Microcephaly is a sign, not a diagnosis. Its incidence varies widely due to the differences in the definition and the population being studied. It is strongly related to neurodevelopmental disorders. Differences in definitions and measurement techniques between fetuses and newborns pose a great challenge for the diagnosis and prognostication of fetal microcephaly. A false positive diagnosis can result (in countries where it is legal) in erroneous termination of pregnancy, where a false negative diagnosis might lead to the birth of a microcephalic newborn. Microcephaly in growth restricted fetuses deserves special attention and separate evaluation as it is an important prognostic factor, and not necessarily part of the general growth retardation. Several genetic syndromes incorporating microcephaly and intrauterine growth retardation (IUGR) are discussed. Deceleration of the head circumference (HC) growth rate even when the HC is still within normal limits might be the only clue for developing microcephaly and should be considered during fetal head growth follow up. Combining additional parameters such as a positive family history, associated anomalies, and new measurement parameters can improve prediction in about 50% of cases, and thus should be part of the prenatal workup. Advances in imaging modalities and in prenatal genetic investigation along with the emergence of new growth charts can also improve diagnostic accuracy. In this article, we review the different definitions and etiologies of fetal microcephaly, discuss difficulties in diagnosis, investigate the reasons for the low yield of prenatal diagnosis, and provide improvement suggestions. Finally, we suggest an updated algorithm that will aid in the diagnosis and management of fetal microcephaly.
Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Frontiers in Neuroscience
Advances in Adult Neurogenesis, Volume II