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Population movements are necessary to survive the individuals in many cases

and depend on available resources, good habitat, global warming, climate

change, supporting the environment, and many other issues. This study

explores the spatiotemporal e�ect on the dynamics of the reaction-di�usion

model for two interacting populations in a heterogeneous habitat. Both species

are assumed to compete for di�erent fundamental resources, and the di�usion

strategies of both organisms follow the resource-based di�usion toward a

positive distribution function for a large variety of growth functions. Depending

on the values of spatially distributed interspecific competition coe�cients, the

study is conducted for two cases: weak competition and strong competition,

which do not perform earlier in the existing literature. The stability of global

attractors is studied for di�erent conditions of resource function and carrying

capacity. We investigated that in the case of weak competition, coexistence

is attainable, while strong competition leads to competitive exclusion. This is

an emphasis on how resource-based di�usion in the niche impacts selection.

When natural resources are in sharing, either competition or predator-prey

interaction leads to competitive exclusion or coexistence of competing

species. However, we concentrate on the situation in which the ideal free pair

is achieved without imposing any other additional conditions on the model’s

parameters. The e�ectiveness of the model is accomplished by numerical

computation for both one and two space dimension cases, which is very

important for biological consideration.

KEYWORDS

dispersal dynamics, competition, spatial functions, directed distribution,

global stability

1. Introduction

The life history of most organisms depends on their dispersal strategy and resource

distribution, which is the most important and obvious feature of ecology. Most of

the time, their ecological impact and progression remain inadequately understood.

The question that attracts most researchers is how individual organisms choose their
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habitat in the ecological niche. At this point, reaction-diffusion

models can be used for interacting biological species in an

isolated confined habitat that is highly adapted for capturing

species’ bio-geographic properties. Numerous new theoretical

research in the field of mathematical ecology have been

conducted on the reaction-diffusion problem (refer to, e.g.,

[1–6] and references therein) that suggest in many cases the

uniform and non-uniform ideal free distribution. The key

idea of ideal free distribution is that the individual has an

extensive understanding of the environment. They can freely

diffuse where they evaluate them-self in order to optimize

their fitness, without any cost. The concept of ideal free

distribution was laid out in Cantrell et al. [5], which signifies any

movement from this dispersed system will diminish the fitness

of the moving organism. Spatially heterogeneous, but temporary

constant ideal free distribution is estimated as the solution of

the model. In this context, for model dispersal, there were

various promising approaches (refer to, e.g., [4–6]) that provide

the ideal free distribution as the equilibrium solution of the

dynamical model.

However, the most crucial problem in heterogeneous

environments is that the strategy of diffusion, which is adopted

from any physical system, presumes enormous migration of

organisms to the areas of poor available resources [3, 7]. The

migration transport is considered proportional to the gradient

of population density itself. In this situation, species can be

preordained to extinction. As in classical diffusion, species

are uniformly distributed over the space with the increase

of the diffusion coefficient. However, ideal free distribution

corresponds to the equal distribution of available resources

at each spatial location. Classical diffusion cannot correspond

to the ideal free dispersal in a spatially non-homogeneous

environment. As a remedy to this, in our study, we have

considered an alternative take out type of diffusion strategy,

named resource-based diffusion [8, 9] along with a positive

and smooth distribution function, which is individual for each

population. In this migration pattern, the diffusive transport

is considered proportional to the gradient of population

density per unit resource instead of the carrying capacity

studied in Braverman and Braverman [4] and Korobenko and

Braverman [10].

The evolutionary advantage of various diffusion tactics

on the outcome of competition coefficients on the model

parameters was studied in Kamrujjaman [11]. The major

outcome of this study was that the mutual coexistence of species

and destruction of one by others, as well as considering the

case for which both species are managed confirms the ideal

free pair. The case of weak competition for two competing

species was studied in Kamrujjaman [12] where the diffusion

strategy of two competing species is considered different, the

first species following the resource-base diffusion, whereas

others disperse randomly. The study concluded that the

resource-based diffusion strategy has an evolutionary advantage

compared to regular diffusion. Also, it was found that when two

strategies, adopted by the competing species, were combined,

both species were able to coexist and an ideal free pair

was attained.

Moreover, competition between organisms is usually

depicted by the predator-prey and Lotka system. The Lotka-

Volterra system with random diffusion has been discussed

in the literature [7, 13, 14] throughout the last two decades.

Partial resource sharing described by a Lotka system with

competition parameters between zero and one was studied

in Braverman and Kamrujjaman [15]. They investigated

how the diffusion coefficients, as well as the competition

coefficients, can affect whether a possible interaction is a

coexistence or competitive exclusion. Furthermore, two species

striving for the same resource are unable to coexist. Spatial

heterogeneity, which is defined by the environment’s resource

capacity, intrinsic growth rate, inter-specific competition

coefficient, and spatially distributed diffusion strategies, can alter

the scenario.

Inspired by the overhead discussion, in this study, we have

studied a two species compete model, where the main aim

behind it is based on different imposed diffusion strategies

and the tensity of competition coefficient on their growth

function. We will study the existence of global stability both

for competitive exclusion and coexistence of the model, without

imposing additional conditions on the model parameter in

which ideal free pair exists in competition.

2. Mathematical model

Let us now define the well known growth functions that we

want to define in our generalized reaction-diffusion system:

Gilpin-Ayala growth [16] : F(x, u,K(x)) = r(x)

(

1−

(

u(t, x)

K(x)

)θ
)

,

0 < θ ≤ 1; (2.1)

For θ = 1, the logistic growth is a particular case;

Gompertz growth [17] : F(x, u,K(x)) = r(x) ln

(

K(x)

u(t, x)

)

; (2.2)

Food-limited growth [18] : F(x, u,K(x)) = r(x)
1− u(t, x)/K(x)

1+ βu(t, x)/K(x)
,

β > 0. (2.3)

In this study, we contemplate a couple of species competition

models in mathematical ecology. Both species compete for the

same basic resources at time t and location x, and early define the

notation,3 = �× (0,∞) and ∂3 = ∂�× (0,∞). Both species

are competing for the available natural resources in an isolated

domain � and their diffusion strategies are similar according

to two spatially distribution functions. This corresponds to the
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following non-linear system of equations with zero Neumann

boundary conditions:































ut = d11
(

u(t, x)
M(x)

)

+ r1(x)u(t, x)f (x, u, v,M,N,K), in3,

vt = d21
(

v(t, x)
N(x)

)

+ r2(x)v(t, x)f (x, v, u,N,M,K), in3,

∇(u/M) · n = ∇(v/N) · n = 0, on ∂3,

u(0, x) = u0(x), v(0, x) = v0(x), in�.

(2.4)

For spatially distributed positive functions M(x), N(x), and

K(x), we assume that M(x) < K(x) and N(x) < K(x) for

any x in a non-empty open domain. However, K(x) is the

ultimate population density which is well known as the natural

carrying capacity. The habitat � is defined as a bounded region

in R
n, where n = 1, 2, or 3 with ∂� ∈ C2+β , β > 0.

The population densities of the two competing species are

represented, respectively by the functions u(t, x) and v(t, x),

where their migration rates are d1 > 0 and d2 > 0, respectively.

The intrinsic growth rate of species is represented by the

function ri(x), (i = 1, 2), and it is bounded. We suppose that all

functions belong to the class of C1+β (�), β > 0 for any x ∈ �.

As well as, throughout this study, we will assume thatM(x) and

N(x) satisfy

• distribution functions M(x) > 0 and N(x) > 0 are

non-constant and Hölder continuous in�.

In the case of logistic growth, the system (2.4) can be presented

in the following pattern























































ut = d11
(

u(t, x)
M(x)

)

+ r1(x)u(t, x)

(1−
u(t, x)+ µ(x)v(t, x)

K(x)
), in3,

vt = d21
(

v(t, x)
N(x)

)

+ r2(x)v(t, x)

(1− ν(x)u(t, x)+ v(t, x)
K(x)

), in3,

∇(u/M) · n = ∇(v/N) · n = 0, on ∂3,

u(0, x) = u0(x), v(0, x) = v0(x), in�.

(2.5)

where

µ(x) =
K(x)−M(x)

N(x)
, ν(x) =

K(x)− N(x)

M(x)
. (2.6)

In the past periods, most of the study of the competition model

has been accomplished by considering constant competition

coefficients [12, 15, 19] which belong to either 0 and 1 or greater

than 1. In our study, we have designed our model by considering

non-constant space dependent competition coefficient µ(x)

and ν(x), which makes this study extremely novel and to

the best of the authors’ knowledge, until now no literature is

available considering this type of space dependent competition

coefficients. However, considering resource-based diffusion as

a strategy for both competing species for generalized growth

function is not investigated earlier in the literature.

Let us consider the growth functions as, g1(x, u, v) =

r1uf (x, u, v,M,N,K) and g2(x, u, v) = r2vf (x, v, u,N,M,K). We

next list the following assumptions on g1 and g2 which will be

used throughout the article:

h1 g = (g1, g2) is quasimonotone nonincreasing in l1 × l2;

h2 gi(·, u, v) is Hölder continuous in� and fi(x, ·, ·) ∈ C2(l1×l2),

i = 1, 2;

h3 f (x, u, v,M,N,K) = F(x, u + K−M
N v,K), and

f (x, v, u,N,M,K) = F(x, v+ K−N
M u,K);

h4 f (x,M,N,M,N,K) = f (x,N,M,N,M,K) = F(x,K,K) = 0;

h5 F(x, u,M,N,K) is decreasing in u in a strictly monotonic

manner;

h6 F(x, u,M,N,K) is increasing in K precisely in a strictly

monotonic manner;

The most common instances of F(x, u,K) that satisfy the

following properties are defined in (2.1)-(2.3). The property h5

of growth for the model’s population densities does not satisfy

for growth laws with the Allee effect [20].

Let us now introduce two new variables m(t, x) =
u(t, x)
M(x)

and w(t, x) =
v(t, x)
N(x)

, and we get the above equivalent system

of (2.4)















































M(x)mt = d11m(t, x)+ r1(x)M(x)m(t, x)h(x,m,w,M,N,K),

in3,

N(x)wt = d21w(t, x)+ r2(x)N(x)w(t, x)h(x,w,m,N,M,K),

in3,

∇m · n = ∇w · n = 0, on ∂3,

m(0, x) = u0(x)/M(x), w(0, x) = v0(x)/N(x), in�.

(2.7)

where h is a new function instead of f for new substitutions. For

further analysis, we can consider either the problem (2.4) or (2.7)

since both systems are equivalent.

In the present study, the main findings are as follows:

1. We demonstrate the global existence and uniqueness of the

solution of the initial value system under some assumptions

on the model parameters.

2. We investigate the global existence of the competition model

in which the first species’ resource function is proportional

to its carrying capacity and the other is following a resource-

based diffusion strategy by considering two main cases

of competition coefficient: weak competition and strong

competition.

3. We will find when M(x) + N(x) > K(x) i.e., µ(x), ν(x) < 1

(weak competition) then both species should survive in the

competition and as t → ∞ the solution move toward (M,N)

and form an ideal free pair.

4. Also, when M(x) + N(x) < K(x) i.e., µ(x), ν(x) > 1

(strong competition) no coexistence solution is possible and
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depending on the values of proportionally constant one of the

species will survive in the battle.

5. In the case when both species follow the resource-based

diffusion strategy, along with their positive distribution

function and M(x) + N(x) ≥ K(x), they will attain an ideal

free pair and both species should coexist.

6. We also present some numerical results both in one- and

two-dimensional cases. In addition, we present the case of

time periodic state with the same time period numerically

to compare the time periodic cases which may occur for

seasonal variation with the steady state case.

The manuscript is arranged as follows: the existence of the

solution of the competition model for generalized growth

functions is provided in Section 3. Section 4, reveals the existence

of global and local stability under some conditions on the

resource functions. Here, we have considered two cases: weak

competition and strong competition, based on the values of

space dependent competition coefficients. The main result of

this study is also presented in this section. To see the efficacy

of the model, the numerical computation both for the case of

one dimension and two dimensions are presented in Section 5

in terms of a line graph, surface plots, trajectory plots, contour

plots, and heat maps. Some numerical results for the time

periodic state are also presented since it is very important for

ecological consideration. Section 6, provides the concluding

remarks of the study.

3. Existence and distinctiveness

To delineate the existence and uniqueness of u = u(t, x)

with zero Neumann boundary conditions consider the following

boundary value problem for the first equation of (2.4)















ut = d11
(

u(t, x)
M(x)

)

+ r1(x)u(t, x)f (x, u, v,M,N,K), in3,

∇(u/M) · n = 0, on ∂3,

u(0, x) = u0(x), in�.

(3.1)

The following results are also discussed in Cantrell and Cosner

[7] and Korobenko and Braverman [21]. It is to be mentioned

that the proof of Lemma 1 and Lemma 2 are analogous to

the proofs of Korobenko and Braverman [21], Theorem 1 and

Theorem 2, where the authors considered two competing species

competing for similar basic resources in the heterogeneous

habitat with different diffusion strategies. The study was as

follows: one species followed the carrying capacity-driven

diffusion while others dispersed by the random movement for

generalized symmetric growth function with µ(x) = ν(x) = 1.

Lemma 1. Korobenko and Braverman [21] Let g1(x, u, v) =

r1uf (x, u, v,M,N,K) satisfy the property h2, h4, h5 and the initial

condition of 3.1 be u0(x) ∈ C(�), u0(x) ≥ 0 in� and u0(x) > 0

in some open, bounded, and non-empty domain �s ⊂ �. Also

let, all the the parameters are positive on �. Then there exists

a unique positive solution u∗(x) of the system 3.1. Furthermore,

if M(x)
K(x)

≡ Constant, then the only solution of problem 3.1 is

u∗(x) = K(x), and as t → ∞ the solution converges to K(x),

otherwise u∗(x) is different from K(x).

Similarly, we can also establish the existence and unique

results for the second equation of (2.4) for v = v(t, x) with

homogeneous Neumann boundary conditions as















vt = d21
(

u(t, x)
N(x)

)

+ r2(x)v(t, x)f (x, v, u,N,M,K), in3,

∇(v/N) · n = 0, on ∂3,

v(0, x) = v0(x), in�.

(3.2)

Lemma 2. Korobenko and Braverman [21] Let g2(x, u, v) =

r2vf (x, v, u,N,M,K) satisfy the property h2, h4, h5 and the initial

condition of 3.1 be u0(x) ∈ C(�), v0(x) ≥ 0 in � and

v0(x) > 0 in some open, bounded, and non-empty domain

�s ⊂ �. Also let, all the parameters are positive on �. Then

there exists a unique positive solution v∗(x) of the problem (3.2).

Furthermore, if N(x)
K(x)

≡ Constant, then lim
t→∞

v(t, x) = K(x)

otherwise lim
t→∞

v(t, x) = v∗(x) evenly in x ∈ �.

The following Theorem 1 establishes the existence and

uniqueness of (2.4) for coupled systems of equations. Model

(2.4) is a paragon that follows the monotone dynamical system

[7, 22, 23]. Once substituting, m = u/M, and w = v/N

it reduces into a system of regular diffusion. Where d1/M

and d2/N represent space dependent positive smooth diffusion

coefficients. Note that the following proof for (2.4) is analogous

with Korobenko and Braverman [21] in Theorem 10, for µ =

ν = 1.

Theorem 1. Let K(x),M(x),N(x) > 0 where M(x),N(x) <

K(x) for any x in a non-empty open domain so that µ(x), ν(x) >

0 and g1(x, u, v) = r1uf (x, u, v,M,N,K) and g2(x, u, v) =

r2vf (x, v, u,N,M,K) satisfy the property h1, h2, and h5 on x ∈ �.

Then for any u0(x), v0(x) ∈ C(�) the problem (2.4) has a

unique solution (u, v). Furthermore, if both initial functions are

non-negative and non-trivial, then u(t, x) > 0 and v(t, x) > 0 for

any t > 0.

Proof: To prove this, we enacted ([22], Theorem 8.7.2) to the

problem (2.7) , which is obtained after substitution m =
u(t,x)
M(x)

,

and w =
v(t,x)
N(x)

, respectively.

To show the existence of non-trivial solutions, let us choose

the following constants ρm and ρw such that

ρm ≥ sup
(t,x)∈A1

u0(t, x)/M(x), and ρw ≥ sup
x∈ω

v0(t, x)/N(x).
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Then it is simple to check that the subsequent conditions of the

theorem are satisfied.

g1(t, x, ρm, 0,M,N,K) ≤ 0 ≤ g1(t, x, 0, ρw,M,N,K). (3.3)

g2(t, x, 0, ρw,N,M,K) ≤ 0 ≤ g2(t, x, ρm, 0,N,M,K). (3.4)

So that f (t, x, ρm, 0,M,N,K) < 0 and f (t, x, 0, ρw,N,M,K) <

0, since f (x,Mm,Nw,M,N,K) and f (x,Nw,Mm,N,M,K) are

monotonically nonincreasing in R
+. However, u(0, x) and

v(0, x) are bounded in �, and M(x) and N(x) are bounded

from below, so we have sup
x∈�

u(0,x)
M(t,x)

< ∞, and sup
x∈�

v(0,x)
N(x)

<

∞, respectively.

The conditions (3.3) and (3.4) satisfy the conditions (refer

to, [22], Theorem 8.7.2, Equation 8.7.4) for the functions g1 and

g2 defined above. Therefore, we arrive at the conclusion of the

theorem that for any non-trivial and non-negative (u0(x), v0(x))

such that ρm and ρw specified above satisfy

(

u0(x)

M(x)
,
v0(x)

N(x)

)

∈ Sρ : = {(m,w) ∈ C
(

[0,∞)×�
)

×C
(

[0,∞)×�
)

:(0, 0)

≤ (m,w) ≤ (ρm, ρw)}.

WhereC
(

[0,∞)×�
)

denotes the class of continuous functions

on [0,∞)×�. Accordingly, from (refer to, [22], Theorem 8.7.2)

all of the requirements have been met, so the unique solution

(m,w) of (2.7) has existed and it is positive. Apparently, the

unique positive solution of (2.4) is (u, v) = (Mm,Nw). Thus,

the solution (u, v) is positive and unique.

As a system (2.4) as well as (2.7) is a sample of the monotone

dynamical system [7, 22, 23]. For further analysis of the model’s

equilibrium solutions, we will apply the following theorem of the

monotone dynamical system that is provided in Korobenko and

Braverman [21], Theorem 16.

Lemma 3. If the trivial equilibrium of (2.4) is not stable as well as

the repeller, then certainly one of the subsequent three situations

are stand from a specified set:

(i) a positive and stable coexistence of (2.4) will sustain,

(ii) all positive and stable solution either converges to (u∗, 0) as

t → ∞,

(iii) all positive and stable solution either converges to (0, v∗)

as t → ∞.

4. Analysis of steady states

In this part of the study, we will explore the stability of

the following equilibrium states of the system (2.4): (u∗(x), 0),

(0, v∗(x)) named semi-trivial equilibria, which corresponds to

a situation where only one species survives in the competition

and the other species dies out. The trivial equilibrium (0, 0),

when both species leave the area and the coexistence equilibria

(ue(x), ve(x)) while both semi-trivial, as well as the trivial

solution, are unstable. As we know, u(t, x) and v(t, x) are the

solutions of (2.4) for all t > 0. Also, we describe ourmain results.

Lemma 4. The (0, 0) equilibrium of the system (2.4) is unstable

and repelling.

Proof: Let us consider the system (2.7) around the origin and the

associated eigenvalue problem of the corresponding problem is



























d11φ(x)+ r1φ(x)M(x)h(x, 0, 0,M,N,K) = σφ(x),

in�, ∇φ · n = 0, on ∂�,

d21ψ(x)+ r2ψ(x)N(x)h(x, 0, 0,N,M,K) = σψ(x),

in�, ∇ψ · n = 0, on ∂�.

(4.1)

The principal eigenvalue of the first equation of (4.1) is expressed

by following the variational characterization of the eigenvalues

([7], Theorem 2.1) as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇φ(x)|
2 dx+

∫

�

r1M(x)φ2(x)h(x, 0, 0,M,N,K) dx

∫

�

φ2(x)dx
.

For non-trivial positive constant function φ(x), we get

σ1 ≥
1

|�|

∫

�

r1M(x)h(x, 0, 0,M,N,K)dx > 0,

since h(x, 0, 0,M,N,K) > 0.

and the zero equilibrium (0, 0) of (2.4) is not stable.

To prove that (0, 0) of (2.4) is a repeller, i.e., assuming u0, v0

being the neighborhood of the equilibrium point (0, 0), then all

solutions move away from (0, 0) as t approaches infinity.

Let δ = min

{

inf
x∈�

K
4 , infx∈�

KN
4(K−M)

, inf
x∈�

MK
4(K−N)

}

> 0,

u0(x) ≥ 0 and v0(x) ≥ 0 be such that u0(x) < δ, v0(x) < δ for

(u0(x), v0(x)) 6= (0, 0). Adding the foremost equations of the

system (2.4) and integrate over � and applying homogeneous

Neumann boundary conditions, we get

d

dt

∫

�

(u(t, x)+ v(t, x))dx =

∫

�

[r1(x)uf (x, u, v,M,N,K)

+ r2(x)vf (x, v, u,N,M,K)]dx.

(4.2)
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Note that, γ = min

{

inf
x∈�

r1(x), inf
x∈�

r2(x)

}

> 0 and on

condition, u ≤ δ and v ≤ δ there holds

d

dt

∫

�

(u(t, x)+ v(t, x))dx ≥
γ

2

∫

�

(u(t, x)+ v(t, x))dx.

Now applying Gronwall’s lemma we have

∫

�

(u(t, x)+ v(t, x))dx ≥ eγ t/2
∫

�

(u0(x)+ v0(x))dx.

As
∫

�

(u0(x) + v0(x))dx > 0, then
∫

�

(u(t, x) + v(t, x))dx expands

exponentially with time goes as far as u ≤ δ and v ≤ δ. Hence

there exists t0 > 0 so that u(t0, x) > δ and v(t0, x) > δ for some

x ∈ � and the equilibrium point (0, 0) is a repeller.

The functions u∗ and v∗ are the solutions to the preceding

elliptic boundary value problems, which are straightforward to

understand:

d11

(

u∗(x)

M(x)

)

+ r1(x)u
∗(x)f (x, u∗, 0,M,N,K) = 0,

in�,
∂(u∗/M)

∂n
= 0, on ∂�, (4.3)

d21

(

v∗(x)

N(x)

)

+ r2(x)v
∗(x)f (x, v∗, 0,N,M,K) = 0,

in�,
∂(v∗/N)

∂n
= 0, on ∂�, (4.4)

respectively.

Lemma 5. Let f satisfy h1-h6, r1(x) ≡ r1, r2(x) ≡ r2 are

constant and K(x) 6≡ constant. Then a unique positive solution

v∗(x) of (4.4) will exist, so that

r2

∫

�

f (x, v∗, 0,N,M,K)K(x) dx ≡

r2

∫

�

F(x, v∗(x),K(x))K(x) dx > 0. (4.5)

Proof: Integrating (4.4) over the domain � and applying

the corresponding boundary conditions which implies

d2
∫

�

1v∗(x)dx = 0 and we obtain using h3 for g

∫

�

r2v
∗(x)F(x, v∗,K) dx = 0. (4.6)

Integrating the equality and using theMean Value Theoremwith

property h4

r2v
∗(x)F(x, v∗,K) = r2(v

∗ − K)(F(x, v∗,K)− F(x,K,K))

+ r2K(x)F(x, v
∗,K)

= r2(v
∗ − K)2Fv(x, ξ ,K)

+ r2K(x)F(x, v
∗,K)

we have

r2

∫

�

K(x)F(x, v∗(x),K(x)) dx =

−

∫

�

Fv(x, ξ ,K(x))(v
∗(x)− K(x))2 dx > 0. (4.7)

where ξ (x) lies in between v∗(x) and K(x). Here the right-hand

side is positive unless v∗(x) ≡ K(x) ≡ constant, since Fv < 0

due to h5, which completes the proof.

Remark 1. Note that for any v ≤ K the properties h4 and h5

result in f (x, v, 0,N,M,K) ≥ 0. As a result, in an integral sense

the inequality (4.5) can be regarded as the condition v∗ < K(x).

Lemma 6. Let f satisfies h1-h6 and r1(x) ≡ r1, r2(x) ≡ r2

are constant and K(x)
M(x)

≡ β > 0. Then the semi-trivial

equilibrium (0, v∗(x)) of (2.4) is unstable if there exists non-

constant M(x), N(x), and K(x) such that (M(x)+ N(x)) ≥ K(x)

i.e., µ(x) ≤ 1 in a non-empty open domain�s ⊆ �.

Proof: First taking the linearization of (2.4) over (0, v∗(x)).































































∂u
∂t

= d11
(

u(t, x)
M(x)

)

+ r1u(t, x)f (x, 0, v
∗,M,N,K),

(t, x) ∈ 3,
∂(u/M)
∂n

= 0, x ∈ ∂�,

∂v
∂t

= d21
(

v(t, x)
N(x)

)

+r2v(t, x)f (x, v
∗, 0,N,M,K)

+r2v
∗fu(x, v

∗, 0,N,M,K)u(t, x)

+r2v
∗fv(x, v

∗, 0,M,N,K)v(t, x), (t, x) ∈ 3,

∂(v/N)
∂n

= 0, x ∈ ∂�.

and study the corresponding eigenvalue problem for u







d11
(

φ(x)
M(x)

)

+ r1φ(x)f (x, 0, v
∗,M,N,K) = σφ(x), x ∈ �,

∂(φ/M)
∂n

= 0, x ∈ ∂�.

(4.8)

If the principal eigenvalue is positive then (0, v∗) is unstable.

Consider (4.8) and according to Cantrell and Cosner [7],

Theorem 2.1, its principal eigenvalue is presented as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇(φ/M)|2dx+
∫

�

r1
Mφ

2(x)f (x, 0, v∗,M,N,K)dx

∫

�

(

φ2

M

)

dx
.

Letting φ(x) = K(x) and using the property h3
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σ1 ≥

∫

�

r1K(x)F(x,
K−M
N v∗,K)dx

∫

�

K(x)dx
(4.9)

≥

r1
∫

�

K(x)F(x, v∗,K) dx

∫

�

K(x) dx
, since µ(x) ≡

K(x)−M(x)

N(x)

≤ 1 for any x ∈ �s ⊆ �.

Thus, σ1 > 0 using (4.5) in Lemma 5, which completes

the proof.

Lemma 7. Let f satisfies h1-h6 and r1(x) ≡ r1, r2(x) ≡ r2 are

constant and K(x)
M(x)

≡ β > 0. Then the semi-trivial equilibrium

(K, 0) of (2.4) is unstable if there exists non-constant M(x), N(x),

and K(x) such that (M(x) + N(x)) ≥ K(x) i.e., ν(x) ≤ 1 in a

non-empty open domain�s ⊆ �.

Proof: Analogous to Lemma 6, examine the associated

eigenvalue problem of the linearized second equations of (2.4)

around (K, 0) and we obtain

d21

(

ψ(x)

N(x)

)

+ r2ψ(x)f (x, 0,K,N,M,K) = σψ(x), x ∈ �,

∂(ψ/N)

∂n
= 0, x ∈ ∂�. (4.10)

Consider the Equation (4.10) and according to Cantrell and

Cosner [7], the corresponding principal eigenvalue is stated as

σ1 = sup
ψ 6=0,ψ∈W1,2

d2

−
∫

�

|∇ψ(x)/N|2dx+
∫

�

r2
ψ2

N f (x, 0,K,N,M,K)dx

∫

�

(

ψ2

N

)

dx
.

On substituting ψ(x) = N(x) and using h3, the principal

eigenvalue is

σ1 ≥

r2
∫

�

NF(x, K−N
M K,K) dx

∫

�

K2(x)dx
.

Since, F(x, K−N
M K,K) =

M(x)−K(x)+N(x)
M(x)

> 0 for M(x) +

N(x) > K(x), also N(x) > 0. Therefore, σ1 > 0 and (K, 0) of

(2.4) is unstable.

Since (0, v∗(x)) and (K(x), 0) are not stable as far as (M(x)+

N(x)) > K(x) (refer to, Lemma 6 and Lemma 7), they are

not asymptotically stable. Also from Lemma 4, (0, 0) or trivial

equilibrium is unstable and repeller. Therefore, according to

strong monotone dynamical system [7, 22, 23] the coexistence

equilibrium (ue(x), ve(x)) is globally asymptotically stable so

as to (M(x) + N(x)) ≥ K(x) for all x. Since system (2.4) is

an example of a strongly monotone dynamical system, which

represents the following Theorem 2.

Theorem 2. Let the functions g1(x, u, v) = r1uf (x, u, v,M,N,K)

and g2(x, u, v) = r2vf (x, v, u,N,M,K) satisfy h1-h6. Also, let

r1(x) ≡ r1, r2(x) ≡ r2 are constant and
K(x)
M(x)

≡ β > 0. Then the

coexistence equilibrium (ue(x), ve(x)) of the system of Equations

(2.4) is globally asymptotically stable if (M(x)+N(x)) > K(x) for

any x in a non-empty open domain. Also if K ≡ constant then the

equilibrium (ue(x), ve(x)) is globally asymptotically stable when

M(x) + N(x) ≡ K. That is, for any u0, v0 ∈ C(�) which is

non-negative and non-trivial, the solution (u, v) of (2.4) satisfies

(u, v) → (ue(x), ve(x)), as t → ∞.

Corollary 1. Let the functions g1(x, u, v) =

r1uf (x, u, v,M,N,K) and g2(x, u, v) = r2vf (x, v, u,M,N,K)

satisfy h1-h6. Also if M,N,K all are constants and (M + N) > K

then the coexistence equilibrium (M,N) of the system of

equations (2.4) is globally asymptotically stable. That is, for any

u0, v0 ∈ C(�) which is non-negative and non-trivial, the solution

(u, v) of (2.4) satisfies

(u, v) → (M,N), as t → ∞

uniformly in x ∈ �.

Next, in the following result, it is shown that there is no

coexistence for strong competition, depending on the relations

between M(x), N(x), and K(x). In this case, competitive

exclusion is expected.

Lemma 8. Let f satisfies h1-h6 and M(x), N(x), K(x) are non-

constant. If (M(x) + N(x)) ≤ K(x) for any x ∈ �, i.e.,

µ(x), ν(x) ≥ 1 in a non-empty open domain �s ⊆ � with

r1(x) ≡ r1, r2(x) ≡ r2 are constant,
K(x)
M(x)

≡ β > 0, then there is

no coexistence steady state (ue, ve) of the system (2.4).

Proof: Suppose to the contrary, let us assume there exists a

strictly positive equilibrium solution (ue(x), ve(x)) of (2.4) and

we will present that the assumption provides a conflict. So, the

solution (ue(x), ve(x)) satisfies the governing equations































d11
(

ue(x)
M(x)

)

+ r1ue(x)f (x, ue, ve,M,N,K) = 0, in�,

∂(ue/M)
∂n

, on ∂�,

d21
(

ve(x)
N(x)

)

+ r2ve(x)f (x, ve, ue,N,M,K) = 0, in�,

∂(ve/N)
∂n

= 0, on ∂�.

(4.11)

After dividing by r1r2 in each of the first two equations in (4.11)

and adding them as well as imposing h3 for f , we get

d1

r1
1

(

ue(x)

M(x)

)

+
d2

r2
1

(

ve(x)

N(x)

)

+ ue(x)F
(

x, ue + µ(x)ve,K
)

+ ve(x)F(x, ve + ν(x)ue,K) = 0.
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Integrating over � and applying Numann boundary conditions
in (4.11), we have

0 =

∫

�

[

ueF
(

x, ue + µ(x)ve,K
)

+ veF
(

x, ve + ν(x)ue,K
)]

dx

<

∫

�

[

ueF
(

x, ue + µ(x)ve,K
)

+ µ(x)veF
(

x, ue + µ(x)ve,K
)]

dx

=

∫

�

(ue + µ(x)ve)F
(

x, ue + µ(x)ve,K
)

dx.

since µ(x)F(x, ue + µ(x)ve,K) > F(x, ve + ν(x)ue,K), for

ν(x) > µ(x). Thus

∫

�

(ue + µ(x)ve)F
(

x, ue + µ(x)ve,K
)

dx > 0. (4.12)

Integrating the equality

(ue + µ(x)ve)F
(

x, ue + µ(x)ve,K
)

= F
(

x, ue + µ(x)ve,K
)

(ue + µ(x)ve − K)

+ K(x)F
(

x, ue + µ(x)ve,K
)

over� using (4.12) we get,

0 <

∫

�

F
(

x, ue + µ(x)ve,K
)

(ue + µ(x)ve − K) dx

+

∫

�

K(x)F
(

x, ue + µ(x)ve,K
)

dx. (4.13)

The Mean Value Theorem and F(x,K,K) = 0 by h4 imply

F
(

x, ue + µ(x)ve,K
)

= F
(

x, ue + µ(x)ve,K
)

− F(x,K,K)

= Fv(x, ξ ,K)(ue + µ(x)ve − K) (4.14)

where ξ is between ue +µ(x)ve and K for each (t, x) ∈ 3. Using

(4.14), inequality (4.15) can be rewritten as

∫

�

K(x)F
(

x, ue + µ(x)ve,K
)

dx >

−

∫

�

Fv(x, ξ ,K)(ue + µ(x)ve − K)2 dx. (4.15)

and the last inequality is strictly positive and excludes the

possibility of ue + µ(x)ve ≡ K where Fv < 0 due to h5. Thus,

we have to consider the following case.

Let ue+µ(x)ve 6≡ K in some nonempty open domain, where

µ(x), ν(x) ≥ 1. Consider the eigenvalue problem

d11

(

φ(x)

M(x)

)

+ r1φ(x)F
(

x, ue + µ(x)ve,K
)

= σφ(x), x ∈ �,

∂(φ/M)

∂n
= 0, x ∈ ∂�. (4.16)

According to Cantrell and Cosner [7], Theorem 2.1, the

corresponding principal eigenvalue is presented as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇(φ/M)|2dx+ r1
∫

�

φ2

M F
(

x, ue + µ(x)ve,K
)

dx

∫

�

(φ2/M)dx

Letting φ(x) = K(x) and applying (4.15), we obtain

σ1 ≥

r1
∫

�

K(x)F
(

x, ue + µ(x)ve,K
)

dx

∫

�

K(x)dx
> 0,

since K/M ≡ constant. (4.17)

Since 0 is always a principal eigenvalue of (4.16) along with a

positive principal eigenfunction, which contradicts the positivity

of σ1 > 0.

Remark 2. The Lemma 8 is also valid for proportional growth

rates
r1(x)
r2(x)

= α > 0, since r2(x) can be involved as a part of

function F.

Remark 3. If all the functions M, N, and K are constants then

always there exists a coexistence solution (M,N) of the system

(2.4) and the solution is globally stable.

Lemma 9. Let f satisfy h1-h6 and M(x),N(x), K(x) are non-

constant. If (M(x)+N(x)) ≤ K(x) for any x ∈ �, i.e.,µ(x) ≥ 1 in

a non-empty open domain �s ⊆ � with r1(x) ≡ r1, r2(x) ≡ r2

are constant, K(x)
M(x)

≡ β > 0, then the semi-trivial steady state

(K, 0) of the system (2.4) is locally asymptotically stable.

Proof: Similar to the proof of Lemma 7, let us study

the associated eigenvalue problem of the linearized second

equations of (2.4) around (K, 0), then according to Cantrell and

Cosner [7], Theorem 2.1 the principal eigenvalue is given by

σ1 = sup
ψ 6=0,ψ∈W1,2

d2

−
∫

�

|∇ψ(x)/N|2dx+
∫

�

r2
ψ2

N f (x, 0,K,N,M,K)dx

∫

�

(

ψ2

N

)

dx
.

Upon putting ψ(x) = N(x) and using h3, the principal

eigenvalue is

σ1 ≥

r2
∫

�

NF(x, K−N
M K,K) dx

∫

�

N(x) dx
.

Since, F(x, K−N
M K,K) = 1 −

( K−N
M )K
K =

M(x)−K(x)+N(x)
M(x)

< 0

forM(x) + N(x) < K(x), also N(x) > 0. Therefore, σ1 < 0 and

semi-trivial equilibrium (K, 0) of (2.4) is locally stable.
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In a similar way, we can prove (0, v∗) is locally stable if (M(x)+

N(x)) ≤ K(x) for any x ∈ �, i.e., ν(x) ≥ 1 in a non-empty

open domain �s ⊆ � with r1(x) ≡ r1, r2(x) ≡ r2 are constant,
K(x)
M(x)

≡ β > 0.

As Lemma 4 is still valid. From Lemma 8 and Lemma 9,

we can state the consequent Theorem 3, represents the local

existence of one semi-trivial steady state controlling the initial

conditions.

Theorem 3. Let the functions g1(x, u, v) = r1uf (x, u, v,M,N,K)

and g2(x, v, u) = r2vf (x, v, u,N,M,K) satisfy h1-h6 and K(x) 6≡

constant. Also, let r1(x) ≡ r1, r2(x) ≡ r2 are constant and
K(x)
M(x)

≡ β > 0. Then either the equilibrium (K(x), 0) or the

equilibrium (0, v∗(x)) of the system of equations (2.4) is locally

asymptotically stable if (M(x) + N(x)) ≤ K(x) for any x ∈ �.

That is, depending on u0, v0 ∈ C(�), the solution (u, v) of (2.4)

satisfies

either (u, v) → (K, 0), or (u, v) → (0, v∗), as t → ∞

uniformly in x ∈ �.

Corollary 2. Let the functions g1(x, u, v) =

r1uf (x, u, v,M,N,K) and g2(x, v, u) = r2vf (x, v, u,N,M,K)

satisfy h1-h6 and K(x) ≡ constant. Then either the equilibrium

(K(x), 0) or the equilibrium (0, v∗(x)) of the system of equations

(2.4) is locally asymptotically stable if M(x) + N(x) < K for any

x ∈ �. That is, depending on u0, v0 ∈ C(�), the solution (u, v) of

(2.4) satisfies

either (u, v) → (K, 0), or (u, v) → (0, v∗), as t → ∞

uniformly in x ∈ �.

Lemma 10. Let the growth function f satisfy h1-h6, r1(x) ≡

r2(x) ≡ r are constant and K(x) 6≡ constant. If (u∗, 0) and (0, v∗)

are the semi-trivial solution of (4.3) and (4.4), respectively and

µ, ν ∈ (0, 1) then

r

∫

�

f (x, 0, v∗, 0,M,N,K)M(x) dx ≡

r

∫

�

F(x, v∗(x),M,N,K)M(x) dx > 0, (4.18)

and

r

∫

�

f (x, 0, u∗,N,M,K)N(x) dx ≡

r

∫

�

F(x, v∗(x),N,M,K)N(x) dx > 0. (4.19)

Proof: Let us assume, N1 =
∫

�

M(x) dx and N2 =
∫

�

N(x) dx

where r1(x) ≡ r2(x) ≡ r.

Denote,

a∗ = min















N1
∫

�

(M(x)v∗(x)
K(x)

) dx
, 1















∈ (0, 1)

If µ ∈ (0, a∗) then,

∫

�

M(x)v∗(x)µ(x)

K(x)
dx < N1

⇒

∫

�

r
M(x)v∗(x)µ(x)

K(x)
dx < r

∫

�

M(x) dx,

where µ(x) ∈ (0, 1) and r is constant

⇒ r

∫

�

(

1−
µv∗

K

)

Mdx > 0

⇒ r

∫

�

g(x, v∗, 0,M,N,K)Mdx > 0.

Applying property h3 for f , we get, r
∫

�

F(x, v∗,M,N,K)Mdx >

0.

Now if (u∗, 0) is a semi-trivial equilibrium of (4.3) and a∗∗ =

min







N2
∫

�

(

N(x)v∗(x)
K(x)

)

dx
, 1







∈ (0, 1) than for ν ∈ (0, a∗∗) ∈ (0, 1),

applying the same procedure as before we can find,

r

∫

�

F(x, u∗,N,M,K)N dx > 0.

Now we will analyze the case of the ideal free pair when

M(x),N(x), andK(x) are space dependent and non-proportional

to each other. By direct substitution of µ(x) =
K(x)−M(x)

N(x)
and

ν(x) = K(x)−N(x)
M(x)

it is easy to check that (M,N) is the solution

of the system (2.4). Now we will establish this coexistence steady

state via the instability of both (u∗, 0) and (0, v∗).

Lemma 11. Let f satisfies h1-h6 and M(x),N(x), and K(x) are

non-constant and linearly independent. If r1(x) ≡ r2(x) ≡ r are

constant and (M(x) + N(x)) ≥ K(x) for any x ∈ �, then the

semi-trivial steady state (0, v∗) of the system (2.4) is unstable.

Proof: Assume the linearized equations of the problem (2.4) for

the first equation around (0, v∗), then the associated eigenvalue

problem for u is,

d11

(

φ(x)

M(x)

)

+ r1φ(x)f (x, 0, v
∗,M,N,K) = σφ(x),

∈ �,
∂(φ/M)

∂n
= 0, x ∈ ∂�. (4.20)
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According to Cantrell and Cosner [7], Theorem 2.1, the

principal eigenvalue of (4.20) is represented as

σ1 = sup
φ 6=0,φ∈W1,2

−
∫

�

d1|∇(φ/M)|2dx+
∫

�

r1
Mφ

2(x)f (x, 0, v∗,M,N,K)dx

∫

�

(

φ2

M

)

dx
.

Selecting φ(x) = M(x) and using the property h3

σ1 ≥

∫

�

r1M(x)F(x, K−M
N v∗,K)dx

∫

�

M(x) dx
(4.21)

=
r

N1

∫

�

M(x)F(x, v∗,M,N,K)dx > 0,

where N1 =

∫

�

M(x)dx > 0 for any x ∈ �. (4.22)

Thus, σ1 > 0 using (4.18) in Lemma 10 for µ ∈ (0, 1), which

concludes the proof.

Lemma 12. Let f satisfies h1-h6 and M(x),N(x), K(x) are non-

constant and linearly independent. If r1(x) ≡ r2(x) ≡ r are

constant and (M(x) + N(x)) ≥ K(x) for any x ∈ �, then the

semi-trivial steady state (u∗, 0) of the system (2.4) is unstable.

Proof: Analogous to Lemma 11 assumes the linearization of

the second equation of the problem (2.4) around (u∗, 0) and

examine the related eigenvalue problem for v,

d21

(

ψ(x)

N(x)

)

+ r2ψ(x)f (x, u
∗,N,M,K) = σψ(x), x ∈ �,

∂(ψ/N)

∂n
= 0, x ∈ ∂�. (4.23)

and its principal eigenvalues according to Cantrell and Cosner

[7], Theorem 2.1 is given by

σ1 = sup
ψ 6=0,φ∈W1,2

d2

−
∫

�

|∇(ψ/N)|2dx+
∫

�

r2
N φ

2(x)f (x, u∗, 0,N,M,K) dx

∫

�

(

ψ2

N

)

dx
.

Choosing φ(x) = N(x) and imposing the property h3

σ1 ≥

∫

�

r2N(x)F(x, K−N
M u∗,K) dx

∫

�

N(x)dx
(4.24)

=
r

N2

∫

�

N(x)F(x, u∗,N,M,K)dx > 0,

where N2 =

∫

�

N(x)dx > 0 for any x ∈ �. (4.25)

Thus, σ1 > 0, using (4.19) from Lemma 10 for ν ∈ (0, 1), which

concludes the proof.

Right now, we are prepared to give a conclusion about the

existence of stable coexistence steady state (M,N) of (2.4) with

the help of Lemma 11 and Lemma 12. It is noted that Lemma 4

is still true for the system (2.4).

Theorem 4. Let the functions g1(x, u, v) = r1uf (x, u, v,M,N,K)

and g2(x, v, u) = r2vf (x, v, u,N,M,K) satisfy h1-h6 and

M(x),N(x),K(x) are non-constant and linearly independent. If

(M(x) + N(x)) ≥ K(x) for any x ∈ �, and r1(x) ≡ r2(x) ≡ r

are constant, then for any non-negative and non-trivial u0, v0 ∈

C(�) the coexistence of steady state (M,N) of the system of

equations (2.4) is globally asymptotically stable.

The uniqueness of the coexistence solution (ue, ve) =

(M,N) can be proved similarly according to Braverman and

Kamrujjaman [9, 15], where they consider carrying capacity

as equal to the linear combination of the corresponding

resource functions.

5. Numerical methods and
applications

Consider the system of (2.5) for numerical simulations with the

generalized logistic growth laws. To implement the numerical

test, we consider the domain� = [0, 1] for one space dimension

and� = [0, 1]×[0, 1] for two space dimensions, throughout the

paper. In this study, for simplicity taking a uniform rectangular

grid of spacing 1x × 1y ≡ hx × hy on � with hx = (xf −

x0)/Nx and hy = (yf − y0)/Ny, where Nx and Ny are the

number of grid points along x and y directions, respectively.

Also, partition the time T by a distance 1t ≡ ht = T/Nt .

To discretize the system of partial differential equations into

a continuous space and temporal domain we have imposed

the Crank-Nicolson method for the case of 1-D whereas the

ADI method has been applied for the case of 2D. Thus, we

can write as uni = u(ihx, nht), v
n
i = v(ihx, nht) for 1-D and

uni,j = u(ihx, jhy, nht), v
n
i,j = v(ihx, ihy, nht) for 2D, respectively.

Also, for the discretized equation the result was considered to

have converged when successive iterations are within 10−7 of

each other.

5.1. When K, M, N, µ, and ν are time
independent

5.1.1. Case of one- space dimension

In this segment of the numerical computation, we will

discuss the model (2.5) when K,M, and N are merely functions

of one space dimension.
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FIGURE 1

The solutions and space average density of (2.5) when M + N > K where d1 = d2 = 1.0, r1 = r2 = 1.0 for (A,C) K = 2.0+ cos(πx),

M = 0.6K = 1.2+ 0.6 cos(πx), N = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.66, 0.85], ν(x) = 1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88], (u0 , v0) = (0.5, 1.2), and (B,D)

K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.85, ν(x) = 0.89, (u0 , v0) = (1.7, 0.7) on � = (0, 1).

Example 1. Consider the case of (2.5) when M + N > K on

� = (0, 1) ⊂ R, where u is diffusing according to their carrying

capacity and v is followed by the resource-based diffusion strategy.

Here, in Figures 1, 2A,C consider K(x) = 2.0+ cos(πx), M(x) =

0.6K, where N(x) = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈

[0.66, 0.85], ν(x) =
1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88] and in

Figures 1, 2B,D K = 3.0, M = 0.6K, and N = 1.5 with µ(x) =

0.85, ν(x) = 0.89. Additionally, let, r1 = r2 = 1.0, (u0, v0) =

(0.5, 1.2), and d1 = d2 = 1.0. Figures 1A,B characterizes

the population density profiles of u and v over domain x and

Figures 1C,D represents the space average density profiles of u and

v against time for different values of competition coefficients (µ(x),

ν(x)). We perceive from Figures 1A,C that when K, M, and N

are space dependent then there exists a non-trivial coexistence

solution that converges to M and N with time grows which is

expected as in Theorem 2 and Corollary 1. Here, it is mentioned

that the values of (u, v) coincide with (M,N), respectively which

provide the existence of ideal free pair while M is proportional to

K and N/K are non-constant.

Since µ(x) ∈ [0.66, 0.85] and ν(x) ∈ [0.66, 0.88] in

Figures 1A,C, due to the nearly higher impact of ν(x) on

v the density of u is found higher than v. Which is also

found analogous in Figures 1B,D where K is constant and

µ(x) = 0.85, ν(x) = 0.89. It is likewise noted that when

K, M, and N are space dependent spatial functions then space

average density converges faster to the steady state compared

to letting constant values of K, M, and N. It is also observed

that density profiles correlate with their corresponding resource
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FIGURE 2

The population density of u and v for (2.5) when M + N > K with d1 = d2 = 1.0, r1 = r2 = 1.0 for (A,C) K = 2.0+ cos(πx),

M = 0.6K = 1.2+ 0.6 cos(πx), N = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.66, 0.85], ν(x) = 1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88], (u0 , v0) = (0.5, 1.2), and (B,D)

K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.85, ν(x) = 0.89, (u0 , v0) = (1.7, 0.7) on � = (0, 1).

FIGURE 3

Solution trajectories of space average density of u and v for di�erent initial values (u0 , v0) on � = (0, 1) when M + N > K where d1 = d2 = 1.0,

r1 = r2 = 1.0 for (A) K = 2.0+ cos(πx), M = 0.6K = 1.2+ 0.6 cos(πx), N = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.85, 0.66],

ν(x) = 1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88], and (B) K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.85, ν(x) = 0.89 of (2.5) at t = T = 100.

functions in all cases, independent of non-negative, non-trivial

initial values.

Figure 2 reveals the solution of (2.5) for u and v when t =

2, 000. Similar to Figure 1 an attractive coexistence equilibrium

solution is noticed for different values of µ and ν.

However, Figure 3 illustrates the solution trajectories for space

average density of u vs. v for different initial values (u0, v0) when

M + N > K, wherein (a) K(x) = 2.0 + cos(πx), M(x) = 0.6K,

N(x) = 1.0+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
1.5+0.6 cos(πx)

∈ [0.66, 0.85],

ν(x) =
1.0+0.4 cos(πx)
0.8+0.4 cos(πx)

∈ [0.66, 0.88] and in (b) K = 3.0,

M = 0.6K, and N = 1.5, µ(x) = 0.85, ν(x) = 0.89, for

allowing others parameters are fixed. We found that for different

constant and non-constant values of competition coefficients both

species survive in the competition which is independent of initial

values (u0, v0).

Example 2. Consider (2.5) when M + N < K for the functions

K(x) = 2.0 + cos(πx), where d1 = d2 = 1.0, r1 = r2 = 1.0,

(u0, v0) = (0.7, 0.7). Here, setting in Figure 4A M = 0.3K,

where N = 1.0 + 0.7 cos(πx), µ(x) =
1.4+0.7 cos(πx)
1.0+0.7 cos(πx)

∈

[1.23, 2.33], ν(x) =
1.0+0.3 cos(πx)
0.6+0.3 cos(πx)

∈ [1.44, 2.33], and in

Figure 4B M = 0.6K, and N = 0.6+ 0.4 cos(πx), where µ(x) =
0.8+0.4 cos(πx)
0.6+0.4 cos(πx)

∈ [1.2, 2], ν(x) =
1.4+0.6 cos(πx)
1.2+0.6 cos(πx)

∈ [1.11, 1.33]

on � = (0, 1). According to Theorem 3, all the solutions

either converge to the equilibrium (K(x), 0) or to the equilibrium

(0, v∗(x)) which is locally asymptotically stable. Figures 4A,B

represents the population density profiles of u and v vs. x for

different values of competition coefficients (µ(x), ν(x)) at t = T =

2, 000 where the solution is sufficiently large to reach the steady

state. Here in all cases, we discover the existence of a competitive

exclusion solution. However, in Figure 4A, we observe for small
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FIGURE 4

The solutions of (2.5) when M + N < K where K = 2.0+ cos(πx), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) for (A) M = 0.3K = 0.6+ 0.3 cos(πx),

N = 1.0+ 0.7 cos(πx), µ(x) = 1.4+0.7 cos(πx)
1.0+0.7 cos(πx)

∈ [1.23, 2.33], ν(x) = 1.0+0.3 cos(πx)
0.6+0.3 cos(πx)

∈ [1.44, 2.33], and (B) M = 0.6K = 1.2+ 0.6 cos(πx), N = 0.6+ 0.4 cos(πx),

µ(x) = 0.8+0.4 cos(πx)
0.6+0.4 cos(πx)

∈ [1.2, 2], ν(x) = 1.4+0.6 cos(πx)
1.2+0.6 cos(πx)

∈ [1.11, 1.33] on � = (0, 1).

FIGURE 5

Solution trajectories of space average density of u and v for di�erent initial values (u0 , v0) on � = (0, 1) when M + N < K where K = 2.0+ cos(πx),

d1 = d2 = 1.0, r1 = r2 = 1.0 for (A) M = 0.3K = 0.6+ 0.3 cos(πx), N = 1.0+ 0.7 cos(πx), µ(x) = 1.4+0.7 cos(πx)
1.0+0.7 cos(πx)

∈ [1.23, 2.33], ν(x) = 1.0+0.3 cos(πx)
0.6+0.3 cos(πx)

∈ [1.44, 2.33],

and (B) M = 0.6K = 1.2+ 0.6 cos(πx), N = 0.6+ 0.4 cos(πx), µ(x) = 0.8+0.4 cos(πx)
0.6+0.4 cos(πx)

∈ [1.2, 2], ν(x) = 1.4+0.6 cos(πx)
1.2+0.6 cos(πx)

∈ [1.11, 1.33] of (2.5) at t = T = 100.

values of proportionality constant (β = 0.3) the species u is

endure while v goes to extinction as time raises and the solution of

u converges to K with the increase of time. An opposite observation

is noticed in Figure 4B where β = 0.6 and the non-trivial solution

is found for v, and u turns to elimination for different values of

competition coefficients.

Furthermore, Figure 5 shows the solution trajectories for space

average density of u vs. v for different initial values when M +

N < K and µ(x), ν(x) > 1. Also let, M = 0.3K, where

N = 1.0 + 0.7 cos(πx) in Figure 5A, and M = 0.6K where N =

0.6+0.4 cos(πx) in Figure 5B. If M is proportional to K, N/K are

non-constant, and M + N < K then by Theorem 3, both semi-

trivial equilibrium solutions are locally asymptotically stable.

We find that for different non-constant values of competition

coefficients one of the species survives in competition, and the

solution trajectory moves either toward u or to v depending on

the different values of initial values (u0, v0).

Example 3. Consider (2.5) where M + N > K and both

species disperse according to their resource function M = 1.2 +

0.5 cos(πx) and N = 1.3 + 0.5 cos(πx), respectively which are

not proportional to K = 2.0+cos(πx) in Figures 6, 7, respectively.
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FIGURE 6

(A) The solutions, and (B) space average density of (2.5) when M + N > K where K = 2.0+ cos(πx), M = 1.2+ 0.5 cos(πx), N = 1.3+ 0.5 cos(πx),

µ(x) = 0.8+0.5 cos(πx)
1.3+0.5 cos(πx)

∈ [0.37, 0.72], ν(x) = 0.7+0.5 cos(πx)
1.2+0.5 cos(πx)

∈ [0.29, 0.70], d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.5, 1.2) on � = (0, 1) at t = T = 50.

FIGURE 7

The population density of (A) u, and (B) v for (2.5) when M + N > K where K = 2.0+ cos(πx), M = 1.2+ 0.5 cos(πx), N = 1.3+ 0.5 cos(πx),

µ(x) = 0.8+0.5 cos(πx)
1.3+0.5 cos(πx)

∈ (0.37, 0.72), ν(x) = 0.7+0.5 cos(πx)
1.2+0.5 cos(πx)

∈ (0.29, 0.70), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.5, 1.2) on � = (0, 1).

Also let, d1 = d2 = 1.0, r1 = r2 = 1.0, (u0, v0) = (0.5, 1.2) on

� = (0, 1) where µ(x) = 0.8+0.5 cos(πx)
1.3+0.5 cos(πx)

∈ [0.37, 0.72], ν(x) =

0.7+0.5 cos(πx)
1.2+0.5 cos(πx)

∈ [0.29, 0.70]. In Figure 6, it is observed that the

solution approaches the ideal pair (M,N) which is regardless of

(u0, v0), which is an affirmation of Theorem 4.

Also, Figure 7 illustrates the coexistence of both species is

globally asymptotically stable and (u, v) → (M,N) with t → ∞.

5.1.2. Case of two- space dimensions

This section aims to simulate the model (2.5) when K,M,

and N are functions of both x and y.

Example 4. Consider the spatial functions for model (2.5) when

M + N > K wherein Figures 8A,C K = 2.0 + cos(πx) cos(πy),

M = 0.6K = 1.2 + 0.6 cos(πx) cos(πy), N = 1.0 +

0.4 cos(πx) cos(πy), and µ(x) =
0.8+0.4 cos(πx) cos(πy)
1.0+0.4 cos(πx) cos(πy)

∈

[0.67, 0.86], ν(x) =
1.0+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [0.67, 0.89], and in

Figures 8B,D K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.8,

ν(x) = 0.83. Also let, d1 = d2 = 1.0, r1 = r2 = 1.0,

(u0, v0) = (0.7, 0.7) on � = (0, 1) × (0, 1) for different values

of competition coefficients. Figure 8 signifies the contour profiles

of u and v while M is proportional to K and N/K are non-

constant. We have computed the solution at t = T = 400

for which it is adequate to get a steady state. We see that for
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FIGURE 8

Contour plots of u and v of (2.5) at t = T = 400 when M + N > K where d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) for (A,C)

K = 2.0+ cos(πx) cos(πy), M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 1.0+ 0.4 cos(πx) cos(πy), µ(x) =
0.8+0.4 cos(πx) cos(πy)
1.0+0.4 cos(πx) cos(πy)

∈ [0.67, 0.86],

ν(x) =
1.0+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [0.67, 0.89], and (B,D) K = 3.0, M = 0.6K = 1.8, N = 1.5, µ(x) = 0.8, ν(x) = 0.83 on � = (0, 1)× (0, 1).

µ(x), ν(x) ∈ (0, 1), both species sustain in the competition, and the

contour pattern followed shows a correlation with M and N rather

than K. The contour profiles in Figures 8A,C represent the saddle

shape wheremaximum population density is located at the left and

right bottom and top corners of the domain whereas minimum

population density is found right and left bottom and top corner

of the contour profile, respectively. Additionally, also Figures 8B,D

shows the coexistence with a very small change in contour profiles.

As we know, for two interacting species the outcome is either

competitive exclusion or coexistence of two species. Here, we

observed that for different constant and space dependent values

of µ and ν both species sustain (refer to, Figures 8A–D), which

justified Theorem 2 and Corollary 1 while coexistence is feasible.

From an ecological perspective, when the competition coefficients

are less than 1 then the interspecific competition has less effect than

intraspecific competition. The opposite scenario occurs when both

competition coefficients are greater than 1. Due to partial resource

sharing of both interacting species, competition coefficients (µ, ν)

between 0 and 1 stimulate cohabitation in the battle. It is also

worth noting that v has a slightly greater population density

than u, indicating that species which consume lower per capita

accessible resources can have a slightly higher elevated population

density. On the other hand, when niche differentiation occurs,

most species do not utilize all of the resources available to them.

The fish population is one of the most common instances of river

organisms. Since one species forages mostly in shallow water and

the other in deep water, they can coexist while sharing shared

resources. Another example of resource sharing by grazers like

zebra and wildebeest which are grazing on plants and eating

typical African savanna grass (Panicum maximum) over time.

The growing season of this grass begins later in the peak rain and

lasts for 6 months. Among the two grazers, zebra eat the tallest
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FIGURE 9

Average scaled density of (2.5) as a function of competition coe�cients µ ∈ [0.65, 0.9] and ν ∈ [0.65, 0.9] on � ∈ (0, 1)× (0, 1) when M + N > K

where d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) with K = 2.0+ cos(πx) cos(πy), M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 1.0+ 0.4 cos(πx) cos(πy)

on � = (0, 1)× (0, 1) for (A) u, (B) v, and (C) u+ v at t = T = 1, 000.

grass, which is abundant but less nutritious since zebra teeth allow

them to consume the taller grass. Zebras’ digestive systems are

also more effective than that of a ruminant grazer. However, by

eating the tops of the grass, zebra make it simpler for wildebeests

to access the more nutrient-dense areas of the grass close to the

ground. Despite not being able to digest food as quickly as zebras,

wildebeests can gain more energy since the lower portion of the

grass is more nutrient-rich and soft. Thus, even though the other

animals cannot obtain enough energy from it, they can survive on

the shortest grass. In this way, two or more populations can sustain

mutually by resource sharing.

Moreover, average scaled density of u, v and u+ v of (2.5) are

presented in Figure 9 as a function of competition coefficients for

M + N > K, where µ ∈ [0.69, 0.9] and ν ∈ [0.65, 0.9] on � ∈

(0, 1) × (0, 1) that represents the dependency of the space average

population density for µ and ν. Here, we have considered, K =

2.0 + cos(πx) cos(πy), M = 0.6K = 1.2 + 0.6 cos(πx) cos(πy),

N = 1.0 + 0.4 cos(πx) cos(πy) while others parameters are

fixed as before. We have computed the values of µ(x) and ν(x)

at each point in the domain for the range µ ∈ [0.69, 0.9] and

ν ∈ [0.65, 0.9] which we have computed from equation (2.6) by

the relation of K,M,N, µ, and ν at t = T = 1, 000. Figure 9

demonstrates the coexistence of both species for the limited range

of µ and ν. At this point, it is mentioned that with the increase of

ν, the average density of u rise, whereas it starts to reduce with the

increase ofµ values. The opposite scenario is noticed for the scaled

average population density of v.

Example 5. Consider the case of (2.5) at t = T = 400 when

M + N < K where K = 2.0 + cos(πx) cos(πy), d1 = d2 = 1.0,

r1 = r2 = 1.0, (u0, v0) = (0.7, 0.7) on � = (0, 1) × (0, 1). Here

Figures 10A,C characterizes the contour profiles of u and v where

we assume M = 0.3K = 0.6 + 0.3 cos(πx) cos(πy), N = 1.0 +

0.7 cos(πx) cos(πy) so that µ(x, y) =
1.4+0.7 cos(πx) cos(πy)
1.0+0.7 cos(πx) cos(πy)

∈

[1.24, 2.33], ν(x, y) =
1.0+0.3 cos(πx) cos(πy)
0.6+0.3 cos(πx) cos(πy)

∈ [1.45, 2.33] and in

Figures 10B,DM = 0.6K = 1.2+0.6 cos(πx) cos(πy), N = 0.6+

0.4 cos(πx) cos(πy) for which µ(x, y) =
0.8+0.4 cos(πx) cos(πy)
0.6+0.4 cos(πx) cos(πy)

∈

[1.2, 2.0], ν(x, y) =
1.4+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [1.11, 1.33]. Here

in both cases, competitive exclusion is observed to happen.

Depending on the values of proportionally constant β either

(u∗, 0) or (0, v∗) that ensure to is attained, which ensures the

existence of local semi-trivial equilibrium where the diffusive

migration of u followed carrying capacity K and the movement

of other species is directed toward their resource distribution

N. According to Theorem 3, as time increases, v dies out and

the solution of u converges to K as shown in Figures 10A,C.

However, in Figures 10B,D, the solution converges to v, and

as time grows, u does not sustain in battle. In this case, the

values of both competition coefficients are greater than 1, and

interspecific competition is strong between the competing species.

As we know, one possible effect of intense interspecific competition

is competitive exclusion. If two species compete for a similar

habitat, then one of them will eventually outcompete the others

and drive them out of the environment. On the other hand, due

to quite small per capita resource consumption the growth of

species u increases rapidly seen in the case of Figures 10A,C, and

other populations move toward extinction. A similar observation

is noticed in Figures 10B,D for which v sustains in competition. For

example, consider bird populations, as most birds rely on the same

resources to survive in competition. It could result in fierce rivalry

among the species. The more competition in the environment, the

more difficult it is to sustain.

However, Figure 11 represents the diagram of scaled average

population density of u and v for different levels of competition

coefficients at t = T = 1, 000. Here µ ∈ [1, 2.5] and ν ∈ [1, 2.5]

which is obtained from equation (2.6) on � ∈ (0, 1) × (0, 1) for

M+N < K whenM = 0.3K and N = 1.0+0.7 cos(πx) cos(πy).

Here, we have calculated the dependency of u and v at each point

for the consider fixed upper and lower estimates of µ and ν in

the domain.
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FIGURE 10

Contour plots of u and v of (2.5) at t = T = 400 when M + N < K where K = 2.0+ cos(πx) cos(πy), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) for

(A,C) M = 0.3K = 0.6+ 0.3 cos(πx) cos(πy), N = 1.0+ 0.7 cos(πx) cos(πy), µ(x, y) =
1.4+0.7 cos(πx) cos(πy)
1.0+0.7 cos(πx) cos(πy)

∈ [1.24, 2.33],

ν(x, y) =
1.0+0.3 cos(πx) cos(πy)
0.6+0.3 cos(πx) cos(πy)

∈ [1.45, 2.33], and (B,D) M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 0.6+ 0.4 cos(πx) cos(πy),

µ(x, y) =
0.8+0.4 cos(πx) cos(πy)
0.6+0.4 cos(πx) cos(πy)

∈ [1.2, 2.0], ν(x, y) =
1.4+0.6 cos(πx) cos(πy)
1.2+0.6 cos(πx) cos(πy)

∈ [1.11, 1.33] on � = (0, 1)× (0, 1).

Also, Figure 12 reveals the comparison of the average scaled

population density of u and v for different levels of competition

coefficients where µ ∈ [1, 2] and ν ∈ [1, 2] on � ∈

(0, 1) × (0, 1) at time t = T = 1, 000. Here we set,

M = 0.6K = 1.2 + 0.6 cos(πx) cos(πy), N = 0.6 +

0.4 cos(πx) cos(πy) and considering other parameters are fixed

as before.

Example 6. Take K = 2.0 + cos(πx) cos(πy) where M =

0.9 + 0.5 cos(πx) cos(πy), N = 1.1 + 0.5 cos(πx) cos(πy) in

Figures 13A,B and M = 1.5 + 0.6 cos(πx) cos(πy), N = 0.8 +

0.7 cos(πx) cos(πy) in Figures 13C,D on � = (0, 1) × (0, 1) for

the model (2.5) when M + N ≥ K for which the contour profiles

in Figure 13 form an ideal free pair. Here also let, d1 = d2 = 1.0,

r1 = r2 = 1.0, (u0, v0) = (0.5, 0.5) whereµ(x, y) = ν(x, y) = 1.0

and µ(x, y) =
0.5+0.4 cos(πx) cos(πy)
0.8+0.7 cos(πx) cos(πy)

∈ [0.6, 1.0], ν(x, y) =

1.2+0.3 cos(πx) cos(πy)
1.5+0.6 cos(πx)

∈ [0.71, 1.0], respectively in the prescribed

domain. Here, we perceive that the contour profile of u follows M

and the contour profiles of v correlate with N, respectively (refer

to, Figures 13A,B) while M + N = K. In this case both species are

diffusing in the direction of their resource functions and for the

fixed values of competition coefficients, the coexistence of species

appears, and they form an ideal pair. The total density for such

a pair is identical to the carrying capacity. In this condition, the

availability of resources for the couple species is spatially distinct,

which can specialize through resource consumption. However, a

similar observation is noticed for the case M + N > K (refer to,

Figures 13C,D) and the contour profile approaches toward their

respective resource function that will form an ideal pair with
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FIGURE 11

Average scaled density of u and v of (2.5) as a function of competition coe�cients µ ∈ [1, 2.5] and ν ∈ [1, 2.5] on � ∈ (0, 1)× (0, 1) when M+N > K

with K = 2.0+ cos(πx) cos(πy), M = 0.3K = 0.6+ 0.3 cos(πx) cos(πy), N = 1.0+ 0.7 cos(πx) cos(πy), d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.7, 0.7) on

� = (0, 1)× (0, 1) at t = T = 1, 000.

