (Ruggiano et al., 2014). It is important to note
that macro-autophagy emerges as an additional mechanism that
play roles in the degradation of ERAD substrates (Lipatova
and Segev, 2015). Under regular conditions the orchestrated
activities of protein folding, quality control, and degradation
mechanisms maintain proper protein homeostasis (proteostasis;
Balch et al., 2008) however, in the face of stress, mutations or
aging, subsets of proteins that bear the propensity to misfold,
escape the cellular surveillance system, and form aggregates
within the ER.

ER STRESS RESPONSES

The accumulation of protein aggregates within the crowded
environment of the ER lumen impairs its functionality and has
the potential to be hazardous to the cell. Thus, highly conserved
cellular mechanisms that refold unfolded polypeptides, clear
aggregates, and restore functional proteostasis have been
developed. One such well-defined mechanism is the unfolded
protein response (UPRER), a signaling cascade which has at
least four arms that have similar principles of activity. When
specialized ER proteins sense an accumulation of misfolded
proteins, a sequence of events activates the UPRER which
initiates the migration of transcription factors to the nucleus.
The ATF6(N) fragment is cleaved from ATF and enter the
nucleus, XBP1 is activated by IRE1 and modulates gene
expression and ATF4 is shuttled to the nucleus by the PERK
downstream mechanism. These transcription factors elevate the
expression of genes that encode for ER chaperones (such as
BiP) to enhance folding capacity and reduce the expression of
genes that encode proteins that require the assistance of ER
chaperones to fold properly, aiming to lower the aggregation
challenge within the ER lumen (reviewed in Walter and Ron,
2011).

Nevertheless, under certain circumstances, typically in late
stages of life, the aggregation challenge exceeds the ER’s protein
folding and clearance capacities hindering the restoration of
proteostasis. When potentially hazardous aggregates accumulate
within the ER, they are actively convoyed to designated
deposition sites (Figure 2). Such aggregated proteins are
deposited next to the nucleus when proteasomes are inhibited.
The formation of these cellular deposition foci was impeded
by the inhibition of protein synthesis (Wójcik et al., 1996).
These findings proposed that the juxta-nuclear, cellular foci are
quality control compartments, where aggregates are temporarily
stored to enable their degradation when conditions allow.
A similar phenomenon of protein deposition in a cytosolic,
nucleus-adjacent location was later reported. These sites, which
were termed “aggresomes” (Johnston et al., 1998), contain
aggregated membrane proteins and are positioned at the
Micro Tubule Organizing Center (MTOC). We discovered that
aggresomes which contain aggregated PrP are dynamic quality
control compartments that attract molecular chaperones and
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FIGURE 1 | Protein folding within the ER lumen. Newly synthesized polypeptides are co-translationally translocated into the ER through the translocon Sec61p

complex. Targeting and insertion of the signal peptide is mediated by signal recognition particle (SRP) and at least in the case of PrP, is assisted by FKBP10 (I). In

some cases post translational insertion of secretory proteins occurs in an SRP-independent manner, as in case of the GET-mediated insertion of tail-anchored proteins

or by the SND mechanism in other cases (II). As the nascent polypeptide exits the translocon, the signal peptide is cleaved and N-linked glycans are added

co-translationally by oligosaccharyltransferase (OST) (III). Transmembrane proteins are inserted into the ER membrane and some proteins get anchored to the

membrane through the addition of glycophosphatidylinositol (GPI) lipid tail by the transamidase complex (IV). The highly conserved chaperone BiP binds nascent

polypeptides as they are translocated into the ER, and maintains them in a state competent for subsequent folding and oligomerization. (V). The peptide undergoes

further processing with the help of additional chaperones and folding enzymes, among them the calnexin/calreticulin lectin chaperones, protein disulfide isomerase

(PDI) that oxidizes cysteine residues to induce disulfide-bond formation, and the ER resident cyclophilin B (CypB) that catalyzes cis/trans isomerization on the axis of

certain proline residues (VI). Properly folded proteins are shipped for further processing in the Golgi (VII). Terminally misfolded proteins are retro-translocated to the

cytosol to be degraded by the proteasomes through the ER-associated protein degradation (ERAD), often mediated by the E3 ubiquitin ligase HRD1 and the ATPase

VCP/p97 (VIII). Sometimes, ERAD substrates and excess membranes and membrane proteins are shuttles for degradation in the lysosome via macro-ER-phagy (IX).

proteasomes to mediate the degradation of their content (Ben-
Gedalya et al., 2011). Additional types of cytosolic deposition
sites where characterized in yeast and mammalian cells including
the aggresomes-like, Juxta Nuclear Quality control compartment
(JUNQ), and Insoluble Protein Deposit (IPOD) (Kaganovich
et al., 2008). It is not entirely clear whether the JUNQ is
cytosolic or nuclear, as a recent study claimed that the aggregates
that were previously reported to accumulate in the cytosol
are deposited within the nucleus (Miller et al., 2015). An
additional type of deposition site is the “ER quality control
compartment” (ERQC) which accumulates protein aggregates
within the ER lumen (Kamhi-Nesher et al., 2001). Why
certain protein aggregates accumulate in cytosolic sites while

others are deposited within the ER is not known however,
it is plausible that the cell fails to retro-translocate certain
molecules to the cytosol and thus, deposits them in the
ERQC.

In the face of aging-associated decline in protein quality
control capabilities (Carvalhal Marques et al., 2015), or due
to mutations that severely destabilize the three dimensional
structures of aggregation-prone proteins, the cell fails to
maintain proteostasis, and protein aggregates accumulate.
Such uncontrolled protein aggregation can be toxic and
underlie the development of proteinopathies (Paulson, 1999).
Neurodegenerative maladies including Alzheimer’s disease,
Parkinson’s disease (Selkoe, 2003), and prion disorders (Aguzzi
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FIGURE 2 | Cellular deposition sites. When the burden of misfolded proteins exceeds the cell’s clearance and refolding capacity, potentially hazardous aggregates

accumulate within the ER. Under certain circumstances, these aggregates are actively convoyed to designated deposition sites. Aggresomes or aggresome

like-structures (I) are cytosolic juxta-nuclear inclusion bodies that serve as quality-control centers. Another type of a cytosolic deposition site is the insoluble protein

deposit (IPOD) (II) where terminally aggregated proteins tend to accumulate. Intra-nuclear quality control compartment (INQ) (III) resides in the nucleus next to the

nucleolus and harbors nuclear as well as cytosolic misfolded proteins. Some proteins that aggregate within the ER are deposited in the ER-derived quality-control

compartment (ERQC) (IV).

and Calella, 2009) are a subgroup of proteinopathies. Late onset
(Amaducci and Tesco, 1994) and the deposition of aggregated
proteins in the brain are common features of these illnesses
(Soto, 2003).

ALZHEIMER’S DISEASE AND PRION
DISORDERS

Alzheimer’s disease (AD), the most common type of dementia,
is characterized by two pathological hallmarks; the deposition
of small hydrophobic peptides known as β amyloid (Aβ) in
plaques and the formation of Neurofibrillary Tangles (NFTs)
of aggregated, hyper-phosphorylated microtubule-associated
protein tau in the brain (Selkoe, 2011). According to the
amyloid hypothesis (Hardy and Higgins, 1992), AD develops as
a result of a dual cleavage of the Amyloid Precursor Protein
(APP) by two proteases, the β and γ secretases. This digestion
releases the family of Aβ peptides which form various types
of oligomers and high molecular weight aggregates. Oligomers
were found to be the most toxic Aβ species (Cohen et al.,
2006; Shankar et al., 2008). The amyloid hypothesis proposes
hyper Aβ production as a key mechanistic condition for the

development of this devastating disorder (Hardy and Higgins,
1992). Similarly to other neurodegenerative disorders AD
exhibits more than one pattern of occurrence. While most AD
cases onset sporadically, individuals who carry mutations in the
sequence of APP or of Presenilin 1 or 2 (both are components
of the γ secretase complex) develop early-onset familial
AD (fAD).

The misfolding and aggregation of the prion protein (PrP)
underlies the development of several conformational diseases.
Creutzfeldt-Jakob disease (CJD) is a fatal prion disorder that
can onset sporadically, as a familial, mutation-linked malady
as well as an infectious disease. It is well-documented that
individuals who consumed contaminated beef developed CJD
(Prusiner, 1998). Similarly to the case of Aβ, small oligomeric
PrP structures are the most infectious prion species (Silveira
et al., 2005). Interestingly, different mutations in the sequence of
PrP lead to the development of distinct disorders. While certain
mutations are accountable for the development of CJD, others
underlie the manifestation of Gerstmann-Straussler-Scheinker
disease (GSS; Salmona et al., 2003) or of Fatal Familial Insomnia
(FFI;Medori et al., 1992). Unlike CJD, GSS, and FFI solely emerge
as mutation-linked, familial disorders and exhibit much slower
etiology.
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FAILURE OF EARLY MATURATION EVENTS
UNDERLIE THE ONSET OF CERTAIN
CASES OF NEURODEGENERATION

Recent studies challenge the amyloid hypothesis suggesting
that at least some fAD cases emanate from the attenuation
of γ secretase activity that is inflicted by mutations in the
sequence of presenilin 1. Analysis of γ secretase activity in
brain samples of individuals who carried various fAD-associated
mutations or developed sporadic AD (sAD) unveiled that
in most cases the total levels of Aβ were lower than those
observed in brains of individuals who showed no signs of
dementia. Unexpectedly, no significant difference in total Aβ

levels was detected among brains of individuals who had sAD
and those of unaffected people (Szaruga et al., 2015). Another
interesting avenue of research unveiled that in some cases, the
loss of γ secretase endopeptidase function is associated with
fAD. For instance, transgenic mice that harbor two copies of

mutated presenilin 1 carrying either the L435F or C410Y fAD-
linked mutations, exhibit near complete loss of γ secretase
function but develop neurodegeneration (Xia et al., 2015).
These findings clearly show that increased Aβ production is
not a prerequisite for AD development and raise the question
of what the mechanisms that underlie fAD are. Why these
and other mutations lead to the loss of the γ secretase
proteolytic function and whether protein maturation within the
secretory pathway plays any role in the pathogenic process
that leads to the development of fAD are largely unanswered
questions.

To identify common mechanisms that initiate the
development of neurodegenerative maladies, we searched
for similar mutational patterns in different proteins which
cause distinct neurodegenerative illnesses. This approach is
based on the rationale that since folding chaperones of the
secretion pathway assist the maturation process of many
nascent polypeptides, it is probable that analogous mutations
which impede chaperone-client interactions can lead to the
development of distinct maladies. We identified similar PXXP
motifs in the sequences of PrP and of presenilin 1. Previous
reports indicated that the substitution of either proline in
these motifs of PrP (Hsiao et al., 1989; Yamazaki et al., 1999)
and presenilin 1 (Campion et al., 1995) cause GSS or fAD,
respectively. To explore why the substitution of these prolines
leads to misfolding and disease we used cultured cells and the
cyclophilin-specific inhibitor cyclosporin-A (CsA) and found
that when CypB is prevented from assisting presenilin 1 to fold
properly, the nascent polypeptide misfolds, and forms aggregates
that accumulate in the ERQC. This leads to severe impairment
of γ secretase activity and to aberrant mitochondrial distribution
and function. Similarly, the expression of presenilin 1 molecules
carrying the fAD-linked mutations, P264L or P267L/S, resulted
in the same phenotypes (Ben-Gedalya et al., 2015).

A similar mechanism triggers the pathogenic process that
causes GSS. The inhibition of CypB by CsA or by the substitution
of proline 102 or of 105 in the sequence of PrP resulted in the
protein’s aggregation and deposition in aggresomes (Cohen and
Taraboulos, 2003).

Our studies show that hindering the interaction of CypB,
a key ER-resident folding chaperone, with PrP and presenilin
1, results in the manifestation of certain cases of fAD or
GSS. It is important to note that additional studies illustrate
failures in other stages of protein maturation as the source
of neurodegenerative disorders. The levels of CNX and CRT
were found to be reduced in Parkinson’s disease cellular model
(Kuang et al., 2014) and ER stress response was found to be
activated in amyotrophic lateral sclerosis (ALS)-model mice
that express an ALS-linked mutated SOD 1 in their muscles
(Chen et al., 2015). In addition, one of the early modifications
that PrP undergoes upon entry to the ER is the attachment
of GPI. Individuals who carry mutations, such as Q227Stop,
that prevent GPI attachment to the newly synthesized molecule,
express anchorless PrP and develop GSS (Jansen et al., 2010). It
is plausible that anchorless PrP molecules cannot be recognized
by ER chaperones and thus form aggregates within this organelle.
This possibility may be supported by the report that similarly to
CypB, CNX interacts with PrP and reduces PrP-mediated toxicity
(Wang et al., 2010). Nevertheless, further research is needed to
examine this hypothesis.

The accumulation in aggresomes of molecules that failed
to fold properly within the ER, raises the question of
whether these deposition sites (Ben-Gedalya et al., 2011) are
cytosolic components of an ER-resident protein quality control
mechanism or whether they also serve other cellular organelles
as aggregate disposal centers.

AGGRESOMES ARE CYTOSOLIC
COMPONENTS OF THE ER PROTEIN
QUALITY CONTROL MECHANISM

The association of aggresomes with neurodegenerative maladies
was first demonstrated by the accumulation of the fAD-causing,
presenilin-1 which carries the A246Emutation in these structures
(Johnston et al., 1998). Toxic PrP species (Kristiansen et al.,
2005), disease causing PrP mutants (Cohen and Taraboulos,
2003; Mishra et al., 2003), and Parkinson’s disease-associated,
aggregated α-synuclein (Tanaka et al., 2004; Wong et al., 2008)
were also shown to be deposited in aggresomes of mammalian
cells, further linking these sites with a myriad of human
neurodegenerative illnesses. To test whether aggresomes are
mechanistically linked to the ER quality control machinery we
created fluorescently-tagged PrP constructs that either efficiently
enter the ER or stay entirely cytosolic and tested whether these
molecules are deposited in aggresomes upon exposing the cell
to CsA treatment. We found that PrP must enter the ER in
order to be deposited in the aggresome (Dubnikov et al., 2016)
defining these sites as remote cytosolic components of the ER.
Interestingly, the attachment of a GPI anchor is needed for the
direction of PrP to the aggresome but the Golgi apparatus appears
to have no role in shuttling aggregated PrP to this structure.
This insight further associates the ER protein folding mechanism
with deposition sites, a key hallmark of neurodegenerative
diseases, and shows that proper activity of folding chaperones
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protects from these disorders. However, is foldase activity always
protective?

Recent studies have shown that counter-intuitively, knocking
down the activity of certain chaperones protects from
neurodegeneration. The PPIase FKBP51 acts in collaboration
with Hsp90 to prevent the clearance of aggregated tau enhancing
the protein’s oligomerization. Accordingly, mice over-expressing
FKBP51 suffered from neurotoxicity (Blair et al., 2013). Recently,
it was shown that reducing the rate of PrP entry into the ER by
the inhibition of the ER-resident PPIase FKBP10, reduces toxicity
in mammalian cell systems (Stocki et al., 2016), suggesting that
under these specific circumstances this foldase enhances PrP
toxicity. It is possible that FKBP51 and FKBP10 enhance
proteotoxicity not by the modulation of protein folding but
by exhibiting other functions and that the activities of certain
chaperones may be protective in the face of certain proteotoxic
challenges but deleterious in the face of others.

THERAPEUTIC OPPORTUNITIES

Accumulating information point at the ER lumen as an
important arena where neurodegenerative-causing events occur.
Accordingly, interventions that modulate the activity of ER
components can help cells maintain functional proteostasis,
prevent the accumulation of hazardous aggregates within

the lumen and delay the manifestation of neurodegenerative
maladies. Nevertheless, the emerging understanding that
various mechanisms can underlie the development of the
same malady and the apparent damaging functions of certain
folding chaperones requires a careful characterization and
classification of neurodegeneration-causing mechanisms. The
approval of proteostasis-enhancing compounds and their
high efficacy for the treatment of Cystic Fibrosis (Van Goor
et al., 2009; Carter et al., 2015) and the counter-proteotoxic
effects of aging-modulating compounds (El-Ami et al., 2014)
are very encouraging developments which indicate that
a comprehensive understanding of the mechanisms that
underlie proteinopathies is the basis for the development
of novel therapies for hitherto incurable, devastating
disorders.
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Protein misfolding is implicated in numerous neurodegenerative disorders including

amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, and Huntington’s

disease. A unifying feature of patients with these disorders is the accumulation of

deposits comprised of misfolded protein. Aberrant protein folding can cause toxicity

through a loss or gain of protein function, or both. An intriguing therapeutic approach to

counter these disorders is the application of protein-remodeling factors to resolve these

misfolded conformers and return the proteins to their native fold and function. Here,

we describe the application of protein-remodeling factors to alleviate protein misfolding

in neurodegenerative disease. We focus on Hsp104, Hsp110/Hsp70/Hsp40, NMNAT,

and HtrA1, which can prevent and reverse protein aggregation. While many of these

protein-remodeling systems are highly promising, their activity can be limited. Thus,

engineering protein-remodeling factors to enhance their activity could be therapeutically

valuable. Indeed, engineered Hsp104 variants suppress neurodegeneration in animal

models, which opens the way to novel therapeutics and mechanistic probes to help

understand neurodegenerative disease.

Keywords: protein-remodeling factors, protein-misfolding disease, neurodegeneration, Hsp104, Hsp70, Hsp110,

NMNAT, HtrA1

INTRODUCTION

There are numerous devastating, and incurable, neurodegenerative disorders that are increasing
in prevalence as our population ages (Dobson, 2003; Forman et al., 2004; Morimoto, 2006). These
disorders include: Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis
(ALS), and frontotemporal dementia (FTD) (Dobson, 2003; Forman et al., 2004; Morimoto, 2006;
Lagier-Tourenne et al., 2010; Robberecht and Philips, 2013). Treatments for these disorders remain
palliative, and no therapeutics are available that address their underlying cause (Forman et al., 2004;
Robberecht and Philips, 2013). Furthermore, each of these disorders manifests in different ways in
patients. For instance, AD patients have impaired memory yet their movement is preserved, while
ALS patients’ memory is preserved while their control of movement becomes impaired (Forman
et al., 2004; Lagier-Tourenne et al., 2010; Robberecht and Philips, 2013). Yet, at the fundamental
level, these neurodegenerative disorders are linked by the presence of insoluble proteinaceous
inclusions in the brain (Dobson, 2003; Forman et al., 2004; Lagier-Tourenne et al., 2010; Robberecht
and Philips, 2013).
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It is important to note that these neurodegenerative diseases
are not due to mass protein misfolding, but instead the
misfolding of specific proteins are implicated in each disease
(Dobson, 2003; Cushman et al., 2010). For instance, α-synuclein
misfolds into amyloid fibrils that accumulate in Lewy bodies
in the dopamine neurons of PD patients, while in ALS
patients TDP-43 or FUS misfold into cytoplasmic aggregates in
degenerating motor neurons and glia (Spillantini et al., 1997;
Neumann et al., 2006; Chen-Plotkin et al., 2010; Mackenzie
et al., 2010; Robberecht and Philips, 2013; Dehay et al., 2015).
These proteins, as well as many others that underpin diverse
neurodegenerative disorders, are expressed in nearly all cells. Yet
it remains perplexing what initiates and drives the misfolding
of specific proteins in specific neuronal subtypes, leading to
subtype-specific neurodegeneration (Saxena and Caroni, 2011).
Additionally, it remains unclear if neuronal degeneration is
always a direct consequence of aggregate accumulation. Indeed,
many of these proteins serve essential functions, and so a loss of
function due to aggregation could alternatively lead to toxicity
(Winklhofer et al., 2008; Yang et al., 2014; O’Rourke et al., 2016).

In each of these neurodegenerative disorders, the protein
homeostasis (proteostasis) network ultimately fails to combat
the accumulation of misfolded conformers, consequently leading
to disease (Balch et al., 2008; Shorter, 2016). To address the
protein-misfolding problem, there are several avenues that
could be explored. First, degradation of the toxic, misfolded
conformers might be beneficial. For instance, in some PD
patients, an increase in α-synuclein levels is implicated, and
thus degradation of this excess α-synuclein might be beneficial
(Ebrahimi-Fakhari et al., 2012). A similar strategy might be
useful in Huntington’s disease patients (Yamamoto et al., 2000).
Alternatively, stalling the protein-misfolding process is an
effective means of therapeutically treating patients with familial
amyloid neuropathy (FAP) (Bulawa et al., 2012; Cho et al., 2015;
Ankarcrona et al., 2016). FAP is caused by the misfolding of
transthyretin, which forms amyloid fibrils that accumulate in
various tissues and organs, ultimately leading to organ failure.
To combat FAP, the drug Tafamidis was developed to stabilize
the native tetrameric form of transthyretin, thus blocking
further misfolding and stalling the amyloid cascade. Tafamidis is
approved for use by the European Medicines Agency, and is the
only therapeutic in use that mitigates neurodegenerative disease
by preventing protein misfolding (Ruberg and Berk, 2012).
Additionally the drug Tolcapone, which is FDA-approved for PD,
was found to also stabilize transthyretin and block aggregation
(Sant’Anna et al., 2016). A similar strategy to pharmacologically
stabilize α-crystallins may effectively block their misfolding and
aggregation and treat cataracts (Makley et al., 2015). The success
of Tafamidis provides strong proof of concept that targeting
protein misfolding can be therapeutically effective (Bulawa et al.,
2012; Cho et al., 2015; Ankarcrona et al., 2016). Additionally,
clinical trials are ongoing to assess the efficacy of antibodies
aimed at clearing plaques comprised of Aβ that accumulate in AD
patients (Sevigny et al., 2016), though notably one trial recently
failed. Indeed, an additional intriguing possibility would be to
remodel the misfolded species such that the protein regains its
functional, native conformation, which would simultaneously

mitigate toxicity due to loss-of-function or gain-of-function
(Jackrel and Shorter, 2014b, 2015; Mack and Shorter, 2016;
Shorter, 2016). However, many of the proteins that misfold in
these disorders adopt a cross-beta fibrillar form, termed amyloid,
which is a highly stable and self-templating structure (Dobson,
2003). Nonetheless, protein-remodeling factors that have evolved
to antagonize protein misfolding could be harnessed to reverse
deleterious protein misfolding in disease (Table 1).

The proteostasis network ultimately collapses in
neurodegenerative disease (Shorter, 2016). This network is
comprised of manymolecular chaperones that normally promote
the proper folding of disease-associated proteins, as well as the
entire proteome. Thus, an intriguing way to address the collapse
of the proteostasis network would be to remedy or rewire this
network (Jackrel et al., 2014a; Jackrel and Shorter, 2014b, 2015).
This approach could be pursued by either enhancing and tuning
the activity of endogenously expressed protein-remodeling
factors, or by introducing new protein-remodeling factors that
are not normally expressed (Warrick et al., 1999; Auluck et al.,
2002; Jackrel et al., 2014a). Many protein-remodeling factors
have been proposed to function in alleviating protein misfolding,
including: Hsp104, Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1
(Zhai et al., 2008; Jackrel and Shorter, 2014b, 2015; Poepsel et al.,
2015; Ali et al., 2016; Mack and Shorter, 2016; Shorter, 2016).
Some of these proteins are capable of actively disaggregating and
restoring the solubility of the misfolded conformers (Warrick
et al., 1999; Auluck et al., 2002; Jackrel and Shorter, 2014a;
Jackrel et al., 2014a). Thus, the application of protein-remodeling
factors in a therapeutic setting is a highly promising avenue to
address neurodegenerative disease. In this review, we discuss
the potential application of these molecular chaperones and
protein disaggregases in the development of therapeutics for
neurodegenerative disorders. These agents might be harnessed
for therapeutic purposes through upregulation or through
the introduction of exogenous protein through either gene
therapy using adeno-associated viral vector technologies or
direct injection. Alternatively, protein-remodeling factors
could be therapeutically modulated using small molecules
or even potentiated via engineering. We focus on efforts to
reformulate a robust protein disaggregase from yeast, Hsp104,
which has several unique properties that make it a particularly
promising protein-remodeling factor for further exploration
and application to reverse the protein misfolding implicated in
numerous devastating neurodegenerative diseases (Lo Bianco
et al., 2008; DeSantis et al., 2012; Cushman-Nick et al., 2013;
Jackrel and Shorter, 2014a,b, 2015; Jackrel et al., 2014a). We also
discuss several other protein-remodeling factors that have been
recently assessed for their capacity to suppress or reverse protein
misfolding connected to neurodegenerative disease.

Hsp70 BLOCKS PROTEIN MISFOLDING

One of the first molecular chaperones to be explored as a possible
therapeutic for combating neurodegenerative disease was Hsp70.
The Hsp70 family of proteins serves diverse functions in protein
folding. Hsp70 promotes the refolding of aggregated ormisfolded
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TABLE 1 | Protein-remodeling factors can remodel diverse substrates.

Protein remodeling factor Activity Substrates remodeled

Hsp70 Blocks misfolding Polyglutamine, α-syn, Aβ

Hsp110/Hsp70/Hsp40 Dissolves preformed aggregates SOD1, α-syn

NMNAT Dissolves preformed aggregates Tau

Htra1 Dissolves and degrades preformed aggregates Aβ and tau

Hsp104 Dissolves preformed aggregates, amyloid, and pre-amyloid oligomers α-syn, TDP-43, FUS, Aβ, tau, polyglutamine

proteins (Mayer and Bukau, 2005; Mack and Shorter, 2016). It
also serves to ensure the proper folding of newly synthesized
proteins (Mayer and Bukau, 2005). To do so, Hsp70 functions
cooperatively with its co-chaperone, Hsp40, to bind and thus
protect hydrophobic stretches harbored by its clients (Mayer and
Bukau, 2005; Mashaghi et al., 2016). This function is crucial
during protein synthesis, but is also important following cellular
stresses that partially denature mature proteins, because by
binding exposed stretches on these partially denatured proteins,
Hsp70 can block protein aggregation (Mayer and Bukau, 2005;
Mack and Shorter, 2016). Thus, in disease, upregulation of Hsp70
might prevent protein aggregation and promote the restoration
of proteostasis. A Drosophilamodel of polyglutamine misfolding
has been established in which overexpression of polyglutamine
leads to neurodegeneration (Warrick et al., 1998). In this
model, overexpression of Hsp70 suppressed polyglutamine-
induced neurodegeneration (Warrick et al., 1999). Similarly, in
a Drosophilamodel of α-synuclein misfolding, Hsp70 suppressed
neurodegeneration (Auluck et al., 2002). However, it is important
to note that while Hsp70 inhibited neurodegeneration in these
models, it was not found to solubilize aggregates (Warrick
et al., 1999; Auluck et al., 2002; Cushman-Nick et al., 2013).
Nonetheless, in a mouse model of ALS, intraperitoneal injection
of human Hsp70 increased lifespan, delayed the onset of
symptoms, arrested denervation, preserved axonal function, and
prolonged motor neuron viability (Gifondorwa et al., 2007,
2012).

Elevating Hsp70 expression can slow neurodegeneration in
fly and mouse models (Warrick et al., 1999; Auluck et al.,
2002; Gifondorwa et al., 2007, 2012). Hsp70 likely becomes
overwhelmed in neurodegenerative disease. Thus, it may be
important to enhance Hsp70 activity via potentiating mutations
or small molecules (Mack and Shorter, 2016; Shorter, 2016).
Indeed, using protein-engineering techniques the activity of
the bacterial homolog of Hsp70, DnaK, has been enhanced
and these variants demonstrate elevated luciferase refolding
activity (Aponte et al., 2010; Schweizer et al., 2011). Recently,

Hsp70 engineering has been extended to human Hsp70 and
neurodegenerative disease-associated substrates (Aprile et al.,
2015). Here, Hsp70 was tuned through rational design to more
potently bind α-synuclein and Aβ42. Peptides complementary
to target epitopes in α-synuclein and Aβ42 were developed, and
these peptides were introduced into the C-terminal region of
Hsp70 (Aprile et al., 2015). While introduction of these peptides
enhanced the binding affinity of Hsp70 to α-synuclein and Aβ42,
binding to other client proteins was unaffected (Aprile et al.,

2015). Thus, tuning Hsp70 to broaden its substrate specificity
does not come at the cost of restricted capacity to regulate
its diverse client pool (Aprile et al., 2015). Additionally, small
molecules have been identified that can enhance specific aspects
of Hsp70 activity. For instance, four small molecules: MKT-077,
JG-98, YM-1, and YM-8 bind the nucleotide-binding domain
of Hsp70 in the ADP, but not ATP-bound state. This binding
stabilizes the ADP-bound state resulting in increased affinity of
Hsp70 for its clients, which can under some circumstances lead to
their enhanced folding (Rousaki et al., 2011; Miyata et al., 2013;
Wang et al., 2013; Shorter, 2016). In the cellular environment,
YM-1 promotes clearance of polyglutamine oligomers and
aggregates (Wang et al., 2013). All four of these molecules
promote the clearance of tau and are therapeutically beneficial
in tauopathy models (Abisambra et al., 2013; Miyata et al., 2013;
Fontaine et al., 2015).

THE METAZOAN

PROTEIN-DISAGGREGASE SYSTEM:

Hsp110/Hsp70/Hsp40

It has long been hypothesized that humans might possess a
protein disaggregase similar to those in the Hsp100 family of
proteins that are highly conserved in bacteria, fungi, and plants
(Shorter, 2008, 2011; Torrente and Shorter, 2013). However,
the discovery of such a protein disaggregase has been elusive
until it was discovered that Hsp110 in collaboration with Hsp70
and Hsp40 can disaggregate and reactivate protein (Shorter,
2011; Mattoo et al., 2013; Torrente and Shorter, 2013; Finka
et al., 2015; Gao et al., 2015; Nillegoda and Bukau, 2015;
Nillegoda et al., 2015). Hsp110 is an Hsp70 family member
that in collaboration with Hsp70 and Hsp40 can disaggregate
preformed aggregates and amyloid (Shorter, 2011; Duennwald
et al., 2012; Gao et al., 2015; Nillegoda et al., 2015). Hsp110
collaborates and synergizes with Hsp70 and two classes of Hsp40
cochaperones to resolve large protein aggregates (Nillegoda
and Bukau, 2015; Nillegoda et al., 2015). It is hypothesized that
due to the large number of possible complexes that could form
between different Hsp70s and Hsp40s, distinct and specific
complexes might be harnessed to dissolve different protein
aggregates (Nillegoda and Bukau, 2015; Nillegoda et al., 2015).
Perhaps one specific combination might be employed in specific
neuronal subtypes, or a given combination might specifically
disaggregate α-synuclein while another might specifically
disaggregate tau.
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Ultimately, failure of the Hsp110/Hsp70/Hsp40 system
might underpin numerous protein-misfolding disorders,
and restoration or specific activation of this system might
be therapeutically useful (Nillegoda and Bukau, 2015;
Shorter, 2016). Indeed, overexpression of Hsp110 with
Hsp40 suppressed the toxicity induced by polyglutamine
overexpression in Drosophila, though it is not apparent if
Hsp110 modulates polyglutamine aggregation (Kuo et al.,
2013). Additionally, transgenic overexpression of Hsp110
in neurons enhanced survival in ALS model mice, but
again, the effects of Hsp110 on SOD1 aggregation were not
assessed in these experiments (Nagy et al., 2016). It remains
unclear if upregulation of Hsp110 levels will be sufficient to
restore normal functionality in animal models, and ultimately
in humans. It may be useful to tune the activity of the
Hsp110/Hsp70/Hsp40 system using protein-engineering
techniques, or alternatively, small-molecule modulators could
be developed to enhance the activity of this system. Small
heat-shock proteins can also enhance the disaggregase activity
of this system (Duennwald et al., 2012), and might also
be targeted therapeutically (Makley et al., 2015). However,
determining precisely how to therapeutically boost the activity
of this system comprised of several components may prove
challenging.

NMNAT

Nicotinamide mononucleotide adenylyl transferases (NMNATs)
are nicotinamide adenine dinucleotide (NAD)-synthesizing
enzymes. NAD is an important cofactor that mediates numerous
cellular processes. NMNATs are important in neuronal
maintenance, thus NMNAT knockdown leads to axonal
degeneration, while NMNAT overexpression is neuroprotective
in several animal models of neurodegeneration (Zhai et al., 2008;
Gilley and Coleman, 2010; Ali et al., 2016). NMNAT2 is highly
expressed in the mammalian brain, and NMNAT2 mRNA levels
are reduced in PD, HD, AD, and tauopathy patients (Ali et al.,
2016). Furthermore, elevating NMNAT2 levels in tauopathy
model mice suppressed neurodegeneration (Ljungberg et al.,
2012). Additionally, NMNAT2 mRNA levels correlate positively
with cognitive function and negatively with the pathological
features of AD (Ali et al., 2016). In AD brains, NMNAT2 mRNA
and protein levels are greatly reduced relative to controls,
and NMNAT2 co-localizes with aggregated tau (Ali et al.,
2016). NMNAT2 overexpression can reduce the pathological
accumulation of hyperphosphorylated tau without altering total
tau levels (Ljungberg et al., 2012; Ali et al., 2016). NMNAT2 can
prevent protein denaturation and promote protein refolding
with similar activity to Hsp70 (Ali et al., 2016). Surprisingly,
this activity is maintained even in enzymatically-dead NMNAT2
mutants that lack NAD synthetic activity (Ali et al., 2016).
These enzymatically-dead NMNAT2 mutants also reduced
hyperphosphorylated tau levels (Ali et al., 2016).

NMNAT2 has been demonstrated to form a complex with
Hsp90 to solubilize and refold aggregated substrates (Ali
et al., 2016). Moreover, deletion of NMNAT2 increases the

vulnerability of cortical neurons to proteotoxic stress (Ali et al.,
2016). Thus, therapeutically upregulating NMNAT or enhancing
NMNAT activity via small-molecule modulation might be
effective in regulating tau levels. It will be interesting to assess the
protein-remodeling activity of NMNATs against the many other
substrates implicated in protein-misfolding disorders. Given the
fundamental role NMNATs play in neuronal maintenance, failure
of NMNATs to combat protein misfolding might be common to
many other disease-associated substrates in addition to tau.

HtrA1 CAN DISAGGREGATE AND

DEGRADE TOXIC CONFORMERS

HtrA1 is a PDZ serine protease that disassembles tau and Aβ

fibrils, which are linked to AD, and then degrades them (Poepsel
et al., 2015). Intriguingly, HtrA1 is found in the cytoplasm
and is also secreted (Poepsel et al., 2015). Correlating with
this pattern, Aβ42 fibrils are found in the extracellular space
while tau fibrils are found in the cytoplasm. Thus, it has been
hypothesized that HtrA1 might be a system that naturally
disaggregates and degrades Aβ42 and tau (Poepsel et al., 2015;
Shorter, 2016). Indeed, HtrA1 activity might be insufficient
in AD patients (Shorter, 2016). Therefore, boosting and fine-
tuning the activity of HtrA1 might be valuable in combating
AD. It has been demonstrated that HtrA1 activity can be tuned
through protein engineering. The disassembly and degradation
activities of HtrA1 can be separated, as protease-defective HtrA1
variants dissolve but do not degrade Aβ fibrils, providing HtrA1
variants that can either dissolve the aggregates or dissolve and
degrade the aggregates (Poepsel et al., 2015). The ability to
separate or combine disassembly and degradation activities in a
single protein is very valuable, and might find utility in certain
situations. Therefore, it will be very interesting to engineer
substrate-specific HtrA1 variants that can target substrates
beyond Aβ and tau. These substrate-specific variants could
be constructed in both the disaggregate-only or disaggregate-
and-degrade backgrounds. This advance would allow for the
flexibility to reactivate proteins that serve beneficial functions.
Alternatively, subsets of PD patients show increased α-synuclein
levels (Ebrahimi-Fakhari et al., 2012), and thus for these patients
it may be beneficial to not just solubilize α-synuclein, but also
to degrade it. Additionally, small-molecule enhancers of HtrA1
have been identified, and so it will be important to test the effects
of these compounds in various models of protein-misfolding
disorders (Jo et al., 2014). It will also be important to assess if
HtrA1 can clear highly toxic pre-amyloid oligomeric forms of Aβ

and tau, or only the fibrils.

Hsp104 VARIANTS SUPPRESS PROTEIN

MISFOLDING, MISLOCALIZATION, AND

TOXICITY IN YEAST AND ANIMAL

MODELS

Hsp104 is a ring-shaped hexameric AAA+ protein from yeast
that serves two distinct functions (Sweeny and Shorter, 2016;
Yokom et al., 2016). First, it solubilizes proteins that aggregate
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following cellular stress to promote yeast survival (Parsell et al.,
1991, 1994; Glover and Lindquist, 1998; Glover and Tkach, 2001;
Wallace et al., 2015). Second, it regulates yeast prion formation
and dissolution (Chernoff et al., 1995; Shorter and Lindquist,
2004, 2005, 2006; Sweeny and Shorter, 2008, 2016; Sweeny
et al., 2015). In serving these two roles, Hsp104 recognizes and
regulates a diverse milieu of substrates, comprised of the entire
yeast proteome, as well as yeast prions (Newby and Lindquist,
2013). While Hsp104 is highly conserved in bacteria, fungi, and
plants, Hsp104 has no metazoan homolog (Erives and Fassler,
2015).

The amyloid fold is a highly conserved protein structure,
thus it was hypothesized that the natural capacity of Hsp104
to recognize and solubilize yeast prions might translate to a
capacity to recognize and solubilize diverse amyloid species
associated with human disease (DeSantis et al., 2012; Jackrel
and Shorter, 2014b, 2015; Jackrel et al., 2014a). Indeed, using
purified proteins, Hsp104 has been shown to solubilize diverse
amyloid species implicated in human disease including: Aβ, α-
synuclein, polyglutamine expansions, prion protein, tau, and
amylin (Liu et al., 2011; DeSantis et al., 2012; Jackrel and Shorter,
2014a; Jackrel et al., 2014a). Additionally, Hsp104 suppresses
proteotoxicity in animal models (Satyal et al., 2000; Vacher
et al., 2005; Lo Bianco et al., 2008; Cushman-Nick et al., 2013;
Jackrel et al., 2014a). In a transgenic mouse model of HD,
Hsp104 extended lifespan and decreased aggregate load (Vacher
et al., 2005). Furthermore, Hsp104 has been demonstrated to be
neuroprotective in a rat model of PD (Lo Bianco et al., 2008).
Here, lentiviral vectors coding for α-synuclein were injected into
the substantia nigra of rats, and following 6 weeks of expression,
brain slices were stained for dopaminergic markers. In this
system, Hsp104 co-expression was neuroprotective and no off-
target effects were observed (Lo Bianco et al., 2008). Additionally,
Hsp104 has been shown to directly clear preformed oligomeric
forms of α-synuclein as well as eliminate self-templating α-
synuclein conformers. These experiments have provided strong
evidence that Hsp104 may have therapeutic value. However, the
activity of Hsp104 in suppressing degeneration in these animal
models is limited as complete neuroprotection is not achieved
(Vacher et al., 2005; Lo Bianco et al., 2008).

We have enhanced the activity of Hsp104 via engineering
(Jackrel et al., 2014a,b, 2015; Jackrel and Shorter, 2014a). We
have constructed large libraries of randomized Hsp104 variants
and developed screening techniques to isolate enhanced variants.
When overexpressed in yeast, the proteins TDP-43, FUS, and
α-synuclein all form cytoplasmic foci and are toxic (Outeiro
and Lindquist, 2003; Johnson et al., 2008; Sun et al., 2011).
These yeast models have also empowered the identification
of genetic risk factors for these disorders (Elden et al., 2010;
Ju et al., 2011; Sun et al., 2011). Deletion or overexpression
of Hsp104 does not suppress the toxicity or aggregation of
these proteins in yeast (Jackrel et al., 2014a). Thus, these yeast
models provide an ideal screening platform to isolate Hsp104
variants with a gain of therapeutic function (Jackrel et al.,
2014a,b, 2015). Using these yeast assays, we have identified
numerous Hsp104 variants that potently suppress TDP-43, FUS,
and α-synuclein toxicity (Jackrel and Shorter, 2014a,b, 2015;

Jackrel et al., 2014a,b, 2015). In addition to their suppression
of toxicity, these variants also dissolved cytoplasmic foci of
TDP-43, FUS, and α-synuclein (Jackrel and Shorter, 2014a;
Jackrel et al., 2014a, 2015). Furthermore, the potentiated variants
restored alpha-synuclein to the plasma membrance and TDP-
43 to the nucleus (Jackrel et al., 2014a). These results are very
promising. TDP-43 must shuttle to the nucleus to fulfill its
roles in RNA homeostasis, and restoration of nuclear TDP-43
suggests that solubilization of TDP-43 can restore natively folded
and functional TDP-43 (Jackrel et al., 2014a). These potentiated
Hsp104 variants clear preformed TDP-43, FUS, and α-synuclein
fibrils at concentrations where Hsp104 is ineffective (Jackrel et al.,
2014a).

To assess the therapeutic utility of potentiated Hsp104
variants, they have been tested in a C. elegans model of PD
(Jackrel et al., 2014a). Here, the potentiated Hsp104 variants were
robustly neuroprotective, while Hsp104 and an ATPase-dead
negative control showed no activity (Jackrel et al., 2014a). To
further demonstrate the therapeutic possibilities of potentiated
Hsp104 variants, it will be essential to demonstrate their activity
in additional neuronal models including mammalian neurons. It
will also be important to develop additional potentiated Hsp104
variants with improved properties. To do so, it will be crucial
to apply additional protein engineering techniques to enhance
the activity and substrate specificity of the potentiated variants.
There are numerous examples of proteins that are believed to
have evolved from roles as generalists to specialists. Thus, it will
be very interesting to see if laboratory techniques can accelerate
this process for Hsp104 and produce finely-tuned variants.
Additionally, perhaps Hsp104 variants can be produced to target
pre-amyloid oligomers vs. fibrils and vice versa. In addition
to being potentially of direct therapeutic benefit, these variants
may hold great value in unraveling the key contributors and
drivers of neurodegenerative disease. For instance, engineered
disaggregases that can solubilize and reactivate oligomers but
not fibrils may be employed as precise mechanistic probes
to investigate the effects of resolving specific protein species.
Also, the discovery that very subtle modification of natural
protein-remodeling factors can confer dramatic alterations in
chaperone activity (Jackrel et al., 2014a, 2015) suggests that subtle
modification of other protein-remodeling factors, including
Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1 might also be
amenable to potentiation.

CONCLUSIONS AND FUTURE

DIRECTIONS

Protein misfolding is an enormously challenging issue that
underpins many of the most devastating diseases facing society.
As the population continues to age, the toll of neurodegenerative
disease will continue to rise. Unfortunately, while substantial
efforts have been mounted to counter these disorders, there
are no treatments available for any of these diseases (with the
exception of Tafamidis for FAP). Thus, in the development
of new therapeutics to combat these disorders, it will be
important to employ innovative approaches.While it is unknown
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what specifically causes proteins to misfold and cause disease,
the accumulation of misfolded aggregates, amyloid, and pre-
amyloid species are key contributors to pathogenesis. Therefore,
if protein-misfolding trajectories could be reversed, perhaps so
could these diseases. Protein-remodeling factors, which have the
capacity to block and even reverse protein misfolding might
be uniquely positioned as potential therapeutics. Many protein-
remodeling factors have been assessed and demonstrated to be
potentially useful in combating these disorders. For instance,
increased levels or activity of the protein HtrA1 might be
employed to dissolve and degrade both tau and Aβ aggregates
in AD patients. However, as HtrA1, as well as NMNAT and
Hsp110/Hsp70/Hsp40, are all present in humans, it appears that
these systems are either insufficient to prevent pathogenesis
or are compromised in certain individuals. Thus, it will be
important to continue to focus not just on the application of
these chaperones directly in disease models, but also to continue
to develop approaches to boost and nuance these protein-
remodeling systems.

While highly promising, the idea of modulating the
proteostasis network is not without caveats. For instance,
upregulation of protein-remodeling factors might be beneficial
to enhance protein folding and combat neurodegenerative
disorders, yet enhanced protein folding might also enable
cell proliferation which could promote cancers. Nonetheless,
protein-remodeling factors present a unique opportunity to
restore proteins to their native fold and function, thus
simultaneously alleviating both a loss or gain of function.
As with all therapeutics, it will be important to assess for

possible off-target effects. For instance, in developing new
disaggregase technologies, it will be important to harness protein
disaggregation to avoid the unfolding of functional protein
complexes. However, it is important to note that Hsp104 does not
unfold natively folded proteins. Regardless, it will be important
to continue to engineer protein-remodeling factors with desired
traits, such as enhanced substrate specificity. New approaches
to develop small-molecule modulators of protein-remodeling
systems, as well as the engineering of tailored protein-remodeling
systems, will prove invaluable in our efforts to rewire and restore
the proteostasis network and thus combat neurodegenerative
disease.
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As the population is aging, the incidence of age-related neurodegenerative

diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of

neurodegenerative diseases is characterized by the presence of protein aggregates

of disease specific proteins in the brain of patients. Under certain conditions these

disease proteins can undergo structural rearrangements resulting in misfolded proteins

that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells

have different mechanisms to deal with this protein aggregation, where the molecular

chaperone machinery constitutes the first line of defense against misfolded proteins.

Proteins that cannot be refolded are subjected to degradation and compartmentalization

processes. Amyloid formation has traditionally been described as responsible for

the proteotoxicity associated with different neurodegenerative disorders. Several

mechanisms have been suggested to explain such toxicity, including the sequestration

of key proteins and the overload of the protein quality control system. Here, we review

different aspects of the involvement of amyloid-forming proteins in disease, mechanisms

of toxicity, structural features, and biological functions of amyloids, as well as the cellular

mechanisms that modulate and regulate protein aggregation, including the presence of

enhancers and suppressors of aggregation, and how aging impacts the functioning of

these mechanisms, with special attention to the molecular chaperones.

Keywords: neurodegeneration, protein aggregation, amyloid, protein quality control, SERF

INTRODUCTION

The process of aging is defined as a time-dependent functional decline eventually resulting in an
increased vulnerability to death (reviewed in López-Otín et al., 2013). Gaining knowledge about
the molecular events that occur in the cell during aging is important in order to understand
the disease process of age-related diseases. Some neurodegenerative diseases, including Alzheimer
(AD), Parkinson (PD), and Huntingtin disease (HD), share as hallmark the appearance of protein
aggregates with fibrillary amyloid-like structures in the brain. These amyloid fibrils are composed of
aggregation-prone proteins, such as mutant huntingtin (HTT) in Huntington disease, α-synuclein
in Parkinson disease, and amyloid-beta (Aβ) in Alzheimer disease (Scherzinger et al., 1999; Chiti
and Dobson, 2006; Goedert and Spillantini, 2006; See Table 1 for a list of aggregation-prone
proteins involved in neurodegenerative diseases). The role of these aggregates in disease is not fully
understood: the most prevalent hypothesis is that aggregation intermediates—single or complexes
of aggregation-prone proteins—are toxic to cells and that the aggregation process represents a
cellular protectionmechanism against these toxic intermediates (Lansbury and Lashuel, 2006; Hartl
and Hayer-Hartl, 2009).
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TABLE 1 | Neurodegenerative diseases associated with protein aggregation.

Identified disease genes Protein that aggregates Location of

aggregates

Affected brain region

Alzheimer disease (AD) APP (Chartier-Harlin et al., 1991; Goate

et al., 1991; Murrell et al., 1991)

Amyloid-beta, Tau Extracellular Cortex and Hippocampus

PS1 (Sherrington et al., 1995) Intracellular

PS2 (Levy-Lahad et al., 1995; Rogaev,

1995)

Huntington disease (HD) HD (Hess et al., 2016) Huntingtin Intracellular Striatum

Parkinson disease (PD) SNCA (Polymeropoulos et al., 1997) Alpha synuclein Intracellular Substantia Nigra

Parkin (Kitada et al., 1998)

PINK1 (Valente et al., 2001)

DJ1 (Bonifati et al., 2003)

LRRK (Zimprich et al., 2004) e.a.

Dementia with Lewy bodies (DLB) SNCA (Higuchi et al., 1998) Alpha synuclein Intracellular Cortex and hippocampus

SNCB (Ohtake et al., 2004)

Frontotemporal dementia (FTA) MAPT (Wilhelmsen et al., 1994) Tau Intracellular Frontal and temporal cortex

Prion disease (PrD) PRNP (Oesch et al., 1985) Prion protein Extracellular Brain and spinal cord

Amyotrophic lateral sclerosis

(ALS)

SOD1 (Rosen et al., 1993) SOD, FUS, TDP-43 Intracellular Upper and lower Motor neurons

FUS (Kwiatkowski et al., 2009)

C9orf72 (DeJesus-Hernandez et al., 2011;

Renton et al., 2011) e.a.

The familial forms of many neurodegenerative diseases
appear to involve toxic gain-of-function mutations in disease-
specific proteins that increase their misfolding and aggregation
properties. The resulting misbalance in protein homeostasis
can speed up the process of amyloid formation, thereby often
provoking an early-onset of several neurodegenerative disorders.

In this review, we address the involvement of aggregation-
prone proteins in the development of different age-related
disease. We describe how different cellular regulators impact on
protein aggregation and how they are affected by aging, with
special focus on the molecular chaperone machinery and other
pathways involved in maintaining protein homeostasis. We also
discuss different mechanisms that may underlie the toxicity of

Abbreviations: Aβ, amyloid-beta; AD, Alzheimer disease; ALS, amyotrophic

lateral sclerosis; APP, amyloid precursor protein; APR, aggregation prone region;

ATTR, transthyretin amyloidosis; CMA, chaperone mediated autophagy; CJD,

Creutzfeldt-Jakob disease; CPEB, cytoplasmic polyadenylation element-binding

protein; DLB, dementia with Lewy bodies; ER, endoplasmic reticulum; FTD,

frontal temporal dementia; HD, Huntington disease; HSF-1, heat shock factor 1;

HSP, heat shock protein; HTT, huntingtin; IAPP, islet amyloid polypeptide; IIS,

insulin/insulin-like growth factor 1 signaling; IPOD, insoluble protein deposit;

JUNQ, juxtanuclear quality control compartments; LLPS, liquid-liquid phase

separation; MOAG-4, modifier of aggregation 4; NPC, nuclear pore complex;

PD, Parkinson disease; PolyQ, polyglutamine; PQC, protein quality control; PrD,

prion disease; PrP, prion protein; RNP, ribonucleoprotein; SAA, serum amyloid

protein; SERF, small EDKR rich factor; UPR, unfolded protein response; UPS,

ubiquitin-proteasome system.

amyloid-forming proteins and we highlight some new findings
in the amyloid field.

