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Pulse transit time (PTT) and blood pressure (BP) are widely used to quantify arterial

characteristics. Arm position influences arterial BP and peripheral PTT. This study

aims to quantify the relationship between PTT changes with internal vascular pressure

variations induced by the armmoving.With left arm at horizontal position as reference

and the right armmoving from 90 to 45, 0,−45, and−90◦ respectively, PTT di�erence

was calculated by the di�erence of the pulse foot between right arm and left arm

within the same heartbeat. The change in the BP was calculated from the gravitational

e�ect with the measured arm length. Our results showed that the change in PTT with

arm elevating is more obvious than that with arm lowering, indicating the di�erent

relationship between PTT changes due to the internal BP changes. This can help in

understanding the inherent physiological/pathological mechanism of cardiovascular

system.

KEYWORDS

arterial blood pressure, pulse transit time, hydrostatic principle, arm position, arterial

properties

1. Introduction

A common method to reflect the performance of the cardiovascular system includes

extraction of the information contained in radial artery pressure waveforms (Liu et al., 2013,

2014). We used arterial blood pressure (BP) as an important indicator to reflect the performance

of arteries. Previous studies demonstrated that the value of BP measurement was influenced by

the arm position. Netea et al. (2003), Fouladi et al. (2018), and Pan et al. (2019) showed that the

BP values recorded with the left arm above and below the level of the right atrium decreased

with the lifting of the arm but increased with the lowering of the arm, which was explained to be

the effect of hydrostatic forces (Merendino, 1961; Webster et al., 1984). However, recent studies

showed that the hydrostatic theory is not the only explanation for the change in BP along the

arm. Gavish and Gavish (2011, 2013) found that the changes in both systolic blood pressure

(SBP) and diastolic blood pressure (DBP) showed high linear correlations with the length of the

arm. However, the systolic rate is lower than the diastolic rate with the right arm lifting.

The PTT is a widely-used measurement for quantifying arterial properties (Zheng and

Murray, 2011; Mol et al., 2020). Recently, PTT is also used as a new technique for BP

measurement (Atef et al., 2017; Cho and Park, 2021). The relationship between BP and PTT has
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been widely studied. Pereira (Schaanning and Skjaervold, 2020)

reported that the PTT deduced from different locations can be

used to measure BP by studying the relationship between BP and

PTT in the static arm. Patzak et al. (2015) concluded that PTT

showed a linear relationship in the low BP ranges while it showed an

exponential relationship in the high BP ranges in the situation where

the BP increased with the intravenous administration of dobutamine.

Liu and Zhang (2006) studied the relationship between the PTT

variations and the changes in the BP induced by the right arm lifting.

The authors also reported that the PTT increased and the radial mean

arterial pressure (MAP) gradually decreased with the arm lifting. Foo

et al. (2005) studied the PTT changes induced by the different limb

positions, in which the right or left arm was randomly selected for

lifting and/or the right or left leg was randomly selected for lowering.

Their studies showed that themean PTT value increased with the arm

lifting, while the mean PTT value decreased with the leg lowering.

Previous studies showed that different arm position involves different

muscles or muscles in different states. The relationship between PTT

and BP may be different because of arm lifting or lowering (Siu et al.,

2016). To make this clearer, we investigated the relationship between

the changes in the PTT and the changes in the internal vascular

pressure induced by arm movement.

2. Methods

2.1. Volunteers and setting

According to the Declaration of Helsinki (1989) by the World

Medical Association, 22 healthy volunteers (13 men and 9 women)

aged between 21 and 46 years were recruited from Shandong Jiaotong

University, Jinan, China. The study received ethical permission from

the Research Ethics Committee of the AffiliatedHospital of Shandong

First Medical University, China (No. 2022001). All subjects provided

their written informed consent.

The design of this study has been described in detail in our

previous study (Jiang et al., 2017). Briefly, the design of the study is

that the left arm was placed at the horizontal position as a reference

and the right arm was moved at five different positions (90, 45, 0,

−45, and −90◦). To reduce the impact of intravascular physiological

changes caused by the acute setting of arm position change, there

were two identical repeat sessions in the whole measurement process

for radial artery pulses. In one session, the measurement position

sequence of the moving arm was 90, 45, 0, −45, and −90◦, whereas,

in the other session, the sequence was −90, −45, 0, 45, and 90◦. At

each session, the radial artery pulses were recorded when the signals

were stable at each position (mostly, the moving arm was held at each

position for 10–20 s before the measurement). Then, 10 successive

radial artery pulse segments were obtained simultaneously from both

arms. SBP and DBP were measured at the beginning and the end of

TABLE 1 Arm length of the 22 subjects studied.

Subject’s no. 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11#

Arm length (cm) 64.6 66.5 69.0 66.5 65.0 68.0 65.7 71.0 66.9 65.4 65.4

Subject’s no. 12# 13# 14# 15# 16# 17# 18# 19# 20# 21# 22#

Arm length (cm) 67.0 69.0 64.2 62.4 69.0 62.4 65.0 63.2 58.9 61.6 63.6

#The sequence number of the subject.

the study and then MAP was calculated. Each subject’s arm length

(the distance between the clavicle and the radial artery) was measured

and listed in Table 1.

2.2. Calculation of MAP changes and PTT
di�erences

In this study, the difference between the half value of the arm

length (the distance between the clavicle and the radial artery) and

10 cm (the distance from the clavicle to the shoulder) was considered

as each subject’s midpoint of the arm. The actual changes in blood

pressure induced by the armmovements were calculated individually

for each subject by using the lowering/lifting vertical distance from

the midpoint of the arm and the hydrostatic principle (Zheng and

Murray, 2009). For example, if the arm length measured from the

clavicle to the radial artery was 64 cm, the effective arm length was

considered 54 cm and the midpoint of the arm was the point on the

effective arm 27 cm. With the arm lowering and lifting at 90 and 45◦,

respectively, the lowering/lifting vertical distances from the midpoint

of the arm were 27 and 19.1 cm with increasing/decreasing blood

pressure at 19.4 and 13.7mm Hg, respectively.

PTT difference is equal to the difference in the pulse felt between

the right arm and the left arm within the same heartbeat. As an

example of calculating the PTT difference, Figure 1 shows the PTT

difference with the left arm at the horizontal position as a reference

and the right arm at 90◦. Each subject’s PTT differences at each

position were calculated from 10 consecutive heartbeats.

The paired t-test was used to examine the effect of arm position

on blood pressure and PTT, and a p < 0.05 was considered

statistically significant.

FIGURE 1

An example of calculating the PTT di�erence with the left arm at the

horizontal position as a reference and the right arm at 90◦.
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TABLE 2 The overall means and SDs of MAP and PTT di�erences with the

right arm at five positions.

Position 90o 45o 0o −45o −90o

MAP ( mmHg) 66± 8∗ 71± 8∗ 86± 8 100± 8∗ 106± 8∗

PTT differences (ms) 19± 7∗ 13± 7∗ 2± 5 −1± 5∗ −2± 5∗

∗Significant statistical difference compared with 0◦ .

3. Results

3.1. Mean blood pressure and PTT
di�erences at di�erent positions

Table 2 presents the overall means and standard deviations (SDs)

of MAP and PTT differences with the right arm at five positions.

The paired t-test was performed with a PTT difference of the

non-horizontal level and a PTT difference of the horizontal level,

respectively. Figure 2A shows the means and SDs of MBP with the

right arm at five positions to the horizontal level. The changes

in the arm position caused a significant effect on BP (all p <

0.01), and the variations of MAP were large with the arm below

the horizontal level while small with the arm above the horizontal

level (Figure 2A). Figure 2B shows the means and SDs of the PTT

differences with the right arm at five positions to the horizontal

level. The arm position caused a significant effect on PTT (p <

0.01 at 90, 45, −45, and −90◦; p > 0.05 at 0◦), which implies

that the PTT differences were large with the right arm above the

horizontal level while small with the right arm below the horizontal

level.

3.2. PTT changes with di�erent MAP induced
by various arm positions

The changes in the PTT were calculated from the PTT differences

of the right arm at positions 90, 45, −45, and −90◦ min those at 0◦,

respectively. The relationship between the changes in the PTT and

a corresponding MAP with the arm positioned at 90, 45, −45, and

−90◦ are depicted in Figure 3. With the arm moving at 90, 45, −45,

and −90◦, the changes in PTT were 17.1 ± 6.1, 11.4 ± 5.8, −3.0 ±

3.0, and −3.3 ± 2.6ms and decreased, while the changes in MBP

were 65.6 ± 8.0, 71.4 ± 8.0, 99.7 ± 8.0, and 105.5 ± 8.0mm Hg and

increased. Table 3 lists the rate of the means and SDs of the changes

in the PTT and the linear regression equations with the right arm

moving from 90 to −90◦ for each subject. As the rate was calculated

with difference between the value with the right arm at a higher

position and the value with the right arm at a lower position, the

mean rates of the changes in the PTT shown in Table 3 were negative.

However, if the rate was calculated with the difference between the

value with the arm at a lower position and the value with the arm

at a higher position, the rate shown in Table 3 would be positive.

In this study, absolute values of the rate were used to identify the

relationship between the changes in PTT and changes in the MAP

induced by right arm movement. Table 3 points that the rates of

changes in the PTT with the arm above the heart level (from 90 to

45◦ and from 45 to 0◦) are larger (1.19 and 0.79) than those (0.21 and

0.06) with the arm below the heart level (from 0 to −45o and from

−45 to−90◦).

FIGURE 2

Means and standard deviations (SDs) of mean arterial pressure (MAP)

and pulse transit time (PTT) di�erences with the right arm at di�erent

positions. (A) Means and SDs of MBP with the right arm at five

positions to the horizontal level and (B) means and SDs of PTT

di�erences with the right arm at five positions to the horizontal level.

4. Discussion

We investigated the relationship between the changes in the PTT

and the changes in the MAP induced by the right arm lifting and

lowering, and we found that (1) when the arm was positioned at 45

and 90◦, the changes in the PTT increased while the BP decreased

and (2) when the arm was positioned at −45 and −90◦, the changes

in the PTT increased and the BP increased. These results indicated

that there were different relationships between PTT variations and

MAP changes induced by different right arm positions. At 90◦ and

45◦, the changes in the PTT were 17.1 and 11.4 with a rate of −1.19

± 0.60 and −0.79 ± 0.39, respectively, while, at −45◦ and −90◦, the

changes in the PTT were−3.0 and−3.3 with the rate of−0.21± 0.23

and−0.06± 0.27, respectively.

Our results are consistent with the studies of Foo et al. (2005)

and Liu and Zhang (2006), which showed that the changes in PTT

increased and the BP decreased during the arm lifting. However, the

research of Liu and Zhang only involves arm lifting and not arm

lowering. Foo et al. also studied the relationship between PTT and

BP induced by limb lifting and lowering. Lifting of one of the arms or

lowering of one of the legs was used in the study of Foo et al., while we

used the same arm to study the relationship between the changes in

PTT and the changes in the BP induced by the right arm liftingor

lowering. We found that there are different relationships between

PTT changes and BP changes with the arm lifting or lowering at

Frontiers inNeuroscience 03 frontiersin.org
6

https://doi.org/10.3389/fnins.2023.1121902
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2023.1121902

FIGURE 3

Relationship between each subject’s changes in the pulse transit time (PTT) and corresponding mean arterial pressure (MAP) with the arm at 90, 45, −45,

and −90o, respectively.

TABLE 3 The means and SDs of the rate of changes in the PTT (ms) and linear regression equations with the right arm moving from 90 to −90◦ for each

subject.

Position From 90◦ to 45◦ From 45◦ to 0◦ From 0◦ to −45◦ From −45◦ to −90◦

Mean± SD90% CI −1.19± 0.60 −0.79± 0.39 −0.21± 0.23 −0.06± 0.27

(−2.17,−0.20) (−1.43,−0.14) (−0.59, 0.16) (−0.51, 0.39)

Position 90◦ 45◦ −45◦ −90◦

Linear regression equation y = 0.21x+ 3.29 (R2 = 0.076) y = 0.04x+ 8.78

(R2 = 0.003)

y = −0.07x+ 3.86

(R2 = 0.031)

y = −0.03x−0.27(R2 = 0.008)

the same height relative to the level of the right atrium. With the

arm lowering from the same height, the change in the PTT is

smaller than that of the arm lifting. Zheng et al. (2007) and Zheng

and Murray (2009) also indicated the relationship between internal

vascular pressure and PTT with the arm at a different position. The

data from Zheng and Murray’s study are also in agreement with our

data although they were not clearer.

This distinct result indicates that the effects of the physiological

structure on PTT are different when lifting or lowering the arm. The

reason may be partly due to different muscle states corresponding to

different movements (Siu et al., 2016).

This study has several limitations. First, the sample involved

only 22 subjects. The small sample size limits obtaining statistically

significant results for a wide population. Second, when calculating

the length of the midpoint of the arm, it was not accurate

that 10 cm is considered to be the distance from the clavicle

to the shoulder for all subjects, and the values of MBP with

the arm positioned at 90, 45, −45, and −90◦ were estimated

by the linear hydrostatic principle using the midpoint of the

arm but not to the direct measuring. These values will cause

some errors in calculating the changes in MBP. Finally, this

study only involved healthy people and did not involve the

diseased population.

5. Conclusion

This study demonstrated that there are different relationships

between changes in PTT and changes in BP induced by right arm

lifting or lowering at the same height relative to the level of the

right atrium. Changes in PTT were larger during the arm lifting

than the arm lowering with the approximate linear change in MBP.

Future research should focus on the relationship between changes

in PTT and changes in BP induced by arm movement for patients

with a certain disease, which may thus be potentially useful for

clinical applications.
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Cardiovascular disease is a serious health problem. Continuous

Electrocardiograph (ECG) monitoring plays a vital role in the early detection

of cardiovascular disease. As the Internet of Things technology continues

to mature, wearable ECG signal monitors have been widely used. However,

dynamic ECG signals are extremely susceptible to contamination. Therefore,

it is necessary to evaluate the quality of wearable dynamic ECG signals. The

topological data analysis method (TDA) with persistent homology, which can

effectively capture the topological information of high-dimensional data space,

has been widely studied. In this study, a brand-new quality assessment method of

wearable dynamic ECG signals was proposed based on the TDA with persistent

homology method. The point cloud of an ECG signal was constructed, and then

the complex sequence was generated and displayed as a persistent barcode.

Finally, GoogLeNet based on the transfer learning model with a 10-fold cross-

validation method was used to train the classification model. A total of 12-leads

ECGs Dataset and single-lead ECGs Dataset, established based on the 2011

PhysioNet/CinC challenge dataset, were both used to verify the performance

of this method. In the study, 773 “acceptable” and 225 “unacceptable” signals

were used as 12-leads ECGs Dataset. We relabeled 12,000 ECG signals in the

challenge dataset, and treated them as single-lead ECGs Dataset after empty

lead detection and balance datasets. Compared with the traditional ECG signal

quality assessment method mainly based on waveform characteristics and

time-frequency characteristics, the performance of the quality assessment

method proposed. In this study, the classification performance of the proposed

method are fairly great, mAcc = 98.04%, F1 = 98.40%, Se = 97.15%, Sp = 98.93%

for 12-leads ECGs Dataset and mAcc = 98.55%, F1 = 98.62%, Se = 98.37%,

Sp = 98.85% for single-lead ECGs Dataset.

KEYWORDS

quality assessment, persistent homology, point cloud, complex sequence, persistent
barcode
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Introduction

Heart disease is a serious threat to human health. According
to the World Health Report 2021, by 2019, cancer, cardiovascular
disease (CVD), diabetes, and chronic respiratory disease will be the
main killers of human beings. Therefore, the prevention, diagnosis,
and treatment of CVD have become important issues worldwide.
With the rapid development of networks, big data, the Internet
of Things, and artificial intelligence, wearable ECG monitoring
equipment (Redmond et al., 2012; Viegas et al., 2016) has been
widely used. Realize real-time and long-term monitoring of human
ECG signals. However, ECG signal is a weak physiological signal
that is easy to be interfered, leading to obvious defects in recording
signal quality. Therefore, it is necessary to conduct effective signal
quality assessment when monitoring wearable ECG equipment.

There are the following research methods for ECG signal
quality evaluation, which are based on PhysioNet/CinC
competition data in 2011. Zaunseder et al. (2011) based on
the frequency domain characteristics of ECG signals, used
indicators related to the power spectrum combined with decision
trees to classify ECG signals. The classification accuracy was
90.4%; Kalkstein et al. (2011) used a combined machine learning
algorithm of K-nearest neighbor and random forest for ECG signal
quality assessment and obtained 91.2% classification accuracy on
the test set; Xia et al. (2011) studied the time domain, frequency
domain, autocorrelation, cross-correlation, and other indicators
of ECG time series, formed a matrix with the results of these
indicators, and used the spectral radius of the regular matrix to
classify ECG signals. With the rapid development of deep learning,
researchers began to apply deep learning to cardiovascular
disease classification. For example, Alqudah et al. (2022) sent the
extracted ECG spectrum features to different convolutional neural
network (CNN) architectures to classify the MIT-BIH arrhythmia
database. Al-Issa and Alqudah (2022) developed a heart diagnostic
system combining CNN and Long Short-Term Memory (LSTM)
components to distinguish five heart valve diseases. Obeidat and
Alqudah (2021) used a hybrid lightweight one-dimensional depth
learning model, which combines convolutional CNN and LSTM
methods for ECG classification.

Topological data analysis method is a data analysis framework
based on algebraic topology tools (Carlsson, 2009). The purpose
of adopting the TDA method is to apply data analysis, algebraic
topology, computational geometry, computer science, statistics,
etc., to find a shape like structure in the data to analyze the complex
topology and geometry of the data (Edelsbrunner and Harer, 2010).
These data are usually represented as a point cloud in Euclidean
space. Persistent homology (Zomorodian and Carlsson, 2005) is
the main concept that allows multiscale data analysis and is also a
basic mathematical tool of TDA. Persistent homology is calculated
by simple complex, and its output results usually include persistent
barcode and persistent diagram. In this study, Vietoris-Rips (VR)
complex and SubLevel-Set (SLS) complex are selected, and detailed
in Section “2. Basic terminology.”

Topological data analysis method methods have been applied
to wearable ECG signal analysis [see (Chung et al., 2021) for an
example] based on the persistence diagram obtained by VR filtering
and SLS filtering. This is used to construct persistence statistics for
heart rate variability analysis and its classification in sleep-wake.
Reference (Dindin et al., 2020) used the TDA method to detect

arrhythmias through a modular multichannel neural network for
binary classification. The classification accuracy obtained in the
test set was 90% on average, and the average test accuracy in
multiclassification was 80.5%. Reference (Ignacio et al., 2019)
demonstrated how to map ECGs onto high-dimensional point
clouds through delayed embedding to extract topological features
and finally apply random forests for classification. Study (Graff
et al., 2021) examined when persistence diagram was obtained by
SLS filtering, and a set of indicators was extracted to distinguish
the RR interval of healthy subjects and stroke patients. In addition
(Yan et al., 2019) applied TDA to reconstruct a signal point cloud to
extract persistent landscape features to classify heart rate variability.
The accuracy of a normal heartbeat was 100%, of ventricular
beating was 97.13%, of supraventricular beating was 94.27%, and
of fusion beating was 94.27%. Although the TDA method has been
applied to the processing and classification of ECG signals, to the
best of our knowledge, research on the quality assessment of ECG
signals using TDA is still lacking.

Traditional ECG signal quality evaluation methods mostly rely
on the setting of ECG signal feature extraction classifier. In recent
years, the deep learning method has been widely used in many fields
because of its powerful functions. More and more researchers apply
the deep learning method to the quality evaluation of ECG signals.
However, the deep learning method has poor interpretability
and cannot explore the high-dimensional spatial characteristics
of ECG signals. ECG is an electrical activity process that reflects
the excitation of the heart. It is not enough to extract features
from the basic function of the heart and its pathological research.
Topological data analysis method can solve this problem. In
this study, persistent homology can be used to construct point
clouds through folded signals, extract topological features, and
comprehensively reflect the damage of heart valves.

In this study, a brand-new quality assessment method of
wearable dynamic ECG signals was proposed based on the TDA
with persistent homology method, so as to reduce the workload
of medical staff and reduce the rate of miscarriage of justice. In
this study, the features captured by the topological data analysis
method is topological and spatial information of high-dimensional
data space. First, the point cloud of an ECG signal was constructed,
and then the complex sequence was generated and displayed as
a persistent barcode. Topological and spatial information was
converted into the persistent barcode.

In Section “2. Basic terminology,” we introduce VR filtration,
SLS filtration, and persistent homology related concepts. The
dataset adopted in this study and the constructed model are
accepted in detail in Section “3. Model.” In Section “4. Results,” we
present the results for different classifications. Model performance
based on ECG quality assessment and comparison with other
quality assessment methods is discussed in detail in Section “5.
Discussion.”

Basic terminology

Vietoris-Rips filtration

Common complexes include Alpha complex, Ĉech complex,
lazy witness complex, VR complex and so on. In this study, VR
complex is selected for the following reasons: (a) when using
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Alpha complex, the lack of monotonicity may introduce significant
computational costs and even make it unusable in some cases. (b)
In the calculation, VR complex is easier to calculate than Ĉech
complex. Because VR complex can be stored as a picture, that is,
only 0-dimensional and 1-dimensional complex need to be stored,
and all high-dimensional complex need not be stored like Ĉech
complex. (c) The lazy witness complex is to randomly select the
number of points in a group of point clouds. Compared with VR
complex, it has randomness and is suitable for the point cloud
structure with a large amount of data. Assume that VR filtering
represents the distance between two points in the metric space Z.
The VR complex sequence VR (Z, ∈) is defined as follows: (1) The
vertex set is Z. (2) For vertices a and b, if d (a, b) ≤ ∈, then the
edge (ab) is included in VR (Z, ∈). (3) If all edges of VR (Z, ∈)
are simplexes, then it contains simplexes of higher dimensions. The
filtering of the VR complex can be regarded as filtration of the (n-1)
dimensional simplex, as shown in Figure 1.

SubLevel-Set filtration

The definition of the SLS is as follows: We define a time series of
ECG signals as a continuous function, where T is the length of the
time series and is a real-valued function called the α-level subset.
For each α∈R,

fα :=f−1(−∞,α){t ∈ [0,T]|f (x) ≤ α} (1)

According to the formula α1 ≤ α2, fα1 ⊆ fα2 , therefore, for any
increasing sequence of a filter is formed. The filtering process is
shown in Figure 2 below.

Persistence homology

Persistent homology is a method to compute spatial topological
features at different spatial resolutions. More persistent features are
detected across a wide range of spatial scales. The space must first be
represented as a simplicial complex, and a distance function on the
underlying space corresponds to a filtering of a simplicial complex,
which is a nested sequence of increasing subsets.

When 0 ≤ i ≤ j ≤ n, the inclusio Ki → Kj induces a
homomorphism f i,j

p : Hp(Ki)→ Hp(Kj) on the simplicial
homology groups for each dimension p. The pth persistent
homology groups are the images of these homomorphisms, and the
pth persistent Betti numbers p = 0 are the ranks of those groups.
Persistent Betti numbers for coincide with the size function, which
is a predecessor of persistent homology.

Topological data analysis method methods extract information
from the topological and geometric properties of the data
point cloud. In this study, we first construct a data point
cloud for each time series using the sliding window method to
construct a complex sequence for a point cloud dataset and filter
the complex sequence φ=K0 ⊂ K1 ⊂ ... ⊂ Kn = K. Topological
features will appear and disappear during the construction
of complex filtering. The persistence diagram proposed by
Edelsbrunner et al. (2000) and the persistence barcode proposed
by Carlsson et al. (2005) are tools for visualizing topological
features that can visually display persistent homology. There is an

equivalence relationship between them. The persistence diagram
was encoded from the k-dimensional homology α information
in all scales. A homology α was a point, which represent the
birth and death time of the corresponding topological features.
A barcode is a finite set of intervals that are bounded below.
Intuitively, the intervals denote the life-times of a non-trivial
loop in a growing complex. The left endpoint signifies the
birth of a new topological attribute, and the right endpoint
signals its death. The longer the interval, the more important
the topological attribute, as it insists on being a feature of the
complex.

Model

Based on 2011 PhysioNet/CinC challenge data, we constructed
12-leads ECGs Database and single-lead ECGs Database. For the
two databases, we use VR filtration method to obtain persistent
barcodes and SLS filtration method to obtain persistent diagrams.
When using VR filtration method, this study uses the sliding
window method to construct the point cloud of the ECG signal.
Finally, the GoogLeNet based on the transfer learning method is
applied for classification. The flow diagram of this study is shown
in Figure 3.

The data

Data were drawn from the PhysioNet Challenge 2011
dataset where binary labels were available, on 1,000 12-lead
ECGs indicating whether the entire recording was acceptable
or unacceptable. These data supporting the development and
evaluation of challenge entries were collected by the Sana
Project (Celi et al., 2009) and are freely available through
PhysioNet (Goldberger et al., 2000). Patient age, sex, weight,
and possibly other relevant information were included in the
challenge data. The full diagnostic bandwidth is 0.05–100 Hz.
Leads were recorded simultaneously for 10 s, sampled at
500 Hz at 16-bit resolution. Among the 1,000 signals, 773 were
marked as “acceptable” and 225 were “unacceptable,” and 2 were
“indeterminate.”

A total of 12-leads ECGs dataset
In this study, 773 “acceptable” and 225 “unacceptable” signals

were used as 12-leads ECGs Dataset. Whereas the “acceptable,”
“indeterminate,” and “unacceptable” classification criteria for the
entire 12 channels. For example, many “acceptable” ECGs have
a channel with complete noise or even a flat line. Therefore, we
constructed single-lead ECGs Dataset.

Single-lead ECGs quality assessment dataset
construction

According to Silva et al. (2011), study (Liu et al., 2018) adopts
the scoring criteria of five signal quality levels of 10-s ECG
segments. A total of 9,941 “acceptable” and 2,059 “unacceptable”
10-s ECG segments were found. With empty lead detection, 1,071
10-s ECG segments were detected from the disqualified group.
Hence, only 988 “unacceptable” fragments were found. It can be
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FIGURE 1

(A) The filtering process of the VR complex. (B) The 0-dimensional and 1-dimensional persistence barcode of VR filtration. As ∈ continues to
increase, an increasing number of simplicial complexes are formed. In (B), blue is a 0-dimensional persistence barcode, and red is a 1-dimensional
persistence barcode. The abscissa of the persistence barcode picture represents 2∈. When ∈ = 0, there are 10 connected components; when ∈ = 1,
there are seven connected components; when ∈ = 2, there are two connected branches; and when ∈ = 2.05 to ∈ = 2.1, there is a hole.

FIGURE 2

(A) The SLS filtering process of randomly generated time series. When α scans a node that it considers to be a local minimum, it saves the value of
that node as the birth point of the slot, and the trough of death is determined by the lowest. Since the global minimum will not disappear, its death
time is infinite. (B) The persistence diagram of this time series.

seen that the “acceptable” and “unacceptable” signals are seriously
unbalanced, and this study generates additional noisy records to
balance the problem of uneven data.

We used the Physical Network Noise Stress Test Database
(Moody et al., 1984) (NSTDB) noise samples, which contain
samples for three types of noise: bw, em, and ma. Bw contains
baseline drift noise; em contains electrode motion artifacts, as well

as substantial baseline drift and muscle noise; and ma contains
mostly muscle noise. These three noise samples have two leads.
This study adds gaussian noise with only one lead data, and the
signal-to-noise ratio of the noise is−10 dB. We added four different
noises to the 7,882 “acceptable” ECG signals: 2,252 noise data with
bw, em, and ma noise and 1,126 with gaussian noise. There is
no possibility of adding two different noises to one signal. There
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FIGURE 3

Flow diagram of this study.

FIGURE 4

Construction process of single-lead ECGs Dataset.

are 9,941 “acceptable” signals and 8,870 “unacceptable” signals. As
shown in the Figure 4.

Electrocardiograph signal processing
The ECG signals of “acceptable” and “unacceptable” were

normalized by Mapminmax function. Mapminmax is a function of
MATLAB, which is mainly used to normalize data. It converts all

data into numbers between (−1, 1), so as to eliminate the difference
in the number of data in each dimension. The algorithm is as
follows:

It is assumed that x has only finite real values and that the
elements of each row are not all equal. ymin is the minimum value
we expect after normalization. ymax is the maximum value we
expect after normalization, and the normalized matrix is marked
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as y.

y =
(ymax− ymin)(x− xmin)

(xmax− xmin)
+ ymin (2)

Filtration of ECG signal

Topological data analysis method studies shapes constructed
from invariant datasets under continuous deformation (such as
tension and torsion). We use VR filtration and SLS filtration
methods to analyze ECG signals, and use persistence barcode and
persistence diagram to display the topological characteristics of
ECG signals. In VR filtration method, a point cloud was structure
by the sliding window method. In the process of ∈ becoming
larger, points are connected with each other, and “hole” and “void”
may appear and disappear, which means that the topological
characteristics will appear and disappear. SLS filtration method
directly looks for birth value and death value on the waveform
of ECG signal. In order to see the difference between persistent
barcodes more intuitively and clearly, we take a 3-s ECG signal
segment in Figure 5 as an example. Figure 5 shows the three-
dimensional scatter (A), persistence barcode (B), and persistence
diagram (C) of 3-s “acceptable” and “unacceptable” ECG segments.

In this study, for 12-leads ECGs Dataset, the point cloud
structure of sliding windows with five lengths of 1, 2, 3, 4, and 5 s
and dimensions of 120, 60, 36, 24, and 24 are established. For single-
lead ECGs Dataset, the point cloud structure of sliding windows
with five lengths of 0.1, 0.2, 0.3, 0.4, and 0.5 s and dimensions of 100,
50, 33, 25, and 20 are established. When a signal cannot meet the
length of a sliding window, we discard it. For the 12-leads dataset,
when the sliding window length is 0.1 s, the point cloud dimension
of one signal is 120, and the point cloud dimension of 12-leads
signals is 1,200. For a single-lead dataset, if the sliding window
length is 1 s, the point cloud dimension is 10. According to the
experimental results, we know that the larger the dimension of the
point cloud, the better the result. However, when the point cloud
dimension is too large, it will cause a certain amount of calculation
and time loss. Therefore, in this study, we control the size of the
sliding window to control the dimension of the two data sets within
120, which can not only maintain the accuracy of the results, but
also reduce unnecessary waste of time.

Sliding window method to construct point cloud
and VR filtration of ECG signal

At present, the application of ECG signal quality assessment
based on persistent homology is lacking. In this study, the sliding
window method is used to establish the point cloud dataset. Given
a set of time series x(x1, x2, ..., xn), construct a matrix,

x1, ..., xt

xt+1, ..., x2t

...

x(d−1)t+1, ..., xdt

 , dt ≤ n, d > 0, t > 0, n > 0
(3)

Where d is the dimension, t is the size of the sliding window, and
n is the length of the time series. At that time, a point that does not
meet the size of a window is discarded. Through experiments, the

window size is continuously adjusted to find an optimal window
size so that the classification accuracy is the best.

The process of constructing VR complex is reconstruct the
point cloud from the time series of ECG signals. Each point is
surrounded by a ball with a diameter of 2∈. During the change
of radius ∈, holes will appear and disappear. The following is an
example of intercepting a 3-s ECG signal to reconstruct the three-
dimensional scatter of the point cloud dataset to better visualize the
spatial structure of the point cloud. As shown in Figures 5A, B, the
length of the sliding window is 1 s, and the dimension is three.

SubLevel-Set filtration of ECG signal
SubLevel-Set filtering method maps time series data to its peak

and trough pairs to express information about data smoothness and
volatility. First, we model the time series of ECG signals as a graph
with multiple nodes, each connected to two neighbors (except the
ends). Then selecting α, α value is swept from −∞ to +∞, to
identify troughs and match them to peaks as it increases. When
α is swept passed a node that it identifies as a local minimum, it
saves the value of that node as the birth of that trough. The death
of a trough is given by the lowest α value. Finally, the algorithm
terminates when all node values are smaller than α. We select two
acceptable ECG signals and two unacceptable ECG signals and use
the SLS filtration method to generate persistence diagram, as shown
in Figure 5C below.

Evaluation method

We select the following evaluation indicators to obtain the
classification accuracy: sensitivity (Se), specificity (Sp), F1, accuracy
(Acc) and correction accuracy (mAcc), which are defined as follows:

Se: The number predicted to be positive and correct, the
proportion of the total number of actual positives.

Se =
TP

(TP+ FN)
× 100% (4)

Sp: The number predicted to be negative and correct, the
proportion of the total number of actual negatives.

Sp =
TN

(TN+ FP)
× 100% (5)

F1: The harmonic values of the precision rate and recall rate.

F1 =
TP

TP+ 0.5(FR+ FN)
× 100% (6)

Acc: Number of correct predictions, accounting for the total
number.

Acc=
TP+ TN

TP+ TN+ FR+ FN
× 100% (7)

mAcc
mAcc =

(Se+ Sp)
2

× 100% (8)

Among them, TP: “acceptable” signal is correctly predicted as an
“acceptable” signal by the model; TN: “unacceptable” signal is
correctly predicted as an “unacceptable” signal by the model; FP:
“unacceptable” signal is incorrectly predicted as an “acceptable”
signal by the model; FN: “acceptable” signal is predicted as an
“unacceptable” signal by the model’s signal.
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FIGURE 5

Two clean and two noisy ECG signals and its corresponding use of the sliding window method to establish three-dimensional scatter (A) and
persistence barcode (B). Persistence diagram obtained by the SLS-filtration method (C).

Results

In this study, a quality assessment method of wearable
dynamic ECG signals was proposed based on the persistent
homology method and GoogLeNet (Assari et al., 2022) method.
The performances of VR and SLS filtration were considered.
We put the 224 × 224 × 3 persistent barcode pictures or
persistent diagram pictures obtained by the persistent homology
method into GoogLeNet for classification. For VR filtration, the
influences of the sliding windows length for the point cloud
structure was also explored. Tenfold cross-validation is applied to
test classification performance. All the segments were randomly
divided into 10 groups.

Results of 12-leads ECGs dataset

Table 1 and Figure 6 displayed the results of 12-leads ECGs
Dataset. For VR filtration, the length of sliding windows was set to

1, 2, 3, 4, and 5 s, respectively. As shown inTable 1, the classification
result of SLS filtration method is the best, mAcc = 98.04%. The result
of VR filtration method with sliding window of 1 s is the relatively
high, mAcc = 95.16%. As the length of sliding windows increasing,
the classifying performances decrease. In the Figure 6, the Box-
plot and normal distribution curve of all results were given. The
boxplot shows the mean and variance of 10-fold cross-validation
results, while the normal distribution curve shows how the results
distribute.

Results of single-lead ECGs dataset

Table 2 and Figure 7 displayed the results of single-lead ECGs
Dataset. For VR filtration, the point cloud structure of sliding
windows with five lengths of 0.1, 0.2, 0.3, 0.4, and 0.5 s were
established, respectively. In the Figure 7, the Box-plot and normal
distribution curve of all results were also given. As shown in
Table 2, the experimental results for the VR filtration show that
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TABLE 1 Classification results of VR and SLS filtration methods in 12-leads ECGs Dataset.

SW = 1 s SW = 2 s SW = 3 s SW = 4 s SW = 5 s SLS

mAcc (%) 95.16± 0.20 93.11± 0.19 91.75± 0.21 90.22± 0.29 89.78± 0.26 98.04± 0.11

F1 (%) 95.60± 0.09 93.88± 0.08 92.06± 0.08 91.58± 0.18 90.85± 0.17 98.40± 0.06

Se (%) 92.02± 0.14 89.25± 0.35 85.90± 0.11 85.78± 0.23 84.41± 0.24 97.15± 0.11

Sp (%) 98.31± 0.41 96.98± 0.42 97.51± 0.43 94.67± 0.42 95.16± 0.33 98.93± 0.23

Bold values represent the data with the best results.

FIGURE 6

Boxplots of the normal distribution curves of the 10-fold cross-validation of VR and SLS filtration methods in 12-leads ECGs Dataset. For the VR
method, when the length of sliding window increases gradually, the average value of mAcc decreases gradually. The 10-fold cross-validation results
of mAcc, F1, Se, Sp are relatively concentrated. For the SLS method, the results of 10-fold cross-validation of mAcc, F1, Se, Sp are relatively scattered.
But the average value of mAcc is higher than that of VR method.

the mAcc of the point cloud dataset with a sliding window length of
0.1 s is 98.55%, and the standard deviation is 0.13%. As the length of
sliding windows increasing, the classifying performances decrease.
The mAcc of the persistence diagram obtained by SLS filtration is
97.25%, and the standard deviation is 0.39%.

Discussion

This study proposed a new signals quality assessment method
of wearable dynamic ECGs based on persistent homology method
and GoogLeNet method. This method has strong robustness
in quality assessing, which can be used for both 12-leads and
single-lead ECG signals. VR and SLS two filtration methods were
employed for persistent homology feature extraction. For the 12-
leads ECGs Dataset, SLS filtration method has the best classification
performance, mAcc = 98.04%, while for the single-lead ECGs

Dataset, the classification result of VR filtration method with sliding
window of 0.1 s is the highest, mAcc = 98.55%.

Comparison between VR filtation and
SLS filtation

In this study, VR filtration method needs to reconstruct the
time series of ECG signal, while sliding window method is used
to construct the point cloud structure of ECG signal. For 12-
leads ECGs Dataset, the sliding window lengths are 1, 2, 3, 4,
and 5 s, respectively, and the dimensions are 120, 60, 36, 24,
and 24, respectively. The results show that the sliding window
is 1 s, and the classification result is the highest. For the single-
lead ECGs Dataset, the sliding window lengths are 0.1, 0.2, 0.3,
0.4, and 0.5 s, respectively, and the dimensions are 100, 50, 33,
25, and 20, respectively. It can be seen that the classification
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TABLE 2 Classification results of VR and SLS filtration methods in single-lead ECGs Dataset.

SW = 0.1 s SW = 0.2 s SW = 0.3 s SW = 0.4 s SW = 0.5 s SLS

mAcc (%) 98.55± 0.13 94.98± 0.55 94.06± 0.96 92.17± 0.76 89.76± 0.56 97.25± 0.39

F1 (%) 98.62± 0.12 95.32± 0.56 93.75± 1.73 92.51± 0.79 89.71± 1.11 97.39± 0.39

Se (%) 98.37± 0.18 95.81± 1.41 93.73± 3.13 91.93± 2.16 87.93± 2.63 97.77± 0.89

Sp (%) 98.85± 0.20 94.15± 1.14 94.24± 1.40 92.50± 1.87 91.59± 2.22 96.74± 1.13

Bold values represent the data with the best results.

FIGURE 7

Boxplots of the normal distribution curves of the 10-fold cross-validation of VR and SLS filtration methods in single-lead ECGs Dataset. For the VR
method, when the length of sliding window increases gradually, the average value of mAcc decreases gradually. The 10-fold cross-validation results
of mAcc with different sliding windows are relatively concentrated, and the results of F1, Se, Sp are relatively scattered. For the SLS method, the
10-fold cross-validation results of mAcc is relatively concentrated, while the results of F1, Se, Sp are relatively scattered. But the average value of
mAcc is slightly lower than that of VR method.

accuracy with a sliding window length of 0.1 s is the highest, the
average mAcc of the 10-fold cross-validation is as high as 98.55%.
We found that for the two datasets, the classification accuracy
decreases with the increase of window length. In this study, the
sliding window length will not continue to decrease in the two
datasets. In the 12-leads ECGs Dataset, for 12 leads signals, the
further decrease of sliding window will cause the data dimension
to be too large, which will increase the calculation cost. In the
single-lead ECGs Dataset, the sliding window length does not
continue to shrink because the classification accuracy achieves good
results when the window length is 0.1 s. Taking the single-lead
ECGs Dataset as an example, the “acceptable” and “unacceptable”
ECG signal waveforms and persistence barcode of the five sliding
window lengths are shown in Figure 8. It can be seen from the
figure that the persistent barcodes of ECG signals with different
window sizes are obviously different. As the window increases,

the persistent barcodes gradually become sparse. There are also
differences between “acceptable” and “unacceptable” ECG signals
corresponding to persistent barcode.

In this study, in the 12-leads ECGs Dataset, the classification
accuracy using the SLS filtration method is higher than the
highest accuracy using the VR filtration method; in the single-lead
ECGs Dataset, the classification accuracy using the SLS filtration
method is lower than the highest accuracy using the VR filtration
method. SLS filtration method finds the birth and death points
on the waveform of the ECG signal. The VR filtration method
uses a simple complex to reconstruct geometry to analyze the
spatial characteristics of the ECG signal time series. However, VR
filtration method depends on the construction of point cloud.
SLS filtration method is more stable. In the 12-leads ECGs
Dataset, mAcc = 98.04% and in the single-lead ECGs Dataset,
mAcc = 97.25%. From the classification results, we can see that the
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FIGURE 8

Persistence barcode pictures of “acceptable” and “unacceptable” ECG signals with five sliding window lengths of single-lead ECGs Dataset.

classification results of the two datasets based on this method are
relatively good.

Comparison with other methods

In this study, SLS method is compared with some ECG signal
quality evaluation methods in recent years, and the results are
shown in Table 3. For example, Zhao and Zhang (2018) proposed
a simple heuristic fusion and fuzzy comprehensive evaluation
method based on SQI for ECG quality evaluation, with an accuracy
rate of 94.67% on the test set. Jin et al. (2022) proposed a novel dual
attention convolution long short-term memory neural network for
ECG quality assessment, and the final classification accuracy was
94%. Shahriari et al. (2017) developed an image based ECG quality
assessment technique with an accuracy of 82.50%; Zhang et al.
(2019) conducted performance testing in ECG quality assessment
by comparing seven feature schemes composed of random forest,
SVM and its variants combined with nonlinear features, among
which least squares SVM had the highest Acc of 92.20% in test data.
Because the dataset is unbalanced, according to formula (8), we
choose the mAcc to calculate the classification results. In order to
unify the evaluation standard with other studies, we also calculate
the Acc according to formula (7).

As can be seen from Table 3, the classification result of SLS
filtration method is still the highest in the 12-leads ECGs Dataset.
However, the labeling for “acceptable” or “unacceptable” for the
whole 12 channels was not clear. In a 12-leads ECG signal, some
single-lead signals are “acceptable” and some single-lead signals
are “unacceptable.” As shown in the Figure 9. We selected an

“acceptable” and an unaccep2-leads ECG signal. From (A), we can
see that there is also obvious noise in the “acceptable” 12-leads
ECGs. From (B), We can see that in the “unacceptable” 12-leads
ECG signal, the single-lead ECG signal may be bad, but part of the
heart rate information could be calculate. Therefore, we considered
the quality evaluation of single-lead ECG signals.

For single-lead ECGs Dataset, Table 4 shows the comparison
between VR filtration method and the other four methods. The
references are as follows: reference (Liu et al., 2020) selected
26 signal quality indicators (SQI) to evaluate the quality of
ECG signals, including time domain characteristics, frequency
domain characteristics, and SQI based on QRS wave and
nonlinear characteristics. Experiments were conducted to test the
performance of a single classifier based on SQI features and
multiple classifiers based on SQI features. The total classification

TABLE 3 Performance of the presented algorithm and methods
participating in the PhysioNet/CinC Challenge.

mAcc (%) Acc (%) Se (%) Sp (%)

Kalkstein et al. (2011) 86.30 93.00 74.10 98.50

Xia et al. (2011) 89.11 85.90 95.11 83.10

Zhao and Zhang (2018) 91.67 94.67 90.33 93.00

Jin et al. (2022) 87.03 94.00 97.59 76.47

Shahriari et al. (2017) 80.80 82.50 83.90 77.70

Zhang et al. (2019) 88.02 92.20 77.94 98.09

Proposed SLS method 98.04 97.70 97.15 98.93

Se, Sp, Acc and mAcc for the 12-leads ECGs Dataset. Bold values represent the data with the
best results.
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FIGURE 9

(A) The “acceptable” 12-leads ECG signal, (B) The “unacceptable” 12-leads ECG signal.

performance of a single classifier based on GbSQI features and
the total classification performance of multiple classifiers based
on GbSQI features are obtained. For the overall classification
performance of a single GbSQI-based classifier, the QRS wave-
based SQIs had the best performance; for example, the mAcc
of bSQI_2 was (93.84 ± 1.47)% and bSQI_4 mAcc was
(93.70 ± 1.49)%. For the overall classification performance of
multiple classifiers based on GbSQI features, the effect of the
classification model was best when 14 SQIs were selected, and
the mAcc was 95.2%. Reference (Liu et al., 2018) redefined the
bSQI with any two combined QRS detectors and then extended the
redefined bSQI to the bSQI of multiple QRS detectors, represented
by GbSQI. The experimental results showed that the mAcc of the
classifier with the best combination of six QRS detectors and a
single GbSQI feature was 94.03%. The best combination of four
QRS detectors was the GbSQI feature, and the mAcc of multiple
classifiers was 94.76%. Study (Falk and Maier, 2014) proposed a
quality index of ECG signals based on modulation spectrum signal
representation, and a quality index MS-QI based on modulation
spectrum was proposed. The experimental results of the above
comparison methods are based on the original challenge data. In
order to compare the performance of the methods proposed in
this study, we selected several commonly used indicators from the
reference literature to test based on the single-lead ECG datasets
built in this study. A comparison of the results is shown in
Table 4. According to the table, the classification accuracy of the
VR filtration method is still the highest.

TABLE 4 Comparison of classification accuracy results of single-lead
ECGs Dataset four methods.

Methods mAcc (%) F1 (%) Se (%) Sp (%)

MS-QI Falk and Maier
(2014)

85.61± 1.05 85.58± 0.48 81.57± 0.73 89.66± 1.77

bSQI_2 Liu et al. (2018) 84.08± 0.75 84.85± 0.33 83.79± 0.71 84.37± 1.90

bSQI_4 Liu et al. (2018) 89.28± 0.55 89.33± 1.07 86.21± 1.49 92.36± 1.20

picaSQI Liu et al. (2020) 93.11± 0.73 93.03± 0.58 89.33± 1.11 96.90± 0.58

Proposed VR method 98.55± 0.13 98.62± 0.12 98.37± 0.18 98.85± 0.20

Bold values represent the data with the best results.

In this study, the wearable ECG signals were graded into two
groups: “acceptable” vs. “unacceptable.” However, part of wearable
ECG signals only R wave could be detected, other waves like P or ST
were drowned out by the noise, as shown in Figure 9. These signals
cannot be used for some CVDs detection, but they also cannot be
abandoned as heart rate information can be obtained. Therefore, it
is not appropriate to simply divide ECG signals into acceptable and
unacceptable. A more detailed quality evaluation grades need to be
considered in the future.

Conclusion

Cardiovascular disease poses a threat to human health, with
tens of millions of deaths worldwide every year. Its prevention and
monitoring are urgent issues. This study proposed a new signals
quality assessment method of wearable dynamic ECGs based on
persistent homology method and GoogLeNet method. This method
has strong robustness in quality assessing, which can be used
for both 12-leads and single-lead ECG signals. VR and SLS two
filtration methods were employed for persistent homology feature
extraction. The VR filtation method selected persistence barcode
to quantify the topological features, and the SLS filtation method
selected persistence diagram to quantify the topological features.
When using VR filtation method, it is necessary to reconstruct
the time series. The focus of this method is to use the sliding
window method to construct the point cloud dataset. For 12-leads
ECGs Dataset, the sliding window sizes are 0, 1, 2, 3, 4, and 5 s,
respectively, and 120, 60, 36, 24, and 24 dimensions are established,
respectively. When use the SLS filtation method, the classification
result of 12-leads ECGs Dataset is the highest, mAcc = 98.04%.
For single-lead ECGs Dataset, the sliding window sizes are 0.1,
0.2, 0.3, 0.4, and 0.5 s, respectively, and 100, 50, 33, 25, and 20
dimensions are established, respectively. The classification results
show that when the window length of VR filtration method is
0.1 s, the classification result is the highest, mAcc = 98.55%. The
results show that persistence homology method performed well
in the quality evaluation of wearable ambulatory ECG. This study
verified the feasibility of applying the persistence homology method
to wearable ECG signal quality assessment. In this study, the
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persistent homology method is still insufficient. We need the sliding
window method to find the optimal point cloud matrix. In the next
experiment, we integrate the experiment and the method to find an
optimal point cloud construction method. This study is to classify
acceptable and unacceptable ECG signals. In the next work, we will
continue to refine the classification criteria to make Wearable ECG
instruments more widely used.
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Background: Previous studies have shown that the predictive value of traditional 
linear (time domain and frequency domain) heart rate variability (HRV) for the 
survival of patients with advanced non-small cell lung cancer (NSCLC) is 
controversial. Nonlinear methods, based on the concept of complexity, have 
been used to evaluate HRV, providing a new means to reveal the physiological and 
pathological changes in HRV. This study aimed to assess the association between 
heartbeat complexity and overall survival in patients with advanced NSCLC.

Methods: This study included 78 patients with advanced NSCLC (mean age: 
62.0 ± 9.3 years). A 5-min resting electrocardiogram of advanced NSCLC patients 
was collected to analyze the following HRV parameters: time domain indicators, 
i.e., standard deviation of the normal-normal intervals (SDNN) and root mean 
square of successive interval differences (RMSSD); frequency domain indicators, 
i.e., total power (TP), low frequency power (LF), high frequency power (HF), and 
the ratio of LF to HF (LF/HF); nonlinear HRV indicators characterizing heartbeat 
complexity, i.e., approximate entropy (ApEn), sample entropy (SampEn), and 
recurrence quantification analysis (RQA) indexes: mean diagonal line length 
(Lmean), maximal diagonal line length (Lmax), recurrence rate (REC), determinism 
(DET), and shannon entropy (ShanEn).

Results: Univariate analysis revealed that the linear frequency domain parameter 
HF and nonlinear RQA parameters Lmax, REC, and DET were significantly 
correlated with the survival of advanced NSCLC patients (all p < 0.05). After 
adjusting for confounders in the multivariate analysis, HF, REC, and DET were 
found to be  independent prognostic factors for the survival of patients with 
advanced NSCLC (all p < 0.05).