FIGURE 12

Average scaled density of u and v of (2.5) as a function of competition coe�cients µ ∈ [1.2, 2] and ν ∈ [1.1, 1.3] on � ∈ (0, 1)× (0, 1) when

M + N > K with K = 2.0+ cos(πx) cos(πy), M = 0.6K = 1.2+ 0.6 cos(πx) cos(πy), N = 0.6+ 0.4 cos(πx) cos(πy), d1 = d2 = 1.0, r1 = r2 = 1.0,

(u0 , v0) = (0.7, 0.7) on � = (0, 1)× (0, 1) at t = T = 1, 000.

the increase of time, which is one of the confirmations of the

Theorem 4.

5.2. When K, M, N, µ, and ν are time
dependent

5.2.1. Case of two-space dimensions

In this section, we will study the model (2.5) numerically

when K,M, and N are two-dimensional time dependent

functions, which may occur for seasonal variations. We will

present the instantaneous contour profiles of u(t, x, y) and

v(t, x, y) for t = T, t = T + 2π
k�

where k = 1, 2, . . . , that confirm

the existence of a positive periodic state during a particular time

interval. Here, T is substantially sufficient to reach the time

periodicity of the population density. Furthermore, we exhibit

the space averaged density profile as a function of time to show

its approach to a periodic state. Here we will compare the time

periodic case with the case of steady state only by including

the time periodic function. The time dependent case has been
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FIGURE 13

Contour plots of u and v of (2.5) at t = T = 350 when M + N ≥ K with K = 2.0+ cos(πx) cos(πy) for (A,B) M = 0.9+ 0.5 cos(πx) cos(πy),

N = 1.1+ 0.5 cos(πx) cos(πy), µ(x, y) = 1.0, ν(x, y) = 1.0, and (C,D) M = 1.5+ 0.6 cos(πx) cos(πy), N = 0.8+ 0.7 cos(πx) cos(πy),

µ(x, y) =
0.5+0.4 cos(πx) cos(πy)
0.8+0.7 cos(πx) cos(πy)

∈ [0.6, 1.0], ν(x, y) =
1.2+0.3 cos(πx) cos(πy)

1.5+0.6 cos(πx)
∈ [0.71, 1.0], d1 = d2 = 1.0, r1 = r2 = 1.0, (u0 , v0) = (0.5, 0.5) on � = (0, 1)× (0, 1).

FIGURE 14

Contour plots of u(t, x, y) of (2.5) when M + N > K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

M = 0.6K = (1.2+ 0.6 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (1.0+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [0.67, 0.86], ν(t, x, y) ∈ [0.67, 0.89],

r1 = r2 = r = 1.0, (u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0, � = (0, 1)× (0, 1) for (A) T, (B) T + π
2
, (C) T + π , (D) T + 3π

2
, and (E) T + 2π , where T = 38.55.

computed to examine, do the periodic state represents the same

patterns as the same steady state cases studied in the earlier

section? We will discover this question in this section.

Example 7. Consider the time dependent functions for the case of

(2.5) whenM+N > K where K = (2.0+cos(πx) cos(πy))(1.0+

0.2 cos(t)), M = 0.6K = (1.2 + 0.6 cos(πx) cos(πy))(1.0 +

0.2 cos(t)), N = (1.0+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)) on

� = (0, 1) × (0, 1). Here µ(t, x, y) ∈ [0.67, 0.86], ν(t, x, y) ∈

[0.67, 0.89] with r1 = r2 = r = 1.0, (u0, v0) = (0.5, 0.5), d1 =

d2 = 1.0. Here, Figure 14 demonstrates the instantaneous change

in population development of u(t, x, y) and v(t, x, y) through

contour profiles for a specific time period. At this point, we have

computed the instantaneous contour profiles of u for (Figure 14A)

T, (Figure 14B) T+ π
2 , (Figure 14C) T+π , (Figure 14D) T+ 3π

2 ,

and (Figure 14E) T + 2π , where t = T = 38.55, which is large
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FIGURE 15

Contour plots of v(t, x, y) of (2.5) when M + N > K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

M = 0.6K = (1.2+ 0.6 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (1.0+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [0.67, 0.86], ν(t, x, y) ∈ [0.67, 0.89],

r1 = r2 = r = 1.0, (u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0, � = (0, 1)× (0, 1) for (A) T, (B) T + π
2
, (C) T + π , (D) T + 3π

2
, and (E) T + 2π , where T = 19.71.

enough to reach the steady state. As we know, due to seasonal

variation or any other periodic factors during a time phase, the

population growth is not always even everywhere, its growth rises

and falls during specific seasons. There are many reasons, such

as food availability, space, water supply, climate change, diseases,

and predators that influence the growth of population during a

time interval.

Thus, at all times during a period, we will not get the same

population density. As we have shown in Figure 14. We observe

that at T = 38.55 and T = 38.55+2π the instantaneous contours

plots correspond to identical values that provide the existence

of positive periodic solutions. It is also noted that Figure 14

corresponds to Figure 8A of the steady state case for which both

species survive in competition. Here, we have only included the

time periodic function with the same steady state function to see

the existence of the periodic state.

However, Figure 15 represents the instantaneous contour

profiles of v(t, x, y) for (Figure 15A) T, (Figure 15B) T + π
2 ,

(Figure 15C) T + π , (Figure 15D) T + 3π
2 , and (Figure 15E)

T + 2π , where t = T = 19.71 for which species v is found

to survive. Similar to Figure 14, we observe that at T = 19.71

and T = 19.71+ 2π the instantaneous contours plots of v(t, x, y)

resemble indistinguishable values which corresponds to Figure 8C

of the steady state case.

Example 8. Consider K = (2.0 + cos(πx) cos(πy))(1.0 +

0.2 cos(t)) when M + N < K where M = 0.3K =

(0.6 + 0.3 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), N = (1.0 +

0.7 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), µ(t, x, y) ∈ [1.23, 2.33],

ν(t, x, y) ∈ [1.44, 2.33] in Figures 16A,B and M = 0.6K =

(1.2 + 0.0.6 cos(πx) cos(πy))(0.6 + 0.4 cos(t)), N = (0.6 +

0.4 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), µ(t, x, y) ∈ [1.2, 2.0],

ν(t, x, y) ∈ [1.11, 1.33] in Figures 16C,D. Also let, r1 = r2 =

r = 1.0, (u0, v0) = (0.5, 0.5), d1 = d2 = 1.0 on

� = (0, 1) × (0, 1). The time average over a specific time

interval are 〈u(., x, y)〉 = 1
2π

2π+T
∫

T

u(t, x, y)dt and 〈v(., x, y)〉 =

1
2π

2π+T
∫

T

v(t, x, y)dt, respectively. It is noticed that the time

average profiles in Figures 16A,B is similar to the steady pattern

in Figures 10A,C. We found that due to intense interspecific

competition and slightly higher values of ν compared to µ

species u is persist and v dies out (refer to, Figures 16A,B),

which is expected according to Theorem 3. Also, the contour

profile of u corresponds to the contour pattern of K with the

increase of time. Opposite observation is found while considering

M = 0.6K, and N = (0.6 + 0.4 cos(πx) cos(πy))(1.0 +

0.2 cos(t)) for µ, ν > 1 and it is observed that the time

average for periodic time dependent function the patterns
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FIGURE 16

Contour plots of 〈u(., x, y)〉, and 〈v(., x, y)〉 of (2.5) when M + N < K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)), r1 = r2 = r = 1.0,

(u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0, for (A,B) M = 0.3K = (0.6+ 0.3 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (1.0+ 0.7 cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

µ(t, x, y) ∈ [1.23, 2.33], ν(t, x, y) ∈ [1.44, 2.33], and (C,D) M = 0.6K = (1.2+ 0.0.6 cos(πx) cos(πy))(0.6+ 0.4 cos(t)),

N = (0.6+ 0.4 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [1.2, 2.0], ν(t, x, y) ∈ [1.11, 1.33] on � = (0, 1)× (0, 1).

FIGURE 17

Contour plots of 〈u(., x, y)〉, and 〈v(., x, y)〉 of (2.5) when M + N ≥ K where K = (2.0+ cos(πx) cos(πy))(1.0+ 0.2 cos(t)),

M = (1.5+ 0.0.6 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), N = (0.8+ 0.7 cos(πx) cos(πy))(1.0+ 0.2 cos(t)), µ(t, x, y) ∈ [0.6, 1.0], ν(t, x, y) ∈ [0.71, 1.0],

r1 = r2 = r = 1.0, (u0 , v0) = (0.5, 0.5), d1 = d2 = 1.0 on � = (0, 1)× (0, 1).

in Figures 16C,D correspond to the steady state patterns

in Figures 10B,D.

Example 9. Consider the time dependent function for model

(2.5) when M + N ≥ K on � = (0, 1) × (0, 1). Assume

K = (2.0 + cos(πx) cos(πy))(1.0 + 0.2 cos(t)), M =

(1.5 + 0.0.6 cos(πx) cos(πy))(1.0 + 0.2 cos(t)), N = (0.8 +

0.7 cos(πx) cos(πy))(1.0 + 0.2 cos(t)) for which µ(t, x, y) ∈

[0.6, 1.0], ν(t, x, y) ∈ [0.71, 1.0]. Also let, r1 = r2 = r = 1.0,

(u0, v0) = (0.5, 0.5), d1 = d2 = 1.0. We get the time average

contour profiles of u(t, x, y) and v(t, x, y) produce ideal pair for

the time dependent function which converges to M and N as time

grows up. Also, the time average contour profiles in Figure 17

relate to the steady state pattern in Figure 13. We find that while

both M and N are non-proportional with K than for µ, ν ∈ (0, 1)

both species survive and pick up the finest solution (M,N) known

as the ideal free pair.

6. Summary of the study

We studied two species’ competition dynamics that describe

the competition and cooperation of both species in a

heterogeneous environment with different imposed diffusion

strategies. Several results have been established, considering

the weak and strong competition, based on the intensity of

spatially dependent competition coefficients. For a generalized

non-symmetric growth function, we have discovered that if

the first species follow K− driven diffusion and at the same

time, the other species diffuse according to their resource
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distribution, then in the case of weak competition (µ(x), ν(x) <

1) both species sustain in the competition. Additionally, rising

over time, its solution converges to the resource functions,

forming an ideal free pair. However, in the case of strong

competition (µ(x), ν(x) > 1), no coexistence is possible and

there exists at least one semi-trivial solution. Furthermore, if

both organisms follow the resource base diffusion, then once

again, for µ(x), ν(x) < 1 ideal pair is guaranteed to be attained

in battle. The model’s efficacy for the case of one and two

space dimensions is presented via numerical computation both

for space and time-dependent cases, which is very effective

from an ecological perspective. The findings may provide

insight into the management of species invasions. If a more

efficient diffuser is an invader, and all other factors remain

constant, the invasive species’ higher competitive coefficient

may drive the local species to extinction. In addition, the

enforced diffusion tactics are essential for researching grazing

animals, marine organisms, and various winter birds. On

the other hand, the population always moves in a good

environment and leaves an unfavorable one, which can lead

to unpredictable habits, like human behavior. The idea of

different diffusion strategies is often closely connected to

the creation and diffusion of knowledge as well as to the

technological evolution of society. For more current advanced

study on the model of human dynamical analysis, refer to

Ali et al. [24]. The outcomes of the investigation can be

extended by considering three species’ population dynamics

while they follow similar diffusion strategies with different

competition coefficients.
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A mathematical model on the
transmission dynamics of typhoid
fever with treatment and booster
vaccination

Abdulai Kailan Suhuyini and Baba Seidu*

Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology

and Applied Sciences, Navrongo, Ghana

Typhoid fever is a potentially fatal illness that is caused by the bacteria Salmonella

typhi. In this study, a deterministic mathematical model was formulated to

look into transmission dynamics of typhoid fever with treatment and booster

vaccination. The reproduction numberR0 is calculated using the next-generation

matrix approach. Then, a stability analysis on the equilibrium points was performed

using Routh–Hurwitz criteria. It was revealed that the disease-free equilibrium

point is locally asymptotically stable whenever R0 is less than 1 together with

other conditions. We also showed that R0 ≤ 1 does not guarantee global stability

of the typhoid-free equilibrium point and corroborated the result by showing the

possible existence of backward bifurcation at R0 = 1. The model parameters in

R0 were also subjected to sensitivity analysis, which revealed that the transmission

rate, infection through an exposed person, and bacteria are the most influential

parameters of the reproduction number R0. Numerical simulations were run to

determine the impact of various parameters on the dynamics of typhoid.

KEYWORDS

booster vaccination, bifurcation, mathematical modeling, typhoid fever, vaccination,

basic reproduction number

1. Introduction

Typhoid fever, also known as enteric fever, is an enfeebling infectious disease that infects

humans. It is normally high in children below the age of 6 years of age and is relatively

average in adults. Bacteria, known as Salmonella typhi (S. typhi), are the primary cause of

typhoid fever. The disease is usually contracted by infecting humans through the intake of

fecal discharges from an infected person, contaminated water or food, and by sharing basic

utensils, such as cups, spoons, bowls, and others, with an infected person. Some express

it bluntly by saying that a person who has contracted typhoid fever has eaten the feces

of a carrier or another infected person. These gram-negative bacteria find their way into

the body through the aforementioned ways into the small intestine and then shed into

the bloodstream by macrophages in the reticuloendothelial system [1]. The symptoms of

typhoid fever include prolonged low to high fever, severe headache, loss of appetite, body

pain and weight loss, dry cough, diarrhea or constipation, itching or rashes, and also, to

some extent nausea, and abdominal pain. At the chronic stage of typhoid, perforation of

the intestine and neurological complications are observed in the patient [2]. Endemic cases

of typhoid fever are recorded in both developed and developing countries, thereby making

it a public health concern. This disease still remains a concern, even despite the recent

improvements in water sanitation [3]. Usually, it takes 7–14 days for the disease to manifest

in an infected person. The patient is given antibiotic treatment, after which the person
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may feel better a few days later. Still, in the worse case, an infected

person without a proper treatment could develop complications

resulting in death. Vaccines against typhoid fever are only partially

effective. The said vaccines are usually manufactured only for those

persons who are prone or are exposed to hotspot areas of the

disease [4]. Hence, the jabs of typhoid fever vaccines are seen as

one of the core factors in curbing the transmission of the disease.

The available vaccines in the system now are of two types that are

oral and injectable. Among the injectable types, we have: typhoid

conjugate vaccine, Tya, and Vi capsular polysaccharide vaccine.

They are about 30% to 80% effective within the first 2 years of

the specific vaccine in question. When a person takes on the drug-

resistant strain of typhoid fever and is not properly managed with

effective antibiotics, then there is a high chance of it resulting in

complications [5]. It is estimated that typhoid fever cases have risen

from 11million to 21.5million and fivemillion cases of paratyphoid

fever worldwide, with 200,000 deaths occurring each year [6]. It is

also estimated that African countries have not been left out with

an increasing number of cases between 10 and 100 per 100,000

individuals, with children being the most infected due to poor

hygiene and sanitation. As a result of the high rate of infection and

the rising spirit of the disease strain, typhoid has become a burden

that has turned into a major world health problem. However,

vaccination seems to be the essential method for controlling the

transmission of the disease [7]. Several mathematical models have

been proposed to study the dynamics of infectious diseases. Among

the diseases that have gained much attention from mathematical

modelers are HIV/AIDS [8–10, and references therein], malaria

[11, and references therein], and tuberculosis [12, and references

therein]. With the advent of coronavirus disease (COVID-19),

several models have been proposed to study the dynamics and

control of the disease [13, 14, and references therein]. González-

Guzmán [15] appears to be from among the first researchers to

have developed a mathematical model to study the spread of

typhoid fever. Following González-Guzmán [15], several models

have been proposed to help increase the understanding of the

spread and control of typhoid fever. Specifically, Wameko et al.

[16] proposed a deterministic ODE compartmental model for

the dynamics of typhoid fever with a susceptible-carrier-infected-

recovered (ESCIR) pattern for the human population and a

pathogen compartment B(t). The recent study of Ayoola et al. [17]

analyzed a similar compartmental model for the spread of typhoid

fever by incorporating optimal education and vaccination control

strategies. A six-class compartmental model by Ogunlade et al. [18]

describes the application of deterministic and stochastic models to

the dynamics of typhoid fever. They first analyzed the deterministic

model and then transformed it into a stochastic model where

the mean and variance were determined. The stochastic model

simulations were done using the Euler–Maruyama numerical

scheme. Even though the research indicates that controls, such

as vaccination, screening, and treatments, are effective enough

to reduce the spread of the disease, hospitalization and personal

hygiene could not be considered to help control the disease. Other

interesting models of typhoid fever can be seen in Peter et al. [19],

Peter et al. [20, 21], and Musa et al. [7].

To the best of our knowledge, no typhoid fever model

that incorporates treatment and booster vaccination as control

measures has been proposed. Therefore, this research seeks to

develop a mathematical fever model that incorporates vaccination,

treatment, booster vaccine, and pathogen populations.

The rest of the article is arranged as follows: In Section

2, the model of interest is formulated. In Section 3, basic

qualitative properties, including positivity and boundedness of

model solutions, stability of equilibrium points of the model, are

discussed. In Section 4, the model is numerically simulated to

illustrate the analytical results obtained and to study the impact of

model parameters on model output behavior. Finally, in Section 5,

the main conclusions drawn from the study are presented.

2. Formulation of the mathematical
model

Based on the model proposed by Ayoola et al. [17],

we incorporate double-dose vaccination with treatment and a

compartment to monitor the concentration of the bacteria in the

environment. The said model consists of six human compartments

and one pathogen compartment. These are: the singly vaccinated

populationV , the susceptible population, S, the exposed E, infected,

I, recovered R, and those who have received the booster vaccine

VB. The pathogen concentration is given by B. Therefore, the total

human population is given by N = V + S + E + I + R + VB + B.

The susceptible represents the people who are uninfected but stand

the chance of getting infected with the disease. This compartment

increases through the following:

• Recruitment at rate n3h, where3h is the recruitment rate into

the population and n is the proportion of the recruits who

are susceptible,

• Loss of immunity of the single-vaccinated individuals. The

rate of loss of immunity by the single-vaccinated individuals

is taken to be ν1, The recovered population may lose their

temporal immunity and join the susceptible at rate θ .

The susceptible population also reduces due to the following:

• Infection as a result of effective contact with the exposed

and infected persons at the rate of (1 − η)βSλ, where λ =

β (γ1E+ γ2I + γ3B). A proportion η of those susceptible

become exposed, while the remainder become infectious right

away due to compromised immune system,

• Vaccination at rate φ.

• Natural death at rate µ.

The single-dose vaccinated population increases through

recruitment at a rate (1− η)3h, vaccination of the susceptible

and recovered at rates of ν1, and ν2, respectively. The vaccinated

population also reduces as a result of: the loss of immunity at rate φ,

going in for booster vaccine at a rate ρ, and through natural death

at a rate µ. The exposed compartment increases through some

fraction η of susceptible population following effective contact

with infected, exposed persons and the pathogen at a rate η Sλ, and

decreases as a result of the natural recovery rate of w, the natural

mortality rate of µ, and the development of clinical symptoms at

a rate of ψ . The infected compartment grows through infection

following the effective contact with exposed, infected persons and

the shed pathogen in the environment at rate (1− η) λ S, and
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FIGURE 1

Compartmental diagram of the model.

progression of exposed individuals into the infected class at rate

ψ . The infected population diminishes in the following manner: a

successful treatment at rate τ , a disease-induced mortality at rate

of δ, and natural mortality rate of µ. The recovered compartment

population increases through a successful treatment of infected

persons at the rate of τ and natural self-recovery of the exposed at

the rate of w. The recovered compartment also reduces as a result

of temporal immunity loss at the rate θ , rate of vaccination ν2,

and natural mortality rate µ. The booster vaccinated compartment

grows through the intake of booster vaccine by the vaccinated

compartment at the rate ρ and reduces as a result of the natural

mortality rate µ and the Pathogen concentration increases through

the shedding of pathogens by exposed and infectious persons at

rates ξ1 and ξ2, respectively. The decay rate of pathogens is taken

to be µb.

The schematic diagram that represents the model described

thus far is presented in Figure 1.

The following set of differential equations therefore

describes the dynamics of typhoid spread with double-dose

vaccination scheme:

dV
dt

= (1− n)3h + ν1 S+ ν2 R− (φ + ρ + µ)V;
dS
dt

= n3h + φ V + θ R− (ν1 + µ+ λ) S;
dE
dt

= ηλ S− (µ+ ψ + w)E;
dI
dt

= (1− η) λ S+ ψ E− (δ + τ + µ)I;
dR
dt

= τ I + wE− (θ + ν2 + µ)R;
dVB
dt

= ρ V − µVB;

dB
dt

= ξ1E+ ξ2I − µbB.























































(1)

Where necessary, we use the following conventions in

subsequent discussions.

k1 = (φ + ρ + µ) , k2 = (ν1 + µ) , k3 = (µ+ ψ + w) ,

k4 = (δ + τ + µ) , k5 = (θ + ν2 + µ) .

In Table 1, the model parameters and their baseline values

are presented.

3. Qualitative properties

3.1. Positivity of solutions

Theorem 1. Let � =
{

(VB,V , S,E, I,R) ∈ R
6
+

}

. If positive

conditions and initial conditions are provided for Equation (1),

then all its solutions remain positive for t > 1.

Thus, V(t) > 0, S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0,

VB(t) ≥ 0, B(t) ≥ 0 of the system is positive for all t > 1.

Proof. Considering the first of Equation (1), we have

dV

dt
= (1− n)3h + ν1 S+ ν2 R− (φ + ρ + µ)V

dV

dt
≥ − (φ + ρ + µ)V

∫

1

V
dV ≥ −

∫

(φ + ρ + µ) dt

Integrating both sides gives

ln |V| ≥ − (φ + ρ + µ) t + c

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org29

https://doi.org/10.3389/fams.2023.1151270
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kailan Suhuyini and Seidu 10.3389/fams.2023.1151270

TABLE 1 Description and values of parameters for model (Equation 1).

Parameter Description Baseline
value

Source

3h Human recruitment rate 100 [22]

ν1 Rate of vaccination 0.260 Assumed

ν2 Rate of vaccination 0.220 Assumed

φ Loss of vaccination 0.130 Estimated

n Fraction of recruited

susceptible

0.670 Estimated

ρ Booster vaccination 0.75 Estimated

µ Natural mortality rate 0.0041 Estimated

η proportion of susceptible 0.650 Assumed

τ Treatment rate 0.851 [22]

w Recovery rate from

exposed

0.676 [23]

δ Typhoid-induced

mortality rate

0.0022 [22]

ψ Rate of progression into

Infection

0.142 Estimated

θ Loss of Immunity upon

recovery

0.7204 [24]

β Transmission rate 0.714 Estimated

ξ1 Rate of bacteria

excretion (Exposed)

0.0818 [25]

ξ2 Rate of bacteria

excretion (Infected)

0.0712 [25]

γ1 Infectiousness from

exposed

0.02 [19]

γ2 Infectiousness from

infected

0.01 [19]

γ3 Infectiousness from

bacteria

0.01 [19]

µb Rate of bacteria decay 0.0645 [25]

V ≥ C1e
−(φ+ρ+µ)t

Where C1 is the integration constant, i.e., V(0) = C1. Therefore,

V(0) ≥ 0 ∀ t > 0.

Similarly, we can show this for
{

S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0,VB(0) ≥ 0,B(0) ≥ 0
}

model variables. As a result, the model’s solution is positive.

3.2. Boundedness of solutions

Adding all equations consisting of human compartments from

model system (1) gives;

dN
dt

= 3h − Nµ− δ I

dN

dt
≤ 3h − Nµ (2)

Solving Equation (2) yields

N(t) ≥,N(0)e−ut +
3h

µ

(

1− e−ut
)

Now,

lim
t→∞

N(t) ≤
3h

µ
(3)

Thus, N (t) is bounded.

With use of the inequality (Equation 3), we obtained from the

seventh equation of system (Equation 1) that,

dB(t)

dt
≤
3h (ξ1 + ξ2)

µ
− µbB (t) (4)

Solving inequality (Equation 4), we have

B(t) ≤ B(0)e−µbt +
3h (ξ1 + ξ2)

µµb

(

1− e−µbt
)

(5)

Taking the limits will give

lim
t→∞

B(t) ≤
3h (ξ1 + ξ2)

µµb
(6)

Hence, B(t) is bounded as well. Thus, the aforementioned results

indicate that the solutions of system (Equation 1) are positive and

bounded in the region.

� =

{(

V , S, E, I, R, VB

)

∈ R
6
+|V + S+ E+ I + R+ VB

≤
3h

µ
;B(t) ≤

3h (ξ1 + ξ2)

µµb

}

3.3. Equilibrium points of model

3.3.1. Typhoid-free equilibrium point and basic
reproduction number

The typhoid-free equilibrium ET0 =
(

V0, S0, 0, 0, 0, V0
B, 0

)

is obtained by equating the dynamic system of Equation (1) to zero

together with the conditions E = 0, I = 0,R = 0, and B = 0. Then,

we have;

S0 =
3h((1−n)φ+nk1)

k1k2−φν1
,

V0 =
3h((1−n)k2+nν1)

k1k2−φν1
,

V0
b
=

ρ3h((1−n)k2+nν1)
µ(k1k2−φν1)

.















(7)

The basic reproduction number, which is often denoted by R0, is

an epidemiological quantity which is used to describe the average

number of secondary infections that are recorded as a result of

introducing an infected individual into an otherwise completely

susceptible population. Several techniques have been developed to

determine this threshold for deterministic ODE models. In this

article, we employ the method of Driessche et al. [26] to obtainR0

for the typhoid fever model. Following the technique in Driessche
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et al. [26], the infected sub-system of model system (Equation 1) is

given by the following set of equations.

dE
dt

= η Sλ− k3E;
dI
dt

= (1− η) Sλ+ ψ E− k4I;
dB
dt

= ξ1E+ ξ2I − µbB.











(8)

According to Driessche and Watmough [26], the, matrix F

represents the component consisting of the infection terms

(transmission) and V contains all other terms (transitions). The

transmission and transition matrices are then given by

F = β S0







ηγ1 ηγ2 ηγ3

(1− η) γ1 (1− η) γ2 (1− η) γ3
0 0 0






,

and V =







k3 0 0

−ψ k4 0

−ξ1 −ξ2 µb






.

Therefore,

FV
−1 =

β S0

µb k3 k4






ηζ1 η k3 (γ2µb + γ3ξ2) ηγ3 k3 k4
(1− η) ζ1 (1− η) k3 (γ2µb + γ3ξ2) (1− η) γ3 k3 k4

0 0 0






,

Where ζ1 = µb

(

γ1 k4 + γ2ψ
)

+ γ3
(

ψξ2 + ξ1 k4
)

.

It is easy to determine that the basic reproduction

number taken as the spectral radius of FV−1 [26] is given by

R0 =
β S0

[

γ1µbη k4 + γ2
[

µbηψ + (1− η) k3µb

]

+ γ3
[

(1− η) k3ξ2 + η
(

ψξ2 + ξ1k4
)]]

µbk3k4
.

3.3.2. Endemic equilibrium point
At a typical non-trivial equilibrium point E∗ =

(

V∗
B ,V

∗, S∗,E∗, I∗,R∗,B∗
)

, we have the following.

dV

dt
= 0,

dS

dt
= 0,

dE

dt
= 0,

dI

dt
= 0,

dR

dt
= 0,

dVB

dt
= 0,

dB

dt
= 0.

Solving the set of equations above, the endemic equilibrium point

can be explicitly expressed in terms of λ∗ and other model

parameters as follows:

S∗ =
(φ(1−n)+nk1)3h

8λ∗k1+k1k2−φν1
,

E =
η(φ(1−n)+nk1)3hλ

∗

k3(8λ∗k1+k1k2−φν1)
,

I∗ =
(

ψη

k3k4
+

1−η
k4

)

λ∗S∗,

R∗ =
[

ηω
k3k5

+
(

ψη

k3k4k5
+

1−η
k4k5

)

τ
]

λ∗S∗,

B∗ =
[

ηξ1
k3µb

+
(

ψη

k3k4µb
+

1−η
k4µb

)

ξ2

]

λ∗S∗,

V∗ =
(1−n)3h

k1
+

[

ν1
k1

+ ν2

(

ηω
k1k3k5

+
(

ψη

k1k3k4k5
+

1−η
k1k4k5

)

τ
)

λ∗
]

S∗,

V∗
b
=

ρ
µ

[

ν1
k1

+ ν2

(

ηω
k1k3k5

+
(

ψη

k1k3k4k5
+

1−η
k1k4k5

)

τ
)

λ∗
]

S∗

+
ρ(1−n)3h
µ k1

,

8 = 1−
(φν2+θk1)
k1k3k4k5

[

τ (1− η) k3 + η
(

ωk4 + ψτ
)

]

.























































































(9)

Where

λ∗ = β
(

γ1E
∗ + γ2I

∗ + γ3B
∗
)

(10)

Substituting E∗, I∗, and B∗ into (10) and simplifying give

λ∗

[

λ∗ −

(

k1k2 − φν1
)

8
(R0 − 1)

]

= 0. (11)

Solutions of Equation (11) are λ∗ = 0, corresponding to

the typhoid-free equilibrium, and λ∗ =
(k1k2−φν1)

8
(R0 − 1),

corresponding to the typhoid-persistent equilibrium. The following

result is easily established.

Lemma 1. The typhoid fever model (Equation 12) has an

epidemiologically reasonable disease-free equilibrium point only

whenR0 > 1.

Proof. It is easy to notice that
(k1k2−φν1)

8
> 0 by substituting the

expressions for k1, k2, . . . k5, and simplifying. This implies that

the λ∗ > 0 if R0 > 0 and λ∗ ≤ 0 if R0 ≤ 1. We note that λ∗ > 0

is associated with a positive endemic equilibrium. This concludes

the proof.

3.4. Stability of equilibrium points

We investigate the local stability of the typhoid-free equilibrium

and the endemic equilibrium of the basic reproduction number, in

this section, using the Lyapunov second technique, which states

that an equilibrium point is locally asymptotically stable if all

eigenvalues of the associated Jacobian have negative real parts and

unstable otherwise.

3.4.1. Local stability of equilibrium points
The typhoid-free equilibrium ET0 is locally asymptotically

stable, if and only if all eigenvalues of the Jacobian matrix of system

(Equation 1) at the ET0 have negative real parts. Now, let X =

(S, E, I, R, V , VB, B). Then, model (Equation 1) can be written

in the form dX
dt

= f (X), where fi(X) = dXi
dt
, where Xi is the ith

component of X.

The Jacobian matrix of the model evaluated at typhoid-free

equilibrium we have J(ET0) is given by

J(ET0) =























−k1 ν1 0 0

φ −k2 −γ1β S0 −γ2β S
0

0 0 ηγ1β S0 − k3 ηγ2β S
0

0 0 (1− η) γ1β S
0 + ψ (1− η) γ2β S0 − k4

0 0 w

ρ 0 0 0

0 0 ξ1 ξ2

ν2 0 0

θ 0 −γ3β S0

0 0 ηγ3β S0

0 (1− η) γ3β S0

−k5 0 0

0 −µ 0

0 0 −µb
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FIGURE 2

(A–H) Graphs of sensitivity indices of endemic equilibrium point, and R0.
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TABLE 2 Sensitivity indices of endemic equilibrium andR0.

Par V∗ S∗ E∗ I∗ R∗ V∗
b

B∗ R0

3h 0.94967 0.025017 1.4518 1.4518 1.4518 0.94967 1.4518 1.0000

ν1 0.079707 –0.021137 –0.38175 –0.38175 –0.38175 0.079707 –0.38175 –0.84487

ν2 0.11923 0.0000 –0.48209 –0.48209 –0.70626 0.11923 –0.48209 0.0000

φ –0.052327 –0.092072 0.27321 0.27321 0.27321 –0.052327 0.27321 0.17508

n –0.24147 0.020089 1.1659 1.1659 1.1659 –0.24147 1.1659 0.80302

ρ –0.93200 –0.56061 0.041211 0.041211 0.041211 0.068004 0.041211 –0.16601

µ –0.21621 0.015254 –0.38595 –0.39528 –0.43201 -1.2162 –0.3894 –0.21526

η –0.018594 –0.21486 1.0862 –1.0999 0.081086 –0.018594 0.27634 0.22037

τ 0.049869 0.33092 –0.094795 –1.0465 –0.072583 0.049869 –0.44736 –0.33941

ω 0.073227 0.55791 –0.96616 –0.36404 –0.14909 0.073227 –0.7431 –0.57222

δ –0.00163 0.00086 –0.00338 –0.00584 –0.00451 –0.00163 –0.00429 –0.00088

ψ 0.0030737 0.035518 –0.17955 0.18182 –0.013404 0.0030737 –0.045681 –0.036429

θ –0.057561 0.0000 0.59224 0.59224 –0.14181 –0.057561 0.59224 0.0000

β –0.050327 –0.97498 0.45184 0.45184 0.45184 –0.050327 0.45184 1.0000

ξ1 –0.027968 –0.54182 0.2511 0.2511 0.2511 –0.027968 0.88064 0.55572

ξ2 –0.016458 –0.31884 0.14776 0.14776 0.14776 –0.016458 0.51822 0.32702

γ1 –0.0044106 –0.085445 0.039598 0.039598 0.039598 –0.0044106 0.039598 0.087638

γ2 –0.0014909 –0.028883 0.013386 0.013386 0.013386 –0.0014909 0.013386 0.029625

γ3 –0.044426 –0.86065 0.39886 0.39886 0.39886 –0.044426 0.39886 0.88274

µb 0.044426 0.86065 –0.39886 –0.39886 –0.39886 0.044426 –1.3989 –0.88274

If Y is a typical eigenvalue, then the characteristic polynomial

of J is given by

(µ+ Y)
(

Y + k5
) (

Y2 +
(

k1 + k2
)

Y + k1 k2 − ν1 φ
)

9 (Y) = 0

where

9 (Y) = Y3 +11Y
2 +12Y +13,

11 = µb + k3 + k4 − β S
0 (η γ1 + (1− η) γ2) ,

12 = β S0
[

k4γ1η + ηψγ2 + ξ2 (1− η) γ3

−
(

µbγ1η + γ2 (1− η)
(

µb + k3
))

+ ηξ1γ3

]

+µb

(

k3 + k4
)

+ k3 k4,

13 = k3 k4 µb (1−R0) ,

12 = β S0
[

k4γ1η + ηψγ2 + ξ2 (1− η) γ3

−
(

µbγ1η + γ2 (1− η)
(

µb + k3
))

+ηξ1γ3

]

+ µb

(

k3 + k4
)

+ k3 k4

Clearly, two of the eigenvalues of J (ET0), namely,−µ and−k are

negative. Two other eigenvalues can be determined as,

Y3,4 =

(

k1 + k2
)

±

√

(

k1 + k2
)2

− 4
(

k1k2 − ν1φ
)

2
,

which clearly have negative real parts since
(

k1k2 − ν1φ
)

> 0,

and
(

k1 + k2
)

> 0. Now, the condition for stability of typhoid-

free equilibrium point rests on the zeros of 9(Y). These roots have

negative real parts if11 > 0, 12 > 0, 13 > 0, and1112 > 13.

Clearly, 13 > 0 wheneverR0 < 1. Therefore, the local stability of

ET0 is characterized in the following result.

Lemma 2. The typhoid-free equilibrium point ET0 is locally

asymptotically stable whenever R0 < 1 and the conditions 11 >

0, 12 > 0, and1112 > 13 also hold. The equilibrium point is

unstable otherwise.
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A B

C D

FIGURE 3

Contour plots showing the impact of various parameters on the basic reproduction number R0 as functions of (A, B), β and γ2, (C) β and γ3, and (D)

τ and ρ.

3.5. Global stability of typhoid-free
equilibrium points

To study the global stability of the typhoid-free equilibrium

point, we define the Lyapunov function

L =
[

γ1k4µb + ψγ2µb +
(

ψξ2 + k4ξ1
)

γ3
]

E

+ k3 (γ2µb + γ3ξ2) I + γ3k3k4B.

The time derivative of L is given by

dL

dt
=

[

γ1k4µb + ψγ2µb +
(

ψξ2 + k4ξ1
)

γ3
] dE

dt

+ k3 (γ2µb + γ3ξ2)
dI

dt
+ γ3k3k4

dB

dt
.

Upon substituting the expressions for dE
dt
, dI

dt
, and dB

dt
into

the aforementioned equation and simplifying, we obtain

the following.

dL
dt

= k3k4µb

(

S
S0
R0 − 1

)

(γ1E+ γ2I + γ3B) ;

≤ k3k4µb

(

3h

µ S0
R0 − 1

)

(γ1E+ γ2I + γ3B) , since S ≤ N ≤
3h
µ
.

Now,
3h

µ S0
R0 =

(k1k2−φν1)R0

µ((1−n)φ+nk1)
, and hence, L

t ≤ 0 if R0 ≤

µ((1−n)φ+nk1)
(k1k2−φν1)

.

Therefore, even though R0 ≤ 1 is required for local stability, it

is not sufficient for global stability. This suggests the existence of

backward bifurcation, which will be explored in the next section.

3.6. Sensitivity analysis

Mathematical models have always been proposed and used

to make predictions. The reliability of the predictions from these
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FIGURE 4

(A–D) Time series plots of model variables showing the impact of varying the rate of administration of the first dose of vaccine.

models depends not only on the precision or accuracy of the

models, but also on the precision or accuracy of the model inputs,

which are mostly in the form of model parameters. Data on these

model parameters are often uncertain. Thus, the measurement of

model parameters can affect predictions by models. It is therefore

important to study the impact of variations in model parameters

on the model output. This is done through sensitivity analysis. In

this section, we adopt the forward normalized sensitivity index to

study the effect of small changes in model parameters on model

predictions. This index allows us to determine the parameters with

the maximum impact on the model output, so that these models

can be targeted for an accurate or precise measurement and also

to optimize model predictions. The normalized sensitivity index is

defined as follows:

ϒ
p
z =

∂ z

∂ p
×

p

z
.

Where z is an output that depends differentiably on the

model input p. Using this index, we determined the sensitivity

indices of endemic equilibrium and the basic reproduction

number and evaluated them using the model parameter values

given in Table 1. The sensitivity indices are presented in

Table 2.

The sensitivity indices indicate the percentage change in the

given model output that follows from a percentage change in the

model input. Positive indices indicate that a percentage increase

(decrease) in the model input leads to a corresponding decrease

(increase) in the model output. The graphs in Figure 2 present the

sensitivity indices.

We observe that the recruitment rate, 3h, has a high impact

on all, except the susceptible population at equilibrium. The

proportion of immigrants who are susceptible also has a high

impact on exposed and infected populations. This implies that

the inflow of persons into the population should be checked, so

as to ensure that they are all vaccinated against typhoid. The

transmission rate, β , also has a high impact on disease progression.

We also observe that the rate at which individuals who come into

contact with the pathogen sources remain exposed and not become
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FIGURE 5

(A–D) Time series plots showing the impact of administration of the booster dose of vaccine.

infected has a high impact on disease spread. These parameters

should be targeted to ensure that they are reduced or increased

(whichever is appropriate) to keep the infections low. Specifically,

to reduce or eradicate typhoid, the following measures should be

carried out:

• The parameters, 3h,φ, n, β , ξ1, ξ2, γ1, γ2, and γ3, should

be reduced.

• The parameters, ν1, µ, τ , ω, δ,ψ , and µb, should be increased.

We note however that increasing death rate in humans is not

a good option and should hence be ignored.

3.7. Bifurcation analysis

In this section, we study the existence and direction of

bifurcation in model (Equation 1). It is easy to show that the

Jacobian of the model evaluated at the typhoid-free equilibrium

point ET0 has a simple eigenvalue (i.e., a zero eigenvalue)

when R0 = 1. Therefore, the center manifold theory [27]

can be employed to study the nature of the bifurcation of

the model.

To do this, we set x1 = V , x2 = S, x3 = E, x4 = I, x5 = R, x6 =

VB, and x7 = B, so that the model can be written as follows:

0 = (1− n)3h + ν1 x1 + ν2 x5 − k1x1;

0 = n3h + φ x1 + θ x5 − k2λ x2;

0 = ηλ x2 − k3x3;

0 = (1− η) λ x2 + ψ x3 − k4x4;

0 = τ x4 + wx3 − k5x5;

0 = ρ x1 − µ x6;

0 = ξ1x3 + ξ2x4 − µbx7.































































(12)
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FIGURE 6

(A–D) Time series plots of model variables for varying values showing the impact of treatment rate.

The left and right eigenvectors
(

v andw, respectively
)

associated with the simple eigenvalue are given as follows:

w1 =
w4[((τ (γ1µb+γ3ξ1)−(γ2µb+γ3ξ2)ω)(θν1+k2ν2)η+k3k5ν1(γ2µb+γ3ξ2))βS0−k3µbτ(θν1+k2ν2)]

(k1k2−φν1)(βηS0(γ1µb+γ3ξ1)−k3µb)k5
,

w2 =
w4[((φν2+θk1)(τ (γ1µb+γ3ξ1)−(γ2µb+γ3ξ2)ω)η+k3k5k1(γ2µb+γ3ξ2))βS0−k3µbτ(φν2+θk1)]

(k1k2−φν1)(βηS0(γ1µb+γ3ξ1)−k3µb)k5
,

w3 =
βηS0(γ2µb+γ3ξ2)w4

k3µb−βηS
0(γ1µb+γ3ξ1)

,

w5 =
(

ωβηS0(γ2µb+γ3ξ2)

k5(k3µb−βηS
0(γ1µb+γ3ξ1))

+ τ
k5

)

w4,

w6 =
ρw1
µ

,

w7 =
(

ξ1βηS
0(γ2µb+γ3ξ2)

(k3µb−βηS
0(γ1µb+γ3ξ1))µb

+
ξ2
µb

)

w4,

v1 = v2 = v5 = v6 = 0, v3 =
[k4µb−β S0(1−η)(γ2µb+γ3ξ2)]v4

(γ2µb+γ3ξ2)βηS
0 , v7 =

γ3k4v4
γ2µb+γ3ξ2

.

Taking

β∗ =
µbk3k4

S0
[

γ1µbη k4 + γ2
[

µbηψ + (1− η) k3µb

]

+ γ3
[

(1− η) k3ξ2 + η
(

ψξ2 + ξ1k4
)]]

as a bifurcation parameter, the nature and direction of

bifurcation are determined by the bifurcation coefficients
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A B

C D

FIGURE 7

(A–D) Time series plots showing the impact of loss of immunity after the first vaccination.

defined by

a =

n
∑

i,j,k=1

vkwiwj
∂2fk

∂xi∂xj

(

ET0,β
∗
)

,

b =

n
∑

i,k=1

vkwi
∂2fk

∂xi∂β

(

ET0,β
∗
)

.

Direct computation and simplification yield the following.

a =
2k4µb

(γ2µb+γ3ξ2)S
0

(

k3(γ2µb+γ3ξ2)

k3µb−β
∗ηS0(γ1µb+γ3ξ1)

)

w4w2v4;

b =
k4k3µbw4v4

β∗(k3µb−β
∗ηS0(γ1µb+γ3ξ1))

.

where w4 and v4 satisfy

(

k4µb − (γ2µb + γ3ξ2) β (1− η) S
0

k3µb − βηS0 (γ1µb + γ3ξ1)
+ 1

+

(

ηβ (−γ1ξ2 + γ2ξ1) S
0 + k3ξ2

)

γ3k4
(

k3µb − βηS0 (γ1µb + γ3ξ1)
)

(γ2µb + γ3ξ2)

)

w4v4 = 1.

Since the signs of the bifurcation coefficients are not clearly known,

the system exhibits backward bifurcation at R0 = 1 whenever

a > 0 and b > 0 [27].

4. Numerical simulation

In this section, we perform numerical simulations of the

proposed model (Equation 1). The dynamic model system is

simulated using the ode45 routine in MATLAB. The initial

conditions used are given by

N(0) = 1, 548, V(0) = 300, S(0) = 1, 000, E(0) = 50, I(0) = 25,

R(0) = 23, VB(0) = 120, B(0) = 500.

The the parameter values listed in Table 1 were used in the

simulation. The simulation was performed to demonstrate the

impact of each parameter on the transmission of typhoid fever.

Contour plots, showing the impact of various parameters on the

basic reproduction numberR0, are presented in Figure 3.
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In Figure 4, the time series plots of model variables, showing

the impact of varying the rate of administration of the first

dose of typhoid vaccine, are presented. It is observed that

increasing the rate of vaccine administration has the potential of

driving infections downward. A similar effect of booster vaccine

administration is observed from Figure the time series plots

given in Figure 5. However, the booster vaccine is observed

to have a far lesser impact on driving infections than the

single dose. In Figure 6, the time series plots of model variables

for varying values of the treatment rate are presented. It

is observed that increasing the treatment rate has a very

significant impact on infections but not so much for the other

compartments. In Figure 7, time series plots showing the impact

of loss of immunity after the first vaccination are presented.

It is observed that an increased loss of immunity leads to an

increase in the susceptible population and an increase in the

Infected population.

5. Conclusions

This study formulated and analyzed a mathematical model

for the transmission dynamics of typhoid fever disease, taking

into account, both the booster vaccination and treatment. The

region within which the analysis of the model is reasonable was

determined. The typhoid-free and endemic equilibrium points

were also determined. The basic reproduction number, R0, was

then calculated using the next-generation matrix method of

Driessche and Watmough [26]. The local and global stability

conditions for the equilibrium points were investigated. We

demonstrated that the model may exhibit backward bifurcation

when R0 = 1 under some conditions. Therefore, the condition

R0 < 1 may not be sufficient to eradicate typhoid fever in

the community. A sensitivity analysis of the model parameters

was conducted to determine the relative impact of changes

in those model parameters on endemic equilibrium values

and R0. It was observed that the most influential parameters

include the transmission rate, β , recruitment rate, 3h, and

the fraction of recruits who are susceptible, n. A numerical

simulation was then conducted to illustrate the impact of various

model parameters on the state variables. The results largely

agree with the sensitivity index results. However, the results

show that the booster vaccination may not be very effective in

endemic areas.
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Estimation of influenza incidence 
and analysis of epidemic 
characteristics from 2009 to 
2022 in Zhejiang Province, China
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Xinyi Wang 1, Tianyin Fu 1, Ke Yang 1, Junfen Lin 1* and Qinbao Lu 1*
1 Center for Disease Control and Prevention (Zhejiang CDC), Zhejiang, Hangzhou, China, 2 Hangzhou 
Center for Disease Control and Prevention (HZCDC), Hangzhou, China

Background: Influenza infection causes a huge burden every year, affecting 
approximately 8% of adults and approximately 25% of children and resulting 
in approximately 400,000 respiratory deaths worldwide. However, based on 
the number of reported influenza cases, the actual prevalence of influenza 
may be greatly underestimated. The purpose of this study was to estimate the 
incidence rate of influenza and determine the true epidemiological characteristics 
of this virus.

Methods: The number of influenza cases and the prevalence of ILIs among 
outpatients in Zhejiang Province were obtained from the China Disease Control 
and Prevention Information System. Specimens were sampled from some cases 
and sent to laboratories for influenza nucleic acid testing. Random forest was 
used to establish an influenza estimation model based on the influenza-positive 
rate and the percentage of ILIs among outpatients. Furthermore, the moving 
epidemic method (MEM) was applied to calculate the epidemic threshold for 
different intensity levels. Joinpoint regression analysis was used to identify the 
annual change in influenza incidence. The seasonal trends of influenza were 
detected by wavelet analysis.

Results: From 2009 to 2021, a total of 990,016 influenza cases and 8 deaths were 
reported in Zhejiang Province. The numbers of estimated influenza cases from 
2009 to 2018 were 743,449, 47,635, 89,026, 132,647, 69,218, 190,099, 204,606, 
190,763, 267,168 and 364,809, respectively. The total number of estimated 
influenza cases is 12.11 times the number of reported cases. The APC of the 
estimated annual incidence rate was 23.33 (95% CI: 13.2 to 34.4) from 2011 to 
2019, indicating a constant increasing trend. The intensity levels of the estimated 
incidence from the epidemic threshold to the very high-intensity threshold were 
18.94 cases per 100,000, 24.14 cases per 100,000, 141.55 cases per 100,000, 
and 309.34 cases per 100,000, respectively. From the first week of 2009 to the 
39th week of 2022, there were a total of 81 weeks of epidemics: the epidemic 
period reached a high intensity in 2 weeks, the epidemic period was at a moderate 
intensity in 75 weeks, and the epidemic period was at a low intensity in 2 weeks. 
The average power was significant on the 1-year scale, semiannual scale, and 
115-week scale, and the average power of the first two cycles was significantly 
higher than that of the other cycles. In the period from the 20th week to the 35th 
week, the Pearson correlation coefficients between the time series of influenza 
onset and the positive rate of pathogens, including A(H3N2), A (H1N1)pdm2009, 
B(Victoria) and B(Yamagata), were − 0.089 (p = 0.021), 0.497 (p < 0.001), −0.062 
(p = 0.109) and − 0.084 (p = 0.029), respectively. In the period from the 36th week of 
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the first year to the 19th week of the next year, the Pearson correlation coefficients 
between the time series of influenza onset and the positive rate of pathogens, 
including A(H3N2), A (H1N1)pdm2009, B(Victoria) and B(Yamagata), were 0.516 
(p < 0.001), 0.148 (p < 0.001), 0.292 (p < 0.001) and 0.271 (p < 0.001), respectively.

Conclusion: The disease burden of influenza has been seriously underestimated 
in the past. An appropriate method for estimating the incidence rate of influenza 
may be  to comprehensively consider the influenza-positive rate as well as 
the percentage of ILIs among outpatients. The intensity level of the estimated 
incidence from the epidemic threshold to the very high-intensity threshold 
was calculated, thus yielding a quantitative standard for judging the influenza 
prevalence level in the future. The incidence of influenza showed semi-annual 
peaks in Zhejiang Province, including a main peak from December to January of 
the next year followed by a peak in summer. Furthermore, the driving factors of 
the influenza peaks were preliminarily explored. While the peak in summer was 
mainly driven by pathogens of A(H3N2), the peak in winter was alternately driven 
by various pathogens. Our research suggests that the government urgently needs 
to address barriers to vaccination and actively promote vaccines through primary 
care providers.

KEYWORDS

estimation, influenza, random forest, moving epidemic method, Joinpoint regression

Background

Influenza is an acute respiratory infectious disease caused by 
influenza virus, which is an RNA virus that is divided into three types: 
A, B and C (1, 2). The types of A, B and C not only reflect the order in 
which the virus was discovered but also, more importantly, reflect the 
order of harm to human beings (3, 4). Influenza A virus is the main 
epidemic strain and can lead to a global influenza pandemic. It is 
widely transmitted among animals, which can lead to a flu epidemic 
among animals and cause a large number of animal deaths (5, 6). 
Compared with influenza A virus, influenza B virus causes only local 
outbreaks and does not cause pandemics. Influenza C virus generally 
appears in a scattered form; it mainly affects infants and does not 
cause epidemics (7). Subtypes of influenza A–i.e., H3N2 virus and 
H1N1pdm2009 virus–and influenza B virus are the main viruses 
circulating in the population (8).

Influenza is mainly transmitted by droplets, and people are 
generally susceptible to infection (2). Influenza virus can cause 
different degrees of infection, ranging from mild illness requiring 
hospitalization to severe illness and sometimes even death (9, 10). 
Each year, a substantial disease burden is attributed to seasonal 
influenza (11). Influenza infections annually affect approximately 8% 
of adults and approximately 25% of children, resulting in 
approximately 400,000 respiratory-related deaths worldwide 
according to the World Health Organization (WHO) (12). From 2006 
to 2019, the annual number of outpatient visits for influenza-related 
influenza-like diseases (ILIs), number of hospitalizations for severe 
acute respiratory infections (SARIs) and number of excessive 
respiratory deaths in mainland China were 3 million, 2.34 million and 
90,000,000, respectively, leading to a total economic burden of 
26.38 billion yuan and accounting for 0.266 ‰ of the 2019 GDP (13). 
However, compared with the number of reported cases of influenza, 

the actual prevalence of influenza may be greatly underestimated (14). 
From 2005 to 2010, the number of reported influenza cases in 
mainland China was only 45,672, 57,557, 36,434, 41,692, 198,381 and 
64,502, respectively; however, the estimated incidence of influenza in 
Guangzhou city in 2006 was 2,382/100,000, approximately equal to 
237,413 cases, which was far more than the reported number of cases 
in the whole country (15). Therefore, reports of influenza-like illness 
(ILIs) are usually used to estimate the trend of disease instead of 
reports of influenza alone (14, 16). However, according to a previous 
study, the specificity of ILIs for estimating the incidence of influenza 
is only 77%, thus leading to an overestimate of the incidence of 
influenza (14). The purpose of this study is to establish an influenza 
estimation model based on the percentage of ILIs among outpatients 
and the influenza-positive rate and to correct the reported incidence 
level. Furthermore, the moving epidemic method (MEM) was applied 
to calculate the epidemic threshold for different intensity levels based 
on the estimated weekly incidence. Joinpoint regression analysis was 
used to identify the annual change in estimated influenza incidence. 
The seasonal periodicity of weekly incidence of influenza was detected 
by wavelet analysis.

Materials and methods

Data collection

Data regarding newly diagnosed influenza cases and the 
prevalence of ILIs among outpatients in Zhejiang Province were 
collected between week 1 in 2009 and week 39 in 2022 from the China 
Disease Control and Prevention Information System. The population 
data used to calculate the incidence rate was updated by the company 
responsible for system operation and maintenance and the new 
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population data was imported into the system every December. The 
incidence rate of influenza was computed by the system and can 
be exported. Data on the influenza A (H1N1)pdm2009 subtype from 
2009 to 2013 were reported separately, and these cases were added to 
the total number of influenza cases in the corresponding year. 
Specimens were sampled from some cases and sent to laboratories for 
A(H3N2), A (H1N1)pdm2009, B(Victoria) and B(Yamagata) 
influenza nucleic acid testing or antigen testing. The diagnosis of 
influenza virus is based on the diagnosis and treatment criteria, 
including ‘Diagnostic criteria for influenza’ (Version 2008), ‘Guidelines 
for diagnosis and treatment of influenza A (H1N1)pdm2009’ (3rd Edn 
2009) and ‘Guidelines for diagnosis and treatment of influenza’ 
(Version 2019) (17–19). When a symptomatic case has positive results 
of any of the following pathogenic tests, it is diagnosed as a confirmed 
case, including positive influenza virus nucleic acid test, positive 
influenza antigen test, positive influenza virus culture isolation, and 
the level of influenza virus-specific IgG antibody in the double sera of 
acute and convalescent patients increased by 4 times or more.

Random forest analysis

Random forest is a widely used method for data prediction and 
classification calculation. Random forest is a combinatorial 
classification intelligent algorithm based on statistical learning theory. 
The basic idea of this method is to combine multiple weak classifiers 
with complementary functions to form a strong classifier. By reducing 
the impact of single classifier errors, the accuracy and stability of 
model classification can be improved. The main step is to randomly 
select k subtraining sample sets from the total training sample set 
through bootstrap sampling and establish a decision classification 
subtree model. Then, m is randomly selected from the n indices of 
each node in the classification tree and segment according to the 
optimal segmentation index. The previous step is repeated to traverse 
K classification subtrees to determine multiple classification results. 
Then, the final classification result is determined by voting. 
Approximately 36.8% of the samples in this model will not appear in 
the bootstrap sampling set. This part of the data is called OOB (Out 
Of Bag) data. OOB data can be used to evaluate the decision subtree 
model and determine the error classification rate of the decision 
subtree, namely, the OOB error (20).

We established the training model based on the reported influenza 
cases as a dependent variable and the observed weekly percentage of 
ILIs among outpatients and influenza-positive rate during 2019–2022 
as the independent variables. In the next step, we estimated the weekly 
number of influenza cases from 2009 to 2018.

Joinpoint regression

Joinpoint regression is also called piecewise regression, broken-
line regression or multiphase regression. This model does not require 
the data series itself to show an obvious trend, and it is increasingly 
used to determine the degree of change in time series data. Joinpoint 
regression analysis software uses the Z score to test the hypothesis of 
segmentation points to determine whether the data have sufficient 
evidence to add how many segmentation points. The first step assumes 
that there is no segmentation point, that is, H0. If H0 is rejected, then 

the analysis is used to test whether there is statistical significance 
between 1 segmentation point and n segmentation points, and so 
on (21).

The objective indicator was the annual percent change (APC) of 
each period segment, estimated according to the following formula:

 APCi i= ( ) −  ×exp ,β 1 100  (1)

where βi  represents the slope of the period segment (22).

Wavelet analysis (22)

The wavelet method is a reasonable method for studying periodic 
phenomena in time series, especially when the existence of potential 
frequency changes with time. Morlet wavelet is used to analyze the 
frequency structure of univariate and bivariate time series. This 
continuous complex wavelet leads to the continuous complex wavelet 
transform of the time series at hand, so the information can be saved 
by carefully selecting the time and frequency resolution parameters. 
The transformation can be divided into a real part and an imaginary 
part to provide information about the local amplitude and 
instantaneous phase of any periodic process in time, which is a 
prerequisite for studying the correlation between two time series (22).

Moving epidemic method (23)

The MEM includes three main steps. The first step is to determine 
the time length of the epidemic season and the time nodes of the 
beginning and end of the epidemic season from a professional 
perspective based on the epidemic law of the disease and to divide the 
epidemic season into the pre-epidemic period (from the beginning of 
the epidemic season to the end of the epidemic season), the epidemic 
period (from the beginning of the epidemic season to the end of the 
epidemic season) and the post-epidemic period (from the end of the 
epidemic season to the end of the epidemic season). The second step 
is to calculate the pre-epidemic baseline, pre-epidemic threshold 
(epidemic start threshold), post-epidemic baseline and post-epidemic 
threshold (epidemic end threshold) by using the pre-epidemic and 
post-epidemic monitoring index values of historical data. The 
pre-epidemic/post-epidemic baseline is calculated using the 
arithmetic mean of all its monitoring indicators. For the calculation 
of the pre-epidemic/post-epidemic threshold of the current epidemic 
season, the n maximum monitoring indicators (n = 30/N, N is the 
number of epidemic seasons) of each historical epidemic season are 
taken, for a total of n × N = 30 values, and the upper limit of its 
one-sided 95% confidence interval is calculated. The third step is to 
calculate the different-intensity thresholds of the current epidemic 
period by using the monitoring index values of the epidemic period 
in the historical epidemic season for monitoring and warning. The 
specific method is as follows: select the maximum value of n 
monitoring indicators in the historical epidemic period, totaling 
n × N = 30 values; then, define the upper limit of the one-sided 40, 90 
and 97.5% confidence intervals of the geometric mean of the 30 
maximum monitoring index values, which correspond with the 
medium, high and extremely high intensity thresholds, respectively. 
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Influenza epidemic intensity level is defined as ① baseline: weekly 
monitoring index value < epidemic start/end threshold; ② 
low-intensity epidemic: epidemic threshold ≤ weekly monitoring 
index value < medium-intensity threshold; ③ moderate-intensity 
epidemic: moderate-intensity threshold ≤ weekly monitoring index 
value < high-intensity threshold; ④ high-intensity epidemic: high-
intensity threshold ≤ weekly monitoring index value < extremely 
high-intensity threshold; ⑤ extremely high-intensity epidemic: weekly 
monitoring index value ≥ extremely high-intensity threshold.

Statistical analysis

The joinpoint regression model was constructed using joinpoint 
software (version 4.5.0.1). The random forest modeling, MEM model 
and wavelet analysis were run by R Studio (version 1.2.5001). A p 
value less than 0.05 indicated statistical significance for all the tests.

Results

Basic information

From 2009 to 2021, a total of 990,016 influenza cases and 8 related 
deaths were reported in Zhejiang Province. The annual influenza 
incidence varies widely from 4.9498 cases per 100,000 to 850.2056 
cases per 100,000. The percentage of ILIs among outpatients fluctuated 
across years and followed a bimodal seasonal pattern, where the peak 
epidemic period was always from the 51st week of a year to the 8th 
week of the next year; additionally, there was sometimes a small peak 
in summer. The highest prevalence of ILIs among outpatients was 
12.11%, which was observed in the 48th week of 2009 and was mainly 
affected by the influenza A (H1N1)pdm2009 subtype. The lowest 
prevalence was 1.69%, which was observed in the 49th week of 2010 
(Figure  1A). The intensity levels of the prevalence of ILIs among 
outpatients from the epidemic threshold to the very high-intensity 

FIGURE 1

MEM model with intensity levels and time-series of weekly percentage of ILIs among outpatients (A) and weekly influenza-positive rate (B).
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threshold were 4.66, 5.48, 9.79, and 12.65%, respectively. The weekly 
influenza-positive rate was similar across different years, and the peak 
of the epidemic was driven by the alternation of different influenza 
subtypes into dominant strains. The lowest weekly influenza-positive 
rate was 0%, and the highest rate was 69.33%, which was observed in 
the first week of 2020 (Figure 1B). The intensity levels of the influenza-
positive rate from the epidemic threshold to the very high-intensity 
threshold were 37.01, 42.23, 80.33 and 89.64%, respectively.

Estimation of the incidence of influenza 
and the trend from 2009 to 2021

Based on the observed weekly percentage of ILIs among 
outpatients and the influenza-positive rate during 2019–2022, the 
training model was established. The mean absolute percentage error 
(MAPE) of the model was 26.10%. The raw predicted data and the 
actual data were well matched (Figure 2). The numbers of estimated 
influenza cases from 2009 to 2018 were 743,449, 47,635, 89,026, 
132,647, 69,218, 190,099, 204,606, 190,763, 267,168 and 364,809, 
respectively. However, the number of reported cases during the same 
periods was only 20,385, 4,063, 2,694, 2,908, 3,302, 9,700, 7,970, 
14,394, 30,434 and 94,091, respectively. The total number of estimated 
influenza cases is 12.11 times the number of reported cases.

The time series of the estimated annual incidence rate is 
significantly different from the curve of the reported annual incidence 
rate. The final selected model of the reported annual incidence rate 
was the 2 joinpoints relative to the 0 joinpoint (p < 0.001) and 1 
joinpoint (p < 0.001). The APCs were − 17.70 (95% CI: −31.40 to 
−1.20) from 2009 to 2016, 349.99 (95% CI: 206.40 to 560.80) from 
2016 to 2019, and − 51.91 (95% CI: −62.00 to −39.20) from 2019 to 
2021, which were significant differences at the 0.05 level (test 
statistic = −2.70, 10.10, −8.00, respectively, p < 0.001). The APC 
indicated a gradual decreasing trend from 2009 to 2016; then, it 
showed a sharp upward trend from 2016 to 2019 and decreased again 
after 2019 (Figure  3A). The final selected model of the estimated 

annual incidence rate was also the 2 joinpoints relative to the 0 
joinpoint (p < 0.001) and 1 joinpoint (p = 0.01). The APC was 23.33 
(95% CI: 13.2 to 34.4) from 2011 to 2019, indicating a monotonically 
increasing trend, but the APC before 2011 and after 2019 was not 
significantly different from zero(Figure 3B).

Intensity level of influenza, seasonal 
periodicity and driving factors

The inner parameters of the model was set from 1.5 to 3%, 
increasing by 0.1% each time, and the fitted Youden index of all 
models was between 0.4709 and 0.5450, of which the parameter 
corresponding to the maximum Youden index is 1.8%, and the 
correspondingspecificity, sensitivity, positive predictive value and 
negative predictive value, were 0.95, 0.56, 0.75 and 0.89, respectively. 
The intensity levels of the estimated incidence from the epidemic 
threshold to the very high-intensity threshold were 18.94 cases per 
100,000, 24.14 cases per 100,000, 141.55 cases per 100,000, and 309.34 
cases per 100,000, respectively. According to the estimated time series 
of influenza incidence, the influenza incidence level is at the baseline 
level in most of the time periods, and most of the peaks of the 
influenza epidemic corresponded to a the moderate intensity level. 
From the first week of 2009 to the 39th week of 2022, there were a total 
of 81 weeks of epidemics, of which the epidemic period reached a high 
intensity in 2 weeks, the epidemic period was at a moderate intensity 
in 75 weeks, and the epidemic period was at a low intensity in 2 weeks. 
The epidemic reached a high intensity in the 52nd week of 2019 and 
the first week of 2020; the respective incidence rates were 148.89 cases 
per 100,000 and 148.20 cases per 100,000. Based on the reported 
incidence, the number of influenza cases reported in the week before 
2018 was very low and fluctuated very little between different weeks, 
making it impossible to detect the peak epidemic (Figure 2).

For the incidence rate of reported cases, it is almost impossible to 
observe obvious seasonal characteristics before 2017. After adjusting 
the reported incidence rate, an obvious peak of incidence in winter and 

FIGURE 2

MEM model with intensity levels and time series of weekly estimated incidence and reported incidence.

45

https://doi.org/10.3389/fpubh.2023.1154944
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2023.1154944

Frontiers in Public Health 06 frontiersin.org

spring can be observed, which usually occurs from December to March 
of the next year from 2009 to 2022. In addition, there was also a peak 
incidence in summer in 2009, 2014, 2015, 2017 and 2022. Figure 4 
shows the wavelet power spectrum for the estimated incidence of 
influenza. The average power was significant on the semiannual scale, 
1-year scale, and 115-week scale, and the average power of the first two 
cycles was significantly higher than that of the other cycles. The average 
power indicated that this disease showed half a year peaks, including a 
main peak from December to January of the next year followed by a 
peak in summer. This periodicity is not significant at all times. From 
the 47th week of 2010 to the 40th week of 2013 and from the 8th week 
of 2020 to the 32nd week of 2021, there was no obvious semiannual 
periodicity of the incidence. The 1-year scale was also relatively weak 
from the 44th week of 2011 to the 41st week of 2013.

Because the influenza season has two waves, it was divided into 
two periods: the first section is from the 20th week to the 35th week, 
and the second section is from the 36th week of the first year to the 

19th week of the next year. In the first period, the Pearson correlation 
coefficients between the time series of influenza onset and the positive 
rate of pathogens, including A(H3N2), A (H1N1)pdm2009, 
B(Victoria) and B(Yamagata), were 0.497 (p < 0.001), −0.089 
(p = 0.021), −0.062 (p = 0.109) and − 0.084 (p = 0.029), respectively. In 
the second period, the Pearson correlation coefficients between the 
time series of influenza onset and the positive rate of pathogens, 
including A (H1N1)pdm2009, A (H3N2), B (Victoria) and B 
(Yamagata), were 0.516 (p < 0.001), 0.148 (p < 0.001), 0.292 (p < 0.001) 
and 0.271 (p < 0.001), respectively.

Discussion

Influenza virus infections are very common worldwide, and the 
incidence of influenza can only be estimated (14, 24). Two major 
surveillance subsystems under the China Disease Control and 

FIGURE 4

Wavelet power of the estimated incidence of influenza. (A) Wavelet power spectrum of the series. (B) The average power of the whole period.