CELLULAR REGULATORS OF PROTEIN
AGGREGATION

Protein Quality Control
Cells have a protein quality control (PQC) system to maintain
protein homeostasis. Preserving protein homeostasis involves the
coordinated action of several pathways that regulate biogenesis,
stabilization, correct folding, trafficking, and degradation of
proteins, with the overall goal to prevent the accumulation of
misfolded proteins and to maintain the integrity of the proteome.

Chaperones
One of the cellular mechanisms that copes with misfolded
proteins is the chaperone machinery. A molecular chaperone
is defined as a protein that interacts with, stabilizes or assists
another protein to gain its native and functionally active
conformation without being present in the final structure (Ellis,
1987). Many members of the chaperone protein family are
referred to as heat shock proteins (HSP), as they are upregulated
during stress conditions such as heat shock (Ellis and Hartl,
1999; Kim et al., 2013). In addition to folding of misfolded
proteins, molecular chaperones are also involved in a wide
range of biological processes such as the folding of newly
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synthesized proteins, transport of proteins across membranes,
macromolecular-complex assembly or protein degradation and
activation of signal transduction routes (Kim et al., 2013; Kakkar
et al., 2014). Under the denomination of “molecular chaperones”
there are a variability of proteins that have been classified
into five different families according to sequence homology,
common functional domains or subcellular localization: the
HSP100s, the HSP90s, the HSP70/HSP110, HSP60/CCTs, and
the a-crystallin-containing domain generally called the “small
HSPs” (Lindquist and Craig, 1988; Sharma and Priya, 2016).
Typically, molecular chaperones recognize exposed hydrophobic
domains in unfolded or misfolded proteins, preventing their self-
association and aggregation (Hartl et al., 2011; Kim et al., 2013).
The regulation of chaperones can be divided into three categories,
(1) constitutively expressed, (2) induced upon stress, and (3)
constitutively expressed and induced upon stress (Morimoto,
2008). Under normal conditions the HSP levels match the
overall level of protein synthesis, but during stress when mature
proteins are unfolded the chaperone machinery is challenged
and the expression of specific HSPs increases (Kakkar et al.,
2014).

Next to their function under normal cellular conditions,
chaperones play an important part during neurodegeneration
when there is an overload of the PQC system by unfolded
proteins (Kim et al., 2013; Kakkar et al., 2014; Lindberg
et al., 2015). Each neurodegenerative disease is associated
with a different subset of HSPs that can positively influence
the overload of unfolded proteins (Kakkar et al., 2014). One
example is the molecular chaperone DNAJB6b that can suppress
polyglutamine (polyQ) aggregation and toxicity in a cell model
for polyQ diseases (Hageman et al., 2010; Gillis et al., 2013),
and suppress the primary nucleation step by a direct protein-
protein interaction with polyQ proteins (Månsson et al., 2014b)
and Aβ42 (Månsson et al., 2014a). Overexpression of DNAJB6
in a mouse model for HD results in reduction of the disease
symptoms and increase life span (Kakkar et al., 2016). In PD,
the overexpression of HSP70 can prevent α-synclein-induced cell
death in yeast, Drosophila and mouse models of this disease
(Auluck and Bonini, 2002; Klucken et al., 2004; Flower et al.,
2005; Sharma and Priya, 2016). HSP70 has been shown to
bind prefibrillar species of α-synclein and to inhibit the fibril
formation (Dedmon et al., 2005). There is also a role for
molecular chaperones in AD, where the overexpression of heat
shock factor 1 (HSF-1), main regulator of HSPs expression, in
an AD mouse model diminished soluble Aβ levels (Pierce et al.,
2013), and multiple HSPs alleviated Tau toxicity in cells (Kakkar
et al., 2014).

Additionally to the inhibition of protein aggregation of
misfolded proteins, a disaggregase activity has been described
for some molecular chaperones that can solubilize aggregated
proteins (Glover and Lindquist, 1998; Tyedmers et al., 2010;
Winkler et al., 2012). In bacteria, yeast, fungi and plants the
HSP100 disaggregases are highly conserved (Tyedmers et al.,
2010; Torrente and Shorter, 2013). In yeast, HSP104 collaborates
with the other HSPs, to effectively disaggregate and reactivate
proteins trapped in disordered aggregates (Glover and Lindquist,
1998; Shorter, 2011; Torrente and Shorter, 2013; Lindberg et al.,

2015). Metazoans entirely lack HSP100 disaggregases in the
cell, however, it has recently shown that in mammalians the
disaggregase function is performed by the HSPH (Hsp110)
family in cooperation with the HSP70-40 machine (Rampelt
et al., 2012; Gao et al., 2015; Nillegoda and Bukau, 2015). This
machinery has been shown to fragmentize and depolarize large
α-synclein fibrils within minutes into smaller fibrils, oligomers
and monomeric α-synclein in an ATP-dependent fashion (Gao
et al., 2015).

Chaperones are also involved in other pathways of PQC. As
discussed below they can mediate the degradation of misfolded
proteins or their sequestration in cellular compartments.

Together, this shows the important direct role chaperones play
in the formation of amyloids and thereby making chaperones an
interesting therapeutic target for neurodegenerative diseases.

Protein Degradation
Protein degradation is another key mechanism to deal with
misfolded proteins. Three pathways have been described, i.e., the
ubiquitin (Ub)-proteasome system (UPS), chaperone mediated
autophagy (CMA), and macroautophagy (Ciechanover, 2006;
Ciechanover and Kwon, 2015). Soluble misfolded proteins are
degraded by the UPS, a system that is dependent on a cascade
of three enzymes E1, E2, and E3 ligase that conjugate ubiquitin to
the misfolded proteins. The ubiquitinated protein is transported
by molecular chaperones to the proteolytic system, where the
protein is unfolded and passed through the narrow chamber of
the proteasome that cleaves it into short peptides (Ciechanover
et al., 2000). The CMA degrades proteins that expose KFERQ-
like regions, these regions are recognized by the chaperone heat-
shock cognate 70 (Hsc70) and delivered to the lysosomes and
degraded by lysosomal hydrolases into amino acids (Kiffin et al.,
2004; Rothenberg et al., 2010). Protein aggregates or proteins
that escape the first two degradation pathways are directed
to macroautophagy, a degradation system where substrates are
segregated into autophagosomes which in turn are fused with
lysosomes for degradation into amino acids (Koga and Cuervo,
2011). The proteins involved in neurodegenerative disease can
rapidly aggregate and can thereby escape degradation when
they are still soluble, the aggregates, and intermediate forms are
partly resistant to the known degradation pathways (reviewed in
Ciechanover and Kwon, 2015).

Unfolded Protein Response
In the endoplasmic reticulum (ER), the unfolded protein
response (UPR), induced during periods of cellular and ER
stress, aims to reduce unfolded protein load, and restore
protein homeostasis by translational repression. ER stress can
be the result of numerous conditions, including amino acid
deprivation, viral replication and the presence of unfolded
proteins, resulting in activation of the UPR. The UPR has three
pathways activated through kinases, (1) protein kinase RNA
(PKR)-like ER kinase (PERK), (2) inositol-requiring enzyme 1
(IRE1), and (3) activating transcription factor 6 (ATF6; Halliday
and Mallucci, 2015). These kinases are kept in their inactive
state by the binding immunoglobulin protein (BiP), during ER
stress this protein binds to exposed hydrophobic domains of
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unfolded proteins and thereby allowing activation of these factors
(Gething, 1999). In neurodegenerative diseases markers of the
UPR, like PERK-P and eIF2α-P, have been reported in the brain
of patients with neurodegenerative disease and in mouse models
of neurodegeneration (Hetz and Mollereau, 2014; Scheper and
Hoozemans, 2015).

Protein Compartmentalization
In the cell, misfolded proteins can be sequestered in distinct
protein quality control compartments by chaperones and sorting
factors. These compartments function as temporary storage until
the protein can be refolded or degraded by the proteasome.
Different compartments have been described in the literature
that sequester different kind of misfolded proteins at various
conditions, these include JUNQ, IPOD, Q-body, and aggresome
(Sontag et al., 2014). Insoluble proteins are sequestered into
insoluble protein deposit (IPOD) compartments that are located
near the periphery of the cell (Kaganovich et al., 2008; Specht
et al., 2011). If the proteasome is impaired these insoluble
proteins can also be sequestered in aggresomes (Johnston et al.,
1998), whereas, soluble misfolded proteins can be sequestered
into ER-anchored structures named Q-bodies (Escusa-Toret
et al., 2013). However, when the proteasome is impaired
soluble ubiquitinatedmisfolded proteins are sequestered into ER-
associated juxtanuclear quality control compartments (JUNQ)
compartments (Kaganovich et al., 2008; Specht et al., 2011).

The JUNQ and Q-bodies concentrate misfolded proteins in
distinct compartments together with chaperones and clearance
factors, which makes processing them easier and more efficient.
The IPOD and aggresomes are thought to protect the cell
from toxic misfolded species, they do however also contain
some disaggregases and autophagy related proteins and might
therefore be recovered from these compartments (Kaganovich
et al., 2008; Specht et al., 2011).

Drivers of Amyloid Formation
Most studies on neurodegenerative diseases focus on either the
toxic mechanisms or on the PQC system as possible targets for
treatment. Only a few studies so far have focused directly on
modifiers of the protein aggregation pathway. One example is the
study that focused on a reduced insulin/insulin-like growth factor
1 signaling (IIS), which induces the assembly of Aβ into densely
packed and larger fibrillar structures (Cohen et al., 2009). The
exact mechanisms behind the formation of these tightly packed
amyloid structures by IIS signaling remains to be unraveled.

MOAG-4 (modifier of aggregation 4) was found in a forward
genetic screen using C. elegans models for neurodegenerative
diseases, as an enhancer of aggregation and toxicity of
several aggregation-prone disease proteins, including polyQ,
α-synuclein, and Aβ (van Ham et al., 2010). MOAG-4 is a
small protein of unknown function that is evolutionarily highly
conserved. It contains a 4F5 domain of unknown function and is
predicted to have a helix-loop-helix secondary structure. MOAG-
4 itself was excluded from the polyQ aggregates in the C. elegans
model. Based on biochemical experiments with worm extracts,
MOAG-4 has been suggested to act on the formation of a
compact aggregation intermediate. Furthermore, in vitro studies

with mutant HTT exon 1 and MOAG-4 show a direct increase in
aggregation (Unpublished data). Moreover, it was shown that the
effect on aggregation works independent from DAF-16, HSF-1,
and chaperones.

The human orthologs of MOAG-4 were found to be a two
small proteins with unknown function, i.e., Small EDKR Rich
Factor (SERF) 1A and 2. These two orhologs are 40% identical
and 54% similar to MOAG-4 (van Ham et al., 2010). It was
found that SERF1a (Falsone et al., 2012) is able to directly
drive the amyloid formation of mutant HTT exon 1 and alpha-
synuclein in an in vitro assay. It has been suggested that
SERF1a directly affects the amyloidogenesis of alpha-synuclein
by catalyzing the transition of an alpha-synuclein monomer into
a amyloid-nucleating species (Falsone et al., 2012). From cell
culture experiments we know that overexpression of SERF1a or
SERF2, together with mutant HTT exon 1 results in an increase
in toxicity and aggregation of the polyQ protein. Whereas, knock
down of SERF using siRNA results in reduced toxicity and
aggregation (van Ham et al., 2010).

PROTEIN HOMEOSTASIS IN AGING

Under normal conditions, the PQC can rapidly sense and correct
cellular disturbances, by e.g., activating stress-induced cellular
responses to restore the protein balance. During aging or when
stress becomes chronic, the cell is challenged to maintain proper
protein homeostasis (Figure 1; Koga et al., 2011; Labbadia and
Morimoto, 2015; Radwan et al., 2017). Eventually, this can lead
to chronic expression of misfolded and damaged proteins in
the cell that can result in the formation of protein aggregates.
The presence of aggregation-prone proteins contributes to the
development of age-related diseases (Chiti and Dobson, 2006;
Kakkar et al., 2014). The decline of protein homeostasis during
aging is a complex phenomenon that involves a combination of
different factors.

In line with the decreased protein homeostasis, there appears
to be an impairment of the upregulation of molecular chaperones
during aging (reviewed in Koga et al., 2011). This has been
reported for HSP70 in senescent fibroblasts and in different
tissues from different species, including monkeys (Fargnoli
et al., 1990; Pahlavani et al., 1995; Hall et al., 2000). The
importance to regulate the expression of HSPs is seen in flies
and worms, where upregulation of HSPs leads to increase
in lifespan (Walker et al., 2001; Hsu et al., 2003; Morley
and Morimoto, 2003). Furthermore, lymphocytes from human
centenarians show chaperone-preserved upregulation during
heat shock (Ambra et al., 2004). It has been proposed that
inability of the transcription factor HSF-1 to bind the chaperone
gene promoter could explain the failure of hsp70 to respond
to stress during aging (Ambra et al., 2004; Singh et al., 2006).
The functional decline of chaperones during aging also impairs
proper folding of proteins in the ER resulting in activation of the
UPR (reviwed in Taylor, 2016). Moreover, it has been shown that
the capacity of some elements of the UPR, like PERK or IRE-1
also decline with age (Paz Gavilán et al., 2006; Taylor and Dillin,
2013).
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FIGURE 1 | The aging cell. Important cellular processes are affected during aging. This will result in several cellular phenotypes, including the overload of the protein

quality control system, DNA damage, mitochondrial dysfunction, and ER stress, together resulting in vulnerability to cell death.

Since all major classes of molecular chaperones, with the
exception of the small HPSs, are ATPases it has been suggested
that the depletion of ATP levels during aging due tomitochondria
dysfunction would affect their activity (Kaushik and Cuervo,
2015; Yerbury et al., 2016). This is reflected by the repression
of ATP-dependent chaperones and the induction of ATP-
independent chaperones in the aging human brain (Brehme
et al., 2014). This may contribute to the decline of chaperoning
function during aging.

The activity of the degradation pathways of the PQC,
autophagy and the proteasome, are also reduced during aging
(reviewed in Koga et al., 2011 and Kaushik and Cuervo, 2015).
The proteasome decline is caused by a down-regulation or
deregulation of different proteasomal subunits and regulatory
factors (Keller et al., 2000; Ferrington et al., 2005). In autophagy,
fusion between the vesicles carrying the cytosolic cargo and
lysosomal compartments is severely impaired. The chaperone-
mediated autophagy is reduced due to progressively lower levels
of receptors at the lysosomal membrane with age (Cuervo and
Dice, 2000; Koga et al., 2011). Furthermore, a more active
proteasome has been found in fibroblasts from centenarians
(Chondrogianni et al., 2000; Koga et al., 2011) and reactivation
of the proteasome and/or autophagy pathways increases lifespan
of yeast, worms, and flies (Chondrogianni et al., 2015; Kaushik
and Cuervo, 2015; Madeo et al., 2015). Altogether, showing the
importance to remain a functioning PQC during aging.

MECHANISMS OF PROTEIN TOXICITY IN
NEURODEGENERATIVE DISEASES

Neuronal loss is one of the hallmarks of neurodegenerative
diseases, where the neurons that are vulnerable to disease
pathology differ for each disease. Initially it was thought that
the protein aggregates that are observed in post-mortem brain
material of patients were toxic (Davies et al., 1997; Kim
et al., 1999). But this view shifted toward the hypothesis that
the protein aggregates may actually be neuroprotective and
that intermediate species are toxic. Indeed, the presence of
diffuse protein resulted in higher toxicity compared to the
presence of protein aggregates only (Arrasate et al., 2004).
Furthermore, overexpression of HSF-1 in a cell model for HD
leads to fewer but larger aggregates and increased viability
(Pierce et al., 2010). The toxicity of intermediate species
may arise from the presence of hydrophobic groups on their
surface, that under normal physiological conditions would
not be accessible within the cellular environment (Campioni
et al., 2010). Accessible hydrophobicity in proteins can result
in inappropriate interactions with many functional cellular
components like the plasma membrane (Bucciantini et al.,
2012). Therefore, aggregation might be a mechanism to assist
in the clearance of misfolded proteins. In this regard, it has
been described that chaperones can supress the toxicity of the
oligomeric intermediate species by promoting the formation of
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larger aggregates (Lindberg et al., 2015). The question remains
why these intermediate species are toxic. Different mechanisms
have been suggested.

The increase of misfolded proteins during aging or disease
can interfere with the PQC system by overloading the system
(Figure 2), which in turn, can result in a propagation of
folding defects and eventually protein aggregation (Labbadia and
Morimoto, 2015). In polyQ worm models disruption of the PQC
system by the polyQ aggregates resulted in the loss of function
of several metastable proteins with destabilizing temperature-
sensitive mutations, which also enhanced the aggregation of
polyQ proteins (Gidalevitz et al., 2006). Furthermore, polyQ
aggregates also impair the ubiquitin-proteasome system in
cellular models for disease (Bence et al., 2001).

A “gain of function” mechanism is another form of cellular
toxicity. Due to misfolding, hydrophobic residues of the protein
can be located at the surface, permitting uncommon interactions
with a wide range of cellular targets (Figure 2; Stefani and
Dobson, 2003), including molecular chaperones (Park et al.,
2013). Using cytotoxic artificial β-sheet protein aggregates it
was found that the endogenous proteins that are sequestered
by these aggregates share many physicochemical properties,
including their relatively large size and enriched unstructured
regions. Many of these proteins play essential roles in the

several pathways, including translation, chromatin structure, and
cytoskeleton. A loss of these proteins might results in a collapse of
essential cellular functions and consequently may induce toxicity
(Olzscha et al., 2011).

Recently, an effect of protein aggregation on the nuclear pore
complex (NPC) was described. The GGGGCC (G4C2)repeat
expansion in the non-coding region of the C9orf72 protein
is the most common cause of sporadic and familial forms
of amyotrophic lateral sclerosis (ALS) and frontal temporal
dementia (FTD), (DeJesus-Hernandez et al., 2011; Renton et al.,
2011). However, the exact mechanism of how the C9orf72
mutations contribute to the disease remains elusive. Two
hypotheses are proposed, the first describes that the repeat
containing transcripts can form intra-nuclear RNA foci that
sequester various RNA-binding proteins (Donnelly et al., 2013),
and the second describes the production of toxic dipeptide
repeat proteins (DPRs; Ash et al., 2013). New insights have
shown that mutant C9orf72 RNA affects nuclear transport of
proteins and RNA (Figure 2). Loss of NPC proteins were found
to enhance G4C2 repeat toxicity in fly and human cell models
for disease (Freibaum et al., 2015; Zhang et al., 2015). Moreover,
a screen to identify modifiers of toxicity by PR50DPR identified
an enrichment in nucleocytoplasmic transport proteins, in which
the six strongest hits were members of the karyopherin family of

FIGURE 2 | Toxic mechanism of misfolded proteins. Important cellular processes are affected as a result of misfolded proteins, including overload of the protein

quality control (PQC) system, sequestering of functional proteins, disruption of the nuclear core complex and dysfunction of other cellular organelles as mitochondria,

ER stress, and trans-Golgi network (the figure focuses on only one intermediate species, other species can be toxic too).
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nuclear-import proteins (Jovičić et al., 2015). Furthermore, it was
shown that nuclear localization of artificial β-sheet-, HTT-, and
TDP-43 aggregates reduces toxicity in comparison to cytoplasmic
aggregates. Because the cytoplasmic aggregates interfere with
both import and export of proteins through the nuclear pore
complex, they specifically affect proteins containing disordered
and low complexity domains including many nuclear transport
factors (Woerner et al., 2016). These studies show that reduced
nuclear transport, as a result of protein aggregates, results in
cellular toxicity. However, a better understanding of the exact
mechanism behind these observations could provide us with a
new therapeutic target to restore nuclear transport. In addition,
several studies described toxic effects of protein aggregates on the
functioning of other cellular organelles as the ER (Duennwald
and Lindquist, 2008), mitochondrion (Rhein et al., 2009), and the
trans-Golgi network (Cooper et al., 2006). Identifying different
toxic consequences of misfolded proteins gives possibilities for
treatments options.

Another mechanism of toxicity has been proposed in the
literature, in which oligomeric aggregation intermediates bind
and disrupt lipid membranes (Lashuel and Lansbury, 2006).
Annular oligomeric structures have been identified for different
amyloidogenic proteins, such as Aβ (Lashuel et al., 2002a,b), α-
synuclein (Lashuel et al., 2002b,c), PrP (Sokolowski et al., 2003),
or polyQ proteins (Wacker et al., 2004). These are pore-like
structures that can embed into lipid bilayers and permeabilize
membranes allowing the transit of small molecules. Diseases-
associated mutations in Aβ (E22G) and α-synuclein (A53T
and A30P) promote the formation of amyloid pores (Lashuel
et al., 2002b,c; Lashuel and Lansbury, 2006). This is known
as the amyloid pore hypothesis (Lashuel and Lansbury, 2006;
Stöckl et al., 2013). Alternatively, a different explanation has
been proposed for the permeabilization of membranes by α-
synuclein, in which oligomers of this protein would not form
pores, but they rather decrease the lipid order by incorporating
between the tightly packed lipids, facilitating the diffusion of
molecules through the membranes (Stöckl et al., 2013). Whether
this alternative hypothesis can also be applicable to other
amyloidgenic proteins still needs to be revealed. Furthermore,
recent studies on non-pathological (Oropesa-Nuñez et al., 2016)
and pathological proteins (Di Pasquale et al., 2010; Fukunaga
et al., 2012; Mahul-Mellier et al., 2015) show that negatively
charged ganglioside rich lipid rafts mediate toxicity of the
prefibrillar oligomers.

Probably the toxicity of the disease proteins cannot be
wholly explained by one of these mechanisms but rather by a
combination of them.

Gliosis
Neuroinflammation or gliosis, a reactive change of the glial cells
in response to damage, is a common pathological feature in
neurodegenerative diseases like AD and HD (Perry et al., 2010).
However, whether inflammation plays an active or consequential
role in disease is still a topic for debate. Glial cells are divided
into two major classes: microglia and macroglia, where microglia
are the phagocytes that are ubiquitously distributed in the brain
and are mobilized after injury, disease, or infection. Pathological

triggers, such as neuronal death or protein aggregates, activate
the migration of microglia, which accumulate at the site of
injury. This migration and recruitment is followed by the
initiation of an innate immune response, which is a non-
specific reaction resulting in the release of pro-inflammatory
chemo- and cytokines (Gordon and Taylor, 2005; Hanisch and
Kettenmann, 2007; Perry et al., 2010). The importance of glial
cells in neurodegeneration is supported by the association found
in genome wide association studies of immune receptors like
TREM2 (Guerreiro et al., 2013; Jonsson et al., 2013) and CD33
(Griciuc et al., 2013) in AD. Gliosis has also been described for
other neurodegenerative diseases as PD (Gerhard et al., 2006) and
HD (Shin et al., 2005), but as the main aggregates are intracellular
the response from microglia is not as strong as in AD.

Spreading
Prion diseases (PrD) are a group of fatal neurodegenerative
disorders caused by infectious proteins called prions. In humans
most PrD can be identified under the name Creutzfeldt-
Jakob disease (CJD), and in animals under the name bovine
spongiform encephalopathy (BSE; Collinge, 2001). In PrD,
the cellular form of the prion protein (PrPC) undergoes a
conformational conversion into a β-sheet enriched isoform
denoted as PrPSc. This occurs when the PrPSc comes in
contact with the mostly α-helical PrPC, as a result the PrPC

is misfolded into pathogenic PrPSc, which in turn can become
a template for conversion of other PrPC. The PrPSc form
can form protein aggregates, prion deposits, often present as
amyloid structures, which can propagate and possibly cause
cell death (Collinge and Clarke, 2007; Collinge, 2016). PrDs
are well-known to be able to spread throughout the brain via
infectious prions. By the conversion of the protein into “seeds”
due to stress, mutations or when PrPC comes in contact with
PrPSc, it incites a chain reaction of PrP misfolding (Halliday
et al., 2014). Prions are out of scope for this review, although
they are one of the most relevant topics in neurodegenerative
diseases especially due to their infectivity. This “prion-like”
character of other neurodegenerative disease proteins has been
proposed.

Spreading of Aβ in AD was first observed in a marmoset
injected with brain extract from AD patients or AD affected
marmosets, leading to AD pathology 6–10 years after injection
(Baker et al., 1993; Ridley et al., 2006). Injection with only
cerebrospinal fluid of AD patients or synthetic Aβ did not result
in AD pathology in the marmoset (Ridley et al., 2006). As studies
with marmosets are limited, these studies were replicated in
mice to further investigate the spreading of Aβ. Brain extracts
from AD patients or transgenic mouse models can initiate
AD pathology in the brains of transgenic mice overexpressing
the Swedish-mutated human APP (Meyer-Luehmann et al.,
2006). Injection of synthetic human Aβ fibrils can induce AD
pathology in mice, however the potency is lower than with
AD brain extract (Stöhr et al., 2012). In mice depleted of
amyloid-beta precursor protein (APP) there is no spreading
of the disease, however if you take brain extracts of APP
depleted mice inoculated with Aβ seeds, this can lead to
propagation after second transmission for up to 180 days,
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suggesting extreme longevity of the Aβ “seeds” (Ye et al., 2015).
Infectiousness of AD in humans has not yet been proven,
though possible spreading of Aβ in humans was observed in
two individual studies. The first study described four individuals
with infectious Creutzfeldt-Jakob disease (CJD) who also showed
moderate to severe AD pathology, they were injected as children
with human growth hormone from cadaveric pituitary glands
that contained PrP (Jaunmuktane et al., 2015). Another study
observed infectious CJD in patients who received a dura mater
transplant as a result of brain trauma or tumor, in five patients
AD pathology was observed (Frontzek et al., 2016). As the
patients in both studies did not carry pathogenic AD mutations
or risk alleles and were too young to develop sporadic AD,
the studies suggested that the treatment samples contained Aβ

peptides.
Spreading of the PD pathology was first suggested when

healthy dopaminergic neurons injected into the brain of
PD patients showed Lewy body formation 11–16 years after
transplantation (Kordower et al., 2008; Li et al., 2008). Follow-
up studies in PD mouse models show that injection of brain
extracts of PD transgenic mice results in the formation of
PD pathology and increased mortality (Luk et al., 2012b;
Mougenot et al., 2012). Furthermore, injection of synthetic α-
synuclein (Luk et al., 2012a) or dementia with Lewy bodies
(DLB) patient brain extract (Masuda-Suzukake et al., 2013)
also results in PD pathology and neuronal death in healthy
mice.

PROTEIN TOXICITY IN
NON-NEURODEGENERATIVE DISEASES

Protein aggregation is also involved in non-neurodegenerative
diseases, and can be distinguish into two groups: non-
neuropathic systemic amyloidosis and non-neuropathic localized
disease (reviewed in Chiti and Dobson, 2006; Figure 3). Similar
to neurodegenerative diseases they arise from the failure of
a specific protein or peptide to acquire its native functional
conformational state resulting in aggregation of the protein.

In non-neuropathic localized disease, the protein aggregation
occurs in a single cell type or tissue other than the brain.
The most well-known disease is type II diabetes, an age-
related disease in which the glucose homeostasis is disturbed
due to pancreatic islet β-cell dysfunction and death caused by
aggregation of the islet amyloid polypeptide (IAPP; Abedini and
Schmidt, 2013; Westermark and Westermark, 2013; Knowles
et al., 2014). The amyloid deposits in the islet β-cells were first
described over 100 years ago (Opie, 1901), and are a common
feature in the pancreas of post-mortem material of type II
diabetes patients. Pancreatic β-cells normally secrete insulin to
regulate glucose uptake and metabolism in the body, mature
IAPP is stored in the insulin secretory granule and co-secreted
with insulin (Marzban et al., 2005). The exact role of IAPP is
still unknown, although many functions have been suggested
including regulation of glucose homeostasis (Abedini and
Schmidt, 2013). The human IAPP is extremely amyloidogenic
in vitro, and amyloids accumulate in the pancreatic islet in the

majority of the type II diabetes patients (Westermark et al., 1989;
Betsholtz et al., 1990).

Another common non-neuropathic localized disease is
cataracts, a common form of blindness affecting more than
50% of the individuals over the age of 70. Normally, the lens
can stay transparent throughout life, as there is no protein
turnover or synthesis. In cataracts soluble proteins of the lens
accumulate into amyloids, resulting in reduced transparency
and thus reduced sight. Thirty percent of the lens is made
up of the molecular chaperones αA-crystallin and αB-crystallin
that maintain the solubility of other lens proteins. However,
during aging damaged proteins accumulate which can lead to
aggregation of the crystalline proteins (Bloemendal et al., 2004).
Furthermore, the R120G mutation in αB-crystallin causes early
onset cataracts (Vicart et al., 1998; Perng et al., 1999).

The non-neuropathic systemic amyloidosis are rare diseases
caused by protein aggregation in multiple tissues (Falk et al.,
1997). Themost common non-neuropathic systemic amyloidosis
is AL amyloidosis, a mainly sporadic disease that is characterized
by aggregation of fragments of the misfolded monoclonal
immunoglobin light chains in various organs (Comenzo, 2006;
Chaulagain and Comenzo, 2013). The fragment can form
β-sheets that are prone to form amyloids. The protein is
produced by a plasma cell clone in the bone marrow and after
internalization it can cause severe organ dysfunction and failure.
The main organs affected by AL amyloidosis are the heart and
kidneys, however, also other organs such as the liver, nervous
system, and spleen can be affected (Falk et al., 1997; Comenzo,
2006). The treatment of the disease is aimed at eliminating the
plasma cell clone, but a delay in the diagnosis of the disease often
results in irreversible organ damage and thus poor prognoses
(Chaulagain and Comenzo, 2013). Two other common non-
neuropathic systemic amyloidosis are caused by transthyretin
amyloidosis (ATTR) and serum amyloid A protein (SAA), both
proteins are produced in the liver and affect various organs,
however in ATTR heart failure is most common whereas SAA
often results in renal failure (reviewed in Chiti and Dobson,
2006).

STRUCTURAL AND FUNCTIONAL
PROPERTIES OF AMYLOID

The first amyloid was observed and described in 1854 by Rudolph
Virchow for systemic amyloidosis (Sipe and Cohen, 2000). Since
then, many diseases have been associated with amyloids. The
proteins associated with protein aggregation diseases have no
obvious similarity in sequences, native structures, or function.
They do however, share characteristics in their amyloid state
as they can undergo structural rearrangements leading to the
formation of amyloid fibrils (Figure 4A). The amyloid fibrils have
a highly organized and stable structure composed of proteins
with a cross β-sheet structure oriented vertically to the fibril
axis. They appear under the electron microscope as unbranched
filamentous structures of just a few nanometers in diameter
while up to micrometers in length. The cross β-sheet structure
of amyloid fibrils provides a stable structure for the formation
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FIGURE 3 | Amyloids in health and disease. Amyloids are present throughout the body in health and diseases, in green examples of functional amyloids described

in the section is called “Functional Amyloid”. In red examples of amyloids resulted causing disease, the non-neuropathic systemic amyloidosis AL, ATT, and SAA are

located at the point where they are produced, they do however affect multiple organs as the heart and kidney.

of continuous arrangement of hydrogen bonds between fibrils,
eventually resulting in the formation of amyloids. The amyloid
structures can be characterized by their following properties:
insolubility to detergents like SDS and NP40, binding to specific
dyes such as Thioflavins and Congo Red and resistance to
proteases (reviewed in Chiti and Dobson, 2006). To learn more
about intermediate species of the aggregation process the kinetics
of aggregation can be studied in vitro. Using purified protein and
a amyloid dye in a test tube, three phases of aggregation can be
distinguished (Figure 4B). During the first lag phase there are
mainly protein monomers and oligomers, this is followed by a
rapid growth phase in which protein fibrils are formed, followed
by a plateau phase in which the reaction is ended due to depletion
of soluble proteins (Blanco et al., 2012).

The aggregation propensity of a protein is determined by
short aggregation prone regions (APR) that are generally buried
in the hydrophobic core of the protein. However, due to
misfolding or mutations, these regions can be exposed and
therefore self-assemble into aggregates. APRs are typically short
sequence segments between 5 and 15 amino acids with high
hydrophobicity, low net charge, and have a high tendency to
form β-sheet structures (Ventura et al., 2004; Esteras-Chopo

et al., 2005). Different algorithms have been generated to predict
protein aggregation propensity of proteins or the effect of disease
mutations, for example WALTZ an algorithm to determine
amyloid forming sequences (Maurer-Stroh et al., 2010) and
TANGO an algorithm that identifies the β-sheet regions of a
protein sequence (Fernandez-Escamilla et al., 2004). Disease
associated variants, not only related with neurodegenerative
diseases, but also for cancers and immune disorders, tend to
increase the predicted aggregation propensity of proteins (De
Baets et al., 2015).

Amyloid in Disease
Proteins or peptides of most neurodegenerative diseases are
intrinsically disordered in their free soluble form, like the Aβ

peptide in AD and α-synclein in PD (Chiti and Dobson, 2006,
2009). Mutations in these disease proteins can make the protein
even more prone to aggregate. For example, the A53T and A30P
mutation of α-synclein found in early onset PD, promotes the
acceleration of amyloid fibrils in vitro (Conway et al., 1998, 2000).

Furthermore, having too many copies of an aggregation-
prone protein itself can lead to disease by increasing protein
concentrations in the cell (Chiti and Dobson, 2006, 2009). This
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FIGURE 4 | Proposed mechanism for amyloid formation. (A) A misfolded protein can be refolded (1), degraded (2), or aggregated (3), the first step in the

aggregation pathway involves oligomers, followed by fibril formation around the fibril axis until the initial aggregates. (B) Schematic view of an in vitro assay with the

corresponding aggregation stages for each phase (C) formation of liquid droplets.

increase in protein concentration can switch the stability of the
soluble state toward the amyloid state. For examples trisomy
21 patients (Down’s syndrome) who have an extra copy of the
APP protein and a highly increased risk of developing early
onset AD (Wiseman et al., 2015). In addition, duplication or
triplication of the α-synuclein gene (SNCA) results in early onset
PD (Singleton et al., 2003), besides, the onset, progression, and
severity of the disease phenotype increases with the number
of copies of the SNCA gene (Chartier-Harlin et al., 2004). To
this end, also proteins that regulate expression levels of disease
proteins can cause or influence diseases, an example is the
RNA binding protein Pumilio1 that regulates the mRNA levels
of Ataxin1 RNA. Pumilio1 haploinsufficiency accelerates the
SCA1 disease progression in a mouse model for disease due
to increase of the Atxn1 mRNA and protein levels (Gennarino
et al., 2015). If protein levels strongly influence the toxicity and
disease phenotype this would suggests that lowering the protein
load could be a therapeutic strategy. This was shown in an AD
mouse model where the APP transgenes could be turned off
with a tet-off system, when the APP levels were halted there

was an arrest of the AD pathology without clearance of the
excising plaques (Jankowsky et al., 2005), resulting in a significant
effect on cognitive function (Fowler et al., 2014). Indicating
that the concentration of disease proteins influences the disease
progression, thereby affecting the development of disease.

That structural differences between amyloid “strains” can
influence disease phenotype was first described for PrD,
where isolated strains of PrP aggregates from different sources
propagated different in mice showing distinct incubation
times and patterns of neuropathology (Fraser and Dickinson,
1973). Furthermore, different human PrP strains have been
associated with differences in proteinase K digestion and
distinct phenotypes of neuropathology (reviewed in Collinge
and Clarke, 2007). More recently, investigation of two familial
human AD patients with different disease symptoms, showed a
structural difference in amyloid fibril structure (Lu et al., 2013).
Furthermore, Arctic and Swedisch familial AD patients brain
homogenate results in distinct disease phenotypes in transgenic
mice even after serial passage (Watts et al., 2014). Comparable
results were found for Tau, another aggregation-prone protein
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involved in AD. Injection of two distinct in vitro generated Tau
strains into transgenic mice resulted in distinct pathologies up
to three generations (Sanders et al., 2014). These studies suggest
that variations in the properties of amyloid fibrils could affect
disease pathology and symptoms. How these different strains are
formed and how they contribute to the disease pathology is still
unknown. It was however found that reduced IIS signaling in
the APP/PS1 AD mouse model induces the assembly of Aβ into
densely packed and larger fibrillar structures later in life, resulting
in reduced AD symptoms (Cohen et al., 2009). Suggesting that
altering the structure of the amyloid fibrils could be beneficial for
patients, as certain structures appear to bemore toxic than others.

Functional Amyloid
Amyloids structures are known to have biological functions
in Escherichia coli, silkworms, fungi, and mammals (Fowler
et al., 2007). One example in mammals is Pmel17 (Figure 3), a
highly aggregation-prone protein that forms functional amyloid
structures that are the main component of melanosome fibrils,
membrane-bound organelles in pigment cells that store and
synthesize melanin. Plem17 contains a partial repeat sequence
that is essential for amyloid formation that can only be formed
in the mildly acid pH of melanosomes (McGlinchey et al., 2009).
The exact function of Pmel17 in melanosomes is unknown,
although a role in protection against oxidative damage has
been suggested, as well as a role in concentrating melanins
to facilitate intra- and extracellular transport (Watt et al.,
2013).

More functional amyloids in mammals can be found in
hormone release, it was shown that certain hormones can be
stored in amyloid-like aggregates in the secretory granules of the
cell. These secretory granules have a β-sheet rich structure that
is Thioflavin S and Congo Red positive and are able to release
functional monomeric hormone structures upon dilution, and
show only moderately toxicity on cell cultures, possibly due to
their membrane-encapsulated state in the granules (Maji et al.,
2009).

Interestingly, the formation of amyloids has recently
been associated with long-term memory. The cytoplasmic
polyadenylation element-binding protein (CPEBs) is a regulator
of activity dependent synthesis in the synapse. The fly homolog
Orb2 (Majumdar et al., 2012) and mouse homolog CPEB3
(Fioriti et al., 2015) are present in the brain as a monomer
and SDS-resistant oligomer. Activation of the fly or mouse
brain results in increase of the oligomeric Orb2/CPEB3 species.
Selectively disrupting the oligomerization capacity of Orb2
by a genetic mutation resulted in long-term memory loss
in flies (Majumdar et al., 2012) and loss of CPEB3 in the
mouse brain resulted in impaired long term memory (Fioriti
et al., 2015). Orb2 alters protein composition of the synapse
by a mechanism in which the oligomeric Orb2 stimulates
translation by elongation and protection of poly(A) tail,
whereas the monomeric Orb2 does the contrary (Khan et al.,
2015).

These functional amyloids point toward the origin of amyloid-
prone sequences and their suppressors and enhancers. Even
though, these functional amyloids have not been linked to human

diseases, a functional role might be the case for the amyloid
domains of disease proteins with unknown functions. More
studies toward understanding the functionality of these amyloids
and the difference with the disease amyloids are required to have
a better understanding of why certain amyloids are toxic while
others are not.

Liquid Droplets/Liquid-to-Solid-Phase
Transition
It was recently found that proteins with prion-like domains
can form functional non-membrane-bound organelles like
ribonucleoprotein (RNP) bodies, that behave like liquid droplets
which can rapidly assemble and disassemble in a response to
changes in the cellular environment (Han et al., 2012; Kato et al.,
2012). The RNP bodies include processing bodies and stress
granules in the cytoplasm, and nucleoli, Cajal bodies and PML
bodies in the nucleus. Due to the dynamic structures of RNPs
there is free diffusion within the bodies and rapid exchange with
the external environment. Like in liquid-liquid phase separation
(LLPS) the RNP bodies exhibit liquid-like behaviors such as
wetting, dripping, and relaxation to spherical structures upon
fusion (Chong and Forman-Kay, 2016; Uversky, 2017). These
properties can facilitate their function, by allowing for high
concentration of molecular components that nonetheless remain
dynamic within the droplet. Interestingly many of the proteins
known to segregate into RNP bodies contain repetitive putatively
prion-like domains, that can reversibly transform from soluble
to a dynamic amyloid-like state (Kato et al., 2012). Furthermore,
dysregulation of these RNP bodies by RNA-binding proteins
have been associated with neurodegenerative diseases as ALS
(Ramaswami et al., 2013).

The link for these RNP bodies in disease was first found
for the FUS protein, mutations in the N-terminal prion-like
domain have been associated with ALS, and FTD. This protein
plays an important role in RNA processing and localizes to
both cytoplasmic RNP bodies and transcriptionally active nuclear
puncta, the prion-like domain is essential for forming these
liquid-like compartments (Shelkovnikova et al., 2014). The N-
terminus of FUS is structurally disordered both as a monomer
and in its liquid state (Burke et al., 2015). In vitro, these
droplets convert with time from a liquid to an aggregated state
(Figure 4C), and this conversion is accelerated by patient-derived
mutations (Patel et al., 2015). Furthermore, concentrated liquid
droplets increase the probability of aggregation events of RNA-
binding proteins in the RNP bodies in a concentration dependent
manner (Molliex et al., 2015). mRNA itself can drive its phase
transition of the disordered RNA binding-protein Whi3, and
thereby altering the droplet viscosity, dynamics, and propensity
to fuse. Suggesting that, mRNA contains biophysical properties
of phase-separated compartments. Like FUS droplets the Whi3
droplets mature over time and appear to be fibrillar (Zhang et al.,
2015).

This new line of research indicates another possible function
for prion-like domains of various proteins and the proteins it
interacts with. Furthermore, research to these RNP bodies shows
possible reasons why these proteins form amyloids. However,
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much is still unknown about the exact mechanisms of the
amyloid like domains and the RNP bodies that have to be
investigated.

CONCLUSION

Protein aggregation is a complex process influenced by many
factors, pathways, and mechanisms. Under the right conditions
any protein could form amyloid-like structures (Chiti and
Dobson, 2006). Although amyloids have been traditionally
related to diseases, they also have diverse functions in organisms
from bacteria to human that may underlie their nature.
Nevertheless, the toxicity of amyloid intermediate species
associated with disease makes protein aggregation a process that
has to be under tight control and regulation. In this context,
aging is a key risk factor due to the progressive decline of
protein homeostasis, which leads to increased protein misfolding
and aggregation. This can eventually result in the onset of age-
related diseases characterized by protein aggregation. Mutations
or duplications that lead to the appearance of aggregation-prone
proteins that are constitutively expressed in the cell, creating a
chronic stress situation, leads to an early onset of those diseases
due to the deregulation of the protein homeostasis balance.

As the human population becomes older, it is essential
to understand the processes underlying age-related diseases

that are the result of protein aggregation and its associated
toxicity. This is a very broad research field, ranging from
biophysics to clinical trials. Every year discoveries are made
that involve the identification of factors affecting protein
aggregation. Examples include the discovery of modifiers of
protein aggregation such as MOAG-4/SERF, or the processes
where protein aggregation and amyloid structure are involved,
like RNA granules and liquid droplets formation. It can
be concluded that the overall knowledge of the aggregation
process is improving, which will allow for the development
of new and accurate treatments against aggregation-linked
diseases.
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Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to

inherited neuronal dysfunction and degeneration. The expansion size in all diseases

correlates with age at onset (AO) of disease and with polyQ protein aggregation,

indicating that the expanded polyQ stretch is the main driving force for the disease

onset. Interestingly, there is marked interpatient variability in expansion thresholds for a

given disease. Between different polyQ diseases the repeat length vs. AO also indicates

the existence of modulatory effects on aggregation of the upstream and downstream

amino acid sequences flanking the Q expansion. This can be either due to intrinsic

modulation of aggregation by the flanking regions, or due to differential interaction with

other proteins, such as the components of the cellular protein quality control network.

Indeed, several lines of evidence suggest that molecular chaperones have impact on

the handling of different polyQ proteins. Here, we review factors differentially influencing

polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction

partners, cleavage of polyQ-containing proteins, and post-translational modifications,

with a special focus on the role of molecular chaperones. By discussing typical examples

of how these factors influence aggregation, we provide more insight on the variability

of AO between different diseases as well as within the same polyQ disorder, on the

molecular level.

Keywords: aggregation, Huntington’s disease, Machado-Joseph disease, molecular chaperones, polyglutamine

disease

INTRODUCTION

Polyglutaminopathies are a family of diseases characterized by CAG trinucleotide expansions in
the coding regions of at least nine unrelated genes, resulting in proteins with an abnormally
long polyglutamine (polyQ) stretch, which have a high aggregation propensity. PolyQ aggregates
can impede cellular protein homeostasis, loss of which is also observed in many other
neurodegenerative diseases (Soto, 2003). These mutant proteins lead to one recessive inherited,
X-linked spinal and bulbar muscular atrophy (SBMA), and eight dominantly inherited neuronal
dysfunctions, Huntington’s disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), and the
spinocerebellar ataxias (SCAs) type 1, 2, 3, 6, 7, and 17 (Margolis and Ross, 2001). All known
polyglutaminopathies show a strong inverse correlation between expansion size and age at onset
(AO) of the disease, with longer repeats significantly correlating with earlier onset of symptoms and
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higher aggregation proneness of the affected protein, indicating
that an expanded polyQ is tightly related to the diseases. There
are two main features that are striking in the association between
polyQ length and AO. First, there is marked variability between
polyQ diseases in expansion thresholds that determines the
pathogenicity, indicating that AO has only a partial dependence
on the polyQ stretches and their absolute lengths (Figure 1A).
Second, there is also CAG-length independent phenotypic
variation within a given polyQ disease (Figure 1B). Both these
findings imply that factors beyond the polyQ stretch are co-
determining disease onset (Ranum et al., 1994; DeStefano et al.,
1996; Hayes et al., 2000; Wexler et al., 2004; van de Warrenburg
et al., 2005; Kaltenbach et al., 2007; Branco et al., 2008; Lessing
and Bonini, 2008; Bettencourt et al., 2011; Tezenas du Montcel
et al., 2014; Bečanović et al., 2015). It was hypothesized that the
differential effects of distinct polyQ proteins with polyQ tracts
of similar lengths could be, at least in part, due to the sequences
flanking the polyQ expansion (Nozaki et al., 2001).

Here we discuss that, next to aggregation of the core
polyQ stretch, which is common to all polyglutaminopathies
(Figure 2A), the context around the cores can modulate
aggregation in several ways and may be linked to differential
handling of the protein quality control systems, including
molecular chaperones, the ubiquitin proteasome system,
and autophagy. These degradation processes, and their
relationship with the chaperone system, are of importance
and greatly influence the aggregation process (Rubinsztein,
2006). Certain chaperones act together with the protein
degradation machineries to effectively clear aggregation-prone
polypeptides, such as polyQ-containing proteins (Dekker et al.,
2015). The molecular details of these downstream events are
still unclear and will not be discussed here; instead we will
focus on the impact of molecular chaperones on the aggregation
process itself. Molecular chaperones are known to influence

FIGURE 1 | Age of onset of disease inversely correlates with the size of the expanded polyQ tract in all known polyQ diseases. (A) Correlation between

age of onset (AO) and CAG expansion size for all nine polyQ diseases identified so far. Circles depict mean AOs for a given expansion size based on multiple reported

cohorts of patients. Lines represent the fitted data according to an exponential decay model. (B) Age of onset of disease is not completely determined by the

expanded polyQ tract alone. Data on the variability of AO for a particular polyQ expansion size is shown as in (A) and was based on the large cohort of MJD/SCA3

patients reported by Saute and Jardim (2015). Circles represent single patients. Please refer to Supplementary File 1 for a complete list of references of the original

cohort descriptions. Note that graph (A,B) are not drawn to the same scale.

aggregation of polyQ proteins. This could either be directly
by preventing the polyQ stretch from aggregating or via the
flanking sequences. For only a few of the molecular chaperones
the direct interaction with the polyQ proteins has been shown,
although many chaperones are found to co-localize with polyQ
inclusions (Cummings et al., 1998; Kazemi-Esfarjani and Benzer,
2000; Schmidt et al., 2002; Helmlinger et al., 2004; Bilen and
Bonini, 2007; Hageman et al., 2010; Gao et al., 2011; Kakkar
et al., 2014; Matilla-Dueñas et al., 2014; Reis et al., 2016; Zhao
et al., 2016). However, co-localization of chaperones does not
provide information on their mode of interaction and does not
distinguish whether chaperones are truly interacting with the
polyQ protein, or whether the presence of chaperones in the
aggregates is a mere secondary effect due to a collapse of other
cellular components with the inclusions. In this review, we will
discuss: first, how polyQ tracts drive aggregation; second, how
their flanking sequences could directly affect the aggregation
proneness of the polyQ protein; and third, how polyQ proteins
can be modified, changed in conformation, or fragmented,
inducing aggregation (Figure 2B). We will not focus on the
function, or loss of function, of the affected polyQ proteins,
since this was so far not shown to be causative for disease, even
though the native function of the protein might be important
for normal cellular function. Furthermore, we will not go into
the discussion on the toxicity of aggregation. For instance, it is
still unclear whether the presence of aggregates contributes to
SCA2 pathology (Huynh et al., 2000), even though aggregates
are found in affected brain areas (Pang et al., 2002; Seidel
et al., 2016). Finally, we will highlight the role of chaperones in
the aggregation process and include only studies that provide
insight in direct interaction of chaperones with the polyQ
proteins. Rather than providing a complete overview, molecular
mechanisms of typical examples will be discussed, aiming at
providing general principles affecting polyQ aggregation on
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FIGURE 2 | Representation of pathogenic polyQ proteins and known modulating events associated with aggregation. (A) Schematic representation of the

nine disease-related polyglutamine proteins drawn to scale. In each case, a polyQ stretch of fixed length is depicted at the approximate position (red boxes). Red bars

on the right side of each protein show the smallest and largest number of glutamine repeats identified in patients of each polyQ disease to date. Numbers between

brackets represent polyQ expansion sizes that have been reported to behave as incomplete penetrance alleles. (B) Detailed representation of all nine polyQ proteins.