Conclusion: There was an independent association between heartbeat complexity 
and survival in advanced NSCLC patients. The nonlinear analysis method based on 
RQA may provide valuable additional information for the prognostic stratification 
of patients with advanced NSCLC and may supplement the traditional time 
domain and frequency domain analysis methods.

KEYWORDS

heart rate variability, nonlinear methods, heartbeat complexity, recurrence 
quantification analysis, advanced non-small cell lung cancer, prognosis
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Introduction

Lung cancer (LC) is the second most common cancer and the 
leading cause of cancer deaths worldwide (Sung et al., 2021). The 
pathological types of LC are mainly divided into non-small cell lung 
cancer (NSCLC; including squamous cell carcinoma and 
adenocarcinoma) and small cell lung cancer, of which NSCLC 
accounts for 85% of cases (Zheng, 2016). Previous studies have 
confirmed that abnormal increases in sympathetic activity or 
abnormal decreases in vagal activity (an important part of the 
parasympathetic nervous system) are related to the occurrence and 
development of LC (Wang H. M. et al., 2013; Gidron et al., 2018; Ha 
et al., 2019). Sympathetic nerves can promote tumor progression by 
regulating the inflammatory response (Huan et  al., 2017) and 
angiogenesis (Garg et al., 2017), while vagus nerve activation can 
inhibit the inflammatory response (Tracey, 2009) and sympathetic 
nerve activity (Saku et al., 2014).

Heart rate variability (HRV) refers to the variation in time 
intervals between adjacent heartbeats and is considered a reliable 
indicator for the quantitative evaluation of autonomic nervous system 
activity (Camm et al., 1996; Lombardi and Stein, 2011). Traditional 
linear (time domain or frequency domain) HRV analysis is the main 
method to clinically evaluate autonomic function (Camm et al., 1996; 
Lombardi and Stein, 2011). Growing research has demonstrated the 
essential role of inflammatory cytokines, such as tumor necrosis 
factor-alpha (TNF-α), interleukin 6 (IL-6), and C-reactive protein 
(CRP), in promoting tumor occurrence and growth (Balkwill, 2009; 
Taniguchi and Karin, 2014; Hart et al., 2020). In a recent study, vagally 
mediated HRV parameters were inversely associated with levels of 
inflammatory markers such as TNF-α, IL-6, and CRP, possibly because 
vagal nerve stimulation reduces inflammatory cytokines through the 
cholinergic anti-inflammatory pathway (Williams et  al., 2019). 
Published studies have suggested that linear (time domain or 
frequency domain) HRV is associated with the prognosis of patients 
with malignant tumors, including LC with brain metastasis (Wu et al., 
2022), brain metastasis (Wang et al., 2021), gastric cancer (Hu et al., 
2018), colorectal cancer (Mouton et al., 2012), liver cancer (Chiang 
et al., 2010), pancreatic cancer (De Couck et al., 2016), breast cancer 
(Giese-Davis et al., 2015), and so on. Although accumulating evidence 
suggests that linear HRV may be a prognostic marker for patients with 
malignant tumors, its predictive value in the survival of NSCLC 
patients remains controversial. For example, Kim et  al. (2015) 
performed a univariate analysis, which showed that there was a 
significant correlation between the standard deviation of all normal-
to-normal intervals (SDNN) and the overall survival of advanced 
NSCLC patients, while their multivariate analysis indicated that 
SDNN was not an independent prognostic factor for the overall 
survival of patients with advanced NSCLC. De Couck et al. (2013) 
confirmed that SDNN and the root mean square of successive interval 
differences (RMSSD) could not significantly predict the overall 
survival of NSCLC patients, while further analysis showed that they 
could significantly predict the overall survival of NSCLC patients who 
were under 65 years of age (all p < 0.05). This may be because the true 
effect of linear HRV analysis is greatly affected by the heterogeneity in 
the tumor stage of NSCLC patients and the length of ECG data used 
in the study (De Couck et al., 2013; Kim et al., 2015).

The human body is characterized by nonstationarity and 
nonlinearity, and simple linear information may be insufficient to 

correctly describe the complex nonlinear behavior that dominates the 
human system. The nonlinear analysis method accords with the 
nonlinear and nonstationary characteristics of heartbeat interval time 
series, providing a new perspective for revealing the 
physiopathological changes in HRV. It can not only reflect more 
information about heart rate dynamics but also complement 
traditional time domain and frequency domain analysis. The 
unpredictability or complexity of signals is one of the main 
characteristics of nonlinear heart rate dynamics. A healthy human 
system exhibits spatial and temporal complexity, but disease may 
involve an increase or decrease in complexity (Vaillancourt and 
Newell, 2002). Previous studies have also shown that compared with 
healthy people, the heartbeat complexity of patients with atrial 
fibrillation (Mohebbi and Ghassemian, 2011), coronary artery disease 
(Acharya et al., 2014), or acute myocardial ischemia (Peng and Sun, 
2011) is significantly lower. Recently, some studies have been 
conducted to preliminarily examine the prognostic value of nonlinear 
HRV parameters in cancer (Shi et al., 2019; Escutia-Reyes et al., 2021; 
Li et al., 2022). For example, Shi et al. (2019) found that decreased 
heartbeat complexity was associated with higher carcinoembryonic 
antigen levels in gastric cancer patients. Li et al. (2022) showed that 
lower heartbeat complexity was predictive of shorter survival of LC 
patients with brain metastasis. However, few studies have explored the 
role of heartbeat complexity in the prognosis of patients with 
advanced NSCLC.

At present, it is not clear whether there is a correlation between 
heartbeat complexity and prognosis in advanced NSCLC patients. 
Therefore, this study aimed to verify the relationship between 
heartbeat complexity and overall survival in patients with 
advanced NSCLC.

Methods

Subjects

This prospective study enrolled NSCLC patients who were treated 
in the hospital from October 2019 to February 2021, with the approval 
of the Medical Ethics Committee of the First Affiliated Hospital of 
Bengbu Medical College. The inclusion criteria were as follows: (1) 
NSCLC confirmed by pathological examination and (2) stage III and 
IV NSCLC. The exclusion criteria were as follows: (1) installation of a 
cardiac pacemaker, (2) use of antiarrhythmic drugs or β-blockers, (3) 
complications with other types of malignant tumors, (4) lack of 
clinical or pathological data, and (5) treatment with chemotherapy, 
radiotherapy, or surgery within 3 weeks before data collection. The 
research process was carried out in accordance with the Helsinki 
Declaration. All patients provided written informed consent before 
study enrolment.

Data collection

The medical staff informed patients about the study and used a 
single-lead Micro-ECG recorder (HeaLink-R211B; HeaLinkLtd., 
Bengbu, China) to collect 5 min of ECG data from NSCLC patients at 
a 400 Hz sampling rate and V6-lead in an undisturbed quiet room. The 
participants, fully relaxed and in the supine position, were asked to 
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breathe regularly and gently and could neither speak nor move their 
bodies during the measurement.

We collected the following clinical background information from 
advanced NSCLC patients: sex, age, body mass index (BMI), smoking 
history, Karnofsky performance status (KPS), pathological type, prior 
treatment history (radiotherapy, chemotherapy, targeted therapy, and 
surgery), TNM stage, and overall survival. Patient overall survival was 
defined from the date of HRV detection to the date of death or the last 
follow-up. The patients were followed up by telephone call backs or by 
consulting the case data, and the last follow-up date was on September 
03, 2022.

HRV analysis

This research used the Pan-Tompkins algorithm to extract R-R 
interval time series on ECG and to calculate linear (time domain or 
frequency domain) and nonlinear HRV parameters (Pan and 
Tompkins, 1985). An automatic artifact correction algorithm in the 
Kubios software was used to correct technical and physiological 
artifacts within R-R intervals. The estimated values for respiratory rate 
(RR) were calculated using an ECG-derived respiratory method 
(Moody et  al., 1985). The following common time domain and 
frequency domain parameters were used: SDNN, RMSSD, total power 
(TP, 0–0.4 Hz), high frequency power (HF, 0.15–0.4 Hz), low frequency 
power (LF, 0.04–0.15 Hz), and the ratio of LF to HF (LF/HF). The 
power spectrum signal was analyzed in the frequency domain, and the 
fast Fourier transform algorithm was used to calculate the power 
spectrum density (Camm et al., 1996; Vanderlei et al., 2009; Lombardi 
and Stein, 2011).

Through the analysis of HRV by nonlinear dynamics, the 
following indexes characterizing the complexity of heartbeat were 
obtained [i.e., approximate entropy (ApEn), sample entropy 
(SampEn), and recurrence quantification analysis (RQA): mean 
diagonal line length (Lmean), maximal diagonal line length (Lmax), 
recurrence rate (REC), determinism (DET), and shannon entropy 
(ShanEn)]. ApEn and SampEn are typical nonlinear dynamic methods 
for quantifying the complexity and regularity of time series. The 
greater the complexity and randomness of the time series, the greater 
their values (Voss et  al., 2009; de Godoy, 2016). SampEn aims to 
provide better consistency than ApEn (Yentes et al., 2013). RQA is a 
quantitative description of the deterministic structure and complexity 
in recursive graphs that reveals the system dynamical behavior. The 
smaller the Lmean and Lmax are, the higher the complexity and 
instability of the system. The higher the REC value is, the stronger the 
similarity of system dynamics. DET is an index used to quantify the 
regularity and certainty of system dynamics, and the higher the DET 
value is, the stronger the certainty. ShanEn is a measure of signal 
complexity. The smaller the ShanEn value, the closer it is to a chaotic 
dynamic behavior (Marwan et al., 2002, 2007; Sun and Wang, 2008).

The parameters for ApEn and SampEn were set to the embedding 
dimension m = 2, delay time τ = 1 and the tolerance value r = 0.2 SD 
(SD is the standard deviation; Burioka et al., 2005; Lee et al., 2013; 
Mohseni et  al., 2022). The parameters of RQA were set to the 
embedding dimension m = 10, delay time τ = 1 and distance threshold 
r = √m SD (SD is the standard deviation of the R-R time series; 
Webber and Zbilut, 1994; Dabiré et al., 1998; Zimatore et al., 2017). 
Linear and nonlinear HRV indicators were analyzed by Kubios HRV 

Premium software (version 3.1.0, https://www.kubios.com Magi 
Kubios Oy, Kuopio, Finland; Niskanen et al., 2004).

Statistical analysis

The sample size was estimated based on a previously published 
study about the association between vagal neuroimmunomodulation 
and the NSCLC survival rate (Gidron et al., 2018), and no specific 
statistical method was used to determine sample size. We  added 
approximately 10% (n = 78) based on the Gidron et al. (2018) sample 
size (n = 71) in NSCLC patients. The normal continuous data are 
described as x ± s, the nonnormal continuous data are described as M 
[Q1 and Q3], and the counting data are described as the frequency 
and percentage. Univariate Cox regression analysis was performed to 
determine the significant prognostic factors between the included 
clinical factors and the additional factors affecting HRV [mean heart 
rate (mean HR), RR]. The optimal cut-off value for the HRV 
parameters for evaluating the overall survival of patients was obtained 
by X-Tile software (Camp et al., 2004). The event-survival curve was 
constructed by the Kaplan–Meier method to estimate the median 
overall survival. Finally, considering the correlation among HRV 
indices, we performed a multivariate Cox regression analysis for each 
HRV indicator individually with the prognostic confounding factors 
that were shown to be significant in the univariate analysis to evaluate 
the independent prognostic HRV parameters affecting NSCLC 
patients. All the data were analyzed by SPSS Statistics 25.0 (IBM 
Corp., Chicago, Illinois, United States). All analyses were two-tailed 
tests, and a p value of <0.05 was considered statistically significant.

Results

Table 1 shows the general characteristics and HRV parameters of 
the advanced NSCLC patients. A total of 78 patients diagnosed with 
advanced NSCLC were included in this study, including 21 females 
and 57 males. The mean age was 62.0 ± 9.3 years. Forty-seven patients 
(60.3%) died, and 31 patients (39.7%) survived. The range of follow-up 
time was 0.5–34.8 months, with a median follow-up time of 
21.4 months.

Univariate analysis showed that KPS and surgical history were 
significantly correlated with the overall survival of advanced NSCLC 
patients [KPS: hazard ratio = 2.430, 95% confidence interval (CI): 1.275–
4.631, p = 0.007; surgery: hazard ratio = 3.861, 95% CI: 1.383–10.778, 
p = 0.010]. In univariate analysis, the overall survival of patients with 
advanced NSCLC was not significantly associated with sex, age, BMI, 
mean HR, RR, smoking history, pathological type, radiotherapy history, 
chemotherapy history, targeted therapy history, or TNM stage (Table 2).

Univariate and multivariate analyses were performed to determine 
the correlation between heartbeat complexity and survival in patients 
with advanced NSCLC. Univariate analysis showed that there were 
significant correlations between the frequency domain parameter HF 
as well as the RQA indicators Lmax, REC, and DET and the overall 
survival of advanced NSCLC patients. Specifically, compared with the 
high-value HF group, the low-value HF group had a poorer prognosis 
(7.1 vs. 15.0 months, p = 0.016). Compared with those in the low-value 
Lmax, REC, and DET group, the NSCLC patients in the high-value 
Lmax, REC, and DET group had a poorer prognosis (Lmax: 17.1 vs. 
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TABLE 1 Basic characteristics of the non-small cell lung cancer patients enrolled.

Characteristics Values (N = 78)

Sex

  Female 21 (26.9%)

  Male 57 (73.1%)

  Age (year) 62.0 ± 9.3

  BMI (kg/m2) 23.8 ± 3.4

  Mean HR (bpm) 81.5 ± 13.7

  RR (Hz) 0.32 ± 0.08

Smoking

  No 60 (76.9%)

  Yes 18 (23.1%)

KPS

  ≤70 15 (19.2%)

  >70 63 (80.8%)

Pathological types

  Squamous cell carcinoma 18 (23.1%)

  Adenocarcinoma 56 (71.8%)

  Others 4 (5.1%)

Radiotherapy

  Without 23 (29.5%)

  With 55 (70.5%)

Chemotherapy

  Without 16 (20.5%)

  With 62 (79.5%)

Targeted therapy

  Without 34 (43.6%)

  With 44 (56.4%)

Surgery

  Without 62 (79.5%)

  With 16 (20.5%)

TNM stage

  IIIA 10 (12.8%)

  IIIB 8 (10.3%)

  IIIC 4 (5.1%)

  IVA 34 (43.6%)

  IVB 22 (28.2%)

SDNN (ms) 18.9 [11.6, 25.2]

RMSSD (ms) 10.2 [5.8, 16.1]

TP (ms2) 204 [112, 467]

LF (ms2) 37 [19, 82]

HF (ms2) 33 [8, 70]

LF/HF 1.360 [0.554, 3.645]

ApEn 1.101 [1.022, 1.171]

SampEn 1.339 ± 0.376

Lmean (beats) 15.93 [12.66, 23.58]

Lmax (beats) 325.0 [192.3, 401.0]

REC (%) 43.83 [34.05, 48.63]

DET (%) 99.24 [98.14, 99.56]

ShanEn 3.578 ± 0.461

Values are expressed as the number of patients (percentage) or mean ± SD or median [Q1, Q3]. 
BMI, body mass index; Mean HR, mean heart rate; bpm, beats per minute; RR, respiration rate; KPS, Karnofsky performance status; TNM, tumor-node-metastasis; SDNN, standard deviation 
of all normal-to-normal intervals; RMSSD, root mean square of successive differences; TP, total power; LF, low-frequency power; HF, high-frequency power; LF/HF, ratio of low-frequency 
power to high-frequency power; ApEn, approximate entropy; SampEn, sample entropy; Lmean, mean diagonal line length; Lmax, maximal diagonal line length; REC, recurrence rate; DET, 
determinism; ShanEn, Shannon entropy; SD, standard deviation; Q1, first quartile; and Q3, third quartile.
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23.6 months, p = 0.039; REC: 17.3 vs. 23.9 months, p = 0.048; and DET: 
17.2 vs. 24.1 months, p = 0.041; Table 3; Figure 1).

In multivariate analysis, the frequency domain parameter HF and 
RQA indexes REC and DET were still shown to be  important 
prognostic factors for the overall survival of patients with advanced 
NSCLC (HF: p = 0.040, hazard ratio = 2.108, 95% CI: 1.035–4.291; REC: 
p = 0.025, hazard ratio = 0.415, 95% CI: 0.192–0.896; DET: p = 0.033, 
hazard ratio = 0.432, 95% CI: 0.200–0.935). There was no significant 

correlation between Lmax and the overall survival of advanced NSCLC 
patients (p = 0.056, hazard ratio = 0.490, 95% CI: 0.236–1.017; Table 3).

Discussion

This study verified the correlation between heartbeat complexity 
and overall survival in patients with advanced NSCLC. Our study 

TABLE 2 Univariate Cox regression analysis of clinical characteristics and survival in non-small cell lung cancer patients.

Univariate analysis

Hazard ratio (95% CI) p value

Sex 0.238

  Female 0.665 (0.338, 1.309)

  Male Ref

  Age (year) 0.990 (0.959, 1.021) 0.509

  BMI (kg/m2) 0.939 (0.860, 1.027) 0.168

  Mean HR (bpm) 1.003 (0.982, 1.025) 0.782

  RR (Hz) 16.451 (0.318, 851.677) 0.164

Smoking 0.833

  No 1.078 (0.535, 2.171)

  Yes Ref

KPS 0.007

  ≤ 70 2.430 (1.275, 4.631)

  > 70 Ref

Pathological types 0.752

  Squamous cell carcinoma 1.753 (0.388, 7.917)

  Adenocarcinoma 1.510 (0.363, 6.291)

  Others Ref

Radiotherapy 0.157

  Without 0.622 (0.322, 1.201)

  With Ref

Chemotherapy 0.460

  Without 1.291 (0.656, 2.537)

  With Ref

Targeted therapy 0.134

  Without 0.629 (0.343, 1.154)

  With Ref

Surgery 0.010

  Without 3.861 (1.383, 10.778)

  With Ref

TNM Stage 0.074

  IIIA 0.404 (0.150, 1.087)

  IIIB 0.453 (0.153, 1.340)

  IIIC 0.654 (0.193, 2.216)

  IVA 0.399 (0.204, 0.781)

  IVB Ref

Bold p values indicate statistical significance (p value < 0.05). 
CI, confidence interval; BMI, body mass index; Mean HR, mean heart rate; bpm, beats per minute; RR, respiration rate; KPS, Karnofsky performance status; and TNM, tumor-node-metastasis.
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TABLE 3 Univariate and multivariate analyses of HRV variables as predictors of survival.

Median survival 
(M)

Univariate analysis Multivariate analysis

Hazard ratio 
(95% CI)

p value
Hazard ratio 

(95% CI)
p value

SDNN (ms)

  ≤ 23.5 13.6 1.412 (0.718, 2.775) 0.317 1.343 (0.680, 2.654) 0.396

  > 23.5 16.2 Ref Ref

RMSSD (ms)

  ≤ 8.9 11.3 1.413 (0.797, 2.506) 0.237 1.664 (0.911, 3.041) 0.098

  > 8.9 16.2 Ref Ref

TP (ms2)

  ≤ 67 13.3 1.502 (0.672, 3.360) 0.321 1.121 (0.485, 2.587) 0.790

  > 67 14.3 Ref Ref

LF (ms2)

  ≤ 31 11.1 1.563 (0.880, 2.775) 0.127 1.495 (0.841, 2.657) 0.170

  > 31 16.2 Ref Ref

HF (ms2)

  ≤ 5 7.1 2.382 (1.174, 4.830) 0.016 2.108 (1.035, 4.291) 0.040

  > 5 15.0 Ref Ref

LF/HF

  ≤ 4.950 14.7 0.553 (0.266, 1.146) 0.111 0.525 (0.252, 1.094) 0.085

  > 4.950 9.6 Ref Ref

ApEn

  ≤ 1.140 14.7 0.703 (0.394, 1.254) 0.232 0.711 (0.396, 1.278) 0.254

  > 1.140 11.3 Ref Ref

SampEn

  ≤ 1.620 17.7 2.114 (0.896, 4.989) 0.087 1.784 (0.750, 4.247) 0.191

  > 1.620 24.1 Ref Ref

Lmean (beats)

  ≤ 10.74 18.2 0.528 (0.236, 1.180) 0.120 0.571 (0.252, 1.294) 0.180

  > 10.74 13.3 Ref Ref

Lmax (beats)

  ≤ 195.0 23.6 0.464 (0.224, 0.961) 0.039 0.490 (0.236, 1.017) 0.056

  > 195.0 17.1 Ref Ref

REC (%)

  ≤ 33.30 23.9 0.463 (0.216, 0.993) 0.048 0.415 (0.192, 0.896) 0.025

  > 33.30 17.3 Ref Ref

DET (%)

  ≤ 97.93 24.1 0.450 (0.210, 0.967) 0.041 0.432 (0.200, 0.935) 0.033

  > 97.93 17.2 Ref Ref

ShanEn

  ≤ 3.121 18.2 0.528 (0.236, 1.180) 0.120 0.571 (0.252, 1.294) 0.180

  > 3.121 13.3 Ref Ref

Bold p values indicate statistical significance (p value < 0.05). 
CI, confidence interval; SDNN, standard deviation of all normal-to-normal intervals; RMSSD, root mean square of successive differences; TP, total power; LF, low-frequency power; HF, high-
frequency power; LF/HF, ratio of low-frequency power to high-frequency power; ApEn, approximate entropy; SampEn, sample entropy; Lmean, mean diagonal line length; Lmax, maximal 
diagonal line length; REC, recurrence rate; DET, determinism; and ShanEn, Shannon entropy.
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showed that the frequency domain parameter HF and RQA indexes 
Lmax, REC, and DET were significantly correlated with the overall 
survival of advanced NSCLC patients. In multivariate analysis, the 
frequency domain parameters HF and RQA indexes REC and DET 
were independently correlated with the overall survival of advanced 
NSCLC patients after adjusting for confounders.

The autonomic nervous system includes the sympathetic nervous 
system and the parasympathetic nervous system, which can 
antagonize or cooperate to maintain the normal physiological 
activities of the body (Schwartz and De Ferrari, 2011). The sympathetic 
nerve can regulate the pathological process of tumor growth (Coelho 
et al., 2017) and metastasis (Sloan et al., 2010), and the vagus nerve 
can affect tumor progression through systemic anti-inflammatory 
pathways (Hajiasgharzadeh et  al., 2019) and the inhibition of 
sympathetic activity (Saku et al., 2014). At present, there are a variety 
of detection techniques to reflect autonomic function, among which 
HRV is a non-invasive and easily accessible detection method that has 
been used in clinical settings. It provides effective help for 
understanding the relationship between autonomic function and 
prognostic information in patients with malignant tumors (De Couck 
et al., 2018; Kloter et al., 2018). Previous studies revealed that there is 
a significant positive correlation between higher vagal activity and 
better prognosis in NSCLC patients (De Couck et al., 2013; Gidron 
et  al., 2018). For example, Gidron et  al. (2018) confirmed the 
relationship between neuroimmunomodulation (i.e., the ratio of 
RMSSD to CRP) and the NSCLC survival rate. The results showed that 
compared with those in the lower neuroimmunomodulation group, 
the NSCLC patients in the higher neuroimmunomodulation group 

had a better prognosis (475.2 vs. 285.1 days, p < 0.05). Therefore, 
Gidron et al. (2018) proposed that vagal regulation of inflammation 
may be a new biomarker for the prognosis of patients with NSCLC.

Time domain analysis is the simplest and easiest method to study 
HRV and can provide relatively clear physiological information, which 
is easily accepted by clinicians. The published literature suggests that 
SDNN and RMSSD are significantly associated with the overall 
survival of patients with advanced malignant tumors (Wang 
Y. M. et al., 2013; De Couck et al., 2016; Wu et al., 2022). For example, 
Wang Y. M. et  al. (2013) showed that SDNN is an independent 
prognostic factor for the overall survival of patients with brain 
metastasis. De Couck et al. (2016) found that SDNN can significantly 
predict the overall survival in patients with advanced pancreatic 
cancer. In addition, our previous study showed that there is an 
independent association between RMSSD and overall survival in LC 
patients with brain metastasis (Wu et  al., 2022). Although most 
previous studies showed that vagal activity based on linear HRV has 
a prognostic effect on cancer patients, a few studies found that the 
change in linear HRV is not an appropriate marker for predicting 
overall survival in advanced NSCLC patients. For instance, Kim et al. 
(2015) found that although there was a significant difference in the 
median survival between advanced NSCLC patients with 
SDNN ≥ 20.0 ms and those with SDNN < 20.0 ms (213 vs. 155 days, 
p = 0.029), SDNN was not an independent prognostic factor for overall 
survival in patients with advanced NSCLC. Similar to the study of 
Kim et  al. (2015), our study found that compared with advanced 
NSCLC patients in the low-value SDNN or RMSSD group, patients in 
the high-value SDNN or RMSSD group had a better prognosis 

FIGURE 1

Kaplan–Meier survival curves for patients stratified by HF, Lmax, REC, and DET.
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(SDNN: 13.6 vs. 16.2 months; RMSSD: 11.3 vs. 16.2 months). However, 
SDNN and RMSSD were not independent prognostic factors for the 
overall survival of advanced NSCLC patients. This may be because the 
22 patients with stage III NSCLC in this study received more active 
antitumor therapy (such as radiotherapy or surgery). While antitumor 
therapy successfully reduces the tumor load, it may mask the effect of 
autonomic function on patient prognosis to some extent, which might 
weaken the evaluation effect of the autonomic nervous system 
(investigated by linear HRV parameters; De Couck et al., 2018). Some 
studies have been conducted to preliminarily investigate the short-
term effect of different antitumor treatments on linear HRV 
parameters (Hoca et al., 2012; Hansen et al., 2013; Stachowiak et al., 
2018). It is not clear whether these treatments have short-term or 
long-term effects on nonlinear HRV parameters.

Frequency domain analysis is not only easy to implement but also 
a relatively accurate method to measure the regulatory state of the 
autonomic nervous system. Previous studies have indicated that the 
higher frequency domain parameter HF in patients with recurrent or 
metastatic breast cancer is closely related to their longer overall 
survival (Giese-Davis et al., 2015). Chiang et al. (2013) showed that 
there was a significant correlation between the frequency domain 
parameter HF of cancer patients without lung cancer and their 7-day 
survival rate. In addition, another study by Chiang et al. (2010) found 
that HF was significantly associated with prognosis in patients with 
advanced hepatocellular carcinoma. Similar to their results, the 
univariate analysis in our study revealed that there was a significant 
correlation between HF and the overall survival of advanced NSCLC 
patients (p = 0.016). In multivariate analysis, the correlation between 
overall survival and HF in patients with advanced NSCLC remained 
significant (p = 0.040, hazard ratio = 2.108, 95% CI: 1.035–4.291). HF 
reflects vagal activity (Vanderlei et  al., 2009; Lombardi and Stein, 
2011), indicating that vagal tone has a certain predictive value in the 
overall survival of patients with advanced NSCLC.

It is worth noting that most of the published studies use classical 
linear indexes (time domain or frequency domain) based on HRV 
analysis, reflecting the regulation of heart rate by sympathetic and 
parasympathetic nerves (De Couck et al., 2018; Kloter et al., 2018). 
Previous studies have also preliminarily explored the relationship 
between several nonlinear HRV parameters and the prognostic 
information of patients with malignant tumors (Bettermann et al., 
2001; Shi et al., 2019; Escutia-Reyes et al., 2021; Wu et al., 2021). For 
example, Shi et al. (2019) found that the increase in irregularity and 
the decrease in complexity of heartbeat time series are significantly 
correlated with higher carcinoembryonic antigen levels in patients 
with gastric cancer. Bettermann et al. (2001) showed that compared 
with breast cancer patients without metastasis, the heartbeat 
complexity (reflected by ApEn) of breast cancer patients with 
metastasis was clearly lower. Escutia-Reyes et al. (2021) showed that 
nonlinear HRV parameters, such as the SampEn, were significantly 
different between a breast cancer survivor group and a cancer-free 
female control group. In our previous study exploring the correlation 
between short-term HRV and TNM staging in patients with breast 
cancer, the results showed that the nonlinear HRV parameters ApEn 
and SampEn, which characterize heartbeat complexity, were not 
significantly different between tumor stages (Wu et al., 2021). In this 
study, there was no significant correlation between ApEn or SampEn 
and the overall survival of advanced NSCLC patients (p > 0.05). 
Therefore, we strongly recommend that more background variables, 

such as type of cancer or severity of disease, and more entropy analysis 
parameters, such as distribution entropy, fuzzy entropy, permutation 
entropy, or multiscale entropy, can be included in future research to 
obtain more valuable prognostic information.

Because the RQA can be applied to short, nonstationary and high-
noise signal sequences of the R-R interval, where there is not a strict 
requirement for the length of data, it has been used in many studies 
on heart rate dynamics (Mohebbi and Ghassemian, 2011; Acharya 
et al., 2014; Li et al., 2022). For example, Acharya et al. (2014) showed 
that Lmean, Lmax, REC, and DET in patients with coronary artery 
disease are significantly higher than those in healthy populations. 
Mohebbi and Ghassemian (2011) showed that compared with the 
ECG signals that are distant from paroxysmal atrial fibrillation, RQA 
indexes, such as Lmean, Lmax, REC, and ShanEn with the ECG 
signals that are before paroxysmal atrial fibrillation were significantly 
higher. Li et  al. (2022) showed that higher Lmax is significantly 
associated with shorter overall survival in LC patients with brain 
metastasis. Similar to the above studies, our results showed that the 
RQA indexes REC and DET are independent prognostic factors for 
the overall survival of advanced NSCLC patients (p < 0.05), indicating 
that the increase in REC and DET, that is, the decrease in heartbeat 
complexity, is an independent risk factor for poor prognosis in 
patients with advanced NSCLC. In addition, in our study, compared 
with the low-value Lmax group, advanced NSCLC patients in the 
high-value Lmax group had a poorer prognosis (17.1 vs. 23.6 months). 
However, Lmax only tended to be significantly correlated with overall 
survival after adjusting for confounders (p = 0.056, hazard ratio = 0.490, 
95% CI: 0.236–1.017), which may be related to the relatively small 
sample size in this study. Therefore, the results of the current research 
still needs to be confirmed with a long-term follow-up prospective 
study with further expansion of the sample size. The results of this 
study may provide new evidence for the role of heartbeat complexity 
in the prognosis of cancer patients. However, exact physiopathological 
mechanisms of nonlinear HRV parameters have yet to be  fully 
elucidated in the prognosis of cancer patients. Vagally mediated linear 
HRV indicators were correlated with levels of inflammatory markers 
(Williams et al., 2019). We suggest to compare correlations between 
linear and nonlinear HRV parameters with inflammation markers in 
future studies, and this may provide some hints as to the better 
prognostic value of nonlinear HRV indicators in cancer patients.

Limitations

One major limitation of our study is the heterogeneity of 
antitumor therapy modalities. All patients with stage III or IV NSCLC 
were enrolled in this study, and they received different antitumor 
treatments (such as radiotherapy or surgery). It is not clear whether 
these treatments have short-term or long-term effects on heartbeat 
complexity. Second, our sample size was too small to allow sufficiently 
powered statistical analysis to be performed. With a small sample size, 
the performance of too many statistical tests without any correction 
of the p-level maybe causes risking a type-1 error. Could it be that 
other issues may have led to more prognostic power seen in the 
nonlinear HRV parameters such as type of cancer or severity of 
disease, etc. factors that may affect more the linear HRV parameters 
and possibly less the nonlinear HRV parameters? More studies are 
needed to prove this speculation. Therefore, we strongly recommend 
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expanding the sample size to conduct additional research on 
these differences.

Conclusion

This study reveals that the RQA parameters REC and DET, which 
characterize heartbeat complexity, are independently related to the 
overall survival of patients with advanced NSCLC. This finding 
indicates that heartbeat complexity based on RQA may be used as a 
new prognostic indicator for advanced NSCLC patients and may 
complement the traditional time domain and frequency 
domain indicators.
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Introduction: The function of the autonomic nervous system (ANS) is crucial in 
the development of intradialytic hypotension (IDH). This study introduced the 
entropy of heart rate variability (HRV) and skin sympathetic nerve activity (SKNA) 
to provide a complementary nonlinear and dynamic perspective for evaluating 
ANS function concerning IDH.

Methods: 93 patients undergoing hemodialysis (HD) were enrolled, and the 
baseline data, electrocardiogram (ECG), and SKNA were collected. The patients 
were separated into the IDH and nonIDH groups based on the thresholds, which 
were characterized as reductions in systolic blood pressure (SBP) of at least 20 
mm Hg or mean arterial pressure (MAP) of at least 10 mm Hg. We developed a 
logistic regression model for IDH after analyzing the changes in the time domain, 
frequency domain, the entropy of HRV, and SKNA indices during HD.

Results: After 4-h HD, the detected results for heart rate, the ratio of low frequency 
and high frequency (LF/HF), and average SKNA (aSKNA) all increased in both groups. 
Nine out of the ten HRV indices and aSKNA in the nonIDH group were higher than 
those in the IDH group at most moments. aSKNA was positively correlated with heart 
rate (p = 0.0001) and LF/HF (p = 0.0005) in the nonIDH group, while the correlation 
disappeared in the IDH group, which indicated a worse ANS response in IDH patients. 
The logistic regression model exhibited the results of initial SBP [odds ratio (OR) 1.076; 
p = 0.001], and the difference between the last and first segments (DLF) of heart rate 
[OR 1.101; p =0.012] and LF/HF [OR 0.209; p =0.034], as well as the extreme value of 
the difference between other segments and the first segments (EOF) of aSKNA [OR 
2.908; p =0.017], which were independent indicators for IDH.

Discussion: The new nonlinear and dynamic assessment perspectives provided by 
the entropy of HRV and SKNA help to distinguish differences in ANS patterns between 
IDH patients and nonIDH patients and have the potential to be used in clinical 
monitoring for HD patients.
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ECG, skin sympathetic nerve activity, entropy, intradialytic hypotension, heart rate 
variability, autonomic nervous system, hemodialysis
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1. Introduction

Intradialytic hypotension (IDH), as one of the main complications 
during hemodialysis (HD), is related to several adverse prognostic events, 
including inadequate dialysis dose (Ronco et  al., 2000), end-organ 
ischemia (MacEwen et  al., 2017; Seong et  al., 2018), increased 
cardiovascular events (Stefánsson et al., 2014) and mortality (Shoji et al., 
2004). It is crucial to have a throughout understanding of the physiological 
mechanism of IDH to effectively prevent and treat the condition.

During HD, as intravascular volume decreases, compensatory 
mechanisms are activated to counter the tendency to fall in blood 
pressure (BP) by increasing the plasma refill, cardiac output, and 
peripheral vascular resistance (Chou et al., 2017). IDH is the consequence 
of ultrafiltration exceeding plasma replacement (Davenport, 2022). The 
autonomic nervous system (ANS), comprising the sympathetic and 
parasympathetic nervous systems, is essential to this process. The 
sympathetic nervous activity (SNA), vascular resistance, and heart rate 
are found to increase in patients without IDH during HD, while 
decreasing during IDH episodes in IDH-prone patients, which indicates 
that insufficient sympathetic response contributes to IDH (Converse 
et  al., 1992). Therefore, the accurate assessment of ANS patterns 
contributes to an in-depth understanding of IDH.

Heart rate variability (HRV) is a useful and noninvasive method 
for evaluating ANS function, which represents the changes in 
continuous heartbeats (Heart rate variability, 1996). Time and 
frequency domain analysis of HRV is widely utilized to assess IDH in 
patients with HD (Pelosi et al., 1999; Chang et al., 2016; Park et al., 
2019). Nevertheless, the heart is a nonlinear dynamic system, and 
these linear statistical measures may mask the abnormal nonlinear 
information on heart rhythm (Denton et al., 1990). Entropy is used 
to evaluate the regularity between time intervals, where increased 
regularity tends to indicate a defect in the regulatory system (Mayer 
et al., 2014). Therefore, we introduced entropy methods to describe 
the relationship between regularity changes in heartbeats and 
ANS regulation.

Skin sympathetic nerve activity (SKNA) is a recent and high-
frequency method for the noninvasive detection of SNA, which is 
proved to be well correlated with stellate ganglion activity and valid in 
related studies of diseases with abnormal SNA (Jiang et  al., 2015; 
Doytchinova et al., 2017; He et al., 2020; Kusayama et al., 2020a). The 
cardiac sympathetic nerve alternates at the stellate ganglion, and its 
postganglionic fibers control cardiac activity. Thus stellate ganglion 
activity is indicative of sympathetic activity. SKNA provides a new 
perspective for evaluating SNA with the second-by-second temporal 
resolution. It can be applied to sinus node dysfunction scenarios, which 
are unavailable with HRV (Kusayama et al., 2020b). In an anesthesia 
injection study, SKNA was found to be superior to HRV in describing 
the inhibition of SNA (Xing et al., 2022). SKNA can be used as a more 
intuitive way to describe SNA, which complements the HRV’s 
description of the ANS function.

To research the influence of the ANS on IDH, especially the SNA, 
we recruited patients to compare the ANS patterns between those who 
experienced IDH and those who did not during HD. A wearable device 
was applied to conveniently and noninvasively acquire physiological 
signals from HD patients. To the best of our knowledge, our study is the 
first to implement the methods for the entropy of HRV and SKNA to 
provide the nonlinear and dynamic perspective of the ANS function on 
IDH. Besides, we  conducted correlations between SKNA and HRV 
indices to explore the mapping relationship. Moreover, the multivariate 

model was established by binary logistic regression based on baseline 
data, HRV, and SKNA indicators to determine the risk factors of IDH.

2. Methods

2.1. Participants

The study enrolled 93 patients who underwent maintenance HD at 
the First Affiliated Hospital of Nanjing Medical University between 
August and November 2020. All participants in this study were over the 
age of 18 and had been receiving HD treatment for at least 3 months, with 
each session lasting 4 h, three times a week. Patients who had a previous 
history of arrhythmia, cerebrovascular disease, heart valve disease, acute 
coronary syndrome, pacemaker installation, severe anemia, or severe 
infection were excluded. Written informed consent was obtained from all 
subjects before they participated in the study. To protect patients’ privacy, 
all data were anonymized during the analysis procedure. The study was 
conducted after receiving approval from the Ethics Committee of the First 
Affiliated Hospital of Nanjing Medical University.

2.2. Baseline data

The baseline data were collected, including age, sex, body mass 
index, HD duration, ultrafiltration, the ratio of ultrafiltration and 
weight, systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) before HD. The measurement of systolic blood pressure (SBP) 
and diastolic blood pressure (DBP) was conducted before HD, as the 
baseline, and every hour after the start of HD.

2.3. Blood pressure analysis

We used the four indicators of SBP, DBP, mean arterial pressure 
(MAP), and pulse pressure (PP) to comprehensively evaluate BP in 
HD. MAP was determined by adding 1/3 SBP and 2/3 DBP, while PP 
was determined as SBP minus DBP.

There is no widely accepted definition for the condition in previous 
studies on IDH. We defined IDH, referring to the K/DOQI Clinical 
Practice Guidelines (K/DOQI Clinical Practice Guidelines for 
Cardiovascular Disease in K/DOQI Workgroup, 2005), as a reduction in 
SBP of at least 20 mm Hg or a reduction in MAP of at least10 mm Hg. To 
be clear, we omitted the clinical symptoms in our study, compared to the 
definition in the guidelines. On one hand, it is possible that symptoms 
and treatments are unnecessarily linked to end-organ damage or 
hemodynamic instability, which could be  deceptive (Assimon and 
Flythe, 2017). On the other hand, we intended to pay more attention to 
the changes in objective BP values to uncover the relevant physiological 
changes in patients with asymptomatic or latent IDH. The subjects with 
an SBP reduction of at least 20 mmHg or a MAP reduction of at least 
10 mmHg were divided into the IDH group. Otherwise, they were 
divided into the nonIDH group.

2.4. Acquisition of ECG and SKNA

Our team developed a portable, noninvasive, and high-frequency 
electrophysiological signal acquisition device with a sampling 
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frequency of up to 16 kHZ, input noise as low as 0.1μVrms, and size of 
7 mm * 8 mm * 2 mm, which can simultaneously collect ECG and 
SKNA signals (Xing et al., 2022). Before this, SKNA had not been 
acquired by proprietary acquisition equipment. In comparison with 
the reference system, the acquired signal quality of the device was 
verified to be effective and reliable (Xing et al., 2020, 2022). In this 
study, we used this device to acquire physiological signals from HD 
patients. Subjects were required to remain in the supine position and 
avoid unnecessary movement during HD to improve signal quality, 
while ECG and SKNA signals were simultaneously measured by the 
devices for 4 h (Figure 1A). The sampling frequency was 4 kHz. Three 
wet electrodes were applied to the skin of each subject to monitor 
single lead signals.

2.5. Preprocessing of ECG and SKNA

ECG and SKNA signals were obtained through a 150 Hz low-pass 
filter and a 500 to 1,000 Hz band-pass filter, respectively (Figure 1B). 
We  introduced the preprocessing processes of noise reduction 
(Pandit et al., 2017), R-peak detection (Wang et al., 2022), and signal 
quality assessment (Liu et al., 2019) to ensure the reliability of RR 
intervals. Furthermore, RR intervals that changed more than 20% 
from the previous interval or did not fall within the range of 0.375 s 
to 2 s were removed. Since SKNA signals were not rhythmic like ECG 
signals, the preprocessing of SKNA signals mainly considered the 
removal of outliers. The interquartile range and an absolute value 
threshold of 80 μV were used to identify outliers. All values that were 
not in the range of [Q1-1.5 * IQR, Q3 + 1.5 * IQR] were removed, 
where Q1 was the lower quantile and Q3 was the upper quantile. 
Values outside the absolute value threshold were eliminated. The 
average SKNA (aSKNA) index was determined by computing the 
mean of the rectified SKNA signals. ECG and SKNA signals were 
divided into 5 min and 30 min windows, respectively, with no overlap 
between windows.

2.6. HRV analysis

HRV analysis was performed from three perspectives: the time 
domain, frequency domain, and nonlinear analysis. The indices of the 
time domain analysis included the standard deviation of the RR 
intervals (SDNN), the square root of the mean squared differences of 
subsequent RR intervals (RMSSD), and the proportion obtained by 
dividing the number of interval differences of subsequent RR intervals 
greater than 50 ms by the overall number of the RR intervals (PNN50). 
The indices of the frequency domain analysis included low frequency 
(0.04 to 0.15 Hz, LF), high frequency (0.15 to 0.40 Hz, HF), the ratio 
of low frequency to high frequency (LF/HF), and the ratio of low 
frequency to the sum of low frequency and high frequency (LF/
LF + HF). The nonlinear analysis mainly considered the complexity of 
RR intervals from the perspective of entropy. The indices of the 
nonlinear analysis included approximate entropy (ApEn) (Pincus, 
1995), sample entropy (Richman and Moorman, 2000; Lake et al., 
2002), and fuzzy measure entropy (FuzzyMEn) (Liu et al., 2013). The 
parameters of ApEn and SampEn were chosen as the dimension m = 2 
and the tolerance r = 0.2. The parameters of FuzzyMEn were chosen 
as the dimension m = 2, the local threshold rl = 0.2, the global threshold 
rg = 0.2, the local weight of sequence segments’ similarity nl = 3, and the 
global weight of sequence segments’ similarity ng = 2.

2.7. Statistical analysis

All data statistics were performed based on SPSS and 
MATLAB. Shapiro–Wilk test and Kolmogorov–Smirnov test were 
applied to determine the normality of the data. Continuous data with 
normal distribution were given as mean ± standard deviation (SD). 
Otherwise, data were summarized by median (interquartile range 
[IQR]). Categorical data was given as frequency and percentage. The 
Levene test was conducted to test the homogeneity of variance. 
Independent-sample Student’s t-test, Mann–Whitney U test, and 
Chi-square test were performed to describe the differences between 

FIGURE 1

Schematic of the physiological signal acquisition process and data processing. (A) illustrates the scenario of signal acquisition during hemodialysis (HD). 
(B) shows the electrocardiogram (ECG) and skin sympathetic nerve activity (SKNA) signals separated from the raw signals, respectively.
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the two subgroups. Student paired t-tests and Wilcoxon signed-rank 
test were utilized to explore the changes of physiological data in 
different periods within the group. Pearson correlation coefficient, 
Spearman correlation coefficient, and least square method were used 
to analyze the correlation. To investigate the correlation between 
aSKNA and other indicators, the mean values of segments 1 and 2, 
12 and 13, 24 and 25, 35 and 36, 47, and 48 of each index were 
computed based on the 5 min results, corresponded with the five 
measurements of SBP and DBP. Two-sided p < 0.05 was regarded 
as significant.

Binary logistic regression was employed for univariate and 
multivariate analyses to explore the independent risk factors of 
IDH. In the multivariate analysis, the indicators with p < 0.2 in the 
univariate analysis were included. To more comprehensively explore 
the underlying association between the indicators of physiological 
signals and IDH, this study processed the indicators from three 
dimensions to build multivariate models. Using the 5 min results, 
we calculated the difference between the last and first segments 
(DLF), the extreme value of the difference between other segments 
and the first segments (EOF), and the extreme value of the 
difference between adjacent segments (EDA). It should be stated 
that after each calculation of EOF and EDA, the maximum and 
minimum values were obtained. In univariate analysis, we included 
the maximum and minimum values of EOF and EDA, respectively, 
and consider the corresponding extreme values with smaller 
p-values to be included in the multivariate model. To assess the 
model goodness of fit, the accuracy of the model, the Akaike 
Information Criterion (AIC), and Omnibus Tests of Model 
Coefficients were used.

3. Results

3.1. Participant information

In this study, among the total of 93 patients, 66 subjects had IDH, 
and 27 subjects did not have that, with an incidence rate of 71.0%. 
Table 1 displays the baseline data of the total and the two subgroups. 
The patients in the IDH group were older than those in the nonIDH 
group (65 [53.3, 69] vs. 54.15 ± 3.1, p = 0.039), with higher initial SBP 
(150.7 ± 2.1 vs. 133.6 ± 2.8, p < 0.001). Other characteristics were 
comparable between the two subgroups, and no significant differences 
were found. The mean initial SBP was above the 140 mm Hg threshold 
for hypertension in the IDH group, whereas the mean initial SBP was 
below this threshold in the nonIDH group.

3.2. Changes in BP during HD

The changes in BP indicators during HD in the subgroups are 
shown in Figure 2. The initial SBP, DBP, MAP, and PP were higher in 
IDH patients than those in patients without nonIDH, and the 
differences between the other three indicators were significant except 
for DBP. On the contrary, the final SBP, DBP, and MAP in IDH 
patients were lower than those in patients without nonIDH, and the 
differences in the other three indices were significant except PP. In 
the IDH group, all four indicators showed a significant decrease 

during the first 3 hours of HD, but there were no significant changes 
observed during the last hour, with only slight fluctuations. In the 
nonIDH group, there was no obvious trend in the changes of 
BP-related indicators during HD, and the changes were relatively 
stable, except for the cases of significant rises in DBP and MAP 
during the first hour. From the perspective of slope changes, the 
indicators changed most sharply during the first hour, and the degree 
of change weakened gradually in each subsequent hour.

3.3. Changes in heart rate, HRV, and SKNA 
indices during HD

Figure 3 illustrates the comparison of HRV and SKNA indices, as 
well as heart rate, during HD between the two subgroups. The heart 
rate in IDH patients was significantly lower than that in patients 
without nonIDH at the beginning of HD, gradually increased during 
HD, and was comparable to that of the nonIDH group at the end of 
HD (Figure 3A). Among the 10 HRV indices in the IDH group, 7 
indicators [SDNN, RMSSD, LF, HF, LF/HF, LF/(LF + HF), SampEn] 
were lower than those of the nonIDH group. At most moments, 
PNN50 and ApEn were also lower than those of the nonIDH group, 
while only FuzzyMEn was higher than those of the nonIDH group at 
most moments. The values of SDNN, RMSSD, and LF/HF increased, 
while FuzzyMEn decreased in both subgroups. PNN50, LF, HF, LF/
(LF + HF), ApEn, and SampEn rose in the nonIDH group and reduced 
in the IDH group. LF, LF/HF, LF/(LF + HF), ApEn, and SampEn 
showed good discrimination effects between the two subgroups 
(Figures 3B-K). For SKNA, aSKNA in the IDH group was lower than 
that in the nonIDH group, but there was no statistical difference 
between the two subgroups at each segment. Besides, aSKNA was 
elevated at end-HD in both groups.

TABLE 1 Baseline data of the total and the two subgroups.

Total 
N = 93

IDH 
N = 66

nonIDH 
N = 27

p value

Age (year) 62.0[50.0, 

69.5]

65.0[52.5, 

69.3]

54.2 ± 3.1 0.039

Male (n, %) 62 (66.7) 47 (71.2) 15 (55.6) 0.146

Body mass 

index (kg/m2)

22.9 ± 0.4 22.8 ± 0.4 22.1[20.4, 24.4] 0.666

HD duration 

(year)

3.0[1.4, 6.0] 3.0[1.8, 5.0] 3.0[1.0, 7.0] 0.682

Ultrafiltration 

(kg)

2.6 ± 0.1 2.5 ± 0.1 2.8 ± 0.2 0.293

Ultrafiltration/

Weight (%)

4.1 ± 0.1 3.9 ± 0.2 4.4 ± 0.3 0.155

Pre-HD SBP 

(mm Hg)

145.7 ± 1.9 150.7 ± 2.1 133.6 ± 2.8 <0.001

Pre-HD DBP 

(mm Hg)

78.3 ± 1.2 79.1 ± 1.4 76.4 ± 2.4 0.331

HD, hemodialysis; IDH, intradialytic hypotension; SBP, systolic blood pressure; DBP, 
diastolic blood pressure. p values for variables with p<0.05 are bolded, indicating a 
significant difference between the two subgroups of indicators.
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3.4. Correlation analysis between aSKNA 
and other indices

We examined the correlation between aSKNA and the other 
physical indicators: SBP, heart rate, and HRV indices in the subgroups, 
respectively (Figure 4). As it can be seen, there was no correlation 
between SBP and aSKNA in the nonIDH group, but there was a 
negative correlation (r = −0.1961, p = 0.0155) in the IDH group 
(Figures  4A,M). A moderate correlation was observed between 
aSKNA and heart rate in the nonIDH group (r = 0.3584, p = 0.0001), 
but no correlation in the IDH group (Figures 4B,N). Interestingly, the 
HRV indices of the time domain and entropy related to aSKNA in the 
two subgroups are completely complementary. SDNN (r = 0.1718, 
p = 0.0362), RMSSD (r = 0.1778, p = 0.0350), PNN50 (r = 0.2033, 
p = 0.0176), ApEn (r = 0.2301, p = 0.0042) and SampEn (r = 0.2086, 
p = 0.0097) were all positively correlated with aSKNA in the IDH 
group, while none of these parameters were correlated with aSKNA in 
the nonIDH group. FuzzyMEn (r = −0.3947, p < 0.0001) was correlated 
with aSKNA in the nonIDH group and had no correlation in the IDH 
group. For parameters in the frequency domain, except LF/HF 
(r = 0.3307, p = 0.0005) and LF/(LF + HF) (r = 0.3085, p = 0.0010) in the 

nonIDH group, which were positively correlated with aSKNA, there 
was no correlation in other cases.