FIGURE 3

Trend of influenza incidence between 2009 and 2021 in the joinpoint regression model. (A) The reported annual incidence rate. (B) The estimated 
annual incidence rate.
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Prevention Information System, including the Infectious Disease 
Monitoring and Reporting System and the Influenza-Like Illness (ILI) 
Surveillance System, have been officially used for the monitoring and 
analysis of influenza in China (25). However, due to the limitations of 
diagnostic criteria and the fact that not everyone was tested for 
influenza, the reported incidence of influenza differs greatly from the 
actual incidence level (14, 15). Therefore, influenza-like illness (ILI) is 
usually used to estimate the trend of disease instead of influenza (14, 
16). However, a previous study showed that the level of influenza-like 
cases is important for monitoring influenza infection and had the best 
sensitivity (86%) and specificity (77%) values (26). However, based on 
the percentage of ILIs among outpatients, the actual prevalence of 
influenza may be overestimated. In our study, from the 11th week of 
2020 to the 53rd week of 2020, the weekly median level of the 
percentage of ILIs among outpatients was 3.21, which was higher than 
the weekly median level from 2010 to 2016; however, the weekly 
average level of influenza-positive rate in the same period was almost 
0. This suggests that the level of influenza incidence during this period 
is very low, and the use of the percentage of ILIs among outpatients 
instead of measuring influenza cases will lead to significant 
overestimation. Therefore, an appropriate method for estimating the 
incidence rate of influenza may be to comprehensive consider the 
influenza-positive rate in addition to the percentage of ILIs 
among outpatients.

According to our research, the actual incidence level of influenza 
is far higher than the current reported number, which also indicates 
that the disease burden of influenza has been seriously underestimated 
in the past. The reported incidence of influenza increased rapidly in 
2019, mainly due to the revision of the Guidelines for the Diagnosis 
and Treatment of Influenza, in which the rapid antigen detection 
method was added as the diagnostic standard. Compared with 
previous studies, only a few samples were reported with positive 
nucleic acid detection. According to the number of reported cases, the 
incidence of influenza from 2011 to 2016 showed a downward trend, 
but after estimation with the model, we found that the incidence of 
influenza in this period actually showed an upward trend, which 
suggested that incomplete diagnosis and inaccurate reporting would 
lead to misunderstanding of the epidemic trend. The result of a rapid 
increasing trend of influenza is similar to several previous studies (25, 
27). There are several reasons that may be related to the increasing 
trend of influenza during this period. Influenza vaccination is the 
most effective way to prevent influenza infection and reduce severe 
influenza-related complications (28). The reductions in the numbers 
of vaccine supplements and low vaccination coverage rate might be an 
important factor for the increased incidence of influenza. The lack of 
an influenza vaccine may be mainly due to the vaccine scandal caused 
by improper vaccine storage and production in 2016 and 2018, 
respectively (25, 29). In addition, the use of automatic data acquisition 
and reporting systems, which improved both the quantity and quality 
of data collection, might be another reason (30). In addition, the rapid 
increase in the number of airlines and high-speed rail transport in 
recent years will make it easier for influenza virus to spread on a larger 
scale and in a shorter time across the country (31). The outbreak 
growth of influenza cases in 2009 is obviously attributable to the 
spread and widespread impact of influenza A (H1N1) pdm2009 (25). 
Due to the response to the COVID-19 pandemic, some prevention 
and control measures, including the improvement of self-protection, 
the isolation of cases and close contacts, and the reduction in social 

activities of the population, have led to a reduction in several 
infectious diseases, including influenza and tuberculosis transmission, 
in 2020, and this effect may last until 2021 (8, 32). During the period 
of this study, Chinese Mainland adopted the strategy of containment 
and elimination of the COVID-19 epidemic. Once cases with 
suspicious symptoms were found, nucleic acid testing and strict 
diagnosis were required, and all possible close contacts were tracked 
and managed to achieve the goal of clearing cases in a short period of 
time. Therefore, the context of each case of COVID-19 is very clear, 
and there will be no misclassification with influenza cases. According 
to the model of the estimated annual incidence rate, the decreasing 
trend was not significantly different from zero after 2019, which 
suggests that influenza incidence is gradually returning to the level 
before 2020 (8).

The epidemic threshold is affected by the regional heterogeneity 
of monitoring data, and the intensity thresholds vary according to the 
historical rates (33). Through the correction of the influenza incidence 
level, we  calculated the influenza incidence intensity grading 
threshold, which provides a quantitative standard for judging the 
influenza prevalence level in the future. Before the winter peak in 
2019–2020, the epidemic level of influenza in Zhejiang Province was 
at the middle or lower level. Influenced by the prevention and control 
of COVID-19, the winter peak of 2019–2020 was interrupted, during 
which the influenza epidemic was at the baseline level. This impact 
lasted for nearly 2 years until the summer peak of influenza reappeared 
in 2022. In general, the established influenza grading model has good 
performance, especially its specificity, which reaches 95%. According 
to previous studies, compared with sensitivity, specificity is a more 
important indicator for detecting influenza epidemics because false-
positives will cause excessive public concern and trigger unnecessary 
influenza prevention and control measures, such as antiviral use, 
enhanced vaccination or nondrug intervention (23).

According to wavelet analysis, the influenza epidemic in Zhejiang 
Province mainly experiences semiannual peaks – one in winter and 
the other in summer–while the periodicity of the long cycle across the 
year is relatively less significant, which is similar to previous studies 
(34, 35). Further research shows that the peak of influenza incidence 
in Zhejiang Province in summer was mainly driven by pathogens of 
A(H3N2), while the peak in winter was alternately driven by various 
pathogens, including A(H3N2),A (H1N1)pdm2009, B(Victoria) and 
B(Yamagata). However, the summer influenza epidemic peak in 
southern China may not always occur regularly (34). In our study, the 
summer epidemic was not obvious in two periods, and the latter 
period was mainly due to the decline in the overall incidence level 
caused by the management and control of the COVID-19 pandemic. 
Another reason for the summer epidemic is the impact of relative 
humidity (RH) on the survival and transmission of influenza virus 
(36). In summer, influenza activity is mainly driven by high humidity 
rather than high temperature because contact transmission might 
be predominant due to the increasingly large droplets produced in a 
high RH environment (37). Furthermore, the high incidence in winter 
is affected by many reasons, including the inhibition of mucociliary 
clearance, the low RH environment where aerosol transmission is 
predominant, the decreased activities of proteases and increased 
indoor crowding (3).

In conclusion, the total number of estimated influenza cases is 
12.11 times the number of reported cases. The actual incidence 
level of influenza is far higher than the current reported number, 
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which also indicates that the disease burden of influenza has been 
seriously underestimated in the past. An appropriate method for 
estimating the incidence rate of influenza may be  to 
comprehensively consider the percentage of ILIs among outpatients 
as well as the influenza-positive rate. The APC was 23.33 (95% CI: 
13.2 to 34.4) from 2011 to 2019, indicating a constant increasing 
trend during this period. The intensity level of the estimated 
incidence from the epidemic threshold to the very high-intensity 
threshold was calculated, which provides a quantitative standard 
for judging the influenza prevalence level in the future. The 
incidence of influenza showed half a year peaks, including a main 
peak from December to January of the next year followed by a peak 
in summer in Zhejiang Province. Furthermore. The driving factors 
of the influenza peak have been preliminarily explored, while the 
peak in summer was mainly driven by pathogens of A(H3N2), and 
the peak in winter was alternately driven by various pathogens. 
According to previous studies, the average annual influenza 
vaccination rate for the entire population in China was only 2%, 
while the vaccination rate for the old adult aged over 60 was 3.8%, 
the overall influenza vaccination rate in the Chinese population is 
still very low (38). As influenza vaccination is the most important 
measure of preventing influenza infections, our research suggests 
that the government urgently needs to address barriers to 
vaccination and actively promote vaccines through primary care 
providers (28).

Limitations

There are several limitations in our research that need to 
be acknowledged. First, because pathogenic surveillance cannot 
be carried out in all cases, the positive samples only represent a 
portion of cases, which may lead to bias to some degree. Second, 
the influenza incidence data were reported from the case visit 
report system, which might be affected by many factors, such as 
the case visit rate, the type of medical institution, and the 
detection rate of influenza pathogens. In future research, it 
should be considered to include mild and asymptomatic cases 
without medical treatment as much as possible to obtain a more 
complete infection spectrum. For example, it is possible to 
actively detect close contacts in school cluster outbreaks, or use 
positive results from community residents’ self-testing to 
supplement infection spectrum data. Third, data on factors 
influencing the peak incidence of different influenza subtypes 
have not been collected, and the driving factors causing the 
conversion between subtypes have not been resolved. Fourth, due 
to inaccurate classification of causes of death, the actual number 
of deaths caused by influenza cannot be estimated and the case 
fatality rate of influenza is significantly underestimated. Fifth, the 
model established in this study is black box, so the specific 
relationship between the incidence rate of influenza and the 
predicted independent variable is still unclear.
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Population di�usion in river-ocean ecologies and for wild animals, including birds,

mainly depends on the availability of resources and habitats. This study explores

the dynamics of the resource-based competition model for two interacting

species in order to investigate the spatiotemporal e�ects in a spatially distributed

heterogeneous environment with no-flux boundary conditions. The main focus

of this study is on the di�usion strategy, under conditions where the carrying

capacity for two competing species is considered to be unequal. The same

growth function is associated with both species, but they have di�erent migration

coe�cients. The stability of global coexistence and quasi-trivial equilibria are also

studied under di�erent conditions with respect to resource function and carrying

capacity. Furthermore, we investigate the case of competitive exclusion for various

linear combinations of resource function and carrying capacity. Additionally, we

extend the study to the instance where a higher migration rate negatively impacts

population growth in competition. The e�cacy of the model in the cases of

one- and two-dimensional space is also demonstrated through a numerical study.

AMS subject classification 2010: 92D25, 35K57, 35K50, 37N25, 53C35.

KEYWORDS

resource-based di�usion, global analysis, competition, numerical analysis, slow di�usion

1. Introduction

The study of spatial effects in a heterogeneous environment for two competing or

cooperating species provides a vital tool for use in population ecology that is well-

suited to capturing real-world phenomena for geographies with different attributes. The

reaction-diffusion equations [1–6] are typically and widely used as a model of spatial effect

incorporating parameters such as local growth rate, dispersal rate, and carrying capacity,

whichmay vary over time and space. These reaction-diffusion equations have been improved

continuously to enhance their ability to explain real-world situations. In practice, many

biological events show that population density and the dynamics of population behaviors are

greatly affected by the reaction and diffusion terms of the model. For population dispersion,

not only is the diffusion speed relevant, but the strategy by which species diffuse in nature

is also a vital issue that has recently become a critically important element of in-depth

analysis. In the implementation of diffusion models, numerous dispersal strategies have

appeared in models using biological particles; these strategies should be specified for species’

improved survival. In a model with regular diffusion terms, when resources are distributed
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unequally or in the case of a non-constant carrying capacity, a non-

feasible system may appear when very high levels of migration are

observed from a location with higher per-capita available resources

to a less fruitful region. Moreover, the ideal free distribution has

been approximated in [7] for a spatially dispersed population.

This exhibits a property of diffusion toward the direction of

improved fitness to produce a stable equilibrium that can be

expected to represent a solution in a temporally fixed but spatially

heterogeneous environment. However, any individual deviation

from the ideal population distribution will reduce the fitness of the

species. The fitness pattern is presented in Figure 1.

The concepts of different diffusion strategies, predator–prey

systems, nutrient–phytoplankton systems with toxic effects on

phytoplankton, and pest control are often closely connected to

the creation and diffusion of knowledge and the technological

evolution of society. For more advanced work on the dynamics

of species management, see [8, 9]. Additionally, in most scenarios,

resources are not unlimited and environmental conditions are not

optimal. Population growth may be resisted by environmental

resources due to issues like food, climate, water availability, and

others. Naturally, species tend to move toward superior locations

in terms of food, safety, or any other survival instinct. Thus,

they do not simply diffuse randomly; instead, they choose to

migrate to attain a better existence. Along with the aforementioned

observation, Braverman and Braverman [10] were the first

to introduce the notion of carrying-capacity–driven diffusion,

inspired by the selection of optimal harvesting strategies, which

have major biological significance. The stability properties of

the model were first studied in [11] with logistic-type growth.

In this type of diffusion strategy, the diffusive transport of the

population is considered proportional to the gradient of population

density per unit capacity instead of simply the population density.

The advantage of the carrying-capacity–driven diffusion strategy

relative to classical diffusion in terms of completion was initially

delineated in [12] considering logistic growth, and further explored

in [13] for a wide variety of growth functions. The latest

modification to species migration strategy was first introduced in

2016 by Braverman and Kamrujjaman in [14, 15] and is known as

the resource-based diffusion strategy. Under this type of diffusion

strategy, species diffuse according to their respective resource-

based dispersal function, in which the diffusive movement of

species is considered proportional to the gradient of population

density per unit resource rather than simply to carrying capacity.

Compared to random diffusion, the main advantage of using this

type of diffusion is that its solution coincides with the ideal free

distribution under certain conditions with respect to carrying

capacity and resource function. In this context, we can mention

several fields studied on the basis of a single species: for example,

studies of grazing animal populations [16], invasive weeds or plants

like Solanum carolinense in Europe [17], or North American Prairie

duck [18]; these studies were conducted in the experimental field,

and the experimental results show that the dispersion of these

species is directed toward the area of higher per-capita available

resources. Similar observations will be noted when considering a

pair of species in a heterogeneous environment.

It is most significant for the dynamics of two competing

populations to examine how the density of one organism or species

changes relative to others in space and time to survive under

this competitive scenario. In a competition, the main possible

outcomes are that both species triumph or one survives as the

other goes extinct. Additionally, in ecology, operating under some

instinct, both species may leave the area in a competition that

yields neither extinction nor coexistence. For a historical discussion

of the proposed models, readers are referred to [2, 7, 12, 13,

15, 19–22]. It should also be mentioned that lower diffusion

rates were favored by [2] in a heterogeneous environment, since

the authors found that the fitness levels of species differ only

according to their dispersal rate, and population growth falls as

the diffusion coefficient increases. Accordingly, in our study, the

results of [2] have been extended to a scenario where the strategy

of dispersion is the same for both species, rather than random,

which is dissimilar from [11]. This paper focuses on estimating

the possible benefits to a species adopting a strategy based on

the availability of resources, in contrast with the well-established

study of other diffusion strategies. We also examine the significance

of higher diffusion and intrinsic growth rates in a heterogeneous

environment for two competing species. These are the central

facets of our interest in studying a pair of species with various

resource distributions. See additionally [23], where a single-species

population was studied by considering Gilpin-Ayla growth and

harvesting; this study was mostly concerned with diffusion strategy,

migration coefficient, and harvesting. The present, in contrast,

study explores population distribution under an approach that

has many applications in various areas of ecology and economics;

readily applicable examples are applications in river and ocean

ecology relating to observations of the seasonal behaviors of various

species, including wild animals and winter birds. Three critical

issues are primarily considered: (i) diffusion strategies for scenarios

in which the competing species have equal and unequal carrying

capacities; (ii) slow dispersal effects; and (iii) resource distributions,

with corresponding demonstrations for each issue. Additionally,

we demonstrate that there are certain evolutionary advantages

of employing a carrying-capacity- and resource-based diffusion

strategy despite classical diffusion.

The main findings of the present study are as follows:

1. We study the global existence of solutions to the competition

model by considering two main ecological settings: Case I,

in which the carrying capacities of the interacting species are

unequal, and Case II, in which carrying capacity is equal with

different diffusion strategies. We find effects of diffusion speed

as well as interactions between resources and capacity function.

2. For unequal carrying capacity, if the first species follows

a carrying-capacity–driven diffusion strategy while the other

adopts resource-based diffusion, then the first species always

survives in competition in cases of an equal intrinsic growth

rate. We also observe that more resource consumption by the

species with the greater carrying capacity will drive the one with

the lower capacity to extinction in the competition.

3. When both species adopt the same resource-based diffusion

strategy, the species that consumes more, with a higher carrying

capacity ratio, is guaranteed to survive in the competition.

4. In addition, in cases of the same diffusion strategy, a species

that diffuses slowly has an evolutionary advantage compared to
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FIGURE 1

Population densities under (2.1) for (A) coexistence signature, and (B) extinction vs. survival.

others; this extends the result of [2] to resource-based diffusion.

We find that a higher diffusion coefficient is unconducive to

sustained competition.

5. In cases of species with different proportions of carrying

capacity and intrinsic growth rates, coexistence is also evident.

In this situation, the species’ elevated growth rate is noted,

incorporating a higher proportion of the available resources in

competition.

6. When the carrying capacity of both species is equal, we study

the case of competitive exclusion as an abbreviation of carrying

capacity and one of the resource functions for which the globally

stable semi-trivial equilibrium is observed to obtain.

7. We also present some numerical results for both one- and two-

dimensional cases. As we know, the theory does not give any

idea of the shape of the non-zero equilibrium profiles, which we

explore numerically.

8. We show via numerical computation that the existence of a state

of coexistence is also possible due to the influence of migration

coefficients. Intrinsic growth rates can also play an important

role in sustaining both species in competition.

9. Furthermore, for the case of time-periodic parameters,

numerical results suggest the existence of a time-periodic state

with the same period.

The manuscript is organized as follows. A description of the

mathematical model is provided in Section 2. Section 3 describes

the results of the model in terms of the existence and uniqueness

of solutions for non-negative and non-trivial initial conditions;

these results also justify the positivity of the solution. A coexistence

analysis and quasi-trivial equilibriumwith some preliminary results

for the case of unequal carrying capacity that are applicable in the

remainder of the discussion are presented in Section 4. Moreover,

Section 4 also presents the main results and proof of the study:

the global existence of an equilibrium for competitive exclusion

and coexistence analysis for Ku 6≡ Kv. Section 5 considers

the competitive exclusion of population for the case of Ku ≡

Kv with some auxiliary results. Section 6 presents a numerical

simulation and illustrates the application of this study for ecological

implementations. The numerical computation for the case of two

spatial dimensions is presented in Section 6.1 in the form of contour

plots for both space- and time-dependent functions. This is highly

novel to our study; it captures the ecological impact of this study

in a more biologically feasible way and justifies the theoretical

underpinnings of the main result through numerical assertion.

Finally, Section 7 provides a summary and discussion of the model

presented in this study.

2. Mathematical model

In our model, we consider the two species [notionally,

u(t, x) and v(t, x)] as a competitive system, isolated and spatially

distributed in a heterogeneous environment. Here, u(t, x) and

v(t, x) represent the population densities of two striving species,

each undergoing diffusion under similar resource-based diffusion

strategies while the most troubling situation for them is when

they fight for the same fundamental resources. The dispersal

strategies of the species are also considered to stipulate two positive

distribution functions with different carrying capacity proportions;

i.e., the system considers the carrying capacities of the competing

species to be dissimilar, with no-flux/zero Neumann boundary

conditions contemplated through the domain boundary. The

use of homogeneous Neumann boundary conditions represents

a scenario in which (i) the populations are isolated in a

closed area and there is no movement across the boundaries

of this area, and (ii) spatial immigration is compensated

through emigration to the domain. Under these assumptions, the

corresponding competitive model with homogeneous Neumann

boundary conditions associated with positive and non-trivial initial

conditions is defined as follows:


























∂u
∂t = d11

(

u(t,x)
M(x)

)

+ r1(x)u(t, x)
(

1− u+v
Ku(x)

)

, t > 0, x ∈ ω,

∂v
∂t = d21

(

v(t,x)
N(x)

)

+ r2(x)v(t, x)
(

1− v+u
Kv(x)

)

, t > 0, x ∈ ω,

n · ∇
(

u(t,x)
M(x)

)

= n · ∇
(

v(t,x)
N(x)

)

= 0, x ∈ ∂ω,

u0(x) = u(0, x), v0(x) = v(0, x), x ∈ ω.

(2.1)
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We assume that Ku > 0, Kv > 0; these expressions represent

the carrying capacity of the environment for the corresponding

species, where ri > 0, i = 1, 2 are the intrinsic growth rates, and

M,N are the species resource functions. All fall within the class of

C1+α(ω), where ω is an open non-empty isolated bounded domain

in R
n with ∂ω ∈ C2+α , and 0 < α < 1 for any x ∈ ω, which means

that r1(x), r2(x),Ku(x),Kv(x),M(x), and N(x) are all positive in an

open non-empty sub-domain of ω. Here, d1 > 0 and d2 > 0 are

the migration rates that describe the corresponding dispersal rates

of each species. The range of the solutions to (2.1) corresponds to

the set p1 × p1, which is determined by the corresponding upper

and lower solutions.

Suppose u∗ and v∗ are the stationary solutions of the first and

second equation corresponding to (2.1) when only one species

survives, so that the semi-trivial equilibria (u∗, 0) and (0, v∗) satisfy

d11

(

u∗(x)

M(x)

)

+ r1(x)u
∗

(

1−
u∗

Ku(x)

)

= 0,

x ∈ ω, n · ∇

(

u∗

M

)

= 0, x ∈ ∂ω; (2.2)

d21

(

v∗(x)

N(x)

)

+ r2(x)v
∗

(

1−
v∗

Kv(x)

)

= 0,

x ∈ ω, n · ∇

(

v∗

N

)

= 0, x ∈ ∂ω. (2.3)

Model (2.1) is a specimen of a monotone dynamical system

[5, 24, 25]. That is, when the zero equilibrium is not stable, no

coexistence equilibrium occurs for the system (2.1), and one of the

semi-trivial equilibria is also unstable, the remaining semi-trivial

equilibrium solution will be globally asymptotically stable; on the

other hand, if both semi-trivial equilibria are unstable, then (2.1)

possesses at least one stable coexistence equilibrium.

Resource-based competition model (2.1), with unequal

carrying capacities and intrinsic growth rates, is a prevalent

ecological model for inter-specific competition that captures the

reality observed in nature. Many organisms follow our stated

types of diffusion strategy, such as grazing animals [16], marine

organisms [26], zooplankton-like protozoa, and wild birds (owls,

sparrows, etc., and all kinds of winter birds).

For further analysis, it is also convenient to substitutew =
u(t,x)
M(x)

and z = v(t,x)
N(x)

, respectively. Then, system (2.1) is reduced to















































∂w(t,x)
∂t =

(

d1
M(x)

)

1w+ r1(x)w
(

1− M
Ku

w− N
Ku

z
)

,

t > 0, x ∈ ω,
∂z(t,x)

∂t =
(

d2
N(x)

)

1z + r2(x)z
(

1− M
Kv
w− N

Kv
z
)

,

t > 0, x ∈ ω,

n · ∇w = n · ∇z = 0, x ∈ ∂ω,

w0(x) = w(0, x), z0(x) = z(0, x), x ∈ ω.

(2.4)

The model then reduces to a couple of equations with

classical diffusion through smooth and positive space-dependent

coefficients d1
M(x)

and d2
N(x)

. Next, we analyze the existence,

uniqueness, and positivity of solutions to the system (2.4). To do

this, we initially confine our observations to a model that represents

the action of the system for a single species and for a pair of species.

3. Existence, uniqueness, and positivity
of solution

Consider the following directed diffusion model with

homogeneous Neumann boundary and positive initial conditions:







∂u
∂t = d11

(

u(t,x)
M(x)

)

+ r1(x)u
(

1− u
Ku(x)

)

, t > 0, x ∈ ω,

n · ∇
(

u
M

)

= 0, x ∈ ∂ω, u0(x) = u(0, x), x ∈ ω.

(3.1)

Existence and uniqueness results for species u in the form of the

Equation (3.1) are well-established for Ku = M in [13, 20, 27],

indicating that the system (3.1) has a unique and stable positive

solution. According to [5, 13, 20, 24, 27] the proof of the following

Lemma can proceed in the same way as far asM ≡ Ku orM 6≡ Ku.

Lemma 1. [20, 27] For any u0(x) ≥ 0 in ω and u0(x) 6≡ 0 in

some open and bounded sub-domain ωl ⊂ ω, there is a unique

solution u(t, x) of model (3.1) and it is positive. If M(x)
Ku(x)

≡ Constant,

then u∗(x) = Ku(x) is the only solution of (3.1), and as t → ∞

the solution converges to Ku(x), otherwise u
∗(x) is different from

Ku(x).

Similarly, we can construct the existence and uniqueness result for

the species v.

The system (2.1) is an example of a monotone dynamical

system [15, 28, 29]. According to [1, 13, 15], the system has a unique

and positive solution for Ku = Kv = K. The same procedure can

be applied to (2.1), which affords the existence and uniqueness of a

solution for a coupled system of the Equation (2.1).

Theorem 1. [13] Let u0(x) and v0(x) be non-negative on ω. Then

for any u0(x), v0(x) ∈ C(ω), the system (2.1) has a unique solution

(u, v). Furthermore, if (u0(x), v0(x)) is non-trivial and non-negative,

then for any T > 0, both u(t, x) > 0 and v(t, x) > 0.

In the next section, we express the result based upon the

stability of all steady-state solutions of the model (2.1), which are

two semi-trivial equilibria (u∗, 0) and (0, v∗), in which only a single

species persists, as well as a coexistence state (u∗, v∗), in which

both species coexist in the same environment, and finally the trivial

equilibrium (0, 0), in which both species leave the area due to

competition. The stated results are for the monotone dynamical

system that originated in [5]; for the system (2.1), we use a

modification in the form previously described in [20] [see [20],

Theorem 09, pp. 73 for more details], since system (2.1) follows

a monotone dynamical system. Additionally, a few preliminary

consequences for the existence of an equilibrium are presented in

Section 4.

4. Steady state and global analysis:
case I, Ku 6≡ Kv

For further analysis of system (2.1), we have extended the

following three auxiliary results (to be applied in completing the

following discussion), which are already established in [12–15], for

Ku = Kv = K.
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Lemma 2. [13–15] Suppose M(x),N(x),Ku(x) 6≡ Kv(x) are non-

constant and r1(x) ≡ r2(x) ≡ r(x). If M
Ku

≡ Constant, while
N
Ku

6≡ Constant and N
Kv

6≡ Constant or Ku > Kv in a non-empty

open domain x ∈ ω, then a unique and positive stationary solution

(0, v∗) to (2.1) occurs, so that

∫

ω

r(x)Ku

(

1−
v∗

Ku

)

dx > 0. (4.1)

Lemma 3. [13–15] Assume that (uc, vc) is a positive steady state

solution of system (2.1), and Ku > Kv, so that uc + vc 6≡ Ku; then

∫

ω

r(x)Ku(x)

(

1−
uc + vc

Ku

)

dx > 0.

Lemma 4. The zero equilibrium (0, 0) of themodel (2.1) is unstable

and repelling.

The proof is available in [12, 13], so we have omitted it here.

Next, we examine our key results for the system 2.1 by

inspecting the stability of two semi-trivial or quasi-trivial equilibria,

namely (u∗, 0) and (0, v∗), that occur when a single species endures

alone, as well as a coexistence equilibrium (u∗, v∗), which is a

neither quasi-trivial nor trivial equilibrium that satisfies u∗(x) >

0, v∗(x) > 0. If M(x) = Ku(x) and N(x) = Kv(x), then the semi-

trivial equilibria will converge to (Ku, 0), and (0,Kv). However,

we also confirm that, in this case, the species that survives in the

competition will always be the one adopting a carrying-capacity–

driven diffusion strategy. After considering all these possibilities,

we prove our main results.

Lemma 5. Assume that the functions M(x),N(x),Ku(x), Kv(x) are

non-constant and r1(x) ≡ r2(x) ≡ r(x). If Ku ≥ Kv for all x ∈ ω,

and M
Ku

≡ Constant while N
Ku

6≡ Constant or N
Kv

6≡ Constant or

Ku(x) > Kv(x) in a non-empty, bounded, and open domain ω, then

no coexistence state (uc, vc) of the system (2.1) will exist.

Proof. We are now interested only in cases where Ku(x) > Kv(x),

because the result for Ku(x) ≡ Kv(x) was already established in [13]

for all x ∈ ωl ⊆ ω. First, let us speculate to the contrary that there

prevails a strictly positive equilibrium state (uc, vc) of (2.1), and we

will prove that this assumption leads to a contradiction. Under this

assumption, the solution (uc, vc) satisfies



























d11
(

uc(x)
M(x)

)

+ r(x)uc

(

1− uc(x)+vc(x)
Ku(x)

)

= 0, x ∈ ω,

n · ∇
( uc
M

)

= 0, x ∈ ∂ω.

d21
(

vc(x)
N(x)

)

+ r(x)vc

(

1− uc(x)+vc(x)
Kv(x)

)

= 0, x ∈ ω,

n · ∇
( vc
N

)

= 0, x ∈ ∂ω.

(4.2)

Adding the first two equations in (4.2), integrating over ω, and

applying the Neumann boundary conditions, we obtain:

∫

ω

r(x)uc

(

1−
uc + vc

Ku

)

dx+

∫

ω

r(x)vc

(

1−
uc + vc

Kv

)

dx = 0.

(4.3)

Since Ku > Kv, it follows that
(

1− uc+vc
Kv

)

<
(

1− uc+vc
Ku

)

. Thus,

(4.3) implies:

∫

ω

r(x)
(

uc(x)+ vc(x)
)

(

1−
uc + vc

Ku

)

dx > 0. (4.4)

Now, (uc + vc)

(

1−
uc + vc

Ku

)

= Ku

(

1−
uc + vc

Ku

)

+

(uc + vc − Ku)

(

1−
uc + vc

Ku

)

.

Multiplying by r(x) and integrating the above inequality over ω

gives:

∫

ω

r(x)Ku

(

1−
uc + vc

Ku

)

dx >

∫

ω

r(x)
(uc + vc − Ku)

2

Ku
dx > 0

Therefore,

∫

ω

r(x)Ku

(

1−
uc + vc

Ku

)

dx > 0, (4.5)

which is only valid if uc + vc 6≡ Ku(x). Hence, we need to consider

the above two cases for Ku(x) > Kv(x).

Case 1:When uc + vc ≡ Ku(x), wc =
uc
M satisfies 1wc = 0, x ∈ ω,

∇wc = 0; and therefore, by the Maximum Principle [30], we have

wc ≡ Constant.

This implies that uc
M ≡ Constant, so uc ≡ cmKu such that vc =

Ku − cmKu = (1 − cm)Ku, which is constant only when cm = 1,

since Ku(x) is variable.

Case 2: Thus, we have to impose only one condition when uc+vc 6≡

Ku(x) or Ku > Kv in some non-empty open domain. Examine the

following eigenvalue problem:

d11

(

φ

M

)

+ r(x)φ

(

1−
uc + vc

Ku

)

= σφ, x ∈ ω,

n · ∇(
φ

M
) = 0, x ∈ ∂ω.

Following from the fact of variational characterization of

eigenvalues [[5], Theorem 2.1], its principal eigenvalue is conferred

by

σ1 = sup
φ 6=0,φ∈W1,2

∫

ω

−d1

∣

∣∇
(

φ
M

)∣

∣

2
dx+

∫

ω

r(x)

(

φ2

M(x)

)

(

1− uc+vc
Ku

)

dx

∫

ω

(

φ2

M(x)

)

dx
. (4.6)

Upon substituting φ = M(x), and using (4.5), we obtain:

σ1 ≥

∫

ω

r(x)Ku

(

1− uc+vc
Ku

)

dx

∫

ω

Ku(x)dx
> 0.

However, (wc, zc) is a steady state solution of (2.1); ws satisfies

d11wc + r(x)wcKu(x)

(

1−
M

Ku
wc −

N

Ku
zc

)

= 0, x ∈ ω,

∇wc = 0, x ∈ ∂ω.

and is therefore a positive principal eigenfunction of (4.6) along

with principal eigenvalue 0. This contradicts σ1 > 0, which

concludes the proof.
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Lemma 6. Suppose the functionsM(x),N(x),Ku(x),Kv(x) are non-

constant and r1(x) ≡ r2(x) ≡ r(x). If Ku ≥ Kv for all x ∈ ω,

and M
Ku

≡ Constant while N
Ku

6≡ Constant or N
Kv

6≡ Constant or

Ku(x) > Kv(x) in a non-empty, bounded, and open domain ω, then

(0, v∗) is unstable for the system (2.1).

Proof. Taking the linearization of (2.1) over (0, v∗) for the case

Ku > Kv, we obtain:

∂u

∂t
= d11

( u

M

)

+ r(x)u

(

1−
v∗

Ku

)

, t > 0, x ∈ ω,

∂v

∂t
= d21

( v

N

)

+ r(x)v

(

1−
2v∗

Kv

)

− rv∗
u(t, x)

Ku(x)
, t > 0, x ∈ ω;

and studying the associative eigenvalue problem of the equation u,

d11

(

φ

M

)

+ r(x)φ

(

1−
v∗

Ku

)

= σφ, x ∈ ω,

n · ∇

(

φ

M

)

= 0, x ∈ ∂ω. (4.7)

The quasi-trivial equilibrium (0, v∗) will not be stable if the

principal eigenvalue is positive. Next, considering (4.7): according

to [5] (Theorem 2.1), the principal eigenvalue is stated by

σ1 = sup
φ 6=0,φ∈W1,2

∫

ω

−d1
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M(x)

)

(

1−
v∗

Ku

)

dx

∫

ω

(

φ2

M(x)

)

dx
.

upon substituting φ = M(x) and using (4.1) from Lemma 2 for

Ku > Kv we obtain:

σ1 ≥

∫

ω

r(x)Ku

(

1− v∗

Ku

)

dx

∫

ω

Kudx
> 0.

Thus, σ1 > 0, which concludes the proof.

Theorem 2. Suppose the functions M(x),N(x),Ku(x), Kv(x) are

non-constant and r1(x) ≡ r2(x) ≡ r(x). If Ku ≥ Kv for all x ∈ ω,

and M
Ku

≡ Constant while N
Ku

6≡ Constant or N
Kv

6≡ Constant or

Ku(x) > Kv(x) in a non-empty, bounded, and open domain ω, then

(Ku, 0) of (2.1) is globally asymptotically stable.

Proof. According to Lemma 4, (0, 0) is a repeller. By Lemma 5, no

coexistence equilibrium exists for the system (2.1); additionally, by

Lemma 6, (0, v∗) is unstable as far as Ku > Kv. Therefore, for a

strong monotone dynamical system [15, 28, 29], the other quasi-

trivial equilibrium (Ku, 0) is globally asymptotically stable.

Similarly, under the assumption of Lemma 6 with M(x)
Ku(x)

6≡

Constant as well as M(x)
Kv(x)

6≡ Constant while N(x)
Kv(x)

≡ Constant, and

for Ku < Kv in a non-empty open domain, we can establish that

(u∗, 0) is also unstable.

The following remark follows the proof of Theorem 2.

Remark 1. Suppose the functions M(x),N(x),Ku(x), Kv(x) are

non-constant and r1(x) ≡ r2(x) ≡ r(x). If Ku ≤ Kv for all x ∈ ω,

and N
Kv

≡ Constant while M
Ku

6≡ Constant or M
Kv

6≡ Constant or

Ku(x) < Kv(x) in a non-empty, bounded, and open domain ω, then

(0,Kv) of (2.1) is globally asymptotically stable.

Similar results are presented in Appendix A for the case of

Ku 6≡ Kv, when both resource functions are proportional to

their respective carrying capacity. At this point, we have identified

the global existence of competitive exclusion, considering cases of

unequal carrying capacity while other parameters are fixed.

Remark 2. Suppose the functionsM,Ku,Kv are constant and r1 ≡

r2 ≡ r, d1 ≡ d2 ≡ d, while M
Ku

≡ Constant and N(x)
Kv

6≡ Constant.

Then, for Ku > Kv and Ku < Kv in an open, bounded, and

non-empty domain x ∈ ω, one of the semi-trivial equilibria is

globally asymptotically stable. However, for Ku ≡ Kv, a coexistence

equilibrium is possible.

Lemma 7. Suppose M(x)
Ku(x)

6≡ Constant, N(x)
Kv(x)

6≡ Constant, and

Ku(x),Kv(x) are non-constant. If Ku(x) ≥ Kv(x) for some non-

empty open domain x ∈ ω and r1(x) ≡ r2(x) ≡ r(x), then for

fixed r(x), there exists such d∗ that for d1 < d∗, the quasi-trivial

equilibrium (0, v∗) of (2.1) is not stable.

Proof. Assuming that the eigenvalue problem associates to the

foremost equation of (2.1) around (0, v∗), we have:

d11

(

φ

M

)

+ r(x)φ

(

1−
v∗

Ku

)

= σφ, x ∈ ω,

n · ∇

(

φ

M

)

= 0, x ∈ ∂ω. (4.8)

According to [5] (Theorem 2.1), the principal eigenvalue of (4.8) is

given by

σ1 = sup
φ 6=0,φ∈W1,2

∫

ω

−d1
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M(x)

) (

1− v∗

Ku

)

dx

∫

ω

(

φ2

M

)

dx
.

(4.9)

(0, v∗) will not be stable if we can execute such a φ that the

expression of the right-hand side is positive. Since Ku > Kv, from

Lemma 2 we obtain
∫

ω

r(x)Ku

(

1− v∗

Ku

)

dx > 0.

Taking φ =
√
Ku(x)M(x), and using the fact for linearly

independent M,Ku and N,Kv, let P : =
∫

ω

rKu

(

1− v∗

Ku

)

dx > 0;

then, we achieve from (4.9):

−

∫

ω

d1
∣

∣∇

(

√

Ku

M

)

∣

∣

2
dx+

∫

ω

r(x)Ku

(

1−
v∗

Ku

)

dx

= −

∫

ω

d1
∣

∣∇

(

√

Ku

M

)

∣

∣

2
dx+ P > 0,

unless Ku
M ≡ Constant, when

d1 < d∗ : = P





∫

ω

∣

∣∇

(

√

Ku

M

)

∣

∣

2
dx





−1

,

which concludes the proof.

Lemma 8. Suppose M(x)
Ku(x)

6≡ Constant, N(x)
Kv(x)

6≡ Constant, and

Ku(x),Kv(x) are non-constant. If Ku(x) ≥ Kv(x) for some non-

empty open domain x ∈ ω and r1(x) ≡ r2(x) ≡ r(x), then for

fixed r(x), there exists such d∗ that for d1 < d∗, no coexistence

equilibrium (uc, vc) of (2.1) exists.
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Proof. We initially suppose that there exists a coexistence

equilibrium (uc, vc) such that (uc, vc) satisfies the system (2.1) as



























d11
(

uc(x)
M(x)

)

+ r(x)uc

(

1− uc(x)+vc(x)
Ku(x)

)

= 0, x ∈ ω,

n · ∇
( uc
M

)

= 0, x ∈ ∂ω.

d21
(

vc(x)
N(x)

)

+ r(x)vc

(

1− uc(x)+vc(x)
Kv(x)

)

= 0, x ∈ ω,

n · ∇
( vc
N

)

= 0, x ∈ ∂ω.

(4.10)

Next, adding both the equations of (4.10), integrating over ω, and

applying the Neumann boundary conditions, we obtain:

∫

ω

r(x)uc

(

1−
uc + vc

Ku

)

dx+

∫

ω

r(x)vc

(

1−
uc + vc

Kv

)

dx = 0.

(4.11)

Since Ku > Kv, we have from (4.11):

∫

ω

r(x) (uc + vc)

(

1−
uc + vc

Ku

)

dx > 0, (4.12)

which is only possible if uc + vc 6≡ Ku. Now we must impose only

the case where uc + vc 6≡ Ku or Ku > Kv in x ∈ ω.

Consider the associate eigenvalue problem

d11

(

φ

M

)

+ r(x)φ

(

1−
uc + vc

Ku

)

= σφ, x ∈ ω,

n · ∇

(

φ

M

)

= 0, x ∈ ∂ω. (4.13)

Its principal eigenvalue is obtained according to [5] (Theorem 2.1)

as

σ1 = sup
φ 6=0, φ∈W1,2

∫

ω

−d1
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M

) (

1− uc+vc
Ku

)

dx

∫

ω

(

φ2

M

)

dx
,

(4.14)

and it will be unstable if there appears such φ that the expression

of the right-hand side is positive. Holding φ =
√
KuM

for linearly independent M,N,Ku, Kv, if we also let Q : =
∫

ω

r(x)Ku

(

1− uc+vc
Ku

)

dx > 0, we obtain from (4.14):

−

∫

ω

d1
∣

∣∇

(

√

Ku

M

)

∣

∣

2
dx+

∫

ω

r(x)Ku

(

1−
uc + vc

Ku

)

dx

= −

∫

ω

d1
∣

∣∇

(

√

Ku

M

)

∣

∣

2
dx+ Q > 0,

unless Ku
M ≡ Constant, when

d1 < d∗ : = Q





∫

ω

∣

∣∇

(

√

Ku

M

)

∣

∣

2
dx





−1

,

which concludes the proof.

For a strong monotone dynamical system [15, 28, 29], for Ku >

Kv, the following outcome is sketched by Lemma 4, Lemma 7, and

Lemma 8.

Theorem 3. Let M(x)
Ku(x)

6≡ Constant and N(x)
Kv(x)

6≡ Constant, while

M(x),N(x),Ku(x),Kv(x) are non-constant and r1(x) ≡ r2(x) ≡

r(x). If Ku(x) ≥ Kv(x) for some open, non-empty, and bounded

domain ω, then for fixed d2 and r(x) there exists d∗ such that

d1 < d∗ and the quasi-trivial state (u∗, 0) of (2.1) is globally

asymptotically stable.

The following remark follows the proof of Theorem 3.

Remark 3. Let M(x)
Ku(x)

6≡ Constant and N(x)
Kv(x)

6≡ Constant, while

M(x),N(x),Ku(x),Kv(x) are non-constant and r1(x) ≡ r2(x) ≡

r(x). If Ku(x) ≤ Kv(x) for some open, non-empty, and bounded

domain ω, then for fixed d1 and r(x), there exists d∗ such that

d2 < d∗ and the quasi-trivial state (0, v∗) of (2.1) is globally

asymptotically stable.

5. Steady state and global analysis:
case II, Ku ≡ Kv ≡ K

Let u∗ and v∗ be the steady-state solutions corresponding to the

first and second equation in (2.1) for the single species model:

d11

(

u∗(x)

M(x)

)

+ r1(x)u
∗

(

1−
u∗

K(x)

)

= 0, x ∈ ω,

n · ∇

(

u∗

M

)

= 0, x ∈ ∂ω, (5.1)

d21

(

v∗(x)

M(x)

)

+ r1(x)v
∗

(

1−
v∗

K(x)

)

= 0, x ∈ ω,

n · ∇

(

v∗

N

)

= 0, x ∈ ∂ω, (5.2)

respectively. We now present some auxiliary statements for the

equal resource distribution that justify the results in [13]. This

means when Ku ≡ Kv ≡ K, here we consider r1(x) ≡ r2(x) ≡ r(x).

Lemma 9. [13] Suppose N(x) 6≡ Constant, K(x) 6≡ Constant, and
N(x)
K(x)

6≡ Constant. If the positive solution of (5.2) is v∗, then

∫

ω

r(x)K

(

1−
v∗

K

)

dx > 0. (5.3)

Lemma 10. [13] SupposeM(x) 6≡ Constant, K(x) 6≡ Constant, and
M(x)
K(x)

6≡ Constant. If the positive solution of (5.1) is u∗, then

∫

ω

r(x)M

(

u∗

K
− 1

)

dx > 0. (5.4)

Lemma 11. [14, 22] Suppose M(x)
K(x)

6≡ Constant and N(x)
K(x)

6≡

Constant, while M(x),N(x),K(x) are non-constant and r1(x) ≡

r2(x) ≡ r(x). If K(x) = αM + βN for some α > 0, β > 0

in ω, then the coexistence state (uc, vc) of system (2.1) is globally

asymptotically stable.

Lemma 12. Suppose M(x)
K(x)

6≡ Constant and N(x)
K(x)

6≡ Constant, while

M(x),N(x),K(x) are non-constant and r1(x) ≡ r2(x) ≡ r(x). If

M(x) = αK + βN for some α > 0, β > 0 with αK,βN < M(x) in

ω, then (0, v∗) of (2.1) is not stable.
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Proof. Considering the eigenvalue problem in (2.1) for the first

equation around (0, v∗) with the usual boundary conditions, we

obtain:

d11

(

φ

M

)

+ r(x)φ

(

1−
v∗

K

)

= σφ, x ∈ ω,

n · ∇

(

φ

M

)

= 0, x ∈ ∂ω. (5.5)

The principal eigenvalue of (5.5) is defined as in [5] (Theorem 2.1),

giving:

σ1 = sup
φ 6=0,φ∈W1,2

∫

ω

−d1
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M

) (

1− v∗

K

)

dx

∫

ω

(

φ2

M

)

dx
.

(5.6)

Choosing φ = M(x) such that for M(x) = αK + βN we obtain

using (5.3) and (5.4):

σ1

∫

ω

Mdx ≥

∫

ω

rM

(

1−
v∗

K

)

dx,

now,

∫

ω

rM

(

1−
v∗

K

)

dx =

∫

ω

r(αK + βN)

(

1−
v∗

K

)

dx

= α

∫

ω

rK

(

1−
v∗

K

)

dx

+ β

∫

ω

rN

(

1−
αv∗

M − βN

)

dx

> α

∫

ω

rK

(

1−
v∗

K

)

dx

+ β

∫

ω

rN

(

1+
αv∗

βN

)

dx,

whereM(x) = αK+βN, and for positiveM(x),N(x), r(x) with β >

0, M(x) − βN(x) > −βN(x). Therefore, the principal eigenvalue

is positive, as the foremost term is positive by Lemma 9 and the

second term is non-negative, so σ1 > 0.

Lemma 13. Suppose M(x)
K(x)

6≡ Constant and N(x)
K(x)

6≡ Constant, while

M(x),N(x),K(x) are non-constant and r1(x) ≡ r2(x) ≡ r(x). If

M(x) = αK + βN for some α > 0, β > 0 with αK,βN < M(x)

in ω, then no coexistence equilibrium (uc, vc) for the system (2.1)

holds.

Proof. First, suppose to the contrary that there exists a strictly

positive coexistence equilibrium (uc, vc) of (2.1), such that the

solution (uc, vc) satisfies



























d11
(

uc(x)
M(x)

)

+ r(x)uc

(

1− uc(x)+vc(x)
K(x)

)

= 0, x ∈ ω,

n · ∇
( uc
M

)

= 0, x ∈ ∂ω.

d21
(

vc(x)
N(x)

)

+ r(x)vc

(

1− uc(x)+vc(x)
K(x)

)

= 0, x ∈ ω,

n · ∇
( vc
N

)

= 0, x ∈ ∂ω.

(5.7)

Adding the first two equations in (5.7), and integrating over

the domain ω, while also applying the homogeneous Neumann

boundary conditions,

∫

ω

r (uc + vc)

(

1−
uc + vc

K

)

dx = 0

⇒

∫

ω

rK

(

1−
uc + vc

K

)

dx =
r

K
(K − uc − vc)

2 dx > 0,

unless uc + vc 6≡ K.

So, we have
∫

ω

r(x)K

(

1−
uc + vc

K

)

dx > 0. (5.8)

Thus we have two cases:

Case 1: For uc + vc ≡ K(x), by the Maximum Principle[30],

wc ≡ Constant and zc ≡ Constant on ω in (2.1) where uc
M = wc

and vc
N = zc. Therefore,

uc + vc ≡ K

⇒ Mwc + Nzc ≡
1

α
(M − βN).

Thus, wc = 1/α, and zc = −
(

β
α

)

, which is a contradiction, since

vc > 0.

Case 2: For uc + vc 6≡ K(x), taking the eigenvalue problem

d11

(

φ

M

)

+ r(x)φ

(

1−
uc + vc

K

)

= σφ, x ∈ ω,

n · ∇

(

φ

M

)

= 0, x ∈ ∂ω,

according to [5] (Theorem 2.1), the corresponding principal

eigenvalue is stated as

σ1 = sup
φ 6=0,φ∈W1,2

∫

ω

−d1
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M(x)

)

(

1− uc+vc
K

)

dx

∫

ω

(

φ2

M(x)

)

dx
. (5.9)

Upon substituting φ = M(x), and forM(x) = αK + βN, we have:

∫

ω

r(x)M

(

1−
uc + vc

K

)

dx

=

∫

ω

r(x)(αK + βN)

(

1−
uc + vc

K

)

dx

> α

∫

ω

rK

(

1−
uc + vc

K

)

dx+ β

∫

ω

rN

(

1+
uc + vc

Nβ

)

dx.

For the last integral, we have M(x) = αK + βN > 0 and

M(x) − βN(x) > −βN(x) for non-negative N(x); and, using

(5.8), the first term of the last integral is positive. Hence, the

eigenvalue σ1 is positive for non-negative N(x), r(x) and β > 0.

However, the equilibrium solution (uc, vc) of (2.1) gives the positive

eigenfunction with 0 eigenvalues, which is contradictory with σ1 >

0. Therefore, no coexistence equilibrium (uc, vc) exists.
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The following Theorem follows Lemma 4, Lemma 12, and

Lemma 13, since according to Lemma 12, the quasi-trivial

equilibrium (0, v∗) is not stable; by Lemma 13, no coexistence

equilibrium (uc, vc) exists for the combined effect of spatial

functions; and Lemma 4 is also still valid.

Theorem 4. Suppose M(x)
K(x)

6≡ Constant and N(x)
K(x)

6≡ Constant, while

M(x),N(x),K(x) are non-constant and r1(x) ≡ r2(x) ≡ r(x). If

M(x) = αK + βN, for some α > 0, β > 0 with αK,βN < M(x) in

ω, then (u∗, 0) of system (2.1) is globally asymptotically stable.

Following a similar procedure to Lemma 12 and Lemma 13, and

also to Lemma 4, if N(x) = αK + βM, for some α > 0, β > 0 with

αK,βM < N(x) in ω and for non-constant M(x),N(x), and K(x),

we obtain the following remark.

Remark 4. Suppose M(x)
K(x)

6≡ Constant and N(x)
K(x)

6≡ Constant, while

M(x),N(x),K(x) are non-constant and r1(x) ≡ r2(x) ≡ r(x). If

N(x) = αK+βM, for some α > 0 and β > 0 with αK,βM < N(x)

in ω, then (0, v∗) of system (2.1) is globally asymptotically stable.

Lemma 14. Suppose thatM(x) ≡ N(x) satisfying N(x)
K(x)

6≡ Constant

for x ∈ ω, and M(x),N(x),K(x) are non-constant and r1(x) ≡

r2(x) ≡ r(x). If d1 > d2, then the problem (2.1) has no coexistence

state (uc, vc).

Proof. We initially suppose that there exists (uc, vc) such that

(uc, vc) satisfies the system (2.1) as



























d11
(

uc(x)
M(x)

)

+ r(x)uc

(

1− uc(x)+vc(x)
K(x)

)

= 0, x ∈ ω,

n · ∇
( uc
M

)

= 0, x ∈ ∂ω.

d21
(

vc(x)
M(x)

)

+ r(x)vc

(

1− uc(x)+vc(x)
K(x)

)

= 0, x ∈ ω,

n · ∇
( vc
M

)

= 0, x ∈ ∂ω.

(5.10)

Consider the eigenvalue problem of (5.10):



























d11
(

φ
M(x)

)

+ r(x)φ
(

1− uc(x)+vc(x)
K(x)

)

= σφ,

n · ∇
(

φ
M

)

= 0, x ∈ ω.

d21
(

8
M(x)

)

+ r(x)8
(

1− uc(x)+vc(x)
K(x)

)

= σ8,

n · ∇
(

8
M

)

= 0, x ∈ ω.

(5.11)

Taking the principal eigenvalues of the first equation of (5.11)

according to [5] (Theorem 2.1), we have

σ 1 = sup
φ 6=0, φ∈W1,2

∫

ω

−d1
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M

)

(

1− uc+vc
K

)

dx

∫

ω

(

φ2

M

)

dx
,

(5.12)

and taking the principal eigenvalues of the second equation of

(5.11) in a similar way,

σ1 = sup
86=0, 8∈W1,2

∫

ω

−d2
∣

∣∇
(

8
M

) ∣

∣

2
dx+

∫

ω

r(x)
(

82

M

)

(

1− uc+vc
K

)

dx

∫

ω

(

82

M

)

dx
.

(5.13)

Since (uc, vc) is the steady-state solution of (5.10), uc satisfies the

first equation of (5.10):

d11
(uc

M

)

+ ruc

(

1−
uc + vc

K

)

= 0, x ∈ ω,

n · ∇
(uc

M

)

= 0, x ∈ ∂ω,

and so, from the eigenvalues problem (5.11), a positive principal

eigenfunction corresponds to the principal eigenvalues σ 1 ≡ 0.

Now, from (5.12),

−

∫

ω

d1
∣

∣∇
(uc

M

)

∣

∣

2
dx+

∫

ω

r(x)

(

u2c
M(x)

)(

1−
uc + vc

K

)

dx = 0.

(5.14)

Substituting 8 = uc in (5.13) and using (5.14), we obtain:

∫

ω

−d2
∣

∣∇
(uc

M

)

∣

∣

2
dx+

∫

ω

r(x)

(

u2c
M(x)

)(

1−
uc + vc

K

)

dx

= (d1 − d2)

∫

ω

∣

∣∇
(uc

M

)

∣

∣

2
dx

+

∫

ω

r(x)

(

u2c
M(x)

)(

1−
uc + vc

K

)

dx− d1

∫

ω

∣

∣∇
(uc

M

)

∣

∣

2
dx

= (d1 − d2)

∫

ω

∣

∣∇
(uc

M

)

∣

∣

2
dx

+



−d1

∫

ω

∣

∣∇
(uc

M

)

∣

∣

2
dx+

∫

ω

r(x)

(

u2c
M(x)

)(

1−
uc + vc

K

)

dx





= (d1 − d2)

∫

ω

∣

∣∇
(uc

M

)

∣

∣

2
dx+ 0 > 0,

unless uc
M(x)

≡ Constant. If uc
M ≡ C, then uc + vc ≡ K on ω. So,

vc = K −MC. Replacing vc = K −MC in the second equation of

(2.1) on ω implies:

0 = d21

[

K −MC

N

]

= d21

(

K

N

)

forM ≡ N, which contradicts N(x)
K(x)

6≡ Constant in the hypothesis of

this Lemma. Hence, the principal eigenvalue σ1 > 0. Additionally,

vs satisfies

d21

(

vc

M(x)

)

+r(x)vc

(

1−
uc + vc

K(x)

)

= 0, n·∇
( vc

M

)

= 0, x ∈ ω,

and hence the positive principal eigenfunctions of the second

equation of (5.11) correspond to principal eigenvalues σ1 ≡ 0. This

proves that there is no (uc, vc).

Lemma 15. Suppose thatM(x) ≡ N(x) satisfying N(x)
K(x)

6≡ Constant

for x ∈ ω, and M(x),N(x),K(x) are non-constant and r1(x) ≡

r2(x) ≡ r(x). Then, for d1 > d2, the semi-trivial state (u∗, 0) of

(2.1) is not stable.

Proof. Consider the eigenvalue problem of (2.1) about (u∗, 0) for

the second equation with boundary conditions:

d21

(

φ

M(x)

)

+r(x)φ

(

1−
u∗

K(x)

)

= σφ, n·∇

(

φ

M

)

= 0, x ∈ ω.

(5.15)
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FIGURE 2

Contour plots for (2.1) with N = 1.8+ sin(πx) sin(πy), r1 ≡ r2 ≡ 1.0, d1 ≡ d2 ≡ 1.0, (u0, v0) = (0.5, 1.75) on ω = (0, 1)× (0, 1) for (A, B)

Ku = M = (3.2+ cos(πx) cos(πy)) > Kv = (1.6+ cos(πx) cos(πy)), and (C, D) Ku = Kv = M = 3.2+ cos(πx) cos(πy).

The principal eigenvalues of (5.15) are given, according to [5]

(Theorem 2.1), by:

σ1 = sup
φ 6=0,φ∈W1,2

∫

ω

−d2
∣

∣∇
(

φ
M

)

∣

∣

2
dx+

∫

ω

r(x)
(

φ2

M(x)

) (

1− u∗

K

)

dx

∫

ω

(

φ2

M(x)

)

dx
.

(5.16)

Since (u∗, 0) is a solution, we obtain the following:

d11

(

u∗

M

)

+ru∗
(

1−
u∗

K

)

= 0, x ∈ ω, n·∇

(

u∗

M

)

= 0, x ∈ ∂ω.

(5.17)

Thus, u∗ is the positive principal eigenfunction of (5.17), which

corresponds to zero eigenvalues of the problem. Integrating (5.17)

over the domain and applying the boundary conditions, we obtain:

∫

ω

−d1
∣

∣∇

(

u∗

M

)

∣

∣

2
dx+

∫

ω

r

(

u∗2

M

)

(

1−
u∗

K

)

dx = 0. (5.18)

Substituting φ = u∗ in (5.16), we obtain:

σ1 ≥

∫

ω

−d2
∣

∣∇
(

u∗

M

)

∣

∣

2
dx+

∫

ω

r(x)
(

u∗2

M

) (

1− u∗

K

)

dx

∫

ω

(

u∗2

M

)

dx
. (5.19)

However, using (5.18) implies that

∫

ω

−d2
∣

∣∇

(

u∗

M

)

∣

∣

2
dx+

∫

ω

r(x)

(

u∗2

M(x)

)

(

1−
u∗

K

)

dx

= (d1 − d2)

∫

ω

∣

∣∇

(

u∗

M

)

∣

∣

2
dx

+



−d1

∫

ω

∣

∣∇

(

u∗

M

)

∣

∣

2
dx+

∫

ω

r(x)

(

u∗2

M(x)

)

(

1−
u∗

K

)

dx





= (d1 − d2)

∫

ω

∣

∣∇

(

u∗

M

)

∣

∣

2
dx+ 0 > 0,

unless u∗

M 6≡ Constant. If u∗

M ≡ C1 then we obtain from

(5.18) ru∗
(

1− u∗

K

)

= 0; this implies that u∗ ≡ K ≡ C1M,
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FIGURE 3

Contour plots for (2.1) with N = 1.8+ cos(πx) cos(πy), r1 ≡ r2 ≡ 1.0, d1 ≡ d2 ≡ 1.0, (u0, v0) = (0.5, 1.75) on ω = (0, 1)× (0, 1) for (A, D)

Ku = M = 3.2 > Kv = 2.6, (B, E) Ku = Kv = M = 3.2, and (C, F) Ku = M = 3.2 < Kv = 4.0.

FIGURE 4

Equilibrium population densities for (2.1) with N = 1.8+ sin(πx) sin(πy), d1 ≡ d2 ≡ 1.0, (u0, v0) = (1.75, 0.5) when r1 = 1.0 >> r2 = 0.01 on

ω = (0, 1)× (0, 1) for (A) Ku = M = (1.6+ cos(πx) cos(πy)) < Kv = (3.2+ cos(πx) cos(πy)), and (B) Ku = M = (3.2+ cos(πx) cos(πy)) > Kv

= (1.6+ cos(πx) cos(πy)).

which contradicts the hypothesis of this Lemma that M is non-

proportional to K on ω. Hence, the principal eigenvalue σ1 is non-

negative. This suggests that (u∗, 0) is unstable, which concludes the

proof.

By Lemma 4, Lemma 14, and Lemma 15, the following results

can be confirmed.

Theorem 5. Suppose M(x) ≡ N(x) satisfying N(x)
K(x)

6≡ Constant for

x ∈ ω, andM(x),N(x),K(x) are non-constant and r1(x) ≡ r2(x) ≡

r(x). If d1 > d2, then (0, v
∗) of (2.1) is globally asymptotically stable.

Here we also note that, for the case of two species, Theorem 5

extrapolates the outcome of [2] to a more realistic pattern in terms

of diffusion strategy.
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FIGURE 5

Contour plots for (2.1) for Ku = M = (1.6+ cos(πx) cos(πy)) < Kv = (3.2+ cos(πx) cos(πy)), N = 1.8+ sin(πx) sin(πy), d1 ≡ d2 ≡ 1.0,

(u0, v0) = (1.75, 0.5); in (A, B) r1 = 1.0 >> r2 = 0.01, and in (C, D) r1 = 0.01 << r2 = 1.0 on ω = (0, 1)× (0, 1).

6. Numerical examples and
applications

The aim of this section is to present a series of numerical

examples illustrating population density profiles for different

diffusion strategies as well as different parametric values of

functions that complement the extinction of one species by

others, as well the coexistence of populations in competition.

Both temporal and spatial effects for the case of two spatial

dimensions are examined in Section 6.1. In the case of a time-

dependent function, which may occur due to seasonal change,

we display the average population density profile to indicate its

existence over the periodic state and present a snapshot contour

plot of population density during a period of the functions. In all

the examples, we consider the logistic growth function for two

interacting species with similar and dissimilar carrying capacities

and migration rates. To perform the numerical computation, we

employed the alternating-direction implicit (ADI) method with

uniform discretization in space and time as we advanced each

time step. The solution of the discretized system was regarded as

having converged when successive iterations were within 10−9 of

one another. We considered solutions to have converged to the

PDE solution when halving the space and time steps resulted in

solutions that were within 10−4 of each other at common grid

points. Although we could consider a more complex domain, we

selected a spatial domain of [0, 1]× [0, 1] for simplicity.

6.1. 2-dimensional space

This section presents a numerical investigation of the model for

two-dimensional cases, both in space and in time.

Example 1. Consider the functions Ku = M = (3.2 +

cos(πx) cos(πy)) > Kv = (1.6 + cos(πx) cos(πy)), with the

same diffusion coefficients and intrinsic growth rates, where the

species u follows the carrying-capacity–driven diffusion scheme

and the other diffuses according to resource distribution. From the

contour plots of Figures 2A, B, we observe that for cases of unequal

carrying capacity, the species which follows a carrying-capacity–

driven distribution will survive, and according to Theorem 2,

the value of u should tend to Ku, while the other species goes

to extinction. On the other hand, in Figures 2C, D, we observe

that for cases of equal carrying capacity, the population density
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FIGURE 6

Contour plots for (2.1) with Ku = M = 2.5+ sin(πx) cos(πy), d1 ≡ d2 ≡ 1.0, (u0, v0) = (0.5, 0.5), r1 ≡ r2 ≡ 1.0 on ω = (0, 1)× (0, 1) for (A, B)

Kv = N = 1.4+ 0.3 sin(πx) sin(πy), and (C, D) Kv = N = 3.0+ sin(πx) sin(πy).

FIGURE 7

Contour plots of (A) u, and (B) v for (2.1) with Ku = Kv = 0.5+ 0.3 sin(πx) sin(πy), M = 0.3+ 0.2 cos(πx) cos(πy), N = 0.4+ 0.3 cos(πx) cos(πy),

(u0, v0) = (0.5, 1.75), r1 ≡ r2 ≡ 1.0, d1 ≡ d2 ≡ 1.0 on ω = (0, 1)× (0, 1).
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FIGURE 8

Contour plots for (2.1) with M = 1.5+ cos(πx) sin(πy), N = 2.1+ sin(πx) cos(πy), d1 = 0.1, d2 = 1.0, (u0, v0) = (0.5, 0.5), r1 ≡ r2 ≡ 1.0 on

ω = (0, 1)× (0, 1) for (A, B) Ku = 2.5+ cos(πx) cos(πy) > Kv = 1.4+ cos(πx) cos(πy), and (C, D) Ku = Kv = 2.5+ cos(πx) cos(πy).

of u is higher. Furthermore, when Kv and N are randomly

selected, the population density of v is found to be very low

compared to that of u. Based on a diffusion strategy and carrying

capacity, the species can survive in competition. Partial sharing

of resources may cause the coexistence of populations when

both follow the same diffusion strategy. We observe that the

species with less efficient consumer carrying capacity goes to

extinction, while the higher consumers become the only survivors

of the battle.

Example 2. Consider the case of a homogeneous environment as

Ku = M = 3.2, d1 ≡ d2 = 1.0, r1 ≡ r2 = 1.0, for fixed

N = 1.8 + cos(πx) cos(πy), where in Figures 3A, D Ku = 3.2 >

Kv = 2.6, in Figures 3B, E Ku = Kv = 3.2, and in Figures 3C, F

Ku = 3.2 < Kv = 4.0.We find that when the carrying capacities are

homogeneous and do not depend on the spatial domain, for cases

of unequal carrying capacity, one of the semi-trivial equilibrium

solutions prevails; in contrast, for cases of equal carrying capacity,

scenario with coexistence of the competing species is observed, as

mentioned in Remark 2, which correlates with the case of space-

dependent carrying capacities, as shown in Figure 2. As we know,

carrying capacity is the key element for population growth. In

fact, a constant environment can be modeled in the laboratory

environment, such as by considering the yeast population in a

fixed jar. However, if resources are unevenly distributed over space,

spatial diffusion of the species can raise the equilibrium of the total

abundance of the population of the environment.

Example 3. We next consider the cases for Ku = M = (1.6 +

cos(πx) cos(πy)) < Kv = (3.2 + cos(πx) cos(πy)) with N =

1.8 + sin(πx) sin(πy), d1 ≡ d2 ≡ 1.0, (u0, v0) = (1.75, 0.5) on

ω = (0, 1) × (0, 1) when the intrinsic growth rates of the two

species are unequal. If we consider a case of competition between

a native and an invasive species, such that r1 >> r2 and vice versa,

then it is possible to establish additional theoretical results, since

the growth of the invasive population is very high. Here, Figure 4

represents equilibrium population density profiles under (2.1). We

observe in Figure 4A that when Kv and M are randomly selected,

carrying capacity also functions as an important factor that may

enable coexistence even in cases of unequal resource distribution

between the species. On the other hand, as shown in Figure 4B,

when Ku = M > Kv, we find that species u survives and tends
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FIGURE 9

Contour plots for (2.1) with M = 1.6+ cos(πx) cos(πy), N = 1.5+ 0.3 cos(πx) cos(πy), Ku = Kv = K = 1.8+ 0.3 sin(πx) sin(πy), d1 ≡ d2 ≡ 1.0,

r1 ≡ r2 ≡ 1.0, (u0, v0) = (1.95, 0.9) on ω = (0, 1)× (0, 1) for (A, D) Ku = Kv = K = M+N, (B, E) M = K +N, and (C, F) N = K +M.

to Ku as t → ∞, while the other species v has a very low population

density that may go to extinction as time continues.

Example 4. We now consider Ku = M = (1.6 +

cos(πx) cos(πy)) < Kv = (3.2 + cos(πx) cos(πy)), with

N = 1.8 + sin(πx) sin(πy) where the diffusion coefficients are

same. Figure 5 presents contour plots for u and v for non-negative

initial values (u0, v0) = (1.75, 0.5), while u is distributed according

to per-capita carrying capacity and v follows a resource-based

diffusion strategy. We observe in Figures 5A, B that when

r1 = 1.0 >> r2 = 0.01, the population density of u is notably

higher compared to v, and coexistence may occur in cases of higher

r1 as compared to r2. We also observe that higher population

densities of u are found at the bottom-left and top-right corners,

while the population density of v is higher in the middle of the

contour domain, analogous to N. In contrast, when r1 << r2 and

Ku < Kv, due to the higher consumption of resources and greater

intrinsic growth rate, the population density of v is higher than

that of u; see Figures 5C, D.