Domain organization is indicated. Known post-translational modifications associated with disease, caspase/calpain cleavage sites, and fragments identified are

indicated. For ataxin-3, the long isoform with 3 ubiquitin-interacting motifs is shown. Residues C14, H119, and N134 depict the catalytic triad of the deubiquitylase

activity of the Josephin domain. The CACNA1A locus encodes two proteins: α1A (full-length α1A) and α1ACT (C-terminal fragment of α1A) using a bicistronic mRNA

with a cryptic internal ribosomal entry site. The polyQ is found in both. Many studies report a C-terminal fragment which probably represents α1ACT. For the androgen

receptor, the only phosphorylation sites depicted are those with biochemical evidence of modulation of polyQ aggregation, cleavage and/or toxicity. Similarly, amino

acid sequences 23FQNLF27 and 55LLLL58 highlight motifs shown to influence polyQ behavior. For simplicity, most huntingtin cleavage products are omitted and only

the major N-terminal polyQ containing fragment is indicated. Amino acid numbering is based on Uniprot accession numbers P42858 (HTT), P54253 (ATXN1), Q99700

(ATXN2), P54252 (ATXN3), O00555 (CACNA1A), O15265 (ATXN7), P20226 (TBP), P54259 (ATN1), and P10275 (AR). However, for clarity, some residues

(Continued)
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FIGURE 2 | Continued

are numbered according to their original publication, which might differ from the numbering according to the reference protein sequence (due to the expanding nature

of polyQ proteins). AR, androgen receptor; ATN1, atrophin-1; ATXN1, ataxin-1; ATXN2, ataxin-2; ATXN3, ataxin-3; ATXN7, ataxin-7; AXH, ataxin-1/high-mobility group

box containing protein-1; CACNA1, α1A subunit of the P/Q-type or CaV2.1 voltage-gated calcium channel; Casp, caspase; DBD, DNA binding domain; HTT,

huntingtin; PolyQ, polyglutamine stretch; NTD/AF-1, amino-terminal domain/ activation function-1; LBD/AF-2, ligand-binding domain/ activation function-2; NES,

nuclear export signal; NLS, nuclear localization signal; HEAT, huntingtin/elongation factor 3/PR65/A subunit of protein phosphatase 2A/ lipid kinase TOR domain;

PRR, proline-rich region; N17, first 17 amino acids of huntingtin; TBP, TATA-binding protein (domain); UIM, ubiquitin-interacting motif; Ub-1/Ub2, ubiquitin-binding

sites; Lsm, Like RNA splicing domain Sm and Sm2; LsmAD, Like-Sm-associated domain; PAM2, poly (A)-binding protein interacting motif 2; ZnF, SCA7-like zinc

finger domain. For references to specific domains or post-translational modifications, please refer to Supplementary File 1.

the molecular level that may partially explain the individual
differences between patients and steer future studies.

AGGREGATION PROPERTIES OF THE
POLYQ STRETCH

Aggregates formed by polyQ stretches contain identical β-
strand-based cores. Already in 1994, Perutz et al. described the
ability of elongated polyQ stretches to form β-sheets (Perutz
et al., 1994). Like many other amyloidogenic proteins (Sawaya
et al., 2007), the polyQ chains can form β-sheets that are
connected through interdigitating extended side chains and
contain intramolecular β-hairpins (Hoop et al., 2016). Formation
of β-hairpins allows for hydrogen bonding between the stacked
side chains, providing a strong interaction (Hoop et al., 2016).
The β-hairpins play an important role in the aggregation process.
Q-stretches with a range up to 25Q are not able to form stable
β-hairpins and therefore are not able to induce aggregation,
except when mutations known to enhance β-hairpin formation
are introduced (Kar et al., 2011, 2013). It is hypothesized that
longer polyQ stretches can form more stable intramolecular β-
hairpins, providing a critical monomeric nucleus necessary for
inducing aggregation (Kar et al., 2011). The high affinity of the
β-sheets affects interactions between molecules and might not
only do so for the same pathogenic polyQ protein, but also
as a secondary effect for other endogenous polyQ containing
proteins (Nóbrega et al., 2015). For example, the endogenous,
non-expanded TATA-box binding protein (TBP) was found to
sequester into aggregates formed by other pathogenic polyQ
proteins, such as huntingtin (HTT; Perez et al., 1998; Kim et al.,
2002; Matsumoto et al., 2006). Similarly, inclusions containing
ataxin-2 (ATXN2), ataxin-3 (ATXN3) and TBP are observed in
SCA1, SCA2, SCA3, andDRPLA (Uchihara et al., 2001).Whether
these secondary co-aggregating events contribute to disease is
currently not clear (Kampinga and Bergink, 2016).

The crucial role for the formation of β-hairpins in the
aggregation process is nicely illustrated by findings on missense
CAG to CAT mutations. These mutations, coding for histidine,
were found in the CAG-repeat in ATXN1, leading to insertion
of one or more other amino acids and interrupting the Q-stretch
(Sobczak and Krzyzosiak, 2004; Jayaraman et al., 2009; Menon
et al., 2013). The AO is in these cases inversely correlated to the
longer uninterrupted CAG stretch which, rather than a specific
interruption pattern, dictates also the aggregation propensity in
vitro (Menon et al., 2013). The structure of the polyQ-stretches
is not changed because of the histidine-interruptions but the

polyQ aggregation rates are decreased due to the Q-length
dependent ability of the protein to form a critical nucleus to
initiate aggregation (Jayaraman et al., 2009; Menon et al., 2013).

From all the different intracellular chaperones, so far the
only ones described that could act on the β-sheets or β-
hairpins formed by the Q-stretch are DNAJB6 and its closest
homolog DNAJB8, two members of the DNAJ family of Hsp70
co-chaperones. In a screen for suppressors of aggregation
of huntingtin (HTT-119Q) both DNAJB6 and DNAJB8 were
superior suppressors of aggregation with a specificity for the
polyQ tract, since they were similarly effective in the suppression
of aggregation of HTT, ATXN3, the androgen receptor (AR), and
polyQ alone (Hageman et al., 2010; Månsson et al., 2013). These
DNAJ chaperones have a unique region containing 18 residues
of the polar hydroxyl group amino acids serine and threonine,
that is exposed on one face of the DNAJB6 monomer where it
is predicted to interact with the hydrogen bonds in the polyQ
β-hairpins (Månsson et al., 2013; Kakkar et al., 2016).

AGGREGATION INITIATION BY FLANKING
DOMAINS IN POLYQ-CONTAINING
PROTEINS

A longer Q-stretch not only has a higher aggregation propensity,
but also affects the conformation of other parts of the protein.
This can cause exposure of other regions in the proteins that have
aggregation-prone properties by themselves (Ellisdon et al., 2006;
Kelley et al., 2009; Tam et al., 2009). The intrinsic aggregation
propensity leads to a two-stage aggregation mechanism (Ellisdon
et al., 2006) in which the first aggregation step is actually thought
to be a nucleation step of the non-polyQ-containing flanking
domains. The formed nucleus can speed up the aggregation of
the polyQ-stretch, which is then the second aggregation step.
Aggregation of the flanking region and the polyQ stretch may
enhance each other in a positive feedback loop accelerating
aggregation and AO (Ellisdon et al., 2007; Saunders et al., 2011).
The most striking examples of this process are known for HTT
and ATXN3.

HTT is a relatively large protein with the polyQ stretch located
in the first exon of the protein. The polyQ tract in HTT is
flanked by a 17 amino acid long N-terminal (N17) domain and
a polyproline domain on its C-terminus (Dehay and Bertolotti,
2006; Rockabrand et al., 2007; Figure 2). The N17 domain is
highly soluble by itself and has an intrinsic tendency to collapse
into an aggregation-resistant compact coil state (Thakur et al.,
2009; Crick et al., 2013). When the Q-stretch is expanded,
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the N17 domain undergoes a conformational change going
into a more α-helical extended state (Tam et al., 2009; Thakur
et al., 2009; Sivanandam et al., 2011), exposing a hydrophobic
face through which self-association is induced (Kelley et al.,
2009; Liebman and Meredith, 2010). Self-association provides
an initial nucleus that increases the local concentration of the
adjacent polyQ, promoting polyQ aggregation (Kelley et al., 2009;
Liebman and Meredith, 2010; Sahoo et al., 2016). Aggregation of
HTT can be prevented by modifying the hydrophobic face of the
α-helix (Tam et al., 2009), confirming the important role of the
N17 domain in initial aggregation. Moreover, synthetic polyQ
peptides lacking the N17 domain show much slower aggregation
kinetics (Månsson et al., 2013; Monsellier et al., 2015; Sahoo et al.,
2016).

The exposed hydrophobic face on the N17 domain was
identified as an interaction site for several chaperones amongst
which the chaperonin TRiC, specifically the subunit CCT1 (Tam
et al., 2006). CCT1 can suppress HTT aggregation by binding via
its apical substrate-binding domains to the hydrophobic motifs
in the N17, preventing the initial step of aggregation (Spiess
et al., 2006; Tam et al., 2009; Shahmoradian et al., 2013; Sahl
et al., 2015). The constitutively expressed Hsp70 (Hsc70/HSPA8)
was found to co-localize, like many other Hsp70s including the
prokaryotic DnaK and yeast Ssa1 (Jana et al., 2000; Muchowski
et al., 2000; Novoselova et al., 2005; Tam et al., 2006), and
interact with the N17 domain of HTT via its client protein
binding domain (Monsellier et al., 2015). HSPA8 is not able
to delay aggregation of a Q-stretch lacking flanking sequences
(Månsson et al., 2013) and acts, similar to CCT1, by disrupting
the interaction between N17 domains of HTT, slowing down
aggregate formation (Monsellier et al., 2015).

Another example of a polyQ protein that undergoes a
similar two-stage aggregation mechanism is ATXN3, causative
for SCA3. ATXN3 is involved in proteostasis by editing specific
ubiquitin sidechains that are targeting proteins to the proteasome
(Kuhlbrodt et al., 2011). ATXN3 has an unstructured C-
terminus containing the polyQ expansion and multiple ubiquitin
interacting motifs (UIMs), and an N-terminus containing the
Josephin domain (JD), which is a structured monomeric domain
that folds into a globular conformation (Chow et al., 2004;
Masino et al., 2004; Figure 2). The JD is the catalytic domain
responsible for the deubiquitinating (DUB) properties of ATXN3
and has a high α-helical content forming a groove with two
additional UIMs for recognition of the polyubiquitin chains of
different linkages, and positioning them for cleavage (Masino
et al., 2004; Nicastro et al., 2009, 2010). Sequence motifs
on the helices in the groove are functionally important for
binding conjugated ubiquitin but are predicted to be highly
amyloidogenic and therefore responsible for the aggregation
propensity of the JD itself (Masino et al., 2011; Lupton et al.,
2015). Indeed, in vitro the isolated JD shows fibrillogenic
behavior even under physiological conditions (Masino et al.,
2004, 2011; Ellisdon et al., 2006), but when ubiquitin is added,
the aggregation propensity of ATXN3 is lowered (Masino
et al., 2011). Expansion of the polyQ stretch influences the
conformation of the JD in such a way that the molecular
mobility of two α-helices is increased and the amyloidogenic

motif gets more exposed (Lupton et al., 2015; Scarff et al., 2015),
providing a nucleus through which the first aggregation step of
ATXN3 is initiated. This can in turn accelerate aggregation of
the polyQ stretch (Gales et al., 2005; Ellisdon et al., 2007). In
a dedicated screen, several modifiers of ATXN3 were identified
that all fell into the canonical chaperone and ubiquitin pathways
(Bilen and Bonini, 2007). Amongst the chaperones was alphaB-
crystallin (HSPB5), which was found to interact with the JD
in the distorted ubiquitin interacting groove, possibly masking
the amyloidogenic motives, and having an effect on the initial
nucleation step of ATXN3 (Robertson et al., 2010).

Flanking regions can also suppress aggregation of the polyQ
stretch. For example, the proline-rich flanking domain (C38)
in HTT has an opposite effect compared to the N17 domain.
The C38 is also highly soluble, but actually lowers the rate of
aggregation (Bhattacharyya et al., 2006; Dehay and Bertolotti,
2006; Duennwald et al., 2006; Crick et al., 2013). Other polyQ-
containing proteins apart from HTT, also have a proline-rich
region adjacent to the Q-stretch, like TBP, AR, and ATXN2 (Kim,
2014). It is tempting to speculate that these regions confer an
evolutionary benefit and co-evolved with Q stretches to modulate
their aggregation.

BINDING PARTNERS THAT CAN
INFLUENCE AGGREGATION

As we have now seen, the opening up of physiologically
needed hydrophobic, aggregation-prone, motifs in non-polyQ-
containing parts of the protein, can lead to the unwanted
formation of an initial nucleus for aggregation. These motifs
are normally buried or in interaction with binding partners (or
substrates), like ubiquitin in the case of ATXN3, which prevents
exposure of the hydrophobic regions (Masino et al., 2011).
Binding partners of polyQ-containing proteins can influence the
aggregation to a great extent, also for ataxin-1 (ATXN1). ATXN1
is the protein that underlies SCA1, and has a Q-stretch in the
N-terminal part of the protein and an AXH domain in the C-
terminus (Figure 2). Just like the JD in ATXN3, the AXH domain
in ATXN1 has aggregation-prone properties that are needed for
its normal functioning, but therefore can be detrimental in the
presence of an expanded polyQ stretch (De Chiara et al., 2013a).
The AXH domain is responsible for transcriptional repression,
RNA-binding activity, and is necessary for interacting with other
proteins, mostly transcriptional regulators. For the domain to
be able to bind all its different substrates, it has a remarkable
conformational plasticity (Chen et al., 2004; De Chiara et al.,
2013b; Deriu et al., 2016). Moreover, the AXH domain is
responsible for ATXN1 self-association. Multimerization can
bring polyQ stretches together, associated with aggregation and
amyloid formation (De Chiara et al., 2005b, 2013a; Lasagna-
Reeves et al., 2015). In vivo ATXN1 forms oligomers and
interestingly the interaction partner transcriptional repressor
Capicua (CIC) is found in these complexes (Lam et al., 2006;
Lasagna-Reeves et al., 2015). The interaction of CIC with the
AXH domain of ATXN1 stabilizes toxic soluble prefibrillar
oligomers of ATXN1. When CIC levels are reduced, ATXN1
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forms more fibrillar oligomers that are less toxic (Lasagna-Reeves
et al., 2015). Also when the AXH domain is deleted, aggregate
formation is reduced (De Chiara et al., 2005a,b). There are
chaperones known to prevent ATXN1 aggregation and reduce
toxicity, but the exact mechanism of action of the chaperones on
ATXN1 is not known (Cummings et al., 1998; Zhai et al., 2008).
A possible mechanism of action could be that chaperones bind to
the AXH domain of ATXN1 to prevent complex formation or to
prevent CIC from binding.

CLEAVAGE/FRAGMENTATION

Fragmented polyQ proteins have been found in patients and
proteolytic processing of polyQ proteins into smaller, highly
aggregation-prone fragments that are more toxic than the full-
length protein has been described for most polyQ diseases,
HD (Mangiarini et al., 1996; Martindale et al., 1998), DRPLA
(Igarashi et al., 1998;Wellington et al., 1998), SBMA (Butler et al.,
1998; Kobayashi et al., 1998; Wellington et al., 1998), and SCAs
(Ikeda et al., 1996; Paulson et al., 1997; Zander et al., 2001; Goti
et al., 2004; Helmlinger et al., 2004; Kordasiewicz et al., 2006;
Matos et al., 2016a; Figure 2B). However, for SCA1, SCA2, and
SCA17 the evidence for the presence of fragments is limited
(Matos et al., 2016a). Proteases play a key role in the generation of
these polyQ fragments, and inhibition of proteases or mutation
of their cleavage sites can modulate the disease AO (Ona et al.,
1999; Chen et al., 2000; Graham et al., 2006; Aharony et al.,
2015). Importantly, expression of these fragments containing the
polyQ stretch can already give rise to aggregation and the disease
phenotype (Ikeda et al., 1996), although it is still not entirely
clear why the polyQ fragments display enhanced toxicity when
compared to their respective full-length proteins. Cleavage may
lead to changes in aggregation propensity, conformation of the
protein, localization, and molecular interactions (Matos et al.,
2016a). For SBMA, it has been reported that a conformational
change exposing the polyQ tract is already sufficient to drive
aggregation (Heine et al., 2015) and cleavage might expose the
polyQ stretch in a similar way as such a conformational change
does. Protein domains that would otherwise prevent, or enhance,
the aggregation may be removed, exposing the Q-stretch itself for
aggregation. Finally, recognition sites and binding of molecular
chaperones could be changed, exemplifying once more the
importance of regions outside the polyQ tract in the modulation
of aggregation.

For ATXN3, a cleavage product containing the C-terminal
fragment from amino acid 221 with the 71Q expansion was
found in mice showing the disease phenotype, but rarely in mice
not showing the phenotype (Goti et al., 2004). This polypeptide
was also found in SCA3 patients (Goti et al., 2004) indicating
that fragmentation of the polyQ protein ATXN3 has a strong
correlation with disease. Interestingly, while full-length ATXN3
with an expanded polyQ was mostly non-aggregating, co-
expression with truncated ATXN3 makes the full-length protein
co-localize with the truncated version in perinuclear aggregates
(Paulson et al., 1997). More putative cleavage sites in ATXN3
were identified (Haacke et al., 2006; Colomer Gould et al., 2007)

and it was shown that caspases are not the sole contributors to the
fragmentation of ATXN3, but also the activity of calpains, such as
calpain-2, is involved (Simões et al., 2012; Hübener et al., 2013).
ATXN3 cleavage and translocation to the nucleus, and thus also
aggregation, can be prevented by inhibiting calpains through
overexpression of calpastatin in mice (Simões et al., 2012).
Conversely, knocking down calpastatin worsened aggregation
(Hübener et al., 2013). These data clearly show that under non-
stressed conditions in vivo, fragmentation is both required and
sufficient for aggregation of polyQ containing ATXN3. Similar
data has been found for HTT. In almost all studies on HD,
a fragment containing the first exon of HTT with the polyQ
stretch is being used, since this fragment already gives rise to
the HD phenotype. Toxic N-terminal fragments are found to be
generated through cleavage by caspases, both in animal models
and in patients (Wellington et al., 2002; Sawa et al., 2005; Graham
et al., 2006; Maglione et al., 2006). Like in SCA3, fragmentation
of HTT is crucial for disease progression, since the HD disease
phenotype can be rescued by either mutating the cleavage site of
caspase-6 in exon 13 (Graham et al., 2006), genetically ablating
caspase-6 (Wong et al., 2015), or pharmacologically inhibiting
caspases 1, 3, or 6 (Ona et al., 1999; Chen et al., 2000; Aharony
et al., 2015). We have already discussed the ability of certain
chaperones to bind to the N17 domain, which is present in the
cleaved fragments.

POST-TRANSLATIONAL MODIFICATIONS

Post translational modifications (PTMs) like phosphorylation,
ubiquitination, and SUMOylation, can affect the aggregation
propensity of many polyQ proteins (Humbert et al., 2001; Steffan
et al., 2004; Luo et al., 2005; Warby et al., 2005; Menon et al.,
2012; Matos et al., 2016b; Figure 2). The transient nature of
the PTMs usually indicates differential regulation of proteins
and they can provide an interesting extra layer of modulation,
possibly influencing all of the above-mentioned features of
polyQ aggregation. PTMs can create alternative binding surfaces,
affecting the affinity to binding partners like proteases and
chaperones, and can lead to conformational changes to expose
the Q-stretch. Therefore, either increased or decreased PTMs are
associated with aggregation.

For most of the polyQ proteins there are several residues
known to be modified (see Figure 2B for PTMs that impact
aggregation). For ATXN3 six phosphorylation sites have been
described, in the catalytic JD and in the UIMs (Fei et al.,
2007; Mueller et al., 2009; Matos et al., 2016b; Figure 2).
Phosphorylation of serine (S)340 and S352 in the third UIM did
not change aggregation propensity, but shifted the localization of
the aggregates from the cytoplasm to the nucleus (Mueller et al.,
2009). Phosphorylation of S256 in the second UIM was shown
to inhibit the formation of large insoluble polyQ complexes
(Fei et al., 2007), and phosphorylation of S12 in the JD also
reduces aggregation (Matos et al., 2016b). The protective effect
of constitutive phosphorylation of S12 might be dependent on its
close proximity to the catalytic sites in the JD, causing hindrance
of the intramolecular aggregation. Phosphorylation of HTT on
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S421 (Humbert et al., 2001) and S434 (Luo et al., 2005), leads to
a decrease in polyQ aggregation due to a reduction in caspase-
mediated cleavage thus preventing the formation of fragments
(Luo et al., 2005;Warby et al., 2009). For ATXN1, S776 is themost
studied phosphorylation site since it leads to reduced aggregate
formation (Emamian et al., 2003; Orr, 2012). Another interesting
PTM on ATXN1 is ubiquitination of K589 in the AXH domain.
Mutating this residue leads to reduced degradation and, hence,
more aggregation of ATXN1 (Kang et al., 2015), suggesting that
PTMsmay also affect the degradation of polyQ proteins resulting
in a higher concentration of proteins at risk for aggregation.

Chaperone-dependent degradation of still soluble polyQ
proteins could therefore be another important aspect in
ameliorating disease. Interestingly, the co-chaperone CHIP (C-
terminus of Hsp70-interacting protein), an E3 ligase that can
interact with and modulate Hsp70 activity (Ballinger et al., 1999;
Scheufler et al., 2000), has been implicated as a modulator in
many polyQ diseases (Jana et al., 2005; Choi et al., 2007; Gao et al.,
2011). CHIP interacts with ATXN1 via the phosphorylated S776
and the phospho-dead S776A mutation reduced this interaction.
The CHIP-ATXN1 interaction is likely mediated via Hsp70, since
the tetratricopeptide repeat (TPR) domain of CHIP, with which
it interacts with Hsp70, is needed for the interaction and for
promotion of ATXN1 degradation (Choi et al., 2007). A similar
model of CHIP andHsp70 interaction withHTT andATXN3was
proposed, although no single modified residue was identified as a
recognition site (Jana et al., 2005).

Members of DNAJ family of Hsp70 co-chaperones were also
shown to play a role in the PTM dependent degradation of
polyQ proteins, like in ATXN3 (Gao et al., 2011). DNAJB1 was
identified to suppress aggregate formation of ATXN3 (Chai et al.,
1999), but aggregation of the S256A mutant of ATXN3 could
not be prevented by DNAJB1 (Fei et al., 2007), it is still unclear
whether DNAJB1 has preferential affinity for phosphorylated
ATXN3. Interestingly, Hsp70 can prevent S256A aggregation (Fei
et al., 2007). Next to DNAJB1, DNAJB2 was found to suppress
polyQ protein aggregation via two UIMs that were shown to be
crucial for its interaction with K63-linked ubiquitination of HTT
(Labbadia et al., 2012). Intriguingly, all the PTMs onHTT are less
present in polyQ-expanded HTT, especially in the regions in the
brain that are mostly affected, abolishing the possible protective
effect of the modifications (Luo et al., 2005; Warby et al., 2005;
Aiken et al., 2009). Currently it is unclear whether the drop in
modification is causal or a consequence of aggregation.

PERSPECTIVES

The expanded polyQ stretches in the different disease-associated
proteins are the determining factor of disease onset and
progression in all of the polyglutaminopathies. Above a certain
threshold, Q-stretches are prone to aggregate. However, more
often than not, the Q-stretch and its aggregation propensities
are modulated by secondary events that we categorized here;
flanking regions, which have modulating capacity due to intrinsic
stability issues, binding of partners (including chaperones),
modification by PTMs, and cleavage of the Q-stretch. The

examples of molecular interactions described, clearly indicate
that polyQ protein aggregation is a multifactorial and likely
multistep process that not always has to go through the same
sequence of events toward aggregate formation. For example, the
intrinsic fibrillogenic behavior of the JD and cleavage of ATXN3
(leading to a fragment not containing the JD) can both trigger
aggregation independently. It could very well be that initial
aggregation can be triggered via different mechanisms leading
to secondary events that stimulate aggregation further. Thus, in
vivo aggregation of the JD might stimulate ATXN3 cleavage and,
vice versa, cleavage might destabilize the JD domain resulting in
a fast forward feedback loop of aggregation. Modulating events,
together with the unique expression pattern and level of each
polyQ protein, could explain the variation in AO between the
nine diseases.

Moreover, the modulating events acting on the flanking
regions might also explain the variation of AO among patients
with a similar Q length within a given polyQ disease. By
combining information on Q length (CAG repeat), expression
levels of the chaperone DNAJB6, which modulates Q aggregation
directly, and the expression levels of chaperones that act
on the disease-specific flanking regions, with the PTM and
fragmentation status, perhaps a better predication of AO
could be made. A strategy targeting chaperones acting on the
Q-stretch with those acting on the flanking regions might
provide a synergistic approach for delaying AO, benefiting
individuals diagnosed with an expanded polyQ tract. There
is little information on the factors influencing progression of
disease after onset and it would also be of interest to know
whether progression of disease is influenced by the same factors
that modulate aggregation propensity. If so, these could be used
as a therapeutic modality as well.
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Amyloid fibrils are physiologically insoluble biophysically specific β-sheet rich structures

formed by the aggregation of misfolded proteins. In vivo tissue amyloid formation is

responsible for more than 30 different disease states in humans and other mammals.

One of these, Alzheimer’s disease (AD), is the most common form of human dementia

for which there is currently no definitive treatment. Amyloid fibril formation by the amyloid

β-peptide (Aβ) is considered to be an underlying cause of AD, and strategies designed to

reduce Aβ production and/or its toxic effects are being extensively investigated in both

laboratory and clinical settings. Transthyretin (TTR) and proteins containing a BRICHOS

domain are etiologically associated with specific amyloid diseases in the CNS and other

organs. Nonetheless, it has been observed that TTR and BRICHOS structures are

efficient inhibitors of Aβ fibril formation and toxicity in vitro and in vivo, raising the possibility

that some amyloidogenic proteins, or their precursors, possess properties that may be

harnessed for combating AD and other amyloidoses. Herein, we review properties of

TTR and the BRICHOS domain and discuss how their abilities to interfere with amyloid

formation may be employed in the development of novel treatments for AD.

Keywords: transthyretin, BRICHOS, Alzheimer’s disease, amyloidosis, neurodegeneration, protein-protein

interactions, chaperones

INTRODUCTION

The amyloidoses are a set of human diseases (and their animal models) in which the precursors,
synthesized as soluble proteins, aggregate and become insoluble under physiologic conditions. They
ultimately form ultrastructural non-branching fibrils 10 nm in diameter with a characteristic cross-
β sheet structure on x-ray diffraction analysis (Glenner, 1980). In tissues the fibrillar aggregates
are seen as extracellular plaque-like structures in the affected organs, which bind the dye Congo
red displaying green birefringence under polarized light (Linke, 2006). Amorphous pre-fibrillar or
“off-pathway” aggregates may be present in the same tissues. Thus far 36 proteins have been noted
to be associated with local or systemic amyloid deposition (Sipe et al., 2016).

In recent years with the ability to make large amounts of recombinant proteins from virtually
any source, it has been noted that many proteins unrelated to disease will form fibrils under
amyloid forming conditions and generate oligomeric species that are cytotoxic in vitro (Bucciantini
et al., 2002). In mammalian cells several examples of physiologically functional amyloids have been
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described (Fowler et al., 2005; Maji et al., 2009). Approximately
∼0.2% of all human proteins (36/20,000) form disease associated
or functional amyloids. Further, in prokaryotes amyloid
structures function as critical elements in biofilm formation
(Blanco et al., 2012). One explanation for the apparent propensity
of only some proteins to be fibrillogenic in vivo is that potentially
amyloidogenic protein domains are “self-chaperoned” in the
context of their intact native conformations. Perhaps evolution
has recognized both the functional usefulness of sequences that
can lead to amyloid formation and the risk of aggregation in
vivo and embedded them in structures that do not allow the
aggregation prone domains to form the homotypic interactions
(“stearic zippers”) required for fibrillogenesis under physiologic
conditions (Goldschmidt et al., 2010). Alternatively it may be
that all proteins have the capacity to form amyloid under the
appropriate conditions with those conditions rarely found in
biology (Dobson, 1999). In eukaryotes, apart from so-called
“normal” amyloids, it is rare for wild type proteins to form
amyloid in vivo unless they undergo some modification, e.g.,
cleavage, as in the case of the Aβ protein precursor (AβPP)
of Alzheimer’s disease (AD) or the serum amyloid A (SAA)
protein precursor in inflammation associated amyloidosis (Haass
and Selkoe, 1993; Kluve-Beckerman et al., 2002). More likely
is the occurrence of variants encoded by a mutation in the
germline gene, as is the case with transthyretin (TTR) and
other precursors responsible for human autosomal dominant
hereditary amyloidoses (Rowczenio et al., 2014). It has also
been argued that evolution has resulted in cells/organisms
constraining the synthesis of some potentially amyloidogenic
molecules to ensure that quantitatively they do not exceed the
critical concentrations sufficient to nucleate the aggregation
process in the presence of adequate cellular chaperone activity
(Tartaglia et al., 2007).

In humans, while many of the amyloidoses are systemic in
distribution, a disproportionate number are represented in the
neurodegenerative diseases associated with aging. The prototype
is AD, a disorder characterized by progressive memory loss
and behavioral changes. Current thinking, based on genetic,
biochemical and in vivo observations, favors the notion that
cleavage fragments of the normal single pass transmembrane
molecule AβPP, i.e., Aβ1–38–43, which are aggregation prone,
form oligomers, which can be shown to be cytotoxic in tissue
culture and synaptotoxic in hippocampal slices (Selkoe and
Hardy, 2016). It is not yet clear if the toxic oligomers are on
the same folding pathway as the fibrils found in the Congophilic
deposits in the brain or whether the fibrils are a less toxic form
of aggregate (Wu et al., 2013). The sequence of AβPP cleavage
followed by aggregation of Aβ fragments is causal in the rare
autosomal dominant forms of AD and is likely to participate
in the pathogenesis of the sporadic disease, but may not be
the sole etiology in the latter. In both forms there appears to
be a multiplicity of contemporaneous or downstream events
involving other cell types (microglia, astrocytes) and proteins,
particularly Tau, which contribute to the development of the
characteristic dementia.

During the last decade studies in transgenic models of human
Aβ deposition have shown that many human genes and the

silencing of a number of mouse genes may have profound
impacts on the pathogenesis of the AD-like changes seen in the
murine models and have suggested roles for these molecules
in inhibiting or facilitating the process of amyloidogenesis in
vivo. The salutary effects of two such genes (TTR and ITMB2)
were quite unexpected since by themselves both protein products
were clearly amyloidogenic and responsible for distinct forms of
clinically relevant human amyloidosis.

Wild type and mutant forms of human TTR cause a spectrum
of human systemic amyloid syndromes including Familial
Amyloidotic Cardiomyopathy (FAC), Familial Amyloidotic
Polyneuropathy (FAP) and Senile Systemic Amyloidosis
(ATTRwt). Mutant forms of ITM2B, encoding the BRICHOS
(see below) domain containing Bri2 protein are etiologic in
Familial British Dementia and Familial Danish Dementia, while
mutations in the gene (SFTPC) encoding another protein with
a BRICHOS domain, lung surfactant C precursor (proSP-C),
cause interstitial lung disease (ILD) with pulmonary amyloid
deposits. We will discuss the available information describing the
biologic and biophysical findings that are apparently involved in
the prevention of one form of amyloid, i.e., that formed by the
Aβ protein seen in the plaques in human AD, by BRICHOS and
TTR, molecules that are direct precursors of other distinct forms
of human amyloidosis and what this may mean in the universe
of protein-protein interactions in complex organisms.

BRICHOS STRUCTURE

The BRICHOS domain is found in several different precursor
proteins. In proSP-C and Bri2 these precursors also contain
segments that are amyloidogenic (Figure 1). The transmembrane
(TM) part of the mature lung surfactant protein C (SP-C) is
an archetypical discordant α-helix composed of a long poly-
Val segment, i.e., the most β-sheet prone sequence possible
(Johansson et al., 1994). As expected from the predicted β-
sheet structure, native SP-C can convert into amyloid fibrils
in vitro (Gustafsson et al., 1999), and expression of the SP-C part
only, i.e., without the rest of proSP-C (including the BRICHOS
domain) in transgenic mice generates severe SP-C aggregation
and toxicity (Conkright et al., 2002). As predicted from the high
α-helix propensity of Leu, poly-Val to poly-Leu replacements
result in a non-aggregating and functional SP-C analog, (SP-
CLeu), which, like SP-C, inserts in surfactant phospholipid
membranes, but unlike SP-C, does not form amyloid fibrils, since
its α-helical conformation is thermodynamically stable (Kallberg
et al., 2001). A synthetic surfactant, presently in clinical trials, has
been developed based on synthetic SP-CLeu, (Johansson et al.,
2003), demonstrating that modulation of β-sheet and amyloid
propensity is a feasible means of designing stable proteins for
biologic drug development.

Under physiological conditions, the poly-Val segment in
native (pro) SP-C is intrinsically prone to form toxic β-sheet
aggregates and amyloid fibrils, and we have proposed that the
BRICHOS domain present in proSP-C prevents the poly-Val
segment from folding into β-sheet aggregates, and promotes
formation of a stable α-helix (Conkright et al., 2002; Johansson
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FIGURE 1 | Architecture of BRICHOS containing proteins. All proteins

that contain a BRICHOS domain have a similar modular structure with a short

N-terminal part in the cytosol, a transmembrane (TM) region, a linker region,

the BRICHOS domain, and in most cases, a C-terminal region. ProSP-C is

depicted in the upper part of the figure and is the only example where the

BRICHOS domain is not followed by a C-terminal region. All other BRICHOS

containing proteins, depicted in the lower part of the figure, (i.e., the Bri family,

chondromodulin, and tenomodulin, gastrokines, and group C, see Hedlund

et al., 2009) contain a C-terminal region of varying length. In spite of their

similar architectures, only the amino acid sequence of the BRICHOS domain is

conserved between BRICHOS containing proteins, while the other parts are

structurally unrelated. The lightning symbols denote the regions that are

amyloidogenic, the TM region in proSP-C and the C-terminal region in Bri2,

see text for details.

et al., 2006). Intriguingly, mutations in the proSP-C BRICHOS
domain result in amyloid formation of SP-C and ILD with lung
fibrosis, apparently the first described amyloid disease that occurs
as result of a mutation in an intramolecular chaperone domain
(Willander et al., 2012a).

The BRICHOS domain is found in species ranging from
humans to simple marine organisms. It is small (about 100
amino acid residues), has a unique fold and is present in a
diverse set of pro-proteins that generate bioactive peptides after
proteolytic processing (Hedlund et al., 2009). BRICHOS has
been identified in 10 human protein families and the name is
derived from BRI2, CHOndromodulin-I and Surfactant protein
C (SP-C). The proteins containing a BRICHOS domain have a
wide range of functions, and disease associations, including ILD
with amyloid deposits (proSP-C), dementia (Bri2), and cancer
(Chondromodulin-I) (Sánchez-Pulido et al., 2002; Willander
et al., 2012a). There are low pairwise sequence identities between
different BRICHOS domain families (∼15–25%) but all have
similar predicted secondary structures. The precursor proteins
have a common overall architecture, and are predicted to be
type II TM proteins (Sánchez-Pulido et al., 2002; Hedlund et al.,
2009; Knight et al., 2013) with the N-terminus located in the
cytosol (Figure 1). All BRICHOS containing proproteins have
a cytosolic segment, a hydrophobic TM region, a linker region
followed by a BRICHOS domain, and a C-terminal region except
proSP-C, in which there is no C-terminal region following the
BRICHOS domain. All the proproteins except proSP-C have a
segment with high β-sheet propensity, the C-terminal region.
In proSP-C the high β-sheet propensity is found in the TM
region (Sánchez-Pulido et al., 2002; Hedlund et al., 2009). In all
BRICHOS containing pro-proteins the regions that are prone

to form β-sheets are well conserved, and are likely to be the
BRICHOS client regions that are destined to aggregate in the
absence of functional BRICHOS.

The only BRICHOS crystal structure thus far determined is
that of proSP-C BRICHOS (pdb code 2yad). It has a unique fold
composed of five β-strands arranged in a mixed anti-parallel and
parallel fashion, and two flanking α-helices (Figure 2). Helix 1
packs against face A of the β-sheet and helix 2 packs against
the opposite side of the β-sheet, face B. Molecular dynamic
simulations suggest that helix 1 can translocate exposing the
underlying face A of the β-sheet. This implicates face A as the
binding site for possible substrates (Willander et al., 2012a), but
direct evidence of binding of any peptide to face A has not been
found. Homologymodels of the human BRICHOS domains from
each family showed that they are compatible with the proSP-
C BRICHOS structure with respect to the secondary structural
elements, but the loop regions are highly variable among different
BRICHOS domains. An interesting observation was that face A of
the proSP-C BRICHOS contains mainly hydrophobic residues,
which are apparently complementary to its hydrophobic target
sequence—the TM region of proSP-C. Bri2, and Bri3 BRICHOS
instead have a face A that contains several residues with charged
side-chains, and the proposed Bri2 and Bri3 BRICHOS target
sequences, i.e., the respective Bri2 and Bri3 C-terminal regions
that are prone to form β-sheets, contain multiple charged
residues. This suggests that the properties of face A reflect its
binding preferences in the respective BRICHOS domain (Knight
et al., 2013). There are only three strictly conserved residues in
all BRICHOS domains, two cysteines and one aspartic acid. The
cysteines form a disulfide bridge in proSP-C BRICHOS and their
strict conservation suggests that a corresponding disulfide bridge
is present in all BRICHOS domains.

TRANSTHYRETIN (TTR) STRUCTURE

In contrast to BRICHOS, which represents a domain common
to a diverse family of proteins, some of which are known to
be amyloidogenic, TTR is a unique human protein synthesized
in hepatocytes, retinal pigment epithelial cells, choroid plexus
epithelium, pancreatic α-cells, Schwann cells, and neurons under
some conditions. It is the major carrier of retinol binding
protein (RBP) charged with retinol in serum and a minor
carrier of the thyroid hormone precursor thyroxine (T4) prior
to its conversion to the physiologically more active tri-iodo—
thyronine (T3) by tissue deiodinases (Buxbaum, 2007). Only a
small fraction of the circulating TTR carries T4 while 25–50% is
loaded with RBP-retinol. However, in cerebrospinal fluid choroid
plexus synthesized TTR is the major T4 carrier. TTR is a non-
disulfide linked homo-tetramer in which the mature polypeptide
monomer, after cleavage of the leader sequence, contains 127
amino acids. The tetramer is thermodynamically and kinetically
quite stable with a Ka = 1.1 × 1024M−3(Hurshman et al., 2004).
The crystal structure shows a twofold axis of symmetry (Blake
et al., 1978). It is assembled as a dimer of dimers around a central
channel, which is primarily hydrophobic and contains the two
T4 binding sites (Figure 3). T4 binding in the first site induces an
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allosteric change that makes the second site less accessible to its
natural ligand (Neumann et al., 2001). While different portions
of the protein bind T4 and RBP, both stabilize the tetrameric
structure reducing its tendency to dissociate (White and Kelly,
2001).

proSP-C BRICHOS IN INTERSTITIAL LUNG
DISEASE

The proSP-C gene (SFTPC) is located on chromosome 8 and
contains 6 exons encoding a 197 amino acid protein. The protein
is expressed exclusively in the secretory pathway of pulmonary
alveolar type II cells (Mulugeta and Beers, 2006). Proteolytic
cleavage of proSP-C eventually generates the 35-residue SP-C,
consisting of an α-helical poly-Val TM region plus an 8-residue
N-terminal segment located outside the membrane (Johansson
et al., 1994, 1995). The SP-C peptide is secreted as part of lung
surfactant, into the alveolar space (Beers et al., 1994; Whitsett
and Weaver, 2002). SP-C is unique in that although the primary
translation product is a TM protein it is ultimately secreted as
a lipophilic, mature peptide (Russo et al., 1999). Mutations in
the proSP-C gene lead to ILD, a form of fibrosis (Nogee et al.,
2001, 2002; Beers and Mulugeta, 2005; Willander et al., 2012a)
with Congophilic deposits containing the mature SP-C segment
(Willander et al., 2012a). Both inherited and spontaneous proSP-
C mutations have been implicated in ILD (Hamvas, 2006) and a
systematic search revealed 91 SFTPC disease-causing mutations
(Litao et al., 2017). Roughly two thirds of the resulting residue
exchanges are localized to the BRICHOS domain, but the most
frequent mutation (I73T) is localized in the linker region in
between the TM region and BRICHOS. A majority of the ILD
associated mutations are located in the linker region or in the
BRICHOS domain, and these mutations are proposed to lead to
amyloid formation of the SP-C peptide (Willander et al., 2012a).
The TM α-helix of SP-C has very high β-sheet propensity, since
it is composed of mainly valine residues (Kallberg et al., 2001;
Johansson et al., 2010; see above under BRICHOS Structure). It
has been hypothesized that proSP-C BRICHOS promotes correct
folding and insertion into the membrane of the α-helical TM part
of SP-C, preventing the formation of amyloid and ILD (Hedlund
et al., 2009; Willander et al., 2012a). Consistent with that notion
is the observation that native SP-C isolated from lung surfactant,
aggregates into amyloid fibrils in vitro that can be visualized
by electron microscopy (EM), but co-incubation with proSP-C
BRICHOS abrogates SP-C fibril formation (Nerelius et al., 2008).

BRI2 IN FAMILIAL BRITISH AND DANISH
DEMENTIA

Integral membrane proteins 2B (ITM2B) and 2C (ITM2C) also
called Bri2 and Bri3 respectively are part of the BRI family. The
Bri2 gene (ITM2B) is located on chromosome 13 and contains
6 exons. The Bri3 gene (ITM2C) is located on chromosome
2 and contains 7 exons. Bri2 and Bri3 proteins share 42%
overall sequence identity, and their BRICHOS domains have 60%
identical residues. The BRI family may be themost ancient family

FIGURE 2 | Structure of the BRICHOS domain. Backbone conformation of

proSP-C BRICHOS (Willander et al., 2012a) with the five β-strands (S1–S5)

and the two α-helices (H1 and H2) labeled. Face A of the β-sheet is localized

toward H1 and face B is localized toward H2.

of BRICHOS containing proteins, considering it has members
in the most ancient species (flies and worms; Sánchez-Pulido
et al., 2002). The Bri2 protein is a 266-residue long, type II TM
proprotein consisting of an N-terminal cytosolic part (residues
1–54), a TM region (residues 55–75), a linker (residues ∼76–
130), a BRICHOS domain (residues∼130–231) and a C-terminal
region (residues 232–266). Bri2 has an N-glycosylation site at
asparagine, Asn170 (Tsachaki et al., 2011), and is expressed
at high levels in brain, heart, placenta, and pancreas (Vidal
et al., 1999). Processing of Bri2 by furin releases a 23-residue
peptide referred to as Bri23 (corresponding to residues 244–
266 of Bri2) from the C-terminal region. Mutations in Bri2
give rise to release of extended, 34-residue, C-terminal peptides,
ABri, or ADan, that deposit primarily in the CNS in two rare
amyloid diseases, familial British dementia (FBD) and familial
Danish dementia (FDD), respectively (Cantlon et al., 2015a).
After the discovery of the pathogenic FBD and FDD mutations
and Bri2 as the precursor to the ABri and ADan peptides
(Vidal et al., 1999, 2000), furin was identified as the major
protease responsible for the proteolytic cleavage releasing the
C-terminal peptides (Kim et al., 1999), but other proprotein-
like convertases may also process Bri2, releasing C-terminal
peptides (Kim et al., 1999; Vidal et al., 2000). Moreover the
Bri2 BRICHOS domain can be shed by ADAM10 cleavage and
released into the extracellular space, but Bri3 is apparently not
processed by ADAM10 (Martin et al., 2008). The remaining
membrane associated N-terminal fragment of Bri2, is cleaved
by intramembranous proteolysis by signal peptide peptidase-like
(SPPL) proteases, SPPL2a and SPPL2b. This cleavage releases
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FIGURE 3 | Model of TTR tetramer. Shown with ligand in T4 binding pocket

(A). Shown with two molecules of retinol binding protein (RBP) charged with

retinol (B) (Monaco, 2002). While there are two potential T4 binding sites,

binding of the first results in an allosteric change restricting access to the

second. In humans, generally only one of the RBP binding sites is occupied.

a Bri2 intracellular domain (ICD) as well as a secreted so
called C-domain (Martin et al., 2008). SPPL cleavage of Bri2
likely takes place secondary to ADAM10 mediated shedding.
Moreover ADAM10 processing is not sequence specific but
rather occurs at specific distances from the plasma membrane
(Sisodia, 1992). Together, the available data are most consistent
with ADAM10 releasing the BRICHOS domain by cleavage in
the linker region of Bri2. See Figure 4 for an overview of Bri2
processing.

FBD is a rare disease that shares many similarities with AD
with memory loss and dementia (Mead et al., 2000). Typical
histological findings are amyloid deposition of ABri, cerebral
amyloid angiopathy (CAA) and neurofibrillary tangles (NFT’s)
(Vidal et al., 1999). FDD shares similarities with FBD but patients
also show cataracts and deafness. Histological findings in FDD
include CAA, NFT’s and hippocampal ADan amyloid plaques
(Vidal et al., 2000). The FBD pathogenic mutation converts the
stop codon in the Bri2 gene to a codon for arginine, extending
the open reading frame to include 11 additional amino acids,
giving rise to the 34 residue long extended peptide, ABri.
The FDD mutation is different and leads to a 10-nucleotide
duplication, causing a frame shift replacing the stop codon of

FIGURE 4 | Proteolytic processing of Bri2. The full-length Bri2 protein is

cleaved by furin resulting in release of the Bri23 peptide, and subsequent

cleavage by ADAM10 releases the BRICHOS domain and generates an

N-terminal fragment (NTF) that can be cleaved by signal peptide peptidase like

(SPPL) proteases into an intracellular domain (ICD) and a released C-domain.

Bri2, extending the peptide to another 34 residue peptide, ADan.
Both ABri and ADan are thus 11 residues longer than the non-
pathogenic Bri23, but the additional residues share no sequence
homology (Cantlon et al., 2015b). Aβ has been found in both
fibrillar and non-fibrillar deposits of ADan in FDD (Tomidokoro
et al., 2005), and Bri2, and/or parts thereof, have been found
to deposit with Aβ plaques in AD (Del Campo et al., 2014).
These observations suggest possible links between the events
underlying the two diseases. It has been suggested that FBD
and FDD are caused by the aggregation of ABri and ADan
respectively, and/or by a loss-of function of mature Bri2 (Cantlon
et al., 2015a). Experimental support for both theories can be
found. Data from FBD-Bri2 and FDD-Bri2 knock-in mice as well
as human patients show a reduction in Bri2 levels (Tamayev et al.,
2010a; Matsuda et al., 2011), and knocking in Bri2 in FDD-Bri2
knock-in mice rescues negative effects on cognition (Tamayev
et al., 2010a,b). Moreover, studies show that ABri and ADan
aggregation in vitro causes cell toxicity (El-Agnaf et al., 2001,
2004) and effects on synaptic plasticity (Cantlon et al., 2015b)
similar to Aβ.

THE TTR AMYLOIDOSES

TTR is encoded by a single gene on chromosome 18 that
encompasses approximately 19 Kb of DNA with 4 exons
included within 7 Kb, 6 Kb of upstream (5′) sequence
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and 6 Kb downstream containing the conventional 3′ non-
coding sequence that allows normal mRNA processing after
transcription. The promoter proximal 2 Kb appears to contain
all the sequences required for tissue specific expression of the
gene (Sasaki et al., 1985; Costa et al., 1986; Sparkes et al., 1987;
Li et al., 2011; Wang et al., 2014). Despite extensive screening
of human populations there have been no reports of a complete
absence of a functional TTR protein. However, mouse knockouts
survive, are fertile but have a persistent behavioral abnormality
with neuronal loss and mild gliosis in the cortex and CA3 region
of the hippocampus (Buxbaum et al., 2014).

Amyloidogenic protein variants causing the autosomal
dominant clinical disorders Familial Amyloidotic
Polyneuropathy (a sensori-motor and autonomic
polyneuropathy) and Familial Amyloidotic Cardiomyopathy
have been found in 77 of the 127 amino acids in the protein
(Figure 5). Forty residues have been found to have a single
amyloidogenic mutation while fifteen have 2, six have 3,
five have 4, and one has 5. Fifty amino acids have none
and 12 mutations have been described that did not lead to
clinically detectable amyloidosis, although two of the involved
residues had both amyloidogenic and non-amyloidogenic
substitutions (Rowczenio et al., 2014) (Figure 5). There is an
increasing frequency of wild type TTR amyloid deposition
in the heart, carpal tunnel and gut associated with increasing
age currently thought to be related to post-synthetic (perhaps
oxidative) changes that may render the wild type protein less
stable although other, as yet undefined, mechanisms may be
responsible. In the case of the mutations it appears that they
all form tetramers which are kinetically or thermodynamically
unstable under physiologic conditions resulting in enhanced
dissociation releasing monomers which are susceptible to
rapid misfolding, aggregation, and fibril formation (Johnson
et al., 2012). These observations suggest that the monomers
functionally “chaperone” each other.

Recombinant TTR monomers (M-TTR) have been
engineered by replacing residues involved in the interaction
between monomers required to form the dimers required
for tetramerization (F87ML110M) (Jiang et al., 2001). While
these monomers can form a functional tetramer they are
highly aggregation prone and have provided a useful model
to examine the process of aggregation and fibril formation.
Such experiments have revealed that aggregation requires the
structured monomer to become denatured prior to misfolding
and fibril formation (Hurshman et al., 2004). Each monomer
contains eight regions of β-sheet, which may explain their
inherent tendency to form the β-sheet rich amyloid fibrils.
Aggregation appears to primarily involve interaction between
the F and H beta strands (Lim et al., 2013). Interestingly murine
TTR, which is 80 percent identical to the human protein, is
orders of magnitude more kinetically stable and is essentially
non-amyloidogenic under physiologic conditions. The crystal
structures of the wild type and mutant human proteins and
the normal mouse protein are very similar (Hörnberg et al.,
2000; Reixach et al., 2008). It is also interesting to note that
mouse Aβ and islet amyloid polypeptide are apparently
non-amyloidogenic.