3.5. Establishment of IDH risk factor model

Binary logistic regression was utilized to establish models. Firstly, 
univariate analysis was used to analyze the influence of baseline data 
on IDH. The results of the univariate analysis using the baseline data 
are reported in Table 2. Among these characteristics, variables with 
p < 0.2 in the univariate analysis, including age, sex, ultrafiltration/
weight, and SBP before HD, were integrated into the 
multivariate analysis.

Then, to better evaluate the impact of HRV and SKNA indicators 
on IDH, we  processed the indicators in three different ways and 
obtained the results of DLF, EOF, and EDA. The results of the 
univariate models and multivariate models using these calculated 
variables are listed in Table 3. For HRV indices, DLF showed that most 
HRV indicators were integrated into the multivariate analysis, and the 
multivariate model performed best, with the highest accuracy (77.4) 
and lowest AIC (274.268). By contrast, the minimal values of EOF and 

FIGURE 2

The changes in blood pressure (BP) indicators during hemodialysis (HD) in the subgroups. (A) systolic blood pressure (SBP), (B) diastolic blood pressure 
(DBP), (C) mean arterial pressure (MAP), (D) pulse pressure (PP). The red and blue lines stand for the IDH group and nonIDH group, respectively. ‘#’ and 
‘+’ represent statistically significant changes per hour in the IDH group and nonIDH group, respectively. ##p < 0.001, #p < 0.05, +p < 0.05. ‘*’ shows 
statistically significant differences between two subgroups in the same period. **p < 0.001, *p < 0.05. Error bars represent the standard error of the mean 
(SEM).
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EDA for aSKNA were statistically significant in univariate analysis and 
were included in subsequent multivariate analysis.

Finally, the baseline data and SKNA indices with p < 0.2 in the 
univariate analysis and HRV indices from the HRV multivariate 
Model 1 were integrated into the multivariate model for comprehensive 
analysis. Five models with different combinations of variables are 
reported in Table 4. Compared with model 1, models 2, 3, and 4 were 
optimized by adding HRV and SKNA parameters. Model 3 had the 
highest accuracy (84.9) and lowest AIC (250.356), which was also 
superior to the HRV multivariate Model 1 (Table 3). We found that 
higher SBP before HD [odds ratio (OR) 1.076; 95% confidence 
interval (CI) 1.031–1.124, p = 0.001], heart rate-DLF [OR 1.101; 95% 
CI 1.022–1.187, p = 0.012], and aSKNA-EOF [OR 2.908; 95% CI 
1.210–6.989, p = 0.017], and lower LF/HF-DLF [OR 0.209; 95% CI 
0.049–0.885, p = 0.034] were four independent indicators for IDH 
(Table 5).

4. Discussion

Time and frequency domain analysis of HRV was widely utilized 
in previous IDH-related studies. However, this traditional method 
ignores the nonlinear dynamical information on heart rate (Denton 
et al., 1990) and lacks a more intuitive description of SNA (Kusayama 
et al., 2020b). We implemented the methods for the entropy of HRV 
and SKNA to explore the physiological mechanism of IDH, which 

described the nonlinear and dynamic changes of the ANS in IDH. Two 
distinct response patterns of the ANS during HD were observed in the 
two subgroups, and the IDH group showed worse ANS activity and 
ability to cope with the stimulation. Higher initial SBP, the DLF of 
heart rate, and the EOF of aSKNA, as well as the lower DLF of LF/HF 
were found to be independent indicators for IDH.

4.1. ANS patterns revealed by HRV indices

The overall level of HRV indices, excluding FuzzyMEn, was lower 
in the IDH group than that in the nonIDH group. Reduced HRV is a 
remarkable predictor of symptoms and death of a wide broad 
spectrum of diseases, especially cardiovascular diseases (Sessa et al., 
2018; Fang et al., 2020). LF/HF, which describes the balance of SNA 
and parasympathetic nervous activity (PNA), increased in both 
subgroups, consistent with the previous study (Chang et al., 2016; Park 
et al., 2019). However, the same outcomes indicate different ANS 
patterns, mainly due to increased LF in nonIDH patients and 
decreased HF in IDH patients. Lower HF and reduced HF show 
suppressed PNA in the IDH group, which also points to a poor cardiac 
prognosis (Algra et al., 1993).

Moreover, inconsistent interpretations of indices in previous 
studies affected the credibility of HRV. LF was initially interpreted to 
characterize SNA. Nonetheless, accumulating evidence demonstrates 
that LF represents a nonlinear interaction between SNA and PNA 

FIGURE 3

The comparison of heart rate variability (HRV) and skin sympathetic nerve activity (SKNA) indices, as well as heart rate, during hemodialysis (HD) 
between the two subgroups. (A) heart rate, (B) the standard deviation of the RR intervals (SDNN), (C) the square root of the mean squared differences 
of subsequent RR intervals (RMSSD), (D) the proportion derived by dividing the number of interval differences of subsequent RR intervals greater than 
50 ms by the overall number of the RR intervals (PNN50), (E) low frequency (LF), (F) high frequency (HF), (G) LF/HF ratio, (H) LF/(LF + HF) ratio, (I). 
approximate entropy (ApEn), (J) sample entropy (SampEn), (K) fuzzy measure entropy (FuzzyMEn), (L) the average SKNA (aSKNA). The red and blue 
lines represent the IDH and nonIDH groups, respectively. ‘*’ shows statistically significant differences between two subgroups in the same period. 
**p < 0.001, *p < 0.05. Error bars represent the standard error of the mean (SEM).
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(Billman, 2013; Chang et  al., 2016). Although LF/HF indirectly 
represents the intensity of SNA through the balance of ANS, when the 
ANS function is weakened to a certain extent, LF/HF will lose its 
significance (Billman, 2013). This hypothesis is confirmed by the 
evidence that LF/HF and aSKNA were positively correlated in the 

nonIDH group, but this correlation disappeared in the IDH group 
with weaker ANS function. Consequently, in the assessment of 
patients with impaired ANS function, such as those with IDH, HRV 
may not provide an accurate evaluation of SNA, and the obtained 
results should be interpreted with caution.

FIGURE 4

The correlation between the average of skin sympathetic nerve activity (aSKNA) and other physical indicators: systolic blood pressure (SBP), heart rate, 
heart rate variability (HRV) indices in the intradialytic hypotension (IDH) group and nonIDH group. (C,O) the standard deviation of the RR intervals 
(SDNN); (D,P) the square root of the mean squared differences of subsequent RR intervals (RMSSD); (E,Q) the proportion derived by dividing the 
number of interval differences of subsequent RR intervals greater than 50 ms by the overall number of the RR intervals (PNN50); (F), (R) low frequency 
(LF); (G,S) high frequency (HF); (H,T) LF/HF ratio; (I,U) LF/(LF + HF) ratio; (J,V) approximate entropy (ApEn); (K,W) sample entropy (SampEn); (L,X) fuzzy 
measure entropy (FuzzyMEn). (A) to (L) represent the results of the nonIDH group, and (M) to (X) represent the results of the IDH group. The first rows 
of the figures are titled regression equations obtained by the least squares method, and the second rows are titled correlation coefficients and p values.
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4.2. Evaluation of entropy and SKNA during 
HD

ApEn and SampEn and FuzzyMEn describe the regularity of RR 
intervals. ApEn is used to address short-time noisy signals, with 
strong robustness (Pincus, 1991). SampEn solves the self-matching of 
the template in ApEn and is less dependent on data length (Richman 
and Moorman, 2000). FuzzyMEn introduces the fuzzy measure of 
variable similarity and considers both local and global similarity 
comprehensively to have better performance in short-time series 

processing (Liu et al., 2013). The lower values of ApEn and SampEn 
in the IDH group exhibit that patients who had higher regularity of 
heart rate may be prone to a higher risk of cardiovascular diseases 
(Fleisher et al., 1993; Mäkikallio et al., 1998; Rajendra Acharya et al., 
2006; Shin et al., 2006). Besides, it was found that ApEn and SampEn 
showed better discrimination ability for IDH in comparing the 
differences in index values between the two subgroups (Figures 3I-K), 
indicating that ApEn and SampEn can better characterize the 
difference in ANS function. But only FuzzyMEn was included in 
model 3 of HRV when determining the risk factors (p < 0.05, Table 3). 
This illustrates that introducing a global perspective helps predict the 
tendency of IDH over time. FuzzyMEn showed better performance 
on the 5-min scale compared to the 30-min scale, confirming the 
superiority of FuzzyMEn in the processing of short-time sequences.

As an emerging tool for assessing SNA, SKNA overcomes the 
limitation that HRV needs to be based on sinus rhythm and elevates 
time resolution to the level of seconds. During HD, aSKNA increased 
in both subgroups, similar to LF/HF, suggesting sympathetic 
activation, consistent with the expected feedback of compensatory 
mechanism triggered by increased ultrafiltration, which was in line 
with previous studies (Park et al., 2019; Zhang et al., 2022). Lower 
aSKNA in the IDH group indicated that patients had insufficient 
sympathetic activation (Converse et al., 1992). Moreover, aSKNA was 
positively correlated with heart rate in the nonIDH group, but this 
relationship disappeared in the IDH group. The loss might imply 
worse neurologic recovery, which was also observed in individuals 

TABLE 2 The results of the univariate analysis using the baseline data for 
evaluating intradialytic hypotension (IDH).

Variable OR(95% CI) p value

Age 1.042 (1.007, 1.078) 0.018

Sex 0.543 (0.216, 1.368) 0.195

Body mass index 0.994 (0.882, 1.121) 0.922

HD duration 0.974 (0.876, 1.082) 0.619

Ultrafiltration 0.772 (0.477, 1.248) 0.291

Ultrafiltration/Weight 0.000 (0.000, 13232.122) 0.155

Pre-HD SBP 1.071 (1.033, 1.110) <0.001

Pre-HD DBP 1.019 (0.981, 1.060) 0.328

Pre-HD, before hemodialysis; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
OR, odds ratio; CI, confidence interval. p values were obtained from logistic regression, and 
p values for variables with p<0.2 are bolded.

TABLE 3 The results of univariate analysis and multivariate analysis of heart rate variability (HRV) and skin sympathetic nerve activity (SKNA) indices for 
evaluating intradialytic hypotension (IDH).

Univariate analysis Multivariate analysis

DLF EOF EDA Model 1 Model 2 Model 3

#p values
HRV

Heart Rate 0.009 0.015− 0.662+ 0.016 0.049− –

SDNN 0.373 0.315+ 0.558+ – – –

RMSSD 0.141 0.204+ 0.560− 0.236 – –

PNN50 0.141 0.132+ 0.321+ 0.215 0.147+ –

LF 0.333 0.795+ 0.861+ – – –

HF 0.151 0.329+ 0.384+ 0.060 – –

LF/HF 0.011 0.085+ 0.120− 0.016 0.386+ 0.135−

LF/(LF + HF) 0.109 0.208− 0.365+ 0.113 – –

ApEn 0.460 0.297− 0.303+ – – –

SampEn 0.186 0.775+ 0.578− 0.480 – –

FuzzyMEn 0.505 0.165− 0.035+ – 0.694− 0.038+

SKNA aSKNA 0.768 0.009− 0.039− – – –

Constant – – – 0.021 0.044 0.968

Accuracy – – – 77.4 73.1 69.9

AIC – – – 274.268 286.839 290.921

*p value – – – 0.010 0.024 0.028

DLF, the difference between the last and first segments; EOF, the extreme value of the difference between other segments and the first segment; EDA, the extreme value of the difference 
between adjacent segments; SDNN, the standard deviation of the RR intervals; RMSSD, the square root of the mean squared differences of subsequent RR intervals; PNN50, the proportion 
derived by dividing the number of interval differences of subsequent RR intervals greater than 50 ms by the overall number of the RR intervals; LF, low frequency; HF, high frequency; LF/HF, 
LF/HF ratio; LF/(LF + HF), LF/(LF + HF) ratio; ApEn, approximate entropy; SampEn, sample entropy; FuzzyMEn, fuzzy measure entropy; aSKNA, the average SKNA; AIC, Akaike Information 
Criterion. In extreme value calculation, the maximum value and the minimum value are included, and ‘+’ and ‘−’ represent the maximum value and the minimum value, respectively. #p values 
were obtained from logistic regression, and p values for variables with p < 0.2 are bolded. *p values in the last row were obtained from Omnibus Tests of Model Coefficients. *p < 0.05 indicates 
that the model is overall significant.
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receiving targeted temperature control (Kutkut et al., 2021). aSKNA 
was negatively correlated with SBP in the IDH group, but this 
relationship was lost in the IDH group, which revealed a worse 
systemic ability to resist the loss of volume in IDH patients. In the 
IDH group, not only the activation of SNA was insufficient, but also 
other physiological mechanisms failed to resist the reduction of BP.

4.3. Risk factors for IDH

DLF, EOF, and EDA methods were used to process HRV and 
SKNA indices in the establishment of the IDH multivariate model. 
DLF model of HRV performed best, indicating that the difference 
in HRV values before and after dialysis better described the 

TABLE 4 The results of the different multivariate models for predicting intradialytic hypotension (IDH).

Model 1 Model 2 Model 3 Model 4 Model 5

#p value

Pre-HD SBP < 0.001 0.001 0.001 0.001 –

Age 0.085 0.577 0.874 0.706 –

Ultrafiltration/Weight 0.297 0.133 0.087 0.110 –

Sex 0.265 0.551 0.806 0.584 –

Heart Rate-DLF – 0.021 0.012 0.024 0.015

LF/HF-DLF – 0.039 0.034 0.037 0.024

HF-DLF – 0.147 0.169 0.158 0.038

LF/(LF + HF)-DLF – 0.214 0.186 0.210 0.131

RMSSD-DLF – – – – 0.130

PNN50-DLF – – – – 0.184

SampEn-DLF – – – – 0.569

aSKNA-EOF− – – 0.017 – 0.010

aSKNA-EDA− – – – 0.132 –

Constant 0.001 0.013 0.030 0.019 0.002

Accuracy 77.4 81.7 84.9 82.8 78.5

AIC 271.835 255.684 250.356 253.349 265.998

*p value <0.001 <0.001 <0.001 <0.001 <0.001

Pre-HD, before hemodialysis; SBP, systolic blood pressure; LF, low frequency;  HF, high frequency;  LF/HF, LF/HF ratio;  LF/(LF+HF), LF/(LF+HF) ratio; RMSSD, the square root of the mean 
squared differences of subsequent RR intervals; PNN50, the proportion derived by dividing the number of interval differences of subsequent RR intervals greater than 50 ms by the overall 
number of the RR intervals; SampEn, sample entropy; aSKNA, the average of skin sympathetic nerve activity; AIC, Akaike Information Criterion. ‘-DLF’ denotes the difference between the 
last and first segments of the calculated variable. ‘-EOF−’ denotes the minimum value of the difference between other segments and the first segment of the calculated variable. ‘-EDA−’ denotes 
the minimum value of the difference between adjacent segments of the calculated variable. #p values were obtained from logistic regression, and p values for variables with p < 0.05 are bolded. 
*p values in the last row were obtained from Omnibus Tests of Model Coefficients. *p < 0.05 indicates that the model is overall significant.

TABLE 5 The optimal model for predicting intradialytic hypotension (IDH) based on logistic regression.

OR(95% CI) p value

Pre-HD SBP 1.076 (1.031, 1.124) 0.001

Age (per 1 year) 1.004 (0.956, 1.054) 0.874

Ultrafiltration/Weight 0.000 (0.000, 1606.431) 0.087

Sex

 Male 1.000 –

 Female 0.844 (0.218, 3.271) 0.806

Heart Rate-DLF 1.101 (1.022, 1.187) 0.012

LF/HF-DLF 0.209 (0.049, 0.885) 0.034

HF-DLF 1.001 (1.000, 1.002) 0.169

LF/(LF + HF) -DLF 247.191 (0.070, 869089.763) 0.186

SKNA-EOF- 2.908 (1.210, 6.989) 0.017

Constant 0.001 0.030

Pre-HD, before hemodialysis; SBP, systolic blood pressure; LF, low frequency;  HF, high frequency;  LF/HF, LF/HF ratio;  LF/(LF+HF), LF/(LF+HF) ratio; aSKNA, average of skin sympathetic 
nerve activity; OR, odds ratio; CI, confidence interval. ‘-DLF’ denotes the difference between the last and first segments of the calculated variable. ‘EOF-’ denotes the minimum value of the 
difference between other segments and the first segment of the calculated variable. p values for variables with p < 0.05 in the logistic regression are bolded.
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occurrence of IDH. In the final multivariate model comparison, the 
two iterations from model 1 to model 3 indicated that adding HRV 
indices and SKNA index based on clinical baseline information 
helped assess IDH, respectively. The comparison of models 3 and 4 
showed that the maximum change in SKNA from the initial value 
could better distinguish IDH. That is, the changes in SNA during 
HD affect the development of IDH relative to the baseline. Model 5 
was introduced to illustrate the importance of baseline data in 
the model.

In the final assessment model of IDH, higher initial SBP, the 
DLF of heart rate,  and the EOF of aSKNA,  as well as the lower DLF 
of LF/HF became the risk factors for IDH. Higher initial BP 
promotes IDH which is consistent with previous study (Chang 
et al., 2016). The mean initial SBP in IDH patients was above the 
diagnostic criteria of hypertension, which is 140 mmHg, whereas 
that in nonIDH patients were normal. On one hand, we speculate 
that hypertension may be related to greater weight gain when not 
receiving HD but with inadequate dialysis because of an unexpected 
weight gain. On the other hand, we think that IDH patients initially 
may have over-activated sympathetic nerves, which are more 
susceptible to hypertension (Masuo et  al., 2010), resulting in 
vascular overload and pathological changes (Cachofeiro et  al., 
2009), but abnormal SNA gradually decreases with the increase of 
the HD duration (Masuo et al., 2010), even lower than other HD 
patients. Therefore, patients are unable to further raise peripheral 
vascular resistance in response to the increase in SNA, resulting in 
IDH (Dubin et al., 2011). In addition, LF is nonlinearly regulated 
by the SNA and PNA, as well as other factors, with the effect of PNA 
being approximately twice as strong as that of SNA (Randall et al., 
1991). That is, LF/HF is more sensitive to PNA at lower SNA. Thus, 
we  hypothesized that the lower DLF of LF/HF directed to the 
depressed PNA or other factors in IDH patients, which are different 
from the depressed SNA generally believed.

4.4. Limitation

It should be noted that this study still has several limitations. First of 
all, this research was conducted in a single center, and the sample size of 
patients was small, so the data may be biased. Secondly, the lack of clinical 
symptoms and interventions reduced the physiological differences 
between IDH and nonIDH patients, making it more difficult to identify 
IDH. What is more, physical data during HD were collected only once for 
each patient, and no long-term follow-up was formed, so there may 
be some contingency in the results. Finally, although the SKNA assessment 
achieved satisfactory results in this study, the specific physiological 
mechanism of SKNA is still unclear, and the underlying relationship 
between SKNA and HRV indicators needs to be further studied.

5. Conclusion

In this study, a portable, noninvasive, and high-frequency 
electrophysiological acquisition device was used to collect ECG and 
SKNA signals of patients during HD, which were combined with 
baseline data to evaluate ANS function during HD. Compared with 
previous studies, this study introduced the entropy of HRV and 

SKNA methods to provide a nonlinear and dynamic perspective of 
ANS function assessment and investigated the underlying 
physiological mechanism of IDH. We  found different patterns in 
response to plasma loss between IDH patients and nonIDH patients, 
and the IDH group exhibited worse ANS function. In addition, we 
found that higher initial SBP, the DLF of heart rate and the EOF of 
aSKNA, and the lower DLF for LF/HF were independent factors of 
IDH. The SKNA showed good performance in both group 
comparison and model evaluation in this study. Although the entropy 
of HRV was not integrated into the final multivariate model, the 
nonlinear information it provided deserved further exploration.
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The integration of haptic technology into affective computing has led to a 
new field known as affective haptics. Nonetheless, the mechanism underlying 
the interaction between haptics and emotions remains unclear. In this paper, 
we proposed a novel haptic pattern with adaptive vibration intensity and rhythm 
according to the volume, and applied it into the emotional experiment paradigm. 
To verify its superiority, the proposed haptic pattern was compared with an existing 
haptic pattern by combining them with conventional visual–auditory stimuli to 
induce emotions (joy, sadness, fear, and neutral), and the subjects’ EEG signals 
were collected simultaneously. The features of power spectral density (PSD), 
differential entropy (DE), differential asymmetry (DASM), and differential caudality 
(DCAU) were extracted, and the support vector machine (SVM) was utilized to 
recognize four target emotions. The results demonstrated that haptic stimuli 
enhanced the activity of the lateral temporal and prefrontal areas of the emotion-
related brain regions. Moreover, the classification accuracy of the existing 
constant haptic pattern and the proposed adaptive haptic pattern increased by 
7.71 and 8.60%, respectively. These findings indicate that flexible and varied haptic 
patterns can enhance immersion and fully stimulate target emotions, which are 
of great importance for wearable haptic interfaces and emotion communication 
through haptics.

KEYWORDS

affective haptics, wearable haptic vibration, electroencephalogram, affective 
computing, emotion recognition

1. Introduction

Emotions play a crucial role in human social communication and interaction (Keltner et al., 
2019). With the development of computer technology and human-computer interaction, the 
field of affective computing (Picard, 1997) has emerged with the primary objective of studying 
and developing theories, methods, and systems to recognize, interpret, process, and simulate 
human emotions. Emotions normally change in response to external stimuli, and haptic stimuli 
can convey more intricate and subtle emotional experiences to the human body compared to 
visual and auditory stimuli (Hertenstein et al., 2006, 2009). Consequently, a new research trend 
has arisen in affective computing, which aims to explore the potential of incorporating haptic 
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technology into the processes of emotion recognition, interpretation, 
and simulation. This integration of haptic technology with affective 
computing has given rise to a new area called “Affective Haptics” (Eid 
and Al Osman, 2016).

Affective haptics focuses on the analysis, design, and evaluation 
of systems capable of inducing, processing, and simulating emotions 
through touch, which has been applied in many fields. For example, 
e-learning applications may benefit from affective haptics by 
reinvigorating learners’ interest when they feel bored, frustrated, or 
angry (Huang et al., 2010). In healthcare applications, affective haptics 
can be used to treat depression and anxiety (Bonanni and Vaucelle, 
2006), as well as assist in the design of enhanced communication 
systems for children with autism (Changeon et  al., 2012). Other 
applications include entertainment and games (Hossain et al., 2011), 
social and interpersonal communication (Eid et  al., 2008), and 
psychological testing (Fletcher et al., 2005).

Affective haptics consists of two subfields: emotion recognition 
and haptic interfaces. Emotion recognition is to identify emotional 
states through the user’s behavior and physiological reactions (Kim 
et al., 2013). Haptic interfaces provide a communication medium 
between touch and the human subject (Culbertson et al., 2018). The 
current status of these two subfields will be  discussed in the 
following paragraphs.

Emotion recognition can be broadly divided into two categories: 
recognition based on non-physiological signals and physiological 
signals (Fu et al., 2022). Non-physiological signals, such as speech 
signals (Zhang et al., 2022), facial expressions (Casaccia et al., 2021), 
and body posture (Dael et al., 2012), are easily influenced by personal 
volition and the environment, which makes it hard to accurately 
evaluate an individual’s emotional state. Conversely, physiological 
signals, which include electroencephalogram (EEG) (Li et al., 2018), 
electrocardiogram (ECG) (Sarkar and Etemad, 2022), electromyogram 
(EMG) (Xu et al., 2023), and electrodermal activity (EDA) (Yin et al., 
2022), vary according to emotional states, thus providing a more 
objective means of measuring emotions (Giannakakis et al., 2022). 
Among these signals, EEG is widely applied in various fields (Zhang 
et al., 2023; Zhong et al., 2023) and particularly closely associated with 
emotions (Zhang et al., 2020), so emotion recognition based on EEG 
has gained widespread usage.

The process of EEG-based emotion recognition involves emotion 
induction, EEG data preprocessing, feature extraction, and 
classification models. Koelstra created a publicly available emotion 
dataset, the DEAP dataset, which contains the EEG and peripheral 
physiological signals of subjects when watching music videos 
(Koelstra et  al., 2012). Additionally, Zheng also published 
continuously three emotion datasets based on 62-channel EEG 
signals: SEED, SEED-IV, and SEED-V (Zheng et al., 2019a,b; Wu 
et al., 2022). Currently, the above datasets are commonly utilized to 
extract various features and boost the classification performance by 
deep learning algorithms (Craik et al., 2019). Liu proposed a three-
dimension convolution attention neural network composed of spatio-
temporal feature extraction module and EEG channel attention 
weight learning module (Liu et  al., 2022). Zhong proposed a 
regularized graph neural network for EEG-based emotion recognition 
and validated its superiority on two public datasets, SEED, and 
SEED-IV (Zhong et al., 2022). The datasets mentioned above induced 
emotions in subjects using movie clips of specific emotions. Recently, 
a few researchers attempted to combine other senses to induce 

emotions. Wu developed a novel experimental paradigm that allowed 
odor stimuli to participate in video-induced emotions, and 
investigated the effects of the different stages of olfactory stimuli 
application on subjects’ emotions (Wu et al., 2023). Raheel verified 
that enhancing more than two of the human senses from cold air, hot 
air, olfaction, and haptic effects could evoke significantly different 
emotions (Raheel et al., 2020). In general, emotion induction often 
relies on visual–auditory stimuli, whereas research on emotions 
induced by haptic stimuli remains quite limited. In other words, there 
are few studies on recognizing emotions using EEG signals in 
affective haptics, which to some extent hinders the development of 
this field.

The haptic interfaces in affective haptics are primarily used to 
transmit touch sensations to the user through haptic devices 
(Culbertson et  al., 2018). Incorporating haptic devices into 
emotional induction can convey feelings that are difficult to 
express with visual–auditory stimuli. Nardelli developed a haptic 
device that mimicked the sensation of stroking by moving a fabric 
strip at varying speeds and pressures to examine how the speed 
and pressure of haptic stimuli elicit different emotional responses 
(Nardelli et al., 2020). Tsalamlal used a haptic stimulation method 
of spraying air on the participant’s arm (Tsalamlal et al., 2018). 
Haynes developed a wearable electronic emotional trigger device 
that produced a sense of pleasure by stretching and compressing 
the skin surface of the wearer (Haynes et  al., 2019). Wearable 
devices such as haptic jackets (Rahman et al., 2010) and haptic 
gloves (Mazzoni and Bryan-Kinns, 2015) are also commonly used 
in the field of affective haptics. Ceballos designed a haptic jacket 
and proposed a haptic vibration pattern that enhanced emotions 
in terms of valence and arousal (Ceballos et  al., 2018). 
Subsequently, Li combined this vibration pattern with visual–
auditory stimuli to form a visual–auditory-haptic fusion induction 
method, demonstrating that haptic vibration improved the 
accuracy of EEG-based emotion recognition tasks (Li et al., 2022). 
Whereas, the design of haptic patterns requires further exploration 
to better understand the mechanism between haptics 
and emotions.

In conclusion, significant progress has been made in the field of 
affective haptics. However, the mechanism between haptics and 
emotions has not yet been clearly revealed. This is primarily due to: 
(1) the limited application of objective emotion recognition methods 
in affective haptics; and (2) the lack of diverse haptic patterns. To 
address these issues, this study designed two haptic vibration patterns 
and combined them with conventional visual–auditory stimuli to 
induce emotions (joy, sadness, fear, and neutral). EEG signals were 
utilized to classify four target emotions and to explore the effects of 
haptic stimuli on emotions. The contributions of this work are 
summarized as follows,

 • This paper proposed a novel haptic pattern with adaptive 
vibration intensity and rhythm according to the video volume, 
and applied it into the EEG emotional experiment paradigm.

 • Compared to the existing haptic pattern with fixed vibration 
intensity and rhythm, the proposed haptic pattern significantly 
enhanced emotions.

 • This paper analyzed the possible reasons for emotional 
enhancement due to haptic vibration from the perspective of 
neural patterns.
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2. Materials and methods

In this work, we  presented a novel framework for emotion 
recognition in combination with two haptic vibration patterns, as 
illustrated in Figure 1. It included visual–auditory-haptic fusion stimuli, 
EEG acquisition, EEG pre-processing, feature extraction, and emotion 
classification. Compared to the conventional EEG-based emotion 
recognition framework, the innovation of this study is to incorporate two 
haptic patterns with visual–auditory stimuli to explore the effects on 
emotions. The former is an existing haptic pattern, named Haptic 1. The 
latter is the proposed adaptive haptic pattern, named Haptic 2. Please see 
Section 2.3 for details of the two haptic patterns.

2.1. Subjects

Sixteen subjects (11 males and 5 females) aged between 20 and 
30 years old, all right-handed and with no history of psychiatric illness, 
participated in the emotion experiment. Prior to the experiment, they 
were informed about the procedure and allowed to adapt to the 
experimental setting. The study was approved by the Ethics Committee 
of Southeast University, and all subjects received compensation for 
their involvement in the experiment.

2.2. Experimental setup

In this experiment, the subjects were exposed to visual–auditory-
haptic fusion stimuli to induce emotion. The subjects wore a haptic 
vest and sat in a comfortable chair approximately 0.7 meters away 
from the monitor, as shown in Figure 2A. EEG signals were recorded 
by a 64-channel active electrode cap (Brain Products GmbH, 
Germany), following the international standard 10–20 system. All 
channels were referenced to the FCz channel, and the Fpz channel was 
chosen as the ground, as shown in Figure 2B, so a total of 63 channels 
of EEG data are available. During the recording, the impedance of all 

channels was kept below 10 kΩ. The EEG sampling frequency was set 
to 1,000 Hz, and a band-pass filter from 0.05 to 100 Hz was utilized to 
filter the EEG signals to attenuate high-frequency band components. 
Meanwhile, a notch filter at 50 Hz was applied to reduce power 
line interference.

In order to elicit target emotions (joy, sadness, fear, and neutral) 
in the subjects, we employed a team of eight psychology graduate 
students to jointly select 16 movie clips that characterized the above 
four emotions. Each emotion corresponded to 4 movie clips, and all 
the movie clips were accompanied by Chinese subtitles. Further 
details can be found in Table 1.

The haptic stimuli implemented in the experiment were realized 
by using a haptic vest from bHaptics Inc., as illustrated in Figure 3A. As 
we can see from Figure 3B, this wearable and portable vest provides a 
double 5 × 4 matrix with motors positioned at both the front and back 
areas. Each motor provides two methods of vibration modulation: the 
first is to set the motor’s vibration intensity and rhythm directly, while 
the second one adjusts the intensity and rhythm of the motor 
adaptively according to the intensity and frequency of the audio 
signals. Various haptic vibration patterns can be created by setting the 
individual parameters of each motor and the overall linkage to give 
users a specific feeling. The device is controlled through the Unity 
application via Bluetooth. By incorporating corresponding haptic 
vibration patterns with different movie clips, we generated emotional 
stimulation materials that combine visual, auditory, and haptic 
sensations. The detailed descriptions of the vibration patterns are 
provided in the next section Experimental protocol.

2.3. Experimental protocol

Two different haptic vibration patterns were designed to explore 
their differential effects on emotion. The detailed flow of the emotion 
experiment is depicted in Figure 4. In total, there were 16 sessions for 
each experiment. Firstly, each session had a 5-s cue to start. Next, the 
visual–auditory-haptic fusion stimuli were applied for approximately 
4 min, where the visual–auditory stimuli used a previously selected 
film clip and the haptic stimuli were chosen from either of the two 
haptic patterns. Then, the subjects were required to conduct a 20-s 
self-assessment, followed by a 30-s rest. During the self-assessment, 
the subjects were requested to declare their emotional responses to 
each session, which would be used later as a reference for assessing the 
validity of the collected data.

The visual–auditory-haptic fusion stimuli scheme is shown in 
Figure 5. The visual–auditory stimuli were presented as movie clips 
throughout the experiment, while the haptic stimuli were applied only 
in the second half of each clip to explore whether haptic stimuli could 
enhance emotions. Importantly, we aimed to examine the differences 
between the two haptic patterns in inducing emotions. We randomly 
assigned Haptic 1 or Haptic 2 to the 16 movie clips. The first haptic 
vibration pattern employed a fixed vibration intensity and rhythm, 
where each emotion (joy, sadness, and fear) corresponded to a specific 
intensity and rhythm of vibration, as displayed in Table 2. This pattern 
has been demonstrated to be effective in previous studies (Ceballos 
et al., 2018; Li et al., 2022). The second haptic pattern adapted the 
vibration intensity and rhythm to the video volume. Specifically, the 
vibration intensity was positively correlated with volume, and the 
vibration rhythm was adjusted by setting a volume threshold below 

FIGURE 1

The framework for emotion recognition that incorporates two haptic 
patterns with traditional visual–auditory stimuli.
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which no vibration was generated. To maintain sample balance, both 
patterns were presented for eight sessions.

2.4. Data preprocessing

The EEG signals were decomposed using the EEGLAB toolbox. 
Initially, the sampling rate of the EEG signals was reduced from 1,000 
to 200 Hz to expedite computation. Furthermore, a bandpass filter 
ranging from 1 to 50 Hz was applied to the signals. Then, the 
independent component analysis (ICA) was employed to remove 
EOG and EMG artifacts. Furthermore, the common average reference 
(CAR) was used to re-reference EEG signals to eliminate the global 
background activity. To correct for stimulus-unrelated variations in 
power over time, the EEG signal from the 5 s before each video was 
extracted as a baseline. Finally, the non-haptic and haptic signals were 
separately intercepted for subsequent analysis. In this study, the EEG 
signals were divided into five frequency bands: delta (1–4 Hz), theta 
(4–8 Hz), alpha (8–14 Hz), beta (14–31 Hz), and gamma (31–50 Hz).

2.5. Feature extraction and classification

After data preprocessing, we  extracted the frequency domain 
features and their combinations in this study. Four features that 
proved to be  efficient for EEG-based emotion recognition were 
compared (Zheng et  al., 2019b), including PSD, DE, DASM, 
and DCAU.

The PSD feature is the average energy of EEG signals in five 
frequency bands for 63 channels, and can be computed directly using 
a 256-point short-time fourier transform (STFT) with a 1-s-long 

window and non-overlapped Hanning window. The DE feature is 
defined as follows,
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where the time series X obeys the Gauss distribution N(μ, δ2), x is a 
variable, and π and e are constants. It has been proven that, in a certain 
band, DE corresponds to the logarithmic spectral energy of a fixed-
length EEG series (Shi et al., 2013). Compared with the PSD, DE has 
a balanced ability to distinguish between low and high frequency 
energy in EEG patterns.

The DASM feature is calculated as the differences between DE 
features of 28 pairs of hemispheric asymmetry electrodes (Fp1-Fp2, 
F7-F8, F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8, 
CP3-CP4, P3-P4, O1-O2, AF3-AF4, F5-F6, FC5-FC6, FC1-FC2, 
C5-C6, C1-C2, CP5-CP6, CP1-CP2, AF7-AF8, P5-P6, P1-P2, 
PO7-PO8, PO3-PO4, FT9-FT10, TP9-TP10, and F1-F2), expressed as

 
DASM h X h Xi

left
i
right= ( ) − ( ) (2)

The DCAU feature is defined as the differences between DE 
features of 22 pairs of frontal-posterior electrodes (FT7-TP7, 
FC5-CP5, FC3-CP3, FC1-CP1, FCZ-CPZ, FC2-CP2, FC4-CP4, 
FC6-CP6, FT8-TP8, F7-P7, F5-P5, F3-P3, F1-P1, FZ-PZ, F2-P2, 
F4-P4, F6-P6, F8-P8, Fp1-O1,Fp2-O2, AF3-CB1, and AF4-CB2). 
DCAU is defined as

 
DCAU h X h Xi

frontal
i
posterior= ( ) − ( ) (3)

After feature extraction, we  utilized linear-kernel SVM 
classifiers for the 4-class classification. For statistical analysis, a 
4-fold cross-validation strategy was utilized to evaluate the 
classification performance.

3. Results

3.1. Analysis of frequency band energy 
distribution

To investigate the continual progression of emotional states, 
we  employed wavelet transform methods to conduct time-
frequency analysis on EEG signals. A 5-s time window was used to 
slide the EEG data without overlapping for analysis. According to 
the two haptic patterns, we  calculated the average value of all 
channels across all subjects in four emotion types, with the results 
presented in Figures 6, 7. We find that the energy distribution of all 
emotional states diminishes with an increase in frequency. In 
comparison to the corresponding non-haptic patterns, the energy 
distributions of the three emotions (joy, sadness, and fear) are 
obviously higher in the high-frequency band under the two haptic 
patterns. Joy and sadness show no obvious changes in the 

TABLE 1 Details of selected film clips.

No. Label File clips 
sources

Film time

1 Joy Lost in Thailand 1:03:41–1:08:30

2 Joy Mr. Bean’s Holiday 0:36:47–0:40:55

3 Joy Kung Fu Hustle 0:31:58–0:36:49

4 Joy Fight Back to School 0:39:52–0:43:34

5 Sadness Aftershock 0:19:36–0:23:15

6 Sadness Aftershock 1:47:49–1:51:47

7 Sadness To live 1:12:55–1:17:45

8 Sadness To live 1:59:49–2:03:32

9 Fear The Conjuring 0:37:06–0:40:41

10 Fear The Skeleton Key 1:23:43–1:27:29

11 Fear Black Swan 1:21:48–1:25:20

12 Fear Dead Silence 0:08:09–0:12:11

13 Neutral Huangshan 

documentary

0:00:50–0:04:36

14 Neutral Mount Tai 

documentary

0:00:38–0:04:36

15 Neutral Aerial China: Xinjiang 0:2:29–0:6:33

16 Neutral Aerial China: Shanxi 0:31:05–0:34:53
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low-frequency band, whereas fear emotions reveal a decrease in 
energy. This suggests that haptic vibration patterns are capable of 
affecting various emotions. Moreover, it can be seen that Haptic 2 
has more energy in the alpha, beta, and gamma bands than Haptic 
1 when comparing Figure 6 with Figure 7. Since the average energy 
is based on all channels and all time segments, the next paragraph 
requires further analysis considering topographical maps.

3.2. Analysis of brain topographical maps

In order to analyze whether and how haptic stimuli affect 
emotional brain regions, we computed the mean DE features across 
all subjects in five frequency bands and then projected them onto the 
scalp. To highlight the changes more distinctly, the corresponding 
baseline features (collected during the 5-s preparation period) were 
subtracted from the projected DE features. Figures 8, 9 display the 
brain topographic maps for different emotional states in non-Haptic 
1, Haptic 1, non-Haptic 2, and Haptic 2, respectively.

In Figure 8, the average neural patterns for different emotions in 
non-Haptic 1 and Haptic 1 are depicted. In the non-Haptic 1 state, the 
four types of emotions differ in the lateral temporal areas mainly in 
beta and gamma frequency bands. Specifically, the lateral temporal 
areas exhibit obvious activation for happy emotions in beta and 
gamma bands, while the corresponding areas for neutral emotions are 
inhibited. The prefrontal areas of sadness show more activation in beta 
and gamma bands compared to other emotions. The alpha band 
activation in the parietal areas is higher for happy and neutral 
emotions than for sadness and fear. The occipital regions in the theta 
and alpha bands for all emotions show low activation, with sadness 
and fear showing less activation. Afterward, with the application of 
Haptic 1, the energy distribution of different emotions across brain 
regions follows a similar trend as non-Haptic 1, but with more notable 
variations. The lateral temporal areas show more activation in beta 
and gamma bands for joy. The lateral temporal and parietal areas for 
sadness and fear concentrate more energy in both beta and gamma 
bands. Therefore, haptic vibration not only maintains the fundamental 
neural patterns for different emotions, but also increases the activation 
of the lateral temporal and prefrontal areas.

Figure  9 presents the average neural patterns of the four 
emotions for all subjects in non-Haptic 2 or Haptic 2. In non-Haptic 
2, the brain topography maps for the four emotions are similar to 
those displayed in Figure 8, with only minor discrepancies. This 
phenomenon can be attributed to the fact that subjects are unlikely 

FIGURE 2

Experimental setup and paradigm for emotion recognition. (A) An experimental platform for evoking subjects’ emotions through the visual–auditory-
haptic fusion stimulation. (B) The EEG cap layout for 64 channels.

FIGURE 3

The haptic vest with a dual vibration motors matrix: (A) Vest. (B) Front 
view of the motors matrix.

TABLE 2 Parameters of Haptic 1.

Emotion type Haptic parameters

Joy Frequency: 1.4 Hz 

Intensity: 90%

Direction: Inward 

Pattern: Discrete

Sadness
Frequency: 0.45 Hz 

Intensity: 50%

Direction: Outward 

Pattern: Discrete

Fear
Frequency: 0.5 Hz 

Intensity: 90%

Direction: Inward 

Pattern: Discrete
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to respond identically to various audiovisual materials conveying 
the same emotion. Subsequently, the neural patterns of the different 
emotions in Haptic 2 state showed some similarity to those of 
Haptic 1. However, there is a more concentrated distribution of 
energy in brain regions in Haptic 2 state, with greater activation in 
lateral temporal and prefrontal areas in beta and gamma bands, and 
more inhibition in occipital areas in alpha bands. Hence, the above 
two haptic patterns indeed have different effects on emotion-
related regions.

3.3. Classification performance

We employed SVM to classify the DE features in all frequency 
bands. Figure 10 provides a visual representation of the emotional 
classification results for 16 subjects in non-Haptic 1, Haptic 1, 
non-Haptic 2, and Haptic 2, respectively. It can be observed that the 
classification accuracy of DE features in beta, gamma, and full band 
frequency ranges is significantly higher than in delta and theta bands. 
This indicates that the delta and theta bands have little impact on 

FIGURE 4

Emotion experimental paradigm based on the visual–auditory-haptic stimuli. The visual–auditory stimuli include a previously selected film clip and the 
haptic stimuli chosen from either of the two haptic patterns.

FIGURE 5

Procedure of two visual–auditory-haptic fusion stimuli. The visual–auditory stimuli were presented as movie clips throughout the experiment, while 
the haptic stimuli were applied only in the second half of each clip. The first haptic vibration pattern employed a fixed vibration intensity and rhythm, 
and the second haptic pattern adapted the vibration intensity and rhythm to the video volume.

48

https://doi.org/10.3389/fnins.2023.1219553
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1219553

Frontiers in Neuroscience 07 frontiersin.org

emotion recognition, similar to the difficulty of finding obvious 
differences between these two bands in different emotions in brain 
topographic maps. Moreover, the accuracy in haptic patterns is 
significantly higher than that in non-haptic patterns, especially in 
beta, gamma, and full band frequencies. The results demonstrate that 
combining traditional visual–auditory stimuli with haptic stimuli can 
effectively induce emotions.

Tables 3, 4 present the average SVM classification results of 
different features of the five frequency bands in Haptic 1 and Haptic 
2, respectively. Meanwhile, the paired-sample t-test results on the 
accuracy of four features in different frequency bands for the two 
cases of non-Haptic 1 - Haptic 1, and non-Haptic 2 - Haptic 2 are 
shown in Table 5. The results indicate that the average accuracy of 
PSD, DE, DASM, and DCAU features in the two haptic patterns is 
significantly higher than that in non-haptic patterns, demonstrating 
that haptic stimuli can enhance subjects’ emotions. In most cases, 
the average accuracy of DE features is higher than that of the other 
three features, indicating that DE features are superior in 
representing emotions. Additionally, the average accuracy of beta 
and gamma bands is significantly higher than that of other bands 
for four features. These findings suggest that beta and gamma bands 

play a crucial role in EEG-based emotion recognition and are highly 
correlated with emotional states. These quantitative results are 
consistent with the qualitative results obtained from the brain 
topographic maps.

To further compare the emotional enhancement effects of 
different haptic patterns, we calculated the average classification 
accuracy growth rates of four features across various frequency 
bands in Haptic 1 and Haptic 2, as presented in Table 6. It can 
be seen that the accuracy growth rates in Haptic 2 are higher than 
those in Haptic 1 for all features and all frequency bands, with a 
more significant increase observed in the alpha and beta frequency 
bands. Taking DE features as an example, the classification 
accuracy of Haptic 1 and Haptic 2 increased by 7.71 and 8.60%, 
respectively. In particular, as shown in Table 5, Haptic 2 presents 
a significant improvement in classification accuracy compared to 
not applying haptic stimuli in almost all bands, but the 
classification accuracy of Haptic 1 is not significantly improved in 
the lower bands. These results suggest that Haptic 2, with adaptive 
vibration intensity and rhythm, is more effective in eliciting 
emotions than Haptic 1, which has constant vibration intensity 
and rhythm.

FIGURE 7

Mean time-frequency analysis based on 16 subjects with non-Haptic 2 or Haptic 2.

FIGURE 6

Mean time-frequency analysis based on 16 subjects with non-Haptic 1 or Haptic 1.
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FIGURE 9

The average neural patterns in different emotional states for 16 subjects with non-Haptic 2 or Haptic 2.

FIGURE 8

The average neural patterns in different emotional states for 16 subjects with non-Haptic 1 or Haptic 1.
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4. Discussion

4.1. Important brain regions and frequency 
bands for emotion

This paper presented the average neural patterns associated with 
four emotional states evoked by visual–auditory stimuli, as depicted 
in Figures  8, 9. Notably, the activation of lateral temporal and 
prefrontal areas in beta and gamma bands varied obviously in different 
emotional states. It suggests that these brain regions are highly 

correlated with different emotions and are considered the key regions 
for generating emotions. Overall, these findings are consistent with 
the results of previous research (Zheng and Lu, 2015; Zheng et al., 
2019b). Besides, the accuracy of emotion classification was obviously 
higher in beta and gamma bands compared to other single bands. 
Interestingly, in some cases, the accuracy in total bands was lower than 
that in gamma bands. This may be  due to the low classification 
accuracy of lower frequency band signals, which disturb the overall 
emotion classification. In summary, collecting EEG signals in beta and 
gamma bands from lateral temporal and prefrontal regions is an 
effective approach for recognizing emotions induced by 

FIGURE 10

The average classification accuracy of DE feature by SVM in different frequency bands with non-haptic and haptic patterns.
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TABLE 5 Paired-sample t-test results on the accuracy of four features in different frequency bands for two cases of non-Haptic 1 - Haptic 1, and non-
Haptic 2 - Haptic 2 (α = 0.05).

(Non-Haptic 1) – (Haptic 1) (Non-Haptic 2) - (Haptic 2)

PSD DE DASM DCAU PSD DE DASM DCAU

Delta 0.7921 0.8896 0.9598 0.5535 0.3148 0.0138 0.0624 0.7836

Theta 0.8374 0.4872 0.0686 0.1751 0.0469 0.0045 0.2201 0.2252

Alpha 0.1325 0.0745 0.2065 0.4003 0.0001 0.0001 0.0001 0.0286

Beta 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Gamma 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Total 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

TABLE 6 The average classification accuracy growth rates of four features in different frequency bands with Haptic 1 and Haptic 2.

PSD DE DASM DCAU

Growth 
rate 1

Growth 
rate 2

Growth 
rate 1

Growth 
rate 2

Growth 
rate 1

Growth 
rate 2

Growth 
rate 1

Growth 
rate 2

Delta 0.85% 2.12% 1.23% 5.76% 0.63% 3.32% 0.33% 0.11%

Theta 0.24% 3.05% 2.09% 4.13% 0.52% 2.37% 0.93% 3.60%

Alpha 5.67% 17.36% 5.57% 15.87% 4.89% 12.94% 3.69% 9.70%

Beta 14.36% 18.22% 11.75% 13.93% 13.56% 16.04% 14.55% 25.23%

Gamma 11.35% 11.95% 7.79% 8.62% 9.93% 11.40% 14.36% 16.96%

Total 8.95% 13.66% 7.71% 8.60% 9.49% 11.46% 10.35% 15.56%

TABLE 3 The average classification accuracy of four features in different frequency bands with non-Haptic 1 and Haptic 1.

PSD DE DASM DCAU

Non-
Haptic 1

Haptic 1 Non-
Haptic 1

Haptic 1 Non-
Haptic 1

Haptic 1 Non-
Haptic 1

Haptic 1

Delta 40.77% 40.96% 46.60% 46.73% 36.36% 36.40% 37.99% 38.27%

Theta 40.12% 40.92% 46.99% 47.87% 35.70% 35.85% 38.58% 38.75%

Alpha 45.37% 47.72% 54.05% 56.75% 39.81% 41.48% 40.89% 42.18%

Beta 72.47% 82.06% 79.60% 88.35% 65.37% 73.36% 60.59% 68.58%

Gamma 82.56% 91.16% 87.30% 95.42% 77.06% 84.11% 70.15% 79.37%

Total 82.82% 89.87% 88.09% 94.53% 78.99% 85.69% 75.34% 82.62%

TABLE 4 The average classification accuracy of four features in different frequency bands with non-Haptic 2 and Haptic 2.

