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Editorial on the Research Topic

Brain functional analysis and brain-like intelligence

1 Introduction

The Research Topic “Brain functional analysis and brain-like intelligence” belongs to

the journals, Frontiers in Neuroscience. The aim of this Research Topic is to establish a

bridge between brain functional analysis and brain-like machine intelligence, which will

promote the basic theory of AI, as well as the mechanism of brain function.

With the improvement in data collection and computing power, artificial intelligence

(AI), represented by deep learning, has been developing rapidly. However, there exist

huge gaps between natural data and brain data. It therefore suffers from performance

degradation if directly applying a traditional deep learning method to the brain data

including image, voxel, and electroencephalography (EEG)-based signal. This brings

considerable challenges to the brain-related application. Toward these Research Topics, we

strive to offer a thorough understanding of the most recent advancements drawing from all

the manuscripts that have been published. The key aspects of this topic can be summarized

under the following categories: brain image understanding: registration, recognition, and

segmentation; EEG signal-based epileptic seizure prediction; AI for brain science.

2 Published papers

2.1 Brain image understanding: registration, recognition,
and segmentation

With the continuous development and improvement of computer vision technology,

AI-based brain image understanding technology including brain image registration,

recognition, and segmentation, has increasingly important value in improving the accuracy

and efficiency of clinical diagnosis. As an important upstream task of brain image

understanding, brain image registration plays an important role on significantly affecting

the subsequent downstream process. However, it typically suffers from high model

complexity due to the ill-conditioned inverse problem of brain image registration (Fu et al.,

2020). Toward this Research Topic, Fang et al. in the article “Decoupled learning for brain
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image registration” decomposed this problem into two simpler sub-

problems and adopted two light neural networks to approximate

their solutions to reduce the complexity.

With the well registered brain images, its recognition is

qualified to be conducted. However, existing brain image

recognition methods typically suffer from weak learning ability on

shape features. Toward this Research Topic, the article “STNet:

shape and texture joint learning through two-stream network for

knowledge guided image recognition” by Wang et al. proposed a

shape and texture joint learning mechanism. In this work, the

pyramid-grouped convolution and the deformable convolution are

adopted to enhance the shape features.

For medical visual segmentation, the article “Dual consistent

pseudo label generation for multi-source domain adaptation without

source data for brain image segmentation” by Cai et al. proposed

a pseudo label generation mechanism for multi-source domain

adaptation for brain image segmentation. In this method, a dual

consistency constraint including the inter-domain and the intra-

domain is presented to guide the generation of the pseudo labels.

Beside 2-d segmentation, the 3-d voxels identification is also

deserved attention. The article “Groupwise structural sparsity for

discriminative voxels identification” by Ji, Zhang et al. tackled the

absence information of sufficient sample sizes for psychological

experiments by proposing a stable hierarchical voting (SHV)

mechanism. SHV is enabled to evaluate the quality of spatial

random sampling and minimizes the risk of false and missed

detection.

2.2 EEG signal-based epileptic seizure
prediction

In clinical settings, automatic epileptic seizure prediction is

crucial to reducing the heavy burden for patients with intractable

epilepsy (Zhao et al., 2021). Electroencephalography (EEG) signals

record brain activity and provide valuable information about

brain dysfunction. But visually evaluating these signals, which is a

non-invasive and affordable way to detect seizures, can be time-

consuming and subjective. Thus, there’s room for improvement.

The article “Epileptic seizure detection with deep EEG features

by convolutional neural network and shallow classifiers” by Zeng

et al. exploits the usage of deep learning to achieve automatically

detecting seizures as an urgent problem in clinical application. To

effectively detect seizures, EEG signals are adopted as input and

the combination of deep feature extractor and shallow classifier is

proved to be the most effective. Different from this work, in the

article “An effective fusion model for seizure prediction: GAMRNN”,

Ji, Xu, et al. explored the effectiveness of the convolutional attention

module toward electroencephalography-based epileptic seizure

recognition. In this work, the effectiveness of Lion optimizer is also

demonstrated in terms of convergence and the ability to facilitate

the recognition performance.

2.3 AI for brain science

Brain-machine interfaces (BMI) have developed rapidly

in recent years, but still face critical issues such as accuracy

and stability (Liu et al., 2020). By mimicking the architecture

and functionality of biological nervous systems, neuromorphic

computing models emerge as a potential avenue for creating

advanced neuroprosthesis with exceptional performance. Qi

et al. demonstrates that neuromorphic computing could be a

promising method to realize BMI in the article “Neuromorphic

computing facilitates deep brain-machine fusion for high-

performance neuroprosthesis.” The article demonstrates utilizing

neuro-morphological computational models to simulate the

characteristics of biological neural systems contributes to realizing

brain-machine integration and bring new breakthroughs for

high-performance and long-term-usable BMI systems.

In recent years, the dynamic behavior of complex networks,

especially neural networks, has attracted extensive attention

because it can help us understand how the brain processes

information, stores memories, and makes decisions (Shine,

2021). The article “Learning based sliding mode synchronization

for fractional order Hindmarsh-Rose neuronal models with

deterministic learning” by Chen et al. proposed a learning

based sliding mode control algorithm is proposed by using the

deterministic learning (DL) mechanism. With DL mechanism, the

synchronization process can be started quickly by recalling the

empirical dynamics of neurons. Therefore, fast synchronization

effect is achieved by reducing the online computing time.

Inspired by neuroscience, some interpretable machine

learning algorithms have been proposed (Lindsay, 2020), such as

reinforcement learning mechanisms that simulate brain function.

Zhao et al. proposed a neuroscience-inspired reinforcement

learning mechanism in the article “A semi-independent policies

training method with shared representation for heterogeneous

multi-agent reinforcement learning.” It is claimed to be the first

work to adopt a hard-parameter-sharing scheme to multi-agent

reinforcement learning for balancing the conflicting requirements

of agents’ specialization and fast network convergence.

Moreover, collision prediction algorithms based on the neural

model of lobule giant motion detectors (LGMD) is also deserved

attention (Zhang et al., 2022). Zheng et al. proposed a LGMD-

based model with a binocular structure in the article “Enhancing

LGMD based model for collision prediction via binocular structure”

to address the issue that existing LGMD-based methods are not

qualified to learn the valuable depth distance feature. In this work,

The depth distance of the moving object is extracted by calculating

the binocular disparity facilitating a clear differentiation of the

motion patterns.

3 Conclusion

Toward the huge gaps between the traditional artificial

intelligence and brain science, this Research Topic has gathered

considerable original research articles, which made an attempt to

establish a bridge between brain functional analysis and brain-

like machine intelligence. Among these articles, many brain data-

oriented deep learning methods are proposed, toward various

downstream tasks such as registration, recognition, segmentation,

and detection, which have a vital significance to the clinical

application. Moreover, AI for brain science is also discussed,

such as brain-machine interfaces and complex neural network
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construction of brain. These works all contribute positively to

reducing the gaps.
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Neuromorphic computing
facilitates deep brain-machine
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Brain-machine interfaces (BMI) have developed rapidly in recent years, but

still face critical issues such as accuracy and stability. Ideally, a BMI system

would be an implantable neuroprosthesis that would be tightly connected and

integrated into the brain. However, the heterogeneity of brains and machines

hinders deep fusion between the two. Neuromorphic computing models, which

mimic the structure and mechanism of biological nervous systems, present

a promising approach to developing high-performance neuroprosthesis. The

biologically plausible property of neuromorphic models enables homogeneous

information representation and computation in the form of discrete spikes

between the brain and the machine, promoting deep brain-machine fusion and

bringing new breakthroughs for high-performance and long-term usable BMI

systems. Furthermore, neuromorphic models can be computed at ultra-low

energy costs and thus are suitable for brain-implantable neuroprosthesis devices.

The intersection of neuromorphic computing and BMI has great potential to lead

the development of reliable, low-power implantable BMI devices and advance the

development and application of BMI.

KEYWORDS

brain-machine interface, brain-computer interface, neuromorphic model, brain-like
computing, neuroprosthesis, brain-machine fusion

1. Introduction

Brain-machine interface (BMI) is a technology that enables direct interaction between
the brain and external devices such as cursors, robotic arms, and prosthetic limbs, which has
demonstrated great potential in various applications, including gaming, smart homes, and
neural or motor rehabilitation (Hochberg et al., 2012).

Most recently, intracortical brain-machine interfaces (iBMI), which decode information
from single-neuron-level neural signals, have seen rapid progress and enabled new forms
of neuroprosthesis, such as brain-to-handwriting (Willett et al., 2021), BMI-based speech
synthesis (Moses et al., 2021), and implantable neural therapies for epilepsy (Berényi et al.,
2012) and depression (Scangos et al., 2021). The emergence of BMI technology companies,
represented by Neuralink, has sparked a wave of rapid development of brain-implantable
hardware and devices, boosting the clinical application of BMIs.
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FIGURE 1

Neuromorphic computing facilitates deep brain-machine fusion.

2. Challenges for high-performance
BMIs

Ideally, an iBMI system would take the form of brain-
implantable neuroprosthesis and would work collaboratively with
the brain, like an extension of the brain (Wu et al., 2016).
The brain and the iBMI-based neuroprosthesis should be closely
connected and integrated, with both sides adapting to, learning
with, and compensating for each other as one. However, such a deep
connection is difficult to achieve, given the fundamental difference
between the brain and the machine. Specifically, from the side
of the biological brain, information is encoded in spike trains of
neurons. While from the side of computing machines, the basic
unit for computation is vectors in real values. The gap between
representation and computing lays a barrier to deep fusion between
brain and machine, degrading the performance of iBMI systems.
Lacking the deep connection between the brain and the machine,
the existing iBMI systems still face critical challenges that have
seriously hindered clinical application, including:

2.1. Degree of freedom and accuracy

Most motor iBMIs can only control 2–3 degrees of freedom
at the same time, typical applications include 2D cursors and 3D
robotic arms. The accuracy of the online control process is around
60–90% with full brain control with a path efficiency of 0.4–0.8
(Collinger et al., 2013; Wodlinger et al., 2014), which still cannot
meet the clinical use requirements.

2.2. Adaptation

Most existing BMI systems lack the ability to adapt over
time and exhibit limited cross-day or long-term performance (Qi
et al., 2019; Degenhart et al., 2020). Since brain signals change
dynamically over time, a BMI system usually has to be recalibrated
every day to maintain its performance, which seriously affects the
user experience (Brandman et al., 2018).

2.3. Low-cost computing

In particular, brain signals are high-throughput data, and
neural decoding approaches are commonly energy-intensive,
leading to issues such as low battery life. Thus, most existing brain-
implantable devices only contain a limited number of channels
(usually below 50 recording channels) (Rosenthal and Reynolds,
2019; Shupe et al., 2021). Especially, for brain-implantable devices,
existing wireless devices usually cannot continuously work for
more than 1–2 days (Shaikh et al., 2019).

3. Neuromorphic computing
facilitates deep brain-machine
fusion

Neuromorphic computing models, which mimic the structure
and mechanism of biological neural circuits, provide a promising

Frontiers in Neuroscience 02 frontiersin.org8

https://doi.org/10.3389/fnins.2023.1153985
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1153985 May 8, 2023 Time: 20:17 # 3

Qi et al. 10.3389/fnins.2023.1153985

new option for building high-performance neuroprosthesis
(Figure 1).

Neuromorphic computing technologies, such as spiking
neural networks (SNNs), simulate neuron models of the brain
and compute in the form of discrete spikes (Maass, 1997).
Computational neuron models, such as the Hodgkin–Huxley
model, spike response model, and leaky integrate-and-
fire (LIF), mimicking the behavior of biological neurons,
are the basic unit for information representation and
computation. And the learning process is based on discrete
spikes generated by the neuromorphic neurons, following the
Hebbian rules and spike timing-dependent plasticity (STDP)
rule that resemble biological nervous systems. Additionally,
supervised algorithms like tempotron and resume (Gütig and
Sompolinsky, 2006), which are derived from artificial neural
network technologies, can also be utilized in the learning
process.

Another advantage of neuromorphic computing is the ability
of ultra-low-cost computing. The spike-based computing is an
event-driven asynchronous process, which greatly saves computing
energy consumption and realizes ultra-low power consumption
computing deployed on neuromorphic chips. Taking partial
integro-differential equations solving task as an example, the
neuromorphic computing systems simulate the brain’s neural
processes, the neuromorphic computing chip TrueNorth (Merolla
et al., 2014) demonstrates a much lower power consumption
(10−3 to 10−1 W) than commodity server-class computing
chips (such as the Intel Xeon E5-2662, which consumes around
102 W) (Smith et al., 2022), while still achieving comparable
performance.

These features make the neuromorphic computing model
a suitable option for developing such high-performance
neuroprosthesis.

3.1. Providing a deep and precise
connection between brain and machine

With the natural biological plausibility, neuromorphic models
enable homogeneous information representation and computation
between brain and machine, by direct information transfer in
the form of spike trains, which can potentially enclose the
connection between both sides. Traditionally, neuronal spike
trains are transformed into continuous values in temporal
bins to be fed into decoders (Hochberg et al., 2012; Willett
et al., 2021), where the precise timing and spike order between
neurons are inevitably lost. The direct spike-based interaction
between brain and machine enables more precise information
transfer, thus can boost the accuracy and stability of BMI
systems.

3.2. Facilitating brain-machine
co-adaptation

With the Hebbian learning rule that is shared between
biological neurons and neuromorphic neurons, BMI systems can
learn and develop adaptively with the brain in an online process,

which is able to bring new breakthroughs for long-term BMI
systems. Besides, neuromorphic models are also expected to
overcome the issue of “catastrophic forgetting,” which is prevalent
in current machine learning models (Imam and Cleland, 2020).
They thus are able to perform continuous learning, and facilitate
long-term and stable BMIs.

3.3. Enabling fully-implantable BMI
devices

With the assistance of neuromorphic chips, neuromorphic
models can compute with ultra-low energy cost (Basu et al., 2018),
providing an ideal solution for wireless fully brain-implantable
neuroprosthesis devices (Shaikh et al., 2019).

Currently, although there are only a few studies on the
intersection of neuromorphic computing and BMI, they
demonstrate the potential advantages of neuromorphic-model-
based neural decoding. Imam and Cleland (2020) proposed
a neuromorphic olfactory circuit for online learning of odor
recognition and demonstrated the superiority of neuromorphic
models in online one-shot learning and continuous learning.
Li et al. (2019) proposed a “bioelectronic nose” using SNN
decoder to decode odor information from neural activities
recorded from the olfactory bulb of rats, demonstrating that
neuromorphic models have improved performance and sensitivity
(quicker response) compared to traditional machine learning
approaches. Kasabov (2014) proposed a special neuromorphic
model called NeuCube, which has demonstrated superior
performance in brain signal processing tasks. Dethier et al.
(2013) implemented a Kalman filter with spike computing
and constructed a real-time cursor control BMI system, and
found that a neuromorphic network with 2,000 neurons can
achieve a success rate of over 94%, and the performance is
stably maintained for at least 1 h in a pinball task. These
studies demonstrated the advantages of neuromorphic model-
based BMIs to some extent, while the deep fusion between
the brain and machine, and the close intersection between
neuromorphic computing and BMI is to be studied. Especially,
with the advantages of neuromorphic computing models, the
performance of BMI can be improved in both accuracy and
stability, and BMI devices can hopefully meet the requirements of
being small, energy-efficient, and fully brain-implantable, which
could greatly benefit the clinical use and commercialization of
BMIs.

4. Discussion

The field of BMI is currently in a period of rapid
development. Neuromorphic computing, with its advantages of
biological plausibility, continuous learning, and ultra-low energy
consumption, perfectly aligns with the core challenges that BMI
faces. The intersection of neuromorphic computing and BMI holds
immense promise for the development of reliable and low-power
implantable BMI devices and would significantly improve the long-
term stability and usability of BMIs.
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Introduction: In the clinical setting, it becomes increasingly important to detect

epileptic seizures automatically since it could significantly reduce the burden for

the care of patients su�ering from intractable epilepsy. Electroencephalography

(EEG) signals record the brain’s electrical activity and contain rich information

about brain dysfunction. As a non-invasive and inexpensive tool for detecting

epileptic seizures, visual evaluation of EEG recordings is labor-intensive and

subjective and requires significant improvement.

Methods: This study aims to develop a new approach to recognize seizures

automatically using EEG recordings. During feature extraction of EEG input from

raw data, we construct a new deep neural network (DNN) model. Deep feature

maps derived from layers placed hierarchically in a convolution neural network

are put into di�erent kinds of shallow classifiers to detect the anomaly. Feature

maps are reduced in dimensionality using Principal Component Analysis (PCA).

Results: By analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy,

we conclude that our proposed method is both e�ective and robust. These

datasets vary significantly in the acquisition of data, the formulation of clinical

protocols, and the storage of digital information, making processing and analysis

challenging.On both datasets, extensive experiments are performedusing a cross-

validation by 10 folds strategy to demonstrate approximately 100% accuracy for

binary and multi-category classification.

Discussion: In addition to demonstrating that our methodology outperforms

other up-to-date approaches, the results of this study also suggest that it can be

applied in clinical practice as well.

KEYWORDS

electroencephalogram (EEG), epileptic seizure detection, deep features, shallow

classifiers, deep neural network (DNN), convolution neural network

1. Introduction

Epileptic seizures are brain’s electrical activities that occurs suddenly and unexpectedly

(Arab et al., 2010). It affects the daily life of more than 50 million individuals in

the world due to the brain dysfunction (Solaija et al., 2018). The recurrent epileptic

seizure usually occurs without any obvious external symptoms (Zhou et al., 2020).

Currently, using metal electrodes fixed to the brain scalp in a standard configuration,

electroencephalogram (EEG) signals record neural activity. Physiologically, they offer

deep insight into the brain’s state and can be used to detect seizure onsets non-

invasively and economically. Traditionally, clinical diagnosis relies on the visual

screening and inspection of pronged EEG recordings by board-certified physicians,

which is cumbersome, subjective and error-prone (Martis et al., 2015). A reliable,

Frontiers inNeuroscience 01 frontiersin.org11

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1145526
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1145526&domain=pdf&date_stamp=2023-05-22
mailto:zengwei@lyun.edu.cn
https://doi.org/10.3389/fnins.2023.1145526
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1145526/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zeng et al. 10.3389/fnins.2023.1145526

efficient, and accurate EEG analysis and classification system is

therefore urgently needed to detect seizures in a timely manner.

To handle this problem, different tools have been developed and

applied rapidly in recent years, including signal processing and

artificial intelligence (Gupta et al., 2018; Li et al., 2019; Subasi et al.,

2019; Shoeibi et al., 2021; Tuncer et al., 2021a).

Detection of seizures using EEG generally involves two

phases: separating features and classifying them. In the first

phase, numerous features generated from four domains,

including time, frequency, time-frequency, and non-linear,

are incorporated. To analyse time-domain characteristics,

morphological parameters, including duration, amplitude,

kurtosis, and peak are representative (Wang et al., 2020). There

is widespread use of fast Fourier transform (Li and Chen, 2021),

as well as power spectral density in frequency domain analysis,

provided the EEG signal is static (Al Ghayab et al., 2018). The EEG

signal, however, does not display stationarity. Hence, methods

of time-frequency domain analysis are usually used for the

analysis o time-varying properties of the EEG signal (Sharma

et al., 2020), such as time-frequency distribution (Wu et al.,

2021) and wavelet transform (Tuncer et al., 2021b). In wavelet

transforms, relative frequency information, which is present at

low frequencies as well as relative time information, is captured

at high frequencies via multiresolution analysis (Sharmila and

Geethanjali, 2019). In addition to the wavelet transform, other

variations have been proposed, such as the empirical wavelet

transform, wavelet packet transform, and wavelet packet entropy.

Another popular approach to extracting features is the empirical

mode decomposition (EMD) in combination with its variants

(Li et al., 2021). Intrinsic mode functions (IMFs) are created

when the EEG signal is broken into subsignals. Nonetheless,

EMD cannot handle multi-channel signals. Cura and Akan (2021)

proposed a single- and multi-channel EEG-based dynamic pattern

decomposition (DMD) method to analyze epileptic signals. They

extracted high-order spectral moments and subband powers to

detect seizure. In non-linear domain, complexity metrics are

proposed to depict chaotic properties of the EEG signal, like

Hurst exponent, Lyapunov exponent, and various entropies. Other

kinds of non-linear metrics, such as Lempel-Ziv complexity,

have also been widely used. Rout et al. (2021) used variational

mode decomposition (VMD) to identify three band-limited

eigenmode functions (BLIMFs) in EEG raw data. In order to

derive information-rich spectral and temporal features from

BLIMFs, the Hilbert Transform was applied. In addition, the most

discriminatory compressed form of privileged information was

analyzed based on approximate entropy (ApEn). Anuragi et al.

(2022) employed EWT to break down the EEG recordings into

Fourier Bessel Series Expansion (FBSE) based subbands. These

subbands were then reconstructed as a three-dimensional (3D)

phase space representation (PSR). An Euclidean distance of the

3D PSR was used in order to calculate features like line length, log

energy entropy, and norm energy entropy. Shankar et al. (2021)

used a recurrence plot (RP) technique to analyze brain rhythms

with two-dimensional images generated from the EEG signal,

which could preserve the non-linear characteristics of EEG. As an

additional assessment of image quality, RP entropy and root mean

square skewness were used along with RP image criteria.

In the second phase, a variety of machine learning algorithms

were proposed to extract EEG signal features, such as artificial

neural networks and logistic regression (Abbasi and Goldenholz,

2019; Beniczky et al., 2021). EEG signals during seizures were

differentiated using DWT and arithmetic coding by Amin et al.

(2020). Various classifiers were then used to detect seizure activity,

including Naïve Bayes (NB), multi-layer perceptron (MLP), k

nearest neighbors (KNN), and support vector machine (SVM).

Anter et al. (2022) utilize a NB based hybrid genetic whale

optimization algorithm for feature selection. Afterwards, the ictal

and non-ictal EEG signals were classified using an adaptive ELM

based on a differential evolution algorithm. To separate EEG signals

into distinct bands, Shoeibi et al. (2022) used TQWT. Then, 13

different types of fuzzy entropies were calculated as features from

different subbands. Afterwards, EEG recordings were separated

using an adaptive neuro-fuzzy inference system.

Due to rapid development in deep learning (DL) over the

past few years, several emerging algorithms have been utilized

to handle seizure detection problems. While building a multi-

layer neural network, DL approaches can minimize the impact of

irrelevant features and alleviate computation costs. Acharya et al.

(2018) developed a multi-layer deep convolutional neural network

(CNN) to determine whether a patient was in a normal, preictal,

or seizure state. At present, the generalization and classification

abilities of existing DL models may be limited by the use of inter-

layer static connection weights. To overcome such problems, A

new network architecture called Variable Weight Convolutional

Neural Networks (VWCNN) was proposed by Jia et al. (2022).

In its convolutional and fully-connected layers, dynamic weights

were used instead of static weights to adapt to different EEG

characteristics. This model could handle a variety of situations.

Sahani et al. (2021) used modified particle swarm optimization

based on log energy entropy maxima to calculate optimized values.

Then, epileptic seizures were detected using a combination of

multiple complex deep neural networks.

Among machine learning systems, representative features have

often been hand-designed and empirically chosen. Such systems

are more likely to produce false positives and are prone to

misdiagnosis. By contrast, DL automatically generates features

instead of using any hard-crafted features, and have the potential

to provide superior classification performance (Murat et al., 2021).

These techniques automate feature extraction and no manual

feature extraction is required due to the end-to-end structure of DL

models. In this work, we build an efficient and reliable deep neural

network (DNN) to recognize epilepsy, utilizing features from CNN

layers without any preprocessing of input EEG signals. This study

makes a major contribution to the identification of presence and

developing stages of seizure using information from deep feature

maps of CNN together with shallow classifiers. An effective way

for reduction of the dimensionality of deep feature maps is the

employment of Principal Component Analysis (PCA) (Jolliffe and

Cadima, 2016).

Throughout the article, the following structures are followed.

The proposed method is described in detail in Section 2, which

includes description of EEG data, extraction of deep feature,

and EEG classification for seizure detection. Section 3 designs

comprehensive experiments and provides corresponding results.
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FIGURE 1

An illustration of the proposed method for classifying EEG recordings with deep features and shallow classifiers for the detection of epileptic seizures

(binary and multi-class classification).

Section 4 presents a comprehensive discussion about the results and

contribution. Section 5 gives a brief conclusion.

2. Materials and methods

This section briefly introduces a method for distinguishing

normal and abnormal EEG signals with information extracted

through deep features for detecting epileptic seizures. It consists

of a feature extraction phase and a classification phase, which

includes several steps. Firstly, EEG recordings are subjected to

DNN-based feature extraction without any preprocessing, followed

by PCA reduction of feature dimension. Secondly, features are put

into five traditional machine learning classifiers to detect epileptic

seizures. It includes binary classification (seizure vs. seizure-free

or preictal vs. interictal) and multi-class classification (preictal vs.

interictal vs. ictal). A flowchart showing our method is available in

Figure 1.

2.1. EEG database

2.1.1. Dataset-1
A part of the experimental data for this study comes from the

Bonn dataset, which is publicly available (Andrzejak et al., 2001).

Each subset of the dataset contains 100 artifact-free, single-channel

intracranial EEG clips of 23.6 s each, labeled A, B, C, D, and E

(also Z, O, N, F, and S, accordingly). An amplifier system with

128 channels and a band-pass filter between 0.53 and 40 Hz was

used to record the EEG signals at 173.61 Hz. Therefore, each signal

contains 4,097 records, that is, each signal has a data length of

4,097. These data are demonstrated in Figure 2. Table 1 summarizes

details about this dataset.

2.1.2. Dataset-2
In Dateset-2, segmented EEG recordings were obtained from

10 epilepsy patients (Swami et al., 2016). With a GrassTelefactor

Comet AS40 amplifier system and a 200 Hz sampling rate, all EEG

recordings were acquired. The duration of each EEG recording is

approximately 5.12 s (1,024 samples). These data are demonstrated

in Figure 2. The scalp electrodes for EEG recordings were gold-

plated and adhered to the 10-20 standard in compliance with

the recording procedure. First, an EEG signal was filtered with

a bandpass filter having a cutoff frequency of 0.5 and 70 Hz.

Afterwards, It was divided by clinical experts into ictal (group

F), interictal (group G), and preictal (group H) phases. Table 2

summarizes details about this dataset.

2.2. Deep feature extraction

DL techniques learn a set of empirical features at multiple

abstraction levels, capable of learning complex functions through

input data independent of hand-crafted features. It undergoes a

learning process by progressively extracting multiple features from

low layers to high layers (Murat et al., 2021). Therefore, we use

the DNN-based model to automatically generate features. Figure 3

demonstrates this DNN-based model.

Our DNNmodel outputs feature maps after we have connected

the convolutional layer. PCA is used to remove useless features

and reduce redundancy, which can alleviate the computational

cost and enhance the performance and generalization. Figure 3

demonstrates the feature extraction steps and details.

Table 3 summarizes a detailed parameter representation of the

DNN model. We add a Batch Normalization (BatchNorm) layer

after each convolutional layer, with axis 2 and momentum 0.9 to

speed up training. An activation function for rectified linear unit

(ReLU) follows each BatchNorm layer. We use L2 regularization

to alleviate overfitting with a dropout of 0.4 upon reaching the
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FIGURE 2

Samples of Dataset-1 Bonn dataset and Dataset-2 EEG Epilepsy dataset. (A) Dataset-1 Bonn dataset A, B, C, D, and E. (B) Dataset-2 EEG Epilepsy

dataset F, G, and H.
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TABLE 1 Overview of Dataset-1.

Items Set A Set B Set C Set D Set E

Participants 5 healthy controls 5 healthy controls 5 epileptic patients 5 epileptic patients 5 epileptic patients

Electrode types Scalp Scalp Intracranial Intracranial Intracranial

Participants’ states Awake with opened eyes Awake with closed eyes Interictal Interical Ictal

Total number of epochs 100 100 100 100 100

Sampling rate (Hz) 173.61 173.61 173.61 173.61 173.61

Duration of each epoch (second) 23.6 23.6 23.6 23.6 23.6

TABLE 2 Overview of Dataset-2.

Items Set F Set G Set H

Participants 10 epilepsy patients 10 epilepsy patients 10 epilepsy patients

Electrode types Scalp Scalp Scalp

Participants’ states Ictal Interictal Preictal (normal)

Total number of epochs 50 50 50

Sampling rate (Hz) 200 200 200

Duration of each epoch (second) 5.12 5.12 5.12

FIGURE 3

Deep neural network model and feature extraction used in this study. Conv, convolution.

first fully connected layer. Aggregate data are used for subject-level

assessments. Our neural network weights are updated by using

the cross-entropy loss function and Adam optimization. There

are three settings: 0.0001, 50, and 300, which are the learning

rate, batch size, and epochs. A 0.001 learning rate is applied

to the data, a batch size of 50, and 300 epochs are used when
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TABLE 3 Model summary of DNN.

No Layer name Layer parameters Output shape Number of params

1 1D Convolution Filters = 32, kernel_size = 3, input_shape = (4097,1), stride = 1, padding = “valid” (4095,32) 128

2 BatchNorm Axis = 2, momentum = 0.9 (4095,32) 128

3 Activation ReLU (4095,32) 0

4 1D MaxPooling Pool_size = 2 stride = 2 padding = “valid” (2047,32) 0

5 1D Convolution Filters = 64, kernel_size = 5, stride = 1, padding = “valid” (2043,64) 10,304

6 BatchNorm Axis = 2, momentum = 0.9 (2043,64) 256

7 Activation ReLU (2043,64) 0

8 1D MaxPooling Pool_size = 4, stride = 4, padding = “valid” (510,64) 0

9 1D Convolution Filters = 128, kernel_size=13, stride = 1, padding = “valid” (498,128) 106,624

10 BatchNorm Axis = 2, momentum = 0.9 (498,128) 512

11 Activation ReLU (498,128) 0

12 1D MaxPooling Pool_size = 4, stride = 4, padding = “valid” (124,128) 0

13 1D Convolution Filters = 256, kernel_size = 17, stride = 1, padding = “valid” (108,256) 557,312

14 BatchNorm Axis = 2, momentum = 0.9 (108,256) 1,024

15 Activation ReLU (108,256) 0

16 1D MaxPooling Pool_size = 2, stride = 2, padding = “valid” (54,256) 0

17 1D Convolution Filters = 128, kernel_size = 9, stride = 1, padding = “valid” (46,128) 295,040

18 BatchNorm Axis = 2, momentum = 0.9 (46,128) 512

19 Activation ReLU (46,128) 0

20 1D MaxPooling Pool_size = 2, stride = 2, padding = “valid” (23,128) 0

21 Flatten - 2,944 0

22 Dense Unit = 64, activation = “ReLU”, kernel_regularizer = L2 (0.03) 64 188,480

23 Dropout Rate = 0.4 64 0

24 Dense Unit = 5, activation = “softmax” 5 325

training the model. A feature map sized 23 × 128 is exported

from the MaxPooling layer ahead of the flatten layer. We split

the eigenvectors into 128 small eigenvectors of shape size 23 ×
1. PCA is then used to perform dimensionality reduction on

each of the small eigenvectors, resulting in 128 eigenvectors of

shape size 1 × 1. These feature vectors are concatenated with

1 × 128 shape size and fed into shallow classifiers below for

classification.

2.3. Machine learning classifiers

For epileptic seizure detection, in addition to support vector

classifier (SVC) (Lau and Wu, 2003), several classical machine

learning classifiers are employed, including k-nearest neighbors

(KNN) (Kramer, 2013), gradient boosting (GB) (Natekin andKnoll,

2013), random forest (RF) (Lau and Scornet, 2016), Gaussian Naïve

Bayes (GNB) (Griffis et al., 2016), decision tree (DT) (Safavian and

Landgrebe, 1991), and multi-layer perception (MLP) (Murtagh,

1991). Shallow classifiers are still the classifier of choice despite

deep learning approaches becoming increasingly overwhelming. To

solve supervised classification problems, discriminant analysis is

utilized to reduce the distance between each class and increase the

variability between different classes (Ye et al., 2004; Murat et al.,

2021).

3. Results

We design comprehensive experiments on two databases and

illustrate the results of classifying EEG categories into binary

and multi-class. The DNN model is implemented in TensorFlow

backend using a 10-core Intel Core i9 CPU and RTX3090 GPU on

a high-performance computer.

Cross-validation using a K-fold (K = 10) method verifies the

effectiveness of the classification. Each iteration will use K− 1 folds

to train and the remaining folds to test. In addition to accuracy

(ACC), specificity (SPF), and sensitivity (SEN), we use another four

classic performance indicators: negative predictive value (NPV),

positive predictive value (PPV), F1 score, andMatthews correlation

coefficient (MCC). Here is the calculation: a True Positive is equal

to TP, a False Negative is equal to FN, a True Negative is equal to
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TABLE 4 Di�erent experimental cases for Bonn and EEG Epilepsy datasets.

Dataset Case Groups Description

Type 1 Type 2 Type 3 Type 4 Type 5

Bonn 1 A vs. E Normal (eyes open) Ictal - - -

2 B vs. E Normal (eyes closed) Ictal - - -

3 AB vs. E Normal Ictal - - -

4 C vs. E Interictal Ictal - - -

5 D vs. E Interictal Ictal - - -

6 CD vs. E Interictal Ictal - - -

7 A vs. D Normal Interictal - - -

8 ABCD vs. E Non-seizure Seizure - - -

9 AB vs. CDE Normal Epileptic - - -

10 A vs. C vs. E Normal Interitcal Ictal - -

11 AB vs. CD vs. E Normal Interitcal Ictal - -

12 A vs. B vs. C vs. D vs. E Normal (eyes open) Normal (eyes closed) Interictal Interictal Ictal

EEG Epilepsy I F vs. G Ictal Interictal -

II F vs. H Ictal Preictal -

III G vs. H Interictal Preictal -

IV F vs. GH Seizure Seizure-free -

V F vs. G vs. H Ictal Interictal Preictal

TN, and a False Positive is equal to FP. For larger MCC value, the

classifier performs better.

SEN =
TP

TP+ FN
× 100(%) (1)

SPF =
TN

TN+ FP
× 100(%) (2)

ACC =
TP+ TN

TP+ TN+ FN+ FP
× 100(%) (3)

PPV =
TP

TP+ FP
× 100(%) (4)

NPV =
TN

TN+ FN
× 100(%) (5)

MCC =
TP× TN− FN× FP

√
(TP+ FN)(TP+ FP)(TN+ FN)(TN+ FP)

× 100(%)

(6)

F1 score =
2× TP

2× TP+ FN+ FP
× 100(%) (7)

Table 4 shows the comprehensive experiments setting. Using

the Bonn and EEG Epilepsy datasets, twelve and five different

classification problems are proposed, respectively. They focus on

differentiating between preictal (normal), interictal, and ictal EEG

signals, including binary and multi-class classification.

Figures 4, 5 show the overall accuracy and loss curves for the

model trained on two datasets. It is obvious that after almost 300

epochs the network converges.

Tables 5, 6 illustrate the classification results for different cases

on two datasets, respectively. To further illustrate the performance

of each shallow classifier, Figures 6, 7 show the ROC curves and

associated AUC for 12 cases of the Bonn dataset and 5 cases of the

EEG epilepsy dataset. Our study demonstrates improved accuracy

in discriminating between preictal, interictal, and ictal EEG signals.

As a whole, the proposed method performs well and yields good

results, demonstrating that it can distinguish various classes of EEG

signals effectively.

4. Discussion

The seizure detection literature shows that several methods

are currently available to handle binary and multi-category

classification issues. Experimental results for 17 epilepsy detection

cases have been presented and discussed in detail. A comparison

of our algorithm with other up-to-date solutions is provided in

Table 7.

For Bonn dataset, the first three cases handle binary

classification. Regarding Case 1 (A-E), when using the EEG

spectrum as input, Cetin et al. (2015) calculated autoregressive

coefficients, which were then fed into back propagation (BP) and

Elman neural networks. A 98.3% accuracy rate was reported as the

best. Jiang et al. (2020) used a symplectic geometric decomposition

method to derive features from EEG signals and put them into an

SVM for EEG classification. It was reported that the accuracy was
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FIGURE 4

CNN model training on Bonn dataset: (A) accuracy curve, (B) loss

curve.

100%. In an attempt to find the optimal parameters of an SVM

to classify epileptic EEG, a mixture model was constructed using

genetic algorithms (GA), as well as particle swarm optimization

(PSO) by Subasi et al. (2019). A 99.38% accuracy rate was reported

as the best. Using New Weighted Complex Networks (NWCNs),

Supriya et al. (2021) extracted three features from EEG data:

Modular Gain (MG), Average Weighted Degree (AWD), and Edge

Weight Fluctuation (EWF). Three features’ separation performance

was examined using an SVM model with three different kernels.

They obtained 100% classification accuracy. Prabhakar and Lee

FIGURE 5

CNN model training on EEG Epilepsy dataset: (A) accuracy curve, (B)

loss curve.

(2022) employed K-singular value decomposition (K-SVD) to

derive sparse descriptions from EEG signals and extracted features

using self-organizing maps (SOMs). The data was then fed into

ELM, deep learning, and transfer learning models for classification,

with an accuracy rate of 98.35%. Unlike previous methods, ours is

100% accurate.

According to Swami et al. (2016), a dual-tree complex wavelet

transform (DT-CWT) was employed to divide EEG recordings

into multiple subbands on a six-level scale in Case 2 (B-E).

These subbands acted as features and classified EEG signals with

a general regressive neural network (GRNN). A 98.9% accuracy

rate was reported as the best. Ahmedt-Aristizabal et al. (2018)
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TABLE 5 The evaluation of the performance of the proposed approach using 10-fold cross-validation style on Bonn dataset with 12 cases.

Case Classifier ACC (%) SPF (%) SEN (%) PPV (%) NPV (%) MCC (%) F1 (%)

Case 1 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.50 100 99.00 100 99.00 99.00 99.49

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 2 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 99.50 99.00 100 99.00 100 99.00 99.50

MLP 100 100 100 100 100 100 100

Case 3 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 4 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.50 100 99.00 100 99.00 99.00 99.49

GB 99.50 99.00 100 99.00 100 99.00 99.50

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 5 SVC 99.50 100 99.00 100 99.00 99.00 99.49

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.00 100 98.00 100 98.03 98.01 98.98

GB 99.50 99.00 100 99.00 100 99.00 99.50

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 6 SVC 99.66 100 99.50 100 99.00 99.25 99.74

KNN 100 100 100 100 100 100 100

RF 99.66 99.00 100 99.50 100 99.25 99.75

GNB 99.33 99.00 99.50 99.50 99.00 98.49 99.50

GB 99.33 98.00 100 99.00 100 98.50 99.50

DT 99.33 99.00 99.50 99.50 99.00 98.49 99.50

MLP 100 100 100 100 100 100 100

(Continued)
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TABLE 5 (Continued)

Case Classifier ACC (%) SPF (%) SEN (%) PPV (%) NPV (%) MCC (%) F1 (%)

Case 7 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 99.50 99.00 100 99.00 100 99.00 99.50

DT 99.00 99.00 99.00 99.00 99.00 98.00 99.00

MLP 100 100 100 100 100 100 100

Case 8 SVC 99.80 100 99.75 100 99.00 99.37 99.87

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.80 100 99.75 100 99.00 99.37 99.87

GB 99.80 99.00 100 99.75 100 99.37 99.87

DT 99.80 100 99.75 100 99.00 99.37 99.87

MLP 99.80 100 99.75 100 99.00 99.37 99.87

Case 9 SVC 99.60 99.66 99.50 99.50 99.66 99.16 99.50

KNN 99.60 99.66 99.50 99.50 99.66 99.16 99.50

RF 99.80 99.66 100 99.50 100 99.58 99.75

GNB 99.60 100 99.00 100 99.33 99.16 99.49

GB 99.80 99.66 100 99.50 100 99.58 99.75

DT 99.20 99.00 99.50 98.51 99.66 98.33 99.00

MLP 99.60 99.66 99.50 99.50 99.66 99.16 99.50

Case 10 SVC 99.66 99.83 99.66 99.66 99.83 99.49 99.66

KNN 99.66 99.83 99.66 99.66 99.83 99.49 99.66

RF 100 100 100 100 100 100 100

GNB 99.33 99.66 99.33 99.33 99.66 98.99 99.33

GB 100 100 100 100 100 100 100

DT 99.00 99.50 99.00 99.00 99.50 98.49 99.00

MLP 99.66 99.83 99.66 99.66 99.83 99.49 99.66

Case 11 SVC 99.80 99.90 99.80 99.80 99.90 99.70 99.80

KNN 99.80 99.90 99.80 99.80 99.90 99.70 99.80

RF 99.60 99.80 99.60 99.60 99.80 99.40 99.60

GNB 99.20 99.60 99.20 99.20 99.60 98.80 99.20

GB 99.20 99.60 99.20 99.20 99.60 98.80 99.20

DT 99.00 99.50 99.00 99.00 99.50 98.50 99.00

MLP 99.80 99.90 99.80 99.80 99.90 99.70 99.80

Case 12 SVC 99.80 99.95 99.80 99.80 99.95 99.74 99.80

KNN 98.80 99.70 98.80 98.80 99.70 98.49 98.80

RF 98.80 99.70 98.80 98.80 99.70 98.49 98.80

GNB 93.60 98.40 93.60 93.60 98.40 91.99 93.60

GB 99.60 99.90 99.60 99.60 99.90 99.49 99.60

DT 97.60 99.40 97.60 97.60 99.40 96.99 97.60

MLP 99.80 99.95 99.80 99.80 99.95 99.74 99.80
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TABLE 6 An evaluation of the performance of the proposed approach using 10-fold cross-validation with 5 cases of EEG epilepsy dataset.