Example 5. In the next example, we consider cases of unequal

carrying capacity while u and v diffuse according to Ku and Kv,

respectively, where Ku = M = 2.5 + sin(πx) cos(πy), d1 ≡ d2 ≡

1.0, (u0, v0) = (0.5, 0.5), r1 ≡ r2 ≡ 1.0 on ω = (0, 1) × (0, 1),

with Kv = N = 1.4 + 0.3 sin(πx) sin(πy) in Figures 6A, B, and

Kv = N = 3.0 + sin(πx) sin(πy) in Figures 6C, D. We observe

that, in all cases, the species which utilizes more resources survives,

and the other tends to extinction as time continues, which is

justified theoretically in Theorem A1 and Remark A1, respectively

(see Appendix). We also find that the population density of u is

higher in the bottom-middle region of the contour plot because

the values of Ku = M are higher in this region, whereas the

population density of v is higher at the center of the domain, as

in Kv = N.

Example 6. We now turn to the scenario in a numerical setting

where resources are limited and both populations are competing

for the same food sources in Figures 7A, B. Here, Ku = Kv =

0.5 + 0.3 sin(πx) sin(πy), M = 0.3 + 0.2 cos(πx) cos(πy), N =

0.4 + 0.3 cos(πx) cos(πy), (u0, v0) = (0.5, 1.75), r1 ≡ r2 ≡ 1.0,

d1 ≡ d2 ≡ 1.0.We find that coexistence only occurs when

both species use the resource-based approach to diffusion. This

shows that when two species share certain resources, competitive

exclusion can be avoided by using a more advantageous dispersal

strategy. However, the contour patterns for both u and vmimic the

resource functions, whose maximum and minimum are located at

the left and right bottom and top corners of the profile regime. In

our forthcoming work, the theoretical outcome of this finding will

be presented.

Example 7. Assume different non-constant carrying capacities,

unequal as in Figures 8A, B Ku = 2.5 + cos(πx) cos(πy) >

Kv = 1.4 + cos(πx) cos(πy), or equal as in Figures 8C, D Ku =

Kv = 2.5 + cos(πx) cos(πy), where M = 1.5 + cos(πx) sin(πy),
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FIGURE 10

Contour plots of u(t, x, y) for (2.1) with Ku = M = (2.1+ cos(πx) cos(πy))(1.1+ cos(t)) > Kv = (1.5+ cos(πx) cos(πy))(1.1+ cos(t)),

N = (2.0+ sin(πx) sin(πy))(1.2+ sin(t)), r1 ≡ r2 ≡ 1.0, d1 ≡ d2 ≡ 1.0, (u0, v0) = (0.5, 1.5) on ω = (0, 1)× (0, 1) at T = 13.8 for (A) T, (B) T + π
2
, (C) T + π ,

(D) T + 3π
2
, and (E) T + 2π .

N = 2.1 + sin(πx) cos(πy), d1 = 0.1, d2 = 1.0, (u0, v0) =

(0.5, 0.5), r1 ≡ r2 ≡ 1.0 on ω = (0, 1) × (0, 1). Here, both

species u and v diffuse according to their resource function, which is

non-proportional to carrying capacity. Here, the carrying capacity

of both species is more prominent in the left and right corners,

whereas more resources are found for u in the bottom-left and

middle-left regions of the domain and for v in the bottom-middle

region and right corner of the contour profile. Nevertheless, we

observe that in the case of slow diffusion of u, a higher population

density is found at the bottom-left and -right corners of the domain,

analogous to Ku. This means that, for small values of the diffusion

coefficient, the growth of the species depends on the carrying

capacity, and a species that undergoes slow diffusion relative to the

other will survive in the competition, as stated in Theorem 3; see

Figures 8A, B. In contrast, in Figures 8C, D, we observe that if the

carrying capacity of both species is equal, then if the species disperse

according to resource distribution, they may coexist with unequal

diffusion coefficients. It can also be noted that the population

density of u is higher in all cases than that of v, which demonstrates

that the species that diffuses slowly can survive in the long run

as time continues. As we know, when the species diffusion rate is

very high, members of the species have a very hard time finding

each other and sustaining the population. Under this scenario, it is

also difficult for them to protect one another through cooperative

defense. This results in notable decline in the species’ growth

in competition.

Example 8. Consider the case of M = 1.6 + cos(πx) cos(πy),

N = 1.5 + 0.3 cos(πx) cos(πy), Ku = Kv = K = 1.8 +

0.3 sin(πx) sin(πy), with equal diffusion coefficients and growth

rates for both species, where (u0, v0) = (1.95, 0.9). Here, in

Figures 9A, D we assume Ku = Kv = K = M + N and

we observe that coexistence occurrs; this is globally attractive,

as stated in Lemma 11, and is known as an ideal free pair.

Additionally, in Figures 9B, E we let M = N + K and observe

that the population density profile of u is higher compared to

that of v and the maximum population densities are found in

the middle region or along the saddle point of the contour plot

of u which confirms the global existence of (u∗, 0) as stated in

Theorem 4. Similarly, in Figures 9C, F we consider N = M +

K, for which a higher population density is observed found for

v, distributed symmetrically, and the population density of u is

found to be very low across the entire domain. This ensures

the global existence of (0, v∗), as defined in Remark 4, as time

continues. Here, in particular, we have focused on α = β =

1.0.

Next, we consider time-dependent functions to demonstrate

the existence of periodic solutions and also analyze the

model 2.1 for periodic as well as seasonal changes from an

ecological perspective.

Example 9. Figures 10A–E represents the periodic behavior of

density profiles for u by considering time-varying functions when
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FIGURE 11

Contour plots of v(t, x, y) for (2.1) with Ku = M = (2.1+ cos(πx) cos(πy))(1.1+ cos(t)) > Kv = (1.5+ cos(πx) cos(πy))(1.1+ cos(t)),

N = (2.0+ sin(πx) sin(πy))(1.2+ sin(t)), r1 ≡ r2 ≡ 1.0, d1 ≡ d2 ≡ 1.0, (u0, v0) = (0.5, 1.5) on ω = (0, 1)× (0, 1) at T = 7.1 for (A) T, (B) T + π
2
, (C) T + π , (D)

T + 3π
2
, and (E) T + 2π .

the carrying capacity of two species are unequal, as in Ku =

M = (2.1 + cos(πx) cos(πy))(1.1 + cos(t)) > Kv = (1.5 +

cos(πx) cos(πy))(1.1 + sin(t)), N = (2.0 + sin(πx) sin(πy))(1.2 +

sin(t)), with equal growth rates and diffusion coefficients for u

and v at T = 13.8. Here, for non-negative initial population

densities (u0, v0) = (1.95, 0.9), u disperses according to per-

capita carrying capacity, whereas v is distributed according to

its time-dependent resource availability function N. As we know,

population growth depends on natural resources, water supply,

climate change, land, etc. The population will not have access

to the same types of resources at all times during a given time

interval; as a result, their growth will not be similar everywhere

for a certain period. We notice that at T = 13.6 and T =

13.6+2π , the population density profiles represent identical values,

and the existence of a unique periodic solution is evident with

time growth, which ensures the existence of an attractive positive

periodic solution.

Example 10. As illustrated in Figure 10, consider the time-

dependent functions for Ku = M > Kv (noted in the caption to

Figures 11A–E) and N with d1 ≡ d2 ≡ 1.0 and r1 ≡ r2 ≡ 1.0.

We observed the periodic behavior of v at T = 7.1, which is

long enough for a time-periodic pattern to emerge. As species v

diffuses according to its time-dependent resource function N, the

maximum of the density profile is located at the center and is also

found to be very low compared to that of u, as stated in Theorem 2,

which ensures the global existence of (Ku, 0) as t → ∞.

Example 11. Assume time-dependent functions of the form M =

(1.7 + sin(πx) cos(πy))(1.1 + sin(t)) and N = (1.5 +

cos(πx) sin(πy))(1.2 + sin(t)), with d1 ≡ d2 ≡ 1.0, (u0, v0) =

(0.6, 0.6) on ω = (0, 1)× (0, 1), where the carrying capacity of both

species is considered to beKu = Kv = (2.5+cos(πx) cos(πy))(1.1+

sin(t)). In this case, we observe that there is scope for coexistence

in the case of unequal intrinsic growth rates, when the species

are distributed according to their available resource functions.

Additionally, in the contour plots, we note that for both r1 =

1.0 >> r2 = 0.01 and r1 = 0.01 << r2 = 1.0, the maximum

value of u is found in the middle of the bottom region, whereas

the maximum for v occurs in the left middle region of the contour

profiles. As for the case of relatively large and equal diffusion

coefficient values, the dispersion of species depends on the resource

function, as both species are diffusing in the direction of their

resource functions, which is evident in Figures 12A–D.

Example 12. Consider M = N = (1.5 + sin(πx) sin(πy))(1.1 +

cos(t)), r1 ≡ r2 ≡ 1.0 when the carrying capacities of u and v

are equal at Ku = Kv = (2.1 + cos(πx) cos(πy))(1.3 + cos(t))

and (u0, v0) = (0.6, 0.6) on ω = (0, 1) × (0, 1). We observe from

Figures 13A, B that, for fixed d1 = 1.0 when d2 = 0.1, species

v survives; it is also highlighted here that, for slow diffusion, the

growth of the population is dominated by the carrying capacity of

the environment. This is evident in Figure 13B, and according to

Theorem 5, the global existence of (0, v∗) is clear in the numerical

result of Figures 13A, B. On the other hand, when the diffusion
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FIGURE 12

Contour plots for (2.1) with Ku = Kv = (2.5+ cos(πx) cos(πy))(1.1+ sin(t)), M = (1.7+ sin(πx) cos(πy))(1.1+ cos(t)),

N = (1.5+ cos(πx) sin(πy))(1.2+ sin(t)), d1 ≡ d2 ≡ 1.0, (u0, v0) = (0.6, 0.6) on ω = (0, 1)× (0, 1) for (A, B) r1 = 1.0 >> r2 = 0.01, and (C, D)

r1 = 0.01 << r2 = 1.0.

coefficients are taken to be d1 = 1.0 and d2 = 1.6—that is, for quite

large diffusion coefficient values for both species—the diffusion

strategies of u and vwill depend on the resource functionsM andN.

However, the maximum population density is found at the center,

which is analogous to result for the function M = N, and in this

situation, it can also be noted that coexistence is also possible for

non-trivial initial population densities on the domain.

7. Conclusion

In this paper, we have reported on the design of a model of

competition between a pair of species, in which both species are

modeled according to their resource function, which we expect to

be more realistic in some scenarios than in others. We examined

the global existence of solutions to the model for cases of two

species with unequal carrying capacity. We have also considered

cases of different dispersion strategies for the two species based on

their resource function and carrying capacity. We found that when

the resource function is non-proportional to carrying capacity for

one species while members of the other are diffusing according to

their carrying capacity, the species that consumes more resources

will survive in the competition (see Figure 2). However, for the

case of both species adopting the same diffusion strategy, while

the resource function varies, coexistence is not possible unless

the entire environment is homogeneous, which is also valid for

the case of proportionality (see Figure 6). The global existence of

competitive exclusion in the model is also found to obtain when

the carrying capacities and migration strategies of both species are

the same, directed toward the individual resource function (see

Figure 6). We have also found, based on numerical investigation,

that the intrinsic growth rate can play an important factor in

population growth for populations that may coexist whether or not

resource distributions are unequal (see Figure 5). However, if the

competing species select identical dispersal strategies, and dispersal

is not proportional to carrying capacity, it appears that the effect

of a higher migration rate is to impact the growth rate of the

species negatively (see Figure 8). In contrast, an elevated intrinsic

growth rate is an optimistic sign that a species may survive in

competition (see Figure 4). The temporal and periodic effects on

species growth rate that may occur due to seasonal changes have

also been illustrated numerically here via contour plots for the
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FIGURE 13

Contour plots for (2.1) with Ku = Kv = (2.1+ cos(πx) cos(πy))(1.3+ cos(t)), M = N = (1.5+ sin(πx) sin(πy))(1.1+ cos(t)), r1 ≡ r2 ≡ 1.0, d1 = 1.0,

(u0, v0) = (0.6, 0.6) on ω = (0, 1)× (0, 1) for (A, B) d2 = 0.01, and (C, D) d2 = 1.6.

model; these plots demonstrate the advantage of selecting different

diffusion strategies. The results of the current study can be extended

by considering cases of three competing species in symmetric

competition. Additionally, harvesting effects could be included in

the model in order to show the outcomes for the stability of two

competing species in a heterogeneous environment. Finally, one

could also study the modified problem for the cases of anomalous

diffusion, nonergodicity, and Brownian motion for heterogeneous

populations [31, 32].
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Pesticide control, physical
control, or biological control?
How to manage forest pests
and diseases more effectively

Yuntao Bai1, Lan Wang2* and Xiaolong Yuan1

1Business School, Shandong Management University, Jinan, China, 2Center of Emergency
Management, Chongqing Academy of Governance, Chongqing, China
The frequent occurrence of forest diseases and insect pests has a significant

impact on the forest ecosystem. The government needs to take measures to

protect the forest ecosystem. The commonmanagement modes for forest pests

and diseases include pesticide control, physical control, and biological control. In

the process of governance, governments need to consider not only cost-

effectiveness but also the impact on the ecosystem. In this article, the

differential game model under these three modes is constructed, and the

equilibrium results are compared and analyzed. Finally, the research

conclusion is drawn that under the biological control mode, the income

generated by the unit control quantity is inversely proportional to the balanced

control quantity. However, under pesticide control and physical control modes,

the revenue generated by the unit control quantity is proportional to the

balanced control quantity. At the same time, under the biological control

mode, the unit governance cost is proportional to the balanced control

quantity. Under the pesticide control and physical control modes, the unit

control cost is inversely proportional to the balanced control quantity. Social

forces tend to adopt pesticide control. The government prefers physical control.

KEYWORDS

forest pest, differential game, control, different modes, social benefit
1 Introduction

1.1 Background and research significance

The world’s total forest area is 4.06 billion hectares (ha), or 31% of the total land area

(Food and Agricultural Organization, 2020). Forests are also home to many kinds of

animals and many kinds of plants. It is the most biologically active region on Earth. Forests

have the functions of producing oxygen, purifying air, regulating climate, and maintaining

ecological balance. Forests regulate the air and water in nature and affect climate change. At

the same time, forests provide various resources for human production and life. It has

played a vital role in the reproduction and survival of human civilization.
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In recent years, due to the influence of human activities, the global

temperature has kept rising. This causes the forest ecosystem to lose

balance. This provides climatic support for forest pests to thrive. This

gradually increasing temperature is suitable for the propagation and

spread of forest pests. The occurrence of pests and diseases seriously

endangers the health of forests. The destruction of forest ecosystems is

also increasing. If the forest ecosystems are destroyed, it will cause the

temperature to rise further, which will aggravate forest pests and

diseases. At the same time, the world’s human afforestation area

keeps increasing (Bai et al., 2021). Compared with natural forests,

artificial forests have the following characteristics: higher density, fewer

species, and more artificial intervention. Due to limited attention to

adverse environmental impacts, plantation forests are devoted almost

exclusively to wood production (Dragicevic, 2019a). Therefore,

plantation forests are more susceptible to pests and diseases.

Strengthening the management of forest pests and diseases has

become the focus of ecosystem protection.

In order to deal with forest pests and diseases, multiple

approaches to management are needed. This requires the

participation of the government and social forces in society. The

“social power” of forest pest management refers to the support and

participation of nongovernmental organizations from all aspects of

society. It includes the active actions and efforts of enterprises,

nongovernmental organizations, the media, academia, and the

public. These forces can contribute to the management of forest

pests and diseases by developing regulations, promoting pest

prevention technologies and innovations, conducting information

and education on forest pest control, and implementing

environmental regulation (Lei et al., 2021). Government and social

forces can spray pesticides in forests, set up physical facilities, release

natural enemies, and invest in bioeconomic activities that are less

susceptible to pests and diseases (Dragicevic, 2019b). These methods

can effectively control forest pests and diseases. Although the increase

in forest pests and diseases in recent years is mainly due to global

temperature rise and other factors, the solution to global temperature

rise cannot be achieved overnight (Tandon and Verma, 2021).

Instead, more effective results can be achieved using direct

measures to control forest pests and diseases. At the same time, in

the process of managing forest pests and diseases, governments and

social forces should not only consider cost-effectiveness but also try

their best to protect forest ecosystems. How to choose an effective

management mode for forest pests and diseases and protect forest

resources is an important issue in this article.
1.2 Literature review

The causes of forest pests and diseases are varied. For example,

Ayres and Lombardero (2018) believe that the main causes of forest

diseases and pests are global climate change, land use, and biological

distribution. Popkin (2020) believes that the invasion of foreign

pests is the main cause of forest diseases and insect pests in the USA.

Canelles et al. (2021) believed that pests and diseases in one forest

were mainly transmitted by other forests. Jentsch et al. (2020)

believed that wood transportation is an important cause of forest

diseases and insect pests. These scholars explained the causes of
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forest pests, mainly global climate change, natural invasion of pests,

human-caused invasion, and other factors.

Some scholars have mainly studied the effects of forest pests and

diseases. For example, Ozkan (2022) believed that forest diseases

and insect pests could lead to a continuous reduction of forest area.

Turner et al. (2007) believed that forest pests and diseases could

have adverse effects on the foreign trade of wood. Niquidet et al.

(2015) believed that the effects of some diseases and pests could be

controlled, while others would have persistent and disastrous

effects. These scholars mainly analyzed the natural impact,

economic impact, and time span of the impact of forest pests

and diseases.

Some scholars have mainly studied how to control forest pests

and diseases. For example, Yang et al. (2014) studied the weather

hostility of pests, which plays a significant role in the control of

forest pests. Sheremet et al. (2018) studied how to introduce

corresponding policies to encourage private forest owners to

participate in forest pest control. Lovett et al. (2016) believed that

it was necessary to control the circulation channels of wood

products. These scholars analyzed how to manage forest pests

and diseases mainly from the perspectives of biological control,

national policies, and logistics management.

In order to make up for the shortcomings of the above studies,

this article studied how to protect the forest ecosystem from the

perspective of different forest pest management modes. The

management modes of common forest pests and diseases are

mainly divided into pesticide management, physical management,

and biological management. In this article, based on setting the

corresponding assumptions and defining the parameters of the

model, three kinds of differential game models are established.

The HJB formula is then used to solve the differential game model.

This article obtains the optimal governance quantity and social

utility of government and social forces. Comparative analysis of

social utility is carried out through numerical analysis. Finally, this

article discusses the relevant conclusions. In this article, the factors

influencing the amount of forest pest management and the

applicable scope of different forest pest control modes are identified.
1.3 Problem description

Rising global temperatures are causing serious forest pests and

diseases. The effective control of forest diseases and insect pests by the

government can protect forest resources. It is very important to

promote the development of forestry and maintain the balance of

natural ecology. In order to clearly depict the problems of forest pests

and diseases that exist all the time, this article uses a differential game,

which is a game with continuous time. Pesticide control tends to

damage ecosystems and lead to pest resistance, but it is low-cost and

has quick results. Physical containment facilities can be reused, but

they are costly and vulnerable to extreme weather. Biological control

can better protect the ecosystem, but introduced natural enemies are

prone to problems of adaptability and infestation.

Game theory explores what strategies each player should adopt

in different situations and the consequences and effects of these

strategies (Valizadeh and Gohari, 2021). There are players in game
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theory. This article divides the game players into government and

social forces. When there are several governments in reality, two

governments can be discussed separately according to the method

and conclusion of this article to get the desired result. In order to

effectively control forest pests and diseases, government and social

forces can adopt the following three control modes:
Fron
(1) Pesticide control. There are many kinds of pesticides, and

the pesticides referred to in this article mainly refer to

chemical pesticides. Compared with biological pesticides,

chemical pesticides have the advantages of high efficacy and

an immediate effect. In controlling forest pests, pesticides

with good control effects should be selected according to the

characteristics of the control objects. This can achieve

targeted, tailored medicine, which is the key to good

prevention and control effects. In the process of pesticide

control, it is necessary to choose the weakest stage of pest

development to control. In this way, pesticides can be used

to achieve the best control effect. However, this type of

management can also adversely affect natural enemies of

forest pests (Palma-Onetto et al., 2021).

(2) Physical control. This method of prevention and control

begins by placing a certain number of mechanical facilities.

It mainly includes artificial killing, the use of simple devices

and instruments, and even the application of modern

devices and equipment. Some forest pests are sensitive to

radiation, sound, electricity, light, temperature, and other

physical factors. Physical management mainly uses the

sensitivity of forest pests to eliminate forest pests. For

example, light trapping is a physical way to control pests.

This is mainly to take advantage of the phototaxis of some

forest pests and then artificially set up insect lights. The trap

light can be used to trap and kill pests. The use of light to

induce killing is one of the most common physical control

measures.
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(3) Biological control. This method of control is mainly based

on biological control of forest pests. Natural enemies of

forest pests mainly include natural enemies of insects,

microorganisms, birds, and so on. The natural enemies of

insects are mainly bees, ladybugs, praying mantises, and so

on. Microorganisms mainly refer to bacteria, fungi, and

viruses. Birds are mainly cuckoos, woodpeckers, great tit,

and so on. In addition, another approach is to cultivate

plants that possess natural resistance to invasive species

without necessarily being their natural enemies (Dragicevic,

2015). Biological control has a certain effect on pest control

and is economical (Janssen and Rijn, 2021). At the same

time, the organisms themselves can reproduce, so this

method also has the characteristics of environmental

protection and efficiency. Biological control is one of the

important methods of forest pest control.
The relationship between the three forest pests and disease

control modes is shown in Figure 1.

In Figure 1, there are two players (the government and social

forces) and three forest pest and disease control modes. In order to

maximize their own benefits, each player can choose the forest pest

and disease control mode to be adopted. The arrows in the figure

show that the players are constantly choosing between different

forest pests and disease control modes.
2 Methodology

2.1 Hypothesis

(1) The pest management decisions of the government and social

forces are constantly changing. With the increase in global

temperature, the propagation and spreading ability of forest pests

are further enhanced. In the absence of natural enemies, once the
Government

Social force

Maximize social benefitsPesticide control

Government

Social force

Maximize social benefitsPhysical control

Government

Social force

Maximize social benefitsBiological control

Which model to choose to manage 

forest pests and diseases more 

effectively

FIGURE 1

Relationship between three different forest pests and disease control modes.
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forest is infected by pests and diseases, it is easy to spread such pests

throughout the forest. In the face of the destruction of the forest

ecosystem, the government and social forces will carry out forest pest

control. After a period of management, forest pests and diseases have

been reduced. At this point, the government and social forces will

reduce the intensity of governance. The severity of forest pests and

diseases has increased as they have been neglected. At this time, the

government and social forces will increase efforts to control pests and

diseases. Over time, the cycle continues. Forest pest management

decisions by governments and social forces are in flux.

(2) The government and social forces can fully grasp the

information about forest pests and diseases. There are many

kinds of forest pests. Forests are infested by many kinds of pests

and diseases. If forest pests and diseases are not dealt with in time,

large areas of forest are likely to be affected. In some cases,

governments do not understand some exotic insects and cannot

make timely decisions conducive to forest pest management (Pirtle

et al., 2021). In other cases, monitoring and early warning agencies

of the government and social forces are located far from forest pests

and diseases. This is not conducive to government and social forces

grasping information about forest pests. In order to enable

government and social forces to make optimal decisions, this

article assumes that government and social forces have

comprehensive access to forest pest and disease information.

(3) The forest ecosystem has an important impact on national

production and management activities. Forests can conserve water,

conserve soil, sequester carbon, release oxygen, and purify the

atmosphere (Food and Agricultural Organization, 2020). If the

forest is far from a densely populated area, then forest pests and

diseases have less impact on people’s lives and production and

management activities. When pests and diseases occur in an area,

the government does not take measures to control them. That is

because forest pests and diseases cost money to control. On the

other hand, if the forest is close to the country’s population

concentration, people will be more affected when the forest is

destroyed. At this time, people will be concerned about the state

of the forest ecosystem.
2.2 Variable definition

In Table 1, the discount factor r is a number used to calculate

the value of future cash flows at the current point in time. It is a tool

that reduces future cash flows to the current point in time in order

to calculate the value of time. Decay of reputation d is the process by
which, over time, the quality of the reputation earned by

governments and social forces as a result of environmental

protection gradually declines. The decay of reputation is a natural

phenomenon as people’s perceptions and attitudes towards things

change and evolve over time. At the same time, for governments

and social forces, there can be unexpected events or negative news,

which can affect the quality of their environmental reputation. The

management of forest pests and diseases can protect forest

resources, improve forest economic benefits, and stop the

deterioration of the ecological environment. In this article, the
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TABLE 1 Definition of variables and parameters used in this article.

Variables and
parameters

Specific meaning

Y = {P, H, B} Three modes of forest pest management (pesticide
control, physical control, biological control)

Independent variable

FY1(t) Government control amount under forest pest control
mode Y

FY2(t) The number of social forces under the forest pest control
mode Y

xY1(t) The government’s reputation under the forest pest
control mode Y

xY2(t) The social forces’ reputation under the forest pest
control mode Y

Parameter

r The discount rate occurring over time, 0 ≤ r ≤ 1

d Decay of reputation, d > 0

bF The income derived from the amount of management
per unit, bF > 0

d Drug resistance in forest pests, d > 0

kd The influence coefficient of pest resistance on the
difficulty of control, kd > 0

cP, cH, cB Unit cost of forest pest control, cP, cH, cB > 0

cE Damage degree of forest ecosystem caused by unit
pesticide control amount, cE > 0

cm The added cost of inadaptability of introduced
organisms, cm > 0

co The increased costs associated with the proliferation of
introduced organisms, co > 0

km Coefficient of inadaptation of introduced organisms, km
> 0

ko Coefficient associated with the influx of introduced
organisms, ko > 0

s Rate of forest pest control, s > 0

ks The effect of unit control rate, ks > 0

l The positive effect of the reputation of control or social
power on earnings, l > 0

IH The positive impact of physical control on reputation, IH
> 0

IE The positive impact of biological control on reputation,
IE > 0

p The proportion of subsidies to social forces, p > 0

aF Positive effect of unit forest pest control amount on
reputation, aF > 0

aE Unit number of ecological damage to the negative
impact on reputation, aE > 0

eH The number of extreme weather events, eH > 0

ke Impact of each extreme weather event on pest
management facilities, ke > 0

(Continued)
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income obtained from the unit management volume is defined as

bF. Under the long-term application of insecticides, the genetic

variation of pests gradually weakens their virulence to insecticides

and eventually cannot be effectively controlled by insecticides. This

article defines this resistance of pests as d. Once forest pests have

resistance, it will increase the difficulty of controlling them, which is

defined as kd.

Each mode of forest pest management has a cost. In this article,

the cost of forest pest management at the unit level is defined as cP, cH,

cB, respectively. Once a forest is infested with pests and diseases, it is

difficult to fully recover. On the contrary, there is a certain control rate

for forest pests and diseases. This article defines the control rate as s.

The reputation of the government and social forces will enhance the

image of the country, enhance the sense of trust and support among

the people in the country, and so on. This article defines the unit

impact of this reputation as l. Compared with pesticide management

of forest pests and diseases, physical control and biological control can

play a better role in protecting the environment. These two control

modes can have an additional impact on reputation, which this article

defines as IHand IE. Social forces are mainly non-governmental

organizations. These organizations are often underfunded. These

organizations usually receive a certain amount of subsidy in the

process of managing forest pests and diseases. This article defines the

proportion of these subsidies as p. Extreme weather (such as

typhoons, rainstorms, heat waves, hail, etc.) will affect the

effectiveness of forest pest management. In this article, the

occurrence times of forest pests and diseases are defined as eH. The

impact coefficient of these extreme weather events on forest pest

management facilities is ke. Physical facilities for forest pest

management (e.g., trap lights, slime boards, bark strips, infrared

detectors, etc.) can be reused. The number of times these physical

facilities are reused is defined as a. The number of reuses affects the

cost of managing forest pests and diseases. The impact of repeated use

of these physical facilities on governance costs is defined as ka.

The social welfare function is a tool used to measure the level of

social welfare. This function is the sum of utility values over a period
Frontiers in Ecology and Evolution 0574
of time to represent social welfare over that period of time. Social

benefit refers to the benefits or values generated by society under a

certain decision made at a certain point. These effects can be

positive, negative, or neutral. This article defines the social welfare

function as J. At the same time, this article defines social benefits

as V.
2.3 Differential games of different forest
pest control modes

The differential game has the goal of optimizing the

independence and conflict of each player and can finally obtain

the strategy of each player as it evolves over time and reaches the

Nash equilibrium. At present, the differential game is mainly

applied in the fields of advertising decisions (Viscolani and

Zaccour, 2009), logistics management (Bai et al., 2022), supply

chain (Zhu et al., 2021), etc. Meanwhile, some scholars also use

differential games to study the field of forest protection (Fredj

et al., 2004).

In the context of differential games, the strategies adopted by the

government and social forces are time-dependent functions. The

actions taken by each participant are influenced by the strategies

employed by other participants, leading to an ongoing evolutionary

process wherein participants search for optimal strategies. This

dynamic interaction can be described using differential equations

that capture the rate of change in the relationship between variables,

typically with respect to time or space variables (Arnone et al.,

2022). In the specific context of this study, both forest pests and

diseases, as well as the decisions made by the government and social

forces, are subject to constant change. Therefore, the application of

differential game theory is highly relevant and suitable.

When compared to alternative methods such as differential

equations or stochastic strategies, differential games exhibit strong

applicability in this study. While differential equations fail to

account for the strategic interactions and outcomes among

decision-makers, differential games effectively capture the

conflicts and cooperation that occur between the government and

social forces in the context of forest pest management. On the other

hand, stochastic game models focus primarily on probability

information regarding potential future events, emphasizing

randomness rather than the continuous nature of time (Wu and

Zhang, 2022). As such, the applicability of stochastic strategies in

this paper is limited.

Forest pests and diseases are constantly changing with the

changing climate. At the same time, forest pests and diseases will

be constantly changed by the governance decisions of governments

and social forces. In order to describe this change clearly, this article

uses differential games to study forest pest management.

In the mode of pesticide control of forest pests and diseases, the

social benefits obtained by the government and social forces are

composed of the benefits of pest control, economic costs, ecological

costs, and reputation gained. The specific expression can be

expressed as:
TABLE 1 Continued

Variables and
parameters

Specific meaning

a The number of times physical facilities are reused, a > 0

ka The impact of reuse on governance costs, ka > 0

Function

JY1(t) Government’s social welfare function under forest pest
control mode Y

JY2(t) Social welfare function of social forces under forest pest
control mode Y

VY1(t) Government benefit function under forest pest control
mode Y

VY2(t) Benefit function of social forces in forest pest control
mode Y
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h i
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In the above formula, bFFP1(t)
1

ln (e+kdd)
represents the benefit to

the government from the pesticide control mode. ln (e + kdd)

represents the development of resistance to pesticides by forest

pests. cP
2 F

2
P1(t) represents how much it costs the government to buy

pesticides. cE
2 F

2
P1(t) represents the negative impact of pesticide use

on the ecological environment. lxP1(t) represents the positive effect

of a government’s reputation on the social good. bFFP2(t) ln (e + kss)

represents the benefits to social forces in the pesticide control mode.
cP
2 (1 − p)F2

P2(t) represents the cost of social forces under the

pesticide control mode. cP
2 pF

2
P2(t) represents government

subsidies accepted by social forces. lxP2(t) represents the positive

effect of the reputation of social power on social good.

Under the pesticide control mode, the changes in reputation

gained by the government are as follows:

_xP1(t) = (aF − aE)FP1(t) − dxP1(t) (3)

Under the pesticide control mode, the changes in reputation

gained by the social power are as follows:

_xP2(t) = aFFP2(t) − dxP2(t) (4)

In the above formula, aFFP1(t) shows the government’s

reputation increased in the pesticide control mode. aEFP1(t)

shows the government’s reputation that is destroyed and reduced

by biological diversity. dxP1(t) shows the attenuation of the

government’s reputation. aFFP2(t) shows the reputation of social

forces in biological control modes. dxP2(t) shows the attenuation of

the reputation of social forces.

In the mode of physical control of forest diseases and insect

pests, the social benefits obtained by the government and social

forces are:

JH1 =
Z ∞

0

bF
1 + keeH

FH1(t) −
cH
2
ln (1 + kaa)F

2
H1(t) + lxH1(t)

� �
e−rtdt (5)

JH2 =
Z ∞

0
bFFH2(t) ln (1 + kss) −

cH
2
(1 + kaa)(1 − p)F2

H2(t) + lxH2(t)
h i

e−rtdt (6)

In the above formula, bF
1+keeH

FH1(t) means the government gain

under the physical control of forest pests. 1 + keeH means the

adverse effects of extreme weather on physical facilities. cH
2 ln (1 +

kaa)F2
H1(t) means government governance costs under the physical

governance of forest pests. ln (1 + kaa) represents the changes in

the cost caused by the repetitive use of physical facilities. lxH1(t)

means the social benefits increased by the government’s reputation.

bFFH2(t) ln (1 + kss) represents the benefits of social forces to govern

forest pests. cH
2 (1 + kaa)(1 − p)F2

H2(t) means the cost of governing

the forest pests in social forces. cH
2 (1 + kaa)pF2

H2(t) indicates
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subsidies obtained by social forces. lxH2(t) means the benefits of

the reputation of social forces.

Under the physical control mode, the changes in reputation

gained by the government are as follows:

_xH1(t) = aF ln (e + IH)FH1(t) − dxH1(t) (7)

Under the physical control mode, the changes in reputation

gained by the social forces are as follows:

_xH2(t) = aF ln (e + IH)FH2(t) − dxH2(t) (8)

Among them, aF ln (e + IH)FH1(t) indicates the increase in the

government’s reputation in the physical control mode. dxH1(t)

shows the attenuation of the government’s reputation. aF ln (e +

IH)FH2(t) shows the reputation of social forces in physical control

modes. dxH2(t) shows the attenuation of the reputation of

social forces.

In the mode of biological control of forest diseases and insect

pests, the income obtained by the government and social forces is:

JB1 =
Z ∞

0
bFF

2
B1(t) − (cB + kmcm + koco)FB1(t) + lxB1(t)

� �
e−rtdt (9)

JB2 =
Z ∞

0
bFF

2
B2(t) − cB(1 − p)FB2(t) + lxB2(t)

� �
e−rtdt (10)

Among them, bFF
2
B1(t) represents the income obtained by the

government under the biological management of forest pests. (cB +

kmcm + koco)FB1(t) represents the cost of government control of

forest pests under the biological control of forest pests. kmcmFB1(t)

represents the loss caused by the inadaptation of introduced species.

kocoFB1(t) represents loss due to the proliferation of introduced

species. lxB1(t) represents the social benefit increased by the

government’s reputation. bFF
2
B2(t) represents the benefits to social

forces from the biological management of forest pests. cB(1 −

p)FB2(t) represents the cost of social forces under the biological

management of forest pests. lxB2(t) represents the increased benefit

of a reputation for social power.

Under the biological control mode, the changes in reputation

gained by the government are as follows:

_xB1(t) = aF + aE ln (e + IE)½ �FB1(t) − dxB1(t) (11)

Under the biological control mode, the changes in reputation

gained by the social power are as follows:

_xB2(t) = aFFB2(t) − dxB2(t) (12)

Among them, ½aF + aE ln (e + IE)�FB1(t) represents the increased
government reputation under the biocontrol mode. aFFB1(t)

represents an increase in the government’s reputation as a result

of the introduction of organisms. FB1(t)aE ln (e + IE) says improved

biodiversity has led to an increase in the government’s reputation.

dxB1(t) represents a decline in the government’s reputation. aFFB2
(t) represents the increased reputation of social forces under the

biological control mode. dxB2(t) represents a decline in the

reputation of social forces.
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3 Results

In the differential game, the social welfare of the government

and social forces when forest pests and diseases occur is not only

affected by control variables and parameters but also changes over

time. In order to better calculate the amount of control and social

benefits, the HJB formula was adopted. The HJB formula is a partial

differential equation, which is the core of optimal control.
3.1 HJB formula

Under the pesticide control mode, the HJB equation of the

social welfare function of the government and social forces is:

rVP1 = max
FP1(t)

bFFP1(t)
1

ln (e + kdd)
−
cP
2
F2
P1(t) −

cE
2
F2
P1(t) + lxP1(t)

� �
 

�

+ ∂VP1
∂ xP1

½(aF − aE)FP1(t) − dxP1(t)�g
(13)

rVP2 = max
FP2(t)

bFFP2(t) ln (e + kss) −
cP
2
(1 − p)F2

P2(t) + lxP1(t)
h in

+ ∂VP2
∂ xP2

aFFP2(t) − dxP2(t)½ �g
(14)

Under the physical control mode, the HJB equation of the social

welfare function of the government and social forces is:

rVH1 = max
FH1(t)

bF
1 + keeH

FH1(t) −
cH
2
ln (1 + kaa)F

2
H1(t) + lxH1(t)

� ��

+ ∂VH1
∂ xH1

aF ln (e + IH)FH1(t) − dxH1(t)½ �g
(15)

rVH2 = max
FH2(t)

bFFH2(t) ln (1 + kss) −
cH
2
(1 + kaa)(1 − p)F2

H2(t) + lxH2(t)
h in

+ ∂VH2
∂ xH2

aF ln (e + IH)FH2(t) − dxH2(t)½ �g
(16)

Under the biological control mode, the HJB equation of the

social welfare function of the government and social forces is:

rVB1 = max
FB1(t)

bFF
2
B1(t) − (cB + kmcm + koco)FB1(t) + lxB1(t)

� ��

+ ∂VB1
∂ xB1

(aF + aE ln (e + IE))FB1(t) − dxB1(t)½ �g
(17)

rVB2 = max
FB2(t)

bFF
2
B2(t) − cB(1 − p)FB2(t) + lxB2(t)

� ��

+ ∂VB2
∂ xB2

aFFB2(t) − dxB2(t)½ �g
(18)
3.2 Result of equilibrium

Proposition 1: Under the pesticide control mode, the control

quantities of government and social forces are, respectively (the

specific solving procedure is shown in Appendix 1):

F*P1(t) =
bF

(cP + cE) ln (e + kdd)
+

l
r + d

aF − aE
cP + cE

(19)
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F*P2(t) =
bF ln (e + kss) +

l
r+d aF

cP(1 − p)
(20)

In Eqs. (19) and (20), the resistance d of forest pests and the

degree cE of damage of pesticides to forest ecosystems are inversely

proportional to the degree F*P1(t) of government control. The rate s

of forest pest control is proportional to the degree F*P2(t) of social

force input. The cost cP of pest control is inversely proportional to

the degree F*Pi(t)(i = 1, 2) of control by government and social

forces. The amount bF of revenue generated per unit of

governance is directly proportional to the degree F*Pi(t)(i = 1, 2) of

control of both government and social forces.

Conclusion 1: Under the pesticide control mode, the stronger

the resistance to forest pests, the lower the balanced management

degree of the government. The higher the damage degree of

pesticides to the forest ecosystem, the lower the balanced

governance degree of government. The faster the pest control

speed, the more balanced the control amount of social force

input. The greater the cost of pest control, the smaller the

amount of balanced control input of government and social

forces. The greater the income generated by the amount of unit

governance, the greater the amount of government and social forces

invested in governance.

Proposition 2: Under the physical control mode, the control

quantities of government and social forces are, respectively (the

specific solving procedure is shown in Appendix 2):

F*H1(t) =
bF

(1 + keeH)cH ln (1 + kaa)
+

l
r + d

aF ln (e + IH)
cH ln (1 + kaa)

(21)

F*H2(t) =
bF ln (1 + kss)

cH(1 − p)(1 + kaa)
+

l
r + d

aF ln (e + IH)
cH(1 − p)(1 + kaa)

(22)

In Eqs. (21) and (22), the number eH of extreme weather events

is inversely proportional to the degree F*H1(t) of control by the

government. The number a of times physical facilities can be reused

and the cost cH of physical control are inversely proportional to the

degree F*Hi(t)of control by government and social forces. The rate s

of forest pest control is proportional to the degree F*Hi(t) of balanced

control of social forces. The amount bF of revenue generated by a

unit of control is proportional to the degree F*Hi(t) of balanced

control of government and social forces.

Conclusion 2: Under the physical control mode, the more

extreme weather occurs, the lower the balanced governance

degree of the government. The more physical facilities are reused,

the lower the balance of government and social forces. The higher

the cost of physical governance, the lower the degree of balanced

governance of government and social forces. The faster the speed of

forest pest control, the more balanced control amount of social

forces input. The greater the income generated by the amount of

unit governance, the greater the amount of government and social

forces invested in governance.

Proposition 3:

F*B1(t) =
cB + kmcm + koco

2bF
−

l
r + d

aF + aE ln (e + IE)
2bF

(23)
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F*B2(t) =
cB(1 − p)

2bF
−

l
r + d

aF
2bF

(24)

In Eqs. (23) and (24), the cost cm and co caused by the

introduction of biological inadaptation or flooding is proportional

to the government’s balanced control degree F*B1(t). The income bF
generated by the amount of governance per unit is inversely

proportional to the degree F*Bi(t) of balanced governance between

government and social forces. The unit governance cost cB is

proportional to the balanced governance degree of government

and social force input.

Conclusion 3: Under the biological control mode of forest pests,

the more cost caused by the inadaptation or flooding of introduced

organisms, the more balanced management amount the government

will invest. Different from the previous two governance modes, in this

biological governance mode, the greater the income generated by the

unit amount of governance, the smaller the amount of balanced

governance input by the government and social forces. At the same

time, under the biological control mode, the larger the unit

governance cost, the larger the balanced governance amount of

government and social force input.
4 Numerical analysis

In order to more clearly depict the change in social benefits of

government and social power, numerical analysis is used in this

article. This article assumes that the discount factor r is 0.9. The

decay d of reputation is 0.1. The resistance d produced by forest

pests is 0.2. The influence coefficient kd of pest resistance on the

difficulty of control is 1. The destruction degree cE of forest

ecosystems per unit control amount is 0.5. The added cost cm of

inadaptability of introduced organisms is 0.4. The increased cost co
of imported organisms is 0.8. The coefficient km of inadaptation of

introduced organisms is 0.5. The coefficient ko associated with the

influx of introduced organisms is 1. The positive impact IH of

physical governance on reputation is 1.5. The positive impact IE of

biological governance on reputation is 2. The rate s of forest pest

control is 0.5. The effect ks of unit governance speed is 2. The

positive influence l of the reputation of government or social power

on earnings is 1. The proportion p of subsidies to social forces is 0.3.

The positive effect aF per unit of forest pest control on reputation is

1.5. The negative impact aE of unit number of ecological damage on

reputation is 1.2. The number eH of extreme weather events is 2. The

impact ke of each extreme weather on pest management facilities

was 0.5. The number a of reuse of physical facilities is 3. The effect

ka of reuse on cost is 0.3. The state variable is 1.

Therefore, this article can calculate:

V*P1 = 1 +
2:85

cP + 0:5
(25)

V*H1 = 1 +
1
cH

� 8:68 (26)

V*B1 = −0:14c2B + 0:65cB + 0:23 (27)
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This article can produce the graph shown in Figure 2.

If the income bF generated by the unit control quantity is 3, this

article can calculate:

V*P1 = 1 +
5:84

cP + 0:5
(28)

V*H1 = 1 +
1
cH

� 11:63 (29)

V*B1 = −0:09c2B + 0:43cB + 0:49 (30)

This article can produce the graph shown in Figure 3.

As can be seen from Figures 2 and 3, regardless of the change in

governance benefits, the social benefits of physical control by the

government are the largest. At the same time, the curve of biological

governance is smoother.

Conclusion 4: When the unit management cost is the same, the

government can get the maximum benefit from the physical

management of forest pests. However, compared with the other

two control modes, with the change of governance costs, the change

of social benefits for the government under the biological control

mode is relatively gentle.

If the income bF generated by the unit control quantity is 2, this

article can calculate:

V*P2 = 1 +
1
cP

� 13:49 (31)

V*H2 = 1 +
1
cH

� 5:26 (32)

V*B2 = −0:068c2B + 0:682 (33)

This article can produce the graph shown in Figure 4.

If the income bF generated by the unit control quantity is 3, this

article can calculate:

V*P2 = 1 +
1
cP

� 23:13 (34)

V*H2 = 1 +
1
cH

� 7:50 (35)

V*B2 = −0:045c2B + 0:792 (36)

This article can produce the graph shown in Figure 5.

As can be seen from Figures 4 and 5, regardless of the change of

governance benefits, the social benefits of pesticide control by the

social power are the largest. At the same time, the curve of biological

governance is smoother.

Conclusion 5: When the unit control cost is the same, social

forces gain the most benefits from pesticide control of forest pests.

However, compared with the other two governance modes, with the

change in governance costs, the benefits of social forces under the

biological governance mode change more gently.

In Figures 2–5, this article makes a visual presentation of the

change in control cost. In order to show the changes in more
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parameters, this article then makes a visual presentation of the

changes in the positive effects of control and the negative effects of

ecological destruction.

Other parameters remain unchanged; redefine the following

parameters. The income bF generated by the unit control quantity is

2. The unit cost of managing forest pests and diseases is 2. That is, cp
= cH = cB = 2. The positive effect aF per unit of forest pest control on

reputation is changing. This article can calculate:

V*
P1 = 0:22a2F + 0:29aF + 1:1 (37)

V*H1 = 0:89a2F + 1:24aF + 1:43 (38)

V*B1 = −0:14a2F + 0:317aF + 0:819 (39)

V*
P2 = 0:4a2F + 2:08aF + 3:72 (40)

V*H2 = 0:43a2F + 0:83aF + 1:40 (41)

V*B2 = −0:14a2F + 0:39aF + 0:73 (42)

This article can produce the graphs shown in Figures 6 and 7.

As can be seen from Figures 6 and 7, as the reputation of

controlling forest pests and diseases increases, the social benefits of

both pesticide control and physical control by government and

social forces increase. However, the social benefits of government

and social forces change very gently under biological control.

Conclusion 6: Under pesticide control and physical control, the

social benefits of government and social forces are directly

proportional to the reputation generated by pest control.
Frontiers in Ecology and Evolution 0978
Other parameters remain unchanged; redefine the following

parameters: The negative impact aE of unit number of ecological

damage on reputation is changing. The income bF generated by

the unit control quantity is 2. The unit cost of managing forest

pests and diseases is 2. That is, cp = cH = cB = 2. The positive effect

aF per unit of forest pest control on reputation is 1.5. This article

can calculate:

V*P1 = −0:22a2E + 0:53aE + 1:72 (43)

V*H1 = 5:29 (44)

V*B1 = −0:33a2E + 0:67aF + 0:69 (45)

This article can produce the graph shown in Figure 8.

Conclusion 7: As the adverse effects of ecological damage on

reputation continue to increase, the social benefits of the

government under pesticide control and biological control modes

are first increased and then decreased.
5 Discussion

In recent years, the global temperature has been gradually

rising, and forest pests are frequently harmful and very easy to

spread. Governments and social forces need to take measures to

control forest pests and diseases. Pesticide control tends to

damage ecosystems and lead to pest resistance, but it is low cost

and has quick results. Physical containment facilities can be

reused, but they are costly and vulnerable to extreme weather.

Biological control can better protect the ecosystem, but introduced
FIGURE 2

The influence of control cost on the government’s social benefits.
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natural enemies are prone to problems of adaptability and

infestation. Therefore, how to control forest pests and diseases is

an important issue in this article. As most of the existing studies

use traditional methods such as data analysis and field
Frontiers in Ecology and Evolution 1079
investigation, there is no research on forest pests and diseases

using differential games. In this article, the differential game is

applied to forest pest management, especially considering the

advantages and disadvantages of various prevention and control
FIGURE 4

The influence of control cost on social power’s social benefits.
FIGURE 3

The influence of control cost on the government’s social benefits.
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modes and how the government and social forces achieve effective

forest pest management.

In the process of forest pest management, we must pay attention

to the reasonable rotation and mixing of pesticides. Long-term use of a

pesticide will cause resistance to pests and diseases. Pesticide rotation

and mixing can reduce the development of resistance to pests and

diseases. At the same time, we also need to have a reasonable grasp of

the dosage. Since reducing the number of drugs cannot reach the

control effect, delay the best control period. If the amount of medicine

is increased, there will be a waste of pesticides, an increase in cost,

harm to the natural enemies of pests, increased environmental

pollution, and other problems. In the process of pesticide use,

attention should be paid to the extent of damage to the ecosystem.

Mechanical control mainly includes artificial killing, the use of

simple appliances, instruments, and other devices, and even the

application of modern devices and equipment. Mechanical control

devices can be reused, and the more they are used, the less physical

equipment is required. For example, pest traps are easy to operate,

nontoxic, safe, and low-cost (Kecskeméti et al., 2021). If they can be

reused after they are released, forest pests can be hunted

continuously. However, in recent years, extreme weather has

occurred more frequently around the world. Physical prevention

and control measures are easily affected by extreme weather. When

extreme weather such as typhoons and rainstorms occurs

frequently, the number of physical facilities installed should be

reduced to reduce the damage to physical facilities.

The goal of artificial mass breeding and release of natural

enemies of insects is clear. Predators used for breeding and
Frontiers in Ecology and Evolution 1180
release should be much targeted. Only targeted natural enemies

can play a better role in controlling forest pests. Moreover,

predators are living things that can reproduce themselves. The

offspring of natural enemies can also have an impact on forest pests.

However, the more targeted the predator, the higher the cost. For

example, in order to control forest pests, a variety of egg-parasitic

wasps of Trichotropis (Zang, 2021) are the most studied and

utilized in feeding and releasing natural enemies in China. This

has been commercialized, and Trichogramma can be used to control

major lepidopteran pests.

Pesticides are disposable and can easily affect the environment.

The natural enemies of pests are easily restricted by environmental

adaptability and flooding (Mandal et al., 2023). Physical facilities

can be reused. As a result, governments tend to prefer physical

prevention. Governments pay more attention to ecological

sustainability than social forces. Governments focus on long-term

interests, while social forces tend to focus on short-term interests

(Dragicevic, 2019c). Social forces generally focus on the number of

forest pests eliminated in the short term. The effects of pesticides on

ecosystems are often not visible in the short term. As a result, social

forces are more inclined to use pesticide control.
6 Conclusion

In order to study the application scope of different management

modes for forest pests and diseases, differential game models of

pesticide management, physical management, and biological
FIGURE 5

The influence of control cost on social power’s social benefits.
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management were constructed in this article. Also, the equilibrium

results are compared and analyzed. Finally, the research conclusion

is drawn that under the biological control mode, the income

generated by the unit control quantity is inversely proportional to

the balanced control quantity. However, under the pesticide control
Frontiers in Ecology and Evolution 1281
and physical control modes, the income generated by the unit

control quantity is proportional to the balanced control quantity. At

the same time, under the biological control mode, the unit

governance cost is proportional to the balanced governance

quantity. Under the pesticide control and physical control modes,
FIGURE 6

The influence of positive impact on the government’s social benefits.
FIGURE 7

The influence of positive impact on social power’s social benefits.
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the unit control cost is inversely proportional to the balanced

control quantity. Social forces tend to adopt pesticide control.

The government prefers physical control.

This article has some shortcomings. For example, this article is

based on the analysis of mathematical modeling, and the relevant

specific data are limited. At the same time, the problem of pests and

diseases in specific forests has not been studied, and the specific

conditions faced by different forests may not be exactly the same. In

future studies, relevant specific data can be added to carry out

research on specific forest pests and diseases. The research in this

article can be extended to some extent. For example, this article only

considers the situation that the government’s decision-making is

constantly changing, the government can grasp the information on

forest diseases and pests in a more comprehensive way, and the

forest affects national production and management. In future

studies, it is possible to consider the situation that the

government’s decision is unchanged, the government cannot

grasp the comprehensive information of pests and diseases, the

forest has little impact on economic development, etc., and carry

out relevant studies. In addition, this study is not only applicable to

the study of forest pests and diseases but also has certain reference

significance for forest fire control, forest wildlife protection, and

other related issues.
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FIGURE 8

The influence of negative reputational effects on the government’s social benefits.
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Appendix 1

Take the derivatives of FP1 with respect to Eq. (13), take the

derivatives of FP2 with respect to Eq. (14), and set them equal to

zero, we can get:

F*P1(t) =
bF

(cP + cE) ln (e + kdd)
+
∂VP1

∂ xP1

aF − aE
cP + cE

(46)

F*P2(t) =
bF ln (e + kss) +

∂VP2
∂ xP2

aF
cP(1 − p)

(47)

Substituting Eq. (46) into Eq. (13) and substituting Eq. (47) into

Eq. (14), we can get:

rVP1 = bF
bF

(cP+cE) ln (e+kdd)
+ ∂VP1

∂ xP1
aF−aE
cP+cE

� 	
1

ln (e+kdd)
− cP

2 + cE
2


 �h

  bF
(cP+cE) ln (e+kdd)

+ ∂VP1
∂ xP1

aF−aE
cP+cE

� 	2
+lxP1(t)� 

  + ∂VP1
∂ xP1

(aF − aE)
bF

(cP+cE) ln (e+kdd)
+ ∂VP1

∂ xP1
aF−aE
cP+cE

� 	
− dxP1(t)

h i
 

(48)

rVP2 = bF
bF ln (e+kss)+

∂VP2
∂ xP2

aF
cP(1−p)

ln (e + kss) −
cP
2 (1 − p)

bF ln (e+kss)+
∂VP2
∂ xP2

aF
cP(1−p)

� 2

+lxP1(t)

� �

  + ∂VP2
∂ xP2

aF
bF ln (e+kss)+

∂VP2
∂ xP2

aF
cP(1−p)

− dxP2(t)��

(49)

Let V*P1 = m1xP1 +m2 and V*P2 = m3xP2 +m4 , wherein, m1, m2,

m3, and m4 are all constants. The parameters of the optimal social

welfare function can be obtained by calculation as follows:

m1 =
l

r+d

m2 =
1
r bF

bF
(cP+cE) ln (e+kdd)

+ l
r+d

aF−aE
cP+cE

� 	
1

ln (e+kdd)
− cP

2 + cE
2


 �h

  bF
(cP+cE) ln (e+kdd)

+ l
r+d

aF−aE
cP+cE

� 	2� 
  + 1

r
l

r+d (aF − aE)
bF

(cP+cE) ln (e+kdd)
+ l

r+d
aF−aE
cP+cE

� 	h i
   

8>>>>>>>>><
>>>>>>>>>:

(50)

m3 =
l

r+d

m4 =
1
r bF

bF ln (e+kss)+
l

r+daF
cP(1−p)

ln (e + kss) −
cP
2 (1 − p)

bF ln (e+kss)+
l

r+daF
cP(1−p)

� 2� �

          + 1
r

l
r+d aF

bF ln (e+kss)+
l

r+daF
cP(1−p)

8>>>>>><
>>>>>>:

(51)

Therefore, it can be concluded that:

V*
P1 =

l
r+d xP1 +

1
r bF

bF
(cP+cE) ln (e+kdd)

+ l
r+d

aF−aE
cP+cE

� 	
1

ln (e+kdd)
− cP

2 + cE
2


 �h

  bF
(cP+cE) ln (e+kdd)

+ l
r+d

aF−aE
cP+cE

� 	2� 
  + 1

r
l

r+d (aF − aE)
bF

(cP+cE) ln (e+kdd)
+ l

r+d
aF−aE
cP+cE

� 	h i
(52)
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V*P2 =
1
r bF

bF ln (e+kss)+
l

r+daF
cP(1−p)

ln (e + kss) −
cP
2 (1 − p)

bF ln (e+kss)+
l

r+daF
cP(1−p)

� 2� �

+ l
r+d xP2 +

1
r

l
r+d aF

bF ln (e+kss)+
l

r+daF
cP(1−p)

(53)

In this case,

F*P1(t) =
bF

(cP + cE) ln (e + kdd)
+

l
r + d

aF − aE
cP + cE

(54)

F*P2 tð Þ =
bF ln e + kssð Þ + l

r+d aF
cP 1 − pð Þ (55)
Appendix 2

Take the derivatives of FH1 with respect to Eq. (15), take the

derivatives of FH2 with respect to Eq. (16), and set them equal to

zero, we can get:

F*H1(t) =
bF

(1 + keeH)cH ln (1 + kaa)
+
∂VH1

∂ xH1

aF ln (e + IH)
cH ln (1 + kaa)

(56)

F*H2(t) =
bF ln (1 + kss)

cH(1 − p)(1 + kaa)
+
∂VH2

∂ xH2

aF ln (e + IH)
cH(1 − p)(1 + kaa)

(57)

Substituting Eq. (56) into Eq. (15) and substituting Eq. (57) into

Eq. (16), we can get:

rVH1 =
bF

1+keeH
bF

(1+keeH )cH ln (1+kaa)
+ ∂VH1

∂ xH1

aF ln (e+IH )
cH ln (1+kaa)

h i
− cH

2 ln (1 + kaa)
n

  bF
(1+keeH )cH ln (1+kaa)

+ ∂VH1
∂ xH1

aF ln (e+IH )
cH ln (1+kaa)

h i2
+lxH1(t)�

+ ∂VH1
∂ xH1

aF ln (e + IH)
bF

(1+keeH )cH ln (1+kaa)
+ ∂VH1

∂ xH1

aF ln (e+IH )
cH ln (1+kaa)

h i
− dxH1(t)

∂VH1
∂ xH1

g
(58)

rVH2 = bF
bF ln (1+kss)

cH (1−p)(1+kaa)
+ ∂VH2

∂ xH2

aF ln (e+IH )
cH (1−p)(1+kaa)

h i
ln (1 + kss)−

n

  cH
2 (1 + kaa)(1 − p) bF ln (1+kss)

cH (1−p)(1+kaa)
+ ∂VH2

∂ xH2

aF ln (e+IH )
cH (1−p)(1+kaa)

h i2
+lxH2(t)

  + ∂VH2
∂ xH2

aF ln (e + IH)
bF ln (1+kss)

cH (1−p)(1+kaa)
+ ∂VH2

∂ xH2

aF ln (e+IH )
cH (1−p)(1+kaa)

h i
− dxH2(t)

∂VH2
∂ xH2

g
(59)

Let V*H1 = m5xH1 +m6 and V*H2 = m7xH2 +m8 , wherein, m5,

m6, m7, and m8 are all constants. The parameters of the optimal

social welfare function can be obtained by calculation as follows:

m5 =
l

r+d

m6 =
1
r

bF
1+keeH

bF
(1+keeH )cH ln (1+kaa)

+ l
r+d

aF ln (e+IH )
cH ln (1+kaa)

h i
− cH

2 ln (1 + kaa)
n

  bF
(1+keeH )cH ln (1+kaa)

+ l
r+d

aF ln (e+IH )
cH ln (1+kaa)

h i2

  + l
r+d aF ln (e + IH)

bF
(1+keeH )cH ln (1+kaa)

+ l
r+d

aF ln (e+IH )
cH ln (1+kaa)

�h o
   

8>>>>>>>>><
>>>>>>>>>:

(60)
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m7 =
l

r+d

m8 =
1
r bF

bF ln (1+kss)
cH (1−p)(1+kaa)

+ l
r+d

aF ln (e+IH )
cH (1−p)(1+kaa)

h i
ln (1 + kss)−

n

  cH
2 (1 + kaa)(1 − p) bF ln (1+kss)

cH (1−p)(1+kaa)
+ l

r+d
aF ln (e+IH )

cH (1−p)(1+kaa)

h i2

  + l
r+d aF ln (e + IH)

bF ln (1+kss)
cH (1−p)(1+kaa)

+ l
r+d

aF ln (e+IH )
cH (1−p)(1+kaa)

�h o

8>>>>>>>>><
>>>>>>>>>:

(61)

Therefore, it can be concluded that:

V*H1 =
l

r+d xH1 +
1
r

bF
1+keeH

bF
(1+keeH )cH ln (1+kaa)

+ l
r+d

aF ln (e+IH )
cH ln (1+kaa)

h i
− cH

2 ln (1 + kaa)
n

  bF
(1+keeH )cH ln (1+kaa)

+ l
r+d

aF ln (e+IH )
cH ln (1+kaa)

h i2

  + l
r+d aF ln (e + IH)

bF
(1+keeH )cH ln (1+kaa)

+ l
r+d

aF ln (e+IH )
cH ln (1+kaa)

�h o

(62)

V*
H2 =

l
r+d xH2 +

1
r bF

bF ln (1+kss)
cH (1−p)(1+kaa)

+ l
r+d

aF ln (e+IH )
cH (1−p)(1+kaa)

h i
ln (1 + kss)−

n

  cH
2 (1 + kaa)(1 − p) bF ln (1+kss)

cH (1−p)(1+kaa)
+ l

r+d
aF ln (e+IH )

cH (1−p)(1+kaa)

h i2

  + l
r+d aF ln (e + IH)

bF ln (1+kss)
cH (1−p)(1+kaa)

+ l
r+d

aF ln (e+IH )
cH (1−p)(1+kaa)

�h o
(63)

In this case,

F*H1(t) =
bF

(1 + keeH)cH ln (1 + kaa)
+

l
r + d

aF ln (e + IH)
cH ln (1 + kaa)

(64)

F*H2(t) =
bF ln (1 + kss)

cH(1 − p)(1 + kaa)
+

l
r + d

aF ln (e + IH)
cH(1 − p)(1 + kaa)

(65)
Appendix 3

Take the derivatives of FB1 with respect to Eq. (17), take the

derivatives of FB2 with respect to Eq. (18), and set them equal to

zero, we can get:

F*B1(t) =
cB + kmcm + koco

2bF
−
∂VB1

∂ xB1

aF + aE ln (e + IE)
2bF

(66)

F*B2(t) =
cB(1 − p)

2bF
−
∂VB2

∂ xB2

aF
2bF

(67)

Substituting Eq. (66) into Eq. (17) and substituting Eq. (67) into

Eq. (18), we can get:

rVB1 = bF
cB+kmcm+koco

2bF
− ∂VB1

∂ xB1
aF+aE ln (e+IE)

2bF

h i2
−(cB + kmcm + koco)

  cB+kmcm+koco
2bF

− ∂VB1
∂ xB1

aF+aE ln (e+IE)
2bF

h i
+ lxB1(t) − dxB1(t)

∂VB1
∂ xB1

  + ∂VB1
∂ xB1

aF + aE ln (e + IE)ð Þ cB+kmcm+koco
2bF

− ∂VB1
∂ xB1

aF+aE ln (e+IE)
2bF

h i
(68)
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rVB2 = bF
cB(1−p)
2bF

− ∂VB2
∂ xB2

aF
2bF

h i2
−cB(1 − p) cB(1−p)

2bF
− ∂VB2

∂ xB2
aF
2bF

h i
+ lxB2(t)

           + ∂VB2
∂ xB2

aF
cB(1−p)
2bF

− ∂VB2
∂ xB2

aF
2bF

h i
− dxB2(t)

∂VB2
∂ xB2

(69)

Let V*B1 = m9xB1 +m10 and V*B2 = m11xB2 +m12, wherein, m9,

m10, m11, and m12 are all constants. The parameters of the optimal

social welfare function can be obtained by calculation as follows:

m9 =
l

r+d

m10 =
1
r bF

cB+kmcm+koco
2bF

− l
r+d

aF+aE ln (e+IE)
2bF

h i2
− 1

r (cB + kmcm + koco)

   cB+kmcm+koco
2bF

− l
r+d

aF+aE ln (e+IE)
2bF

h i

  + 1
r

l
r+d aF + aE ln (e + IEð Þ) cB+kmcm+koco

2bF
− l

r+d
aF+aE ln (e+IE)

2bF

h i
  

8>>>>>>>>><
>>>>>>>>>:

(70)

m11 =
l

r+d

m12 =
1
r bF

cB(1−p)
2bF

− l
r+d

aF
2bF

h i2
− 1
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2bF

− l
r+d
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h i

    + 1
r

l
r+d aF

cB(1−p)
2bF

− l
r+d

aF
2bF

h i

8>>>>><
>>>>>:

(71)

Therefore, it can be concluded that:

V*
B1 =

l
r+d xB1 +

1
r bF

cB+kmcm+koco
2bF

− l
r+d

aF+aE ln (e+IE)
2bF

h i2
− 1

r (cB + kmcm + koco)

   cB+kmcm+koco
2bF

− l
r+d

aF+aE ln (e+IE)
2bF

h i

  + 1
r

l
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2bF
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aF+aE ln (e+IE)

2bF

h i
  

(72)

V*B2 =
l

r+d xB2 +
1
r bF

cB(1−p)
2bF

− l
r+d

aF
2bF

h i2
− 1

r cB(1 − p) cB(1−p)
2bF

− l
r+d

aF
2bF

h i

           + 1
r

l
r+d aF

cB(1−p)
2bF

− l
r+d

aF
2bF

h i

(73)

In this case,

F*B1(t) =
cB + kmcm + koco

2bF
−

l
r + d

aF + aE ln (e + IE)
2bF

(74)

F*B2(t) =
cB(1 − p)

2bF
−

l
r + d

aF
2bF

(75)
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The most important factor for increasing crop production is pest and pathogen

resistance, which has a major impact on global food security. Pest management

also emphasizes the need for farming awareness. A high crop yield is ultimately

achieved by protecting crops from pests and raising public awareness of the

devastation caused by pests. In this research, we aim to investigate the intricate

impacts of nonlinear delayed systems for managing crop pest management

(CPM) supervised by Ordinary Di�erential Equations (ODEs). Our focus will be on

highlighting the intricate and often unpredictable relationships that occur over

time among crops, pests, strategies for rehabilitation, and environmental factors.

The nonlinear delayed CPM model incorporated the four compartments: crop

biomass density [B(t)], susceptible pest density [S(t)], infected pest density [I(t)],

and population awareness level [A(t)]. The approximate solutions for the four

compartments B(t), S(t), I(t), and A(t) are determined by the implementation of

sundry scenarios generated with the variation in crop biomass growth rate, rate

of pest attacks, pest natural death rate, disease associated death rate and memory

loss of aware people, by means of exploiting the strength of the Adams (ADS)

and explicit Runge-Kutta (ERK) numerical solvers. Comparative analysis of the

designed approach is carried out for the dynamic impacts of the nonlinear delayed

CPM model in terms of numerical outcomes and simulations based on sundry

scenarios.

KEYWORDS

non-linear delayed crop pest management model, public awareness, explicit Runge–

Kutta method, Adams method, comparative analysis, approximate solutions, graphical

illustrations

1. Introduction

In recent years, researchers have paidmore attention to integrated pest management, and

its use in the crop field has increased. This strategy emphasizes the implication of biological

control factors to minimize the credence of pesticides. In agriculture, forest management,

and population health, microbiological pesticides play a significant role in incorporated

pest management. In the case of crops, biopesticides provide noticeable pest management

dependability as part of incorporated pest management [1]. In North America and Europe,

viruses are used as pest control agents against insect pests [2–4]. Agricultural-related

awareness programs on radio, TV, mobile and other media might aid in disseminating

agricultural knowledge among farmers and ranchers about the hazards of pesticide use on
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human health as well as the other linked environmental concerns

[5–9]. Pesticide overuse is significantly associated with farmers’

lack of pesticide knowledge, the impact of pesticide retail outlets,

and inaccessibility to non-synthetic pest control methods, while

the tendency to overuse reduces higher levels of the learning

process in Integrated Pest Management [10]. As a result, farming

awareness is essential to prevent crop losses having the least amount

of detrimental side effects [11, 12]. Pesticide communication

campaigns made it easier for farmers to understand the substantial

risks pesticides pose to public health and the ecosystem, and to limit

harmful consequences. Farmers primarily learned about pesticide

use and hazards through oral communication [13].