PSD DE DASM DCAU

Non-
Haptic 2

Haptic 2 Non-
Haptic 2

Haptic 2 Non-
Haptic 2

Haptic 2 Non-
Haptic 2

Haptic 2

Delta 37.28% 38.16% 41.64% 43.90% 33.60% 34.59% 35.52% 35.81%

Theta 38.27% 39.39% 44.19% 46.01% 34.39% 35.24% 36.88% 38.07%

Alpha 42.59% 49.54% 50.19% 57.96% 38.77% 43.40% 39.09% 42.41%

Beta 72.05% 84.61% 79.52% 90.17% 66.06% 76.35% 57.09% 70.86%

Gamma 82.41% 91.79% 87.34% 94.60% 77.89% 86.32% 68.49% 79.56%

Total 80.81% 91.40% 87.31% 94.51% 78.32% 86.79% 71.59% 82.36%
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visual–auditory stimuli. This finding can be utilized as a reference to 
simplify the number of EEG acquisition electrodes and reduce the 
data scale.

4.2. Neural pattern for haptic-enhanced 
emotion

This paper demonstrated the superiority of the application of 
haptic patterns over non-haptic patterns in EEG-based emotion 
recognition. Certainly, previous studies have come to a similar 
conclusion that haptic stimuli improve the efficiency of emotion 
recognition tasks (Raheel et al., 2020; Li et al., 2022). However, few 
studies have analyzed and explained the phenomenon from the 
perspective of neural patterns. Notably, haptic stimuli not only 
maintain the fundamental neural patterns for different emotions, but 
also increase the activation of lateral temporal and prefrontal areas 
that closely associated with emotion, as illustrated in Figures 8, 9. 
We speculate that there are two reasons for this phenomenon: (1) 
Although haptic stimuli applied to the torso typically activate the 
somatosensory cortex in the parietal area directly, there was only a 
weak enhancement of the parietal area in the brain topographic 
maps. However, the brain is a complex interconnected structure, and 
it is possible that haptic stimuli affect lateral temporal and frontal 
regions through the somatosensory cortex. Meanwhile, a converging 
body of literature has shown that the somatosensory cortex plays an 
important role in each stage of emotional processing (Kropf et al., 
2019; Sel et al., 2020). (2) The application of haptic stimuli increased 
the subjects’ immersion. Rather than exclusively focusing on haptic 
stimuli, the subjects’ senses may have been fully engaged in watching 
emotional movie clips.

4.3. Efficiency of the proposed haptic 
pattern

In this paper, a novel haptic pattern (Haptic 2) was designed and 
compared with the existing haptic pattern (Haptic 1) in EEG 
emotional paradigm. The experimental results demonstrate that 
different haptic patterns have varying levels of emotional 
enhancement. According to the t-test in Table 5, the classification 
accuracy of Haptic 2 was significantly increased over non-haptic 
pattern in almost all frequency bands. However, the classification 
accuracy of Haptic 1 was not significantly improved in the lower 
bands. Furthermore, as shown in Table 6, the classification accuracy 
growth rates in Haptic 2 were slightly higher than those in Haptic 1. 
As we can see from Figure 9, Haptic 2 resulted in a more concentrated 
energy distribution in subjects’ brain regions. Specifically, lateral 
temporal and prefrontal regions increased activation in beta and 
gamma bands, while occipital regions exhibited greater inhibition in 
alpha bands. This amplified difference in energy distribution in 
emotion-related regions may account for higher classification 
accuracy growth rates of Haptic 2. Additionally, based on subjective 
feedback from subjects, most of them said that Haptic 2 was more 
suitable for the movie scene. We  hypothesize that the adaptive 
adjustment of vibration intensity and rhythm with audio in Haptic 2 
can enhance immersion and fully stimulate target emotions compared 

to Haptic 1. In general, these findings suggest that the proposed haptic 
pattern has superiority in evoking target emotions to some degree.

4.4. Limitations and future work

In our work, we combined two haptic vibration patterns with 
visual–auditory stimuli to induce emotions and classify four emotions 
based on EEG signals. However, our study still has certain limitations. 
Firstly, the number of subjects was not large enough, and the age range 
was limited to 20 to 30 years old. In the future, we will extend the 
proposed experiment paradigm to a larger number of subjects and a 
wider age range to investigate whether there are gender and age 
differences in the effects of haptic stimuli on emotion. In addition, this 
study only extracted features from single-channel EEG data, ignoring 
the functional connectivity between brain regions. Subsequently, 
we will utilize EEG-based functional connectivity patterns and more 
advanced deep learning algorithms considering brain topology in 
future studies. Moreover, our experimental results preliminarily 
showed the adaptive haptic vibration pattern is more advantageous to 
enhance emotion, while more detailed and reasonable designs of the 
haptic patterns require further exploration. In the design of the two 
haptic patterns, we only considered vibration intensity and rhythm, 
but neglected the impact of vibration location. Hence, we will create 
more comprehensive haptic vibration patterns to further investigate 
the mechanism of haptic stimuli on emotion enhancement.

5. Conclusion

The motivation of this study is to investigate the variations in 
emotional effects induced by different haptic patterns. This paper 
proposed a novel haptic pattern with adaptive vibration intensity and 
rhythm according to the video volume, and compared it to the existing 
haptic pattern in emotional experiment paradigm. Specifically, the 
above two haptic patterns were combined with traditional visual–
auditory stimuli to induce emotions, and four target emotions were 
classified based on EEG signals. Compared with the visual–auditory 
stimuli, the visual–auditory-haptic fusion stimuli significantly 
improved the emotion classification accuracy. The possible reason is 
that haptic stimuli cause distinct activation in lateral temporal and 
prefrontal areas of the emotion-related regions. Moreover, different 
haptic patterns had varying effects on enhancing emotions. The 
classification accuracy of the existing and the proposed haptic patterns 
increased by 7.71 and 8.60%, respectively. In addition, the proposed 
haptic pattern showed a significant improvement in classification 
accuracy compared to non-haptic pattern in almost all bands. The 
results show that the haptic pattern with adaptive vibration intensity 
and rhythm is more effective in enhancing emotion. Therefore, flexible 
and varied haptic patterns have extensive potential in the field of 
affective haptics.
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After regular rehabilitation training, paralysis sequelae can be significantly 
reduced in patients with limb movement disorders caused by stroke. 
Rehabilitation assessment is the basis for the formulation of rehabilitation 
training programs and the objective standard for evaluating the effectiveness 
of training. However, the quantitative rehabilitation assessment is still in the 
experimental stage and has not been put into clinical practice. In this work, 
we propose improved spatial-temporal graph convolutional networks based 
on precise posture measurement for upper limb rehabilitation assessment. 
Two Azure Kinect are used to enlarge the angle range of the visual field. 
The rigid body model of the upper limb with multiple degrees of freedom 
is established. And the inverse kinematics is optimized based on the hybrid 
particle swarm optimization algorithm. The self-attention mechanism map 
is calculated to analyze the role of each upper limb joint in rehabilitation 
assessment, to improve the spatial-temporal graph convolution neural 
network model. Long short-term memory is built to explore the sequence 
dependence in spatial-temporal feature vectors. An exercise protocol for 
detecting the distal reachable workspace and proximal self-care ability of the 
upper limb is designed, and a virtual environment is built. The experimental 
results indicate that the proposed posture measurement method can reduce 
position jumps caused by occlusion, improve measurement accuracy and 
stability, and increase Signal Noise Ratio. By comparing with other models, 
our rehabilitation assessment model achieved the lowest mean absolute 
deviation, root mean square error, and mean absolute percentage error. 
The proposed method can effectively quantitatively evaluate the upper limb 
motor function of stroke patients.

KEYWORDS

rehabilitation assessment, upper limb, posture measurement, graph convolutional 
networks, motion range

1. Introduction

Stroke is the second leading cause of death in the world, and its incidence rate is on the rise 
in recent years (Paul and Candelario-Jalil, 2021). The disability rate of this disease is high, and 
more than 50% of survivors will leave varying degrees of disability, which seriously affecting the 
daily life of patients, causing great pain to themselves, and adding a heavy economic burden to 
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families and society. The World Stroke Organization (WSO) estimates 
that the global cost of stroke is over $721 billion (Feigin et al., 2022). 
Therefore, there is a great demand for rehabilitation training and 
assessment in patients with motor dysfunction.

Rehabilitation assessment is not only the basis of making a 
rehabilitation treatment plan but also the objective standard to 
observe its treatment effect. It plays an important role in 
rehabilitation treatment, evaluation of treatment effect, and 
prediction of functional recovery (Liao et al., 2020). At present, 
the commonly used assessment method is carried out by 
experienced rehabilitation physicians using the evaluation scale. 
The popular clinical evaluation tools are the Brunnstrom 
evaluation method, Fugl-Meyer Assessment (FMA), Barthel 
index, and so on. However, these methods are subjective 
assessment methods of rehabilitation physicians, with 
inconsistent judgment standards and inability to distinguish 
between compensation and true recovery (Li et al., 2022; Rahman 
et al., 2023). The main defect of the subjective scale is that it has 
a ‘ceiling effect’ on patients with mild injury. In addition, 
completing assessment tests is time consuming, complex, and 
labor intensive.

Scholars have carried out related research on rehabilitation 
assessment to solve the problems above. It is proposed to use an 
inertial measurement unit, accelerometer, VICON, infrared 
camera, and so on to capture human posture data (Fang et al., 
2019; Hussain et al., 2019; Ai et al., 2021). The manual features 
are extracted from human posture data to represent  
human motion (Cai et  al., 2019; Hamaguchi et  al., 2020). 
Mahalanobis distance, and dynamic time warping (DTW) 
algorithm is used to quantify the correctness of rehabilitation 
exercise, support vector machine, logistic regression, and neural 
network are also used to grade the rehabilitation assessment 
(Houmanfar et al., 2016; Fang et al., 2019; Li et al., 2021). These 
methods rely on the results of sub-problems such as preprocessing 
and feature extraction, but the optimal solution of the 
sub-problem is not necessarily the global optimal solution and 
lacks end-to-end learning intuition.

Because wearable measuring equipment is very cumbersome 
to use, the acceptance of patients is not high, markers may 
be moved due to soft tissue effects, and motion capture systems 
such as VICON are too expensive. As an unmarked tool, Kinect 
is increasingly being applied to human posture tracking (Zelai 
and Begonya, 2016; Bawa et al., 2021). Kinect-based joint data 
contains a variety of information, including spatial information 
between joint nodes and their adjacent nodes, as well as time-
domain information between frames. It has been widely used in 
motion recognition (Wang et al., 2020), gesture recognition (Ma 
et al., 2021), somatosensory interaction (Qiao et al., 2022), and 
also has applications in rehabilitation assessment (Agami et al., 
2022) proposed a method for generating accurate skeleton data 
based on the offline fusion of a Kinect 3D video sensor and an 
electronic goniometer. This method is difficult to measure the 
patient’s joint angles with the electronic goniometer (Lee et al., 
2018) used Kinect v2 and force sensing resistor sensors based on 
Fugl-Meyer assessment for evaluating upper extremity motor 
function (Bai and Song, 2019) conducted a preliminary 
rehabilitation assessment using the first-generation Kinect to 
measure the joint data of stroke patients, ignoring the drawbacks 
of a single camera.

However, there is an issue of inaccurate joint position 
recognition using a single Kinect. This type of erroneous 
recognition is prone to occur in situations of self-occlusion, when 
the subject is not facing the camera, or when moving at high speeds 
(Han et al., 2016; Wang et al., 2016). This is because although the 
connections of the bones obtained during recognition are 
biologically consistent, the length of the limbs and the limitations 
of the joints are not limited, resulting in unrealistic and distorted 
movements. Adding additional manual measurements or wearable 
sensors can be time-consuming and reduce patient comfort. The 
accuracy of tracking data for human motion posture seriously 
affects the correctness of rehabilitation assessment results, 
therefore, the accuracy of human motion tracking should 
be  improved. How to improve the accuracy of patient pose 
recognition using only visual sensors is a complex problem.

An approach to improve the accuracy of human motion tracking 
is to combine a rigid body model with the depth camera (Matthew 
et al., 2019) used this approach in the sit-to-stand movement and the 
upper limb motion. Due to the lack of hand modeling and occlusion, 
the estimation of joint position is incorrect. In the Proximal Function 
test, the system error is introduced, and the accuracy of the overall 
pose estimate is reduced (Matthew et al., 2020). Using one Kinect for 
rehabilitation assessment (Liu et al., 2016), the body information is 
particularly prone to occlusion, in some specific evaluation 
movements such as touching the back of the head, touching the 
lumbar vertebrae, and so on. The occlusion problem should be solved 
in order to improve the accuracy of rehabilitation assessment. So, in 
our work, we have added an Azure Kinect and optimized the rigid 
body model.

Neural networks and deep learning have been used in quantitative 
rehabilitation assessment research (Kipf and Welling, 2017; Williams 
et al., 2019). Graph convolutional neural networks have been widely 
used in traffic prediction based on historical traffic speeds and route 
maps (Guo et al., 2019). It is also possible to realize action recognition 
and gesture recognition based on human skeleton data (Ahmad et al., 
2021). According to current research, spatial–temporal graph 
convolutional networks (STGCN) have been used to achieve motion 
recognition based on dynamic bones (Yan et al., 2018). However, the 
application of STGCN in upper limb rehabilitation assessment is 
relatively limited. This study proposes to use an improved STGCN 
based on precise posture measurement to assess the motor function 
of hemiplegic upper limbs.

In this work, we proposed an innovative method as follows: two 
Azure Kinects is used combined with a comprehensive rigid body 
model to improve the biological feasibility of the skeleton. A hybrid 
particle swarm optimization algorithm is used to optimize inverse 
kinematics. A rich movement protocol is proposed to test the 
movement of the patient’s upper limbs from the reachable workspace 
and proximal function. A modified STGCN model with LSTM is 
proposed to assess the upper limb motor function.

2. Methods

We proposed an upper limb rehabilitation assessment method 
based on posture measurement, as shown in Figure 1. The upper limb 
rigid body model is established to increase the constraints of biological 
behavior and improve the accuracy of human posture data collection. 
The motion protocol for upper limb motion assessment is proposed, 
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and the extended STGCN is adopted to achieve continuous upper 
limb rehabilitation assessment.

2.1. Two-camera synchronization

Azure Kinect can extract the position of 32 human bone skeletons, 
and there is occlusion when the upper limb moves to the back of the 
body. Using two Azure Kinect can effectively fill the occluded area and 
increase the spatial coverage of the camera. Therefore, we use two Azure 
Kinect to collect the motion of patients’ limbs in this study. During the 
use of two Azure Kinect, synchronization is necessary to ensure that 
each frame of data captured by the two cameras is the scene at the same 
time. One camera is set as master and the other as subordinate. The two 
cameras are connected via a 3.5 mm synchronization port attached to 
the device. This study adopts a daisy chain configuration, with the 
master’s synchronization port connected to the output synchronization 
port of the slave device through a cable. Then calibrate the two devices 
using the black and white checkerboard calibration method to obtain 
the internal and external parameters of the devices, and fuse joint data 
from different perspectives into the same perspective.

2.2. Models

Taking the torso as the base frame, the upper limbs can 
be modeled as two branches of the torso. The kinematic model of the 
right arm is as follows. The Kinect captured joints information, the 
Torso can be defined by the spine-chest and spine-naval markers. 
Anatomically, the shoulder is a complex composed of the 
glenohumeral joint, sternoclavicular joint, acromioclavicular joint 
and, the scapulothoracic joint. The glenohumeral joint can realize 
flexion/extension, adduction/abduction, and adduction/abduction. 
The sternoclavicular joint allows retraction/protraction, elevation/
depression and backward of the glenohumeral joint. The elbow allows 
two movements for flexion/extension and pronation/supination. To 
simplify the human upper limb mechanism model, this paper singles 
out 2-DOF at the sternoclavicular joint, 3-DOF at the shoulder, 
1-DOF at the elbow, 2-DOF at the wrist, and 1-DOF at the hand. Thus, 
the equivalent mechanism model of human upper limbs can 
be established as a 9-DOF series motion model, as shown in Figure 2. 
LSCAP is the initial length of the upper limb girdle, LUA is the length 
of the upper arm, LLA is the length of the forearm, LH  is the length 
from palm to the wrist, LT  is the length of the hand tip. The position 
of the hand, wrist, elbow, shoulder, clavicle, neck, and spine chest can 
be obtained by Azure Kinect. The base frame is fixed at the neck and 
the hand position is the palm position. Both left and right hands are 
modeled, and the right hand is taken as an example to illustrate the 
modeling process.

2.2.1. Rigid model
The upper limb rigid model consists of 10 segments connected by 

11 joint markers. The human torso is modeled as the base of the rigid 
body, the neck joint of the torso is set as the origin, and the two 
scapulae rotate at the origin. The rigid body model is divided into two 
continuous chains of the left arm and the right arm. The motion of the 
torso (T) in the world coordinate system (W) is modeled as a system 
with associated homogeneous transformations:

 
T

R R R t
W To

X Y Z
, =











0 1  
(1)

Where R represents rotation, each rotation is determined by the 
angle θ, and t represents translation. Then model the scapula (SC), 

FIGURE 1

The upper limb rehabilitation assessment method based on posture measurement.

FIGURE 2

The rigid model of upper limb.
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upper arm (UA), forearm (FA), hand (HA) and fingertip (TIP) as two 
branches of the trunk. The right arm is modeled as:
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The left arm is modeled in a similar way, but the direction of 
rotation is opposite. The forward kinematics model of the rigid body 
can be  obtained by multiplying the coordinate changes of each 
segment in turn. The positions of each joint can be written as:
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Where q is the local position of each joint. The position of each 
joint p is solved according to the forward kinematics, and the mapping 
relationship is established. The forward kinematic map is:
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Scapulohumeral rhythm is present during arm abduction 
(Klopčar and Lenarčič, 2006) calculated the scapulohumeral rhythm 
of the generalized shoulder joint movement of the upper limb on four 
lifting planes with angles of 0°, 45°, 90° and 135° through experiments. 
The functional relationship between the lift angle β  and the forward/
backward extension angle θ fb and the upward/downward angle θud  of 
the SC joint is as follows.
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2.2.2. Inverse kinematics optimized by crossbreed 
particle swarm optimization

The inverse kinematics of the rigid body model is a nonlinear 
problem. Solving the joint posture through the upper limb end posture 
is a one-to-many mapping relationship. The inverse kinematics is 
optimized based on a hybrid particle swarm optimization algorithm. 
The classical particle swarm optimization (PSO) algorithm belongs to 
a global random optimization algorithm with the advantages of few 
parameters required, simple algorithm structure, fast operation speed, 
etc. (Zhou et al., 2011). Suppose a D dimension search space has N 
particles, the position, and velocity of a particle in a group is,
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1 2
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(11)

The evolution of particles at each iteration consists of three parts: 
inheritance of the previous velocity, self-memory, and information 
exchange of the population. Therefore, the kth iteration process can 
be expressed as:

 

v k v k c r p k x k
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+ ( ) −

1 1 1
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  x k x k v kij ij ij+( ) = ( ) + +( )1 1  (13)

Where ω is inertia weight coefficient, c1 and c2 are two different 
learning factors, r1 and r2 are two randomly generated numbers in 
[0,1], pbest represents the personal best solution of the particle, gbest 
represents the global best solution of the swarm.

Due to the drawbacks of premature convergence and poor local 
optimization ability in PSO. Crossbreed Particle Swarm Optimization 
(CBPSO) is used to increase the fitness of the offspring population 
through the natural evolution of the population, thus jumping out of 
the local extreme value in the search process and converging to the 
global optimal solution. During the iteration process, the formula for 
updating the position and velocity of the offspring particles is as follows:
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where child x( ) and child v( ) represent the position and velocity 
of the child particle respectively, parent x( ) and parent v( ) represent 
position and the velocity of the parent particle, respectively. When two 
particles trapped in different local optimums are hybridized, they can 
often escape from the local optimality, and the introduction of a 
hybrid algorithm can enhance the global optimization ability of 
the population.

Our goal is to make the “distance” between the current end 
effector position F xi( ) and yk  the shortest. So inverse kinematics is 
transformed into an optimization problem.yk  is the joint point 
collected by Azure Kinect. The fitness function is as follows:

 
fitness X y F xk i

∗( ) = − ( )min
2

 
(15)
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The specific steps of the algorithm are: First initialize the particle 
swarm and parameter settings, and then iterate the algorithm to 
calculate the fitness function value of each particle, compare the 
current fitness of each particle with the size of the individual extreme 
value, update the individual extreme value, and judge whether the 
hybridization condition is met. If not, return to the continuous update. 
Finally, select the particles corresponding to the global extremum as 
the optimal solution for the population.

2.3. Extended STGCN

Human skeleton motion is a string of time series, with spatial features 
at each time point and time features between frames. In the process of 
evaluating the motor function of the upper limb, different joints play 
different roles. For example, in the movement of touching the nose with 
the right upper limb, the joints on the left side of the body participate less 
and show less importance, and the degree of participation of the joints on 
the right side is different. Self-attention mechanisms can select more 
critical information from a lot of information. The self-attention 
mechanism is adopted to extract the spatial relationship of each joint and 
distinguish their important degree, in order to guide patients to strengthen 
the rehabilitation training of important joints and obtain higher evaluation 
scores. The extended graph network structure is shown in Figure 3.

ConvLSTM can extract the characteristics of spatial and temporal 
features on time series data simultaneously (Deb et al., 2022). The 
STGCN is improved by the self-attention mechanism graph Sk  
calculating form ConvLSTM. The skeleton sequence is initially 
processed by temporal convolution with kernel Γµ .
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Where ∗ is convolution, σ  is the sigmoid function, W is weight, b 
is bias, S hk k= . The GCN improved with the self-attention map is 
as follows,

 
G A S ZWk k k k= ( )( )σ φ � �

 
(18)

 A A Ik k = +  (19)

Where, A I A
k

k+ =∑ , A RN N∈ × is the adjacency matrix, A I0 =

and A A1 = , D%  is the degree matrix, Wk  is the weight matrix. φ  is 
normalization, σ  is an activation function.

Then three Temporal convolutional (TC) layers with different 
kernels Γ1

l , Γ2
l  and Γ3

l  is adopted to extract time features and 
concatenate them. Multiple STGCN layers are stacked to obtain more 
complex features of different lengths, and LSTM is used to extract the 
time dependence of the series. Finally, continuous rehabilitation 
assessment scores are obtained by the full connection layer.

2.4. Exercise protocols base on VR

The exercise protocols were designed according to the anatomical 
position, clinical evaluation methods such as the Fugl-Meyer scale, 
Barthel index, range of motion, and some related articles. The 
measurement of upper limb motor function mainly includes distal 
reachable workspace measurement and proximal function 
measurement, the specific movement methods are shown in Table 1. 
The reachable workspace measurement was used to evaluate the 
motion range of the upper limb, and the proximal functional 
measurement was used to evaluate the subjects’ ability to self-care in 
daily life, such as eating, combing hair, and so on.

Vivid virtual reality (VR) scene modeling can improve the 
enthusiasm and initiative of patients to participate in rehabilitation 
assessment. In this manuscript, a virtual scene of motion assessment 
was built, in which the therapist demonstrates the action, and the 
subjects follow the therapist to carry out the same action. The subject’s 
avatar was designed and the visual feedback is applied to facilitate the 
subjects to observe whether their movements are completed or not. 
Auditory feedback was used to guide related movements with a variety 
of sensory stimuli, to increase the feasibility of the virtual environment 
demonstration. The rehabilitation training game is shown in Figure 4, 

FIGURE 3

The extended STGCN for rehabilitation exercise assessment.
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when the position of the subject’s hand coincides with the minion, the 
animation of the minion jumping with the sound effect is played. The 
patient’s participation increased, and the patient’s tension and anxiety 
were relieved.

3. Experimental validation

The experimental setup is as follows, two Azure Kinect depth 
cameras were placed on the tripod with a spacing of 2 m and an 
angle of 90°, and adjusted horizontally using a spirit level, as 
shown in Figure 5. During the experiment, the subjects were asked 
to perform the designed movements in front of the camera and 
could not rotate their bodies. To reduce the impact of accidental 
factors, explanations and related training were provided to the 
subjects before the experiment. The participants simulated the 
coach’s actions by watching pre-recorded videos on the display 
screen, enabling them to proficiently apply the assessment method 
before conducting relevant experiments.

This experiment recruited a total of 20 subjects, including 10 
healthy individuals and 10 stroke patients. Among them, two 
rehabilitation physicians from the rehabilitation department of 
Nanjing Tongren Hospital voluntarily participated in the 
experiment. The exclusion criteria for participants in the 
experiment are cognitive impairment or inability to cooperate in 
the experiment. This work is approved by the local science and 
ethics committee.

4. Results

The data collected by Azure Kinect needs to be preprocessed to 
reduce individual differences, and eliminate migration and expansion 
during the experimental process. Median filtering can effectively 
eliminate isolated noise points. First, median filtering is performed on 
the data, and then the 6th-order low-pass Butterworth filter with a 
cut-off frequency of 30 Hz is used to filter again.

4.1. Model optimization result

According to the reachable workspace and proximal measurement 
in the exercise protocols, the validity of the optimized rigid body 
model is verified through the data of 10 healthy people. Taking the 
right upper limb as an example, the reachable workspace and its area 
of the upper limb was calculated by reference (Bai and Song, 2019). 
The brief description is as follows: the center of the upper limb 
workspace is at the shoulder joint, the motion trajectory is fitted using 
the least squares method, coordinate transformation is performed, 
Alpha Shape algorithm is used to locate the maximum boundary of 
the trajectory, Catmull-Rom spline interpolation is used to smooth the 
boundary, coordinate transformation is performed again, surface 
blocks are selected, the surface area is calculated, and normalization 
is performed. The reachable workspace is divided into four quadrants, 
with the first quadrant (blue) located on the inner side above the 
shoulder, quadrant 2 (pink) located on the inner side below the 

TABLE 1 The exercise protocols.

IDX Protocol

Reachable workspace 

(straighten the arm)

Vertical direction
Azimuth angle (°) 0 45 90 135

Elevation angle (°) 0 ~ 180

Horizontal direction
Azimuth angle (°) 0 ~ 135

Elevation angle (°) 45 90 135 0 ~ 180

Proximal function ①Side, ②Lumber spine, ③Stomach, ④Contralateral shoulder, ⑤Ipsilateral shoulder, ⑥Nose, ⑦Ear, ⑧Head top

FIGURE 4

Virtual scene of motion assessment. In the rehabilitation training game, when the position of the subject’s hand coincides with the minion, the 
animation of the minion jumping with the sound effect is played. (A) The hand has not move to the minion position (B) Hand and minion position 
coincide (C) After the position of the hand and the minion overlap, the minion jumps and accompanies the sound effect.
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shoulder, quadrant 3 (red) located on the outer side above the 
shoulder, and quadrant 4 (green) located on the outer side below the 
shoulder. Figure 6 shows the reachable workspace results, A is the 
result measured by Azure Kinect, and B is the result optimized using 
the method we proposed.

In the Figure 6A the solid lines represent the original trajectory 
information, the dashed lines represent the preprocessed results. The 
red ellipse marks show some points away from the track, or even 
skipping points. These points are not consistent with the biological 
characteristics of human movement. These spots can be caused by the 
arms facing the camera, moving too fast, or being blocked by the torso 
when extended backwards.

Due to the fan-shaped measurement range of the camera, 
occlusion can easily occur when the arm moves between the body and 
the camera, or the arm extends to the back of the body. At this point, 
a single camera cannot detect the position information of the occluded 
joint. Error signals will be detected at these occlusion positions, as 
shown in the ellipse inside Figure 6. Occlusion positions are points 
with obvious jumps and abrupt changes, which can easily lead to the 
phenomenon of unclosed fitting boundaries in the reachable workspace.

In this study, a part of the occlusion problems can be solved by 
using two cameras. The other part of the occlusion problem can 
be optimized by adding a rigid body model. After model optimization, 
the number of singularities was significantly reduced, the occurrence 
of non-biological motion was reduced and the accuracy and stability 
of hand joint motion measurement was improved.

Figure  7 shows the proximal function results, A is the result 
measured by Azure Kinect, and B is the result optimized using the 
method we proposed. From the comparison of Figures 7A,B, without 
the addition of a rigid body model, during the process of the upper 
limb touching the ear and the hand touching the lumbar spine, the 
trajectory did not reach the position of the ear/lumbar spine. After 

adding the rigid body model, the measurement results were improved, 
and the hand motion trajectory could reach the corresponding position.

Table 2 shows the Signal Noise Ratio (SNR) of the motion 
trajectory of raw Kinect, two Azure Kinect, and two Azure Kinect 
with the rigid model. The raw Kinect trajectory exhibit low SNRs, 
especially in the Y and Z directions of the chest joint and the Z 
direction of the ipsilateral shoulder joint, the signal-to-noise 
ratio is below 10. The SNR of the final motion trajectory 
measured by two Kinects has increased, but there is still an SNR 
of less than 10. This study applied two Azure Kinect combined 
with a rigid body model, the measurement results show that all 
directions of each joint are greater than 10, and the SNRs are 
greater than 20 in the elbow joint, wrist joint, and hand joint. 
This table indicates that the method used in this study can 
improve the SNR of collected signals from each joint and increase 
the accuracy of upper limb posture recognition.

4.2. Assessment result

In rehabilitation assessment experiments, each subject underwent 
5 exercises, with 30 groups tested each time and 10 groups resting for 
10 min. A total of 3,000 sets of data were collected. Each action data 
in the dataset consists of a series of skeletal action frames. Each frame 
contains up to two skeletons, each with 11 skeletal nodes of the upper 
limbs. The data includes distal and proximal actions, with a total of 16 
action categories, and each bone node has corresponding three-
dimensional spatial coordinate data.

Three STGCN blocks are used. The optimization strategy of the 
model is the Adam optimizer, with a learning rate of 0.1, a batch size 
of 4, and an output space dimension of 80,40,40,80 for the LSTM layer. 
The model shares four LSTM layers with a dropout of 0.25.

FIGURE 5

The experimental setup.
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The accuracy of the assessment model is measured using 
Mean Absolute Deviation (MAD), Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE). The 

lower the error, the higher the accuracy of the model. The model 
was trained and predicted 10 times, and the obtained MAD, 
RMSE, and MAPE are recorded simultaneously. Finally, the 

FIGURE 6

Reachable workspace results. (A) Raw data. (B) Data after rigid model.
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average of the 10 results is taken to ensure the reliability of 
the results.

Each joint plays a different role in limb movement. Attention-
guided graph convolution is used to extract spatial information, and 
each joint is processed differently based on the spatiotemporal frames, 
increasing the impact of different joints on the evaluation results. 
STGCN based on an attention mechanism makes the evaluation 
results more accurate, and can also provide guidance for rehabilitation 
and strengthen the training of important joints.

Figure  8 shows the impact of each joint on different assessed 
movements. As can be  seen from the figure, in the movement of 
touching the nose with the right upper limb, the left joints of the body 
participate less in the movement and show lower importance. The 
degree of participation of the right joints varies, such as higher 
participation of the elbow joint and hand joint, and lower participation 
of the sternoclavicular joint. The wrist joint plays a crucial role in 
measuring the entire reachable workspace. The importance of different 
joints in different movements varies.

Table  3 compares the performance of our proposed model, a 
single Azure Kinect and two Azure Kinect algorithms combined with 

STGCN. MAD, RMS, and MAPE are analyzed. It is obvious from the 
table that our proposed model finally gets the lowest evaluation error.

5. Discussion

 (1) Improve posture recognition accuracy
Accurate recognition of posture is key to the rehabilitation 

assessment of upper limb motor function using posture. However, 
human posture recognition is very complex and the accuracy is 
difficult to be guaranteed. Occlusion is easy to occur when using a 
single Kinect (Han et al., 2016) only used a one-generation Kinect to 
collect the reachable workspace of the upper limb in Duchenne 
muscular dystrophy, without proposing a method to solve the 
occlusion problem, resulting in low accuracy in human pose 
recognition (Matthew et  al., 2020) also used only one-generation 
Kinect, with an improvement of adding a model. The model had fewer 
degrees of freedom and does not include the degrees of freedom of the 
wrist and hand. The accuracy of human body recognition 
measurement was not high, and there was a significant error in 
proximal upper limb movement.

Therefore, this study proposes to use two Azure Kinects and 
increase the constraint of the rigid body model at the same time, in 
order to reduce the inconsistency of human bone connection in 
biology, and then improve the accuracy of posture recognition. In the 
experimental results, Figure.6 contains the action of touching the 

FIGURE 7

Proximal function results. (A) Raw data. (B) Data after rigid model.

TABLE 2 Signal to Noise ratio.

Segment Axis
RW PF

TKM TK RK TKM TK RK

Spine chest

X 18 18 18 18 20 20

Y 20 9 7 20 12 11

Z 12 9 5 15 11 6

Ipsilateral 

neck

X 19 21 21 22 24 23

Y 16 16 14 19 19 16

Z 12 12 10 14 15 13

Ipsilateral 

clavicle

X 20 18 19 22 20 20

Y 18 18 16 15 16 15

Z 15 12 9 17 14 14

Ipsilateral 

Shoulder

X 27 20 18 20 20 18

Y 18 11 11 19 14 15

Z 14 9 7 16 10 7

Ipsilateral 

Elbow

X 26 14 14 20 14 14

Y 25 12 11 25 15 14

Z 28 14 14 21 13 15

Ipsilateral 

Wrist

X 28 17 16 29 16 15

Y 29 14 14 27 12 11

Z 27 17 16 28 18 17

Ipsilateral 

Hand

X 26 16 16 27 16 15

Y 28 14 12 24 13 10

Z 26 17 15 25 15 11

Two Azure Kinect optimization model (TKM), Two Azure Kinect (TK), Kinect (RK).
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FIGURE 8

The role of joints in different movements. (The importance increases sequentially from 0 to 1. The vertical axis represents 16 evaluation actions, A * and 
E * represent the reachable workspace actions respectively, S1-H8 represents the proximal actions. The horizontal axis is an abbreviation for the names 
of each joint, from left hand to neck and then to the fingertip of the right hand).

TABLE 3 Assessment results.

Metric Our Methods
STGCN with 
two Azure 

Kinect

STGCN with 
one Azure 

Kinect

MAD 1.021 2.757 5.378

RMSE 1.180 3.259 8.671

MAPE 3.973 5.875 25.092

lumbar vertebrae by hand. It can be clearly seen that the occlusion 
phenomenon is very obvious in the absence of a rigid body model, 
especially when the upper limb moves to coincide with other joints, 
the trajectory of the occluded part is messy and irregular, and the joint 
motion trajectory does not comply with human biology. The results of 
different test methods in the figure can obviously show the 
effectiveness of the proposed posture recognition method. Due to the 
inability of the camera to test the rotational motion of the arm, a more 
abundant human rigid body model is proposed to measure human 
posture from both attitude and position, achieving accurate 
posture recognition.

 (2) Improve the accuracy of the assessment model
The effective and accurate assessment of upper limb motor 

function can provide the scientific basis for rehabilitation training, but 
the existing rehabilitation assessment methods lack universality, 
robustness, and practical relevance. Convolutional neural networks 

can be used to design scientifically reasonable quantitative assessment 
methods, but the accuracy of the assessment results still needs further 
verification. On the basis of improving the accuracy of human body 
recognition, this study conducts rehabilitation assessment tasks to 
increase the accuracy of assessment model recognition. Due to the 
varying degrees of participation of each joint in different movements, 
the importance of each joint is increased based on attention 
mechanisms. When the right hand is active, the participation of the 
left joint is lower, while when the left hand is active, the participation 
of the right joint is lower. At the same time, the importance of each 
joint is calculated for both the expert therapist and the patient. The 
difference in joint function between the patient and the therapist is 
significant. By comparing the difference in joint function with the 
average expert therapist, it can be  determined which joints can 
be  trained more effectively to improve the patient’s rehabilitation 
assessment score based on the size of the difference. The difference in 
joint function can provide a reasonable direction for rehabilitation 
training for patients. Adding joint participation to a rehabilitation 
assessment model can achieve continuous assessment and improve the 
accuracy of rehabilitation evaluation.

6. Conclusion

This study addresses the issue of non-quantification in 
rehabilitation assessment, and proposes an improved STGCN 
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based on precise upper limb posture recognition to achieve 
continuous quantitative rehabilitation assessment. Two Azure 
Kinects were used to expand the field of view, a multi-degree of 
freedom upper limb motion rigid body model was proposed, 
making the upper limb posture measurement in line with normal 
human biological movement. The accuracy of upper limb posture 
recognition is increased, and the signal-to-noise ratio of 
measurement is improved. By identifying the participation degree 
of each joint in different movements based on the self-attention 
mechanism, the STGCN algorithm was improved to achieve 
continuous quantitative rehabilitation assessment. The 
experimental comparison results show that the upper limb 
posture recognition algorithm proposed in this study can 
effectively reduce incorrect joint coordinates, and the 
rehabilitation assessment model based on improved STGCN can 
effectively reduce the assessed MAD and RMS and MAPE. This 
study provides a new approach for the quantitative rehabilitation 
assessment of stroke patients. In the future work, we will continue 
to optimize the rigid body model and improve the rehabilitation 
assessment method.
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based on photoplethysmography 
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Introduction: The current method of monitoring sleep disorders is complex, 
time-consuming, and uncomfortable, although it can provide scientifc guidance 
to ensure worldwide sleep quality. This study aims to seek a comfortable and 
convenient method for identifying sleep apnea syndrome.

Methods: In this work, a one-dimensional convolutional neural network model 
was established. To classify this condition, the model was trained with the 
photoplethysmographic (PPG) signals of 20 healthy people and 39 sleep apnea 
syndrome (SAS) patients, and the influence of noise on the model was tested by 
anti-interference experiments.

Results and Discussion: The results showed that the accuracy of the model 
for SAS classifcation exceeds 90%, and it has some antiinterference ability. This 
paper provides a SAS detection method based on PPG signals, which is helpful for 
portable wearable detection.

KEYWORDS

sleep apnea syndrome (SAS), convolutional neural networks (CNN), 
photoplethysmographic (PPG) signals, sleep apnea syndrome (SAS) recognition, cross 
entropy

1. Introduction

According to the statistics of the World Health Organization, more than one-third of the 
world’s population suffers from sleep disorders, which seriously affect people’s health. SAS is a 
common sleep disorder, and its standard recognized method of diagnosis is polysomnography. 
However, this method requires multiple sensors, resulting in discomfort during the detection 
process. It can also seriously affect the patient’s natural sleep mode, with high costs (Phan and 
Mikkelsen, 2022). Thus, it is an urgent problem to find a simple and comfortable diagnostic 
method for the detection of SAS. To improve the comfort of the diagnostic process, thermal 
infrared imaging, radio frequency (RF) architecture, and sound detection have been introduced 
for non-contact detection (Murthy et al., 2009; Norman et al., 2014; Penzel, 2017; Tran et al., 2019), 
since body position, limb movement, and noise can easily interfere with the monitoring results. In 
recent years, some scholars have been committed to researching SAS detection based on wearable 
devices, which are used to collect chest bioimpedance, electrocardiogram (ECG), or PPG. At the 
same time, machine learning or deep learning are used to detect SAS, with accuracy generally 
around 70–85% (Baty et al., 2020; Hsu et al., 2020; Papini et al., 2020; van Steenkiste et al., 2020).

At present, many scholars have conducted research on convenient SAS detection based on 
neural networks. Convolutional neural networks have been gradually applied to analyze sleep 
quality. Song and other researchers constructed convolutional neural networks to classify sleep 
stages using single-channel electrocardiogram signals (Song et al., 2016; Sors et al., 2018; Wang 
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et al., 2019; Eldele et al., 2021; Haghayegh et al., 2023). Guo et al. 
(2022) proposed a pseudo-3D convolutional neural network method 
to detect people’s nocturnal sleep behavior, with an accuracy of 90.67% 
on the test set. du-Yan et al. (2022) used convolutional neural networks 
to analyze sleep stages using heart rate variability. Casal et al. (2022) 
constructed a time convolutional network and transformer using 
pulse oximeter signals to classify sleep stages. The above research 
methods mostly extract classification features from ECG signals. 
However, ECG signals are easily affected by low-frequency and large-
amplitude P and T waves, and the above studies are mostly used for 
sleep stages but not for SAS detection.

Pulse signals contain all kinds of human information and can 
be easily obtained, and monitoring it is of great significance in assessing 
the risk of various diseases (Allen and Hedley, 2019). Pulse wave 
amplitude and pulse rate variability have been used for SAS diagnosis 
and detection (Haba-Rubio et al., 2005; Liu, 2017). However, when the 
signal is disturbed or weak, it is very difficult to extract local features 
of the waveform using these methods. As fitting functions, the 
Gaussian function and lognormal function use the global information 
of the signal to extract the characteristics of pulse waves for SAS 
research (Jiang et al., 2021), but this method requires normalizing the 
data, resulting in a long processing period. Shen et al. established a 
convolutional network using PPG signals collected from wearable 
smart bracelet devices to detect sleep apnea syndrome, but the accuracy 
of fragment detection is approximately 80% (Shen et al., 2022).

In this study, a one-dimensional convolutional neural network 
(1D-CNN) was established by using PPG signals for the recognition of 
SAS, with a classification accuracy of over 90%. The results indicate 
that the convolutional model based on PPG has satisfactory recognition 
performance for SAS. This means that SAS can be identified using PPG 
signals by a one-dimensional convolutional model, which can make 
the detection process of SAS convenient and comfortable.

2. Methods

2.1. Subjects and data

In this study, signals were collected from 59 subjects, which 
included 20 healthy people and 39 SAS patients. The data used for 
analysis were the PPG signals of the subject’s fingers obtained from 
the Alice 5 detection system of the polysomnography monitor in the 
Sleep Center of Shandong Provincial Hospital. It was approved by the 
committee of our research institute as a retrospective study with the 
subjects’ informed consent. The PPG signals (sampling frequency is 
100 Hz) of each subject are segmented by 1,500 points. Table 1 shows 
the clinical information of 59 subjects and the summary of the 
PPG datasets.

As shown in Table 1, this study used 35,741 data segments, all of 
which were randomly divided into training, validation, and test sets, 
with a ratio of 6:2:2. To avoid the contingency of the experimental 
results, five cross-validations were used for training.

2.2. One-dimensional convolutional neural 
network

The convolutional neural network (CNN) is a common deep 
learning model, whose convolutional kernel can extract intrinsic features 

from different dimensions. It has the characteristics of local perception 
and weight, allowing the merging of local features from different fields of 
view. This greatly enhances learning efficiency and accuracy. In addition, 
its network structure mainly adopts local connections and weight-
sharing methods, which reduce the number of weights, facilitate network 
optimization, and minimize model complexity and the occurrence of 
overfitting. Considering that pulse wave data is a one-dimensional time 
series signal, this study proposes a 1D-CNN model for SAS classification 
and detection that includes eight convolutional layers, four maximum 
pooling layers, two LSTMs, and two fully connected layers. Figure 1 
shows the structure of the 1D-CNN model.

2.2.1. Convolutional layers
Convolutional layers are mainly used for feature extraction and 

can automatically extract features for learning. Different convolutional 
kernels can extract different local features, and the amount of feature 
learning can be increased by setting different convolutional kernels. 
As the number of layers in a neural network increases, convolutional 
neural networks typically have stronger feature extraction capabilities 
and yield better results. However, increasing the number of 
convolutional kernels significantly raises computational complexity 
and the difficulty of network training. At the same time, with the 
increase in network depth, it is easy to cause gradient vanishing and 
overfitting. To prevent these phenomena and obtain accurate results, 
this paper designs a progressive convolutional kernel scheme layer by 
layer. As shown in Figure 1, the model consists of eight convolutional 
layers, divided into four groups, each with two convolutional layers. 
A pooling layer and the ELU activation function are added between 
the convolution layer groups. The k-value of each convolutional kernel 
is 3, and the number of neurons in the four groups is 32, 64, 128, and 
256, respectively.

2.2.2. Pooling layers
Pooling is a process of data processing that reduces the 

dimensionality of feature maps and the number of parameters in the 
network. The pooling layer can gradually reduce the feature map 
output of the network and improve learning efficiency. In this study, 
four maximum pooling layers were designed. This design achieves 
rapid dimensionality reduction of information by mapping distributed 
features to the sample label space while ensuring its comprehensiveness 
and translation invariance.

2.2.3. LSTM
The Long Short-Term Memory (LSTM) neural network is an 

improved network based on recurrent neural networks. Due to the 
fact that traditional RNN structures are prone to associated gradient 
problems during training, they are not suitable for processing time 
dependence. The LSTM network can solve the dependency problem 
of RNN networks through the gate structure, thereby establishing a 
larger deep network. Its structural diagram is shown in Figure 2. Input 
gates can facilitate the flow of information and update the state of cells. 
The output gate can not only achieve information outflow but also 
be used to determine the value of the next hidden state. The Forgotten 
Gate can update the previous state and choose whether to discard or 
retain the information. The sigmoid function categorizes the data 
between 0 and 1, filters the updated data, and then transfers the output 
data of the previously hidden layer and the current state data together 
to the Tanh function to determine a new candidate value. Finally, the 
outputs of these two functions are multiplied.
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 h F h F ht t t t t= −( ) ∗ + ∗−1 1 

where It represents input gates; Ft represents forgetting gates; ht 
represents the hidden layer of the output gate; Xt is the external input 
at the current time; and ht-1 is the output of the network at the 
previous time.

The pulse wave is a temporal signal, and this article uses two 
LSTMs to extract temporal features from the data.

2.2.4. Cross-entropy loss function
The loss function is the key factor that guides the optimization 

direction of neural network parameters. The parameters of the 
network model are updated according to the backpropagation of the 
loss function to optimize the model. The cross-entropy loss function 
uses the logic function to obtain probabilities and adopts an inter-
class competition mechanism to effectively learn inter-class 
information. This scientific question in this paper is a binary 
problem; therefore, the binary cross-entropy loss function is utilized, 
which is defined in Formula 1 as:

 
L

N
y p y p

i

N
i i i i= − ( ) + −( ) −( ) 

=
∑1

1 1

1

. .log log

 
(1)

where N represents the total number of samples, yi represents the 
label of sample i, with positive classes being 1 and negative classes being 
0; pi  represents the probability that sample i is predicted to be positive.

3. Results

3.1. Evaluation indicators

To validate the performance of the model, four indicators were 
used to evaluate the classification performance of the model: accuracy 
(ACC), precision (PRE), sensitivity (SE), and specificity (SP). The 
calculation formula for each indicator is as follows:

 
ACC TP TN

TP TN FP FN
=

+
+ + +

 
PRE TP

TP FP
=

+

 
SE TP

TP FN
=

+

 
SP TN

TN FP
=

+

TABLE 1 Summary of PPG datasets.

Category Number Gender
Male subjects /
female subjects

Age (years) 
Mean [range]

Record duration 
(min) Mean 
[range]

Data segments

Healthy 20 11/9 29 [21–56] 473 [348–563] 15,343

SAS patient 39 29/10 48 [22–76] 494 [318–557] 20,398

Total 59 40/19 42 [21–76] 486 [318–563] 35,741

FIGURE 1

The structure of the 1D-CNN model.
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3.2. Result comparison

In order to verify the performance of the 1D-CNN model, SVM, 
LSTM, and KNN models were also constructed using the same data. 
The comparison between the confusion matrix results of the four 
models is shown in Figure 3. The evaluation index values of each 
model are shown in Table 2.

Compared to the other three models, it is obvious from Table 2 
that the 1D-CNN model established in this paper exhibited good 
performance. Except for the PRE indicator, the 1D-CNN model 
achieved the highest values for the other three performance indicators, 
ACC, SE, and SP Their values are 91.40, 98.36, and 87.63%, 
respectively, in the validation set; and 90.75, 98.24, and 86.74%, 
respectively, in the test set.

3.3. Anti-interference experiment

To test the influence of noise on the performance of 1D-SCNN, 
an anti-interference experiment was designed by adding Gaussian 
white noise to the original signal with a signal-to-noise ratio 
(SNR) of 5, 10, 15, 20, 25, and 30 dB, respectively. The data 
segments were also randomly divided into training, validation, 
and test sets in a ratio of 6:2:2. The anti-interference test results 
of the model’s test set are shown in Table 3. The experimental 
results indicated that noise has little effect on the performance 
indicators of 1D-SCNN, and the model has a certain anti-
interference ability.

3.4. Ablation experiment

To verify the role of the LSTM layer in the model, we designed 
an ablation experiment by removing the LSTM layer from the 
1D-CNN model, and then used the original data and followed the 
same method to train the model without the LSTM layer. The 
performance indicators ACC, PRE, SE, and SP of the test set 
without the LSTM layer had values of 89.94, 78.57, 97.71, and 
85.81%, respectively, which reduced its accuracy by 0.81% 
compared to the 1D-CNN model. The results showed that the 
LSTM layer can improve system performance, although the 
accuracy improvement is not very significant.

4. Discussion

In this study, we  constructed a 1D-CNN model for SAS 
detection and compared its performance with SVM, LSTM, and 
KNN models. The results showed that the accuracy of the 
1D-CNN model on the test set was 90.75%, which was 11.2% 
higher than the results for the SVM model, with a recorded 
accuracy of 79.55% on the test set. The results indicate that the 
constrained 1D-CNN model in this study has better performance 
in the classification of SAS. At the same time, we designed anti-
interference and ablation experiments to test the anti-noise 
performance of the model and the role of LSTM layers, 
respectively. The experimental results indicated that the model 
has a certain level of anti-interference ability, and the LSTM layer 
helps to improve the performance of the model.

Shen et  al. (2022) proposed a Multitask Residual Shrinkage 
Convolutional Neural Network that utilizes PPG signals to detect 
SAS with a fragment detection accuracy of 81.82%. Lazazzera et al. 
(2021) also proposed a method to detect and classify sleep apnea and 
hypopnea using light plethysmography (PPG) and peripheral 
oxygen saturation [SpO(2)] signals. However, there is significant 
room for improvement in the accuracy of their models. In our 
previous work (Jiang et al., 2021), Gaussian and lognormal functions 
were used to build SVM models based on PPG signals to classify 
SAS. The correct rate of the SVM model with a lognormal function 
in the awake period reached 95.00%, and the correct rate of the SVM 
model with a Gaussian function in the rapid eye movement periods 
reached 93%. However, in this study, only 10 cycles of pulse signals 
were captured from each subject, and the difference between the 
number of healthy individuals and the number of patients was too 
large, while the SVM machine learning method did not separate 
more subtypes. All these factors make the generalization ability of 
SVM models weak.