Case Classifier ACC (%) SPF (%) SEN (%) PPV (%) NPV (%) MCC (%) F1 (%)

Case I SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case II SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case III SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 96.00 92.00 100 92.59 100 92.29 96.15

DT 98.00 100 96.00 100 96.15 96.07 97.95

MLP 100 100 100 100 100 100 100

Case IV SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 99.33 100 98.00 100 99.00 98.50 98.98

MLP 100 100 100 100 100 100 100

Case V SVC 100 100 100 100 100 100 100

KNN 99.33 99.66 99.33 99.33 99.66 98.99 99.33

RF 98.66 99.33 98.66 98.66 99.33 97.99 98.66

GNB 99.33 99.66 99.33 99.33 99.66 98.99 99.33

GB 97.33 98.66 97.33 97.33 98.66 95.99 97.33

DT 96.66 98.33 96.66 96.66 98.33 94.99 96.66

MLP 99.33 99.66 99.33 99.33 99.66 98.99 99.33

achieved 94.75% accuracy by using a recurrent neural network

(RNN) embedded an LSTM network. Jiang et al. (2020), Supriya

et al. (2021), and Prabhakar and Lee (2022) also studied on

this classification issue and reported 99.33, 100, and 97.57%

accuracies, respectively. Our method, on the other hand, achieves

100% accuracy.

Regarding Case 3 (AB-E), EEG clips are divided into two types:

non-ictal and ictal. It was reported that Swami et al. (2016) had

an accuracy rate of 99.2%. Sharma et al. (2017) used analytic

time-frequency flexible wavelet transform (ATFFWT) and fractal

dimensions to export features and put them into a least squares

support vector machine (LS-SVM). Afterwards, a 100% accuracy

rate was reported as the best. Jiang et al. (2020) and Prabhakar

and Lee (2022) also studied on this classification issue and reported

100 and 97.84% accuracies, respectively. Our method, on the other

hand, achieves 100% accuracy.
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FIGURE 6 (Continued)
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FIGURE 6 (Continued)

Seizure detection ROC curves and AUC from Bonn dataset. (A) Case 1: A-E. (B) Case 2: B-E. (C) Case 3: AB-E. (D) Case 4: C-E. (E) Case 5: D-E. (F)

Case 6: CD-E. (G) Case 7: A-D. (H) Case 8: ABCD-E. (I) Case 9: AB-CDE. (J) Case 10: A-C-E. (K) Case 11: AB-CD-E. (L) Case 12: A-B-C-D-E.
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FIGURE 7

Seizure detection ROC curves and AUC from EEG Epilepsy dataset. (A) Case I: F-G. (B) Case II: F-H. (C) Case III: G-H. (D) Case IV: F-G. (E) Case V:

F-G-H.
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TABLE 7 Summary of literature comparison results (10-fold cross-validation style).

References Methodology Cases ACC (%) Our ACC (%)

Cetin et al. (2015) Autoregressive coefficients with BP + Elman neural networks A-E 98.3 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM A-E 100 100

Subasi et al. (2019) GA, PSO and SVM A-E 99.38 100

Supriya et al. (2021) MG, EWF and AWD + SVM A-E 100 100

Prabhakar and Lee (2022) K-SVD, SOM + ELM, deep learning, transfer learning A-E 98.35 100

Swami et al. (2016) DT-CWT + GRNN B-E 98.9 100

Ahmedt-Aristizabal et al. (2018) End-to-end data and RNNs + LSTM B-E 94.75 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM B-E 99.33 100

Supriya et al. (2021) MG, EWF and AWD + SVM B-E 100 100

Prabhakar and Lee (2022) K-SVD, SOM + ELM, deep learning, transfer learning B-E 97.57 100

Swami et al. (2016) DT-CWT + GRNN AB-E 99.2 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM AB-E 100 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM AB-E 100 100

Prabhakar and Lee (2022) K-SVD, SOM + ELM, deep learning, transfer learning AB-E 97.84 100

Swami et al. (2016) DT-CWT + GRNN C-E 98.7 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM C-E 99 100

Raghu et al. (2019) Matrix determinant feature + MLP classifier C-E 97.60 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM C-E 99.33 100

Supriya et al. (2021) MG, EWF and AWD + SVM C-E 100 100

Swami et al. (2016) DT-CWT + GRNN D-E 93.3 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM D-E 98.5 100

Raghu et al. (2019) Matrix determinant feature + MLP classifier D-E 97.60 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM D-E 100 100

Supriya et al. (2021) MG, EWF and AWD + SVM D-E 100 100

Swami et al. (2016) DT-CWT + GRNN CD-E 95.2 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM CD-E 98.67 100

Raghu et al. (2019) Matrix determinant feature + MLP classifier CD-E 96.85 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM CD-E 99.28 100

Gupta et al. (2018) DCT, Hurst exponent and ARMA + SVM A-D 98.4 100

Tuncer et al. (2019) Local senary pattern + SVM A-D 99.5 100

Hassan et al. (2020) CEEMDAN + Adaptive Boosting ABCD-E 99.2 100

Mursalin et al. (2017) ICFS + RF classifier ABCD-E 97.4 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM ABCD-E 99.97 100

Peng et al. (2021) Stein kernel-based SR AB-CDE 98.2 99.80

Acharya et al. (2018) 13-layer CNN without performing feature extraction and

selection

AB-CDE 88.7 99.80

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM AB-CDE 99.17 99.80

Jaiswal and Banka (2017) LNDP and 1D-LGP + ANN A-C-E 98.22 100

Gupta and Banka (2019) WMRPE, rhythms of FBE + LS-SVM A-C-E 97.3 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM A-C-E 99.22 100

Zhang et al. (2021) FSWT-based subbands and CSoS, FuzzyEn, HFD, t-SNE +

KNN

A-C-E 99.69 100

(Continued)
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TABLE 7 (Continued)

References Methodology Cases ACC (%) Our ACC (%)

Bhardwaj et al. (2016) EMD + Constructive Genetic Programming AB-CD-E 98.33 99.80

Peker et al. (2015) DT-CWT + CVANN AB-CD-E 97.79 99.80

Raghu et al. (2019) Matrix determinant feature + MLP classifier AB-CD-E 96.5 99.80

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM AB-CD-E 99.80 99.80

Zarei and Asl (2021) DWT and OMP + SVM AB-CD-E 99.33 99.80

Sharma et al. (2020) ToC + deep neural network A-B-C-D-E 97.2 99.80

Zahra et al. (2017) MVEMD + ANN A-B-C-D-E 87.2 99.80

Zhang et al. (2021) FSWT-based subbands and CSoS, FuzzyEn, HFD, t-SNE +

KNN

A-B-C-D-E 93.62 99.80

Zhou et al. (2020) SSA + SVM, ELM and ANN F-G 94 100

Peng et al. (2021) Stein kernel-based SR F-G 98.00 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM F-G 98.18 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM F-G 96.38 100

Tajmirriahi and Amini (2021) SDE + SVM F-G 99.1 100

Zhou et al. (2020) SSA + SVM, ELM and ANN F-H 95 100

Peng et al. (2021) Stein kernel-based SR F-H 99 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM F-H 100 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM F-H 100 100

Tajmirriahi and Amini (2021) SDE + SVM F-H 96.8 100

Zhou et al. (2020) SSA + SVM, ELM and ANN G-H 93 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM G-H 88.95 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM G-H 97.15 100

Tajmirriahi and Amini (2021) SDE + SVM G-H 91.5 100

Zhou et al. (2020) SSA + SVM, ELM and ANN F-GH 91 100

Peng et al. (2021) Stein kernel-based SR F-GH 97.5 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM F-GH 98.08 100

Peng et al. (2021) Stein kernel-based SR F-G-H 97.21 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM F-G-H 93.49 100

Regarding Cases 4 through 6, EEG signals are divided into

interictal and ictal types (C-E, D-E, and CD-E). It was reported that

Swami et al. (2016) had 98.7, 93.3, and 95.2% accuracies. Sharma

et al. (2017) indicated 99, 98.5, and 98.67% accuracy rates. In Raghu

et al. (2019), descriptive and bivariate histogram analysis, and polar

histogram were used to provide matrix determinant features. The

effectiveness was verified on three cases, using the MLP classifier to

achieve accuracies of 97.60, 97.60, and 96.85%, respectively. Jiang

et al. (2020) also studied on these issues and reported accuracies

of 99.33, 100, and 99.28%, respectively. In contrast, our proposed

method achieves 100, 100, and 100% accuracies, respectively.

Case 7 (A-D) addresses the classification of normal vs.

interictal. Gupta et al. (2018) utilized discrete cosine transform

(DCT) to build a multirate filterbank structure, which decomposed

EEG signals into their respective brain rhythms. Then, the

Hurst exponent together with the autoregressive moving average

(ARMA) parameters were derived from the statistical results of

the brain rhythms as features. The SVM classifier reported an

accuracy of 98.4%. Using Local Military Patterns (LSPs), Tuncer

et al. (2019) extracted binary features through EEG signals. A

standard deviation based strategy was used to deal with threshold

value problems of ternary functions. Then, extracted features were

put into SVM for classification with an accuracy rate of 99.5%.

Unlike previous methods, ours is 100% accurate.

In Case 8, the EEG is classified as seizure or non-seizure

(ABCD-E). An objective method of identifying intrinsic modes

was proposed in Hassan et al. (2020) by using complete

ensemble empirical mode decomposition with adaptive noise

(CEEMDAN). Modeling these mode functions with normal inverse

Gaussian (NIG) parameters follows. They employed Adaptive

Boosting to classify EEG signals and reported 99.2% accuracy.

For feature derivation, Mursalin et al. (2017) examined an

improved correlation-based feature selection method (ICFS). A

97.4% accuracy rate was reported for an RF classifier. Jiang et al.
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(2020) also focused on this issue and a 99.97% accuracy rate was

reported as the best. Our method, on the other hand, achieves

100% accuracy.

Regarding Case 9 (AB-CDE), EEG signals are divided into

normal and epileptic types. In Peng et al. (2021), EEG signals were

classified in symmetric positive definite (SPD) matrix spaces by

using Stein kernel-based sparse representations (SR). They reported

accuracy rate of 98.20%. Acharya et al. (2018) developed a multiple-

layer CNN algorithm to avoid feature extraction and selection.

They reported 88.7% accuracy. Jiang et al. (2020) studied on this

classification issue with an accuracy of 99.17%. Unlike previous

methods, ours is 99.8% accurate.

In Cases 10 and 11, ternary classification is addressed by both

A-C-E and AB-CD-E. We report 100% and 99.80% classification

accuracies, respectively. To deal with Case 10, in Jaiswal and Banka

(2017), the Local Neighborhood Description Pattern (LNDP)

together with the 1D Local Gradient Pattern (1D-LGP) was

utilized to export features. An adaptive neural network (ANN)

was designed for classification, reporting 98.22% accuracy. Gupta

and Banka (2019) achieved feature extraction of rhythms based

on a combination of Weighted Multiscale Renyi Permutation

Entropy (WMRPE) and Fourier-Bessel Series Expansion (FBSE).

To classify these features, LS-SVM was used, and the best accuracy

rate was 97.3%. Zhang et al. (2021) proposed a fusion method for

feature extraction based on Frequency Sliced Wavelet Transform

(FSWT). Then, these feature were fed into a KNN classifier with

a classification accuracy of 99.69%. Regarding Case 11, according

to Bhardwaj et al. (2016), EEG recordings were split into multiple

IMFs, each with a set of bandwidth parameters extracted. They

constructed genetic programming for classification and a 98.33%

accuracy rate was reported as the best. Peker et al. (2015) used DT-

CWT to extract features from EEG signals. EEG data was classified

using a complex-valued adaptive neural network (CVANN) and

a 97.79% accuracy rate was reported. In Raghu et al. (2019), a

96.5% accuracy rate was reported as the best. Jiang et al. (2020)

studied on these classification issues with reported accuracies of

99.22 and 99.80%, respectively. Zarei and Asl (2021) exported

different coefficients from EEG signals using DWT and Orthogonal

Matching Pursuit (OMP) techniques. Then, some non-linear

features and several statistical features were computed using DWT

and OMP coefficients. They were put into an SVM classifier, which

reported 99.33% accuracy.

In Case 12, the EEG is separated into five categories (A-B-C-

D-E). Sharma et al. (2020) used third-order cumulants (ToC) to

export features from EEG recording and put them into deep neural

networks for classification, reporting 97.2% accuracy. In Zahra et al.

(2017), using the MVEMD algorithm, the EEG recordings were

decomposed into multiple intrinsic scales. An ANN model was

created to classify valid IMFs with a reported accuracy of 87.2%.

Zhang et al. (2021) reported 93.62% accuracy. In contrast, our

proposed method achieves 99.80% accuracy.

For EEG Epilepsy dataset, Cases I to IV deal with binary

classification. Zhou et al. (2020) decomposed the EEG recordings

into singular values using singular spectrum analysis (SSA). Then,

the log-normalized function values are calculated, forming the

eigenvector. They were fed into shallow classifiers, including SVM,

ELM, and ANN, to perform with the highest accuracy of 94,

95, 93, and 91% in the four cases. Wang et al. (2021) proposed

an autoregressive (AR) model based time-varying (TV) modeling

framework to describe EEG recordings. The multiwavelet basis

function expansion (MWBF) method was used to approximate

the TV parameters of the AR model (TVAR). Afterwards, the

resulting extended model was reduced and refined using the Ultra-

regularized Orthogonal Regression (UROFR) algorithm. The SVM

achieved the highest accuracies of 98.18, 100, 88.95, and 98.08%

for the four cases, respectively. Peng et al. (2021) also dealt with

Cases I, II and IV and reported accuracies of 98.00, 99, and 97.5%,

respectively. The EMD-MSPCAmethod, developed by Sukriti et al.

(2021), combined empirical mode decomposition with multiscale

PCA, to denoise EEG recordings. Following that, three complexity

measures were used as features. DT, LDA, SVM, and KNN shallow

classifiers were used for classification of Cases I, II, and III. The

documented accuracy for each is 96.38, 100, and 97.15%. Due

to its inherent self-similarity, Tajmirriahi and Amini (2021) used

stochastic differential equations (SDEs) to model EEG signals with

self-similar fractional Levy stabilization processes. They Fit the

probability distribution to the derived EEG signal histogram, and

extracted the parameters of the fitted histogram. A SVM classifier

was used to classify them, with 99.1, 96.8, and 91.5% accuracies for

cases I, II, and III, respectively. In contrast, our approach reports

100, 100, 100, and 100% accuracies for the four cases, respectively.

Case V address ternary classification. Peng et al. (2021)

and Sukriti et al. (2021) reported accuracies of 97.21 and

93.49%, respectively. We report the accuracy of 100%, which also

outperforms other approaches.

Unlike the aforementioned algorithms, this study designs an

DNN model to automatically extract deep features from layer

outputs during raining. Afterwards, extracted features are filtered

by PCA for dimensionality reduction and directly put into seven

shallow classifiers to classify EEG signals. The process is simple,

high efficient along with high accuracy. Table 7 illustrates the

comparison results on the classification performance between our

approaches and other approaches recently proposed. Our method

illustrates superior performance and has potential for serving as an

adjunct to fMRI in epilepsy diagnosis.

Our experimental results have indicated that the proposed

method is highly accurate in detecting epilepsy for binary,

three-class, and five-class classification problems, illustrating the

suitability of our scheme for solving problems involving multiple

classes. The clinical potential of automated analysis of epileptic

seizure activity is significant. Additionally, once high-performance

computers are utilized, its computational simplicity is enhanced,

allowing it to be deployed in clinical applications. As a result,

this new approach is better equipped to satisfy clinical demands

in terms of efficiency, functionality, universality, and simplicity,

while providing satisfactory accuracy. These traits make it an

appealing alternative option for clinical diagnosis. Real-time

seizure detection for smart healthcare and Internet of Medical

Things (IoMT) applications is a potential use case for the

proposed method.

5. Conclusion

This study uses different kinds of machine learning classifiers

to detect seizure with features derived from the max pooling
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layers of a DNN model. The suggested algorithm separates EEG

recordings into two, three and five classes. The results show that

performance of the advised classifier is promising for seizure

detection. This model may provide neurologists with additional

assistance when diagnosing epilepsy. The work in the future will

incorporate a number of handcrafted features (such as intrinsic

fuzzy entropy, Lyapunov exponent, and Lempel-Ziv complexity)

as well as deep features to design deep learning models and

compare them with current model performance. In conclusion,

the proposed protocol will speed up epilepsy diagnosis, assist

clinicians to implement clinical epilepsy monitoring devices with

less burden.
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Introduction: The human brain processes shape and texture information

separately through di�erent neurons in the visual system. In intelligent computer-

aided imaging diagnosis, pre-trained feature extractors are commonly used

in various medical image recognition methods, common pre-training datasets

such as ImageNet tend to improve the texture representation of the model

but make it ignore many shape features. Weak shape feature representation is

disadvantageous for some tasks that focus on shape features in medical image

analysis.

Methods: Inspired by the function of neurons in the human brain, in this paper,

we proposed a shape-and-texture-biased two-stream network to enhance the

shape feature representation in knowledge-guided medical image analysis. First,

the two-stream network shape-biased stream and a texture-biased stream are

constructed through classification and segmentation multi-task joint learning.

Second, we propose pyramid-grouped convolution to enhance the texture feature

representation and introduce deformable convolution to enhance the shape

feature extraction. Third, we used a channel-attention-based feature selection

module in shape and texture feature fusion to focus on the key features and

eliminate information redundancy caused by feature fusion. Finally, aiming at the

problem of model optimization di�culty caused by the imbalance in the number

of benign and malignant samples in medical images, an asymmetric loss function

was introduced to improve the robustness of the model.

Results and conclusion: We applied our method to the melanoma recognition

task on ISIC-2019 and XJTU-MM datasets, which focus on both the texture

and shape of the lesions. The experimental results on dermoscopic image

recognition and pathological image recognition datasets show the proposed

method outperforms the compared algorithms and prove the e�ectiveness of

our method.

KEYWORDS

computer-aided diagnosis, image recognition, feature fusion, joint learning, two-stream

network, brain-like information processing

1. Introduction

Computer-aided diagnosis (CAD) has been a research hotspot for the past few decades.

CAD automatically analyzes the patient data through machine learning methods to make

an assessment of the patient’s condition (Yanase and Triantaphyllou, 2019; Chan et al.,

2020). Medical image analysis is one of the most important fields in CAD technologies, it
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helps read imaging data to improve the diagnosis efficiency.

An intelligent medical image analysis model can share the

workload of radiologists and pathologists, and enables areas with

underdeveloped medical resources to achieve high-level imaging

analysis at low cost (Shen et al., 2017; Kurc et al., 2020).

In the past decade, medical image analysis methods have grown

by leaps and bounds due to the development of deep learning

and computer vision algorithms. Powerful feature representation

ability enables deep neural networks to learn complex hidden

features from a large amount of training data, which overcomes

the difficulty of manual feature design in traditional medical

image analysis methods. However, there are still challenges to be

addressed in current deep learning-based algorithms for medical

image analysis, with weak shape representation being one of the

most critical issues. On the one hand, in the commonly used

convolutional neural network (CNN), the limited receptive field of

kernels tends to fit local features during kernel parameter learning.

Although the range of the receptive field of deep convolutional

kernels on original images gradually increases as layers deepen,

deeper layers weaken their connection with original images,

which limits networks in modeling shape features at larger scales

(Luo et al., 2016; Araujo et al., 2019). On the other hand, pre-

trained parameters are frequently employed in medical image

recognition techniques to expedite convergence during training

and potentially enhance model performance. Given the paucity

of annotated data in medical images, large-scale natural image

datasets such as ImageNet (Deng et al., 2009; Russakovsky et al.,

2015) are commonly utilized as pre-training datasets. However,

the research of Geirhos et al. (2018) indicates that the deep neural

network pre-trained on ImageNet is biased to focus on the texture

features and has relatively weak shape feature representation

ability.

The weak representation of shapes, caused by the limitations

of the model and pre-training datasets, significantly impacts the

performance of the model on certain shape-dependent medical

image tasks. As, Figure 1 shows, cascade segmentation and

classification model (Chang, 2017) can solve the problem in some

scenarios, it uses a segmentation network to obtain the mask

of a lesion, and then use the segmented lesion image as the

input of the classification network, providing shape information

for classification, eliminating the background noise. However, the

lack of sufficient training data is a prevalent issue in various

medical image analysis tasks, resulting in inadequate precision

of the trained segmentation task. Inaccurate segmentation can

provide erroneous shape information for classification. In addition,

the cascade segmentation and classification model contains two

encoders and one decoder, and they are cascaded, the research

of He et al. (2017) indicates that repetitive encoding and

decoding operations yield minimal improvements to the quality of

extracted features.

In order to solve the above problems, we proposed a shape-and-

texture-biased two-stream network to enhance the shape feature

representation in knowledge-guided medical image analysis. The

human brain processes shape and texture information separately

through different neurons in the visual system, inspired by

that, first, the two-stream network shape-biased stream and

a texture-biased stream are constructed through classification

and segmentation multi-task joint learning. Second, we propose

pyramid-grouped convolution (PGC) to enhance the texture

feature representation, and introduce deformable convolution

(DC) to enhance the shape feature extraction. Third, we used

a channel-attention-based feature selection module in shape

and texture feature fusion to focus on the key features and

eliminate information redundancy caused by feature fusion.

Finally, aiming at the problem of model optimization difficulty

caused by the imbalance in the number of benign and malignant

samples in medical images, an asymmetric loss function was

introduced to improve the robustness of the model. We applied

our method to the melanoma recognition task on ISIC-2019

(Rotemberg et al., 2021) and XJTU-MM datasets, which focuses

on both the texture and shape of the lesions. The experimental

results on dermatoscopic image recognition and pathological

image recognition show that the proposed method outperforms

the compared algorithms and prove the effectiveness of our

method.

The main contributions of this work are enumerated as

follows:

• We propose the shape and texture joint learning

two-stream network for knowledge-guided medical

image recognition, taking into account the learning

of shape features and texture features by the network,

addressing the weak shape representation problem of

existed methods.

• We propose pyramid-grouped convolution to enhance

the texture feature representation, and introduce

deformable convolution to address the limitation

of fixed respective fields, enhancing the shape

feature extraction.

• We construct the shape and texture fusion module

based on channel attention mechanism to focus

on the essential features and eliminate the noise,

reducing the information redundancy caused by

feature fusion.

• We introduce the asymmetric loss function for

optimization, reducing the impact of commonly

existed sample imbalance problem in medical

image datasets.

2. Related work

2.1. Knowledge-guided medical image
analysis

Most of the key technologies in medical image analysis

come from general computer vision algorithms, however, the

image characteristics and the data distribution are different

between natural images and medical images. Constructing

appropriate deep neural network model with the guidance

of the prior knowledge from pathology and radiology is

important for improving model performance in specific medical

analysis tasks.

Fan et al. (2017) proposed a novel automatic segmentation

algorithm using saliency combined with Otsu threshold for

dermoscopy images, which extracted prior information on healthy
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skin to construct the color saliency map and brightness saliency

map respectively. Ahn et al. (2017) proposed a saliency-based

lesion segmentation method in dermoscopic images, using

the reconstruction errors derived from a sparse representation

model coupled with a novel background detection. Yang et al.

(2023) proposed a Multi-scale Fully-shared Fusion Network

(MFF-Net) that gathers features of dermoscopic images and

clinical images for skin lesion classification. Zhang et al.

(2018a) used deep learning algorithms to help diagnose four

common cutaneous diseases based on dermoscopic images and

summarized classification/diagnosis scenarios based on domain

expert knowledge and semantically represented them in a

hierarchical structure to improve the accuracy of the algorithm.

Clinical prior knowledge is also widely applied to the analysis of

ultrasound images and other medical images. Liu et al. (2019b)

proposed a novel deep-learning-based CAD system, guided by

task-specific prior knowledge, for automated nodule detection and

classification in ultrasound images. Chen et al. (2021) proposed a

knowledge-guided data augmentation framework for breast lesion

classification, which consists of a modal translater and a semantic

inverter, achieving cross-modal and semantic data augmentation

simultaneously. Shi et al. (2020) proposed a knowledge-guided

synthetic medical image adversarial augmentation method for

ultrasonography thyroid nodule classification, extracting domain

knowledge from standardized terminology to improve the

classification performance. Yang et al. (2021) proposed a multi-

task cascade deep learning model (MCDLM), which integrates

radiologists’ various domain knowledge (DK) and usedmultimodal

ultrasound images for automatic diagnosis of thyroid nodules.

Han et al. (2020) proposed an ensemble learning method for

panoramic radiographs recognition based on the characteristics

of each stage of tooth growth. Ni et al. (2013) proposed a novel

learning-based automatic method to detect the fetal head for the

measurement of head circumference from ultrasound images and

used prior knowledge and online imaging parameters to guide the

sliding window-based head detection. Pan et al. (2022) proposed

a two-stage network with prior knowledge guidance for medullary

thyroid carcinoma recognition in ultrasound images. Meanwhile,

extracting and fusing semantic features of solid tissues and

calcification for better recognizing the segmented nodules. Zhou

et al. (2022) proposed a rheumatoid arthritis knowledge-guided

(RATING) system for scoring rheumatoid arthritis activity from

multimodal ultrasound images, leveraging diagnostic paradigm

and experience to enhance the robustness. Lu et al. (2023)

proposed a Prior Knowledge-based Relation Transformer Network

(PKRT-Net), which employed the clinical prior knowledge to

assist OC segmentation. Gao et al. (2021) proposed a medical-

knowledge-guided one-class classification approach that leverages

domain-specific knowledge of classification tasks to boost the

model’s performance and showed superior model performance

on three different clinical image classification tasks. Zhang et al.

(2023) proposed coarse-to-fine method for melanoma and nevi

recognition according to distribution of inter-class and intra-class

differences as summarized by dermatologists.

Prior knowledge provides inspiration for medical image

analysis design, in this paper, we innovate a novel method for

shape-relied medical image recognition.

2.2. Shape and texture feature fusion

Aiming at the problem of weak shape representation of existing

CNN-based medical image recognition models, we investigate

FIGURE 1

Weak feature representation problem of many existing methods for image recognition in computer-aided diagnosis. (A) Common image recognition

model. (B) Cascade segmentation and classification model.
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FIGURE 2

Framework of the proposed shape and texture joint learning two-stream network. (A) Texture-biased stream. (B) Shape-biased stream. (C) Feature

fusion module. (D) Classifier. (E) Asymmetric loss.

the texture and shape feature fusion algorithms designed for

various tasks.

Al-Osaimi et al. (2011) proposed spatially optimized data/pixel-

level fusion of 3-D shape and texture for face recognition. Lu et al.

(2017) proposed a face image retrieval method based on shape

and texture feature fusion, which used accurate facial landmark

locations as shape features and utilized shape priors to provide

discriminative texture features. Kotsia et al. (2008) proposed a novel

method based on the fusion of texture and shape information for

facial expression and Facial Action Unit (FAU) recognition from

video sequences and used various approaches to perform texture

and shape feature fusion, among which were SVMs and Median

Radial Basis Functions (MRBFs). Anantharatnasamy et al. (2013)

proposed a content-based image retrieval system based on three

major types of visual information including color, texture, shape,

and their distances to the origin in a three dimensional space

for the retrieval. Sumathi and Kumar (2012) extracted edge and

texture features using Gabor filter and fused them for plant leaf

classification. Xiong et al. (2007) proposed a Statistical Shape and

Radio texture fusionmodel for facial expression sequence synthesis,

processing facial shape and texture separately and fusing them

together to synthesize the final result. Jo et al. (2014) proposed a

new method for eye state classification to detect diver drowsiness,

which extracted and fused features from both eyes. Zhang et al.

(2020) proposed two-stream networks to enhance the extraction

of shape and texture respectively for clothing classification and

attribute recognition.

These researches use various of methods to enhance the texture

and shape feature learning on specific data. For shape-relied

medical image recognition tasks, we design the model to realize

that with the guidance of the prior knowledge, such as visual

characteristics and category distribution.

3. Methodology

3.1. Framework

In contrast to the cascade segmentation and classification

model, our proposed model employs a two-stream network for

joint learning of shape and texture, mitigating the impact of

imprecise segmentation on shape information in the former. The

overall framework of the proposed method is shown as Figure 2,

the input image is fed into the parallel texture-biased stream and

shape-biased stream. First, the texture-biased stream consists of

a feature encoder, which is pre-trained on texture-biased large-

scale dataset, such as ImageNet. To further enhance the texture

feature representation ability of the texture feature encoder, we

reconstruct the convolutional block using the proposed channel

connection pyramid mechanism. Second, the shape-biased stream
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FIGURE 3

Pyramid-grouped convolution. In each pyramid, the density of

channel connection changes layer by layer, and from dense

to sparse.

contains an encoder-decoder based network, the encoder extracts

the shape features and the decoder generates the lesion mask, the

quality of the extracted shape features is supervised by L2 loss

function between the predicted mask and the ground truth mask.

Third, the texture feature and the shape feature are concatenated

and input to the feature fusion module, to address the information

redundancy problem in feature fusion, we construct the feature

fusion module based on channel attention mechanism to focus

on the essential features and eliminate the effects of noise. In

addition, to balance the texture-biased learning and shape-biased

learning, the gradient scaling layer is added between the shape

feature map and the concatenation operation to weight the gradient

in the back propagation. Then, the fully connected layer classifier

is used to output the classification results. Finally, to overcome

the optimization difficulty caused by the problem of imbalanced

samples in medical image datasets, we introduce the asymmetric

loss to enhance the attention of the model to the categories with

smaller numbers of samples.

3.2. Texture-biased stream

The texture-biased stream is constructed by the texture

feature encoder pre-trained on texture-biased dataset ImageNet.

To enhance the texture feature representation, we improve the

channel connections in convolutional blocks. In the standard

convolution operation, each kernel is connected to every channel

of the input feature map. However, while the large number

of learnable parameters provides a powerful fitting ability for

the network, overly dense connections can lead to significant

information redundancy and unnecessary computational burden

(Huang et al., 2017; Ma et al., 2018; Zhang et al., 2018b). Grouped

convolution mechanism (Xie et al., 2017; Zhang H. et al., 2022)

provides an efficient way to solve the problem, it divides the input

feature map into several groups in the channel dimension, each

kernel has connections to the specific group only rather than all

channels of the input feature map.With the same number of output

feature map channels, channel-wise connections become sparser,

FIGURE 4

Deformable convolution. (A) Deformable kernel. (B) Deformable

convolutional layer. An o�set layer is inserted to learn the o�set to

transform the rectangular kernel to a kernel with an irregular shape

that better match the extracted features. The feature map in the

deformable receptive field is resampled through bilinear

interpolation according to the parameters of the learned o�set.

thereby enhancing diagonal correlations between channels. Depth-

wise convolution (Chollet, 2017) even makes the connections more

sparse, which regards each channel of the input feature map as

one group to perform grouped convolution. With fewer learnable

kernel parameters, depth-wise convolution even shows stronger

low-level texture feature representation ability (Guo et al., 2019;

Tan and Le, 2019). However, grouped convolution and depth-

wise convolution still have problems in balancing the learning of

low-level and high-level texture features.

To further improve the feature extraction quality and efficiency,

we propose the pyramid-grouped convolution(PGC)mechanism to

enhance the feature representation of the texture-biased stream. As

Figure 3 shows, In each pyramid-convolutional block, the density

of channel connections varies layer by layer, transitioning from

dense to sparse. This results in a transition of the channel-wise

receptive field of each kernel from large to small, leading to sparser

feature encoding compared to conventional grouped convolution

and more appropriate channel-wise receptive fields than depth-

wise convolution. The PGC blocks are embedded in the backbone

network to construct feature encoder of texture-biased stream,

enhancing the texture feature representation.

3.3. Shape-biased stream

Pixel-wise semantic segmentationmodel is a learning paradigm

conducive to modeling shape features (Long et al., 2015; Guo

et al., 2018). In the proposed method, the shape-biased stream

is constructed using an encoder-decoder based segmentation

network, the decoder generates the lesion mask based on the

features extracted from the input image. With the supervision of

the L2 loss between the predicted mask and the ground truth

mask, the encoder is encouraged to learn the shape-biased features.

Many encoder-decoder based semantic segmentation models add

Frontiers inNeuroscience 05 frontiersin.org34

https://doi.org/10.3389/fnins.2023.1212049
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1212049

shortcut connections between encoders and decoders to enhance

the contributions of low-level features extracted by shallow layers

in encoders to mask generation, which are usually called U-shape

networks (Ronneberger et al., 2015; Oktay et al., 2018; Zhou et al.,

2018; Zhang et al., 2021). But in the shape-biased stream of our

method, all we need is to improve the shape feature representation

of the feature map extracted by feature encoder, all the information

flow is expected to pass through the deepest feature map, so we

did not add any shortcut connection between the encoder and

the decoder.

In the design of the shape encoder network, we introduce

the deformable kernel to address the limitation of the rectangular

receptive field of the convolution kernel. Irregular-shaped visual

features are common in lesion images, for example, the irregular-

shape boundary of the lesion in dermoscopic images (Celebi et al.,

2019), the irregular-shaped cells in pathological images (Zhang D.

et al., 2022). Rectangular convolutional kernels have limitation in

extracting these features, especially in extracting low-level shape

features. As Figure 4 shows, the discrete featuremap is regarded as a

continuous two-dimensional distribution, we insert an offset layer

to learn a offset to transform the rectangular kernel to an kernel

with irregular shape that better match the extracted features. The

feature map in the deformable receptive field is resampled through

bilinear interpolation according to the parameters of the learned

offset. deformable convolution is calculated by

y(p) =
∑

pk∈R

w
(

pk
)

· x
(

p+ pk + 1pk
)

, (1)

where y(p) indicates the feature obtained by the convolution

on one sampling point p of the feature map. R is the receptive

field size of the regular kernel. pk donates the difference between

the sampling points and y(p), k = 1, 2, 3...N,N = |R|, 1pk is

the learned offset, and w is the kernel parameter. We reconstruct

the backbone network of feature encoder using deformable

convolution layers, enhancing the representation of irregular-

shaped features.

3.4. Channel-attention-based texture and
shape feature fusion

The feature maps extracted from the texture-biased and shape-

biased streams are concatenated to fuse texture and shape features,

which expands the scope of the extracted features. However, this

also results in a certain degree of information redundancy. Some

irrelevant features not only fail to contribute to improving model

performance but also increase the risk of overfitting and negatively

impact model robustness. To select essential features for lesion

recognition and eliminate irrelevant features and noise, we design

the texture and shape feature fusion module based on channel

attention mechanism.

Each kernel represents a specific hidden feature, having a

specific correlation with lesion recognition, feature selection is

equivalent to kernel selection, which can also be regarded as the

selection of channels of feature map. We introduce the channel

attention mechanism to highlight the essential channels and

FIGURE 5

Channel attention mechanism. The attention weight vector watt is

calculated through global pooling and 1× 1 convolutional layers,

then the input feature map Z is weighted to obtain the output

feature map Z′.

suppress noise through learning the channel weights based on the

global representation of each channel. As Figure 5 shows, for the

w × h × c input feature map Z, it is first transformed into a

1× 1× c feature vector g through global pooling, which combines

average pooling and max pooling to balance average and peak

characterization, calculating by

gk =
1

2





1

wh

h
∑

i=1

w
∑

j=1

zi,j,k +max
i,j

(zi,j,k)



 , (2)

where gk is the element in feature vector g, zi,j,k is the element in

k-th channel of feature map Z. Then we use two 1×1 convolutional

layers to obtain the attention weight of each channel, calculating

through

watt = δ

(

wT
Conv2 · δ

(

wT
Conv1 · g

))

, (3)

wherewConv1 andwConv2 are the weight parameters of two 1×1

convolutional layers, δ(·) is the sigmoid activation function. Finally,

the original input feature map is weighted by the weight vector,

Z′ = watt ⊗ Z, (4)

where⊗means to multiply watt and Z channel by channel.

In optimization, the channels that are highly relevant to lesion

recognition are highlighted, which eliminates the information

redundancy caused by the feature fusion of texture-biased stream

and shape-biased stream, and selects the features conductive to

lesion recognition, improving the robustness of the model.

3.5. Joint learning loss function and
optimization

Due to the characteristics of the disease, training data often

contains more benign lesions than malignant ones, resulting in

insufficient attention given to malignant samples during network

training and negatively impacting model optimization (Liu et al.,

2019a) and (Xu et al., 2020). If the number of benign samples is

forcibly reduced to balance the number of benign and malignant

samples, it will lead to insufficient training data.

To address the problem of sample imbalance, we design the

asymmetric loss function formedical image recognition with a large
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amount of negative samples and few positive samples. Different

from the commonly used cross-entropy loss shown in Equation (5),

LCE = −y log(p)− (1− y) log(1− p), (5)

where y∈{0, 1} means the ground truth label of the sample,

p ∈ (0, 1) is the predicted score, when p > 0.5, the sample is

predicted as the positive category, the asymmetric loss decouples

the loss of positive and negative categories, reducing the impact of

sample imbalance through asymmetric focusing and asymmetric

probability transfer, for each sample, the new loss function for

classification LCLS is calculated through

LCLS = −y(1− p)γ+ log(p)− (1− y)pγ− log(1− p), (6)

where γ+ and γ− are the exponential decay factors, the larger

the value of the decay factor, the greater the attenuation effect. The

adaptive weight factors (1 − p)γ+ and pγ− are added to original

cross-entropy loss function to asymmetrically scale the loss of

positive samples and negative samples, which is better for the

optimization in the case of unbalanced samples. We set γ+ < γ−

to reduce the gradient of the negative samples, strengthening the

attention of the model optimization to the positive samples.

In addition, with typical characteristics, some negative samples

are easy to identify, to constrain the model to focus on hard

samples, we add the probability transfer to the loss function,

directly discarding samples which have a low predicted p value. The

weight factor ofL− is reconstructed with the transfer probability pt ,

which is calculated by

pt = max(p− ϕ, 0), (7)

where ϕ is the probability cutoff threshold, when the predicted

p is lower than µ, pt is set to 0. The final asymmetric classification

loss function is

LCLS = −y(1− p)γ+ log(p)− (1− y)p
γ−
t log(1− p), (8)

which enables the model to overcome the imbalance of

samples in training, and focus on the difficult samples near the

discrimination interface, enhancing the robustness of the trained

model.

In the optimization of the shape-biased stream, we use L2 loss,

which is the pixel-wise mean square error between the predicted

mask M̂ and the ground truth maskM, the shape loss LSHP is

LSHP = ‖M̂−M‖2, (9)

In joint learning, texture feature encoder parameter θ
∗

TE is

supervised by LCLS, shape feature decoder parameter θ
∗

SD is

supervised by LSHP, shape feature encoder parameter θ
∗

SE is

supervised by LCLS and LSHP to encourage learning shape features

that are conductive to lesion classification. In summary, they are

optimized by

θ
∗

TE = argmin
θTE

LCLS (10)

θ
∗

SE = argmin
θSE

(αLCLS + βLSHP) (11)

TABLE 1 Number of samples in each dataset.

Dataset Malignant Benign Total Mask label∗

ISIC-2019 4,522 12,875 17,397 2,671

XJTU-MM 2,170 6,928 9,098 726

∗Due to not all samples having corresponding mask label, the shape-biased learning is only

optimized when the input images have corresponding mask labels.

θ
∗

SD = argmin
θSD

LSHP (12)

where α and β is the scaling coefficient to balance LCLS and

LSHP, which is realized through the gradient scaling layer. Through

the cooperative optimization of each module, the proposed

method realizes texture and shape joint learning, improving the

performance on shape-relied medical image recognition tasks.

4. Experiments

4.1. Experimental setup

4.1.1. Data preparation
We use two medical image datasets to verify the effectiveness of

the proposed method.

• ISIC-2019: A public and commonly used dermoscopic image

dataset for dermatological diagnose. According to the advice

from dermatologists, the malignant melanoma is one of the

most dangerous skin cancer, and the melanoma lesions have

similar visual characteristics to nevus. Therefore, we focus

on the melanoma and nevi recognition task on this dataset.

We use 12,875 nevi images and 4,522 malignant melanoma

images, of which 2,671 images have corresponding lesionmask

labels.