FIGURE 5 | Ribbon Diagram of TTR Monomer: The figure shows the

location of many of the identified amyloidogenic and

non-amyloidogenic amino acid substitutions, demonstrating that

almost no region of the protein is spared (structure after Blake et al.,

1978).

Tissue culture studies have shown that exposing target cells to
the engineered TTR monomer or amyloidogenic tetramers can
induce cytotoxicity. However, the tetramer has to dissociate to
release monomer, which appears to bind to cells in a manner
consistent with a receptor ligand like interaction, with aggregates
forming on the cell surface (within a 3–6 h period) with cell
death 48–72 h later (Reixach et al., 2004; Manral and Reixach,
2015). Non-amyloidogenic, non-toxic tetramers are endocytosed
directly by the target cells with little evidence of aggregation and
no apparent effect on cell viability or function.

In vivo it appears that both oligomeric and fibrillar TTR
aggregates deposit with an apparent hierarchy of tissue tropism
favored by particular mutants. It has been known for some
time that limited proteolytic digestion may accelerate amyloid
formation by a given precursor and both intact TTR and
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fragments have been found in the tissue deposits with the
relative proportions of each possibly playing a role in the cardiac
deposition phenotype (Thylén et al., 1993; Bergström et al.,
2005). The mechanism of tissue selectivity, i.e., predominantly
peripheral nerve or myocardium, is unclear and may be more
apparent than real since at autopsy deposits of fibrils formed from
the mutant proteins can be found in most tissues. However, it is
possible that different tissues vary in their capacity to digest TTR
or in the nature of their extracellular matrix either of which may
be related to where fibril deposition occurs.

BRICHOS INTERACTIONS WITH
ALZHEIMER’S DISEASE PEPTIDES AND
ITS EFFECTS ON AMYLOIDOGENESIS

Bri2 binds AβPP and modulates its processing leading to a
reduction of secreted Aβ, both in vitro (Fotinopoulou et al.,
2005; Matsuda et al., 2005) and in vivo (Matsuda et al., 2008;
Tamayev et al., 2012), likely because Bri2 restricts the access
of the secretases involved in AβPP cleavage, but it has also
been shown that Bri2 modulates β-secretase levels (Tsachaki
et al., 2013), providing an alternative explanation for how Bri2
affects AβPP processing. Moreover, residues 46–106 (the TM
region and parts of the linker) are apparently responsible for
binding the juxtamembrane and membrane spanning domains
of AβPP (Fotinopoulou et al., 2005), i.e., the BRICHOS domain
is not necessary for Bri2 interactions with AβPP in these
experimental models (Fotinopoulou et al., 2005; Matsuda et al.,
2005). However, an interesting observation is that while the TM
region of AβPP is involved in binding to Bri2 (Fotinopoulou
et al., 2005), the proSP-C BRICHOS domain and linker region are
implicated in correct folding and incorporation of the metastable
TM α-helix of SP-C into the membrane (Willander et al., 2012a).
It is conceivable that the Bri2 linker together with its BRICHOS
domain could have a similar role in incorporating the TM region
of AβPP into themembrane. Bri3, which has been less extensively
studied than Bri2, is expressed mainly in the brain and co-
localizes with AβPP in neurites, and co-immunoprecipitates with
BACE1 (β-amyloid converting enzyme 1). Similarly to Bri2, it
is cleaved by furin (Wickham et al., 2005). Overexpression of
Bri3 reduces cleavage of AβPP, and Bri3 knockdown by RNA
interference results in increased levels of Aβ(Kim et al., 1999).

BRICHOS domains exhibit potent anti-amyloidogenic
chaperone activity for Aβ peptides and are thought to protect
these aggregation prone client peptide sequences from forming
amyloid. The two homolog BRICHOS-containing proteins Bri2
and Bri3 are expressed in the human central nervous system
(CNS) and are of particular interest in relation to AD. A range of
studies suggests that BRICHOS domains can significantly reduce
the level of toxic oligomeric amyloid species in vivo. For example,
co-expression of Aβ1–42 and proSP-C or Bri2 BRICHOS in the
CNS of transgenic Drosophila melanogaster results in delayed
Aβ1–42 aggregation and dramatic improvements in both lifespan
and locomotor function compared to flies expressing Aβ1–42
alone (Hermansson et al., 2014; Poska et al., 2016). Results from
transgenic mice overexpressing Aβ1–42 as a fusion protein with

the Bri2 protein support the possibility that BRICHOS prevents
Aβ toxicity although it only delays amyloid fibril formation. In
this study (Kim et al., 2013), the normal C-terminal peptide
of Bri2, Bri23, was substituted for the Aβ1–42 sequence, which
resulted in generation of free Aβ1–42 by proteolytic release.
Surprisingly, these mice were not cognitively affected, even
though they had high Aβ1–42 expression and eventually
developed amyloid plaques. The authors suggested that high
Aβ1–42 levels and aggregates are not sufficient to induce memory
dysfunction, and that AβPP processing derivatives (which were
obviously not generated from the Bri2-Aβ construct used) are
contributing to the toxicity seen in AβPP transgenic mouse
models (Kim et al., 2013). However, since the Bri2 BRICHOS
domain has been shown to be released from its proprotein
by proteolysis ((Martin et al., 2008), Figure 4), an alternative
explanation for the lack of toxic effects seen in the Bri2- Aβ1–42
expressing mouse model (Kim et al., 2013) could be that liberated
BRICHOS domain delays Aβ aggregation and prevents toxicity,
in a manner similar to that seen in the fly model. This possibility
is further supported by the fact that the Bri2-Aβ expressing
mice formed fewer Aβ oligomers than AβPP expressing mice
(Kim et al., 2013), a finding which is difficult to explain by the
absence of AβPP processing products, but which fits well with
the BRICHOS mechanism of action that involves dramatic
reduction in oligomer formation (see below).

Studies of the kinetics of in vitro Aβ aggregation in the
presence or absence of recombinant proSP-C or Bri2 BRICHOS
show that sub-stoichiometric amounts of BRICHOS domain
significantly slow down fibril formation. It was demonstrated
that BRICHOS inhibits the formation of Aβ1–42 oligomers by
binding to Aβ fibrils and suppressing surface catalyzed secondary
nucleation (Cohen et al., 2015; Figure 6). This redirects the
reaction pathway toward elongation events, thus minimizing
the level of toxic Aβ intermediates. ProSP-C BRICHOS binds
to Aβ fibrils with low nM affinity but does not bind to Aβ

monomers (Cohen et al., 2015). From the X-ray structure of
proSP-C BRICHOS (Figure 2) a mechanism by which BRICHOS
domains may prevent amyloid formation by specifically targeting
a β-hairpin structure was proposed (Willander et al., 2012a), but
it remains to be determined how thismechanism could be applied
in the context of binding to fibrils. The detailed mechanism(s)
used by proSP-C and Bri2 BRICHOS domains to inhibit Aβ

amyloid formation as well as non-fibrillar aggregation apparently
differ (see below) and it is possible that BRICHOS exerts different
effects toward different client peptides as well as depending on its
location, i.e., whether it is intra- or extracellular.

The anti-amyloid activity of BRICHOS extends beyond
the physiological client peptides; recombinant BRICHOS from
proSP-C and Bri2 efficiently delay fibril formation, and more
importantly Aβ1–42 toxicity in vivo in the CNS of Drosophila
(Hermansson et al., 2014; Poska et al., 2016). Endogenous Bri2
BRICHOS is found in amyloid plaques in human AD brains
(Del Campo et al., 2014), BRICHOS binds with high affinity to
Aβ1–42 fibrils in vitro and this dramatically reduces the formation
of toxic Aβ oligomers via a novel and specific mechanism.
Taken together, available results suggest that BRICHOS binds
to Aβ plaques, and thereby shuts down generation of toxic Aβ
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FIGURE 6 | Molecular mechanism of BRICHOS against Aβ42 fibril

formation and toxicity. (A) Aβ42 forms oligomers via a primary nucleation

reaction, which thereafter can convert into fibrils. The fibrils can be elongated

via addition of monomers, while binding of Aβ monomers to the fibril surface

can catalyze formation of oligomers via a secondary nucleation event. (B)

BRICHOS domain binds to the surface of the Aβ fibrils and thereby markedly

reduces the contribution of the secondary nucleation event to the formation of

oligomers (Cohen et al., 2015). See text for details.

species, a mechanism that might be harnessed for AD treatment.
The natural expression of proSP-C is restricted to the alveolar
epithelium, which makes it an unsuitable to target for treatment
of AD and hence ongoing efforts to target AD are mainly focused
on the Bri2 BRICHOS, which is expressed in the CNS.

Bri2 is produced in several peripheral tissues and in the brain,
with significant expression in neurons of the hippocampus and
cerebellum in humans (Vidal et al., 1999; Akiyama et al., 2004).
In vitro, Bri2 BRICHOSwas found to bemuchmore efficient than
proSP-C BRICHOS against both Aβ1–40 and Aβ1–42 fibrillation,
and even in vivo the Bri2 BRICHOS domain seems to inhibit
Aβ1–42 toxicity in Drosophila central nervous system or eyes
more efficiently than pro-SP-C BRICHOS (Willander et al.,
2012b; Poska et al., 2016). Bri2 BRICHOS not only blocks
the secondary nucleation pathway during Aβ1–42 fibrillation,
but also affects the elongation process, which could be the
reason why Bri2 BRICHOS is more efficient than proSP-C
BRICHOS (Arosio et al., 2016). Moreover, proSP-C BRICHOS,
like TTR, (vide infra) has low “general” molecular chaperone
activity (traditionally defined as ability to prevent non-fibrillar
aggregation of destabilized model substrate proteins), while
Bri2 BRICHOS efficiently suppresses aggregation of destabilized
proteins (Poska et al., 2016). Recombinant proSP-C BRICHOS is
predominantly a trimer while Bri2 BRICHOS forms mainly large
complexes (Poska et al., 2016), and therefore it was suggested that
different quaternary structures mediate molecular chaperone and
anti-amyloid activities, respectively, analogous to the situation
for small heat shock proteins (sHSPs) (Roman et al., 2016).
BRICHOS, like many other molecular chaperones, is apparently
“stored” in an inactive form in which the binding surface is
buried, thus avoiding inadvertent interactions with non-clients.

For proSP-C BRICHOS the inactive form is a homotrimer, and
consequently, dissociation of the trimer intomonomeric subunits
should release active BRICHOS. Experimental data support this
possibility; addition of low molecular mass ligands increases
both the ratio of proSP-C BRICHOS monomer/trimer and the
anti-amyloid activity (Biverstål et al., 2015). Bri2, in contrast to
proSP-C, BRICHOS forms mainly polydisperse oligomers but
also monomers and dimers are found, and it remains to be
established which species mediate the ability to prevent Aβ fibril
formation and toxicity.

TTR INTERACTIONS WITH Aβ

CONFORMERS AND ITS EFFECTS ON
IN VIVO AND IN VITRO

AMYLOIDOGENESIS

An in vivo relationship between TTR and AD was suggested
when it was shown that TTR in the CSF could bind Aβ. It was
the third CSF protein to display this activity, the other two being
ApoE and Clusterin (ApoJ) (Ghiso et al., 1993; Strittmatter et al.,
1993; Schwarzman et al., 1994). Early in vitro studies indicated
that TTR could inhibit the formation of Congo red binding fibrils
by Aβ (Schwarzman et al., 2004). In vivo studies demonstrated
that C. elegans transgenic for an Aβ construct driven by the
unc-54 muscle promoter displayed abnormalities in motility
which were abrogated when they were co-transfected with a TTR
cDNA driven by the same promoter (Link, 1995). Tg2576 mice
transgenic for a mutant human Aβ gene had increased TTR
expression in the cerebral cortex and unilateral injection of an
anti-TTR antibody resulted in increased deposition of Aβ on
the ipsilateral compared with the contralateral side of injection
(Stein et al., 2004). Most definitively, when APP23 AD model
mice were crossed with mice over-expressing a wild type human
TTR gene the behavioral and neuropathologic features of Aβ

deposition were suppressed (Buxbaum et al., 2008). Cortical
and hippocampal Aβ1–40/42 deposits were reduced by 60–75%.
The hyper-phosphorylation of Tau seen in the APP23 mice was
diminished and the mice did not develop the defect in spatial
learning seen in mice expressing only human Aβ. When the
same APP23 mice were crossed with Ttr knockout mice amyloid
lesions appeared at 4.5 months of age compared with 9 months
in wild type APP mice. Similar findings were seen in a different
Aβ transgenic strain that were hemizygous for the Ttr knockout,
only with a somewhat less accelerated phenotype, suggesting a
TTR gene dose effect (Choi et al., 2007). The development of
pathology did not seem to be accelerated in the absence of Ttr in
transgenic models that rapidly developed Aβ deposition (Doggui
et al., 2010).

In parallel studies it was shown that 70% of cortical and
hippocampal neurons in human AD brains (vs. 10% in brains of
age matched non-demented subjects) stained with an antibody
specific for TTR as did virtually all the cortical and hippocampal
neurons in the APP23 mice. TTR was also noted to be present in
the Aβ plaques and in vessel walls that contained Aβ deposits.
AβTTR-Aβ complexes were isolated from some human AD
brains and the brains of the APP23 mice (Li et al., 2011).
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MRNA analysis of cultured primary neurons from APP23 mice
revealed that the TTR staining was a function of increased
neuronal synthesis not uptake from the extracellular space (Li
et al., 2011). This was the first demonstration of TTR synthesis
by primary neurons and that neuronal TTR transcription was
increased in the presence of a human AβPP gene. Chromatin
immunoprecipitation (ChIP) studies showed that in neurons (in
contrast to hepatocytes) TTR is up-regulated by the general stress
response regulator Heat Shock Factor 1 (HSF1) which binds
to specific sequences in both the human and mouse promoter
region (Wang et al., 2014). The parallel increases in transcription
of HSP’s 40, 70, and 90, supported the notion that TTR behaves as
a neuronal stress protein. Detailedmolecular studies of CHO cells
stably transfected with either wild type or mutant human AβPP
genes, then transfected with a human TTR construct, revealed
that TTR also bound to the intact APP protein and the C99 β-
secretase cleavage product. The latter interaction (between the
T4 binding pocket of TTR and amino acids A665, T668, and
G659 of C99) resulted in reduced Aβ in the culture medium
presumably because TTR binding interfered with the γ-secretase
cleavage required for the generation of Aβ either because of an
allosteric effect (as suggested for Bri2, vide supra) or the reduction
in phosphorylation of T668 (Li et al., 2016).

Several laboratories have studied the interaction of TTR with
Aβ in vitro in attempts to define the biophysical basis of its
apparent salutary effect in vivo. The earliest studies of the effect of
various TTR variants on in vitro Aβ aggregation were somewhat
difficult to interpret because the only assay utilized was the
inhibition of Congo red binding and the puzzling result that
some TTR variants actually seemed to enhance Aβ aggregation
as measured in this assay (Schwarzman et al., 2004). Since the
molecular nature of the starting Aβ material was not stringently
analyzed the nature of the interaction could only be hypothesized.
Subsequent studies of the inhibition of red blood cell lysis and
neuroblastoma cell apoptosis by a highly aggregation prone (but
not naturally occurring) sub-fragment of Aβ25−35 by TTR also
lacked biophysical or structural studies examining the nature of
the interaction (Giunta et al., 2005).

The first rigorous biophysical analysis of the interaction
utilized TTR isolated from human plasma and a synthetic
form of Aβ1–40 and showed that TTR sub-stoichiometrically
slowed the rate of Aβ aggregation. A mathematical model
suggested that TTR both slowed protofibril elongation and
the lateral association of protofilaments to produce fibrils. The
authors hypothesized that TTR interacted with aggregated rather
than monomeric Aβ (Liu and Murphy, 2006). Subsequent
studies comparing the effects of recombinant TTR and TTR
isolated from plasma were reported as showing that the plasma
protein slowed aggregation but did not inhibit cytotoxicity while
the recombinant protein increased aggregation and was an
effective inhibitor of cytotoxicity. The investigators attributed the
differences in activity to the previously described sulfonylation of
Cys10 in the plasma protein that was not seen in the recombinant
molecule, however there are other possible explanations and a
clear explanation is not yet available (Liu et al., 2009).

Other investigators used 125I-labeled recombinant TTR to
study the interaction between TTR and Aβ1–42 in a competition

binding assay (Costa et al., 2008a). In contrast to the earlier work
they reported that TTR binding was similar with Aβ monomers,
oligomers, and fibrils. They also reported that binding of different
TTR variant tetramers to Aβ was proportional to the stability
of the tetramers, findings that were not consistent with the
results of studies from other laboratories examining the capacity
of tetramers of different stabilities to inhibit fibril formation,
suggesting that binding and the inhibition of aggregation may
not be directly related (Du andMurphy, 2010; Li et al., 2013). The
same group reported that TTR could behave as a disaggregase of
Aβ oligomers and fibrils via its intrinsic cryptic protease activity,
an observation that has not been reproduced by others (Costa
et al., 2008b; Li et al., 2013).

Several laboratories have shown that recombinant M-TTR
bearing mutations (F87ML110M) that do not allow it to form
stable tetramers is a very efficient inhibitor of Aβ aggregation,
appearing to interact with Aβ oligomers in a sub-stoichiometric
fashion. This coupled with the observation that the ability to
inhibit Aβ fibril formation was inversely related to tetramer
(Du and Murphy, 2010; Li et al., 2013) stability suggested
the hypothesis that tetramer dissociation was required for
inhibition of Aβ aggregation, a similar scenario has been shown
for BRICHOS, for which trimer dissociation into monomers
increased the ability to prevent Aβ fibril formation (Biverstål
et al., 2015). However, the ability of highly stable variant TTR
tetramers such as TTR T119M and TTR K15A and murine TTR
(which do not dissociate under the conditions of the in vitro
experiments) to inhibit fibril formation indicates that tetramer
dissociation is not required to inhibit Aβ fibril formation (Li et al.,
2013). Further, although the monomer is a more potent inhibitor
of fibrillogenesis in vitro, in vivo TTR tetramer concentration is
one thousand fold that of the monomer hence unless there is a
biologic compartment enriched in monomeric TTR and Aβ, it is
likely that the tetramer is the active inhibitor in vivo (Sekijima
et al., 2001, Figure 7).

Cross-linking and alanine scanning mutagenesis suggested
that TTR strand G and the EF helix and amino acids L17, L82,
S85, and L110 were directly involved in Aβ binding (Liu et al.,
2009; Du et al., 2012). More detailed precise analysis of binding
using nuclear magnetic resonance spectrometry confirmed the
involvement of amino acids L17 and L110 but not L82 and
S85 (Li et al., 2013). Almost 20 amino acids showed resonance
shifts when TTR interacted with the Aβ monomer all located
in and around the T4 binding site, suggesting that this region
behaves as a predominantly hydrophobic pocket reactive with
small T4-like ligands and hydrophobic stretches of some proteins
(Li et al., 2013). These data were reinforced by experiments
showing that tafamidis, a resveratrol related molecule with high
affinity for the T4 binding site, inhibited the inhibition of fibril
formation by TTR tetramers but had no effect on the inhibition
of fibrillogenesis by the engineered monomeric TTR, which does
not form a T4 binding pocket (Johnson et al., 2012).

Isothermal titration calorimetric (ITC) analysis of the
interaction betweenWT TTR tetramer and the Aβ1–40 monomer
(controlled for the possible self-aggregation of the reactants) had
a KD in the micromolar range and a stoichiometry of 1, differing
considerably from those reported using other techniques (Li
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FIGURE 7 | Model of Interactions between TTR (tetramer) and Aβ1–40/42 and M-TTR (engineered monomer) and Aβ1–40/42. The tetramer clearly binds Aβ

monomers and pulls them out of the aggregation reaction. It is also capable of binding oligomers and fibrils. M-TTR primarily binds oligomers. What is not clearly

shown here is that it is likely that M-TTR is in an oligomeric state when it engages the Aβ oligomers (from Li et al., 2013).

et al., 2013). Interestingly the stoichiometry and KD of the
interaction between the human and mouse tetramers and the
Aβ monomer were very similar even though the human protein
was a much better inhibitor of fibrillogenesis, suggesting, as did
other data, that binding and inhibition of fibril formation are not
equivalent. The stoichiometry of interaction between tetrameric
human TTR and Aβ monomers (approximately 1:1) was much
higher than that determined for the inhibition of fibril formation
by TTR tetramers (sub-stoichiometric,1:40–1:100) indicating
that in the latter experiments it was likely that TTR also interacted
with oligomeric species (Figure 7).

The TTR binding site of Aβ involved the 4G8 epitope,
i.e., amino acids 17–21 (Li et al., 2013). Based on western
blots, which show interaction of oligomeric M-TTR with Aβ

tetramers and octamers, NMR, which showed no resonance
shifts on MTTR-Aβ monomer interaction and ITC, which did
not detect heat gain or release on incubation of MTTR with
monomeric Aβ, the interaction of the recombinant monomeric
MTTR appears to require oligomerization of the monomer

prior to an interaction with Aβ oligomers rather than the Aβ

monomer in a sub-stoichiometric fashion. Similar observations
have been made examining the interaction between M-TTR and
Aβ1–42 using fluorescence correlation spectroscopy (Verghese
et al., 2013). It is possible that some of the discrepancies
in results between the early studies and the most recent
work with respect to the efficacy of inhibition of Aβ by the
various mutant TTR tetramers reflects the presence of variable
amounts of TTR oligomers formed from monomers generated
during the period of incubation of Aβ with different TTR
preparations. It was also quite evident that binding studies using
conformers bound to fixed surfaces gave different results than
experiments performed in liquid phase, e.g., M-TTR bound
Aβ1–42 monomers fixed to nitrocellulose but no interaction was
seen in the liquid phase NMR or ITC experiments (Li et al.,
2013).

A series of experiments examining the mechanism of
inhibition of Aβ1–40/42 cytotoxicity by TTR using both pre-
formed Aβ42 and HypF-N (a model amyloidogenic bacterial
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protein that behaves similarly to Aβ42) cytotoxic aggregates
compared the inhibitory effects of various TTR conformers
and showed that M-TTR was the best with human tetramer
being less effective and the murine tetramer the least inhibitory,
a rank order similar to that seen with inhibition of fibril
formation as an assay (Cascella et al., 2013). More interesting
was the demonstration that the various TTR species all worked
by interacting with the toxic HypF-N oligomeric aggregates
to make them larger and less toxic. In a recent follow up
analysis the inhibitory process utilized by M-TTR was compared
with that seen in the inhibition of HypF-N cytotoxicity by the
extracellular chaperone clusterin and the small heat shock protein
αB-crystallin (Cappelli et al., 2016). Like the chaperones M-
TTR increased oligomer size and reduced the structural order
of the aggregates. These data with HypF-N and correlation
spectroscopy results with Aβ1–42 strongly suggest that M-TTR
does not inhibit aggregation, rather it changes the nature of the
aggregates allowing them to supersaturate the solution forming
non-fibrillar, non-toxic structures. Interestingly while clusterin
and the other “extracellular chaperones” haptoglobin and α2
macroglobulin also inhibit non-fibrillar protein aggregation,
TTR (like proSP-C BRICHOS vide supra) only inhibits
amyloidogenesis. The mechanism of the latter may reflect the
fact that fibrillogenesis requires precise homotypic alignment
of β-strand structures (“stearic zippers”) (Goldschmidt et al.,
2010). It is possible that while pre-amyloid oligomers form
internally homotypic aggregates, those formed by one precursor,
e.g., TTR, are not precisely in register with those of the
second, i.e., Aβ, perhaps forming “hetero-zippers” (Eisenberg, D,
personal communication). The resulting heterotypic aggregates
are less structured and incapable of attaining the order required
for protofibril formation. This would be different in the case
of pairs of amyloid precursors in which cross-seeding occurs
in which the heteromeric oligomeric fit does not disrupt
the parallel or anti-parallel β-sheet structures required for
protofibril formation (Solomon et al., 2007; Oskarsson et al.,
2015).

In summary tetrameric human TTR appears to inhibit Aβ

aggregation by binding Aβ monomers and removing them from
the fibril forming (elongation) pool. It also binds oligomers and
fibrils contributing to the formation of larger, non-cytotoxic
amorphous aggregates. Since the tetramer is far and away
the most prevalent form of TTR in vivo it is likely that this
represents a significant component of its protective effect in
the mouse models. What happens to the TTR-Aβ complexes
is unclear, perhaps as hypothesized elsewhere, it enhances Aβ

transport out of the brain (Alemi et al., 2016). The recent
data that it is also capable of decreasing Aβ production
(at least in cultured cells) suggests a possible additional
mechanism.

While monomeric TTR may not be functionally
protective in vivo the comparison of the biophysics of
its interaction with Aβ and HypF-N with that seen in
molecules long known to be members of the proteostatic
network, i.e., clusterin and αB-crystallin has given
some insight into how those molecules may function
in vivo.

FIGHTING FIRE WITH FIRE: DO AMYLOID
PRECURSORS HAVE THERAPEUTIC
POTENTIAL IN AD?

From the forgoing it is evident that BRICHOS domains and
TTR tetramers and monomers can inhibit Aβ oligomerization,
fibril formation and cytotoxicity in vitro. It also appears
that genetically induced over-expression of the two parent
molecules can suppress or delay the eventual development of the
neuropathologic and behavioral abnormalities seen in transgenic
fly or mouse models of human Aβ deposition (Table 1). At this
moment such genetic approaches are not possible in human
AD. However, it is likely for TTR at least, that human neurons
may already be utilizing this molecule as a defender of neuronal
integrity in the face of proteotoxic and perhaps other forms of
cellular stress. As noted above, the majority (70%) of neurons
in human AD brains make TTR, compared with 10% in age
matched non-demented control brains, a finding also seen in
transgenic models of human Aβ deposition. Further both TTR
and Bri2 have been found in human AD plaques. The latter may
reflect either that they are behaving as co-conspirators or more
likely is that those molecules represent failed (or successful, if
the fibrils are the least toxic form of Aβ aggregates) chaperones.
These observations pose the question does AD represent an age
related failure of host neuronal defense mechanisms? If that is the
case can the failure be overcome therapeutically? While current
approaches to AD focus on reducing Aβ production, might we
do better by enhancing host resistance or some combination of
the two?

Gene Therapy
Direct administration of a TTR or BRICHOS containing gene
to humans is currently not feasible, however it may become
possible to isolate totipotent stem cells from subjects with AD,
differentiate them to neurons or astrocytes, engineer them to
contain a wild type human TTR or BRICHOS containing gene
regulated by either their own or an inducible promoter and
administer those cells to the patient from whom they were
obtained. Currently there are many unknowns surrounding this
approach. It assumes that a mode of administration will be
available to insure that the cells reach the nervous system and
home to regions of pathology. The gene must include all the
regulatory sequences required for tissue specific expression and
protein production in the secretory pathway so that the encoded
protein will be available to interact with Aβ and its oligomers
secreted by the endogenous neurons. If the gene is driven by
an inducible promoter the inducing agent must be able to cross
the blood brain barrier. Further the long term behavior of cells
differentiated from pluripotential precursors is currently unclear.

Protein or Peptide Therapy
A large number of proteins including TTR and BRICHOS and
peptides derived from them have been shown to inhibit Aβ

aggregation in vitro (e.g., Mangrolia et al., 2016). Currently it
is difficult to deliver these molecules to the central nervous
system, although there have been some successes administering
molecules such as insulin by nasal spray (Hölscher, 2014).
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TABLE 1 | Alzheimer’s disease related activities of Transthyretin and

BRICHOS—containing proteins.

Feature Transthyretin (TTR) BRICHOS (Bri2)

Clinical amyloidosis human FAP, FAC, SSA FBD, FDD

Amyloid formation in vitro + +

Protein topology Unique Homotetramer Domain in many proteins

Interaction with Aβ in vitro Monomers, oligomers,

fibrils

+

Transgene interaction with

AD model in vivo

suppresses suppresses

Effect of knockout on AD

model

accelerates ?

Presence human AD

plaques

+ +

Effect of knockout on CNS

function (no AD gene)

Behavioral abnormality ?

Increased neuronal

synthesis AD

+ ?

Inhibits primary nucleation

Aβ

+ −

Inhibits secondary

nucleation Aβ

? +

Inhibits elongation Aβ + +

One way to circumvent the problems inherent in protein or
peptide delivery has been to use Adenoviral, AAV or lentiviral
vectors as carriers for sequences encoding the therapeutic protein
or peptide (e.g., Kim et al., 2004; Bourdenx et al., 2014; Parr-
Brownlie et al., 2015; Blessing and Déglon, 2016; Saraiva et al.,
2016). Vectors have been developed that will preferentially target
neurons although most still require intracerebral inoculation.
This approach may be more appropriate for a BRICHOS
based reagent than for a TTR related molecule since the
quaternary structural demands of the TTR tetramer may be
constraining with respect to having excess monomers available
to misfold and aggregate rather than interact with some form of
Aβ.

A third approach being explored is based on the observation
that both systemic and neuronal TTR production go down
with increasing age and the assumption that maintaining
neuronal TTR production throughout life will continue to make
TTR available to bind Aβ and its soluble aggregates in the
environment in which they appear to be neurotoxic. If small
molecules can be identified which specifically induce neuronal
TTR (or BRICHOS- containing domain) synthesis and can
cross the blood brain barrier after systemic administration,
they might be able to slow or arrest the progression of
neurodegeneration.

All of these approaches present practical problems with
respect to delivery, specificity of the cellular and molecular
targets and intrinsic amyloidogenicity of the therapeutic agent.
In the case of small molecule therapeutics the potential
for off-target or mechanism related toxicities is always an

issue that cannot be ignored. The delivery and specificity
issues are no different than they are for any therapeutic

biological. The intrinsic amyloidogenicity of molecules as TTR
or BRICHOS-containing proteins, whether encoded by a naked
gene, produced by an engineered differentiated pluripotent stem
cell or induced by a small molecule is a real risk. It would
not be good to either enhance amyloid oligomer formation
by endogenously produced Aβ or induce the synthesis of a
sufficient amount of the therapeutic anti-amyloid to exceed the
critical concentration required to nucleate its own fibrillogenesis.
Based on observations in mice carrying many copies of the wild
type human TTR gene with all the known elements required
for tissue specific expression, it appears that neurons regulate
TTR production quite tightly, perhaps precluding the possibility
of local TTR aggregation and oligomer formation even while
systemic amyloid deposition of liver synthesized TTR goes on
(Buxbaum et al., 2008).

In recent years much has been made of the phenomenon
of “templated misfolding” as a mechanism for spreading of
both Parkinson’s and Alzheimer’s diseases (Walker et al.,
2006; Kordower et al., 2008). It has also been possible to
“seed” Aβ aggregation in mice and rats by the intracerebral
or parenteral administration of homologous brain or fibril
fragments (Brouillette et al., 2012; Heilbronner et al., 2013). In
at least one instance the seeding has been inhibited by pre-
incubation with human TTR (Brouillette et al., 2012).

In other systems it has also been possible to nucleate
murine AA amyloid in vivo by the administration of other
amyloid aggregates raising the notion of cross species seeding
by the ingestion of Foie gras (Solomon et al., 2007). We have
described two examples in which two discrete human amyloid
precursors rather than “cross seeding” inhibit the formation
of cytotoxic Aβ aggregates and fibrils in vitro and in vivo in
transgenic murine models of human Aβ deposition. Further
human data suggest that the production of these molecules
is increased in the course of human AD, perhaps in the
context of neuronal defense. We have reviewed the structural
features of these molecules that appear to be responsible for the
“protective” heterotypic interactions that prevent the homotypic
formation of toxic oligomers and fibrils in vivo and speculate
that these interactions may not be coincidental but represent an
evolutionarily conserved mode of neuroprotection.
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GRP78 at the Centre of the Stage in
Cancer and Neuroprotection
Caty Casas*

Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat Autònoma de Barcelona,

Barcelona, Spain

The 78-kDa glucose-regulated protein GRP78, also known as BiP and HSP5a, is a

multifunctional protein with activities far beyond its well-known role in the unfolded

protein response (UPR) which is activated after endoplasmic reticulum (ER) stress in the

cells. Most of these newly discovered activities depend on its position within the cell.

GRP78 is located mainly in the ER, but it has also been observed in the cytoplasm,

the mitochondria, the nucleus, the plasma membrane, and secreted, although it is

dedicated mostly to engage endogenous cytoprotective processes. Hence, GRP78 may

control either UPR and macroautophagy or may activated phosphatidylinositol 3-kinase

(PI3K)/AKT pro-survival pathways. GRP78 influences how tumor cells survive, proliferate,

and develop chemoresistance. In neurodegeneration, endogenous mechanisms of

neuroprotection are frequently insufficient or dysregulated. Lessons from tumor biology

may give us clues about how boosting endogenous neuroprotective mechanisms in

age-related neurodegeneration. Herein, the functions of GRP78 are revealed at the center

of the stage of apparently opposite sites of the same coin regarding cytoprotection:

neurodegeneration and cancer. The goal is to give a comprehensive and critical review

that may serve to guide future experiments to identify interventions that will enhance

neuroprotection.

Keywords: GRP78, BiP, neuroprotection, endogenous mechanisms, neurodegeneration, ER stress, autophagy,

ERAD

Several systems, including the nervous system, have a remarkable ability for repair under stressful
conditions. Conserved intrinsic mechanisms counteract damaging effects of endogenous and/or
exogenous toxic agents. Under circumstances of damage, intrinsic pro-survival pathways, that
collectively are termed endogenous neuroprotective mechanisms, are activated. Endogenous
protective mechanisms have been mainly investigated in diverse pathological states such as
vascular diseases, trauma, and cancer. The question of why neurodegenerative diseases occur
even when beneficial mechanisms have been triggered deserves in-depth analysis. GRP78 appears
to orchestrate several of these endogenous mechanisms. We herein describe the characteristics
and known functions of GRP78, explore its roles in tumor cell survival, proliferation, and
chemoresistance and reflect on how this knowledge should guide investigations into its functions
in neuroprotection.
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GRP78, A VERY IMPORTANT PROTEIN
WITH MULTIPLE FUNCTIONS IN MULTIPLE
LOCATIONS

Transcriptional and Post-translational
Regulation of GRP78 Levels
GRP78 has multiple functions in maintaining cell viability.
Its expression is highly regulated at different points. At the
transcription level, GRP78 is encoded by the geneHsp5a. It is the
most abundant protein within the heat shock protein-70 (Hsp70)
family, but, unlike the other members of this family, it is not
induced by heat shock because the promoter of GRP78 lacks the
heat shock element. Levels of GRP78 are maintained at relatively
low levels within the cell and are increased considerably under
stresses that affect the endoplasmic reticulum (ER) and calcium
homeostasis. Indeed, GRP78 was initially discovered in 1977 as
a 78-kDa protein strongly induced in chicken embryo fibroblasts
cultured in glucose-free medium (Shiu et al., 1977). Later, it was
observed that GRP78 expression can be induced by other stimuli
such as calcium ionophore A23187 (Resendez et al., 1985),
calcium depletors or chelators such as thapsigargin and BAPTA-
AM (Suzuki et al., 1991), and inhibitors of the protein secretory
pathway such as tunicamycin (Lee, 1987). The upregulation
of GRP78 expression under such a variety of stressful stimuli
is mainly due to the presence of conserved elements in the
promoter of the Hsp5a gene (Li and Lee, 2006) such as a CCAAT
box (Resendez et al., 1988), a cAMP responsive element CRE-
like (CREB; Alexandre et al., 1991), and the ER stress response
element (ERSE; Resendez et al., 1988). Transcription factors that
bind to these regulatory elements, including CBF/NF-Y (Roy and
Lee, 1995), CREB, activating transcription factor 2 (ATF-2; Chen
et al., 1997), YY1, YB1, Sp1 (Li et al., 1997), ATF4 (Luo et al.,
2003), TFII (Parker et al., 2001), ATF6 (Yoshida et al., 2001b),
and XBP1 (Yoshida et al., 2001a), participate in the regulation of
Hsp5a gene (Figure 1).

The post-transcriptional regulation of GRP78 is mediated
by the activation of internal ribosome entry sequence (IRES)
in the 5′ untranslated region of GRP78 mRNA (Macejak and

Abbreviations: GRP78, 78-kDa glucose-regulated protein; UPR, unfolded protein

response; ER, endoplasmic reticulum; PI3K, phosphatidylinositol 3-kinase;

Hsp70, heat shock protein-70; ERSE, ER stress response element; CREB,
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NSAP1, NS1-associated protein; miRNA, microRNA; ERdj, ER resident J-domain

co-chaperones; ERAD, endoplasmic-reticulum-associated protein degradation;
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activating transcription factor; PERK, protein kinase R-like endoplasmic reticulum

kinase; XBP1, X-box binding protein; Sig1R, sigma receptor 1; IP3R, inositol
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pars compacta; SOD1, superoxide dismutase 1; AD, Alzheimer’s disease; sCJD,

sporadic Creutzfeldt-Jakob disease; vCJD, variant CJD; BSE, bovine spongiform

encephalopathy; PD, Parkinson’s disease; PrPSc , pathological prion protein;

IPC, ischemic preconditioning; PrPC, prion protein; ALS, amyotrophic lateral
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Sarnow, 1991). IRESs are often present in mRNAs that encode
proteins crucial for cell survival and stress recovery. Thus, in
circumstances where repression of global protein synthesis is
promoted, GRP78 mRNA is selectively translated (Yang and
Sarnow, 1997). In some situations, the presence of the IRES
serves to amplify translation ofGRP78mRNA. For instance, after
infection of foreskin fibroblasts with human cytomegalovirus,
activation of the GRP78 IRES by the viral machinery results in
a 3–4-fold increase of at the mRNA level but about a 50-fold
increase at the protein level (Buchkovich et al., 2010). Other viral
infections, including herpes simplex virus type 1 and poliovirus,
have also been reported to activate the GRP78 IRES (Kim et al.,
2001; Saffran et al., 2010). Several cellular proteins are implicated
in the translational activation of the GRP78 IRES including NS1-
associated protein NSAP1, SSB/La autoantigen, p50, and p95
(Yang and Sarnow, 1997; Kim et al., 2001; Cho et al., 2007;
Figure 1).

Another post-transcriptional regulatory mechanism acts on
protein stability. It has been shown that activation of PI3K/AKT
pathway in ER-stressed HEK-293 cells leads to an increase in
GRP78 protein stability through unknown mechanisms (Dai
et al., 2010). Regulation is also mediated through the action of
specific microRNAs (miRNAs) such as miR-181 (Ouyang et al.,
2012), miR-181a (Ji et al., 2017), miR-181b (Peng et al., 2013),
miR-376a (Iwamune et al., 2014), and miR-30a (Wang P. et al.,
2015) that bind to the GRP78 mRNA 3′-untranslated region
(Figure 1).

GRP78 Localization Reflects Multiple
Functions
GRP78 acts as a molecular chaperone (Haas andWabl, 1983) and
binds to nascent polypeptides. Like cytosolic HSP70, it contains
an N-terminal ATPase domain and a C-terminal peptide binding
domain (Määttänen et al., 2010). GRP78 is also a calcium binding
protein. It is inhibited by a high concentration of calcium ions,
and its ATPase activity is activated by calcium depletion. Due
to the presence of an ER signaling peptide, GRP78 is mainly
found in the ER lumen, although under some circumstances it is
redistributed to the cytosol, nucleus, mitochondria, or the plasma
membrane or is secreted (Suzuki et al., 1991). Thus, different
locations prime GRP78 to trigger different molecular signaling
events.

GRP78 Multifunction Associated with the

Endoplasmic Reticulum
At the ER, GRP78 has diverse functions and relies on a number
of interaction partners and co-chaperones, nucleotide exchange
factors, and signal transducers for its various activities. The
diversity of functions include translocating nascent polypeptides,
facilitating de novo protein folding and assembly, targeting
misfolded proteins to endoplasmic-reticulum-associated protein
degradation (ERAD) machinery, and maintaining calcium
homeostasis (since it is as a luminal calcium ER binding protein;
Gardner et al., 2013). GRP78 is usually the first chaperone to bind
a nascent polypeptide chain and prefers to bind surfaces with
alternating aromatic and hydrophobic amino acids. GRP78 shifts
to its tighter affinity substrate binding conformation after ATP
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FIGURE 1 | Graphical summary of the regulation and activities promoted by GRP78 within a cell. Induction and regulation of the transcription of the HSP5a

gene is mediated by several transcription factors that bind to ERSE or CREB motifs in the promoter of the gene. Alternative processing of its pre-mRNA can occur

under stressful conditions leading to retention of intron 1 (yellow line) that advance an stop codon, giving to GRP78va truncated protein that is retained in the cytosol

because it lacks the ER-signaling motif (purple triangle). Commonly processing GRP78 is submitted under post-transcriptional regulation either due to the action of

factors on its IRES motif or by the action of different miRNAs. GRP78 is found mainly in the luminal ER where it can promote the activation of the UPR, ERAD, or MAM

regulation. In some circumstances, GRP78 can be translocated to the cell surface where it can interact to multiple partners and hence modulate different pathways. It

is also be secreted where it can immunomodulate.
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hydrolysis to ADP (Blond-Elguindi et al., 1993). Several partners
participate in this process. The hydrolysis of ATP by GRP78 is
stimulated by ER resident J-domain co-chaperones (ERdj), ERdj1
and 2, homologs of yeast Sec63 (Otero et al., 2010), and also to co-
chaperones such as P58(IPK) (Tao and Sha, 2011). In addition,
the ADP-bound closed state of GRP78 is re-opened by exchange
of ADP for ATP, and this process is enhanced by the nucleotide
exchange factors GRP170 and Sil1, also known as BiP-associated
protein (BAP; for a review see Määttänen et al., 2010; Figure 1).

Newly synthesized proteins in the ER are subjected to a
rigorous quality control system and misfolded proteins are
retrotransported back into the cytoplasm to be degraded by
the ubiquitin-proteasome system. GRP78 associates with nascent
chains immediately and for properly folded proteins, transiently
upon synthesis. However, its association with misfolded or
mutant proteins is prolonged (Sörgjerd et al., 2006). This
prolonged association might be a signal for degradation of
the bound protein (Petrova et al., 2008). The multistep
process of ERAD, is initiated by GRP78 and other ER-resident
chaperones that recognize the misfolded protein. Together,
these chaperones facilitate deglycosylation and disassembling
of misfolded proteins. The chaperones drive substrates to the
translocon channel where they are pulled out of the membrane
by a complex of proteins with ATPase activity. The emerging
substrate is most likely ubiquitinated and addressed to the
proteasome for degradation (review in Printsev et al., 2016;
Figure 1). ERAD in combination with the ubiquitin-proteosome
system (UPS) is thought to be the mechanism for quality control
in long-lived cells such as neurons; hence, GRP78 is likely a
critical component of the endogenous neuroprotective program.

Evidence from studies carried out in yeast indicates that
when the ERAD system is saturated, macroautophagy removes
both soluble and aggregated forms of unfolded proteins
and dysfunctional organelles. Macroautophagy can be induced
by various forms of cellular stress including nutrient or
growth factor deprivation, hypoxia, reactive oxygen species,
DNA damage, protein aggregates, damaged organelles, or
intracellular pathogens (Klionsky et al., 2016). GRP78 plays
a role in autophagic protein quality control, participating
in the destruction of misfolded proteins in the cytosol.
The autophagic process can be roughly divided into three
steps: autophagosome formation, autophagosome-lysosome/late
endosome fusion (autophagosomematuration), and degradation.
The formation of autophagosomes necessitates the concerted and
sequential action of autophagy related (ATG) proteins, originally
identified in yeast (Itakura and Mizushima, 2010; Klionsky et al.,
2016).

ATG proteins are regulated by conserved nutrient and
energy-dependent signaling cascades that crucially involve the
mammalian target of rapamycin (mTOR), a serine/threonine
protein kinase belonging to the phosphatidylinositol kinase-
related (PIKK) family, and AMP-activated protein kinase
(AMPK). Starvation, amino acid deprivation, and growth factor
withdrawal inhibit mTOR activity and lead to autophagy
induction. AMPK is a major positive regulator of autophagy
that is activated by low ATP availability (Kroemer et al., 2010).
Both mTOR and AMPK control the cascade of events leading

to the activation of the phosphatidylinositol 3-kinase class III
(PI3KC3 also known as VPS34; Russell et al., 2013). PI3KC3,
together with beclin 1, p150, and ATG14L, translocates to the
initiation site of autophagosome formation (Matsunaga et al.,
2010). At the ER, PI3KC3-mediated phosphatidylinositol 3-
phosphate production (Axe et al., 2008; Hayashi-Nishino et al.,
2009) fosters the formation of the phagophore. The phagophore
sequesters cargo before closing in on itself to form the
autophagosome. Phagophore expansion requires the conjugation
of microtubule-associated protein 1A/1B-light chain 3 (LC3) to
phosphatidylethanolamine, a process also called LC3 lipidation
(Kabeya et al., 2000; Hamasaki et al., 2013). The LC3-positive
autophagosome sequesters cytoplasmic material by binding to
sequestosome 1 SQSTM1/p62. The autophagosome then fuses
with an endosome or lysosome for cargo breakdown, and the
degraded material is transported to the cytoplasm. SQSTM1/p62
binds LC3 and recruits proteins into autophagosomes for final
degradation by lysosomal hydrolases.

GRP78 acts on the autophagic process at several points.
Evidence for a role in the initiation and formation of
the autophagosome is based on the finding that GRP78
overexpression increases autophagic signaling by stimulating
AMPK (Cook and Clarke, 2012; Wen et al., 2012; Figure 1).
In addition, GRP78 can interact to VPS34 and GRP78
overexpression activates the Class III PI3K-mediated autophagy
pathway (Li et al., 2015). When GRP78 expression is inhibited,
AMPK signaling activation does not occur (Cook and Clarke,
2012) and formation of autophagosomes is blocked (Li et al.,
2009), although GRP78 deficiency does not prevent LC3
lipidation. GRP78 also acts at the final steps of macroautophagy
since GRP78 binds to misfolded proteins and to SQSTM1/p62
in cells under stress. GRP78 binding induces a conformational
change in SQSTM1/p62 that favors cargo delivery into the
autophagosome for its subsequent degradation into amino
acids (Jin et al., 2014; Kim et al., 2014; Abdel Malek et al.,
2015; Cha-Molstad et al., 2015, 2016). Thus GRP78 acts as a
chaperone for aggregation-prone misfolded proteins leading to
their degradation by macroautophagy.

Macroautophagy is a pro-survival mechanism activated
within the cell under stressful conditions. As it does in
macroautophagy, GRP78 has a role in another cytoprotective
process, the unfolded protein response (UPR) as well GRP78
(Paschen, 2004). The UPR is well-conserved from yeast to
mammalian cells. Impaired processing and folding reactions that
lead to an accumulation of misfolded proteins or potentially
toxic aggregates, ATP depletion, and disturbances in calcium
homeostasis, produce ER stress and UPR activation. To cope
with ER stress, UPR activation coordinates the increase in ER-
folding capacity through a broad transcriptional upregulation of
ER folding, lipid biosynthesis, and ERADmachinery components
with a decrease in folding load through selective mRNA
degradation and translational repression (Gardner et al., 2013).
GRP78 orchestrates the UPR by functionally regulating three ER
transmembrane proteins that act as the main effectors: inositol-
requiring enzyme 1 (IRE1), activating transcription factor 6
(ATF-6), and protein kinase R-like endoplasmic reticulum kinase
(PERK; Schröder and Kaufman, 2005; Wang and Kaufman,
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2016). GRP78 binds to IRE1, PERK, and ATF6 in unstressed cells
and dissociates from these UPR sensors during acute ER stress
(Bertolotti et al., 2000; Okamura et al., 2000; Shen et al., 2002;
Figure 1).

IRE1 can also be directly activated by binding to unfolded
proteins. Although ligand-induced oligomerization activates
IRE1 (Shamu et al., 1994), GRP78 association stabilizes the
inactive, monomeric form of IRE1 preventing its over response
to low levels of ER stress (Korennykh et al., 2009; Pincus et al.,
2010; Gardner and Walter, 2011). The RNase activity of IRE1
generates spliced mRNA encoding the X-box binding protein
(XBP1), and XBP1 protein upregulates the expression of GRP78.
ATF6 is cleaved by site 1 protease (S1P) and site 2 protease
(S2P) to generate a p50-ATF6 fragment that has transcriptional
activity. Upon cleavage, the p50-ATF6 fragment upregulates
the expression of GRP78 through an ERSE in the promoter
region of the GRP78 gene as mentioned above. PERK has a
kinase domain that phosphorylates the translation factor eIF2a,
thereby suppressing most of the de novo protein synthesis during
ER stress but stimulating the translation of certain mRNAs,
including that encoding ATF4.

All of these processes are necessary to attenuate the
accumulation of unfolded proteins during ER stress. IRE1 and
ATF6 are especially critical in the prevention of ER stress-induced
apoptosis via their upregulation of GRP78 expression (Gardner
et al., 2013). Prolonged activation of IRE1 and CHOP can trigger
apoptosis in cells under certain physiologic and pathophysiologic
conditions (Szegezdi et al., 2006). In normal physiology, UPR-
induced apoptosis may be a means to eliminate the few cells in
an ER-stressed environment that remain uncorrected despite the
actions of the UPR. Overexpression and antisense approaches
in cell systems show that GRP78 can protect cells against cell
death caused by disturbance of ER homeostasis (Morris et al.,
1997; Yu et al., 1999; Jeon et al., 2016). Overexpression of
GRP78 attenuates ER stress, both by enhancing protein folding
and by helping to maintain IRE1, ATF6, and PERK in their
inactive states (Bertolotti et al., 2000; Laybutt et al., 2007) and
preventing CHOP induction to avoid apoptosis (Wang et al.,
1996; Oyadomari and Mori, 2004).