This study has several limitations. First, the sample size is small, 
involving only 59 subjects for a total of 35,741 data segments, which 
may have affected the performance of the model. Second, compared 
to SAS patients, healthy subjects are younger. Previous studies have 
shown that age affects PPG signals (Millasseau et al., 2002; Liu et al., 
2015), and differences in PPG signals caused by different age groups 
may also affect the classification performance of the model. However, 
the above factors have a small impact on the performance of the 
model, which has not changed much overall.

FIGURE 2

The structural diagram of LSTM.
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FIGURE 3

Confusion matrix results of the four models.

TABLE 2 Evaluation index values for each model.

Method Validation set Test set

ACC (%) PRE (%) SE (%) SP (%) ACC (%) PRE (%) SE (%) SP (%)

SVM 79.35 84.88 80.12 78.17 79.55 84.53 80.58 78.01

LSTM 74.40 83.94 65.83 84.77 74.47 84.00 65.90 84.83

KNN 74.42 84.95 74.04 75.12 74.46 85.02 74.06 75.21

1D-CNN 91.40 81.12 98.36 87.63 90.75 79.90 98.24 86.74
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5. Conclusion

In this study, a 1D-CNN model based on PPG signals for SAS 
classification was established. The results showed that this had the best 
performance, with a test set accuracy of over 90%, compared to other 
types of models. Our research results indicate that using only PPG 
signals for SAS classification is feasible, which can provide a foundation 
for seeking convenient and comfortable SAS detection methods. 
Furthermore, this can be helpful for portable wearable detection.
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Parkinson’s disease (PD) is a clinically heterogeneous disorder, which mainly 
affects patients’ motor and non-motor function. Functional connectivity was 
preliminary explored and studied through resting state functional magnetic 
resonance imaging (rsfMRI). Through the topological analysis of 54 PD scans and 
31 age-matched normal controls (NC) in the Neurocon dataset, leveraging on 
rsfMRI data, the brain functional connection and the Vietoris-Rips (VR) complex 
were constructed. The barcodes of the complex were calculated to reflect the 
changes of functional connectivity neural circuits (FCNC) in brain network. The 
0-dimensional Betti number β0 means the number of connected branches in VR 
complex. The average number of connected branches in PD group was greater 
than that in NC group when the threshold δ  ≤  0.7. Two-sample Mann–Whitney U 
test and false discovery rate (FDR) correction were used for statistical analysis to 
investigate the FCNC changes between PD and NC groups. In PD group, under 
threshold of 0.7, the number of FCNC involved was significantly differences and 
these brain regions include the Cuneus_R, Lingual_R, Fusiform_R and Heschl_R. 
There are also significant differences in brain regions in the Frontal_Inf_Orb_R 
and Pallidum_R, when the threshold increased to 0.8 and 0.9 (p  <  0.05). In 
addition, when the length of FCNC was medium, there was a significant statistical 
difference between the PD group and the NC group in the Neurocon dataset and 
the Parkinson’s Progression Markers Initiative (PPMI) dataset. Topological analysis 
based on rsfMRI data may provide comprehensive information about the changes 
of FCNC and may provide an alternative for clinical differential diagnosis.

KEYWORDS

resting-state fMRI, Parkinson’s disease, persistent homology, functional connectivity 
neural circuits, VR complex

1. Introduction

Parkinson’s disease (PD) is a clinically degenerative disorder disease of the nervous system 
with motor and non-motor symptoms. The disease mainly affects people’s motor function, such 
as bradykinesia, tremor, muscle stiffness or rigidity, abnormal walking gait, etc. In addition, it 
will also affect non-motor function, such as cognitive impairment, insomnia, depression, 
autonomic nerve dysfunction, and so on. The cause of PD is unclear. In the early premotor 
stages, the diagnosis of this disease is still difficult (Aarsland et al., 2017). Anatomical magnetic 
resonance imaging could not detect the loss of dopamine neurons. With the development of 
molecular biology, neural structure, and functional imaging technology, more and more 
biomarkers of PD can be  discovered, providing the possibility for early diagnosis, disease 
monitoring, and differential diagnosis, thus achieving accurate early intervention and efficacy 
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evaluation of the disease. Dopamine transporter single photon 
emission computed tomography (DAT-SPECT) and resting state 
functional magnetic resonance imaging (rsfMRI) are potential 
techniques for detecting the survival status of neurons in PD (Wang 
et  al., 2012). Among them, DAT-SPECT can provide quantitative 
information about dopamine neurons, which is very useful for 
assessing disease severity and monitoring treatment effectiveness. 
However, it is expensive and carries the risk of radioactive tracer. On 
the other hand, rsfMRI is a non-invasive imaging technique that is 
relatively inexpensive and can avoid ionizing radiation. It can provide 
information about brain activity, which is very useful for studying the 
neural mechanisms of PD and evaluating treatment effectiveness.

Therefore, the study of functional connectivity (FC) based on 
rsfMRI is a promising method. Based on the correlation of time series, 
FC was preliminary explored and studied through rsfMRI (Aarsland 
et  al., 2017). With rsfMRI, FC can be  used to detect a variety of 
diseases such as Alzheimer’s disease, PD, schizophrenia, and so on 
(Lee et al., 2013). Some studies have shown that motor and cognitive 
impairment in PD are related to abnormal functional connections 
(Putcha et  al., 2015; Zhang et  al., 2015). Graph theory-based 
approaches used in PD research have shown that topological 
properties of brain networks are disrupted, which can help identify 
this type of disease (Luo et al., 2015). Specifically, abnormal local and 
global network efficiency changes suggest clinical phenomena in 
PD. The above methods assume that the functional network is stable 
and does not change over time. A dynamic FC based method was used 
in recent research. For example, previous studies used rsfMRI and 
sliding windows to assess differences in dynamic connectivity between 
normal control (NC) and PD (Kim et al., 2017). Huang et al. (2020) 
proposed a regression method to model the dynamic correlation 
matrices as a linear combination of symmetric positive definite matrix 
to smooth the image acquisition and physiological noise. Pang et al. 
(2021) distinguished different motor subtypes of PD based on 
multilevel indices of rsfMRI and Support Vector Machine (SVM).

However, the graph theory analysis method can not describe the 
characteristics of higher-level complex brain networks. To study the 
topological characteristics of complex brain networks on a larger scale, 
researchers began to study Vietoris-Rips (VR) complex filtration 
based on persistent homology in brain networks. In topological data 
analysis (TDA), persistent homology is an effective tool to explore the 
nonlinear structure of the data. Compared with the common methods 
such as principal component analysis (PCA), cluster analysis, and 
graph theory (Li et  al., 2009), TDA can effectively capture the 
topological information of high-dimensional data space. This kind of 
algorithm adopts a free threshold and solves the problem of threshold 
selection. It measures the topological characteristics of brain network 
under all possible thresholds (Choi et al., 2014; Chung et al., 2015; Lee 
et al., 2017). These approaches mainly associate the 0-dimensional 
Betti numbers β0 with current varying thresholds. A connected 
component-based aggregation cost model called Integrated 
Persistence Features (IPF) was proposed in previous research (Kuang 
et al., 2019). Different from the above persistent homology feature 
which based on 0-dimensional Betti numbers, this paper proposes a 
persistent homology feature based on the 1-dimensional Betti number 
β1. To our knowledge, there is little literature investigating the 
1-dimensional Betti number β1 in PD. Our main contributions of this 
paper are as follows: (1) The VR complex filtering model was 
established based on the relationship matrix of the human brain 
network. The persistent homology method was used to calculate VR 

filtered barcodes. And then the functional connectivity neural circuits 
(FCNC) at different thresholds are calculated from the barcodes. (2) 
Two-sample Mann–Whitney U test and FDR correction are used for 
statistical analysis to investigate the FCNC changes between PD and 
NC groups. (3) Through the statistical tests on the number of FCNC 
in PD and NC groups, our results show that there is a significant 
statistical difference between the PD group and the NC group.

2. Method

2.1. Basic concepts about persistent 
homology

The common method to reduce the dimension of data is PCA, but 
this method will lose some potentially valuable data more or less. 
Persistent homology provides us a method to find a complete data 
ship without dimensional reduction.

Persistent homology is an effective tool to analyze high-
dimensional data and explore the nonlinear structure of data. It can 
calculate topological features at different spatial resolutions. By 
identifying persistent topological features over changing scales, 
persistent homology provides clues for effective analysis of multi-scale 
networks. Its core idea is to analyze the birth and death of holes in 
various dimensions in a multi-scale range. To extract persistent 
homology features, we first need to construct VR complex. Let d(·, ·) 
denote the distance between two points in the metric space Z. The 
value of δ denotes the threshold. When we change the threshold, 
we obtain a sequence of complexes. The VR(Z, δ) complex is defined 
as follows (Silva and Carlsson, 2004):

 1. For vertices a and b, edge [ab] is included in VR(Z, δ) if 
d(a,b) ≤ δ.

 2. A higher dimensional simplex is included in VR(Z, δ) if all of 
its edges are included in it.

Note that VR(Z, δ0) ⊆ VR(Z, δ1) ⊆ · · · ⊆ VR(Z, δn), for δ0 ≤ δ1 ≤ · · · 
≤ δn. Therefore, the VR complex VR(X, δi) (i = 0, 1, · · ·, n) is a filtered 
simplicial complex.

Betti intervals help describe how the homology of VR(Z, δ) 
changes with δ. A k-dimensional Betti interval, with endpoints (δstart, 
δend), corresponds roughly to a k-dimensional hole that appears at the 
threshold δstart, remains open for δstart ≤ δ < δend, and closes at δend.

The rank of the homology group is called Betti number (Woo 
et al., 2014), which is a set of important topological invariants. It uses 
the connectivity based on k-dimensional simplex complex to 
distinguish the topological space, which can well reflect the topological 
structure of an object. The k-dimensional Betti number is the rank of 
the k-th homology group and represents the number of “holes” in the 
k-th dimension. For example, the 0-dimensional Betti number β0 
refers to the number of connected branches (Lee et  al., 2012). 
Similarly, the one-dimensional Betti number β1 intuitively represents 
the number of one-dimensional “holes.”

2.2. An example of persistent homology

Figure 1 gives an example of Betti number changes with δ = 1.4, 
5.2, 6.3, and 8.5, respectively. Take 10 points randomly and draw a 
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circle centered on these points and radius of the threshold δ/2. In 
the process of increasing the threshold δ from 0 to the maximum, 
the 0-dimensional and 1-dimensional Betti numbers change 
constantly. When δ = 1.4, the number of connected branches is 10, 
that means β0 = 10 and the number of 1-dimensional “holes” β1 = 0 
(Figure 1A). In Figure 1B, when δ = 5.2, β0 = 1 and β1 = 0. As the 
threshold δ increase, when δ = 6.3 (Figure 1C), β0 = 1 and β1 = 1. 
When δ = 8.5, some holes are “filled.” At this time, there is only one 
connected branches (β0 = 1) and one 1-dimensional “holes” (β1 = 0) 
(Figure 1D).

With the change of the threshold δ, the topological 
characteristics of VR complex change. This process can 
be represented by a barcode and a persistence diagram (Figure 2). 
As shown in Figure 2A, a barcode is a set of finite intervals. Each 
interval represents the birth and death of holes in the corresponding 
dimension, and these intervals are parallel to each other. 
K-dimensional barcodes (k = 0, 1 in Figure 2A) show us the duration 
of k-dimensional topological features. Generally, we  regard the 
features with very short duration as noise, and the features with long 
duration as real signal features. In Figure 2B, the persistence diagram 
provides a multi-scale feature description. The abscissa of each point 
in the diagram represents the birth of the topological feature, while 

the ordinate represents its demise. Points away from the diagonal 
represent features with a long life cycle, while points close to the 
diagonal represent features with a short life cycle. Among them, the 
feature that can be  maintained for a longer time is a useful 
persistence feature with stronger robustness. The feature with short 
life is more likely to be noise or detail. The red vertical line on the 
ordinate axis is regarded as a point at infinity, representing a 
topological feature that will never die.

3. Results

3.1. Dataset and preprocessing

The datasets used in this article are the Neurocon dataset (Badea 
et al., 2017) and Parkinson’s Progression Markers Initiative (PPMI) 
dataset (Marek et al., 2011). The Neurocon dataset includes rsfMRI 
data from 27 PD patients and 16 age matched NC patients, with each 
subject undergoing 2 repeated scans. One NC scan was subsequently 
excluded owing to data corruption. Finally, 54 PD scans and 31 NC 
scans were included in the final analyses. The Neurocon study has 
been approved by the Ethics Committee of the Emergency Hospital of 

FIGURE 1

An example of VR complex. Betti number changes with (A–D): δ  =  1.4, 5.2, 6.3, and 8.5, respectively.
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the University of Bucharest and is in line with the Helsinki Declaration 
1964 and its later revised ethical standards (Badea et al., 2017). The 
scanner is Siemens AVanto 1.5 T, Scan time = 8.05 min, TR = 3.48 s, 
Voxel = 3.8 × 3.8 × 5 mm3, volume = 137. Each rsfMRI consists of 2 mm 
isotropic voxels and 1,200 time points over a 14 min, 33 s scanning 
session. The details of the Neurocon dataset are shown in Table 1. 
Retrieve rsfMRI data from the PPMI dataset for 154 PD patients and 
24 age matched NC patients. Each study in the PPMI dataset was 
approved by the Human Experimental Ethics Standards Committee 
before registration, and each subject signed a written informed 
consent form. This study obtained the right to use the PPMI 
database data.

The Neurocon dataset is preprocessed using DPABI (DPABI 
Software Library v5.1) (Yan et al., 2016) as follows:

 1. Removing the first 10 time points of rsfMRI data to obtain a 
stable signal;

 2. Time correction is performed on each slice to ensure that the 
data on each slice corresponds to the same time;

 3. Realign: eliminate the data with the maximum value of 
translation greater than 3 mm and the maximum value of 
rotation greater than 3°;

 4. Registration of structural image to functional image space. Use 
anatomical T1 images to register to the standard Montreal 
Institute of Neurology MNI152 template;

 5. Check the coverage of function image by Automask;
 6. Bandpass filtering with a frequency of 0.01 ~ 0.1 Hz is set;
 7. Normalize using EPI templates;
 8. Extract region of interest (ROI) time courses using Anatomical 

Automatic Labeling (AAL) atlas.

The brain parcellation used in this paper is the AAL brain 
template (Tzourio-Mazoyer et al., 2002). There are 116 regions in the 
AAL template, 90 belonging to the brain, and the remaining 26 
belong to the cerebellar structure. There are few studies on the 
cerebellum. In this paper, the classical AAL template of 90 brain 
regions is used to construct VR complex.

3.2. Constructing VR complex

Firstly, we preprocess the rsfMRI image as described above, and 
then calculate the FC between the 90 brain regions in the AAL template. 
Pearson correlation is probably the most commonly used scheme for 
calculating functional connections (Valdes-Sosa et al., 2011). We also 
use the Pearson correlation coefficient between vertices to construct the 
FC matrix in this work. FC is defined as the temporal correlation of 
brain region. For convenience, we defined P(j) = {P1(j), P2(j), · · ·, Pn(j)} 
(j = 1, 2, · · ·, 90) as the average time signal sequence of the j-th brain 
regions, and n is the total number of time series. The FC matrix M = (mij) 
(i, j = 1, 2, · · ·, 90) is calculated using equation (1):
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To construct VR complex, we defined the distance between each 
two vertices using equation (2):

TABLE 1 The details of the Neurocon dataset.

Dataset PD 
subjects

NC 
subjects

PD 
scans

NC 
scans

Age PD 
(mean  ±  SD)

Age NC 
(mean  ±  SD)

P (age 
NC-
PD)

H&Y 
(mean  ±  SD)

Disease 
duration 

(mean  ±  SD)

Neurocon 27 (16 M) 16 (5 M) 54 31 68.7 ± 10.6 67.6 ± 11.9 0.76 1.92 ± 0.33 4.6 ± 6.5

SD, standard deviation; H&Y, Hoehn and Yahr; PD, Parkinson’s disease; NC, normal controls.

FIGURE 2

Barcodes and persistence graph. (A) Barcodes. (B) Persistence diagram.
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For each value, the nested complex 
VR Z VR Z VR Z n, , ,δ δ δ0 1( ) ⊆ ( ) ⊆ ⊆ ( )  is constructed. Thus, a VR 
complex was further established for each subject. The VR complex 
take three inputs: the maximum dimension dmax of any included 
simplex, the maximum filtration value tmax, and the number of 
divisions. In our experiments, the maximum dimension dmax = 2, 
which means we construct 0-dimensional simplex and 1-dimensional 
simplex. The maximum filtration value tmax = 0.9 and the number of 
division is set to 450.

4. Discussion

The VR complex is established under multiple scales. The 
0-dimensional Betti number β0 and the 1-dimensional Betti number 
β1 under each scale are calculated using Javaplex software. Figure 3 
plots show the 0-dimensional and 1-dimensional Betti number curves 
between PD and NC. As depicted from the 0-dimensional Betti 
number diagram (Figure 3A), with the increase of threshold δ, the 
number of connected branches of PD and NC gradually decrease from 
the initial 90. Until the threshold δ = 0.7, they tend to be consistent and 
gradually decreased to 1. But β0 in PD is always greater than that in 

NC when δ ≤ 0.7. In the 1-dimensional Betti number curves 
(Figure  3B), the topological features was significantly different 
between the PD brain network and the NC brain network under 
different thresholds.

In Table 2, two sample Kolmogorov Smirnov (K-S) tests were also 
conducted from Figures 3A,B to compare whether there is a significant 
difference in distribution between the PD group and the NC group. 
From Table 2, it can be seen that the maximum absolute differences in 
the cumulative probability of Betti numbers in 0-dimension and 
1-dimension are 0.049 and 0.082, respectively. Assuming a significance 
level of 0.05, as the probability p-values (both 0.000) are less than the 
significance level, it can be  concluded that there is a significant 
difference in the Betti number curve between the PD group and the 
NC group, regardless of whether it is 0-dimensional or 1-dimensional. 
Therefore, by comparing the Betti numbers at all scales, the differences 
between these two groups can be detected.

To more intuitively show the difference between PD and NC 
groups, comparison of the 1-dimention FCNC in the PD group and 
the NC group with δ = 0.4  in the Neurocon dataset are shown in 
Figure 4. Among them, the coronal and sagittal views are shown in 
Figure  4A and Figure  4B respectively, and their corresponding 
relationship matrices are given in Figure 4C. Note that, the different 
colors in Figure 4 only represent different FCNC.

The number of FCNC in 90 brain regions was analyzed and a 
histogram was drawn in Figure 5. It can be seen intuitively, the average 

FIGURE 3

Betti number curves of PD and NC groups in 0 and 1 dimensions. (A) The 0-dimensional Betti number diagram. (B) The 1-dimensional Betti number 
diagram.

TABLE 2 Two-sample K-S tests.

0-dimension 1-dimension

Extreme difference Absolute 0.049 0.082

Positive 0.049 0.082

Negative −0.038 −0.058

Kolmogorov Sminov Z 3.451 5.819

Asymptotic significance (double tailed) 0.000 0.000

0-dimension and 1-dimension represents PD and NC samples of different dimensions separately.
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number of FCNC in PD and NC groups is significantly different in 
some brain regions. To further analyze these differences, the mean and 
standard deviation of the number of FCNC in each brain region were 
calculated for the PD and NC groups under thresholds of 0.7, 0.8, and 
0.9  in Neurocon dataset, respectively. Then, two sample Mann 
Whitney U test and false discovery rate (FDR) correction were 
performed to detect differences between the two groups. The brain 

regions with statistical differences are shown in Table 3. In PD group, 
under threshold of 0.7, the number of FCNC involved was significantly 
differences and these brain regions include the Cuneus_R, Lingual_R, 
Fusiform_R and Heschl_R. In addition to the aforementioned brain 
regions, there are also significant differences in brain regions in the 
Frontal_Inf_Orb_R and Pallidum_R, when the threshold increases to 
0.8 and 0.9 (p < 0.05 and FDR correction).

FIGURE 4

Comparison of the FCNC in the PD group and the NC group with δ  =  0.4 in the Neurocon dataset. (A) Coronal view. (B) Sagittal view. (C) The relation 
matrix. The first row: the FCNC in the PD group. The second row: the FCNC in the NC group. Different colors are just for the purpose of easy 
observation.
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FIGURE 5

Comparison of the average number of FCNC between PD and NC groups in AAL 90 brain regions.
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We also analyzed the statistical differences in the number of 
FCNC with medium lengths in the Neurocon and PPMI datasets 
(Table  4). From Table  4, it can be  seen that there is a significant 
difference between the PD group and the NC group for medium 
length of FCNC. Specifically, at thresholds of 0.8 and 0.9, there was a 
significant difference between the two groups in the Neurocon 
dataset (length = 8). When the thresholds are 0.7, 0.8, and 0.9, there 

was a significant difference between the two groups in the PPMI 
dataset (length = 9). All results were corrected through FDR 
correction. In these two datasets, at different thresholds, the mean of 
the PD group is always greater than that of the NC group.

At different thresholds, we can also visually see the significant 
differences between the two groups through the box-plot in the 
Neurocon dataset. From the box-plot Figure 6, it can be seen that 

TABLE 3 Statistically significant differences in the numbers of FCNC in the involved brain regions.

Brain regions Threshold
PD (n  =  54) 
mean  ±  SD

NC (n  =  31) 
mean  ±  SD

P-value
q-value (FDR-

corrected)

Precentral_L 0.7 4.43 ± 3.611 3.03 ± 3.125 0.046*↓ 0.0520

0.8 6.07 ± 4.138 4.45 ± 3.075 0.039*↓ 0.0520

0.9 6.07 ± 4.138 4.52 ± 3.086 0.052 0.0520

Frontal_Inf_Orb_R 0.7 2.96 ± 2.747 3.97 ± 3.516 0.192 0.1920

0.8 4.07 ± 3.392 5.74 ± 3.235 0.014*↓ 0.0210*↓

0.9 4.09 ± 3.388 5.81 ± 3.301 0.013*↓ 0.0210*↓

Olfactory_R 0.7 0.63 ± 0.938 0.74 ± 0.999 0.672 0.6720

0.8 1.81 ± 1.802 1.06 ± 1.181 0.059 0.0885

0.9 1.91 ± 1.896 1.06 ± 1.181 0.043*↓ 0.0885

Cuneus_R 0.7 2.15 ± 2.184 3.68 ± 2.774 0.008*↓ 0.0210*↓

0.8 2.91 ± 2.742 4.65 ± 3.431 0.018*↓ 0.0210*↓

0.9 2.93 ± 2.739 4.65 ± 3.431 0.021*↓ 0.0210*↓

Lingual_R 0.7 1.81 ± 2.019 3.35 ± 3.251 0.035*↓ 0.0350*↓

0.8 2.33 ± 2.181 4.06 ± 3.255 0.010*↓ 0.0150*↓

0.9 2.35 ± 2.173 4.13 ± 3.274 0.008*↓ 0.0150*↓

Occipital_Inf_R 0.7 0.98 ± 1.173 1.42 ± 1.205 0.041*↓ 0.1230

0.8 1.56 ± 1.690 1.77 ± 1.499 0.293 0.2930

0.9 1.56 ± 1.690 1.77 ± 1.499 0.293 0.2930

Fusiform_R 0.7 2.35 ± 2.147 3.90 ± 2.508 0.003*↓ 0.006*↓

0.8 2.85 ± 2.227 4.68 ± 3.113 0.006*↓ 0.006*↓

0.9 2.85 ± 2.227 4.71 ± 3.090 0.005*↓ 0.006*↓

Pallidum_R 0.7 0.43 ± 0.792 0.84 ± 1.293 0.085 0.0850

0.8 0.81 ± 1.065 1.52 ± 1.480 0.007*↓ 0.0150*↓

0.9 0.83 ± 1.077 1.52 ± 1.480 0.010*↓ 0.0150*↓

Heschl_R 0.7 1.19 ± 1.543 0.45 ± 0.675 0.013*↓ 0.027*↓

0.8 1.72 ± 1.857 1.06 ± 1.825 0.027*↓ 0.027*↓

0.9 1.72 ± 1.857 1.06 ± 1.825 0.027*↓ 0.027*↓

SD, standard deviation; FDR, false discovery rate; ∗↓ denotes (p < 0.05).

TABLE 4 Statistically significant difference between the two groups in the number of medium length of FCNCs.

Datasets Threshold value PD (mean  ±  SD) NC (mean  ±  SD) P-value
q-value (FDR-

corrected)

Neurocon 0.7 1.69 ± 1.286 1.30 ± 1.317 0.091 0.091

0.8 2.33 ± 1.454 1.63 ± 1.377 0.017 0.043*↓

0.9 2.330 ± 1.454 1.63 ± 1.377 0.029 0.043*↓

PPMI 0.7 1.14 ± 1.105 0.54 ± 0.977 0.004 0.008*↓

0.8 1.36 ± 1.159 0.75 ± 1.113 0.008 0.008*↓

0.9 1.38 ± 1.161 0.75 ± 1.113 0.007 0.008*↓

SD, standard deviation; FDR, false discovery rate; ∗↓ denotes (p < 0.05).
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when the threshold is 0.7, there is no significant difference in the 
median between the two groups. However, when the thresholds are 
increased to 0.8 and 0.9, the median of the PD group are significantly 
higher than that of the NC group. The above results show that there 
are significant differences in the characteristics of FCNC in some 
brain regions, and the medium length of FCNC in PD patients show 
significant changes.

According to the functional classification of the brain, Woo et al. 
(2014) divided the AAL brain regions into 7 sub networks. That is 
dorsal attention network (DAN), default mode network (DMN), the 
visual network (VSN), ventral attention network (VAN), limbic 
network (LBN), fronto parietal network (FPN) and somatomotor 
network (SMN) (Esposito et al., 2013; Baum et al., 2017).

By analyzing the FCNC, we found significant statistical difference 
in the Frontal_Inf_Orb, Cuneus, Lingual gyrus, Fusiform, Pallidum 
and Heschl areas. A similar result was obtained in previous studies 
regarding the function connectivity strength of the SMN and VAN 
(Caspers et al., 2021; Tsuboi et al., 2021) and our findings provide 
guidance for further studies on the pathogenesis of early 
PD. Interestingly, increases in FC within SMN (Pang et al., 2021) have 
been observed upon a dopaminergic challenge in PD patients. Both 
anterior central gyrus and transverse Nie gyrus belong to SMN. Caspers 
et  al. (2021) pointed out that PD is accompanied by the loss of 
functional connection of SMN, whether within the network or in the 
interaction with other networks. The lesions of globus pallidus can have 
symptoms such as increased muscle tension, decreased movement and 
static tremor (such as Parkinson’s syndrome). Globus pallidus plays an 
important role in the regulation of motor function. It is not only the 
relay nucleus between the caudate putamen (CPU) and subthalamic 
nucleus (STN), but also integrates the inhibitory afferent from CPU 
and the excitatory afferent from STN, neocortex and thalamus, thus 
affecting the efferent signal of basal ganglia (Esposito et al., 2013). 
Globus pallidus stimulation can be  used to improve the brain 
connectivity in order to treat advanced PD (Tsuboi et al., 2021).

5. Conclusion

This study applies persistent homology to the brain functional 
networks of PD. This work provides some new insights into the evolution 
of functional network in the progression of PD and may provide 
evidence for the study of preclinical biomarkers of PD. We observed that 

there are significant differences in the characteristics of FCNC in some 
brain regions, and the medium length of FCNC in PD patients show 
significant changes. Topological analysis based on rsfMRI data may 
provide comprehensive information about the changes of FCNC and 
may provide an alternative for clinical differential diagnosis.
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Usability and ease of use of 
long-term remote monitoring of 
physical activity for individuals 
with acquired brain injury in 
community: a qualitative analysis
Marie Mazzeo , Gabriel Hernan  and Akhila Veerubhotla *

Department of Rehabilitation Medicine, New York University - Grossman School of Medicine, 
New York, NY, United States

Introduction: Objective and continuous monitoring of physical activity over the 
long-term in the community is perhaps the most important step in the paradigm 
shift toward evidence-based practice and personalized therapy for successful 
community integration. With the advancement in technology, physical activity 
monitors have become the go-to tools for objective and continuous monitoring 
of everyday physical activity in the community. While these devices are widely 
used in many patient populations, their use in individuals with acquired brain 
injury is slowly gaining traction. The first step before using activity monitors in this 
population is to understand the patient perspective on usability and ease of use 
of physical activity monitors at different wear locations. However, there are no 
studies that have looked at the feasibility and patient perspectives on long-term 
utilization of activity monitors in individuals with acquired brain injury.

Methods: This pilot study aims to fill this gap and understand patient-reported 
aspects of the feasibility of using physical activity monitors for long-term use in 
community-dwelling individuals with acquired brain injury.

Results: This pilot study found that patients with acquired brain injury faced 
challenges specific to their functional limitations and that the activity monitors 
worn on the waist or wrist may be better suited in this population.

Discussion: The unique wear location-specific challenges faced by individuals 
with ABI need to be taken into account when selecting wearable activity monitors 
for long term use in this population.

KEYWORDS

stroke, traumatic brain injury, fitness trackers, community integration, usability, 
ease-of-use, remote patient monitoring

1. Introduction

Acquired brain injury (ABI) is an umbrella term that describes damage to the brain that occurs 
after birth; mechanisms of injury may be  traumatic [e.g., traumatic brain injury (TBI)] or 
non-traumatic (e.g., stroke). ABI is a significant cause of morbidity and mortality worldwide, the 
recovery course is extremely varied, and residual disability is highly prevalent (Törnbom et al., 2017; 
Grabljevec et al., 2018). Potential sequelae include impaired functioning in physical, cognitive, 
neurological, behavioral, and lifestyle domains and most of these limitations persist even into the 
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chronic phase (>6 months) post-ABI. Compared to individuals with 
similar durations of hospitalization for different etiologies, individuals 
who have experienced a head injury have an increased risk of death for 
at least 13 years after hospital admission (Hillman et al., 2008).

Rehabilitation is an important part of the recovery process post-ABI  
and typically continues during the acute phase and the chronic phase. 
An essential aspect of rehabilitation during the chronic phase is physical 
activity (PA). Rehabilitation specialists are recommended to prescribe 
PA programs, especially in the chronic phase after ABI (Grabljevec et al., 
2018). Increased physical activity has been associated with distinct 
anatomical and physiological changes and may improve physical and 
mental health; aerobic activity has demonstrable benefits on overall brain 
health (Hillman et al., 2008; Crosson et al., 2017; O'Carroll et al., 2020; 
Mercier et  al., 2021; Sheng et  al., 2021). PA is believed to facilitate 
neuronal plasticity and affect the brain’s recovery following ABI, and 
engagement in PA has been shown to impact an individual’s health-
related quality of life (Hillman et al., 2008; Crosson et al., 2017; O'Carroll 
et  al., 2020; Mercier et  al., 2021; Sheng et  al., 2021). Additionally, 
engagement in physical activity may improve sleep quality; sleep 
disturbances are highly prevalent in individuals with ABI and have a 
well-established impact on the efficacy of rehabilitation efforts (Bruijel 
et al., 2021; Dey et al., 2021). The significant role of PA in recovery is 
especially significant when considering that recent studies have 
demonstrated that individuals who have experienced ABI participate in 
less PA compared to healthy individuals, and are more sedentary than 
their age-matched peers (Törnbom et al., 2017).

Traditionally, questionnaires and surveys are used to measure PA; 
however, wearable physical activity monitors (PAMs) have emerged 
as an alternative objective method to measure PA (Brickwood et al., 
2019; Cho et al., 2021; Veerubhotla et al., 2021). PAMs are designed to 
be small, lightweight, and low-cost devices (Brickwood et al., 2019; 
Veerubhotla et al., 2021). Wearable devices are beneficial because they 
can monitor PA over days to months in free-living conditions with 
minimal interference to the user’s everyday life (Brickwood et al., 
2019; Veerubhotla et al., 2021). The data derived from PAMs can 
be described as person-generated health data (PGHD)—a potentially 
valuable resource for researchers and care providers alike (Cho et al., 
2021; Veerubhotla et al., 2021). For example, accelerometer counts 
have been used to measure walking intensity in individuals who have 
experienced a minor stroke and are significantly associated with 
physical capacity, a measure of functional status related to overall 
health and well-being (Braakhuis et al., 2022).

Usability and wearability are important considerations for the use 
of PAMs. As described by Eng et al., usability refers to the ease of use, 
which encompasses user interface, set-up, and errors (Louie et al., 
2020). Wearability refers to donning, doffing, aesthetics, and the 
comfort of a device (Louie et al., 2020). A recent systematic review 
identified user-related factors (e.g., device non-wear) and device/
technical-related factors (e.g., issues with hardware, software, etc.) as 
major categories that impact the quality of PGHD (Cho et al., 2021). 
It is essential that PAMs are specifically studied in individuals who 
have experienced ABI, because the unique sequelae which impact the 
usability and accuracy of these devices in this patient population may 
not be represented in studies of the general population (Campos et al., 
2018; Veerubhotla et  al., 2021). Additionally, to the best of our 
knowledge, the transition from laboratory to community-based 
studies of PAMs has not yet occurred for individuals who have 
experienced TBI (Veerubhotla et al., 2021). Further, there is a need for 
usability studies and community-based research in both individuals 

with TBI and stroke that have a duration of greater than 1 week (Hardy 
et al., 2018; Veerubhotla et al., 2021). There is a lack of information 
regarding the long-term utilization of PAMs, nor is there a consensus 
on the best wear location for PAMs, as studies have used different wear 
locations (e.g., wrist, waist, ankle) (Giggins et al., 2017).

To effectively undertake community-based research in individuals 
with ABI using wearable devices, it is important to first understand 
their usability and ease of use from the patient/user perspective. The 
goal of this pilot investigation was to determine the usability and 
feasibility of wearable PAM in individuals with ABI, specifically, in 
individuals who have experienced a stroke or TBI. This study assessed 
patient-reported challenges with PAMs at three popular wear locations 
(wrist, waist and ankle), patient reported wear location preferences, 
and the use of a remote data transfer hub for remote monitoring, for 
a duration of 4 weeks in community dwelling individuals with ABI. By 
doing so, this study seeks to provide a framework for important 
considerations for the use of PAMs in community-dwelling 
individuals who have experienced ABI.

2. Materials and methods

2.1. Participants

To be included in this study, participants had to (1) be between 
the ages of 45 and 75; (2) have been diagnosed with a stroke or a 
non-penetrating TBI by a physician and be at least 6 months post-
injury; (3) have been medically stable for 3 months at the time of study 
participation; (4) no plans to make any drastic changes to medications 
for at least 4 weeks; (5) have sufficient endurance and motor ability to 
ambulate 10 m continuously with minimal assistance; (6) willing and 
able to give informed consent, and (7) be able and willing to comply 
with study procedures and verbal instructions.

Individuals were excluded from participation in this study if they 
had (1) existing severe cardiac conditions such as myocardial infarction 
or congestive heart failure; (2) fluctuating blood pressure; (3) a history of 
uncontrolled seizure disorder; (4) additional orthopedic, neuromuscular, 
or neurological conditions that would interfere with the ability to 
perform the assessments; (5) difficulty following or responding to 
commands that would limit the study participation, and (6) enrollment 
in another research study or therapy at the time of starting this study.

Individuals were recruited via telephone using a convenience 
sample from Kessler Foundation and the Kessler Institute for 
Rehabilitation (KIR) System. Of the 12 participants who attended the 
initial visit, two participants declined to participate, citing the 4-week 
time commitment.

All participants were paid $25 for the initial visit to Kessler 
Foundation and $50 for each week they completed study procedures 
in the community.

2.2. Design and procedure

The ActiGraph GT9X Link (ActiGraph LLC, FL, United States) 
was the physical activity monitor chosen for this study. The ActiGraph 
GT9X Link is an FDA-approved class II medical device that weighs 14 
grams, has dimensions of 3.5 × 3.5 × 1 cm, and saves movement data 
without any identifiable information related to participants (User 
Guide ActiGraph GT9X Link + ActiLife, 2020). The ActiGraph PAM 
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is widely used in physical activity research across patient populations 
and is considered a gold standard for physical activity outcomes.

Following informed consent, participants were provided with 
three ActiGraph Link physical activity monitors and associated 
accessories, which included the dock and charger, CentrePoint Data 
Hub, sensor pouch, wrist band, ankle strap, and waist belt (Figure 1). 
All participants were trained to wear, charge, and dock the physical 
activity monitors for automatic remote data transfer to the research 
ActiGraph server using the dock and Data Hub. Participants were 
sent home with a detailed instruction sheet with instructions and 
graphical representation of instructions covered during the training. 
Participants were asked to go about their everyday routine in the 
community as usual and were not asked to engage in any physical 
activity specifically for the study in the community. Participants were 
instructed to wear all three ActiGraph activity monitors (one each on 
their non-affected or dominant wrist, ankle and waist) simultaneously 
for 4-weeks in the community and try to wear the activity monitors 
simultaneously for at least 10 hours during their wake time each day. 
Participants were instructed to charge each activity monitor once 
each week for a minimum of 2 hours.

This study follows the consolidated criteria for reporting qualitative 
research (COREQ) checklist. The questionnaires and semi-structured 
interviews, organized by wear location, were administered by AV (Ph.D., 

post-doctoral fellow, female) and OI (BS, research assistant, male). 
Neither AV nor OI had any relationship with the participants before the 
study commencement. During the initial visit, participants were 
introduced to the interviewers and their credentials. Study procedures, 
aims, and goals were discussed during informed consent. At the end of 
each week, AV or OI contacted the participant via telephone. Individuals 
were not specifically asked about the presence of non-participants (e.g., 
family members at home) during these phone calls.

Each week, participants were asked to complete a System Usability 
Scale (SUS) and an After-Scenario Questionnaire (ASQ). The SUS was 
used to collect feedback regarding wear locations; it is a 10-item 
questionnaire with a five-response option Likert scale; it is well-
validated and commonly utilized in usability research (Bangor et al., 
2009; Klug, 2017). The ASQ was used to quantify the perceived 
usability of remote data transfer; it is a 3-item questionnaire with a 
seven-response option Likert scale, it is popular in usability studies 
due to its simplicity (Lewis, 1991).

Semi-structured interview questions were not provided to 
participants in advance; however, repeat interviews with the same 
questions were carried out weekly for 4 weeks. The interview duration 
was approximately 5–10 min. Field notes were made during the 
interview, and transcripts were not returned to participants for comment 
or correction. Data saturation was not discussed with participants.

FIGURE 1

PAM and related study accessories. (A) ActiGraph GT9X Link PAM worn simultaneously by all study participants on the wrist, waist and ankle. 
(B) CentrePoint Data Hub used by all study participants for remotely transferring the daily PA data to the research server. (C) Wrist watch accessory for 
ActiGraph GT9X Link PAM used to wear the PAM on the wrist. (D–F) Pouch accessory, (D) used along with the ankle Velcro strap, (E) accessory and 
waist belt, (F) accessory to wear the PAM on the ankle and waist, respectively.
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At the end of the 4-week study period, participants were asked to 
rank preferred wear locations and return the study equipment. 
Participants were not asked to provide feedback on the findings.

2.3. Research ethics

Written informed consent was obtained from all participants 
before enrollment. All study procedures involving human subjects 
were approved by the Institutional Review Board at Kessler 
Foundation, Protocol Number: R-1141-21.

3. Analysis

3.1. System usability scale

The SUS is composed of 10 alternating positive and negative 
statements (Bangor et al., 2009; Klug, 2017). Odd-numbered questions 
are scored 0–4, and even-numbered questions are scored 4–0 (Bangor 
et al., 2009; Klug, 2017). The sum of the scores yields a value between 
0 and 40, this is subsequently multiplied by 2.5 to generate a SUS score 
out of 100. The numerical value can then be converted into a letter 
grade (Bangor et al., 2009; Klug, 2017). The 4 weeks of SUS scores for 
each participant were averaged for incorporation into the final 
analysis. Calculations were performed using Microsoft Excel.

3.2. After scenario questionnaire

The ASQ is calculated by using the average of the response to the 
three questions; if missing values were present, they were discarded. 
Higher scores reflect better usability, lower scores represent that the 
participants felt unsatisfied with either the ease of completing the 
tasks, the amount of time it took, and the support information, or a 
combination of these three (Lewis, 1991). The 4 weeks of ASQ scores 
for each participant were averaged for incorporation into the final 
analysis. Calculations were performed using Microsoft Excel.

3.3. Semi-structured interviews

Semi-structured interviews were analyzed using the Framework 
Method of Content Analysis, which consists of well-defined steps; this 
makes it a popular method in qualitative analysis, especially in health 
research (Goldsmith, 2021). There are five key steps: (1) data 
familiarization, (2) identifying a thematic framework; (3) indexing all 
study data against the framework; (4) charting to summarize the 
indexed data; (5) mapping and interpretation of patterns found within 
the charts (Bryman and Burgess, 1994; Goldsmith, 2021).

Deidentified transcript data were compiled and organized by a 
Participant ID. Researchers MM (4th-year medical student, research 
assistant, female) and GH (undergraduate, research assistant, male) 
familiarized themselves with the documents by reading the full 
transcriptions. Initial themes were derived directly from the semi-
structured interview questions. Additional information provided 
which did not fit into the initial categories was added to a 
“Miscellaneous/Other Group.” After initial coding, themes were 

refined by MM and GH, and agreed upon by AV; data categorization 
was discussed to ensure each final code represented participant 
responses. This process was done by hand.

Additionally, MM and GH assessed each transcript to determine 
whether the participants’ opinions leaned positive, negative, or 
neutral/ambivalent. MM and GH discussed and agreed upon each 
participant’s emotional valence (Table 1).

4. Results

The final pilot included 10 participants: 5 who had experienced 
a stroke, and 5 who had experienced a TBI (Table 2). The average age 
of the participants was about 60 years. None of the study participants 
used a wearable “activity monitor” or “fitness tracker” or “smart 
watch” before participating in this study. All of the participants who 
attended and completed the initial visit and started wearing PAM in 
the community completed the full 4-week duration of the study. Of 
note, two individuals in the TBI group lost a sensor (one wrist and 
one ankle). The study team replaced lost sensors by new sensors and 
the participants were asked to continue the study. Three of the five 
individuals with stroke wore the activity monitor on their right wrist 
and ankle (non-affected side or dominant side) while two of the five 
individuals with TBI wore the activity monitor on their right wrist 
and ankle (non-affected or dominant side). All other participants 
wore the activity monitor on their left wrist and ankle.

4.1. Usability questionnaire

Average pooled SUS Score for PAM placement was 97.63 for the 
wrist (Standard Deviation, SD: 3.68), 97.50 for the waist (SD: 3.37), 
and 96 for the ankle (SD: 6.01) (Figure 2). The average pooled ASQ 
Score for remote data transfer was 1.033 (SD 0.11).

4.2. Qualitative analysis

The major themes were “no challenges,” location-specific usability 
and wearability, and location-independent general impressions are 
shown in Table 3.

TABLE 1 Emotional valence and PAM ranking.

Wrist Ankle Waist

S1 Positive(1) Ambivalent(3) Positive(2)

S2 Positive(1) Negative(2) Negative(3)

S3 Negative(3) Negative(2) Positive(1)

S4 Ambivalent(1) Ambivalent(2) Negative(3)

S5 Negative(3) Ambivalent(2) Positive(1)

TBI 1 Ambivalent(1) Negative(3) Ambivalent(2)

TBI 2 Ambivalent(1) Ambivalent(2) Ambivalent(3)

TBI 3 Ambivalent(1) Ambivalent(2) Ambivalent(3)

TBI 4 Ambivalent(1) Ambivalent(3) Ambivalent(2)

TBI 5 Ambivalent(3) Ambivalent(1) Ambivalent(2)
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4.2.1. Wrist usability and wearability

4.2.1.1. “No challenges”
Three participants in the stroke group reported “no challenges” 

with donning and doffing the wrist monitor. One participant reported 
difficulty with both actions; the other participant reported difficulty 
donning the device but could doff without assistance. Both of the 
individuals reported receiving help from family members to address 
these challenges. All participants in the TBI group reported “no 
challenges” in donning or doffing the device; however, one participant 
added that it was easier to “put on” than “take off ” the PAM. All 
participants reported “no challenges” when asked about difficulty 
going about their daily routine.

4.2.1.2. Functional limitations impact use
Two participants in the stroke group reported functional limitations 

in one of their hands that impacted the use of the wrist monitor. One of 
these individuals reported difficulty with the wrist monitor all 4-weeks, 
stating, “It’s slightly challenging to take it off given the functionality in 
my hands… I need two functional hands to take off the sensor from the 
wrist strap.” On week two, the other participant reported occasional 
difficulty donning the wrist monitor, and stated that they “sometimes 
have limited function in one hand.” This participant was able to doff the 
monitor without assistance.

4.2.1.3. Intuitive use
Of the participants who made additional comments regarding the 

wrist monitor, “intuitive use” emerged as a minor usability theme. 
Participants often compared these devices to wearing a watch. As one 
participant in the stroke group stated, “[The wrist monitor] is easy to 
wear, like a wristwatch, I  wear one every day, I  cannot function 
without a watch; it’s the most memorable routine.”

4.2.1.4. Task-specific challenges
One participant in the stroke group and one participant in the TBI 

group described task-specific challenges. The participant in the stroke 
group stated, “Yes, [there is some difficulty] while doing some 
mechanical work, if I need to get my hand somewhere, it pops off and 
gets in the way. I’m trying to be more careful.” The participant in the TBI 
group described, “[There is some difficulty] when at work, I’m handling 
babies. The wrist sensor is bulky, and I’m afraid it might get in my way 
of work. I’m used to wearing my watch on my left wrist and not my right. 
I’m being extra cautious at work and tucking the sensor under my sleeve.”

4.2.1.5. Comfort
Two participants in the TBI group made additional comments 

regarding the comfort of this device; one stated, “It’s snug, I really do 
not feel it,” and the other described it as “comfortable.”

4.2.2. Ankle usability and wearability

4.2.2.1. “No challenges”
Three participants in the stroke group reported “no challenges” 

with donning and doffing the ankle monitor. These challenges were 
addressed by utilizing the assistance of a family member. All of the 
participants in the TBI group reported “no challenges” with donning 
and doffing the ankle monitor. Three participants in the stroke group, 
and all of the participants in the TBI group, reported “no challenges” 
going about their daily routine while wearing the ankle monitor.

TABLE 2 Study participant demographics.

Stroke TBI

Participants n = 5 n = 5

Female n = 1 n = 2

Male n = 4 n = 3

Mean age 64.2 56.4

Age range 62–65 49–64

FIGURE 2

Pooled SUS scores.
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4.2.2.2. Functional limitations impact use
Of the two participants in the stroke group that reported a 

functional limitation in their hands, both reported difficulty with the 
ankle monitor. One participant utilized the assistance of a family 
member, and the other replaced the velcro strap with an elastic pull-on 
band. One participant in the stroke group stated, “Yes, I had a lot of 
difficulties [with the ankle monitor]. It is almost impossible to put on 
with one hand.”

4.2.2.3. Requires effort/Assistance
Of the participants who made additional comments regarding 

the ankle monitor, “Requires Effort/Assistance” emerged as a 
minor usability theme, this included requiring assistance with 
donning/doffing the device, finding the device when it fell out of 
the pouch, and keeping conscious tabs on device. One participant 
in the stroke group stated, “The Velcro does not hold for too long. 
I had to take it off at the golf course; I did not realize I had lost the 
activity monitor until another group of people playing behind us 
came and asked if it belonged to any one of us.” A similar sentiment 
was described by a participant in the TBI group, “…it did fall off 
when I  was at work… I  looked around and asked people, and 
someone found the sensor for me. Now I keep a conscious tab on 
the sensor.”

4.2.2.4. Discomfort
Of the participants who made additional comments regarding the 

ankle monitor, “Discomfort” emerged as a minor wearability theme. 
For example, one participant in the stroke group noted, “Sometimes  
it gets in the way when crossing my legs, but it’s alright.” Two 
participants in the TBI group described it was necessary to wear socks 
with this device to improve comfort.

4.2.2.5. Public perception
One participant in the stroke group made a comment regarding 

public perception of the device, stating, “I just need to hide it, people 
ask if I’m not allowed to be outside the home because it looks like a 
tracker, and people ask me if I’m on house arrest. I wear long pants to 
hide it. When people cannot see, it’s okay, does not bother me.”

4.2.3. Waist usability and wearability

4.2.3.1. “No challenges”
Four participants in the stroke group reported “no challenges” 

with donning and doffing the waist monitor. One participant reported 
difficulty and addressed this challenge through the assistance of a 
family member. All of the participants in the TBI group reported “no 
challenges” with donning and doffing the waist monitor. Four 
participants in the stroke group, and all participants in the TBI group, 
reported “no challenges” going about their daily routine while 
wearing the waist monitor.

4.2.3.2. Functional limitations impact use
Of the two participants in the stroke group that reported a 

functional limitation in their hands, only one reported difficulty with 
the waist monitor, difficulty was reported on all 4 weeks. This participant 
addressed this challenge through assistance from a family member.

4.2.3.3. Easy
Of the participants who made additional comments regarding the 

waist monitor, “easy” emerged as a minor wearability theme. For 
example, one participant in the stroke group noted, “This is the easiest 
and most convenient to use.” Another participant said it was “just like 
wearing clothes,” and another stated, “all sensors should be like this.”

4.2.3.4. Adjust for comfort
Of the participants who made additional comments regarding the 

waist monitor, “Adjust for Comfort” emerged as another minor 
wearability theme. One participant in the stroke group found that the 
waist monitor was “quite stable, just like wearing a waist belt,” but 
added that they “just need to pull it up or down” to make it comfortable. 
Another participant in the stroke group reported, “if [the waist monitor 
is] on a shirt, it feels great, but if it touches the skin, it itches slightly.” 
Additionally, a participant in the TBI group said that “every now and 
then, it has to be re-adjusted to make sure it’s hanging at the side.”

4.2.4. General impressions: accessory 
impressions/suggestions

4.2.4.1. Strap material preference
Although many of the comments regarding “Strap Material 

Preference” emerged in the context of specific wear locations, this was 
categorized as a separate theme because PAM accessories vary widely 

TABLE 3 Qualitative analysis: major and minor themes.