• XJTU-MM: A skin pathological image dataset collected

from the Second Affiliated Hospital of Xi’an Jiaotong

University(Xibei Hospital). It contains 9,098 images of RoI

regions cropped from the whole slide histopathological

images by pathologists, of which 2,170 images are malignant

melanoma lesions and 6,928 images are benign nevus. And 726

of them have cell-wise masks labeled by pathologists.

The sample number of three datasets are shown in Table 1.

Each dataset is divided into training set, validation set, and test

set according to the ratio of 6:2:2, the images of malignant lesions

are positive samples and the images of benign lesions are negative

samples. Due to not all samples having the corresponding mask

label, the shape-biased learning is only optimized when the input

images have the corresponding mask labels.

4.1.2. Evaluation metrics
To quantitatively evaluate the performance of the model, we

use accuracy(Acc.), precision(Pre.), recall(Rec.), and F1 score(F1)

Frontiers inNeuroscience 07 frontiersin.org36

https://doi.org/10.3389/fnins.2023.1212049
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1212049

as evaluation metrics. They are calculated by

Acc. =
TP + TN

TP + FP + TN + FN
,

Pre. =
TP

TP + FP
,

Rec. =
TP

TP + FN
,

F1 =
2× Pre.× Rec.

Pre.+ Rec.
,

(13)

where TP (true positive) means the number of samples

categorized to positive correctly, TN (true negative) means the

number of samples categorized to negative correctly, FP (false

positive) means the number of samples misclassified to malignant,

FN (false negative) means the number of samples misclassified to

negative. Higher accuracy reflects better overall performance of

the model on all samples, higher precision means fewer malignant

lesions are miss detected, and higher recall means higher sensitivity

of the model to malignant lesions, F1 score is the combination of

precision and recall. The four metrics provide a comprehensive

evaluation of the medical image recognition models.

4.1.3. Implementation
In the proposed STNet-50, ResNet-50 is used as the baseline

backbone of texture encoder and shape encoder, the shape

feature decoder in the shape-biased stream is constructed using

deconvolution operations and referring to the structure of ResNet-

18. The texture encoder is pre-trained on ImageNet-1K. We

implement the network using pytorch, opencv, scikit-learn and the

libraries they depend on based on Python, and train the model on 2

RTX3090-24GB GPUs. All images are resized to 224×224, random

rotation and random cropping are used for data augmentation.

Batch size is set to 64, initial learning rate is set to 5e − 4, weight

decay is set to 1e − 5, RMSprop (Hinton et al., 2012) is used as

the optimization algorithm and the momentum is set to 0.9. The

exponential decay factors in asymmetric loss is set to λ+ = 1,

λ− = 3.

4.2. Comparison results

We compared the proposed method with some popular general

vision models, including the ResNeSt (Zhang H. et al., 2022),

which is the latest iteration of ResNet, and ConvNeXt (Liu et al.,

2022), which is regarded as CNN for 2020s. We also added some

models designed for specific medical image recognition tasks to

the comparative experiment, including DeMAL-CNN (He et al.,

2022) for skin lesion classification in dermoscopy images, and

MPMR (Zhang D. et al., 2022), which is a multi-scale-feature-based

melanoma recognition method in pathological images.

The results are shown in Table 2, which indicate that the

proposed STNet outperforms compared algorithms on two datasets

and on all evaluation metrics. ConvNeXt series models show

generally better performance than ResNeSt-50 on two datasets,

which confirms the progress from split-attention block to ConvNet

block. DeMAL-CNN shows a similar ability to ConvNeXt on

ISIC-2019 dataset, considering that it uses standard ResNet

as the backbone, the framework design of DeMAL-CNN has

considerable contributions to enhance the dermoscopic image

feature representation. MPMR shows better performance than

ConvNeXt, which indicates that enhancing multi-scale features

is effective in skin pathology image recognition. In addition, in

each series of models, the increase in network layers does not

bring about significant performance improvements, it is difficult to

significantly improve the recognition accuracy of the model simply

by increasing the number of layers. Furthermore, in four evaluation

metrics, precision and recall are obviously lower than accuracy,

which is caused by the sample imbalance of malignant and benign

samples. In this case, accuracy cannot comprehensively reflect the

performance of themodel, it is necessary to add other threemetrics.

Some difficult samples in the test set of XJTU-MM dataset are

visualized and shown in Figure 6, where difficult samples mean the

samples near the discriminant hyperplane. According to the results,

The proposed STNet-50 correctly recognizes all of these samples.

ResNeSt-50, ConvNeXt-S, and MPMR-50 all fail to recognition the

first sample and the second sample, which contains rich irregular-

shaped features. The fourth sample and the sixth sample have

relatively distinct texture features distinct from melanoma, which

is relatively easy to identify. The texture and feature joint learning

enhances the shape feature representation, and the proposed

asymmetric loss guides model to focus on difficult samples, so

STNet has advantages on recognizing these difficult samples.

In summary, the results of comparative experiments on

ISIC-2019 and XJTU-MM datasets proves the effectiveness of

our method.

4.3. Ablation analysis

To further study the contribution of each module in

our method, we design ablation experiments to analyze the

effect of pyramid-grouped convolution(PGC), deformable

convolution(DC) and channel-attention-based feature

fusion(CAFF) on model performance. we remove all of these

modules from the proposed STNet-50 and use it as the baseline

model (first row in Table 3). And then PGC, DC and CAFF are

rejoined to baseline model one by one (row 2–4 in Table 3).

According to the results shown in Table 3, all the three modules

bring performance improvement to model, especially in the

increase of precision and recall. It indicates that PGC in the

texture-biased stream and DC in shape-biased stream can both

enhance the feature representation, and CAFF can select features

that are more conducive to lesion identification. Additionally, these

three modules are portable and can be plugged to other methods.

To further study the feature selection effect of CAFF in texture

and shape feature fusion, we construct STNet-50 with CAFF and

without CAFF respectively, and feed 500 malignant samples and

500 benign sample to them, for each sample, the feature vector

in front of the classifier is input to t-SNE (Van der Maaten and

Hinton, 2008) manifold learning model to study the separability

of the extracted features. Through t-SNE, the input feature vectors

are transformed into two dimensions and visualized in Figure 7.

The comparison of Figures 7A, B show that the feature vector of

the model with CAFF is more separable, which is conductive to
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TABLE 2 Quantitative results of the proposed method and the comparison method on ISIC-2019 and XJTU-MM datasets.

Dataset Model Acc. ↑ Pre. ↑ Rec. ↑ F1 ↑

ISIC-2019 ResNeSt-50 0.925 0.813 0.923 0.865

ResNeSt-101 0.927 0.816 0.929 0.869

ConvNeXt-S 0.949 0.858 0.964 0.908

ConvNeXt-B 0.957 0.881 0.965 0.921

DeMAL-50 0.952 0.864 0.967 0.913

DeMAL-101 0.954 0.878 0.955 0.915

STNet-50 (ours) 0.967 0.904 0.977 0.939

STNet-101 (ours) 0.971 0.916 0.978 0.946

XJTU-MM ResNeSt-50 0.929 0.828 0.885 0.855

ResNeSt-101 0.933 0.846 0.880 0.863

ConvNeXt-S 0.945 0.868 0.908 0.887

ConvNeXt-B 0.946 0.875 0.901 0.888

MPMR-50 0.958 0.894 0.935 0.914

MPMR-101 0.961 0.910 0.929 0.919

STNet-50 (ours) 0.979 0.954 0.959 0.956

STNet-101 (ours) 0.985 0.963 0.972 0.968

FIGURE 6

Visualized results of comparative experiment on XJTU-MM dataset. The green boxes mean correctly classified samples, the red boxes mean

misclassified samples.

TABLE 3 Results of ablation analysis of pyramid-grouped convolution(PGC), deformable convolution(DC) and channel-attention-based feature

fusion(CAFF) on ISIC-2019 dataset.

Module Acc. ↑ Pre. ↑ Rec. ↑ F1 ↑

PGC DC CAFF

- - - 0.944 0.874 0.915 0.894

X - - 0.951 0.884 0.933 0.908

X X - 0.959 0.895 0.955 0.924

X X X 0.967 0.904 0.977 0.939
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FIGURE 7

Visualized feature separability analysis through t-SNE. (A) Visualized

result of STNet-50 without CAFF. (B) Visualized result of STNet-50

with CAFF. The feature vectors of STNet-50 with CAFF and STNet-50

without CAFF are transformed to two dimensions, respectively.

classification. The results indicate that the introduction of CAFF

module is effective to select features relevant to lesion recognition.

Due to the available data is limited, to verify performance of

the proposed model more rigorously, we conducted five-fold cross-

validation on both ISIC-2019 and XJTU-MMdatasets. Each dataset

was divided into five mutually exclusive parts, with four used for

training the STNet-50 model and one remaining part used for

testing. Because of the sample imbalance problem, we use F1 score

as the evaluation metric. The cross-validation results are shown

in Table 4, STNet-50 shows consistent performance in each fold

of the cross-validation, which proves the stability and reliability of

the results.

4.4. Discussion on shape and texture joint
learning framework

We propose the two-stream network for texture and shape

joint learning, compared to single-stream network, an extra shape

FIGURE 8

Variation of evaluation metrics with γ− when γ+ = 1. Acc., accuracy;

Pre., precision; Rec., recall; F1, F1 score.

feature encoder is introduced. To analyze the contributions to

performance improvements are provided by texture and shape

joint learning or just the extra feature encoder, three control

group models are designed for the comparative experiment. The

first model uses the texture encoder only for feature extraction.

The second model cascades the segmentation network and the

classification network in the proposed method, the segmented

lesion is used as the input of the classification network. The

third model is constructed by removing the feature decoder of

the shape-biased stream in our method, which is a two-stream

network but without shape and texture joint learning. ISIC-2019

dataset is used for this experiment, the results are shown in Table 5,

compared to the single-stream model, the cascade classification

and segmentation model does not show obvious performance

improvement and even have a performance drop on recall. It

means that when the lesion mask labels are not sufficient, cascading

the segmentation network and the classification network has

limitation in solving weak shape representation problems. Two-

stream network with joint learning shows better performance

than that without joint learning, it indicates that the performance

improvement of the proposed method is not simply brought by the

extra shape feature encoder but by shape and texture joint learning,

which proves the effectiveness of our method.

4.5. Discussion on parameters of
asymmetric loss

The asymmetric loss function in the proposed method is

designed to address the sample imbalance problem, we use

exponential decay factors γ+ and γ− to adjust the attention of

the model to positive and negative classes. Due to in medical

image datasets, malignant samples are usually much fewer than

benign samples, γ− should achieve a stronger decay effect, so

γ+ < γ−. To further study the effects of γ+ and γ− to model

performance, we set γ+ = 1, and use different γ− to train

the STNet-50 on ISIC-2019 dataset, the test results are shown

Frontiers inNeuroscience 10 frontiersin.org39

https://doi.org/10.3389/fnins.2023.1212049
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1212049

TABLE 4 Five-fold cross-validation results of the proposed STNet-50 model on ISIC-2019 and XJTU-MM datasets.

Datasets F1 score ↑

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

ISIC-2019 0.939 0.930 0.932 0.939 0.935

XJTU-MM 0.956 0.953 0.955 0.953 0.952

TABLE 5 Experiments of discussion on shape and texture joint learning.

Backbone layers Structure Acc. ↑ Pre. ↑ Rec. ↑ F1 ↑

50 Single-streama 0.950 0.872 0.945 0.907

Cascade Cls. and Seg.b 0.950 0.886 0.928 0.907

Two-stream without joint learningc 0.960 0.909 0.939 0.924

Two-stream with joint learningd 0.967 0.904 0.977 0.939

101 Single-streama 0.952 0.877 0.950 0.912

Cascade Cls. and Seg.b 0.955 0.888 0.945 0.916

Two-stream without joint learningc 0.961 0.911 0.944 0.927

Two-stream with joint learningd 0.971 0.916 0.978 0.946

aSingle-stream: only use the texture encoder in the proposed method for feature extraction.
bCascade Cls. and Seg.: cascading segmentation network in front of classification network.
cTwo-stream without joint learning: removing the feature decoder in the shape-biased stream of our method.
dTwo-stream with joint learning: the proposed framework.

in Figure 8. Despite the model achieving the highest Pre. value

When γ− = 2, taking into account the four metrics, the model

has the best performance when γ− = 3. When γ− is too small,

exponential decay is not enough to eliminate the impacts of

sample imbalance. When γ− is too large, the effect of exponential

decay is so strong that the model tends to ignore negative

samples, and the performance of the model drops significantly.

According to the results in Figure 8, choosing an appropriate value

of the exponential decay factor is important to train a good-

performance model.

5. Conclusion

In this paper, we propose the two-stream shape and texture

joint learning network to address the weak shape feature

representation problem of existing medical image recognition

methods. According to the experiments on ISIC-2019 and XJTU-

MM datasets, the proposed two-stream network is an effective

method to combine texture and shape features. In addition,

the proposed pyramid-grouped convolution enhances the texture

feature representation, and deformable convolution enhances the

shape feature representation. Furthermore, the channel-attention-

based feature fusion module effectively eliminates redundant

information and selects essential features. The asymmetric loss

function addresses the problem of sample imbalance. The

proposed method improves the model performance on shape-

relied medical image recognition tasks, and provides support for

computer-aided imaging diagnosis. Additionally, in our method,

to enhance shape feature representation, an extra feature encoder

is introduced, which increase the computation requirements,

although the computation. Although inference speed is not the

most critical concern in medical image analysis, we aim to

enhance shape and texture feature representation by avoiding

the use of additional encoders in future work, enhancing shape

feature representation and texture feature representation within a

single encoder.
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Humans do not learn everything from the scratch but can connect and associate

the upcoming informationwith the exchanged experience and known knowledge.

Such an idea can be extended to cooperated multi-reinforcement learning and

has achieved its success on homogeneous agents by means of parameter sharing.

However, it is di�cult to straightforwardly apply parameter sharing when dealing

with heterogeneous agents thanks to their individual forms of input/output and

their diverse functions and targets. Neuroscience has provided evidence that our

brain creates several levels of experience and knowledge-sharing mechanisms

that not only exchange similar experiences but also allow for sharing of abstract

concepts to handle unfamiliar situations that others have already encountered.

Inspired by such a brain’s functions, we propose a semi-independent training

policy method that can well tackle the conflict between parameter sharing and

specialized training for heterogeneous agents. It employs a shared common

representation for both observation and action, enabling the integration of various

input and output sources. Additionally, a shared latent space is utilized to maintain

a balanced relationship between the upstream policy and downstream functions,

benefiting each individual agent’s target. From the experiments, it can approve that

our proposed method outperforms the current mainstream algorithms, especially

when handling heterogeneous agents. Empirically, our proposed method can

also be improved as a more general and fundamental heterogeneous agents’

reinforcement learning structure for curriculum learning and representation

transfer. All our code is open and released on https://gitlab.com/reinforcement/

ntype.

KEYWORDS

brain function, knowledge-sharing institution, multi-agent reinforcement learning,

parameters sharing, representation transferability

1. Introduction

The attention on Multi-agent reinforcement learning (MARL) is booming largely since

a lot of real-world cooperatives challenges can be properly solved. The scenarios such as

distributed network routers, sensor networks (Zhang and Lesser, 2011), traffic management

(Singh et al., 2020), and coordination of robot swarms (Hüttenrauch et al., 2017), etc. can be

better modeled as MARL where the decision on controlling and management are distributed
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made. However, the introduction of multi-agent reinforcement

learning has also brought in 2 challenges: increased computation

requirements due to the larger observation and action spaces, and

difficulty in convergence during training due to the presence of

other agents.

Multi-Agent Reinforcement Learning (MARL) methods can be

classified into two categories based on the level of centralization

in decision-making and learning (centralized or decentralized). In

decentralized systems, each agent makes decisions and learns on

its own, without accessing the observations, actions, or policies of

other agents. However, decentralized learning lacks the guarantee

of convergence due to the non-stationary caused by other agents.

Therefore, most modern MARL research follows the paradigm of

Centralized Training and Decentralized Execution (CTDE), where

agents have access to other agents’ observations during training but

execute their own policies separately. Examples of CTDE include

MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), and

QMIX (Rashid et al., 2020).

Based on such a paradigm, the idea of parameter sharing

is naturally born following the merging of multi-reinforcement

learning. It coheres to the human intuition that knowledge sharing

can make better learning and judgment. Humans do not learn

everything from scratch but exchange knowledge when learning

from experience. This idea was first introduced for classical

RL (Tan, 1993) and later extended to cooperative multi-agent

reinforcement learning (Chu and Ye, 2017; Gupta et al., 2017).

Homogeneous multi-reinforcement learning has achieved success

when utilizing parameter sharing. They leverage an identical policy

trained with all the trajectories. This method is more efficient

compared to training multiple independent policies, as only one

policy is employed for both learning and training, reducing the high

computational demands, and difficulties in achieving convergence.

The application of parameter sharing to heterogeneous agents

is limited in its effectiveness due to the homogenizing effect it has

on agents’ behavior, particularly at the early stages. Additionally, the

shared policy results in a fixed observation and action space size. To

address this, some algorithms utilize zero-padding to standardize

inputs and outputs, and allow a single policy to serve multiple

agents (Gupta et al., 2017; Foerster et al., 2018). These strategies

have helped to reduce the obstacles to further extension to hetero

agents. It works well for agents with fewer functional and targeting

variations or for environments easy to normalize the input and

output but not for an abundance diversity of agents. However, this

adaptation may not be suitable for all situations, such as when there

are different dimensions of inputs and outputs that are not easy to

be unified through extra padding of inputs or outputs. The policy

for diverse agents also results in slow convergence. Therefore, a

more flexible parameter-sharing and policy training strategy is

desirable for the real-world application.

Neuroscience has provided evidence that our brain establishes

various levels of experience and knowledge-sharing institutions

that not only exchange similar experiences but also allow for

the exchange of abstract concepts to tackle novel situations

that others have already encountered. Inspired by this, we

propose a semi-independent training policy method that applies

identical policies among the same type of agents and semi-

independent parameter-sharing schemes between different types

for tackling the conflict between parameter sharing and specialized

training for heterogeneous agents. This method also utilizes

a common shared representation, generated by supervised

learning, to formalize the observations and actions of the

agents, allowing it to handle all types of inputs and outputs.

An intrinsic reward is also introduced to speed up the

environmental exploration. Experimental results demonstrate

that our proposed method outperforms the current mainstream

algorithms, particularly when dealing with heterogeneous agents.

In advance, our proposed method can be considered as a

more general and fundamental structure for heterogeneous agent

reinforcement learning, incorporating curriculum learning and

representation transferring.

This paper is organized as follows. In Section 2, we provides

some background on Multi-agent Reinforcement Learning

(MARL) and recent advances in Deep Reinforcement Learning

(DRL) relevant to the proposal. Section 3 presents the proposal

in detail. In Section 4, we will detail the experiments performed

and their results. In Section 5, we will review the related

work concerning our proposed MARL, including curriculum

learning and representation transferring. Lastly, in Section

6, we will summarize the conclusions and suggests future

research directions.

1.1. Main contribution

This paper presents three main contributions we have made to

our proposal.

First, we introduce and adopt a hard-parameter-sharing scheme

to MARL in order to balance the conflicting requirements of

agents’ specialization and network fast convergence. This scheme

was originally proposed for multi-task networks, which take a

parameter-shared base to process the input and multiple-task

terminals to handle different tasks. This structure accounts for

specialization among heterogeneous agents while still attempting

for the maximum level of experience sharing. Based on our

knowledge, there is no other literature currently existing for this

approach, and our work is the first made such attempt to introduce

the multi-task network parameter-sharing scheme to multi-agent

reinforcement learning.

Second, we invent a supervised learning method to generate

a general input and output representation shared with all agents.

The shared common representation facilitates the formalization of

input and output, thus resolving the diversity of heterogeneous

agents’ input and output issues, and making it easier to incorporate

the hard-parameter-sharing scheme. Thanks to this common

shared input/output representation, all the agents will be equally

treated after the input/output processing regardless of the types

of agents. Empirically, We carried out such an approach by

simultaneously training with reinforcement learning to ensure that

the representation is both accurate and precise. It can be approved

such a training schedule can fast generate the representation to

facilitate policy training.

Third, we introduce an extra intrinsic reward to encourage

more exploration of the environment initially. Unlike traditional
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intrinsic rewards which are based on a comparison of trajectories,

our proposed intrinsic reward is based on the prediction of

supervised learning and its input/output representation. Such a

tactic can help to stimulate more exploration right away without

requiring extra effort and well incorporate the representation

generation process.

2. Background

2.1. Reinforcement learning

Reinforcement Learning (RL) methods attempt to identify an

optimal policy (a function that takes an observation and returns

an action) that maximizes the expected total reward from an

environment. Commonly, such environments are modeled as a

Markov Decision Process (MDP) or Partially-Observable Markov

Decision Process (POMDP) (Boutilier, 1996). MDPs characterize

decision-making as a repetitive process whereby an agent takes

an action, receives a reward, and transitions to a new state (with

perfect knowledge of the state). POMDP extends this to include

environments in which the agent may not be able to observe the

full state information.

In Deep Reinforcement Learning (DRL), a neural network is

used to represent the policy. These methods are typically divided

into two categories: Q-learning methods and policy gradient

(PG) methods. The first deep Q learning method was Deep Q

Network (DQN) (Mnih et al., 2013), and the first widely-used PG

method was Deep Deterministic Policy Gradient (DDPG) (Lillicrap

et al., 2015). Subsequently, various newer, more powerful methods

were developed, including Soft Actor-Critic (SAC) (Haarnoja

et al., 2018), TD3 (Fujimoto et al., 2018), Proximal Policy

Optimization (PPO) (Chu and Ye, 2017), (the synchronous version

of Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016),

Rainbow DQN (Hessel et al., 2018) etc., and more advanced deep

reinforcement learning methods is on the way of development for

the real-world applications.

Multi-agent reinforcement learning (MARL) can be deemed as

an extension of RL that considers the interactions between multiple

agents in a changing environment. The agents must learn to adjust

their actions based on changes not only in the environment but

also in the behavior of other agents. MARL can lead to distributed

intelligent decision-making and has applications in game theory

and robotics. Our proposed method focuses on developing a fast

and accurate MARL algorithm for practical use.

2.2. Brain’s transfer learning on the new
tasks

Learning is not a process that begins from scratch, as people can

connect and relate new information to their existing experiences

and knowledge. Recent neuroscience research has shown that the

brain has the capacity to transfer knowledge from one task to

another, even if the tasks appear dissimilar. The brain’s ability

to extract and store abstract representations of information is

the reason behind this transfer. When confronted with a new

task, the brain first looks for similarities with past experiences,

allowing individuals to learn how to handle the new task quickly.

These abstract experiences can also be shared and learned by

others, highlighting the importance of utilizing past experiences

and knowledge to facilitate learning.

2.3. Dec-POMDP

Decentralized Partially Observable Markov Decision Processes

(Dec-POMDPs) are a probabilistic framework for enabling

distributed decision-making among multiple agents. It has been

commonly utilized for decision-making in cooperated large-scale

multi-agent settings, originally proposed in the literature on

autonomous multi-agent systems (Lillicrap et al., 2015). In this

framework, each agent has a set of actions and observations defined

in mathematics that it can take in order to achieve a goal. The

environment is represented as a stochastic process that is partially

observable to the agents.

A Dec-POMDP on MARL can be formally defined as a tuple

(N, S,A,P,R,�, O, n, γ ), where:

• N is a finite state of n agents where i ∈ N ≡ {1, . . . , n};
• S is the global state of the environment where s ∈ S;

• A is a set of joint actions, A = A1 × · · · ×AN whereAi is the

set of actions that the i-th agent can choose from;

• P is a state transition probability function where P(s
′
|s,A) : S×

∏

i∈N Ai × S → [0, 1];

• R is a reward function, often can be modeled as R = R(S,A),

where Ri ∈ R : S ×
∏

i∈N Ai × S → R is the reward function

for agent i;

• � is the set of observations, where �i ∈ � is the possible

observation for agent i;

• O is the observation function, normally modeled as O(S, i).

According to the settings of partial observation, the agent

cannot access the global state but samples local observations

according to the observation function where S × Ai ≡ �i,

which can generate the set of observation that ith agent can

receive;

• γ is the discount factor, where γ ∈ [0, 1). The utilization of

the discount factor is to compromise for the reward one can

receive a few steps later than immediately.

The set of agents A comprises the agents that are involved in

the decision-making problem, each of which has its own set of

decisions and observations. The set of observed states S represents

the states of the environment, which are partially observed by

the agents. Finally, the set of joint actions A contains the joint

actions taken by all, which are finally to determine the probability

of transitioning to different states. The Dec-POMDP framework

allows agents to make optimal decisions in a partially observable

environment by combining their observations and taking into

account their own rewards and the rewards of their peers (Oliehoek,

2012).

Such a framework can be perfectly utilized to describe the

decision-making in cooperated large-scale multi-agent settings,

thus we will also apply the above-mentioned mathematics

definitions in this paper to describe our proposal.
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2.4. Parameters sharing

The concept of parameter sharing is a widespread practice

in the field of deep learning. It refers to an approach where a

single set of parameters is shared among multiple components of

a neural network, such as layers or sub-networks. In the context of

multi-agent reinforcement learning, parameter sharing involves an

algorithm that learns from the experiences of all agents and updates

a collectively shared policy. Parameter sharing, which involves

representing all policies with a single neural network that shares

the same set of parameters, was first introduced by Tan (1993)

for classical reinforcement learning. Later, it was concurrently

introduced to cooperative multi-agent deep reinforcement learning

by Chu and Ye (2017) and Gupta et al. (2017). This straightforward

approach has proven to be highly effective in various applications,

including those presented in Zheng et al. (2018), Chen et al.

(2021), and Yu et al. (2022). This paper will discuss parameter

sharing in detail and make a proposal based on that with a more

general framework and structure from the common representation

and semi-independent training and will further analyze the

effectiveness and utilization of representation transferring and

curriculum learning.

2.5. Coping with heterogeneity

Heterogeneity in agents is a common challenge in multi-

agent systems, which can arise due to various reasons, such

as differences in the physical capabilities or perceptual abilities

of the agents. Addressing this issue is crucial to ensure that

the agents can effectively cooperate and achieve their goals. To

address such a challenge, two methods have been proposed.

The first method is to add an indication of observations to

enable a single policy to serve multiple agents, accommodating

different action and observation spaces. However, since there is

only one neural network, the observation spaces of all agents

must be the same size especially when the observation spaces of

agents are vastly different, as the neural network may struggle

to learn from a disparate input. The second method proposes

“padding” observations and action spaces to a uniform size, which

allows agents to ignore any actions outside their “true” action

space. By standardizing the observation and action spaces, the

agents can effectively communicate with each other, and the

neural network can learn from these inputs more efficiently.

However, this approach may introduce redundant or irrelevant

information, leading to additional computational overhead. Also

the initial policies it generated with the unified neutral network

will be also less efficient and mislead to sub-optimal when

the network cannot well recognize the correct information and

“padding”.

3. Preliminary

3.1. Representation learning

Reinforcement learning (RL) involves training an agent

through interactions with an environment. This formalism is

powerful in its generality, but poses an open-ended problem: how

can we design agents that learn efficiently and generalize well,

given only sensory information and a scalar reward signal? One

solution that is becoming increasingly popular is introducing self-

supervised learning. Applying self-supervised learning in RL can

help solve problems with high-dimensional state-action spaces

and improve sample efficiency by incorporating inductive biases,

such as structural information about tasks anden vs, into the

representations for better performance.

The UNREAL agent (Jaderberg et al., 2016) introduced

unsupervised auxiliary tasks to deep RL, including the Pixel Control

task, a Q-learning method that requires predictions of screen

changes in discrete control environments, which has become a

standard in DMLab (Hessel et al., 2019). CPC (Oord et al.,

2018) applied contrastive losses over multiple time steps as an

auxiliary task for the convolutional and recurrent layers of RL

agents, and it has been extended with future action-conditioning

(Guo et al., 2018). Recently, PBL (Guo et al., 2020) surpassed

these methods with an auxiliary loss of forward and backward

predictions in the recurrent latent space using partial agent

histories. A small number of model-free methods have attempted

to decouple encoder training from the RL loss as ablations,

but have met reduced performance relative to end-to-end RL

(Laskin et al., 2020). Examples of works that pre-train encoder

features in advance using image reconstruction losses, such as the

VAE (Kingma and Welling, 2013), PR2 (Finn et al., 2016), and

World models (Ha and Schmidhuber, 2018). Other works (Devin

et al., 2018; Kipf et al., 2019), apply pre-trained object-centric

representations that learn a forward model through contrasting

losses. CFM (Yan et al., 2021) introduced a similar technique to

learn encoders that support the manipulation of deformable objects

through traditional control methods. In this paper, we will leverage

an encoder-decoder framework to formalize the various inputs and

output for heterogeneous agents.

3.2. Hard/soft parameter sharing

Hard parameter sharing is a fundamental scheme that enables

domains to share some of their model parameters to reduce storage

costs and improve prediction accuracy. This approach originated

from multi-task learning (MTL), which aims to support multiple

downstream tasks on devices. While recent advancements in model

compression havemade deploying a singlemodel easier, supporting

multiple models on devices remains challenging due to increased

bandwidth, energy, and storage costs. To address this challenge, the

hard/soft parameter-sharing approach has been employed. Unlike

soft parameter sharing, where each task keeps its own model and

parameters, hard parameter sharing allows multiple tasks to share

some of the model parameters. As depicted in Figure 1, this sharing

is commonly applied by sharing the bottom layers among all tasks

while keeping several top layers and an output layer task-specific

(Ruder, 2017). Hard parameter sharing is often used in designing

multi-task deep neural network models (Long et al., 2017; Ruder

et al., 2019).

Given its effectiveness in MTL, we believe that utilizing

hard parameters can also be a viable solution for sharing

policies among different types of agents to share the basis while

maintaining dependence.
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FIGURE 1

A typical structure of hard parameter sharing.

3.3. Role-based learning method

Roles are a fundamental aspect of natural systems, such as

ants, bees, and humans, where they are closely related to the

division of labor and crucial for labor efficiency. This concept has

inspired multi-agent system designers to reduce design complexity

by assigning agents with the same roles to specific sub-tasks.

However, in such systems, roles and their associated responsibilities

are typically predefined using prior knowledge, limiting their

generalizability and requiring prior knowledge that may not

always be available. To overcome this challenge, Wilson et al.

(2010) utilized Bayesian inference to learn a set of roles, while

ROMA (Wang et al., 2019) developed a specialization objective to

encourage the emergence of roles, method RODE (Wang et al.,

2020b) proposes a scalable role-based multi-agent learning method

that effectively discovers roles by decomposing the joint action

space according to action effects, thereby access to the producing

of role selectors and learning of role policies in the reduced spaces.

These methods suffer from a limitation in searching for the optimal

task decomposition in the full state-action space, resulting in

inefficient learning in hard-exploration tasks. Our work is inspired

by the concept of role-based policy training, and we propose

a method that groups agents by their unit types. Within each

group, we implement a full parameter-sharing scheme, while across

different groups, we use a semi-sharing parameter scheme. This

approach can facilitate faster convergence for agents with similar

roles or types while allowing for greater flexibility in learning

different strategies or behaviors for agents with different roles

or types.

4. Proposal

Based on the preliminary research mentioned above, we

propose our semi-independent training policy method with

shared representation (STSR) for reinforcement learning.

This method comprises three main components: a common

inputs/outputs representation derived from supervised learning, a

semi-independent policy training scheme that applies full shared

parameters among agents of the same type/role and hard sharing

among different types, and an intrinsic/diversity-driven extra

reward to encourage environment exploration and enhance the

representation that can more clearly distinguish the inputs and

outputs from different types/roles. Before we delve into each

component, Figure 2 depicts the graph illustrating the entire

process.

Our idea is to use supervised learning to build a prediction

model, which enables us to establish an observation-action

embedding to formalize the agent’s input and output, regardless

of their invariant observation and actions. Based on that, we can

extend a hard parameter-sharing scheme tomultiple heterogeneous

agents, which fully shares the parameters among the same types

of agents and employs hard sharing between different type groups.

From the learned representation, we will generate an extra intrinsic

reward to encourage environment exploration and an identifying

reward to enhance the representation difference between agent

types. We provide a clear definition of the agent types and

representations below.

Definition 1 Given a cooperative multi-agent task

G=(N,S,A,P,R,�, O, n, γ ), let Kj be a set of agent type

with the total type accounts for j, where each agent i ∈ Kj.

Each type with the same policy forms as the tuple (gj,πKj ),

where gj = (Nj, S,Aj, Pj,R,�j, O, nj, γ , Z
o
j , Z

a
j ) can be defined

as a sub-space for each type, πKj
:T × Aj → [0, 1] is a

full parameter shared type policy, associated with each type.

Zo
j = Z0(oi,Kj), Z

a
j = Za(ai,Kj) are the observation representation

function and action representation function, respectively, shared for

each type.

Our aim is to seek a set of hard parameters shared policies

πK j that can maximize the expected global return Q(st , at) =
Est+1 :∞ ,at+1 :∞ [

∑∞
i=0 γ irt+1|st , at ,K(Zo,Za)]. The policies πK j are

also related to each other in terms of basic representation Za, Zo,

and low-level layers. We will now introduce the comprised each

component in detail, which is illustrated in Figure 2.

4.1. Common observation and action
representation

To well handle the heterogeneous agents and to improve the

effectiveness of parameter sharing, we attempt to cluster the agents

according to their types and then exert full parameter sharing

among unit type. Even though some role-based MARL (Wang

et al., 2020b; Christianos et al., 2021) do the partition of the agents

according to their representation latent space, we group our agents

based on the agent’s unit type.

To formalize the input and outputs from different types of

agents and to better architecture the hard parameter sharing

schemes, we propose a recurrent neural network (RNN) based

prediction model for learning the observation and action latent

representation that incentivizes including enough information such

that the next observations and rewards can be predicted when given

the actions and current observations.

As it is depicted in Figure 3, a collection of functions

Z0(oi,Kj, t) and Z
a(ai,Kj, t) are employed to estimate oit+1 and r

i
t+1,

respectively, from the agents’ limited view of the world. Due to the

fact that an agent cannot perceive the state or actions of another

agent, we define Ôi
:Oi × Ai → 1(Oi) and R̂i :Oi × Ai →

R to model the next observation and reward, respectively, based
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FIGURE 2

The framework of STSR includes a common representation derived from supervised learning, a semi-independent policy training scheme that

applies full shared parameters among agents of the same type and hard share among di�erent types, and an intrinsic/diversity-driven extra reward to

encourage environment exploration and enhance the representation that can more clearly distinguish the inputs and outputs of di�erent types.

FIGURE 3

RNN-based prediction model from which to learn the observation

and action representation embedding.

solely on the action and observation of an agent i. Our purpose in

learning these functions is to ensure a wide acceptable input/output

approximation and to establish an initial full share basis for a hard

parameter sharing scheme for all the agents regardless of their

types. Such prediction model training is due to be processed before

the reinforcement learning while the full-parameter shared basis

will be kept updated throughout the whole training process of

reinforcement learning.

In our proposal, we introduce an encoder fe and a decoder fp,

both parameterized by θ and depicted in Figure 3. The encoder

is solely conditioned on the agent’s identity. On the other hand,

the decoder is split into an observation decoder, f o
kj
, and a reward

decoder, f r
kj
, which receives the observation, action, and sampled

encoding z of agent i and try to predict the next observation and

reward. Unlike conventional autoencoders, oit and ait bypass the

encoder and are only received by the decoder. As a result, due to the

bottleneck, z can encode information only about the agent, such as

its reward function R̂i or observation transition model Ô
i
.

To formalize the process, we assume that each agent’s type

denoted as kj, represents its observation transition distribution and

reward function. We also assume that both the agent’s identity

and its observation transition distribution can be projected in

a latent space, z, through the posteriors q(z|kj) and p(z| tr =
(ot+1, ot , rt , at)). The objective is to find the posterior q(z|kj).

The encoder-decoder model is trained with samples from all

agents to learn from the experience of all agents, and it will

represent the collection of the agent-centered transition and reward

functions P̂
i
and R̂i for all i ∈ N. Given the inputs of the

decoder, the information of the agent type can only pass through

the sample z.

This model can be interpreted as a forward model, which is

trained by minimizing the following loss function:

Le (θe) = E(o,a,r,o′)∼D

[

∑

i

∥

∥fo
(

zai , oi, a−i

)

− o′i
∥

∥

2

2

+ λe
∑

i

(

fr
(

zai , oi, a−i

)

− r
)2

]

(1)

where fo and fr are predictors for observations and rewards,

respectively, and parameterized by θe. λe is a scaling factor, D is

a replay buffer, and the sum is carried out over all agents.

Minimizing the model loss can be done prior to reinforcement

learning. We sample actions ai ∼ Ai and store the observed

trajectories in a shared experience replay with all agents. We have

empirically observed that the data required for this procedure

is orders of magnitude less than what is usually required for

reinforcement learning, and it can even be reused for training the

policies, thus not adding to the sample complexity.
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4.2. Intrinsic rewards for environment
exploration and unit type identification

Multi-agent Reinforcement Learning (MARL) is an effective

method for addressing complex decision-making challenges

involving multiple agents, where external rewards are present. This

approach enables agents to interact with the environment to make

optimal decisions, motivated by rewards. A significant challenge for

those designing agents is defining a suitable reward function for

sequential decision-making tasks in Reinforcement Learning (RL).

Additional potential-based rewards, besides extrinsic rewards, do

not alter the order of agent behaviors. However, the choice

of potential-based or policy-based reward function used to

transform the original reward function can impact the sample and

computational complexity of RL agents learning from experience in

their environment. While this does not change the optimal policy,

it can influence the learning process for better or worse.

The aforementioned representation can facilitate the designing

of intrinsic rewards on 2 aspects: novelty rewards which encourage

the agent to take extra effort on efficient environmental exploration

and representability for diversity which can help to form

representation more widely identify a different kind of agent.

One of the main challenges in RL is the trade-off between

exploitation and exploration: agents must exploit the actions that

they know lead to high rewards, but they must also explore new

actions and states in order to discover new strategies that may lead

to even higher rewards. The data distance between the forward

prediction model can provide an additional source of motivation

for exploration, beyond the extrinsic rewards provided by the

environment.

For simplicity, we can define the state of the environment by

combining the observation and rewards of all agents, which can be

expressed as st = {(oit , r
i
t), i ∈ N}, t = 0 . . .∞. Let d(r1, r2) be

a distance metric between two representation vectors r1, r2 ∈ R
d.

One common distance metric is the Euclidean distance.

ret =
∑

i

pmi

∥

∥

∥
fo

(

zai , o
i
t , a

−i
t

)

− oi′t

∥

∥

∥

2

2

+λe
∑

i

pmi

(

fr

(

zai , o
i
t , a

−i
t

)

− rit

)2
(2)

where pmi is weight when calculating Qtot that we can obtain

from mixer layer. The reward function 2 assigns a positive reward

when the current state st is situated in a low-density region of

the representation space. This low-density region indicates that the

state is unique and hasn’t been encountered by the agent before.

The value of the reward is modified based on the discrepancy

between the density estimate determined by the mixer function,

denoted as pm, and the overall density estimate. This normalization

procedure guarantees that the reward stays within acceptable

limits and does not become unreasonably high. As a result, we

can determine the intrinsic reward of promoting environmental

exploration. It is worth noting that the emphasis on exploration

will decrease once the environment has been thoroughly explored.

Therefore, we will introduce a discount factor that will gradually

decrease during the training process.

FIGURE 4

Total rewards including both intrinsic rewards to encourage

environment exploration and to diverse representation upon agents’

type. Thick black lines illustrate data flow, thin black lines illustrate

rewards and red lines illustrate the loss to generate the intrinsic

rewards.

We have incorporated an additional intrinsic reward to our

design which aims to promote diversity in the representation

of the agent’s type. One of our key concepts is to implement a

specialization policy for agents of the same type. To encourage

this behavior, we implement an additional intrinsic reward system

that incentives the agent to have similar representations for the

same type when having the same kind of inputs and different

representations for different types. In order to create a reliable

representation-intrinsic reward, we utilize a method that involves

calculating the average representation of agents that are of the same

type when they receive a positive input. Conversely, we calculate

the average representation of the different types of agents to serve

as the negative input. By subtracting the negative reward from

the positive reward, we obtain a final representation reward. This

representation reward can be expressed in the following form:

rdt =
∑

i

pmi

[

1

Ni

(

∥

∥

∥
fo

(

zai , o
i
t , a

−i
t

)

− oi′t

∥

∥

∥

2

2

+λe

(

fr

(

zai , o
i
t , a

−i
t

)

− rit

)2
)

−
λh

Nj

(

∥

∥

∥
fo

(

zaj , o
i
t , a

−i
t

)

− oi′t

∥

∥

∥

2

2

+λe

(

fr

(

zaj , o
i
t , a

−i
t

)

− rit

)2
)]

, t = 0 . . .∞

(3)

Our total reward after accounting for both these 2 intrinsic

rewards is:

rtott = rt + λer
e
t + λdr

d
t , t = 0 . . .∞ (4)

This representation, which is demonstrated in Figure 4,

incentives intrinsic reward will be taken throughout the whole
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process of training accompanying the building up with the policy

common representation basis.