GRP78 at the Mitochondria and the

Mitochondria-Associated ER Membrane
GRP78 has also been observed in the mitochondria in
association with co-chaperones known to be involved in calcium-
mediated signaling between the ER and mitochondria that is
important for bioenergetics and cell survival. ER stress and
UPR signaling induce the overexpression of GRP78, which
results in its mitochondrial localization. Sub-mitochondrial
fractionation studies showed that GRP78 is mainly localized in
the intermembrane space, inner membrane, and mitochondria
matrix (Sun et al., 2006). GRP78 plays a direct role in controlling
efflux of calcium ions from the ER by closing the Sec61 channel
during protein translocation and in the absence of translocation
(Hamman et al., 1998; Haigh and Johnson, 2002; Alder et al.,
2005). In addition, upon calcium depletion from the ER via the
inositol trisphosphate receptor IP3R, the calcium-sensitive co-
chaperone sigma receptor 1 (Sig1R) dissociates from GRP78 and

associates with IP3R, thereby protecting the otherwise unstable
IP3R from ERAD and prolonging calcium signaling to the
mitochondria (Hayashi and Su, 2007; Figure 1).

Secreted and Cell-Surface GRP78
Finally, GRP78 can be located at the plasmamembrane where it is
cytoprotective. In cultured cells, the ER stress agent, thapsigargin,
actively promotes cell surface expression of GRP78, as the
increase in cell surface GRP78 is several fold higher than the
increase in intracellular GRP78 induced by thapsigargin (Zhang
et al., 2010). Nonetheless, ER stress is not required for cell-surface
localization of GRP78. Ectopic expression of GRP78 can induce
its translocation in the absence of ER stress as indicated by the
lack of CHOP induction. Moreover, deletion of the carboxyl-
terminal ER-retention signal (KDEL) alters GRP78 relocation.
This suggests that the KDEL retrieval system plays a significant
role in regulating how much GRP78 leaves the ER.

Although GRP78 translocation have been studied mainly
in cancer cell lines and have been found to be cell context-
dependent (Tsai et al., 2015), there exist some common details
for its mechanism of action. GRP78 can be translocated
and anchored to the cell surface by binding to the ER-co-
chaperone HTJ-1/MTJ-1 (Birukova et al., 2014; Figure 1).
The translocation is promoted by accumulation of oxidized
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
(OxPAPC), a phospholipid that directly interacts with GRP78,
induces membrane accumulation of the GRP78/HTJ-1 complex
and its targeting to caveolin-enriched microdomains (Birukova
et al., 2014). Once the complex is at the membrane, it activates
Src/Fyn kinase leading to assembly of the PI3K complex and
activation of mTOR and sphingosine-1-phosphate receptor 1.
This in turn results in cortical actin cytoskeletal remodeling
in endothelial cells. Thus, GRP78 regulates OxPAPC-mediated
cytoskeletal remodeling.

In the plasma membrane, GRP78 functions as a signal-
transducing receptor or co-receptor for soluble ligands such
as α2-macroglobulin (α2-M; Misra et al., 2005b), tumor
differentiation factor (Sokolowska et al., 2012), and vaspin
(Nakatsuka et al., 2012). Other molecules that bind to
GRP78 include glycosylphosphatidylinositol-anchored proteins,
for example, T-cadherin (Philippova et al., 2008) and Cripto,
the teratocarcinoma-derived growth factor (Shani et al., 2008),
among others (Ni et al., 2011). In-depth details of activated
downstream signaling due to these interactions have been
extensively reviewed by Ni et al. (2011). The binding of GRP78
to most of these ligands activates the AKT/PI3K pro-survival
pathway (Misra et al., 2004, 2006; Philippova et al., 2008;
Figure 1). Soluble Cripto has also been shown to bind cell-
surface GRP78/BiP initiating PI3K and MAPK signaling via Src
activation (Gray and Vale, 2012) or binding directly to c-Src (Gu
et al., 2015). Indeed, cell-surface GRP78 is also involved in cell-
matrix adhesion by α1-integrin interaction and focal adhesion
kinase (FAK) regulation. This interaction has been related to
cell migration and invasion process, an effect partly mediated
through its association with uPA–uPAR protease system (Li
et al., 2013). The interaction with α1-integrin, considered also
important for axonal regeneration, might be interesting to be
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further explored since GRP78 was found to promote neurite
outgrowth in vitro (Satoh et al., 2000). Other interacting partners
have been recently described that appear to be related to
neurodegeneration which will be discussed below in other
sections.

A recent study using a combination of biochemical,
mutational, FACS, and single molecule super-resolution imaging
approaches, reports that GRP78 mainly exists as a peripheral
protein on plasma membrane via interaction with other
cell surface proteins including glycosylphos-phatidylinositol-
anchored proteins since it lacks a true transmembrane domain
(Tsai et al., 2015). In addition, the authors discovered that cell-
surface GRP78 expression requires its substrate binding activity
but is independent of ATP binding.

Accordingly, GRP78 has also been observed as a secreted
protein even in the human peripheral circulation (Delpino
and Castelli, 2002). Secreted GRP78 can be found as well in
the oviduct where apparently modulates sperm-zona pellucida
binding (Marín-Briggiler et al., 2010). In a totally different
context, the extracellular GRP78 has been proofed to have
powerful immunomodulatory and anti-inflammatory properties
by increasing IL-10 and reducing TNF-α (Corrigall et al., 2004;
Panayi and Corrigall, 2014; Figure 1). This observation suggests
that it would be relevant to determine such immunomodulatory
property within the central nervous system.

Alternative Variants of GRP78 in the Cytoplasm
In addition to its localization in membrane-associated structures
and organelles, GRP78 is observed in the cytoplasm. GRP78
can be relocated from the ER to the cytoplasm through several
mechanisms: (i) via the ERAD pathway (Duriez et al., 2008),
(ii) via a Bax/Bak-dependent change in membrane permeability
produced during ER stress-induced apoptosis that allows luminal
proteins to flow out (Wang et al., 2011), (iii) through GRP78
alternative splicing of GRP78 nuclear pre-RNA. The alternative
processing results in retention of intron 1, which leads to
an mRNA with an alternative translation initiation site and a
premature stop codon that causes the loss of the ER signaling
peptide in the encoded truncated isoform termed GRP78va (Ni
et al., 2009; Figure 1).

LESSONS FROM CANCER

Cancer cells are characterized by altered glucose metabolism,
and the tumor microenvironment is marked by impaired blood
flow and hypoxia, all of which can cause ER stress. GRP78
is involved in several aspects of cancer development including
tumor survival and proliferation, chemoresistance, angiogenesis,
and metastasis. Many tumor cells overexpress GRP78 on the
outer plasma membrane. In addition, in different types of
cancer, such as those of prostate, breast, and melanoma origins,
abnormally high GRP78 expression is correlated with tumor
resistance, greater risk for cancer recurrence, and an overall
decrease in patient survival (reviewed in Pfaffenbach and Lee,
2011). Thus, GRP78 at the cell surface has been postulated to be a
promising target for cancer therapeutics and a useful prognostic
marker.

The utilization of knockdown and overexpression techniques
and genetic mouse models has furthered our understanding of
the role of GRP78 in cancer. In a transgene-induced endogenous
mammary tumor model, GRP78 haploinsufficiency resulted
in delayed tumor latency, decreased tumor proliferation, and
increased apoptosis (Wang et al., 2010). Strikingly, in mice
harboring bi-allelic conditional knockouts of both GRP78 and
PTEN in the prostate epithelium, prostate tumorigenesis was
potently arrested, providing the first evidence that GRP78 is
required for tumorigenesis driven by loss of PTEN and activation
of the PI3K/AKT oncogenic pathway (Fu et al., 2008). Indeed,
ligation of cell-surface GRP78 by antibody slowed growth rate
and blocked PI3K/AKT signaling (Misra and Pizzo, 2010b).

Through formation of complexes with other proteins on the
cell surface such as α2-M or Cripto, GRP78 is reported to
mediate tumor cell signal transduction. Autoantibodies from
serum of prostate cancer patients against a segment of GRP78
(Leu 98-Leu115) induces cell proliferation, suggesting that these
antibodies serve as agonists of activated α2-M, which recognizes
the same site of GRP78 (Gonzalez-Gronow et al., 2006). The
interaction of α2-M with cell-surface GRP78 promotes cell
proliferation by activating ERK1/2, p38 MAPK, and PI3K
and enhances cell survival by inducing the AKT and NF-
kB signaling cascades (Misra et al., 2004, 2006). In addition,
in highly metastatic and invasive 1-LN prostate cancers, cell-
surface GRP78 acts as a receptor for activated α2-M leading
to activation of PAK-2, and together with LIMK and cofilin
phosphorylation, increases motility enhancing metastasis (Misra
et al., 2004, 2005a). Another pathway is triggered by binding to
Cripto oncoprotein. The complex of Cripto and GRP78 enhances
tumor growth via inhibition of TGF-β signaling. Furthermore,
blockade of Cripto binding to cell-surface GRP78 by an antibody
against the N-terminus of GRP78 inhibits oncogenic Cripto
signaling and this involves the MAPK/PI3K and Smad2/3
pathways (Kelber et al., 2009). A commercial polyclonal antibody
directed against the C-terminus of GRP78 was reported to induce
apoptosis in melanoma cells (A375) and prostate cancer cells (1-
LN, DU145) but not in the PC-3 prostate cancer cell line. GRP78
expression was undetectable on the surface of the PC-3 cells
but was present on the other cell types (Misra et al., 2009). The
proposed mechanism is that this antibody leads to suppression
of Ras/MAPK and PI3K/AKT signaling (Misra et al., 2009; Misra
and Pizzo, 2010a,b).

A different pathway has also been revealed recently. Katherine
L. Cook and collaborators showed that GRP78 specifically
inhibits de novo fatty acid synthesis in breast cancer cells
and reduces mitochondrial β-oxidation through inhibition of
mitochondrial carnitine palmitoyltransferase 1a (CPT1a), which
catalyses the primary regulated step in overall mitochondrial fatty
acid oxidation (Cook et al., 2016).

It has been suggested that GRP78 acts in concert to coordinate
tumor cell growth to accommodate cancer cells to nutritional
changes through facilitation of macroautophagy (Li et al., 2015).
In agreement, one study showed that functional blockade of
the proteasome induces GRP78, promoting autophagosome
formation and enhancing myeloma survival (Abdel Malek et al.,
2015). In tumor cells this activation can lead to autophagic
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degradation of IκB kinase, which caused inactivation of NF-κB
pathway, an important mediator of apoptotic signaling.

The alternative cytosolic form, GRP78va is also important in
tumorigenesis. This isoform is overexpressed in leukemic cells
and leukemia patient samples. In the cytosol, GRP78va may
associate with P58(IPK), which acts as inhibitor of PERK during
UPR, antagonizing it and increasing cell survival under ER stress
(Rutkowski et al., 2007). This study suggested that GRP78va has
the potential to influence survival of cancer cells in adaptation to
ER stress through modulating UPR signaling.

In summary, tumor cells use GRP78 to orchestrate the
stimulation of processes such as macroautophagy, to combat
the presence of reactive oxygen species (ROS), and to activate
pro-survival signaling pathways.

GRP78 IN NEURODEGENERATIVE
PROCESSES

Age-related neurodegenerative diseases are commonly associated
with the accumulation of misfolded and aggregated proteins
and the presence of oxidative stress, calcium dysregulation, and
mitochondrial dysfunction, particularly at the mitochondria-
associated ER membrane (MAM). Neurodegenerative disorders,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), and prion-related diseases,
have different clinical manifestations, but all present common
events that also occur in neurodegenerative processes triggered
by brain ischaemia or trauma. Aging, which is a risk factor for
most neurodegenerative diseases, is accompanied by decreases in
activity of several endogenous neuroprotective mechanisms that
certainly may contribute to their etiopathogenesis.

GRP78 in Alzheimer’s Disease
AD is a neurodegenerative disease characterized by cognitive
alterations and memory loss. Early-onset cases of autosomal-
dominant familial AD (FAD) are often caused by mutations
in the genes encoding amyloid beta precursor protein (APP)
or presenilin proteins (PS1, PS2). Aspartyl proteases PS1 and
PS2 are components of the γ-secretase complex that, together
with β-secretase, process APP to produce amyloid-β peptides
(Aβ) of 40 and 42 amino acids (Aβ40, Aβ42). Hallmark lesions
in AD are amyloid plaques and neurofibrillary tangles, both
arising from protein misfolding. In plaques there is an abnormal
increase in the Aβ42:Aβ40 ratio, whereas neurofibrillary tangles
are composed of the aberrantly phosphorylated tau protein
(Mattson, 1994).

The bulk of immature APP associates with GRP78 in the
ER. GRP78 facilitates correct folding of APP and modulates
intracellular APP maturation and processing (Yang et al., 1998;
Kudo et al., 2006). Under ER stress, overexpression of GRP78
retains APP in the early secretory compartments resulting in a
reduction of Aβ generation because β/γ-secretase activity itself
is thought to be located in late secretory compartments, such
as the Golgi apparatus and endo-lysosomal system (Kudo et al.,
2006). In other way, GRP78 is a key player in APP processing
also through ERAD. Some authors have found that another

ER-resident protein dnj-27 (the ortholog of mammalian ERdj5),
which works as an enhancer of ERAD together with GRP78
and EDEM, protects against the aggregation of both Aβ and α-
synuclein (α-syn), involved in PD pathogenesis, in C. elegans
(Muñoz-Lobato et al., 2014).

GRP78 levels are two-fold higher in AD temporal cortex
and hippocampus compared to non-demented control cases as
shown by immunohistochemistry. This increase was found in
neurons in AD brains that were still healthy and that do not
co-localize with neurofibrillary tangles indicating that GRP78
overexpression may slow down neurodegeneration (Hoozemans
et al., 2005). Intriguingly, in the triple transgenic mice bearing
FAD-linked mutations in APP and presenilins (3xTg-AD), which
serve as an AD model, GRP78 levels are increased only by 1.5–
2-fold in 2 month-old 3xTg-AD mice compared to controls,
and this increase is associated with the presence of accumulated
toxic Aβ peptide (Soejima et al., 2013). It is remarkable that this
level of overexpression of GRP78, reported in vivo in this animal
model and similar to those observed in post-mortem human AD
tissue, is minor compared to the levels induced by ER stress
(e.g., by using tunicamycin) in a wild-type animal, which can be
more than 3-fold in several tissue types (Li et al., 2012; Galán
et al., 2014). This observation suggests that the degree of GRP78
level increased in AD models and human AD neurons might be
insufficient to cope with sustained ER stress. This observation is
supported by age-related difficulties for GRP78 increase after ER
stress as described further down in the aging section. In addition,
it would be interesting to know where GRP78 is located within
the neurons in AD tissues, as its functions depend on localization
as discussed above. Importantly, the extracellular chaperone α2-
M, a ligand of GRP78 at the plasma membrane, is co-localized
with plaques in AD (Yerbury and Wilson, 2010), and it has been
shown both to protect cells from Aβ toxicity and to favor Aβ

removal from the brain (reviewed in Yerbury and Wilson, 2010).
It is likely that some of these beneficial effects occur through the
intervention of GRP78, although this has not been demonstrated
yet.

Tau hyperphosphorylation is another pathological hallmark
in AD brain and other Tauopathies. In a recent study,
it was found that overexpression of GRP78 induced tau
hyperphosphorylation via activating glycogen synthase kinase-3β
(GSK-3β), an important tau kinase in AD brain, and increased
the association with tau and GSK-3β. This was concurrent with
SIL1 down regulated expression (Liu et al., 2016). However, when
the authors forced the expression of both proteins prevented ER
stress-induced tau hyperphosphorylation and GSK-3β activation
suggesting the importance of ATP binding activity for beneficial
effects promoted by GRP78.

In addition to APP processing, other abnormalities have
been found associated to AD pathology where GRP78 can
have also an opportunity for neuroprotection. Calcium level
is dysregulated in AD brains, although its role in pathology
is not well-understood. Calcium signaling may act even
upstream of APP processing, as elevations in Ca2+ can increase
production of oligomeric Aβ peptides (Itkin et al., 2011).
Indeed, stabilizing ER calcium with dantrolene, a ryanodine
receptor antagonist, restores normal synaptic function and
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plasticity and reduces amyloid load in the brains of 3xTg
AD mice and knock-in FAD mice (reviewed in Frazier et al.,
2017). A recent review by Area-Gomez (Area-gomez and
Schon, 2016) proposed that the pathogenesis of AD might
be mediated by increased ER-mitochondrial communication,
which may cause aberrant increases in calcium trafficking
between the two organelles, unusual phospholipid profiles,
perturbed cholesterol homeostasis, changes in mitochondrial
function and morphology, and an increased Aβ42:Aβ40 ratio.
In particular, the authors argue that the altered ER membrane
topology at the MAM in AD could explain the shift in
the location of the γ-secretase cleavage toward Aβ42. In
this regard, GRP78 localized at the MAM might have an
important role in neuroprotection as a calcium binding
protein.

One mechanism through which Aβ peptides cause
cytotoxicity is by production of ROS via facile copper-
redox cycling (Barnham et al., 2004), which can, in turn,
result in oxidative damage to neuronal proteins and lipids
(Mark et al., 1997). Imbalances in ROS production and
detoxification are strongly implicated in AD neurodegeneration,
as reflected by cerebral elevations in oxidized lipids and
proteins (Sayre et al., 1997; Greilberger et al., 2008). According
to recent studies revealing important roles of GRP78 in
regulation of lipid content and inhibition of lipotoxicity
resulting from lipid peroxidation and ROS generation
(Cook et al., 2016) it is possible that overexpression of
GRP78 can have neuroprotective properties against ROS as
well.

Finally, sporadic AD (SAD) comprises the vast majority
of AD cases. Mutations in the gene encoding apolipoprotein
E (ApoE), particularly the ApoEε4 allele, are the strongest
genetic risk. ApoEε4 promotes transient membrane cholesterol
loading, which increases Aβ42 secretion and its accumulation
in plaques in patients with AD and in cognitively normal
people (reviewed in Sato and Morishita, 2015). Cholesterol and
phospholipids have been shown to modulate the activity of
APP-related secretases (Di Paolo and Kim, 2011). ER function
is also affected by lipid composition and lipid biosynthetic
enzymes (Lagace and Ridgway, 2013). Exogenous expression of
GRP78 by adenoviral administration reduces liver lipogenesis
by inhibiting activation of the central lipogenic regulator,
the sterol regulatory element-binding protein 1c, SREBP1-c
(Kammoun et al., 2009). Further, supporting the hypothesis
that GRP78 modulates lipid metabolism, GRP78 heterozygous
mice are resistant to obesity when placed on a high fat
diet (Ye et al., 2010). Overexpression of GRP78 reduces the
expression of lipogenic genes and plasma triglycerides and
rescues the levels of the ER-processed ABCG5-G8 heterodimer
transporter of cholesterol in the liver of obese mice lacking
the receptor of leptin (db/db mice; Wang Y. et al., 2015).
The mechanisms by which GRP78 functions in lipid and
cholesterol management are far from clear, particularly in the
brain, in light of these results in other tissues, it would be
very interesting to further investigate its involvement in the
lipid-related pathophysiology of neurodegenerative diseases such
as AD.

GRP78 in Parkinson’s Disease
Parkinson’s disease is an idiopathic movement disorder
characterized by the loss of dopaminergic neurons in the
substantia nigra pars compacta (SNc) and the presence of Lewy
bodies. Lewy bodies are distinct protein inclusions composed of
aggregated α-syn. Studies on post-mortem brain samples have
revealed immunoreactivity for UPR activation markers (Bellucci
et al., 2011). Indeed, α-syn induces ER-stress and activates the
UPR pathway in dopaminergic neurons in the SNc (Gorbatyuk
et al., 2012).

In cell and animal models of α-syn accumulation, there is
evidence that GRP78 forms a complex with α-syn (Bellucci et al.,
2011; Colla et al., 2012; Gorbatyuk et al., 2012). Interestingly,
both the level and localization of GRP78 are altered in different
models of PD. For instance, in a rabbit model of PD, it has
been demonstrated that GRP78 translocates from the ER to
the nucleus and cytosol in response to treatment with MPP+,
which causes a marked reduction in Tyrosine Hydroxylase-
positive cells in the SNc (Ghribi et al., 2003). In cultured neurons,
extracellular α-syn binds to GRP78 located at the cell surface,
triggering a signaling cascade leading to cofilin 1 inactivation
and stabilization of microfilaments, thus affecting morphology
and dynamics of actin cytoskeleton. Inactivation of cofilin 1
and stabilization of actin cytoskeleton also occurs in fibroblasts
derived from PD patients, suggesting that extracellular GRP78
might be the responsible. Dysregulation of actin turnover has
been shown to lead to deficits in synaptic function that normally
precede neurodegeneration in PD models. In addition, the
interaction with extracellular α-syn renders GRP78 sequestered
and clustered at the cell surface, which impedes its proper
recycling toward the ER and results in a virtual depletion from
the ER. Accordingly, overexpression of GRP78 was found to be
neuroprotective, through a mechanism that involves decreases
in the levels of UPR target genes, preventing the loss of
dopaminergic neurons and dopamine in the SNc (Ni et al., 2011).

GRP78 in Amyotrophic Lateral Sclerosis
ALS is a progressive neurodegenerative disease, involving the
selective degeneration of motoneurons in the spinal cord, most
of the brainstem, and the cerebral cortex. Many different
mutations are associated with familial ALS, but all lead to
proteinmisfolding and aggregation. Thesemutations are in genes
encoding superoxide dismutase 1 (SOD1), TAR DNA-binding
protein 43-KDa, FUS, and other proteins. SOD1 aggregates have
been observed in patients with sporadic ALS (Ezzi et al., 2007;
Chattopadhyay et al., 2008; Bosco et al., 2010). Mutant SOD1
aggregates, but not wild-type SOD1, forms highmolecular weight
species that interact with GRP78 as observed in microsomal
fractions of spinal cords derived from mouse models of ALS
(Kikuchi et al., 2006).

Saxena’s group investigated the pattern of expression of the
ER folding network in vulnerable and resistant motoneurons
and found that the ER folding network has a relevant role in
ALS (Maharjan and Saxena, 2016). Remarkably, the knock-in
mice that express mutant GRP78 lacking the KDEL sequence
have age-related motor problems concomitant with loss of
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selective vulnerable motoneurons and aggregation of wild-
type SOD1 reminiscent of ALS symptoms (Bosco et al.,
2010; Jin et al., 2014). Several co-chaperones of GRP78, such
as SIL1 and Sig1R, are important in ALS. SIL1 is mostly
expressed in resistant motoneurons, suggesting it is involved
in neuroprotection. Accordingly, SIL1 deficiency enhances
ALS pathology, whereas SIL1 overexpression affords significant
neuroprotection related to improved ER proteostasis and
reduced SOD1 aggregation (reviewed in Rozas et al., 2017).
Chronic treatment with PRE084, an agonist of Sig1R lead to
increase neuroprotection of motoneurons in a mouse model of
ALS (Mancuso et al., 2012). For all these reasons, it is possible that
overexpression of GRP78 would mediate neuroprotection in ALS
patients.

GRP78 in Prion-Related Diseases
Human prion diseases are rare, rapidly progressive, invariably
lethal neurodegenerative diseases, symptomatically characterized
by severe memory impairment and a general decline in cognitive
functions, which may include motor, linguistic, executive, and
social skills (Wadsworth et al., 2003). Most often, human prion
diseases have a sporadic etiology [e.g., sporadic Creutzfeldt-
Jakob disease (sCJD)], but hereditary (e.g., fatal familial
insomnia and Gerstmann-Sträussler-Scheinker syndrome), and
infectiously acquired [e.g., iatrogenic CJD, kuru, and variant
CJD (vCJD)] forms of the disease also exist. Prion diseases
have also extensively been described in animals; these include
bovine spongiform encephalopathy (BSE) in cattle and scrapie in
sheep.

At the neuropathological level, human prion diseases are
characterized by the accumulation of pathological prion protein
(PrPSc), neuronal loss, astrogliosis, and spongiosis. During
human prion disease progression, normal prion protein (PrPC)
is converted into insoluble, β-sheet rich PrPSc aggregates. Once
formed this pathological PrPSc conformer ensures conversion
of native PrPC into PrPSc and propagation of pathology to
neighboring cells (reviewed in Wadsworth et al., 2003). One
study reported increased expression of GRP78 and several
other ER chaperones in post-mortem brain samples of sCJD
and vCJD patients, although signal was not compared to
controls (Hetz et al., 2003). In brain tissue samples from
animals naturally infected with BSE, GRP78 is upregulated
only by up to 2.3-fold (Tang et al., 2010). Increases in
UPR markers such as GRP78 are thought to be an attempt
of the neurons to cope with ER stress and are essentially
markers of neuroprotective processes as mentioned. In a recent
study, Jin and collaborators showed that GRP78 interacts
transiently with PrPc in the ER, in agreement with its
involvement in the folding of nascent PrPc polypeptides (Jin
et al., 2000). GRP78 might remain associated for an extended
period of time with some isoforms of mutant PrP causing its
subsequent retrotranslocation for proteasomal degradation and
so preventing the formation of homo-aggregates (Jin et al.,
2000). It will be interesting to determine whether boosting
GRP78 expression further will lead to neuroprotection as
was demonstrated for another chaperone GRP58 (Hetz et al.,
2005).

GRP78 in Neurodegenerative Processes
after Ischemia or Trauma to the Nervous
System
Neurodegeneration is a secondary event after traumatic
brain injury and ischaemia. Ischemic preconditioning (IPC)
is a sublethal ischemic episode that engages endogenous
cytoprotective mechanisms to protect cells from subsequent
severe ischemia (Zhang et al., 2015). As suggested by researchers
in the field, uncovering the mechanisms of brain ischemic
preconditioning might lead to the development of effective
treatments for ischemic cerebrovascular disease that could
be exploited therapeutically. Several studies have observed
that IPC leads to upregulation of GRP78, which activates
autophagy. Accordingly, specific suppression of GRP78 with
pharmacological and genetic approaches inhibits autophagic
activation and abolishes ischemic tolerance (reviewed in Zhang
et al., 2015).

Overexpression of GRP78 is important for protection of
astrocytes after ischemic injury as it reduces the flux of Ca2+

from the ER to the mitochondria, increases Ca2+ uptake capacity
in isolated mitochondria, reduces free radical production, and
preserves respiratory activity and mitochondrial membrane
potential after stress (Ouyang et al., 2011).

After trauma, it has been demonstrated that GRP78 plays
a relevant role. After abrupt proximal axotomy or avulsion of
the nerve root, a retrograde neurodegenerative process occurs
in spinal motoneurons. In contrast to root avulsion, after
distal axotomy, motoneurons can engage signaling pathways
that allow them to survive and regenerate. In these conditions,
GRP78 is downregulated during neurodegenerative processes but
overexpressed in the regenerative condition (Penas et al., 2009,
2011a). Indeed, forced expression of GRP78 or pharmacological
activation of its co-chaperone Sig-R1 in a root avulsion model
leads to neuroprotection (Guzmán-Lenis et al., 2009; Penas
et al., 2011a,b). These observations suggested that GRP78 plays
a relevant role activating endogenous neuroprotection and that
its effects can be mimicked to exert neuroprotection in different
conditions.

GRP78 during Aging
A commonality in neurodegenerative diseases is that the UPR
is not correctly activated. In ex vivo human diseased brain
tissue and in vivo models, there is significant depletion of ER
molecular chaperones involved in the UPR despite ER stress (Lee
et al., 2010; Gorbatyuk et al., 2012; Drake, 2015). Although, the
mechanisms that underlie UPR dysfunction are unclear, aging
might be a determinant factor. It has been reported that during
aging, the quality control mechanism becomes inefficient since
ER chaperones are less responsive to ER stress, as evidenced by
decreased levels and activities of ER chaperones in aged tissue
(Nuss et al., 2008). This defect has been attributed to increased
oxidation of several key ER chaperones (Rabek et al., 2003), which
would agree with the mitochondrial free radical theory of aging
(Cadenas and Davies, 2000).

In particular, a reduction in GRP78 levels has been observed
during aging and throughout progression of degenerative
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disorders (Paz Gavilán et al., 2006). Old mice (20–24 months
old) have 20% less GRP78 ATPase activity than young mice (3–
5 months old), which is consistent with a 2-fold higher level
of GRP78 carbonylation in old mice. Such findings support the
hypothesis that loss of ER or other cellular functions, often seen
in age-related diseases, is caused by the life-long accumulation
of oxidative damage to key proteins (Nuss et al., 2008; Salganik
et al., 2015). Another study reported that there was about 73% less
GRP78mRNA in old (900 days old) compared to young (21 days
old) rats, suggesting that loss of GRP78 activity and the associated
physiological declines occur at both the protein and transcript
levels (Erickson et al., 2006). This suggests that the loss of GRP78
function could be a predisposing factor for neurodegenerative
disorders associated with age (Brown and Naidoo, 2012).

A decrease inmacroautophagy with age has also been reported
in a variety of systems (Martinez-Lopez et al., 2015). The
exact mechanisms by which protein aggregation contributes to
neuronal degeneration remain to be fully elucidated; however,
accumulating evidence suggests that defects in autophagy-
related pathways contribute substantially to premature aging
(Rajawat et al., 2009) and neurodegeneration (Ravikumar
et al., 2004). Indeed, landmark studies have demonstrated
that enhancing autophagy confers a protective effect in AD,
PD, and Huntington’s disease (reviewed in Ntsapi and Loos,
2016), whereas genetic suppression of basal autophagy causes
neurodegeneration (Hara et al., 2006; Komatsu et al., 2006).

Successful and precise targeting of the autophagy process
in the clinical setting has thus far not been accomplished,
but it would be very interesting to know whether restoring
GRP78 levels after ER stress in an aged-brain improve autophagy

efficiency, reduces the extent of mitochondria dysregulation and
protein aggregation.

CONCLUDING REMARKS

GRP78 or BiP is a very important protein. It has a relevant
role to promote survival in tumor cells by activating potent
endogenous cytoprotective mechanisms. Regarding these
lessons, it is possible that engaging the same mechanisms in
the nervous system this would be capable to cope with multiple
stressful situations in the course of a disease. Multifunctional
GRP78 can elicit neuroprotection by attenuating ER stress,
managing misfolded proteins to avoid its accumulation,
inducing macroautophagy, buffering calcium unbalance,
facilitating mitochondria-ER crosstalk and activating pro-
survival signaling pathways. Thus, GRP78 is an excellent
target to take into consideration for neuroprotective
therapeutical strategies targeting specifically neurons to avoid
any putative undesirable side effect although GRP78 itself is not
proto-oncogenic.
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Molecular chaperones are required to maintain the proteome in a folded and functional

state.When challenges to intracellular folding occur, the heat shock response is triggered,

leading to increased synthesis of a class of inducible chaperones known as heat shock

proteins (HSP). Although HSP synthesis is known to undergo a general decline in most

cells with aging, the extent of this process varies quite markedly in some of the diseases

associated with advanced age. In Alzheimer’s disease (AD), a prevalent protein folding

disorder in the brain, the heat shock response of some critical classes of neurons

becomes reduced. The resulting decline in HSP expression may be a consequence of the

general enfeeblement of many aspects of cell physiology with aging and/or a response

to the pathological changes in metabolism observed specifically in AD. Cancer cells, in

contrast to normal aging cells, undergo de novo increases in HSP levels. This expansion

in HSP expression has been attributed to increases in folding demand in cancer or to

the evolution of new mechanisms for induction of the heat shock response in rapidly

adapting cancer cells. As the predominant pathway for regulation of HSP synthesis

involves transcription factor HSF1, it has been suggested that dysregulation of this factor

may play a decisive role in the development of each disease. We will discuss what is

known of the mechanisms of HSF1 regulation in regard to the HSP dysregulation seen

in in AD and cancer.

Keywords: molecular chaperone, heat shock protein, cancer, Alzheimer’s disease, proteotoxic stress

INTRODUCTION

Cancer and Alzheimer’s disease (AD) each affect large proportions of the population and, at
least in their sporadic forms are much more prevalent in older people. In both diseases, there is
strong evidence for loss of regulation of molecular chaperone function that may contribute to the
morbidity of the diseases (Calderwood et al., 2009; Calderwood and Gong, 2016). However, these
changes take different forms in the two disease types. In short, cancer is associated with expansion
in molecular chaperone expression, while onset of AD and other neurodegenerative diseases has
been associated with reduced HSP levels and a decrease in the ability to deal with proteotoxic stress
(Batulan et al., 2003; Calderwood and Gong, 2016). These findings are confluent with numerous
epidemiological studies that show a negative correlation between the risk of cancer in persons
with AD or other neurodegenerative diseases (Roe et al., 2005; Driver, 2014). We will explore here
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regulation of molecular chaperone synthesis and how it may
become modified during development of AD and cancer.

HEAT SHOCK PROTEINS- AN INDUCIBLE
CLASS OF MOLECULAR CHAPERONES

The most intensely studied property of HSPs is their facilitation
of the pathways of protein folding (Lindquist and Craig, 1988;
Kayser et al., 2013; Kityk et al., 2015). They thus belong to
the families of molecular chaperones. HSPs possess the capacity
to recognize structures commonly found in the interior of
proteins and to bind such structures. Their major role appears to
deter the formation of quasi-stable conformations during folding
(Ellis, 2007). With this aid, nascent proteins or polypeptides
being rescued from denaturation will then collapse into their
low-energy, native conformations in which they can direct cell
metabolism. In order to be released from client proteins after
folding, and take part in further rounds of activity, Hsp70
and other chaperones utilizes an intrinsic ATPase domain to
hydrolyze ATP and assume a free conformation (Kityk et al.,
2015). The low molecular weight chaperone Hsp27, lacking an
ATPase domain, requires rescue by Hsp70 to release from its
clients. Hsp27, Hsp70, and Hsp90 can act in relay to permit
unfolded proteins to achieve functional activity in a stepwise
manner (Calderwood and Gong, 2016). Although there are
a number of other HSP families, we have concentrated on
Hsp27, Hsp70, and Hsp90, as they are the most intensely
studied HSPs in cancer and AD. In some cases, proteins
with fragile conformations remain associated with Hsp90 in
order to maintain a functional conformation (Kirschke et al.,
2014). Thus, most cells contain high concentrations of these
proteins, particularly Hsp90 to chaperone the proteome. During
proteotoxic stress, a subclass of inducible chaperones is induced
at the transcriptional level to boost chaperoning capacity, and
these are the HSPs (Richter et al., 2010). For a more detailed
overview of molecular chaperone function and interaction with
protein co-factors (co-chaperones), readers are referred to a
previous review (Calderwood, 2013).

REGULATION OF THE HEAT SHOCK
RESPONSE BY HSF1

Exposure of almost any cell to heat shock leads to the almost
immediate transcription, translation and accumulation of a
cohort of HSPs that increase to quite remarkable levels when
the stress is pronounced (Richter et al., 2010). Such cells then
become resistant to further stress by heat shock (Li and Hahn,
1980). We now know that a major property of HSPs is to facilitate
the folding of a large proportion of intracellular proteins toward
functional conformations (Ellis, 2007). Heat shock triggers the
unfolding and aggregation of many intracellular proteins—hence
the development of the heat shock response early in evolution
to cope with environmental stress (Zhang and Calderwood,
2011). The key effector of HSP gene transcription is heat shock
factor 1 (HSF1), a sequence specific factor that binds upstream
of all HSP genes at the onset of stress (Wu, 1995). There is

currently no unique hypothesis as to the mechanism by which
HSF1 senses the heat shock and becomes activated. HSF1 may
be able to both sense the change in temperature shift directly,
as with a thermometer, or may have evolved to respond to
the toxic effects of the heat shock such as protein unfolding
within the cytoplasm (Zhong et al., 1998; Zou et al., 1998). In all
eukaryotes, HSF1 responds to stress by undergoing a monomer
to trimer transition and becomes heavily phosphorylated, leading
to its acquiring ability to rapidly bind to DNA and activate
transcription (Akerfelt et al., 2010). It became clear quite early
that transcriptional activation by mammalian HSF1 required
more than its trimerization and DNA binding (Price and
Calderwood, 1991). Recent studies also suggested a similar two
stage activation in yeast (Zheng et al., 2016). In fact, some stimuli-
such as exposure to high levels of sodium salicylate could lead
to almost quantitative HSF1 binding to DNA without increasing
HSP transcription (Jurivich et al., 1992; Housby et al., 1999).
Heat shock sensitivity of HSF1 would seem to require at least
two regulatory events. The Voellmy lab were able to recreate
HSF1 activation in the absence of heat shock by combining:
(1) sodium salicylate stimulation (which produces trimerization
and DNA binding) with (2) exposure to phosphatase inhibitors-
strongly suggesting that the second stimulus for HSF1 induction
involves direct or indirect effects of phosphorylation (Voellmy,
1994; Figure 1).

Work from the Kingston lab next provided a structural
basis for the two-stimulus hypothesis by the discovery of a
new temperature sensitive domain in HSF1 remote from the
trimerization domain (Green et al., 1995; Newton et al., 1996).
This region—called the regulatory domain was shown to be in
the middle of the HSF1 protein sequence, C-terminal to the
trimerization and DNA binding domains and upstream from the
trans-activation domains and to control HSP gene transcription
independently from DNA binding. Interestingly, the regulatory
domain appeared to repress trans activation in the absence
of stress but transmitted the inducing effects of heat shock
to the trans activation domains (Green et al., 1995; Newton
et al., 1996). Interestingly, this domain contains both positively
acting and repressive phosphorylation sites (Calderwood et al.,
2010). Serine 303 is phosphorylated by glycogen synthase kinase
3 (GSK3) under non-stress conditions and represses HSF1
through mechanisms including induction of repressive SUMO
modifications as well as nuclear export (Wang et al., 2003; Anckar
et al., 2006). Heat shock overrides this form of repression as
well as leading to activation of positively acting phosphorylation
on serines 320 and 326 (Zhang et al., 2011; Chou et al., 2012).
One could thus envisage a scenario in which stress triggered
the first activating stimulus, leading to trimerization and rapid
localization of HSF1 on HSP genes, and in a similar time frame
activated a second signal through the regulatory domain to
render the chromatin-bound HSF1 able to positively regulate
trans-activation. Many questions still remain of course- such as
the nature mechanism by which the regulatory domain led to the
induction of the remote trans-activation domains and whether
the activities of the trimerization region and the regulatory
domain were in some way coordinated. In addition, there are
important PTMs outside the regulatory domain. Serine 121 is
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FIGURE 1 | Regulatory mechanisms governing HSF1 activity. The figure

depicts the major functional domains within HSF1 in their linear organization

along the protein structure. (note the domains are not drawn to scale). There

are, N terminally to C-terminally, a DNA binding domain (DNA), a trimerization

domain (leucine zipper 1-3 or LZ1-3), a central regulatory domain (REG), a

fourth region of leucine zipper or hydrophobic heptad repeat sequence (LZ4)

and the C-terminal double trans-activation domains (TRANS). The primary

mechanism for HSF1 regulation appears to the intramolecular coiled coil

interaction between LZ4 and LZ 1-3 that prevent trimerization and DNA

binding under basal conditions, which is severed during heat shock. A second

regulatory mechanism is feedback repression exerted by Hsp70 and Hsp90

that can bind at various positions in the HSF1 molecule to effect inhibition. The

regulatory domain contains an array of phosphorylation sites that can govern

activity. Most notable among these is serine 303 (pS303) whose

phosphorylation mediates inhibition of HSF1, and sumoylated lysine 298

(SuK298). In addition, other PTMs have been found elsewhere in the molecule,

with lysine 80 (K80) undergoing repressive acetylation (AcK80) that can be

relieved by the deacetylase sirtuin 1.

another repressive phosphorylation site that acts to suppress
DNA binding (Wang et al., 2006). In addition, HSF1 is modified
by acetylation, most notably at lysine 80, an effect that reduces
the duration of DNA binding (Westerheide et al., 2009). HSF1
activation can be effected by a range of deacetylases, including
sirtuin 1, HDAC7 and HDAC9 that each remove the acetyl group
from K80 and increase the lifetime of association of HSF1 trimers
with DNA (Westerheide et al., 2009, 2012; Zelin and Freeman,
2015). It is of note that histone acetylase p300 is recruited by
HSF1 to heat shock genes along with positive transcriptional
elongation factor b (pTEFb) and is involved in trans activation by
acetylating key histones (Zhang et al., 2011). This event could also
be involved in HSF1 switch off, in the resolution of the response
through K80 acetylation.

However, at some time within the aging organism, these
complex regulatory mechanisms go wrong and the heat shock
response loses its ability to switch on or off at the appropriate
moment, effects that may differ in different organs and different
diseases (Calderwood et al., 2009). The multiple molecular
inputs into HSF1 regulation may each play distinct roles in the
dysregulation of the factor in disease. It is also apparent that
different triggers may activate HSF1 by alternative mechanisms.

Fast activation in heat shock may involve the intrinsic capacity
to sense temperature, while more gradual triggers as in cancer
may be mediated through reversal of repressive pathways and
activating PTMs (Zhong et al., 1998; Khaleque et al., 2005).

HSPS AND THE PROMOTION OF CANCER

It is now accepted that the levels of HSPs are relatively high
in most types of human cancer compared to their normal
tissues of origin (Ciocca and Calderwood, 2005; Ciocca et al.,
2013). Most such studies have concerned themselves with a
select group of HSPs—Hsp27, Hsp70, and hsp90 - and we
will concentrate mostly on these proteins in this discussion
(Calderwood and Gong, 2016). The proteins shown to play
causal roles in carcinogenesis are by definition effector proteins
in the processes that define malignancy, such as growth factor
independent growth, escape from cell death and senescence
pathways, promotion of angiogenesis and metastasis (Hanahan
and Weinberg, 2011). It is evident that the canonical functions
of HSPs do not appear to include the ability to directly
effect these properties (Ellis, 2007). Their best-known properties
exclusively involve protein folding, as described above. However,
HSPs facilitate the properties that give cancer its morbidity
(Calderwood and Gong, 2016). Indeed, HSPs are required
for stimulus-independent growth, escape from apoptosis and
senescence, angiogenesis, invasion and metastasis (Garrido
et al., 2006; Yaglom et al., 2007; Thuringer et al., 2013;
Calderwood and Gong, 2016). Many of these effects involve
the chaperoning of oncoproteins involved in each of these cell
behaviors. Interestingly, HSPsmay contribute in different ways to
transformation and tumor progression, depending on the driver
oncogene that mediates tumorigenesis. For instance, knockout
of Hsp70 reduced the growth of mammary cancers transformed
by the oncogene Her2 due to cell senescence (Meng et al.,
2011). However, in mammary epithelial cells transformed by the
Polyoma Middle T antigen, the effects of hsp70 inactivation was
to reduce tumor cell invasion and metastasis (Gong et al., 2015).
Although an increasing role for HSPs in cancer is emerging,
much needs to be learned regarding their multiple roles in disease
progression.

One hypothesis that has arisen to explain the aberrantly high
concentrations of HSPs in cancer is known as “addicted to
chaperones.” Tumor cells are thought to be in some ways similar
to mildly heat shocked cells, with oncogene overexpression
and mutation, polyploidy and exaggerated levels of translation
generating an intracellular folding demand (Workman et al.,
2007). This hypothesis draws heavily upon the proposed
mechanism for HSF1 activation involving reversal of its feedback
inhibition by HSPs such as Hsp90 and Hsp70 (Zou et al., 1998;
Gómez et al., 2008; Figure 1). Such HSPs are thought to act by
suppressing HSF1 trimerization or recruiting co-repressors to
HSF1, while activation involves the sequestration of the HSPs
in protein aggregates and release of free HSF1 to pursue its
transcriptional role (Zou et al., 1998). Hsp90 targeted drugs
indeed have the predicted property of causing the degradation
of unchaperoned oncoproteins while activating HSF1 and HSP
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synthesis (Workman et al., 2007; Conde et al., 2009). However,
this hypothesis is difficult to prove conclusively and is not
universally supported; it is not clear that the tumor environment
can be shown to be in a state of folding demand (Colvin
et al., 2014). It also seems apparent that that HSF1 can be
coupled directly to some of the cancer signaling pathways. In
cancer, signal transduction pathways that are normally coupled
tightly to the occupation of growth receptors can operate
independently, due to mutations or increases in expression
in signaling intermediates (Hanahan and Weinberg, 2011). As
mentioned above, HSF1 is repressed by phosphorylation on
serine 303, within the regulatory domain, through the kinase
GSK3 (Chu et al., 1996). In breast cancer HSF1 repression can be
relieved by exposure to the ligand heregulin that binds cell surface
receptor tyrosine kinase HER3. HER3 activation then activates
HSF1 through its triggering of the kinase Akt that can in turn lead
to inhibition of GSK3 and relief of repression (Khaleque et al.,
2005). Feedback regulation through HSPs does not seem to be
involved in this case and HSP synthesis and treatment resistance
can thus be coupled directly to mammary cancer signaling
pathways known to promote malignancy. Phosphorylation at
an adjacent domain, serine 326 causes HSF1 activation (Chou
et al., 2012). It is notable that HSF1 in mammary cancer
stem cells, the cells that govern tumorigenicity, invasion and
metastasis, is constitutively phosphorylated on serine 326 and
dephosphorylated on serine 303, suggesting a causal role for
activated HSF1 in stemness (Chou et al., 2015; Gong et al., 2015).
Indeed, activated HSF1 induces the stem cell renewal factor beta-
catenin (Chou et al., 2015). Thus, HSF1 activation and HSP
expression in cancer may involve relief of the repressive effects
of both HSPs and GSK3 as well as positive input through serine
326 (Figures 1, 2). This mechanism appears to resemble the two-
signal model of HSF1 activation by heat shock developed by
Voellmy et al and others, with HSP sequestration permitting step
(1), HSF1 escape from chaperone repression and trimerization
and (2) phosphorylation in the regulatory domain providing the
second signal for activation (Voellmy, 1994; Calderwood et al.,
2010). It is also notable that HSF1 can exert tumorigenic effects
through non-HSP chromosomal targets, including metastasis
associated protein 1 and others (Khaleque et al., 2008). Therefore,
HSF1 regulates both HSP expression as well as non-HSP targets
that may go some way to explaining its potency in carcinogenesis
(Ciocca et al., 2013).

DECLINE OF THE HEAT SHOCK
RESPONSE IN ALZHEIMER’S DISEASE

It is now widely accepted that Alzheimer’s disease (AD) and other
neurodegenerative diseases are, at least partially, protein folding
disorders (López-Otin et al., 2013; Cardinale et al., 2014). In
this review, we have concentrated on three chaperones-Hsp27,
Hsp70, and Hsp90 in cancer and AD. The rationale for this
choice was that the vast majority of publications regarding the
roles of HSPs in cancer deal with these three chaperones and
we thus concentered on these when comparing the diseases
(Ciocca and Calderwood, 2005; Calderwood and Gong, 2016).

However, readers are referred to a recent publication showing a
complex pattern of multiple chaperones and co-chaperones that
are modulated over time in age-dependent neurodegenerative
disease- some of which are increased while others decline
(Brehme et al., 2014). Two of the major lesions associated with
AD have been identified as large protein aggregates, known as
senile plaques that accumulate in the cerebral cortex during
disease progression, leading to loss of neurons and synapses and
ultimately dementia. These two lesions are: (1) Beta amyloid
plaques, derived from the amyloid precursor protein APP in the
neuronal plasma membrane. Peptides derived from APP of 39-
43 amino acids spontaneously form oligomers and ultimately
highly insoluble myeloid fibrils (Sipe and Cohen, 2000). Such
beta amyloid fibrils are toxic to adjacent neurons due to their
disruption of calcium homeostasis, leading to apoptosis. (2)
AD also belongs to the tauopathy family of diseases, each
characterized by progressive formation of tangled aggregates
containing the microtubule stabilizing protein Tau (Holmes
et al., 2014). The mechanisms of Tau aggregation are not fully
understood, but involve its hyperphosphorylation by GSK3.
Hyperphosphorylated Tau can then recruit healthy, normally
phosphorylated Tau into aggregates and tangles (Alonso et al.,
1996; Wang et al., 2013). Tau aggregation is toxic to cells,
leading to the disruption of microtubules essential for molecular
transport along axons, a key aspect of neuronal survival.

HSPs have been shown to be involved in the healthy
processing of amyloid beta, which can be found associated
with Hsp10, Hsp27, Hsp60, Hsp70, and Hsp90 (Maiti et al.,
2014). Although it is unlikely that intracellular chaperones
could directly interact with extracellular amyloid beta plaques,
they may influence the chaperoning of APP in neurons (Maiti
et al., 2014) or they could influence the proteolytic processing of
amyloid plaques phagocytosed by brain resident macrophages.
Hsp70 binds to Tau reducing its hyperphosphorylation,
decreasing aggregation and promoting Tau binding to
microtubules (Sarkar et al., 2008). Hsp90 plays a similar
role in Tau homeostasis (Sarkar et al., 2008). Degradation of
Tau was observed after treatment with Tau-derived synthetic
peptides and appeared to involve the substitution of Hsp70
associated with tau oligomers by Hsp90 (Thompson et al., 2012).
Hsp90 rather than Hsp70 appeared to play a primary role in Tau
degradation through the proteasome (Thompson et al., 2012).
In addition, Hsp27 was shown to rescue neuronal deficits in tau
knockout mice. These effects of Hsp27 appeared to involve its
phosphorylation-dependent chaperoning capacity, as mutation
of the key phosphorylation sites in the chaperone ablated its
ability to rescue the tau transgenics (Abisambra et al., 2010).
Each HSP family member then can participate in the deterrence
of AD lesions in cells or rodent models of the disease.

It is notable that the most common neurodegenerative
diseases: AD, Huntington’s disease and Parkinson’s disease,
each associated with protein folding disorder, occur as the
organism ages (Calderwood et al., 2009). In addition, although
each disease type involves distinct proteins with dominantly
aggregating properties (respectively—Tau, huntingtin, alpha-
synuclein), neurodegenerative symptoms develop with aging in
each disease (Calderwood et al., 2009). This time-dependent
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FIGURE 2 | Role of GSK3 in HSF1 regulation in cancer and AD. We depict GSK3 as a key HSF1 repressor that may govern its activity in cancer and AD. In many

types of cancer, GSK3 becomes inhibited when the enzyme Akt is induced by a cascade response involving activated receptor tyrosine kinases (RTK), and

phosphatidylinositol-3-kinase (PI-3K). Akt phosphorylates and inactivates GSK3. Thus, HSF1 is relieved of repression and can induce HSPs in tumors. In AD, GSK3

shows increased levels of activity, leading to HSF1 repression. This mechanism may involve activation of GSK3 downstream of aggregated amyloid beta fibrils.