Time delay is a key feature in both natural and manmade

systems. Kuang provided an example to demonstrate the

significance of time delay [14]. He claimed that animals require

time to digest their food before moving on to other activities

and reflexes. As a result, any species model with no temporal

delay is at best an approximation [15]. Many systems as well as

industrial plants, including biological systems, machining, metal

forming, thermal acoustic systems and many others experience

time delays [16–19]. Furthermore, dynamical systems including

time delay exhibit far more complex behaviors than those without

delay in time [20]. There are two key reasons for the presence of

temporal delays in prey-predator systems [21, 22]. The first is the

gestation period, and the second is the maturation period. As a

result, incorporating delays into predator-prey model is essential

for ensuring the realistic nature of these models and demonstrating

how well the population dynamics of such models are influenced

by previous relevant information. In fact, time delays have a

significant impact on the overall characteristics of dynamic systems.

Many publications in the literature have described the theory-

based analysis of the prey-predator model involving time delay,

such as hunting delay [23], dispersal delay [24], predator gestation

period [25], as well as intra-specific competitive pressure generated

feedback delay [26].

There is a lack of mathematical modeling on agricultural

awareness to limit plant pests as well as diseases. Daudi et al. [27]

proposed a dynamic model using the fractional derivative operator

for maize growth as well as interactions with fall armyworms.

They described the basic reproductive number, which was the

average amount of newborns generated by a single female moth

over the course of a lifespan. The resilience of the trivial equilibria,

as well as the positive equilibria of the dynamical system, were

investigated by Li et al. [28] and the threshold requirements

for pest destruction and system permanence were determined.

Abbreviations: IPM, Integrated Pest Management; ERK, Explicit Runge-Kutta;

MD, Mating disruption; TV, Television; ODEs, Ordinary di�erential equations;

HIV, Human immunodeficiency virus; COVID-19, coronavirus disease of

2019; ADS, Adams method; CPS, Crop pest management; B(t), S(t), I(t),

A(t), Crop biomass density, Susceptible density, Infected density, Aware

people density; B0 , S0 , I0 and A0, Initial conditions for B, S, I and A; NDSolve,

Numerical solution of di�erential equations; α, Crop biomass growth rate; N,

Maximum crop biomass percentage; δ, Rate of pest attacks; c, Pest natural

death; β, Disease associated death rate; l, Aware individuals’ activity level;

d, Growth rate of aware individuals; υ , Memory loss of aware people; A0,

Awareness level from a widespread source; τ , Delay in time.

TABLE 1 Parameters default values used for non-linear delayed CPM

model [38].

Parameters Value Parameters Value

a 0.2 ϕ 0.5

N 50 µ 0.6

δ 0.025 µ1 0.12

c 0.1 l 0.025

β 0.05 d 0.015

A0 0.2 υ 0.05

τ 1 - -

Xiang et al. [29] explored the influence of MD controls on the

dynamical behavior of the pest systems by adding the gestational

delay and sex pheromones. First, the system’s bounds, stability,

as well as bifurcation were discussed. Second, by integrating

the constraint violating function, an optimized control problem

depending on sex pheromone and pesticides was reduced into

an analogous optimized parameter decision issue. The bifurcation

control of mosaic viruses fractional order infection models for

Jatropha curcas with agricultural awareness and an executing

delay was examined by Liu et al. [30] Hopf bifurcation generated

by executing delay was explored for the unregulated system by

examining the corresponding characteristic equation. They found

that changing the fractional order had a considerable impact on

bifurcation dynamics. Kumari et al. [31] employed the Integrated

Pest Management (IPM) technique to create a mathematical model

that used a combination of chemical and biological management.

The feasibility of pest eradication and non-trivial equilibria state

were examined, and the local stability of the pest eradication

equilibria state was investigated further. Shi et al. [32] presented a

unique population Smith framework with continual delay as well

as impulsive phase adaptive control and examined how it may

be used in pest management. The model’s singularity was first

qualitatively examined, and then the presence and uniqueness of

order one periodical orbits were considered in order to calculate

the frequency of chemical control implementation. A Filippov

prey predator model incorporating time delay was introduced by

Arafa et al. [33], where the delay time indicated the changes in

the natural enemy’s growth rate before discharging it to fatten up

pests. The bifurcation parameter time delay was used to derive

the threshold constraints for the stability of the equilibrium.

Utilizing Hopf bifurcation, it was proven that whenever the time

delay parameter crosses through specific critical levels, a periodical

oscillation phenomenon arises. They also established the equation

of slipping motion and addressed the sliding phase dynamics

using the Filippov convex approach. Al Basir et al. [34] presented

prey predator framework for assessing the impact of delay time

in crop pest management utilizing agricultural awareness-based

treatments. The authors indicated that the application of biological

insecticides is proportionate to the pest population density on the

plantation. The presence of steady states, as well as their stability,

had been examined. Allen-Perkins and Estrada [35] constructed

an epidemic model to explore disease transmission and control

in planted agricultural farms as a long-term pest management
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TABLE 2 Illustration of scenarios for the non-linear delayed CPMmodel.

Scenario 1 for the crop biomass growth rate

ADS solver ERK solver

C-1 a= 0.25 a= 0.25

C-2 a= 0.3 a= 0.3

C-3 a= 0.5 a= 0.5

C-4 a= 0.7 a= 0.7

C-5 a= 0.9 a= 0.9

Scenario 2 for the rate of pest attacks

ADS solver ERK solver

C-1 δ = 0.015 δ = 0.015

C-2 δ = 0.025 δ = 0.025

C-3 δ = 0.035 δ = 0.035

C-4 δ = 0.045 δ = 0.045

C-5 δ = 0.055 δ = 0.055

Scenario 3 for the pest natural death rate

ADS solver ERK solver

C-1 c= 0.15 c= 0.15

C-2 c= 0.25 c= 0.25

C-3 c= 0.33 c= 0.33

C-4 c= 0.45 c= 0.45

C-5 c= 0.55 c= 0.55

Scenario 4 for disease associated death rate

ADS solver ERK solver

C-1 β = 0.01 β = 0.01

C-2 β = 0.02 β = 0.02

C-3 β = 0.03 β = 0.03

C-4 β = 0.04 β = 0.04

C-5 β = 0.05 β = 0.05

Scenario 5 for memory loss of aware people

ADS solver ERK solver

C-1 υ = 0.01 υ = 0.01

C-2 υ = 0.02 υ = 0.02

C-3 υ = 0.03 υ = 0.03

C-4 υ = 0.05 υ = 0.05

C-5 υ = 0.06 υ = 0.06

strategy. In an epidemiological susceptible, infectious and removed

model, the model includes the mobility of aphids carrying a

virus in an agricultural farm, the spatial dispersion of plants in

a planted field, and the existence of “trapped crops.” Abraha

et al. [36] studied a mathematical model for crop pest control

that took into account plant biomass, pests, and the impact of

farmer awareness. The basic reproductive number and delays in

time were used to determine the presence as well as stability

of the equilibria. Whenever time delays approach critical values,

stability transitions happen due to Hopf-bifurcation. The delayed

system’s cost-effectiveness was assessed using optimal control-

theory. Rossini et al. [37] presented a mathematical framework

for calculating the analytical solutions to the second variant of

the distributed delay model. The researchers also investigated how

the model behaved when it came to representing the population

of insect pests in various environmental factors, particularly with

respect to temperature. Al Basir et al. [38] proposed a mathematical

model including delay to investigate the impact of public awareness

on agricultural pest management using crop biomass, and pests.

The basic reproductive number was used to determine the presence

and stability conditions of the equilibria. The Hoph bifurcation

analysis was performed at the epidemic equilibria with time delay

as the bifurcation parameter.

Numerical approaches are frequently employed in science

and engineering to solve mathematical problems for which exact

solutions are difficult or impossible to grab. Only a limited number

of differential equations can be solved analytically. There are

several analytical methods to solve ordinary differential equations

(ODEs). Although several ODEs have closed form solutions that

can be obtained using renowned analytical methods, numerical

methods must be evolved and applied to obtain numerical

solutions of a differential equation under a predefined initial

history. Many researchers used a variety of numerical methods to

simulate the solution of mathematical models, acquiring results

that were more accurate than those found in the literature, such

as [39–43]. Researchers have recently focused their efforts on the

numerical solutions of numerous mathematical models in the

realm of epidemiology, such as the HIV model [44], COVID-19

[45], plant disease model [46], tuberculosis propagation model

[47], computer virus transmission model [48]. Although the

above mentioned techniques have high precision and consistency

but they require considerable memory and long computational

cost. Consequently, the procedures for this technique present

noteworthy challenges that may be resolved in order to ensure that

the solution is precise and consistent. Therefore, several efforts

have been made by researchers to develop efficient techniques

for solving linear and non-linear ODE systems [49–51]. The

importance of numerical solutions is emphasized in the literature

listed above. As a result of these considerations, the authors have

decided to use the ADS (Adams) and ERK (explicit Runge–Kutta)

numerical solvers to solve the delay differential system [52–56].

The Adams predictor-corrector approach [46, 57–60] is also a

more efficient and straightforward numerical tool for solving delay

differential systems.

In order to manage crop pests, insecticides or other

preventative measures are frequently used. The emphasis is

shifted to educating farmers about alternative techniques including

rotation of crops, biological insect control, and cultural practices

by incorporating agricultural knowledge into the pest management

approach. Through integration, agricultural pest control may

be approached holistically and sustainably [61]. To model and

simulate the dynamics of agricultural pest populations while

taking into account a variety of elements such as environmental

conditions, insect life cycles, and farming practices, numerical

analytic techniques such as the use of differential equations

and optimization methods can be used. The model can offer
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FIGURE 1

Flowchart of designed methodology for non-linear delayed CPM model.

insights to the population dynamic of pests, the effects of various

management techniques, and the ideal time for putting control

measures into place by using numerical analysis. By offering data-

driven advice to farmers and decision-makers, this quantitative

method improves the decision-making process [62]. In general,

the notion is innovative since it addresses agricultural pest control

by combining principles of farming awareness with numerical

analytic methods. This multidisciplinary approach emphasizes eco-

friendly and sustainable practices while also offering a quantitative

foundation for analyzing and improving pest management tactics.

Combining these factors helps researchers create agricultural

pest management strategies that are both more practical and

ecologically responsible. This research may help with the creation

of efficient and long-lasting farming awareness campaigns, the

adoption of integrated pest management techniques, and the

alleviation of farmer difficulties brought on by crop pests. Time

delay models really have the potential to increase complexity

because of the intrinsic properties of temporal latencies and their

impact on system dynamics. The implementation of numerical

solutions for non-linear delayed systems may be challenging and

computationally expensive. Researchers may require sophisticated

software, outstanding durability computing devices, as well as

expertise in both computational and mathematical modeling

strategies. In this study, we used state-of-the-art numerical

techniques like Adam (ADS) and explicit Runge–Kutta (ERK) to

find the numerical solution of the non-linear delayed CPM model.

The presented study has the following salient features:

• The dynamic impact of the non-linear delayed crop pest

management (CPM) system supervised by ODEs is analyzed

by incorporating awareness growth level.

• The approximate solutions for the four compartments B(t),

S(t), I(t), and A(t) are determined by the implementation of

sundry scenarios generated with the variation in crop biomass

growth rate, rate of pest attacks, pest natural death rate, disease

associated death rate and memory loss of aware people.

• The strength of the Adams and explicit Runge–Kutta

numerical solvers are utilized to determine the approximate

solutions for the non-linear delayed CPMmodel.

• Comparative analysis is carried out for the dynamic

impact of the non-linear delayed CPM model in terms of

numerical outcomes as well as graphical illustrations based on

sundry scenarios.

The rest of the article’s layout is as follows: In the second

section, the non-linear delayed CPM model is formulated. The

third section provides a detailed overview of the methodology.

The fourth section provides the analysis, discussion, and graphical

interpretation of approximate solutions. The fifth section presents

the analysis-based conclusion.

2. Formulation of the mathematical
model

The model [38] integrated agricultural biomass, pests, and

the population’s awareness. Crop biomass density, susceptible pest

density, infected pest density, and aware people density are the four

compartments incorporated in the model. Logistical evolution for

the densities of crop biomass is assumed, since crop fields have a

finite size (though it might be large), with a net growth rate a and

N is carrying capacity. Pests that are susceptible to the crop are
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FIGURE 2

(A–D) Dynamics of B(t), S(t) for variation in α by ADS and ERK solvers.

attacked, significantly reducing the crop. Let λ represent the pest

attack rate on crops [38].

dB

dt
= aB (t)

(

1−
B (t)

N

)

− δB (t) S (t) − ϕδB (t) I (t) (1)

To take into consideration their interests as well, aware

individuals may keep the crops under observation and, if properly

trained, will squirt biopesticides or integrate them into fertilizer

applications to manage the insect invasion. The massive term

lA(t)S(t) can be used to introduce the awareness action rate l, which

results from deliberate human activities and control actions like the

application of biopesticides [38].

dS

dt
= µδB (t) S (t) − lA (t) S (t) − cS (t) (2)

Pests that are infected can also harm the crop, φδ, although at

a much lesser rate φ < 1. Here, c represents the pests’ natural death

rate, and the infectionmortality rate β is a result of knowing human

behavior, like the application of insecticides [38].

dI

dt
= µ1ϕδB (t) I (t) + lA (t) S (t) − (c+ β) I (t) (3)

µ and µ1 represent the “conversion efficacy” of susceptible

as well as infected pests, or how well the pests can use plant

components. Since pests influenced by pesticides are less effective,

µ > µ1. Because of media initiatives and increased public

awareness, farmers now have a higher level of awareness, which

is denoted by A. Additionally, it is expected that the exposure of

the resilient pests influences the rate at which local information is
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FIGURE 3

(A–D) Dynamics of I(t), A(t) for variation in α by ADS and ERK solvers.

increasing at a rate d. The loss of memory causes farmers’ levels of

consciousness to decline at a rate υ [38].

dA

dt
= A0 + d (S+ I) − υA (t) (4)

A delay in observing the number of pests or their activity

might occur in a field. Typically, this prediction is produced by

studying past incidences of pest prevalence. As a consequence,

there are differences in the degree of awareness and the application

of preventive countermeasures. Enforcement of such remedies is

anticipated to be delayed. The number of pests present at time (t-

τ ) (or time τ > 0 in some cases) will determine how intense the

awareness campaigns are at time t.

The following modified mathematical model results from the

abovementioned assumptions [38].

dB

dt
= aB (t)

(

1−
B (t)

N

)

− δB (t) S (t) − ϕδB (t) I (t) , (5)

dS

dt
= µδB (t) S (t) − lA (t) S (t) − cS (t)

dI

dt
= µ1ϕδB (t) I (t) + lA (t) S (t) − (c+ β) I (t) ,

dA

dt
= A0 + d [S (t − τ) + I (t − τ)]− υA (t) ,

and initial conditions are as:

B0 > 0, S0 > 0, I0 > 0, A0 > 0.
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TABLE 3 Numerical solutions of non-linear delayed CPMmodel.

Time (Days) ADS method: Case-1, scenario 1 ERK method: Case-1, scenario 1

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 26.1125 5.8948 3.9220 5.5834 23.3716 6.8244 5.0614 5.8591

60 25.0607 2.9136 4.0531 6.4258 25.7283 3.6210 4.6352 6.5924

90 20.9814 3.3823 5.2252 6.7278 22.5739 3.5602 5.4542 6.8884

120 21.3736 4.0253 5.4197 6.7014 21.973 4.0203 5.7923 6.9152

150 22.5170 3.9243 5.1375 6.6640 22.5754 4.1149 5.6882 6.8880

180 22.4914 3.7534 5.0876 6.6792 22.8188 4.0266 5.6053 6.8852

210 22.2127 3.7693 5.1551 6.6915 22.736 3.9931 5.6144 6.8919

240 22.2056 3.8118 5.1717 6.6890 22.6739 4.0055 5.6330 6.8939

270 22.2742 3.8102 5.1559 6.6859 22.6809 4.0143 5.6342 6.8929

300 22.2797 3.7995 5.1510 6.6864 22.6949 4.0132 5.6306 6.8924

Time (Days) ADS method: Case-1, scenario 2 ERK method: Case-1, scenario 2

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 42.1137 1.4442 1.2169 4.9590 37.5666 2.4939 1.7529 5.0883

60 30.9961 4.2045 4.7578 5.9536 24.7972 3.0352 4.8875 6.4178

90 35.8779 2.8193 3.4942 6.0433 29.1146 3.9229 4.4357 6.2426

120 34.6532 3.2335 3.8803 6.0627 29.0943 3.2468 4.2783 6.3584

150 35.0477 3.0773 3.7627 6.0738 28.4761 3.5095 4.5016 6.3678

180 34.9494 3.1288 3.7958 6.0697 28.9109 3.4469 4.3903 6.3534

210 34.9740 3.1114 3.7869 6.0720 28.7450 3.4403 4.4240 6.3634

240 34.9693 3.1171 3.7891 6.0710 28.7786 3.4551 4.4215 6.3599

270 34.9697 3.1153 3.7886 6.0714 28.7857 3.4467 4.4174 6.3605

300 34.9700 3.1158 3.788 6.0713 28.7754 3.4496 4.4205 6.3607

Time (Days) ADS method: Case-1, scenario 3 ERK method: Case-1, scenario 3

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 35.5348 3.2136 1.3479 4.8960 33.3640 3.5504 1.7029 5.0144

60 25.7824 2.3893 2.3939 5.8214 24.4191 2.2973 2.7589 5.9697

90 23.0944 3.4217 3.2682 5.9988 21.3008 3.46005 3.8654 6.1715

120 24.6101 3.7104 3.1689 5.9524 23.2995 3.8409 3.6906 6.0977

150 25.2161 3.5072 3.0193 5.9478 24.0785 3.5170 3.4583 6.0924

180 24.9855 3.4511 3.0346 5.9622 23.6254 3.4445 3.5082 6.1180

210 24.8747 3.4821 3.0615 5.9652 23.4641 3.5134 3.5601 6.1213

240 24.9097 3.4933 3.0603 5.9632 23.5660 3.5293 3.5490 6.1162

270 24.9307 3.4884 3.0556 5.9627 23.6013 3.5138 3.5377 6.1156

300 24.9257 3.4862 3.0556 5.9630 23.5785 3.5105 3.5402 6.1168

Each parameter used in the mathematical model is described

in the nomenclature. The parameters’ descriptions and default

values are listed in Table 1 as per in Al Basir et al. [38]. These

default parameter values are used to generate each scenario. The

non-linear delayed CPM model by using numerical values can be

mathematically defined for one of the cases as:
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FIGURE 4

(A–D) Dynamics of B(t), S(t) for variation in δ by ADS and ERK solvers.

dB

dt
= 0.2B (t)

(

1−
B (t)

50

)

− 0.025B (t) S (t) − 0.0125B (t) I (t) ,

dS

dt
= 0.015B (t) S (t) − 0.025A (t) S (t) − 0.01S (t) (6)

dI

dt
= 0.0015B (t) I (t) + 0.025A (t) S (t) − 0.15I (t) ,

dA

dt
= 0.2+ 0.015 [S (t − 1) + I (t − 1)]− 0.6A (t) ,

3. Methodology

This section includes a detailed presentation of

the learning methodologies that are used to determine

the approximate solutions of the non-linear delayed

CPMmodel.

3.1. Adams method

A two-step process called the ADS numerical solver is used

to solve an ODE [63, 64]. Initially, the predictive stage provides

a rough approximation of the target outcome in order to utilize

an explicit technique. The corrector step uses a different method,

typically an implicit one, to speed up the previous approximation.

dB

dt
= H (t, B, S, I) , B (t0) = B0 (7)
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FIGURE 5

(A–D) Dynamics of I(t), A(t) for variation in δ by ADS and ERK solvers.

dS

dt
= H (t, S, B, A) , S (t0) = S0

dI

dt
= H (t, I, B, S, A) , I (t0) = I0

dA

dt
= H (t, A, S, I) , A (t0) = A0

For the very first equation in set (7) of the non-linear delayed

CPM model, use the following formula to produce a two-step

prediction solution:

Bk+1 = Bk +
6

4
hH (tk, Bk) −

1

2
hH

(

tk−1, Bk−1

)

, (8)

Once the very first equation in the non-linear delayed CPM

model has been evaluated, the following two step corrector formula

is obtained:

Bk+1 = Bk +
1

2
hH

(

tk+1, Bk+1

)

+H (tk, Bk) . (9)

Adams techniques may be used to solve a variety of initial value

problems, including those involving delay differential equations

and ODEs. They are capable of handling stiff as well as non-stiff

systems. When compared to other numerical approaches, such as

implicit methods, these techniques are computationally efficient.

They can lead to faster computations since they require fewer

function evaluations each step. Adams techniques contain stability

constraints on the step-size and the ratio of step-size to time delay,
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FIGURE 6

(A–D) Dynamics of B(t), S(t) for variation in c by ADS and ERK solvers.

making them conditionally stable. The approach could result in

unstable solutions if these requirements are not satisfied. Adams

techniques need a sufficient number of starting values to begin

the iteration process since they are multi-step approaches. When

starting quantities are difficult to get or need further calculations,

this might be difficult [65].

3.2. Runge–Kutta method

The explicit Runge–Kutta (ERK) numerical solver can be used

efficiently and comprehensively to solve ODEs [66]. C. Runge

and M. W. Kutta introduced the Runge–Kutta methods in the

early 1900s. As time went on, this approach played a significant

part in the research of iterative approaches based on explicit

and implicit assumptions that were used to solve ODEs using

time discretization.

The generic form of ODE is considered as:

dy

dt
= f

(

t, y
)

, (10)

A generic form of ERK method is defined as:

m1 = f
(

tn, yn
)

, (11)
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FIGURE 7

(A–D) Dynamics of I(t), A(t) for variation in c by ADS and ERK solvers.

mj = f



tn + bjh, yn + h

j−1
∑

i=1

cjimi



, j = 2, ..., l, (12)

yn+1 = yn + h

l
∑

j=1

ajmj, (13)

where the time interval is h = 1t, and yn approximates y (tn) .

The stability characteristics of Runge–Kutta techniques

are well established. They can manage a variety of concerns,

which includes stiff systems, without running into stability

problems. Numerical simulations can be resilient and trustworthy

thanks to this stability. These methods are adaptable and

effective for dealing with delayed differential equations as

well as regular differential equations, partially differential

equations, and other forms of differential equations. They

have broad applications in several fields of science and

engineering [67].

4. Analysis and discussion

The approximate numerical solutions for compartments B(t),

S(t), I(t), and A(t) of the non-linear delayed CPM model

are presented here in this section. The dynamics of the

non-linear delayed CPM model are investigated for sundry

scenarios each comprising of 1–5 cases by means of ADS

and ERK numerical solvers with input points from 0 to
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FIGURE 8

(A–D) Dynamics of B(t), S(t) for variation in β by ADS and ERK solvers.

300 and step size 0.5. The approximate solutions for the

sundry scenarios with 1–5 cases of the non-linear delayed

CPM model are computed by varying the crop biomass

growth rate, rate of pest attacks, pest natural death, disease

associated mortality rate and memory loss of aware people.as

listed in Table 2. Figure 1 presented the flowchart of the

designed methodology.

The dynamics of crop biomass density are shown in Figures 2A,

B, respectively, using the ADS and ERK numerical solvers for the

variation in crop biomass growth rate, i.e., a for the non-linear

delayed CPM model. The crop biomass density has been found

to increase as the value of a increases. Figures 2C, D for various

values of a illustrate the effects of susceptible pest density. The

graph shows that as the value of a increases, so does the density of

pests that are susceptible. Figures 3A, B show how infected pests’

behavior varies as the value of a changes. There is an increase

in the density of infected pests for larger values of a. The effects

of people’s level of awareness for various values of a are depicted

in Figures 3C, D. The graph illustrates how increasing the value

of a raises the level of awareness. Table 3 presents the numerical

results for the classes B(t), S(t), I(t), and A(t) for scenario 1, case-

1 of the non-linear delayed CPM model. Using the strength of

ADS and ERK numerical solvers for cases 1 to 5 of scenario 2,

the dynamics of the non-linear delayed CPM model for the rate

of pest attacks, i.e., δ, is investigated for all four classes B(t), S(t),

I(t), and A(t) and graphically shown in Figures 4, 5 respectively.
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FIGURE 9

(A–D) Dynamics of I(t), A(t) for variation in β by ADS and ERK solvers.

The numerical outcomes for the classes B(t), S(t), I(t), and A(t)

for scenario 2, case-1 of the non-linear delayed CPM model are

shown in Table 3. Raising the value of δ increases the density of crop

biomass, as presented in Figures 4A, B. For case-1 of pest attacks

rate, the maximum value of B(t) is approximately between 5 to

45, oscillates from 0 to 150 days, and then maintains steady state

behavior. The maximum value for case-2 is between 5–30 and it

initially exhibits oscillating behavior in the range of 0 to 250 days

before becoming stable in the range of 250 to 300 days. Cases 3

to 5, as depicted in Figures 4A, B, exhibit oscillations with varying

amplitudes across the time interval. As the value of pest attacks i.e.,

δ expanded, the density of susceptible pests also increased, as seen

in Figures 4C, D.

Susceptible pest density demonstrated oscillatory behavior

from 0 to 150 days before returning to steady state behavior,

whereas cases 2 to 5 exhibit oscillatory behavior with varying

amplitudes from 0 to 300 days, as shown in Figures 4A, B.

For compartment I(t) of the non-linear delayed CPM model,

Figures 5A, B depict the effects of pest attacks rate. The graphs

show that increasing the value of δ will result in decreasing the

infected pest density. The impact of pest attacking rate, i.e., δ is also

determined for compartment A(t) of the non-linear delayed CPM

model. As seen in Figures 5C, D, the awareness level decreases as

the value of pest attacks grow.

Similarly, for scenario 3 of non-linear delayed CPM model,

the dynamics of the four compartments B(t), S(t), I(t), and A(t)
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TABLE 4 Numerical solutions of non-linear delayed CPMmodel.

Time (Days) ADS method: Case-1, scenario 4 ERK method: Case-1, scenario 4

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 25.6352 2.7948 2.6511 5.2802 25.6454 2.9384 2.5856 5.2683

60 16.0485 1.2237 4.1627 6.2469 16.4980 1.2738 3.9219 6.2050

90 12.5031 3.1099 6.3705 6.4831 12.4801 2.9846 6.0962 6.4722

120 19.5105 3.6746 4.8757 6.1610 18.5848 3.9118 4.9691 6.1742

150 19.2204 2.0351 4.3368 6.2646 19.6539 2.2603 4.1730 6.2164

180 15.3228 2.38003 5.3581 6.4332 15.8217 2.3344 5.0070 6.3913

210 16.5595 3.2259 5.4430 6.3382 16.0291 3.1776 5.3515 6.3469

240 18.6317 2.7134 4.7792 6.2699 18.2773 2.9676 4.7624 6.2551

270 17.1624 2.407 4.9620 6.3510 17.611 2.5253 4.7201 6.3055

300 16.4349 2.7711 5.2948 6.3684 16.4975 2.7282 5.0572 6.3479

Time (Days) ADS method: Case-1, scenario 5 ERK method: Case-1, scenario 5

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 33.4212 1.2608 1.7179 9.7847 32.7550 1.4497 1.7952 9.2354

60 26.8333 0.5218 3.3758 14.054 25.9310 0.6014 3.3390 12.9231

90 30.8679 1.2775 4.4344 15.9967 27.0746 1.4925 5.0180 14.4833

120 37.2066 0.5837 2.6639 17.3430 34.5850 0.9614 3.1909 15.3405

150 35.5515 0.6244 3.2161 18.1282 32.5484 0.77943 3.5441 15.9731

180 37.9167 0.5752 2.7510 18.5074 33.3100 0.9351 3.6511 16.1777

210 37.6625 0.5377 2.7981 18.7708 34.2309 0.81780 3.3647 16.3285

240 38.1941 0.5387 2.7157 18.8880 33.7867 0.8282 3.4894 16.4132

270 38.2294 0.5225 2.6998 18.9693 34.1173 0.8365 3.4408 16.4400

300 38.3414 0.5238 2.6863 19.0066 34.1219 0.8184 3.4242 16.4658

are explored by varying the value of pest natural death rate i.e., c,

which is represented by c and graphically portrayed in Figures 6,

7 respectively. The numerical solutions for compartments B(t),

S(t), I(t), and A(t) for scenario 3, case-1 of the non-linear delayed

model are computed and listed in Table 3. The influence of the

pest’s natural death rate on crop biomass density using the ADS

and ERK numerical solvers respectively, is shown in Figures 6A,

B. The effects of the pest natural death rate on the density

of susceptible pests are shown in Figures 6C, D. It is noticed

that the number of susceptible pests reduced as c increased.

Figures 7A, B demonstrated how the density of infected pests

decreases as the value of c rises. In Figures 7C, D, the level of

people’s awareness can be analyzed. It is worth noting that the larger

value of the natural pest’s death rate i.e., c, causes a decrease in

people’s awareness.

The dynamical behavior of the four compartments B(t), S(t),

I(t), and A(t) for cases 1 to 5 of scenario 4 with the variability

in disease associated death rate, i.e., β is analyzed and graphically

portrayed in Figures 8, 9 respectively. The numerical solutions

for scenario 4, case-1 of the non-linear delayed CPM model are

calculated for all four classes B(t), S(t), I(t), and A(t) and presented

in Table 4. The dynamics of crop biomass density are portrayed

in Figures 8A, B exploiting the potential of the ADS and ERK

numerical solvers for the variability in the disease associated death

rate, i.e., β . It has been found that the crop biomass density

falls as the value of β increases. Figures 8C, D show the effect of

disease associated death rate on the density of susceptible pests.

It is evident from Figure that raising the value of β would lead

to a rise in the density of susceptible pests. The behavior of

infected pest density for the variation in disease associated death

rate is shown in Figures 9A, B. As the value of β is raised, it

may be observed that the density of infected pests will decrease.

Figures 9C, D show the impact of disease associated death rate

against awareness level in people. The graphical representation

presented that increasing the value of β causes the awareness

level to decrease.

Using the strength of ADS and ERK numerical solvers, the

dynamics for memory loss of aware people, i.e., υ , are investigated

for all four compartments B(t), S(t), I(t), and A(t) for scenario 5,

cases 1 to 5 of the non-linear delayed CPM model. The numerical
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FIGURE 10

(A–D) Dynamics of B(t), S(t) for variation in υ by ADS and ERK solvers.

outcomes of all four compartments B(t), S(t), I(t), and A(t) for

case-1 of scenario 5 are provided in Table 4. The behavior of

crop biomass density for the varying values of υ is depicted in

Figures 10A, B, and it can be observed that crop biomass density

decreases for higher values of υ. Figures 10C, D illustrated how the

density of susceptible pests increases as the value of υ increases.

Figures 11A, B show the dynamics of infected pest density for the

variation in memory loss of aware people, i.e., υ. One may witness

that the density of infected pests increases continuously in the first

three cases, for υ = 0.01, 0.02, and 0.03, and then decreases again

in the subsequent two cases, for υ = 0.04, and 0.05, in the interval

of 0 to 300 days. Consequently, the density of infected pests shows

varied behavior for different values of υ. Figures 11C, D portrayed

the effect of memory loss in aware people, i.e., υ on awareness level

compartmentA(t). It is clearly noticed from Figures 11C, D that the

awareness level is decreased as the value υis increased.

5. Conclusions

In this research, the numerical approximate solution of

the non-linear delayed CPM system supervised by ODEs is

investigated effectively to portray the dynamic impacts of

unforeseen interactions between crops and pests, rehabilitation

strategies, and environmental factors across time. Based on the

presented model, the dynamic nature of crop biomass density
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FIGURE 11

(A–D) Dynamics of I(t), A(t) for variation in υ by ADS and ERK solvers.

[B(t)], susceptible pest density [S(t)], infected pest density [I(t)]

and awareness level of the population [A(t)] may be forecasted

effectively. Analysis based on the approximate numerical outcomes

as well as graphic interpretations of the non-linear delayed CPM

model is carried out by means of sundry scenarios by varying

the different parameters utilized in the model. The approximate

numerical solution of the non-linear delayed CPM model is

computed by exploiting the state-of-the-art Adams (ADS) and

explicit Runge–Kutta (ERK) numerical techniques. Compared

with real-time models, delayed models exhibit greater realism

because they take into account the interval between contact

and infection. As delay affects processes along with dynamics,

mathematically it impacts stability. This analysis can help to create

predictive models for upcoming outbreaks and shed light on the

efficacy of various pest management techniques. The numerical

analysis that is being given makes it possible to optimize pest

control tactics, analyze risks, educate people, and pursue continual

improvement. It is essential for improving agricultural methods,

reducing crop losses, and advancing environmentally friendly pest

control strategies.

In the future, soft computing approaches based on

artificial intelligence algorithms may be used to study

the dynamics of epidemic models and other non-linear

systems [68–73].
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Trends, influencing factors and 
prediction analysis of under-five 
and maternal mortality rates in 
China from 1991 to 2020
Meng Zhang , Huimin Qu , Junfen Xia , Xiaoqing Hui , Cannan Shi , 
Feng Xu , Junjian He , Yuan Cao  and Mengcai Hu *

Department of Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 
China

Introduction: Under-five mortality rate (U5MR) and maternal mortality rate (MMR) 
are important indicators for evaluating the quality of perinatal health and child 
health services in a country or region, and are research priorities for promoting 
maternal and infant safety and maternal and child health. This paper aimed to 
analysis and predict the trends of U5MR and MMR in China, to explore the impact 
of social health services and economic factors on U5MR and MMR, and to provide 
a basis for relevant departments to formulate relevant policies and measures.

Methods: The JoinPoint regression model was established to conduct time trend 
analysis and describe the trend of neonatal mortality rate (NMR), infant mortality 
rate (IMR), U5MR and MMR in China from 1991 to 2020. The linear mixed effect 
model was used to assess the fixed effects of maternal health care services and 
socioeconomic factors on U5MR and MMR were explored, with year as a random 
effect to minimize the effect of collinearity. Auto regressive integrated moving 
average models (ARIMA) were built to predict U5MR and MMR from 2021 to 2025.

Results: The NMR, IMR, U5MR and MMR from 1991 to 2020  in China among 
national, urban and rural areas showed continuous downward trends. The NMR, 
IMR, U5MR and MMR were significantly negatively correlated with gross domestic 
product (GDP), the proportion of the total health expenditure (THE) to GDP, 
system management rate, prenatal care rate, post-natal visit rate and hospital 
delivery rate. The predicted values of national U5MR from 2021 to 2025 were 7.3 
‰, 7.2 ‰, 7.1 ‰, 7.1 ‰ and 7.2 ‰ and the predicted values of national MMR were 
13.8/100000, 12.1/100000, 10.6/100000, 9.6/100000 and 8.3/100000.

Conclusion: China has made great achievements in reducing the U5MR and MMR. 
It is necessary for achieving the goals of Healthy China 2030 by promoting the 
equalization of basic public health services and further optimizing the allocation 
of government health resources. China’s experience in reducing U5MR and MMR 
can be used as a reference for developing countries to realize the SDGs.

KEYWORDS

ARIMA, linear mixed effect model, maternal mortality rate, trends, under-five mortality 
rate
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Introduction

Women and children make up the two-thirds of the world’s 
population. Thus, the health of them not only exerts a strong influence 
on their personal and family happiness but also provides a basic 
premise for the sustainable development of mankind and, even more, 
a comprehensive index for the development of social economy and 
human progress (1, 2). As the important indicators to assess the 
service quality of national and regional perinatal care and child-care, 
the under-five mortality rate (U5MR) and maternal mortality rate 
(MMR) were the research focus for promoting the safety and health 
of children and women (2, 3).

According to the Millennium Development Goals (MDGs), which 
was formulated at the United Nations Summit in September 2000, the 
goals to reduce child mortality rate by two-thirds and maternal by 
three quarters were scheduled to be fulfilled in 2015 (4–6). The United 
Nations Sustainable Development Goals (SDGs) are 17 global 
development goals set by the United Nations to guide global 
development efforts from 2015 to 2030 beyond the expiration of 
MDGs from 2000 to 2015. Target 3 (good health and well-being) aims 
to reduce the global MMR to 70/100,000 and U5MR to 25‰ by 2030. 
Put forward by the Chinese government, outline of the Healthy China 
2030 plan points out that, in the year of 2030, the infant mortality rates 
(IMR), U5MR and MMR will reduce to 5.0 ‰, 6.0 ‰ and 12.0/100000, 
respectively, (7). Over the past decades, China has made intense 
efforts in various ways to enhance the life quality of women and 
children. Besides, it is the U5MR and MMR that shows a downward 
trend with each passing year (8, 9). However, there are still plenty of 
challenges to face for the maternal and child health services. First of 
all, with the implementation of “Universal Two-child Policy” and the 
increase of high-risk pregnant women, the absolute number of 
maternal and child deaths is large, and which is difficult to present a 
continuous momentum of decline (10, 11). Apart from that, the 
obvious gap between urban and rural areas also poses a formidable 
barrier to further reduce the mortality. Additionally, the health-care 
level of maternal and child health care in China, especially in rural 
areas, still have gap with the developed countries (12, 13).

Simple as the maternal and child health indicators seem to be, 
they are the typical reflection of the economy, culture and policy in a 
country or region (14, 15). Currently, what is still unclear is to what 
degree these contributing factors, such as social health care services, 
the social economic, the total health expenditure (THE) and so on, 
can affect the U5MR and MMR. This paper aimed to present the 
U5MR and MMR, demonstrate the trends to change with time and 
explore the influence caused by social health-care and economic on 
the U5MR and MMR, about which this research also aimed to make 
a prediction to provide the scientific foundation for improving the 
quality of maternal and child health services and to supply reference 
for relevant policies and measures of maternal care formulated by 
certain departments to further reduce the mortality rates.

Methods

Data sources

The data used in this study including the data of neonatal 
mortality rate (NMR), IMR, U5MR, MMR, maternal system 

management rate, prenatal care rate, postnatal visit rate and hospital 
delivery rate from 1991 to 2020 were collected from the annual China 
Health Statistics Yearbooks (1991–2021). The data of GDP, and total 
health expenditure (the ratio of total health expenditure (THE) to 
GDP) from 1991 to 2020 were collected from official data released by 
the National Bureau of Statistics of China (16). The data above were 
shown in Additional Files 1, 2.

Definitions

NMR refers to the number of neonatal deaths that from birth to 
28 days per 1,000 live births. IMR is defined as the number of infants 
deaths that from birth to the 1 year old per 1,000 live births. U5MR 
refers to the number of deaths of children under 5 years of age per 
1,000 live births. MMR is defined as the number of the death caused 
by any pregnancy or pregnancy treatment within 42 days from 
pregnancy to postpartum per 100,000 live births. The number of live 
births are defined as the number of newborns with one of the four 
vital signs of heartbeat, respiration, umbilical cord fluctuation and 
voluntary muscle contraction after delivery after 28 weeks of 
pregnancy and above.

Statistical analysis

The JoinPoint regression model was established by JionPoint 
4.9.1.0 software to analyze the change trend of IMR, U5MR and MMR 
in China from 1991 to 2020. The data of annual percent change (APC) 
and average annual percent change (AAPC) were the main outcome 
indicators of the JoinPoint model, both of which represent the 
percentage change of variables with the year. The former was used to 
evaluate the internal trend of each segment interval, and the latter was 
used to evaluate the overall change trend. Joinpoint pairwise 
comparison test was applied to compare the trend differences between 
urban and rural areas. The linear mixed effect model was used to 
explore the fixed effect of socioeconomic factors and maternal health 
care level on IMR, U5MR and MMR, and the year was used as a 
random effect to reduce the effect of col-linearity, and the 
socioeconomic indicators were logarithmically converted. The auto 
regressive integrated moving average (ARIMA) model was built using 
SPSS 21.0 for time series prediction. ARIMA (p, d, q) combines 
autoregressive analysis (AR) and moving average (MA) including 
three parameters: the order of AR (p), the degree of difference (d), the 
order of MA (q). The national data from 1991 to 2015 was used for 
modeling, and the data from 2016 to 2020 for evaluating the mean 
absolute percentage error (MAPE) of models, and the optimal model 
was applied to predict the rates from 2021 to 2025. A two-side p of 
<0.05 was considered significant in this study.

Results

Trends analysis results

The NMR, IMR, U5MR and MMR from 1991 to 2020 in China 
among national, urban and rural areas showed continuous downward 
trends (Figure  1). Table  1 shows the results of APC and AAPC 
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reflecting the change trend of NMR, IMR, U5MR and MMR in the 
past 30 years. The results of JoinPoint pairwise comparison test 
showed that the AAPC differences of NMR, IMR, U5MR and MMR 
between urban and rural areas from 1991 to 2020 were 1.4% 
(95%CI = -0.7, 3.6%, p = 0.193), 1.8% (95%CI = 0.8, 2.8%, p < 0.001), 
1.6% (95%CI = 0.5, 2.7%, p = 0.003) and 2.1% (95%CI = 0.1, 3.1%, 
p = 0.005), respectively. The data above were shown in Additional File 3.

Linear mixed model results

The results of linear mixed model (Table 2) showed that NMR, 
IMR, U5MR and MMR were significantly negatively correlated with 
GDP, the proportion of THE to GDP, system management rate, 
prenatal care rate, post-natal visit rate and hospital delivery rate 
(p < 0.05).

FIGURE 1

Trends of the NMR, IMR, U5MR and MMR from 1991 to 2020 of China in national, urban and rural areas.
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ARIMA models

This SPSS21.0 software was used to fit ARIMA prediction models 
with NMR, IMR, U5MR and MMR as dependent variables. Because 
most of the above time series were non-stationary, the series were 
stabilized after one difference transformation. The results of the 
selected optimal model, R2, BIC and MAPE were shown in Table 3. All 
of the residual sequences were white noise sequence with the p values 
of Ljung-BoxQ tests greater than 0.05.

Prediction results of ARIMA models

The predicted results of ARIMA model were shown in Figure 2 
and Additional File 3. The predicted values of national NMR in from 
2021 to 2025 were 3.2 ‰, 2.9 ‰, 2.5 ‰, 2.2 ‰ and 1.8 ‰ respectively. 
The predicted values of the national IMR were 5.1 ‰, 4.9 ‰, 4.8 ‰, 

4.7 ‰ and 4.8 ‰ respectively. The predicted values of the national 
U5MR are 7.3 ‰, 7.2 ‰, 7.1 ‰, 7.1 ‰ and 7.2 ‰. The predicted 
values of national MMR are 13.8/100000, 12.1/100000, 10.6/100000, 
9.6/100000 and 8.3/100000. The predicted results of urban and rural 
areas were shown in the Additional File 4.

Discussion

The NMR, IMR, U5MR and MMR of China were on the decline 
from 1991 to 2020, and the rates in rural areas has been higher than 
that in urban areas, which might be  caused by the imbalance of 
economic development and health services (17, 18). The annual 
average decline rates of NMR, IMR, U5MR and MMR in rural areas 
were greater than that in urban areas, and the differences were reduced 
between rural and urban, which showed that the maternal health care 
strategy of China, especially in rural areas, has made remarkable 

TABLE 1 JoinPoint analysis of infant mortality rate, under five mortality rate and maternal rate in national, urban and rural areas.

Trend 1 Trend 2 Trend 3 AAPC (%) 95% CI for 
AAPC (%)

Years APC (%) Years APC (%) Years APC (%)

National 1991–2002 −4.3 2002–2005 −12.9 2005–2020 −8.8 −7.6 (−8.5, −6.6)

Urban 1991–2004 −3.2 2004–2007 −13.8 2007–2020 −7.4 −6.2 (−8.1, −4.3)

Rural 1991–2002 −4.5 2002–2005 −11.7 2005–2020 −8.7 −7.4 (−8.5, −6.3)

National 1991–2002 −4.5 2002–2005 −12.3 2005–2020 −8.2 −7.3 (−8.3, −6.2)

Urban 1991–2003 −3.5 2003–2008 −10.0 2008–2020 −5.4 −5.5 (−6.3, −4.6)

Rural 1991–1997 −6.7 1997–2000 −0.7 2000–2020 −8.6 −7.4 (−8.6, −6.2)

National 1991–2002 −4.7 2002–2005 −13.3 2005–2020 −7.1 −6.9 (−8.0, −5.8)

Urban 1991–2003 −3.1 2003–2008 −10.2 2008–2020 −5.3 −5.3 (−6.2, −4.3)

Rural 1991–2002 −4.9 2002–2005 −11.8 2005–2020 −7.0 −6.7 (−8.0, −5.4)

National 1991–2005 −3.7 2005–2013 −8.2 2013–2020 −4.0 −5.0 (−5.7, −4.4)

Urban 1991–2002 −5.2 2002–2010 0.9 2010–2020 −6.2 −3.9 (−5.2, −2.7)

Rural 1991–2004 −3.6 2004–2012 −10.8 2012–2020 −3.3 −5.6 (−6.4, −4.8)

TABLE 2 The results of linear mixed model.

Neonatal mortality rate Infant mortality rate Under five mortality 
rate

Maternal mortality rate

β 95%CI β 95%CI β 95%CI β 95%CI

GDP# −19.392
(−20.422, 

−18.362)
−27.386

(−28.808, 

−25.964)
−33.045

(−35.176, 

−30.914)
−38.599

(−40.607, 

−36.590)

Proportion of THE 

in GDP
−8.625

(−10.836, 

−6.414)
−12.057

(−15.246, 

−8.869)
−14.499

(−18.432, 

−10.567)
−17.729

(−21.776, 

−13.682)

System 

management rate
−0.854

(−1.038, 

−0.671)
−1.206 (−1.464, 0.949) −1.450

(−1.773, 

−1.128)
−1.932

(−2.189, 

−1.674)

Prenatal care rate −1.157
(−1.358, 

−0.957)
−1.598

(−1.883, 

−1.313)
−1.938

(−2.287, 

−1.588)
−2.244

(−2.671, 

−1.817)

Postpartum visit 

rate
−1.242

(−1.437, 

−1.048)
−1.720

(−1.994, 

−1.446)
−2.081

(−2.422, 

−1.740)
−2.456

(−2.832, 

−2.079)

Hospital delivery 

rate
−0.530

(−0.566, 

−0.494)
−0.746

(−0.801, 

−0.691)
−0.907

(−0.968, 

−0.847)
−1.039

(−1.139, 

−0.939)

GDP, Gross Domestic Product; THE, total health expenditure.
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progress, and the quality of maternal medical services has improved 
(19–21), which may be related to the development of public health 
services projects and the launch of basic public health services 
equalization projects (22, 23). In addition to increased accessibility to 
healthcare services, this might be related to rapid economic growth 
and improved transportation (24).

Since 1990, the health level of Chinese children has improved 
significantly, and the MDGs were achieved 8 years ahead of schedule 

in 2007. China’s global ranking of U5MR dropped from 90th in 1990 
to 133rd in 2019 (25). Currently, some progress has been made in 
reducing child mortality in China, but concerted efforts are still 
needed to avoid preventable under-five deaths in the future. Studies 
have shown that the distribution of causes of death varies between age 
groups, thus requiring preventive interventions targeting specific age 
groups (26, 27). Congenital diseases and accidental death account for 
a large proportion of under five children deaths (28–30), and it is 
recommended to conceive at the appropriate age, make prenatal 
diagnosis, improve the safety awareness and safety protection skills of 
the whole society (31, 32).

At present, obstetric hemorrhage is still one of the leading causes 
of maternal death in China (33). Prenatal care, skilled delivery, 
obstetric emergency care and postnatal care can effectively reduce the 
risk of obstetric hemorrhage. Therefore, improving the hospital 
delivery rate can also be explained by an effective reduction in MMR, 
which was also consistent with the mixed linear model results of this 
study. With the adjustment of China’s birth policy, the proportion of 
older adult and high-risk pregnant women may continue to rise, and 
the control of maternal deaths in the whole country and all regions is 
facing great challenges (34). In addition, the capacity building of 
medical institutions and the pregnancy and perinatal health care 
management of the floating population should be strengthened to 
ensure the safety of mothers and infants and further reduce MMR.

The results of linear mixed model suggest that NMR, IMR, U5MR 
and MMR were negatively correlated with GDP, the proportion of 
THE in GDP, system management rate, prenatal care rate, postpartum 
visit rate and hospital delivery rate, suggesting that the development 
of economic level, the investment of THE and the improvement of 
maternal and child health care management level would help to 
further reduce NMR, IMR, U5MR and MMR. Therefore, the health 
of children and pregnant women in poor areas should get more 

TABLE 3 The results of ARIMA models.

ARIMA R2 BIC MAPE

Neonatal mortality rate

National (1,1,2) 0.994 0.038 3.635%

Urban (3,1,3) 0.966 0.480 6.346%

Rural (3,1,1) 0.992 0.714 3.849%

Infant mortality rate

National (0,1,0) 0.993 0.398 3.387%

Urban (2,1,2) 0.973 0.306 4.533%

Rural (1,1,0) 0.993 0.862 3.677%

Under five mortality rate

National (0,1,2) 0.993 1.131 3.963%

Urban (3,1,4) 0.973 1.071 4.752%

Rural (2,1,0) 0.991 1.611 3.902%

Maternal mortality rate

National (1,1,3) 0.978 2.883 4.696%

Urban (3,0,1) 0.850 3.264 8.624%

Rural (3,1,4) 0.973 4.281 5.704%

FIGURE 2

The predicted results of ARIMA model.
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attention, and the relevant government departments should formulate 
corresponding policies and measures to implement the medical 
assistance system for children and pregnant women in poor areas, and 
effectively reduce the U5MR and MMR.

The ARIMA prediction results were that the national NMR, IMR, 
U5MR and MMR would be 1.8 ‰, 4.8 ‰, 7.2 ‰ and 8.3/100000 in 
2025, which can meet the goals set out in the Health China 2030 
planning outline (9). However, the results also showed that the rate of 
decline has decreased, and even in 2025, IMR and U5MR have 
increased from the previous year, which may be due to the following 
three reasons. Firstly, after IMR and U5MR have fallen to a certain 
level, the rate of decline may decrease. A study of IMR in Scotland 
showed that it had fallen from 5.75 ‰ in 2000 to 3.25 ‰ in 2018, a 
much slower rate of decline than the average rate of decline in China 
over the past 30 years (35). Secondly, the mortality rates predicted in 
this study are getting closer to those of developed countries. Studies 
have shown that IMR in Canada and the United States are 4.7 and 4.2, 
respectively (36, 37). However, the level of maternal and child health 
in rural areas of China still lags behind developed countries. Therefore, 
focusing on improving maternal and child health care level in rural 
areas remains a key factor in improving the health and quality of life 
of Chinese women and children. Third, few studies have analyzed the 
main causes and changing trends of IMR and U5MR in China. One 
study showed that the increase in IMR in the England since 2014 was 
mainly due to an increase in early NMR among preterm babies born 
at less than 24 weeks gestation (38). This also suggests that the causes 
of death in U5MR in China need to be further assessed. The predicted 
results in rural areas of this study were that the IMR, U5MR, and 
MMR would be 6.0 ‰, 8.6 ‰ and 14.0/100000, respectively, in 2025, 
which is higher than that in urban areas. Although the gap between 
urban and rural areas has narrowed, the rate of decline in rural areas 
is slower than in urban areas, which is also suggested that relevant 
departments should improve policies, strengthen the training of 
professional skills of grass-roots medical staff, and strive to improve 
the quality of rural medical and health services.

Our study has some strength. We analyzed the changing trends of 
long-term U5MR and MMR in China and made predictions, 
providing the basis for relevant departments to develop relevant child 
and maternal health care policies and measures. This study assessed 
the impact of social health services and economic factors on U5MR 
and MMR, which have been seldom evaluated in previous studies. 
This study also has some limitations, the data used in this study were 
from the surveillance systems and the data quality might 
be inconsistent in different areas such as urban and rural areas. The 
ARIMA model was suitable for the short-term prediction model and 
could not achieve the long-term trend prediction. Therefore, it is 
necessary to continuously collect and update the data for dynamic 
analysis to ensure the predictive performance of the model.

Conclusion

In the past 30 years, the U5MR and MMR of China have 
decreased significantly, and the gap between urban and rural areas 
has gradually narrowed. While it is still challenging to further reduce 
the U5MR and MMR with the adjustment of China’s birth policy and 
relatively low level of primary health services in some regions. The 
government should continue to promote the equalization of basic 

public health services, improve the accessibility and fairness of health 
care services, focus on the health status of children and pregnant 
women in rural areas, and further optimize the allocation of 
government health resources, so as to achieve the goals set by Healthy 
China by 2030. The relevant experience of China in reducing U5MR 
and MMR is of reference significance for the improvement of 
maternal and child health care in less developed countries. In the 
context of the Belt and Road Initiative, it is suggested that China’s 
advanced experience and applicable technologies in the field of 
maternal and child health be extended to developing countries to 
help achieve the global SDGs.
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Training and Research Hospital, Istanbul, Türkiye, 5Infectious Diseases and Clinical Microbiology,
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Background: To e�ectively control the HIV epidemic and meet global targets,

policymakers recommend the rapid initiation of antiretroviral therapy (ART).

Our study aims to investigate the e�ect of rapid ART programs on individuals

diagnosed with HIV, considering varying coverage and initiation days after

diagnosis, and compare it to standard-of-care ART treatment in Turkey.

Methods: We used a dynamic compartmental model to simulate the dynamics

of HIV infection in Turkey. Rapid treatment, defined as initiation of ART within 7

days of diagnosis, was contrasted with standard-of-care treatment, which starts

within 30 days of diagnosis. This study considered three coverage levels (10%,

50%, and 90%) and two rapid periods (7 and 14 days after diagnosis), comparing

them to standard-of-care treatment in evaluating the number of HIV infections

between 2020 and 2030.

Results: Annual HIV incidence and prevalence for a 10-year period were

obtained from model projections. In the absence of a rapid ART program, the

model projected approximately 444,000 new HIV cases while the number of

cases were reduced to 345,000 (22% reduction) with 90% of diagnosed cases

included in the rapid ART program. Similarly, 10% and 50% rapid ART coverage

has resulted in 3% and 13% reduction in HIV prevalence over a 10-year period.

Conclusion: Rapid ART demonstrates the potential to mitigate the increasing

HIV incidence in Turkey by reducing the number of infections. The benefit of

the rapid ART program could be substantial when the coverage of the program

reaches above a certain percentage of diagnosed population.

KEYWORDS

HIV infections, HIV care-continuum, mathematical modeling, rapid antiretroviral

treatment, infectious disease modeling
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1 Introduction

As of the end of 2019, among the estimated 38 million

people living with HIV globally, 67% of them had access to

treatment in the world (1). With the help of global prevention

and intervention efforts, the proportion of people living with

HIV (PLWH) on antiretroviral therapy (ART), which is known

as treatment coverage, is increasing. Consequently, HIV incidence

has been decreasing or stabilizing in many countries. New HIV

prevention targets aim to achieve 95% of PLWH know their HIV

status, 95% of those aware of their HIV positive status accessing

treatment, and 95% of people on treatment having suppressed viral

loads by 2030. However, since 2020, these targets have been missed

(1), with 1.5 million new HIV infections in that year. There is still

much more effort to make to meet the 2030 targets.

Following the “treat all” strategy, Rapid ART Program for

Individuals with an HIV Diagnosis (RAPID) is recognized as one

of the key recommendations in the fight against the HIV infection.

Ideally, rapid ART involves initiating treatment in the first 24 h of

diagnosis, it is defined as the initiation of ART within 7 days of

diagnosis (2), while some studies considered initiation within <14

days after diagnosis (3, 4). This strategy has been recommended by

several guidelines, including the World Health Organization (2),

the U.S. Department of Health and Human Services (5), and the

International Antiviral Society (4).

The initiation of ART as early as HIV diagnosis has been

an important public health strategy for HIV prevention due

to two main reasons. First, rapid ART initiation enables viral

load suppression (VLS) much faster (6, 7) and resulting viral

suppression may prevent HIV transmission since treatment

prevents up to 93–96% of infections in serodiscordant couples (i.e.,

treatment as prevention- TasP) (8, 9). Second, early initiation of

treatment may decrease mortality and morbidity and improve the

health-related quality of life (HRQoL) among people living with

HIV (PLWH) (3).

Rapid ART initiation has been evaluated by randomized

controlled trials and assessed by observational studies. These

randomized trials [RapIt (10), START-ART (11), same day ART in

Haiti (12), and CASCADE (13)] and observational studies [RAPID

in San Francisco (14), TRRT in Miami (15) and CCSI in New

Orleans (16)] have determined that patients in the rapid ART

arm exhibit higher rates of linkage to care, retention in care and

viral suppression. Similar results have been found in a systematic

review on rapid ART initiation, reporting that rapid ART improves

patient outcomes compared to standard-of-care treatment (3).

Many countries globally have embraced rapid ART implementation

in accordance with the latest guidelines. Data presented in 2023

reveal that 99 countries, corresponding to 81% of 122 reporting

countries, have adopted WHO’s recommendation to offer rapid

ART, providing ART on the same day as HIV diagnosis. This

fact represents 46% increase from 68 countries reported in 2020

worldwide (17).

Since the publication of the national guideline in 2013, ART

has been the recommended as a standard treatment for all HIV-

positive individuals, regardless of their CD4 cell count in Turkey.

Moreover, initiation of treatment generally takes 2–4 weeks (18).

However, new HIV-positive cases have been steadily increasing in

the last decade in the country with nearly 60% of cases diagnosed

in the last 5 years. The spread of HIV in Turkey is obscured by

various contributing factors, including a lack of knowledge and

awareness about the disease, being one of the most popular tourism

destinations increasing the risk of exposure, high population

mobility, an increasing number of unregistered sex workers, lack

of prevention measures focusing on key risk groups, insufficient

number of Voluntary Counseling and Testing (VCT) centers,

persistent stigma, and discrimination against PLWH (19). Turkish

Ministry of Health (MoH) conducted the National HIV/AIDS

Control Program to enhance public health and create the roadmap

for HIV in Turkey in 2019. One of the important goals in this

program is to decrease the number of new HIV cases and deaths

due to HIV. Moreover, it was stated that the main approach to

decrease HIV transmission could be achieved by providing early

diagnosis, access to care, and retention in care for PLWH, leading

to viral suppression (20). Thus, we can conclude the programs that

an increase in viral suppression and a decrease in transmission

risk would be valuable in achieving the national goal of reduced

number of new HIV positive cases. The previous studies show that

the current situation in the country ranges between 48 and 50%

regarding HIV diagnosis, 75.3 and 88% for ART coverage, and 85

and 87% for VLS rates (21, 22). Rapid initiation of ART would

play a crucial role in improving the current continuum of care,

and it should be analyzed for further consideration as it can be

beneficial in reducing the total number of cases. Our motivation

is to investigate the effectiveness of introducing a rapid ART

initiation program in both mitigating the increasing trend of HIV

and improving the current HIV prevention strategies in Turkey.

To the best of our knowledge, there are no published

studies regarding rapid ART initiation in Turkey. In this study,

our objective is to evaluate the differences in effects between

implementing a rapid initiation of the ART program and standard

care over a 10-year period in Turkey. Thus, the goal is to

assess the benefit of rapid ART programs in Turkey and quantify

these benefits by determining the number of prevented infections,

if exists.

2 Materials and methods

2.1 Model structure

We adopted a previously developed HIV transmission and

progression model of Turkey for rapid ART initiation (23).

The deterministic dynamic compartmental model was tailored

for a portion of diagnosed PLWH to participate in the onset

of rapid ART program while the remaining diagnosed PLWH

proceed with the standard treatment. The model was developed

in MATLAB environment (24) and formulated using ordinary

differential equations (ODEs) with details of the system as given

in the Appendix.

The model population was stratified based on the disease status

(HIV negative and HIV positive) and transmission risk [men who

have sex with men (MSM), people who inject drugs (PWID), and

heterosexuals (HET)]. PLWH in the model is further divided into

subpopulations based on disease stages and continuum of care. As a
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FIGURE 1

Model flow diagram including rapid ART initiation.

result, aside from susceptible (HIV negative) and death due to HIV

compartments, PLWH is divided into the following compartments:

CD4 count>200 cells/mm3 and undiagnosed, CD4 count <200

cells/mm3 and undiagnosed, CD4 count>200 cells/mm3 diagnosed

but not on ART, CD4 count <200 cells/mm3 diagnosed but

not on ART, CD4 count>200 cells/mm3 diagnosed, on ART

but no viral load suppression (VLS), CD4 count<200 cells/mm3

diagnosed, on ART but not VLS, CD4 count>200 cells/mm3

VLS, and CD4 count<200 cells/mm3 VLS. Model formulation

is presented in the model formulation section of Appendix and

Supplementary Table A2.

Rapid ART initiation is integrated with the model via a

flow between two sets of compartments. Individuals diagnosed

and initiated ART in the “rapid” program move directly from

undiagnosed compartments (CD4 count>200 cells/mm3 or CD4

count<200 cells/mm3) to the “on ART not VLS” compartments,

bypassing diagnosed but not on ART compartments, which

represents the standard-of-care ART initiation route (Figure 1).

Since there is currently no rapid ART initiation in Turkey, we

generated the “rapid” flow rates by three levels of coverage and the

length of the rapid period.

Rapid ART leads to faster VLS compared to delayed treatment.

In the model schematic, this is accomplished by bypassing the

“Diagnosed not on ART” compartment, allowing individuals

to move faster to the “on ART not VLS” compartment. The

parameters for achieving VLS or drop out of VLS remain

consistent across scenarios, but the time taken to reach VLS

compartment decreases due to earlier entry into the on ART

compartments. By achieving VLS faster, patients become less

infectious, effectively curbing the spread of HIV within the

population in the model. Thus, rapid ART serves as a critical

component of HIV prevention efforts.

Themodel was validated against the number of confirmed cases

reported by theMinistry of Health and considered a time horizon of

2010–2019 as its fitting (calibration) period. The prediction period

extended 2020 and beyond. The primarymodel predictions focused

on outcomes related to HIV incidence and prevalence between

2020 and 2030 and the effect on continuum of care during the

same period.

2.2 Model parameters

The model is populated with demographic, epidemiological,

behavioral, and clinical data. Input parameters included population

size by transmission risk group, continuum of care, mortality

rate (HIV-related and non-HIV related), HIV progression among

disease stages, and reduction in HIV transmission after diagnosis

and treatment (Supplementary Table A1). Parameters related to

prevalence rates by transmission group, treatment and VLS rates,

HIV-related mortality parameters, birth and natural death rates,
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TABLE 1 Scenarios defined under di�erent coverage levels and rapid ART

periods.

Scenarios Coverage level Rapid ART period

Scenario 1 10% 7 days

Scenario 2 10% 14 days

Scenario 3 50% 7 days

Scenario 4 50% 14 days

Scenario 5 90% 7 days

Scenario 6 90% 14 days

and related population parameters are among the country-specific

parameters. Due to the scarcity of behavioral parameters based

on each HIV transmission group, we calibrated force of infection

parameter. Parameters are estimated from several sources, such

as medical literature, Turkish Statistical Institute, and three large

patient cohorts. These cohorts reported around 8,000 patients,

which was ∼50% of all reported cases in Turkey between 01/2010

and 12/2019 (23). Data analysis and parameter estimation were

conducted using MS Excel. Data extracted from cohort databases

were anonymized before access and analysis; thus, no informed

consent and/or a consent waiver was obtained during the study.

Ethics approval was not required for this modeling study.

Parameters related to rapid ART initiation include the rate at

which PLWH diagnosed and initiated in the rapid ART program

based on the disease stage and the length of rapid period. These

parameters are based on rapid ART initiation scenarios developed

due to lack of real-life data on the rapid initiation in Turkey. Once

initiated, both rapid ART program and standard ART program

have assumed to have same treatment efficacy in reducing the

disease transmission and dropping out rates of ART.

2.3 Model calibration

To calibrate the model, we generated ranges for input

parameters that could not be estimated from datasets and literature

and applied the ranges against the reported number of cases based

on the disease stage reported by MoH between 2010 and 2019.

Details of the calibration procedure are provided in the Appendix.

2.4 Rapid ART initiation scenarios

To include rapid ART initiation, we considered six scenarios,

which are hypothetical due to lack of real-life data on rapid ART

initiation in Turkey (Table 1). In the scenarios, we assumed that

different proportions of PLWH diagnosed and associated with

care receive the rapid ART while the rest of diagnosed population

initiate ART in the standard way. This was considered as the rapid

ART coverage. Three coverage levels were 10%, 50%, and 90% of

diagnosed PLWH being included in the rapid ART program. These

scenarios compared to the base case scenario where no rapid ART

program exists and diagnosed PLWH initiates ART ∼30 days after

the diagnosis. Duration of rapid period was selected as 7 days,

representing the relevant guidelines.We also evaluated a rapid ART

period of 14 days to investigate the effect of the change in ART

initiation time. We assumed that all diagnosed patients are eligible

for the rapid ART initiation, the patients offered the rapid treatment

do not refuse it, and the coverage of the rapid ART program

remains constant over the time horizon. We collected annual

HIV incidence, cumulative HIV cases, the number of HIV cases

prevented, and the percent reduction in HIV incidence with the

rapid ART intervention between 2020 and 2030. We also reported

continuum of care for the base case and rapid ART scenarios.

We also applied sensitivity analysis, and further details

are explained in Sensitivity Analysis section in the Appendix;

then, results of two sensitivity analyses are explained in

Supplementary Figures A1, A2.

3 Results

The standard-of-care ART, considered as the base case scenario,

represents the current healthcare system practice, where HIV-

infected persons can access ART 30 days after their diagnosis.

Three rapid ART scenarios were defined based on the proportion

of patients benefiting from rapid ART intervention, such as 10%,

50% and 90%.

We estimated that additionally 443,682 people would be

diagnosed with HIV between 2020 and 2030 if the standard-of-

care ART has been continued in Turkey. However, when 10% of

diagnosed patients included in the rapid ART program, cumulative

HIV incidence would be reduced to 431,858 (3% reduction). With

50% of PLWH included in the rapid ART program, total new

cases for a 10-year period would drop to 368,810 (13% reduction).

The benefit of the rapid ART program increases to 22% reduction

in the cumulative incidence resulting with 345,252 cases when

90% of diagnosed persons receives the rapid ART instead of the

standard-of-care (Figure 2).

Furthermore, we investigated the effect of the rapid ART period

by analyzing the difference between the rapid ART onset at 7

days after the time of diagnosis and starting this treatment at

14 days after the diagnosis. A 7-day intervention generated less

HIV incidence in all coverage scenarios, thereby preventing more

infections than the 14-day option (Figure 2). While initiating rapid

ART at 7 days leads to 3%, 13%, and 22% reduction in the

cumulative incidence as mentioned above, the improvements for

14-days onset were 2%, 8%, and 14%, respectively. The marginal

benefit of quicker initiation increases with the coverage level as

90% coverage has shown significant impact of 7-day reduction in

the ART initiation. In other words, based on the model results,

initiating treatment as early as possible could potentially help in

preventing the disease and possibly ending the epidemic.

We determined annual HIV incidence between 2020 and 2030.