4.3. Common representation based
semi-independent policy training

The approach of full parameter sharing has shown remarkable

achievements among homogeneous agents. Nevertheless, when

extending it to a heterogeneous multi-agent environment,

challenges arise regarding how to handle different types of agents

with the same policy network that shares all parameters. This

extension creates a dilemma since sharing parameters among

agents with different characteristics can limit their potential

and hinder policy optimization. On the other hand, avoiding

parameter sharing altogether requires creating a complex decision-

making system with multiple policy networks, each with isolated

parameters. This alternative approach leads to slow convergence

and inefficient use of experience.

In order to effectively address this issue, we propose utilizing

full parameter sharing among agents of the same type, while

applying semi-parameter sharing to agents of different types.

Agents of the same type share inherent similarities, which

enables them to be scaled up with a consistent range of

decision-making capabilities. The success of parameter sharing

among homogeneous agents supports its application among

agents of the same type in a heterogeneous agent system,

where the group of heterogeneous agents can be viewed as a

collection of multiple sub-groups of homogeneous agents with

varying types.

To well utilize the similarities between different sub-groups,

we propose to apply hard parameter-sharing schemes. Hard

parameter sharing is a technique used in multi-task learning,

where a single neural network is trained to perform multiple tasks

simultaneously by sharing some of its layers among the tasks.

This approach can be effective and efficient because it allows the

network to learn and generalize across multiple related tasks, while

also reducing the total number of parameters needed to train

the model.

Mathematically, hard parameter sharing can be represented as

follows: Let x be the input to the network, y1 and y2 be the outputs

of two related tasks, and f be the shared layers of the network. Then,

the network can be represented as: y1 = g1(f (x)) and y2 = g2(f (x))

where g1 and g2 are task-specific output layers. In this way, the

shared layers are trained to extract relevant features from the input

that are useful for both tasks, while the task-specific output layers

are trained to map these features to the desired outputs for each

task. By sharing the parameters of the network across tasks, the

model can learn to generalize better and improve performance on

all tasks.

In the context of multi-agent reinforcement learning, hard

parameter sharing can also be useful when different agents

share common tasks or goals. For example, in a multi-agent

scenario where agents must cooperate to achieve a common

objective, such as in a game or robotics application, the agents

may share some common knowledge or features that can be

learned through a shared network. In our framework, multi-agent

reinforcement learning with hard-parameter sharing can be

expressed as:

max
ai

Q(s, ai) = max
ai

∞
∑

t=0

n
∑

i=1

EπjQi(f (st , ai); θj) (5)

f denotes the shared layers employed for hard-parameter sharing,

while πj=1...k represents the policies employed for all agents,

where agents of the same type apply the identical policy with full

parameter shared.

As illustrated in Figure 5, our proposed shared layer

embedding is identical to the common representation latent.

The representation latent handles all agent inputs and outputs

regardless of unit type, reflecting its parameter-sharing is applicable

among all agents. In this case, the representation latent can be

selected as the shared layer, initialized with its current parameters.

Empirically, this shared layer can be deemed as a separate branch

of the common representation, training via unit type based

reinforcement learning with the purpose to maximize overall value.

In the experiments section, we can prove the shared layer updated

with the reinforcement learning outperforms the one updated

with the representation latent. Meanwhile, the representation

latent is under training with the environment predictor for

better representation.

5. Experiment and results

In this section, we thoroughly evaluate our proposed method

from various perspectives. Firstly, we provide a comprehensive

assessment of its overall performance in different scenarios

and compare it with other mainstream algorithms to gauge its

effectiveness. Secondly, we conduct experiments with different

alternative flows and perform ablation studies to assess the impact

of each component. Thirdly, we conduct a detailed analysis of

the intermediate results to gain a better understanding of the

underlying principles, including the initial representation and

its subsequent updates, their distribution and representativeness,

shared layers, and the course of its training. Finally, we

attempt to validate the framework’s generalizability by testing its

representation transferability and its curriculum learning capacity.

5.1. Experiment setting

We have chosen the StarCraft II micromanagement (SMAC)

benchmark (Samvelyan et al., 2019) as our test-bed due to its

rich environments and high complexity of control. The SMAC

benchmark presents a series of challenging tasks, as agents must

learn policies in a large action space that includes four cardinal

directions, stop, take noop, or select an enemy to attack at each

time step. If there are ne enemies in the map, each ally unit’s

action space contains ne + 6 discrete actions. SMAC environment

is rich in all kinds of settings including a lot of homogeneous

agents. It is also a widely used setting where multiple agents

of distinct types coexist and must learn together, for which our

proposed method is mainly focused. The MMM2 is an example of
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FIGURE 5

The flow and structure for the hard-parameter-sharing based policy generation scheme, where the initial parameter is from the supervised env

prediction and will be later updated along with the type/agent layer.

such an environment that contains three types of units (marines,

marauders, and medivacs) with distinct attributes. One of the unit

types medivacs is particularly different, as it needs to learn how to

heal friendly units instead of attacking enemies.

Although our proposal is mainly concerned with

heterogeneous agents, it is quite capable to handle all kinds

of environments. To conduct a full assessment of our proposal, we

carry out tests on all kinds of settings, respectively, regardless of

either homogeneous agents or heterogeneous agents settings and

we compare the improvements in different settings.

SMAC consists of various maps which have been classified

as easy, hard, and super hard. It also contains variate group

agents of homogeneous or heterogeneous. Even though our main

proposal is aimed at heterogeneous scenarios, the method is

also applicable to the homogeneous and can also outperform its

original method.

To fully evaluate its overall performance on different scenarios,

we have conducted a thorough evaluation of our approach by

benchmarking it across all 14 scenarios within the SMAC suite.

This allows us to assess its performance across a range of

settings. Additionally, we present some of the results obtained

from this evaluation. Furthermore, we have compared our

proposal with other value-based MARL algorithms that are

considered state-of-the-art, including VDN (Sunehag et al., 2018),

QMIX (Rashid et al., 2020), QPLEX (Wang et al., 2021),

some role-based MARL method including ROMA (Wang et al.,

2020a), and RODE (Wang et al., 2020b) and an agent-specific

modules based parameter-sharing algorithm CDS (Li et al.,

2021).

To better understand the contribution of each component, we

conducted an ablation study by comparing the performance with

and without various components. This series of tests were assigned

different names: STSR full denotes the setting where all components

were included, STSR No Representation Learning excluded the

common representation as the basis for hard-parameter sharing,

instead using a random basis initially. The STSR No Representation

Later-update setting did not update or learn the hard-parameter

sharing basis but only utilized the initial common representation.

Additionally, we examined the settings of STSR No re Reward and

STSR No rd Reward, which, respectively, excluded the exploration

reward and representation reward. Finally, the STSR No Hard-

Parameter-Share setting did not apply the hard parameter sharing

scheme and did not share parameters among different types of

agents.

In the next section, we will present and discuss the results of

these thorough evaluation and ablation tests.

5.2. Results and discussion

5.2.1. Overall performance
To assess the performance of the models or algorithms, the

experiments in this section were conducted 4 times using different

random seeds. Themedian performance is reported as performance

metrics. These metrics provide a comprehensive understanding

of the models or algorithms’ performance and account for the

variability that can occur due to stochasticity.

We conducted a comprehensive evaluation of our approach

by benchmarking it across all 14 scenarios, categorized in Table 1.

Due to space limitations, we present examples of one easy map

(3s vs. 5z) and all the super hard maps in Figure 6. Among

the tests presented, our proposed method STSR demonstrated the

best performance in scenarios 3s5z vs. 3s6z and MMM2, and

ranked second in scenarios 3s5z and 27m vs. 30m. These

results are not surprising, as our proposal primarily focuses on

heterogeneous agents’ settings. Compared to role-based methods

that cluster agents based on their properties CDS (Li et al.,

2021) which seeks to achieve the maximum diversity among
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TABLE 1 Categories of the SMAC scenarios and their corresponding

di�culties, ally units, and agents type.

Di�culties Name Ally units Agents
type

Easy 2s3z 2 Stalkers & 3 Zealots Heterogeneous

3s5z 3 Stalkers & 5 Zealots Heterogeneous

1c3s5z 1 Colossus, 3 Stalkers

& 5 Zealots

Heterogeneous

5 m_vs._6m 5 Marines Homogeneous

10 m_vs._11m 10 Marines Homogeneous

Hard 2s_vs._1sc 2 Stalkers Homogeneous

3s_vs._5z 3 Stalkers Homogeneous

2c vs. 64zg 2 Colossi Homogeneous

Bane vs. bane 20 Zerglings & 4

Banelings

Heterogeneous

Super hard 3s5z_vs_3s6z 3 Stalkers & 5 Zealots Heterogeneous

6h−vs. 8z 6 Hydralisks Homogeneous

27 m_vs_30 m 27 Marines Homogeneous

Corridor 6 Zealots Homogeneous

MMM2 1 Medivac, 2

Marauders & 7

Marines

Heterogeneous

individualized behaviors from the shared network., our proposal

outperforms in heterogeneous settings, particularly in the speed

of convergence. Clustering agents of the same kind and sharing

parameters among them is a natural choice. We believe that our

proposed agent clustering method is more stable and consistent,

enabling more efficient use of generated experience to train

policy networks. In contrast, role-based methods may require

more interactions with the environment to better understand the

agents’ properties and assign roles, which may cause a delay in

convergence. The size of the agents in these 2 scenarios may be

well-suited for our proposed method. In the map 3s5z vs.

3s6z there are 3 Stalkers and 5 Zealots, while in the map MMM2

there is 1 Medivac, 2 Marauders, and 7 Marines. The size of each

agent type is not too large or too small, making it appropriate

to share the same type of parameters. In contrast, in the map

bane vs. bane there are 20 Zerglings and four Banelings. The

size of the Zerglings is too large and may require clustering in

advance. One surprising outlier is the easy scenario 3s5z for which

QPLEX exhibits the best performance, surpassing our proposal and

the role-based method by a large margin. We hypothesize that

this is because these maps do not require significant exploration

or distributed policy training. The limited experience can be

better utilized by training on a single, fully-parameter-shared

network.

In contrast to achieving the best performance on heterogeneous

agent scenarios, our proposed STSR is less efficient in homogeneous

agent settings compared to its counterparts from role-based

algorithms such as RODE (Wang et al., 2020b) and ROMA (Wang

et al., 2020a), and diversity oriented parameter sharing algorithm

CDS (Li et al., 2021). Role-based algorithms employ different

principles in clustering small groups of agents automatically and

then apply role-based policies to improve the overall performance,

whileour approach relies purely on the agents’ unit types. CDS

(Li et al., 2021) leverages information-theoretical regularization to

maximize the mutual information between agents’ identities and

their trajectories with the purpose to promote learning sharing

among agents while keeping necessary diversity. Thus for the

scenarios with homogeneous agents which cannot be clustered and

achieve sufficient diversity from the environmental exploration and

agents behavior the performance of our approach is comparatively

lower than the aforementioned counterparts. Empirically, we have

observed that the performance on scenarios with homogeneous

agents can be enhanced by employing random clustering as an

initial step. We plan to conduct a detailed investigation of this

phenomenon in our forthcoming research on clustering size, the

initial settings, etc.

Our method introduces a hierarchical parameter sharing

scheme, wherein parameters are fully shared among agents of

the same type and partially shared among agents of different

types through hard parameter sharing. By sharing parameters,

agents can leverage each other’s experiences and exploit common

patterns in the environment based on their similarities. This

approach simplifies training and enables efficient knowledge

transfer. In contrast, role-based MARL assigns specific roles or

tasks to individual agents, defining their unique responsibilities

and objectives. Each agent possesses its own set of parameters

optimized for fulfilling its designated role. Roles can be predefined

or learned during training. This approach fosters specialization

and coordination among agents, as they concentrate on specific

tasks or functions. While role-based MARL excels in handling

complex scenarios and adapting to diverse environments, it may

necessitate more intricate training algorithms and coordination

mechanisms. CDS (Li et al., 2021) propose an information-

theoretical regularization to maximize the mutual information

between agents’ identities and their trajectories, which encourages

extensive exploration and diverse individualized behaviors. It

introduce agent-specific modules in the shared neural network

architecture, which are regularized by L1-norm to promote

learning sharing among agents while keeping necessary diversity.

Compared to our proposed STSR and role-based methods, CDS

(Li et al., 2021) allows for more flexibility in fostering agent

specialization and achieving diversity in individualized behaviors.

However, without clustering-based group tactics, it results in low

efficient utilization of experience.

5.2.2. Ablation study
To better understand the contributions of each component,

we conducted an ablation study on three scenarios with

the best performance: 27m vs. 30m, 3s5z vs. 3s6z, and

MMM2. Among these scenarios, 3s5z vs. 3s6z and MMM2

are heterogeneous, while 27m vs. 30m is homogeneous. The

performance of the ablation study can be viewed in Figure 7.

According to the results we presented, all components make

positive contributions to the overall performance. Among all

the curves, STSR No Representation Later-update had the worst

performance, implying that the original representation from
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FIGURE 6

Performance comparison with baselines on all super hard maps and one easy map (3s5z). The baselines compromise VDN (Sunehag et al., 2018),

QMIX (Rashid et al., 2020), QPLEX (Wang et al., 2021), role based algorithms ROMA (Wang et al., 2020a), RODE (Wang et al., 2020b), and CDS (Li et al.,

2021).

supervised learning is not sufficient for a hard-parameter sharing

basis, and a later updated data procedure is necessary. Meanwhile,

the curves STSR No Representation Learning are not as good as

STSR full on all scenarios, which means that even if an initial value

settled on the hard-parameter sharing basis may not be sufficient,

it can still help to quickly approach the proper basis. For the

scenario 27m vs. 30m, there is no difference in performance

between STSR full, STSR No Hard-Parameter-Share, and STSR No

rd Reward. This result is not surprising since these two components

mainly work for heterogeneous agents, and 27m vs. 30m is

a homogeneous scenario. The comparison between STSR No rd
Reward and STSR full on the other two scenarios shows that

the application of rd can help to more quickly approach the

hard-parameter sharing layer, especially at the beginning. Such

a contribution is decreased following the later update of the

sharing layer. The reward re can help achieve better performance

on all scenarios regardless of whether they are homogeneous or

heterogeneous (presented on STSR No re Reward), by encouraging

environment exploration. The performance of STSR full suggests

that the utilization of hard-parameter sharing may not approach

the capability to largely improve performance, but it does speed up

the training process.

In conclusion, the ablation study found that all components

make positive contributions to overall performance. The study

also showed that even an initial value settled on the hard-

parameter sharing basis may not be sufficient, but it can still

help to quickly approach the proper basis. The utilization of

hard-parameter sharing may not largely improve performance, but

it does speed up the training process. The application of rd can

help to more quickly approach the hard-parameter sharing layer,

especially at the beginning, and such a contribution decreases

following the later update of the sharing layer. The reward re can

help achieve better performance in all scenarios by encouraging

environmental exploration.

5.3. Diverged representation embedding
training

In our proposal, we introduce a novel approach for

representation embedding. Initially generated through self-

supervised learning, the representation embedding is duplicated

and diverged into two branches. One branch is updated using

reinforcement learning to handle the observation for RL, while

the other branch is continuously updated to guide the intrinsic

reward. Although these two branches serve different purposes, they

function similarly to the representation of the common agent’s

observation and action. To gain a deeper understanding of the

functions and capabilities of these two embedding representations,

we conducted an experiment comparing their centralization and

clustering properties. To achieve this, we projected the embeddings

onto a 2D space, as depicted in Figure 8, using the scenario MMM2

as an illustrative example.

In the MMM2 scenario, which comprises a heterogeneous

composition of 1 Medivac, 2 Marauders, and 7 Marines facing

1 Medivac, 3 Marauders, and 8 Marines, it is essential to

Frontiers inNeuroscience 11 frontiersin.org53

https://doi.org/10.3389/fnins.2023.1201370
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1201370

FIGURE 7

Ablation study on 3 best-performing scenarios. All components make positive contributions to the overall performance.

foster effective cooperation among different agent types to fully

exploit the advantages of each unit. Our observation revealed

that while both forms of embedding clustered within their

respective groups, their concentration levels varied. This indicates

that both embeddings are capable of effectively distinguishing

the observations and actions of different unit types, albeit with

varying degrees of concentration, resulting in distinct functional

characteristics.

The self-supervised embedding, which is supervised by self-

supervised learning, exhibited a higher level of concentration,

while the RL-led embedding showed slightly more diversity

among individual points. We hypothesize that the self-supervised

embedding prioritizes forming distinctive representations for each

unit type, reinforced by intrinsic rewards. Hence, the dense

concentration in the self-supervised embedding as a result of

this objective. On the other hand, the RL embedding focuses on

obtaining maximum rewards, the distinctiveness of representation

for each individual agent will access a more proper reaction for

each agent. Therefore, the RL embedding aims to strike a balance

between representing the unit type and the individual agent’s

characteristics.

5.3.1. Representation transferability and
curriculum learning

In this paper, we propose a method that can transfer learned

policies to new agents without requiring the entire system to be

retrained. This is achieved by duplicating common representations

and sharing parameters among agents of the same type. An

additional benefit of this approach is that it can be easily applied to

tasks involving curriculum learning, where agents of different types

are gradually introduced. To accomplish this, we first identify the

type of the incoming agents, then average the outputs of agents of

the same type from the updated representation. Next, we duplicate

the policy parameters of the agent type and apply them to the new

agent. By duplicating policies and representations, we ensure that

learned policies can be transferred to tasks with varying numbers of

agents. This makes our proposedmethod versatile and applicable to

a wide range of tasks without the need for additional training.

We evaluated the transferability of our method on the

SMAC benchmark by sorting allies and enemies based on their

relative distances to an agent and including information on

the nearest ones while keeping the observation length fixed.

Figure 9 shows the win rates of the policy learned from the

map 3s5z vs. 3s6z on various maps without further policy

training. In the original task, 3 Stalkers and 5 Zealots face 3

Stalkers and 6 Zealots. We designed 2 types of maps which,

respectively, increased the number of Stalkers and Zealots for

both the number of allies and enemies to test the transferability

of different agents’ types. We observed that the transferability

of STSR was evident from the learned policy and still has a

good performance on new maps especially when both sides

increase their agents’ numbers. Additionally, our proposed method

is easy to extend for the transferring to the increased size

of agents which may help to provide a promising result in

curriculum learning.

6. Conclusion and future work

Overall, this research provides a fresh perspective on addressing

the challenges of parameter sharing in multi-agent reinforcement

learning, particularly in heterogeneous environments. The

proposed approach not only enables agents to learn from each

other but also improves the overall performance of the system.

These contributions allow for specialization among heterogeneous

agents while still promoting experience sharing, and make it

easier to incorporate the hard-parameter-sharing scheme. The

proposed method outperforms current mainstream algorithms,

particularly for heterogeneous agents, and can be considered

a more general and fundamental structure for heterogeneous

agent reinforcement learning. Our work is the first to introduce

a multi-task network parameter-sharing scheme to MARL and

to utilize a supervised learning method for generating a shared

input/output representation. Additionally, our proposed intrinsic

reward is based on the prediction of supervised learning and

its input/output representation, which can stimulate more

exploration and enhance the representability of this representation

without requiring extra effort. Overall, our contributions

provide a promising direction for addressing the challenges
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FIGURE 8

Visualization of representation embeddings of scenario MMM2 projected to 2D space on step 2500, updated, respectively, through ever-existing

self-supervised learning and RL. There are 3 kinds of points representing 3 kinds of agents type for scenario MMM2, which are marines, marauders, and

medivac.

FIGURE 9

Transferability on the unseen maps on 3s5z vs. 3s6z without further training on the new maps.

in MARL and improving performance for heterogeneous

agents.

Based on our experiments, it was observed that one of the

bottlenecks in our work is its focus solely on scenarios with

heterogeneous agents. It is not well-suited to scenarios with

homogeneous agents, and even for heterogeneous scenarios with

a large group of the same kind of agents. In comparison with

role-based MARL methods, a smaller clustered parameter-sharing

group is required. We have empirically noted that a random

clustering of homogeneous agents can outperform the baselines

and our proposed work. For our future work, we plan to conduct

further research to gain a better understanding of the principles

behind this observation andmake appropriate improvements to the

parameter-sharing groups.
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Dual consistent pseudo label
generation for multi-source
domain adaptation without
source data for medical image
segmentation

Binke Cai, Liyan Ma* and Yan Sun

School of Computer Engineering and Science, Shanghai University, Shanghai, China

Introduction: Unsupervised domain adaptation (UDA) aims to adapt a model

learned from the source domain to the target domain. Thus, the model can obtain

transferable knowledge even in target domain that does not have ground truth

in this way. In medical image segmentation scenarios, there exist diverse data

distributions caused by intensity in homogeneities and shape variabilities. Butmulti

source data may not be freely accessible, especially medical images with patient

identity information.

Methods: To tackle this issue, we propose a new multi-source and source-

free (MSSF) application scenario and a novel domain adaptation framework

where in the training stage, we only get access to the well-trained source

domain segmentation models without source data. First, we propose a new dual

consistency constraint which uses domain-intra and domain-inter consistency to

filter those predictions agreed by each individual domain expert and all domain

experts. It can serve as a high-quality pseudo label generation method and

produce correct supervised signals for target domain supervised learning. Next,

we design a progressive entropy loss minimization method to minimize the

class-inter distance of features, which is beneficial to enhance domain-intra and

domain-inter consistency in turn.

Results: Extensive experiments are performed for retinal vessel segmentation

under MSSF condition and our approach produces impressive performance. The

sensitivity metric of our approach is highest and it surpasses other methods with

a large margin.

Discussion: It is the first attempt to conduct researches on the retinal vessel

segmentation task under multi-source and source-free scenarios. In medical

applications, such adaptation method can avoid the privacy issue. Furthermore,

how to balance the high sensitivity and high accuracy need to be further

considered.

KEYWORDS

unsupervised domain adaptation, retinal vessel segmentation, semantic segmentation,

multi-source, source-free

1. Introduction

Retinal diseases such as glaucoma and diabetic retinopathy often lead to blindness (Wu

et al., 2021). It has been estimated that the risk of retinal-related diseases has increased greatly

due to increasing pressure, lifestyle changes, and other potential factors. Such a trend pushes

more andmore researchers dedicated in exploring computer-aided diagnosis (CAD) systems

for automatic and accurate diagnosis of retinal pathologies. It is of great significance for CAD

systems to segment retinal vessels accurately because the segmentation result can provide the

dependable diagnosis basis for examination of retinal diseases. Although there are a great
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FIGURE 1

Example of fundus images and ground truths from the DRIVE,

CHASEDB1, and IOSTAR datasets, respectively. (A) Fundus image 1

from DRIVE, (B) Fundus image 2 from CHASEDB1, (C) Fundus image

3 from IOSTAR, (D) ground truth of Fundus image 1, (E) ground truth

of Fundus image 2, (F) ground truth of Fundus image 3.

quantity of classical model based methods about retinal vessel

segmentation such as hand-crafted filters and fully connected

conditional random fields (CRFs) (Orlando et al., 2016), it still

remains challenging due to the large variation of the size of vessels,

inhomogeneous lighting conditions, and other interference factors.

Semantic segmentation is one of the hot and widespread

concerned topics in computer vision field, which aims to classify

each pixel correctly in the whole image. Unprecedented advances

in the semantic segmentation technique have been possible owning

to the rapid development of convolutional neural networks (CNNs)

and the availability of large-scale datasets. CNNs have outstanding

ability to provide powerful and meaningful feature representations

for medical image segmentation. Guo et al. (2023) proposed a new

transformer framework based on CNN with parallax fusion paths

for stereo image super-resolution. But there exists an obvious defect

in the training process of supervised models that they entail a

large training dataset equipped with labor-intensive annotations.

The supervised models inevitably face challenges when they deal

with new samples that correspond to different distributions with

training samples. In medical image segmentation, the differences

about the camera type and personal bioinformation lead to a

distribution shift which hurts the performance of model in the

target domain. Hence, how to transfer the knowledge of source

model to the target domain is a significant problem for medical

image analysis.

Recently, there has been extensive research about unsupervised

domain adaptation (UDA) in themedical image segmentation field.

On the one hand, some studies consider making maximum use of

multiple source datasets to adapt a model from the source domain

to the target domain (Kang et al., 2020; Li et al., 2021). Training

with multiple source datasets can ease the condition of scarce

expert knowledge ground truth. Furthermore, the adapted model is

capable of exploringmore essential knowledge withmultiple source

datasets involved. On the other hand, some studies propose to use

the model’s knowledge contained in the source model to transfer

domain knowledge so as to preserve personal bioinformation in

a medical image (Prabhu et al., 2021a; Yang et al., 2022). Medical

data often cause problems about privacy as they contain sensitive

information. Thus, source-free unsupervised domain adaptation

(SFUDA) is a hot pot for medical applications where only the

source trained model and target data are available.

Although those existing works have extremely promoted the

possibility of real application for medical image segmentation,

all of them only focus on one condition either non-source or

multiple sources. Ahmed et al. (2021) explored such setting but

they were devoted to the classification task. Therefore, we provide

a more practical clinical setting where we have access to only

the multiple source trained models in the adapting process for

a segmentation task. In this multi-source and source-free setting

(MSSF), it can not only protect patient’s privacy but also make full

use of multiple source datasets to learn more effective knowledge

to eliminate distribution shift better. We measure the performance

of our proposed method under multiple settings on three fundus

image datasets. As far as we know, it is the first attempt to conduct

researches on the retinal vessel segmentation task under multi-

source and source-free scenarios.

2. Related work

Broadly, there are three different categories for unsupervised

domain adaptations (UDAs) that include original unsupervised

domain adaptation, source-free unsupervised domain adaptation

(SFUDA), and multi-source unsupervised domain adaptation

(MSUDA). Under the unsupervised domain adaptation scene, the

goal of the model is to learn how to obtain more transferable

features for the source domain and the target domain. It can

be achieved by emphasizing the features of specific channels

with less discrepancy between the first-order and second-order

statistics of the source domain and target domain (Feng et al.,

2021). Prabhu et al. (2021b) evaluated the reliability of a target

instance based on its predictive consistency under a committee

of random image transformations. Hoyer et al. (2022) proposed

masked image consistency (MIC) that forces network to learn to

infer the predictions of the masked regions from their context.

Medical data are sensitive, and they contain private

bioinformation and identity information. It inevitably leads

to privacy concerns during the process of adaptation with source

data. Driven by this fact, some pseudo label generation methods

use the knowledge of source model to denoise the pseudo label

of target samples under source-free conditions (Chen et al., 2021;

VS et al., 2022a). Bateson et al. (2022) introduced a label-free

entropy loss and a domain-invariant prior that integrated in the

form of a Kullback-Leibler divergence in loss function to guide

the adaptation process. Yang et al. (2022) designed a Fourier Style

Mining generator to inverse source-like images through statistic

information. These generated images can simulate source data

distribution and benefit the domain alignment. They designed

a domain distillation loss to achieve feature-level adaptation and a

domain contrastive loss to narrow down the domain shift using

a self-supervised mechanism.

As depending on the characters of medical imaging instruments

and patient’ organs, medical image datasets from different

sources follow different distributions. To make full use of the

underlying values of multiple source datasets, adversarial learning
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is introduced to minimize the distribution shift between multiple

source domains and target domains (Chen et al., 2021; VS et al.,

2022a). He et al. (2021) proposed a simple image translation to align

the pixel value distribution to reduce the domain shift. To make full

use of unlabeled data, the pseudo labels generated by an ensembled

model constrained the outputs of multiple source models. For the

classification task, Ahmed et al. (2021) proposed a new domain

adaptation strategy that the source models combine with suitable

weights to predict a integrated classification result with the best

quality than each source model.

3. Methods

3.1. Dataset description

In our experiments, we choose three public fundus image

databases for evaluation including the DRIVE, CHASEDB1, and

IOSTAR dataset (Figure 1). Each group of experiments chooses

two databases as source domain data and the remaining one

as target domain data. The DRIVE dataset contains 20 training

images and 20 testing images. This dataset provides two labeled

ground truths for each image, and we use the first labeled mask

for training and testing. The CHASEDB1 (Child Heart and Health

Study in England) dataset contains 28 color vascular images

with a resolution of 990 × 960. There are two segmentation

annotations available, and we adopt the first manual annotation

in our study. We follow the setting in Li et al. (2015) and use

the first 20 images for training and the remaining eight images

for testing. The IOSTAR dataset includes 30 images taken with an

EasyScan camera1 based on SLO technology. These high contrast

images have a resolution of 1,024 × 1,024 with 45◦ FOV. The

corresponding ground truths of these vessel images are annotated

by experts having a good knowledge of retinal image analysis

(Abbasi-Sureshjani et al., 2015; Zhang et al., 2016).

3.2. Measurement of performance

The retinal segmentation task is to classify each pixel in the

fundus image into vessel pixel or background pixel. Obviously, it

is a binary classification task. In order to analyze the performance

of our proposed method quantitatively, we use several common

metrics, including accuracy (Acc), sensitivity (Sen), specificity

(Spe), which are defined as below:

Acc =
TP + TN

TP + FN + TN + FP
, (1)

Sen =
TP

TP + FN
, Spe =

TN

TN + FP
, (2)

where TP and FP denote the number of foreground vessel pixels

that are correctly segmented and the number of background pixels

that are wrongly classified, respectively. TN represents the number

of background pixels that are correctly segmented, and FN denotes

the number of foreground vessel pixels that are wrongly classified

as background class. Moreover, we also calculate the AUC metric

(the area under the ROC curve) that is depended on the recall and

precision and is more appropriate to measure performance under

an unbalanced circumstance.

3.3. Approach

Figure 2 illustrates the whole structure of our multi-source and

source-free UDA framework. In this section, we first present the

dual consistency mechanism including intra-domain consistency

constraint and inter-domain consistency constraint. Next, we

propose a progressive entropy loss that can optimize the features

in a progressive way. The training procedures are finally presented.

3.3.1. Inter-domain consistency constraint
Because of the presence of distribution shift, the model trained

on the source domain tends to be frustrated when facing target

sample. In order to deal with such problem, we introduce the

inter-domain consistency constraint, which can select those reliable

samples to improve the adaptation process.

For each target image, there are two different augmented

images as the input of the source model, that is, a weak-augmented

image and a strong-augmented image. The weak augmentation

operations include intensity normalization, random rotation,

and random flip. The strong augmentation operations include

random gray scale adjustment and random color jitter besides the

operations in weak augmentation. Therefore, we get two different

prediction results for each pixel i in the two augmented images,

pksi = Sk(x
s
i ), (3)

pkwi = Sk(x
w
i ), (4)

where Sk denotes the source model trained on the kth source

domain. The superscript s denotes the strong augmentation and

w denotes the weak augmentation. Due to the existence of

domain shift between the source domain and the target domain

in the early stage of model training, the two prediction results

often have certain differences while the differences represent

unreliable samples that do harm to the adaptation. Therefore,

we introduce the inter-domain consistency constraint to discover

credible samples. If the two prediction results at the same pixel

position share the same category, this pixel sample is credible,

and it can participate in the domain adaptation. On the contrary,

this pixel sample is unreliable and should be discarded. Thus,

we can obtain a consistency mask indicating the dependability of

each pixel,

mk
i =

{

1, lksi == lkwi ,

0, otherwise,
(5)

where lksi and lkwi denote the pseudo label of the ith pixel in strong-

augmented image and weak-augmented image, and mk
i indicates

whether the ith pixel is selected to adapt the kth source model.

For the approach of pseudo label generation, we proposed a

dynamic threshold mechanism with weak-augmented image for

each source model given by

Tdyn = max
γ%

(sort(pkwi )). (6)
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FIGURE 2

Overview of our proposed MSSF framework. Pseudo labels are generated under the guidance of the dual consistency constraint. Inter-domain

consistency constraint aims to optimize the intra-class distance of each source model and also ease the distribution shift between the source domain

and the target domain with two partially di�erent predictions in a sense. Intra-domain consistency constraint can utilize the knowledge of multiple

source models and thus can teach multiple models more essential and transferable knowledge regarding di�erent data domains. Progressive entropy

loss is complementary to our proposed dynamic pseudo label generation method, which can optimize the e�ectiveness of feature step by step.

After ranking the predicted score results in ascending order, the

top γ percentage probability value is taken as the dynamic factor.

Dynamic factor fits in with the adaptation process that can adjust

according to the training epoch,

γ = min(a−
b− a

total_epoch
∗ epoch, b), (7)

where a and b are the upper and lower bounds of the interval.

With the increase of training rounds, the number of credible vessels

samples in prediction also increases gradually, and the probability

distribution of the prediction results gradually inclines to the high

probability area. Thereafter, the dynamic threshold is supposed

to be reduced. After the dynamic threshold is obtained, the final

pseudo label can be obtained by

lkwi =

{

1, pkwi >= Tdyn,

0, otherwise.
(8)

It should be noted that the generation method of pseudo

label can be both applied to the prediction of weak-augmentation

image and strong-augmentation image. The pseudo label of strong-

augmentation image lkwi only relates to the consistency maskmk
i .

3.3.2. Intra-domain consistency constraint
Considering that the inter-domain consistency constraint only

focuses on a single source domain, it can only improve the feature

compactness of the model in a single source domain. In order to

make full use of the information in multiple source domains, we

propose that the intra-domain consistency constraint learns the

crucial knowledge and gets rid of the domain shift. Given two

source domains and corresponding source models S1 and S2 as

special cases, we can get the pseudo label imposing intra-domain

consistency constraint for target sample,

ti =

{

l1wi , l1wi == l2wi ,

2, otherwise.
(9)

The valid pseudo label ti will be given to the pixel i only when

the pseudo labels of S1 and S2 are consistent; otherwise, it will

be assigned invalid category 2. The final output pseudo label only

depends on the pseudo label of a weak-augmentation image instead

of a strong-augmentation image.

Those highly reliable pixels obtained via inter-domain

consistency constraint can maintain prediction-invariance on

different source domain models for each target domain image.

This prediction-invariance character can alleviate the domain

shift between multiple source domains and target domains to a

certain extent and improve generalization between multiple source

domains and target domains. Therefore, for the dual consistency

constraints, the intra-domain consistency constraint of a single

source domain can reduce the intra-class distance and the feature

space, while the intra-domain consistency constraint of multiple

source domains can utilize multiple source domain models to ease

the domain shift problem.

Thereafter, we introduce a consistency loss to utilize the

advantages of both the inter-domain consistency constraint and

intra-domain consistency constraint via filtering out samples that

do not meet both consistency constraints. For all source domain

models, consistency loss Losscon is defined as

Losscon = −
1

KN

K
∑

k=1

N
∑

i=1

CE(pkwi , ti), (10)
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where CE denotes cross entropy loss,

CE(pkwi , ti) =











−[pkwi logti + (1− pkwi )log(1− ti)],

ti 6= 2&mk
i == 1,

0, otherwise.

(11)

3.3.3. Progressive entropy loss
Dual consistency constraints can identify valuable pixels

for model training from both intra-domain and inter-domain

perspectives to deal with the unlabeled data. However, this strategy

is not completely satisfied. The pseudo label generated by dynamic

threshold mechanism cannot entirely substitute for the real ground

truth, which causes the intra-class feature to be not discriminative

enough. Therefore, in order to further reduce the distance of the

intra-class features, we propose progressive entropy loss.

Entropy minimization is familiar in semi-supervised learning

and unsupervised domain adaptation, which essentially supervises

model with the help of high probability regions during the training

phase. On the other hand, entropy minimization can also be seen

as a clustering method to compress the distance within each class,

making the features extracted from themodel more compact (Chen

et al., 2019; Zou et al., 2019). However, there will be some problems

occurring when applying this method directly. Due to the lack of

ground truths, the model is usually unstable in the early training

stage and the prediction is inaccurate. Then, the training model

tends to collapse and fall into the local optimal solution. Therefore,

we have come up with a progressive entropy loss strategy, which

gradually increases the weight of the unsupervised entropy loss

during the training phase to avoid the problem of insufficient

optimization of the model.

First, the unsupervised entropy loss is calculated based on the

prediction results of the weak augmented samples for multi-source

models:

Lossent = −
1

KN

K
∑

k=1

N
∑

i=1

pkwi log(pkwi ), (12)

where K denotes the number of source models and N denotes the

whole pixel set of target dataset. The dynamic factor β will be

adjusted according to the training epoch:

β = max(a+
b− a

total_epoch
∗ epoch, b). (13)

When the model gradually becomes stable with the increase of

training epochs, it gradually strengthens the constraint of entropy

minimization in a reasonable manner:

Losspro_ent = β × [−
1

KN

K
∑

k=1

N
∑

i=1

pkwi log(pkwi )]. (14)

Therefore, the final loss of our proposed method defined as

follows:

Loss = Losscon + Losspro_ent . (15)

4. Experiments

4.1. Experiments setting

The implementation of our approach is based on the publicly

Pytorch framework. We train our models on a NVIDIA GeForce

RTX 3090 graphics card with a memory of 24 GB. We adopt the

Adam algorithm as our network optimizationmethod, of which the

hyperparameters usually do not need to be adjusted.

Under the multi-source scenario, the number of source domain

datasets in our experiments is 2, the batchsize is set to be 2

for both source domains, the training epoch is set to be 10,

and the initial learning rate is set to be 0.00002. Because our

experiments are conducted on the DRIVE, CHASEDB1, and

IOSTAR datasets, in a multi-source scenario, three groups of

experiments can be formed: (1) The source domains are the

DRIVE and CHASEDB1 datasets, and the target domain is the

IOSTAR dataset. (2) The source domains are the DRIVE and

IOSTAR datasets, and the target domain is CHASEDB1. (3) The

source domains are the CHASEDB1 and IOSTAR datasets, and

the target domain is DRIVE. We evaluate all methods via four

common metrics for segmentation task including AUC, accuracy

(Acc), specificity (Spe), and sensitivity (Sen). The AUC represents

the overall performance which is more appropriate to judge

whether an algorithm is robust or not under an unbalanced

circumstance. The higher the value of Acc, the higher the correct

recognition rate of the algorithm. The Spe and Sen metrics

indicate the recognition capacity of background class and vessel

class, respectively.

4.2. Ablation experiments

We perform the ablation experiments to validate our proposed

modules are effective or not on the DRIVE dataset. Comprehensive

results are summarized in Table 1. The baseline method does

not use any modules. It uses multiple source models to predict

separately and then obtain pseudo labels for the prediction results

of each source model directly through a hard thresholdmechanism.

The pseudo labels will be used to monitor the prediction results

of target domain sample after the integration of the predicted

results of multiple source domain models. This approach also

utilizes knowledge from multiple source domains, similar to the

idea of integrated learning. This method is also used as a strong

baseline under multi-source scenarios in our comparison study.

The method-a adds inter-domain consistency constraint module

(inter-domain CC) based on the baseline. The method-b adds the

intra-domain CC constraint module (Intra-domain CC) based on

method-a. Themethod-c adds progressive entropy loss (PEL) based

on method-b.

4.2.1. The impact of inter-domain consistency
constraint

Inter-domain consistency constraint can filter out pixels

with inconsistent categories in the predicted results under

different augmentation operations, improving the stability and

consistency of the model. Such constraint can explore more
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TABLE 1 Ablation study on DRIVE dataset.

Method Inter-domain CC Intra-domain CC PEL AUC Acc Spe Sen

Baseline – – – 0.9737 0.9660 0.9830 0.7793

Method-a X – – 0.9755 0.9652 0.9819 0.7916

Method-b X X – 0.9762 0.9623 0.9741 0.8384

Method-c X X X 0.9764 0.9611 0.9718 0.8493

The bold values indicate the highest performance metrics in each column.

FIGURE 3

Retinal vessel segmentation results for our proposed method on the DRIVE dataset. From the column in left to right (A–X), the retinal original images,

the ground truths, the segmentation results of the baseline, the segmentation results of method-a, and the segmentation results of method-b, the

segmentation results of method-c.

valuable vessel samples than background samples. Therefore, it

has a strengthening effect on the learning of vessel regions,

and the sensitivity of the method-a is improved compared to

the baseline.

4.2.2. The impact of intra-domain consistency
constraint

When there is only the inter-domain consistency constraint

module, the knowledge of each source domain model is mixed,

which is not beneficial to the learning of knowledge in the

target domain. Accordingly, when introducing the intra-domain

consistency constraint module, more effective vessel pixels are

identified during the model training for supervised learning,

making full use of the inherent knowledge of multiple source

domains. Therefore, the AUC and sensitivity metrics of method-

b are increased compared with method-a, especially the increase

in sensitivity. However, the specificity decreases from 0.9819

to 0.9741 due to such constraint, because it filters some

samples of background class when the model is able to identify

more vessels.

4.2.3. The impact of progressive entropy loss
On the one hand, unsupervised progressive entropy

loss enhances the compactness of intra-class features.

The high probability regions obtained through supervised

learning with pseudo labels guide the model to extract more

discriminative features for background and vessel classes.