Concomitantly Tau is hyperphosphorylated by a mechanism involving active GSK3, leading to Tau aggregation. Phosphorylated residues on HSF1 and Tau are

suggested by dark spheres.

window for induction of neurodegenerative diseases has been
attributed to a decline in the proteotoxic stress response with age,
permitting the phenotype of the dominantly aggregating proteins
to become revealed (Sherman and Goldberg, 2001; Hands et al.,
2008; Winklhofer et al., 2008).

HSP REGULATION IN THE BRAIN AND
ENSUING DYSREGULATION IN AD

There appears to be an overall decline in protein quality
control pathways and HSP synthesis with aging in many tissues,
including the brain, muscle and liver, as reviewed in Calderwood
et al. (2009). Studies in invertebrates have identified HSF1 as a
significant longevity factor and, for instance this factor plays a
key role in the enhanced longevity mediated by dietary restriction
and its inactivation reduces lifespan inC. elegans (Hsu et al., 2003;
Steinkraus et al., 2008). HSF1 mediated chaperone synthesis
may thus promote longevity by maintaining protein folding
capacity (Hsu et al., 2003). It has been shown that HSF1 is of
limited activity in neuronal cells in tissue culture, suggesting
that these tissues may be critically sensitive to age-dependent
declines in HSP inducibility and ability to respond to folding
deficits (Batulan et al., 2003). Interestingly these effects appear
to be mediated by the regulatory domain of HSF1 (Figure 1)
and deletion of this region led to renewed ability of the factor
to promote transcription in a neuronal cell setting (Batulan et al.,
2003). Interestingly the regulatory domain contains a repressive

phosphorylation site for GSK3 and removal of this site would lead
to relief of repression (Figure 2). GSK3 is increased in activity
in the aging brain and is of critical importance in AD, as this
is the principal kinase that leads to Tau phosphorylation and
tangle formation (Hooper et al., 2008). Thus, elevated GSK3
activity may offer double jeopardy for AD, in promoting Tau
pathology while repressing HSF1 and the heat shock response.
In both HSF1 and Tau, GSK3 phosphorylation is associated with
recruitment of 14-3-3 adapter proteins that leads in the case of
HSF1 to transcriptional repression and in Tau to increased fibril
formation (Wang et al., 2003; Qureshi et al., 2013). Another
kinase that impacts HSF1 is mTOR (Chou et al., 2012). It
was shown that, although mTOR can activate HSF1, increased
HSF1 activity seemed to lead, conversely to decreases in mTOR
signaling (Bandhakavi et al., 2008). Increases in mTOR activity
are regarded as important in AD pathology and HSF1 may
thus be important in protection against such mTOR-mediated
morbidity (Wang C. et al., 2014). In addition, HSF1, Hsp60,
Hsp70, and Hsp90 were each expressed at low levels in the
cerebella of AD rats (Jiang et al., 2013). Overexpression of HSF1
was shown to increase HSP levels in the cerebellum and lead to
an increase in the number of Purkinje cell bodies in the brains
of mouse models of AD (Jiang et al., 2013). Another key HSF1
regulator is the histone deacetylase sirtuin 1, a key longevity
factor which deacetylates HSF1 and increases its binding to HSP
promoters (Figure 1). Sirtuin 1 mRNA and protein levels are
known to be reduced in the brains of AD patients concomitantly
with Tau accumulation, suggesting a further route to HSF1
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malfunction in AD (Julien et al., 2009). Another mechanism
involved in loss of HSF1 activity could be increased HSF1
degradation due to the ubiquitin E3 ligase NEDD4. Degradation
of HSF1 through the NEDD4 pathway was antagonized when
HSF1 was deacetylated by sirtuin1 (Kim et al., 2016). Aggregated
alpha-synuclein was shown to trigger this pathway targeting
HSF1 in transfected neuroblastoma cells. It might be rewarding
to study the potential role of this pathway in tauopathies such as
AD, particularly in light of the known reduction in Sirt1 levels
in clinical AD. (Julien et al., 2009). HSF1 is also known to have
non-HSP transcriptional targets and these may be important
in AD (Khaleque et al., 2008). HSF1 activates transcription of
transthyretin (TTR) a protein that can impact symptoms in
Mouse AD model by inhibiting beta-amyloid aggregation and
detoxifying the amyloid oligomers (Wang X. et al., 2014).

All in all then, the balance of evidence suggests that the activity
of HSF1 and the levels of HSPs are depleted in AD. It would
however, be desirable to obtain a fuller picture of dysregulation
of the heat shock response in the AD brain.

DISCUSSION- COMPARING THE
RECIPROCAL DYSREGULATION OF THE
HEAT SHOCK RESPONSE IN CANCER
AND AD

Although cancer and AD are diseases encountered later in
life, HSP metabolism is altered in different directions in
each case. These findings are consonant with epidemiological
studies showing a negative correlation between the risk of
cancer in persons with AD (Roe et al., 2005; Driver, 2014).
These differences may in some ways reflect the gulf between
terminally differentiated neurons in AD brains, accumulating a
lifetime’s damage to DNA and proteins, and de-differentiating,
evolving cancer cells that maintain the ability to proliferate and
renew. However, in each case there appears to be an acquired
folding deficit, with increases in unfolded and aggregated
proteins (Sherman and Goldberg, 2001; Winklhofer et al., 2008;
Calderwood and Gong, 2016). Despite this, HSP levels respond
by increasing in cancer and declining in AD. Thus, the simple
hypothesis of HSF1 induction due to loss of feedback repression
by Hsp70 or Hsp90 does not help us with understanding
the changes in chaperone expression encountered in AD. One
potential unifying thread explaining some of the differences in
cancer and AD might be the kinase GSK3, the repressor of
HSF1 (Chu et al., 1998; Figure 2). In malignant diseases, many
tumorigenic pathways, such as those conferred by oncogenic
receptors PDGF-R, EGF-R, and HER2, by widespread increases
in PI-3 kinase and loss of the phosphatase PTEN often
encountered in cancer, converge on the kinase Akt that is a

GSK3 repressor (Yuan and Cantley, 2008; Chalhoub and Baker,
2009). Indeed, HSF1 can be activated directly inmammary cancer
through the Her2 pathway by activated Akt which mediates
GSK3 inhibition (Khaleque et al., 2005). Highly malignant
mammary cancer stem cells contain very low levels of the
GSK3 target HSF1-phospho-S303, consonant with the findings
of that levels of Hsp70 are required for stemness (Chou et al.,
2015). GSK3 is also intimately involved in the pathology of AD,
with increases in GSK3 activity contributing to the multiple
areas of neuronal pathology associated with the disease (Hooper
et al., 2008; Kremer et al., 2011). GSK3 plays the key role in
Tau phosphorylation and aggregation and may be involved in
coupling the APP / beta amyloid pathway to Tau pathology
(Kremer et al., 2011; Figure 2).

The pharmacological targeting of HSP activity in each disease
is currently under investigation. In cancer, Hsp90 inhibitors have
been extensively tested as therapeutics, although problems with
normal tissue toxicity currently limit their clinical application
(Workman et al., 2007). There is also interest in targeting
HSP interactions with Tau in AD, and both Hsp70 and Hsp90
have recently been investigated (Jinwal et al., 2010; Thompson
et al., 2012). This approach may ultimately have considerable
promise for each disease, although it is currently limited by
the toxicity to healthy tissues that may accrue when whole
families of chaperones are targeted by inhibitors. Drugs specific
for individual members of the HSP families would offer the
promise of specificity and sparing of healthy tissues, although
this approach may also be conceptually difficult due to the high
levels of conservation among the chaperone family members
(Lindquist and Craig, 1988).
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Cysteine string protein α (CSPα) is a vesicle protein located in the presynaptic terminal

of most synapses. CSPα is an essential molecular co-chaperone that facilitates the

correct folding of proteins and the assembly of the exocytic machinery. The absence of

this protein leads to altered neurotransmitter release and neurodegeneration in multiple

model systems, from flies to mice. In humans, CSPα mutations are associated with

the development of neuronal ceroid lipofuscinosis (NCL), a neurodegenerative disease

characterized by intracellular accumulation of lysosomal material. Here, we review the

physiological role of CSPα and the pathology resulting from the homozygous deletion

of the gene or its mutations. In addition, we investigate whether long-term moderate

reduction of the protein produces motor dysfunction. We found that 1-year-old CSPα

heterozygous mice display a reduced ability to sustain motor unit recruitment during

repetitive stimulation, which indicates that physiological levels of CSPα are required for

normal neuromuscular responses in mice and, likely, in humans.

Keywords: cysteine string protein, co-chaperone, motor neurons, synaptic transmission, neuromuscular junction,

CSPα

PROTEIN DESCRIPTION

Cysteine string protein α (CSPα) (Dnajc5) is a highly conserved protein (Figure 1A) typically
associated with the membrane of synaptic vesicles and secretory granules (Zinsmaier et al., 1990).
It contains a DNA-J domain characteristic of Hsp40 co-chaperones. This domain interacts with
the 70 kDa heat shock cognate protein (Hsc70) (Braun et al., 1996) and regulates the refolding
of client proteins (Hennessy et al., 2005). A linker region connects the DNA-J domain with the
cysteine string domain. The cysteine string domain is approximately 25-amino-acids long and
contains 13–15 cysteines, most of them palmitoylated. Palmitoylation is essential to target CSPα to
synaptic vesicles and to promote neurotransmitter release (Arnold et al., 2004). CSPα also contains
a C-terminal domain, the function of which is not well-understood.
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FIGURE 1 | The lack/decrease of CSPα induces structural and functional changes that compromise synaptic maintenance. (A) Functional domains of the

CSPα protein. (B) Synaptic release defects (left) and fraction of motor nerve terminals with multilamellar bodies and vacuoles in electron microscopy profiles (right) vs.

postnatal age in CSPα KO mice. Graphs summarize numerical values in Ruiz et al. (2008, 2014) (left) and in Fernández-Chacon et al. (2004) (right). (C) Two parallel

chaperone pathways promote efficient SNARE complex formation and normal neurotransmission by regulating SNAP25, through CSPα (pathway I), and

synaptobrevin (VAMP2), through α-synuclein (pathway II). The deficit in CSPα produces synaptic dysfunction (Ruiz et al., 2008, 2014; Rozas et al., 2012), whose

severity, age of onset, and time course depend on the amount of functional CSPα available. α-synuclein overexpression, however, can avoid the synaptic pathology

produced by a defect in pathway I by increasing the formation of SNARE complexes (Sharma et al., 2011, 2012a). (D) Hypothetical model of how genetic ablation,

gene mutations, or increased CSPα degradation induce a positive loop of neurotransmitter (NT) release deficit, accumulation of misfolded synaptic proteins, and

neurodegeneration. In humans, it remains unknown to what extent CSPα haploinsufficiency, sequestration of CSPα in aggregates, and aberrant palmitoylation of

CSPα and other proteins contribute to ANCL.

CSPα DEFICIENCY AND SYNAPTIC

DYSFUNCTION

CSPα is not essential for synaptogenesis, but it is required
for normal neurotransmission and neuronal maintenance in
flies (Zinsmaier et al., 1994), worms (Kashyap et al., 2014),
mice (Fernández-Chacon et al., 2004), and humans (Nosková
et al., 2011). Deletion of the CSPα gene in Drosophila produces
an embryonic semilethal phenotype, and flies that survive
to adulthood present neurotransmitter release alterations and
temperature-sensitive paralysis. Synaptic defects in CSPα-null
(CSPα KO) mice start early after birth, and death occurs
before 3 months of age. Both motor and sensory neurons are
affected by the lack of CSPα (Fernández-Chacon et al., 2004;
Schmitz et al., 2006). In motor nerve terminals, the first sign
of functional alteration appears at 2 weeks of age and consists

of repeated bursts of high-frequency spontaneous release (Ruiz
et al., 2008) (Figure 1B). Only 4 days later, the terminal displays
multiple functional alterations such as reduced quantum content,
low release probability, increased short-term facilitation during
repetitive stimulation, and reduced calcium sensitivity of the
secretory machinery (Ruiz et al., 2008, 2014). In addition, the
size of the readily releasable pool of synaptic vesicles is decreased
(Rozas et al., 2012; Ruiz et al., 2014).

CSPα AS A MOLECULAR CO-CHAPERONE

CSPα interacts with several proteins that participate in exo-
/endocytosis, including syntaxin, synaptotagmin, N- and P/Q-
type calcium channels, and dynamin 1 (for a review see
Burgoyne and Morgan, 2015). The functional significance of
many of these interactions is not well established. However,
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one of the best-known functions of CSPα is its role as a co-
chaperone (Chamberlain and Burgoyne, 2000; Zinsmaier, 2010;
Donnelier and Braun, 2014). CSPα interacts with Hsc70 and
together refold client proteins such as SNAP25 (Sharma et al.,
2011, 2012a; Zhang et al., 2012). SNAP25 is required for the
assembly of the SNARE (soluble N-ethylmaleimide-sensitive
factor attachment receptor) complex, formed by synaptobrevin,
syntaxin, and SNAP25, which in turn is essential for exocytosis
and neurotransmitter release (Figure 1C). In CSPα KO mice,
both SNAP25 and SNARE complex levels are reduced by half
(Chandra et al., 2005).

CSPα AND NEURODEGENERATION

In CSPα KO motor nerve terminals, hallmarks of degeneration
(i.e., vacuoles and multilamellar bodies) appear very early
(Fernández-Chacon et al., 2004), even before the evoked
release defects become apparent (Figure 1B, left graphs). The
degeneration is more prominent in cells with high electrical
activity, such as motor neurons, photoreceptors, and GABAergic
neurons (Fernández-Chacon et al., 2004; Schmitz et al., 2006;
García-Junco-Clemente et al., 2010), suggesting that high
synaptic activity potentiates degeneration, which in turn may
increase the release deficit (Figure 1D).

At the molecular level, it has been proposed that SNAP25
reduction plays a major role in neurodegeneration. This
hypothesis is reinforced by the fact that SNAP25 overexpression
in CSPα KO mice prevents neurodegeneration (Sharma et al.,
2012a). Nevertheless, SNAP25 heterozygous mice, with 50% of
the protein, are phenotypically normal and do not develop
neurodegeneration (Washbourne et al., 2002), indicating that
solely reducing functional SNAP25 is not sufficient to produce
the pathology. On the other hand, misfolded SNAP25 could
have a dominant negative effect over the normally folded
protein copies, or ubiquitinated SNAP25 molecules could
accumulate in the proteasome, interfering with its normal
function. Surprisingly, however, the fact that pharmacological
inhibition of the proteasome increases SNAP25 and SNARE
complex levels, and, hence, improves synaptic function in CSPα-
depleted cells (Sharma et al., 2012b), has challenged this last
hypothesis.

Remarkably, neurodegeneration in CSPα KO mice is
prevented when SNARE complexes are increased by the
overexpression of α-synuclein (Sharma et al., 2011, 2012a),
in spite of the fact that SNAP25 levels are not restored and,
presumably, the amount of misfolded SNAP25 is not reduced.
Overexpression of the mutated form of α-synuclein A53T in
CSPα KO mice restores life span and motor function as well
as wild-type (WT) α-synuclein (Chandra et al., 2005). On the
other hand, overexpression of A30P α-synuclein does not rescue
survival, but can transitorily ameliorate the release deficit and the
calcium sensitivity defect in motor nerve terminals of CSPα KO
mice (Ruiz et al., 2014). The partial effect of A30P α-synuclein
is likely due to its limited ability to increase the formation of
SNARE complexes. These findings suggest that two parallel
pathways regulate SNARE complex formation (Figure 1C),

and raise the question of how the neurodegeneration program
is activated in the absence of CSPα. The molecular basis of
the neurodegeneration is unknown, but a possibility is that
neurodegeneration is linked to the reduced ability of the synapse
to form SNARE complexes and, therefore, to the mismatch
between functional demands and efficient release.

CSPα DEFICIENCY IN HUMANS

Neuronal Ceroid Lipofuscinosis (NCLs) constitute a
heterogeneous group of inherited neurodegenerative disorders
characterized by lysosomal accumulation of autofluorescent
ceroid-lipofuscin aggregates in neurons and other cell types.
The clinical symptoms of NCLs include seizures, movement
disorders, cognitive deterioration, and progressive dementia,
followed by a premature death. The majority of NCL cases affect
children, and only 10% of total cases are in adults.

In recent years, two mutations in the gene that encodes
CSPα, DNAJC5, have been linked to the development of adult-
onset NCL (ANCL) (MIM #162350). These mutations consist
of a point mutation (p.L115R) and an in-frame codon deletion
(p.L1161), both affecting dileucine residues located in the
cysteine string domain of CSPα (Nosková et al., 2011). This
domain is highly palmitoylated and mediates the membrane
binding and intracellular targeting of CSPα. Therefore, mutations
in this region may explain the diffuse intracellular localization
of CSPα observed in the neurons of ANCL patients. Moreover,
the mutated forms of CSPα present an increased tendency
to self-associate, forming detergent-resistant aggregates. These
aggregates interfere with WT CSPα proteins, reducing the co-
chaperone function of CSPα in neurons (Nosková et al., 2011;
Greaves et al., 2012; Zhang and Chandra, 2014) (Figure 1D),
which is likely one of the main reasons why the NCL-linked
DNAJC5 gene mutations display an autosomal dominant (AD)
inheritance pattern. Additionally, a dominant effect of mutated
CSPα on the palmitoylation pattern of lysosomal and synaptic
proteins has been suggested as a mechanism for the development
of DNAJC5-linked ANCL (Henderson et al., 2016).

LONG-TERM MODERATE CSPα

DEFICIENCY ALTERS MOTOR

RESPONSES

Interestingly, only homozygous CSPα KO mice present synaptic
defects, while heterozygous mutant mice appear phenotypically
normal up to 3 months of age (Fernández-Chacon et al., 2004).
Given the late onset of AD-ANCL (around 30 years of age),
we studied the motor function of 1-year-old CSPα heterozygous
mice. Motor performance was first assessed with Balance and
Grip Strength tests (Figure 2A). The balance was measured by
placing the mouse on a horizontal pole suspended in the air.
The pole was rotated manually at a constant speed of one
rotation cycle per second (Figure 2A left). The grip strength
test consisted of suspending the mouse from the pole by its
forelimbs (Figure 2A right). In both trials, the amount of time
the mouse remained suspended from the pole (maximum 10 s)

Frontiers in Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 39 | 134

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lopez-Ortega et al. CSPα and Synaptic Maintenance

FIGURE 2 | The neuromuscular function of 1-year-old CSPα heterozygous mice is altered. (A,B) Balance and grip strength tests show no significant

differences between CSPα heterozygous (n = 27) and WT mice (n = 9). The plot illustrates the average values obtained in three replicates/session for each genotype

(Mann-Whitney U test). (C) Representative recordings of CMAPs in a CSPα+/+ mouse after supramaximal stimulation of the sciatic nerve (1st and 15th responses at

different stimulation frequencies). (D) Depression of the neuromuscular responses (CMAP normalized amplitude) is significantly larger in CSPα+/− (n = 25) than in WT

mice (n = 7) during stimulation trains at 20, 50, and 100 Hz. (E) Maximal depression of the neuromuscular response (normalized) at different stimulation frequencies in

CSPα+/− (n = 24–25) and WT mice (n = 7) (Mann-Whitney U test). Either sex experimental mice (C57BL/6 background) were used. The mouse line was kindly

donated by Dr. Südhof. All experiments were performed according to the guidelines of the European Council Directive for the Care of Laboratory Animals. The

protocol was approved by the Ethics Committee for Animal Experimentation of the Junta de Andalucía (ref. 23-11-2015-364).

was measured. Two sessions separated by 1 week were performed
for each test (Figure 2B). Data obtained from the neurological
tests showed no significant differences between WT and CSPα

heterozygous mice, in either balance or grip strength.
Next, the neuromuscular response of CSPα heterozygousmice

was studied using electromyography (EMG). Evoked Compound
Motor Action Potentials (CMAPs) were recorded from the right
lateral gastrocnemius of anesthetized mice. Stimulation needle
electrodes were placed at the sciatic notch and the head of the
fibula (Ruiz et al., 2005). The active recording electrode was
placed in the medial region of the recordedmuscle. The reference
electrode was inserted at the base of the fifth foot phalanx.
The ground electrode was located at the base of the tail. Brief
supramaximal stimulation pulses were applied at 10 Hz (2 s),
20 Hz (1 s), 50 Hz (1 s), and 100 Hz (0.5 s). Representative
recordings of CMAPs registered during the trains are shown
in Figure 2C. The study revealed enhanced depression with
stimulations between 20 and 100 Hz in CSPα heterozygous mice
compared to WT littermates (Figure 2D). The mean maximal
depression was 5% (20 Hz), 12% (50 Hz), and 25% (100 Hz) lower

in CSPα heterozygous than in WT mice, while no significant
difference was observed at 10 Hz (Figure 2E). Remarkably, the
depression in the EMG recordings was similar to that seen in
3-week-old CSPα KO mice (Fernández-Chacon et al., 2004), a
phenotype not observed in CSPα+/− mice up to 3 month of age.
These results indicate that, over time, a moderate reduction of
CSPα expression alters the ability of the neuromuscular system
to respond normally to stimulation.

FUTURE DIRECTIONS

The multiple functions of CSPα range from acting as a
chaperone, participating in the assembly and dissociation of
multi-protein complexes, and regulating Ca2+ sensitivity for
neurotransmitter release. The severe functional and structural
changes that take place in the absence of CSPα in invertebrate
and vertebrate organism models confirm the importance of
this protein in synapse maintenance and neurotransmitter
release. In humans, CSPα mutations are associated with the
development of AD-ANCL, synaptic degeneration, and neuronal
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loss. Therefore, although both the reduction of CSPα expression
and the presence of CSPα mutations are pathogenic to the
synapse, the severity and time course of the neurological
impairments may vary from severe, including premature death,
to mild, depending on the amount of functional CSPα in each
case. The moderate decrease in CSPα and SNARE complexes in
neurons over time could result in motor function impairment
and, in addition, influence the evolution of common age-
related neurodegenerative disorders, such as Alzheimer’s and
Parkinson’s diseases. Future challenges are to identify patients
with reduced levels of molecular chaperones (such as CSPα),
decipher the mechanisms responsible for the molecular deficit,
understand how the homeostasis of the synapse is altered, and
determine to what extent the reduction of the chaperones
influences the severity of associated neurodegenerative
diseases.
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Synapses must be preserved throughout an organism’s lifespan to allow for normal brain

function and behavior. Synapse maintenance is challenging given the long distances

between the termini and the cell body, reliance on axonal transport for delivery of

newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and

endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve

their structure and function. To this end, the synaptic compartment has specific

chaperones to support its functions. Without proper synaptic chaperone activity, local

proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and

neurodegeneration. In this review, we address the roles of four synaptic chaperones in

the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative

disease. Three of these are Hsp40 co-chaperones (DNAJs): Cysteine String Protein alpha

(CSPα; DNAJC5), auxilin (DNAJC6), and Receptor-Mediated Endocytosis 8 (RME-8;

DNAJC13). These co-chaperones contain a conserved J domain through which they

form a complex with heat shock cognate 70 (Hsc70), enhancing the chaperone’s ATPase

activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25

and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis

and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions

with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for

the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and

may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-

chaperones maintain client function by preserving folding and assembly to prevent client

aggregation, but they do not break down aggregates that have already formed. The

fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110), which

interacts with Hsc70, DNAJAs, and DNAJBs to constitute a disaggregase. Hsp110-

related disaggregase activity is present at the synapse and is known to protect against

aggregation of proteins such as α-synuclein. Congruent with their importance in the

nervous system, mutations of these co-chaperones lead to familial neurodegenerative

disease. CSPα mutations cause adult neuronal ceroid lipofuscinosis, while auxilin

mutations result in early-onset Parkinson’s disease, demonstrating their significance in

preservation of the nervous system.

Keywords: Hsp110, HSP70, neurodegeneration, proteostasis, synapse maintenance, endocytosis, exocytosis
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PROTEIN FOLDING AND CHAPERONES

Proteins must fold into unique three-dimensional structures
to fulfill their biological functions. As proteins are inherently
structurally dynamic, they are apt to misfold into conformations
that prevent their function or lead to toxic aggregates (Bukau
et al., 2006; Hartl et al., 2011). This potential for misfolding
can be exacerbated by cellular stress, such as that caused
by heat shock or hypoxia (Bukau et al., 2006; Hartl et al.,
2011). Chaperones are a diverse set of evolutionarily conserved
proteins that function to assist in protein folding, assembly,
and stability, thereby ensuring homeostasis of the proteome
(proteostasis). Chaperones comprise up to 10% of the mass
of human cells and unfold, dissociate, refold, or degrade
the other 90% of cellular proteins as required (Finka et al.,
2016). Chaperones act throughout the lifetime of a given
protein, first assisting in folding the nascent polypeptide to
its native conformation, then surveilling metastable/misfolded
intermediates and disaggregating aggregated proteins, and finally
removing terminally aggregated proteins through proteolytic
degradation.

Chaperone members are often referred to as stress proteins
or heat shock proteins (Hsps) because they are upregulated
in conditions of conformational stress. The major chaperone
families are classified bymolecular weight (Hsp40, Hsp60, Hsp70,
Hsp90, Hsp100, and the small Hsp; reviewed in Jee, 2016).
All chaperone families, except for the small Hsps, catalyze
ATP-dependent processes. The different classes of chaperones
perform diverse cellular functions that are coordinated and

integrated into a proteostasis network to achieve proper
protein and cellular homeostasis. For instance, Hsp70s work in
conjunction with Hsp40 co-chaperones (also known as DNAJ
or J proteins) and will be discussed in detail below (Otto et al.,
2005). The Hsp90s not only support protein folding, but also
assist in conformational maturation and maintenance. Hsp90
coordinates with the Hsp70 system through the Hsp70-Hsp90
Organizing Protein (HOP) co-chaperone (Chen and Smith,
1998). Eukaryotic Hsp60 class chaperone TriC is a nano-cage
that aids in the folding of cytoskeletal proteins such as actin
and tubulin (Frydman et al., 1992). Disaggregases containing
the Hsp100 family member Hsp110 are upregulated during
proteomic stress when proteins misfold and aggregate. Small
Hsps exhibit chaperone-like activity in preventing aggregation of
target proteins, maintaining them in a folding–competent state
and refolding them independently or in concert with other ATP-
dependent chaperones such as Hsp70s (McGreal et al., 2012). For
a more comprehensive review on small Hsps, the authors suggest
Strauch and Haslbeck (2016).

Chaperone families are compartmentalized within the cell,
with unique members in distinct sub-compartments to most
efficiently carry out their protein folding functions. Hsp70s
and Hsp90s are ubiquitous cytosolic chaperone proteins whose
specific localization is determined by their partner Hsp40 co-
chaperones. Mitochondria-specific chaperones include mHsp70
and Hsp60 that are involved in importing mitochondrial proteins
into the matrix and folding them (Manning-Krieg et al.,
1991). Another complement of chaperones is exclusive to the

endoplasmic reticulum (ER), the site of synthesis and folding of
membrane and secretory proteins. There, ER chaperones such
BiP and the ER Hsp70 function to prevent stress from elevated
levels of unfolded proteins. Recent papers have highlighted
the importance of the chaperones involved in the unfolded
protein response at the ER in neuronal proteostasis and
neurodegenerative disease (Hetz et al., 2015). Finally, Hsp100s
and small Hsps are nearly ubiquitous in terms of cellular
localization (Haslbeck and Vierling, 2015; Zuo et al., 2016).

UNIQUE REQUIREMENTS FOR SYNAPTIC
PROTEOSTASIS

Synapses are specialized junctions that connect neurons
into circuits. Synapses must be maintained throughout an
organism’s life for appropriate brain function and behavior.
Chemical synapses consist of a presynaptic compartment
from which neurotransmitter is released into a synaptic cleft,
juxtaposed to a postsynaptic compartment, with receptors
for the corresponding neurotransmitters. The postsynaptic
neuron transduces neurotransmitter signals and propagates
them as action potentials. Synaptic transmission is noted
for its speed (on the order of milliseconds), precision, and
spatial control. Synaptic functions require a large complement
of specialized proteins, such as neurotransmitter receptors,
synaptic vesicle exo- and endocytosis proteins, and organizers
of the active zone and post synaptic density, all of which are
essential for neurotransmission. Synaptic proteins are under
constant proteostatic stress, as they execute reactions that
require precise conformational changes and protein-protein
interactions at high frequencies. It has also been noted that
synapses are enriched in proteins susceptible to misfolding
and aggregation, such as α-synuclein, tau, and amyloid-β, all
of which are linked to neurodegenerative diseases (Schubert
et al., 1991; Fortin et al., 2004; Kramer and Schulz-Schaeffer,
2007; Greten-Harrison et al., 2010; Schulz-Schaeffer, 2010). In
addition, synapses can be at great distances from the neuronal
cell body, where the majority of proteins are synthesized
and properly folded. Though there is strong evidence that a
small subset of proteins is locally translated at postsynaptic
spines (Weiler et al., 2004) and similar emerging data for the
presynaptic termini (Shigeoka et al., 2016; Younts et al., 2016),
most newly-synthesized proteins must be transported from
the cell body along the full length of the axon. The slow rates
of axonal transport are not ideal for replacing misfolded or
dysfunctional synaptic proteins on demand. Due to the sustained
nature of neurotransmission, the synaptic proteome is perilously
prone to protein misfolding for the reasons stated above, yet
perseveration of the proper structure and function of synaptic
proteins is fundamentally important to the health and survival
of neurons.

To maintain their specialized structure and function, neurons
possess dedicated synapse-specific proteostasis machinery
localized to pre- and post-synaptic compartments, of which
chaperones are an integral component. In fact, 4% of the synaptic
vesicle compartment proteome is composed of chaperones
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TABLE 1 | Summary of chaperones identified at the synapse.

Synaptic chaperone Method of

identification

Reference

HSP70s AND 90s

Hsc71 1-D SDS; PPF

extraction

Phillips et al., 2005; Burré et al.,

2006

Hsp70 DIGE; PPF

extraction

Phillips et al., 2005; Zhang et al.,

2012

Hsc70 DIGE/iTRAQ;

PPF extraction

Phillips et al., 2005; Zhang et al.,

2012

Hsp90 DIGE Zhang et al., 2012

Hsp70-4 iTRAQ Zhang et al., 2012

Hsp84 dSDS Burré et al., 2006

Hspa5 DIGE Zhang et al., 2012

HspA4/A4L iTRAQ Zhang et al., 2012

Hsp8 dSDS; PPF

extraction

Phillips et al., 2005; Burré et al.,

2006

HSP40s/DNAJs

DNAJC6 (auxilin) 1-D SDS Burré et al., 2006

DNACJ5 (CSPα) iTRAQ Takamori et al., 2006; Zhang

et al., 2012

DNAJ homologs PPF extraction Phillips et al., 2005

Hsp40-3 cognate PPF extraction Phillips et al., 2005

DNAJA DIGE/iTRAQ Zhang et al., 2012

Hsp40 (DNAJB1) Western Blot Suzuki et al., 1999

HSP60

Chaperonin TriC DIGE Zhang et al., 2012

HSP100s

Hsp105/110 iTRAQ Zhang et al., 2012

OTHER CO-CHAPERONES

HSF binding protein 1 PPF extraction Phillips et al., 2005

Calnexin 1-D SDS Burré et al., 2006

CCT family 1-D SDS Burré et al., 2006

FLJ10737 cognate PPF extraction Phillips et al., 2005

HOP DIGE Zhang et al., 2012

HIP DIGE/iTRAQ Zhang et al., 2012

Abbreviations: 1-D SDS, One dimensional sodium dodecyl sulfate electrophoresis; PPF,

post-synaptic particle fraction; DIGE, 2D fluorescence Difference Gel Electrophoresis;

iTRAQ, Isobaric Tag for Relative and Absolute Quantitation.

(Phillips et al., 2005; Burré et al., 2006; Table 1). The chaperones
found at the synapse include Hsp60, Hsp70, andHsp90members:
Hsc71, Hsp70, Hsp70-4, Hsc70, Hspa5, Hsp8, Hspa4, Hspa4l,
inducible and constitutive Hsp90, as well as Hsp105/110, and
heat shock factor binding protein 1 (Phillips et al., 2005; Burré
et al., 2006; Zhang et al., 2012; Zhang and Chandra, 2014). The
synaptic chaperone complement also includes Hsp40/DNAJ
proteins such as DNAJC6 (auxilin), DNAJC5 (CSPα), cognate
of Hsp40-3, DNAJA1 homologs, DNAJB1 and DNAJB2 (Stetler
et al., 2010; Table 1). Autophagy is also a mechanism employed
at synapses for the removal of misfolded proteins (Hara et al.,
2006; Komatsu et al., 2006; Ariosa and Klionsky, 2016). As
such, atg3, Atg16L1, LC3B, and Rab33B, which are essential
for autophagy, have been found at synaptic termini (Binotti
et al., 2015; Soukup et al., 2016). In this review, we will focus
on Hsc70/Hsp40 chaperone complexes that are enriched at

the synapse, their modes of action, and the mechanisms by
which mutations in these genes cause neurodegenerative
disease.

HSP70, HSC70, HSP40 PROTEINS

Stress-inducible Hsp70s and their constitutive relative, heat
shock cognate 70 (Hsc70) are first responders to cellular stress
and cases of misfolded protein accumulation. In the nervous
system, induction of Hsp70 by stress is weak, therefore Hsc70 is
the main Hsp70-class chaperone (Pardue et al., 1992; Marcuccilli
et al., 1996; Kaarniranta et al., 2002; Batulan et al., 2003).

As the chief cytosolic chaperones, Hsp70/Hsc70s are involved
in executing myriad ATP-dependent protein folding reactions.
Hsp70/Hsc70s consist of a 44-kD, N-terminal nucleotide binding
domain (NBD) that allows them to bind and hydrolyze ATP.
The NBD is connected via a hydrophobic linker to a 25
kD substrate binding domain, that binds preferentially to
hydrophobic sequences (Flaherty et al., 1990; Blond-Elguindi
et al., 1993). Hsp70s can also contain an additional C-
terminal domain that allows for interactions with their Hsp40
co-chaperones and refolding of specific substrates (Radons,
2016).

Hsc70 recognizes five- to seven-amino acid segments in
protein substrates (also known as clients) that are enriched
in hydrophobic residues likely to misfold, or in regions that
are susceptible to β aggregation (Flynn et al., 1991; Blond-
Elguindi et al., 1993; Behnke et al., 2016). Hsc70 is promiscuous
in its binding to clients but has a nucleotide-dependent
conformational cycle that regulates its association with clients
and its chaperone activity (Figure 1; reviewed in Mayer, 2013).
Hsc70 has rapid client binding-release activity when bound
to ATP, and slow, inefficient binding and release rates when
bound to ADP (Nollen et al., 2000; Kampinga and Craig,
2010). Hsc70 is dependent on its Hsp40 co-chaperones to
accelerate the rate of ATP hydrolysis to facilitate client binding
(discussed further below), and on NEFs to accelerate ADP-
ATP exchange for client release (Bracher and Verghese, 2015).
NEFs, such as Hsp110, are responsible for restoring Hsc70 to its
active form. Each combination of Hsp40 and NEF is required
at a different stoichiometric ratio with Hsc70 to stimulate
maximum chaperone activity (Rauch and Gestwicki, 2014). For
a comprehensive review of the Hsc70 NEFs, see Bracher and
Verghese (2015).

Hsp40 co-chaperones (traditionally called DNAJ proteins
or J proteins after DnaJ in E. coli) are crucial players in
the Hsc70 conformational cycle (Rassow et al., 1995). Hsp40s
stimulate Hsp70 ATP hydrolysis, the rate-limiting step, resulting
in as much as a 150,000-fold increase in Hsp70’s ATPase
activity at 5◦C (Russell et al., 1999). In addition, Hsp40s play
crucial roles in targeting Hsp70s to distinct sub-compartments
and binding clients, thus increasing the regional diversity and
specificity of Hsc70/Hsp40 clients. Humans, for example, have
11 Hsp70s that interact with 41 Hsp40s, thereby generating a
large cohort of potential combinatorial chaperone complexes
(Kampinga and Craig, 2010). Hsp40s are broadly expressed
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FIGURE 1 | Hsc70/DNAJ co-chaperone cycle. 1. Free clients or those recruited by DNAJ bind Hsc70-ATP. 2. DNAJ stimulates Hsc70’s ATPase activity. 3. An

Hsc70 nucleotide exchange factor (NEF) binds Hsc70-ADP. 4. NEF stimulates ADP-ATP exchange. 5. Hsc70-ATP releases the client and enters a new round of

chaperone activity.

throughout the nervous system, and within neurons in sub-
compartments ranging from the cytosol and nucleus, to the ER,
to the mitochondria (Finka et al., 2016). For instance, Hsp40
is the postsynaptic co-chaperone, localized to dendritic spines
and believed to play a role in synaptic plasticity through its
interactions with Hsp70 (Suzuki et al., 1999), while CSPα is a
Hsp40 co-chaperone located at the presynaptic terminal.

Structurally, Hsp40s are defined by their conserved J domain
and typically have large variation in the rest of the protein
(Figure 2A). Classical Hsp40s have both a J domain as well
as a zinc finger domain that regulates client protein binding.
The J domain of Hsp40 proteins consists of a 70-amino acid
sequence with four alpha helices (Figure 2B), which is conserved
in co-chaperones from E. coli to humans (Tobaben et al., 2003).
Within the J domain, the histidine, proline, aspartic acid (HPD)
motif, which falls between the second and third alpha helices,
is highly conserved, as it is necessary for stimulation of Hsp70
ATPase activity (Jiang et al., 2007). Despite the conservation of
the J domain, Hsp40s range in size from 18 to 520 kD (Koutras
and Braun, 2014; Fontaine et al., 2016). The structural diversity
outside of the J domain allows the Hsp40 co-chaperones to
provide specificity to Hsc70 activity, as these regions function in
the recruitment of clients to Hsc70 (Behnke et al., 2016). Hence,
Hsp40s are drivers of Hsp70 functional diversity.

The Hsp40/DNAJ proteins are grouped into three classes:
A, B, and C, based on motifs and domains present (Hageman
and Kampinga, 2009). Class A DNAJ proteins are structurally
similar to E. coli DnaJ (Goffin and Georgopoulos, 1998) and
have an N-terminal J domain, followed by a Gly and Phe-rich
region, four repeats of the CxxCxGxG type zinc finger motif
and a C-terminal domain, which is now known to bind client

proteins. Class B DNAJ proteins also have high homology with
the domains of E. coli DNAJs, but lack the zinc finger domain.
The only conserved feature of members of the DNAJC class is
the J domain, but not necessarily in its canonical location at
the N-terminus (Kampinga et al., 2009). The greater variation in
the DNAJC protein structure provides these proteins with highly
specific client interactions as compared to the more nonspecific,
promiscuous binding of the A- and B-class DNAJ proteins
(Figure 2C).

The Hsc70-DNAJ chaperone complex functions in nascent
folding, refolding, disaggregation, and degradation of a wide
range of proteins (Fontaine et al., 2016). There is increasing
evidence for DNAJ dysfunction as a cause for disease, as seven
J chaperones have mutations linked to neurological disorders.
Besides the three that will be discussed below,DNAJC19 (TIM14)
and DNAJC29 (sacsin) are linked to forms of ataxia, DNAJB2
(HSJ1) is linked with distal motor neuropathy, DNAJC12 is
associated with phenylketonuria-related neurodevelopmental
deficits, and DNAJB6 (Mrj) is linked with limb-girdle muscular
dystrophy type 1D (Koutras and Braun, 2014; Anikster et al.,
2017). DNAJB2 was also recently identified as a cause of
spinomuscular atrophy and Parkinsonism (Sanchez et al., 2016).
In this review, we will focus on synaptic Hsc70 chaperone
complexes with DNAJC proteins CSPα, auxilin, and RME-8, as
well as DNAJA1 and B1 in their interactions with Hsp110.

DNAJC5: CYSTEINE STRING PROTEIN α

CSP was discovered in Drosophila melanogaster in a screen of
antibodies labeling the nerve terminal (Zinsmaier et al., 1990)
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FIGURE 2 | Synaptic Co-Chaperones. (A) DNAJ proteins exhibit high homology within the J domain. J domains from E. coli DNAJ, C. elegans DNAJ14 and D.

melanogaster, M. musculus, and H. sapiens DNAJC5. Black indicates identical residue. Gray indicates amino acids with conserved properties. The conserved HPD

motif is highlighted in red. Sequence alignments generated using T Coffee (Notredame et al., 2000; Di Tommaso et al., 2011). (B) CSPα J domain exhibits

conformational shift with phosphorylation at serine 10 (green). Unphosphorylated (left, PDB: 2N05) and phosphorylated (right; PDB: 2N04) CSPα J domain. HPD motif

is highlighted in red. See, Patel et al. (2016) for further details. (C) Domain organization of J co-chaperones reviewed in this article: DNAJA1 (PDB: 2M6Y), DNAJB1

(Kampinga and Craig, 2010), DNAJC5 (CSPα; PDB: 2N04 and 2NO5), DNAJC6 (auxilin; PDB: 3N0A), and DNAJC13 (Zhang et al., 2001). Not to scale. See also,

Kampinga and Craig (2010). CTD, C-terminal domain; IWN, 90-amino acid conserved motif; PAT, palmitoylacyltransferase recognition region.

and was then shown to be expressed mainly in the brain and
retina. Immunohistochemistry analysis revealed that CSP is
restricted to presynaptic termini (Zinsmaier et al., 1990; Kohan
et al., 1995). The vertebrate homolog of CSP was identified
in Torpedo californica electric organ (Gundersen and Umbach,
1992). Three mammalian homologs of the single fly CSP gene
have been identified—CSPα, CSPβ, and CSPγ (Fernández-
Chacón et al., 2004). CSPα is the functional homolog of the
fly CSP and is localized to synaptic vesicles at the presynaptic
terminal. CSPβ is expressed in both auditory hair cell neurons
and testes, while CSPγ is expressed solely in testes (Fernández-
Chacón et al., 2004; Schmitz et al., 2006).

CSPα has the domain organization of a DNAJ C-class Hsp40
co-chaperone. It possesses an N-terminal helix (residues 1–13
in rat), followed by a J domain (residues 14–81), an adjacent
linker (residues 82–111), and an eponymous cysteine string
domain containing 13–15 extensively palmitoylated cysteine

residues in a 25-residue motif (residues 112–136; Braun and
Scheller, 1995; Patel et al., 2016), which is immediately adjacent
a palmitoylacyltransferase (PAT) recognition site responsible for
palmitoylation of the protein (residues 136–145). CSPα also
possesses a C-terminal domain (residues 146–198; Figure 2C).

Through its J domain, CSPα interacts with Hsc70 (Braun
et al., 1996). Within alpha helices 1 and 2 of the 4-alpha helix
J domain, there is an HPD motif that, when mutated, abolishes
CSPα’s stimulation of Hsc70 ATPase activity (Chamberlain and
Burgoyne, 1997). Yeast two-hybrid studies showed that the
cysteine string region may also be responsible for an interaction
between CSPα and the small glutamine-rich tetratricopeptide
repeat-containing protein (SGT; Tobaben et al., 2003). CSPα

recruits SGT and Hsc70 to synaptic vesicles where its interaction
leads to maximal Hsc70 ATPase activity. However, a recent
study demonstrated the role for the Hsc70/SGT interaction in
stimulating protein folding, while inhibiting Hsc70-mediated
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synaptic membrane deformation for autophagy of Hsc70 clients
(Uytterhoeven et al., 2015). Hence, the physiological relevance of
the Hsc70/CSPα vs. Hsc70/CSPα/SGT complex still needs to be
resolved.

The N-terminal domain of CSPα is phosphorylated by protein
kinase A on a serine at position 10 (phospho-Ser10), effectively
reducing accessibility to the α1 helix of the N terminus and
inhibiting binding to putative clients, namely syntaxin and
synaptotagmin I (Figure 2B). However, this does not alter the
J domain, HPD motif, or interactions with Hsc70 (Patel et al.,
2016). CSPα also has a linker between the cysteine string and J
domains that may have an effect on the interaction between CSPα

and clients, however this remains to be established. Deletion
and point mutations within this region should elucidate the
most important residues, and give additional insight into its
interactions with client proteins.

CSPα is one of the most heavily palmitoylated proteins
known. In the brain, the CSPα cysteine string domain is
normally fully palmitoylated by several PATs, most prominently
DHHC5/HIP14 (Ohyama et al., 2007; Stowers and Isacoff, 2007).
The palmitoylation of cysteine residues in the cysteine string
allows for peripheral membrane association and is essential for
targeting CSPα to synaptic vesicles. On average, there are 2.8
copies of CSPα per synaptic vesicle (Takamori et al., 2006). CSPα

is also found on secretory vesicles in non-neuronal tissues.
Most of our present understanding of CSPα function comes

from knockout (KO) studies in flies and mice. In Drosophila,
CSP nulls result in 95% embryonic lethality, but those flies
that do survive to adulthood exhibit progressive sluggishness,
spasmic jumping, shaking, uncoordinated movement, and high-
temperature paralysis, as well as premature death (Zinsmaier
et al., 1990, 1994; Burgoyne and Morgan, 2015). These
phenotypes were ascribed to defects in Ca2+ dynamics,
neurotransmission deficits, progressive deterioration of CSPα

null synapses and eventual neurodegeneration, all phenomena
that may be explained by the accumulation of incorrectly folded
client proteins at presynaptic termini leading to dysfunction in
neurotransmitter release (Umbach et al., 1994; Zinsmaier et al.,
1994). Mutations in both Drosophila CSP and Hsc70 cause a
similar temperature-sensitive loss of evoked neurotransmitter
release that can be restored by elevating Ca2+ levels (Bronk
et al., 2001). These common phenotypes are consistent with the
idea that Hsc70 and CSP function together to chaperone the
synaptic vesicle fusion machinery. Overexpression of Drosophila
CSP suppresses the decrease of evoked release induced by the
overexpression of syntaxin 1A, suggesting that CSP modulates
protein-protein interactions of syntaxin, including SNAREs
(Nie et al., 1999). In addition, CSP interacts with the SNARE
synaptobrevin and the Ca2+ sensor synaptotagmin in a
phosphorylation dependent manner (Evans and Morgan, 2002;
Boal et al., 2004).

CSPα KO mice are normal at birth but exhibit a
progressive sensorimotor phenotype and age-dependent
synapse deterioration beginning around P20 (Fernández-
Chacón et al., 2004). These mice also exhibit degeneration
of retinal photoreceptors and an increased susceptibility for
degeneration of the most active GABAergic synapses, followed

by death around 8 weeks (Schmitz et al., 2006; García-Junco-
Clemente et al., 2010). Congruently, hippocampal neuron
cultures from CSPα KO mice show selective vulnerability of
synaptotagmin-2+ GABAergic cells to neurodegeneration,
as well as mIPSC (decreased frequency), and mEPSC
(decreased amplitude) neurotransmission deficits (García-
Junco-Clemente et al., 2010). CSPα also functions in motor
neurons at neuromuscular junctions to maintain the readily
releasable pool of vesicles (Rozas et al., 2012). In CSPα KO
mice, a defect in vesicle recycling at the neuromuscular
junction may be partially responsible for the canonical motor
phenotypes observed in these animals. Combined, these
studies indicate that higher neuronal activity leads to faster
synaptic deterioration and neurodegeneration in the absence of
CSPα.

Detailed electrophysiological analysis of P10 CSPα KO pups
prior to synapse loss and neurodegeneration has revealed
normal Ca2+ currents and neurotransmission (Fernández-
Chacón et al., 2004), suggesting that CSPα is not directly
required for neurotransmitter release. At P20-P30, evoked release
becomes asynchronous and deteriorates progressively with age,
indicating that CSPα clients play key roles in the maintenance
of synaptic structure and function (Fernández-Chacón et al.,
2004). Congruently, Rozas and colleagues have demonstrated the
importance of CSPα in synaptic vesicle exo- and endocytosis;
CSPα KOs show decreases in exocytic release sites, as well
as endocytosis. CSPα KO synapses do not efficiently recycle
membrane back to generate synaptic vesicles (Rozas et al., 2012).
This leads to decreases in the levels of releasable vesicles, further
impairing the neuron’s exocytic capacity.

Interestingly, genetic studies have demonstrated that CSPα

KO phenotypes are rescued by α-synuclein overexpression
(Chandra et al., 2005), a key gene in the pathophysiology of
Parkinson’s disease, while α-synuclein KO exacerbates these
phenotypes. These genetic crosses suggest that synucleins act
downstream of CSPα to stabilize one or more of its clients.

In order to ascribe mouse CSPα KO phenotypes to molecular
processes, there has been a concerted effort to identify CSPα

clients, mainly through two approaches—binding assays and
quantitative proteomics. Via binding assays, SNAP-25, the t-
SNARE for synaptic vesicle fusion, was identified as the first
CSPα client (Chandra et al., 2005; Sharma et al., 2011). SNAP-
25 was confirmed as a client through analysis of CSPα KO brains.
These brains exhibit significant decreases in SNAP-25 levels due
to its activity-dependent ubiquitination and degradation (Sharma
et al., 2011). Interestingly, SNAP-25 directly binds Hsc70 as
opposed to binding via CSPα.

To find additional CSPα clients, our lab embarked on a
proteomic screen (Zhang et al., 2012). The rationale for the
screen design was that clients of CSPα would be misfolded and
targeted for degradation in the absence of CSPα, leading to
decreases in their levels in CSPα KO brains. Thus, comparing
the synaptic proteome of wild-type and CSPα KO would be
instructive in identifying clients in an unbiased and systematic
manner (Zhang et al., 2012). Through this screen we identified
22 proteins, other than chaperones, that were decreased in the
CSPα KO proteome. This list included SNAP-25, affirming our
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screen design.We validatedmany of these proteins by orthogonal
methods. Through direct binding in the presence of ADP, we
showed that the endocytic GTPase dynamin-1 is also a client
of CSPα (Zhang et al., 2012). Furthermore, addition of purified
dynamin-1 results in increases in Hsc70 ATPase activity in
the presence of CSPα, confirming it as a Hsc70/CSPα client.
The oligomerization of dynamin-1 is deficient in CSPα KO
brains, implying either dynamin-1 self-assembly or disassembly
is regulated by CSPα.