Major themes Minor themes

Wrist “No challenges” Donning/Doffing

Daily routine

Usability Functional limitations 

impact use

Intuitive

Task-specific challenges

Wearability Comfort

Ankle “No challenges” Donning/Doffing

Daily routine

Usability Functional limitations 

impact use

Requires effort/

Assistance

Wearability Discomfort

Public perception

Waist “No challenges” Donning/Doffing

Daily routine

Usability Functional limitations 

impact use

Easy

Wearability Adjust for comfort

General impressions Accessory impressions/

Suggestions

Strap material

Sensor/Pouch preferences

User interface Question utility

Technical challenges
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depending on the manufacturer. Comments regarding the wrist 
monitor are not included in this section because this accessory had a 
different mechanism to secure the monitor (Figure 1). One participant 
in the stroke group mentioned that they replaced the Velcro strap with 
an elastic band to “slip it on with one hand.” Two participants in the 
TBI group described that it would be  helpful if the pouch were 
securely attached to the strap; as one of these participants explained, 
“The strap stuck and was clinging to my sock but the sensor fell off, so 
having a pouch such that the sensor does not fall off unless the strap 
also falls off from the ankle would be helpful.”

4.2.4.2. Sensor/Pouch preference
Of the participants that made impressions and suggestions 

regarding the accessories, “sensor/pouch preference” emerged as a 
minor theme. One participant in the TBI group mentioned that “[the 
sensor] is a little bulky, but it’s ok.” Two other participants in the TBI 
groups spoke about the requirement for water resistance. One of these 
participants explained that “it would be nice if the pouch were water 
resistant because when it rains, and [they] step into a puddle, the pouch 
gets wet.” The other participant in the TBI group spoke about needing 
“to remember to take it off during showering and put it back on.”

4.2.5. General impressions: user interface
Some participants made general impressions that were not 

location specific; one major theme that emerged was the user interface.

4.2.5.1. Question utility
Of the participants that made impressions and suggestions 

regarding the user interface, “question utility” emerged as a minor 
theme. One participant in the stroke group explained that they “use 
activity monitor phone-based apps” and were not sure why they “need 
the activity monitors in general.”

4.2.5.2. Technical challenges
Of the participants that made impressions and suggestions 

regarding the user interface, “technical challenges” emerged as another 
minor theme. One participant in the TBI group remarked that “the 
last 2 days it did not show the circle for sending data.” Another stated 
that “the sensor could not transfer data remotely” but added that once 
this sensor was replaced with a new sensor, it “work[ed] well.”

4.3. Preferred wear location

The final ranking for each of the participants demonstrates that a 
majority of participants (7/10) preferred the wrist sensor. Two 
individuals ranked the waist sensor in first place, and one individual 
ranked the ankle sensor in first place. Utilizing ranked-choice voting 
may help visualize the overall ratings. A ranking of first place received 
one point, second place received two points, and third place received 
three points. Rankings for each location were calculated: wrist rank = 16, 
ankle rank = 22, and waist rank = 22. Based on these results, the wrist 
location was the preferred location, and the waist and ankle were tied.

5. Discussion

This study explored the use of PAMs in community-dwelling 
adults who had experienced an acquired brain injury, for 4 weeks, at 

three wear locations: the wrist, ankle, and waist. To the best of our 
knowledge, this is the first study to assess the perception of PAMs for 
a duration greater than 1 week in two key subsets of individuals with 
ABI, participants who had experienced TBI (n = 5) and stroke (n = 5).

The quantitative analysis portion of this study utilized two 
questionnaires which are popularly used in usability research, the SUS 
to assess each wear location and the ASQ to evaluate the data hub for 
remote data transfer. Average pooled SUS Scores for each wear location 
received a score of an A/A+, well within the acceptability range. The 
average pooled ASQ was 1.033, representing that participants “strongly 
agree” that the data hub was easy to use. Of note, 9/10 participants 
provided all three ASQ categories with a score of 1, or “strongly agree,” 
for all 4 weeks. The remaining participant, a member of the TBI group, 
provided a score of 3 for Question 2: Overall, I am satisfied with the 
amount of time it took to complete this task for weeks one and two; 
however, they provided a score of 1 for the remaining 2 weeks. This 
improvement in rating likely represents an increase in satisfaction with 
the duration of time required to remotely transfer data or a learning 
curve on how to use the remote data hub to transfer the data. Taken 
together, these data support the assertion that the use of PAMs at each 
wear location, and remote data transfer, were user-friendly. This is a 
notable finding as “poor usability experience” has been identified as a 
factor contributing to user non-wear (Cho et al., 2021).

The major and minor themes revealed by qualitative analysis 
provide a deeper picture of the participants’ perspectives on these 
devices. Based on our investigation, the participants interviewed 
described the wrist sensor as one that was easy and intuitive to use and 
was considered comfortable; however, it interfered with specific tasks 
due to its bulk, such as working with machinery or holding babies. 
“User’s lifestyle or not wearing for certain activities” is a factor that 
impacts the quality of PGHD, and having a small, lightweight, and 
inconspicuous device has been identified as an important wearability 
factor (Louie et al., 2020; Cho et al., 2021). Some participants found 
that the ankle monitor required effort/assistance; this sensor was often 
dropped, and some participants checked on it throughout the day. 
Effort expenditure was reflected in the wearability of the ankle 
monitor; some participants found this device uncomfortable, either 
physically or psychologically (due to concerns regarding public 
perception). Being “unsatisfied with the appearance of the device” and 
“discomfort” are both factors that may contribute to user non-wear; 
having a “cosmetically pleasing” device has been identified as an 
important wearability factor (Louie et al., 2020; Cho et al., 2021). The 
participants’ notable comments regarding the waist monitor 
demonstrate that some individuals favored this sensor, and found it 
the most comfortable, though it did require adjustment for 
some individuals.

Two participants described functional limitations in their hands 
and had difficulty donning and doffing the PAMs. Although these 
comments emerged regarding all three placement locations, it is 
notable many of these comments were regarding the wrist sensor. As 
demonstrated in Figure 1, the wrist sensor has a watch-buckle design. 
Fewer comments were made regarding the waist and ankle sensors, 
which do not have this buckle design. The requirement for accessible 
design features, especially in this patient population, is supported by 
the literature. “User’s health condition prevents device use” has been 
identified as a factor that affects the quality of PGHD (Cho et al., 2021). 
Additionally, a focus group comprised of individuals with stroke and 
physical therapists identified the ability to don and doff a PAM with one 
hand as an important feature of wearable technology (Louie et al., 2020).
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Many of the participants had negative perceptions of the 
ActiGraph GT9X Link strap accessories. Some participants believed 
that having a Velcro scrap would improve usability and wearability 
for the wrist worn PAM. A commonly cited difficulty was that the 
sensor pouch was not securely attached to the ankle strap (Figure 1); 
of note, this was not a problem for the wrist sensor, though this 
device had distinct difficulties. Notable comments for improvement 
regarding the sensor itself included addressing its bulk and the 
desire for this device to be waterproof. A waterproof sensor would 
allow individuals to participate in daily activities without having to 
consider removing the device and having to remember it afterward. 
“Forget to wear” has been identified as a component of user 
non-wear (Cho et al., 2021). Of note, the ActiGraph GT9X Link is 
water-resistant (IP27) for up to 1 meter and up to 30 min (User 
Guide ActiGraph GT9X Link + ActiLife, 2020). However, as raised 
by one of the participants, the pouch provided with the ankle 
monitor was not water resistant.

Device and technical-related factors have also been identified as 
factors that affect PGHD (Cho et al., 2021). A few participants noted 
some technical difficulty with the device, though these issues were 
infrequent and did not affect the perceived usability based on the 
results of the SUS and ASQ questionnaires. Another consideration 
raised by a participant is the utility of these devices compared to smart 
phone-based apps. The requirement for a wearable PAM vs. a 
smartphone app has been raised in the literature; a study of 21 
chronically ill people found that some participants preferred using a 
cell phone app over a GPS tracking watch; however, further research is 
required to evaluate the efficacy of phone-based devices in individuals 
who experienced ABI (Hardy et al., 2018). Regardless, this raises an 
important consideration regarding the significance of user preferences 
when considering the incorporation of PAMs in clinical practice.

The emotional valence determination (ambivalent, lean positive, 
or lean negative) derived from the transcripts by MM and GH further 
highlights the significance of personal preferences in PAM location 
selection. The first-place ranking by two individuals, positive 
emotional valence for two individuals, and waist usability theme of 
“easy” supports the assertion that some individuals may prefer a waist 
sensor to a wrist or ankle sensor. This is an important consideration 
for health care professionals considering integrating PAMs into their 
rehabilitation practice.

This study has some limitations. Primarily, the sample size of this 
pilot study was small (n = 10). Additional limitations include a lack of 
demographic data, the presence of any lasting deficits (other than those 
elicited during the semi-structured interview), employment information, 
functional assessments and information on injury sequelae. An 
additional limitation of this study is that the semi-structured interview 
was of short duration, which resulted in limited transcripts.

6. Conclusion

This pilot investigation contributes to the literature regarding 
considerations for PAM wear location, patient preferences, and 
challenges specific to this population. Following an ABI, individuals 
report difficulty participating in, and sustaining, physical activity 
(Törnbom et al., 2017). PAMs may be a motivating factor for engaging 
in physical activity (McClure, 2002; Lynch et al., 2018). Additionally, 
as this technology continues to improve and access to PAMs becomes 
easier and affordable, these devices have a variety of benefits that may 

be helpful in this patient population. For example, in addition to the 
objective data collection on gait and fitness, the Apple Watch may 
detect falls and alert emergency contacts, and service providers, that 
help is required; this research is currently ongoing (Strauss et  al., 
2021). The incorporation of wearable PAM in the chronic phases of 
rehabilitation following ABI has the potential to provide valuable 
benefits for patients, caretakers, researchers, and rehabilitation 
professionals. However, to improve the usability and increasing the 
incorporation of PAM in longitudinal studies in individuals with ABI 
the challenges specific to this population need to be taken into account 
when choosing PAM and wear location.

Data availability statement

The de-identified data supporting the conclusions of this article 
will be made available by the authors, upon reasonable request.

Ethics statement

The studies involving humans were approved by the Institutional 
Review Board at Kessler Foundation. The studies were conducted in 
accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study.

Author contributions

MM was a medical student mentored by AV and was involved 
with data analysis and drafting the manuscript. GH was an 
undergraduate student volunteer mentored by AV and was involved 
in data analysis and drafting the manuscript. AV was the principal 
investigator of this study and designed the study, collected data and 
was involved in data analysis and editing the manuscript. All authors 
contributed to the article and approved the submitted version.

Funding

This study was funded by the New Jersey Health Foundation 
(Grant # PC 10–21).

Acknowledgments

The authors would like to thank Olwaseun Ibironke (OI), research 
assistant at Kessler Foundation—Center for mobility and rehabilitation 
engineering, for his help with conducting patient interviews during 
the study. The authors would also like to thank Kessler Foundation for 
providing resources that enabled data collection for this study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

91

https://doi.org/10.3389/fnins.2023.1220581
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mazzeo et al. 10.3389/fnins.2023.1220581

Frontiers in Neuroscience 09 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Bangor, A., Kortum, P., and Miller, J. (2009). Determining what individual SUS scores mean: 

adding an adjective rating scale. J. Usability Stud. 4, 114–123. doi: 10.5555/2835587.2835589

Braakhuis, H. E. M., Roelofs, J. M. B., Berger, M. A. M., Ribbers, G. M., 
Weerdesteyn, V., and Bussmann, J. B. J. (2022). Intensity of daily physical activity - a key 
component for improving physical capacity after minor stroke? Disabil. Rehabil. 44, 
3048–3053. doi: 10.1080/09638288.2020.1851781

Brickwood, K. J., Watson, G., O'Brien, J., and Williams, A. D. (2019). Consumer-based 
wearable activity trackers increase physical activity participation: systematic review and 
meta-analysis. JMIR Mhealth Uhealth 7:e11819. doi: 10.2196/11819

Bruijel, J., van Heugten, C. M., Murray, J., Grima, N., Ymer, L., Walters, E. M., et al. 
(2021). The bidirectional relationship between sleep and physical activity following 
traumatic brain injury. J. Sleep Res. 30:e13334. doi: 10.1111/jsr.13334

Bryman, A., and Burgess, B. (1994). Analyzing qualitative data. 1st edn. London: 
Routledge.

Campos, C., DePaul, V. G., Knorr, S., Wong, J. S., Mansfield, A., and Patterson, K. K. 
(2018). Validity of the ActiGraph activity monitor for individuals who walk slowly post-
stroke. Top. Stroke Rehabil. 25, 295–304. doi: 10.1080/10749357.2018.1446487

Cho, S., Ensari, I., Weng, C., Kahn, M. G., and Natarajan, K. (2021). Factors affecting 
the quality of person-generated wearable device data and associated challenges: rapid 
systematic review. JMIR Mhealth Uhealth 9:e20738. doi: 10.2196/20738

Crosson, B., Hampstead, B. M., Krishnamurthy, L. C., Krishnamurthy, V., 
McGregor, K. M., Nocera, J. R., et al. (2017). Advances in neurocognitive rehabilitation 
research from 1992 to 2017: the Ascension of neural plasticity. Neuropsychology 31, 
900–920. doi: 10.1037/neu0000396

Dey, A., Kam, A., Tam, A., Bayley, M., and Guo, M. (2021). Sleep disturbance and 
length of stay in the setting of acquired brain injury rehabilitation. Brain Inj. 35, 
1022–1027. doi: 10.1080/02699052.2021.1945144

Giggins, O. M., Clay, I., and Walsh, L. (2017). Physical activity monitoring in patients 
with neurological disorders: a review of novel body-worn devices. Digit. Biomark 1, 
14–42. doi: 10.1159/000477384

Goldsmith, L. (2021). Using framework analysis in applied qualitative research. Qual. 
Rep. 26, 2061–2076. doi: 10.46743/2160-3715/2021.5011

Grabljevec, K., Singh, R., Denes, Z., Angerova, Y., Nunes, R., Boldrini, P., et al. (2018). 
Evidence-based position paper on physical and rehabilitation medicine professional 
practice for adults with acquired brain injury. The European PRM position (UEMS PRM 
section). Eur. J. Phys. Rehabil. Med. 54, 971–979. doi: 10.23736/S1973-9087.18.05502-8

Hardy, J., Veinot, T. C., Yan, X., Berrocal, V. J., Clarke, P., Goodspeed, R., et al. (2018). 
User acceptance of location-tracking technologies in health research: implications for 
study design and data quality. J. Biomed. Inform. 79, 7–19. doi: 10.1016/j.jbi.2018.01.003

Hillman, C. H., Erickson, K. I., and Kramer, A. F. (2008). Be smart, exercise your heart: 
exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65. doi: 10.1038/nrn2298

Klug, B. (2017). An overview of the system usability scale in library website and 
system usability testing. Weave J. Lib. User Exp. 1. doi: 10.3998/weave.12535 
642.0001.602

Lewis, J. (1991). Psychometric evaluation of an after-scenario questionnaire for 
computer usability studies. ACM SIGCHI Bull. 23, 78–81. doi: 10.1145/122672.122692

Louie, D. R., Bird, M. L., Menon, C., and Eng, J. J. (2020). Perspectives on the 
prospective development of stroke-specific lower extremity wearable monitoring 
technology: a qualitative focus group study with physical therapists and individuals with 
stroke. J. Neuroeng. Rehabil. 17:31. doi: 10.1186/s12984-020-00666-6

Lynch, E. A., Jones, T. M., Simpson, D. B., Fini, N. A., Kuys, S. S., Borschmann, K., 
et al. (2018). Activity monitors for increasing physical activity in adult stroke survivors. 
Cochrane Database Syst. Rev. 7:CD012543. doi: 10.1002/14651858.CD012543.p

McClure, J. B. (2002). Are biomarkers useful treatment aids for promoting health 
behavior change? An empirical review. Am. J. Prev. Med. 22, 200–207. doi: 10.1016/
s0749-3797(01)00425-1

Mercier, L. J., Kowalski, K., Fung, T. S., Joyce, J. M., Yeates, K. O., and Debert, C. T. 
(2021). Characterizing physical activity and sedentary behavior in adults with persistent 
postconcussive symptoms after mild traumatic brain injury. Arch. Phys. Med. Rehabil. 
102, 1918–1925.e1. doi: 10.1016/j.apmr.2021.05.002

O'Carroll, G. C., King, S. L., Carroll, S., Perry, J. L., and Vanicek, N. (2020). The effects 
of exercise to promote quality of life in individuals with traumatic brain injuries: a 
systematic review. Brain Inj. 34, 1701–1713. doi: 10.1080/02699052.2020.1812117

Sheng, S., Chen, L., Chen, Z., Zeng, J., Zheng, J., and Bei, Z. (2021). Study on the 
correlation between physical activity level and quality of life 1 year after stroke. Ann. 
Palliat. Med. 10, 5627–5632. doi: 10.21037/apm-21-962

Strauss, D. H., Davoodi, N. M., Healy, M., Metts, C. L., Merchant, R. C., Banskota, S., 
et al. (2021). The geriatric acute and post-acute fall prevention intervention (GAPcare) 
II to assess the use of the apple watch in older emergency department patients with 
falls: protocol for a mixed methods study. JMIR Res. Protoc. 10:e24455. doi: 
10.2196/24455

Törnbom, K., Sunnerhagen, K. S., and Danielsson, A. (2017). Perceptions of physical 
activity and walking in an early stage after stroke or acquired brain injury. PLoS One 
12:e0173463. doi: 10.1371/journal.pone.0173463

User Guide ActiGraph GT9X Link + ActiLife. (2020). ActiGraph. Available at: https://
s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2020/03/05155628/
ActiGraph_Link_UserGuide_E.200.6001_Revision6_FINAL.pdf (Accessed September 
26, 2022).

Veerubhotla, A., Krantz, A., Ibironke, O., and Pilkar, R. (2021). Wearable devices for 
tracking physical activity in the community after an acquired brain injury: a systematic 
review. PM R 14, 1207–1218. doi: 10.1002/pmrj.12725

92

https://doi.org/10.3389/fnins.2023.1220581
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.5555/2835587.2835589
https://doi.org/10.1080/09638288.2020.1851781
https://doi.org/10.2196/11819
https://doi.org/10.1111/jsr.13334
https://doi.org/10.1080/10749357.2018.1446487
https://doi.org/10.2196/20738
https://doi.org/10.1037/neu0000396
https://doi.org/10.1080/02699052.2021.1945144
https://doi.org/10.1159/000477384
https://doi.org/10.46743/2160-3715/2021.5011
https://doi.org/10.23736/S1973-9087.18.05502-8
https://doi.org/10.1016/j.jbi.2018.01.003
https://doi.org/10.1038/nrn2298
https://doi.org/10.3998/weave.12535642.0001.602
https://doi.org/10.3998/weave.12535642.0001.602
https://doi.org/10.1145/122672.122692
https://doi.org/10.1186/s12984-020-00666-6
https://doi.org/10.1002/14651858.CD012543.p
https://doi.org/10.1016/s0749-3797(01)00425-1
https://doi.org/10.1016/s0749-3797(01)00425-1
https://doi.org/10.1016/j.apmr.2021.05.002
https://doi.org/10.1080/02699052.2020.1812117
https://doi.org/10.21037/apm-21-962
https://doi.org/10.2196/24455
https://doi.org/10.1371/journal.pone.0173463
https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2020/03/05155628/ActiGraph_Link_UserGuide_E.200.6001_Revision6_FINAL.pdf
https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2020/03/05155628/ActiGraph_Link_UserGuide_E.200.6001_Revision6_FINAL.pdf
https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2020/03/05155628/ActiGraph_Link_UserGuide_E.200.6001_Revision6_FINAL.pdf
https://doi.org/10.1002/pmrj.12725


Frontiers in Neuroscience 01 frontiersin.org

Wearable rehabilitation wristband 
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Background: Distal radius fractures are a common type of fracture. For patients 
treated with closed reduction with splinting, a period of rehabilitation is still 
required after the removal of the splint. However, there is a general lack of 
attention and low compliance to rehabilitation training during this period, so it 
is necessary to build a rehabilitation training monitoring system to improve the 
efficiency of patients’ rehabilitation.

Methods: A wearable rehabilitation training wristband was proposed, which 
could be used in the patient’s daily rehabilitation training scenario and could 
recognize four common wrist rehabilitation actions in real-time by using 
three thin film pressure sensors to detect the pressure change curve at three 
points on the wrist. An algorithmic framework for classifying rehabilitation 
training actions was proposed. In our framework, an action pre-detection 
strategy was designed to exclude false detections caused by switching 
initial gestures during rehabilitation training and wait for the arrival of the 
complete signal. To classify the action signals into four categories, firstly an 
autoencoder was used to downscale the original signal. Six SVMs were then 
used for evaluation and voting, and the final action with the highest number 
of votes would be used as the prediction result.

Results: Experimental results showed that the proposed algorithmic framework 
achieved an average recognition accuracy of 89.62%, an average recognition 
recall of 88.93%, and an f1 score of 89.27% on the four rehabilitation training 
actions.

Conclusion: The developed device has the advantages of being small size and 
easy to wear, which can quickly and accurately identify and classify four common 
rehabilitation training actions. It can easily be combined with peripheral devices 
and technologies (e.g., cell phones, computers, Internet) to build different 
rehabilitation training scenarios, making it worthwhile to use and promote in 
clinical settings.
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distal radius fracture, thin film pressure sensor, rehabilitation training action 
recognition, autoencoder, SVM
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1. Introduction

Distal radius fractures are a common type of fracture in adults, 
accounting for approximately 17.5% of all fracture types (Ochen et al., 
2020). Fracture treatment is divided into surgical and non-surgical 
treatment (He et al., 2020). There is a significant difference in the 
recovery of physical skeletal indicators between the two different 
treatments, but there is no significant difference in the functional 
recovery of the wrist joint, so patients mostly consider non-surgical 
treatment modalities first (He et al., 2020). A period of rehabilitation 
after the removal of the cast or splint plays a major role in the recovery 
of joint function (Badwaik et al., 2021). However, there is a common 
phenomenon that patients do not pay attention to rehabilitation 
training, have poor compliance, and have irregular training 
movements (Bhan et al., 2021). Therefore, it is important to build a 
rehabilitation training assistance monitoring system so that the 
physician can supervise the patient promptly and increase the patient’s 
self-motivation for rehabilitation training.

Rehabilitation training assistance monitoring system for the 
patient’s terminal equipment puts forward the requirements of 
physiological signal acquisition, rehabilitation training action 
recognition and evaluation, of which rehabilitation training action 
recognition is the main research direction, because this technology is 
the key to build a bridge of joint supervision between doctor and 
patient for distal radius fracture, and a large number of researches 
have existed for this task. The means of rehabilitation training action 
recognition fall into two broad categories, namely computer vision 
(CV) based and sensor based approaches (Zhu et  al., 2019). The 
computer vision-based approach acquires raw image information 
through a vision-based sensor, then performs extraction of low-level 
features such as human joint positions, and after encoding and 
representing the feature data, it performs a number of tasks such as 
kinematic parameter comparisons, postural recognition, and clinical 
scoring (Debnath et al., 2022). Many image processing and machine 
learning techniques have been applied to these studies (Keskin et al., 
2012; Tang et al., 2014; Sinha et al., 2016; Wan et al., 2019; Francisco 
and Rodrigues, 2022; Shen and Lu, 2022; Sun et al., 2022), which 
typically use single or multiple RGB or depth cameras as image 
acquisition units and analyze the images or videos to identify static 
gestures or motion flows within them (Hellsten et al., 2021). Although 
CV-based systems have the advantages of simple equipment and low 
cost, vision algorithms are inevitably accompanied by the 
shortcomings of being highly influenced by occlusions and light. More 
critically, CV-based systems have a single source of data (only image 
pixel information) and therefore lack the means to robustly monitor 
the patient’s physiological parameters (e.g., pressure on the affected 
area), yet the tightness of the splints used for immobilization is an 
important influence on the outcome of fracture rehabilitation (Li et al., 
2021). Therefore, the lack of capability of CV-based systems in this 
area is the greatest drawback compared to sensor-based rehabilitation 
training systems.

Sensor-based rehabilitation training devices have unique 
advantages due to their ability to detect multimodal physiological 
parameters directly or indirectly. These systems place multiple types 
of sensors on different carriers, and the data is collected and analyzed 
by a central processor (Nascimento et al., 2020; Yadav et al., 2021). 
Common sensors used in wrist rehabilitation systems include pressure 
sensors (Zhang et al., 2019; Atitallah et al., 2020; Guo et al., 2021; 

Pierre Claver and Zhao, 2021; Xu et  al., 2021), surface 
electromyographic(sEMG) sensors (Prakash et al., 2019; Cheng et al., 
2021; Dong et al., 2021; Moin et al., 2021; Copaci et al., 2022; Jeong 
et al., 2022), inertial sensors (Kim et al., 2019; Weygers et al., 2020; 
Bilius et al., 2023), and specialized sensors (e.g., acoustic sensors (Xiao 
et al., 2022), strain sensors (Gao et al., 2023). Currently, the main 
researched rehabilitation training devices usually include multiple 
sensors to achieve multimodal and more accurate training movement 
analysis, and the main presentation of wrist movement recognition 
devices is the rehabilitation glove. For example, Copaci et al. proposed 
a gesture classification algorithm for rehabilitation training gloves 
based on surface EMG signals, which is based on Bayesian neural 
networks, pattern recognition networks, and hierarchical recurrent 
networks, and allows users to retrain the algorithm at any time with 
their own surface EMG gesture data, with a recognition accuracy of 
up to 98.7% for six types of gestures (Copaci et al., 2022). Li et al. 
(2023) developed a set of multimodal sensor gloves for hand 
kinematics learning in Parkinson’s patients, which used flexible 
bending sensors to detect finger curvature information, thin-film 
pressure sensors to measure changes in hand muscle strength, and an 
inertial navigation system to detect acceleration signals, and carried 
out a number of evaluations of finger dexterity, muscle strength, and 
other assessments based on multiple signal processing algorithm. 
Meng et  al. developed a personalized and safe soft glove for 
rehabilitation training, which uses a pneumatic actuator module to 
provide active rehabilitation training for patients and acquires finger 
bending information based on bending sensor and air-pressure sensor. 
The system they developed included three modes of rehabilitation 
training to meet the rehabilitation requirements of patients with 
multiple hand dysfunctions (Meng et al., 2023). Since the rehabilitation 
glove provides a stable platform for sensor placement, it is particularly 
suitable for multimodal hand movement analysis (and, of course, wrist 
rehabilitation). Moreover, due to the large number of sensors it can 
deploy, accurate acquisition of finger bending information and hand 
posture information can be easily realized, and thus hand movement 
recognition based on such information can be easily achieved with 
good results. Compared to vision-based approaches, sensor-based 
rehabilitation assistance devices have some significant advantages, 
such as the accuracy of physiological information acquisition and the 
minuteness to environmental interference. In addition to rehabilitation 
training gloves, some special and novel rehabilitation assistance 
devices were also presented. For example, Han et al. (2022) proposed 
a cylindrical device based on a passive sensing layer called smart skin, 
which estimates the grip force by the change in the shape of the 
colored liquid in the subtle channels during gripping. Wong et al. 
(2021) developed a finger-worn capacitive sensor system that utilizes 
capacitance changes due to different hand movements for gesture 
classification tasks.

However, the main applications of these studies on hand 
rehabilitation assistance systems are for stroke and Parkinson’s 
patients, and these application scenarios do not limit the pressure at 
the radius. In addition to proper rehabilitation, patients with distal 
radius fractures should also ensure that the pressure on the affected 
area of the radius is within the appropriate range, otherwise excessive 
splint pressure will likely bring about various syndromes as a result of 
vascular compression of the affected area, while too little pressure on 
the splint may result in secondary dislocation of the fracture. 
Therefore, rehabilitation equipment for patients with distal radius 
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fractures should have the ability to monitor skin pressure on the 
affected area in addition to supervised rehabilitation. At the same 
time, the variety and number of sensors deployed in rehabilitation 
training gloves [e.g., the data glove developed by Bin Fang et al. carries 
36 inertial measurement units (Fang et al., 2019)] inevitably brings 
about an increase in cost, which no doubt increases the burden of 
treatment for patients. To address these issues, we designed a wearable 
rehabilitation wristband that used only three thin-film pressure 
sensors as the components for skin pressure signal acquisition. The 
thin-film pressure sensors are inexpensive to produce and can 
be mounted non-invasively between the patient’s skin and the splint. 
The conversion of pressure data and the recognition of rehabilitation 
training actions are realized through the topmost control box, and the 
relevant information will be sent to the matching cell phone APP for 
display and storage. Compared to rehabilitation gloves, our devices are 
extremely low-cost and allow effective monitoring of splint tightness. 
The main contributions of this paper are as follows:

 1. We proposed a wearable rehabilitation training wristband for 
distal radius fractures, which provided rehabilitation training 
actions recognition and detection functions, and opened up a 
Bluetooth interface that allowed simple connection to 
computers, cell phones, and other upper computers and the 
development of a variety of rehabilitation training software.

 2. A rehabilitation training action classification algorithm based 
on an autoencoder and SVM classifier was designed, which 
could run on a microcontroller and classified action signals 
quickly and accurately.

 3. An action signal pre-detection strategy was proposed to 
determine whether the window signal was a complete action 
signal, which reduced the false detection rate of the algorithm.

2. Materials and methods

2.1. Materials

2.1.1. Thin film pressure sensor
Thin-film pressure sensors are used to detect three channels of 

pressure on the palmar, radial and dorsal sides of the wrist. Hua et al. 
(2018) performed a biomechanical finite element analysis of the stress 
distribution on the arm for three common types of splints, and their 
stress analysis results showed that all three types of splints produced 
the greatest stresses in the vicinity of the radial stem eminence at a 
one-week location, but the absolute values of the stresses were 
different. Therefore, we  followed the wrist force characteristics of 
splinting and chose the location of the radial collection point to 
be 1–2 cm from the malleolus on the lateral side of the radius, which 
is located near the distal radius fracture point and the maximal stress 
of the splint, so as to monitor the lateral force on the fracture point in 
an effective and obvious way. The dorsal and palmar collection points 
are centrally located on the dorsum and palm of the hand, respectively, 
and are on the same circumference as the radial collection point. The 
location of the collection points is shown schematically in Figure 1A.

A three-channel thin-film pressure sensor designed by our own 
structure is used as the detection element of the wristband, and 
presents a T-shaped structure. On the crossbeam of the T, three 

pressure-sensitive zones are distributed from left to right for the 
above-mentioned palmar, radial, and dorsal pressure detection. On 
the arm of the T, there are four copper wires leading out and connected 
to the control box through the MicroUSB interface, one of which is 

FIGURE 1

(A) Location of the collection points. (B) Design structure and object 
diagram of the thin film pressure sensor. (C) Structural schematic 
and object diagram of the inner bandage core. (D) Schematic of the 
bandage core after completion of wear. (E) Schematic of the entire 
system after wearing. (F) Rehabilitation training standardized actions 
including stretching-and-making-a-fist, separating-and-merging-
fingers, palm-flexion-and-dorsiflexion, and ulnar-deviation action.
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connected to one of the pins of the three pressure-sensitive zones to 
form a common terminal. The T-shaped structure design avoids the 
problem of cable stacking when wearing the wristband. The design 
structure and object diagram of the thin film pressure sensor are 
shown in Figure 1B.

2.1.2. Rehabilitation wristband
The rehabilitation wristband is composed of an inner bandage 

core and an outer magic stick layer. The inner bandage core consists 
of two layers of medical bandages and film sensors pressed together, 
with the upper layer of bandages for the elastic self-adhesive bandages, 
longer length, for wearing around the fixed, and the lower layer of 
bandages for inelastic bandages. Both sides of the thin-film sensor are 
in contact with the upper and lower bandages by circular silicone pads 
with a thickness of 1 mm. The structural schematic of the inner 
bandage core is shown in Figure 1C along with its object diagram. The 
outer layer of the magic stick has rigid fibers on one side to provide a 
stable force platform for the pressure sensor and a magic stick on the 
other side to hold the entire structure in place. Our circuit board is 
enclosed in a control box, which is fixed above the outer magic stick 
and connected to the thin film sensors through an electrical interface. 
When worn, the radial sensor in the inner bandage core is first 
positioned at the location of the radial collection point described 
above, followed by stroking the wristband both palmarly and dorsally 
so that the wristband is wrinkle-free and fits completely around this 
part of the wrist, and finally the self-adhesive bandage of the wristband 
is wrapped around the wrist for 1 week and compacted to hold it in 
place. The schematic of the bandage core after completion of wear is 
shown in Figure 1D. Subsequently, the rigid side of the Velcro was 
attached to the inner bandage core, wrapped around for a week and 
then secured by a carabiner, and finally, the sensor interface was 
plugged into the control box. The schematic of the entire system after 
wearing is shown in Figure 1E. As you can see, the system we designed 
is simple in structure and compact in size. It should be noted that the 
remaining portion of the outer magic stick layer can be  easily 
embedded in various splint systems (e.g., plaster splints, small splints, 
thermoplastic splints, etc.) as a splint pressure status monitoring 
terminal during the splint fixation period, which is an important use 
of this system beyond the description herein.

2.1.3. Control box circuit
The control box circuit is composed of four parts: a power supply 

circuit, STM32 microcontroller minimum system, pressure acquisition 
system, and BLE Bluetooth transmission circuit. The power supply 
circuit is used to charge the lithium battery and to regulate the input 
voltage of the lithium battery to the voltage required by other chips. It 
uses the PW5410A charge pump chip to regulate the input voltage of 
the lithium battery to 5 V, which is then stepped down to 3.3 V by the 
PW6566 LDO chip. 5 V is supplied to the operational amplifier in the 
system, and 3.3 V is supplied to the STM32 microcontroller, BLE 
Bluetooth transceiver module, and other chips. The STM32 
microcontroller minimal system is used to detect the analog signal 
output from the pressure acquisition system, detect the transceiver 
signal of the Bluetooth module and run the classification algorithm of 
the rehabilitation action signal, which uses its own ADC peripheral to 
convert the analog voltage to digital, and uses the BLE Bluetooth 
module to send the detected action signal or receive the control signal 
from the upper computer. The pressure acquisition system consists of 

three Wheatstone bridges cascaded with differential amplification 
circuits, each of which is used to detect the pressure sensor information 
of one channel, and the output voltage of the pressure acquisition 
system is 0–3.3 V, which is received by the STM32 microcontroller. The 
BLE Bluetooth transmission module serves as a wireless communication 
medium between the control box and the upper computer, automatically 
converting serial signals and Bluetooth RF signals to each other, which 
simplifies the system development difficulty. The circuit system 
structure and module circuits are shown in Supplementary Figure S1.

2.1.4. Rehabilitation training action specification
Although it is now clinically recognized that appropriate functional 

exercises have a positive effect on the rehabilitation of distal radius 
fractures, there is no uniform standard for the details of the actions of 
rehabilitation training (Østergaard et  al., 2021). Often hospitals in 
different areas will prescribe different rehabilitation exercises to 
patients. For example, in a clinical study of functional exercises based 
on cast immobilized patients conducted by Reid et al. (2020), patients 
were asked to perform palmar flexion and dorsiflexion and fist 
clenching for the wrist joint. Arora and Naqvi (2022) in a clinical 
validation trial of a leap motion tracking device had patients perform 
five movements: fingers flexion and extension, flexion and extension of 
the thumb, wrist radial and ulnar deviation, forearm pronation and 
supination and wrist flexion and extension. The results of the 
experiment verified the effectiveness of these rehabilitation exercises. 
Some other forms of rehabilitation training methods such as wrist 
rotation (Huang et al., 2019) and grip training (Quadlbauer et al., 2020) 
were also used by some organizations. We considered the available 
literature and selected the following four typical rehabilitation exercises 
by the chief physician of the author’s hospital unit (Li et al., 2020), 
namely, stretching-and-making-a-fist, separating-and-merging-fingers, 
palm-flexion-and-dorsiflexion, and ulnar-deviation action. For 
rehabilitation, place the elbow on a flat table and hold the forearm 
upright in a neutral position. When stretching and making a fist, the 
palm of the hand is relaxed as the initial state, then the fingers are 
stretched, followed by a fist clenching as hard as possible, and finally 
returning to the initial state, which is considered a complete action. 
When separating and merging fingers, the palm of the hand is initially 
held with the five fingers together and straightened, then the fingers are 
separated as far as possible and finally returned to the initial state, 
which is considered a complete action. When performing palm flexion 
and dorsiflexion, the palm first maintains the same initial state of 
separating and merging fingers movement, then the palm tilts forward 
as far as possible to the side of the palm, followed by the palm tilting 
backward as far as possible to the dorsal direction, and finally returns 
to the initial state, which is considered a complete action. When 
performing the ulnar deviation movement, the palm is first maintained 
in the same initial state as the separating and merging fingers movement 
and then tilted towards the ulna as far as possible, and finally returned 
to the initial state, which is regarded as a complete action. The 
rehabilitation training standardized action is shown in Figure 1F.

2.2. Methods

2.2.1. Thin film pressure sensor calibration
The thin-film pressure sensors we used are resistance-strain 

sensors, whose resistance decreases gradually as the applied 
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pressure increases. After conversion by the sensor data 
acquisition circuit, the change in applied pressure will be reflected 
as a change in the output analog voltage of the circuit, which is 
converted into a digital quantity by the analog-to-digital 
conversion module of the microcontroller (hereinafter referred 
to as the AD value). Since it is not possible to calculate the 
applied pressure directly from the AD value, we  conducted 
pressure calibration experiments of the sensor with the aim of 
finding the mapping between the pressure applied to the sensor 
and the corresponding output AD value.

We first placed the pressure sensor on the pressure calibration 
platform, which consisted of a push-pull force gauge with a 3 kg 
range and 1 g resolution and a hand-cranked fixture. The push-pull 
gauge was fixed on a stationary frame and different pressures were 
applied to the pressure sensors by turning the rocker, and the AD 
values of the corresponding channels of the pressure sensor and the 
pressure measurements of the push-pull gauge were simultaneously 
collected by our computer. A total of 10 rounds of raw data were 
collected, with each round collecting 300 sets of data at a frequency 
of 3 Hz, in which the applied pressure was gradually increased to 
500 gf during the first five rounds of collection, and gradually 
decreased to 30 gf during the last five rounds of collection (not 
reduced to 0 because the push-pull gauge had a 30 gf pressure dead 
zone). The acquisition results are shown in Figure 2A, where the red 
scatter plot represents gradually increasing pressure data and the 
blue scatter plot represents gradually decreasing pressure data. It 
can be  seen that the thin-film pressure sensor has a significant 
hysteresis error, which makes the two pressure data not exactly 
coincide. We used clusters of segmented linear functions to fit the 
raw data for pressure increase and decrease separately, a process 
based on the python library pwlf. Both the final curves were divided 
into 9 folded segments and the fitted curves are shown in 
Figure 2B. The top and bottom graphs show the fitted curves for the 
pressure increase and decrease processes, respectively, and the final 
pressure prediction deployed to the microcontroller was given by 
the average of the two fitted curves.

2.2.2. Dataset acquisition
We use our own QT-based software platform for rehabilitation 

action acquisition. Five subjects were recruited for training set data 
collection, with two rounds per subject, and 50 reps of each of the four 
rehabilitation training actions were collected in turn. The type of raw 
data collected is the AD value. The sampling frequency of the software 
platform is 15 Hz, and since the rehabilitation training action is 
basically completed within 2 s, the number of sample collections is set 
to 30 times for each group. Thus the data structure of each action 
sample is ch ji ( ), where i = 1, 2, 3 , j = 1, 2, 3,..., 30, and ch ji ( ) denotes 
the j  th AD value of the i th channel of the sample. An example of one 
of the samples we collected is shown in Figure 3.

The initial state pressure varied slightly from subject to subject 
because the tightness of the rehabilitation wristband was not exactly 
the same each time the subject was strapped in. We bind an initial 
reference AD value Re fi  for the same batch of rehabilitation training 
for each subject. Firstly, the subject sits at the front of the experimental 
table and maintains the initial state of stretching and making a fist as 
required by the rehabilitation training, and then maintains this resting 
relaxed state and collects a sample, which is called the subject’s resting 
sample. The resting sample has the same data structure as the action 
sample, and to distinguish it from the action sample representation, 
we use CH ji ( ) to denote its AD value of it. Re fi is precisely calculated 
by CH ji ( ) with the following equation

 
Re /f CH j ii

j
i= ( ) =( )

=
∑

1

30

30 1 2 3, ,

Subsequently, each action sample data collected by the subject will 
be transformed into a normalized value u ji ( ) , where i = 1, 2, 3 and  

FIGURE 2

(A) Raw data from pressure collection. Due to hysteresis errors, the 
curves do not coincide exactly during forward and reverse pressure 
applying. (B) Results of fitting forward and backward curves using a 
9-segmented linear function.
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j = 1, 2, 3,..., 30, which maintains the same data structure as the action 
sample and is calculated by the following equation

 
u j

ch j
fi

i

i
( ) = ( )

Re

As we can see, u ji ( ) is the ratio of the original three-channel AD 
value of this action sample to its bound initial reference AD value for 
each channel, which can reduce the impact of data variability caused 
by wearing rehabilitation wristbands with different tightness to a 
certain extent and improve the robustness and generalization ability 
of the system. These data are subsequently arranged in one dimension 
to form the final input data x k( ) of our designed classification 
algorithm, which is represented by the following equation

 x k u( ) = ( )α β

Where  α α β≡ =( ) = 




= …k k kmod , , , , , , .3 1 2 3
3

1 2 3 90, , ,      

2.2.3. Rehabilitation training movement 
classification algorithm

Since the input data is a 90-dimensional x k( ), this is too many 
features for an action sample. We  first perform dimensionality 
reduction and feature extraction on it using an autoencoder, which 
is a mature and effective algorithm for automatically finding 
features by training an adaptive encoder and decoder to match the 

original data, where the output of the encoder is the sample feature 
data we need. Then we classify the encoded data using six SVMs, 
which, as a binary classification algorithm with linearly divisible 
samples, improves model generalization by optimizing the 
hyperplane parameters so that the support vector has the maximum 
distance from it. Our six SVMs are denoted as 
S i j iij = = …( )1 2 3 4 4, , , ; ,  , , which denotes the SVM that classifies 
action i with action j (the four rehabilitation training action 
mentioned above are denoted as actions 1–4). The 6 SVMs are 
given their predicted categories for a sample, and the corresponding 
category votes are increased by one vote, and finally, the predicted 
action with the highest number of votes is identified as the final 
prediction given by the classification algorithm. The structure of 
the classification algorithm is shown in Supplementary Figure S2.

2.2.4. Action pre-detection strategy
The classification algorithm will be  deployed to the STM32 

microcontroller to run after the training is completed. According to 
the input data requirements of the classification algorithm, after the 
user finishes installing the wristband and prepares the posture for 
rehabilitation training, the user first keeps the hand relaxed and the 
upper computer sends initialization instructions to the 
microcontroller, which continuously acquires 30 sets of three-channel 
AD values at a frequency of 15 Hz and automatically calculates three 
average AD values as the initial reference AD value Re fi  for this 
round of rehabilitation training. A sliding detection window of size 30 
and step 1 is used for real-time detection of rehabilitation training 
actions. The window divides the current three-channel AD value with 

FIGURE 3

Examples of primary AD change curves for four rehabilitation training actions. (A) Stretching-and-making-a-fist. (B) Separating-and-merging-fingers. 
(C) Palm-flexion-and-dorsiflexion. (D) Ulnar-deviation action.
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Re fi  at each slide and places it at the end of the window queue, and 
removes the data at the head of the window queue. If the classification 
algorithm is propagated forward without discriminating the window 
data, the action data will be incorrectly classified as another action 
before it fully enters the window. In addition, the different initial hand 
postures for different rehabilitation training actions lead to different 
initial pressures for different actions, which can lead to an upward or 
downward slope in the data in the window when switching 
rehabilitation training actions, and if such window data is forward 
propagated by the classification algorithm, it may also lead to its being 
judged as one action and thus misclassified. Considering that all 
rehabilitation movements start and end with similar pressures (this is 
because all training actions end in the initial posture) and that the 
three-channel AD values remain essentially constant when the patient 
is not performing rehabilitation actions, we designed an action data 
detection strategy that is only window data that meet the following 
two conditions will be considered as a rehabilitation training action 
and input to the classification algorithm for recognition. (1) The 
maximum peak value of the first 10 data of the three channels of the 
window is greater than the thresholdT1, i.e., 

max max min
i j

i
j

ich j ch j T( ){ }− ( ){ }






> 1. (2) the minimum head-to-

tail AD distance of the three channels of the window is less than the 
threshold T2, i.e., min

i
i i||ch ch || T1 30 2( ) − ( ){ } < . Where the threshold 

values T1 and T2  are empirical values. The first rule ensures that 
window data is not classified when there is no action, and only 
window data with sufficiently forward action start points (which 
ensures that action data is not classified until it enters the window 
completely) will be classified. The second rule ensures that the window 
data with a strong change is indeed action data. The schematic of the 
action pre-detection strategy is shown in Figure 4.

3. Results

3.1. Pressure calibration results

We carried out two rounds of pressure calibration test 
experiments, each round of the first gradually increasing pressure 
on the sensor to reach the full range and then gradually reduce the 
pressure, the computer to store the process of pressure prediction 
of the microcontroller and the real readings of the push-pull 
gauge. The pressure error is calculated by f f ferror predict true= − , 
where f predict  and ftrue represent the predicted and true values of 
the pressure at the same moment in time, respectively, and the 
results of the two rounds of experiments are spliced together and 
shown in Figure 5A. The results show that overall the calibration 
curve seems to work well. The absolute value of ferror  becomes 
progressively larger as the pressure increases. This is due to the 
fact that the pressure calibration curve has a large absolute value 
of the derivative of the pressure value to the AD value at higher 
pressures, resulting in a slight disturbance of the AD at higher 
pressures causing a large change in the pressure prediction. At one 
point the absolute value of ferror  even exceeded 60gf at pressure 
values of 400gf or more, but under the range where our equipment 
is most often used (around 300gf), the absolute value of ferror  
basically stayed within 20gf. Figure 5B shows the value of ferror  
divided by ftrue at each moment in time. The results show that the 
pressure calibration error is basically between ±20% throughout 
the test, except for a very few spikes that reach more than 50%, 
and these singularities occur at low pressures, which may be due 
to minor voltage disturbances in the interval between the 
microcontroller and the push-pull meter data transmission during 
the data acquisition.

FIGURE 4

The schematic of the action pre-detection strategy. Only window data that meet the following two conditions will be considered as a rehabilitation 
training action and input to the classification algorithm for recognition. (1) The maximum peak value of the first 10 data of the three channels of the 

window is greater than the thresholdT1, i.e., max max min
i j

i
j

ich j ch j T( ){ } − ( ){ }











> 1. (2) The minimum head-to-tail AD distance of the three channels of 

the window is less than the thresholdT2, i.e., min
i

i i||ch ch || T1 30 2( ) − ( ){ } < . Where the threshold values T1  and T2 are empirical values.
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3.2. Effect of the number of neurons in the 
hidden layer and output layer on the 
verification error of the autoencoder

In order to find the most suitable autoencoder structure for 
accurate feature extraction of the input data, we tested the effect of 
different numbers of neurons in hidden layers and output neurons on 
the validation error of the autoencoder. k-fold cross-validation, as an 
efficient method to test the performance analysis of networks with 
different hyperparameters, randomly disturbs the sample set and 
divides it equally into k subsets. In k times of loops, a different subset is 
selected as the validation set and the remaining subsets are used as the 
training set, and the error of the network completed by this loop 
training on the validation set is evaluated. After k loops, the average of 
the k test errors is used as a measure of the generalization ability of the 
network at the current hyperparameter setting. We choose a 10-fold 
cross-validation approach and let the number of neurons in the hidden 
layer increase from 10 to 60 in step of 10 and the number of neurons in 
the output layer increase from 5 to 40 in step of 5. The test results for all 
combinations are shown in Figure 6A. From the results, it can be seen 
that with the same number of neurons in the output layer, the average 
validation error shows a decreasing trend as the number of neurons in 
the hidden layer decreases, and with the same number of hidden layer 
neurons, the average validation error shows an increasing trend as the 
number of output layer neurons increases. Particularly, the network 

even has difficulty converging when the number of output neurons is 
larger than the hidden layer. Therefore, with a larger number of hidden 
layer neurons and a smaller number of output layer neurons, the 
autoencoder can reduce the dimensionality of the raw data with better 
accuracy. However, a larger number of hidden layer neurons implies an 
increase in the number of autoencoder parameters, which increases the 
execution time for the final deployment of the algorithm to the 
microcontroller, which is not conducive to real-time processing, while 
A smaller number of output neurons may lead to a one-sided extraction 
of features specific to the raw data set by the encoder, which can lead to 
a reduction in the generalization ability of the algorithm and make it 
difficult to guarantee its linear differentiation in low-dimensional spaces.

3.3. Effect of the number of neurons in the 
hidden layer and output layer on SVM 
classification

To further determine the appropriate size of the hidden layer and 
output layer of the autoencoder, we tested the effect of the number of 
neurons in the hidden layer and output layer on the SVM classification 
results for the above combination. In this test, we also use 10-fold 
cross-validation, and for each autoencoder structure, we encode all 
the original data using the autoencoder after training, then train 6 
SVM classifiers using the encoded data, which do not use the kernel 
trick and have a C-value of 1. Finally, the final prediction of the 
algorithm is determined using the voting results of all SVMs on the 
encoded data. We use the prediction error rate as a measure of the 
algorithm’s classification performance, which is expressed as the 
proportion of samples with incorrect predictions for all samples. The 
test results are shown in Figure 6B.

The results show that the number of hidden layer neurons shows 
a negative correlation with the recognition error rate. When the 
hidden layer is 30 neurons or more, the recognition error rate 
decreases and then increases with the increase of output layer size, and 
as the output layer size continues to increase, the error rate tends to 
saturate. The algorithm performs better with a larger hidden layer and 
a smaller output layer. As can be seen, the scale of the hidden layer 
plays a key role in the final performance of the algorithm. At the same 
time, as we expected, too small or too large an output layer leads to a 
reduced degree of linear separability after encoding the raw data, 
which is not entirely determined by the encoding performance of the 
autoencoder; for example, the autoencoder exhibits a high validation 
error when the number of neurons in the hidden layer and output 
layer is 50 and 15, respectively, but performs well in the final 
classification, and the opposite is true at their number of 60 and 25, 
respectively, although overall it remains that the lower encoding error 
leads to better classification performance.