On the other hand, because the generation of pseudo label

is based on the dynamic threshold mechanism, it gradually

strengthens the recognition capability of vessels during the

adaptation process. Therefore, compared with the other

experiment group, method-c has a significant improvement

in sensitivity, with the highest AUC and sensitivity. Although

the accuracy and specificity of the final model have slightly

decreased, it has brought about significant improvements

in sensitivity, which is more practical for medical image

segmentation and can detect more foreground objects to

assist in medical diagnosis.

We also provide the visualization result of our proposed

method in different ablation experiment groups in Figure 3. It

can be seen that for method-a group with only the inter-domain

consistency constraint module, it is easy to predict the outer
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TABLE 2 Comparison experiments on three target domains.

Method AUC Acc Spe Sen

Source domains: drive and CHASEDB1, target Domain:IOSTAR

Oracle 0.9850 0.9658 0.9831 0.8426

AdaptSegNet (DRIVE/CHASEDB1) 0.9361/0.9680 0.9534/0.9569 0.9802/0.9812 0.6943/0.6703

DPL (DRIVE/CHASEDB1) 0.9569/0.9631 0.9458/0.9499 0.9771/0.9783 0.7027/0.7124

TT_SFUDA (DRIVE/CHASEDB1) 0.9104/0.9344 0.9390/0.9358 0.9799/0.9774 0.6218/0.6496

Multi-Source 0.9834 0.9651 0.9789 0.8180

Ours 0.9824 0.9625 0.9743 0.8357

Source domains: drive and IOSTAR, target Domain:CHASEDB1

Oracle 0.9883 0.9711 0.9776 0.8769

AdaptSegNet (DRIVE/IOSTAR) 0.9659/0.9388 0.9561/0.9533 0.9853/0.9839 0.7824/0.6930

DPL (DRIVE/IOSTAR) 0.9513/0.9652 0.9511/0.9630 0.9842/0.9861 0.6397/0.7442

TT_SFUDA (DRIVE/IOSTAR) 0.9517/0.9556 0.9396/0.9393 0.9714/0.9710 0.7793/0.7871

Multi-Source 0.9819 0.9616 0.9688 0.8546

Ours 0.9816 0.9606 0.9674 0.8601

Source domain: CHASEDB1 and IOSTAR, target Domain:DRIVE

Oracle 0.9833 0.9631 0.9738 0.8516

AdaptSegNet (CHASEDB1/IOSTAR) 0.9638/0.9470 0.9591/0.9512 0.9877/0.9843 0.6634/0.6789

DPL (CHASEDB1/IOSTAR) 0.9511/0.9553 0.9501/0.9528 0.9816/0.9845 0.6332/0.6351

TT_SFUDA (CHASEDB1/IOSTAR) 0.9314/0.9407 0.9336/0.9389 0.9759/0.9801 0.7768/0.7598

Multi-Source 0.9737 0.9660 0.9830 0.7793

Ours 0.9764 0.9611 0.9718 0.8493

The bold values indicate the highest performance metrics in each column.

circle of the eyeball as a blood vessel, indicating that the pseudo

labels for blood vessels are not accurate enough, and the features

extracted from the model are not clean. The introducing of

the intra-domain consistency constraint module greatly improves

this problem because it can filter out pixels that are prone to

false segmentation by using the knowledge of multiple source

models. Since progressive entropy loss can be beneficial to obtain

more discriminative features, it can be found that the method-c

recognizes more difficult samples correctly.

4.3. Comparison experiments

We perform experiments on DRIVE, CHASEDB1 and IOSTAR

three datasets, where we choose two datasets as the source domain

and the remaining one as the target domain. We compare our

proposed method with three methods with three different multi-

source and source-free single condition settings in Table 2.

Compared to the original unsupervised domain adaptation

method such as AdaptSegNet (Tsai et al., 2018), adversarial learning

at the output result level is clearly desirable due to the similar

spatial location and target sizes in cityscape dataset. However, there

are significant differences and complex distribution in different

vessels, and it failed to capture the effective knowledge of vessel

distribution. On the other hand, our proposed method achieves

better performance than two source-free domain adaptation

methods including DPL and TT_SFUDA (Chen et al., 2019; VS

et al., 2022b). These two methods do not essentially solve the

domain shift problem because of the significant differences in

experimental results across the different target domains. Due to

the existence of multiple source models, our proposed method

can alleviate the domain shift on the target domain through

dual consistency constraints and sufficiently explore the essential

knowledge of multiple source domains. Therefore, it is minimally

affected by the magnitude of the domain shift, and has gained

relatively ideal performance in different target domains. The

performance of the multi-source algorithm is familiar with our

method, but when the target domain is DRIVE with a large

number of thin vessels, its performance drops a lot. Such a

defect can be attributed to the lack of effective treatment of the

pseudo label.

Our proposed method achieves better performance than

unsupervised domain adaptation methods including source-

free and multi-source single scene settings on different target

domains. It can sufficiently explore the knowledge fusion

in multiple source models while retaining the advantage of

source pretrained model of high AUC and sensitivity metrics.
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FIGURE 4

Visualization for di�erent methods on DRIVE target domain. From the left to right columns, they are original image, ground truth, and the

segmentation results of AdaptSegNet, DPL, TT_SFUDA, multi-source, and our proposed MSSF algorithm, respectively.

Such advantage makes our approach more meaningful and

practical that more vessels can be identified as correctly

as possible especially under the unsupervised domain

adaptation scenario.

We also present a visual comparison of the segmentation results

of several methods as shown in Figure 4. Compared with other

methods, our approach has fewer false segmentation cases, which

effectively avoids the occurrence of mistakenly identifying the outer

circle of the eye as vessel class. It also has the best recognition

performance for a large number of capillaries in the middle area

of a fundus image, preventing the fracture of vessel occurring.

5. Conclusion

This study designs a brand-new unsupervised domain

adaptation framework, which expands the single unsupervised

domain adaptation scene including source-free and multi-source

settings. Our proposed dual consistency constraint can filter out

noisy pseudo labels based on the knowledge in each source models

and the fusion between them. To effectively promote the feature

clustering, progressive entropy loss can not only compress the

distance within each class but also can benefit the generation of

pseudo label in turn. The proposed MSSF framework combines

the advantages of source-free and multi-source adaptation. We

hope this paradigm can inspire future studies about unsupervised

domain adaptation.
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The early prediction of epileptic seizures holds paramount significance in patient

care and medical research. Extracting useful spatial-temporal features to facilitate

seizure prediction represents a primary challenge in this field. This study proposes

GAMRNN, a novel methodology integrating a dual-layer gated recurrent unit

(GRU) model with a convolutional attention module. GAMRNN aims to capture

intricate spatial-temporal characteristics by highlighting informative feature

channels and spatial pattern dynamics.We employ the Lion optimization algorithm

to enhance the model’s generalization capability and predictive accuracy. Our

evaluation of GAMRNN on the widely utilized CHB-MIT EEG dataset demonstrates

its e�ectiveness in seizure prediction. The results include an impressive average

classification accuracy of 91.73%, sensitivity of 88.09%, specificity of 92.09%, and

a low false positive rate of 0.053/h. Notably, GAMRNN enables early seizure

prediction with a lead time ranging from 5 to 35 min, exhibiting remarkable

performance improvements compared to similar prediction models.

KEYWORDS

EEG, spatial temporal feature, seizure prediction, attention module, GAMRNN

1. Introduction

Epilepsy, also known as “fits” or “the falling sickness,” is a chronic neurological

disorder in which sudden, abnormal electrical activity in the brain causes disruptions in

its normal functioning (Artameeyanant et al., 2017). It is estimated that almost 65 million

people worldwide have epilepsy, which accounts for ∼1% of the global population (Bou

Assi et al., 2017). The clinical manifestations of epilepsy are complex and varied, with

symptoms ranging from motor, sensory, autonomic, and cognitive disturbances. While

certain medications can help reduce the frequency of epileptic seizures, they are not always

effective and may lead to serious side effects, threatening to the patients’ daily lives and

overall safety. Therefore, developing a reliable algorithmic model for predicting epileptic

seizures, which can provide early warning and preventive measures, is paramount for the

patients’ survival.

As an epileptic seizure begins, brain activity transitions from one state to another,

accompanied by significant changes in the brain’s electrical signals. Electroencephalography

(EEG) is an effective method for monitoring the waveform changes in brain electrical

signals during epileptic seizures. The EEG during a seizure can be categorized into four

main states: preictal (a period before the onset of a seizure), ictal (a period during

the seizure), postictal (a period following the seizure), and interictal (a period when

the brain is not experiencing a seizure; Natu et al., 2022). Experienced experts can

discern distinct states of epileptic seizure electroencephalogram (EEG) signals through

observation. Nonetheless, the manual segmentation process of epileptic seizure signals

is often laborious and time-consuming, necessitating graphologists with a high level of
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technical proficiency. Hence, its practical applicability is inherently

challenging. The primary task in epileptic seizure prediction is to

accurately extract features from EEG signals during the seizure

period and differentiate them based on distinctive characteristics to

separate preictal and interictal signals. This enables the prediction

of the potential timing of a seizure, providing early warnings to

patients and facilitating the implementation of intervention and

remedial measures to minimize the impact of seizure episodes

on patients. Throughout the course of an epileptic seizure, the

importance of different EEG channels in seizure prediction research

varies. Thus, there are challenges in selecting informative channels

to extract more valuable feature information that ultimately

helps improve the performance of seizure prediction models.

Based on prior work, our proposed method for epileptic seizure

prediction primarily encompasses the following steps: EEG signal

acquisition, EEG preprocessing, feature extraction, model learning

and training, classification of interictal and preictal data segments,

seizure prediction, and model evaluation. During the model

training, we incorporated the Convolutional Block Attention

Module to enhance the model’s attention to important channels

and valuable feature information. Additionally, we utilized the

Lion optimization algorithm for further optimization of the model

training, ultimately improving seizure prediction performance, as

illustrated in Figure 1.

In order to extract features that can effectively differentiate

between pre-ictal and interictal EEG, prior researchers have

attempted various methods. The most commonly used features

include wavelet energy, power spectral density, phase locking value,

permutation entropy, and fractal dimension value (Li et al., 2013;

Joshi et al., 2014; Khalid et al., 2015; Zhang et al., 2020). Fei et al.

(2017) used an improved largest Lyapunov exponent algorithm to

better characterize the chaotic dynamical characteristics of EEG

signals during epilepsy seizures, and the results showed that the

improved algorithm had higher accuracy in identifying pre-seizure

signals. Raghu et al. (2019) proposed a continuous decomposition

index feature, which was proven to have a significant enhancement

trend during epilepsy seizures so that the epilepsy seizure could

be predicted in the pre-seizure period based on its changes. In

addition, some studies use methods such as CSP transformation,

principal component analysis, and autoregressive models to extract

frequency or spatial domain features during epilepsy seizures

(Büyükçakır et al., 2020). Due to the subjective selection of feature

information, which may result in feature redundancy or the

absence of crucial features, some researchers have proposed feature

selection algorithms to select the optimal feature information

(Karthick et al., 2018). Varatharajah et al. (2017) developed a scalp

electroencephalogram (EEG) processing pipeline and introduced a

seizure prediction method. The research findings indicate that the

performance of the proposed prediction algorithm surpasses that

of the baseline algorithm on the tested feature set. Bandarabadi

et al. (2015) used an amplitude distribution-based feature selection

algorithm; the study showed that this algorithm could also improve

the accuracy of epilepsy prediction. After feature information

extraction, the next step is to perform binary classification on the

EEG signals. Yang et al. (2018) proposed a data analysis modeling

method, and research showed that a seizure prediction system

based on support vector machines could achieve robust preictal and

interictal signals prediction. Yuan et al. (2017) utilized the diffusion

distance measure and employed the Bayesian linear discriminant

analysis to identify the periodicity of pre-seizure EEG signals,

achieving high sensitivity and low false alarm rate. In addition,

various methods have been used in seizure detection tasks, such as

extreme learning machines, linear discriminant analysis, decision

trees, random forest, etc. (Song et al., 2012; Rasekhi et al., 2013;

Hussain, 2018; Mohan et al., 2018).

With the significant advancements of deep learning techniques

in fields such as computer vision, it has also started to be

gradually employed in the research of epileptic seizure prediction

(Yıldırım et al., 2018; Liu et al., 2019; Yu et al., 2020). Firstly,

the prediction model based on Convolutional Neural Networks

(CNN) can well capture the feature information of EEG data due

to its characteristics of local connectivity, weight sharing, and

downsampling in time and space. Shasha et al. (2021) partitioned

the experiment into two phases. They computed the Pearson

correlation coefficient of the EEG signals. Subsequently, they fed

the resulting correlation matrix into a simplistic CNN model to

perform binary classification between interictal and preictal states.

This approach effectively minimized computational overhead and

yielded an accuracy rate of 89.98% when evaluated on the CHB-

MIT dataset. Hu et al. (2019) employed CNN as a feature extraction

model and used support vector machines (SVM) as classifiers for

analyzing electroencephalograms (EEG). Truong et al. (2018) used

STFT to extract frequency-domain and time-domain information

from EEG signals on a 30 s window and input the transformed

spectrogram into the neural network for model training. The

model was evaluated on the Freiburg, CHB-MIT, and American

Epilepsy Society seizure prediction challenge datasets and could

predict seizures from 30 to 5 min before the onset of seizures,

substantiating the advantages and generalization abilities of CNN

in the field of epileptic seizure prediction research for capturing

EEG signal features.

Nevertheless, despite the impressive capability of CNNs in

extracting spatial features from signals, they encounter significant

limitations when it comes to capturing the temporal dynamics of

the signals, which is crucial for identifying and predicting epileptic

seizures. Recurrent neural networks (RNNs) can handle sequential

data and are suitable for non-stationary time series signals such

as EEG data, as they can directly learn from raw EEG data to

preserve the maximum temporal feature information of the signal

(Ghosh et al., 2017). However, as the depth of RNNs increases,

problems such as gradient explosion or vanishing may occur,

so researchers have proposed methods using improved RNNs

such as Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU). Tsiouris et al. (2018) employed a feature extraction

methodology to extract raw EEG information and employed Long

Short-Term Memory (LSTM) networks to generate prediction

outcomes. Furthermore, the study evaluated the influence of

different preictal windows on the assessment results. Impressively

high sensitivity and specificity rates of 99.28% were achieved,

along with a false alarm rate of 0.107/h. This experiment also

confirmed the outstanding performance of LSTM in analyzing

preictal EEG signals. Varnosfaderani et al. (2021) proposed an

epileptic seizure prediction model based on a two-layer LSTM

and Swish activation function. This structure performs feature
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FIGURE 1

The overall seizure prediction method flow, as shown in the figure, includes EEG signal acquisition, EEG preprocessing, feature extraction, training

the EEG graphs using the GAMRNN epileptic seizure prediction model augmented with the CBAM module, optimizing the trained model through the

Lion optimization algorithm, partitioning the EEG signals into interictal signals and preictal signals, and ultimately predicting seizures and assessing

the model’s performance.

extraction based on both time and frequency domains and uses the

minimum distance algorithm as a post-processing step. The model

achieved a sensitivity of 86.8%, prediction accuracy of 85.1%, and a

low false positive rate of 0.147/h when evaluated on the Melbourne

dataset, which indicates that LSTM performs at a comparable level

to CNN in the research of epileptic seizure prediction and may

even have a more significant advantage in capturing the temporal

features of EEG signals.

Continuous efforts of previous studies have demonstrated that

integrating temporal and spatial characteristics of EEG signals

is essential for enhancing the efficiency of epileptic seizure

prediction. Consequently, algorithms combining Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

have emerged to capture the crucial temporal and spatial feature

information of EEG signals. Affes et al. (2019) proposed a

Convolutional Gated Recurrent Neural Network (CGRNN) for

seizure prediction and demonstrated that this model outperformed

a CNN-only model in predicting seizures, achieving an average

sensitivity of 89% and an average accuracy of 75.6% using a dataset

from Boston Children’s Hospital. Hu et al. (2020) developed a deep

bidirectional long short-term memory (Bi-LSTM) network as a

predictive model for epileptic seizure prediction. The experiments

employed local mean decomposition (LMD) and statistical feature

extraction techniques to capture essential features. The achieved

sensitivity of the model was 93.61%, with a specificity of 91.85%.

However, these models still face challenges in distinguishing useful

signals from noise and irrelevant information, which may lead to

reduced the performance of seizure prediction.

Since its introduction, the attention mechanism has been

widely applied in various fields such as computer vision (Zhu

et al., 2018) and natural language processing (Wu et al., 2019).

This is due to its ability to allow neural network models to

focus more on relevant information in the input while reducing

attention to irrelevant information. Consequently, it has been

applied in epileptic seizure prediction research to help models

accurately capture useful temporal and spatial features in EEG

signals. Concentrating on the most relevant EEG signals and

disregarding noise and irrelevant information can improve the

classification, and prediction performance of the models. Choi et al.

(2022) proposed an ACGRU generalized prediction model that

combines one-dimensional convolutional layers, gated recurrent

unit layers, and attention mechanisms across patient paradigms

to classify preictal and interictal data. Improved classification

accuracy and predictive performance were achieved on the

EEG dataset of epileptic patients from Eshan Medical Center

Children’s Hospital, surpassing the performance of the original

model. Wang et al. (2022) proposed adding a channel attention

module to their CNN-LSTM-based seizure prediction model

to address the issue of equal weighting for each channel’s

feature map in traditional models, achieving an accuracy of

83.04% after training and improving the recognition rate during

the correct seizure period. These experiments have consistently

demonstrated that neural network models with incorporated

attention modules exhibit superior performance in seizure

prediction algorithms.

Attention modules contribute to the enhancement of predictive

performance. They operate independently on either channel-

specific or spatial-specific features of EEG signals. In addition,

the convolutional attention module combines channel attention

and spatial attention, facilitating concurrent processing of both

channel and spatial information. This incorporation enables the

model to comprehensively capture critical features across diverse

channels and spatial dimensions, thereby elevating the accuracy

and robustness of epileptic seizure prediction. The convolutional

attention module (Woo et al., 2018) achieves the weighting

operation on the channel and spatial information of the feature

matrix through the stacking of blocks and attention modules.

This process optimizes the relationship between different EEG

channels and different spatial features automatically, enabling the

model to focus more deeply on the essential signal features of

the spatial structure of the EEG. Ultimately, it aims to optimize

the performance of the model. On this basis, we propose an

epileptic seizure prediction model with a graph attention module

incorporating recurrent neural networks (GAMRNN) and use

a novel optimization algorithm to train the model, combining

multiple layers of convolution and double layers of GRU units to

jointly extract the spatiotemporal features of the EEG, as shown in

Figure 2. The main contributions of this research are as follows:

Frontiers inNeuroscience 03 frontiersin.org68

https://doi.org/10.3389/fnins.2023.1246995
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ji et al. 10.3389/fnins.2023.1246995

FIGURE 2

The overall workflow of the seizure prediction algorithm involves the following steps: During the data preprocessing stage, the raw EEG signals are

transformed into two-dimensional time-frequency representations. These spectrograms are then fed into our proposed seizure prediction model.

The initial feature extraction is performed by applying three layers of convolutional operations, resulting in the generation of a feature matrix denoted

as F. Subsequently, the convolution attention module is applied to the obtained feature map, applying channel-wise and spatial weighting to produce

F
′′
. Next, the deep temporal feature extraction and modeling of the feature map are conducted using bidirectional gated recurrent units, resulting in

F
∗. Following this, the data is passed through fully connected layers and subjected to a softmax function to perform binary classification, predicting

the probability P of the model classifying the data into interictal and preictal states. Finally, post-processing is employed to make seizure predictions.

(1) We propose a novel epileptic seizure prediction model,

GAMRNN, which incorporates a convolutional attention

module to focus on important channel and spatial information

in EEG signals, enabling more effective capturing of spatio-

temporal features.

(2) We utilized the recently introduced Lion optimizer to

optimize the model, thereby expediting the convergence rate

of the networkmodel training and facilitating the performance

of the proposed model in epileptic seizure prediction.

(3) Through ablation experiments on various combinedmodels,

we further validated the crucial roles of the Convolutional

Block Attention Module and the Lion optimizer in epileptic

seizure prediction tasks.

2. Materials and methods

2.1. Epileptic seizure prediction model

Convolutional neural networks (CNNs) have been proven

to possess certain advantages in capturing spatial features in

data. In contrast, recurrent neural networks (RNNs) have been

demonstrated to excel in capturing temporal features of data.

Previous studies have also confirmed that combining both CNNs

and RNNs is conducive to identifying the temporal and spatial

dependencies of epileptic seizure EEG signals. This work employed

a multi-layer convolutional neural network (CNN) combined with

a two-layer gated recurrent unit (GRU) as the fundamental model

for epileptic seizure prediction. To extract more critical temporal

and spatial feature information from important channels and

spatial regions, we propose to incorporate the CBAM scheme

into the base model and name it Graph Attention Module

with Recurrent Neural Networks (GAMRNN) for the overall

architecture of the seizure prediction model, as illustrated in

Figure 3. The CNN is responsible for extracting spatial features

from EEG signals, the CBAMmodule selectively attends to relevant

information from input feature maps with larger weights in

channels and spatial feature points, and the GRU layer is used to

capture the temporal dynamics in the EEG feature map.

2.1.1. Convolutional feature extraction module
Given the limited size of the training dataset and for the sake

of model simplicity, we employed a straightforward and shallow

three-layer CNN architecture. The model consists of three-layer

convolutional blocks for feature extraction. Each block comprises

a batch normalization with a RELU activation function, followed

by a max pooling layer. To ensure uniform input distribution

across layers, batch normalization is applied between each layer,

irrespective of the preceding layer’s operations.The convolutional

layer employs 16 kernels of size n × 5 × 5, 32 kernels of size

3 × 3, and 64 kernels of size 3× 3, where n represents the number

of channels in the EEG signal. The stride for each kernel is 1 ×
2 × 2, 1 × 1, and 1 × 1, respectively. In order to enhance the

performance of the epilepsy seizure prediction task andmitigate the

risk of overfitting, L2 regularization terms were incorporated into

each convolutional layer. This regularization technique promotes

weight values to be smaller and encourages a balanced distribution

of weights. Consequently, it improves the convergence speed and

stability of the model, thus aiding in accurate epilepsy seizure

prediction. Themax pooling layer has a size of 2×2, which is used to

reduce the number of computations and prevent overfitting during

model training. After the initial feature extraction, a feature map of

size 64× 2× 5 is obtained.

2.1.2. Attention enhancement module
In a seizure prediction system, focal epileptic EEG signals

originate from one or multiple scalp electrodes, propagate and

gradually spread to multiple electrodes and brain regions. They

are characterized by overlapping and interfering waveforms. Some

electrodes may be located in more relevant or active pathological

areas, while others may be in less related or less active brain
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FIGURE 3

Epileptic seizure prediction model: the figure depicts the comprehensive framework of our proposed model for seizure prediction (GAMRNN). The

input consists of 30-s windows of preprocessed EEG signals obtained through STFT transformation. The model begins with three convolutional

blocks named C1, C2, and C3, serving as the initial feature extraction modules. Each block consists of a batch normalization layer, a convolutional

layer with ReLU activation function, and a max pooling layer. C1 has 16 three-dimensional kernels of size n × 5 × 5, where n represents the number

of channels in the original EEG signal, and the stride is 1 × 2 × 2. After the convolution operation, the results are passed through a ReLU activation

function, followed by max pooling with a shape of 1 × 2 × 2 to perform downsampling. The operations in C2 and C3 are the same, with 32 and 64

convolutional kernels, respectively. The kernel size is 3 × 3, and the stride is 1 × 1. Both C2 and C3 also employ max pooling with a shape of 2 × 2 for

downsampling.Next, the extracted feature maps are subjected to channel and spatial attention-weighted operations using the CBAM module. The

input and output feature maps have the same shape of 64 × 2 × 5. Subsequently, the feature maps are flattened and reshaped, and inputted into the

first gated recurrent unit (GRU) layer with 256 units, followed by a fully connected layer with sigmoid activation function. The output is then fed into

the second GRU layer with 128 units, and finally through two fully connected layers with 2 units and softmax activation function for classification.

Two dropout layers with a dropout rate of 0.5 are placed before the two fully connected layers.

regions. Some electrodes may be located in more relevant or active

pathological areas, while others may be in less relevant or less active

brain regions. Therefore, the importance of signals varies among

electrodes. In this case, the attention module can assign different

weights to different electrodes and features, allowing the system to

focus on essential electrodes or features.

A previous study has investigated using the CBAM module,

integrated after batch-normalized long short-term memory (Ma

et al., 2021) (BNLSTM) networks, for end-to-end seizure prediction

based on raw EEG data. By introducing the attention mechanism,

the system may capture the key channels and features more related

to seizure events, thereby improving prediction performance. In

this experiment, we placed the CBAM module after the three

convolutional layers, allowing feature selection to be performed

on the already processed feature maps. This approach ensures

that the selected features are more accurate and representative,

thereby enhancing the performance and effectiveness of the seizure

prediction system.

CBAM consists of two modules, namely Channel Attention

(Sun et al., 2019) and Spatial Attention (Chen et al., 2017), as

shown in Figure 4. The feature map obtained after the convolution

layer has the shape F ∈ RC×H×W (where C is the number of

channels and H and W are the height and width of the feature

map obtained after convolution). For each channel, we set the

convolution module as a 2D convolution kernel, and the feature

map obtained through channel attention is CE, while that obtained

through spatial attention is SE.

(a) Channel attention weighting mechanism

The convolutional operation produces a feature map F ∈
RC×H×W , where C denotes the number of channels, and H and

W refer to the height and width of the feature map. This feature

map is initially fed into the Channel Attention module as part of

the CBAMmodule. Channel Attention compresses the feature map

along the channel dimension and calculates weight coefficients for

each channel. The output is a feature map with weight coefficients,

where the dimension of the feature map remains the same as

that of the input feature map. In order to improve computational

efficiency, the input feature map is globally max-pooled and

averaged-pooled to compress the feature map. The pooling resulted

in obtaining two different feature descriptions that represent the

spatial background features of the data. A channel-wise feature

map of size CE(F) ∈ RC×1×1 is obtained through a shared fully

connected layer. The two obtained feature matrix mappings are

added and passed through a sigmoid activation function to assign

proper weights (between 0 and 1) to each input channel C. Finally,

the weight matrix is multiplied by the input feature layer. Although

the channel attention module assigns weights to the channels

of the feature matrix obtained through convolutional operations,

it represents the reorganization and integration of the original

EEG electrode channels, which implies that the channel attention

module assists the model in extracting more important channel

feature information from the EEG signals.

In this study, the channel attention module reallocates the

importance and correlation of each channel in the EEG signal

by generating weight coefficients for each channel based on the

convolutional operations of the EEG electrode leads. The specific

operation is shown in the formula below:

CE(F) = sigmoid(Conv2D(MaxPool(F))+ Conv2D(AvgPool(F)))

(1)

F
′
= CE(F)× F (2)
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FIGURE 4

CBAM Module: After the feature extraction, the feature matrix F ∈ R
C×H×W is obtained. In the channel attention module, global and max pooling

operations are applied to F to obtain a C× 1× 1 tensor. This tensor is then passed through two fully connected layers with a ReLU activation

function, reducing the channel dimension to one-fourth of the original number and then restoring it to the original dimension to obtain the feature

matrix mapping. The mapping is combined with F using a sigmoid activation function to assign weights CE(F) ∈ R
C×1×1 to each input channel,

representing channel importance levels. The obtained weight matrix is multiplied by the original input feature matrix to obtain F
′
. In the spatial

attention module, F
′
undergoes global average and max pooling operations, and the resulting tensors are stacked and processed with a 1× 1

convolution. The sigmoid activation function maps the spatial feature weights to the range [0,1], obtaining the weights SE(F) ∈ R
1×H×W that represent

the importance of each feature point. These weights are multiplied by F
′
to obtain the weighted feature map F

′′
.

(b) Spatial attention weighting mechanism

The spatial attention further extracts features from EEG data

at the convolutional level, aiming to preserve the spatiotemporal

information of EEG signals as much as possible. The input feature

map F
′
∈ RC×H×W undergoes max pooling and average pooling

operations at each feature point along the spatial dimensions. Then,

the two results are stacked along the channel dimension. A 1 × 1

convolutional layer is applied to adjust the channel dimension to

1, and a sigmoid activation function is used to obtain weight values

(between 0 and 1) for each feature point on the featuremap. Finally,

the weight matrix SE(F
′
) ∈ R1×H×W is multiplied by the original

feature map to obtain the feature map F
′′
. The convolutional layer

adaptively learns features for each channel input, enabling the

network to focus more on meaningful features in the signal and

improve the accuracy of seizure prediction. The specific process is

shown in the following formula:

SE(F
′
) = sigmoid(Conv(concat([MaxPool(F

′
), AvgPool(F

′
)])))

(3)

F
′′
= SE(F

′
)× F

′
(4)

2.1.3. Temporal modeling and classification
module

The Gated Recurrent Unit (GRU; Chung et al., 2014) is

an advancement over the Long Short-Term Memory (LSTM)

model, offering a more streamlined architecture. It incorporates

two gate mechanisms to regulate the flow and forgetting of

preceding temporal information, effectively addressing the issue

of vanishing gradients encountered in recurrent neural networks.

Moreover, GRU exhibits enhanced capability in capturing long-

term dependencies inherent in sequential data, making it well-

suited for analyzing time-series signals. In our study, we employ a

dual-layer GRU network to comprehensively analyze the extracted

feature matrix F
′′
, which allowed us to delve deeper into the

temporal features of the electroencephalography (EEG) signals

associated with seizure activity F∗, thereby facilitating a more

precise and accurate classification.

Specifically, in the GRU module, the hidden state ht−1

represents the temporal information from the previous time step,

while xt represents the current time step’s input feature matrix. This

study defines the time steps based on the sequential order of the

input feature matrix F
′′
. The influence of the previous hidden state

ht−1 on the current time step is controlled by the reset gate rt , as

shown in the following formula:

rt = sigmoid(ht−1Wrh + xtWrx + br) (5)

whereWrh andWry represent the weight matrices of the reset gate,

and br is the bias matrix with a size equal to the number of hidden

units nh. Moreover, the update gate ut ∈ R1×nh is responsible for

controlling the balance between the previous hidden state and the

current input at each time step, determining the extent to which the

previous hidden state is retained and fused with the current input

feature.

ut = sigmoid(ht−1Wuh + xtWux + bu) (6)

where weight matrices Wuh and Wux represent the weights of the

update gate, and bu is equal to the number of hidden units nh. The

temporary hidden state h
′

t at time step t is obtained by element-wise

multiplication.

h
′

t = tanh(ht−1Whh × rt + xtWxh) (7)

where weight matrices Whh and Wxh are used, along with the

hyperbolic tangent activation function tanh, to control the flow of

information through the reset gate rt , which determines the degree

to which the previous hidden state is retained. Finally, by utilizing

the update gate ut , the new hidden state ht is computed through

a linear combination of the previous hidden state ht−1 and the

current state h
′

t , as shown in the following equation:

ht = (1− ut)× ht−1 + ut × h
′

t (8)
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In summary, the distinctive feature of the dual-layer GRU

module in predicting epileptic seizures lies in its effective

integration of temporal information and modulation of

information flow through gating mechanisms. The dual-layer

GRU structure in this study consists of 256 and 128 units, with

a dropout rate of 0.5 to mitigate overfitting. The first GRU layer

learns temporal dependencies and sequential relationships of

neighboring feature maps from F
′′
. The second GRU layer captures

deeper long-term dependencies and contextual information using

the hidden state from the first layer, resulting in the feature

matrix F∗. By modeling and synthesizing temporal features, the

dual-layer GRU module effectively utilizes the features extracted

by the convolutional layer and CBAM module, enhancing the

classification accuracy of seizure onset and interictal data and

improving the prediction model’s performance.

Following the GRU layers are two fully connected layers and

two Dropout layers. The first fully connected layer has 64 neurons

and uses the sigmoid activation function, taking the output of the

Dropout1 layer as input. The second fully connected layer consists

of 2 neurons, taking the output of the Dropout2 layer as input.

Finally, the Activation layer is used to pass the final softmax output

to the output layer of the model, completing the classification task.

2.2. Lion optimizer

During the model training process, we employed a recently

proposed optimization algorithm called the Lion optimizer (Chen

et al., 2023), developed by researchers from Google and UCLA.

Unlike adaptive optimizers like Adam and SGD, the Lion optimizer

only requires momentum tracking and utilizes symbolic operations

to compute updates, leading to fewer hyperparameters and simpler

computations. It has shown superior performance to traditional

optimization algorithms when applied to deep learning models in

tasks like image classification while accelerating the model training

process. Thus, in our research, we introduced the Lion optimizer

in the context of seizure prediction models and conducted

comparative experiments with the Adam optimizer to assess its

impact on model performance.

3. Experiment and results

In the experimental section, we firstly performed preprocessing

on the EEG dataset, including splitting the raw data into 30-

second windows, removing noise and artifacts, and transforming

the EEG data into time-frequency spectrograms. Secondly, the

data was partitioned into training and testing sets and fed

into the model for training. Meanwhile, we utilized the Lion

optimization algorithm to further optimize the model’s training

process. Thirdly, post-processing operations were applied to the

obtained classification results to predict seizure occurrences, and

various metrics were used to evaluate the model’s seizure prediction

performance. Finally, several ablation experiments were conducted

to individually assess the impact of each component on the overall

model’s predictive performance.

TABLE 1 Detailed information of seizure subjects in CHB-MIT dataset.

Subject no. Age Gender Records Seizure onset

Chb01 11 F 42 7

Chb02 11 M 36 3

Chb03 14 F 38 7

Chb04 22 M 42 4

Chb05 7 F 39 5

Chb06 1.5 F 18 9

Chb07 14.5 F 19 3

Chb08 3.5 M 20 5

Chb09 10 F 19 4

Chb10 3 M 25 7

Chb11 12 F 35 3

Chb12 2 F 24 21

Chb13 3 F 33 12

Chb14 9 F 26 8

Chb15 16 M 40 20

Chb16 7 F 19 10

Chb17 12 F 21 3

Chb18 18 F 36 6

Chb19 19 F 30 3

Chb20 6 F 29 8

Chb21 13 F 33 4

Chb22 9 F 31 3

Chb23 6 F 9 7

3.1. Dataset

In this experiment, we utilized the CHB-MIT dataset to

validate the seizure prediction performance of the proposed

model (Goldberger et al., 2000). The dataset consists of scalp

electroencephalogram (EEG) recordings from 23 pediatric

epilepsy patients, collected through collaboration between

the Massachusetts Institute of Technology (MIT) and Boston

Children’s Hospital. The EEG data were sampled at a rate of

256Hz and acquired using 22 electrodes placed according to the

international 10–20 system for EEG electrode placement. The

dataset spans approximately 1136 hours of continuous EEG signal

activity and includes 198 epileptic seizure events. The patients’ ages

range from 1.5 to 22 years. Detailed information about the dataset

is provided in Table 1. The CHB-MIT public dataset provides

expert annotations indicating the start and end times of seizure

events. In this study, we define the interictal period as a time

interval of at least 4 h before and after the seizure, following the

standard proposed by Truong et al. (2018) for seizure prediction

research, providing a reference for comparison with their method.

Additionally, we excluded the cases with more than ten seizures

in the dataset, as their seizure occurrences are too close in time

and the prediction results are less meaningful for these patients.
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FIGURE 5

EEG signal of patient Chb01: the depicted figure showcases the scalp electroencephalographic (EEG) recordings obtained from subject Chb01

during a seizure episode. The onset of the seizure activity becomes evident at 2995 s, marked by a prominent escalation in EEG frequency and the

emergence of complex waveforms characterized by irregularities and spikes. These distinct alterations in the EEG signal morphology signify the

initiation of a seizure event, indicating a significant disruption in the underlying neural activity. The observed contrast in EEG patterns between the

preictal and ictal periods highlights the pronounced impact of the seizure activity on the brain’s electrical dynamics.

To facilitate comparison with related experiments, we evaluated

the epilepsy seizure prediction model in detail using data from 13

patients. Figure 5 shows the EEG segments of a seizure event in

patient chb01.

3.2. Data preprocessing

The raw EEG signals are characterized by a large quantity

and continuous long duration, making them unsuitable for direct

input into convolutional neural networks for feature extraction.

Therefore, data preprocessing is required. Firstly, preictal and

interictal data are extracted separately from the original EEG data.

Subsequently, the data is splitted into 30-second windows, and

the short-time Fourier transform (STFT) technique is employed to

transform the raw EEG signals into two-dimensional spectrograms

with frequency and time axes. The transformation helps retain

crucial information from the original signals (Truong et al., 2019;

MuhammadUsman et al., 2020). During data collection, the dataset

is contaminated with 60Hz power line noise. To address this issue,

bandpass filtering is applied to remove frequency components

between 57Hz–63Hz and 117Hz–123Hz, along with excluding the

0Hz component.

Due to the uneven distribution of the two classes in the

dataset, namely, the number of preictal data is significantly

smaller than the number of interictal data in a single EEG

recording of a seizure episode, it is likely that the model may

not learn sufficient useful features due to the scarcity of one class

during training, ultimately affecting the classification accuracy. To

overcome this data imbalance issue, we employ the overlapping

sampling technique along the temporal axis of the EEG signal,

generating additional preictal samples using a sliding window

of 30 s. After preprocessing, the spectrograms are fed into the

GAMRNNmodel for feature extraction and classification. Through

extensive training, the model learns the discriminative features of

seizure EEG signals and performs sample classification into preictal

and interictal states.

3.3. Experimental setting

In order to train the model and learn relevant features from

the preprocessed dataset, it is necessary to partition the dataset

into training and testing sets. Here, we employed the leave-one-

out cross-validation method. For a subject with N occurrences of

seizures in their data records, N-1 seizure interictal and preictal

segments were concatenated as the training set, while the remaining

occurrence of seizure interictal and preictal segments were used

as the testing set. Furthermore, 75% of the training set data was

utilized for training the model, while the remaining 25% was used

as a validation set to assess the learning and training performance of

the proposed model and prevent overfitting. We also incorporated

an early stopping mechanism during the model training process. If

the loss did not improve for ten consecutive epochs, the training
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was halted prematurely, and the model parameters with the best

performance during training were saved. This approach aimed to

minimize resource waste and training time.

The experiment was implemented on Python 3 using the Keras

and TensorFlow frameworks. The training batch size was set to 64,

and the number of epochs was set to 50. For Lion optimizer, the

cross-entropy loss was used to compute the training loss. We set

the hyperparameter β1 for exponential decay rate to 0.95, β2 to 0.98,

learning rate η to 0.0001, and weight decay rate λ to 0.015 based on

instructions of lion optimizer and our experiences.

3.4. Metrics for epileptic seizure prediction

Seizure prediction horizon (SPH) and seizure onset prediction

(SOP) are two temporal periods used to evaluate the results of

seizure prediction. SPH refers to the time interval from the onset

of an alert to the expected seizure phase, while SOP represents the

time span during which the seizure is anticipated to occur. A correct

alert within the SPH serves to notify healthcare professionals and

family members that a seizure is likely to happen within the

subsequent SOP, enabling them to take timely measures. Consistent

with Truong et al. (2018), this study sets the SPH to 5 min and the

SOP to 30 min. The method for setting SPH and SOP is shown in

Figure 6. The criterion for accurate prediction is the occurrence of

at least one seizure event during the SOP period following the onset

of the alert, while no seizures should occur within the SPH period.

False alarms, on the other hand, refer to alerts issued in the absence

of any seizures during the SOP period. To reduce false positives, a

K-of-N post-processing method is employed (Truong et al., 2018),

where an alert is triggered only when K seizure-like segments are

identified within a continuous sequence of N segments. In this

study, the parameters k = 8 and n = 10 are set, with predictions

made every 30 s. Consequently, if more than 4 min of seizure-like

segments are identified within a continuous 5 min data segment, an

alert is issued.

The performance of the epilepsy seizure prediction model

was evaluated using sensitivity (SEN), specificity (SPEC), accuracy

(ACC), area under the curve (AUC), and false positive rate per hour

(FPR/h) metrics. In typical binary classification tasks, sensitivity,

specificity, and accuracy are calculated from the confusion matrix

in statistics. Sample prediction can result in four possible scenarios:

TP (True Positive), meaning the actual EEG signal data is preictal

and the predicted result is also preictal; FP (False Positive), meaning

actual interictal signal data is predicted as preictal signal data; TN

(True Negative), meaning the predicted data is interictal signal

data, and it is indeed interictal signal data; FN (False Negative),

meaning actual preictal signal data is predicted as interictal signal

data. Based on the confusion matrix, the following metrics can be

calculated:

Sensitivity = TP/(TP + FN) (9)

Specificity = TN/(TN + FP) (10)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

The ROC (Receiver Operating Characteristic) curve is a

graphical representation where the X-axis is the false positive rate

(FPR), and the Y-axis is the true positive rate (TPR). Different

TPR and FPR values can be obtained and plotted as an ROC

curve by changing the classifier’s threshold. The AUC (Area

Under the Curve) is the area under the ROC curve, with a value

between 0.5 and 1. A larger AUC indicates a better performance of

the classifier.