Through direct binding and mass spectrometric approaches,
we confirmed that SNAP-25 and dynamin-1 are bona-fide CSPα

clients and showed that CSPα has in the range of 5–6 clients.
Previously, other known CSPα client proteins include VAMP-
1, G-protein subunit, and N-type Ca2+ channels (Chamberlain
et al., 2001).

CSPα KO phenotypes are likely to be a compound loss-
or gain-of-function of CSPα clients. For instance, SNAP-
25 knockdown in CSPα KO animals exacerbates the CSPα

phenotype, while lentiviral expression of SNAP-25 in CSPα KO
mice rescues the neurodegenerative phenotype (Sharma et al.,
2012). These data suggest that loss of SNAP-25 function in CSPα

KOs results in the synaptic phenotypes and neurodegeneration
associated with CSPα KO or dysfunction. These results are
consistent with its function in maintenance of synaptic exocytic
machinery. Intriguingly, despite the ability of overexpressed α-
synuclein to rescue CSPα phenotypes, α-synuclein does not
rescue SNAP-25 levels, only SNARE complex levels, indicating
that α-synuclein rescue is not mediated by SNAP-25. In the
case of dynamin-1, rescue experiments have not been completed
to determine its mode of action in CSPα KOs. Identification
of CSPα’s clients has revealed that neurodegeneration in CSPα

mutants and KOs may be due to an exo-endocytosis coupling
defect, resulting in the neuron’s failure to maintain and recycle
synaptic vesicles during prolonged stimulation.

DNAJC6: AUXILIN

Auxilin is the best studied mammalian Hsp40 and was identified
in a study of the clathrin-coated vesicle (CCV) uncoating
mechanism as a cofactor for Hsc70/Hsp70c (Ungewickell et al.,
1995). It is unique among the Hsp40 co-chaperones in that it
has only one known client, although research is underway to
elucidate its influence on other coat proteins, such as COPII
(Ding et al., 2016).

Auxilin is a brain-specific, 970-amino acid protein that is
enriched at presynaptic termini. Auxilin has a C-terminal J
domain (residues 814–910) that allows for its interaction with
Hsc70 (Figure 2C; PDB: 3N0A). The auxilin J domain highly
divergent, with an extra N-terminal alpha helix as well as an
extended loop between the first and second helices of the domain
that is important for Hsc70 binding (Jiang et al., 2003). Deletions
within auxilin’s J domain inhibit its Hsc70 co-chaperone activity,
but not its interaction with Hsc70, congruent with its divergent
structure (Holstein et al., 1996). Auxilin also has a lipid binding
domain (residues 60–387), which contains a PTEN phosphatase-
like domain followed by a C2 domain (Guan et al., 2010).

In vitro studies have shown that the auxilin C2 domain binds
specifically to phosphoinositide-containing membranes, and the
PTEN domain has affinity to phosphoinositides PI4P and PIP2.
Together, this region is required for recruitment of auxilin to
clathrin-coated vesicles following dynamin mediated scission
(Guan et al., 2010). In addition, auxilin has a clathrin binding
domain (residues 547–814) that facilitates interaction with its
client (Haynie and Ponting, 1996; Edvardson et al., 2012).
Proper auxilin function necessitates physical association of the
clathrin binding domain and the J-domain, as the combination of
separate J domain deletion mutants and clathrin binding domain
mutants does not rescue the clathrin coated vesicle accumulation
phenotype of auxilin KOs (described below).

The structure of auxilin bound to the clathrin coat has been
resolved by electron microscopy and has provided great insight
into the mechanisms of auxilin-dependent clathrin uncoating.
Auxilin was shown to bind clathrin at a 1:3 ratio at the clathrin
ankle segment. Ankles from three clathrin triskelia are typically
crossed in a stable clathrin coat (Figure 3), and auxilin binding
causes a shift in ankle orientation that leads to a disruption of
coat structure (Fotin et al., 2004b). Auxilin bound to the clathrin
ankle recruits Hsc70 to the vertices of the clathrin coat, where it
hydrolyzes ATP and binds clathrin, further increasing the strain
on clathrin cage interactions (Fotin et al., 2004b; Xing et al.,
2010).

Functional studies have established that auxilin and Hsc70
interact in the context of clathrin-mediated endocytosis to
disassemble clathrin coats (Ungewickell et al., 1995). As a classical
Hsp40, the presence of auxilin increases Hsc70 ATPase activity
5-fold (Jiang et al., 1997). Auxilin binds clathrin independently
of nucleotide, initiating a strain on the clathrin coat structure,
and then recruits Hsc70 which allows for further disruption of
the clathrin cage, ultimately resulting in its disassembly (Fotin
et al., 2004b; Xing et al., 2010). Auxilin has a high affinity
for Hsc70-ATP, while clathrin has a high affinity for Hsc70-
ADP (Jiang et al., 1997). When ATP hydrolysis occurs, auxilin
releases Hsc70 and clathrin, but Hsc70 remains bound to clathrin,
possibly preventing its re-oligomerization (see Figure 1; Holstein
et al., 1996). The exact ratio of this reaction in vivo is somewhat
controversial. Researchers have demonstrated a 1:3:3 ratio of
Auxilin:Hsc70: clathrin, as well as a 1:1:>3 ratio (Böcking et al.,
2011, 2014). There may be a variety of Auxilin:Hsc70:clathrin
ratios dependent on cellular conditions and bond stability, and
lower ratios may be possible but energetically unfavorable.

Auxilin KO in mice results in decreased viability and birth
weight in a copy number-dependent manner (Yim et al., 2010).
In auxilin KO animals, the efficiency of clathrin uncoating is
impaired, which leads to an excess of clathrin-coated vesicles
at the synapse and impairments in endocytosis (Yim et al.,
2010). While auxilin is brain-specific, its homolog, G-associated
kinase (GAK; DNAJC26), is broadly expressed and may partially
compensate for a loss of auxilin function (Yim et al., 2010) as
levels of GAK increase in auxilin KOs. Furthermore, Lee et al.
demonstrated that conditional deletion of GAK in adult mice
is lethal, demonstrating the essential role of clathrin-mediated
endocytosis in all cell types (Lee et al., 2008). Surprisingly,
auxilin/GAK double KO with expression of only the clathrin
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FIGURE 3 | Auxilin is an Hsc70 co-chaperone for clathrin uncoating. (A)

Cartoon depicts structure of a clathrin triskelion. Three clathrin ankle segments

cross to form a stable clathrin cage. (B) Assembled clathrin coat containing

clathrin heavy chain and clathrin light chain, as determined by electron

microscopy (PDB:3IYV; Fotin et al., 2004b). (C) The J domain of auxilin

(shades of blue) interacts with the clathrin coat (shades of red and yellow;

PDB: 1XI5; Fotin et al., 2004a).

binding and J domains can rescue lethality despite the mice
having a body size similar to auxilin KO alone, further confirming
that auxilin defects are due to reduced clathrin uncoating and
vesicle recycling (Park et al., 2015).

While clathrin cages have been long thought to be the only
clients of auxilin, recent data suggest that it functions early in the
secretory pathway on COPII vesicles (Ding et al., 2016). In cells
depleted of auxilin, trafficking is disrupted in COPII-dependent
regions between the ER and Golgi, as well as throughout the
Golgi, and COPII-mediated vesicle fusion is disrupted. This
finding has raised the intriguing possibility that auxilin has
additional clients.

DNAJC13: RECEPTOR MEDIATED
ENDOCYTOSIS 8

RME-8 is a 2,000 amino acid protein that was identified in
a C. elegans screen for organisms defective in the endocytosis
of yolk proteins (Zhang et al., 2001) and is required for
C. elegans survival and development (Fujibayashi et al., 2008).
It is expressed in all tissues in varying levels (Ishikawa et al.,
1998). RME-8 has a J domain (residues 1,301–1,366) toward the
C-terminal half of the protein (Figure 2C). Through its J domain,
RME-8 interacts and specifically stimulates the ATPase activity
of Hsc70-4, with no effect on any other Hsc70 family member
(Chang et al., 2004). Flanking its J domain, RME-8 contains
four repeats of about 90 amino acids known as IWN repeats,
which are conserved among RME-8 homologs but have an as-
of-yet undetermined function (Zhang et al., 2001; Chang et al.,
2004; Girard et al., 2005; Fujibayashi et al., 2008; Xhabija and
Vacratsis, 2015). RME-8 also contains a pleckstrin homology
domain (residues 312–350) that allows it to interact with the
phosphoinositide PI3P, which aids in the localization of RME-8
to PI3P rich membranes as in endosomes (Xhabija and Vacratsis,
2015).

RME-8 is a peripheral membrane protein localized to
early, but not late, endosomes where it appears to associate
with the membrane via the PI3P/pleckstrin homology domain
(Fujibayashi et al., 2008). In C. elegans, RME-8 is required for
receptor mediated endocytosis as well as fluid tracer uptake
(Chang et al., 2004). Although RME-8 is required for invertebrate
survival, its knockdown has minimal effects on endocytosis
in mammalian cultured cells. However, C-terminal deletion
(lacking the last IWN repeat, but with the J domain) leads
to formation of RME-8 puncta and vacuoles, accumulation
of ubiquitinated proteins, and changes in early endocytic
morphology (Fujibayashi et al., 2008). This defect suggests that
the C-terminus of RME-8 plays an integral role in trafficking
through early endosomes to late and recycling endosomes.
Congruent with such a function, RME-8 is localized to Rab5
positive organelles throughout the cell in mammalian neurons,
including synapses.

Two roles have been described for RME-8 in trafficking
through early endosomes. First, similar to its role in C. elegans,
RME-8 is important in clathrin-mediated endocytosis in
Drosophila, and is essential for the uptake and internalization of
membrane ligands and receptors (Chang et al., 2004). Defects
in RME-8 in Drosophila lead to defects in the uptake of
endosomal tracers, as well as disorganization of the endosomal
compartment. These phenotypes of RME-8mutants bear a strong
resemblance to mutations in Hsc70-4, suggesting that the two
genes act in a common pathway. Additionally, studies in HeLa
cells have demonstrated that siRNA-mediated knockdown of
RME-8 leads to defects in EGF uptake into the cells (Girard et al.,
2005). However, as RME-8 has no clathrin binding site, it must
modulate clathrin-mediated endocytosis through a mechanism
independent of auxilin. This suggests that RME-8 may exert its
effects between the dynamin-1 and auxilin stages of endocytosis,
as is has similarities to both. Second, RME-8 has been shown
to be a component of the retromer complex, which executes
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sorting and retrieval to the trans-Golgi (Girard et al., 2005;
Freeman et al., 2014; Seaman and Freeman, 2014). RME-8 aids
in localization of theWASH (WASP and Scar homolog) complex
to endosomal tubules for retromer-mediated endosomal protein
sorting (Perrett et al., 2015). Currently, a thorough mechanism
of RME-8 function in the early endocytic pathway is lacking, and
identification of additional clients, interactors, and members of
the pathway will provide detail on RME-8’s role in endocytosis.

DISAGGREGASE: HSC70, HSP110,
DNAJA1, AND DNAJB1

Metazoans lack the key Hsp100 disaggregases, such as the
yeast Hsp104, which exist in all non-metazoans. Recently, the
metazoan disaggregase was identified and shown to consist of
Hsc70, Hsp110, and DNAJA and B proteins (Nillegoda et al.,
2015). This disaggregase complex functions in the disaggregation
of insoluble proteins, including those in amyloid-like structures.
The transcription of Hsp110 is stimulated by conditions of stress,
and it works in concert with other quality control proteins to
restore native protein folding states (Zuo et al., 2016).

Hsp110 was identified as an Hsp70 interactor and NEF (ATP
for ADP) to induce client release from Hsc70 (Dragovic et al.,
2006). Though Hsp110 on its own possesses chaperone activity
in vitro, it acts only as a NEF in the presence of Hsc70 (Mattoo
et al., 2013).

Several new studies have demonstrated the disaggregative
properties of Hsp110 with both model clients such as aggregated
luciferase and most significantly with neurodegenerative disease-
linked proteins such as α-synuclein and prion protein (Gao
et al., 2015; O’Driscoll et al., 2015). Furthermore, studies
have demonstrated Hsp110’s ability to prevent aggregation-
prone proteins from becoming toxic to cells (Eroglu et al.,
2010). As a disaggregase, Hsp110 can work with both DNAJA1
and DNAJB1 in conjunction with Hsc70 to disaggregate and
refold aggregated proteins (Nillegoda et al., 2015). In the
case of the Parkinson’s disease linked α-synuclein protein,
Hsc70, DNAJB1 and Hsp110 individually have little effect
on insoluble α-synuclein fibrils (Gao et al., 2015). However,
when the three chaperone proteins are combined in vitro, they
selectively disaggregate and solubilize α-synuclein fibrils into
small polymers and monomers in a concentration-dependent
manner. By contrast, DNAJA family members do not effectively
resolubilize α-synuclein fibrils, demonstrating the selectivity of
DNAJB proteins in this interaction.

This newly discovered disaggregase activity is consistent with
prior findings demonstrating that Hsp110 regulates aggregation
in several neurodegenerative diseases. Hsp110 mouse KOs show
increased tau phosphorylation and amyloid beta accumulation
in the brain (Eroglu et al., 2010). Hsp110 also interacts with
Hsc70c and DNAJB1 to protect Drosophila rhabdomeres against
the accumulation and toxicity of polyQ expansion proteins (Kuo
et al., 2013). The disaggregase also prevented neurodegeneration
caused by polyQ proteins. Furthermore, DNAJB1 and Hsp70
family member HspA1A can function in concert to reduce the
levels of aggregated huntingtin (Rujano et al., 2007). Importantly,

transgenic overexpression of Hsp110 in SOD1 mutant mice
rescues their survival, further highlighting the importance of
functional disaggregation machinery in combating misfolding
and neurodegenerative diseases in vivo (Nagy et al., 2016).

The above data raise the exciting possibility that the canonical
protein aggregation occurring in age-related neurodegenerative
diseases may be a reversible with appropriate disaggregase
chaperone activity. Aggregation of proteins is known to have both
loss-of-function mechanisms, due to misfolding and decreased
normal activity, and toxic gain-of-function mechanisms, such as
the sequestration of neural and synaptic chaperones. If protein
aggregates can be disassembled, both of these toxic mechanisms
can be prevented. In the future, disaggregase chaperones such as
Hsp110 may be a broad-acting therapeutic target for the protein
aggregates that occur in a variety of neurodegenerative diseases,
most prominently Alzheimer’s and Parkinson’s disease (Shorter,
2016).

SYNAPTIC CO-CHAPERONES AND
NEURODEGENERATIVE DISEASES

Mutations in synaptic Hsp40 co-chaperones are causally
related to human neurodegenerative diseases, underscoring the
importance of the synaptic proteostasis network for the healthy
brain. In CSPα, two mutations in the cysteine string region
(L115R and L1161) result in autosomal dominant adult neuronal
ceroid lipofuscinosis (ANCL), also known as Kufs disease and
Parry disease (Benitez et al., 2011; Nosková et al., 2011; Velinov
et al., 2012; Cadieux-Dion et al., 2013). ANCL is a hereditary,
adult-onset, progressive neurodegenerative disease with variable
clinical symptoms. Clinically, patients present with epilepsy,
movement disorders, dementia, anxiety, speech changes, and
early mortality (Burgoyne and Morgan, 2015). Pathologically,
ANCL is characterized by intralysosomal accumulation of
lipofuscin containing the protein saposin. ANCL patient brains
show decreased CSPα protein levels as well as the presence of
CSPα aggregates (Nosková et al., 2011), though this was not
evident in early stages of the disease (Benitez et al., 2015).
These proteostatic changes can be recapitulated by expression
of L115R and L1161 mutant CSPα in mouse CSPα KO
neurons. This leads to overall low CSPα levels, as well as
accumulation of the mutant CSPα in the cell body and low
expression at synapses. This suggests that the mechanism of
neurodegeneration in ANCL patients may be both a loss-of-
function at the synapse, and an aberrant gain-of-function at the
cell body.

Biochemical characterization of the L115R and L1161 CSPα

mutants revealed that they function as co-chaperones, consistent
with the mutations being in the cysteine string domain and
not in the J- or C-terminal domains (Zhang and Chandra,
2014). However, both ANCL mutants (L115R and L1161)
have a high propensity to oligomerize and form aggregates
in vitro, with mutant CSPα forming ubiquitinated inclusions
(Zhang and Chandra, 2014). Presently, it is controversial whether
the aggregates of ANCL mutant CSPα are palmitoylated, with
contradictory data available (Greaves et al., 2012; Zhang and
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Chandra, 2014; Diez-Ardanuy et al., 2017). Regardless, ANCL
mutant CSPα can readily co-oligomerize with the wildtype CSPα

protein, possibly explaining the autosomal dominant nature
of this disease. Significantly, oligomerization (both homo- and
hetero-) leads to decreased co-chaperone activity, suggesting
a dominant negative mechanism of mutant CSPα, as the
protein present in higher molecular weight species cannot
function as a co-chaperone for Hsc70 (Zhang and Chandra,
2014).

Remarkably, analysis of L115R and L1161 ANCL patient
brains revealed increased expression, decreased specific activity,
and mislocalization of palmitoyl protein thioesterase 1 (PPT1),
the enzyme responsible for the removal of palmitoyl groups
from proteins, including CSPα (Henderson et al., 2016). Loss-
of-function mutations in PPT1 also cause NCL (Vesa et al.,
1995), suggesting that the mutations in the cysteine string
region of the protein affect CSPα’s palmitoylation status, even
though the residual mutant CSPα appears fully palmitoylated.
This hypothesis is supported by a novel CSPα ANCL mutation
resulting in duplication of a segment of the cysteine string region
(Jedličková et al., 2016). However, further study is required to
understand the mechanism by which CSPα affects PPT1 activity,
or vice versa, and PPT1’s role in proteostasis. Studies of mutant
CSPα palmitoylation and membrane association may provide
more insight into the nature of this interaction.

CSPα dysfunction may also be related to other
neurodegenerative diseases. CSPα levels have been shown
to decrease in the degenerating regions of Alzheimer’s disease
patient brains (Zhang et al., 2012). Impaired assembly of
the SNARE complex, a hallmark of CSPα KO brains, has
also been identified in Alzheimer’s and Parkinson’s diseases
(Garcia-Reitböck et al., 2010). Recently, Sambri and colleagues
demonstrated decreased CSPα levels in a mouse model of
mucopolysaccharidosis type IIIA, a lysosomal storage disease.
Importantly, overexpression of CSPα rescued many of the
phenotypes in the mucopolysaccharidosis mouse model (Sambri
et al., 2017), supporting a functional role for CSPα in this
disease. The present idea is that in mucopolysaccharidosis type
IIIA, CSPα-mediated lysosomal dysfunction may disrupt the
activity of the presynaptic compartment through dysregulation
of SNARE proteins.

Auxilin and RME-8 mutations are associated with Parkinson’s
disease in humans. Loss-of-function mutations in auxilin cause
juvenile onset (between 10 and 21 years old) Parkinson’s disease.
This form of Parkinson’s disease is characterized by visual
hallucinations, cognitive deterioration, epilepsy, and psychosis,
as well as the typical motor symptoms of tremor, rigidity, and
bradykinesia (Köroğlu et al., 2013; Elsayed et al., 2016). In a study
of an inbred family with high rates of juvenile parkinsonism,
Köroğlu et al. identified a combination homozygous nonsense
mutation and missense mutation in the DNAJC6 gene that
resulted in premature truncation of the auxilin protein (Köroğlu
et al., 2013). The nonsense mutation is the result of a C to T
substitution at position 2200 of the DNA sequence, resulting
in a stop codon within exon 16 of the mRNA and truncation
of about 1/5 of the C-terminal portion of auxilin (p.Q734X),
including the J-domain. The missense mutation results in the

TABLE 2 | Mutations in auxilin (DNAJC6) associated with Parkinson’s

disease.

Mutation Zygosity Protein References

c.801-2 A>G Homozygote -Deletion of aa

268-328

-premature stop

Edvardson et al., 2012

c.1468 + 83 del Compound

heterozygote

Olgiati et al., 2016

c.2200C>T Homozygote p.Q734X Köroğlu et al., 2013

c.2038 + 3 A>G Compound

heterozygote

Olgiati et al., 2016

c.2223A>T Homozygote p.Thr741* Olgiati et al., 2016

c.2365C>T Homozygote p.Gln789* Elsayed et al., 2016

c.2371C>T p.Gln791*

c.2779A>G Homozygote p.Arg927Gly Olgiati et al., 2016

Bold denotes mutations associated with double heterozygote forms of Parkinson’s

disease. *Denotes premature stop codon.

substitution of cysteine at position 61 for serine, a change
that is likely deleterious to protein structure and function.
Additionally, several other mutations have been identified in
auxilin that are linked to juvenile onset Parkinson’s disease
(Table 2). Milder mutations in auxilin lead to later onset,
while complete loss-of-function leads to earlier onset forms
(Elsayed et al., 2016). Congruently, sequence variants in GAK,
the auxilin homolog, have also been linked to Parkinson’s
disease risk by meta-analysis of GWAS, as well as in a study
of sporadic Parkinson’s disease in China (Nalls et al., 2014;
Zhang et al., 2016). It is presently not clear why clathrin
uncoating defects through the loss-of-function of auxilin should
lead to Parkinson’s disease. One possibility is that deficiency
leads to alternative modes of endocytosis that is taxing to
dopaminergic neurons. Another possibility is that Hsc70 is
sequestered to CCVs leading to a severe synaptic proteostasis
defect. Alternatively, auxilin has additional clients in substantia
nigra neurons.

A mutation in RME-8 was identified in a large pedigree
with autosomal dominant Parkinson’s disease (p.Q734X). In this
Mennonite family, a heterozygous N855S mutation in RME-
8 was discovered by exome sequencing of the proband and
relatives with Parkinson’s disease (Vilariño-Güell et al., 2014).
The mutation falls between the first two IWN domains (Zhang
et al., 2001). However, the N855S mutation was not always
associated with disease in this pedigree. A recent publication
using the same family found a mutation in an uncharacterized
ORF encoding a protein TMEM230, which is localized to
synapses, using positional mapping (Deng et al., 2016). This new
study casts the role of RME-8 in Parkinson’s disease in doubt and
requires further examination to identify the contribution of each
protein to the disease.

Clients of CSPα, auxilin, and RME-8 all participate in either
synaptic vesicle exocytosis, endocytosis and/or recycling of
synaptic vesicles and membrane components (Figure 4). Thus,
the association of these co-chaperones with neurodegenerative
diseases highlights the importance of efficient functional
synaptic exocytic and endocytic machinery in synapse- and
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FIGURE 4 | Co-chaperones regulate distinct steps of the synaptic vesicle cycle. Cartoon depicts synaptic vesicle cycle. CSPα chaperones SNAP-25, a

t-SNARE involved in vesicle fusion for neurotransmitter release. CSPα also chaperones dynamin-1, a GTPase necessary for vesicle scission in clathrin-mediated

endocytosis. Auxilin acts on clathrin-coated vesicles, uncoating them to generate nascent vesicles that are returned to the recycling pool. RME-8 regulates clathrin

uncoating at the early endosome.

neuroprotection. In particular, the synaptic vesicle endocytosis
deficits seen in co-chaperone mutants raise an important
question: when clathrin mediated endocytosis is impaired,
do the alternative modes of synaptic vesicle cycling that
ensue lead to protein sorting inefficiencies that further disrupt
synaptic proteostasis and cause synaptic dysfunction and loss?

Hence, understanding synaptic vesicle cycling in co-chaperone
mutants will be very instructive to understanding early steps in
neurodegeneration.

SYNAPTIC PROTEOSTASIS,
NEURODEGENERATION, AND AGING

It is well established that Aβ in Alzheimer’s disease and α-
synuclein in Parkinson’s disease aggregate to form defining
pathologies—amyloid plaques and Lewy bodies, respectively.
Recent evidence suggests that their aggregation begins at the
synapse and/or that synapses are sites of action of these
pathological aggregates. In line with this idea, aggregation
of α-synuclein has been demonstrated to begin at synaptic
termini where the protein normally resides (Kramer and Schulz-
Schaeffer, 2007; Scott et al., 2010; Spinelli et al., 2014), even
though Lewy bodies are present in soma. These synaptic
aggregates are likely to contribute to the synaptic dysfunction
and synapse loss observed in Parkinson’s disease (Nemani et al.,
2010; Scott and Roy, 2012). Therefore, there is new interest
in understanding why the synaptic proteostasis network is
unable to deal with neurodegenerative disease aggregates and is
overwhelmed during disease processes. One possible explanation
is that the accumulation of disease-related proteins can not only
cause a toxic gain-of-function, but may lead to a loss-of-function
of specific proteins at the synapse through the sequestration

of bystander proteins, especially chaperones (Rampelt et al.,
2012). For example, aggregation of expanded polyglutamine
repeat proteins such as those implicated in Huntington’s
disease and spinocerebellar ataxia can inhibit clathrin-mediated
endocytosis by competitive binding and sequestration of Hsc70,
and decreased Hsc70 expression (Yamanaka et al., 2008; Yu et al.,

2014).
Age is the single biggest risk factor for neurodegenerative

disease. New studies examining the reason behind this have

uncovered several probable links to changes in the synaptic

proteostasis network (Labbadia and Morimoto, 2015). Analysis

of the human chaperome of distinct brain regions showed

that Hsp60s, Hsp40s, and Hsp70s were consistently repressed

with age. Among repressed genes, the Hsp40s exhibited the
most significant change, with 62% of 48 Hsp40 genes repressed
in aging. Pertinent to synaptic proteostasis, DNAJC5 and
DNAJA1 levels are also decreased with aging (Brehme et al.,
2014) and in Alzheimer’s disease (Zhang et al., 2012). This
analysis of the chaperome in aged human brain revealed a
concordant exacerbation of responses in neurodegenerative
disease, and provides evidence for similar changes in the synaptic
proteostasis network in both aging and neurodegenerative
disease. The causal relationship between age-related decrement
in proteostasis and protein aggregation has been examined in
worm. In aging C. elegans, dysregulation of proteostasis has
been demonstrated to lead to the accumulation of aggregation-
prone proteins, thus starting a vicious cycle (Walther et al.,
2015). From a therapeutic standpoint, in C. elegans, the
demonstrated correlation between age and decreased synaptic
integrity can be prevented by increased expression of the
master heat shock transcription factor hsf-1 (Toth et al.,
2012).
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FUTURE DIRECTIONS

While recent years have seen progress in understanding the
role of synaptic chaperone systems in maintaining functional
synaptic connections, more research is required to deepen our
understanding of synaptic chaperone clients, the relationship
between changes in synaptic proteostasis and normal aging as
well as neurodegenerative diseases.

In the case of CSPα, a complete characterization of its clients
will help delineate their importance to CSPα KO phenotypes.
This analysis can lead to testable hypothesis as to why α-synuclein
rescues CSPα KO phenotypes. It is presently unclear how ANCL
mutations disrupt CSPα co-chaperone activity and what role
palmitoylation plays in this disruption in vivo due to the paucity
of animal models. Although auxilin has been well-characterized,
recent evidence of its functions in alternative endocytic pathways
prompts further mechanistic study. As COPII is only the second
client of auxilin identified, further effort on unearthing additional
clients may identify new roles for auxilin’s co-chaperone activity.
For Parkinson’s disease linked to auxilin mutations, it remains to
be investigated why clathrin-mediated endocytosis deficits leads
to neurodegeneration. Additionally, RME-8 is the least-studied
co-chaperone discussed in this review. The clients of RME-8 need
to be identified, and this will address the mechanisms by which
RME-8 regulates endocytosis at the synapse. Studies have already
made it clear that RME-8 plays a distinct role from auxilin, but

its specific function in clathrin-mediated endocytosis requires
more investigation. Finally, additional investigation is required
to identify the effect of RME-8 in familial Parkinson’s disease,
and to determine whether its dysfunction works independently
or synergistically with the mutation in TMEM230 to influence
disease progression.

CONCLUSIONS

The importance of co-chaperones in the maintenance of synapse
function and the nervous system is becoming clear given that
their dysfunction leads to loss of synapses and neurodegenerative
disease.
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Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein

misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH

(Hsp105α). The HSPA family is a multigene family composed of inducible and

constitutively expressed members. Inducible HSPA6 (Hsp70B’) is found in the human

genome but not in the genomes of mouse and rat. To advance knowledge of this

little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites

with components of a disaggregation/refolding machine was investigated following

thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles)

that have been characterized as sites of transcription. However, HSPA6 did not

co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after

heat shock, HSPA6 co-localized with these members of the disaggregation/refolding

machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1)

and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with

components of the machine immediately after heat shock, and at the GC layer of the

nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits

targeting features that are not apparent for HSPA1A and HSPA8.

Keywords: HSPA1A (Hsp70-1), HSPA6 (Hsp70B’), HSPA8 (Hsc70), DNAJ (Hsp40), HSPH1 (Hsp105α), human

neuronal SH-SY5Y cells

INTRODUCTION

Heat shock proteins (Hsps) are highly conserved proteins that play roles in cellular repair
and protective mechanisms (Muchowski and Wacker, 2005; Asea and Brown, 2008; Paul and
Mahanta, 2014). They co-operate in multi-protein machines to counteract protein misfolding
and aggregation that are characteristic of neurodegenerative diseases (Muchowski and Wacker,
2005; Rampelt et al., 2012; Duncan et al., 2015; Nillegoda and Bukau, 2015; Nillegoda et al., 2015;
Smith et al., 2015; Goloubinoff, 2017; Jackrel and Shorter, 2017). Misfolded proteins are detected
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by DNAJs (Hsp40s) and refolded into biologically active states
by members of the HSPA (Hsp70) family (Rampelt et al., 2012;
Mattoo and Goloubinoff, 2014; Clerico et al., 2015; Nillegoda
and Bukau, 2015; Nillegoda et al., 2015). While Hsp70 and
Hsp40 co-operate to prevent aggregation of misfolded proteins,
they cannot dissociate protein aggregates that accumulate during
neurodegenerative diseases (Rampelt et al., 2012; Gao et al., 2015;
Nillegoda and Bukau, 2015; Nillegoda et al., 2015).

Yeast cells express a well-characterized “disaggregase”
(Hsp104) that is able to solubilize aggregated proteins, homologs
of which are lacking in mammalian cells (Glover and Lindquist,
1998; Weibezahn et al., 2005; Bösl et al., 2006; Nillegoda and
Bukau, 2015). Studies have shown that HSPH1 (Hsp105α), a
member of the mammalian Hsp110 family, acts co-operatively
with Hsp70/Hsp40 as a “disaggregase” to dissociate aggregated
proteins (Rampelt et al., 2012; Nillegoda and Bukau, 2015;
Nillegoda et al., 2015). It has been reported that the mammalian
disaggregation/refolding machine dissociates amyloid fibrils of
α-synuclein that are associated with Parkinson’s disease (Gao
et al., 2015). Misfolded protein aggregates accumulate during the
course of neurodegenerative diseases and upregulation of Hsps
is being investigated as a potential protective strategy (Asea and
Brown, 2008; Genc and Özdinler, 2014; Kalmar et al., 2014; Paul
and Mahanta, 2014; Deane and Brown, 2016; Kampinga and
Bergink, 2016).

The HSPA family is a multigene family composed of inducible
and constitutively expressed members (Morimoto, 2008). HSPA6
(Hsp70B’) is an inducible member that has received little
attention compared to the more widely studied HSPA1A (Hsp70-
1). HSPA6 has been investigated in cultured human neuronal
cells (Chow and Brown, 2007; Chow et al., 2010; Khalouei
et al., 2014a,b; Deane and Brown, 2016, 2017; Shorbagi and
Brown, 2016; Becirovic and Brown, 2017), and in human
cancer cell lines (Noonan et al., 2007, 2008). Interestingly,
the HSPA6 gene is found in the human genome but not in
mouse and rat, hence it is absent in current animal models
of neurodegenerative diseases (Noonan et al., 2007; Deane and
Brown, 2016, 2017).

To advance knowledge of HSPA6, we investigated whether it
is targeted to stress-sensitive neuronal sites with components of
a protein disaggregation/refolding machine in human neuronal
SH-SY5Y cells that have been previously used as a model in
studies of neurodegenerative diseases (Grynspan et al., 1997;
Imamura et al., 2006; Ross and Spengler, 2007; Cheung et al.,
2008; Plowey et al., 2008; Krishna et al., 2014). Neurodegenerative
diseases affect differentiated neurons of the adult central
nervous system, hence SH-SY5Y cells were differentiated in the
present study by treatment with retinoic acid which results
in inhibition of cell division and stimulates the development
of neuronal processes (Jacobs et al., 2006; Ross and Spengler,
2007; Cheung et al., 2008). Retinoic acid is required for adult
neurogenesis in the rat brain (Jacobs et al., 2006; Bonnet
et al., 2008) and for maintenance of the differentiated state
of dopaminergic neurons in the nigrostriatal pathway (Maden,
2007). The present studies suggest that HSPA6 exhibits features
in its targeting that are not observed for the widely studied
HSPA1A.

MATERIALS AND METHODS

Cell Culture and Differentiation
Human neuronal SH-SY5Y cells (American Type Culture
Collection, Manassas, VA, USA) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Wisent, QC, Canada) with
10% fetal bovine serum (FBS; Wisent) at 37◦C in a humidified
5% CO2 atmosphere. Cells were plated at 4.5 × 104 cells per
cm2 on coverslips placed inside 6-well plates and allowed to
settle onto the growth surface and adhere for 24 h. Neuronal
differentiation was induced by treatment with 10µM all-trans-
retinoic acid (R2625; Sigma Aldrich, St. Louis, MO, USA) for 72 h
under serum free conditions.

Induction of Hsps and Heat Shock
Treatment
Following 72 h of differentiation, media containing all-trans-
retinoic acid was removed and replaced with fresh serum free
DMEMwith 0.3µM celastrol plus 50µM arimoclomol to induce
Hsps (Deane and Brown, 2016, 2017). Celastrol (70950; Cayman
Chemical, Ann Arbor, MI, USA) dissolved in DMSO was
added directly to the media. Arimoclomol (gift from Professor
Michael Cheetham, Institute of Ophthalmology, University
College London, UK) was prepared fresh for each experiment by
dissolving in serum free DMEM and filtering. DMSO was used
as a vehicle control for celastrol. Following 12 h incubation to
facilitate Hsp induction, cells were fixed for immunofluorescence
(no HS) or exposed to heat shock (HS). For heat shock, cells
were immersed in a water bath calibrated at 43◦C (± 0.2◦C) for
20min. Cells were then fixed for immunofluorescence (20min)
or returned to 37◦C until being fixed at a later time during
recovery (1 or 3 h). The commencement of heat shock represents
t = 0.

Immunofluorescence
Cells were fixed with 4% paraformaldehye in phosphate buffered
saline (pH 7.4) for 30min, permeabilized with 0.1% triton X-100
and 100mM glycine for 30min, and then blocked with 5% FBS
for 1 h before being incubated with primary antibodies overnight
in 1% FBS. HSPA1A (SPA-810), HSPA6 (SPA-754), HSPA8 (SPA-
815), DNAJB1 (SPA-400), and HSPB1 (SPA-803) antibodies
were obtained from Enzo Life Sciences (Farmingdale, NY,
USA). DNAJA1 [clone KA2A5.6] (ab3089), HSPH1 (ab109624),
BAG-1 (ab7976), SC35 (ab11826), nucleophosmin (ab37659),
and RNA polymerase II CTD repeat YSPTSPS (phospho S5)
(ab5131) primary antibodies were purchased from Abcam
(Toronto, ON, CA). Primary antibody for the nuclear speckle
marker SON (HPA023535) was obtained from Sigma Aldrich.
Cells were washed and incubated with Alexafluor R© Donkey
secondary antibodies (Molecular Probes, Life Technologies,
Burlington, ON, CA) and then counterstained with 300 nM
DAPI (Invitrogen, Life Technologies). Fluorescence images were
acquired using a Quorum Wave FX-X1 spinning disk confocal
microscope (Quorum Technologies, Guelph, ON, CA) outfitted
with a high resolutionHumamatsuOrca R2 camera (Humamatsu
Photonics, Japan) and a Plan-APO 63x/1.4NA oil objective.
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FIGURE 1 | HSPA6 was targeted to the periphery of nuclear speckles (perispeckles) following heat shock in differentiated human neuronal cells. (A)

Prior to heat shock, HSPA6 (green) was distributed in the neuronal cytoplasm. After heat shock, HSPA6 localized to foci at the periphery of nuclear speckles (closed

arrowheads) identified by the marker protein SON (red, open arrowheads). DAPI (blue) was used to identify neuronal nuclei. ImageJ line scans demonstrated that

HSPA6 fluorescent peaks were offset from SON peaks. ImageJ line scans confirm that (B) DNAJB1, (C) HSPH1, (D) HSPB1, and (E) HSPA8 did not co-localize with

HSPA6. (F) HSPA6-positive foci co-localized with the perispeckle marker RNA polymerase II (closed arrowheads). Scale bar represents 5 µm (A–F). Inset scale bar in

(A) represents 0.5µm.

Excitation lasers: 405, 491, 561, and 644 nm. Emission filters
(nm/bandpass): 460/50, 525/50, and 593/40.

Image Processing and Analysis
Image processing utilized Volocity 3D image analysis software
(PerkinElmer, Waltham, MA, USA). ImageJ software (http://
imagej.nih.gov/ij/) was employed for co-localization analysis

using TIFF images exported from Volocity. Background
subtracted images were used to generate intensity profile plots
representing the fluorescence signal intensities for the indicated
channels in a defined linear region using the RGB (red-green-
blue) Profiler plugin. Images representative of 3 individual
experiments are shown in which 25 cells were analyzed in
coverslips harvested from each well of 6-well culture plates.
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FIGURE 2 | HSPA1A co-localized at nuclear speckles with components of a mammalian protein disaggregation/refolding machine after thermal stress.

(A) Prior to heat shock, HSPA1A (green) was distributed in the neuronal cytoplasm. After heat shock, HSPA1A co-localized with the nuclear speckle marker protein

SON (red, open arrowheads) at 20min and 1 h, confirmed by ImageJ line scans. DAPI (blue) was used to identify neuronal nuclei. Components of a mammalian

protein disaggregation/refolding machine including (B) DNAJB1, (C) HSPH1, and (D) HSPB1, also targeted nuclear speckles (open arrowheads) after heat shock at

20min and 1 h, as determined by co-localization with nuclear speckle markers SON (HSPA1A) and SC35 (HSPH1, DNAJB1, and HSPB1). Scale bar represents 5µm.

RESULTS

Differential Targeting of HSPA6 and
HSPA1A in Human Neuronal Cells following
Thermal Stress
To induce Hsps, including HSPA6 (Hsp70B’) and HSPA1A
(Hsp70-1), differentiated human neuronal SH-SY5Y cells
were treated with celastrol and arimoclomol as previously
described (Deane and Brown, 2016). HSPA6 and HSPA1A
were distributed in the neuronal cytoplasm prior to heat
shock (Figures 1A, 2A, No HS panels). At 20min and 1 h
after heat shock, HSPA6 localized to perispeckles (Figure 1A,
closed arrowheads) around the periphera of nuclear speckles
(open arrowheads) which were identified with the SON
marker protein (Sharma et al., 2010; Sytnikova et al.,
2011; Khalouei et al., 2014b). As shown in Figures 1B–E,
components of the mammalian disaggregation/refolding
machine, namely DNAJB1 (Hsp40-1), and the “disaggregase”
HSPH1 (Hsp105α), and also HSPB1 (Hsp27) and HSPA8
(Hsc70), did not co-localize after heat shock with the HSPA6-
positive perispeckles, confirmed by ImageJ line scans located
below the immunocytochemistry panels. HSPA6 co-localized
with the perispeckle marker RNA polymerase II (Figure 1F)

that is associated with transcription sites (Ghamari et al.,
2012).

As shown in Figure 2, components of the disaggregation/
refolding machine were targeted with HSPA1A to nuclear
speckles, as determined by co-localization with nuclear speckle
markers SON and SC35 (Figure 2, open arrowheads). The
SC35 and SON antibodies used in the present study have been
shown to co-localize at nuclear speckles that are enriched in
RNA splicing factors in differentiated human neuronal SH-
SY5Y cells (Lamond and Spector, 2003; Spector and Lamond,
2011; Khalouei et al., 2014b). ImageJ line scans confirmed the
co-localization of HSPA1A at nuclear speckles with DNAJB1
(Figure 2B), HSPH1 (Figure 2C), and HSPB1 (Figure 2D).
Hence, HSPA1A was targeted with components of a protein
disaggregation/refolding machine to nuclear speckles after
heat shock (Figure 2), while HSPA6 localized to perispeckles,
where signal for these machine components was not detected
(Figure 1).

Association of HSPA1A and HSPA6 with
the Nucleolus in Neuronal Cells
At 1 h after heat shock, HSPA1A, but not HSPA6, was targeted
to the granular component (GC) of the nucleolus (Figure 3A,
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FIGURE 3 | HSPA1A, but not HSPA6, was targeted to the GC layer of the nucleolus at 1 h following heat shock. (A) At 1 h, HSPA1A (green, upper panel),

but not HSPA6 (green, lower panel) co-localized with nucleophosmin (NPM) (red, arrow), a marker of the GC layer of the nucleolus. This localization was not observed

at 20min, confirmed by ImageJ line scans shown on the right. (B) DNAJA1 also co-localized with nucleophosmin at 1 h (arrows). (C) BAG-1 co-localized at 1 h with

HSPA1A and DNAJA1 (arrows) that were shown to localize to the nucleolus in (A,B), however the “disaggregase” HSPH1 did not (D, arrow). The open arrowheads

represent HSPA1A and HSPH1 targeting to nuclear speckles, previously shown in Figures 2A,C. Scale bar represents 5µm.

arrows), identified by nucleophosmin (NPM) marker protein
(Hernandez-Verdun et al., 2010), which is the site of ribosomal
RNA processing and ribosomal subunit assembly (Thiry and
Lafontaine, 2005; Raska et al., 2006; Hernandez-Verdun et al.,
2010). DNAJA1 also co-localized with nucleophosmin at the
GC layer of the nucleolus (Figure 3B, arrows). As shown
in Figure 3C (arrows), BAG-1 co-localized with HSPA1A
and DNAJA1 which were targeted to the nucleolus at 1 h
(Figures 3A,B, arrows), whereas the “disaggregase” HSPH1 did
not (Figure 3D, arrow). The open arrowheads in Figure 3D

represent the targeting of HSPA1A and HSPH1 to nuclear
speckles, previously mentioned in Figures 2A,C.

Subsequently at 3 h after heat shock, HSPA6 (Figure 4A,
arrow), but not HSPA1A (Figure 4B), co-localized at the
GC layer of the nucleolus with components of a protein
disaggregation/refolding machine, namely DNAJB1 and the
“disaggregase” HSPH1 (Figure 4C, arrows), but, interestingly,
not BAG-1 (Figure 4D). These results suggest differential
targeting of HSPA6 and HSPA1A to nucleolar structures
following thermal stress.
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FIGURE 4 | At 3 h after thermal stress, HSPA6 co-localized with

nucleophosmin, a marker of the granular component (GC) of the

nucleolus. (A) HSPA6 co-localized at the 3 h time point with a marker of the

GC layer of the nucleolus, nucleophosmin (arrow, upper panel), but not with

the nuclear speckle marker SON (open arrowheads, lower panel). (B) HSPA1A

did not co-localize with nucleophosmin (upper panel) or SON (lower panel) at

3 h. (C) Components of a mammalian disaggregation/refolding machine,

including DNAJB1 and HSPH1, were also targeted to the GC layer of the

nucleolus at 3 h (arrows), however (D) BAG-1 was not. DAPI (blue in merged

panels and ImageJ line scans) was used to identify neuronal nuclei. Scale bar

represents 5µm.

Constitutively Expressed HSPA8 Exhibited
Similar Heat Shock-Induced Targeting as
HSPA1A, However HSPA6 Did Not
HSPA8 (Hsc70) is a constitutively expressedmember of theHSPA
family that is expressed at high levels in neurons compared to
other cell types and has been proposed to provide pre-protection
from neuronal stress (Manzerra et al., 1993, 1997; Chen
and Brown, 2007a,b). Inducible HSPA members, particularly
HSPA1A, have been more widely investigated in studies of
protein misfolding and aggregation resulting from cellular stress.
However, it has been recognized that constitutive Hsps, including

HSPA8, also have stress-related functions (Manzerra et al., 1993;
Vos et al., 2008; Stricher et al., 2013).

As shown in Figure 5, HSPA8 localized to SON-positive
nuclear speckles at 20min and 1 h after heat shock (Figure 5A,
open arrowheads), and to the nucleophosmin-positive GC
layer of the nucleolus at 1 h (Figure 5B, arrows), before
returning to the cytoplasm at 3 h. This pattern of heat-
induced targeting to neuronal sites was similar to that of
HSPA1A (Figures 5A,B), but not HSPA6 (Figures 5C,D). These
results indicate that HSPA8 exhibits similar targeting after
thermal stress as inducible HSPA1A. In contrast, HSPA6
exhibits features that are not observed for HSPA1A and
HSPA8.

DISCUSSION

HSPA6 (Hsp70B’) and HSPA1A (Hsp70-1) are inducible
members of the HSPA (Hsp70) family (Chow and Brown, 2007;
Noonan et al., 2007, 2008; Deane and Brown, 2016). We have
previously shown that these proteins are not detectable in
differentiated human neuronal SH-SY5Y cells but are induced
by low dose co-application of celastrol and arimoclomol at
concentrations that do not affect cell viability (Deane and Brown,
2016). Dividing human tissue culture cell lines, such as unstressed
HeLa cells, express high basal levels of HSPA1A (Finka and
Goloubinoff, 2013). However, this is not observed in unstressed,
differentiated human neuronal SH-SY5Y cells which are non-
dividing (Deane and Brown, 2016). The HSPA6 gene is present
in the human genome, and in the marmoset monkey (NCBI gene
ID: 100411854), camel (Elrobh et al., 2011) and goat (Banerjee
et al., 2014) but is not found in the genomes of mouse and rat
(Parsian et al., 2000), hence it is absent in current animal models
of neurodegenerative diseases (Chow and Brown, 2007; Deane
and Brown, 2016, 2017).

In order to advance knowledge of the little studied HSPA6,
the present study investigated whether it is targeted to stress-
sensitive neuronal sites with components of a mammalian
disaggregation/refolding machine. Following thermal stress,
HSPA1A, but not HSPA6, rapidly co-localized to nuclear
speckles with DNAJB1 and HSPH1 components of a
disaggregation/refolding machine. Nuclear speckles are rich
in RNA splicing factors and splicing is inhibited by heat shock
(Lamond and Spector, 2003; Spector and Lamond, 2011). In
contrast, HSPA6, but not HSPA1A, was rapidly targeted by heat
shock to perispeckles located at the periphera of nuclear speckles
that are rich in RNA polymerase II and poly(A+)-containing
RNA (Bregman et al., 1995; Mortillaro et al., 1996; Hall et al.,
2006; Khalouei et al., 2014b) and have been characterized as
“transcription factories” (Brown et al., 2008; Rieder et al., 2012,
2014). Interestingly, components of the disaggregation/refolding
machine, namely DNAJB1, and the “disaggregase” HSPH1
(Hsp105α), did not co-localize with HSPA6 at perispeckles.
This suggests a role for HSPA6 at perispeckles that does not
require the elements of the disaggregation/refolding machine.
It has been reported that HSPA6 is capable of refolding heat-
denatured p53 in the absence of DNAJ proteins (Hageman
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FIGURE 5 | Constitutively expressed HSPA8 exhibited similar heat shock-induced targeting as HSPA1A, however HSPA6 did not. (A) HSPA8 targeted

SON-positive nuclear speckles at 20min and 1 h after heat shock. (B) HSPA8 also targeted the GC layer of the nucleolus (identified by the marker protein

nucleophosmin) at 1 h and co-localized with HSPA1A. (C) HSPA8 did not co-localize with HSPA6 at 20min and 1 h at perispeckles or (D) at the GC layer of the

nucleolus at 3 h. DAPI (blue) was used to identify neuronal nuclei. Scale bar represents 5µm.
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et al., 2011). Small heat shock proteins (sHsps) have been
reported to enhance recovery from heat-induced nuclear protein
aggregation (Kampinga et al., 1994; Stege et al., 1995) likely by
maintaining denatured proteins in a folding competent state
(Ehrnsperger et al., 1997; Lee et al., 1997; Deunnwald et al.,
2012; Rampelt et al., 2012). The present results indicate that
HSPB1 (Hsp27) co-localized at nuclear speckles after heat shock
with disaggregation/refolding machine components including
HSPA1A, DNAJB1, and HSPH1.

Later in the time course after heat shock, HSPA6 and HSPA1A
are differentially targeted to the GC layer of the nucleolus
which is involved in ribosomal RNA processing and ribosomal
subunit assembly (Thiry and Lafontaine, 2005; Raska et al.,
2006; Hernandez-Verdun et al., 2010). At the 1 h recovery time
point, HSPA1A, but not HSPA6, co-localized at the GC layer of
the nucleolus with DNAJA1 and BAG-1, but not with HSPH1
(Hsp105α). BAG-1 targets Hsp70 substrates to the proteasome
to facilitate their degradation (Bracher and Verghese, 2015a,b)
and does not promote the dissociation of protein aggregates in
the presence of other members of the disaggregation/refolding
machine (Rampelt et al., 2012). This suggests a possible role
for HSPA1A in BAG-1-directed targeting of heat damaged
nucleolar proteins to the proteasome for degradation, which is
not observed for HSPA6. Subsequently at the 3 h recovery time
point, HSPA6, but not HSPA1A, is targeted to the GC layer of
the nucleolus with components of the disaggregation/refolding
machine comprised of DNAJB1, and the ‘disaggregase’ HSPH1.