Moreover, under the standard-of-care ART, 13,748 new HIV cases

have been projected in 2020. HIV incidence increases to 85,130

in 2030 (Figure 3). Introducing the rapid ART program with 90%

coverage would reduce HIV incidence to 13,040 and 60,560 for the

same years, respectively. We can conclude that the benefits gained

from the rapid initiation of ART were increased over the years.

We calculated the average of 10-year annual percentages

of continuum of care for the base case and three rapid ART
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FIGURE 2

Estimated total incidence and infections prevented under three rapid ART coverage and two rapid ART period scenarios, 2020–2030.

FIGURE 3

Estimated annual HIV incidence and infection prevented with 90% coverage of the rapid ART intervention, 2020–2030.

scenarios (Figure 4). As more patients were offered the rapid ART

intervention, the diagnosis rate for PLWH with CD4 count>200

cells/mm3 has increased whereas it has decreased for PLWH with

CD4 count <200 cells/mm3. On the other hand, the percentage of

patients who are on ART has increased significantly for both CD4

levels with the introduction of rapid ART. The final continuum

stage, the percentage of patients who achieved VLS among patients

on ART, has been remained nearly the same across the different

intervention scenarios.

4 Discussion

A mathematical model had been adapted to analyze the

effectiveness of the rapid ART intervention compared to standard-

of-care in Turkey, and the results were evaluated for HIV

transmission and progression for a 10-years period. The rapid

ART initiation at 7-days and at 14-days were analyzed. Although

both interventions reduced the new infectious cases compared

to standard care, the initiation of rapid ART at 7 days after
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FIGURE 4

Impact of di�erent rapid ART initiation scenarios on continuum of care.

the diagnosis had provided better reduction rate in overall HIV

incidence. Although we did not analyze the same-day ART

initiation, our results suggested that initiating treatment as early as

possible is crucial, which is consistent with the previous studies.

In addition, we determined the effect of extending rapid

treatment with three coverage levels to a large population. Since

there is no current widespread practice of rapid ART programs

in Turkey, we defined low, medium, and high coverage with

10%, 50%, and 90% of diagnosed cases who receive the rapid

ART, respectively. As expected, the number of prevented infections

increases with the increase in the coverage level. Overall, the rapid

ART intervention is effective in reducing new HIV infections and it

should be considered as a prevention method.

The rapid ART initiation has a positive impact on the

continuum of care as the percentage of diagnosed people on ART

increases significantly compared to standard care. If the rapid ART

reaches 90% coverage, average percentage of PLWH on ART for

CD4 count>200 cells/mm3 and CD4 count<200 cells/mm3 over a

10-year period was estimated as 96% and 92%, respectively. This

implies that, the second part of the 95-95-95 target, i.e., 95% of

diagnosed patients will be on ART by 2030 (1), is possible to

achieve with the introduction and swift scaling up of the rapid

ART initiation. Although the percentage of individuals on ART

and achieved VLS among diagnosed did not show any significant

changes, as the same efficacy is assumed for both the rapid ART

and standard ART in achieving VLS, the same percentages among

PLWH improved considerably.

Two sensitivity analyses demonstrated very similar conclusions

regarding the most important parameters in the model. The

primary drivers of HIV incidence in the model were the force

of infection, and the diagnosis rates and interactions among the

parameters exist. Force of infection combines the transmission

risk between HIV-negative and HIV-positive individuals, mixing

among risk populations and HIV prevalence rate by risk

populations, and it is the one of main elements that affect the

transition between susceptible and infected populations. As a

result, it is expected to be one of the influential parameters. The

importance of diagnosis rate in this study is probablymagnified due

to the introduction of rapid ART. With the rapid ART, diagnosed

population has been quickly carried to the on ART and VLS

compartments where the likelihood of disease transmission is very

small. The benefit of compressed timeline accumulates over the

time horizon, and changes in the diagnosis rate have a larger effect

on the number of new cases.

In Turkey, HIV-positive patients have been eligible to receive

ART irrespective of their CD4 level since 2013 guidelines (25);

however, we need to take firm actions for ending the HIV due to

the evident trend of rising HIV cases in Turkey. To achieve this

goal, it is necessary to look for the effective interventions such as

rapid ART initiation for patients and, after the careful evaluations

including the cost aspect of such interventions, public health policy

makers should implement the most beneficial interventions among

them. This study provides the evidence on the benefit of the rapid

ART intervention on cost and the prevention of new transmissions;

therefore, it takes a step toward looking for the effective ways to

end the HIV epidemic in Turkey and to achieve the national and

international HIV targets.

This study quantifies the effectiveness of rapid ART

intervention in Turkey; however, we did not include the

behavioral response to the rapid ART as well as implementation

barriers. Recent surveys reported that HIV-positive patients in

Turkey are mostly in favor of rapid treatment initiation (26).

Inclusion of patients in the decision-making process and providing

information on treatment pathways to the patients would likely to

increase adoption of rapid ART (27). Thus, patients should be well-

informed on the process and its results during the implementation

phase of the rapid ART programs (3). Barriers to delay the ART

onset should be learned and eliminated, as well.

To the best of our knowledge, rapid ART initiation in Turkey

has been assessed via a multi-center and retrospective study so

far. Considering the lack of standard definition of rapid ART, they

categorized the naive PLWH into three groups named as rapid
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start (RS-ART initiation within the first 24 h after admission to

the clinic), early start (ES- ART initiation between the second day

and the seventh day after arriving at the clinic), and late start

(LS-ART initiation on the eighth day and beyond) groups. In line

with other studies, they also found that rapid ART leads to faster

viral suppression. Our results are also similar in that there is no

significant change in viral suppression rates with rapid ART (18).

Kroon et al. utilized a risk calculatormodel to estimate the effect

of HIV diagnosis during acute infection and immediate initiation of

ART combined with behavioral counseling in Thailand. Combining

acute HIV infections and early ART with overall behavioral change

could potentially result in 89% reduction in the number of onward

transmissions across the cohort within the first year of infection

while viral load reduction through ART was the most significant

contributor to these results. However, the individual effect of early

ART is not presented in the study (28). A study conducted by

Dimitrov et al. developed a dynamic compartmental model of

HIV in Peru and assessed the combination of prevention strategies

with early detection and rapid initiation of ART by focusing on

the acute HIV phase. After varying different proportions of MSM

and transgender women (TW) in the model, the intervention is

projected to reduce HIV incidence in 2028 by 24%−60% and new

infections over 20 years by 13%−41%. The reported outcomes

are common, such as fraction of HIV infections prevented and

reduction in HIV incidence, whereas our model differs in assessing

the impact of solely rapid initiation of ART (29). Estrada et al.

designed a different methodology compared to ours by using a

Markov tree to compare rapid ART initiation with current practice

of ART in Spain. They had a conservative approach by considering

9 days fromHIV diagnosis to rapid ART initiation. They found that

rapid ART initiation would prevent about 2% of HIV infections

over the 20-year period. Our study results are consistent with

this study as they found that initiating ART earlier—at day

7 from diagnosis—averted more HIV cases compared to the

initiation at day 9 (30). Krebs et al. investigated several HIV

intervention strategies across 6 different US cities employing city-

level compartmental models. Rapid ART is defined as same-day

ART initiation to newly diagnosed individuals in contrast to our

model. Based on the findings of the study, percentage of HIV

infections averted over 10-year implementation of rapid ART

initiation is estimated between 0.1% and 0.4% for the cities (31).

Due to variations in HIV dynamics among different settings, direct

comparisons of the magnitude of changes between studies are not

feasible. Nevertheless, our findings align with the modeling studies

in the literature, suggesting that rapid ART effectively reduces

HIV transmission.

There are some limitations to consider when interpreting the

results of this study. Since there is no available data that show a

change in the parameters over time, we used the same values during

the modeling period. Model parameters, such as diagnosis rates

and treatment rates, remain constant over the horizon time, which

considers the most significant limitation of this study. Another

limitation is that we calibrated force of infection parameters

due to limited data on sexual and needle sharing behaviors in

Turkey. However, we validated the model results with the most

recent number of confirmed cases and conducted an extensive

sensitivity analysis on this parameter. Apart from these limitations,

the analysis of elementary effects showed the parameters that

present interactions or nonlinear effects, but it did not reveal which

parameters were interacting with each other.

Basic assumption of the compartmental models is homogenous

and well-mixed population. Based on this theoretical assumption,

all individuals in the population have an equal probability of

interacting to each other although there are complex social

networks and contact patterns in reality. Our model follows the

same assumptions, yet we stratified the model population based on

risk groups, such as MSM, PWID, and HET, and defined different

infectivity rates for each group to use different infectiousness levels

in the population and decrease the limiting effects of the model.

We also assumed that the time of the rapid ART initiation and

coverage levels are considered the same for all risk groups. We did

not consider any behavioral response to rapid ART and assumed

that individuals accepted and followed the rapid ART process.

Individual-based models, such as network models or agent-based

models, could be used for reflecting the heterogeneity among

population with the cost of additional computational efforts and

increased burden of model inputs.

The strength of our model is that it represents the general

dynamics of HIV and enables us to address our research

questions with the acceptable number of parameters. Another

benefit of our research is that data sets obtained from three

largest data source regarded as the most representative data for

the country so far are used to create our model. This study

facilitates the understanding of the relationships between rapid

ART and the number of infections and potentially quantifies

the benefit of initiating ART as fast as possible. Furthermore,

this study introduces the first comprehensive mathematical model

to investigate the effectiveness of rapid ART programs for

PLWH in Turkey. The model considers various hypothetical

combinations of coverage and initiation times after diagnosis

compared to the current standard-of-care ART treatment in

the country.

This modeling study provides valuable insights into the

significant effect of rapid ART and helps us to understand system

behavior under hypothetical conditions. Nevertheless, results

should be interpreted with caution due to the aforementioned

limitations and methodological simplifications of the model, which

do not fully capture the real-world complexities. Moreover, we did

not perform any type of economic analysis in this study. The cost

aspect of the rapid ART initiation should be investigated with the

help of cost-effectiveness analysis before the implementation of

such program, particularly for resource-limited settings. For future

studies, economic analysis would extend our knowledge of the

rapid ART interventions and help to shed a light on the process

of selecting the right interventions that achieve the best health

outcomes with the least cost for public health decision makers. For

future work, the researchers have been encouraged to increase the

complexity of the model enhanced by incorporating heterogeneity

among the population with different CD4 levels other than 200

cells/mm3, age levels or gender when there is available data. Rapid

ART applications have recently been started in Turkey, and based

on the clinical data that could be collected from these applications,

our model could be updated and extended with real-life data

and scenarios.
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5 Conclusion

The rapid ART intervention prevents new HIV cases compared

to standard-of-care ART, and the benefit of intervention increases

with the coverage and faster initiation. Thus, it can be concluded

that the rapid ART initiation could be an effective method to

mitigate the increasing trend of HIV cases in Turkey. In other

words, the practical implication of the model results is that rapid

ART is a promising intervention to replace the existing standard-

of-care implementation with the benefits of accelerating entry into

medical care, which in turn reduces the HIV transmission in the

population. Rapid ART programs demonstrate the potential to

provide policy makers with a structural solution for controlling

both future direction of HIV and its negative effects on the national

healthcare system.
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There is a growing interest in the joint modeling of the dynamics of disease

and health-related beliefs and attitudes, but coupling mechanisms are yet to be

understood.We introduce amodelwhere risk information, which can be delayed,

comes in two flavors, including historical risk derived from perceived incidence

data and predicted risk information. Our model also includes an interpretation

domain where the behavioral response to risk information is subject to in-group

pressure. We then simulate how the strength of behavioral reaction impacts

epidemic severity asmeasured by epidemic peak size, number of waves, and final

size. Simulated behavioral response is not e�ective when the level of protection

that prophylactic behavior provides is as small as 50% or lower. At a higher level

of 75% or more, we see the emergence of multiple epidemic waves. In addition,

simulations show that di�erent behavioral response profiles can lead to various

epidemic outcomes that are non-monotonic with the strength of reaction to

risk information. We also modeled heterogeneity in the response profile of a

population and find they can lead to less severe epidemic outcome in terms of

peak size.

KEYWORDS

standard of evidence, risk tolerance, in-grouppressure, heterogeneity, behavior-disease

dynamics

1 Introduction

There is a growing interest in informing public health by the joint modeling of the

dynamics of disease and health-related beliefs, attitudes, and prophylactic behaviors [1–9].

A variety of factors and perspectives are likely involved in feedback loops between disease

dynamics and prophylaxis. Many of these have been modeled, including, for instance,

fear of infection mediated by messages from social circles or mass media [10–13], social

influence [5, 14, 15], socioeconomic utility maximization [16–18], and evolutionary game

theory [19–23]. Modeling such factors helps in understanding the determinants of the

prophylactic responses of human populations to disease risk and is crucial for pre- or

post-assessment of the effectiveness of causal interventions, including non-pharmaceutical

interventions such as mask wearing, social distancing, and hand washing.

In this regard, it is well-known that risk tolerance varies in populations and

largely explains the observed heterogeneity in responses to prophylactic behaviors such

as mask-wearing [24–29]. To that end, Espinoza et al. [16] explored a system with

adaptive behavioral responses where individuals privately adjust their contact rates by

maximizing the utility of social interactions while minimizing infection risk. They found

that an heterogeneous population of a risk-tolerant group with a risk-evader group

can experience a more severe epidemic than an homogeneous population with no

disparity in risk perception [16]. Similarly, heterogeneity in susceptibility resulting from

heterogeneity in social activity can produce transient collective immunity as opposed

to herd immunity, leading to multiple epidemic waves or plateau-like dynamics in
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heterogeneous populations [30, 31]. Accounting for heterogeneity

in risk tolerance in behavior-disease models is thus important,

not just academically but also for improving the soundness of

contributions to public health policy design.

In that vein, it is important to recognize that the decision

to wear a mask, for instance, is not a mere combination of risk

tolerance and perceived prevalence of a disease. Mask-wearing is

also informed by the aggregate behaviors of others, norms that can

influence how people interpret the behavior of others in relation to

disease prevalence, for example, suppose you visit a foreign town

to attend a conference. When you arrive, you observe that there

tends to be more people wearing masks than in your hometown.

There are numerous inferences you can make from this evidence.

Perhaps disease prevalence is higher.Maybe the risk tolerance tends

to be lower. Maybe this town has implemented a policy but there

is uneven compliance. Or further still, there might be in-groups

that encourage mask-wearing. Suppose you notice a correlation

between mask-wearers and people with conference badges. As a

conference attendee yourself, you will likely feel some pressure

toward wearing a mask, and if so, this will be because of how you

have come to interpret the evidence of the mask-wearers.

Stated generally, it matters whether those behaving

prophylactically are part of a larger in-group, because that

impacts how people (both in and out of the group) interpret

what the behavior is evidence of. We refer to this aggregate of

in-group and behavior as the “interpretation domain.” There

are few, if any, models that explore the dynamics of a system in

which behavior contributes to and is a function of both perceived

disease prevalence and an interpretation domain. For instance,

evolutionary game theory-based models allow for individuals to

engage or disengage in prophylactic behavior based on the relative

importance of those already behaving prophylactically [20–22],

but the decision process does not account for an interpretation

domain. Interestingly, the social influence approach indirectly

includes an interpretation domain: it assumes that constructive

conversations between individuals with different risk tolerance

levels can lead to opinion and attitude changes, and also includes

an amplification mechanism by which individuals gain confidence

in their health-related opinion after interaction with like-minded

individuals [5]. However, social influence mechanisms cannot be

directly observed [32], hence this approach lacks the perspective

of directly fitting the models to observed epidemiological data and

thus needs complementary methods to pair model predictions with

observed data.

In this study, we propose a new behavior-disease

compartmental model in which behavior contributes to and

is also an explicit function of both perceived disease risk

and an interpretation domain. As an example of context

involving feedback loops that complicate the identification of the

determinants of health-related behaviors at a population level,

we consider the decision to wear a mask. For simplicity, the

existing population level behavior-disease models largely consider

Susceptible–Infected–Susceptible (SIS) or Susceptible–Infected–

Removed (SIR) models for disease dynamic [14, 23, 33–35].

However, in a disease context with a significant proportion of

asymptomatic infectives, the perceived risk of a person depends

on incomplete information including the observed incidence

(rather than the true incidence), and estimates of the disease

prevalence publicized in media favored in the interpretation

domain. Behavioral changes thus depend on the composition of the

infective class, the probability to detect infectives, and testing effort,

and this advises against the use of the SIR model. Furthermore, in

some epidemic contexts, disease-related information, including

both historical incidence and predicted trends, is discussed on a

daily basis on mass media, possibly leading to risk information

overload [36]. In such situations, for instance, during the COVID-

19 pandemic, the decision to wear a mask may be affected by

predicted trends in addition to historical risk.

Considering an hypothetical disease with COVID-19-like

epidemiology, we use an extended Susceptible–Exposed–

Infected–Removed (SEIR) model with differentiated infective

states (asymptomatic, symptomatic, and detected infectious).

Risk information from this disease dynamic comes in two flavors,

namely the current disease prevalence and trends in number of new

detected infectives. It flows into the behavior dynamic model with

a time delay. Susceptible individuals consider this risk information

along with how many individuals in their social group are already

engaging to decide to (not) adopt a prophylactic behavior, which

provides a certain level of protection against infection. Changes in

prophylactic behaviors then flows back into the disease dynamic

model through variations of the effective contact rate between

infectives and the susceptible groups. The resulting model is a

system of neutral delay differential equations [37], where changes

in the disease state variables depend not only on the current states

but also on the history of the system.

The behavior dynamic part of our model mimics a generalized

logistic growth process [38] with explicit formulae (given

observable disease risk information). This is an advantage over

competing approaches such as the evolutionary game theory-based

model [21] since, by carrying surveys before or during the early

phase of an epidemic outbreak, one can obtain estimates of model

parameters and derive predictions of disease-behavior co-evolution

under various scenarios of interest to public health, and further

iterate feedbacks between model and observable data. We do not,

however, explore such an advantage here. Instead, we consider

a variety of “response-profiles” inspired by work in behavioral

economics and related fields [39–41]. For example, one kind of

profile focuses on the current disease incidence rate. Another kind

considers trends in an effort to “predict” incidence rates, thereby

opening the possibility of adopting prophylactic behavior earlier

when the trend moves upwards, but also giving up such behavior

when the rate of change decreases. Such profiles can be further

manipulated with increased (or decreased) levels of risk-aversion,

as well as increased (or decreased) levels of in-group pressures

(i.e., how much attention is given to pro-prophylactic behavior vs.

non-prophylactic behavior in the interpretation domain).

Our purpose is to explore how differences in such response

profiles affect disease dynamic. In particular, we consider epidemic

severity in terms of epidemic peak time and size, time to curb

the epidemic (effective reproductive number below one), final

epidemic size, and the possibility of multiple epidemic waves.

Under a social influence-based model, Tyson et al. [14] found that

populations more responsive to risk information can experience

more severe epidemics in terms of final size and undergo multiple
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epidemic waves, although the epidemic peak sizes will be smaller.

Here, we aim to test these results: (i) when the prophylactic

response to risk information involves in-group pressure (which

is similar to the social influence mechanism, but can account for

an interpretation domain) under various response-profiles (i.e.,

populations responding to qualitatively different risk information);

and (ii) when the population is heterogeneous in terms of response-

profile.

The remainder of the study is organized as follows.

Section 2 describes the components of the new behavior-

disease compartmental model in terms of equations, motivations,

and interpretations, and derives summary measures considered

to assess and compare epidemic severity and overall disease

dynamic. Section 3 explores various aspects of epidemics that

can be generated by the proposed differential system, considering

populations homogeneous or heterogeneous with respect to

in-group behavior and response to historical or predicted risk

information. Section 4 then discusses our findings and the

limitations of the proposed model, and provides some concluding

remarks.

2 Methods

This section introduces our general theoretical framework

based on an SEIR model. It then describes risk information

components, as well as how the proportion of prophylactic

individuals in a sub-population and the effective contact rate

depend on this information and in-group pressure. Finally, the

section presents the behavior-disease dynamics model and related

summary measures to quantify and compare epidemic severity.

2.1 Theoretical framework

It is well-known that prophylactic behavior affects disease

transmissions by reducing rates of effective contacts between

infectious and susceptible individuals in the target population

(direct physical or indirect through shared media in which

pathogens can survive) [23, 42]. In our modeling framework,

change in disease dynamic affects back prophylactic behavior

through observable disease prevalence (which depend, for instance,

on the existence and effectiveness of a disease surveillance

mechanism and testing capacity to detect infectious individuals),

but disease related information is processed by a system of health

beliefs and related attitudes. In other words, the feedback from

disease dynamic to prophylactic behavior is mediated by health

beliefs and normative attitudes in the individual’s interpretation

domain which determines risk tolerance. However, engagement in

prophylactic behavior is also determined by how many individuals

are already behaving prophylactically, and a social group can pay

more attention to andmimick those behaving prophylactically than

those behaving non-prophylactically, or vice-versa.

To describe disease dynamics, we consider an extended SEIR

compartmental model framework [43–45] with differentiated

infective states. The population size N is given at time t by

N(t) = S(t)+ E(t)+ Ia(t)+ Is(t)+ Id(t)+ R(t) (1a)

where S, E, Ia, Is, Id, and R are susceptible, exposed, asymptomatic

infectious, symptomatic infectious, detected (tested positive and

reported), and removed individuals, respectively. The disease-

dependent compartments E, Ia, Is, Id, and R are considered

homogeneous whereas the class of susceptible individuals (S) is

further differentiated into two groups based on risk tolerance:

S(t) = S−1(t)+ S1(t) (1b)

where Si denotes susceptibles with standard of risk i ∈ A, A =

{−1, 1}. For instance, in a population which only responds to

current risk, S−1 may represent individuals with low standard

of evidence (the most responsive to disease prevalence), while

S1 corresponds to individuals with high standard of evidence

(least responsive to disease prevalence). However, difference in

standard of risk may be qualitative rather than quantitative: S−1

may represent individuals responsive to only historical risk while

S1 corresponds to individuals sensible to both historical and

predicted risk.

2.2 Disease risk information aggregate

The primary source of disease-related information in an

epidemic context is the timely number of new positive cases,

denoted C. The number of individuals in the class Id of detected

infectious individuals (see Equation 1a) is related to C by

İd(t) = C(t)− ρdId(t) (2)

where the dot notation indicates the first derivative with respect to

time (i.e., İd(t) = dId(t)/dt), ρd is the removal rate of individuals

from Id, with non-negative initial condition Id(0) = Id0. Solving the

differential Equation (2) for Id gives

Id(t) = exp (−ρdt)

[

Id0 +

∫ t

0
C(u) exp (ρdu) du

]

. (3)

We consider the perceived disease prevalence, denoted P, and

the relative rate of change of new positive cases, denoted Q, as the

basic pieces of information on which susceptible individuals will

decide to be prophylactic. From Equation (3), the perceived disease

prevalence is given at time t by

P(t) =











Id(t−τ )
N(t−τ )

if t ≥ τ ,

0 otherwise

(4a)

where the constant τ > 0 represents a time delay in the acquisition

of information on detected and reported infectious. The relative

rate of change Q is the quotient of the rate of change (increase or

decrease) of the number of new detected cases C to the number of

new detected cases, delayed by τ time units:

Q(t) =











Ċ(t−τ )
C(t−τ )

if C(t − τ ) > 0,

0 otherwise

. (4b)

Note that Q(t) = 1 means that the timely number of new

positive cases is doubling per unit time, whereas Q(t) = −1/2
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means that the timely number of new positive cases is halving per

unit time.

We assume that based on the information pieces P and Q, each

group of susceptible Si makes up an information aggregate, denoted

ηi, and which satisfies ηi = 0 before disease outbreak (t < τ ,

P = Q = 0). This information aggregate is defined as a quadratic

function of P and Q:

ηi = aiP + biP
2 + ciPQ+ diQ

2 + eiQ (4c)

where ai, bi, ci, di, and ei are non-negative real coefficients

expressing the weights of linear, quadratic, and interaction

components of the prevalence P and the rate of change Q.

It is worthwhile noticing that Equation (4c) is intended as an

approximate summary of the available information that drives the

decision to wear a mask. The quadratic form is indeed used as an

approximation to the actual, likely non-linear mechanism by which

the susceptible group Si processes disease-related information. The

non-negative signs imposed on the coefficients in ηi (ai, bi, ci, di and

ei) ensure that when the timely number of new positive cases is non-

decreasing (Q ≥ 0), ηi is not only non-negative for any perceived

disease prevalence P but also non-decreasing in P.

Equation (4c) describes how disease risk information can be

differently interpreted by different tolerance groups within the

same population. For instance, a group of individuals may focus

on the disease incidence rate while ignoring predictions of future

disease risk. For such individuals, one or both parameters ai and

bi in the information aggregate (Equation 4c) will be positive but

parameters ci, di, and ei will be zero. Another group may pay

attention to trend in disease incidence, opening the possibility

of adopting prophylactic behavior earlier when the trend moves

upwards, and also giving up such behavior when incidence

decreases. Such a group will have at least one of the parameters

ci, di, and ei being greater than zero. Between these two extreme

situations, there are many possibilities with various combinations

of small vs. large values of parameters ai and bi to reflect howmuch

attention is paid to current disease incidence by a tolerance group,

and parameters ci, di, and ei related to the relative importance of

trends to the group.

2.3 Prophylactic behavior dynamic

For a susceptible class with standard of evidence i, we consider

for simplicity two levels of prophylactic behavior: high prophylactic

behavior (i.e., individuals properly wearing mask where and when

this is recommended) vs. low prophylactic behavior. The overall

prophylactic behavior in the class Si can thus be summarized by the

prophylactic proportion mi ∈ [0, 1], i.e., the proportion of mask-

wearers. We assume that change in the prophylactic proportionmi

is proportional to change in the information aggregate ηi and to the

proportion of Si individuals already wearing masks:

∂mi

∂t
=

[

mi
1−m

αi
i

αi

]

∂ηi

∂t
(5)

where αi is a positive real which determines the nature and strength

of in-group behavior, and we have taken the proportionality

constant to be one to ensure that the coefficients of the linear

components of ηi (ai and ei) in the model are identifiable from

observed data. When αi = 1, ∂mi/∂t is proportional to both mi

and 1 − mi, and Si individuals give the same relative importance

to both mask-wearers and non-mask-wearers: for a unit increase in

the information aggregate, the highest increase in mi occurs when

mi = 0.5, i.e., when half of the Si individuals have engaged in

prophylactic behavior. For general αi values, the highest increase

in mi for a unit increase in ηi occurs when mi = (1+ αi)
−1/αi . It

appears that for αi ∈ (0, 1), the highest increase in mi occurs when

mi < 0.5 (weak influence of in-group non-prophylactic behavior),

and for αi > 1, the highest increase in mi occurs when mi > 0.5

(strong influence of in-group non-prophylactic behavior). Hence,

the larger αi, the larger impact in-group non-prophylactic behavior

will have, slowing down engagement in prophylactic behavior.

Since mi depends on time only through the information

aggregate ηi, we can interpret Equation (5) as a differentiation in

chain and write ∂mi/∂ηi = mi

(

1−m
αi
i

)

/αi, which appears to be

Richards growth equation [38] with intrinsic growth rate equal to

one. Solving formi yields the generalized logistic curve:

mi =
[

1+ exp {δi − ηi}
]−1/αi (6a)

where δi is a constant related to the proportion mi0 ∈ (0, 1) of Si
susceptibles who would hold a high prophylactic attitude even in

the absence of any evidence of disease (i.e., when ηi = 0, which

happens for t ≤ τ ) by

δi = log
(

m
−αi
i0 − 1

)

. (6b)

Figure 1 shows the prophylactic proportion mi as a function

of time for a few selected parameter values, with a perceived

disease prevalence P varying from zero to 33%. It appears that

the coefficients bi, ci, di, and ei in Equation (4c) have distinct

effects on mi and capture different reactions of susceptibles to

disease risk. For instance, bi and di can be described as response

acceleration parameters for high and low prevalence values,

respectively. Indeed, a susceptible group more responsive to large

prevalence values than to low prevalence values corresponds to

bi > 0 (Figure 1A), whereas di > 0 corresponds to groups

more responsive to low prevalence values than to high prevalence

values (Figure 1C). Similarly, ci > 0 corresponds to groups where

engagement in prophylactic behavior is stronger (Figure 1B), and

ei > 0 to groups where engagement in prophylactic behavior is

earlier (Figure 1D), but in both cases, disengagement also happens

early, once the number of new detected case starts dropping (Q <

0).

The in-group behavior parameter αi allows additional flexibility

inmi by controlling how the aggregated information is jointly used

with howmany individuals are already behaving prophylactically in

a susceptible group. Whereas bi and di can be viewed as parameters

inducing behavioral response acceleration with respect to change

in risk information (P and Q, respectively), αi is an intrinsic

acceleration/deceleration parameter, i.e., the acceleration of mi

happens not because of change in risk information, but rather in

response to the current (low or high) value of mi itself. Figure 2

shows mi curves for a few selected parameter values. It can be

observed that ceteris paribus, a larger αi value, implies an overall
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FIGURE 1

E�ects of di�erent information weights on prophylactic proportion m
(αi )
i (i = −1, 1) for various parameter values. The light blue curve repeated on all

plots corresponds to a response to prevalence only, i.e., only the coe�cient ai = 20 is non-zero in Equation (4c); the dark blue curves on plots (A–D)

correspond to combinations of ai = 20 with bi = 50 (A), ci = 150 (B), di = 50 (C), and ei = 10 (D). The prevalence P (solid black) and the rate of

change Q (dashed black) are respectively given by Equations (4a, 4b), Id is given by Equation (3), ρd = 1/14, and the daily number of new detected

cases is given by the logistic curve C(t) = N0e
vt / (1+ evt )2 with N0 = 100, 000, vt = (t− 50)/8. The proportion of prophylactic individuals in

disease-free conditions is mi0 = 0.05 and the in-group behavior parameter is αi = 1.

weaker prophylactic behavioral response. Indeed, the derivative of

mi with respect to αi, given by

∂mi

∂αi
= −

mi

αi

[

log

(

mi

mi0

)

+m
αi
i

(

1− e−ηi
)

log (mi0)

]

, (7)

is negative (mi decreases with αi) for ηi > 0 (i.e., when prophylactic

proportion is above the disease-free level mi0). However, if

information aggregate reaches zero (ηi = 0), ∂mi/∂αi (Equation 7)

vanishes, and if ηi becomes negative, ∂mi/∂αi > 0. This happens

around t = 96 days in Figure 2D, where ei > 0 (i.e., in a

population where Q is given much attention) allows ηi < 0 after

Q becomes negative, and as the epidemic dies out (P → 0), Q

dominates the information aggregate: the ordering of prophylactic

proportions switches such that a lower αi value corresponds to

a weaker prophylactic behavioral response for ηi < 0. This can

be interpreted as a return of the early engagement of a group

with ei > 0 (Figure 2D, m
(0.1)
1 ). In this respect, αi appears as a

parameter which exaggerates behavioral response regardless of the

sign of information aggregate. But as the disease-free prophylactic

proportion mi0 is typically low (mi0 = 0.05 in Figure 2), there will

generally be less room for this exaggeration when the epidemic dies

out (ηi < 0) than at disease outbreak (ηi > 0).

2.4 Contact and transmission rates

We assume for simplicity that the detected infectious

individuals are isolated (e.g., hospital and home) and do not

mix actively with other classes. Using the “quarantine-adjusted”

incidence mechanism [46] yields the force of infection λi (the

average number of adequate contacts of one Si susceptible person

with infectives per unit time):

λi(t) =
βia(t)Ia(t)+ βis(t)Is(t)

N(t)− Id(t)
(8a)

where βia and βis are rates of effective contacts with asymptomatic

and symptomatic infectious individuals, respectively. The effective

contact rate βij depends on a baseline contact rate β0 (possibly

restricted by public health policies), the prophylactic attitude of

Si susceptibles, the average efficiency κ ∈ (0, 1) of prophylactic

behaviors in reducing transmissions, and the probability φj ∈ (0, 1)

of disease transmission on contact with Ij infections:

βij(t) = β0

[

1− κmi(t)
]

φj. (8b)
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FIGURE 2

E�ects of di�erent in-group behavioral response on prophylactic proportion m
(αi )
i (i = −1, 1) for various parameter values. The solid light blue curve

on graphic (A) corresponds to a response to prevalence only, i.e., only the coe�cient ai = 20 is non-zero in Equation (4c); the solid dark blue curves

correspond to combinations of ai = 20 with ci = 150 (B), di = 50 (C), and ei = 10 (D). All the solid blue curves have in-group behavior parameter

αi = 1/10 (strong e�ect of in-group prophylactic behavior). On each plot, the dashed-dotted blue curve corresponds to αi = 1 (neutral in-group

prophylactic behavior), the dashed blue curve to αi = 2 (strong e�ect of in-group non-prophylactic behavior), and the dotted blue curve to αi = 3

(stronger e�ect of in-group non-prophylactic behavior). The prevalence P (solid black) and the rate of change Q (dashed black) are respectively

given by Equations (4a, 4b), Id is given by Equation (3), ρd = 1/14, and the daily number of new detected cases is given by the logistic curve

C(t) = N0e
vt / (1+ evt )2 with N0 = 100, 000, vt = (t− 50)/8. The proportion of prophylactic individuals in disease-free conditions is mi0 = 0.05.

2.5 The behavior-disease dynamics model

For a target population, we consider a period of study short

enough for both disease-related death and natural demographic

rates (births, net immigration, and deaths) to be negligible relative

to the total population size N (assumed large but finite). As a

result, the population size in Equation (1a) remains constant and

equal to an initial size N0 = N(0). Joining the behavior and

disease dynamics mechanisms described in Sections 2.3, 2.4 gives

the Behavior-SEIR model depicted on the flow diagram in Figure 3

with parameters described in Table 1. After sufficient contacts

with infectious individual(s), a susceptible individual enters an

incubation period (class E) lasting 1/θ time units on average, in

a non-infectious state, and without any disease symptom. Some

of these exposed individuals are early detected with probability

π thanks to contact tracing or systematic tests on target groups,

and enter the class Id. In the non-early detected exposed group,

100σ% develop symptoms and enter the class Is, and 100(1 − σ )%

remain asymptomatic and enter the class Ia. Individuals in the class

Is are then identified at a high rate γs. Thanks to contact tracing

or systematic tests on target groups again, some asymptomatic

individuals in the class Ia are identified at a lower rate γa. All

exposed individuals eventually recover from the disease, entering

the class R (removals).

The Behavior-SEIR dynamics model is described at time t by

the following system of non-linear differential equations:

Ṡ−1(t) = −λ−1(t)S−1(t), (9a)

Ṡ1(t) = −λ1(t)S1(t), (9b)

Ė(t) = λ−1(t)S−1(t)+ λ1(t)S1(t)− θE(t), (9c)

İa(t) = (1− σ )(1− π)θE(t)− (γa + ρa)Ia(t), (9d)

İs(t) = σ (1− π)θE(t)− (γs + ρs)Is(t), (9e)

İd(t) = πθE(t)+ γaIa(t)+ γsIs(t)− ρdId(t), (9f)

Ṙ(t) = ρaIa(t)+ ρsIs(t)+ ρdId(t), (9g)

with the non-negative initial conditions Si(0) = Si0, E(0) = E0,

Ia(0) = Ia0, Is(0) = Is0, Id(0) = Id0, and R(0) = R0 such that

N0 = S−10+S10+E0+ Ia0+ Is0+ Id0+R0. The proposed model is

a system of neutral delay differential equations [37] where the force

of infection λi (Equation 8a) depends throughmi (Equation 8b) on

the information available at time t, precisely P (dependence on state

variables) andQ (dependence on first derivatives of state variables),

which are delayed by τ time units.

The parameter τ accounts for two potential sources of

information delay: (i) reporting delay, i.e., the delay between the

moment exposed or infectious individuals are detected and isolated

from the mixing population, and the moment the number of
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FIGURE 3

Flow-chart of a Behavior-SEIR dynamics model showing the flow of humans between di�erent compartments. The susceptible population is

distinguished in individuals with low standard of evidence (S−1) and individuals with high standard of evidence (S1). The classes E, Ia, Is, Id, and R

denote respectively the exposed, the asymptomatic infectious, the symptomatic infectious, the detected infectious, and the removed (recoveries)

populations. Recruitment (births and net immigration) and deaths (natural and disease-related) are assumed negligible relative to the population size.

The parameters of the model are described in Table 1.

detected cases is publicized and can be considered by susceptible

individuals to assess their risk, and (ii) reaction time, i.e., the

delay between the moment the number of detected cases is made

public and themoment susceptible individuals actually consider the

information to adjust their adherence to preventive prophylactic

behavior. We focus on reporting delay which can be included

in public health policy design [47]. Indeed, official statistics are

often reported with a time delay that may arise from a desire for

thorough verification [48]. However, reporting delays can produce

the dangerous illusion of an improving epidemic situation since the

most recent days have the least cases accounted [48]. Including the

time delay parameter τ in model (Equation 9) allows to investigate

the extent to which reporting delay can affect the evolution of an

epidemic through the behavioral response to delayed information.

For our simulation experiments (see Section 2.8), we consider

information delays ranging from 1 day to 1 week (τ = 1, 3, 5, 7

days).

2.6 The e�ective reproductive number

We compute the effective reproductive number based on

the Behavior-SEIR model (Equation 9) using the next-generation

matrix approach [49]. Starting from any disease-free state Xc =

(S−10, S10, 0, 0, 0, 0,R0)
⊤, the basic reproductive number R(0) for

system Equation (9) is given by

R(0) = Ro

∑

i∈A

Si0

N0
(1− κmi0) , (10a)

Ro = β0(1− π)

(

φa
1− σ

γa + ρa
+ φs

σ

γs + ρs

)

(10b)

where N0 = S−10 + S10 + R0 > 0 and Ro (Equation 10b) is

the reproductive number when there is no differential evidentiary

group, R0 = 0, and all prophylactic proportions are zero (mi0 = 0).

As expected, the basic reproductive number R(0) (Equation 10a)

depends on both the distribution of the population between

evidentiary groups, and the prophylactic proportion of each group

when no disease evidence is available (both perceived disease

prevalence P and rate of change Q are zero). Along an epidemic,

the effective reproductive number is then given by

R(t) =
∑

i∈A

Si(t)

S(t)
Ri(t) with (10c)

Ri(t) = Ro
S(t)

N0 − Id(t)

[

1− κmi(t)
]

(10d)

where Ri(t) (Equation 10d) is the effective reproductive number

for Si susceptibles such that R(t) is the average of Ri(t) over all

groups of susceptibles.

We would normally conduct here a stability analysis of the

model, including the bifurcation diagram for interesting model

parameters such as the time delay τ and the level of protection κ .

However, these investigations are out of the scope of this conceptual

analysis which focuses on the behavioral response to an outbreak

and its impact on the dynamic of an epidemic. Such investigations

can however be carried out after extending the model to represent

more realistic scenarios, including, for instance, vital rates (births

and immigration, natural deaths, and disease-related death), flow

between susceptible compartments (S−1 and S1), and immunity lost

(flow from R back into S−1 and S1).

2.7 Epidemic severity measures

To allow for comparison between various epidemic scenarios,

we define some measures to quantify epidemic severity and overall

disease dynamic.

(a) The number nw of epidemic waves.

When the maximum number of detected cases (Ct) over

the study period is less than one plus the initial number of
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TABLE 1 Description and values of parameters in the

behavior-disease model.

Parameter Description Values

τ Time delay (days) of risk

information

1, 3, 5, 7

a†
i Main response of Si

(susceptibles) to prevalence

(P)

20

bi Non-linear response of Si to P

(i.e., P2)

0, 50

ci Responsiveness of Si to the

interaction P × Q

0, 150

di Non-linear response of Si to Q

(i.e., Q2)

0, 50

ei Main response of Si to rate of

change (Q)

0, 10

αi Strength of in-group

non-prophylactic behavior

0.1, 1, 2, 3

mi0 Prophylactic proportion in

the absence of risk evidence

0.05

κ Average efficiency of

prophylactic behavior

1
2
, 3
5
, 3
4
, 9
10
, 19

20
, 1

β0 Baseline transmission rate 1/2, 1, 2, 3

φj
∗ Probability of disease

transmission by Ij infectious

1

1/θ Duration of incubation

(latent) period (days)

4

π Early detection probability for

exposed individuals

1
4
, 1

2
, 2
3
, 3
4

σ Proportion of symptomatic

infectious

1/2

γj Detection rate of Ij infectives
2

14×5
, 4
14×5

ρj Removal rate of Ij infectious
3

14×5
, 1
14×5

, 1
70

Si0 Initial number of Si
susceptibles

49, 998

E0 , Ij0 Initial number of exposed and

infectious

2, 1, 1, 0

R0 Initial number of recovered

individuals

0

N0 Total population size 100, 000

All parameters take non-negative values.
†i = standard of evidence level defined in Equation (1b).
∗j = a (asymptomatic), s (symptomatic), or d (detected) infectives.

For parameters with multiple values (τ , ai , ci , di , ei , αi , κ , β0 , π), the default value is bolded.

infected individuals in the population at time t = 0, we

consider that the disease dies out and there is no epidemic wave

(nw = 0). Otherwise, we have nw ≥ 1. For nw ≥ 1, to cut up

the epidemic period based on observable epidemiological data

(Ct) and identify epidemic waves, we consider a wave detection

algorithm based on five properties imposed upon the height

of waves, and the troughs between waves: (i) the number of

detected cases at the trough between two successive waves is

<500, (ii) the duration between a trough and the preceding

peak is 5 days or more, (iii) an epidemic wave lasts at least

1 week, (iv) the prominence of the peak of a wave is 10 or

more detected cases (per day) above the surrounding valley

(specifically the highest of the left and right troughs), and (v)

the prominence of the peak represents at least 50% of the peak

height. The algorithm is a modification [addition of properties

(i) and (ii)] of Harvey et al. [50]’s epidemic wave identification

algorithm. The wave detection algorithm is implemented in R

freeware [51] (R package wavefinder with source available on

the Git repository SE-SEIR).

(b) The overall peak height Hp (number of detected cases) and

peak time Tp (days).

(c) The time Tc1 to curb the first outbreak.

The duration from disease outbreak (R(0) > 1) to the first

time when the effective reproductive numberR (Equation 10c)

falls to one:

Tc1 = arg
t
min

{

R(t) = 1
}

. (11)

(d) The final epidemic size FT .

For a given time horizon T, the final epidemic size is given

by FT = 1−ST/N0, where ST is the total number of susceptible

individuals at time t = T andN0 is the total (initial) population

size.

2.8 Simulation experiment

We carried out a simulation experiment to explore

combinations of model parameters related to disease transmission

(β0), early detection of exposed individuals (π), delayed acquisition

or reaction to risk information (τ ), behavioral reaction (ai, bi, ci,

di, and ei), in-group behavior (αi), and efficiency of prophylactic

behaviors (κ) that lead to patterns where the course of an epidemic

depends more or less on differences between risk perception and

related feedback loops.

2.8.1 Simulation design
We first considered a variety of basic behavioral response

profiles including a reference population (0) responsive to

prevalence only, and the four profiles of populations in Figures 1A–

D: profile 0 corresponds to ai = 20 (bi = ci = di = ei = 0), profile

A corresponds to ai = 20 and bi = 50 (ci = di = ei = 0), profile

B to ai = 20 and ci = 50 (bi = di = ei = 0), profile C to ai = 20

and di = 50 (bi = ci = ei = 0), and profile D to ai = 20 and

ei = 10 (bi = ci = di = 0). These five profiles are homogeneous

with respect to behavioral reaction to risk information. We then

included heterogeneous populations obtained as combinations of

the reference profile (half of the population) with one of profiles A–

D. For each profile, we varied other model parameters including β0,

π , τ , κ , and αi (see parameter values in Table 1). Since αi is group

specific, we have the between-group difference 1α = α−1 − α1,

which measures heterogeneity in in-group pressure.

For each simulation setting, we solved system (Equation 9)

using the function dede from the R package deSolve [52] (code in

the R package BSEIR with source available on the Git repository

SE-SEIR), and recorded the number of epidemic waves up to T =

1, 000 days after the first outbreak (nw), the overall peak time (Tp)

and height (Hp), the time to curb the first epidemic wave (Tc1), and

the final epidemic size (F1,000).
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2.8.2 Statistical analyses
To summarize simulation results, we computed descriptive

statistics for epidemic severity measures in R, and fitted

generalized linear models [53] to the number of secondary

epidemic waves (Poisson regression) and the epidemic peak size

(gamma regression) as functions of population response profiles

and the varied model (Equation 9) parameters (see descriptive

statistics in Supplementary Table S1). We also fitted a one-

inflated beta regression model [54] to the final epidemic size

(F1,000) using the R package gamlss [55]. For each model, we

checked goodness-of-fit using a χ2-test on residual deviance, and

evaluated the explanatory power of the model using a deviance

based pseudo-R2 [56]. Supplementary Table S2 provides descriptive

statistics for the different epidemic severity measures over all

simulation scenarios.

3 Results

3.1 Epidemic severity across types of
responses

Our simulation results indicate important variations in

epidemic severity measures between levels of in-group pressure.

Indeed, an increase in in-group pressure for pro-prophylactic

behavior (decreasing αi) increases the average number of

secondary waves, but decreases the epidemic peak size and final

size (Table 2).

Table 3 shows summaries of epidemic severity measures

comparing populations with the reference response profile 0 and

profiles A–B, averaged over all levels of in-group pressure (αi ∈

{0.1, 1, 2, 3}). All investigated parameter settings result into an

epidemic, the disease quickly dying out in only 1% of settings with

the homogeneous profile B (i.e., populations with a reaction to

rate of change Q proportional to perceived prevalence P). When

there is an epidemic, one secondary epidemic wave occurs in 9% of

settings with the reference profile 0. Secondary epidemic waves are

the most likely (19%) under profile A [homogeneous populations

with a strong (quadratic) reaction to P only], and the least likely

(2%) under profile B. The epidemic peaks after about 64 days on

average in populations responsive to P only (profile 0) to ∼3,209

new reported cases. Slightly lower average peak time and size result

from a stronger reaction to P (3,050 case after 62 days for profile A)

or an additional response to Q (3,126 cases after 60 days for profile

D). Ignoring the sign of Q increases the average peak time to about

72 days (profile C) while decreasing the peak size to∼32,748 cases,

with intermediate result for profile B (2,840 cases after 66 days). The

final epidemic size is typically large, 91% on average, under profile

0 (and C). A stronger reaction to P (profile A) slightly reduces the

final size to 90% whereas an additional response to Q (profiles B

and D) increases the final size to 94%. In summary, a stronger

reaction to P essentially leads to more secondary waves whereas an

additional response to Q hastens the epidemic peak and increases

the final size, with lower peak sizes in both scenarios. A response to

Q proportional to P also increases average final size, but delays the

peak (with a lower size).

Heterogeneity in the behavioral reaction to risk information

generally leads to intermediate results half way between the two

combined homogeneous profiles (Table 3). Exceptions include the

time to curb the first epidemic wave (larger than expected) under

profiles 0 × C and 0 × D, and the peak time (larger than

expected) and size under profile 0 × D (smaller than expected).

Figure 4 shows the timely number of new positive cases under

profiles 0, D, and 0 × D, exhibiting an interactive effect between

in-group pressure and heterogeneity. Indeed, it appears that in

an heterogeneous pro-prophylactic behavior population (Figure 4,

α = 0.1) where half of individuals are responsive to P and the other

half is additionally responsive to Q, the epidemic peak size (1,380

new detected cases) is smaller than in homogeneous populations

with profile 0 (1,819 new detected cases) or D (1,653 new detected

cases).

When we restrict attention to populations where in-group

pressure is neutral (αi = 1), we observe that a stronger reaction

to P leads to one secondary epidemic wave in 24% of settings,

as opposed to 19% across αi values (Supplementary Table S3).

Similarly, an additional response to Q increases the peak time and

does not increase the final epidemic size (90% under profile D),

unless the reaction to Q is proportional to P (93% under profile

B). These discrepancies point out to important variations between

levels of in-group pressure.

The results of fitted models shown in Table 4 corroborate our

observations for the number of secondary waves (model coefficient

estimates < 0 for α−1 and 1α), the peak size, and the final

epidemic size (coefficient estimates > 0 for α−1 and 1α). It also

appears that among the profiles A–D, only profile B (population

with a response to the rate of change proportional to prevalence)

leads to a decrease in the number of secondary epidemic waves

and an increase in the final epidemic size, as compared to the

reference profile 0. In addition, the model results indicate that for

an heterogeneous population, the expected number of secondary

epidemic waves or the expected final epidemic size is intermediate

between the outcomes for the two corresponding homogeneous

populations, except when half the population has profile D. For the

latter, after controlling for disease dynamic and in-group pressure

parameters, the expected number of secondary epidemic waves is

15.9% (100× 0.159) higher for the homogeneous profile D, but

31.8% higher for the heterogeneous profile 0 × D, as compared to

an homogeneous profile 0.

The fitted models also indicate that a 1-day increase in

risk information delay (τ ) leads to a 2.6% average increase

(100× 0.026) in the average odd ratio for a random individual to

get infected over the course of the epidemic, a 3.3% increase in the

overall peak size, and a 6.5% decrease in the number of secondary

waves (Table 4). A discussion of the biological interpretation of

these statistics is provided in Section 4.1. As for other varied

model parameters (β0, π , and κ), apart from in-group pressure, the

variations of the number of secondary waves are mostly driven by

the level of protection by prophylactic behavior, to the extent that a

1%-point increase in κ results into a 15.5% increase in the number

of secondary waves. In other words, if 80% level of protection

yields one epidemic wave on average, then increasing the level of

protection by 10% (i.e., from 80 to 90%) results in an expected

2.55 waves (1 + 1 × 0.155 × 10). Both the peak size and the final

epidemic size are mainly determined by the baseline transmission

rate (β0) and the probability of early detection of exposed

individuals (π).
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TABLE 2 Summary of epidemic severity measures comparing populations with various levels of in-group pressure (αi ∈ {0.1, 1, 2, 3}).

Statistics† Median Mean SD Median Mean SD

α−1 = α1 = 0.1 α−1 = 0.1, α1 = 1

Epidemic? 1.00 1.00 0.06 1.00 1.00 0.05

Nb2. waves 0.00 0.26 0.45 0.00 0.20 0.41

Peak time 50.50 67.26 47.88 49.50 66.95 49.11

Peak size 2,158.11 2,293.38 1,473.21 2,453.50 2,499.49 1,480.42

Time to curb∗ 48.50 65.91 50.64 49.50 67.10 51.55

Final size 0.95 0.88 0.15 0.96 0.89 0.15

α−1 = α1 = 1

Epidemic? 1.00 1.00 0.03

Nb2. waves 0.00 0.12 0.33

Peak time 47.50 65.44 49.53

Peak size 2,838.61 2,826.22 1,525.38

Time to curb∗ 47.00 65.73 51.47

Final size 0.97 0.91 0.13

α−1 = α1 = 2 α−1 = 1, α1 = 2

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.02

Nb2. waves 0.00 0.02 0.15 0.00 0.06 0.25

Peak time 46.00 65.82 52.62 46.50 65.80 50.91

Peak size 3,371.64 3,295.01 1,580.77 3,010.69 2,990.65 1,525.65

Time to curb∗ 45.50 67.00 54.03 47.50 67.12 52.48

Final size 0.99 0.93 0.11 0.98 0.91 0.13

α−1 = α1 = 3 α−1 = 1, α1 = 3

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.00

Nb2. waves 0.00 0.01 0.09 0.00 0.01 0.11

Peak time 45.50 66.36 54.49 45.50 66.07 53.38

Peak size 3,551.96 3,540.48 1,619.83 3,459.73 3,385.74 1,587.77

Time to curb∗ 45.00 68.11 55.92 45.50 67.78 54.75

Final size 1.00 0.96 0.08 1.00 0.94 0.09

SD, standard deviation; Nb2. waves, number of secondary waves.
†The statistics are based on n = 3, 456 simulations across the profiles 0–D, and values of model parameters β0 , π , τ , and κ in Table 1.
∗Time to curb = time to curb the first epidemic wave defined in Equation (11).

Italic (bold) figures indicate average values lower (larger) than the reference (αi = 1) for homogeneous populations (α−1 = α1).

3.2 Epidemic severity across levels of
prophylactic protection

Figures 5, 6 show the cumulative number of cases detected

up to 1,000 days after the outbreak for various values of

κ , π , and β0. For κ ∈ {0.5, 0.6}, no secondary epidemic

wave was observed (Figure 5). It appears that if the disease

surveillance mechanism for early detection and removal is

loose (π = 0.25), disease dynamic is barely sensitive

to behaviors (Figure 5A). When disease surveillance is more

effective (π ≥ 0.5), disease dynamic (peak and observed

final size) becomes more sensitive to behaviors (Figures 5B–

D), especially when the baseline disease transmission rate is

low (β0 = 0.25).

When prophylactic behavior offers (almost) perfect protection

(κ ∈ {0.95, 1}), secondary epidemic waves (one or two) were

observed in 28% of these settings. Figure 6 shows the cumulative

numbers of detected cases when there are secondary waves (see

Supplementary Figure S1 for unique wave scenarios). It can be

observed that at such high levels of protection by prophylactic

behavior, disease dynamic is highly sensitive to behavioral changes,

even when the baseline disease transmission rate is high (β0 = 3).
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TABLE 3 Summary of epidemic severity measures comparing populations with profiles A–B to the reference profile 0 under various in-group pressure

(αi ∈ {0.1, 1, 2, 3}).

Statistics† Median Mean SD Median Mean SD

0 (Prevalence only, ai = 20)

Epidemic? 1.00 1.00 0.00

Nb2. waves 0.00 0.09 0.29

Peak time 42.00 63.50 51.53

Peak size 3,214.47 3,209.03 1,707.75

Time to curb∗ 44.00 65.36 52.80

Final size 0.98 0.91 0.13

A (ai = 20, bi = 50) 0 × A

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.00

Nb2. waves 0.00 0.19 0.39 0.00 0.15 0.35

Peak time 41.50 61.97 4941.50 62.62 50.18

Peak size 3,007.55 3,049.14 1,708.02 3,050.56 3,104.21 1,707.56

Time to curb∗ 43.50 63.38 50.56 43.50 64.58 51.38

Final size 0.96 0.90 0.14 0.97 0.91 0.14

B (ai = 20, ci = 150) 0 × B

Epidemic? 1.00 0.99 0.08 1.00 1.00 0.00

Nb2. waves 0.00 0.02 0.16 0.00 0.03 0.18

Peak time 47.00 65.77 52.28 44.75 64.39 52.05

Peak size 2,873.28 2,839.71 1,509.91 2,883.91 2,890.16 1,560.58

Time to curb* 47.00 68.27 53.39 46.00 67.52 53.10

Final size 1.00 0.94 0.12 0.99 0.92 0.13

C (ai = 20, di = 50) 0 × C

Epidemic? 1.00 1.00 0.03 1.00 1.00 0.00

Nb2. waves 0.00 0.13 0.35 0.00 0.13 0.33

Peak time 54.50 71.83 48.81 49.00 68.01 49.99

Peak size 2,757.37 2,747.60 1447.82 2,886.43 2,849.68 1,468.74

Time to curb∗ 51.50 66.96 54.78 50.00 69.96 51.20

Final size 0.97 0.91 0.13 0.97 0.91 0.13

D (ai = 20, ei = 10) 0 × D

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.00

Nb2. waves 0.00 0.13 0.34 0.00 0.12 0.33

Peak time 39.75 59.80 40.92 49.00 68.95 52.40

Peak size 3,391.18 3,126.29 1,525.01 2,776.41 2,805.00 1,507.89

Time to curb∗ 39.50 59.28 43.90 50.50 71.16 53.62

Final size 1.00 0.94 0.10 0.97 0.91 0.13

†The statistics are based on n = 3, 840 simulations across the values of model parameters in Table 1.
∗Time to curb the first epidemic wave Equation (11).

Italic (bold) figures indicate average values lower (larger) than the reference.

When the efficiency of prophylactic behavior is

between these two extremes (κ ∈ {0.75, 0.9}), secondary

epidemic waves (one or two) were observed in 4% of

these settings (Supplementary Figures S2, S3): with these

levels of protection by prophylactic behavior, disease

dynamic is already sensitive to behavioral changes,

especially when the baseline disease transmission rate

is β0 < 2, and the higher the probability of early

detection (π), the higher the number of secondary

epidemic waves.
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FIGURE 4

Number of new positive cases for homogeneous populations responsive to prevalence only (profile 0) or both prevalence and the rate of change of

new positives (profile D), and an heterogeneous population (half profile 0 and half profile D) with pro-prophylactic behavior (αi = 0.1), neutral (αi = 1),

or non-prophylactic behavior (αi = 2) in-group pressure. The dashed blue curve indicates for each row (each αi value) the average of the numbers of

new positive cases for profiles 0 and D. Disease-related parameters have their default (bold) values in Table 1.

4 Discussion

4.1 Main contributions

In this study, we introduce a new behavior-disease

compartmental model where risk perception is a function of

both perceived disease dynamic and an interpretation domain

(in-group pressure). That is, the risk information derived from

disease dynamics can include predicted incidence (as expressed by

the rate of change Q of new positive cases) in addition to historical

incidence (as expressed by the perceived prevalence P given the

disease surveillance system), and the actual risk perceived by an

individual can arise not only from disease dynamics but also from

the pro/non-prophylactic behavior of others in the individual’s

social group.

Under the social influence-based model which uses true disease

incidence as risk information, Tyson et al. [14] found that

populations more responsive to risk information can experience

more severe epidemics in terms of final size and undergo multiple

epidemic waves, although the epidemic peak sizes will be smaller.

We observe similar trends when matching increase in social

influence with increase in pro-prophylactic behavior in-group

pressure. Considering populations responsive to historical risk

information, our results regarding the number of epidemic waves

and the peak size are consistent with Tyson et al.’s [14] findings, i.e.,

a stronger reaction to perceived disease prevalence produces more

epidemic waves but smaller peak size. Indeed, a strong reaction to

prevalence results in transient prophylaxis that slows down and

stops disease progression (smaller peak) while many susceptible

individuals are still in the population. Low disease prevalence then

leads to relaxation of prophylactic behaviors and subsequently to a

new outbreak (multiple waves).

A new aspect of behavior-disease dynamic captured by our

model is the importance of response profiles. For instance, we

considered two kinds of populations, ones that are only responsive

to historical risk and ones that are additionally responsive to

predicted risk. For risk predicting populations, the epidemic

peak size does not monotonically decrease with increasing pro-

prophylactic in-group pressure (the epidemic peak size is smallest

when in-group behavior is neutral). In other words, in the context

of risk information overload [36], in particular, when disease

evolution curves are overly discussed on mass media and social

media, stronger social influence or in-group pressure can lead

to more severe epidemic outcome, at least as measured by the

epidemic peak size.

Our results also indicate that erratic disease evolution curves

can be explained by strong behavioral response to predicted disease

curves shown on mass media or in social media. For a population

paying attention to predicted risk information, a strong response

reduces the time scale of the chain of reactions that leads to

multiple epidemic waves, giving rise to very fast oscillations in

the observed disease incidence curve (see Figure 4), both as the

epidemic establishes (before peak) and as the epidemic is waning.

This risk-prediction feature also makes our model quite different

from others where each epidemic peak is necessarily followed by
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TABLE 4 Model fit results: variations of the number of secondary epidemic waves (Poisson model, log link), the peak size (gamma model, log link), and

the final epidemic size (one-inflated beta model, logit link) across response profiles.

Response Nb. secondary waves Peak size Final epidemic size

Term Coe�cient (SE) Coe�cient (SE) Coe�cient (SE)

(Intercept) –16.055 (0.362) 7.449 (0.012) 5.210 (0.027)

Profile 0 0 0 0

Profile 0× A 0.479 (0.068) –0.046 (0.007) –0.138 (0.015)

Profile A 0.734 (0.065) –0.071 (0.007) –0.196 (0.015)

Profile 0× B –1.013 (0.104) -0.113 (0.007) 0.175 (0.016)

Profile B –1.506 (0.127) –0.132 (0.007) 0.673 (0.016)

Profile 0× C 0.339 (0.070) –0.102 (0.007) –0.066 (0.015)

Profile C 0.399 (0.070) –0.141 (0.007) –0.080 (0.015)

Profile 0× D 0.318 (0.071) –0.133 (0.007) –0.045 (0.015)

Profile D 0.159 (0.073) –0.146 (0.007) –0.038 (0.015)

α−1 –1.233 (0.031) 0.194 (0.002) 0.408 (0.004)

1α –0.217 (0.017) 0.063 (0.002) 0.074 (0.004)

κ 15.524 (0.362) –0.541 (0.010) –3.332 (0.021)

τ –0.065 (0.007) 0.033 (0.001) 0.026 (0.002)

π 1.161 (0.092) –0.771 (0.009) –4.186 (0.021)

β0 0.012 (0.017)ns 0.571 (0.002) 1.525 (0.004)

GOF: χ2(df ) 7, 011.37 (34, 509)ns 4, 772.52 (34, 509)ns 2, 8501.19 (34, 507)ns

R2 (%) 63.59 72.46 99.69

SE, standard error.

Profiles 0 andA toD are defined as follows: 0 is the reference (hence coefficient is fixed to 0) corresponding to a population responsive to prevalence only (i.e., ai = 20, with bi = ci = di = ei = 0

for i = −1, 1), A corresponds to ai = 20, bi = 50, B corresponds to ai = 20, ci = 50, D corresponds to ai = 20, bi = 50, 0× A corresponds to half of the population is 0 and the other half is A;

1α = α1 − α−1 , α−1 , α1 , κ , τ , π , and β0 are model parameters defined in Table 1 with summary statistics given in Supplementary Table S1; ns indicates a non-significant test result at 5% level

(i.e., the probability to observe an effect size equal to or bigger than the observed effect by random chance only is >5%); GOF, Goodness-of-fit; df , number of residual degrees of freedom; χ2 is

the deviance statistic which is expected to be at most of the order of df if the assumed model is appropriate; R2 is the percentage of deviance from perfect fit explained by the included predictors

as compared to no predictor. The dispersion parameter of the gamma distribution for peak size is 0.1074. For the final epidemic size, the dispersion parameter of the beta distribution is 0.1982,

and the probability mass at one is 0.0045.

an almost disease-free interval before emergence of the following

peak [14, 57]. Because of this, which is rather frequent is real

epidemic data [50], our model requires a wave delimitation method

to identify epidemic waves. Also note that, unlike in Aziz-Alaoui et

al. [2], ourmodel targets a short-term dynamic, and epidemic waves

in our model framework are not related to immunity lost (no flow

from R back to Si in Figure 3) but fully generated by the behavioral

response to the outbreak.

Our model allows us to explore the impact of heterogeneity in

the behavioral response of a population to disease risk information.

In general, two-group heterogeneity in response profile (pro- vs.

contra-prophylactic behavior in-group pressure, or responsiveness

to predicted risk or not) leads to an intermediate epidemic outcome

as compared to the two sub-populations evolving separately.

One interesting finding is that under strong pro-prophylactic

in-group pressure, a population consisting of two same sized

sub-populations where only one group is exposed/responsive to

predicted risk information can experience a less severe epidemic

as measured by peak size.

Finally, we investigated the effect of delayed risk information

on the severity of an epidemic in our model framework. Our

simulation experiments indicate that delayed risk information

slows down the behavioral response to the progression of the

epidemic, contributing to a more severe epidemic outcome, i.e.,

larger peak and final size. For an individual with a 50% average

risk to get infected in a 1-day reporting delay context, the risk

to get infected becomes 54% if the reporting delay is 1 week (6

days increase). Although a 4% increase may appear small at an

individual level, it would represent 4,000 more infections, given

the population size in our simulations (community of 100,000

individuals). Similarly, for an epidemic that peaks to 1,500 new

detected cases (see, e.g., Figure 4) under a 1-day reporting delay

scenario, a reporting delay of 1 week would result into 50 additional

detected cases on the peak day. These simulated results are in

accordance with the work of Gutierrez et al. [47], who found

that the COVID-19 epidemic in Mexico progressed much faster

when delays are larger, resulting in more severe epidemic outcomes

(larger death peak size and cumulative death toll). A viable solution

for policymakers to reduce information delay-related increase in

epidemic severity is to use a nowcasting technique to adjust the

daily number of confirmed new cases for delayed reporting [48],

especially in populations reactive to predicted risk, since delayed
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FIGURE 5

Cumulative number of detected cases when the e�ciency of prophylactic behavior is medium: κ ∈ {0.5, 0.6}. The curves on (A) correspond to low

early detection probability (loose disease surveillance mechanism), (B) medium early detection probability, (C) high early detection probability, and

(D) very high early detection probability. For each probability of early detection of exposed individuals (π ), the rightmost gray curves correspond to

the lowest baseline disease transmission rate (β0 = 0.5) and the dark curves (leftmost) correspond to the largest transmission rate (β0 = 3). More or

less gray curves have intermediate transmission rates (β0 = 1, 2).

FIGURE 6

Cumulative number of detected cases when there are one or two secondary waves with (almost) perfect protection from prophylactic behavior:

κ ∈ {0.95, 1}. The curves on (A) correspond to low early detection probability (loose disease surveillance mechanism), (B) medium early detection

probability, (C) high early detection probability, and (D) very high early detection probability. For each probability of early detection of exposed

individuals (π ), the gray curves (rightmost) correspond to the lowest baseline transmission rate (β0 = 0.5) and the dark curves (leftmost) correspond

to the largest baseline transmission rate (β0 = 3).
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risk information creates an illusion of a downward trend. We must

remind the reader, however, that our primary interest is to do

a conceptual analysis and none of these results should be taken

literally without empirical validation.

4.2 Limitations

Although the proposed model framework is quite general for

coupling risk tolerance and disease dynamics, we have in our

presentation limited attention to populations with relatively simple

structures. In this section, we highlight and discuss the most

important assumptions that may strongly affect our conclusions,

and explore some potential routes to their relaxation. The

prophylactic proportion defined in Equation (6) makes the strong

assumption that risk information derived from in-group behavior

is of no use if there is no change in risk information aggregate.

However, in-group behavior can lead to change in prophylactic

behavior even if risk information is constant, i.e., people can change

behavior by inferring the need to engage (or the appropriateness of

disengaging) based on how many individuals are already (or are

still) behaving prophylactically, not because the risk has increased

or decreased but because there is extant risk and in-group pressure

has changed the risk perception.

Another strong assumption in Equation (6) is that the evolution

of prophylactic behavior does not depend on how long people have

already been engaging in prophylactic behavior, and how strong

their engagement was during that time. However, prophylactic

behavior is often subject to fatigue. Indeed, preventive behavior

fatigue during secondary epidemic waves of a disease has been

particularly well-documented since the COVID-19 pandemic

event [58–75]. Failing to account for prophylactic behavior fatigue

in behavior-disease model likely introduces bias in model outputs.