3.4. Autoencoder training results

Considering the computing power of the microcontroller and the 
generalization capability of the model, we choose a final autoencoder 
structure with a hidden layer size of 40, an output layer size of 10, the 
Tanh function as the hidden layer activation function, and no 
activation function for the output layer. With this parameter setting, 
we  randomly divide the original data into training and test sets 

FIGURE 5

(A) Results of pressure calibration tests. The larger error at higher 
applied pressures is due to the fact that at higher pressures, the 
larger absolute value of the derivative of the pressure to the AD value 
results in larger predicted pressure changes from slight AD 
perturbations. (B) The error is expressed as a percentage. Except for 
individual spikes, the error is basically between ±20%.
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according to 8:2, use Adam as the optimizer with each mini-batch size 
of 200, and select MSE as the loss function. The variation of the 
training set error and the test set error of the autoencoder with the 
training batch is shown in Figure 7A. It can be seen that during the 
training process, the test set and training set errors maintain the same 
downward trend and have very close values, characterizing the effective 
extraction of the raw data by the autoencoder. The raw data of the 
rehabilitation training actions and the corresponding fitted data of the 
autoencoder first encoded and then decoded are shown in Figure 7B.

3.5. Linear separability test after data 
encoding

After the autoencoder training is completed, we encode all the 
original data. According to our strategy, we are going to use six SVMs 
to vote on the categories of the encoded samples. Each SVM classifies 
two of the four classes of actions, such that the six classifiers are denoted 
as S i j iij = = …( )1 2 3 4 4, , , ; , , denoting the SVMs that classify class i 
with class j . Therefore, it is necessary to verify the degree of linear 
differentiability of the coded samples to justify our use of 
SVM. We propose a generalized k-fold cross-validation to assess the 
linear separability of the samples. The process is as follows: for the 

sample sets A and B to be classified, A is labeled as 1 and B is labeled as 
0. Each of A and B is randomly disrupted and divided into k  subsets as 
A A A A B B B Bk k= + +…+ = + +…+1 2 1 2,  . Unlike k-fold cross-

validation, we only take a pair of subsets Ai ,Bi as the training samples 
of SVM, and use the remaining samples A A B Bi i− −,   as the test set, 
and finally calculate the misclassification rate of the test set under each 
combination and their mean values as the quantified index of the linear 
separability of the samples. If two sample sets have a high degree of 
linear differentiability in the sample space, it means that they have a 
larger distance and indicates that our SVM evaluation made based on 
the overall sample has a larger confidence level. A two-dimensional 
schematic of the generalized k-fold cross-validation process is shown in 
Figure 8. The test results for the six SVM classifiers using the generalized 
5-fold cross-validation are shown in Figure  9. The stretching-and-
making-a-fist and the ulnar-deviation actions and the separating-and-
merging-fingers and the ulnar-deviation actions showed relatively high 
classification errors, indicating that they were close to each other in the 
sample space, especially between the separating-and-merging-fingers 
and the ulnar-deviation actions, which showed relatively high similarity 
in their pressure curves, leading to large classification errors, while the 
separating-and-merging-fingers and palm-flexion-and -dorsiflexion 
actions showed complete classification in all five subsets of the two 
sample sets, indicating that they were farthest apart in the sample space.

FIGURE 6

(A) Effect of the number of neurons in the hidden layer and output layer on the verification error of the autoencoder. (B) Effect of the number of 
neurons in the hidden layer and output layer on SVM classification.
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3.6. Measured performance of the 
algorithm after deployment on the 
microcontroller

We deployed the entire classification algorithm trained on a 
microcontroller and tested it in practice. In addition to the five 
persons involved in the training set collection, we called five additional 

subjects to participate in the actual test, with each subject performing 
one round of testing. After the subject has tied the wristband and 
placed the elbow on the table with the arm upright and keeping the 
palm facing inward, the microcontroller first asks the user to stay 
relaxed and follow the instructions from the phone for the data 
acquisition of resting state, followed by the average calculation of the 
three-channel AD values. Thereafter, the microcontroller determines 
whether a rehabilitation action is coming according to the above 
action pre-detection strategy, and if so, classifies the action category, 
and if it is recognized as a rehabilitation action, sends a response 
message to the phone. Each subject performed 100 sets of each of the 
four types of rehabilitation training, with a supervisor counting 
manually on the side, and finally counting the number of differences 
between the rehabilitation training actions detected by the 
microcontroller and the actual actions performed. The confusion 
matrix was plotted based on the experimental results of each subject, 
and finally, the accuracy and recall of each rehabilitation training 
action recognition for each subject were counted.

The confusion matrix of 10 subjects is shown in Figure 10A, where 
the top row shows the test results of subjects who participated in the 
training set acquisition, and the bottom row shows the test results of 
subjects who did not participate in the training set acquisition. 
We  counted the precision P, recall R, and f1 scores of each 
rehabilitation training action for each subject according to the 
confusion matrix, which was calculated by the following equations

 
P TP

TP FP
=

+
×100%

 
R TP

TP FN
=

+
×100%

 
f P C

P C1 2= ⋅
⋅
+

For the rehabilitation training action X, TP denotes the number 
of times the network correctly recognized X, FP denotes the number 
of times other actions were recognized as X, and FN denotes the 
number of times X was recognized as other actions or not recognized 
as any one action. The results show that the test results of the subjects 
who participated in the training set acquisition were generally good, 
indicating the effectiveness of the algorithm in classifying the four 
actions. Subjects who did not participate in the training set acquisition 
had slightly worse test results than the former but also showed 
sufficiently high generalization ability, indicating that the algorithm is 
generalized for feature extraction of the four actions.

The average precision and recall of the participants who 
participated in the training set acquisition and those who did not 
participate in the acquisition were counted separately on the four 
actions, and the results are shown in Figure  10B. On subjects 
participating in training set acquisition, the recognition accuracy and 
recall of the four rehabilitation actions were basically above 90% 
(except for palm-flexion-and-dorsiflexion action with 89.9% accuracy 
and extension grip with 88.4% recall), with extension grip having the 
highest accuracy of 98% and palmar dorsiflexion having the highest 
recall of 96%. On the subjects who were not involved in the training 

FIGURE 7

(A) The variation of the training set error and the test set error of the 
autoencoder with the training batch. (B) The raw data of the 
rehabilitation training actions and the corresponding fitted data of 
the autoencoder first encoded and then decoded.
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set acquisition, the recognition accuracy and recall rate of the four 
rehabilitation movements were above 82 and 84%, respectively, with 
the separating and merging fingers action having the highest accuracy 
of 90.24% and palm flexion and dorsiflexion action having the highest 
recall rate of 87.4%. And on all subjects, the average precision of the 
four rehabilitation movements recognition was 93.38, 91.22, 86.66, 
and 87.23%, and the average recall was 86.6, 89.9, 91.7, and 87.5%, 
respectively, and the total precision of the system’s recognition of the 
four rehabilitation training movements was 89.62%, the total recall 
was 88.93%, f1 score was 89.27%.

4. Discussion

With the development of computers and the Internet, the medical 
system is gradually showing the trend of intelligence and digitalization. 
With the support of the Internet and smart devices, rehabilitation 
treatment is gradually evolving from the previous face-to-face 
communication between doctors and patients to a new mode of 
remote monitoring and management. For example, mHealth 
(Birkmeyer et  al., 2021), defined as a medical and public health 
practice supported by mobile devices, has a large number of 
applications in clinical diagnosis or advice, improving patient 
compliance, parameterizing physiological parameters, and providing 
disease-related education (Rowland et al., 2020). mHealth, as a cell 
phone APP, can make full use of hardware resources and contains 
applications such as intelligent intervention, angle measurement 
(Pourahmadi et al., 2017; Modest et al., 2019; Ochen et al., 2020), 
intelligent monitoring, and rehabilitation games (Meijer et al., 2019, 
2021) in assisting the rehabilitation training of distal radius fractures 
(Chen et al., 2020). Therefore, it has the advantage of low cost, but its 
simple architecture dictates that it cannot measure too many 
physiological parameters, so various terminals are needed to extend 
its functionality. As a sign of artificial intelligence, virtual reality (VR) 
technology is also increasingly used in the field of rehabilitation 

engineering, including assisted rehabilitation training for diseases 
such as cognitive impairment (Lei et al., 2019), arthritis (Byra and 
Czernicki, 2020), and chronic obstructive pulmonary disease 
(Rutkowski et al., 2020), and also in distal radius fractures (Kulkarni 
and Naqvi, 2021). VR technology in rehabilitation training is basically 
presented in the form of a serious game, which allows patients to play 
in the process with less pain caused by the disease and at the same 
time to carry out effective rehabilitation training, which greatly 
promotes the enthusiasm of patients in rehabilitation treatment. But 
playing VR games usually requires an empty space as well as an 
expensive headset, which makes it seem more appropriate for 
applications in specialized, centralized retreats rather than for 
individual users. There are some specialized integrated devices for 
rehabilitation training, which use surface EMG signals, inertial 
sensing units, flexible pressure sensors, and other means for 
physiological information acquisition from the affected area, and 
based on them for applications in the direction of clinical parameter 
assessment, movement posture detection, etc. These devices tend to 
achieve very high accuracy of assessment due to multimodal signal 
processing and can bring a greater variety of rehabilitation training 
options to patients. However, their high cost and the inconvenience of 
wearing them are still the main factors that prevent their popularity.

Our developed wristband for rehabilitation training of distal radius 
fracture directly detects the force on the palmar side, radial side, and 
dorsal side of the affected limb by means of a three-channel thin film 
pressure sensor with tying a rigid magic stick band around the outside. 
After the sensor is connected to the circuit, the rehabilitation training 
movement detection of the distal radius fracture recovery period can 
be performed. The measured data showed that the system achieved an 
f1 score of 89.27% for the recognition of the four rehabilitation actions. 
The demands placed on splint tightness in patients with distal radius 
fractures necessitated the use of a pressure sensor to quantitatively assess 
splint tightness. Pressure sensors can be categorized into piezoresistive, 
capacitive, optical fiber, resonant, and piezoelectric types based on 
different principles (Song et al., 2020), and all of them can be fabricated 

FIGURE 8

The schematic diagram of generalized k-fold cross-validation.
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with very small dimensions in the medical field (Chau and Wise, 1988; 
Kalvesten et  al., 1998; Nemani et  al., 2013). Due to the need for 
miniaturization of the system, we have abandoned the use of bulky 
sensors such as weighing sensors, despite their high accuracy. There are 
devices known as intelligent splints that are effective in maintaining 
pressure on the affected area for immobilization. Most of them use 
airbags for pressure regulation and quantify the tightness based on air 
pressure sensors, and this type of research is mainly taking place in 
China. However, none of the sensor arrangements in these systems 
directly detect the pressure at the fracture point, so we rule out this 
option as well. Taking all factors into account, we decided that flexible 
thin-film pressure sensors were the sensors that best met our 
requirements, as they are small enough that can be easily placed between 
the skin and the splint without the negative effects of splint 
immobilization. Flexible pressure sensors have gained wide application 
in wearable smart devices due to their high flexibility, high sensitivity, 
and small size (Xu et al., 2018; Huang et al., 2019). We chose a thin-film 
pressure sensor with a well-established market, costing less than 3 
RMB. After the pressure calibration test, the results show that in our 
pressure acquisition circuit, the accuracy of the sensor is controlled at 
±20%, which meets the accuracy standard of the sensor itself, indicating 

that our acquisition circuit is effective. It should be  noted that the 
accuracy of our thin-film pressure sensor is far less than that of an 
accurate weighing sensor, but it is accurate enough to meet our splint 
pressure monitoring needs, and at the same time it is extremely low-cost, 
which makes it ideal for the Chinese market. The algorithm uses the 
average AD values of the initial relaxation state as the data benchmark, 
and the network input data of the training actions is the ratio of the 
original AD values relative to the data benchmark. Since each user wears 
the wristband with different degrees of looseness, this facilitates data 
normalization and thus improves system robustness and generalization. 
We  designed an action pre-detection strategy. Some rehabilitation 
actions are divided into multiple phases, for example, stretching-and-
making-a-fist action includes two phases, stretching and fisting. Since 
the data window uses sliding detection, in order to prevent data from the 
first stage from being passed into the classification algorithm once it 
enters the window, the strategy determines whether the beginning of the 
action data has moved close to the head of the window queue by judging 
the volatility of the data in the first third of the window. This strategy 
ensures that each window of data that enters the network is a complete 
rehabilitation training action. At the same time, switching between 
different rehabilitation actions can lead to strong changes in the pressure 

FIGURE 9

The test results for the six SVM classifiers using the generalized 5-fold cross-validation. The six subplots show the test results for each of the six SVM 
classifiers, including (A) between stretching-and-making-a-fist and seperating-and-merging-fingers, (B) between stretching-and-making-a-fist and 
palm-flexion-and-dorsiflexion, (C) between stretching-and-making-a-fist and ulnar-deviation action, (D) between seperating-and-merging-fingers 
and palm-flexion-and-dorsiflexion, (E) between seperating-and-merging-fingers and ulnar-deviation action, and (F) palm-flexion-and-dorsiflexion 
and ulnar-deviation action. The results show that there is a maximum linear separability between seperating-and-merging-fingers and palm-flexion-
and-dorsiflexion (D), however, there is a minimum between seperating-and-merging-fingers and ulnar-deviation action (E). This is due to the fact that 
the two actions in the latter have a relatively high similarity in the data change curves.
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data, for example, the initial hand gesture with a relaxed hand in the 
stretching-and-making-a-fist will result in a relatively low-pressure 
value, while the initial hand gesture with a tight hand in the separating-
and-merging-fingers action will result in a relatively high-pressure value. 
Switching between these two actions produces a rising or falling slope of 
the pressure value signal. To prevent passing this switching process into 
the classification algorithm, the action pre-detection strategy excludes 
this state switching process by calculating the difference between the 
start and end values of the window pressure data, so that a complete 
rehabilitation action signal can be initially filtered by this strategy. In the 
classification algorithm, we first obtain the feature information after 
dimensionality reduction from the original action data by an 
autoencoder and then use six SVM linear classifiers to vote on the 
samples two by two, and the final prediction with the highest number of 
votes is used as the final classification output. We  tested the linear 
separability of different action-coded data using a generalized k-fold 
cross-validation method, and the results show that the action-coded data 
of any two have good linear separability, proving the effectiveness of 
using the SVM linear classifier. In the actual test, the results showed that 
the system achieved a classification f1 score of 85.84% for subjects who 
did not participate in the training set acquisition, which shows the 
effectiveness of the system operation.

In addition, the rehabilitation wristband can be  used 
independently in a variety of splinting (small splints, casts, 

thermoplastic splints, etc.) immobilization situations in the early 
stages of fracture patients. Its pressure sensor can accurately assess the 
degree of splint tightness by direct contact with the affected limb, 
which can largely reduce the dependence of splint fixation on 
physician experience. This gives the wristband the flexibility of 
application as it can alert users to the loosening of the splint during 
fixation (Naqvi, 2022). Through the Bluetooth interface of the 
rehabilitation training wristband, a variety of rehabilitation training 
software can be developed based on it, such as a database for recording 
and managing patients’ daily rehabilitation training, and serious 
games for improving patients’ motivation in rehabilitation training.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

Author contributions

XS and GZ designed and planned the study concept. QZ and ZX 
completed the system construction and algorithm and design drafted 

FIGURE 10

(A) The confusion matrix of 10 subjects. (B) The result of average precision and recall of the participants who participated in the training set acquisition 
versus those who did not.

105

https://doi.org/10.3389/fnins.2023.1238176
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zha et al. 10.3389/fnins.2023.1238176

Frontiers in Neuroscience 14 frontiersin.org

the manuscript. XC provided medical guidance. All authors jointly 
revised the content of the study and agreed to submit the manuscript.

Funding

This work was supported by Science and Technology Program of 
Suzhou, China (No. SYG202019) and Science and Technology 
Program of Jiangsu Province, China (No. BE2021662).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2023.1238176/
full#supplementary-material

References
Arora, S. P., and Naqvi, W. M. (2022). A research protocol on leap motion tracking 

device: a novel intervention method in distal radial fracture rehabilitation. PLoS One 
17:e0267549. doi: 10.1371/journal.pone.0267549

Atitallah, B. B., Abbasi, M. B., Barioul, R., Bouchaala, D., Derbel, N., and Kanoun, O. 
(2020). Simultaneous pressure sensors monitoring system for hand gestures recognition. 
In 2020 IEEE Sensors (pp. 1–4). Rotterdam, Netherlands

Badwaik, N., Athawale, V., Dadgal, R., Wadhokar, O. C., and Kulkarni, C. A. 
(2021). Physiotherapy rehabilitation of distal radial fracture to enhance the activity 
of daily living. J. Med. Pharm. Allied Sci. 10, 3343–3345. doi: 10.22270/jmpas.
V10I4.1270

Bhan, K., Hasan, K., Pawar, A. S., Patel, R., and Pawar, A. S. (2021). Rehabilitation 
following surgically treated distal radius fractures: do immobilization and physiotherapy 
affect the outcome? Cureus 13:e16230. doi: 10.7759/cureus.16230

Bilius, L. B., Pentiuc, Ş. G., and Vatavu, R. D. (2023). TIGER: a Tucker-based 
instrument for gesture recognition with inertial sensors. Pattern Recogn. Lett. 165, 
84–90. doi: 10.1016/J.PATREC.2022.11.028

Birkmeyer, S., Wirtz, B. W., and Langer, P. F. (2021). Determinants of mHealth success: 
an empirical investigation of the user perspective. Int. J. Inf. Manag. 59:102351. doi: 
10.1016/J.IJINFOMGT.2021.102351

Byra, J., and Czernicki, K. (2020). The effectiveness of virtual reality rehabilitation in 
patients with knee and hip osteoarthritis. J. Clin. Med. 9:2639. doi: 10.3390/JCM9082639

Chau, H. L., and Wise, K. D. (1988). An ultraminiature solid-state pressure sensor for 
a cardiovascular catheter. IEEE Trans. Electron Devices 35, 2355–2362. doi: 
10.1109/16.8814

Chen, Y., Yu, Y., Lin, X., Han, Z., Feng, Z., Hua, X., et al. (2020). Intelligent 
rehabilitation assistance tools for distal radius fracture: a systematic review based on 
literatures and mobile application stores. Comput. Math. Methods Med. 2020, 1–9. doi: 
10.1155/2020/7613569

Cheng, Y., Li, G., Yu, M., Jiang, D., Yun, J., Liu, Y., et al. (2021). Gesture recognition 
based on surface electromyography-feature image. Concurr. Comput. 33:e6051. doi: 
10.1002/cpe.6051

Copaci, D., Arias, J., Gómez-Tomé, M., Moreno, L., and Blanco, D. (2022). sEMG-
based gesture classifier for a rehabilitation glove. Front. Neurorobot. 16:750482. doi: 
10.3389/fnbot.2022.750482

Debnath, B., O’brien, M., Yamaguchi, M., and Behera, A. (2022). A review of computer 
vision-based approaches for physical rehabilitation and assessment. Multimed. Syst. 28, 
209–239. doi: 10.1007/S00530-021-00815-4

Dong, W., Yang, L., Gravina, R., and Fortino, G. (2021). Soft wrist-worn multi-
functional sensor array for real-time hand gesture recognition. IEEE Sensors J. 22, 
17505–17514. doi: 10.1109/JSEN.2021.3050175

Fang, B., Lv, Q., Shan, J., Sun, F., Liu, H., Guo, D., et al (2019). Dynamic gesture recognition 
using inertial sensors-based data gloves. In 2019 IEEE 4th international conference on 
advanced robotics and mechatronics (ICARM) (pp. 390–395). Toyonaka, Japan

Francisco, J. A., and Rodrigues, P. S. (2022). Computer vision based on a modular neural 
network for automatic assessment of physical therapy rehabilitation activities. IEEE Trans. 
Neural Syst. Rehabil. Eng. 31:2023, 2174–2183. doi: 10.1109/TNSRE.2022.3226459

Gao, Z., Xiao, X., Carlo, A. D., Yin, J., Wang, Y., Huang, L., et al. (2023). Advances in 
wearable strain sensors based on electrospun fibers. Adv. Funct. Mater. 33:2214265. doi: 
10.1002/adfm.202214265

Guo, K., Zhang, S., Zhao, S., and Yang, H. (2021). Design and manufacture of data 
gloves for rehabilitation training and gesture recognition based on flexible sensors. J. 
Healthc. Eng. 2021, 1–9. doi: 10.1155/2021/6359403

Han, Y., Varadarajan, A., Kim, T., Zheng, G., Kitani, K., Kelliher, A., et al. (2022). 
Smart skin: vision-based soft pressure sensing system for in-home hand rehabilitation. 
Soft Robot. 9, 473–485. doi: 10.1089/soro.2020.0083

He, B., Tian, X., Ji, G., and Han, A. (2020). Comparison of outcomes between 
nonsurgical and surgical treatment of distal radius fracture: a systematic review update 
and meta-analysis. Arch. Orthop. Trauma Surg. 140, 1143–1153. doi: 10.1007/
s00402-020-03487-3

Hellsten, T., Karlsson, J., Shamsuzzaman, M., and Pulkkis, G. (2021). The potential of 
computer vision-based marker-less human motion analysis for rehabilitation. Rehabil. 
Process Outcome 10:117957272110223. doi: 10.1177/11795727211022330

Hua, Z., Wang, J. W., Lu, Z. F., Ma, J. W., and Yin, H. (2018). The biomechanical 
analysis of three-dimensional distal radius fracture model with different fixed splints. 
Technol. Health Care 26, 329–341. doi: 10.3233/THC-171050

Huang, Y., Fan, X., Chen, S. C., and Zhao, N. (2019). Emerging technologies of flexible 
pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 
29:1808509. doi: 10.1002/adfm.201808509

Huang, Q., Wu, W., Chen, X., Wu, B., Wu, L., Huang, X., et al. (2019). Evaluating the 
effect and mechanism of upper limb motor function recovery induced by immersive 
virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a 
randomized controlled trial. Trials 20, 104–109. doi: 10.1186/s13063-019-3177-y

Jeong, H., Feng, J., and Kim, J. (2022). 2.5 D laser-cutting-based customized 
fabrication of long-term wearable textile sEMG sensor: from design to intention 
recognition. IEEE Robot Autom. Lett. 7, 10367–10374. doi: 10.1109/LRA.2022.3190620

Kalvesten, E., Smith, L., Tenerz, L., and Stemme, G. (1998). The first surface 
micromachined pressure sensor for cardiovascular pressure measurements. In 
Proceedings MEMS 98. IEEE. Eleventh annual international workshop on Micro electro 
mechanical systems. An investigation of Micro structures, sensors, actuators, machines 
and systems cat. No. 98CH36176 (pp. 574–579). Heidelberg, Germany

Keskin, C., Kıraç, F., Kara, Y. E., and Akarun, L. (2012). Hand pose estimation and 
hand shape classification using multi-layered randomized decision forests. In Computer 
vision–ECCV 2012: 12th European conference on computer vision, Florence, Italy, 
October 7–13, 2012, proceedings, part VI 12 (pp. 852–863) Berlin Heidelberg

Kim, M., Cho, J., Lee, S., and Jung, Y. (2019). IMU sensor-based hand gesture 
recognition for human-machine interfaces. Sensors 19:3827. doi: 10.3390/s19183827

Kulkarni, C. A., and Naqvi, W. M. Impact of virtual reality on rehabilitation of distal 
radial fracture with head mounted device [internet]. Protocol exchange (2021) [cited 
2021 Aug 11]. doi:10.21203/rs.3.pex-1341/v2

Lei, C., Sunzi, K., Dai, F., Liu, X., Wang, Y., Zhang, B., et al. (2019). Effects of virtual 
reality rehabilitation training on gait and balance in patients with Parkinson's disease: a 
systematic review. PLoS One 14:e0224819. doi: 10.1371/journal.pone.0224819

Li, T., Mi, M., Liu, H. B., Gao, Z. Q., Xiao, H. H., Zhou, Y., et al. (2020). Expert consensus 
on standardized painless closed manipulative reduction and cast immobilization for distal 
radius fracture based on enhanced recovery after surgery. Chinese journal of bone and joint. 
Surgery 13, 177–182[in Chinese]. doi: 10.3969/j.issn.2095-9958.2020.03.01

Li, Y., Yin, J., Liu, S., Xue, B., Shokoohi, C., Ge, G., et al. (2023). Learning hand 
kinematics for Parkinson's disease assessment using a multimodal sensor glove. Adv. Sci. 
10:e2206982. doi: 10.1002/advs.202206982

106

https://doi.org/10.3389/fnins.2023.1238176
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238176/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238176/full#supplementary-material
https://doi.org/10.1371/journal.pone.0267549
https://doi.org/10.22270/jmpas.V10I4.1270
https://doi.org/10.22270/jmpas.V10I4.1270
https://doi.org/10.7759/cureus.16230
https://doi.org/10.1016/J.PATREC.2022.11.028
https://doi.org/10.1016/J.IJINFOMGT.2021.102351
https://doi.org/10.3390/JCM9082639
https://doi.org/10.1109/16.8814
https://doi.org/10.1155/2020/7613569
https://doi.org/10.1002/cpe.6051
https://doi.org/10.3389/fnbot.2022.750482
https://doi.org/10.1007/S00530-021-00815-4
https://doi.org/10.1109/JSEN.2021.3050175
https://doi.org/10.1109/TNSRE.2022.3226459
https://doi.org/10.1002/adfm.202214265
https://doi.org/10.1155/2021/6359403
https://doi.org/10.1089/soro.2020.0083
https://doi.org/10.1007/s00402-020-03487-3
https://doi.org/10.1007/s00402-020-03487-3
https://doi.org/10.1177/11795727211022330
https://doi.org/10.3233/THC-171050
https://doi.org/10.1002/adfm.201808509
https://doi.org/10.1186/s13063-019-3177-y
https://doi.org/10.1109/LRA.2022.3190620
https://doi.org/10.3390/s19183827
https://doi.org/10.21203/rs.3.pex-1341/v2
https://doi.org/10.1371/journal.pone.0224819
https://doi.org/10.3969/j.issn.2095-9958.2020.03.01
https://doi.org/10.1002/advs.202206982


Zha et al. 10.3389/fnins.2023.1238176

Frontiers in Neuroscience 15 frontiersin.org

Li, K., Zhuang, S., Liu, J., Guo, A., Wang, A., Lu, J., et al. (2021). Design of an intelligent 
medical splint with 3D printing and pressure detection. In 2021 IEEE 2nd international 
conference on big data, artificial intelligence and internet of things engineering 
(ICBAIE) (pp. 655–658). Nanchang, China

Meijer, H. A., Graafland, M., Obdeijn, M. C., Goslings, J. C., and Schijven, M. P. 
(2019). Face validity and content validity of a game for distal radius fracture 
rehabilitation. J. Wrist Surg. 8, 388–394. doi: 10.1055/s-0039-1688948

Meijer, H. A., Graafland, M., Obdeijn, M. C., van Dieren, S., Goslings, J. C., and 
Schijven, M. P. (2021). Serious game versus standard care for rehabilitation after distal 
radius fractures: a protocol for a multicentre randomised controlled trial. BMJ Open 
11:e042629. doi: 10.1136/bmjopen-2020-042629

Meng, F., Liu, C., Li, Y., Hao, H., Li, Q., Lyu, C., et al. (2023). Personalized and safe soft 
glove for rehabilitation training. Electronics 12:2531. doi: 10.3390/electronics12112531

Modest, J., Clair, B., DeMasi, R., Meulenaere, S., Howley, A., Aubin, M., et al. (2019). 
Self-measured wrist range of motion by wrist-injured and wrist-healthy study 
participants using a built-in iPhone feature as compared with a universal goniometer. J. 
Hand Ther. 32, 507–514. doi: 10.1016/j.jht.2018.03.004

Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G., et al. (2021). 
A wearable biosensing system with in-sensor adaptive machine learning for hand 
gesture recognition. Nat. Electron. 4, 54–63. doi: 10.1038/s41928-020-00510-8

Naqvi, W. M. (2022). Gamification in therapeutic rehabilitation of distal radial and 
ulnar fracture: a case report. Cureus 14:e28586. doi: 10.7759/cureus.28586

Nascimento, L. M. S. D., Bonfati, L. V., Freitas, M. L. B., Mendes Junior, J. J. A., 
Siqueira, H. V., and Stevan, S. L. Jr. (2020). Sensors and systems for physical rehabilitation 
and health monitoring—a review. Sensors 20:4063. doi: 10.3390/s20154063

Nemani, K. V., Moodie, K. L., Brennick, J. B., Su, A., and Gimi, B. (2013). In vitro and 
in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C 33, 4453–4459. doi: 
10.1016/j.msec.2013.07.001

Ochen, Y., Peek, J., van der Velde, D., Beeres, F. J. P., van Heijl, M., Groenwold, R. H. 
H., et al. (2020). Operative vs nonoperative treatment of distal radius fractures in adults: 
a systematic review and meta-analysis. JAMA Netw. Open 3:e203497. doi: 10.1001/
jamanetworkopen.2020.3497

Østergaard, H. K., Mechlenburg, I., Launonen, A. P., Vestermark, M. T., Mattila, V. M., 
and Ponkilainen, V. T. (2021). The benefits and harms of early mobilization and 
supervised exercise therapy after non-surgically treated proximal humerus or distal 
radius fracture: a systematic review and meta-analysis. Curr. Rev. Musculoskelet. Med. 
14, 107–129. doi: 10.1007/s12178-021-09697-5

Pierre Claver, U., and Zhao, G. (2021). Recent progress in flexible pressure sensors 
based electronic skin. Adv. Eng. Mater. 23:2001187. doi: 10.1002/adem.202001187

Pourahmadi, M. R., Ebrahimi Takamjani, I., Sarrafzadeh, J., Bahramian, M., 
Mohseni-Bandpei, M. A., Rajabzadeh, F., et al. (2017). Reliability and concurrent 
validity of a new iP hone® goniometric application for measuring active wrist 
range of motion: a cross-sectional study in asymptomatic subjects. J. Anat. 230, 
484–495. doi: 10.1111/joa.12568

Prakash, A., Kumari, B., and Sharma, S. (2019). A low-cost, wearable sEMG sensor for 
upper limb prosthetic application. J. Med. Eng. Technol. 43, 235–247. doi: 
10.1080/03091902.2019.1653391

Quadlbauer, S., Pezzei, C., Jurkowitsch, J., Rosenauer, R., Kolmayr, B., Keuchel, T., 
et al. (2020). Rehabilitation after distal radius fractures: is there a need for immobilization 
and physiotherapy? Arch. Orthop. Trauma Surg. 140, 651–663. doi: 10.1007/
s00402-020-03367-w

Reid, S. A., Andersen, J. M., and Vicenzino, B. (2020). Adding mobilisation with 
movement to exercise and advice hastens the improvement in range, pain and function 

after non-operative cast immobilisation for distal radius fracture: a multicentre, 
randomised trial. J. Physiother. 66, 105–112. doi: 10.1016/j.jphys.2020.03.010

Rowland, S. P., Fitzgerald, J. E., Holme, T., Powell, J., and McGregor, A. (2020). What 
is the clinical value of mHealth for patients? NPJ Digital Med. 3:4. doi: 10.1038/
s41746-019-0206-x

Rutkowski, S., Rutkowska, A., Kiper, P., Jastrzebski, D., Racheniuk, H., Turolla, A., 
et al. (2020). Virtual reality rehabilitation in patients with chronic obstructive pulmonary 
disease: a randomized controlled trial. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 117–124. 
doi: 10.2147/COPD.S223592

Shen, M., and Lu, H. (2022). RARN: a real-time skeleton-based action recognition 
network for auxiliary rehabilitation therapy. In 2022 IEEE international symposium on 
circuits and systems (ISCAS), Austin, TX, USA, pp. 2482–2486

Sinha, A., Choi, C., and Ramani, K. (2016). Deephand: robust hand pose estimation 
by completing a matrix imputed with deep features. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 4150–4158). Las Vegas, NV, 
USA

Song, P., Ma, Z., Ma, J., Yang, L., Wei, J., Zhao, Y., et al. (2020). Recent progress of 
miniature MEMS pressure sensors. Micromachines 11:56. doi: 10.3390/mi11010056

Sun, Y., Li, X., Wang, J., Li, D., and Zhu, Y. (2022). Research on upper limb 
rehabilitation action recognition method of unsupervised contrast learning based on 
time-domain multi-scale feature fusion. In 2022 5th international conference on 
intelligent robotics and control engineering (IRCE), Tianjin, China, pp. 103–107

Tang, D., Jin Chang, H., Tejani, A., and Kim, T. K. (2014). Latent regression forest: 
structured estimation of 3d articulated hand posture. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 3786–3793).

Wan, C., Probst, T., Gool, L. V., and Yao, A., (2019). Self-supervised 3d hand pose 
estimation through training by fitting. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition (pp. 10853–10862). Long Beach, CA, USA

Weygers, I., Kok, M., Konings, M., Hallez, H., De Vroey, H., and Claeys, K. (2020). 
Inertial sensor-based lower limb joint kinematics: a methodological systematic review. 
Sensors 20:673. doi: 10.3390/s20030673

Wong, W. K., Juwono, F. H., and Khoo, B. T. T. (2021). Multi-features capacitive hand 
gesture recognition sensor: a machine learning approach. IEEE Sensors J. 21, 8441–8450. 
doi: 10.1109/JSEN.2021.3049273

Xiao, X., Yin, J., Chen, G., Shen, S., Nashalian, A., and Chen, J. (2022). Bioinspired 
acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter 5, 
1342–1345. doi: 10.1016/j.matt.2022.03.014

Xu, H., Gao, L., Zhao, H., Huang, H., Wang, Y., Chen, G., et al. (2021). Stretchable and 
anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical 
monitoring and deep learning-aided knee rehabilitation. Microsyst. Nanoeng. 7:92. doi: 
10.1038/s41378-021-00318-2

Xu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L., et al. (2018). Recent developments for 
flexible pressure sensors: a review. Micromachines 9:580. doi: 10.3390/mi9110580

Yadav, S. K., Tiwari, K., Pandey, H. M., and Akbar, S. A. (2021). A review of 
multimodal human activity recognition with special emphasis on classification, 
applications, challenges and future directions. Knowl. Based Syst. 223:106970. doi: 
10.1016/j.knosys.2021.106970

Zhang, Y., Liu, B., and Liu, Z. (2019). Recognizing hand gestures with pressure-sensor-
based motion sensing. IEEE Trans. Biomed. Circuits. Syst. 13, 1425–1436. doi: 10.1109/
TBCAS.2019.2940030

Zhu, Z. A., Lu, Y. C., You, C. H., and Chiang, C. K. (2019). Deep learning for sensor-
based rehabilitation exercise recognition and evaluation. Sensors 19:887. doi: 10.3390/
s19040887

107

https://doi.org/10.3389/fnins.2023.1238176
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1055/s-0039-1688948
https://doi.org/10.1136/bmjopen-2020-042629
https://doi.org/10.3390/electronics12112531
https://doi.org/10.1016/j.jht.2018.03.004
https://doi.org/10.1038/s41928-020-00510-8
https://doi.org/10.7759/cureus.28586
https://doi.org/10.3390/s20154063
https://doi.org/10.1016/j.msec.2013.07.001
https://doi.org/10.1001/jamanetworkopen.2020.3497
https://doi.org/10.1001/jamanetworkopen.2020.3497
https://doi.org/10.1007/s12178-021-09697-5
https://doi.org/10.1002/adem.202001187
https://doi.org/10.1111/joa.12568
https://doi.org/10.1080/03091902.2019.1653391
https://doi.org/10.1007/s00402-020-03367-w
https://doi.org/10.1007/s00402-020-03367-w
https://doi.org/10.1016/j.jphys.2020.03.010
https://doi.org/10.1038/s41746-019-0206-x
https://doi.org/10.1038/s41746-019-0206-x
https://doi.org/10.2147/COPD.S223592
https://doi.org/10.3390/mi11010056
https://doi.org/10.3390/s20030673
https://doi.org/10.1109/JSEN.2021.3049273
https://doi.org/10.1016/j.matt.2022.03.014
https://doi.org/10.1038/s41378-021-00318-2
https://doi.org/10.3390/mi9110580
https://doi.org/10.1016/j.knosys.2021.106970
https://doi.org/10.1109/TBCAS.2019.2940030
https://doi.org/10.1109/TBCAS.2019.2940030
https://doi.org/10.3390/s19040887
https://doi.org/10.3390/s19040887


Frontiers in Neuroscience 01 frontiersin.org

Ambient assisted living for frail 
people through human activity 
recognition: state-of-the-art, 
challenges and future directions
Bruna Maria Vittoria Guerra 1, Emanuele Torti 2*, Elisa Marenzi 2, 
Micaela Schmid 1, Stefano Ramat 1, Francesco Leporati 2 and 
Giovanni Danese 2

1 Bioengineering Laboratory, Department of Electrical, Computer and Biomedical Engineering, 
University of Pavia, Pavia, Italy, 2 Custom Computing and Programmable Systems Laboratory, 
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy

Ambient Assisted Living is a concept that focuses on using technology to support 
and enhance the quality of life and well-being of frail or elderly individuals in both 
indoor and outdoor environments. It aims at empowering individuals to maintain 
their independence and autonomy while ensuring their safety and providing 
assistance when needed. Human Activity Recognition is widely regarded as the 
most popular methodology within the field of Ambient Assisted Living. Human 
Activity Recognition involves automatically detecting and classifying the activities 
performed by individuals using sensor-based systems. Researchers have employed 
various methodologies, utilizing wearable and/or non-wearable sensors, and 
employing algorithms ranging from simple threshold-based techniques to more 
advanced deep learning approaches. In this review, literature from the past decade 
is critically examined, specifically exploring the technological aspects of Human 
Activity Recognition in Ambient Assisted Living. An exhaustive analysis of the 
methodologies adopted, highlighting their strengths and weaknesses is provided. 
Finally, challenges encountered in the field of Human Activity Recognition for 
Ambient Assisted Living are thoroughly discussed. These challenges encompass 
issues related to data collection, model training, real-time performance, 
generalizability, and user acceptance. Miniaturization, unobtrusiveness, energy 
harvesting and communication efficiency will be  the crucial factors for new 
wearable solutions.

KEYWORDS

human activity recognition, ambient assisted living, wearable systems, frail people, deep 
learning

1. Introduction

Ambient Assisted Living (AAL) refers to the use of Information and Communication 
Technologies (ICT), assistive devices, and sensor network technologies to support, monitor 
and enhance the quality of life for individuals, particularly older adults, or people with 
disabilities, within their daily living and working environment. The primary goal of AAL 
is to provide individuals with increased independence, autonomy, and safety by 
incorporating technological solutions into their surroundings. These solutions can assist 
individuals in various activities of daily living, such as managing their health, monitoring 
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their safety, and improving their social interactions (Blackman 
et  al., 2016; Stodczyk, 2020). One significant aspect of AAL is 
subject monitoring, which involves the continuous and 
unobtrusive tracking of an individual’s activities, health 
parameters, and environment to ensure their safety and provide 
timely assistance when needed. Subject monitoring utilizes 
various sensors to collect data and analyze patterns, enabling 
caregivers and healthcare professionals to gain valuable insights 
into an individual’s daily routines, health conditions, and potential 
risks. The choice of sensors can be made among two main groups: 
wearable and non-wearable sensors. The first one could 
be incorporated on clothing or worn by the user like accessories. 
Non-wearable sensors, on the other hand, are strategically placed 
on furniture, appliances, walls, doors, and other objects 
throughout the home. By integrating both types of sensors, 
through a so-called hybrid approach, a comprehensive monitoring 
solution can be created to effectively and efficiently monitor the 
subject (Calvaresi et al., 2017; Clapés et al., 2018).

The work of Aleksic et  al. proposed a subdivision of AAL 
systems for subject monitoring into four distinct generations (see 
Figure  1) based on technological variations, highlighting the 
application of ICT, stand-alone assistive devices, and technologies 
for indoor environments within individuals’ daily living and 
working environments (Al-Shaqi et al., 2016). These AAL systems 
actively encourage healthy lifestyles, contribute to disease 
prevention through personalized risk assessment and continuous 
monitoring, and primarily cater to frail individuals, by offering 
continuous support and actively promoting their independent and 
healthy living (Blackman et  al., 2016; Calvaresi et  al., 2017; 
Stodczyk, 2020; Cicirelli et al., 2021):

 • First Generation of AAL Systems: the first generation of AAL 
systems primarily consists of alert and alarm systems using 
pendant or button devices worn by the monitored individuals. 
In the event of a dangerous situation, the individual would 
activate the button or pendant to send an alarm signal to a 
call center or caregiver. Examples of such solutions include 

the Salvalavita Beghelli1 and LifeAlert.2 While these devices 
offer several benefits, they also have specific limitations. For 
instance, individuals may be  physically or mentally 
incapacitated, making them unable to trigger the alarm. 
Additionally, there are issues with individuals forgetting to 
wear or recharge the device.

 • Second Generation of AAL Systems: the second generation of AAL 
systems involves more technologically advanced devices, installed 
in indoor spaces, incorporating sensors capable of automatically 
detecting dangerous conditions and triggering appropriate 
responses without relying on user activation. However, a 
weakness associated with this generation is that some users may 
perceive it as intrusive.

 • Third Generation of AAL Systems: the third generation of AAL 
systems expands through advancements in ICT, introducing a 
more comprehensive concept of AAL. These systems encompass 
sensors designed to detect potentially dangerous situations and 
proactively prevent adverse scenarios, actuators providing 
support to the assisted individuals, and smart interfaces 
delivering information, assistance, and encouragement. The aim 
is to create minimally intrusive home setups comprising multiple 
sensors, actuators, and computing systems. These systems not 
only monitor the home environment but also track vital signs, 
changes in habits and activity patterns of frail individuals, and 
facilitate the execution of daily living activities (Mainetti 
et al., 2016).

 • Fourth Generation of AAL Systems: the fourth generation of AAL 
systems incorporates Artificial Intelligence (AI) algorithms for 
data analysis within AAL solutions. These intelligent systems 
have the ability to learn from data and evolve over time, offering 
personalized assistance and support. The co-design approach is 
embraced, involving end-users, caregivers and stakeholders to 

1 https://www.beghelli.it/salvalavita

2 http://www.lifealert.com

FIGURE 1

Evolution of AAL systems: four generations from the 1990s to the present day.
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create users-centered and inclusive solutions (Siriwardhana et al., 
2019; Bansal et al., 2021; Sophia et al., 2021; Gulati and Kaur, 
2022; Rupasinghe and Maduranga, 2022; Warunsin and 
Phairoh, 2022).

1.1. Related works

By combining AAL with subject monitoring, it becomes possible 
to create personalized and proactive care solutions, promoting 
independent living while offering a safety net for vulnerable 
individuals. Subject monitoring can be conducted in both outdoor 
and indoor environments. Outdoor environments expose frail people 
to various risks, such as falls, extreme temperatures, and potential 
wandering or confusion in individuals with early symptoms of 
dementia. In this context, AAL systems aim to provide support to frail 
individuals by facilitating route checking, anomalous behavior 
recognition, motion activity evaluation, and other relevant 
functionalities (Fernandes et al., 2020; Lee, 2021). Since wearables are 
the only devices that can be  employed outdoors, they acquire a 
fundamental importance. Smartwatches and smart wristbands are the 
most commonly used devices, while Inertial Measurement Units 
(IMUs) are typically the sensors chosen (the same used in indoor 
scenarios) (Bhargava et al., 2017; Iadarola et al., 2022). In literature, 
other solutions have been proposed that address alternative or 
complementary approaches (Sokullu et al., 2019; Kenfack Ngankam 
et al., 2020; Rupasinghe and Maduranga, 2022): for example, Global 
Navigation Satellite System (GNSS) sensors for outdoor localization 
(Junior et al., 2023); instrumented insoles (commercial or customized) 
as an aid for gait detection and consequently for pointing out unsteady 
walking or falls (Cristiani et al., 2014; Sivakumar et al., 2018) and 
sensors mounted on the body of a walker as a low-cost solution for 
people with limited mobility (Ding et al., 2022). Conversely, indoor 
scenarios present frail individuals with risks closely associated with 
their living spaces.

Notably, the indoor environment has been identified as a 
significant contributing element to falls (Lee, 2021), which are 
attributed to factors such as uneven or slippery floor surfaces 
(including carpets and mats), tripping obstacles, inadequate lighting, 
poorly designed or maintained stairs without handrails and unsuitable 
furniture. These criticalities increase the likelihood of tripping, falling, 
or slipping for frail individuals. Additional hazards arise from the 
absence of safety or preventive devices, such as night lights and grab 
rails (Carter et  al., 1997; Lee, 2021). Indeed, the requirements of 
monitored subjects can vary significantly across different indoor 
scenarios. In private homes, where individuals live alone or with a 
caregiver, the primary focus of monitoring is on preventing domestic 
accidents and delivering essential healthcare services. On the other 
hand, in retirement residences where multiple individuals share 
common spaces, subject monitoring systems are primarily designed 
to facilitate group activities and controlled physical exercises (Nastac 
et al., 2019; Cicirelli et al., 2021).

Adapting the monitoring approach to suit the specific needs and 
dynamics of each indoor setting is crucial. This ensures that monitored 
subjects receive personalized support and care tailored to their 
circumstances. Additionally, it is important to recognize that AAL 
systems cannot remain static, as people’s needs and habits evolve over 

time, along with the parameters that need to be  observed. 
Consequently, data analysis methodologies must account for the 
evolving nature of these systems, allowing for the possibility of 
dynamically weighting or customizing certain parameters over others 
(Cicirelli et al., 2021). By embracing flexibility and adaptability, AAL 
systems can continue to provide effective and relevant support to 
individuals in various indoor environments.

The selection of appropriate sensors considers multiple factors, 
including the specific objectives of the AAL system, sensor cost, 
intrusiveness, user acceptability, and privacy concerns. However, more 
complex sensor networks, comprising environmental sensors, object 
sensors, cameras, and wearable sensors constitute the foundation of 
indoor AAL. The living facilities may be equipped with an array of 
interconnected sensors and actuators, enabling remote control and 
capable of detecting various environmental parameters such as door 
openings and room brightness. These sensors are strategically 
deployed to monitor the daily activities of individuals, ensuring 
security and safety. The selection of appropriate sensors considers 
multiple factors, including the specific objectives of the AAL system, 
sensor cost, intrusiveness, user acceptability, and privacy concerns. 
Communication protocols, such as ZigBee, Bluetooth, ZWave, USB, 
Ethernet, among others, are utilized to interconnect sensors, actuators, 
and smart devices throughout the environment (Tazari et al., 2011; 
Lloret et  al., 2015; Babangida et  al., 2022). Typically, raw or 
pre-processed data from sensors are transmitted to a collection center, 
either local or remote, where they undergo integration and analysis 
using robust algorithms (Plentz and De Pieri, 2018). A thorough and 
reliable data analysis becomes crucial in indoor scenarios equipped 
with automatic dangerous situation detection or capable of requesting 
help triggering alarms to third parties.

In the field of AAL, Human Activity Recognition (HAR) has 
emerged as a valuable tool with multifaceted utility. Within the AAL 
domain, HAR presents a range of solutions aimed at enhancing the 
quality of life of frail individuals (elderly and/or disabled people) and 
maintaining improved health and independence. Additionally, it 
provides also support to caregivers and medical professionals. HAR 
has garnered substantial interest as a prominent field of study in recent 
times. HAR methodologies are devised with the objective of 
autonomously detecting and classifying individuals’ routine activities 
within defined contexts. Depending on the task and the employed 
technologies, two main methodologies are commonly adopted. The 
first approach relies on a threshold analysis method, which can suffice 
for triggering alerts when detecting dangerous events (Zdravevski 
et al., 2017; Al Machot et al., 2018a,b; Cicirelli et al., 2021). The second 
and more recent approach (see Figure 1, fourth generation), employs 
Artificial Intelligence (AI) solutions such as Machine Learning (ML) 
and Deep Learning (DL) algorithms for HAR (Aggarwal and Ryoo, 
2011; Wang J. et al., 2019).

Among the various possible applications, human activities can 
be classified into four distinct groups based on the involvement of 
various body parts (Jegham et al., 2020; Minh Dang et al., 2020):

 • gestures involve basic actions carried out by different parts of the 
human body, including hand gestures like the “okay” gesture or 
“thumbs up” gesture;

 • actions refer to a collection of fundamental movements executed 
by an individual, such as walking, standing, sitting, running, and 
other similar activities;
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 • interactions encompass not only activities involving interactions 
between two individuals, but they can also involve the 
relationship between a person and an object. Examples of 
interactions include playing a guitar or hugging another person;

 • group of activities are the most intricate category as they primarily 
involve a combination of gestures, actions, and interactions. 
Examples of group activities include group meetings or group 
walking, where multiple individuals engage in coordinated 
actions and interactions.

Detailed framework of the HAR process will be discussed in the 
upcoming section. Finally, the aim of this work is to provide an 
overview of recent literature of AAL systems focusing on HAR from 
a technological perspective, tackling emerging evidences, challenges 
and future directions (Stavropoulos et al., 2020).

Papers have been revised by searching published works in the last 
10 years in the following databases: IEEE Xplore, PubMed, Scopus. A 
series of keywords have been used, alone or in combination: ambient 
assisted living, ambient assisted living technology, healthy ageing, 
human activity recognition, ambient sensors, wearable sensors, 
wearable technology, activity monitoring, machine learning, deep 
learning, frail person.

The rest of the paper is organized as follows: Section 2 describes 
the Monitoring Solutions, focusing on the main components of an 
AAL system and detailing wearable and non-wearable sensors. Section 
3 presents the processing chain, outlining the most relevant 
methodologies for data acquisition, processing and analysis. Section 
4 proposes a critical discussion that also addresses future directions of 
this research field.