4. Results

4.1. General results

Based on the same experimental settings, we conducted a

performance evaluation of the GAMRNN seizure prediction model

and compared it with the GCRNN prediction model. We selected

the same 13 patient data from the CHB-MIT dataset for evaluation

on both models. The experimental results are shown in Table 2.

We observed and compared the classification and prediction

performance of the two models from the aspects of accuracy,

sensitivity, and false positive rate, taking the average values of all the

subjects’ experimental results. From the table, we can conclude that

our proposed GAMRNN prediction model demonstrates better

seizure prediction performance on most subjects’ data, with an

average accuracy of 91.73%, which is a 6.44% improvement over

the CGRNN prediction model. The GAMRNN model achieved

a sensitivity of 88.09% in correctly predicting seizures, showing

an ∼6% increase in sensitivity compared to the original model,

which indicates that the model successfully captured 56 out of 64

seizures. After incorporating the attention convolutionmodule and

optimizing the model using the Lion optimizer in the CGRNN

model, the false positive rate decreased from 0.2042 to 0.053/h.

Except for patients Chb10 and Chb14, the false positive rate

for seizures in other patients approached 0. The improvement

in these evaluation metrics has significant practical implications

for the daily life of epilepsy patients. Above results confirm that

the proposed seizure prediction model can effectively distinguish

between preictal and interictal EEG signal data, enabling accurate

decisions on whether a seizure will occur in the later stage of the

EEG signal, thereby greatly reducing the occurrence of false alarms

for seizures.

However, due to various reasons, such as differences in

the number of seizures, proximity to seizures, or patient-

specific characteristics, the seizure prediction model may not

achieve the same prediction performance for every patient.

The variance calculated for various metrics of the two seizure

prediction models indicates that our proposed model demonstrates

greater stability in evaluating the 13 patient datasets compared

to the baseline model. The comparative experiments also

provide evidence that the attention modules indeed assist the

seizure prediction model in focusing more on crucial regions

within the feature maps. By incorporating channel and spatial

dimensions, the attention modules enable the model to emphasize

the essential spatiotemporal features in the EEG signal data

while reducing attention to relatively less significant regions.

As a result, the overall model performance for classifying

two types of seizure EEG signals is enhanced, leading to
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FIGURE 6

Diagram of the Seizure Prediction Period (SPH) and Seizure Onset Period (SOP): in the post-processing phase, a successful prediction of seizure

onset by the seizure prediction model is defined as the absence of any seizure events during the SPH period following the onset alert, followed by

the occurrence of one or more seizure events during the subsequent SOP period. When no seizure events occur during the SOP period following the

onset alert, it is considered a false alarm.

TABLE 2 Seizure detection performance on the CHB-MIT dataset.

CGRNN GAMRNN

Patient Accuracy Sensitivity FPR (/h) Accuracy Sensitivity FPR (/h)

Chb01 0.9337 0.8429 0.057 0.9455 0.9548 0

Chb02 0.9398 0.1611 0 0.9415 0.3652 0

Chb03 0.9313 0.6389 0 0.9417 0.8361 0

Chb05 0.6884 0.2867 0.3468 0.9088 0.88 0.0694

Chb09 0.9814 1 0 0.9945 0.9833 0

Chb10 0.6572 0.4056 0.566 0.7811 0.7389 0.2264

Chb13 0.8793 0.9967 0.2081 0.9141 0.9933 0.0694

Chb14 0.5178 0.8 0.7385 0.7711 0.8433 0.1846

Chb18 0.8525 0.6167 0.2041 0.904 0.9375 0.0408

Chb19 0.9827 0.7889 0 0.9893 0.9322 0

Chb20 0.8952 0.9733 0.1469 0.9544 0.99 0.098

Chb21 0.867 0.8125 0.3134 0.8903 1 0

Chb23 0.9615 0.9833 0.0752 0.9886 0.9967 0

Average 0.8529 0.7159 0.2043 0.9173 0.8809 0.053

Variance 0.0189 0.0723 0.0505 0.0047 0.0280 0.0054

significant improvements in accuracy, sensitivity, and false positive

rate evaluations.

4.2. Results of ablation study

Our study conducted two sets of ablation experiments. The first

set of experiments aimed to validate the performance enhancement

of the GAMRNNmodel by adding the CBAMmodule and using the

Lion optimizer. Specifically, the CBAMmodule and Lion optimizer

were sequentially added to the model, and their performance on

different datasets was compared and analyzed. The second set of

experiments aimed to validate the individual effects of the Channel

Attention Module (CAM) and Spatial Attention Module (SAM)

when applied separately to the model. Additionally, we compared

the combinationmodule with the order of CAM and SAM switched

to the CBAM module. The accuracy, sensitivity, and specificity

results obtained from the two groups of ablation experiments are

presented in Table 3.

GAMRNN (CAM only) and GAMRNN (SAM only):We

incorporated Channel Attention Module (CAM) and Spatial

Attention Module (SAM) separately into the model to assess

the individual impacts of these attention mechanisms on

model performance. Specifically, when CAM or SAM was

added independently to the model, the accuracy remained

similar. However, there was approximately a 6% decrease

compared to the model using the combined attention mechanism

CBAM. Moreover, sensitivity and specificity were lower than

the Convolutional Attention Module. These results indicate that

utilizing a single attention mechanism alone has a limited impact

Frontiers inNeuroscience 10 frontiersin.org75

https://doi.org/10.3389/fnins.2023.1246995
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ji et al. 10.3389/fnins.2023.1246995

TABLE 3 Ablation experimental results.

Methods Accuracy Sensitivity Specificity

GAMRNN (CAM

only)

85.71 76.32 86.27

GAMRNN (SAM

only)

85.53 76.59 85.59

GAMRNN (Lion

only)

87.47 76.17 88.75

GAMRNN (CBAM

and Adam)

90.03 83.75 91.52

GAMRNN (CBAM

and Lion)

91.73 88.09 92.09

on the performance of the seizure prediction model. However,

the predictive performance was significantly enhanced when

employing the Convolutional Attention Module that integrates

both CAM and SAM and applies them jointly to the model.

Additionally, we conducted experiments by interchanging the

order of the attention modules (first applying SAM and then

CAM) and combining them in the model. While there was a slight

improvement in accuracy and specificity, it was not as pronounced

as the original CBAM combination, suggesting that the order of

combining attention modules within the Convolutional Attention

Module has the most significant impact on enhancing the model’s

performance. In conclusion, the Convolutional Attention Module

plays a more prominent role in improving the seizure prediction

model than individual CAM and SAM, and the specific order of

combining CAM and SAM within the Convolutional Attention

Module has the most significant influence on model performance

enhancement.

GAMRNN (Lion only): This model is derived from the

proposed model by removing the CBAM module, allowing for

the evaluation of the epileptic seizure prediction performance

without the attention convolutional module. The experimental

results demonstrate that the model without CBAM exhibits a

significant performance decrease in accuracy, sensitivity, and

specificity compared to the proposed predictionmodel. Specifically,

the classification accuracy of interictal and preictal data decreased

from 91.73 to 87.47%. The sensitivity of correctly identifying

preictal data decreased from 88.09 to 76.17%, and the specificity

of correctly identifying interictal data also decreased by 3.34%.

These changes in results indicate the crucial role of the CBAM

module in the proposed epileptic seizure prediction model, as the

model without CBAM shows a significant decrease in classification

performance. Therefore, we hypothesize that the inclusion of

CBAM in the model allows for further attention to be given to

essential channels and spatial feature points within the feature

maps after the initial three-layer convolutional feature extraction,

thereby aiding the model in focusing on extracting more crucial

feature information and enhancing the classification and prediction

performance of the model.

GAMRNN (CBAM and Adam): This model is obtained by

removing the Lion optimizer from the proposed model and using

the Adam optimizer, which is the same as the baseline model,

to observe its impact on model training. A comparison reveals

that this model also experiences a corresponding decrease in

performance in various aspects, although the decrease is not

particularly significant. For instance, the average accuracy of the

model without the Lion optimizer is only reduced by ∼1.70%, the

sensitivity is reduced by ∼4.34%, and the specificity is reduced by

0.57%. During model training, a visual inspection indicates that

each epoch takes∼1–2 s less than the Adam optimizer model. This

suggests that the Lion optimizer accelerates the training process and

effectively reduces the training loss of themodel, thereby enhancing

the stability of correct seizure prediction. In summary, the Lion

optimizer plays a role in performance evaluation and training

for epileptic seizure prediction research tasks. It also lays the

foundation for utilizing the Lion optimization algorithm in more

complex studies, offering more possibilities for training models in

epileptic seizure prediction research.

The above analysis provides a detailed examination of the

individual effects of the attention module and the Lion optimizer

in the proposed model. The experimental results indicate that

incorporating both modules into the research on epileptic seizure

prediction enhances the classification and prediction performance

of the model. As shown in Figure 7, the AUC results comparison

represents the model’s ability to accurately classify interictal and

preictal data. It can be observed that regardless of whether

the Channel Attention Module (CAM) or the Spatial Attention

Module (SAM) is individually integrated into the seizure prediction

model or if they are combined with interchanged order, the

classification performance of the model on most patients data

is significantly inferior to the predictive model proposed in this

study, which utilizes the Convolutional AttentionModule. Figure 8

illustrates the AUC comparison of the CGRNN baseline model

and the GAMRNN model, which gradually incorporates both

modules, using data from 13 patients. The graph shows that the

models achieve good classification performance on most patient

data, which becomes more pronounced as the two modules are

successively integrated. Among them, the AUC performance on

the Chb01, Chb09, and Chb23 data approaches 1. However,

the classification performance on the Chb02, Chb10, and Chb14

patient data is relatively lower due to the imbalance in these data

categories. However, significant improvements are observed after

incorporating the CBAM module and using the Lion optimizer,

further demonstrating that these two modules aid in accurately

recognizing and classifying imbalanced data. Therefore, the results

of the above ablation experiments indicate that the proposed

GAMRNNmodel has better EEG signal classification performance.

It combines the STFT spectrogram input with channel weights,

simultaneously focusing on the spatial features of the signal, and

uses GRU-gated units to extract important temporal information

from the features, providing specific advantages in reducing false

positives and improving model accuracy.

5. Discussion

With the emergence of various deep learning techniques, they

have gradually been applied to predict epileptic seizures. In order

to compare our proposed method with other methods on the same

dataset to make the comparison more convincing, we selected

several studies that evaluated models using the same dataset.

Table 4 shows the comparative experimental results. There is no
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FIGURE 7

Comparison of AUCs with di�erent attention mechanisms added to the models: the bar chart depicts the AUC evaluation results of four models,

namely, GAMRNN (CAM only), GAMRNN (SAM only), GAMRNN (first SAM then CAM), and GAMRNN(CBAM and Lion), on 13 patient datasets. The

comparison reveals that the proposed GAMRNN model with attention convolutional modules added in the normal sequence exhibits the most

distinct and superior classification performance compared to the other three models.

FIGURE 8

Comparison of AUC among di�erent models: the figure depicts the AUC evaluation of four epilepsy seizure prediction models, namely CGRNN,

GAMRNN (Lion only), GAMRNN (CBAM and Adam), and GAMRNN (CBAM and Lion), on the CHBMIT 13-patient dataset. AUC represents the

classification performance of the prediction models. As shown in the figure, the combination of the cbam module and lion optimizer has a certain

e�ect on the classification performance of the models.

absolute good or bad result because the models proposed by

different researchers have differences, and slight changes in each

step of epileptic seizure prediction may also lead to experimental

differences. Our GAMRNN model is much better than the CNN

model proposed by Truong et al. (2018) in all aspects. They

used a three-layer convolutional model for feature extraction and

achieved a prediction accuracy of 81.2% on CHB-MIT. Affes

et al. (2019) proposed a CGRNN model combining three layers of

convolution and two layers of gated units, achieving a classification

sensitivity of 89.07%. The difference between our CGRNN model

and theirs lies in the data preprocessing part, and it can be seen

that the attention convolution module we introduced has a positive

Frontiers inNeuroscience 12 frontiersin.org77

https://doi.org/10.3389/fnins.2023.1246995
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ji et al. 10.3389/fnins.2023.1246995

TABLE 4 Comparative experimental results.

References Methods Accuracy Sensitivity FPR (/h) AUC

Truong et al. (2018)

CNN – 81.2 0.16 –

Affes et al. (2019)

CGRNN 75.6 89.07 1.6 –

Büyükçakır et al. (2020)

MLP – 89.8 0.081 –

Zhang et al. (2021)

Bi-LSTM 80.09 86.67 0.26 –

Sun et al. (2021)

CADCNN – 97.1 0.029 91.7

Proposed model GAMRNN 91.73 88.09 0.053 91.56

effect. Büyükçakır et al. (2020) utilized the Hilbert decomposition

method to decompose scalp EEG data signals from 10 patients

in the CHB-MIT dataset into seven components. They achieved

a sensitivity of 89.8% and a false alarm rate of 0.081/h using an

MLP classifier. Although our proposed method exhibits a slightly

lower sensitivity, we achieved a lower false seizure prediction

rate. Zhang et al. (2021) extracted the feature of multi-scale

sample entropy from 23 EEG signals from the same dataset and

used a bidirectional LSTM model to predict the occurrence of

epileptic seizures. The prediction accuracy achieved was 80.09%,

with an FPR of 0.26/h. In comparison, our model demonstrated

relatively superior performance. Sun et al. (2021) also proposed

a Channel Attention Dual-input Convolutional Neural Network

(CADCNN) that incorporates both time-frequency spectrograms

and raw EEG signals as inputs to a convolutional neural network

for feature extraction and fusion. By leveraging channel attention

mechanisms, their method achieved excellent results, exhibiting

superior sensitivity compared to the model proposed in this study

but similar AUC performance. Therefore, we hypothesize that

the different forms of dual-channel input EEG signals may help

improve the accuracy of feature extraction.

Our proposed study features a relatively simple overall

model architecture, resulting in lower resource overhead

and computational complexity. The total number of training

parameters is ∼880,000, including parameters from convolutional

kernels, recurrent gating units, and fully connected layers. The

experiments were conducted on a server equipped with an RTX

2080 Ti GPU (11 GB of VRAM), and the memory required for

the dataset and model source code was ∼40 GB. Training the

model on the CHB-MIT dataset, which includes data from 13

patients, took ∼8 h. The training time per patient varied from a

few seconds to several tens of seconds per epoch, and the overall

training time depended on the number of seizures and recording

duration per patient. Despite its simplicity in implementation, this

experiment achieved favorable performance, which highlights its

relative excellence.

In the process of comparing our proposed method with

others, we have reflected on potential issues that may exist. For

example, the evaluation of the model on Chb02, Chb10, and Chb14

showed relatively inferior predictive performance compared to

other patients. The significant inter-individual variability among

patients often results in some individuals having predictable

epileptic seizures while others experience unpredictable seizure

occurrences. In addition to these factors, this may be closely

related to the seizure condition of each patient. The Chb02

patient had only three seizures in all the records, indicating a

significant imbalance in the ratio between preictal and interictal

data. This imbalance adversely affected the model’s ability to

learn from preictal data, leading to reduced sensitivity and

classification performance in identifying this data type correctly.

Similarly, for the Chb10 and Chb14 patients, the relatively dense

occurrence of seizure events in the recorded data files resulted

in limited interictal periods available for model learning. This

limitation affected the model’s ability to differentiate between

interictal and preictal data, leading to poorer overall classification

performance. Therefore, in future research, we intend to employ

data augmentation techniques to generate additional EEG data,

addressing the issue of data imbalance in epileptic seizure

occurrences. This endeavor aims to facilitate the epileptic seizure

prediction model in achieving enhanced performance and superior

outcomes.

This paper proposes a seizure prediction method based

on a recurrent neural network with convolutional attention

modules. Firstly, we use multiple layers of convolution to extract

spatial information from multi-channel EEG recordings and

apply attention mechanisms to focus on specific channels and

spatial locations, mimicking the visual perception process of

humans. Our model combines two channel attention modules

and a spatial attention module to reassign weights to each

feature channel and point in the convolution process. Two

gated recurrent units are added after the attention modules

to perform deep feature extraction on the temporal sequence.

Experimental results show that our proposed method achieves

high accuracy, sensitivity, and low false positive rate in cross-

validation evaluation on the dataset, which further proves

the potential of attention mechanism modules and the Lion

optimization algorithm in seizure EEG prediction research,

providing ideas and insights for future research in this field. In

addition, we plan to explore methods for addressing imbalanced

data issues and evaluate the proposed model’s performance on

more scalp EEG and intracranial EEG datasets to improve its

generalization capability.
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Image registration is one of the important parts in medical image processing

and intelligent analysis. The accuracy of image registration will greatly a�ect the

subsequent image processing and analysis. This paper focuses on the problem of

brain image registration based on deep learning, and proposes the unsupervised

deep learning methods based on model decoupling and regularization learning.

Specifically, we first decompose the highly ill-conditioned inverse problem of

brain image registration into two simpler sub-problems, to reduce the model

complexity. Further, two light neural networks are constructed to approximate

the solution of the two sub-problems and the training strategy of alternating

iteration is used to solve the problem. The performance of algorithms utilizing

model decoupling is evaluated through experiments conducted on brain MRI

images from the LPBA40 dataset. The obtained experimental results demonstrate

the superiority of the proposed algorithm over conventional learning methods in

the context of brain image registration tasks.

KEYWORDS

unsupervised learning, data-adaptive, brain image registration, model decoupling, sub-

problems

1. Introduction

Medical image registration is a vital step in the healthcare field, pivotal for diagnosing

(Song et al., 2021), and planning treatments (Tan et al., 2016). It aligns multiple images,

establishes spatial correlations, and assimilates varied data, thereby contributing to improved

diagnostic precision and personalized treatments.

The task of image registration (Hu et al., 2018), involves identifying the optimal spatial

transformation between two images, thereby establishing a unique correspondence between

points in each space that are associated with the same anatomical position. This task

is a high-dimensional, ill-posed optimization problem, commonly solved using a specific

objective function:

T∗ = argminD
(

If ,T (Im)
)

, (1)

where T∗ represents the optimal transformation, If is the template (or fixed) image, and Im is

the image to be registered (or moving image). The functionD(·, ·) quantifies the dissimilarity

or distance between these two images.

Traditionally, medical image registration has been conducted with model-based

methods. These models are typically categorized into parametric methods and global

variational methods. Parametric methods approximate deformations using parameters,
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such as Thin-Plate Splines (TPS) (Bookstein, 1989) or B-splines

(Xia and Liu, 2004), and solve an optimization problem to

find optimal parameter values. Conversely, global variational

methods frame the registration problem as an energy functional

minimization task, often involving partial differential equations

to ensure the diffeomorphism of the deformation field. Although

these model-based methods offer high registration accuracy

and robustness, they suffer from computational complexity and

limitations in capturing complex deformations.

Recently, the rapid advancements in deep learning and the

availability of extensive medical image datasets have catalyzed

the emergence of learning-based registration methods. The early

deep learning-based image registration models primarily utilized

supervised learning methods. In this approach, output labels such

as deformation vector fields or parameters are used during training

to learn the mapping from input image pairs to deformation fields

using neural networks. Various methods, including convolutional

neural network (CNN) and fully convolutional network (FCN)

(Sheikhjafari et al., 2022) architectures, have been explored

to tackle single-modal or multi-modal registration tasks, rigid

registration, and non-linear deformations. But these methods

require a large amount of predefined ground truth deformation

field labels, resulting in significant manpower costs. To overcome

the limitations of supervised learning, unsupervised learning

models for image registration have been developed. Rather than

necessitating predefined ground truth deformation field labels,

these models place reliance on the assessment of similarity between

registered images and template images to guide the network

learning process. Unsupervised learning models (Sideri-Lampretsa

et al., 2022) have demonstrated competitive performance compared

to traditional methods, surpassing them in metrics like Dice score,

residual sum of squares, peak signal-to-noise ratio, and structural

similarity. Despite their promising results, deep learning-based

registrationmethods face certain challenges, including the presence

of local minima during model optimization, which can impede

convergence to accurate solutions.

To address these existing challenges, this paper bridges

traditional model-based methods and modern learning-based

deep learning methods, aiming to balance global smoothness and

local data-adaptive discontinuity constraints. This combination

is anticipated to enhance the accuracy and precision of brain

image registration. Specifically, this paper introduces an

unsupervised learning method specifically designed for medical

image registration, focusing on brain images. The proposed

method incorporates a regularization term to tackle the inherent

complexity of the registration problem, thus splitting it into more

manageable sub-problems through model decoupling techniques.

These sub-problems are then addressed via deep learning networks,

namely Similarity-Net and Denoiser-Net. Our main contributions

include (a) the development of an innovative deep learning

method: This novel method uses model decoupling to simplify

the inverse problem of image registration. It accomplishes this by

decomposing the problem into two less complex subproblems,

(b) introduction of a deep learning algorithm based on model

decoupling: This proposed algorithm addresses the highly ill-posed

problem of image registration. The innovative aspect of this

algorithm lies in its ability to utilize deep learning techniques to

approximate the solutions to these lower complexity subproblems,

and (c) The obtained experimental results demonstrate the

superiority of the proposed algorithms over conventional learning

methods in the context of image registration tasks.

2. Related works

2.1. Deep learning based registration
methods

Supervised learning techniques in image registration utilize

known deformation vector fields during training, with loss

functions commonly comprising similarity and regularization

terms. The creation of deformation labels can be quite challenging,

prompting the use of random generation (Sun et al., 2018), or

model-based generation approaches (Yang et al., 2016). While these

techniques are valuable, they may encounter limitations due to the

general lack of labeled data.

Unsupervised learning approaches (Liu et al., 2022), such

as the VoxelMorph network (Balakrishnan et al., 2018), tackle

the challenge of obtaining ground truth deformation fields by

capitalizing on the similarity between registered images and

template images. The VoxelMorph network incorporates the U-

Net architecture (Ronneberger et al., 2015) for predicting the

deformation field and the Spatial Transform Network (STN)

module (Jaderberg et al., 2015) to apply the predicted deformation

to the target image. This structure circumvents the need for explicit

deformation labels, demonstrating the power of unsupervised

learning in accurate image registration.

2.2. Regularization based methods

Diffeomorphic regularization, a widely adopted method,

preserves the topological structure of images during registration

(Beg et al., 2005). Approaches based on stationary velocity

fields and architecture-based designs are common in this

respect (Trouvé and Younes, 2005; Vercauteren et al.,

2009). Recent advancements aim to predict diffeomorphic

deformation fields within deep learning frameworks, with

some methods, like SYMNet (Lu et al., 2019), directly

outputting pairs of diffeomorphic deformation fields. These

techniques aim to boost the smoothness and realism of

deformation fields, thereby improving the accuracy and efficiency

of registration.

Multi-scale regularization techniques, on the other hand,

utilize information from multiple scales to enhance the

robustness and accuracy of the process. Approaches such

as multi-scale information fusion (Srivastava et al., 2022),

multi-stage registration (de Vos et al., 2019; Cai et al.,

2022), and coarse-to-fine registration (Zhao et al., 2020;

Mok and Chung, 2022) have been developed to implement

multi-scale regularization. Despite an increased demand for

computational resources, these multi-scale techniques have

demonstrated superior performance in various medical image

registration tasks.
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FIGURE 1

Brain image registration network structure, both u and v represents the deformation field.

3. Method

3.1. Model framework

In the context of brain magnetic resonance image registration,

it is desired to maintain the topological structure of the images

before and after registration. To achieve this, we consider the

following optimization problem:

φ∗ = argminLsim

((

If , Im ◦ φ
)

+ λ · ‖∇φ‖22 , (2)

where, If represents the template image, Im represents the image to

be registered, φ denotes the predicted deformation field, and |∇φ|2

is the regularization term that imposes a smoothness constraint on

the deformation field. The parameter λ balances the relationship

between the fidelity term and the regularization term in the

loss function.

Considering the complexity of image registration problems, the

above optimization problem is a high-dimensional and ill-posed

problem. Therefore, we propose an optimization method based on

model decoupling. By introducing relaxation variables, the above

optimization problem is transformed into two sub-problems:

u∗ = argminLsim

((

If , Im ◦ u
)

+ α · |u− v|22
)

, (3)

v∗ = argmin |v− u|2 + β · |∇v|22, (4)

where, v is the relaxation variable, both u and v represents

the deformation field in this problem and α and β are

balancing parameters.

We design two neural networks to solve these two sub-

problems. The first sub-problem is primarily addressed by using the

Similarity-Net as the registration network, while for the nature of

the second sub-problem, we design a denoising network, Denoiser-

Net, to approximate the solution. By iteratively alternating between

these two networks, a deformation field with smoothness properties

is predicted. The model framework is illustrated in Figure 1.

Detailed information will be discussed in Sections 3.2 and 3.3.

We provide the specific steps of the model decoupling-

based method for solving the registration problem.

Model-decoupling-based brain image registration method.

Require: Image pairs (In
f
, Inm), parameters α,β > 0,

iterations k, learning rate lr, batch size B

Ensure: Optimal solutions u∗, v∗.

1: Input:
(

In
f
, Inm

)

, n = 1, · · · ,N.

2: Initialization: Network parameters of Similarity-Net

and Denoiser-Net, at this point i = 0.

3: for i ≤ k do

4: Randomly select a batch of data
(

I
j

f
, I

j
m

)

, j = 1, · · · ,B.

5: Fix the network parameters of the Denoiser-Net,

calculate u and v.

6: Compute loss (3), update Similarity-Net via

backpropagation.

7: Fix the network parameters of the Similarity-Net,

calculate u and v.

8: Compute loss (4), update Denoiser-Net via

backpropagation.

9: i = i+ 1.

10: end for

11: Output: u∗ = u, v∗ = v.

3.2. Similarity-Net

For the first sub-problem, we employ a similar optimization

method as VoxelMorph, using a network called Similarity-Net. We

adopt a network architecture similar to UNet, but with reduced

network parameters and model complexity. In the encoding part,

instead of performing a convolution operation with a stride of 1

after downsampling the image size, we introduce a convolution

operation with a stride of 2. Additionally, the number of channels

in the feature maps is reduced. In the decoding part, we restore

the image size gradually using direct interpolation instead of using

transposed convolution, aiming to reduce network parameters. In

the encoding part of the network, we perform four convolution

operations with a stride of 2 and save the corresponding feature

maps. In the decoding part, we restore the image size using
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FIGURE 2

Similarity-Net network framework.

FIGURE 3

One-dimensional dilated convolution operation.

nearest-neighbor interpolation, and before each interpolation step,

we connect the feature maps saved in the encoding part at the

corresponding scale. Finally, after two convolution operations, the

predicted deformation field is obtained.

Once the predicted deformation field is obtained, we not

only use the spatial transformation layer to register the moving

image but also evaluate the distance between the deformed

moving image and the template image using local cross-

correlation. The deformation field is then fed into the Denoiser-

Net network to adjust the deformation field to satisfy the

corresponding regularization constraints. The difference between

the input and output of the Denoiser-Net is computed as

the loss function, which guides the parameter updates of

the Similarity-Net. The specific network structure is shown

in Figure 2.

3.3. Denoiser-Net

The second sub-problem aims to obtain an output that is

similar to the input but possesses certain desired properties. This

is a common task in image denoising. To address this, we design

a small denoising network called Denoiser-Net to solve the second

sub-problem. Inspired by DnCNN (Huang et al., 2021) and ResNet

(Zhang et al., 2017), we adopt a residual learning approach, where

instead of directly mapping the input to the output, we learn the

residual between the output and the input. In this design, the

relationship between u and v can be expressed as:

v = u+ Residual(u). (5)

Furthermore, we incorporate a pyramid structure inspired by
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FIGURE 4

Denoiser-Net network framework.

FIGURE 5

LPBA40 dataset.

SPPNet (He et al., 2016) into the network construction, utilizing

parallel dilated convolution operations with multiple dilation rates

to achievemulti-scale information fusion. Dilated convolution, also

known as atrous convolution, enables explicit control over the

resolution of the computed feature maps in convolutional neural

networks and allows adjustment of the filter’s receptive field to

capture multi-scale feature information. It is a generalization of

conventional convolution operations. In the case of 1D signals, the

dilated convolution applied to the input feature map x with the

output feature map y and convolution filter w can be expressed as:

y[i] =
∑

k

x[i+ r · k]w[k], (6)

where y[i] represents the value at the i-th coordinate position of the

output feature map y, r denotes the dilation rate, and k represents

TABLE 1 DSC of di�erent methods.

Method S-Net SS-Net Ours VoxelMorph Ours+

DSC 0.6780 0.7027 0.7043 0.7053 0.7061

the k-th position of the filter. Figure 3 provides a visualization

of dilated convolution in 1D signals. In conclusion, the specific

structure of Denoiser-Net is illustrated in Figure 4.

4. Experiments

4.1. Data preparation

The brain image dataset used in this study is the publicly

available LPBA40 dataset. The LPBA40 dataset was collected at

the North Shore Long Island Jewish Health System (NSLIJHS)

and is maintained at the University of California, Los Angeles

(UCLA). The dataset consists of 40 brain magnetic resonance

imaging (MRI) scans from volunteers, with voxel sizes of 0.86 ×
0.86 × 1.5 mm3. The volunteers include 20 males and 20 females,

all free of any brain disorders, psychiatric history, or intellectual

developmental delay. The average age of the volunteers is 29.20 ±
6.30 years, with the youngest volunteer being 19.3 years old

and the oldest being 39.5 years old. The UCLA Laboratory

of Neuro Imaging (LONI) manually labeled 56 brain regions

for each image in the LPBA40 dataset. The specific definitions

of the brain regions can be found in Zhang and Ghanem

(2018). We performed a series of standardization processes on

the brain MRI images. Firstly, we used the FreeSurfer software

(Shattuck et al., 2008) for skull stripping and resampled the images

to a voxel size of 1 × 1 × 1 mm3. To avoid computational
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FIGURE 6

The DSC for di�erent methods in the regions of interest.

redundancy caused by blank regions in the images, we cropped

the images to a size of 144 × 192 × 160 mm3. To eliminate

the impact of grayscale value magnitude and distribution on

the experiments, we normalized and histogram-equalized the

cropped images. Finally, we applied affine alignment to all

the images to ensure the center of study in the non-linear

transformations across the brain images. Illustrations of the

preprocessed images in three directions on the same slice are shown

in Figure 5.

4.2. Experimental setup

The experiments were conducted on a Linux operating system,

specifically Ubuntu 18.04. The network was built using the

PyTorch deep learning framework. The training and testing were

performed on an NVIDIA GeForce RTX 3090 GPU with 24GB

of memory. To demonstrate the effectiveness of our proposed

model-decoupled method on brain data, we compared it with the

following methods:

(1) Similarity-Net: The network architecture is Similarity-Net

without the regularization term in the loss function and

without the inclusion of the denoiser network, which serves as

our baseline method. For convenience, we refer to this method

as S-Net.

(2) Similarity-Net with Smoothness Regularization (SS-Net): The

network architecture is Similarity-Net, and the loss function

includes smoothness regularization constraints but does not

include the denoiser network.

(3) VoxelMorph: The network architecture is U-Net, which has

more parameters than Similarity-Net, and the loss function

includes smoothness regularization constraints.

4.3. Evaluation metrics

In this study, we used the Dice similarity coefficient (DSC) as a

commonly used evaluation metric for quantitatively analyzing the

registration performance in brain image registration. The DSC is

defined as follows:

DSC(A,B) = 2
|A ∩ B|
|A| + |B|

, (7)

where DSC(A,B) represents the degree of overlap between two

corresponding brain regions A and B, where A and B denote the
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FIGURE 7

The registered images obtained through di�erent methods.

brain regions of the template image and the registered image,

respectively. The DSC value ranges from 0 to 1, with a higher value

indicating a higher degree of overlap and similarity between the two

brain structures.

4.4. Experimental results

For the experiment, 30 randomly selected images were used as

the training set, 2 images as the validation set, and 8 images as the

test set for inter-subject brain image registration. This resulted in

a total of 870 image pairs available for training. The network was

trained with a learning rate of 0.0005, 50,000 iterations, and a batch

size of 1.

Table 1 records the Dice Similarity Coefficient (DSC) obtained

under different methods. Here, “Ours+” refers to our proposed

method, where we replaced the sub-network in the first step with

VoxelMorph instead of Similarity-Net and performed alternating

iterations with Denoiser-Net. Observing the table, we can draw

the following two conclusions: (1) Compared to the method SNet,

which only uses Similarity-Net, our proposed method shows a
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FIGURE 8

The registered images obtained through di�erent methods.

significant improvement in the DSC metric. This indicates that our

proposed method effectively imposes regularization constraints on

the deformation field, thereby enhancing the registration accuracy.

(2) Compared to the method SS-Net, which directly incorporates

regularization terms into the loss function, our proposed method

also exhibits a slight improvement in the DSCmetric. Furthermore,

even after replacing Similarity-Net with VoxelMorph, our proposed

method still outperforms VoxelMorph, suggesting that our model-

based method can further narrow the solution space and reduce the

occurrence of local minima to a certain extent.

Figure 6 presents the DSC (Dice Similarity Coefficient) metrics

for S-Net, SS-Net, and our proposed method across 54 regions

of interest (ROIs) of interest. The parts marked with asterisks

(*) indicate that our method achieved higher DSC values in

those brain regions compared to the other two methods. Upon

statistical analysis, our proposed method demonstrated superior

registration performance in 33 brain regions. This suggests that

the improvement in the DSC metric achieved by our method is

not limited to specific brain regions but rather reflects an overall

enhancement in registration accuracy.

Figure 7 illustrates the visual results of S-Net, SS-Net, and

our proposed method on the LPBA40 dataset. The three columns

represent the visualization results for three slices. The top row

shows the target (moving) image, the middle row displays

the template (fixed) image, the third row depicts the image

registered using the S-Net method, the fourth row shows the

image registered using the SS-Net method, and the fifth row

displays the image registered using our proposed method. By

observing the results, it is evident that the image registered

using the S-Net method exhibits local discontinuities, connections,

and holes that are inconsistent with the actual data. On the

other hand, the images registered using the SS-Net method

and our proposed method appear smoother and closer to the

real data.

Figure 8 shows the residual maps of S-Net, SS-Net, and

our proposed method on the LPBA40 dataset. The three rows

represent the visualization results of three slices. The first column

corresponds to the target image, the second column is the template

image, the third row shows the difference between the two images

without registration, the fourth row shows the difference between

the image registered using the SS-Net method and the template

image, and the fifth row shows the difference between the image

registered using our proposed method and the template image. By

observation, our proposed method reduces the differences between

the registered floating image and the template image, and in some

regions, it performs similarly to or slightly better than SS-Net.

In conclusion, our proposed method outperforms S-Net

in terms of evaluation metrics and visual effects, and slightly

outperforms SS-Net. This demonstrates that the method based

on model decoupling and alternate iterative training strategy

effectively learns the smoothness regularization constraint, thereby

improving registration accuracy. Furthermore, in the experiments

with increased model complexity, i.e., the improved model based

on the VoxelMorph framework proposed by us still achieves a

certain degree of improvement in performance. This indicates that

our method can serve as a framework to be combined with other

more sophisticated networks, enhancing registration accuracy on

top of the existing network.

5. Conclusion

In our study, we propose a novel deep learning method that

employs model decoupling to augment the precision of registration
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tasks in medical imaging. By constructing separate networks for

fidelity and regularization terms, we achieve effective constraint of

the solution space, thereby reducing the occurrence of local minima

that might compromise result quality. Our method’s superior

performance was demonstrated through its application to image

registration tasks on brain magnetic resonance imaging (MRI),

enhancing the accuracy of image processing and analysis.

Although our research has made considerable strides in the

domain of image registration, there remain potential areas for

future exploration. One such aspect pertains to the performance

of the two subnetworks within our model. Given the dependency

of our unsupervised learning method’s registration accuracy on the

first network’s output, investigating the integration of potentially

more efficient network architectures into our framework could

be beneficial. This could pave the way for elevated overall

registration accuracy.

In terms of regularization, while our work leverages the

common differential diffeomorphic regularization for brain MRI

datasets, alternative regularization constraints could be explored

to further refine the results. This offers another promising avenue

for more comprehensive research in the future. By delving into

these areas, we anticipate building on our existing contributions

and facilitating further advancements in the field of brain image

registration through deep learning.
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Introduction: Lobular giant motion detector (LGMD) neurons, renowned for

their distinctive response to looming stimuli, inspire the development of visual

neural network models for collision prediction. However, the existing LGMD-

based models could not yet incorporate the invaluable feature of depth distance

and still su�er from the following two primary drawbacks. Firstly, they struggle

to e�ectively distinguish the three fundamental motion patterns of approaching,

receding, and translating, in contrast to the natural abilities of LGMD neurons.

Secondly, due to their reliance on a general determination process employing an

activation function and fixed threshold for output, these models exhibit dramatic

fluctuations in prediction e�ectiveness across di�erent scenarios.

Methods: To address these issues, we propose a novel LGMD-based model with

a binocular structure (Bi-LGMD). The depth distance of the moving object is

extracted by calculating the binocular disparity facilitating a clear di�erentiation

of the motion patterns, after obtaining the moving object’s contour through the

basic components of the LGMD network. In addition, we introduce a self-adaptive

warning depth-distance, enhancing the model’s robustness in various motion

scenarios.

Results: The e�ectiveness of the proposed model is verified using computer-

simulated and real-world videos.

Discussion: Furthermore, the experimental results demonstrate that the proposed

model is robust to contrast and noise.

KEYWORDS

collisionprediction, lobula giantmovementdetectors (LGMDs), binocular vision, disparity,

depth distance

1. Introduction

In the real world, collisions often lead to some kind of danger and unexpected loss.

Therefore, many modern artificial machines, such as ground vehicles and unmanned aerial

vehicles (UAVs), should be equipped with the intellectual abilities of collision prediction.

Current methods for collision prediction, such as laser, infrared, radar, and ultrasonic,

are not very suitable for daily civilian machines because of the disadvantages of high

price, large size, high power consumption, and so on. Meanwhile, vision-based sensors,

with the characteristics of economy and energy saving, have gradually become one of the

most mainstream methods of sensing collision in the past decades. However, in terms of

effectiveness and robustness, it still needs to be further improved (Mukhtar et al., 2015).

As we know, in nature, many insects show excellent collision prediction and collision

avoidance abilities based on visual information, which benefits from their millions of years

of evolution (Eichler et al., 2017). Despite their minuscule and simple brains, these lowly
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creatures seem to hold the key to solving some ofmankind’s greatest

problems (Franceschini, 2014; Xu et al., 2023), and bring us some

inspirations to build a collision prediction neural network based

on visual information (Serres and Ruffier, 2017; Fu et al., 2018a).

Among these insects, locusts are the most representative. When

locust plague breaks out, millions of locusts can travel hundreds

of miles together free of collision (Kennedy, 1951). Researchers

observe that when a collision is imminent, locusts can respond

quickly and change their flight direction in a very short time

(hundreds of milliseconds; Fu et al., 2019c). How do locusts

achieve it?

Lobula giant movement detector (LGMD), which is a huge

single neuron located on the third visual neuropile of the lobule,

was found byO’Shea andWilliams (1974). LGMDneuron responds

vigorously to approaching objects while producing little or no

response to receding ones (O’shea and Rowell, 1976; Sztarker and

Rind, 2014; Wernitznig et al., 2015; Rind et al., 2016). Further,

researchers conduct a lot of experiments and explorations around

the reflection properties of LGMD neuron (Gabbiani and Krapp,

2006; Dewell and Gabbiani, 2018, 2019; Zhu et al., 2018), and

the results show that the LGMD neuron is an ideal model for

constructing collision prediction visual neural network.

Based on these biological experiments, Rind and Bramwell

(1996) proposed an LGMD-based neural network model. The

model is composed of four groups of cells—photoreceptor cells

(P cells), excitatory cells (E cells), inhibitory cells (I cells), and

summing cells (S cells), as well as two single cells—feed-forward

inhibition and LGMD. Since then, Yue and Rind (2006) introduced

an extra artificial layer (G layer) to extract the extended edge of

the approaching object by enhancing the cluster output, which

improved the model’s performance and achieved ideal results in

real-world scenarios.

Following the above two studies, a large number of LGMD-

based visual neural network models have sprung up. For example,

based onON/OFF channels (Fu, 2023), Fu et al. (2019b) realized the

special selectivity to darker looming objects in brighter background

in the model, which simulated the response of LGMD2 neurons

in the infancy of locusts. Inspired by the visual pathway of

Drosophila, Li et al. (2022) added a contrast channel to the

LGMD-based model, which improved the stability of the model

under different contrasts. Luan et al. (2021, 2022) used a similar

network model to build a visual neural network with the ability

to encode spatial position information, and successfully simulated

MLG1 neurons in crabs. Zhao et al. (2018, 2019, 2021) further

optimized the original model by designing the temporal and

spatial distribution in the model according to the latest discovery

of locust anatomical synaptic connection, which was successfully

applied to UAV agile flight. Some models are also be tested in

ground vehicle scenarios (Hartbauer, 2017; Fu et al., 2019a), mobile

robots (Hu et al., 2016; Čížek et al., 2017), and recently in UAVs

(Poiesi and Cavallaro, 2016; Salt et al., 2017, 2019) and micro

robots (Fu et al., 2020, 2021). In addition, it is also embodied

in hardware implementation, such as the FPGA (Meng et al.,

2010).