To account for the above two limitations of Equation (6), we

propose to extend Equation (5) describing change in the proportion

of prophylactic individuals in a susceptible group i as:

∂mi

∂t
=

[

mi
1−m

αi
i

αi

] [

∂ηi

∂t
+ ωiηi

]

(

1− fi
)

(12)

where ωi ≥ 0 is the weight of “indirectly perceived change

in risk” derived from in-group behavior (how informative in-

group behavior is about perceived risk) and fi ∈ [0, 1] represents

prophylactic fatigue in group i. It follows from Equation (12) that

Equation (6a) can be generalized as:

mi =
[

1+ exp
{

δi − ηi
(

1− fi
)

− ζi
}]−1/αi (13a)

with fi(t) = 1− exp
{

−ǫMi(t)
}

, and (13b)

ζi(t) =

∫ t

0
ηi(u)

[

ḟi(u)+ ωi

[

1− fi(u)
]

]

du (13c)

where we assumed that enthusiasm for prophylactic behavior

decays exponentially as experience under disease-related

restrictions increases, with ǫ ≥ 0 expressing the extent to

which prophylactic behavior is exhausting (ǫ = 0 means that there

is no prophylactic fatigue over time, fi = 0), and the variable Mi

quantifies how much effort the susceptible group i has invested in

prophylactic behavior since the epidemic outbreak:

Ṁi = log

(

m
αi
i

1−m
αi
i

)

− log

(

m
αi
i0

1−m
αi
i0

)

(13d)

andMi(0) = 0. Note from Equation (13a) that Ṁi can be rewritten

as Ṁi = ηi
(

1− fi
)

+ ζi. Equation (13a) is reduced to Equation (6a)

when ωi = 0 and fi(t) = 0. To solve system (9) with the

prophylactic proportion mi given by Equation (13), we can extend

the differential system Equation (9) with Equation (13d) for the

pseudo-state variable Mi, and an additional pseudo-state variable

ζi whose first derivative is given by the integrand in Equation (13c),

i.e., ζ̇i = ηi

[

ḟi + ωi

(

1− fi
)

]

, which simplifies to

ζ̇i = ηi
(

1− fi
) (

ǫṀi + ωi

)

. (14)

However, it appears that prophylactic fatigue, as introduced in

Equations (12–14), affects equally engagement and disengagement

in prophylactic behavior. A post-hoc but inelegant solution to that

issue is to modify Equation (12) to have the form in Equation (15):

∂mi

∂t
=

[

mi
1−m

αi
i

αi

] [

∂ηi

∂t
+ ωiηi

]

(

1− figi
)

(15)

where gi = 1 if ∂ηi/∂t ≥ 0, and 0 otherwise. We leave the

implementation and exploration of such speculations for future

work.

Another strong hypothesis of our SEIR framework is the well-

mixture assumption, i.e., for each time point, the probability of

interaction between two random individuals in the population

is uniformly distributed [76]. While a low standard individual

might tend to interact more with low standard individuals than

high standard individuals, for instance, our model assumes an

homogeneous mixture of low standard and high standard groups.

More generally, heterogeneity in a population goes beyond risk

tolerance groups, and may be related to other factors such

as geographical location [77], age [78], and behavioral risk

factors [79]. In particular, the mixture of individuals from various

geographical regions is generally non-uniform, and explains the

large disparities among different geographical locations in the

COVID-19 pandemic context [80]. Thus, to be realistic, our

model should be extended to include spatial components to

reveal or account for the contribution of the spatial structure of

individuals to an observed epidemic dynamic. This can be achieved

using, for instance, non-autonomous coupling functions between

adjacent areas [6], a diffusion process [81], an agent-based infection

graph [82], or a location network [83].

Finally, we point out to the possibility of an evolving pathogen,

as observed for the COVID-19 pandemic [84]. For a multi-

strain pathogen, a realistic epidemic model should account for

mutation process occurring during infection of individuals in the

population [85, 86]. As such a future direction for our study

is to consider many variants of a target disease and investigate

behavioral feedback loops as a pathogen strain dominates the

population and is then replaced by a new pathogen, appearing

through evolutionary process or interactions with adjacent

geographical regions.
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4.3 Conclusion

In this study, we assessed the impact of differential behavioral

response profile on epidemic outcomes. Our main contributions

for understanding feedback loops between transient prophylaxis

and disease dynamic include (i) the distinction of historical risk

from predicted risk information overly discussed on mass media

and social media, and (ii) the inclusion of an interpretation domain

where the collected risk information is subjected to in-group

pressure. It was known that the final size of an epidemic has a non-

monotonic relation with the behavioral response of a population to

risk information. Our results indicate that this non-monotonicity

extends to epidemic peak size as a measure of epidemic severity, in

populations under strong in-group pressure.

An obvious future direction is to assess the ability of this

model to predict disease dynamics, using real epidemic data

(from, e.g., the world health organization, https://covid19.who.int)

along with behavioral change data from surveys (e.g., adherence

to COVID-19 protective measures [87, 88]). The inclusion of

more than two social groups, based, for instance, on age or

spatial location may be integral parts for establishing some

predictive power of the model. However, our aim here was not

predictive, but rather to better understand how to represent

assumptions about heterogeneous risk tolerance and in-group

pressures, and then in turn study their potential effects on

disease dynamics.
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Predictors of changing patterns of adherence to containment measures during the
early stage of COVID-19 pandemic: an international longitudinal study.Global Health.
(2023) 19:25. doi: 10.1186/s12992-023-00928-7

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org136

https://doi.org/10.3389/fams.2024.1360001
https://doi.org/10.1098/rsif.2008.0271
https://doi.org/10.3390/math10091451
https://doi.org/10.1155/2021/6647425
https://doi.org/10.5206/mase/10745
https://doi.org/10.1371/journal.pone.0003955
https://doi.org/10.3934/math.2022311
https://doi.org/10.1007/s11538-021-00910-7
https://doi.org/10.1038/s41598-022-15444-8
https://doi.org/10.1371/journal.pcbi.1008639
https://doi.org/10.1073/pnas.1011250108
https://doi.org/10.1109/LCSYS.2022.3168260
https://doi.org/10.1016/j.chaos.2022.112030
https://doi.org/10.1038/s41598-021-92094-2
https://doi.org/10.1103/PhysRevE.104.024314
https://doi.org/10.1103/PhysRevResearch.2.023181
https://doi.org/10.18564/jasss.4868
https://doi.org/10.1016/j.socscimed.2021.113944
https://doi.org/10.3389/fpsyg.2021.643653
https://doi.org/10.1098/rsta.2021.0119
https://doi.org/10.1348/135910710X485826
https://doi.org/10.1371/journal.pmed.1003354
https://doi.org/10.1073/pnas.2015972118
https://doi.org/10.7554/eLife.68341
https://doi.org/10.1007/s40471-014-0032-2
https://doi.org/10.1109/TCNS.2022.3145748
https://doi.org/10.1109/CDC45484.2021.9683146
https://doi.org/10.1016/j.ifacol.2020.12.305
https://doi.org/10.1007/s40615-020-00942-0
https://doi.org/10.1109/ACCESS.2021.3113677
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1515/9781400829118
https://doi.org/10.1037//0022-3514.58.6.1015
https://doi.org/10.1098/rsif.2016.0820
https://doi.org/10.1016/j.rinp.2021.103956
https://doi.org/10.1007/s00285-008-0239-2
https://doi.org/10.1016/s0025-5564(02)00111-6
https://doi.org/10.1016/S0025-5564(02)00111-6
https://doi.org/10.1016/j.jdeveco.2021.102774
https://doi.org/10.3390/ijerph20043040
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1101/2022.01.07.21268513
https://www.R-project.org/
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.2307/2344614
https://doi.org/10.1007/s00362-008-0125-4
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1080/07350015.1996.10524648
https://doi.org/10.1016/j.jtbi.2009.04.029
https://doi.org/10.1186/s12992-023-00928-7
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tovissodé and Baumgaertner 10.3389/fams.2024.1360001

59. Lai DW, Jin J, Yan E, Lee VW. Predictors and moderators of COVID-
19 pandemic fatigue in Hong Kong. J Infect Public Health. (2023) 16:645–50.
doi: 10.1016/j.jiph.2023.03.003

60. Sulemana AS, Lal S, Nguyen TXT, Khan MSR, Kadoya Y. Pandemic fatigue in
Japan: factors affecting the declining COVID-19 preventive measures. Sustainability.
(2023) 15:6220. doi: 10.3390/su15076220

61. Kim JH, Kwok KO, Huang Z. Poon PKm, Hung KKC, Wong SYS, et al.
A longitudinal study of COVID-19 preventive behavior fatigue in Hong Kong:
a city with previous pandemic experience. BMC Public Health. (2023) 23:1–12.
doi: 10.1186/s12889-023-15257-y

62. Zhang N, Hu T, Shang S, Zhang S, Jia W, Chen J, et al. Local travel behaviour
under continuing COVID-19 waves-a proxy for pandemic fatigue? Transp Res
Interdiscip Persp. (2023) 18:100757. doi: 10.1016/j.trip.2023.100757

63. Rodriguez-Blazquez C, Romay-Barja M, Falcon M, Ayala A, Forjaz MJ, et al.
Psychometric properties of the COVID-19 pandemic fatigue scale: cross-sectional
online survey study. JMIR Public Health Surveill. (2022) 8:e34675. doi: 10.2196/34675

64. Brankston G, Merkley E, Loewen PJ, Avery BP, Carson CA, Dougherty BP, et
al. Pandemic fatigue or enduring precautionary behaviours? Canadians’ long-term
response to COVID-19 public health measures. Prev Med Rep. (2022) 30:101993.
doi: 10.1016/j.pmedr.2022.101993

65. Delussu F, Tizzoni M, Gauvin L. Evidence of pandemic fatigue associated
with stricter tiered COVID-19 restrictions. PLOS Digit Health. (2022) 1:e0000035.
doi: 10.1371/journal.pdig.0000035

66. Guan M, Li Y, Scoles JD, Zhu Y. COVID-19 message fatigue: how does
it predict preventive behavioral intentions and what types of information
are people tired of hearing about? Health Commun. (2023) 38:1631–40.
doi: 10.1080/10410236.2021.2023385

67. Du Z, Wang L, Shan S, Lam D, Tsang TK, Xiao J, et al. Pandemic fatigue impedes
mitigation of COVID-19 in Hong Kong. Proc Nat Acad Sci. (2022) 119:e2213313119.
doi: 10.1073/pnas.2213313119

68. Taylor S, Rachor GS, Asmundson GJ. Who develops pandemic
fatigue? Insights from latent class analysis. PLoS ONE. (2022) 17:e0276791.
doi: 10.1371/journal.pone.0276791

69. Haktanir A, Can N, Seki T, Kurnaz MF, Dilmaç B. Do we experience pandemic
fatigue? current state, predictors, and prevention. Curr Psychol. (2022) 41:7314–25.
doi: 10.1007/s12144-021-02397-w

70. Wright L, Steptoe A, Fancourt D. Trajectories of compliance with COVID-19
related guidelines: longitudinal analyses of 50,000 UK adults. Ann Behav Med. (2022)
56:781–90. doi: 10.1093/abm/kaac023

71. Petherick A, Goldszmidt R, Andrade EB, Furst R, Hale T, Pott A, et
al. A worldwide assessment of changes in adherence to COVID-19 protective
behaviours and hypothesized pandemic fatigue. Nat Hum Behav. (2021) 5:1145–60.
doi: 10.1038/s41562-021-01181-x

72. Morgul E, Bener A, Atak M, Akyel S, Aktaş S, Bhugra D, et al. COVID-19
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Corruption is a global problem that a�ects many countries by destroying

economic, social, and political development. Therefore, we have formulated

and analyzed a mathematical model to understand better control measures

that reduce corruption transmission with optimal control strategies. To verify

the validity of this model, we examined a model analysis showing that the

solution of the model is positive and bounded. The basic reproduction number

R0 was computed by using the next-generation matrix. The formulated model

was studied analytically and numerically in the context of corruption dynamics.

The stability analysis of the formulated model showed that the corruption-free

equilibrium is locally and globally asymptotically stable for R0 < 1, but the

corruption-endemic equilibrium is globally asymptotically stable for R0 > 1.

Furthermore, the optimal control strategy was expressed through the Pontryagin

Maximum Principle by incorporating two control variables. Finally, numerical

simulations for the optimal control model were performed using the Runge-

Kutta fourth order forward and backward methods. This study showed that

applying bothmass education and law enforcement is themost e�cient strategy

to reduce the spread of corruption.

KEYWORDS

mathematical model, basic reproduction number, Pontryagin maximum principle,

numerical simulation, optimal control strategy

1 Introduction

Corruption is an ancient and worldwide problem that destroys the economic

development associated with all companies and human associations [1]. Corruption is an

unlawful activity carried out for personal benefit, and the benefit of corruption is obtained

by misuse of power by public or private officeholders [2]. Corruption is considered one

of the frightening components for sustainable economic growth, moral values, and justice

because it disturbs social life and the rule of law [3, 4]. Corruption affects the development

of many countries around the world by reducing the national economy and the internal

peace and security [5, 6]. Corruption is the major cause of poverty around the world,

especially in Africa, and it hinders economic development, undermines democracy, and

damages social justice and the rule of law [7, 8]. In Ethiopia, corruption affects political

systems such as democratic power sharing, accountable and transparent institutions, and

procedures. Furthermore, it is one of the causes of instability and conflict as observed in

the present situations [9, 10].
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The spread of corruption can be understood just as it is

similar to the spread of diseases from one infected person to

another susceptible individual in society, which means a non-

corrupt individual gets infected with a high probability if the

number of corrupt individuals in the social neighborhood exceeds

a certain threshold value; in the case of mean field dependence, an

individual can get corrupted because there is a high prevalence in

society [10]. Introducing strong measures against the corruption

is a very difficult task, since the nature of corruption practices is

very secretive and illicit. However, within a society or country,

it is possible to educate people and change their attitude against

corruption [11]. However, it requires a thorough understanding of

corruption processes to develop intervention strategies to prevent

and mitigate corruption practices [12].

In epidemiology, mathematical modeling plays an important

role. It is an effective tool to understand and describe the dynamics

and transmission of infectious diseases [13]. Therefore, several

authors, including the study mentioned in the references [14–

19], have developed and analyzed mathematical models that

represent the approach of corruption dynamics as a disease

transmissionmodel to evaluate the effects of corruption on national

development. Furthermore, several researchers have developed

mathematical models to represent corruption dynamics following

the approaches adopted in epidemiology. Let us now review some

of such models here.

Hathroubi [20] explained the dynamics of corruption in a

closed population using the epidemiological SIR (Susceptible,

Infected and Removed) model. He has determined the threshold

for the transmission of corruption based on the size of the honest

population. However, he did not perform stability analyses of both

corruption-free and endemic equilibrium points.

Abdulrahman [11] proposed a deterministic mathematical

model with constant recruitment rates and standard incidence

rates for the transmission dynamics of corruption as a disease.

He extended the study by Hathroubi [20] and formulated a

non-linear mathematical model for describing the corruption

transmission. Furthermore, he divided the total population into

four compartments depending on their status of corruption:

Susceptible S(t), Corrupt C (t), Jailed J (t), and Honest H (t).

Employing the Jacobian matrix method and Lyapunov function

approach, he examined and analyzed the stability of both

corruption-free and endemic equilibrium points, respectively.

Numerical simulations were also carried out and confirmed

the analytical results. Additionally, these results revealed that

corruption can only be reduced to a manageable level but cannot

be completely eliminated.

Legesse and Shiferaw [10] proposed a mathematical model for

corruption by considering awareness created by anticorruption

and counseling in jail. They divided the total population into

four compartments, namely, Susceptible S(t), Corrupt C (t), Jailed

J (t), and Honest H (t) individuals and proved that the model

is both epidemiological and mathematically well-posed. In their

model, stability analyses of both corruption-free and endemic

equilibrium were carried out. In addition, the simulation result

shows agreement with the analytical result. However, they did

not design optimal control strategies to minimize the spread of

corruption. Alemneh [21] developed a mathematical model of

corruption dynamics by dividing the total population into five

compartments; such as Susceptible S(t), Exposed to corruption

E (t), Corrupt C (t), Recovered R (t), and Honest H (t) individuals.

He analyzed both the local and global asymptotic stability of the

corruption-free and endemic equilibrium. He extended the model

to optimal control and explored its numerical simulation. He also

suggested that an integrated control strategy should be taken to

combat corruption.

Despite many researchers conducting mathematical modeling

to control corruption transmission, this problem remains present.

The present study developed a mathematical model that represents

corruption dynamics by modifying the study conducted in

Alemneh [21] to understand better control measures of corruption.

This model is further extended to include optimal control strategy

with the following two time-dependent control measures: (i) mass

education of the susceptible individuals and (ii) law enforcement

on the corrupted individuals. Therefore, the study is organized as

follows. Section 2 explains the formulation and description of the

model that represents corruption dynamics. Section 3 represents

basic properties and model analysis including positivity, invariant

region, existence of equilibrium, and stability of the model. In

Section 4, the optimal control strategy is presented. In Section 5, the

numerical simulation of the model is also analyzed. The conclusion

is presented in Section 6.

2 Formulation and description of the
model

The present corruption dynamics model is a modification of

the existing model done by Alemneh [21] by dividing the total

population N (t) into six compartments based on their corruption

status. These are susceptible individuals S(t), exposed individuals

E (t) , corrupted individuals C(t), jailed individuals J(t), recovered

individuals R(t), and honest individuals H(t). Therefore, the total

population is given asN (t) = S(t)+E(t)+C(t)+R(t)+ J(t)+H(t)

and the six compartments are further described as follows:

(i) Susceptible individuals S (t): This compartment contains

individuals who have not been involved so far in any

type of corruption. In addition, it contains individuals who

are already involved in corruption activities but completed

the jail and thus became susceptible. People enter into

this compartment naturally by birth and from the jailed

compartment after finishing their jail term. However, some

of them can leave this compartment and move to exposed

and honest compartments.

(ii) Exposed individuals E (t): This compartment contains

individuals who are already exposed to corruption. Although

these people are already corrupted, they cannot influence or

convert any susceptible individual into corrupted. People will

enter from a susceptible compartment only. However, some

of them can leave this compartment and move to corrupted

and honest compartments.

(iii) Corrupted individuals C(t): These people are capable of

influencing or converting any susceptible individual to be

corrupted. In other words, these individuals can encourage
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and facilitate susceptible individuals to participate in

corruption activities. This compartment contains individuals

who are generated only from the exposed compartment.

However, some of them can leave this compartment and

move to jailed and recovered compartments.

(iv) Jailed individuals J (t): These are the people who were already

engaged in corruption activities and caught. As a result,

these people are imprisoned for a specified period of time,

and hence they are now in jail. People will enter into

this from corrupted and recovered compartments. Similarly,

after they finish their imprisonment period, people can

move either to the susceptible or honest compartment as

they wish.

(v) Recovered individuals R(t): These are the people who had

earlier participated in corruption activities but later left

voluntarily. However, these individuals will move to the

jailed compartment if they are proven to be involved

in corrupted activities. Otherwise, they will move to

the honest compartment.

(vi) Honest individuals H (t): These are the people who do

not participate in any corruptive activity and have no

negative impact on their country’s development. People in

susceptible, exposed, recovered, and jailed compartments can

enter this compartment.

We now describe the flow rates of individuals from one

compartment to the others as follows:

Flow of susceptible individuals S (t): Individuals are recruited

with a constant birth rate 5. Furthermore, after release from

jail, individuals will join susceptible individuals at a rate (1 −

ϕ)θ . Similarly, whenever susceptible individuals contact corrupted

people, they become exposed at a rate ρβ , while others can join the

honest compartment at a rate γ .

Flow of exposed individuals E (t): When influenced by

corrupted people, susceptible individuals will be exposed to

corruption and will enter this compartment at a rate of ρβ .

However, individuals of the exposed compartment will go to

the corrupt compartment at the rate of ωϕ and to the honest

compartment at a rate of (1− ω ) φ.

Flow of corrupted individuals C (t): Individuals from the

exposed compartment will move into the corruption compartment

at a rate of ωϕ. However, people will move out of the corrupted

compartment to the jailed compartment at a rate of τ and to the

recovered compartment at a rate of δ , respectively.

Flow of recovered individuals R (t): Upon leaving corruptive

activities, individuals in the corrupted compartment will move to

the recovery compartment at a rate of δ. However, they move to

jailed compartments at a rate of ηα and honest compartment at a

rate of (1−η)α, respectively. Finally, we assumed the natural death

rate µ in all compartments.

Depending on the assumptions and descriptions of the

parameters and variables, the flow diagram of the compartmental

model is shown in Figure 1.

Based on the flow diagram in Figure 1, we obtained the system

of non-linear ordinary differential equations that represent the

corruption dynamics as follows:



































dS
dt

= 5 + (1− ϕ) θ J − ρβCS− (γ + µ) S,
dE
dt

= ρβCS − (φ + µ)E,
dC
dt

= ωφE− (δ + τ + µ)C,
dR
dt

= δC − (α + µ)R,
dJ
dt

= τC + ηαR− (θ + µ) J,
dH
dt

= γ S+ (1− ω) ϕE+ (1− η) αR+ ϕθ J − µH,

(1)

With the following initial condition

S (0) > 0, E (0) ≥ 0, C (0) ≥ 0, R (0) ≥ 0,

J (0) ≥ 0, H (0) ≥ 0. (2)

Descriptions of the parameters in the model are presented in

Table 1.

Descriptions of the variables in the model are presented in

Table 2.

FIGURE 1

Compartmental flow diagram of corruption model.
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TABLE 1 Description of the parameters in the model.

Parameter Description

5 Positive recruitment rate of corruption-free individuals

µ The natural death rate of people in all compartments

ρ Probability of corruption transmission per contact

β The transmission rate of corruption

γ The rate at which susceptible individuals flow into the

honest compartment willingly

ω Proportion of individuals that joins the corrupt

compartment from the exposed compartment

φ The rate at which exposed individuals enter the corrupt

compartment

δ The rate at which corrupt individuals move to the

recovered compartment

τ The rate at which corrupt individuals are caught and

imprisoned.

α The rate at which recovered individuals join the jailed

compartment

η Proportion of individuals that join the jailed

subpopulation from the recovered compartment due to

corruption prosecution

ϕ Proportion of individuals that enter the honest

compartment willingly from jailed compartment

θ The average rate of a person stays in jail

TABLE 2 Description of the variables in the model.

Variables Description

S(t) Number of susceptible individuals

E(t) Number of exposed individuals

C(t) Number of corrupt individuals

R(t) Number of recovered individuals

J(t) Number of jailed individuals

H(t) Number of honest individuals

3 Model analysis

In this section, we investigate the positive solution of the system

(1), its boundedness, and positive invariance. In addition, the basic

reproduction number, the existence of equilibrium, and the stability

of the model are explored and analyzed.

3.1 Positivity solution of the model

Examining the positivity of the solution of dynamical systems

is an imaginary approach to ensure the non-negativity of the

solution [22]. This investigation has been carried out in several

works on mathematical and epidemiological modeling. Therefore,

to show that the presented model (1) is epidemiologically and

mathematically meaningful, we consider the state variables of the

model to be non-negative for all given time t > 0. Thus, we state

the following result.

Theorem 1 The initial population S (0) ≥ 0, E (0) ≥ 0, C (0) ≥

0, R (0) ≥ 0, J (0) ≥ 0 and H (0) ≥ 0 such that the solutions of the

system (1) S (t) , E (t) , C (t) , R (t) , J (t) , H(t) are non-negative for

all t ≥ 0.

Proof: Assume that all state variables are continuous. Then,

from the third equations system of (1) which is given as follows:

dC

dt
= ωφE− (δ + τ + µ )C,

dC

C
=

[

ωϕE

C
− (δ + τ + µ)

]

dt,

C (t) = A1 e

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
. Here, A1 is the

integral constant.

By using the initial condition of Equation (2) that is C (0) ≥ 0,

we obtain C (0) = A1 e

{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
}

t=0 . Eliminating the

integral constant A1 the particular solution is obtained as follows:

C (t) = C (0) e

{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt−
{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
}

t=0

}

By using the initial condition C (0) ≥ 0, every exponential

function is a positive quantity regardless of the sign of the exponent,

i.e., ex ≥ 0.

Hence,C (t) = C (0) e

{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt−
{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
}

t=0

}

≥ 0, thus we conclude that C (t) is positive.

Similarly, we have:

R (t) ≥ R (0) e−(α+µ)t ≥ 0,

J (t) ≥ J (0) e−(θ+µ)t ≥ 0,

S (t) ≥ S (0) e
{∫

[−(ρβC+γ+µ)] dt−{
∫

[−(ρβC+γ+µ)] dt}t=0

}

≥ 0,

E (t) ≥ E (0) e−(φ+µ)t ≥ 0,

H(t) ≥ H (0) e−µt ≥ 0.

(3)

Hence, from Equation (3) we concluded that the solutions

S (t) , E (t) , C (t) , R (t) , J (t), and H (t) of the system (1)

are positive for all t ≥ 0. This result is very essential because the

state variables denote human beings and cannot be represented by

negative values.

3.2 Invariant region

Furthermore, to show that the formulated corruption model is

mathematically and epidemiologically meaningful, we consider the

analysis of the system (1) in the feasible region � ⊆ R6+ such that

� =

{

(S, E, C, R, J, H) ∈ R6+ : 0 ≤ S+ E+ C

+ R+ J +H = N (t) ≤
5

µ

}

. (4)

Theorem 2 The feasible solutions of system (1) all entered and

bounded in the region �.

Proof: The invariance region Ω of Equation (4) is obtained by

adding all equations in system (1), and the simplified equation is

written as follows:

dN

dt
= 5 − µN. (5)
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By rearranging and multiplying both sides of Equation (5)

by integrating factors, and after some simplification, we obtained

the following:

N (t) =

(

5

µ

)

+

[

N (0) −

(

5

µ

)]

e−µt . (6)

From Equation (6), we find limt→∞ N(t) ≤ 5
µ
. This indicates

that the total population N (t) takes off from the initial value

N (0) at the beginning and ends up with the bounded value 5
µ

as

time tends to infinity. Thus, it can be concluded that N (t) is

bounded, i.e., 0 ≤ N (t) ≤ 5
µ
. Hence, the solution set of the system

(1) enters and remains in the feasible region �, where the model

is said to be mathematically and epidemiologically well-posed [23,

24].

3.3 The point of corruption-free
equilibrium of the model

To find the corruption-free equilibrium point P0 =

(S0, E0, C0, R0, J0, H0) in the model, we equate the right-hand

sides of the system of Equation (1) to zero and take the corruption-

free compartment E = C = 0. This yields R = 0 and J = 0.

Thus, the corruption-free equilibrium point of system (1) is written

as follows:

P0 =
(

5
(γ+µ)

0, 0, 0, 0, γ5
µ(γ+µ)

)

. (7)

3.4 Basic reproduction number

The basic reproductive number R0 is the average number of

new corrupts formed after the susceptible and corrupt population

contact each other [25–27]. Now, as explained in Theorem 2

in [26], we used the basic reproduction number to determine

the spread of corruption. Thus, for R0 < 1, the corruption

will not be able to spread in the population, but if R0 > 1,

corruption will be able to spread in the population, which allows

control measures of corruption. In the following result, we compute

the basic reproduction number using the next-generation matrix

technique described by the study mentioned in the reference [28].

In particular, using the notation in the study mentioned in the

reference [28], the Jacobian matrix of the new infection terms (F),

and the transfer terms (V), we compute the basic reproduction

number. Thus, the matrix of new corrupt terms and transition

terms is obtained from the corrupt compartments (i.e., E, C, R, and

J) at corruption-free equilibrium and given as follows:

dE
dt

= ρβCS − (φ + µ)E,
dC
dt

= ωφE− (δ + τ + µ)C,
dR
dt

= δC − (α + µ)R,
dJ
dt

= τC + ηαR− (θ + µ) J.

(8)

From system Equation (8), we obtained the general transition

matrix fi and the transmission matrix V i as follows:

fi =











ρβCS

0

0

0











, and Vi =















(φ + µ)E

(δ + τ + µ)C − ωφE

(α + µ)R− δC

(θ + µ) J − τC − ηαR















,

Where thematrix V i (x) is defined as V i (x) = V
−
i (x)−V

+
i (x)

with V
−
i (x) =











(φ + µ)E

(δ + τ + µ)C

(α + µ)R

(θ + µ) J











, V
+
i (x) =















0

ωϕEJ

δC

τC + ηαR















,

The Jacobian matrices at the corruption-free equilibrium point

(P0) yield the matrices F and V , respectively, where

F =

[

∂fc

∂xj
(P0)

]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ρβ5
(γ+µ)

0 0

0 0 0 0

0 0 0 0

0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

V =

[

∂Vc

∂xj
(P0)

]

=















(φ + µ) 0 0 0

−ωφ (δ + τ + µ) 0 0

0 −δ (α + µ) 0

0 −τ −ηα (θ + µ)















,

FV−1 =















ρβ5ωφ

(δ+τ+µ)(γ+µ )(φ+µ)
ρβ5

(γ+µ )(δ+τ+µ)
0 0

0 0 0 0

0 0 0 0

0 0 0 0















,

Thus, the basic reproduction number R0 of the corruption

model is the largest eigenvalue of the next generation

matrix. Therefore,

R0 =
ρβ5ωφ

(δ + τ + µ) (γ + µ )(φ + µ)
. (9)

3.5 Stability of corruption-free equilibrium
point

Theorem 3 The corruption-free equilibrium point (P0) of the

system (1) is locally asymptotically stable in � if R0 < 1.

Proof: We used the Jacobian stability techniques on system (1)

to determine the corruption-free equilibrium point (P0) as follows:

J (P0)

=



















−(γ + µ) 0 −
ρβ5

(γ+µ)
0 (1− ϕ) θ 0

0 −(φ + µ) ρβ5

(γ+µ)
0 0 0

0 ωϕ − (δ + τ + µ) 0 0 0

0 0 δ −(α + µ) 0 0

0 0 τ ηα − (θ + µ) 0

γ (1− ω) φ 0 (1− η)α ϕθ −µ



















. (10)
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From the Jacobian matrix of system Equation (10), we obtained

the characteristic polynomial equation of the following form:

(−µ − λ) (− (γ + µ) − λ) (− (θ + µ) − λ) (− (α + µ) − λ)
[

λ2 + k1λ + k2
]

= 0. (11)

where

k1 = φ + δ + τ + 2µ,

k2 = (δ + τ + µ) (φ + µ) −
ρβ5ωϕ
(γ+µ)

.
(12)

Hence, from Equation (11), we have eigenvalues,

λ1 = −µ < 0, λ2 = − (γ + µ) < 0,

λ3 = − (θ + µ) < 0, λ4 = − (α + µ) < 0. (13)

The two lasting eigenvalues are solutions of the quadratic

equation λ2 + k1λ + k2 = 0. After substituting the value of k1
and k2 from the system of Equation (12), we obtain the following:

λ2 + (φ + δ + τ + 2µ) λ + (δ + τ + µ) (φ + µ)

−
ρβ5ωϕ
(γ+µ)

= 0. (14)

Using the Routh–Hurwitz criterion principle [29],

Equation (14) has negative real eigenvalues if and only if

k1 > 0, and k2 > 0. As we observe, k1 = (φ + δ + τ + 2µ) >

0 because it is the sum of positive parameters in the model. In

addition, the value of k2 is explained as follows:

k2 = (δ + τ + µ) (φ + µ) −
ρβ5ωϕ

(γ + µ)

= (δ + τ + µ) (φ + µ) (1− R0) . (15)

From Equation (15), the value of k2 > 0 if and only if R0 < 1

and hence, all the determinants of the eigenvalues of Equation (11)

will have negative real eigenvalues. Therefore, the corruption-free

equilibrium point (P0) is locally asymptotically stable if R0 < 1.

The epidemiological implication of Theorem 3 is that corruption

can be reduced in the population based on the initial sizes of

the sub-populations.

Theorem 4 The corruption-free equilibrium point (P0) of the

system (1) is globally asymptotically stable in � if R0 < 1.

Proof : Let us consider the following Lyapunov function for the

model (1)

F = r1E+ r2C. (16)

Differentiating the Lyapunov function of Equation (16) with

respect to time t, we have:

dF

dt
= r1

dE

dt
+ r2

dC

dt
. (17)

By substituting the value of dE
dt

and dC
dt

from the system of

Equation (1) into Equation (17), we obtain the following:

dF

dt
= r1

[

(ρβ5CS − (φ + µ)E
]

+ r2
[

(ωφE− (δ + τ + µ)C
]

,

= r1(ρβ5CS − r2 (δ + τ + µ)C − r1(φ + µ)E+ r2ωϕE,

=
ωϕ

(φ + µ)
(ρβ5CS− (δ + τ + µ)C.

By taking the value of r1 =
ωϕ

(φ+µ)
r2 and r2 = 1, since S ≤ S0

we get the following:

dF

dt
≤

[

ρβ5ωϕ

(φ + µ) (γ + µ)
− (δ + τ + µ)

]

C,

=

[(

ρβ5ωϕ

(δ + τ + µ) (φ + µ) (γ + µ)
− 1

)

(δ + τ + µ)

]

C,

= [(R0 − 1) (δ + τ + µ)]C. (18)

Hence, from Equation (18) we obtained dF
dt

< 0 for R0 < 1 and
dF
dt

= 0 when C = 0. Therefore, using LaSalle [30], corruption-free

equilibrium point is globally asymptotically stable for R0 < 1.

3.6 Corruption endemic equilibrium point

The corruption endemic equilibrium (P1) is the existence

of corruption in a population and denoted by (P1) =

(S∗, E∗, C∗, R∗, J∗, H∗). It is obtained by setting the system of

Equation (1) to zero as explained in the study mentioned in the

reference [31].

dS

dt
=

dE

dt
=

dC

dt
=

dR

dt
=

dJ

dt
=

dH

dt
= 0. (19)

Hence, the corruption-existent equilibrium point was derived

as follows:































S∗ =
5+(1−ϕ)θ J∗

ρβC∗+(γ+µ)
,

E∗ =
ρβC∗S∗

(φ+µ)
,

R∗ = δC∗

(α+µ)
,

J∗ =
δC∗+ηαR∗

(θ+µ)
,

H∗ =
γ S∗+(1−ω)φE∗+(1−η)αR∗+ϕθ J∗

µ
.

(20)

After some simplification of Equation (20), the value of C∗ was

obtained from the equation three of system (1) as follows:

C∗ =
k1(R0 − 1)

ρβ
(

k2 + k3
) . (21)

where

k1 = (θ + µ) (α + µ) (δ + τ + µ) (φ + µ) (γ + µ) ,

k2 = (θ + µ) (α + µ) (δ + τ + µ) (φ + µ) ,

k3 = (ωθτα + ωθτµ + ωθηαδ) (1− φ) .

Recalling that all the parameters of the model are positive.

Hence, if R0 > 1, from Equation (21), we obtain the value of

C∗ =
k1(R0−1)

ρβ(k2+k3)
> 0. This indicates the existence of corruption

in the entire population and the presence of corruption-endemic

equilibrium point.

3.7 Stability of corruption-endemic
equilibrium point

Theorem 5 The corruption endemic equilibrium point (P1) of

the system (1) is globally asymptotically stable in � if R0 > 1.
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Proof: We used the following Lyapunov function as explained

in the study mentioned in the reference [32, 33], to prove the global

stability of the endemic equilibrium point.

L =
1

2
[B1 + B2 + B3 + B4 + B5 + B6]

2 . (22)

where

B1 =
(

S− S∗
)

, B2 =
(

E− E∗
)

,

B3 =
(

C − C∗
)

, B4 =
(

R− R∗
)

,

B5 =
(

J − J∗
)

, B6 =
(

H −H∗
)

.

By differentiating Equation (22) with respect to time (t), we
obtain the following result:

dL

dt
=

(

[(S− S∗) + (E− E∗) + (C − C∗) + (R− R∗) + (J − J∗) + (H −H∗)]
[

dS
dt

+ dE
dt

+ dC
dt

+ dR
dt

+ dJ
dt

+ dH
dt

]

)

,

dL

dt
=
[(

S− S
∗∗
)

+
(

E− E
∗∗
)

+
(

C − C
∗∗
)

+
(

R− R
∗∗
)

+
(

J − J
∗∗
)

+
(

H −H∗
)

] dN

dt
.

(23)

By substituting Equation (4) into Equation (23) and

simplifying, we get the following expression:

dL
dt

= [(S+ E+ C + R+ J +H)

− (S∗ + E∗ + C∗ + R∗ + J∗ +H∗)] [5 − µN ] .

dL
dt

≤
[

N − 5
µ

]

[5 − µN] . (24)

By simplifying Equation (24), we achieve the following result:

dL

dt
≤ −

1

µ
[5 − µN]2 . (25)

Thus, Equation (25) shows that dL
dt

< 0 and also dL
dt

= 0, if

and only if S = S∗, E = E∗, C = C∗, R = R∗, J = J∗, and

H = H∗. Then, the largest invariant set of the system (1) on the set

(S, E, C, R, J, H) ∈ � ⊂ R6+ :
dL
dt

≤ 0 is the endemic equilibrium

point. Using the LaSalle invariance principle [30], we indicated

that the endemic equilibrium point (P1) is globally asymptotically

stable in � if R0 > 1. The epidemiological implication of Theorem

5 is that corruption will continue to spread in the population.

4 Optimal control strategy analysis

An optimal control strategy is another powerful mathematical

tool widely used in applications that make decisions involving

complex situations [34, 35]. Hence, we use an optimal control

strategy to reduce the transmission of corruption and the costs

associated with control strategies. In this case, the two control

variables were added to system (1) to minimize the spread

of corruption.

The first control variable u1(t) represents the corruption

prevention mechanism (mass education). The second control

variable u2(t) represents the effort rate to reduce the spread

of corruption by implementing law enforcement on corrupted

individuals. Adding the two control strategies to the system (1), the

optimal control model is given by the following non-linear ordinary

differential equations:



































dS
dt

= 5 + (1− ϕ) θ J − (1− u1) ρβCS− (γ + µ) S,
dE
dt

= (1− u1) ρβCS − (φ + µ)E,
dC
dt

= ωφE− (δ + τ + µ + u2)C,
dR
dt

= δC − (α + µ)R,
dJ
dt

= (τ + u2)C + ηαR− (θ + µ) J,
dH
dt

= γ S+ (1− ω) ϕE+ (1− η) αR+ ϕθ J − µH.

(26)

With the following initial condition,

S (0) ≥ 0, E (0) ≥ 0, C (0) ≥ 0, R (0) ≥ 0, J (0) ≥ 0, H (0) ≥ 0.

(27)

The objective of using optimal control strategies is to find the

values of u+ =
(

u1
+, u2

+
)

of the control u = (u1, u2), which are

bounded between 0 and 1 , such that the associated state trajectories

S, E, C, R, J, and H are solutions of the system (26) in the fixed

period of time [0, tf ].

Our cost functional considers the number of exposed

individuals, the number of corrupted individuals, and the

implementation cost of strategies related to the controls ui, i =

1, 2. Hence, we intend to examine the optimal control strategy that

minimizes the following objective function:

F (u1, u2) = min
u1 ,u2

∫ tf

0

(

a1E+ a2C +
1

2

[

b1u1
2 + b2u2

2
]

)

. (28)

where constants a1, a2, b1, and b2 are positive. The coefficients

a1 and a2 represent the cost weight for exposed and corrupted

individuals, respectively. The coefficients b1 and b2 represent the

relative cost weights associated with control variables u1 and u2,

respectively [36, 37]. tf , represent the final time. Thus, to find the

optimal control functions u1
+ and u2

+, we use the following:

F
(

u1
+, u2

+
)

= min
(u1 ,u2)∈8

F
(

u1(t), u2(t)
)

. (29)

where the set of admissible controls functions 8 is defined

as follows:

8 =
{

(u1, u2) : 0 ≤ ui (t) ≤ 1, i = 1, 2, ui

(t) are Lebesgue measurable on
[

0, tf
]}

. (30)

4.1 Existence of an optimal control function

In this section, we show the existence of optimal control

functions that minimize the cost function over a fixed period

of time. Hence, we obtain the existence of optimal control

using the result of the study mentioned in the reference [38,

39]. The following result guarantees the existence of optimal

control functions.

Theorem 6 There exist optimal control functions u+ =
(

u1
+, u2

+
)

in 8 such that

F
(

u1
+, u2

+
)

= min
(u1 ,u2)∈8

F
(

u1(t), u2(t)
)

. (31)
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Subject to the optimal control model of the system (26) and the initial

condition of Equation (27).

Proof: All the state variables involved in the model are

continuously differentiable. Therefore, we need to verify the

following four conditions given in the study mentioned in the

reference [38, 39].

(i) The set of controls and the corresponding solution to the

system (26) and (27) are non-empty.

(ii) The admissible control set 8 is convex and closed.

(iii) The state system is bounded by a linear function in the control

variables and state variables.

(iv) The integrand I of Equation (28) is convex on 8 and

I(S, E, C, R, J, H, u) ≥ h(u), where h is continuous and

‖u‖−1
h (u) → +∞ as ||u|| → ∞.

To prove condition (i), consider that all the state variables

S, E, C, R, J, H ∈ C′
(

R+, R+
)

and the total human population

are defined as follows:

N (t) = S (t) + E (t) + C (t) + R (t) + J (t) +H (t) (32)

Substitute the governing system (26) into Equation (32) and

after some simplification, we obtain the following:

dN

dt
= 5 − µN. (33)

From Equation (33), we obtain limt→∞ N(t) ≤ 5
µ
.

From this, it follows that the solutions of the state system

are continuous and bounded for each admissible control function

in 8. Therefore, the initial value problem (26) and (27) has a

unique solution corresponding to each admissible control function

8 [40, 41].

To prove conditions (ii), consider the admissible control set

8 =
{

u ∈ R2 : ‖u‖ ≤ 1− ε
}

.

Let u1, u2 ∈ 8, such that ‖u1 ‖ ≤ 1 − ε and ‖u2 ‖ ≤

1 − ε. Then, for any η ǫ [0, 1 ], ‖ηu1 + (1− η) u2 ‖ ≤ η ‖u1 ‖ +

(1− η) ‖u2 ‖ ≤ 1 − ε. This indicates that admissible control set

8 is convex and closed. The condition (iii) is explicitly verified

using the algorithm as proved in Theorem 1.1 of [42]. The

integrand of objective function Equation (28) a1E(t) + a2C(t) +
1
2

[

b1u1
2 + b2u1

2
]

is clearly convex on 8. Moreover,

I (S, E, C, R, J, H, u) = a1E (t) + a2C (t) +
1

2

[

b1u1
2 + b2u1

2
]

≥
1

2

[

b1u1
2 + b2u1

2
]

. (34)

Let ρ = min
(

b1
2 ,

b2
2

)

> 0 and define a continuous

function h (u) = ρ ‖u‖2. Then, from the Equation (34), we

have I (S, E, C, R, J, H, u) ≥ h (u) and ‖u‖−1
h (u) →

+∞ as ||u|| → ∞. Hence, condition (iv) is satisfied. Therefore,

the existence of an optimal control pair satisfies the theorem.

4.2 Description of optimal control function

In this section, we solve the optimal control problem that

satisfies the necessary conditions by using the Pontryagin

maximum principle. Based on the objective function Equation (28)

and the optimal control model (26), we establish the Hamiltonian

function Q with respect to control variables u1(t) and

u2 (t) as follows:

Q = a1E+ a2C + 1
2

[

b1u1
2 + b2u2

2
]

+π1 [5 + (1− ϕ) θ J − (1− u1) ρβCS− (γ + µ) S]

+π2 [(1− u1) ρβCS − (φ + µ)E ]

+π3 [ωφE− (δ + τ + µ + u2)C]

+π4

[

δC − (α + µ)R
]

+π5 [(τ + u2)C + ηαR− (θ + µ) J]

+π6 [γ S+ (1− ω) ϕE+ (1− η) αR+ ϕθ J − µH] .

(35)

where π1, π2, . . . , π6 are the adjoint functions which are

determined using Pontryagin’s minimum principle [37], with the

evidence of [38], we state the theorem as follows:

Theorem 7 Let us consider the optimal control u+ =
(

u1
+, u2

+
)

and the unique solution of
(

S, E, C, R, J, and H
)

from the system (26) corresponding to the state equation that

minimizes u = (u1, u2) over 8. Then, there exist adjoint function,

π1, π2, . . . , π6 satisfying the following established equations:

dπ1
dt

= π1 [(1− u1) ρβC + (γ + µ)]− π2 (1− u1) ρβC − π6γ ,
dπ2
dt

= −a1 + π2 (φ + µ) − π3ωφ − π6 (1− ω) φ,
dπ3
dt

= −a2 + π1 (1− u1) ρβS− π2 (1− u1) ρβS

+π3 (δ + τ + µ + u2) − π4δ − π5 (τ + u2) ,
dπ4
dt

= π4 (α + µ) − π5ηα − π6 (1− η) α,
dπ5
dt

= −π1 (1− ϕ) θ + π5 (θ + µ) − π6ϕθ ,
dπ6
dt

= π6µ.

(36)

With transversality condition

π1(tf ) = π2(tf ) = π3(tf ) = π4(tf ) = π5(tf ) = π6(tf ) = 0. (37)

TABLE 3 Standard values for parameter of the system (1).

Parameter Standard value Source

5 500 Assumed

β 0.0234 [10]

ρ 0.036 [11]

µ 0.016 [10]

γ 0.000001 [11]

ω 0.3 [18]

φ 0.02 [10]

δ 0.007 [18]

τ 0.000001 [11]

α 0.0001 [12]

η 0.03 [18]

ϕ 0.04 Assumed

θ 0.143 [11]
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Moreover, for t ∈
[

0, tf
]

, the optimal controls u1
+ and u2

+ are

given as follows:

u1
+ = min

{

1,max
(

0, (π2−π1)ρβCS
b1

)}

,

u2
+ = min

{

1,max
(

0, (π3−π5)C
b2

)}

,
(38)

Proof: The co-state equations can be computed by the

Pontryagin maximum principle, which is given in the study

mentioned in the reference [38]. By differentiating the Hamiltonian

Equation (35), with S, E, C, R, J , andH respectively, we obtain the

adjoint system as follows:

dπ1
dt

= −
∂Q

∂S(t) = π1 [(1− u1) ρβC + (γ + µ)]− π2 (1− u1)

ρβC − π6γ ,
dπ2
dt

= −
∂Q

∂E(t) = −a1 + π2 (φ + µ) − π3ωφ − π6 (1− ω) φ,
dπ3
dt

= −
∂Q

∂C(t) = −a2 + π1 (1− u1) ρβS− π2 (1− u1) ρβS

+π3 (δ + τ + µ + u2) − π4δ − π5 (τ + u2) ,
dπ4
dt

= −
∂Q

∂R(t) = π4 (α + µ) − π5ηα − π6 (1− η) α,
dπ5
dt

= −
∂Q

∂J(t) = −π1 (1− ϕ) θ + π5 (θ + µ) − π6ϕθ ,
dπ6
dt

= −
∂Q

∂H(t) = π6µ .

(39)

With transversality condition

π1

(

tf
)

= π2

(

tf
)

= π3

(

tf
)

= π4

(

tf
)

= π5

(

tf
)

= π6

(

tf
)

= 0.

(40)

Furthermore, using the optimality condition, we can find the

value of optimal control functions u1
+ and u2

+ for t ∈
[

0, tf
]

,

∂Q
∂u1

= 0, at u1 = u1
+,

∂Q
∂u1

=
∂Q

∂u1+
= b1u1 + π1ρβCS− π2ρβCS = 0,

u1
+ =

(π2−π1)ρβCS
b1

.

∂Q
∂u2

= 0, at u2 = u2
+,

∂Q
∂u2

=
∂Q

∂u2+
= b2u2 − π3C + π5C = 0,

u2
+ =

(π3−π5)C
b2

.

(41)

Moreover, by using the boundary condition and simplifying the

solution of Equation (41), we obtain the following optimal controls:

u1
+ = min

{

1, max
(

0, (π2−π1)ρβCS
b1

)}

,

u2
+ = min

{

1, max
(

0, (π3−π5)C
b2

)}

,
(42)

Hence, the optimal control function is described, and we can

use the simulation of an optimality system to determine the best

strategies that minimize corruption dynamics.

5 Numerical simulations of the model

In this section, we used the forward–backward sweep to solve

the state and adjoint systems in order to obtain the optimal strategy.

Therefore, to solve the state Equations (26) due to the initial value

of the state variables, we used the forward fourth-order Runge–

Kutta method.

Similarly, to solve the adjoint equations, we used the backward

fourth-order Runge–Kutta method due to the transversality

condition Equation (37) having the solution of state functions and

the value of optimal controls. The initial conditions that we used

for the numerical simulation of the optimality system are S (0) =

50, 000, E (0) = 200, C (0) = 500, R (0) = 100, J (0) =

50, and H (0) = 100, as well as the weight constant values for

the states and controls variables are a1 = 60, a2 = 80, b1 =

60, and b1 = 40. The standard parameter values of the model are

displayed in Table 3, as follows.

Therefore, we consider the following three strategies to

determine the impact of each control on corruption reduction.

5.1 Strategy (i): strategy with only mass
education (u1) as prevention measure

Here, to optimize the objective function of the system (26), we

used only mass education (u1) on susceptible individuals while the

control strategy (u2) is not applied. As shown in Figure 2A, the

number of exposed individuals decreases and then is constant over

a fixed period of time. This indicates that the number of exposed

population increases if there are no control strategies. Similarly,

as shown in Figure 2B, we observe that the number of corrupt

population decreases as the control strategy is used over a fixed

period of time. In another way, the number of populations that

participate in corruption activity increases if there are no control

strategies. Therefore, we conclude that the mass education strategy

plays an important role in the prevention of corruption activity.

5.2 Strategy (ii): strategy with only law
enforcement (u2) as reduction measure

Here, we use only the law enforcement (u2) strategy on

corrupted individuals in order to optimize the objective function

of the system (26), while the control strategy (u1) is equal to zero.

We observe in Figure 3A that due to the law enforcement control

strategy, the number of exposed individuals slowly decreased.

However, as shown in Figure 3B, we observed that the number of

corrupt population decreases significantly as the law enforcement

control strategy is used. Therefore, we conclude that the law

enforcement control strategy decreases both the number of exposed

and corrupted populations. However, the number of corrupt

populations spreads rapidly if the law enforcement control strategy

is not applied.

5.3 Strategy (iii): Using both mass education
(u1) and law enforcement (u2) control
strategy

In this strategy, we use the combination of mass education

(u1) and law enforcement (u2) control strategy on susceptible and

corrupted individuals, respectively, that can optimize the objective

function of the system of the study mentioned in the reference [26].

We observe in Figure 4A that the number of exposed individuals

decreases significantly if we apply the control strategies, whereas

if not, the number of exposed populations increases. Similarly,
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A B

FIGURE 2

The e�ect of using only the mass education control strategy (u1 6= 0).

A B

FIGURE 3

The e�ect of using only the law enforcement control strategy (u2 6= 0) .

as shown in Figure 4B we show that the number of corrupted

populations decreases significantly as control strategies are used,

while the number of corrupted populations increases if there is

no control strategy. Therefore, we conclude that applying both

mass education and law enforcement strategies against corruption

decreases both the number of exposed and corrupted populations

in a given fixed period of time. This increases the number of jailed

population, as shown in Figure 4C.

6 Result, discussion, and conclusion

In this study, we develop a deterministic mathematical model

for the transmission of corruption dynamics to study the effect

of corruption in the population based on the corrupt status. To

show that the formulated corruption model is mathematically

and epidemiologically meaningful, we conducted a qualitative

analysis of the model by showing that the solution of the model

is positive and bounded. The basic reproduction number was

calculated using the next-generation matrix method. The stability

of the corruption-free and endemic equilibrium for the corruption

dynamics model was analyzed in terms of the reproduction

number. The analysis shows that for R0 < 1, the corruption-

free equilibrium point is asymptotically stable both locally and

globally. It means that if the average number of new corrupted

individuals generated by a single corrupted individual introduced

into a susceptible population under any condition is less than

one, the corruption will be minimized from the population.

On the other hand, for whatever conditions if R0 > 1, the

corruption endemic equilibrium point is both locally and globally

asymptotically stable. It means that corruption will increase in

the population.

Furthermore, we extended the model to an optimal control

strategy by incorporating two control variables, such as mass

education and law enforcement. The necessary conditions for

optimal controls such as existence and characterization were

investigated with the help of Pontryagin’s Maximum Principle.

Finally, we have examined the numerical simulations of the

optimal control model by considering individually and combining

the control variables. Based on the results of the numerical

analysis, we propose that using both mass education and law

enforcement against corruption is the best strategy to minimize

the number of exposed and corrupted populations. Therefore,

anticorruption institutions and policymakers can use this finding

as a good effort to reduce the corruption spread in the population.

A significant and interesting aspect of the future study is to

implement parameter estimation and cost-effectiveness analysis in

the corruption dynamics model.
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A

C

B

FIGURE 4

The e�ect of using both mass education (u1 6= 0) and law enforcement (u2 6= 0) strategies on the state variables.
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Tuberculosis and COVID-19 co-infection is currently the major issue of public

health in many nations, including Ghana. Therefore, to explore the e�ects of the

two Tuberculosis strains on COVID-19, we suggest a Tuberculosis and COVID-19

co-infection model. The study also provides the most economical and e�ective

control methods to reduce the co-infection of tuberculosis and COVID-19.

Based on the behavioral patterns of the two Tuberculosis strains and COVID-

19 reproduction numbers, the stability of the co-infection model is examined.

We explore the sensitivity of the parameters to examine the e�ect of the drug-

resistant and drug-sensitive strain of Tuberculosis on the co-infection of COVID-

19. We determine the most cost-e�ective and optimal treatment strategies that

aim to maximize outcomes while minimizing tuberculosis and/or COVID-19

incidences, cost-e�ectiveness, and optimization approaches. The outcomes of

this work contribute to a better understanding of Tuberculosis and COVID-19

epidemiology and provide insights into implementing interventions needed to

minimize Tuberculosis and COVID-19 burden in similar settings worldwide.

KEYWORDS

tuberculosis (TB), COVID-19, co-infection, optimal control, cost-e�ectiveness

Introduction

Over time, tuberculosis (TB) has emerged as a major public health concern due to its

spread, particularly in developing nations. This is because tuberculosis is endemic in these

nations, where drug-resistant tuberculosis, poverty, and insufficient diagnostic techniques

are some of the factors that make the disease more difficult to treat [1]. World Health

Organization (WHO) health statistics from [2] account that ∼1.4 million deaths were

attributed to tuberculosis (TB) out of the 10.4 million cases reported globally in 2015 [3].

This indicates that tuberculosis (TB) affects about one-third of the world’s population each

year, which makes it one of the top 10 leading causes of death worldwide.

Due to vaccine inefficacy, chemotherapy has been the cornerstone of apparent control

programs for TB. Antibiotic treatment for drug-resistant strains of TB patients is much

more expensive and takes time compared with drug-sensitive strains of TB patients.

Antibiotic-resistant tuberculosis (TB), which increases the risk of relapse and can arise
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from medication treatment non-compliance, is seriously harming

public health and has become a societal problem [4, 5].

Conversely, COVID-19 caused over 6 million deaths globally,

and approximately, by March 2022, 480 million incidences were

reported. Presently, there is growing evidence that patients with

drug-sensitive TB and drug-resistant TB disease are more likely

to develop a severe case of COVID-19, as reported in [6]. Even

in cases where the force of reinfection is relatively weak, the

COVID-19 reinfection scenario using the SIR model demonstrates

that transmission could arise as a result of the immunity waning

[7]. A COVID-19 model, which involves infection via items

induced with SARS-CoV-2, is proposed to be made public aware

[8]. The disease COVID-19 spreads swiftly, sparking a pandemic

and posing a threat to world health. Other sectors, particularly

the socioeconomic sector, have been significantly impacted by

the pandemic [9]. According to the World Meter, as of 30

April 2022, there were 6,257,512 COVID-19 fatalities worldwide

and 512,466,045 reported incidences. The results emphasize the

necessity of taking steps to minimize the transmission of COVID-

19 and TB. One way mathematics is essential to simulating the

disease’s epidemic phenomenon is by using a deterministic model

to study the disease’s transmission. Numerous developments have

been made in analyzing the COVID-19 model with declining

immunity. The natural immunity period is for the latter group, and

models with symptomatic and asymptomatic infected populations

show that the vaccine efficacy level determines when to begin the

massive vaccination strategy [10].

The respiratory disease known as Coronavirus Disease 2019

(COVID-19) is a member of the Coronaviridae family. The α-

Coronavirus, β-Coronavirus, γ-Coronavirus, and δ-Coronavirus

are the four strain varieties of the virus. Humans are impacted

by the first two, but bird infections are the main cause of the

remaining two [11]. The source and origin of the virus are

still unknown, despite the fact that COVID-19 is classified as a

zoonotic disease and linked to the family of bats. After SARS

and MERS, COVID-19 is the third new coronavirus of the 21st

century to generate a significant outbreak that swept across 210

countries globally [12]. The variations of concern (VOC) introduce

additional uncertainties and hamper efforts to prevent the disease,

even as promising new vaccinations have emerged. VOCs, as

described by the US Centers for Disease Control and Prevention,

are more severe and highly transmissible strains of SARS-CoV-

2 that significantly reduce vaccine effectiveness. Since December

2020, a number of VOCs have surfaced. Not long after the β-

Coronavirus variation (B.1.351) was reported in South Africa, the

α-Coronavirus variant (B.1.1.7) was initially identified with a 50%

higher transmission in the United Kingdom. The δ-Coronavirus

version (B.1.167.2) was originally discovered in India and classified

on 11th May 2021 [13], whereas the γ-Coronavirus variant (P.1)

was initially discovered in Brazil [14].

While less severe than earlier VOCs, the Omicron variety

(B.1.1.529) is even more transmissible than δ-Coronavirus and

was first discovered in South Africa and Botswana in 2021 [15].

Large recent increases in new COVID cases across national

boundaries have been attributed to these variations. Countries with

high vaccination rates experienced notable increases in incidence

when the δ-Coronavirus variety emerged as the predominant

virus worldwide [16]. Vaccines are less efficient in preventing δ-

Coronavirus than previous forms, which made it more deadly. One

dose of BNT162b2 (Pfizer-BioNTech) or ChAdOx1 (AstraZeneca)

provides immunity against the δ-Coronavirus VOC, although

immunity against the α-Coronavirus VOC is 45–52% [16]. Less

protection against the δ-Coronavirus form was also demonstrated

to be conferred by receiving two doses [16]. The enormous

increases in infectious cases we saw globally in 2021 were caused

by a lower mutation in the receptor-binding region of the δ-

Coronavirus SARS-CoV-2 spike protein [17]. The Omicron version

caused much greater worldwide spikes in cases in December 2021.

Compared to the wild-type strain, Omicron was discovered to

contain 33 mutations in its spike protein [18]. Given that vaccines

lose their effectiveness over time and society reopens to more

viral encounters, countries must reevaluate how best to implement

vaccination programs in light of the significant changes that have

been observed across a variety of volatile organic compounds.

While the World Health Organization and the Centers for

Disease Control and Prevention have released certain health

advisories and suggestions for individuals who are more susceptible

to negative results from COVID-19, individuals who are co-

infected with COVID-19 and have TB are at higher risk

of dying [19]. A number of studies have suggested that

COVID-19 may exacerbate or reactivate tuberculosis (TB),

and some have even linked tuberculosis to severe COVID-19

[20–22]. Pathology-wise, diseases caused by SARS-CoV-2 and

Mycobacterium tuberculosis to the immunomodulation tend to

cause an imbalanced inflammatory response, which furthers the

development and deterioration of both diseases [23]. In addition,

patients with severe COVID-19 may be more susceptible to

reactivation or new infection-related active TB [24].

The aforementioned issues motivate this study to explore the

optimal control strategies incorporating cost-effectiveness analysis

to mitigate TB and COVID-19. The next section illustrates the

co-infection model assumptions and formulation such that people

with latent TB will become active at a specific rate. Additionally,

it assumes that some treated patients with active tuberculosis will

not complete their course of treatment and that some of them will

develop drug-resistant tuberculosis. Four control mechanisms for

public education, vaccination, case finding, and case holding efforts

are incorporated into this model. The article is arranged as follows:

Section 2 presents the detailed framework of the epidemiological

co-infection model, together with the definition of the parameters

and respective values. Section 3 presents the analysis of the

model’s positivity of solutions, computation of the sub-models’

reproduction numbers, and stability of the sub-models. Section 4

presents the model parameters estimation and sensitivity. Section 5

presents the optimal control analysis. Section 6 presents the cost-

effectiveness analysis. Finally, Section 7 presents the concluding

remarks of this study.

The tuberculosis (TB) and COVID-19
model

The proposed epidemiological model comprising tuberculosis

and COVID-19 vaccination is characterized by two sub-models
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(TB and COVID-19) with the following features. It is divided

into 12 distinct compartments, namely S (t) : Susceptible class,

V (t) : Vaccinated class, Est(t) : individuals exposed to drug-

sensitive (DS) strain TB only, Ist(t) : Individuals infectious with

drug-sensitive (DS) TB only, Ert(t) : Individuals exposed to drug-

resistant (DR) strain of TB only, Irt(t) : Individuals infectious with

drug-resistant (DR) strain TB only, Ec(t) : COVID-19 exposed

individuals only, Ic(t) : Individuals infectious with COVID-19 only,

Istc(t) : Individuals infectious with drug-sensitive (DS) strain of TB

and COVID-19, Irtc(t) : Individuals infectious with drug-resistant

(DR) strain of TB and COVID-19, T(t) : Treated class consisting

of individuals from both strains of TB, and R(t) : Recovered class

consisting of treated individuals of TB and/or COVID-19. The

dynamics of the model are as follows:

• We illustrate the TB stream of the model; susceptible and

vaccinated individuals are exposed to either a drug-sensitive

(DS) strain or drug-resistant (DR) strain of tuberculosis where

S (t) compartment recruit individuals by 3, where individuals

in S (t) and V (t) are infected by the two strains at the rate

of βstSIst , βrtSIrt and σβstVIst , σβrtVIrt respectively, where

σ belonging to [0, 1] denotes the vaccine protection rate. If

σ = 0, then the vaccination protection is 100% efficient, σ = 1

implies that the vaccination protection efficiency is 0 and the

immunity waning rate coefficient in the vaccinated host is ϑ ,

which is given as ϑ ≥ 1. We assume that a proportion of b

and 1 − b of the individuals in S (t) enters the drug-sensitive

(DS) classes Ist(t) and Est(t), respectively, and a proportion of

b and (1− b) of the individuals in V (t) enter Ist(t) and Est(t),

respectively, similar to the drug-resistant (DR) classes by Irt(t)

and Ert (t), where the rate of death due to drug-sensitive (DS)

strain of TB disease is given as d1 and the rate of death due to

drug-resistant (DR) strain of TB disease is given as d2. Here,

we assume that induced TB death rates are different for drug-

sensitive (DS) and drug-resistant (DR) strains of TB due to

differences in transmission rate and response to prophylaxis.

The individuals in Est(t) identified to be infected move to T (t)

at the rate of γ1 for prophylaxis while the rest move to Ist(t)

at the rate of δst . Individuals in Ert(t) moves to Irt(t) at the

rate of δrt . A proportion of k Ist(t) individuals move to Istc(t)

at the rate of kγ2 due to COVID-19 infection at the same

time, while a proportion of 1 − k moves to T(t) at the rate of

(1−k)γ2 for prophylaxis. Again, a proportion ofm individuals

in Irt(t) move to Irtc(t) at the rate of mγ3 due to COVID-

19 infection at the same time, while a proportion of 1 − m

moves to T(t) at the rate of (1 − m)γ3 for prophylaxis, where

k,m belong to [0, 1]. The individuals in T (t) compartment

who undergo successful prophylaxis recover at the rate of ε5

while the rest are re-infected by ωλ1, where ω = [0, 1] due to

unsuccessful prophylaxis.

• We illustrate the COVID-19 stream of the model; susceptible

and vaccinated individuals are exposed to COVID-19 at the

rate of βcSIc and σβcVIc, respectively. The individuals in Ec(t)

identified with mild symptoms of the disease can recover at

the rate of ε1 due to strong immunity, while the rest become

infected and move to Ic(t) at the rate of δc. The individuals in

Ic(t) recover at the rate of ε2, while others may develop any

strains of TB and move to Istc(t), Irtc(t) at the rate of ϕ1,ϕ2,

respectively. A proportion of g Ist(t) individuals move to Ist(t)

at the rate of gε3, while a proportion of (1 − g) recovers at

the rate of (1 − g)ε3; similarly, individuals in Irtc(t) move to

Irt(t) at the rate of hε4, while a proportion of 1− h recovers at

the rate of (1− h)ε4 where g, h belong to [0, 1). The respective

rate of death due to TB and/or COVID-19 infection is given

as di, where i = 3, 4, 5 respectively. The meanings of the rest

of the parameters illustrated in the model are tabulated. The

control efforts U1 (t) ,U2 (t) ,U3 (t) , and U4 (t) for optimal

control analysis would be applied and explained in detail in

the subsequent section.

The total population N (t) in Equation (1) is defined based on

the flowchart diagram Figure 1 as follows:

N (t) = S (t) + V (t) + Est (t) + Ist (t) + Ert (t) + Irt (t) +

Ec (t) + Ic (t) + Istc (t) + Irtc (t) + T (t) + R(t). (1)

We formulate the model [see Equation (2)] as follows:







































































































dS
dt

= 3 + ϑV −
(

1− b
)

λ1S− a1S,
dV
dt

= αS−
(

1− b
)

λ1σV − a2V ,
dEst
dt

=
[(1−b)(S+σV)+bωT]βstIst

N − a3Est ,
dIst
dt

=
[b(S+σV)+(1−b)ωT]βst Ist

N + δstEst + gε3Istc − a4Ist ,
dErt
dt

=
[(1−b)(S+σV)+bωT]βrtIrt

N − a5Ert ,
dIrt
dt

=
[b(S+σV)+(1−b)ωT]βrtIrt

N + δrtErt + hε3Irtc − a6Irt ,
dEc
dt

=
(S+σV)βcIc

N − a7Ec,
dIc
dt

= δcEc − a8Ic,
dIstc
dt

= ϕ1Ic + kγ2Ist − a9Istc,
dIrtc
dt

= ϕ2Ic +mγ3Irt − a10Irtc,
dT
dt

= γ1Est +
(

1− k
)

γ2Ist + (1−m) γ3Irt − (µ + ε5 + ωλ1)T,
dR
dt

= ε1Ec + ε2Ic +
(

1− g
)

ε3Istc +
(

1− h
)

ε4Irtc + ε5T − µR.

(2)

where λ1 =
[βstIst+βrtIrt]+βc[Ic+Istc+Irtc]

N , a1 = µ + α, a2 = µ +

ϑ , a3 = µ + δst + γ1, a4 = µ + d1 + γ2, a5 = µ + δrt , a6 =

µ + d2 + γ3, a7 = µ + δc + ε1, a8 = µ + d3 + ϕ1 + ϕ2 + ε2, a9 =

µ + d4 + ε3, a10 = µ + d5 + ε4.

With initial conditions, S(0) ≥ 0,V(0) ≥ 0,Est(0) ≥ 0, Ist(0) ≥

0,Ert(0) ≥ 0, Irt(0) ≥ 0, Ec(0) ≥ 0, Ic(0) ≥ 0, Istc(0) ≥

0, Irtc(0) ≥ 0,T(0) ≥ 0,R(0) ≥ 0. All the parameters of system

(2) are non-negative.