HSPA8 (Hsc70) is a constitutively expressed member of
the HSPA (Hsp70) family that is present at high levels in
neurons in the mammalian brain (Manzerra et al., 1997).
It has been proposed that HSPA8 may pre-protect neurons
from stress (Chen and Brown, 2007a,b). The present results
indicate that following thermal stress, constitutively expressed
HSPA8 is targeted to nuclear speckles with components
of the disaggregation/refolding machine. This suggests that

neurons may have the capacity to rapidly form a protein
disaggregation/refolding machine without the time lag needed
to induce HSPA1A. Enhancing levels of HSPA8 could represent
an additional strategy to combat protein misfolding and
aggregation. The current studies reveal that HSPA8 exhibits
targeting features that are similar to HSPA1A and different
from HSPA6, that is, (i) co-localization at nuclear speckles with
machine components and (ii) targeting to the GC layer of the
nucleolus with BAG-1.

Therapies for neurodegenerative diseases that showed
promise in current animal models have failed to translate
effectively in human clinical trials suggesting deficiencies in
these animal models (Nestler and Hyman, 2010; Lang, 2010;
Dunkel et al., 2012; t Hart et al., 2012; Sheikh et al., 2013;
McGonigle and Ruggeri, 2014; Sasaki, 2015). The present results
suggest that elements of the cellular stress response, involving
targeting of HSPA6 to perispeckles and later to the GC layer of
the nucleolus at 3 h, that are present in differentiated human
neuronal SH-SY5Y cells, are absent in current mouse and rat
models of neurodegenerative diseases that lack the HSPA6 gene.
Primate models are currently being developed using the common
marmoset, an animal that possesses the HSPA6 gene (NCBI gene
ID: 100411854) (Lang, 2010; t Hart et al., 2012; McGonigle and
Ruggeri, 2014; Sasaki, 2015).
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Neurodegenerative diseases often have multifactorial causes and are progressive

diseases. Some are inherited while others are acquired, and both vary greatly in onset

and severity. Impaired endoplasmic reticulum (ER) proteostasis, involving Ca2+ signaling,

protein synthesis, processing, trafficking, and degradation, is now recognized as a

key risk factor in the pathogenesis of neurological disorders. Lipidostasis involves lipid

synthesis, quality control, membrane assembly as well as sequestration of excess

lipids or degradation of damaged lipids. Proteostasis and lipidostasis are maintained by

interconnected pathways within the cellular reticular network, which includes the ER and

Ca2+ signaling. Importantly, lipidostasis is important in the maintenance of membranes

and luminal environment that enable optimal protein processing. Accumulating evidence

suggest that the loss of coordinate regulation of proteostasis and lipidostasis has a direct

and negative impact on the health of the nervous system.

Keywords: calnexin, proteostasis, endoplasmic reticulum, lipidostasis, neurological disorders

INTRODUCTION

Neurodegenerative disorders are diseases of the nervous system, often chronic, and progressive
in nature, affecting many people worldwide and increasing in incidence each year1. They account
for about 1% of deaths worldwide and pose one of the largest health, economic, and social capital
burden. Environmental factors such as lifestyle, diet, and stress are high risk factors for developing
neurological disorders (Migliore and Coppedè, 2009; Ochoa-Repáraz and Kasper, 2014; Perry and
Holmes, 2014; Rothhammer and Quintana, 2016). Impaired cellular homeostasis is a hallmark of
neurodegenerative diseases (Hetz and Mollereau, 2014). The maintenance of cell homeostasis is a
complex and dynamic process relying on coordinated functions of the cellular reticular network,
the interconnected network of membranes within the cell that includes the endoplasmic reticulum
(ER). The ER is a dynamic membrane system and a multifunctional organelle. It is a major site
of protein and lipid synthesis (Hebert and Molinari, 2007; Schwarz and Blower, 2016), and the
major intracellular store of Ca2+ that is used by Ca2+ signaling processes (Krebs et al., 2015). The
purpose of this article is to discuss the dynamic events coordinated by the ER, namely synthesis,
quality control, and degradation of proteins and lipids, sensing of cellular lipid status as well as
maintenance of the ER Ca2+ in the cellular signaling network that influence cellular proteostasis
and lipidostasis, in the context of the pathogenesis of the diseases of the nervous system.

1http://www.who.int/mental_health/publications/neurological_disorders_ph_challenges/en/
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CELLULAR STRESS RESPONSES IN THE

NERVOUS SYSTEM

Cells, including neuronal cells (neurons, glial cells), are exposed
to a wide variety of internal and external factors that induce
cellular stress. These factors include gene variations that alter
protein structure and function, inducers of oxidative stress, viral
infection, environmental toxins, drugs, extremes in temperature,
extremes in pH, inflammatory cytokines, lipotoxicity, Ca2+

depletion, aging, and other factors that cause loss of nutrient
or energy homeostasis. Neurons are particularly susceptible to
cellular stress, and disrupted cellular proteostasis or lipidostasis,
due to their unique architecture and functional specialization
(connectivity and excitability). In response to cellular stress,
cells most frequently turn to the coping mechanisms such
as the unfolded protein response (UPR; Groenendyk et al.,
2013) and genome damage response (GDR; Dicks et al., 2015;
Figure 1). The UPR works to restore protein homeostasis in
the ER (Groenendyk et al., 2013; Hetz and Mollereau, 2014)
whereas the GDR functions to repair DNA or chromatin
damage (Dicks et al., 2015). Several recent review articles
discuss these topics in greater depth (Cao and Kaufman, 2013;
Groenendyk et al., 2013; Hetz and Mollereau, 2014; Wang and
Kaufman, 2014; Dicks et al., 2015; Hetz et al., 2015). Disrupted
proteostasis has been identified as an underlying cause of
many neurodegenerative diseases including Alzheimer’s disease,
Parkinson’s disease, Huntington disease, amyotrophic lateral
sclerosis, prion related diseases, all of which have been referred to
as diseases of protein folding (Hetz and Mollereau, 2014). These
examples illustrate that long term alteration of cellular function
in response to chronic disruption of proteostasis in the nervous
system eventually lead to the pathogenesis of neurodegenerative
disorders.

LIPID HOMEOSTASIS AND

NEURODEGENERATIVE DISEASES

The ER is a critical organelle for maintenance of cellular lipid
homeostasis (van Meer et al., 2008). It is the site of synthesis of
the bulk of structural phospholipids, sterols, and storage lipids
such as triacylglycerols and sterol esters (Higgins, 1974; Ikonen,
2008; Fagone and Jackowski, 2009; Chauhan et al., 2016). This
organelle also supplies lipids to other cellular organelles, and is
the driver of cellular lipid homeostasis. The brain is the most
cholesterol enriched organ in the body (Dietschy and Turley,
2001; Zhang and Liu, 2015). Cholesterol in brain cells is derived
primarily from de novo synthesis since lipoproteins are unable to
cross the blood-brain barrier (BBB; Valdez et al., 2010; Zhang and
Liu, 2015; Mistry et al., 2017). The majority of the cholesterol in
the brain is found in the myelin sheaths that surround axons.

Impaired metabolism and transport of lipids in the brain
has been linked to many neurodegenerative diseases such as
Alzheimer’s disease, Huntington disease, Parkinson’s disease,
multiple sclerosis, amyotrophic lateral sclerosis, including
inherited neurological diseases such as Niemann-Pick C disease,
Smith-Lemli-Opitz syndrome, and Gaucher’s disease (Cutler

FIGURE 1 | Cell stress coping responses and the interplay between

proteostasis and lipidostasis. Proteostasis refers to optimal protein

biosynthesis and trafficking whereas lipidostasis pertains to optimal lipid

biosynthesis, trafficking, and membrane assembly. Both of these processes

rely on the availability of energy (ATP), and nutrients (such as Ca2+, sugars,

amino acids, lipid subunits, nucleotides, other essential cofactors). When cells

experience external or internal insults that result in the loss of control of

nutrient and energy metabolism corrective strategies (UPR, GDR, autophagy,

other coping responses) are activated to counteract and eliminate cell stress.

The regulatory and metabolic pathways that operate to recover proteostasis

and lipidostasis are interconnected, and support each other in preserving

global cellular homeostasis.

et al., 2002; Vanier, 2010; Wu G. et al., 2011; Don et al., 2014;
Petrov et al., 2016; Schultz et al., 2016; Abdel-Khalik et al., 2017;
Kim et al., 2017; Mistry et al., 2017; Schuchman and Desnick,
2017). In the case of amyotrophic lateral sclerosis, accumulation
of ceramides, and cholesteryl esters which cause death of motor
neurons (Cutler et al., 2002) is associated with defects in the
metabolism of sterols (Cutler et al., 2002; Abdel-Khalik et al.,
2017). Lipids may also affect the function of certain proteins; for
example, the degree of membrane insertion of huntingtin, the
brain protein involved in Huntington disease, is influenced by
the amount of membrane cholesterol (Gao et al., 2016).

It is probable that inappropriate remodeling of membranes
potentiates the loss of proteostasis by causing the malfunction
of molecular chaperones and other membrane bound proteins
(Figure 1). A recent study reported that long term feeding of
mice with a diet enriched with saturated fats causes significant
remodeling of the brain lipidome, particularly those lipids that
make up the cell membrane (Giles et al., 2016). Considering
the integral role of the ER in lipid synthesis, transport and
degradation, we propose that lipidostasis is an emerging and
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significant risk factor in the pathogenesis of neurodegenerative
diseases.

PROTEOSTASIS AND CALNEXIN

The ER protein quality control system is comprised of many
molecular chaperones and folding enzymes that closely monitor
and facilitate the folding of proteins and their secretion in
order to prevent formation and accumulation of toxic protein
aggregates. Calnexin, calreticulin, and PDIA3 (a protein foldase
that catalyzes the formation and correct isomerization of
disulfide bonds and interacts with both calnexin and calreticulin),
are the core components of the ER protein quality control system
(Hebert andMolinari, 2007). Folding ofmost of non-glycosylated
proteins is supported by BiP/GRP78, a protein that interacts with
hydrophobic regions of newly synthesized proteins (Hebert and
Molinari, 2007; Halperin et al., 2014). Other chaperons including
GRP94, ERdj3, cyclophilin B, PDI, PDIA4, SDF2, and additional
members of the PDI family proteins form large protein folding
complexes that interact with misfolded and unfolded proteins
(Hebert and Molinari, 2007; Halperin et al., 2014) to assist in
their proper processing. Moreover, a class of small molecules,
termed proteostasis promoters (Vega et al., 2016), have been
identified.

Calnexin is a type I transmembrane molecular chaperone,
and is of special interest as this protein is highly expressed
during the development of the nervous system (Coe et al.,
2008; Kraus et al., 2010). In mice, calnexin deficiency causes
dysmyelination of peripheral and central nervous system (PNS;
Kraus et al., 2010; Jung et al., 2011) as a result of misfolding of
P0 and PMP22, two essential glycoproteins required for myelin
formation (Jung et al., 2011). Calnexin has also been shown
to interact with myelin oligodendrocyte glycoprotein (MOG;
Jung and Michalak, 2011; Jung et al., 2015), a protein that
is critically involved in the myelination of nerve cells in the
central nervous system (CNS). Although MOG is only a minor
component of CNS myelin it plays an important role in the
pathology of multiple sclerosis (MS), a progressive neurological
disorder caused by an autoimmune response against antigens
of the CNS. Autoantibodies against MOG have been detected
in the serum of MS patients (Reindl et al., 2013). Although
deficiency in calnexin does not impact on the intracellular
trafficking of MOG, the folding and stability of MOG are affected
(Jung and Michalak, 2011; Jung et al., 2015). The discovery
of a role for calnexin in maintaining myelin sheets (Kraus
et al., 2010; Jung et al., 2011) and folding of MOG (Jung
et al., 2015) provides new and unanticipated insights into the
mechanisms responsible for myelin diseases of the PNS and
CNS.

Calnexin interacts with the SH3-domain GRB2-like
(endophilin) interacting protein 1 (SGIP1), a neuronal regulator
of endocytosis, supporting a role for calnexin in the recycling
of synaptic membrane proteins and maintaining synaptic
homeostasis (Li et al., 2011). The balance between exocytosis
and endocytosis is vital in maintaining the function of the brain
cells (Lim and Yue, 2015). Endocytosis might also be a potential

mechanism involved in cell-to-cell transmission of protein
aggregates that underlie the pathogenesis of neurodegenerative
diseases stemming from accumulation of protein aggregates
(Lim and Yue, 2015). Synaptic transporters such as the serotonin
transporter (Tate et al., 1999) and glycine transporter 2 which
are expressed in the CNS (Arribas-González et al., 2013) are
also calnexin substrates. The appearance of calnexin on the
surface of hippocampal neurons has been reported (Itakura et al.,
2013), further supporting the participation of calnexin in the
integration of synaptic proteins to the plasma membrane as well
as in the maintenance of synaptic proteostasis.

Global knockout of the PDIA3 gene in mice is embryonic
lethal (Coe et al., 2010), however, targeted knockout of PDIA3
in the murine nervous system leads to severe motor dysfunction
and growth retardation associated with a loss of neuromuscular
synapses reminiscent of calnexin deficiency (Kraus et al., 2010),
and more recently, of amyotrophic lateral sclerosis in humans
(Woehlbier et al., 2016). Association between PDIA3 and the
amyotrophic lateral sclerosis may not be surprising as PDIA3
expression is high in the brain during embryonic development
(Coe et al., 2010). BiP, a key component of the UPR and essential
regulator of ER proteostasis and Ca2+ homeostasis, has also
been associated with neurodegenerative diseases (Hoozemans
et al., 2005; Carnemolla et al., 2009; Wang et al., 2009;
Gorbatyuk and Gorbatyuk, 2013). Global BiP gene knockout in
mice is embryonic lethal (Luo et al., 2006). However, targeted
deletion of BiP in developing Schwann cells manifests in a
phenotype reminiscent of that seen in calnexin-deficient mice
(Kraus et al., 2010), in particular PNS myelin abnormalities,
diminished number of myelinating Schwann cells and hind
limb paralysis (Hussien et al., 2015; Volpi et al., 2016). A
class of small molecules, termed proteostasis promoters (Vega
et al., 2016), have been described. For example, valproic acid,
a drug that is currently used in the clinical management
of mood disorders (Chiu et al., 2013), has been shown to
induce the UPR coping mechanism and inhibit ER stress
(Kakiuchi et al., 2003; Lee et al., 2014; Wang et al., 2015; Peng
et al., 2016). Although the precise mechanism of action of
specific compounds are not yet fully deciphered, proteostasis
promoters have in common the ability of enhancing protein
processing and relieving cellular stress, including in neuronal
cells.

Disrupted autophagy has been linked with pathology of
CNS disorders (Nikoletopoulou et al., 2015). Autophagy, a
dynamic process promoting self-digestion, to help eliminate toxic
aggregates through the lysosomal pathway (Yorimitsu et al.,
2006) involves bulk degradation of proteins, lipids and organelles,
including the ER (Kaur and Debnath, 2015). As neurons
are post-mitotic cells, they rely on autophagy for removal of
defective organelles, protection against protein aggregation and
in preventing the accumulation of toxic proteins. Abnormal
autophagy is involved in neurodegenerative disease pathology
(Nikoletopoulou et al., 2015) as well as in acute brain injuries
(Galluzzi et al., 2016). Calnexin is a component of the early
autophagosomes (Gagnon et al., 2002) pointing to its potential
role in an alternative mechanism for degradation of misfolded
proteins and removal of organellar membranes in the nervous
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system. The accumulating evidence from animal and clinical
studies support a role for calnexin, and likely other ER molecular
chaperones and folding enzymes, in maintaining neuronal
proteostasis and perhaps also lipidostasis.

ER CALCIUM HOMEOSTASIS

The ER is the major Ca2+ storage depot of the cell. Ca2+ release
from the ER impacts on the vast majority of cellular processes,
including cell proliferation, transcription, exocytosis, apoptosis
(Corbett and Michalak, 2000; Prins and Michalak, 2011; Krebs
et al., 2015). Accordingly, maintenance of normal ER Ca2+

capacity is vital in supporting cellular stress coping responses
in re-establishing proteostasis and lipidostasis (Figure 1), and
therefore ER Ca2+ levels must be finely regulated. This can be
accomplished by coordinating the function of multiple Ca2+

sensors, pumps, channels, exchangers, and Ca2+ binding proteins
(Prins and Michalak, 2011; Brini et al., 2014; Krebs et al.,
2015). Ca2+ in the lumen of the ER is frequently depleted by
Ca2+ signaling events occurring within the ER and in other
cellular compartments. Thus, in order tomaintain Ca2+ signaling
capacity, Ca2+ released from the ER lumen must be replenished.
This process, which involves Ca2+ entry from the external
environment of the cell into the ER, is referred to as store-
operated Ca2+ entry (SOCE; Soboloff et al., 2012).

SOCE is initiated by Ca2+ release through inositol 1,4,5-
triphosphate receptor (IP3R) and/or ryanodine receptor Ca2+

channels and relies on ER luminal Ca2+ sensors (STIM
proteins), a plasma membrane Ca2+ channel (ORAI), and sarco-
endoplasmic reticulum Ca2+-ATPase (SERCA; Soboloff et al.,
2012). Since ER chaperones and folding enzymes require Ca2+

to function, the sustained depletion of ER Ca2+ leads to the
accumulation of misfolded proteins which subsequently activates
UPR and other corrective strategies (Groenendyk et al., 2013).
In neuronal tissue, Ca2+ signaling is especially important as it
controls additional processes that do not occur in other tissues,
such as synaptic signaling and neurotransmission. Neuronal
Ca2+ signaling also plays an important role in learning, memory
and neuronal plasticity (Brini et al., 2014). Not surprisingly,
disturbance of ER Ca2+ homeostasis is commonly observed in
severe neurodegenerative diseases (Mattson et al., 2000; Ong
et al., 2010; Chen et al., 2011; Mekahli et al., 2011; Wu J. et al.,
2011; Belal et al., 2012; Selvaraj et al., 2012; Bezprozvanny and
Hiesinger, 2013; Popugaeva and Bezprozvanny, 2013; Zeiger
et al., 2013; Koran et al., 2014). For example, mutations
in the IP3R type 1 gene leads cerebellar neurodegeneration
in mice and causes spinocerebellar ataxia type 15 (SCA15)
leading to neurodegeneration in humans (van de Leemput
et al., 2007; Sasaki et al., 2015; Tada et al., 2016). Mechanisms
that ensure ER Ca2+ homeostasis might allow neuronal cells
to effectively maintain both proteostasis and lipidostasis, and
thereby prevent neuronal pathology. Overload of Ca2+ in the
ER is also harmful hence ensuring constant supply without
regulated release could lead to disease. Increased abundance of
STIM1 and ORAI1 in HEK cells resulted in reduced formation
and secretion of Aβ peptides (Zeiger et al., 2013). Furthermore,

neuronal cell expressing mutant Huntingtin protein exhibit
enhanced SOCE (Wu J. et al., 2011) and the loss of SOCE
was observed in neuroblastoma cells treated with agent that
mimics Parkinson’s disease in mice (Selvaraj et al., 2012).
Mechanisms that ensure the constant supply of Ca2+ in the
ER might allow neuronal cells to effectively maintain both
proteostasis and lipidostasis, and thereby prevent neuronal
pathology.

BRAIN PERMEABILITY

The BBB is a physical structure that separates the CNS from
the rest of the body, and selectively controls the flow of
molecules in and out of the brain. Dysfunction of the brain
endothelial cells, essential component of the BBB, is involved
in the pathology of many CNS disorders (Deane et al., 2004;
Cirrito et al., 2005; Zlokovic et al., 2005; Alvarez and Teale,
2006; Deane and Zlokovic, 2007; Tietz and Engelhardt, 2015),
however the molecular mechanisms underlying its contribution
are not fully understood. Abnormalities in BBB have been
linked to pathogenesis of the Alzheimer disease (Cirrito et al.,
2005; Zlokovic et al., 2005) involving defective clearance of
β-amyloid (Deane et al., 2004; Deane and Zlokovic, 2007).
Recent studies link ER stress coping responses and BBB
disruption in the rat model of epilepsy (Ko et al., 2015). Brain
endothelial cells are not only a physical barrier but also a
dynamic interface involved in transport of the molecules and
capable of response to inflammation on either side of the
barrier. Brain endothelial cells are sensitive to proinflammatory
factors, which affects the integrity and function of the BBB,
originating from both sides of the BBB (Tietz and Engelhardt,
2015). The crossing of the auto-reactive lymphocytes across
BBB accompanied by demyelination and neurodegeneration are
hallmarks of MS pathology (Mahad et al., 2015). Experimental
autoimmune encephalomyelitis (EAE), an animal model of MS
allowed insights into a potential role of ER chaperones in
initiation and progression of MS. ER quality control components
including calnexin, calreticulin, BiP and PDIs likely play critical
roles in facilitating the folding and trafficking of endothelial
specific proteins such as ICAM, VCAM, and p-selectin in
response to inflammation. Increased abundance of BiP has been
seen in brain of MS patients (Mháille et al., 2008; Cunnea
et al., 2011) and conditional knockout of the BiP gene and,
consequently a disrupted proteostasis, exhibits exacerbated EAE
symptoms that are not related to altered inflammatory response
(Hussien et al., 2015). It is conceivable that other components
of protein quality control, including PDIA3, calreticulin, and
calnexin, may influence the function and integrity of the BBB.
For example, calreticulin associates with MMP9 (Duellman
et al., 2015) a matrix metalloproteinase that is critical for
the integrity of BBB (Dubois et al., 1999; Rosenberg, 2009)
and contributes to amyloid formation and clearance (Nalivaeva
et al., 2008). Strategies allowing exogenous manipulation of
the ER protein quality control system may offer a means to
regain proteostasis as well as lipidostasis (Figure 1) in the
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nervous system, and assist in the management of neurological
disorders.

SUMMARY

We propose that disrupted proteostasis and lipidostasis underlie
many neurological disorders. Recent studies suggest that
molecular chaperones are intimately involved in coordinating
the cellular proteostasis and lipidostasis in the nervous system,
including the cells that make up the BBB, by ensuring the
quality of key proteins and lipid components of the membranes.
Importantly, the activity of ER chaperones depends on ER
Ca2+ homeostasis. A detailed knowledge of the regulatory and
metabolic pathways involved in proteostasis and lipidostasis in
cells that make up the nervous system, will provide better insights

into the heterogeneity of neurological disorders and uncover new
opportunities for therapeutic development.
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Injury to axons of the central nervous system (CNS) and the peripheral nervous system

(PNS) is accompanied by the upregulation and downregulation of numerous molecules

that are involved in mediating nerve repair, or in augmentation of the original damage.

Promoting the functions of beneficial factors while reducing the properties of injurious

agents determines whether regeneration and functional recovery ensues. A number of

chaperone proteins display reduced or increased expression following CNS and PNS

damage (crush, transection, contusion) where their roles have generally been found to

be protective. For example, chaperones are involved in mediating survival of damaged

neurons, promoting axon regeneration and remyelination and, improving behavioral

outcomes. We review here the various chaperone proteins that are involved after nervous

system axonal damage, the functions that they impact in the CNS and PNS, and the

possible mechanisms by which they act.

Keywords: peripheral nerve injury, spinal cord injury, axotomy, chaperones, chaperone proteins, regeneration,

neuronal cell death, myelination

PNS AND CNS NERVE DAMAGE

Following damage to the axons of central nervous system (CNS) and peripheral nervous
system (PNS) neurons, a number of cellular and molecular processes are initiated to promote
regeneration of damaged nerve fibers, remyelination and target reinnervation (Zochodne,
2008). In the injured PNS for example, re-expression of regeneration associated genes (RAGs)
such as c-jun and growth associated protein-43, are involved in axon outgrowth (Hall, 2005;
Zochodne, 2008) while inhibitory axonal and myelin debris is phagocytosed by Schwann
cells and infiltrating hematogenously-derived macrophages (Waller, 1850; Gaudet et al., 2011).
Schwann cells also (Liu H. M. et al., 1995) secrete neutrophic factors (Madduri and Gander,
2010) and adhesion molecules (Colognato et al., 2005; Nodari et al., 2008) that allow for
survival and directional growth of regenerating axons. Because of these favorable conditions,
axotomized PNS neurons generally regenerate robustly, although less so in humans. Compared
to the PNS however, injured CNS neurons regrow poorly and this has been attributed to
reduced and/or premature truncation of beneficial processes. For example, the damaged CNS
displays inadequate RAG expression, poor immune responses and, death of oligodendrocytes
(David and Ousman, 2002). As a consequence, many labs are interested in identifying the
molecular factors that promote axon regeneration in the damaged CNS and PNS. Over the
last three decades, it has become evident that chaperone proteins are involved in the PNS and
CNS after nerve damage. This mini-review will focus on which chaperones have been found

171

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2017.00079
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00079&domain=pdf&date_stamp=2017-02-21
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sousman@ucalgary.ca
https://doi.org/10.3389/fnins.2017.00079
http://journal.frontiersin.org/article/10.3389/fnins.2017.00079/abstract
http://loop.frontiersin.org/people/395842/overview


Ousman et al. Chaperones and PNS and CNS Axotomy

to be modulated following axon damage (Table 1) and, the
functions that they have been assigned (Figure 1).

CHAPERONE PROTEINS

There are thousands of original manuscripts and reviews on
chaperone proteins and so we will only introduce them in general
terms here. Proteins have to be in a specific conformation in order
to perform their functions. When cells experience stresses such
as high and low temperatures, altered pH, oxygen deprivation, or
disease states, proteins have difficulty in forming andmaintaining
their proper structures. Also, misfolded proteins can cause
correctly structured ones to unfold. If not corrected, misfolded
proteins can form aggregates that could lead to cell death (Reddy
et al., 2008). Chaperones assist in the correct non-covalent
assembly of polypeptides. They have the ability to recognize
unfolded or partially denatured proteins and prevent incorrect
associations and aggregation of unfolded polypeptide chains
(Derham and Harding, 1999). In addition to correcting protein
misfolding, some chaperones such as heat shock protein (HSP)70
and alphaB-crystallin (αBC)/HSPB5 promote (Campisi and
Fleshner, 2003) or suppress (Ousman et al., 2007) inflammatory
responses, while others such as HSP27 and αBC are involved in
cell survival (Parcellier et al., 2005). Chaperones therefore play an
important role in maintaining cell homeostasis and survival.

EXPRESSION OF CHAPERONES AFTER
PNS AND CNS NERVE INJURY

Hsps were one of the earliest chaperones discovered to have
altered expression after PNS and CNS axonal damage. Cauley
et al. (1986) found that expression of a 30 kDa HSP was
augmented after optic nerve crush in goldfish. HSP70 was
subsequently discovered to be induced after facial nerve axotomy
in hamsters (New et al., 1989) and following crush damage
to rat spinal cords (Gower et al., 1989), along with the
ability to be retrogradely transported in damaged frog sciatic
nerves (Edbladh et al., 1994). Other groups have also observed
augmented expression of HSP70 in transected zebrafish optic
nerves (Nagashima et al., 2011) and rat spinal cord (Keeler
et al., 2012) as well as in macrophages and astrocytes after spinal
cord contusion in rats (Mautes and Noble, 2000). After these
first observations, increased expression of other hsps including
HSP25 (Iijima et al., 2003) and HSP27 (Hirata et al., 2003) has
been noted in the retina, optic tract and superior colliculus of
transected rat optic nerves (Krueger-Naug et al., 2002; Hebb et al.,
2006), in transected rat spinal cord (Keeler et al., 2012), and in
inferior alveolar and sciatic nerves and their associated Schwann
cells and dorsal root ganglia (DRG) (Costigan et al., 1998; Kim
et al., 2001). Of interest, there may be some selectivity in the
location of HSP27 and phosphorylated-HSP27 after cervical
spinal cord injury since the hsp was found to be expressed
only in subpopulations of injured neurons in the rostral ventral
respiratory group, the dorsal part of the gigantocellularis (Gi),
and vestibular nucleus, but seldom in the ventral Gi and raphe
nucleus (Vinit et al., 2011). Work byWillis et al. (2005) expanded

the list of HSPs found to be enhanced in the injured PNS to
include HSP60, glucose-regulated protein (GRP)75 and αBC
which they discovered were capable of being synthesized within
damaged PNS axons. In the CNS, increases in the levels of
HSP32, HSP72 and HSP90 were evident following transection
of the spinal cord and even after constriction and transection of
peripheral nerves (Klass et al., 2008; Sharma et al., 2015). The
latter observation showed that PNS nerve damage could alter
expression of hsps in the CNS.

Other chaperone proteins besides hsps have been associated
with axonal damage in the PNS and CNS. In 1997, Bonnard et al.
(1997) found that clusterin/ApoJ/sulfated glycoprotein-2 mRNA
increased in rat sciatic nerve after crush damage with expression
of the chaperone possibly being specific to sensory axons as
observed in a mouse sciatic nerve transection paradigm (Wright
et al., 2014). Since the Bonnard observation, an augmentation
in clusterin mRNA and protein has also been seen in numerous
nerve injury scenarios including the spinal cord dorsal horn
and gracile nucleus following rat sciatic nerve transection (Liu
L. et al., 1995), the rat hippocampus after entorhinal cortex
lesioning (Lampert-Etchells et al., 1991), the mesodiencephalic
after hemitransection (Zoli et al., 1993), and the hypoglossal
nucleus after hypoglossal nerve transection (Svensson et al.,
1995). Finally, GRP94 is another chaperone whose expression
increases after contusion injury in the rat spinal cord (Xu
et al., 2011) while Bcl-2-associated athanogene-1 (BAG1), a
co-chaperone for HSP70/HSC70 expression, is enhanced in
Schwann cells following sciatic nerve crush in rats (Wu et al.,
2013).

Not all chaperones however are augmented after PNS and
CNS injury. Klopstein et al. (2012) noted a reduction in the
small hsp, αBC, after spinal cord contusion injury in mice, and
we have also observed a decrease in this crystallin after sciatic
nerve crush damage in mice (Lim et al., 2017). Further, sigma-
1 receptor (σ1R), an endoplasmic reticulum chaperone protein
which is present in both sensory neurons and satellite cells in
rat DRGs, was found to be downregulated in neurons as well
as in their accompanying satellite glial cells after sciatic nerve
ligation (Bangaru et al., 2013). HSP60 is another chaperone
that was decreased in the brains of rats with pain and motor
deficits following sciatic nerve ligation (Mor et al., 2011) while
HSP90ab1, HSPa4, and HSPe1 were reduced after contusion
injury in rats (Zhou et al., 2014).

Altogether then, the expression of various chaperones and
co-chaperones is altered after CNS and PNS axon damage in
either an enhanced or reduced manner. The question is, do these
proteins play an active role in the injury or repair processes.

FUNCTION OF CHAPERONE PROTEINS
AFTER PNS AND CNS AXONAL DAMAGE

Neuronal Survival
Because of the increased expression of clusterin in axotomized
motorneurons, Törnqvist et al. (1996) suggested that the
chaperone may be involved in the death of damaged neurons.
Other studies instead indicate that some chaperone proteins play
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TABLE 1 | Expression of chaperone proteins after CNS and PNS axotomy.

Protein PNS/CNS,

species

Tissue Cell type Change Authors

alphaB-crystallin CNS, mouse Spinal cord Astrocytes and oligodendrocytes Decreased Klopstein et al., 2012

PNS, rat DRG Neurons Increased Willis et al., 2005

PNS, mouse Sciatic nerve Schwann cells and neurons Decreased Lim et al., 2017

BAG1 PNS, rat Sciatic nerve Schwann cells Increased Wu et al., 2013

BiP CNS, rat Spinal cord Neurons and glia Unchanged Penas et al., 2007

CNS, rat Spinal cord Neurons and glia Decreased Penas et al., 2011a

Clusterin CNS, rat Hippocampus Astrocytes and neurons Increased Lampert-Etchells et al., 1991

CNS, rat Brain Non-neuronal Increased Zoli et al., 1993

CNS, rat Spinal cord Astrocytes and oligodendrocytes Increased Liu et al., 1998

CNS, rat Spinal cord Glia Increased Liu L. et al., 1995

CNS, rat Red nucleus Neurons and glia Increased Liu et al., 1999

CNS, rat Spinal cord Neurons and glia Increased Klimaschewski et al., 2001

CNS, rat Spinal cord and brain Neurons and glia Increased Törnqvist et al., 1996

PNS, rat Sciatic nerve Non-specific Increased Bonnard et al., 1997

PNS, rat Sciatic nerve Schwann cells Increased Wright et al., 2014

PNS, rat Hypoglossal nerve Neurons and glia Increased Törnqvist et al., 1996

PNS, rat Hypoglossal nerve Neurons and glia Increased Svensson et al., 1995

GRP75 PNS, rat DRG Neurons Increased Willis et al., 2005

GRP94 CNS, rat Spinal cord Neurons and astrocytes Increased Xu et al., 2011

HSP25 CNS and PNS,

mouse

Spinal cord and sciatic nerve Neurons Increased Murashov et al., 2001

PNS, rat Inferior alveolar nerve Schwann cells, neurons, and

endothelial cells

Increased Iijima et al., 2003

HSP27 CNS, hamster Retina Retinal ganglion cells Increased Liu et al., 2013

CNS, mouse Spinal cord n/a Increased Yi et al., 2008

CNS, rat Spinal cord n/a Increased Zhang et al., 2010

CNS, rat Spinal cord n/a Increased Park et al., 2007

CNS, rat Spinal cord Neurons Increased Keeler et al., 2012

CNS, rat Brainstem Neurons Increased Vinit et al., 2011

CNS, rat Retina Retinal ganglion cells Increased Hebb et al., 2006

CNS, rat Retina, optic tract, and superior

colliculus

Retinal ganglion cells and

astrocytes

Increased Krueger-Naug et al., 2002

CNS, rat Medulla oblongata Neurons Increased Hopkins et al., 1998

CNS, rat Retina, optic nerve, optic tract, lateral

geniculate leaflet, visual cortex

Non-specific; astrocytes Increased Chidlow et al., 2014

CNS and PNS,

rat

Sciatic nerve, DRG, spinal cord Neurons Increased

w/anterograde

transport

Costigan et al., 1998

PNS, rat Sciatic nerve Schwann cells Increased Hirata et al., 2003

PNS, rat DRG Neurons Increased Benn et al., 2002

PNS, rat Sciatic nerve Non-specific Increased Klass et al., 2008

PNS, rat Sciatic nerve Non-specific Increased Kim et al., 2001

PNS, rat Sciatic nerve n/a Increased Tsubouchi et al., 2009

HSP30 CNS, goldfish Retina n/a Increased Cauley et al., 1986

(Continued)
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TABLE 1 | Continued

Protein PNS/CNS,

species

Tissue Cell type Change Authors

HSP32 CNS, mouse Spinal cord n/a Increased Yi et al., 2008

CNS, rat Spinal cord n/a Increased Park et al., 2007

HSP60 PNS, rat DRG Neurons Increased Willis et al., 2005

HSP70 CNS, zebrafish Optic nerve Retinal ganglion cells Increased Nagashima et al., 2011

CNS, rabbit Spinal cord Neurons Increased Sakurai et al., 1997

CNS, mouse Spinal cord n/a Increased Yi et al., 2008

CNS, rat Spinal cord Neurons and glia Increased Gower et al., 1989

CNS, rat Spinal cord Macrophages and glia Increased Mautes and Noble, 2000;

Mautes et al., 2000

CNS, rat Spinal cord n/a Increased Park et al., 2007

CNS, rat Spinal cord n/a Increased Sengul et al., 2013

CNS, rat Spinal cord n/a Increased Zhang et al., 2010

CNS, rat Spinal cord Non-specific Increased Song et al., 2001

CNS, rat Spinal cord Neurons Increased Keeler et al., 2012

CNS, rat Spinal cord Non-specific Increased Kalmar et al., 2003

CNS, rat Retina, optic nerve, optic tract, lateral

geniculate leaflet, visual cortex

Non-specific No change Chidlow et al., 2014

CNS & PNS, dog Spinal cord and DRG Neurons and glia Increased Cízková et al., 2005

PNS, hamster Facial nerve Non-specific Increased New et al., 1989

PNS, frog Sciatic nerve Neurons Retrograde

transport

Edbladh et al., 1994

PNS, rat Sciatic nerve Non-specific Increased Klass et al., 2008

HSP72 CNS, rat Spinal cord n/a Increased Sharma et al., 2015

CNS, rat Spinal cord Neurons Increased Sharma et al., 2006

CNS, rat Spinal cord Non-specific Increased Tachibana et al., 2002

CNS, rat Spinal cord n/a Increased Chang et al., 2014

PNS, rat External carotid nerve ganglion Schwann cells and neurons Increased Hou et al., 1998

HSP90 CNS, rat Spinal cord n/a Increased

nitration

Franco et al., 2013

PNS, rat Sciatic nerve Non-specific Increased Klass et al., 2008

HSP90ab1 CNS, rat Spinal cord Non-specific Decreased Zhou et al., 2014

HSPa4 CNS, rat Spinal cord Non-specific Decreased Zhou et al., 2014

HSPe1 CNS, rat Spinal cord Non-specific Decreased Zhou et al., 2014

σ1R PNS, rat DRG Neurons and satellite glia Decreased Bangaru et al., 2013

a role in maintaining survival of damaged neurons. For instance,
Benn et al. (2002) found that upregulation and phosphorylation
of HSP27 was required for the survival of sensory and motor
neurons after sciatic nerve transection. The lab then extended
this work both in vivo and in vitro to show that survival of PNS
neurons from injured neonatal or adult animals following nerve
growth factor (NGF) removal was related to whether DRG cells
expressed HSP27. They also demonstrated that overexpression
of human HSP27 in neonatal rat sensory and sympathetic
neurons significantly increased survival after NGF withdrawal
(Lewis et al., 1999). With respect to other chaperone proteins,

HSP70 was observed to promote retinal ganglion cell survival
and optic nerve regeneration in zebrafish since these processes
were enhanced and reduced respectively if the hsp was inhibited
(Nagashima et al., 2011). Moreover, exogenous application of
HSP70 to the proximal end of transected rat sciatic nerves
prevented the death of almost all sensory neurons (Houenou
et al., 1996). Other evidence for a role of chaperones in promoting
neuronal survival after CNS and PNS injury was demonstrated
by Chang et al. (2014) who showed that HSP72 expression
in neurons and astrocytes correlated with less apoptosis of
these cell types in a rat spinal cord compression model. Also,
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FIGURE 1 | Schematic diagram summarizing the functions and molecular changes associated with altered chaperone protein expression following

CNS and PNS axonal injury. ER, endoplamic reticulum; UPR, unfolded protein response; NRG, neuregulin; Bcl2, B-cell lymphoma 2; BAG1, Bcl-2-associated

athanogene-1; AKT, AKT8 virus oncogene cellular homolog; p38, p38 mitogen-activated protein kinase.

survival of retinal ganglion cells following optic nerve transection
in hamsters correlated with HSP27 expression after remote
ischemic pre-conditioning (Liu et al., 2013) while Penas et al.
(2011a) showed that a decrease in binding immunoglobulin
protein (BiP)/GRP78 correlated with retrograde degeneration of
damage peripheral motor neurons. Interestingly, if chaperones
themselves are altered by post-translational modification, this

could negatively impact neuronal survival as shown by Franco
et al. (2013) who found that the presence of nitrated HSP90 in
contused rat spinal cord was linked to motor neuron death.

With respect to which molecular mechanism(s) may be
involved in chaperone-mediated neuronal survival post-nerve
damage, the activation of the p38 kinase was found to be required
for induction of HSP25 expression after sciatic nerve axotomy.
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Here, HSP25 formed a complex with AKT to prevent neuronal
cell death (Murashov et al., 2001). Also, nitrated HSP90 induced
neuronal death via P2X7 receptor-dependent activation of the
Fas pathway (Franco et al., 2013) while HSP27’s neuroprotective
action was found to be downstream of cytochrome c release from
mitochondria and upstream of caspase-3 activation (Benn et al.,
2002). Another possible mechanism involved in cell survival
post-axotomy may involve endoplasmic reticulum (ER) stress
and the unfolded protein response (UPR), both of which are
induced and activated after nerve damage (Penas et al., 2007; Ohri
et al., 2011; Fan et al., 2015). If ER stress is activated, a number
of chaperone proteins are upregulated such as GRP78/BiP
(that co-chaperones with HSP70 or σ1R) and GRP94, an ER
homolog of HSP90. These chaperones attempt to correct the
stress by mediating proper protein folding and thus prevent cell
death through induction of pro-survival factors such as Bcl2. If
chaperones are unable to prevent accumulation of unfolded or
misfolded proteins, the UPR is activated to minimize overloading
by unfolded proteins. If however the stress is still unmanageable
and homeostasis cannot be restored in a timelymanner, apoptosis
is induced (Fu and Gao, 2014). Enhancement of ER stress
components such as CHOP, XBP1, and ATF6 has been observed
after spinal cord contusion (Penas et al., 2007; Ohri et al., 2011),
L5 spinal nerve ligation (Zhang et al., 2015) and sciatic nerve
crush (Mantuano et al., 2011), with BiP enhancement observed
in the latter two studies. The hypothesis is that the chaperones
are attempting to correct the injurious processes and prevent
cell death. However, very few studies have definitively linked
chaperones with correcting ER stress and UPR activation after
PNS and CNS axotomy. Penas et al. (2011b) have ventured into
this area by noting that the balance between BiP and CHOP
drives cell fate. As a result, they sought to modulate this ratio
in favor of BiP using valproate (VPA). Although it did not
augment BiP levels, high doses of VPA in a severe spinal cord
contusion model reduced CHOP levels which correlated with
reduced oligodendrocyte, myelin and axonal loss and better
functional recovery. Of interest, the same lab has implicated
chaperones in preventing another cell death process, autophagy,
after axotomy. It was noted that autophagy markers such as
BECLIN 1, LC3II, and LAMP-1 were enhanced in motor neurons
after spinal root avulsion along with downregulation of BiP.
The authors concluded that BiP decrease is a signature of the
degenerating process, since its overexpression led to an increase
in motor neuron survival (Penas et al., 2011b). However, this is
correlative and more studies are needed to clearly clarify that
the upregulation of chaperone proteins seen after PNS and CNS
nerve damage is an attempt to correct ER stress or autophagy-
induced cell death.

Axon Regeneration
In addition to cell survival, chaperones have been associated with
regeneration of damaged PNS and CNS axons. For example,
clusterin was found to be important for regrowth of sensory
neurons after sciatic nerve transection and crush injury since this
process was impaired in clusterin null mice (Wright et al., 2014).
Further, exogenous application of the small heat shock protein,
αBC, promoted neurite outgrowth of rat retinal cells (Wang et al.,
2012). In vivo, the crystallin mediated regeneration of crushed

rat optic nerve fibers through reduced activation of RhoA
and phosphorylation of cofilin and myosin light chain. Other
mechanisms by which chaperones mediate regeneration may
involve modulation of axonal and Schwann cell cytoskeleton.
Specifically, HSP27 was found to promote axonal outgrowth by
possibly promoting assembly of intermediate filament proteins in
Schwann cells (Hirata et al., 2003). In addition, Ma et al. (2011)
noted that enhanced motor function recovery attributed to
HSP27 was likely due to increased motor synapse reinnervation.
To expand upon effects on functional recovery, exogenous
application of αBC was discovered to promote locomoter
recovery following spinal cord contusion injury in mice, with the
improvement linked to reduced tissue damage and inflammation
(Klopstein et al., 2012).

Myelination
We recently showed that αBC contributes to remyelination in
the PNS after sciatic nerve crush in mice (Lim et al., 2017).
Specifically, the small HSP appears to modulate the conversion of
de-differentiated Schwann cells back to a myelinating phenotype
and that this occurs through a neuregulin 1 Type III/AKT/ErbB2
mechanism. A hint that the crystallin may be involved in
myelination was demonstrated earlier by D’Antonio et al. (2006)
who found a correlation between the expression of the HSP and
formation of myelinating Schwann cells during development.
αBC is not the only chaperone found to be involved in Schwann
cell function after PNS injury. BAG1, which is enhanced in
Schwann cells after sciatic nerve crush, was shown to be
important for differentiation of myelinating Schwann cells since
knockdown of BAG1 with siRNA reduced the number of protein
zero positive Schwann cells in culture (Wu et al., 2013).

Neuropathic Pain
All of the functions discussed above are beneficial, but
chaperones may be involved in promoting injury-related
neuropathic pain. The chaperone σ1R, was found to be
associated with neuropathic pain after sciatic nerve ligation
since use of an antagonist called 4-[2-[[5-methyl-1-(2-
naphthalenyl)-1H-pyrazol-3-yl]oxy]ethyl]morpholine) inhibited
spinal sensitization and pain hypersensitivity (Romero et al.,
2012). In corroboration, Pan et al. (2014) showed that σ1R
was involved in pain sensitivity by sensory neurons in
a rat sciatic nerve ligation model, since its antagonism
with 1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine
dihydrochloride or N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-
2-(dimethylamino)ethylamine dihydrobromide, reduced
pain through restoration of calcium influx. Further, σ1R−/−

mice display reduced central sensitization and diminished
hyperalgesic responses after sciatic nerve ligation (de la Puente
et al., 2009). These results would suggest that the expression of
σ1R would have to be increased or at least maintained from its
non-injured level. However, Bangaru et al. (2013) showed that
σ1R expression was reduced in DRG cells after sciatic nerve
ligation. Whether there is differential expression in DRGs vs.
axons after injury needs to be clarified especially knowing that
local protein synthesis can occur within PNS axons (Court et al.,
2011).
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Inflammation
There is a large literature on chaperones and inflammation.
However, very little research has been conducted on how
these proteins affect the immune response after PNS and CNS
nerve injury. Klopstein et al. (2012) showed that αBC reduced
inflammation in the mouse spinal cord after contusion injury.
On the other hand, Fan et al. (2015) linked GRP78/BiP with
necroptosis and ER stress in macrophages/microglia after mouse
spinal cord contusion. Considering the beneficial role that the
robust immune response plays after PNS axon damage, there is an
opportunity to understand what function(s) chaperone proteins
play in the protective PNS immune response as opposed to the
slow, limited and seemingly detrimental inflammation seen after
CNS axotomy.

Altogether, a number of chaperones play various beneficial
roles after PNS and CNS injury including promoting neuronal
survival, axon regeneration, remyelination, Schwann cell
differentiation, and functional recovery. However, others such as
σ1R appear to mediate less desirable effects such as neuropathic
pain.

THERAPEUTIC STRATEGIES THAT
INVOLVE CHAPERONES

Because of the many reported beneficial functions of chaperone
proteins after CNS and PNS nerve injury, some efforts have been
made to harness their protective properties to enhance repair.
Peroxisome proliferator-activated receptor-gamma (PPARγ) is
a ligand-activated transcription factor of the nuclear hormone
receptor superfamily whose agonist pioglotazone improved
functional recovery and reduced motor neuron loss, astrogliosis,
and microglial activation after rat spinal contusion injury.
This improvement was attributed in part to the augmented
expression of HSP27, HSP32, and HSP70 in the cord (McTigue
et al., 2007). Using another PPARγ ligand, rosiglitazone, Yi
et al. (2008) implicated chaperones in promoting survival
of the damaged spinal neurons after brain contusion injury
since neuronal survival correlated with enhanced expression
of HSP27, HSP70 and HSP32. Along the same lines on
neuronal survival, because σ1R agonists possess potent anti-
apoptotic abilities, one of its agonists, 2-(4-morpholinethyl)1-
phenylcyclohexanecarboxylate, was studied in the context of
spinal root avulsion in the rat. Here, a marked increase in
motor neuron survival was evident, which correlated with
a decrease in astrogliosis and an increase in the σ1R co-
chaperone, BiP. However, considering the neuropathic pain-
inducing effects of σ1R described in the previous section,
one would have to decipher how to achieve the benefits of
neuronal survival without developing pathological effects such as
pain.

With respect to other therapies involving chaperones,
improvement in functional recovery in rats with a contusion
spinal cord injury following interferon-beta 1b treatment
was found to be related to enhanced HSP70 expression in
the cord along with reduced polymorphonuclear leucocyte
infiltration, hemorrhage, oedema and necrosis (Sengul et al.,

2013). An interesting therapeutic intervention in spinal cord
injury experiments has been the use of exercise in injured
animals. Keeler et al. (2012) showed that functional recovery
improved in animals that had been previously subjected to an
exercise regiment. This benefit was associated with increased
expression of HSP27 and HSP70 in the spinal cord. In the PNS,
a similar effect was seen after chronic constriction of the rat
sciatic nerve where exercise training attenuated neuropathic pain
and which correlated with reduced inflammation and enhanced
HSP27 expression (Chen et al., 2012).

Another chaperone-inducing agent that has been used as a
therapy after nerve transection has been BRX-220 (bimoclomal
analog). BMX-220 is a hydroxylamine derivative that promotes
cell survival through increased expression of HSP70 and HSP90
(Vígh et al., 1997). In the CNS, BRX-220 improved motor neuron
survival while enhancing HSP70 and HSP90 in the damaged
spinal cord (Kalmar et al., 2002, 2003). Follow up studies in
the PNS, showed that BRX-220 reduced pain sensations that
correlated with enhanced HSP70 expression in sensory DRG
neurons (Kalmar et al., 2003).

Finally, immunophilins are a group of proteins that serve
as receptors for the immunosuppressant drugs cyclosporin A
and FK506. Systemic administration of FK506 dose-dependently
increased the rate of axonal regeneration and functional recovery
in rats following a sciatic nerve crush injury. This was attributed
to binding of FK506 to the immunophilins FKBP-12. However,
it is possible that the beneficial function was through chaperone
proteins—FK506 can also bind FKBP-52/FKBP-59, which has
been identified as a heat shock protein (HSP56) and shown to
enhance expression of HSP70 (Gold, 1997; Gold et al., 1997).

CONCLUSION

Numerous studies over the past three decades have shown
that the expression of chaperone proteins are not only altered
following nerve damage to CNS and PNS neurons but that
these proteins play an active role in the repair processes and
in mediating some of the pathological events. Ongoing and
future studies will have to consider how to harness the beneficial
properties while reducing the injurious functions to enhance
CNS and PNS recovery.
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