However, the current models lack the consideration of the

depth distance of moving objects, which is certainly a highly

valuable feature for collision prediction tasks. This absence of

depth distance information in the existing models results in several

shortcomings. First, existing models are not able to distinguish

well between the three fundamental motion modes of approaching,

receding and translating, resulting in their inability to consistently

demonstrate a preference for approaching objects. Secondly, the

response result of the models is heavily influenced by activation

function parameters and corresponding given hard thresholds.

Thirdly, the models are sensitive to various input image stream

factors, including noise and contrast. While some models enhance

certain aspects by designing artificial mechanisms, extracting the

core feature of depth distance holds the potential to effectively

address all of these issues simultaneously.

For that, a novel LGMD-based neural network model with

binocular vision is proposed in this paper, named Bi-LGMD. This

model requires two image stream inputs, coming from the left

and right eye, respectively. For both inputs, a basic LGMD-based

model is used to extract the contours of the moving object. Then,

based on the principle of binocular stereo vision, the obtained

contour information is used to compute the disparity of the

moving object, and the moving object’s depth distance at each time

step is further estimated. Based on this, motion patterns can be

effectively distinguished. Moreover, different from existing models,

the activation function is not required in our model. Instead, the

concept of warning depth-distance is introduced. Depending on the

change of the estimated depth distance at each time, the warning

depth-distance is dynamically and adaptively adjusted through a

specific computational rule. The LGMD neuron is activated only

when an approaching object reaches the warning depth-distance.

Hence, the parameter setting problem for the activation function

is avoided. More importantly, the model is more robust to input

image streams. On the one hand, this is due to the consideration of

more essential kinematic features of depth-distance. On the other

hand, the computational process of disparity is mainly based on the

matching of two contours from the left and right channel, rather

than the pixel value itself, so the factors that seriously affect the

pixel value of an image (such as noise, contrast, etc.) have a great

impact on existingmodels, but the computational result of disparity

is relatively stable.

The main innovations of this paper can be summarized

as follows:

1. This paper proposes a novel LGMD-based model with binocular

structure, and the essential feature of depth distance is

introduced into the model for the first time. As a result,

the proposed model is able to clearly distinguish motion

modes such as approaching, receding and translating, with

improved selectivity.

2. We design a dynamic adaptive warning depth distance related

to the approaching velocity. On the one hand, the model

could be adapted to more complex approaching modes. On the

other hand, the model does not rely on the activation function

parameters and a given hard threshold, alleviating the extreme

sensitivity of the existing models to activation parameters.

3. Unlike existing models that heavily rely on the pixel values

of G layer outputs, the proposed model ultimately focuses on

matching the overall left and right outputs. Based on this novel

perspective, the proposed model has stronger robustness to

factors such as noise and contrast in the input image streams.
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The rest of this paper is organized as follows. Section

2 introduces some related work, including motion pattern

recognition in the model and the advantages of incorporating

stereo vision. Section 3 describes the proposed Bi-LGMD visual

neural network. Systematic experiments and analyses of the model

results are illustrated in Section 4. Thereafter, further discussions

are given in Section 5. Section 6 concludes the paper.

2. Related work

2.1. Motion pattern recognition

LGMD neuron is viewed as an ideal paradigm for constructing

collision prediction models. Numerous LGMD-based models are

validated to indeed respond significantly to looming stimuli, yet

it is difficult to be completely unresponsive to other motion

patterns. Therefore, further improvements are still needed to

clearly distinguish between the basic motion patterns including

approaching, receding and translating.

In the past, some models attempted further improvements in

terms of the selective response of the model to motion patterns, for

example, Lei et al. (2022) improved the LGMD-based model using

the ON-OFF competition mechanism, enabling it to distinguish

a looming object from a near and fast translatory moving object.

However, it does not explore the response to receding stimuli,

and the competition mechanism does not seem to be effective

in distinguishing between approaching and receding. Fu et al.

(2018b) designed a spike frequency adaptation (SFA) mechanism

to enhance the collision selectivity to approaching objects, however,

the model still has a brief and small response to the receding

and translating stimuli, which may cause false alarms in situations

where the model parameters are inappropriate (especially the

activation parameter and spiking threshold).

In general, while some models could make partial

discrimination between different motion patterns, there are

still some problems, such as how to choose the spiking threshold.

By contrast, the trend of depth distance is the most intuitive way to

distinguish basic motion patterns. Once it is effectively estimated,

the model can understand the motion patterns more “visually,”

knowing exactly which of the “approaching, receding, and

translating” the motion pattern belongs to at the current moment.

The results of the discrimination of motion modes will no longer

be affected by parameters and thresholds, and its discrimination

method is obviously simple, robust, and interpretable.

2.2. Binocular structure and stereo vision

Binocular vision, which allows for depth perception, is crucial

for arthropods to interact with their environment. This is

particularly important for behaviors such as motion navigation,

prey capture, and attack avoidance (Nityananda et al., 2016a;

Scarano et al., 2018). The binocular structure of arthropods is

capable of processing information from both eyes to estimate depth

and distance in the visual scene through a concept known as

“disparity” (Parker, 2007; Nityananda et al., 2016b). Recent research

on arthropods, like crabs, has shown a strong binocular coupling

between their eyes indicating the use of binocular depth vision

in capturing prey (Horridge and Sandeman, 1964; Scarano et al.,

2018). Praying mantises, for example, use their stereoscopic vision

to estimate the distance to their prey. Once it is within reach, they

trigger a rapid strike of their forelegs (Rossel, 1986; Rosner et al.,

2019).

Although the computational mechanisms behind binocular

vision in arthropods are not yet fully understood, experimental

findings indicate that different types of neurons in the Lobula

region of their brains compute binocular information (Rosner

et al., 2020). Rosner and colleagues have provided evidence that

individual neurons in the praying mantis brain can recognize

specific binocular information such as disparity and eccentricity,

allowing them to determine locations in three-dimensional space.

They identified the existence of disparity-sensitive neurons in the

insect’s brain and proved their role in the development of stereo

vision (Rosner et al., 2019).

Interestingly, stereoscopic vision in insects, including mantises,

differs from that of humans. Insects rely on changes in luminance

rather than luminance directly to perceive depth (Rosner et al.,

2019), which implies that insects pay more attention to moving

and changing visual information rather than static details in the

background. This unique approach allows insects like praying

mantises to develop an efficient stereoscopic vision system using

a visual network of neurons that is significantly smaller than the

human brain (Rossel, 1983; Collett, 1996).

Therefore, the introduction of binocular structures in LGMD-

based neural networks to extract depth-distance information is

intuitively significant for enhancing collision prediction. Indeed,

there has been some research work related to binocular LGMD

modeling. For example, Yue and Rind (2009) proposed a network

model with two LGMD modules for near-range path navigation.

In their work, the input image will be decomposed into left and

right parts for the two LGMD modules, and the two outputs will

be compared in terms of strength and weakness to determine

which way the robot’s wheels should dodge. In addition, Fu et al.

(2017) also designed similar binocular structures using LGMD1

and LGMD2 to investigate how this combined strategy performs

for different visual stimuli when applied to a robot. However,

it appears that there are few models based on LGMD that

utilize binocular structures to develop stereo vision, extract depth-

distance information, and explore the advantages of incorporating

such information into LGMD-based models.

3. Formulation of the model

In this section, the proposed model and the corresponding

computational methods are described in detail. Here, we first

introduce the overall framework of the Bi-LGMD model, and then

give a more specific description in the following sections.

As shown in Figure 1, in general, the proposed model contains

two parallel channels to process the input image stream from the

left and right camera, respectively. Each channel consists of five

layers, including photoreceptor (P), excitation (E), inhibition (I),

summation (S), and grouping (G) layers. Then, the outputs of the

two parallel channels will be integrated in the disparity (DP) layer,
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FIGURE 1

Schematic of the Bi-LGMD visual neural network. For visual stimulation in the three-dimensional world, the left and right cameras are used to shoot

at the same time, and the two input image streams are processed separately in the early stage. In the last Medulla to Lobula layer, all the information

is integrated through the disparity principle, so as to extract the depth distance information of the moving object. Finally, the LGMD neuron responds

based on the changes in estimated depth distance.

and the information will eventually be transmitted to the LGMD

layer.

In this model, inputs from both cameras are considered equally

important. Therefore, the two parallel channels have exactly the

same structure and the same calculation method, and the relevant

parameters are set to be the same in the subsequent experiments.

For convenience, in the following sections, the subscripts l and r

are used to represent that the corresponding variables belong to

the left and the right channel, respectively. In the following basic

process, we describe the computational method in the left channel

as an example, which is exactly the same as in the right channel.

3.1. Basic process

The basic process includes P, E, I, S, G layers. This classical

process framework has been used in many existing models, such

as Fu et al. (2019b, 2020), Luan et al. (2021), Lei et al. (2022), and

Wang et al. (2023). In fact, our model does not change significantly

for this part, so we will briefly review it here.

3.1.1. P layer
In this layer, the photoreceptors are arranged as a matrix.

Each photoreceptor captures the grayscale luminance of the

corresponding pixel in the input image stream and computes the

temporal difference between the sequence frames to preliminarily

extract motion information. The mathematical formula can be

defined as

Pl(x, y, t) = Ll(x, y, t)− Ll(x, y, t − 1)+
np
∑

i=1

aiPl(x, y, t − i) (1)

where L(x, y, t) stands for the grayscale luminance of the pixel (x, y)

at time t, and P(x, y, t) represents the grayscale luminance change;

np indicates the maximum number of frames the persistence of the

luminance change could last, and ai is a decay coefficient, which is

defined by

ai = (1+ ei)−1 (2)

3.1.2. IE layer
The IE layer is the core of the “critical race” mentioned by

Rind and Bramwell (1996). Both excitatory cells (E cells) and

lateral inhibitory cells (I cells) receive the outputs of the P cells.

E cells directly receive the excitation from the corresponding

P cells without temporal latency, while the I cells, which pass

inhibition, receive the excitation from the surrounding adjacent P

cells by convolving, and there is one image frame time-delay. The

mathematical formulas are defined as follows:

El(x, y, t) = Pl(x, y, t) (3)

Frontiers inNeuroscience 04 frontiersin.org94

https://doi.org/10.3389/fnins.2023.1247227
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2023.1247227

Il(x, y, t) =
1

∑

i=−1

1
∑

j=−1

Pl(x+ i, y+ j, t − 1)wI(i, j) (4)

where E(x, y, t) and I(x, y, t) are the activity of excitatory cells and

lateral inhibitory cells, respectively. wI is the local inhibition weight

that meets the following matrix, which is also used in Yue and Rind

(2006), Fu et al. (2018b), Luan et al. (2021), and Li et al. (2022).

wI =







0.125 0.25 0.125

0.25 0 0.25

0.125 0.25 0.125







3.1.3. S layer
In the S layer, the information processing results of E cells and

I cells in the upper layer need to be summarized. Here, a simple

linear operation is adopted (Note that inhibition has the opposite

sign against excitation):

Sl(x, y, t) = |El(x, y, t)| − |Il(x, y, t)| ∗WI (5)

where WI is a constant which means global inhibition weight. In

addition, since inhibition can reduce the activity of excitatory cells

to 0 at most, it needs to be corrected here.

Sl(x, y, t) = [Sl(x, y, t)]
+ (6)

where [x]+ = max(0, x).

3.1.4. G layer
To further enhance the outputs of the S layer, theG layer obtains

a passing coefficient Ce through the cell’s surrounding neighbors

to filter out the isolated and decayed excitations, as illustrated in

Figure 2. The computational formulas are as follows:

Cel(x, y, t) =
1

∑

i=−1

1
∑

j=−1

Sl(x+ i, y+ j, t)we(i, j) (7)

Gl(x, y, t) = Sl(x, y, t) · Cel(x, y, t) · wl(t)
−1 (8)

FIGURE 2

Schematic illustration of G layer processing, adapted from Yue and

Rind (2006). The S cells surrounded by strong excitations obtain

bigger passing coe�cients, while the isolated ones gain smaller

passing coe�cients and may be ruled out by the threshold. The

excitation strength is represented by gray levels, where the darker

the color, the stronger the excitation.

we =
1

9
×







1 1 1

1 1 1

1 1 1






(9)

wl(t) = max([Cel]t) · C
−1
w + 1c (10)

where w is a scale parameter computed at every time step. Cw is a

constant.max([Ce]t) stands for the largest element in matrix [Ce]t .

1c is a small real number, which prevents the denominator from

being 0 during calculation. Finally, a threshold Tde is introduced

for the final calculation as follows.

Ĝl(x, y, t) =

{

Gl(x, y, t), if Gl(x, y, t) ≥ Tde

0, otherwise
(11)

Therefore, after the processing of the G layer, the grouped

excitations in the S layer representing expanding edges become

stronger, while the isolated excitations caused by background

details are largely filtered out.

3.2. Disparity layer (DP layer)

It is well-known that many creatures in nature have two eyes.

The binocular structure can produce stereo vision, and obtain the

information of depth distance through the disparity, which can

not be achieved by a single eye (Ayache, 1991; Yang et al., 2017;

Vienne et al., 2018). In this section, we use this principle to estimate

the depth distance of moving objects at each time step. For this

purpose, the information from the left and right cameras will be

integrated into the DP layer.

3.2.1. Computing method of disparity
In the pictures taken by the left camera and the right

camera, the imaging positions of the same object are different

(see Figure 3A). More specifically, the imaging positions of closer

objects are shifted considerably, while the difference is smaller for

more distant objects. As shown in Figure 3B, this visual difference

is called “disparity” (Ayache, 1991; Ding et al., 2021).

However, how to calculate the disparity in our model? Since the

G layer mainly extracts the edge of the moving object, Ĝl and Ĝr can

be used to obtain the disparity of the moving object. In the sense of

the disparity described above, it can be computed by the following

mathematical formula:

DP(t) = argmax
d

R
∑

x=1

C−d
∑

y=1

Ĝl(x, y+ d, t) · Ĝr(x, y, t) (12)

where DP represents the pixel-level disparity, R and C denote

the rows and columns of the input image size. Note that the

formulation here follows the conventions used in the matrix so that

the disparity is on the component y.

In theory, the search range of disparity d should be the

entire image width. However, in practice, we can reduce the

computational cost of the search process based on some clear facts.

For example, since amoving object is always continuously changing
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FIGURE 3

Schematic of binocular vision and disparity. (A) The images taken by the left and the right cameras. (B) For the far scenery, there is a small disparity,

indicated by orange. For the person near, there is a large disparity, represented by black.

in depth distance, the results at the previous time steps can be used

as a reference and searched within a reasonable range. In addition,

mathematically, this optimization function usually gets a larger

calculation result near its optimal disparity, so we can also quickly

find the optimal disparity by jumping search.

3.2.2. Computing method of depth distance
Based on basic geometric knowledge, the depth distance

between the object and the stereo cameras in the world coordinate

system can be calculated using disparity. Specifically, the following

relation holds when the stereo cameras with the same focal length

are on the same horizontal line and the optical axes are parallel

(Zhen et al., 2017; Sun et al., 2019):

D(t) =
b · f

DP(t) · pixelsize
(13)

where D stands for the depth distance of the object. b, f , pixelsize

are constants, which can be obtained from the information of stereo

cameras, representing the baseline length, focal length, and physical

size corresponding to one pixel, respectively.

3.3. LGMD layer

After the DP layer, the proposed Bi-LGMD model is able

to acquire the depth distance information. By comparing D(t)

and D(t − 1), the motion mode of the moving object at

the current time t can be clearly distinguished (approaching,

receding, and translating). However, to achieve a reasonable early

warning response to the approaching movement, it is necessary to

further judge whether the current approaching state is sufficiently

dangerous. To this end, the early warning depth distance, an

adaptive dynamic threshold, is introduced into our model.

3.3.1. Warning depth distance (DW)
In fact, the proposed Bi-LGMD model also potentially extracts

the approaching velocity information at each time step after DP

layer. It is evident that faster moving objects require a greater

warning depth-distance to ensure safety. Thus, the warning depth-

distance should possess the following properties:

DW(t) = F(D(t − 1)− D(t)) (14)

where F(·) is a strictly monotonically increasing function.

There are many functions satisfying the above basic properties.

For simply, linear functions are selected for discussion in this paper.

Therefore, the specific formula is as follows:

DW(t) = CT · (D(t − 1)− D(t)) (15)

Although the linear function appears relatively simple, its

implications are significant. The coefficient CT holds a realistic

physical interpretation, as it represents the time required for the

machinery to avoid collisions, dependent upon individual machine

attributes, such as flexibility in avoidance behavior. Consequently,

if the moving object continues to approach at its current speed,

the system will sound an early warning at the depth distance

of DW , leaving the machine CT time to avoid collisions. It is

important to note that DW is dynamically adaptive, adjusting the

warning depth-distance accordingly in response to changes in

approaching speed.
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By the way, as a parameter with realistic physical

meaning, CT will be set within an appropriate range.

If CT is set too large, the system may trigger an alarm

prematurely. On the other hand, if CT is set too small,

the machine may not have sufficient time to complete the

avoidance maneuver.

3.3.2. Activation of the LGMD neuron
In contrast to existing models that use the sigmoid function

to produce activation values ranging from 0.5 to 1, our model

employs a binary output: 0 and 1, representing the deactivation and

activation of the LGMD neuron, respectively.

Specifically, the output of the LGMD layer is determined by

two parts: one is whether the moving object is approaching, and

the other is whether the moving object reaches the warning depth-

distance DW . The output of the LGMD layer is 1 only if the above

two parts are both true, and 0 otherwise. In this computational

mode, only approaching objects are likely to activate the LGMD

neuron, while objects in other motion modes are certainly not

expected to activate it. Further, even if the object is in the process

of approaching, the LGMD neuron will not be activated when the

object does not reach the warning depth-distance. In other words,

the approaching object is in a distant position and does not pose a

collision threat for the time being, so the LGMD neuron does not

need to be activated.

LGMD(t) =

{

1, if D(t) < DW(t) and D(t) < D(t − 1)

0, otherwise
(16)

4. Experimental results and analysis

In this section, a series of systematic experiments will be

performed from different aspects as comprehensively as possible.

Also, some reasons for the experimental results will be analyzed

in detail. All experiments can be divided into the following three

categories: (1) Basic Synthetic Stimuli Testing, (2) Real Physical

Stimuli Testing, and (3) Model Performance Testing. The state-of-

the-art model (Fu et al., 2018b) will be used for comparison.

4.1. Experimental setup

For basic synthetic stimuli testing and model performance

testing, all the input visual stimuli are generated using Matlab

R2021b according to the projection principle (see Figure 4). The

background is set to a solid color, and the pixel has a grayscale value

of 0.5. For each frame, the image resolution is 600 × 600 pixels. As

to real physical stimuli testing, the input visual stimuli are partly

from our own recorded video (rolling ball) and partly from the

publicly available KITTI dataset (vehicle scene; Geiger et al., 2013).

The image resolutions are 1,280× 720 pixels and 1,242× 375 pixels

for the videos of the rolling ball and vehicle scene, separately.

All videos are at 30 Hz, and the whole parameters are set

according to this sampling rate in the experiments. We list the

parameters of the proposed Bi-LGMD model in Table 1. Without

special explanation, np is 1 and CT is 15. For the comparative

TABLE 1 Setting parameters of the proposed Bi-LGMDmodel.

Parameter Description Value

np Luminance change persistence in Equation (1) 0–2

WI Inhibition weight in Equation (5) 0.3

Cw Constant to calculate w in Equation (10) 4

1c Small real number in Equation (10) 0.01

Tde Decay threshold in G layer in Equation (11) 30

CT Time required to avoid collision in Equation (15) 10–20

model, the parameters recommended in their literature are used.

The computer is equipped with a Core i5 processor with a clock

speed of 3.10 GHz, 16 GB of memory, and the operating system is

Windows 10. All the experiments are conducted using MATLAB

R2021b. The example video clips are shown with results in the

following section.

4.2. Basic synthetic stimuli testing

To verify the basic validity of the proposed Bi-LGMD model,

the computer-simulated stimuli are first used for testing. Common

basic motion modes include the following five types: approaching,

receding, translating, elongating, and shortening. In this section,

all the above five types of simulated stimuli are used in the

experiments. In addition, grating motion is also chosen for testing

as a special phenomenon. As a collision prediction model, the

most desirable result would undoubtedly be to respond only to the

approaching motion, and not to any other form of movement.

Figure 4 illustrates the method of generating simulated

stimulus videos required for the experiments in this section.

For the proposed Bi-LGMD model, two cameras are needed to

generate video data (see Figure 4A), whereas for the comparative

model, only one camera is needed to generate a single video

data (see Figure 4B). In addition, Figures 4C–G represent the five

basic motion modes mentioned above. These data are generated

by Matlab R2021b, simulated by projection transformation

of the depth distance and position of the moving object.

Moreover, in these experiments, the objects are all moving at a

constant speed.

Figure 5 corresponds to the situation of two basic motion

modes in the depth direction: approaching and receding, where

Figures 5A–D show the experimental results of the proposed

model and comparative model for the approaching motion, and

Figures 5E–H show the experimental results of the two models

for the receding motion. For each motion mode, experiments are

conducted with darker and lighter objects separately to eliminate

the effect of the brightness of the object relative to the background

on the experimental results. However, the experimental results

show that the brightness of the object has no effect on the results

for either the proposed Bi-LGMDmodel or the comparative model,

and a uniform output is given here, as shown in Figures 5C, D,

G, H. For the proposed Bi-LGMD model, the computed disparity

results are presented in particular, while the ground truth is also
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FIGURE 4

Schematic of how the stimulus videos are generated for the Bi-LGMD model and the comparative model, as well as five specific motion modes. (A)

Binocular vision input for the Bi-LGMD model. (B) Monocular visual input for the comparative model. (C) Approaching motion. (D) Receding

motion. (E) Translating motion. (F) Elongating motion. (G) Shortening motion.

FIGURE 5

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli moving in the direction of depth. (A)

Schematic diagram of an approaching darker object. (B) Schematic diagram of an approaching brighter object, with the same motion process as in

(A). Identical experimental results for the two sets of simulated stimuli are shown in (C, D). (C) The output of the proposed Bi-LGMD model, including

the computed disparity (compared with the ground-truth), as well as the final response. (D) The output of the comparative model, including the

sigmoid membrane potential (SMP), and its comparison to a given hard threshold (set to 0.7). Similarly, for the receding motion in the depth direction,

the corresponding schematic and experimental results are presented in (E–H) in the same way. Specifically, (E) schematic diagram of a receding

darker object. (F) Schematic diagram of a receding brighter object, with the same motion process as in (E). (G) The output of the proposed Bi-LGMD

model. (H) The output of the comparative model.

marked for comparison. Based on this, the Bi-LGMD model can

calculate the depth distance information and obtain a final 0–1

binarized response output. For the comparative model, the sigmoid

membrane potential (SMP) is shown and combined with a given

hard threshold (set to 0.7), and the same form of response output is

obtained for inter-model comparison.

From the experimental results, it can be seen that the

disparity calculated by the Bi-LGMD model matches the
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FIGURE 6

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli of translating motion (no change in depth

distance). (A) The translating leftward darker object. (B) The translating leftward brighter object. (C) The output of the proposed Bi-LGMD model. (D)

The output of the comparative model. (E) The translating rightward darker object. (F) The translating rightward brighter object. (G) The output of the

proposed Bi-LGMD model. (H) The output of the comparative model.

FIGURE 7

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli of elongating and shortening motion (no

change in depth distance). (A) The elongating darker object. (B) The elongating brighter object. (C) The output of the proposed Bi-LGMD model. (D)

The output of the comparative model. (E) The shortening darker object. (F) The shortening brighter object. (G) The output of the proposed Bi-LGMD

model. (H) The output of the comparative model.

actual value perfectly. Moreover, the model responds to

the approaching stimulus, while it remains unresponsive

to the receding process of the object. In fact, as we know,

when the object recedes, the disparity of the moving object

decreases gradually. Therefore, the model calculates that

the depth distance of the object is getting larger, and then,

the output of the LGMD layer will be 0, which makes the

final result unresponsive. On the contrary, when the object

is approaching, in the initial stage, the model calculates

that the moving object is far away, so there is no response

temporarily. However, as the object gets closer and closer, once the

warning depth-distance is reached, the model quickly produces a

lasting response.

Figure 6 shows the experimental results of the proposed Bi-

LGMD model and the comparative model for simulated stimuli

of translating motion. As can be seen, whether the direction of

translation is to the left or to the right, and whether the moving

object is darker or brighter, the final response is always 0 for

the proposed Bi-LGMD model. In fact, in the three-dimensional

real world, when a moving object is translating horizontally, it is

always at the same depth distance, so the disparity of the moving

object keeps unchanged. The proposed Bi-LGMD model attempts
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to capture exactly this core feature and, from the computational

results, the model does indeed accurately extract the correct

disparity results and therefore achieves satisfactory results. For the

comparative model, the final response is also always 0. However,

as we have seen, the result is based on the comparison of the SMP

with a given threshold, so there is conceivably the possibility that

the model parameters could have a serious effect on the final result.

Furthermore, the fact that the comparative model is based on the

summation of the pixel values output from the G layer means that

the SMP is also affected by the translating speed of the moving

object. Overall, the proposed model effectively extracts more

essential depth-distance information and will therefore behave

more robustly.

Elongating and shortening movements, which are special cases

of translating motion, only show a single translating edge due to the

limited visual field. However, especially for elongating motion, one-

sided changes can easily be confused for edge expansions, which

are then misinterpreted by the model as approaching movements.

Figure 7 shows the experimental results of the proposed Bi-LGMD

model and the comparative model for the moving object in the

process of elongating and shortening. As can be seen, the proposed

model still extracted the correct disparity information very well

and obtained satisfactory experimental results. The experimental

analysis for this group of tests is similar to that in translational

motion and will not be repeated here.

Grating movement is a very common phenomenon in our daily

life. For example, when the sun shines on the front windshield

of a moving car, we can see the bright and dark grating moving

stripes from the driver’s seat. Obviously, the ideal model does

not need to respond to this. However, the grating motion is

always accompanied by the luminance change of the whole field,

resulting in an easily observable response in the model. In order

to suppress this unnecessary response, the existing LGMD-based

models introduce the feedforward inhibition (FFI) mechanism.

However, no evidence has been found to show how feedforward

inhibition could increase the selectivity for approaching over

receding objects (Keil and Rodriguez-Vazquez, 2003), and from

the perspective of biological neurology, there are still some doubts

about the explanation and rationality of it. Moreover, the parameter

setting of the FFI mechanism itself is also a relatively complex

problem. Figure 8 shows the experimental results of the proposed

Bi-LGMD model and the comparative model for simulated stimuli

of grating motion. As can be seen, both models achieve the desired

non-response result. However, the two models do not work in

the same way. The proposed Bi-LGMD model is based on the

computed disparity information, and since there is no change in

depth distance, it is judged that there is no collision risk. In the

comparative model, the FFI mechanism is triggered by the change

of pixel gray value in a large area, forcing the response of the

model to be suppressed. It is worth noting that the spacing between

the grating stripes, and the moving speed, moving direction as

well as the brightness of the grating stripes will not affect the

experimental results of the proposed Bi-LGMD model. In fact,

the “disparity” and “depth distance” are always the essence in any

case, and they are not affected by the above factors. Therefore,

the Bi-LGMD model can easily judge the grating motion as a

translating motion.

So far, in all five basic motion modes as well as the grating

motion, the Bi-LGMD model only responds to the approaching

motion, while remaining unresponsive to any other motion modes,

which fully meet our expectations. Moreover, such response results

are independent of the brightness of the moving object. These

results are largely due to the fact that the Bi-LGMD model obtains

the depth distance of the object by calculating the disparity, and

thus further effectively distinguishing the approaching motion

mode from others. Actually, according to the computed disparity,

the Bi-LGMD model can clearly classify various specific motion

modes into the following three categories: approaching, receding,

and translating. In addition, for approaching motion, the model

will further extract the approaching velocity at each time step,

combined with the current depth distance information, the model

only generates a collision warning if it actually perceives the threat

of an imminent collision, that is, if the object reaches a dynamically

adaptive warning depth-distance.

4.3. Real physical stimuli testing

In the previous section, the validity and superiority of the

proposed Bi-LGMD model is initially verified by simulated

stimuli. In this section, real physical stimuli are used for

testing. Compared with the computer-simulated stimuli, the

biggest difference is that there is more environmental noise in

the real physical scenes, such as shadows, reflections, etc. In

addition, the motion speed and motion state of moving objects

are also relatively unstable. Therefore, visual stimulation in real

physical scenes is undoubtedly a more difficult challenge for

the collision prediction task, but at the same time, it is also

one of the important criteria to evaluate the performance of

the model.

Firstly, the videos of a small moving ball taken indoors are used

for testing. Two GoPro motion cameras of the same model (Hero

8 Black) are used to capture the scene simultaneously. The optical

axes are kept parallel throughout the entire shooting process. The

experimental results are shown in Figure 9. In the approaching ball

video, the green ball is approaching from a distance along a fixed

oblique track. Due to a certain inclination of the track, under the

action of gravitational potential energy, the approaching speed of

the ball gradually accelerates, and the ball bounces on the table

after it gets off the track in the later stage. There are obvious

shadows, reflections, and so on in the video. It can be seen from

the experimental results that bothmodels produce an early warning

response, in which the proposed model has an earlier warning

time, while the comparative model produces the early warning

response in the late stage when the ball’s approaching speed is faster.

Reverse the video sequence to simulate the receding process, and

the Bi-LGMDmodel has no response to that because the computed

disparity is getting smaller over time. However, the comparative

model has two early warnings at the beginning. The outputs are

not shown here for brevity. For the translating ball video (in fact,

it is difficult to ensure that the ball moves strictly in translation,

so the ball is not always at the same depth distance. The so-called

translation here is just a rough visual effect.), no warning response

was generated for both models.
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FIGURE 8

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli of grating motion (no change in depth

distance). (A) The grating motion with darker stripes. (B) The grating motion with brighter stripes. (C) The output of the proposed Bi-LGMD model. (D)

The output of the comparative model.

FIGURE 9

Experimental results of the proposed Bi-LGMD model and the comparative model for real scene videos of indoor moving ball. (A) The input image

streams of a approaching ball. The blue and orange boxes indicate inputs from the left and right cameras, respectively. (B) The output of the

proposed Bi-LGMD model, including the computed disparity, as well as the final response. (C) The output of the comparative model, including the

sigmoid membrane potential (SMP), and its comparison to a given hard threshold (set to 0.7). Similarly, for the translating ball, the corresponding

schematic and experimental results are presented in (D–F) in the same way. Specifically, (D) the input image streams of a translating ball. (E) The

output of the proposed Bi-LGMD model. (F) The output of the comparative model.
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Following that, the outdoor vehicle scene videos are used for

testing. Here, the public KITTI data set is adopted. For each of the

three basic motion modes, a video is chosen for the experiment,

as shown in Figure 10. For approaching motion, a white vehicle is

approaching from the front as shown in Figure 10A. For receding

motion, a black vehicle drives away as shown in Figure 10D.

For translating motion, a white car moves from the left to the

right in the field of view as shown in Figure 10G. It can be seen

that the experimental results of the proposed Bi-LGMD model

are fully in line with expectations, and can effectively calculate

parallax and obtain satisfactory model output based on depth and

distance information. Compared with the comparative model, the

explainability and robustness of the Bi-LGMD model are stronger,

especially for the backward motion, the Bi-LGMD model shows

better experimental results.

4.4. Model performance testing

As a binocular LGMD-based visual neural network for collision

prediction, Bi-LGMD is fundamentally different from the existing

models in many aspects. The estimation of the depth distance of a

moving object, indeed, brings great benefits to the model. In this

section, we will discuss this in detail, and analyze the advantages of

Bi-LGMD by comparing it with existing models. In the following

experimental comparison, since monocular and binocular stimuli

need to be generated correspondingly, we use computer-simulated

synthetic stimuli to carry out the experiment.

4.4.1. Sensitivity to model parameters
Parameters are undoubtedly crucial for any model and even

have a direct impact on the model results. In this part, the topic

of parameters of Bi-LGMD and existing models will be discussed.

In fact, as we can see, the basic process (P, E, I, S, G layers) of

the proposed Bi-LGMD model is consistent with existing models,

therefore the parameters after the G layer will mainly be discussed.

In existing models, the following function is used to activate

the summation result of G layer as the output of the LGMD layer

(representing the membrane potential of the LGMD neuron). After

that, a given firing threshold Tfir is used to determine whether the

LGMD neuron is activated, such as Yue and Rind (2006), Fu et al.

(2018b, 2019b, 2020), Luan et al. (2021), Lei et al. (2022), and Li

et al. (2022).

LGMD(t) =
(

1+ exp
(
−

∑R
x=1

∑C
y=1

̂G(x, y, t)

α · R · C

)

)−1

(17)

Therefore, there are two important parameters involved: α and

Tfir . Obviously, the existingmodels must fully consider the problem

that the given threshold should roughly match the activation

result, which is actually relatively difficult to adjust adaptively. As

we know, the sigmoid function curve y(x) = [1 + exp(−x)]−1

increases monotonically, with a range of 0.5–1. For a standard

collision process that gradually approaches from a distance, the

ideal sigmoid activation result should be approximately from 0.5

to nearly 1, which requires that the parameter α is very suitable so

that the ratio
∑R

x=1

∑C
y=1

̂G(x, y, t)/(α · R · C) could almost fill the

interval [0, 3] since y(3) ≈ 0.9526. In other words, if the α is chosen

too large so that the ratio is very small, the sigmoid activation results

will be all near 0. Conversely, if the α is chosen too small, resulting

in the ratio being basically >3, the sigmoid activation results will

be all around 1. Obviously, in these cases, it is difficult to match the

sigmoid activation results with the given thresholds. In addition, it

can be seen from the formula that the value of α will also be affected

by the image sizes R and C, which means that for the same collision

scenario, cameras with different resolutions or different fields of

view will have a serious impact on the model, which makes it more

difficult to determine the parameters α. In summary, the existing

models are very sensitive to the above two parameters (α and Tfir),

making them less robust.

By contrast, in the Bi-LGMD model, there is only one

parameter DW after G layer. Furthermore, this parameter DW(t)

is adaptively adjusted with the motion state of the object at each

time step. In more detail, DW is linearly determined by CT for

convenience in our case, and CT is given a very clear realistic

physical meaning, which can be used as a guide for adjusting.

In addition, Figure 11 demonstrates the impact of these

parameters on the proposedmodel and the comparativemodel. The

video stimuli used in the experiment were simulated approaching

black blocks similar to those shown in Figure 4C. To more

comprehensively illustrate the impact of parameters on the model,

we set the following motion pattern: the object remains stationary

for the first 15 frames, then begins to approach and stops

approaching at frame 37. The speed remains constant during the

approaching process.

It can be seen from the experimental results that the parameter

α has a great impact on the sigmoid membrane potential results

of the existing models, and if an inappropriate value α is selected,

the existing models will fail (under the given firing threshold Tfir).

Contrastingly, the influence of parameter CT on the results of the

proposed Bi-LGMD model is mainly reflected in the early warning

response time. Specifically, the larger the CT value, the earlier

the early warning response time. However, the Bi-LGMD model

will always produce a warning before the collision. In addition,

according to the actual physical meaning of CT , we can reasonably

adjust the value range of CT based on the system performance.

Hence, the proposed model has fewer parameters and is more

robust than the existing model. In terms of parameter adjustment,

the proposed model has more clear guiding significance, so it can

be considered that the proposed model is superior to the existing

models in this respect.

4.4.2. Adaptability to motion modes
By estimating the depth distance of amoving object at each time

step, the Bi-LGMD model accurately identifies its motion modes,

as seen in the previous experiment. To further fully illustrate

the advantage of estimating depth distance, more detailed motion

patterns are used for testing. Since the Bi-LGMD model does not

respond to receding and translating motion, we mainly take the

approachingmotion as an example to illustrate. In particular, unlike

the previous experiments in which the object is always moving at a

constant velocity, we will explore other different approaching cases.

Similar to the experimental setup in Figure 11, during the first 15
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FIGURE 10

Experimental results of the proposed Bi-LGMD model and the comparative model for real scene videos of outdoor moving vehicle. There are three

sets of experiments, each showing examples of the input image streams and the corresponding output of the two models. (A) The input of a

approaching vehicle. (D) The input of a receding vehicle. (G) The input of a translating vehicle. The blue and orange boxes indicate inputs from the

left and right cameras, respectively. (B, E, H) Are the outputs of the proposed Bi-LGMD model, including the computed disparity, as well as the final

responses. (C, F, I) Are the outputs of the comparative model, including the sigmoid membrane potential (SMP), and its comparison to a given hard

threshold (set to 0.7).
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FIGURE 11

Experimental results of the e�ects of parameters on the comparative model and the proposed Bi-LGMD model. (A) The experimental results of the

comparative model. (B) The experimental results of proposed Bi-LGMD model.

frames and the last 15 frames, the object remains stationary in the

simulated stimulus video. The experimental description and results

are shown in Figure 12.

Figure 12A depicts three different approaching patterns in

terms of depth distance and image size over time, represented by

different colors. Among them, the mode represented by the green

line is approaching at a constant speed (Marked as Approaching

Pattern 1), which is the pattern set in all previous experiments.

In particular, the pattern represented by the blue line is a special

deceleration approach, leading to a linear increase in imaging

size (Marked as Approaching Pattern 2). The pattern represented

by the red line is also a deceleration approach, leading to a

gradual decrease in the increment of imaging size (Marked as

Approaching Pattern 3).

Figures 12B, C shows the experimental results of the

comparative model and the proposed Bi-LGMD model for

the Approaching Pattern 2. As can be seen, the SMP output of the

comparative model is almost a horizontal straight line, indicating

that the activity of LGMD cells is always maintained at the same

level. In fact, parameter α does not change the overall shape of

the response, so that the model either reaches the given firing

threshold at the beginning of movement or never, both of which

are not the ideal results. Such experimental results are directly

related to the fact that the imaging size varies linearly. By contrast,

the Bi-LGMD model only outputs 1 for the first few frames when

the object begins to approach, and 0 for the rest of the time. This

result is actually reasonable. As can be seen, the approaching speed

is very fast at the beginning, so the model needs to trigger an

early warning immediately. However, when the approaching speed

of the moving object gradually slows down, there is no collision

threat temporarily, so the output changes to 0. The warning

depth-distance DW of each time step obtained from the model

is shown in (E), when the approaching speed slows down, the

warning depth-distance DW decreases accordingly, which reflects

its dynamic adaptive process. Similarly, Figures 12D, E shows the

experimental results of the comparative model and the proposed

Bi-LGMDmodel for the Approaching Pattern 3.

In summary, the comparative model is not well-adapted to

various approach models, while the Bi-LGMD model can achieve

satisfactory results based on depth distance estimation, as well as

the dynamic adaptive warning depth distance mechanism.

4.4.3. Robustness to the input image streams
Robustness is one of the important indexes for model

evaluation. In the existing models, the quality of the input image

streams has a certain impact on the results, which makes the

model not robust enough. In this section, we select two key factors

affecting image quality (contrast and noise) for testing. We make

a detailed analysis based on the results, and further compare the

differences between Bi-LGMD and the existing models.

4.4.3.1. Contrast

The contrast between the moving object and the background

is obviously a very important factor. In this group of experiments,

since both the background and the moving object are set to a solid

color, the contrast ratio can be simply regarded as the gray value of

the background (the gray value of the moving darker object is set to

0). Intuitively, the greater the contrast, the easier it is for the model

to recognize moving objects and successfully perceive collisions.

But as the contrast gradually decreases, the task of sensing collisions

becomes more difficult.

Figure 13 shows the approaching motion with three different

contrasts. The motion process is based on the Approaching Pattern

1 shown in Figure 12A. For the above three cases, we generated

monocular data and binocular data according to the imaging

principle. As can be seen, in the comparative model, the higher

the contrast, the stronger the activation result of the sigmoid

membrane potential of the LGMD cell. Therefore, in the case of low

contrast, the activation result is far lower than the given threshold,

which makes the model unable to successfully perceive collisions

and generate early warnings. However, for the proposed Bi-LGMD

model, even if the contrast is small enough, the output of the model

is still not affected at all. It is because the Bi-LGMD model does
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FIGURE 12

Experimental results of the proposed Bi-LGMD model and comparative model for three di�erent approaching modes. (A) The specific details of three

di�erent approaches modes. Mode represented by the green line is approaching at a constant speed. Mode represented by the blue line is a special

deceleration approach, leading to a linear increase in imaging size. Mode represented by the red line is also a deceleration approach, leading to a

gradual decrease in the increment of imaging size. (B) The output of the comparative model for the approaching mode represented by the red blue

in (A). (C) The output of the proposed Bi-LGMD model for the approaching mode represented by the blue line in (A). (D) The output of the

comparative model for the approaching mode represented by the red line in (A). (E) The output of the proposed Bi-LGMD model for the approaching

mode represented by the red line in (A). (F) The dynamic adaptive warning depth distance (DW ) and depth distance in (E).

not care about the pixel value, but only needs to match the relevant

position of the moving object from the left and right camera to

obtain the correct disparity, so as to determine the depth distance of

the moving object. As shown in Figure 13D, the model converts the

focus from pixel value to corresponding position matching, which

is a major difference in the Bi-LGMD model. Under this change of

thinking, the model does not rely on the absolute size of the pixel

value, so no matter how the contrast is, the pixel position matching

is still accurate. Therefore, the contrast factor has no effect on the

estimation of the depth distance of the moving object, so naturally,

it does not affect the final effect at all.