TB and COVID-19 co-infection
model’s positivity and boundedness

The model (2) variables and parameters are non-negative since

it is based on the population with TB and COVID-19. We state

the following theorems to show that all variables of model (2) are

non-negative and bounded.

Theorem 1: Define Y (t) = S (t) ,V (t) ,Est (t) , Ist (t) ,Ert (t) ,

Irt (t) , Ec (t) , Ic (t) , Istc (t) Irtc (t) ,T (t) ,R (t) , if Y(0) ≥ 0, then

Y(t) ≥ 0, and its solutions and initial values are non-negative for

t > 0.
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FIGURE 1

Flowchart representation of the TB-COVID-19 vaccination model.

Proof: Let us consider the following instance that there exists

an initial time ti, such that

min
{

Y(ti)
}

> 0 and min
{

Y(t)
}

> 0 for all t ∈ [0, ti ) .

Here, Y (t) = S (t) ,V (t) ,Est (t) , Ist (t) ,Ert (t) , Irt (t) , Ec (t) ,

Ic (t) , Istc (t) Irtc (t) ,T (t) ,R (t) . Without loss of generalization,

min
{

Y(ti)
}

= S (ti ).

Therefore, S (ti) = 0, V (ti) > 0 and S (t) > 0 for all t ∈

[0, ti) . However,
dS(ti)
dt

= 3 + ϑV (ti) > 0,

Since 3 ≥ 0, S (ti) > S (0) ≥ 0.

This contradicts the claim S (ti) = 0. Therefore, S (t) > 0 for

all t ≥ 0. This shows that all solutions are positive for t ≥ 0 in all

other cases.

Theorem 2: To show the boundedness of solutions

of model (2), define a positive invariant set as Q =
{

(S,V ,Est , Ist ,Ert , Irt ,Ec, Ic, Istc, Irtc,T,R) ∈ R12+ :N (t) ≤ 3
µ

}

,

which have positive solutions.

Proof: Let us consider the total population of model (2)N (t) as

N (t) = S (t) + V (t) + Est (t) + Ist (t) + Ert (t) + Irt (t) +

Ec (t) + Ic (t) + Istc (t) + Irtc (t) + T (t) + R(t). (3)

The rate of change of N (t) of Equation (3) is given as

N
′
(t) = S

′
(t) + V

′
(t) + E

′

st (t) + I
′

st +

E
′

rt + I
′

rt + E
′

c + I
′

c + I
′

stc + I
′

rtc + T
′
(t) + R

′
(t) ,

N
′
(t) = 3 − µS− µV − µEst −

(

µ + d1
)

Ist − µErt −
(

µ + d2
)

Irt − µEc −
(

µ + d3
)

Ic −
(

µ + d4
)

Istc −
(

µ + d5
)

Irtc − µT − µR,

N
′
(t) = 3 − µN (t) − (d1Ist + d2Irt + d3Ic + d4Istc + d5Irtc)

≤ 3 − µN (t) . (4)

This follows that from Equation (4),

N (t) ≤ 3
µ

(

1− e−µt
)

+ N (0) e−µt .

Then, 0 < N (t) ≤ 3
µ
, if N (0) ≤ 3

µ
. That is, N (t) is bounded,

and all solutions inQ approach enter or remain inQ. If t → ∞, 0 ≤

N (t) shows thatN (t) is a set of positive invariant in the region R12+ .

Therefore, the proof is complete.
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Sub-models analysis

This subsection explores the reproduction numbers and the

stability of the two sub-models.

Tuberculosis (TB) sub-model

The TB sub-model’s disease-free equilibrium point is achieved

by setting Ec = Ic = Istc = Irtc = R = 0 of system (2) and equate it

to zero, the result in Equation (5) is as follows.



































































dS
dt

= 3 + ϑV −
(1−b)(βstIst+βrtIrt)S

N − a1S,
dV
dt

= αS−
(1−b)(βstIst+βrtIrt)σV

N − a2V ,
dEst
dt

=
[(1−b)(S+σV)+bωT]βstIst

N − a3Est ,
dIst
dt

=
[b(S+σV)+(1−b)ωT]βstIst

N + δstEst − a4Ist ,
dErt
dt

=
[(1−b)(S+σV)+bωT]βrtIrt

N − a5Ert ,
dIrt
dt

=
[b(S+σV)+(1−b)ωT]βrtIrt

N + δrtErt − a6Irt ,
dT
dt

= γ1Est +
(

1− k
)

γ2Ist + (1−m) γ3Irt−
(

ε5 +
ω(1−b)(βstIst+βrtIrt)

N

)

T.

(5)

where N = S+ V + Est + Ist + Ert + Irt + T.

The TB sub-model (5) has a positive invariant in the region R7+

with QT =
{

(S,V ,Est , Ist ,Ert , Irt ,T) ∈ R7+ : N (t) ≤ 3
µ

}

, as shown

in Theorems 2 and 3.

Tuberculosis (TB) sub-model’s basic reproduction
number

Here, we define the basic reproduction number and the stability

of the TB sub-model.

The disease-free equilibrium E0T
It is globally stable, as demonstrated under the COVID-19 sub-

model. The disease-free equilibrium E0T = (S0,V0, 0, 0, 0, 0, 0) and

the result is given in Equation (6).

S0 =
3a2

a1a2 − ϑα
,V0 =

3α

a1a2 − ϑα
,

E0T =

(

3a2

a1a2 − ϑα
,

3α

a1a2 − ϑα
, 0, 0, 0, 0, 0

)

. (6)

The corresponding Jacobian matrix evaluated at disease-free

equilibrium, JE0T is given in Equation (7)

JE0T =


























−a1 ϑ 0 −
(1−b)βstS0

N0
0 −

(1−b)βrtS0
N0

0

α −a2 0 −
(1−b)βstσV0

N0
0 −

(1−b)βrtσV0

N0
0

0 0 −a3
(1−b)βst [S0+σV0]

N0
0 0 0

0 0 δst
bβst [S0+σV0]

N0
− a4 0 0 0

0 0 0 0 −a5
(1−b)βrt [S0+σV0]

N0
0

0 0 0 0 δrt
bβrt [S0+σV0]

N0
− a6 0

0 0 γ1
(

1− k
)

γ2 0 (1−m) γ3 −(µ + ε5)



























.

(7)

where N0 = S0 + σV0 using the Jacobian at the disease-free

equilibrium E0T .

According to the explanation in [25], the spectral radius

of the next-generation operator G = FV−1 denotes the basic

reproduction number. For sub-model (5), we have the square

matrix with matrix F as the new infections and matrix V as the

transition elements of the infected classes.

F =













0
(1−b)βst[S0+σV0]

N0
0 0

0 bβst[S0+σV0]
N0

0 0

0 0 0 (1−b)βrt[S0+σV0]
N0

0 0 0 bβrt[S0+σV0]
N0













,

V =











a3 0 0 0

−δst a4 0 0

0 0 a5 0

0 0 −δrt a6











.

Hence, the reproduction numbers are

Rst =
(1− b)βstδst [S0 + σV0]

N0a3a4
,Rrt =

(

1− b
)

β
rt
δrt [S0 + σV0]

N0a5a6
,

where Rst and Rrt are the basic reproduction numbers of drug-

sensitive (DS) and drug-resistant (DR) strains of TB, respectively.

Substituting N0, S0 and V0 give the following results:

Rst =
(1− b)βstδst

(µ + δst + γ1)
(

µ + d1 + γ2
) ,

Rrt =

(

1− b
)

β
rt
δrt

(µ + δrt)
(

µ + d2 + γ3
) ,

The basic reproduction number is given as [see Equation (8)]

R0T = max {Rst ,Rrt} . (8)

Existence of TB sub-model endemic equilibrium
We explore the existence and uniqueness of the endemic

equilibrium of sub-model (5).

If Rrt > 1, then the drug-resistant (DR) strain has the

dominance in sub-model (5) with F∗rt =
(

S∗rt ,V
∗
rt , 0, 0, E

∗
rt , I

∗
rt ,T

∗
rt

)

as

a unique endemic equilibrium for the drug-resistant (DR) strain.

Then, the endemic equilibrium follows as































3 + ϑV∗
rt − λ∗1S

∗
rt − a1S

∗
rt = 0,

αS∗rt − λ∗1σV
∗
rt − a2V

∗
rt = 0,

[(1−b)(S∗rt+σV∗
rt)+bωT∗

rt]βrtI
∗
rt

N∗
rt

− a5E
∗
rt = 0,

[b(S∗rt+σV∗
rt)+(1−b)ωT∗

rt]βrtI
∗
rt

N∗
rt

+ δrtE
∗
rt − a6I

∗
rt = 0,

(1−m) γ3I
∗
rt −

(

ε5 + ωλ∗1
)

T∗
rt = 0.

(9)

where λ∗1 =
(1−b)βrtI

∗
rt

N∗
rt

and N∗
rt = S∗rt + V∗

rt + E∗rt + I∗rt + T∗
rt .

Simplifying Equation (9) gives the following.



























S∗rt =
(a2+σλ∗1)3

(a1+λ∗1)(a2+σλ∗1)−αϑ
,

V∗
rt =

3α

(a1+λ∗1)(a2+σλ∗1)−αϑ
,

E∗rt =
[

1
a5

] [

λ∗13(a2+σλ∗1+σα)
(a1+λ∗1)(a2+σλ∗1)−αϑ

+
bωβrt(1−m)γ3I

∗
rt

(ε5+ωλ∗1)

]

,

T∗
rt =

(1−m)γ3I
∗
rt

(ε5+ωλ∗1)
.

(10)
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Simplifying Equation (10) gives the following equation for I∗rt .

I∗rt =

(

(

ε5 + ωλ∗1

) (

b
(

S∗rt + σV∗
rt

)

+ a5
)

β2
rtδrtω (1−m) γ3

)(

(

1− b
)

βrtδrt

a5a6
− 1

)

,

I∗rt =









(

ε5 + ωλ∗1

)

(

b3
(

a2+σλ∗2+σα
)

(

a1+λ∗2

)(

a2+σλ∗2

)

−αϑ
+ a5

)

β2
rtδrtω (1−m) γ3









(Rrt − 1) .(11)

Since all the parameters associated with the model are non-

negative, then from Equation (11) I∗rt is always positive if and only

if Rrt > 1. Hence, there exist endemic equilibrium if Rrt > 1.

Again, if Rst > 1, then the drug-sensitive (DS)

strain has the dominance in sub-model (5) with F∗st =
(

S∗st ,V
∗
st , E

∗
st , I

∗
st , 0, 0,T

∗
st

)

as a unique endemic equilibrium of

the drug-sensitive (DS) strain. Then, the endemic equilibrium

follows as































3 + ϑV∗
st − λ∗2S

∗
st − a1S

∗
st = 0,

αS∗st − λ∗2σV
∗
st − a2V

∗
st = 0,

[(1−b)(S∗st+σV∗
st)+bωT∗

st]βstI
∗
st

N∗
st

− a3E
∗
st = 0,

[b(S∗st+σV∗
st)+(1−b)ωT∗

st]βstI
∗
st

N∗
st

+ δstE
∗
st − a4I

∗
st = 0,

γ1E
∗
st +

(

1− k
)

γ2I
∗
st −

(

ε5 + ωλ∗2
)

T∗
st = 0.

(12)

where λ∗2 =
(1−b)βstI

∗
st

N∗
st

and N∗
st = S∗st + V∗

st + E∗st + I∗st + T∗
st .

Simplifying Equation (12) gives the following.



























S∗st =
(a2+σλ∗2)3

(a1+λ∗2)(a2+σλ∗2)−αϑ
,

V∗
st =

3α

(a1+λ∗2)(a2+σλ∗2)−αϑ
,

E∗st =
[

1
a3

] [

λ∗23(a2+σλ∗2+σα)
(a1+λ∗2)(a2+σλ∗2)−αϑ

+
G1bωβstI

∗
st

G2

]

,

T∗
st =

G1
G2
.

(13)

where G1 =
[

γ1
a3

]

(

S∗st + σV∗
st

)

λ∗2 +
(

1− k
)

γ2I
∗
st ,G2 =

(

ε5 + ωλ∗2
)

−
γ1bβstI

∗
st

a3
and

(

S∗st + σV∗
st

)

=
3(a2+σλ∗2+σα)

(a1+λ∗2)(a2+σλ∗2)− αϑ
.

Equation (13) gives the following equation for I∗st .

I∗st =

(

G2ωβsta3a4

G1bβst
(

S∗st + σV∗
st

)

a3 + a3a4 + δst

)(

(

1− b
)

βstδst

a3a4
− 1

)

,

I∗st =

(

G2ωβsta3a4

G1bβst
(

S∗st + σV∗
st

)

a3 + a3a4 + δst

)

(Rst − 1) . (14)

Since all the parameters associated with the model are non-

negative, then from Equation (14) I∗st is always positive if and only

if Rst > 1. Hence, there exist endemic equilibrium if Rst > 1.

COVID-19 sub-model

The COVID-19 sub-model’s disease-equilibrium point is

achieved by setting Est = Ist = Ert = Irt = Istc = Irtc = T = 0 of

system (2) to zero [see Equation (15)], the result is as follows.



























dS
dt

= 3 + ϑV −
βcIcS
N − a1S,

dV
dt

= αS− βcIcσV
N − a2V ,

dEc
dt

=
(S+σV)βcIc

N − a7Ec,
dIc
dt

= δcEc − a8Ic,
dR
dt

= ε1Ec + ε2Ic − µR.

(15)

where N = S+ V + Ec + Ic + R.

The COVID-19 sub-model (15) has a positive invariant in

the region R5+ with QC =
{

(S,V ,Ec, Ic,R) ∈ R5+ : N (t) ≤ 3
µ

}

, as

shown in Theorem 2.

The COVID-19 sub-model’s basic reproduction
number

Here, we define the basic reproduction number and the stability

of the COVID-19 sub-model.

The disease-free equilibrium E0C
The disease-free equilibrium E0C = (S0,V0, 0, 0, 0, 0, 0), and the

result is as follows in Equation (16):

S0 =
3a2

a1a2 − ϑα
,V0 =

3α

a1a2 − ϑα
,

E0C =

(

3a2

a1a2 − ϑα
,

3α

a1a2 − ϑα
, 0, 0, 0, 0, 0

)

. (16)

The corresponding Jacobian matrix evaluated at disease-free

equilibrium, JE0C , is given by Equation (17)

JE0C =















−a1 ϑ 0 −
βcS0
N0

0

α −a2 0 βcσV0
N0

0

0 0 −a7
βc[S0+σV0]

N0
0

0 0 δc −a8 0

0 0 ε1 ε2 −µ















. (17)

Where N0 = S0 + σV0 using the Jacobian at the disease-free

equilibrium E0C . The basic reproduction number for the COVID-

19 sub-model is given as

R0C =
βcδc [S0 + σV0]

N0a7a8
,

Substituting N0, S0 and V0 give the following results in

Equation (18).

R0C =
βcδc

(µ + δc + ε1)(µ + d3 + ϕ1 + ϕ2 + ε2)
. (18)

The COVID-19 sub-model’s stability and
existence of endemic equilibrium

We analyze the existence and uniqueness of the endemic

equilibrium of model (15) as D∗ =
(

S∗, V∗, E∗c , I
∗
c ,R

∗
)

.



























3 + ϑV∗ − βcI
∗
c − a1S

∗ = 0,

αS∗ − βcσV
∗I∗c − a2V

∗ = 0,

(S∗ + σV∗) βcI
∗
c − a7E

∗
c = 0,

δcE
∗
c − a8I

∗
c = 0,

ε1E
∗
c + ε2I

∗
c − µR∗ = 0.

(19)

Simplifying Equation (19) gives the following.



























S∗ =
3(σβcI

∗
c +a2)

(βcI∗c +a1)(σβcI∗c +a2)−αϑ
,

V∗ = 3α

(βcI∗c +a1)(σβcI∗c +a2)−αϑ
,

E∗c =
a8I

∗
c

δc
,

R∗ = 1
µ

(

ε1a8
δc

+ ε2

)

I∗c .

(20)

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org155

https://doi.org/10.3389/fams.2024.1373565
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Appiah et al. 10.3389/fams.2024.1373565

A B

FIGURE 2

Plot of (A) TB stream (B) COVID-19 stream.

Simplifying Equation (20), the following quadratic equation

is obtained in Equation (21).

k2I
∗
c
2
+ k1I

∗
c + k0 = 0. (21)

where k2 = β2
c a7a8, k1 = βcδc3a2 − a7a8βc (a1 + a2) , k0 =

(

23β2
c (a2−α)

αϑ−a1a2

)

(R0C − 1 ).

It is clear that k2 is always positive and k0 is positive if R0C > 1.

Hence, a unique endemic equilibrium exists if R0C > 1.

Estimation and sensitivity of the
parameters

Figure 2A illustrates the cumulative TB cases recorded within

22 years (2000 to 2022) in Ghana by the World Health

Organization (WHO) [26]. Figure 2B illustrates the daily number

of COVID-19 cases from 1st January 2022 to 1st March

2022 in Ghana [27]. All parameter values are illustrated in

Table 1.

Now, we investigate the relationship between the parameters

and Ist , Irt , and Ic by considering the behavioral patterns of the

respective parameters associated with the drug-sensitive strain

of TB, drug-resistant strain of TB, and COVID-19 stream on

the reproduction numbers Rst ,Rrt , and R0c with the graphical

representations illustrated below.

Figure 3A shows the partial rank correlation coefficients

(PRCC) of the parameters associated with Rst which depicts the

transmission dynamics of individuals who are infectious with drug-

sensitive (DS) strains of TB only. It is observed that (βst , δst)

have a high positive effect on Rst . However, the vaccination

protection rate σ is positive, this indicates that, the efficacy of

the vaccine may be low. The parameters (α, γ1,µ,ϑ) have a

negative effect on Rst . Figure 3B shows the partial rank correlation

coefficients (PRCCs) of the parameters associated with Rrt which

depicts the transmission dynamics of the individuals infectious

with drug-resistant (DR) strains of TB only. It is observed that

(βrt , δrt ,ϑ) have a high positive impact on the reproduction

number Rrt This indicates that majority of the individuals may

be resistant to the drug. The parameters (α, γ2,µ) have a negative

impact on the reproduction number Rrt . Figure 3C shows the

partial rank correlation coefficients (PRCCs) of the parameters

associated with R0C , which depicts the behavioral patterns of

transmission of the individuals infectious with COVID-19 only.

It is observed that (βc, δc,ϑ) have a high positive effect on

R0C . Again, the vaccination protection rate σ is positive, this

indicates that the efficacy of the vaccine may be low. This is

determined by the associated sign; those with the positive sign

indicate a perfect relationship and the negative sign indicates an

imperfect relationship. If the value is high, then there exists a

strong relationship, and the lower the value, the weaker the relation

between the input and the output value. Once the vaccination

protection rate σ increases, the reproduction numbers, and there

should be measures to optimally control the transmission of TB

and/or COVID-19.

To formulate control strategies to minimize the spread of TB

and COVID-19, we demonstrate the transmission dynamics in

different scenarios in the figures below based on the parameters

that exhibit a strong relationship with the reproduction numbers,

as demonstrated in Figure 4.

Figures 4A–C represent the respective contour plots of

the reproduction numbers Rst ,Rrt , and R0C as a function of

vaccination rate α and waning rate ϑ of vaccines. Figures 4D–

F represent the respective contour plots of the reproduction

numbers Rst ,Rrt , and R0C as a function of vaccination rate α

and effective contact rates of TB and COVID-19. These figures

suggest that to significantly minimizing the basic reproduction

number to a minimum requires both pharmaceutical, such as

vaccination, and non-pharmaceutical measures, such asmask usage

and social distancing, to reduce the effective contact rate to

prolong the period of acquiring the disease, which reduces the

incubation rates.
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TABLE 1 Interpretation and values of model parameters.

Parameter Interpretation Value References

βst Drug-sensitive strain’s effective contact rate. 0.3 [28]

βrt Drug-resistant strain’s effective contact rate. 0.5 [29]

βc COVID-19 individuals’ effective contact rate. 0.4531 [30]

α Vaccination rate. 0.5482 [31]

ϑ Waning rate of immunity. 0.05 [32]

σ Rate of vaccine protection. 0.5 Fitted

δst Drug-sensitive strain’s incubation period. 0.14 [28]

δrt Drug-resistant strain’s incubation period. 0.34 [29]

δc COVID-19 stream’s incubation period. 0.07 Fitted

γ1 Treatment rate of Est(t) individuals. 0.1 Assumed

γ2 Treatment rate of Ist(t) individuals. 0.2 [29]

γ3 Treatment rate of Irt(t) individuals. 0.24 Assumed

ϕ1 Movement rate from Ic(t) to Istc(t). 0.015 Fitted

ϕ2 Movement rate from Ic(t) to Irtc(t). 0.015 Fitted

ε1 Movement rate from Ec(t) to R(t). 0.2 Fitted

ε2 Movement rate from Ic(t) to R(t). 0.023 [33]

ε3 Movement rate from Istc(t) to R(t). 0.02095 [31]

ε4 Movement rate from Irtc(t) to R(t). 0.02095 Assumed

ε5 Movement rate from T(t) to R(t). 0.35 [34]

3 Recruitment rate. 1364 Estimated

µ Rate of natural death. 0.000043 Estimated

ω Treatment failure rate. 0.2 [31]

di Induced death rate of TB and/or COVID-19 0.000017 [31]

All the above illustrations clearly show the pattern of the PRCC

plots in Figure 3, and it is realized that all these parameters have

either positive or negative effects on the transmission of TB and/or

COVID-19. There should be effective interventions to reduce the

rate of secondary infections; thus, Rst ,Rrt , and R0C of TB and

COVID-19 co-infection.

Analysis of optimal control

We modify model (2) [see Equation (22)] with the following

optimal control variable U1 (t) , as public education on the

prevention of TB and COVID-19, such as mask usage and social

distancing, where U1 (t) ∈ [0, 1], which reduces the force of

infection, λ1, by 1 − U1 (t) . U2 (t) ; control efforts to intensify

vaccination of the population.U3 (t) ; control effort for case finding

to enhance prophylaxis for the population by 1 + U3 (t) . Hence,

those identified as infectious will go through prophylaxis to

minimize the infections that may occur. The control effort U4 (t)

is control for case holding to control the failure of prophylaxis

to minimize the reoccurrence of the disease by 1 − U4(t). All

these efforts denote the admissible control measures necessary to

minimize the transmission of the diseases. The modified equation

is given as















































































































































dS
dt

= 3 + ϑV −
[

(1− U1) (ρ1 + ρ2 + ρ3 + ρ4 + ρ5)+ U2α + µ
]

S,
dV
dt

= U2αS−
[

(1− U1) (ρ1 + ρ2 + ρ3 + ρ4 + ρ5)σ + µ + ϑ
]

V ,
dEst
dt

= (1− U1) (S+ σV) ρ1 + ρ2ωT − (µ + δst + (1+ U3) γ1)Est ,
dIst
dt

= (1− U1) (S+ σV) ρ2 + ρ1ωT + δstEst+

gε3Istc −
(

µ + d1 + (1− U4) γ2
)

Ist ,
dErt
dt

= (1− U1) (S+ σV) ρ3+

ρ2ωT − (µ + δrt)Ert ,
dIrt
dt

= (1− U1) (S+ σV) ρ4 + ρ1ωT+

δrtErt + hε3Irtc −
(

µ + d2 + (1− U4) γ3
)

Irt ,
dEc
dt

= (1− U1) (S+ σV) ρ5 − (µ + δc + (1+ U3) ε1)Ec,
dIc
dt

= δcEc − (µ + d3 + ϕ1 + ϕ2 + ε2)Ic,
dIstc
dt

= ϕ1Ic + (1− U4)kγ2Ist − (µ + d4 + ε3)Istc,
dIrtc
dt

= ϕ2Ic + (1− U4)mγ3Irt − (µ + d5 + ε4)Irtc,
dT
dt

= (1+ U3) γ1Est + (1− U4)
(

1− k
)

γ2Ist+

(1− U4) (1−m) γ3Irt − (µ + ε5 + ωλ1)T,
dR
dt

= (1+ U3) ε1Ec + ε2Ic +
(

1− g
)

ε3Istc +
(

1− h
)

ε4Irtc + ε5T − µR.

(22)

where ρ1 =
(1−b)βstIst

N , ρ2 =
bβstIst
N , ρ3 =

(1−b)βrtIrt
N , ρ4 =

bβrtIrt
N ,

and ρ5 =
βcIc
N are derived from Section 2 with the initial conditions

given in model (2).
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A B

C

FIGURE 3

Partial rank correlation (PRCC) of the parameters in reproduction numbers. (A) PRCC for drug sensitive (DS) strain TB. (B) PRCC for drug resistant (DR)

strain TB. (C) PRCC for COVID-19 stream.

Objective functional

We now formulate the optimal trajectories that show the

effect of the control efforts U1(t),U2(t),U3(t), U4(t) subjected to

Equation (22); the objective functionalM is given as,

M (U1,U2,U3, U4) =
∫ tf
0 [m1Est +m2Ist+

m3Ert +m4Irt +m5Ec +m6Ic +m7Istc +m8Irtc +

1
2 c1U

2
1 (t) + 1

2 c2U
2
2 (t) +

1
2 c3U

2
3 (t) + 1

2 c4U
2
4 (t)

]

dt. (23)

We focus on minimizing the cost function (23), and the total cost

of implementing the optimal control is given as

Q =
∫ tf
0

[

1
2 c1U

2
1 (t) + 1

2 c1U
2
2 (t) + 1

2 c3U
2
3 (t) + 1

2 c4U
2
4 (t)

]

dt. (24)

The parameters c1, c2, c3, and c4 in Equation (24) are the balancing

cost factors for U1(t),U2(t),U3(t), U4(t), respectively. All the

control effortsU1(t),U2(t),U3(t), U4(t) are assumed to be bounded

by Lebesgue measurable time-dependent functions on the interval
[

0, tf
]

, where tf is the final time.

By Pontryagin’s maximum principle, system (22) and the

objective functional (23) are transformed into a state of point-wise

Hamiltonian H. The following optimal solution is achieved.

H = m1Est +m2Ist +m3Ert +m4Irt +m5Ec +m6Ic +m7Istc +

m8Irtc +
1
2 c1U

2
1 (t) + 1

2 c2U
2
2 (t) +

1
2 c3U

2
3 (t) + 1

2 c4U
2
4 (t) +

λS
(

3 + ϑV −
[

(1− U1) (ρ1 + ρ2 + ρ3 + ρ4 + ρ5) +

U2α + µ] S) + λV (U2αS− [(1− U1)

(ρ1 + ρ2 + ρ3 + ρ4 + ρ5)σ +

µ + ϑ]V) + λEst ((1− U1) (25)

(S+ σV) ρ1 + ρ2ωT − (µ + δst + (1+ U3) γ1)Est
)

+

λIst ((1− U1) (S+ σV) ρ2 + ρ1ωT+

δstEst + gε3Istc − (µ + d1 + (1− U4)γ2)Ist
)

+

λErt
(

(1− U1) (S+ σV) ρ3 + ρ2ωT − (µ + δrt)Ert
)

+

λIrt ((1− U1) (S+ σV) ρ4 + ρ1ωT + δrtErt+

hε3Irtc − (µ + d2 + (1− U4)γ3)Irt
)

+

λEc
(

(1− U1) (S+ σV) ρ5 − (µ + δc + (1+ U3) ε1)Ec
)

+

λIc
(

δcEc − (µ + d3 + ϕ1 + ϕ2 + ε2)Ic
)

+
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A B
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FIGURE 4

Relationship between the reproduction numbers and their corresponding parameters. (A) E�ect of α and θ on the drug sensitive (DS) strain of TB. (B)

E�ect of α and θ on the drug resistant (DR) strain of TB. (C) E�ect of α and θ on the COVID-19 stream. (D) E�ect of α and βst on the drug sensitive (DS)

strain of TB. (E) E�ect of α and βrt on the drug resistant (DR) strain of TB. (F) E�ect of α and βc on the COVID-19 stream.

λIstc
(

ϕ1Ic + (1− U4)kγ2Ist − (µ + d4 + ε3)Istc
)

+

λIrtc
(

ϕ2Ic + (1− U4)mγ3Irt − (µ + d5 + ε4)Irtc
)

+

λT
(

(1+ U3) γ1Est + (1− U4)
(

1− k
)

γ2Ist+

(1− U4) (1−m) γ3Irt − (ε5 + ωλ1)T
)

+

λR
(

(1+ U3) ε1Ec + ε2Ic +
(

1− g
)

ε3Istc+
(

1− h
)

ε4Irtc + ε5T − µR
)

.

Where λS, λV , λEst , λIst , λErt , λIrt , λEc , λIc , λIstc , λIrtc , λT , λR in

Equation (25) are the costate variables with respect to the state

variables, S,V ,Est , Ist ,Ert , Irt ,Ec, Ic, Istc, Irtc,T,R.

Theorem 3: Given U∗
1 (t) ,U∗

2 (t) ,U∗
3 (t) , U∗

4 (t) as

the optimal controls and the corresponding solutions

S0, V0, E0st , I
0
st , E

0
rt , I

0
rt , E

0
c , I

0
c , I

0
stc, I

0
rtc,T

0
, R0 of system (22), which

minimizes Q
(

U1(t),U2(t),U3(t), U4(t)
)

, then there exist costate
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variables λS, λV , λEst , λIst , λErt , λIrt , λEc , λIc , λIstc , λIrtc , λT , λR
that satisfy

dλj

dt
= −

∂H

∂ j
. (26)

With conditions λj
(

tf
)

= 0, in (27) where j =

S,V ,Est , Ist ,Ert , Irt ,Ec, Ic, Istc, Irtc,T,R, the optimality conditions

that minimize the Hamiltonian, H, of (25) with respect to the

controls are given as















































U∗
1 (t) =

min {U1max, max
(

0,
(S0+σV0)((λEst−λS)ρ1+(λIst −λS)ρ2+(λErt−λS)ρ3+(λIrt −λS)ρ4+(λEc−λS)ρ5)

C1

)}

,

U∗
2 (t) = min

{

U2max, max
(

0, (λS−λV )αS0

C2

)}′

U∗
3 (t) = min

{

U3max, max
(

0,
(λEst−λT)γ1E0st−ε1λEc E

0
c

C3

)}

,

U∗
4 (t) = min

{

U4max, max
(

0,
(λIstc+λT−λIst )γ2I

0
st+(λIrtc+λT−λIrt )γ3I

0
rt

C4

)}

.

(27)

Proof: We take the partial derivative of Equation (25)

with respect to the solutions of the system, optimal

control, and final time conditions. The adjoint

equation is demonstrated below in Equation (28).































































































































































dλS
dS

= [1− U1]
[(

λEst − λS
)

ρ1 +
(

λIst − λS
)

ρ2 +
(

λErt − λS
)

ρ3 +
(

λIrt − λS
)

ρ4 +
(

λEc − λS
)

ρ5
]

+

(λV − λS)U2α + (λS − λV ) ϑV + µλS,
dλV
dV

= [1− U1]
[(

λEst − λV
)

ρ1 +
(

λIst − λV
)

ρ2 +
(

λEst − λT
)

ρ3 +
(

λIrt − λV
)

ρ4 +
(

λEc − λV
)

ρ5
]

σ+

(λV − λS)U2αS+ (λS − λV) ϑ + µλV ,
dλEst
dEst

= −m1 + [1− U1]
[(

λEst − λS
)

S+
(

λEst − λv
)

σV
]

ρ1 +
(

λEst − λT
)

ρ2ωT +
(

λIst − λEst
)

δst +
(

λT − λEst
)

(1+ U3) γ1 + µλEst ,
dλIst
dIst

= −m2 + [1− U1]
[(

λIst − λS
)

S+
(

λIst − λv
)

σV
]

ρ2 +
(

λIst − λT
)

ρ1ωT +
(

λIst − λEst
)

δstEst+
(

λT − λIst
)

(1− U4)
(

1− k
)

γ2 +
(

λIst − λIstc
)

gε3Istc +
(

λIstc − λIst
)

(1− U4) kγ2 +
(

µ + d1
)

λIst ,
dλErt
dErt

= −m3 + [1− U1]
[(

λErt − λS
)

S+
(

λErt − λv
)

σV
]

ρ3 +
(

λErt − λT
)

ρ4ωT + (λIrt − λErt )δrt + µλErt ,
dλIrt
dIrt

= −m4 + [1− U1]
[(

λIrt − λS
)

S+
(

λIrt − λv
)

σV
]

ρ4 +
(

λIrt − λT
)

ρ3ωT +
(

λIrt − λIrtc
)

hε4Irtc+
(

λIrtc − λIrt
)

(1− U4) (1−m) γ3 +
(

λT − λIrt
)

(1− U4) (1−m) γ3 +
(

µ + d2
)

λIrt ,
dλEc
dEc

= −m5 + [1− U1]
[(

λEc − λS
)

S+
(

λEc − λv
)

σV
]

ρ5 +
(

λIc − λEc
)

δc +
(

λR − λEc
)

(1+ U3) ε1 + µλEc ,
dλIc
dIc

= −m6 +
(

λIc − λEc
)

δcEc +
(

λIstc − λIc
)

ϕ1 +
(

λIrtc − λIc
)

ϕ2 +
(

λR − λIc
)

ε2 +
(

µ + d3
)

λIc ,
dλIstc
dIstc

= −m7 +
(

λIstc − λIc
)

ϕ1Ic +
(

λIstc − λIst
)

(1− U4) kγ2Ist +
(

λIst − λIstc
)

gε3 +
(

λR − λIstc
)

(1− g)ε3 + (µ + d4)λIstc ,
dλIrtc
dIrtc

= −m8 +
(

λIrtc − λIc
)

ϕ2Ic +
(

λIrtc − λIrt
)

hε4Irt +
(

λIrt − λIrtc
)

(1− U4)mγ3 +
(

λR − λIrtc
)

(1− h)ε4 +
(

µ + d5
)

λIrtc ,
dλT
dT

=
(

λT − λEst
)

(1+ U3) γ1Est +
(

λT − λIst
)

(1− U4)
(

1− k
)

γ2Ist +
(

λT − λIrt
)

(1− U4) (1−m) γ3Irt +
(

λEst − λT
)

ρ2ω
(

λIst − λT
)

ρ1ω +
(

λErt − λT
)

ρ4ω +
(

λIrt − λT
)

ρ3ω + (λR − λT) ε5 + µλT ,
dλR
dR

=
(

λR − λEc
)

(1+ U3) ε1Ec +
(

λR − λIc
)

ε2Ic +
(

λR − λIstc
) (

1− g
)

ε3Istc +
(

λR − λIrtc
) (

1− h
)

ε4Irtc + (λR − λT) ε5T + µλR.

(28)

The control set Equation (29) below illustrates the costate
system with the optimal conditions.







































∂H
∂U1

= C1U1 +
(

S0 + σV0
)

((

λS − λEst

)

ρ1 +
(

λS − λIst

)

ρ2+
(

λS − λErt

)

ρ3 +
(

λS − λIrt

)

ρ4 +
(

λS − λEc

)

ρ5
)

,
∂H
∂U2

= C2U2 + (λV − λS) αS0,
∂H
∂U3

= C3U3 +
(

λT − λEst

)

γ1E
0
st + ε1E

0
cλEc ,

∂H
∂U4

= C4U4 +
(

λIst − λT − λIstc

)

γ2I
0
st +

(

λIrt − λT − λIrtc

)

γ3I
0
rt .

(29)

We solve for U1 (t) ,U2 (t) ,U3 (t) , and U4 (t) as U∗
1 (t) ,

U∗
2 (t) ,U∗

3 (t) , and U∗
4 (t) of Equation (25), and the results are

given in Equation (30):



































U∗
1 (t) =

(S0+σV0)((λEst−λS)ρ1+(λIst−λS)ρ2+(λErt−λS)ρ3+(λIrt−λS)ρ4+(λEc−λS)ρ5)
C1

,

U∗
2 (t) = (λS−λV )αS0

C2

′

U∗
3 (t) =

(λEst−λT)γ1E0st−ε1λEc E
0
c

C3
,

U∗
4 (t) =

(λIstc+λT−λIst )γ2I
0
st+(λIrtc+λT−λIrt )γ3I

0
rt

C4
.

(30)

Therefore, using the bounds of the controls

U∗
1 (t) ,U∗

2 (t) ,U∗
3 (t) , and U∗

4 (t) , the control efforts are in

the compact form given by the optimal condition of the system in

(27); hence, the proof is complete.

Optimal control results

The goal of this subsection is to study the two strains of TB;

thus, drug-sensitive (DS) and drug-resistant (DR) strains of TB

influence COVID-19 using the control efforts. We explore the

effects of implementing the control efforts; therefore, the optimality

system (21) is solved forward in time and the adjoint system

backward in time with the corresponding lower and upper bounds

of the controls. We use the population of Ghana to study the

behavioral pattern of the co-infection of TB and COVID-19. The

estimated total population of Ghana is 31732129 [35]; hence,

N (0) = 31732129, and the assumed initial values are as follows:

S (0) = 20000000, V (0) = 100000,Est (0) = 20000, Ist (0) =

10000,Ert (0) = 20000, Irt (0) = 10000,Ec (0) = 15000, Ic (0) =

10000, Istc (0) = 20000, Irtc (0) = 20000,T = (0) 100000,R (0) =

5000, together with parameter values illustrated in Table 1. The

balance costs associated with the objective functional are assumed

as C1 = 200, C2 = 100, C3 = 500,C4 = 1000 and weights

mi = 100, where i = 1, 2, 3, 4, 5, 6, 7, 8. The lower bound (LB) and

upper bound (UB) are assumed as LB1 = 0, UB1 = 1, LB2 =

0, UB2 = 1, LB3 = 0, UB3 = 1. The results are illustrated

according to the strategies to implement the control efforts.
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FIGURE 5

(A–E) Red dotted line is the optimal solution for implementing strategy 1. (F) Optimal control profile for strategy 1.

Strategy 1: implementation of public education
(U1)

This intervention is most favorable for both streams of diseases,

thus halting the transmission of TB and COVID-19. The optimal

solutions illustrated in Figure 5 account for the observations when

the control effort U1 is applied accordingly.

The optimal solutions illustrated above depict the following

observations when public education is only applied.

(a) Figure 5A represents the effect of the control effort U1 on the

individuals infectious with drug-sensitive (DS) strain of TB

only. This implies that the number of individuals will decrease

to the minimum within 20 days if the control intervention

is optimally implemented to halt the disease’s transmission.

Conversely, it will decrease but not significantly.

(b) Figure 5B represents the effect of the control effort U1 on the

individuals infectious with drug-resistant (DR) strain of TB

only. This implies that the number of individuals will decrease

to theminimumwithin 90 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, if

the control intervention is ignored, the number of infected
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individuals will increase significantly by > 15, 000 per 100,000

people before the 90th day, which will result in the higher

transmission of the drug-resistant (DR) strain of TB only in

the individuals.

(c) Figure 5C represents the effect of the control effort U1

on the individuals infectious with COVID-19 only. This

implies that the number of individuals will decrease to the

minimum within 30 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(d) Figure 5D represents the effect of the control effort U1 on

the individuals infectious with drug-sensitive (DS) strain of

TB and COVID-19 at the same time. This implies that the

number of individuals will decrease to the minimum within

extra days if the control effort is optimally implemented to

halt the disease’s transmission. Conversely, it will decrease but

not significantly.

(e) Figure 5E represents the effect of the control effort U1 on

the individuals infectious with drug-resistant (DR) strain of

TB and COVID-19 at the same time. This implies that the

number of individuals will decrease to the minimum within

90 days if the control effort is optimally implemented to halt

the transmission of the disease. Conversely, if the control

intervention is ignored, the number of infected individuals will

increase significantly by > 90000 per 100000 people before the

90th day, which will result in higher transmission of the drug-

resistant (DR) strain of TB and COVID-19 in the individuals.

(f) Figure 5F represents the profile of control efforts for public

education on the prevention of TB and COVID-19, such as

mask usage and social distancing. This implies that education

should reach more than 25% of the population from the start

of implementation and must be intensified and fully optimized

to 100% after 85 subsequent days to minimize the transmission

of TB and COVID-19.

Strategy 2: implementation of vaccination (U2)
This intervention is also favorable for both streams of diseases,

thus halting the spread of TB and COVID-19; however, it should be

implemented with care because the proportion of the individuals

may develop the drug-resistant (DR) strain of TB if treatment

failure occurs, and the waning rate of the vaccine. The optimal

solutions illustrated in Figure 6 account for the observations when

the control effort U2 is applied accordingly.

The optimal solutions illustrated above depict the following

observations when vaccination is only applied.

(a) Figure 6A represents the effect of the control effort U2 on the

individuals infectious with drug-sensitive (DS) strain of TB

only. This implies that the number of individuals will decrease

to the minimum within 10 days if the control intervention

is optimally implemented to halt the disease’s transmission.

Conversely, it will increase significantly.

(b) Figure 6B represents the effect of the control effort U2 on the

individuals infectious with drug-resistant (DR) strain of TB

only. This implies that the number of individuals will decrease

to the minimum within 90 days if the control intervention

is optimally implemented to halt the disease’s transmission.

Conversely, if the control effort is ignored, the number of

infected individuals will increase significantly by > 15, 000 per

100,000 people before the 65th day, which will result in the

higher transmission of the drug-resistant (DR) strain of TB

only in the individuals. This is a result of drug resistance, which

leads to treatment failure.

(c) Figure 6C represents the effect of the control effort U2

on the individuals infectious with COVID-19 only. This

implies that the number of individuals will decrease to the

minimum within 10 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(d) Figure 6D represents the effect of the control effort U2 on the

individuals infectious with drug-sensitive (DS) strain of TB

and COVID-19 at the same time. This implies that the number

of individuals will decrease to the minimum within extra

days if the control effort is optimally implemented to halt the

disease’s transmission. Conversely, it will increase significantly.

(e) Figure 6E represents the effect of the control effort U1 on the

individuals infectious with drug-resistant (DR) strain of TB

and COVID-19 at the same time. This implies that the number

of individuals will decrease to the minimum within 60 days if

the control intervention is optimally implemented to halt the

disease’s transmission. Conversely, if the control intervention

is ignored, the number of infected individuals will increase

significantly by > 80, 000 per 100,000 people before the 90th

day, which will result in higher transmission of the drug-

resistant (DR) strain of TB and COVID-19 in the individuals.

This is a result of drug resistance and vaccine inefficacy, which

leads to treatment failure and/or reinfection.

(f) Figure 6F represents the profile of control efforts for

vaccination to prevent TB and COVID-19. This implies that

the vaccination needs to be intensified by more than 25% and

reach the population from the start of implementation and

must be intensified fully and optimized to 100% after some

days throughout the subsequent days to halt both TB and

COVID-19 transmission.

Strategy 3: implementation of case finding (U3)
This intervention is also favorable for both streams of diseases,

thus halting the spread of TB and COVID-19. The optimal

solutions, illustrated in Figure 7, account for the observations when

the control effort U3 is applied accordingly.

The optimal solutions illustrated above depict the following

observations when case finding is only applied. This is mostly used

to detect TB infection.

(a) Figure 7A represents the effect of the control effort U3 on the

individuals infectious with drug-sensitive (DS) strain of TB

only. This implies that the number of individuals will decrease

to the minimum within 20 days if the control intervention

is optimally implemented to halt the disease’s transmission.

Conversely, it will increase significantly.

(b) Figure 7B represents the effect of the control effort U3 on

the individuals infectious with drug-resistant (DR) strain of

TB only. This implies that the number of individuals will

decrease to the minimum within 30 days if the control effort
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FIGURE 6

(A–E) Red dotted line is the optimal solution for implementing strategy 2. (F) Optimal control profile for strategy 2.

is optimally implemented to halt the transmission of the

disease. Conversely, if the control intervention is ignored, the

number of infected individuals will increase significantly by

> 150, 000 per 100,000 people before the 90th day, which will

result in higher transmission of the drug-resistant (DR) strain

of TB only in the individuals.

(c) Figure 7C represents the effect of the control effort U3

on the individuals infectious with COVID-19 only. This

implies that the number of individuals will decrease to the

minimum within 30 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(d) Figure 7D represents the effect of the control effort U3 on the

individuals infectious with drug-sensitive (DS) strain of TB

and COVID-19 at the same time. This implies that the number

of individuals will decrease to the minimum within 30 days if

the control effort is optimally implemented to halt the disease’s

transmission. Conversely, it will increase significantly.

(e) Figure 7E represents the effect of the control effort U3 on

the individuals infectious with drug-resistant (DR) strain of
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FIGURE 7

(A–E) Red dotted line is the optimal solution for implementing strategy 3. (F) Optimal control profile for strategy 3.

TB and COVID-19 at the same time. This implies that the

number of individuals will decrease to the minimum within 90

days if the control effort is optimally implemented to halt the

disease’s transmission. Conversely, if the control intervention

is ignored, the number of infected individuals will increase

significantly by > 180, 000 per 100,000 people before the 90th

day, which will result in higher transmission of the drug-

resistant (DR) strain of TB and COVID-19 in the individuals.

(f) Figure 7F represents the profile of the control effort for finding

cases of TB and COVID-19. This implies that ∼25% of the

cases should be identified for immediate treatment within 85

days of implementation andmust be intensified to∼75% in the

subsequent days to halt both TB and COVID-19 transmission.

However, the latter days of implementation vary between 25%

and 75% based on the outcome of this intervention.

Strategy 4: implementation of case holding (U4)
This intervention is also favorable for both streams of diseases,

thus halting the transmission of TB and COVID-19. The optimal

solutions, illustrated in Figure 8, account for the observations when

the control effort U4 is applied accordingly.
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FIGURE 8

(A–E) Red dotted line is the optimal solution for implementing strategy 4. (F) Optimal control profile for strategy 4.

The optimal solutions illustrated above depict the following

observations when case holding is only applied. This is also mostly

used to handle TB infections.

(a) Figure 8A represents the effect of the control effort U4 on the

individuals infectious with drug-sensitive (DS) strain of TB

only. This implies that the number of individuals will decrease

to theminimumwithin 20 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(b) Figure 8B represents the effect of the control effort U4 on the

individuals infectious with drug-resistant (DR) strain of TB

only. This implies that the number of individuals will decrease

to the minimum within 80 days if the control intervention

is optimally implemented to halt the disease’s transmission.

Conversely, if the control effort is ignored, the number of

infected individuals will increase significantly by > 10, 000 per

100,000 people before the 90th day, which will result in higher

transmission of the drug-resistant (DR) strain of TB only in

the individuals.

(c) Figure 8C represents the effect of the control effort U4 on

the individuals infectious with COVID-19 only. This implies

that the number of individuals will decrease to the minimum

within 10 days if the control intervention is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(d) Figure 8D represents the effect of the control effort U4 on

the individuals infectious with drug-sensitive (DS) strain of
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TB and COVID-19 at the same time. This implies that the

number of individuals will decrease to the minimum within 80

days if the control intervention is optimal to halt the disease’s

transmission. Conversely, it will increase significantly.

(e) Figure 8E represents the effect of the control effort U4 on

the individuals infectious with drug-resistant (DR) strain of

TB and COVID-19 at the same time. This implies that the

number of individuals will decrease to the minimum within

90 days if the control intervention is optimally implemented to

halt the disease’s transmission. Conversely, if the control effort

is ignored, the number of infected individuals will increase

significantly by > 50, 000 per 100,000 people before the 90th

day, which will result in higher transmission of the drug-

resistant (DR) strain of TB and COVID-19 in the individuals.

This intervention is normally used to handle individuals

infectious with (DR) strain of TB because it is very difficult

to treat them. Therefore, one could realize a decrease in the

number of infections.

(f) Figure 8F represents the profile of control effort for case

holding for TB and COVID-19. It implies that more than 25%

of the cases should be handled properly among the population

from the start of implementation and must be intensified

fully and optimized to 100% after some days throughout the

subsequent days to halt both TB and COVID-19 transmission.

Strategy 5: implementation of all controls
(U1,U2,U3,U4)

These interventions are also favorable for both streams of

diseases, thus halting the transmission of TB and COVID-19.

The optimal solutions, illustrated in Figure 9, account for the

observations when all the control efforts are applied accordingly.

The optimal solutions illustrated above depict the following

observations when all the control efforts are applied.

(a) Figure 9A represents the effect of all the control efforts

U1,U2,U3,U4 on the individuals infectious with drug-sensitive

(DS) strain of TB only. This implies that the number of

individuals will decrease to the minimum within 20 days if the

control interventions are optimally implemented to halt the

disease’s transmission. Conversely, it will increase significantly.

(b) Figure 9B represents the effect of all the control efforts

U1,U2,U3,U4 on the individuals infectious with drug-resistant

(DR) strain of TB only. This implies that the number of

individuals will decrease to the minimum within 30 days if

the control interventions are optimally implemented to halt

the disease’s transmission. Conversely, if the control effort

is ignored, the number of infected individuals will increase

significantly by > 14000 people before the 50th day.

(c) Figure 9C represents the effect of all the control efforts

U1,U2,U3,U4 on the individuals infectious with COVID-19

only. This implies that the number of individuals will decrease

to theminimumwithin 30 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(d) Figure 9D represents the effect of all the control efforts

U1,U2,U3,U4 on the individuals infectious with drug-sensitive

(DS) strain of TB and COVID-19 at the same time. This

implies that the number of individuals will decrease to the

minimum within 80 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(e) Figure 9E represents the effect of all the control efforts

U1,U2,U3,U4 on the individuals infectious with drug-resistant

(DR) strain of TB and COVID-19 at the same time. This

implies that the number of individuals will decrease to the

minimum within 80 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, if

the control interventions are ignored, the number of infected

individuals will increase significantly by > 70000 per 100000

people before the 80th day, which will result in higher

transmission of the drug-resistant (DR) strain of TB and

COVID-19 in the individuals.

(f) Figure 9F represents the profile of control efforts for public

education, vaccination, case finding, and case holding of TB

and COVID-19. This implies that all the controls should be

implemented at the same rate. Thus, ∼25% of the population

should be educated, vaccinated, cases should be identified for

immediate treatment and hold the cases within 95 days of

implementation, and should be intensified to ∼70% in the

subsequent days to halt both TB and COVID-19 transmission.

However, the latter days of implementation vary between 25%

and 70% based on the outcome of these interventions.

Strategy 6: implementation of public education
and vaccination (U1,U2)

This intervention is also favorable for both streams of diseases,

thus halting the transmission of TB and COVID-19. The optimal

solutions, illustrated in Figure 10, account for the observations

when the control efforts U1,U2 are applied accordingly.

The optimal solutions illustrated above depict the following

observations when all the control efforts are applied. These

interventions are normally applied to COVID-19 infection only.

(a) Figure 10A represents the effect of the control efforts U1,U2

on the individuals infectious with drug-sensitive (DS) strain

of TB only. This implies that the number of individuals will

decrease but not to the minimum within 30 days if the control

interventions are optimally implemented to halt the disease’s

transmission. On the other hand, it will increase significantly.

(b) Figure 10B represents the effect of the control efforts U1,U2

on the individuals infectious with drug-resistant (DR) strain

of TB only. This implies that the number of individuals will

decrease to the minimum within 90 days if the control efforts

are optimally implemented to halt the transmission of the

disease. Conversely, if the control interventions are ignored,

the number of infected individuals will increase significantly by

> 140, 000 people before the 90th day but in decreasing order

of drug-resistant (DR) strain of TB-only transmission in the

individuals. This is a result of the probability of the individual

developing resistance to the drug.

(c) Figure 10C represents the effect of the control effortsU1,U2 on

the individuals infectious with COVID-19 only. This implies

that the number of individuals will decrease to the minimum

within 10 days if the control interventions are optimally

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org166

https://doi.org/10.3389/fams.2024.1373565
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Appiah et al. 10.3389/fams.2024.1373565

A B

E F

C D

FIGURE 9

(A–E) Red dotted line is the optimal solution for implementing strategy 5. (F) Optimal control profile for strategy 5.

implemented to halt the disease’s transmission. Conversely,

it will increase significantly. These strategies are ideal for

COVID-19 infection only,

(d) Figure 10D represents the effect of the control efforts U1,U2

on the individuals infectious with drug-sensitive (DS) strain

of TB and COVID-19 at the same time. This implies that

the number of individuals will decrease to the minimum

within extra days and may worsen the situation if the

control efforts are optimally implemented. This is a result of

not identifying infectious individuals, vaccine inefficacy, and

drug resistance.

(e) Figure 10E represents the effect of the control efforts

U1,U2,U3,U4 on the individuals infectious with drug-resistant

(DR) strain of TB and COVID-19 at the same time. This

implies that the number of individuals will decrease to the

minimum within 90 days if the control interventions are

optimally implemented to halt the transmission of the disease.

Conversely, if the control interventions are ignored, the

number of infected individuals will increase significantly by

> 70, 000 per 100,000 people before the 80th day, which will

result in higher transmission of the drug-resistant (DR) strain

of TB and COVID-19 in the individuals.
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FIGURE 10

(A–E) Red dotted line is the optimal solution for implementing strategy 6. (F) Optimal control profile for strategy 6.

(f) Figure 10F represents the profile of control effort for public

education and vaccination for TB and COVID-19. This implies

that all the interventions U1,U2 should be more than 25%

intensified in the population from the start of implementation

andmust be intensified fully and optimized to 100% after some

days throughout the subsequent days; however,U2 should be

25% throughout the implementation in halting both TB and

COVID-19 transmission.

Strategy 7: implementation of case finding and
case holding (U3,U4)

This intervention is also favorable for both streams of diseases,

thus halting the spread of TB and COVID-19. The optimal

solutions, illustrated in Figure 11, account for the observations

when the control efforts U3,U4 are applied accordingly.

The optimal solutions illustrated above depict the

following observations when public education is only
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FIGURE 11

(A–E) Red dotted line is the optimal solution for implementing strategy 7. (F) Optimal control profile for strategy 7.

applied. These interventions are normally applied to TB

infection only.

(a) Figure 11A represents the effect of the control efforts U3,U4

on the individuals infectious with drug-sensitive (DS) strain

of TB only. This implies that the number of individuals

will decrease to the minimum within 20 days if the control

interventions are optimally implemented to halt the disease’s

transmission. Conversely, it will increase. This is a result of

identifying and holding the cases as early as possible to prevent

further transmission.

(b) Figure 11B represents the effect of the control effortsU3,U4 on

the individuals infectious with drug-resistant (DR) strain of TB

only. This implies that the number of individuals will decrease

within 90 days if the control interventions are optimally

implemented to halt the disease’s transmission. Conversely, if

the control interventions are ignored, the number of infected

individuals will increase significantly by > 140, 000 per

100,000 people before the 90th day, which will result in higher

transmission of the drug-resistant (DR) strain of TB only in

the individuals.
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(c) Figure 11C represents the effect of the control efforts U3,U4

on the individuals infectious with COVID-19 only. This

implies that the number of individuals will decrease to the

minimum within 60 days if the control effort is optimally

implemented to halt the disease’s transmission. Conversely, it

will increase significantly.

(d) Figure 11D represents the effect of the control effortsU3,U4 on

the individuals infectious with drug-resistant (DR) strain of TB

and COVID-19 at the same time. This implies that the number

of individuals will decrease to the minimum within 100 days

if the control interventions are optimally implemented to halt

the disease’s transmission. Conversely, it will decrease but not

significantly. This is a result of identifying and holding the

cases as early as possible to prevent further transmission.

(e) Figure 11E represents the effect of the control effortsU3,U4 on

the individuals infectious with drug-resistant (DR) strain of TB

and COVID-19 at the same time. This implies that the number

of individuals will decrease to the minimum within 100 days

if the control interventions are optimally implemented to halt

the disease’s transmission. Conversely, if the control effort

is ignored, the number of infected individuals will increase

significantly by > 70, 000 per 100,000 people before the 100th

day, which will result in higher transmission of the drug-

resistant (DR) strain of TB and COVID-19 in the individuals.

(f) Figure 11F represents the profile of control effort for case

finding and case holding of TB and COVID-19. This implies

that more than 25% of the cases should be identified and

held in the population from the start of implementation and

must be intensified fully and optimized to 100% after 85 days

throughout the subsequent days in minimizing both TB and

COVID-19 transmission.

Analyzing the cost-e�ectiveness of
the strategies

Once the strategies are given, it is imperative to know the cost

associated with implementing such intervention(s). Therefore, we

explore the costs associated with each control strategy to check

their effectiveness. We layout some cost-effectiveness approaches

to further understand the control strategies.

The average cost-e�ectiveness ratio (ACER)
and incremental cost-e�ectiveness ratio
(ICER)

We consider two procedures, which have been explained in

[36–39], to carry out epidemiological studies.

The average cost-e�ectiveness ratio (ACER)
We define the average cost-effectiveness ratio (ACER) of

implementing a strategy as follows Equation (31):

ACER =

Total cost generated by applying the strategy
Total number of infections averted by applying the strategy

. (31)

TABLE 2 Strategies’ ACER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ACER
value

Strategy 1 2.7545× 108 6.3063× 103 2.2895× 10−5

Strategy 2 2.3485× 106 3.1531× 103 0.0013

Strategy 3 5.4017× 105 1.6016× 104 0.0296

Strategy 4 2.3177× 108 3.3031× 104 1.4252× 10−4

Strategy 5 3.2339× 108 5.8506× 104 1.8091× 10−4

Strategy 6 2.7566× 108 9.4594× 103 3.4315× 10−5

Strategy 7 2.3231× 108 4.9047× 104 2.1113× 10−4

The total cost Q, stated in (24), would be used to evaluate the total

cost that the intervention would generate in Equation (31). We

then compare the ACER values of each strategy, and the one with

the least value saves cost. Therefore, the cost-effective intervention

is considered as the strategy with the least ACER value. This is

illustrated below.

From Table 2, control strategy 1, the implementation of public

education only has the least value of ACER, hence saving cost.

This is not enough to choose a strategy; we further explore

other approaches.

The incremental cost-e�ectiveness ratio (ICER)
We define the incremental cost-effectiveness ratio (ICER) of

implementing a strategy as follows Equation (32):

ICER =

The cost difference generated by strategies x and y
Difference in the total number of infections averted in strategies x and y

. (32)

The total cost function Q, stated in (24), would be used to estimate

the total cost that the intervention would generate. It is worth

knowing that the averted total number of infections is the difference

between the initial values of Ex, Ix, where x = st, rt, c, stc, rtc,

without control(s) and with controls. The outcomes are tabulated

below in infection averted increasing order.

The ICER in Table 3 is calculated as follows:

ICER (3) =
1.6016× 104 − 0

5.4017× 105 − 0
= 0.0296,

ICER (2) =
3.1531× 103 − 1.6016× 104

2.3485× 106 − 5.4017× 105
= −0.0071,

ICER (4) =
3.3031× 104 − 3.1531× 103

2.3177× 108 − 2.3485× 106
= 1.3023× 10−4,

ICER (7) =
4.9047× 104 − 3.3031 × 104

2.3231× 108 − 2.3177× 108
= 0.0297,
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TABLE 3 Strategies’ ICER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ICER
value

Strategy 3 5.4017× 105 1.6016× 104 0.0296

Strategy 2 2.3485× 106 3.1531× 103 −0.0071

Strategy 4 2.3177× 108 3.3031× 104 1.3023× 10−4

Strategy 7 2.3231× 108 4.9047× 104 0.0297

Strategy 1 2.7545× 108 6.3063× 103 −9.9074×

10−4

Strategy 6 2.7566× 108 9.4594× 103 0.0150

Strategy 5 3.2339× 108 5.8506× 104 0.0010

TABLE 4 Strategies’ ICER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ICER
value

Strategy 2 2.3485× 106 3.1531× 103 0.0013

Strategy 4 2.3177× 108 3.3031× 104 1.3023× 10−4

Strategy 7 2.3231× 108 4.9047× 104 0.0297

Strategy 1 2.7545× 108 6.3063× 103 −9.9074×

10−4

Strategy 6 2.7566× 108 9.4594× 103 0.0150

Strategy 5 3.2339× 108 5.8506× 104 0.0010

TABLE 5 Strategies’ ICER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ICER
value

Strategy 4 2.3177× 108 3.3031× 104 1.4252× 10−4

Strategy 7 2.3231× 108 4.9047× 104 0.0297

Strategy 1 2.7545× 108 6.3063× 103 −9.9074×

10−4

Strategy 6 2.7566× 108 9.4594× 103 0.0150

Strategy 5 3.2339× 108 5.8506× 104 0.0010

ICER (1) =
6.3063× 103 − 4.9047× 104

2.7545× 108 − 2.3231× 108
= −9.9074× 10−4,

ICER (6) =
9.4594× 103 − 6.3063× 103

2.7566× 108 − 2.7545× 108
= 0.0150,

ICER (5) =
5.8506× 104 − 9.4594× 103

3.2339× 108 − 2.7566× 108
= 0.0010.

Assessing strategy 3 and strategy 2 in Table 3, it is noticed from

the ICER that strategy 3 is expensive to deploy in a resource-

limited setting; hence, strategy 3 is removed from the list of possible

TABLE 6 Strategies’ ICER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ICER
value

Strategy 4 2.3177× 108 3.3031× 104 1.4252× 10−4

Strategy 1 2.7545× 108 6.3063× 103 −6.1183×

10−4

Strategy 6 2.7566× 108 9.4594× 103 0.0150

Strategy 5 3.2339× 108 5.8506× 104 0.0010

TABLE 7 Strategies’ ICER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ICER
value

Strategy 1 2.7545× 108 6.3063× 103 2.2895× 10−5

Strategy 6 2.7566× 108 9.4594× 103 0.0150

Strategy 5 3.2339× 108 5.8506× 104 0.0010

TABLE 8 Strategies’ ICER values with their total infection averted and

total cost involved.

Strategies Total
infection
averted

Total cost
involved

ICER
value

Strategy 1 2.7545× 108 6.3063× 103 2.2895× 10−5

Strategy 5 3.2339× 108 5.8506× 104 0.0011

controls, and the ICER is calculated again. This is presented in

Table 4.

Assessing strategy 2 and strategy 4 in Table 4, it is noticed

from the ICER that strategy 2 is expensive to deploy in a resource-

limited setting; hence, strategy 2 is removed from the list of possible

controls, and the ICER is calculated again. This is presented in

Table 5.

Assessing strategy 4 and strategy 7 in Table 5, it is noticed

from the ICER that strategy 7 is expensive to deploy in a resource-

limited setting; hence, strategy 7 is removed from the list of possible

controls, and the ICER is calculated again. This is presented in

Table 6.

Assessing strategy 4 and strategy 1 in Table 6, it is noticed

from the ICER that strategy 4 is expensive to deploy in a resource-

limited setting; hence, strategy 4 is removed from the list of possible

controls, and the ICER is calculated again. This is presented in

Table 7.

Assessing strategy 1 and strategy 6 in Table 7, it is noticed

from the ICER that strategy 6 is expensive to deploy in a resource-

limited setting; hence, strategy 6 is removed from the list of possible

controls, and the ICER is calculated again. This is presented in

Table 8.

Finally, assessing strategy 1 and strategy 5 in Table 8, it is

noticed from the ICER that strategy 5 is expensive to deploy in

a resource-limited setting; hence, strategy 5 is removed from the

list of possible controls. Therefore, we conclude that strategy 1 is
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the most cost-effective strategy to use among the several strategies

under study here. From the above analysis, it is obvious that strategy

1, thus, public education is the intervention that saves cost.

Conclusion

We have designed a new epidemiological co-infection

vaccination model involving two strains of TB and COVID-19

to explore the transmission dynamics of tuberculosis (TB) and

COVID-19 using data from Ghana. We have estimated the

model’s parameters and analyzed their effects on the two diseases’

transmission through numerical and graphical illustrations. Again,

we have exhibited the threshold dynamics of the basic reproduction

number R0 by evaluating the reproduction numbers of the two

streams of the model, thus, TB and COVID-19 streams. It was

found that the reproduction number of the TB stream with two

strains: the drug-sensitive (DS) strain of TB, Rst = 0.55, and the

reproduction number of the drug-resistant (DR) strain of TB,

Rrt = 1.47. The reproduction number of the COVID-19 stream

is R0c = 2.21. This signifies that ∼82.8% of TB and COVID-19

co-infection cases are drug-resistant (DR) strains of TB-induced,

while 17.2% are drug-sensitive (DS) strains of TB-induced. The

treatment of TB is not easy due to ineffective vaccines, as stated

in [4, 5], which has also been demonstrated in this study. It was

observed that the number of drug-resistant (DR) strains of TB and

COVID-19 co-infection is higher in all cases (see Figures 5E–11E).

Our goal is to study the co-infection of tuberculosis (TB)

and COVID-19 and devise strategies that save costs to mitigate

the transmission; therefore, we have formulated optimal control

strategies together with the cost-effectiveness analysis that consider

control measures involving both pharmaceutical and non-

pharmaceutical interventions to control TB and COVID-19 co-

infection. We implemented the strategies (see Figures 5–11), and

it was observed that public education and vaccination to prevent

TB and COVID-19 should be intensified and reach ∼25% of the

population from the beginning and intensify in subsequent days.

Vaccination should be enhanced up to ∼25% of the population

from the start and reach∼75% within 100 days of implementation,

case holding, and case finding, as explained in [39], need ∼75%

enforcement within 100 days because they are helpful in controlling

the spread of TB. This indicates that although vaccination is good, it

largely depends on the rise of drug-resistant (DR) strain infections

if treatment failure of individuals infectious with drug-sensitive

(DS) strain occurs and also the inefficacy of vaccines. We therefore

encourage the health service to enhance the mechanism for TB

diagnosis by following the recommendation in [40] because it is

difficult to treat TB.

It is also worth knowing that public education saves cost per the

cost-effectiveness analysis compared to the other strategies raised in

this study. This intervention can minimize TB and/or COVID-19,

as illustrated in Figure 5. This intervention should reach about 25%

of the population from the beginning and intensify up to 75% in the

subsequent days to realize the results of strategy 1 (see Figure 5F).

However, it is imperative to check the effectiveness and cost of all

the strategies raised in this study when choosing a control measure.

The outcomes of the findings imply that both pharmaceutical

and non-pharmaceutical measures are very important in

controlling the transmission of TB and COVID-19 co-infection.

These control measures should always be vigorous to create

public awareness of TB and COVID-19, as illustrated in

Figures 5F–11F, to reduce the effective contact rates and rates

of acquiring TB and/or COVID-19, as illustrated in Figure 4.

Pharmaceutical measures such as vaccination against TB and

COVID-19 are important; however, they should be implemented

with vigilance because of the existence of drug-resistant (DR)

strains of TB; therefore, the control measure should be mild

in the beginning, as illustrated in all the PRCCs of this study

(see Figure 3).

Although we have demonstrated the co-infection dynamics

of TB and COVID-19, this study is focused on the homogeneity

of the population; we hope to extend this study to explore the

transmission of TB and COVID-19 co-infection by considering

the heterogeneity of the population, such as age and sex. We

encourage the Ghana health service to be keen on observing the

drug-resistant (DR) strain of TB since it has a higher infection

rate compared to the drug-sensitive (DS) strain of TB, leading

to a high co-infection rate of drug-resistant (DR) strain of TB

and COVID-19 which is difficult to treat. In addition, individuals

with TB and/or COVID-19 are encouraged to complete their

prophylaxis, especially for TB, to help halt the transmission of TB

and COVID-19.
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