2. Monitoring solutions

Monitoring solutions in AAL systems can be developed using a 
variety of technologies, depending on the specific application domains 
and requirements. Specifically, in the field of HAR different solutions 
can be  employed (Cicirelli et  al., 2021; Ranieri et  al., 2021). The 
upcoming session will provide a detailed description of wearable and 
non-wearable sensor solutions for HAR within the context of AAL in 
indoor environments.

2.1. Wearable sensors

Wearable devices typically consist of small sensors that can 
be integrated into cloths, rings, shirts, watches or other garments and 
devices. Such sensors gather body and context information to 
be locally processed or directly transmitted, mainly wirelessly through 
appropriate communication protocols, to a central processing unit of 
an AAL system (Kumari et al., 2017).

In the last few years, most wearable devices have been 
miniaturized and have optimized their power consumption 
(Cicirelli et al., 2021). Wearable devices, especially fitness trackers, 
wristbands and smartwatches (Andò et al., 2016; Lutze, 2018; Xie 
et  al., 2020), have various built-in/integrated sensors such as 
accelerometers, gyroscopes and orientation sensors. Smartphones 
represent an additional solution for their characteristics of cost 
effectiveness and high number of embedded sensors (Ramanujam 

et  al., 2021). Moreover, smartphones’ embedded sensors can 
be used alone or in combination with other wearable technology to 
evaluate posture and activities and to prevent falls, together with 
biological and behavioral monitoring (Haghi et al., 2019; Badgujar 
and Pillai, 2020; Nouredanesh et al., 2020). In this review, since 
users take their smartphone with them almost everywhere, even 
though they are not always in direct contact with the body, they are 
considered wearable devices at the same level as wristwatches, 
rings, glasses and necklaces, as opposed to environmental sensors 
and cameras. Apps for recording the device’s sensors data can 
be run on all commercial operating systems (Android or iOS) and 
they can be  combined with commercial smartwatches, self-
developed smart bands or devices like Shimmer nodes (Sanchez-
Comas et  al., 2020). However, not all applications provide an 
integration with smartphones; instead, many studies considered 
custom-developed solutions of electronic components. A 
significant number of works developed technologies in the 
laboratory, whereas fewer studies used commercial devices. Inertial 
sensors are the most common wearable elements used for HAR in 
AAL; in some cases, accelerometers (Tay et al., 2023), gyroscopes, 
magnetometers, temperature and object sensors may be applied, 
mainly worn on the waist or the hip (Pierleoni et al., 2019; Sarabia-
Jácome et al., 2020).

Identification of the user’s position can be obtained even with 
passive RFID sensors or Bluetooth Low Energy (BLE) technology, that 
paved the way to the Bluetooth Smart for wearable devices (Ciabattoni 
et  al., 2019; Paolini et  al., 2019; Bilbao-Jayo et  al., 2021). Also, 
wearables usually commercialized for fitness purposes have been 
evaluated for elderly wellbeing in the AAL domain (Piwek et al., 2016; 
Seneviratne et al., 2017; Cedillo et al., 2018; Surendran et al., 2018; 
Stavropoulos et al., 2020).

The majority of HAR systems in AAL are dedicated to the 
identification and management of falls, as confirmed by literature 
(Dhiman and Vishwakarma, 2019). In such systems, wearables are one 
of the key elements due to their mobility, portability, cost and 
availability and several studies have been conducted, mostly using a 
single wearable device (Wang X. et al., 2020). Even in this context, 
inertial sensors represent a large percentage of the research, whereas 
only a minority deployed other solutions (Bourke et  al., 2007). 
Although Shimmer nodes, smartphones and smart watches often 
contain sensors like magnetometers, such elements were not normally 
used to detect falls; indeed, the only sensors embedded in smartphones 
used for this purpose are accelerometers and gyroscopes (Shi et al., 
2016; Islam et al., 2017; Medrano et al., 2017; Chen et al., 2018).

Even combining multiple sensors into a single framework can 
provide valuable data for meaningful and complex predictions, thus 
achieving a more versatile, robust and trustworthy wearable system 
for HAR purposes. Moreover, commercial tools are widely used, such 
as Samsung Galaxy Gear Live (Faye et al., 2017), Microsoft Band 2 
(Garcia-Ceja et  al., 2018) and Intel Basis Peak (Kang and Larkin, 
2017), as well as other alternatives like Empatica E3 (Clapés et al., 
2018), Fitbit (Kang and Larkin, 2017), and Google Glass (Shewell 
et al., 2017; Clapés et al., 2018).

It is worth noticing that most of the time, wearable technology 
alone would be  sufficient to assess activity recognition in indoor 
environments and AAL systems. This is an important advantage, 
combined with their low cost, portability and unobtrusiveness. 
However, a hybrid approach combining wearable and non-wearable 
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sensors often overcomes possible drawbacks due to users not wearing 
the device correctly, thus leading to low quality signals, not being 
comfortable in putting on a wearable that could excessively stand out, 
forgetting to charge it or even to wear it continuously.

2.2. Non-wearable sensors

Non-wearable sensor solutions for HAR encompass devices or 
systems that can detect and analyze human activities without needing 
to be directly attached to the body. These solutions play a crucial role 
in the functionality and effectiveness of AAL systems. Operating in a 
passive manner, these sensors autonomously monitor room occupants 
without the need for manual intervention. This eliminates the need for 
users to carry additional devices during their daily activities.

One example of a non-wearable sensor solution is radio-
frequency-based systems, as demonstrated by (Fan et al., 2020). These 
systems utilize the analysis of radiofrequency (RF) signal reflections 
to monitor various activities performed by individuals. In this study, 
Radio Frequency sensors were embedded directly in the floor to 
capture the everyday activities of residents (Fan et al., 2020). As part 
of radiofrequency-based systems, radar and ultra-broadband 
technologies, as well as automotive-derived solutions, also emerged as 
interesting approaches for human activity recognition (Guendel et al., 
2021; Senigagliesi et al., 2022).

Furthermore, contemporary monitoring and behavior analysis 
tasks can be facilitated by diverse image-based technologies.

Nowadays, low-cost cameras have emerged as viable options for 
monitoring individuals’ daily activities, ensuring their well-being 
(Geman and Costin, 2014; Cebanov et al., 2019; Minh Dang et al., 
2020; Ryselis et al., 2020; Bouchabou et al., 2021; Chen et al., 2021; 
Raeis et al., 2021). These devices enable continuous monitoring of 
individuals without requiring their active involvement. These include 
RGB, Depth, and RGB-D cameras, as well as IR (infrared) array 
sensors, known as thermal cameras.

RGB cameras, being widely available and affordable, provide 
information about the shape, color, and texture of the scene (Zerrouki 
et al., 2018). However, they have some drawbacks such as a limited field 
of view, complex calibration procedures, sensitivity to environmental 
variations (e.g., lighting conditions, type of illumination and cluttered 
background) and privacy concerns. To address this latter issue, depth 
cameras offer distance information from the sensor to elements in the 
scene, capturing detailed spatial information while maintaining 
heightened privacy protection (Jayaraj et al., 2019; Beddiar et al., 2020). 
Depth sensors also exhibit superior resilience to variations in 
illumination, color, and texture compared to RGB devices. However, 
noisy measurements can occasionally affect accurate object or subject 
identification, necessitating data processing and refinement. In recent 
years, low-cost devices integrating RGB and depth sensors, such as 
Kinect and Intel RealSense systems, have been employed as 
environmental sensors in AAL systems. Another alternative, IR array 
cameras, measure thermal energy emitted by the human body or other 
objects (Mashiyama et al., 2015; Spasova et al., 2016; Karayaneva et al., 
2023). These low-resolution IR arrays offer advantages such as privacy 
preservation, low power consumption, insensitivity to ambient lighting 
variations, operation in complete darkness, fast response time, easy 
deployment, and straightforward image processing.

All these devices suffer from subject occlusion, which occurs 
when certain body parts of the subject are hidden or obscured by 
other objects or body parts within the room, leading to incomplete 
or inaccurate tracking of the subject’s movements. To overcome 
the occlusion limitation, a practical solution is to employ a 
multiple camera setup that covers various areas of the room from 
different viewpoints. By using multiple cameras, the chances of 
occlusion can be reduced, as different cameras capture different 
perspectives of the scene. This approach allows for a more 
comprehensive view of the subject’s activities and improves the 
accuracy of tracking. However, it is important to note that using 
multiple cameras increases HAR systems’ costs and requires 
synchronization among them to ensure proper coordination and 
alignment of the captured data. Synchronizing the cameras 
enables the seamless integration of the captured images or depth 
data, allowing for a more complete understanding of the subject’s 
movements and activities.

In the context of monitoring human activities, sensors can 
be also embedded in everyday objects within the environment. 
Contrary to wearable sensors, which directly measure human 
activities, these sensors enable the detection of movements and 
activities through the usage of specific objects, providing valuable 
insights into the daily lives of individuals (Bassoli et al., 2017; 
Rafferty et al., 2017). For instance, sensors can be integrated into 
furniture items such as carpets, beds, fridges, and more, allowing 
for unobtrusive monitoring of daily living activities. Presence 
statistics of users in different spaces can be gathered by monitoring 
the sensors embedded in furniture. Power meters can be employed 
to track appliance usage (Bianchi et al., 2019), such as monitoring 
TV sets, while smart pill box devices assist in checking medication 
intake (Keum et al., 2019). Roland et al. proposed the installation 
of an accelerometer attached to a smart drinking cup to efficiently 
identify the user’s drinking movement (Roland et  al., 2018). 
Bassoli et  al. installed sensors directly on the furniture of the 
subject’s house for HAR. Pressure pads are used to monitor bed or 
chair occupancy, while sensors inside the fridge provide indirect 
information about feeding habits (Marenzi et al., 2012, 2013a,b; 
Bassoli et al., 2017). Chaccour et al. developed a smart carpet with 
piezoresistive pressure sensors to detect falls of the inhabitant 
(Chaccour et al., 2015; Singh et al., 2020).

Everyday object sensors offer a less invasive and privacy-
friendly alternative to cameras, as they are designed to specifically 
recognize human activities related to the intended use of the 
object. By focusing on that, these sensors can provide valuable 
insights and functionality while minimizing potential privacy 
concerns. Everyday object sensors can detect interactions with 
household appliances or devices, such as opening a refrigerator, 
without capturing or storing detailed visual information of 
individuals. Yue et  al. proposed an RF-based system that 
accurately monitors sleep postures overnight in the user’s own 
house. By analyzing RF reflections and distinguishing them from 
other signals, the system can identify different sleeping postures 
such as supine, left side, right side, and prone (Yue et al., 2020). 
This approach can help alleviate privacy concerns while still 
enabling the development of innovative and convenient 
technologies that enhance user experiences in a responsible and 
respectful manner.
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3. HAR processing chain

Irrespective of the specific type of human activity being classified, 
the process of HAR typically adheres to a standard framework 
comprising several distinct phases. These phases are summarized in 
each block of Figure  2 and detailed in the following paragraphs, 
keeping the same names and order as in the Figure 2.

3.1. Data acquisition and pre-processing

Sensors and devices are characterized by outputs that are either 
punctual values (i.e., pixels in an image) or temporal series (i.e., 
position, acceleration). HAR applications could rely on raw data or 
need further pre-processing steps to enhance the signal quality (i.e., 
noise reduction, data normalization, segmentation) and/or to obtain 
derived data. For instance, from data captured by RGB-D cameras it 
is possible to estimate the position over time of specific points on the 
human body, often corresponding to anatomical points of repère or 
joints with respect to a specific coordinate system typically intrinsic to 
the device. This data processing stage is called skeleton tracking. 
Moreover, joint angles can be  obtained starting from body joint 
positions (Jegham et al., 2020). Notably, in the context of AAL, it is 
common practice to store and analyze the skeleton tracking data 
instead of RGB or depth data to prioritize privacy preservation 
(Gasparrini et al., 2014; Tu et al., 2018; Li and Sun, 2021; Srimath et al., 
2021). The pre-processing stage aims at noise reduction, data 
normalization and segmentation.

3.1.1. Noise reduction
Raw, noisy signals adversely affect signal segmentation and 

possible further computing steps (Deep et  al., 2020). Noise can 
be removed in several ways: linear, averaging low-pass and high-pass 
filters (Amin et al., 2016). In some specific situations (e.g., inertial data 
and skeletal data), Kalman filters, moving average or adaptive filters 
are useful to correct distorted signals (Jeong et al., 2017; Beddiar et al., 
2020; Ahad, 2021). The choice of an appropriate filter is critical, since 
it affects the quality of the filtered signals and of the successive steps 
of the processing chain. The Signal-to-Noise Ratio (SNR) is a crucial 
parameter in the identification of the most appropriate filter, together 
with the correlation coefficient (R) between the filtered and the 
reference signals, the cut-off frequency, the waveform delay, the filter 
size and the window length. The choice of the most suitable filter has 
to be a compromise among all these parameters. The components of 
the target signal that fall within the stop band of the filter are lost. At 
the same time filtering a signal introduces a delay (waveform delay), 
i.e., the output signal is shifted in time with respect to the input. This 
factor plays a critical role, especially when the responsiveness of the 

application is mandatory. The filtering of the signal at the same time 
as its acquisition is important in order not to accumulate delay 
between the filtered and raw signal. In other words, if the complete 
processing chain is designed to identify a potentially dangerous 
situation, the time shift should be compatible with this task, to ensure 
a prompt detection. Finally, a filter operates by allowing a specific 
range of frequencies to pass through. For instance, since frequency 
range of human activity is usually about 0–20 Hz (Antonsson and 
Mann, 1985; Grossman et al., 1988), the cut-off frequency is usually 
equal to at least twice such value (Castro et al., 2016; Wang et al., 2017; 
Ma et al., 2018; Minh Dang et al., 2020).

3.1.2. Data normalization
Data normalization is characterized by scaling or transforming 

the acquired data. This step is often necessary in HAR scenarios where 
data originated from different types of sensors and/or from people 
with various anthropometric characteristics. According to the type of 
data (e.g., RGB or depth, temporal or skeleton data) several 
normalization methods can be implemented (Pires et al., 2020; Ahad, 
2021). Common normalization methods are min-max, mean, 
standardization and scaling to unit length. The first method scales the 
data in their maximum and minimum range: the minimum value is 
subtracted from each data point and the result is divided by the data 
range. In the second one the mean of all data samples is subtracted 
from the data vector, and the result is divided by the difference 
between the maximum and minimum samples. In the standardization 
method, the mean value of all data samples is subtracted from the data 
vector, and the result is divided by the standard deviation value. 
Finally, the last normalization technique scales all the data with 
respect to the sum of all elements of the data vector (Patro and Sahu, 
2015; Mistry and Inden, 2018; Narkhede, 2019; Ahad, 2021).

When considering skeletal tracking data instead, there are also 
two other types of normalization methods. The first one is the 
Bounding-box normalization (referring to the border’s coordinates 
that enclose the subject), in which all skeleton 3D joints coordinates 
are normalized using the maximum side-length of the bounding box 
of the skeleton (Cippitelli et al., 2016; Liu et al., 2020). In the second 
method data are normalized by dividing the 3D coordinates of the 
skeleton with respect to the length of a specific body segment (i.e., 
head, neck, torso and so on) or by the subject height. For example 
(Cippitelli et al., 2016), scaled joint position dividing each value by the 
Euclidean distance between the neck and torso joints.

3.1.3. Data segmentation
Data segmentation is strongly related to the type of data. When 

dealing with temporal sequences, it consists of partitioning the data 
into time windows. Otherwise, when RGB or depth images are 
analyzed, the segmentation involves the separation of the selected 

FIGURE 2

Processing chain illustrating the general steps of HAR.

113

https://doi.org/10.3389/fnins.2023.1256682
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Guerra et al. 10.3389/fnins.2023.1256682

Frontiers in Neuroscience 07 frontiersin.org

target subject in the scene from the background. The data subdivision 
in time windows is principally done to overcome the limitations due 
to the difference between the duration of the action and the sampling 
rate imposed by the data acquisition device (Minh Dang et al., 2020; 
Ahad, 2021). The data segmentation can be categorized into Fixed 
size Non-overlapping Sliding Window (FNSW), Fixed-size 
Overlapping Sliding Window (FOSW) or Event-Driven Sliding 
Window (EDSW) (Bulling et al., 2014; Ahad, 2021). In FNSW and 
FOSW segmentations, the number of samples included in each 
window is fixed. The difference is that in FOSW consecutive analysis 
blocks of the time data are overlapped by the designated percentage 
of the time record, while in FNSW there is no overlapping. 
Concerning EDSW, it differs from the others since the number of 
samples included in the time window is not fixed (i.e., it features a 
variable window size) (Devanne et al., 2019). Generally, the window 
size has to always be carefully established to comprehend an adequate 
number of samples, at the same time avoiding prolonged execution 
times. When the HAR process is part of a system aiming at 
monitoring a person in the AAL environment, in which the 
promptness of the recognition is mandatory, smaller window 
segmentation is suitable (Buzzelli et al., 2020). It also reduces the 
complexity and the computational time of the HAR process. The 
overlapping technique can handle the transition between human 
activities more accurately, i.e., the transitions between sitting and 
standing postures, or between walking and running (Torti et al., 2019; 
Buzzelli et al., 2020; Khan and Ghani, 2021; Guerra et al., 2022, 2023). 
In case of RGB image, or depth image, the segmentation process is 
implemented using two different approaches: namely, the background 
subtraction and the foreground extraction. The first one consists in 
the extraction of the body silhouette in an image sequence captured 
from a static camera by comparing each incoming frame with a 
background model. A crucial step of this technique is to obtain a 
stable and accurate background model. The second one is 
recommended when the images are acquired by a moving camera, 
and it consists in the computation of the difference between 
consecutive image frames. The foreground extraction is more 
challenging than the background subtraction because, in addition to 
the motion of the target object, it also needs to consider the motion 
of the camera and the change of background (Ke et al., 2013; Babaee 
et al., 2018; Minh Dang et al., 2020; Mliki et al., 2020).

3.2. Feature extraction and selection

The feature extraction procedure consists in the definition of a set 
of parameters able to discriminate the activities to be classified. Based 
on the given data nature and characteristics, the features can 
be divided into several categories: time-domain, frequency-domain 
and kinematic features (Dhiman and Vishwakarma, 2019; Sousa Lima 
et al., 2019; Ahad, 2020, 2021). The time-domain features are usually 
defined to describe the data amplitude variation and distribution over 
time (for instance mean, variance and kurtosis). On the other hand, 
the frequency-domain features show the distribution of signal energy 
(i.e., Fast Fourier Transform, entropy and power spectral density). 
Kinematic features include all the characteristics of the subject’s 
movements, acceleration and posture (joints positions and angles). 
The kinematic features describe geometric relations between body 
joints (Müller et al., 2005; Guerra et al., 2020).

In the case of images, usually global and local features are 
computed. The first ones describe the image frames as a whole, 
providing different types of information (spatial, temporal, frequency) 
(Ke et al., 2013). Local features extract information around a set of 
interest points or describe a selected image region, through techniques 
like histograms of oriented gradients (Aly and Sayed, 2019).

After feature extraction, the relevant ones are selected to achieve 
dimensionality reduction by finding the smallest subset of features 
which efficiently defines the data for the given problem (Blum and 
Langley, 1997; Chandrashekar and Sahin, 2014; Jindal and Kumar, 
2017; Ayesha et  al., 2020). It can be  accomplished using different 
methods, such as filter, wrapper, embedded, and the more recent 
hybrid approach (Blum and Langley, 1997; Minh Dang et al., 2020; 
Zebari et al., 2020). Filter methods measure the relevance of features 
using statistical standards for evaluating a subset, they process data 
before the classification occurs and are independent from the latter. 
The features are ordered according to the ranking of importance 
(computed with suitable score metrics) and those below a certain 
threshold are removed. Among the different algorithms, the most used 
are: ReliefF, statistical techniques such as Principal Component 
Analysis, Independent Component Analysis, Neighborhood 
Component Analysis and Correlation Based filter (Suto et al., 2016; 
Alzahrani et al., 2019; Siddiqi and Alsirhani, 2022). Wrapper method 
selects the optimal features subset evaluating alternative sets by 
running the classification algorithm on the training data. It employs 
the classifier estimated accuracy as its metric (Bhavan and Aggarwal, 
2018; Zebari et al., 2020). The most used iterative algorithms are the 
Recursive Feature Elimination with Support Vector Machine, the 
Sequential Feature Selection algorithm and the Genetic Algorithm 
(Liu and Shao, 2013; Guerra et  al., 2022). Compared to the filter 
method, the wrapper method achieves better performance and higher 
accuracy, nevertheless it increases computing complexity due to the 
need to recall the learning process for each feature set considered 
(Jindal and Kumar, 2017; Zebari et  al., 2020). In the embedded 
method, as the name suggests, the selection occurs within the learning 
algorithm. The most common are the tree-based algorithms like, for 
example, the Random Forest and the Decision Tree. Embedded 
methods can be  used in multiclass and regression problems and 
compared to a wrapper method, it is computationally more effective 
while retaining similar performance (Negin et al., 2013). Finally, the 
hybrid approach combines filter and wrapper methods to achieve the 
benefits of both. Usually, the filter technique is first applied to reduce 
the search space and then, a wrapper model is used to acquire the best 
subset (Peng et al., 2010).

3.3. Dataset construction

Dataset construction concerns the process that divides the 
acquired data into training, validation and test sets. Generally, a set of 
data is required to train the classification model and a set of validation 
data is used to evaluate the performance of the model during training 
epochs for fine tuning the hyperparameters and to estimate if the 
model does not overfit, i.e., when a statistical model fits exactly against 
its training data at the expenses of its generalization abilities. Finally, 
test data, different from those involved in the training set, are used to 
evaluate the performance of the model (Bouchabou et al., 2021). The 
data contained in the training, validation and test could be described 
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by labels also called classes. As will be stressed in the next Section, this 
operation is of crucial importance for the classification algorithms. In 
HAR tasks, the classes represent the type of activity to be recognized 
(i.e., walking, sitting, lying down, and so on) (Sathya and Abraham, 
2013; Sindhu Meena and Suriya, 2020).

In HAR, three methods have been used to divide the data into 
training, validation and test set. In the first one, called cross-subject, 
the subjects are divided into two groups. The data of the first group are 
used for the training phase, whereas those of the second one are 
involved in the validation and test phase (Khan and Ghani, 2021). The 
cross-subject method aims at guiding the learning process of the AI 
model so that it becomes as robust as possible, in order to adapt it to 
the heterogeneity of the subjects. The second splitting method is 
characterized by randomly dividing the whole dataset based on a 
percentage such as 70-30%, 80-20%, and so on. The larger portion is 
fed for training the model where the other portion is kept for 
validation and test (Ahad, 2021). This is the most used splitting 
criteria in the general problems of classification algorithms and have 
been reported in HAR with success. Alternatively, when data are 
acquired by multiple cameras with different points of view, a cross-
view method can be used. In this case the data coming from one or 
more cameras are used for the training phase and those of the 
remaining ones for the validation and test phase (Wang L. et al., 2020).

3.4. Classification

The most critical step of HAR systems relies on classification 
algorithms. In the literature, two main categories can be identified, 
namely threshold-based and AI methods. Furthermore, AI algorithms 
can be divided into ML and DL techniques. In the following, these 
methods are analyzed, highlighting the main advantages and issues in 
their application for HAR data analysis.

3.4.1. Threshold-based methods
Threshold-based methods are the first introduced in the literature 

and they typically do not need feature extraction and selection. They 
are based on comparing the acquired values with a pre-defined 
threshold (Fetzer et al., 2018). If a signal value exceeds the threshold, 
then the algorithm identifies the targeted situation. More advanced 
threshold-based algorithms adopt adaptive thresholds (Madhu et al., 
2021) or apply it on statistical indicators extracted from the original 
signals (Cola et al., 2017). Moreover, data fusion is employed when 
considering multiple sensors. A particular strategy uses only one of 
them to make a final decision: this is called partial fusion. An example 
is a fall detection system that employs a tri-axial accelerometer and an 
RGB-D camera: only when the measured signal exceeds a threshold, 
the camera is activated to capture the ongoing event (Kwolek and 
Kepski, 2014). One of the most important advantages of threshold-
based algorithms is the low computational complexity. This allows the 
deployment of these algorithms directly on a small computation unit 
which typically also manages the data acquisition and pre-processing. 
Indeed, this solution is widely adopted for wearable devices which do 
not rely on external centralized processing (Jung et al., 2015; Cola 
et al., 2017). Concerning non-wearables, the preferred strategy is to 
send all the acquired data to a central host, which applies the 
threshold-based algorithm (Andò et al., 2016). The major drawback 
of these methods is the threshold selection since it depends on the 

monitored subject. Indeed, inter-subject movements show high 
variability and even the same person can perform a certain movement 
in different ways (intra-subject variability) depending on a multitude 
of factors, such as injuries or illness (Jegham et al., 2020). This affects 
the classification performance.

3.4.2. Machine learning methods
In the last decade, ML methods have been widely explored for 

HAR since they can automatically extract high level features and 
produce more affordable results than threshold-based approaches. 
In particular, the best results have been achieved by Support 
Vector Machines (SVMs), Artificial Neural Networks (ANNs), 
K-Nearest-Neighbours (KNN) and Complex Trees (Oniga and 
Suto, 2014; Hemmatpour et al., 2017; Su et al., 2017). SVMs and 
KNN rely on the concept of instances. First, they create sets of 
example data, in which each set is related to a specific class. Then 
the distances between the new data and the example data sets are 
computed. The aim is to find the example set with the minimum 
distance from the new data. Finally, the class of the minimum 
distance set is given to the new data. ANNs are based on the 
structure of biological neural networks. They are composed of 
elementary computational units, which perform a weighted sum 
of the inputs and apply a nonlinear function. These are organized 
into layers as Multi-Layer Perceptrons (MLP) and are used to map 
input data into output classes. Finally, Complex Trees build a 
decision-making diagram with a tree structure. The tree structure 
is based on the attribute values of the input data. The classification 
is obtained following the tree structure until a leaf is reached. 
Later, single algorithms have been combined in the so-called 
ensemble learning with different strategies such as boosting, 
stacking, bagging and majority voting to enhance the classification 
quality (Hasan et al., 2022).

These algorithms have been used both for data acquired by 
wearable and non-wearables devices. In both cases, the data are 
acquired and sent to a central unit for the classification step (Sheikh 
and Jilani, 2023). Therefore, the main drawback is related to data 
transmission since the communication rate should be high enough to 
guarantee continuous monitoring. Moreover, this represents a critical 
issue for wearable devices since wireless communication is the main 
power consuming process.

Concerning classification performance, it is affected by the quality 
of the dataset. AI methods need to be trained on significant examples, 
which should be balanced among the different classes conceived in the 
target application. It is worth noticing that an unbalanced training set 
negatively affects the model performance. A recent trend is to exploit 
data augmentation strategies to create synthetic data both to increase 
the training set size and to balance it (Um et al., 2017; Mathur et al., 
2018; Steven Eyobu and Han, 2018). The main drawback is related to 
the choice of the augmentation techniques, since synthetic data can 
differ too much from the real ones.

3.4.3. Deep learning methods
DL emerged in recent years as the most powerful AI tool to 

automatically extract high level features and perform affordable 
classifications. The development of DL models has been enabled by 
the computing power offered by the technological evolution of 
devices such as multi-core processors and graphic processing units. 
Among the different DL methods used in HAR Convolutional 
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Neural Networks (CNNs), Long Short-Term Memory (LSTM) cells 
and Gated Recurrent Units (GRUs) (Torti et al., 2019; Ronald et al., 
2021; Poulose et al., 2022; Guerra et al., 2023; Sonawani and Patil, 
2023) emerged as suitable solutions. CNNs are mostly used to deal 
with visual data, since they roughly imitate human vision. The data 
is processed as a grid-like topology through the convolutional 
operator. They can be used both for images and for time series. On 
the other hand, LSTM and GRUs are mainly used for time series 
analysis. In fact, their main feature is to learn time dependencies.

These methods have been initially used for data coming from 
non-wearable devices, especially when vision-based sensors were 
employed. However, they are gaining popularity also for wearable 
devices (Torti et al., 2019; Goh et al., 2021; Luwe et al., 2022).

3.5. Computing power constraints

An important aspect related to HAR for frail people is the time 
needed by the AAL system to detect possible dangerous situations. 
This time is strictly related to the computational complexity of the 
adopted algorithms and to the computing power of the devices which 
perform the processing chain.

Threshold-based methods are the lowest computing power 
demanding techniques, since they are based on simple comparisons 
with a fixed value. Even in the case of threshold computed at runtime 
and/or applied to statistical indicators, the computational complexity 
can be easily managed by standard microcontrollers and does not have 
a critical impact on processing times.

AI methods are characterized by a higher computational 
complexity than threshold-based techniques. In particular, DL 
methods feature the highest computational complexity, not only for 
their training, which is run off-line and may require multiple CPU 
and/or GPU, but also for their implementation as a classifier once all 
the weights are determined. Therefore, their processing is typically 
performed by a centralized unit for both wearable and non-wearable 
devices. However, recently some researchers have designed DL 
algorithms on low power devices suitable for wearable applications.

Recent and very complex solutions exploited ensemble learning 
also with DL algorithms (Kumar and Suresh, 2023) enhancing the 
classification performance of single techniques.

The increasing popularity of AI solutions has led to the 
development of various software tools, libraries, and frameworks that 
facilitate the implementation of these algorithms on devices with 
limited resources. An example of such a tool is TensorFlow Lite for 
microcontroller3 (TFLM), an open-source library designed to enable 
the implementation of AI methods (i.e., ANNs, LSTM, CNN and so 
on) on a wide variety of MCUs and Digital Signal Processors (DSPs). 
TFLM allows the execution of pre-trained algorithms developed using 
TensorFlow for on-device inference. Another prominent solution is 
X-Cube-AI, a software tool developed by STMicroelectronics.4 It 
offers a comprehensive environment for generating and optimizing AI 
algorithms developed using popular ML and AI frameworks such as 

3 https://www.tensorflow.org/lite/microcontrollers

4 https://www.st.com/content/st_com/en.html

TensorFlow,5 Keras,6 or PyTorch.7 X-Cube-AI is tailored for 
deployment on the STM32 family of MCUs, empowering developers 
to leverage familiar frameworks and simplify the integration of AI 
capabilities into their applications. In addition to these tools, there are 
cloud-based platforms like Edge Impulse, which provides a flexible 
environment for the development of AI models. Edge Impulse8 
supports various embedded platforms, including MCUs and 
smartphones, enabling developers to create AI models that cater to 
diverse hardware constraints. NanoEdge AI Studio9 is another valuable 
tool that supports both learning and inference directly inside the 
MCUs. Notably, it offers the advantage of automatically selecting the 
most suitable machine learning libraries based on the provided data 
(Shumba et al., 2022).

Inference needs to be  performed under real-time constraint, 
especially when a potentially dangerous condition needs to 
be  identified. This means that the classification should be  strictly 
performed prior to a fixed temporal deadline, which is defined by the 
acquisition time window. In other words, the system acquires a 
window of data and its pre-processing and classification should 
be  performed before the end of acquisition of the following time 
window. The computational complexity of the algorithms and the 
computing units included in the system play a critical role in the real-
time compliance (Avram and Pop, 2023; de la Cal et  al., 2023; 
Gonçalves et al., 2023; Saliba et al., 2023; Zeng et al., 2023). Delayed 
or sluggish processing can hinder the effectiveness of AAL systems in 
providing timely assistance, which is crucial for ensuring the safety 
and well-being of individuals. Efficient algorithms and optimized 
implementations are necessary to overcome these constraints and 
enable real-time processing on resource-limited platforms. The 
computational unit controls the sampling and acquisition of data: 
usually this is performed by Commercial-Off-The-Shelf (COTS) low 
power and low cost microcontrollers, supporting interfaces and data 
transfer protocols (SPI, I2C…). When high speed, flexibility and 
control over the elements of the architecture are required, Field 
Programmable Gate Arrays (FPGAs) and Application-Specific 
Integrated Circuits (ASICs) can be used, with increased costs and 
higher time for development and/or production. The computational 
unit is equipped with initial signal conditioning and processing 
algorithms together with specific classification methods that perform 
data analysis for local decision making, real-time response and 
forwarding processed data to successive layers. Characteristics that 
can influence all these choices include power consumption, 
computational and storage capacity, complexity and results accuracy 
of the algorithms, privacy concerns and latency requirements. 
Pre-trained models using computationally efficient algorithms may 
be used for anomaly detection and the results can produce warnings 
or propose a course of action. Alternatively, a fraction of an ANN can 
perform partial on-device data processing, to forward only 
intermediate data, thus ensuring also the privacy of the user (Zhang 
et al., 2023). Lastly, after the elaboration and analysis of data, results, 

5 https://www.tensorflow.org

6 https://keras.io

7 https://pytorch.org

8 https://www.edgeimpulse.com

9 https://www.st.com/en/development-tools/nanoedgeaistudio.html
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inferences, or alarms are packaged and forwarded to the upper layers 
for further processing or management (Shumba et al., 2022).

4. Discussion

This review aims at providing an overview on the application of 
HAR process in the context of AAL systems, underlining their 
potential to support independent living for frail individuals.

Recent advances in AAL technologies and the reduced cost of 
sensors have encouraged the development of technological 
environments to enable frail people to live healthier and more 
independent lives and to support caregivers, medical personnel, 
thus limiting hospitalization, promoting personalized therapy and 
enhancing wellbeing. To provide such services, an AAL system has 
to be  able to understand the daily activities of its residents. In 
general, the choice of technologies used for HAR purposes can 
include wearable sensors (IMUs, smartwatches, smartphones…), 
non-wearable sensors (environmental devices, objects, and 
cameras), or a combination of the two (hybrid approach). The 
sensor selection can be  made especially depending on the 
individual’s needs. Wearable sensors have numerous advantages, 
including their small size, low power consumption, direct 
acquisition of information on the subject’s activity and full respect 
of the subject’s privacy. At the same time, they also have some 
drawbacks. For example, they need to be worn by the subjects and 
to operate for long time periods. The latter could represent a 
significant problem for the monitored subject and for the battery 
life of the devices. Also, to fully capture the 3D motion associated 
with a human action, a single sensor may not be adequate. It may 
be necessary to utilize multiple configurations, thus increasing the 
intrusiveness of the devices worn by the subject (Wang Y. et al., 
2019; Beddiar et al., 2020; Qiu et al., 2022). On the other hand, 
environmental and camera sensors offer the key advantage of being 
unobtrusive, as they do not require the individual to wear them. 
However, they also face certain challenges. One major issue is their 
reliance on infrastructure, which can limit their effectiveness in 
identifying specific movements or activities. Additionally, the 
utilization of environmental sensors is less frequent compared to 
wearable sensors due to higher costs and setup difficulties. 
Furthermore, similar to the wearable approach, this solution may 
not always be feasible as it requires users to interact with tagged 
objects or to remain within the environment where the sensors are 
installed. In particular, cameras suffer from drawbacks like 
occlusion, multiple-view variations and privacy issues (Minh Dang 
et al., 2020). A possible solution to handle occlusion relies on a 
multiple camera setup, even though these devices need to 
be synchronized among each other. Cameras are often perceived as 
the most intrusive technologies in terms of the privacy of the 
monitored individuals. The solution to this drawback may 
be  RGB-D cameras, like the Kinect V2, which, through a data 
elaboration, are able to extract the “skeleton” of the subject from the 
depth image, i.e., the subject is represented as a set of body segments 
and joints, bypassing the need for using the RGB image for HAR 
purposes. These tools increase the person’s acceptance towards the 
assistive technology, since they ensure privacy preservation 
(Gasparrini et  al., 2014). Among non-wearable devices, object 
sensors are the least invasive and the most respectful of users’ 

privacy, as they focus on recognizing human activities related only 
to the intended use of the object. For example, a smart cup 
recognizes drinking actions, and sensors embedded in cushions or 
beds identify specific sleeping postures.

To overcome the wearable and non-wearable limits a possible 
solution could be represented by a hybrid approach. Sensor fusion 
provides a more robust approach since multiple sensors may 
complement each other with their specific signals, producing a 
reliable system (Wang X. et al., 2020). Moreover, the likelihood of 
having missing data is progressively balanced out by increasing the 
number of sensors in the system. However, critical issues in AAL 
services stem from the integration of multiple technological types, 
mainly environmental and wearable sensors (Calvaresi et al., 2017). 
For instance, hybrid systems are characterized by sensors with 
different sampling frequencies. Thus, synchronization and 
interpolation of acquired data is mandatory for better correlation 
of output devices. Furthermore, some challenges can still be present; 
for example, security and privacy requirements need to be taken 
into consideration.

Independently from the adopted monitored system, HAR 
requires affordable processing chains to classify the target human 
activities. Typically, HAR should be performed meeting the real-
time constraint, especially when frail people are monitored. While 
threshold algorithms are efficient for real-time processing, they may 
struggle with handling complex activities or adapting to dynamic 
contexts. These limits are overcome by AI methods, at the price of 
an increased computational complexity, which negatively impacts 
on classification time. For this reason, the optimal solution requires 
a suitable trade-off between classification quality and processing 
time to ensure real-time compliance. Common factors that 
determine real-time compliancy of a method are the computational 
complexity and the processing power of the system. It must 
be stressed that the computational complexity alone is not sufficient 
to determine if a method is real-time compliant. Indeed, the 
response time strictly depends on the processing power of the 
device. It is not trivial that very different processing units perform 
the same computation with significantly different times. Therefore, 
the choice of a suitable processing element covers a critical role in 
the real-time compliancy of a system. Moreover, datasets derived 
from real situations are not always available or sufficiently precise; 
in some cases, only simulated conditions are present, but this 
greatly compromises the results (Casilari and Silva, 2022). At the 
same time, prompt detection of dangerous conditions cannot 
be provided in some contexts.

Table 1 summarizes the type of activity, sensors, input data, 
datasets, main approaches and potential applicability in a real-life 
scenario, considered in the most relevant works in the field of 
Human Activity Recognition, already cited in the previous sections. 
It categorizes the papers into three main classes on the basis of their 
adopted technologies: wearable, hybrid and non-wearable solutions. 
In each row, among the labelled information previously reported, 
the type of activity is related to the target application of each 
proposed HAR system. Indeed, most of the works aim at recognizing 
falls and/or Activities of Daily Living (ADL), i.e., lying down, 
walking, sitting and so on. The input data type is labelled “Dynamic” 
in case of time series or “Static” otherwise. Concerning the datasets, 
publicly available ones present the corresponding reference paper, 
whereas custom Datasets report the number of involved subjects 
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TABLE 1 Summary of the analyzed literature.

Authors and 
year

Activity Type of sensor Input 
data type

Dataset Approach Real life 
scenario

Wearable solutions

Andò et al. (2016) ADL and Fall 

Detection

Tri-axial nano-

accelerometer and 

gyroscope embedded in a 

smartphone

Static Custom (10 healthy subjects; 6 

activities)

Threshold-based 

Data Fusion

NO

Xie et al. (2020) ADL and Fall 

Detection

Smart watch Static Custom (5 subjects; 9 activities) Threshold-based 

SVM

NO

Badgujar and Pillai 

(2020)

Fall Detection Tri-axial accelerometer Static SisFall (Sucerquia et al., 2017) SVM and Decision 

Tree

NO

Nouredanesh et al. 

(2020)

Compensatory 

Balance Reactions 

(CBRs) for Fall 

Detection

IMU Static IMUFD (Aziz et al., 2017) and 

Custom (9 healthy subjects; 9 

activities)

Random Forest NO

Pierleoni et al. 

(2019)

Postural stability IMU: tri-axial 

accelerometer, tri-axial 

gyroscope and tri-axial 

magnetometer

Static Custom (6 healthy subjects; 3 

activities)

Filter-based Data 

Fusion

NO

Sarabia-Jácome 

et al. (2020)

Fall Detection Tri-axial accelerometer Dynamic SisFall (Sucerquia et al., 2017) LSTM and GRU NO

Bourke et al. (2007) ADL and Fall 

Detection

Tri-axial accelerometer Dynamic Custom

(a.10 healthy subjects; 8 activities

b.10 elderly subjects; 8 activities)

Threshold YES

Chen et al. (2018) Fall Detection Tri-axial accelerometer 

embedded in a 

smartphone

Static Custom (10 healthy subjects; 13 

activities)

SVM NO

Islam et al. (2017) Fall Detection Tri-axial accelerometer 

embedded in a 

smartphone

Dynamic Custom (7 healthy subjects; 4 

activities)

Threshold NO

Medrano et al. 

(2017)

ADL and Fall 

Detection

Tri-axial accelerometer 

embedded in a 

smartphone

Static tFall (Medrano et al., 2014) Threshold NO

Garcia-Ceja et al. 

(2018)

ADL and Fall 

Detection

Sound and accelerometer 

data embedded in a 

smartphone and a wrist-

band

Static Custom (3 healthy subjects; 7 

activities)

Berkeley MHAD (Ofli et al., 2013), 

UTD-MHAD (Chen et al., 2015) and 

Opportunity (Roggen et al., 2010)

Random Forest YES

Torti et al. (2019) Fall Detection Tri-axial accelerometer Dynamic SisFall (Sucerquia et al., 2017) LSTM NO

Cola et al. (2017) Fall Detection Barometer Dynamic Custom (6 subjects; 9 activities) Threshold NO

Jung et al. (2015) ADL and Fall 

Detection

Tri-axial accelerometer Dynamic Custom (N. A. subjects; 5 activities) Threshold NO

Hemmatpour et al. 

(2017)

ADL Tri-axial accelerometer 

embedded in a smart-

watch

Static Custom (22 subjects; 2 activities) Multilayer 

Perceptron

NO

Sheikh and Jilani 

(2023)

Fall Detection Tri-axial accelerometer 

and gyroscope

Static SisFall (Sucerquia et al., 2017) SVM NO

Goh et al. (2021) ADL Tri-axial accelerometer 

and gyroscope

Dynamic MotionSense (Malekzadeh et al., 

2018), UCI-HAR (Garcia-Gonzalez 

et al., 2020) and USC-HAD (Zhang 

and Sawchuk, 2012)

1D-CNN and LSTM YES

(Continued)
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TABLE 1 (Continued)

Authors and 
year

Activity Type of sensor Input 
data type

Dataset Approach Real life 
scenario

Luwe et al. (2022) ADL Tri-axial accelerometer 

and gyroscope

Dynamic MotionSense (Malekzadeh et al., 

2018), UCI-HAR (Garcia-Gonzalez 

et al., 2020) and custom

1D-CNN and LSTM YES

Kumar and Suresh 

(2023)

ADL IMU: tri-axial 

accelerometer, tri-axial 

gyroscope and tri-axial 

magnetometer

Dynamic WISDM (Kwapisz et al., 2011), 

PAMAP2 (Reiss and Stricker, 2012) 

and KU-HAR (Sikder and Nahid, 

2021)

CNN and RNN YES

de la Cal et al. 

(2023)

ADL and Fall 

Detection

Tri-axial accelerometer 

embedded in a wrist-band

Static UMAFall (Casilari et al., 2017), 

UCIFall (Özdemir and Barshan, 

2014) and FallAllD (Saleh et al., 

2021)

KNN and K-Means NO

Warunsin and 

Phairoh (2022)

ADL and Fall 

Detection

Tri-axial accelerometer Static MobiAct (Vavoulas et al., 2016) Multilayer 

Perceptron

NO

Hybrid solutions

Clapés et al. (2018) ADL Two RGB-depth cameras, 

accelerometer, gyroscope, 

and magnetometer

Static Custom (14 elderly subjects; 6 

activities)

SVM YES

Geman and Costin 

(2014)

ADL RGB-depth camera and 

tri-axial accelerometer

Static Custom (88 subjects; 3 activities) Multilayer 

Perceptron

YES

Kwolek and Kepski 

(2014)

Fall Detection RGB-depth camera and 

tri-axial accelerometer

Dynamic URFD (Kwolek and Kepski, 2014) Threshold YES

Non-wearable Solutions

Fan et al. (2020) ADL Radio-frequency sensors 

embedded in the floor 

and RGB camera

Dynamic Custom (N. A. subjects; 157 

activities)

Attention- based 

LSTM

YES

Chen et al. (2021) ADL WiFi sensor network Dynamic Custom (1 subject; 7 activities) SVM and GRU YES

Zerrouki et al. 

(2018)

ADL RGB cameras Dynamic URFD (Kwolek and Kepski, 2014) 

and UMAFall (Casilari et al., 2017)

AdaBoost YES

Karayaneva et al. 

(2023)

ADL Low-resolution infrared 

camera

Static and 

Dynamic

Custom (6 subjects; 15 activities) SVM, random forest, 

k-NN, logistic 

regression, and 

convolutional LSTM

YES

Mashiyama et al. 

(2015)

ADL and Fall 

Detection

Low resolution infrared 

array sensor

Static Custom (N. A. subjects; 5 activities) Threshold-based 

SVM

NO

Spasova et al. 

(2016)

Fall Detection Low resolution infrared 

array sensor

Static Custom (5 subjects; 2 activities) SVM NO

Roland et al. (2018) Drinking Tri-axial accelerometer 

embedded in a cup

Static Custom (N. A. subjects; 1 activities) Multilayer 

Perceptron

YES

Chaccour et al. 

(2015)

ADL and Fall 

Detection

Piezoresistive pressure 

sensors

Static Custom (3 subjects; 6 activities) Threshold NO

Yue et al. (2020) Sleeping postures FMCW radio equipped 

with an antenna array

Static Custom (26 subjects; 4 activities) Multilayer 

Perceptron

YES

Li and Sun (2021) ADL RGB-depth cameras Dynamic Florence3D-Action (Seidenari et al., 

2013), Toyota Smarthome (Das et al., 

2019) and NTU RGB + D (Shahroudy 

et al., 2016)

CNN YES

Srimath et al. 

(2021)

ADL RGB-depth cameras Dynamic UTD-MHAD (Chen et al., 2015), 

KTH (Schuldt et al., 2004) and UCF-

Sports (Rodriguez et al., 2008)

1D-CNN YES

(Continued)
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and the amount of performed activities (if one or more parameters 
are not available, the acronym N.A. is indicated). The “Real life 
scenario” column is related to the system applicability outside the 
laboratory setting. It is labelled with “YES,” in case of data 
acquisitions performed in an environment which considered not 
only ideal conditions (i.e., the subject is always directly in front of 
the camera or the falls are simulated only by young people).

5. Conclusion

In conclusion, it is significant to look toward the future of AAL 
systems, giving importance to HAR indoors and outdoors. The 
outdoor environment offers numerous activities that can contribute 
to preventing functional decline in frail individuals. However, 
monitoring outdoor activities presents different challenges, as 
non-wearable sensors may not be  suitable and safety risks are 
increased. Therefore, wearables become crucial in this context. While 
user acceptance can sometimes be a challenging requirement to meet, 
the ease of use and unobtrusiveness of wearables greatly overcome 
this drawback. Wearable sensors enable continuous monitoring of 
indoor and outdoor activities, allowing for a more comprehensive 
assessment of an individual’s daily life. By incorporating wearable 

technology into AAL systems, it becomes possible to gather valuable 
data and insights to support preventive measures and promote 
healthy lifestyles among frail individuals.

As research and technological advancements continue, it is 
important to explore and optimize the use of wearable sensors in AAL 
systems, considering the specific constraints and requirements posed 
by outdoor monitoring. Future research trends in wearables design 
could be an enhanced miniaturization of the sensors used nowadays 
leading to better unobtrusiveness and the possibility of integrating 
these sensors inside even smaller devices or directly into clothes. An 
example is the fast development of Micro Electro-Mechanical Systems 
(MEMS) which enabled the optimization of several sensors-based 
applications. Moreover, power efficiency will represent a crucial issue, 
since it impacts both on communication and battery life. 
Improvements on battery technology should also be coupled with 
energy harvesting methods to partially recharge the device. On the 
other hand, the technological evolution of processors and 
microcontrollers could enable the adoption of state of the art 
classification methods, overcoming the actual limitations on the 
models size related to the available amount of memory and of 
computational power. Finally, communication technologies such as 6G 
could represent the ideal technology to transmit data between 
acquisition points and data collection centers. By doing so, the 

TABLE 1 (Continued)

Authors and 
year

Activity Type of sensor Input 
data type

Dataset Approach Real life 
scenario

Tu et al. (2018) ADL RGB-depth cameras Dynamic SmartHome (Liu et al., 2017) and 

NTU RGB + D (Shahroudy et al., 

2016)

3D-CNN YES

Ma et al. (2018) Hand gestures RGB-depth camera Dynamic Custom (14 subjects; 28 activities) LSTM YES

Cippitelli et al. 

(2016)

ADL RGB-depth camera Static KARD (Gaglio et al., 2015), CAD-60 

(Sung et al., 2012), UTKinect (Xia 

et al., 2012), Florence3D-Action 

(Seidenari et al., 2013) and MSR 

Action3D (Li et al., 2010)

SVM YES

Liu et al. (2020) Hand gestures RGB-depth camera Static Custom (30 subjects; 15 activities) 

and MSRA hand gesture (Sun et al., 

2015)

3D-CNN YES

Devanne et al. 

(2019)

ADL RGB-depth camera Dynamic Watch-n-Patch (Wu et al., 2015) LSTM YES

Guerra et al. (2023) ADL RGB-depth camera Dynamic Custom (12 subjects; 4 activities) GRU YES

Guerra et al. (2022) ADL RGB-depth camera Dynamic Custom (12 subjects; 5 activities) LSTM YES

Guerra et al. (2020) ADL RGB-depth camera Static Custom (12 subjects; 3 activities) Multilayer 

Perceptron

YES

Madhu et al. (2021) ADL RGB-depth camera Static MSR Action3D (Li et al., 2010) Threshold-based 

SVM

YES

Su et al. (2017) ADL RGB-depth camera Static MSR Action3D (Li et al., 2010) SVM YES

Gonçalves et al. 

(2023)

ADL RGB-depth camera Static Custom (15 subjects; 3 activities) CNN NO

Siriwardhana et al. 

(2019)

ADL RGB-depth camera Dynamic Custom (17 subjects; 24 activities) CNN-LSTM YES

Poulose et al. 

(2022)

ADL RGB camera Static Custom (10 subjects; 9 activities) CNN NO
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effectiveness of these systems can be  enhanced in supporting 
independent living, improving safety, and preventing functional 
decline in the target population.
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