4.4.3.2. Image noise

In the previous section, all synthetic stimuli used in the

experiment are clean. However, the input image streams in the real

world are always accompanied by different kinds and degrees of

noise, which is caused by hardware equipment and other factors.

In other words, noise is often an inevitable objective factor in

image sampling. To test the robustness of the model to noise,

different levels of White Gaussian Noise are randomly added to the

synthetic stimulus.

Similar to the experiment on contrast, there are three groups

of approaching processes with different levels of noise, as shown in

Figure 14. Gaussian noise variances (GNV) from left to right are

0.01 (slight noise, green), 0.02 (moderate noise, yellow), and 0.05

(serious noise, blue), respectively. It can be seen that noise has a

serious impact on existing models, while the Bi-LGMD model is

very robust. The reasons here are the same as those mentioned

above. For the existing model, the noise seriously affected the pixel

value, thereby affecting the results of the model. However, for Bi-

LGMD, thematching of corresponding positions is relatively stable.

5. Further discussion

As a research based on binocular LGMD visual neural network,

this paper proposes a novel model with depth distance as the

essential feature, and verifies the feasibility and superiority of this

idea through systematic experiments. In fact, the advantages of
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FIGURE 13

Experimental results of the proposed Bi-LGMD model and the comparative model for same approaching process with di�erent contrast. (A) Visual

examples in three di�erent contrasts, decreasing from left to right. (B) Experimental results of the comparative model. (C) Experimental results of the

proposed Bi-LGMD model. (D) Schematic of the essential di�erences between the two models when dealing with low contrast problems.
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FIGURE 14

Experimental results of the proposed Bi-LGMD model and the comparative model for same approaching process with di�erent levels of noise. (A)

Visual examples in three di�erent levels of noise, increasing from left to right. (B) Experimental results of the comparative model. (C) Experimental

results of the proposed Bi-LGMD model. (D) Schematic of the essential di�erences between the two models when dealing with noise.
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introducing depth distance into models are not limited to the

work described in this paper. On the basis of the proposed Bi-

LGMD model, there are more research directions worth exploring

in the future.

Two points are briefly listed here: (1) For the case of multiple

moving objects, the existing LGMD-based models are difficult to

obtain ideal results due to themixture of multiple stimuli. However,

based on the proposed Bi-LGMDmodel, it is possible to distinguish

moving objects at different depth distances and obtain the motion

pattern of each object to achieve better model results. (2) More

exploration of the approaching azimuth of the moving object can

be attempted. Obviously, as a collision prediction model, it needs

to respond strongly to stimuli that approach directly from the front,

while it does not need to respond to the oblique approach motion

such as passing-by. Based on the Bi-LGMD model and making full

use of depth distance information, these ideas above will be our

follow-up research.

6. Conclusion

This paper presents a LGMD-based neural network with

binocular vision for collision prediction. In this model, the depth-

distance information of moving objects is further taken into

account, which enables the model to correctly distinguish between

approaching and other modes of motion, and the model results

are more interpretable. Moreover, the early warning depth-distance

parameter in the proposed model is designed to be dynamically

adaptive, which allows the model to generate early warnings at the

most appropriate time depending on the individual performance

of the system, which is a great improvement over existing LGMD-

based models. The model no longer depends on the activation

function and a given hard threshold, which mitigates the sensitivity

to model parameters. The proposed Bi-LGMD visual neural

network model is systematically tested on synthetic stimuli and

real-world scene videos, showing that it is effective and robust

to input quality, such as noise, low contrast, and other factors.

Unlike existing LGMD-based models that rely heavily on image

pixel values, the Bi-LGMD model shifts the focus to position

matching, which may be a new line of research to consider in

the future.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

YZ, HL, and JP contributed to conception and design of the

study. YZ and YW organized the database. JP performed the

statistical analysis. YZ wrote the first draft of the manuscript.

YZ, YW, and GW wrote sections of the manuscript. All authors

contributed to manuscript revision, read, and approved the

submitted version.

Funding

This work was supported in part by the National Natural

Science Foundation of China under Grants 12031003 and 12271117

and in part by the Basic Research Joint Funding Project of

University and Guangzhou City under Grant 202102010434.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ayache, N. (1991).Artificial Vision forMobile Robots: Stereo Vision andMultisensory
Perception. Cambridge, MA: MIT Press.
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This paper investigates the selection of voxels for functional Magnetic Resonance

Imaging (fMRI) brain data. We aim to identify a comprehensive set of discriminative

voxels associated with human learning when exposed to a neutral visual

stimulus that predicts an aversive outcome. However, due to the nature of the

unconditioned stimuli (typically a noxious stimulus), it is challenging to obtain

su�cient sample sizes for psychological experiments, given the tolerability of

the subjects and ethical considerations. We propose a stable hierarchical voting

(SHV) mechanism based on stability selection to address this challenge. This

mechanism enables us to evaluate the quality of spatial random sampling and

minimizes the risk of false and missed detections. We assess the performance

of the proposed algorithm using simulated and publicly available datasets. The

experiments demonstrate that the regularization strategy choice significantly

a�ects the results’ interpretability. When applying our algorithm to our collected

fMRI dataset, it successfully identifies sparse and closely related patterns across

subjects and displays stable weight maps for three experimental phases under

the fear conditioning paradigm. These findings strongly support the causal role

of aversive conditioning in altering visual-cortical activity.

KEYWORDS

fMRI, groupwise regularization, voxel selection, stable hierarchical voting (SHV),

randomized structural sparsity (RSS), e�ective vote ratio (EVR)

1. Introduction

Machine learning approaches have become popular in cognitive neuroscience, often

in the context of using neuroimaging techniques to discriminate between brain patterns

associated with different experimental conditions, emotional states, cognitive processes, and

ultimately health outcomes. Variable selection and feature selection have become the focus

of studies using brain-based data with tens or hundreds of thousands of variables. The

objective of the research addressing this problem falls broadly into two categories: (1) brain

image decoding, e.g., Haxby et al. (2001) and brain-computer interface (BCI) (Wolpaw

et al., 2002; Saha et al., 2021), as well as (2) multivariate hypothesis testing (Bzdok et al.,

2017; Kia et al., 2017; Wen et al., 2019) including identification of candidate biomarkers

for medical diagnosis (Demirci et al., 2008). The former applications pursue the maximum

predictive power of the predictors, providing faster and more cost-effective predictors, while

the latter put more attention on providing a better understanding of the underlying process

that reflects the spatiotemporal nature of the generated data. In the present study, we are

interested in the second application, i.e., brain decoding.We specifically address the problem
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of identifying the brain activity patterns that are associated with

specific behavior. The classic univariate analysis typically models

each response channel separately, which is inconsistent with the

multivariate nature of neuronal population codes and also with the

observation that noise is spatially correlated. Separate modeling of

each response entails low power for testing and comparing models,

for two reasons: (1) Single fMRI responses may be noisy, and the

evidence is not combined across locations. (2) The analyses treat

the responses as independent, thus forgoing the benefit exploited

by linear decoding approaches to model the noise in a multivariate

manner. This is particularly important in fMRI data analysis, where

nearby voxels have highly correlated noise. As spatial resolution

increases, we face the combined challenge of increasing the number

of individual voxels (inflating the feature space) and also increasing

the noise in those individual voxels.

In order to understand the learning process of human in

response to an initial neutral visual stimulus predicting an aversive

outcome, we conducted a study using fMRI to observe the large-

scale neurophysiological changes. In neuroimaging, a decoder

is a predictive model that, given a series of brain images, fits

the binary classification information regarding an experimental

condition, a stimulus category, a motor behavior, or a clinical

state. In the context of aversive conditioning, one of two initially

harmless stimuli [referred to as conditioned stimuli (CS)] acquires

motivational significance by consistently predicting the occurrence

(CS+) of a negative event [known as the unconditioned stimulus

(US)], while the other stimulus (CS−) predicts its absence. Since
US is generally a noxious stimulus, it is difficult to obtain

satisfactory sample sizes for such psychological experiments, given

the tolerability of the subjects already ethical considerations.

Therefore, we here focus on linear brain decoding because of its

broader usage in analyzing inherently small sample size (Pereira

et al., 2009). The estimated classification or regression weights

can be visualized in the form of brain maps, which can aid in

understanding how brain activity in space and time underlies a

cognitive function (Mourao-Miranda et al., 2005). Selecting an

appropriate set of voxels as the input for the classifier construction

is of critical importance. The voxels corresponding to the non-zero

weights are considered as the relevant features. The identification

of discriminative voxels is based on the values of the weight

vector, and their importance is proportional to the absolute values

of the weights.

Due to the high-dimensionality of neuroimaging, high

correlations among different voxels and low signal-to-noise ratios

(SNRs), multiple weight maps yielding the same predictive power.

In other words, different models lead to very similar generalization

performance, and the recovered brain maps often suffer from

lack of interpretability. Therefore, improving the interpretability

of brain decoding approaches is of primary interest in many

neuroimaging studies, especially in a group analysis of multi-

subject data. At present, there are two main approaches proposed

to enhance the interpretability of multivariate brain maps, as

reviewed by Kia et al. (2017): (1) Introducing new metrics into

the model selection procedure. (2) Introducing new hybrid penalty

terms for regularization. The first approach to improving the

interpretability looks for the best values for the hyper-parameters of

a model (Lemm et al., 2011; Hoyos-Idrobo et al., 2018). The second

approach involves applying regularization or prior knowledge (Zou

and Hastie, 2005; Yuan and Lin, 2006; Rasmussen et al., 2012)

to restrict model complexity, also known as dimension reduction.

This approach is commonly used for the ill-posed nature of brain

decoding problems (Geman et al., 1992).

As a representative of the second category, structured sparsity

models (Chambolle, 2004; Bach et al., 2012; Micchelli et al., 2013)

extend the least absolute shrinkage and selection operator (LASSO)

model by promoting sparse models in some preferred way. For

example, regression weights may be encouraged to be constant or

vary smoothly within regions of the brain (Michel et al., 2011;

Baldassarre et al., 2012; Gramfort et al., 2013). Despite the fact

that sparsity has traditionally been connected with interpretability,

these structured sparsity models incorporating additional spatial

constraints into the predictive model, allowing for even greater ease

of interpretation by further grouping the discriminative voxels into

few clusters based on prior information (Yuan et al., 2011; Li et al.,

2014; Shimizu et al., 2015). Besides, stability selection is applied as

an effective way to control the false positives (Meinshausen and

Bühlmann, 2010; Ye et al., 2012; Shah and Samworth, 2013; Cao

et al., 2014; Rondina et al., 2014; Wang and Zheng, 2014). While

the control of false positives can be achieved, a significant false

negative rate is often expected, especially in the case of redundant

and correlated voxels, this correlation prior is not explicitly taken

into consideration. In Wang and Zheng (2014) and Wang et al.

(2015) the authors proposed a “randomized structural sparsity”,

incorporating the idea of structural sparsity in the stability selection

framework, together with the subsampling scheme which further

help to refine and outline the exact shapes of the discriminative

regions. These regions may not be the same size as the prior

partitions, which is crucial for neighboring voxels belonging to the

same brain area. Although they may be highly correlated, not all

neighboring voxels are necessarily significant discriminative voxels

(Witten et al., 2014). A similar strategy was used inWan et al. (2014)

and Yan et al. (2015) to predict cognitive outcomes via cortical

surface measures. The results showed improved decoding accuracy

and interpretability of brain maps.

In order to enhance the stability and reproducibility of

our model during optimization, we apply group constraints

and regularization across multiple subjects. This technique is

commonly used in transfer learning or multitask learning (Bakker

and Heskes, 2003; Raina et al., 2006; Dai et al., 2007; Pan and Yang,

2010). In our paper, we make the assumption that the regions of

discriminative voxels are relevant or overlapping to a certain extent

across subjects. Additionally, we assume that only a few clusters are

actually discriminative for the classification problem. To achieve

these goals, we propose to use a mixed l1 and groupwise l2 norm for

regularization. The l2 norm penalizes large coefficients and yields

a non-sparse weight distribution inside the group, while the l1

norm promotes sparsity on selected clusters. This nested mixed-

norm regularization enables us to construct stable and interpretable

models by pooling data from multiple subjects. It is important to

note that the l2 norm does not imply the application of unified

weights to the functionally significant clusters, which might be a

too strong constraint and impractical for the real data.

Based on stability selection and the groupwise structural, we

propose a stable hierarchical voting (SHV) mechanism to monitor
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the quality of spatial random sampling and reduce the risk of

false and missed detections. When using uniform sampling, there

is a possibility that many noisy and uninformative voxels will be

included. To address this issue, we use multiple cross-validations

of test accuracy during the voting process to select high-quality

samples. In addition, small perturbations in the observations can

cause instability in the model generated (Arlot et al., 2010). To

mitigate this problem, we apply model averaging to aggregate

the output of multiple models as suggested (Nemirovski, 2000).

Furthermore, the number of selected candidate features is allowed

to be much larger when incorporating group structure (Jenatton

et al., 2011; Xiang et al., 2015), which allows us a more global search

among brain regions.

2. Methods

2.1. Pre-segmentation

For the class of methods that use structural information for

dimensionality reduction, the number of clusters to be generated

is estimated based on finding a compromise between several

factors: (1) To enhance area homogeneity, it tends to conduct fine

segmentation for small patches. (2) To avoid the false negative

selection due to spatial sparsity induced by the l1 norm, it tends

to perform rough segmentation for large patches. (3) The number

of trials is taken into consideration as the unknowns of the

optimization problem is now equal to the number of clusters. From

the previous study (Craddock et al., 2013), with 200 ROIs, the

resulting parcellations consist of clusters with anatomic homology

and thus offer increased interpretability.

In our work, we first obtain the structural information about the

brain according to their strong local correlations. Here we perform

a data-driven segmentation operation to partition the voxels into

small clusters using the normalized cut (NCut) (Shi and Malik,

2000; Cour et al., 2005). To define the affinity between two voxels v1
and v2 we combine three cues: (1) the correlations of the raw BOLD

time series, (2) the correlations of BOLD features for each trial, (3)

a connection radius σd to attenuate the influence from far away

voxels. Voxels in close proximity with similar BOLD waveforms

are likely to be part of the same cluster. Additionally, incorporating

correlations among features helps to minimize the impact of signal

clutter. Furthermore, averaging the features results in a fit with

lower variance compared to individual features, especially when

they are positively correlated (Park et al., 2006; Wang et al.,

2015). This aspect also contributes to the potential enhancement

of stronger features.

The affinity matrix is computed based on finding the combined

data frommultiple subjects since uniform segmentation is required

for group-wise regularization. Let us denote the preprocessed fMRI

data matrix as X̃ ∈ R
Nt×NV , where Nt is the number of scans, NV

is the number of voxels. To access the columns of a matrix, the v-th

column is denoted as (:, v). We construct the affinity matrix A as

follows:

Av1 ,v2 = |corr(X̃(:, v1), X̃(:, v2))| · exp(−dist(v1, v2)
2/σ 2

d )

where |·| gets the absolute value, corr(·, ·) is the correlation between
two variables, and dist(·) evaluates the Euclidean distance of two

voxels in 3D space.

2.2. Classification using groupwise
structural sparsity

Let us denote the feature matrix from subject i as Xi ∈ R
NT×NV ,

i ∈ {1...NS}, where NT is the number of trials, NV is the number

of voxels, and NS is the number of subjects. For this study, we are

interested in classifying the experimental conditions. We denote

the binary labeling information as y ∈ R
NT , y(t) ∈ {1,−1} that

correspond to the CS+ and CS− conditioning, respectively. The

stability sampling is performed in terms of the subsampling on

the features, i.e., the columns of Xi, as well as subsampling of the

observations, i.e., the rows of Xi. Then parceling information is

used to average the features within a cluster. We denote the set of

the clusters via the pre-segmentation as G, and denote the number

of clusters as NC. Specifically, each cluster gj ∈ G, consists of highly

correlated neighboring voxels, the sampled voxels lying in cluster j

are noted as a set gj
′ ⊂ gj ∈ G, for each chosen trial t, and D(t, j) is

the corresponding average of X(t, g
′

j ) of cluster j. The model can be

simplified to the following low dimensional problem.

F = argmin
w

NT
∑

t=1
log

(

1+ exp
(

−y(t)
(

D(t, :)w+ b
)))

+λ
NC
∑

j=1
‖ w(j) ‖ (1)

where w ∈ R
NC is the weight vector. w(j) denotes the weight

of j-th cluster, corresponding to the subset gj ∈ G. The voxels

corresponding to weight with large absolute value are considered

as discriminative voxels (Wang et al., 2015).

In this paper, we propose to consider a group of subjects

together and constrain the model using a mixed l1/l2 norm. We

combine the weight vectors from all subjects into a matrix W ∈
R
NC×NS . Correspondingly, the objective of the model is below:

F = argmin
W

NS
∑

i=1

NT
∑

t=1
log

(

1+ exp
(

−yi(t)
(

Di(t, :)W(:, i)+ bi
)))

+λ
NC
∑

j=1
‖W(j, :) ‖ (2)

As shown in Figure 1, the l2 norm over multiple subjects for

each cluster is proposed as a group constraint, i.e., the rows of

W shown in the red box of Figure 1B, while the l1 norm on

clusters further enforces structural sparsity on the solution. Using

the mixed l1 and l2 norm as a joint optimization criterion allows

the pooling of data frommultiple subjects and enforces consistency

of the selection of clusters across subjects. For the convenience of

optimization, the weight matrix is vectorized, and the individual

feature matrix and the label information are integrated from all

subjects accordingly.

Note that the number of clusters obtained is typically much

smaller than the number of voxels (NV ) and comparable to the total

number of total samples. By reducing the number of unknowns and
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FIGURE 1

Estimate cluster weights using joint optimization of multiple subjects with l2 norm group constraint. (A) Structural sparsity model of single subject;

(B) groupwise structural constraint using mixed l1/l2 norm; (C) for the convenience of optimization, the weight matrix W is vectorized, and the

individual feature matrix Di are incorporated to form a block diagonal matrix with an additional column of all 1. The label information is merged from

all subjects accordingly.

integrating data from multiple subjects, we are able to use fewer

samples to estimate the parameters.

2.3. Algorithmic framework

Unlike the general stability selection framework (Meinshausen

and Bühlmann, 2010; Shah and Samworth, 2013;Wang et al., 2015),

our algorithm, stable hierarchical voting (SHV), represents a step

further with stricter control for model variance among subjects.

The detailed description is outlined in Algorithm 1. Based on

stability selection and the groupwise structural constraint, SHV

employs a stable hierarchical voting mechanism to monitor the

sample quality of spatial random sampling and reduce the risk

of false and missed detections. The proposed method utilizes a

two-level nested loop approach to construct a predictive decoding

model for multi-subject data, while considering mixed regularity

constraints. The outer loop randomly samples voxels and performs

dimensionality reduction feature expressions on the corresponding

motifs; The inner loop assesses the predictive ability of these

features, by computing the average prediction correctness through

cross-validation. Subsequently, the outer loop performs cumulative

voting on the selected voxel samples, based on their prediction

ability as evaluated by the inner loop. This structuring guarantees

that only votes with high test precision are considered.

In the following, i denotes the subject index, i = {1, 2, · · · ,NS},
j denotes the cluster index, j = {1, 2, · · · ,NC}, and m denotes the

voxel index, m = {1, 2, · · · ,NV}. For the outside layer, we perform
constrained block subsampling in terms of voxels (columns) and

calculate the averaged feature matrix, the number of resamplings

denotes as NK . Let the subsampling fraction be αcol ∈ (0, 1) and I

denotes the set of voxel indices randomly picked.

To avoid instabilities of the generated model caused by

perturbations of the observed data, we apply model averaging to

mitigate this problem (Nemirovski, 2000; Arlot et al., 2010). For

loop k, the weight vector for lth cross-verification is denoted as

W l(:, i), the score vector si,k is calculated by the following equation

si,k(j) =
1

NL

NL
∑

l=1

|W l(j, i)|, j = {1, 2, · · · ,NC} (3)

where | · | get the absolute value, and NL denotes the number of

cross-verification, which is usually chosen according to the sample

size and balance with the computation cost.

We hierarchically define the selectors, from cluster to voxel,

respectively. Let π(∗,Nsel) be the operation to select the top Nsel

non-zero coefficients from vector ∗, and return the selector by

marking the selected components to be unit valued (zero valued for

the non-selected ones). If the actual non-zero components is less

than Nsel, less components are selected.

Because uniform sampling is likely to include many noisy and

uninformative voxels, for NK times of spatial resampling, we only

countNi loops when the test accuracy of cross verification go above

the sampling quality control factor q. The number of selected loops

is determined based on a quality control ratio αK ∈ (0, 1), only
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Require:

Dataset of subject i: Xi ∈ R
NT×NV, i ∈ {1..NS};

Label information y ∈ R
NT, where NT is the number

of trials, NV is

the number of voxels;

Predefined parcellation G;

Groupwise sparsity penalization parameter λ;

Loops of spatial randomizations NK; Loops of

cross verification NL;

Subsampling ratio αrow ,αcol in terms of rows and

columns of X;

Minimum acceptable precision p; Sampling

quaility control ratio β;

The number of clusters one wish to select Nsel;

Ensure:

Effective vote ratio (EVR) for each voxel.

1: for k = 1 to NK do

2: for l = 1 to NL do

3: for i = 1 to NS do

4: Perform subsampling on voxels (columns of

Xi) and calculate the averaged feature

matrix: Di ← Xi
[:,I] ← Xi, where I ⊂

{1, 2, · · · ,NV }, Di ∈ R
NT×NC.

5: Perform subsampling on trials (rows of Xi):

Di
[J ,:] ← Di and update y[J ] ← y, J ⊂
{1, 2, · · · ,NT}.

6: end for

7: Estimate W with Equation 2.

8: end for

9: for i = 1 to NS do

10: Calculate the average test accuracy Rtest
i,k

across all the cross-verification loops.

11: end for

12: end for

13: for i = 1 to NS do

14: Select Ni well sampled loops out of NK loops

according to Rtest
i,k

15: for k = 1 to Ni do

16: Compute the score vector si,k with Equation 3.

17: Select the Nsel clusters with highest

coefficients in si,k.

18: end for

19: end for

20: Compute the effective vote ratio φ
V
i according to

Equation 6.

Algorithm1. The algorithm frameworkof groupwise structural sparsity for

discriminative voxel identification.

the top [αKNK] loops with the highest test accuracy are taken into

consideration.

For group-level statistical inference, we compute the cluster-

wise voting rates φ
C that incorporate the votes from multiple

subjects

φ
C =

1

NS

NS
∑

i=1

π(
1

Ni

Ni
∑

k=1

π(si,k,Nsel),Nsel) (4)

We accumulate the votes of all the qualified selectors and then

normalize the value with the sampling times of the voxel. Given that

a sampled voxel m that belongs to cluster j, the voting rate of φV
i is

defined as

φ̃
V

i (m) =

∑Ni

k=1 δ(m ∈ Ik & π(si,k,Nsel)(j) == 1)
∑Ni

k=1 δ(m ∈ Ik)
, m ∈ gj (5)

To ensure the stability and reliability of voting, the effective vote

ratio (EVR) is defined as

φ
V
i (m) = φ̃

V

i (m) · φC(j), m ∈ gj (6)

We chose the regularization parameter λ in Equation (2) that

maximize the averaged prediction accuracy below.

R̄ =
1

NS

NS
∑

i=1

(
1

Ni

Ni
∑

k=1

Rtesti,k ) (7)

2.4. Stability evaluation

We adopt the stability index defined by work Baldassarre et al.

(2017) to evaluate the stability of our results on real fMRI across

multiple subjects. The voxels selected by EVR for subject i are

denoted as Si = {m|φV
i (m) 6= 0}. Consider two sets of selected

voxels, namely S1 and S2. The corrected pairwise relative overlap is

calculated using the formula:

O(S1, S2) =
||S1 ∩ S2| − |S1| ∗ |S2|/NV |

max(|S1|, |S2|)
(8)

Here, |S1 ∩ S2| is the number of voxels that are present in

both sets, while |S1| ∗ |S2|/NV represents the expected number

of overlapping voxels between two random samples of size |S1|
and |S2| respectively, where NV is the total number of voxels. The

average pairwise overlap O is obtained by taking the average of the

relative overlap values of all pairs of subjects.

3. Results

3.1. Synthetic data

To test and analyze the proposed algorithm on a similar

problem scale as the real fMRI data, we work on a 53 × 63 ×
52 brain image that has 173,628 voxels of interest. Specifically

for small-sample fMRI data, we assume only 40 training 20

CS+ trials and 20 CS− trials since fMRI datasets of this size

are most commonly found in psychological paradigm validation

sessions. For the simulations, we use the Automated Anatomical

Labeling (AAL) atlas template that segments the brain into 116

anatomical regions (Tzourio-Mazoyer et al., 2002), commonly

used for different types of functional and anatomical analysis of

neuroimaging data. To test whether our algorithm has superior

discriminative power, we assume that there is a linear combination

of a portion of voxels with categorization ability in three brain

regions that have some overlap in different individuals. Specifically,

all subjects were assumed to have a functional network of
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three distributed discriminative brain regions G1 = {32, 44, 62},
comprising three brain regions in the frontal, parietal and occipital

lobes, each including over 300 discriminative voxels. Considering

the complexity of the brain functional network and dramatic

individual differences among subjects, we define 15 interference

regions for each individual, and the interfering brain regions were

not exactly the same for different individuals. For subject i, we

define individual interference region setGi
0 = {t | (72+i×3) ≤ t ≤

(86+ i×3)}, which are all continuous sets with 15 and three regions
skipped between two sets. Each region contains roughly 300 voxels.

The base value of elements Mi
j in both discriminative regions

and interference regions are generated from the standard uniform

distribution U(0, 1), where j = 1, 2, . . . , 116 representing the index

of regions, other voxels in the brain image are noise generated by

a standard Gaussian distribution. For discriminative regions G1 we

simulate a spatially distributed pattern constrained by linear model

yi1 =
∑

j∈G1
W̃i

j · M
i
j , and samples of CS+ fall in the top 40% and

CS- fall in the bottom 40% of the overall distribution of y1, therefore

the simulated data can be distinguished by the linear classifier. The

weight W̃i
j is scaled by a personalized factor αi

j that allows different

connectivity strength W̃i
j = Winit

j · αi
j , where W

init
G1
= {1, 1,−2}

and αi
j ∼ U(0.5, 1.5) that uniformly distributed with minimum

0.5 and maximum 1.5. For interference regions G0 we simulate

yi0 = Mi
j and samples of CS+ fall in the top 80% and CS− fall in

the bottom 80% of the overall distribution. At last, gaussian noise

is added to generate observations for single trials and single voxels

xit,v = yij + ǫt,v, ǫt,v ∼ N(0, 1), where t denotes the index of trials

and v the index of voxels.

The elements in discriminative and interference regions are

both random samples from the uniform distribution; therefore,

a single region should have no significant correlation with labels

in absence of noise. On the contrary, the linear combination

of regions in G1 is discriminative, whereas for G0, it is

not. It is noticeable that although the discriminative areas

are common for all subjects, the coefficients vary for each

subject. Intentionally, we added noise to simulate the case that

the interference regions may have an equal or even stronger

degree of correlation by chance, which would result in false

positives. Such simulation is crucial, especially for studies with

few samples. In the following, we conducted several experiments

on the synthetic data to examine the performance of the

proposed algorithm.

3.2. Ablation study

For the ablation study, we compare experimental results with

and without applying the proposed multi-subject l2 norm group

constraint and test the effect of the algorithm on the choice of hyper

parameters, including the effect of choosing different λ and Nsel on

the results for selected discriminative clusters. In the following, we

use the following notation:

• Our proposed method: estimate cluster weight using

joint optimization of multiple subjects with the proposed

Algorithm 1 and Equation (2);

• Alternativemethod: perform the same procedure of constraint

block sampling and in terms of voxels and sub-sampling cross

verification in terms of trials, then estimate cluster weight for

each subject separately using Equation (1);

For the block bootstrap sampling methods, block size might

affect the performance of the algorithm (Lahiri et al., 1999). Given

the number of blocks, there are inherent trade-offs in the choice

of block size. When only minimal loops of randomizations are

allowed, the choice of large blocks is likely not matching the indeed

supported geometry and are prone to many false positives, while

the choice of small blocks may result in many false negatives due to

ignorance of local correlation of adjacent voxels (Wang et al., 2015).

Empirically we chose 3× 3× 3.

We accumulate one vote for the identified discriminative

clusters corresponding to the top four weights with largest

magnitude, then summing up all the votes across subjects.

Although regularization helps to reduce model variance and

larger regularization parameter (λ in Equations 1, 2) yields

models with more degree of sparsity and fewer sets of selected

variables (clusters), we tested how λ influence the outcome of

selected discriminative clusters in both alternative method and our

proposed method. Please note that the proposed method and the

comparison method have different objective functions. Therefore,

we employ two sets of lambda values, each consisting of one larger

lambda and one smaller lambda. This is intended to showcase the

influence of Lambda tuning on the outcomes.

The cluster scores reported in Figures 2A, C, E, G are averaged

from 200 spatial subsampling steps each of which has 20 times cross

validation, and the corresponding voting results are reported in

Figures 2B, D, F, H. In Figure 2A we can see that for the alternative

method, numerous interference clusters get higher scores than the

true discriminative clusters. Larger λ, as shown in Figure 2C, helps

to reduce false positives, however also increases false negatives.

For the corresponding votes there is no single thresholding to

distinguish discriminative clusters from the interference clusters,

as can be seen in Figures 2B, D. For our proposed method,

in Figure 2E as we can see from the enlarged view, scores

estimated for discriminative cluster 44 are more consistent across

subjects compare to the alternative method in Figure 2A, and

the scores for interference clusters are relatively more sparse. As

the λ increases, the score of the interference regions attenuated

more significantly than the discriminative regions, as depicted

in Figure 2G. Meanwhile, as shown in Figures 2F, H, there exist

proper thresholds to separate all the three discriminative clusters

correctly, and sparsity helps to increase the classification gap

between the two.

For the synthetic data, we directly use the precision and recall

curve since we know where the true discriminative features are.

Precision (also called positive predictive value) is the fraction of

discriminative clusters among the retrieved clusters, while recall

(also known as sensitivity) is the fraction of discriminative clusters

that have been retrieved over the total discriminative clusters.

As shown in Figures 3A, B, when the same number of clusters

is selected, our proposed method achieves both higher recall

and precision score compare to the alternative approach (area

under the two curves). Notice that when four clusters are selected
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FIGURE 2

Cluster scores and vote results as estimated by alternative method at λ = 30 (A, B) and λ = 120 (C, D) and our proposed method at λ = 10 (E, F) and

λ = 30 (G, H). For cluster scores (A, C, E, G), the blue arrows indicate the enlarged view of the original image, each colored line represents the result

of one subject. For vote results (B, D, F, H), the red lines indicate the true discriminative clusters, and the blue lines indicate the interference clusters.

(Nsel = 4), all the three true discriminative clusters can be

detected. When increasing the number of selected clusters, our

proposed method still maintained a high recall rate, while the

alternative method does not seem to improve. Even when the

number of clusters set to seven, the recall rate drops instead. In

contrast to the alternative approach, our method is more likely to
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FIGURE 3

Given di�erent selected cluster number Nsel, the recall curve (A) and precision curve (B) of our algorithm and the alternative method are compared

on the synthetic data.

detect the real discriminative regions as increasing the number of

selected clusters.

3.3. Real fMRI data I—Haxby dataset

Based on the simulation experiments, we use a well-established

public dataset, Haxby, a study of face and object representation

in human ventral temporal cortex (Haxby et al., 2001). The work

innovatively incorporates the idea of structured sparsity into the

framework of stability selection (randomized structure sparsity,

RSS in short). The author compared their results with a range

of classical univariate voxel selection methods and multi-voxel

pattern identification methods, which showed relatively fewer false

positives and confirmed the validity (higher predictive accuracy) of

selected voxels. These methods include T-test, l2-SVM, l2 Logistic

Regression, l1-SVM, l1 Logistic Regression, randomized l1 logistic

regression, Smooth Lasso (Hebiri and Van de Geer, 2011) and

TV-L1 (Gramfort et al., 2013) and Randomized Ward Logistic

(Gramfort et al., 2012).

The Haxby dataset consists of six subjects with 12 runs

per subject (dataset can be downloaded at http://data.pymvpa.

org/datasets/haxby2001/). In each run, the subjects passively

viewed grayscale images of eight object categories, grouped in

24s blocks separated by rest periods. Each image was shown for

500 ms and was followed by a 1,500 ms inter-stimulus interval.

Full-brain fMRI data were recorded with a volume repetition

time of 2.5 s. Then a stimulus block was covered by roughly

nine volumes. For a complete description of the experimental

design, fMRI acquisition parameters, and previously obtained

results, check the reference on their website (Haxby et al., 2001;

Hanson et al., 2004). In this paper, we use the fMRI data

of subjects one to five and classifying the “House” and “Cat”,

which is a classic case for animal vs. non-animal classification.

Preprocessing of the data consisted ofmotion correction using SPM

12, normalization and registration to the Montreal Neurological

Institute (MNI) to facilitate inter-subject segmentation, removal

of linear trends in each session, etc. There is no smoothing

operation on the data. In the process of coregistration, the

structural data is coregistered with functional data. Due to the

missing of structural data, subject six is excluded from the

analysis.

To have a fair comparison, we use the same parameter settings

for RSS and our method: In particular, the number of clusters

NC = 200, the connection radius σd = 3, the block size 3×3×3, the
times of spatial randomization iterations NK = 200, subsampling

fraction αcol = 0.01, fixed regularization parameter λ = 0.3. Several

additional parameter is used in our approach for cross verification

NCV = 20,αrow = 0.9 and sampling quality control αK = 0.3,

Nsel = 15 is chosen for this study. This study was not interested in

the activities of the cerebellum and vermis regions, therefore these

regions were masked to rule out for consideration.

First, we compare the performance of our proposed method

and RSS when decreasing the number of training samples. We

use the first T sessions for training, which correspond to 1/2,

1/3, 1/4, and 1/6 of the data (T = 6, 4, 3, 2) for each subject.

In Figure 4, we show the EVR maps from our method (a1–a4,

not thresholded), and binominal test results of score maps across

subjects (b1–b4, thresholded at 0.5). It shows that our proposed

algorithm locates stable discriminative voxels at bilateral fusiform

and inferior temporo-occipital even with fewer training samples

(see the pattern in a3 and a4).

To evaluate the quality of the identified discriminative voxels,

we conducted 4-fold cross validation using a linear l2-SVM

classifier for both our proposed method and RSS. Figure 5

illustrates the changes in training and testing accuracy as the

number of voxels increases. The reported curves are averaged

across subjects and four times cross verification. Our method

allowed for early identification of discriminative voxels. However,

as more voxels were included (since the exact number of

discriminative voxels is unknown), there was an increase in

irrelevant voxels and noise. This led to a decline in the accuracy

curve. On the other hand, the alternative method did not effectively

identify discriminative voxels. With an increasing number of

voxels, both irrelevant and truly relevant voxels were included,
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FIGURE 4

Brain maps for discriminative voxels as estimated on Haxby data (Cat vs. House). (Left) EVR maps (unthresholded) by our proposed approach. (Right)

Maps of binominal test result for RSS, thresholded at 0.5. Both approaches used exactly the same amount of data for comparison (1) six sessions (the

first 1/2) of five subjects; (2) four sessions (the first 1/3) of five subjects; (3) three sessions (the first 1/4) of five subjects; (4) two sessions (the first 1/6)

of five subjects.

resulting in a flat curve. It is important to note that our method

consistently outperforms the comparison method, as our curve

consistently remains higher than the RSS curve.

3.4. Real fMRI data II—Fear conditioned
dataset

After conducting experiments on synthetic data and commonly

used public datasets, we initially tested and validated the robustness

and sensitivity of the parameters of the proposed method.

In general, our proposed approach outperforms the alternative

approach in terms of its strength in recovering the discriminative

pattern reliably when reducing the number of training samples, as

well as keeping the sensitivity of individual specificity. Further, we

exploratively conduct experiments on an earlier fMRI small sample

dataset and then visualize the results. The data were recorded from

a differential aversive conditioning study in which Gabors of one

orientation were occasionally paired with an electric shock (see

Petro et al., 2017; Ji et al., 2019, for details). For the habituation

block, participants were instructed that they would not feel any

shock but to fixate on the patterns. During the acquisition block,

participants were informed that they would intermittently feel

a cutaneous electric shock during the experiment but were not

instructed as to the contingencies of the shock administration. The

extinction phase was also uninstructed, such that participants were

not told that no more shocks were to be given. The data reported

here include 40 total trials per phase per participant. Each trial

consisted of one of the two gratings being presented for 5, 100ms,

during which its phase was alternated every 100 ms. An inter-trial

interval (ITI) consisted of an initial gray cross (37.5 cd/m2; 1◦ of

visual angle) presented in the middle of the screen for a random

duration between 0 − 8 s followed by a white cross (149.0 cd/m2)

for a duration of 3 s, immediately preceding trial onset with Gabor

patch presentation.

The Data were acquired during gradient-echo echo-planar

imaging sequence with a 3T Philips Achieva scanner [echo time

(TE), 30 ms; repetition Time (TR), 1.98 s; flip angle, 80◦; slice

number, 36; field of view, 224 mm; voxel size, 3.5× 3.5× 3.5mm3;

matrix size 64 × 64]. Preprocessing of BOLD fMRI data was

completed using SPM12. We followed the standard preprocessing

routines: slice timing correction, head movements realigning,
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FIGURE 5

The classification accuracy based on 4-fold cross verification on House & Cat each curve is estimated on each individual and then averaged across

folds and subjects. Six sessions (A), four sessions (B), three sessions (C), and two sessions (D) are used for training.

normalization and resampled to a spatial resolution of 3 × 3 ×
3mm3. Images were smoothed using a Gaussian kernel with a full-

width at half-maximum of 6 mm. Low-frequency temporal drifts

were removed from the BOLD data using a 1/128 Hz high-pass

filter.

Following our previous work (Petro et al., 2017), the general

linear models (GLMs) were constructed to extract features. The

GLM aimed to model the ssVEP-BOLD coupling over the entire

experiment. Thus, all trials were modeled separately using a GLM,

which consisted of a sequence of boxcar functions in which the

start was synchronized with the onset of each stimulus and width

equal to the duration of each trial. Each boxcar function was then

convolved with a canonical hemodynamic response function. Six

additional regressors describing participants’ head movements, as

determined during preprocessing, were added to this design matrix

to account for head movements during the scanning process.

Excluding the motion components from the coefficient matrix, the

single-trial coefficients are next used as features for decoding.

For the SHV scheme, the number of selected clusters is crucial,

and as the number of of Nsel increases, the random overlap of

clusters also increases. If Nsel is too large, it will reduce the

sensitivity of the cluster voting rate and EVR. However, if Nsel is

too small, it will result in more false negatives. We recommend

selecting this parameter based on prior knowledge. In this study,

we choose Nsel = 40 based on the previous analysis of EEG-ssVEP

(Ji et al., 2018, 2019). Segmentation was performed based on the

homogeneity of functional time series and feature correlations, as

described in Section 2.1. Since this study did not interested in the

activities of the cerebellum and vermis regions, these regions were

masked out (AAL template 91-116). For the current data set, we

select 200 for NC and set the connection radius σd as 3 voxels.

The results are reported in Figure 6. Although prediction accuracy

may not be the sole criteria for selecting a model, it generally

indicates that some of these voxels are truly discriminative when

the prediction accuracy is high. To evaluate the quality of the

discovered discriminative voxels, we employed a linear l2-SVM

classifier (Hebiri and Van de Geer, 2011). Although not required,

for all three experimental sessions, we pre-saved random seeds for

block subsampling and cross-validation to ensure the same settings

were made for all subjects to facilitate comparison.We set the times

of spatial randomization iterations NK = 1, 000, times of cross

verification NCV = 20, subsampling fraction αcol = 0.015 and

αrow = 0.9, sampling quality control ratio αK = 0.3.

We compute the EVR using Equation (6), the brain maps

are shown in Figure 7 which are not thresholded for visualization

purpose. Table 1 shows detail information for acquisition session,

including the corresponding coverage—the ratio between the

number of non-zero EVR voxels and the total number of voxels

in that region—to indicate the region size of discriminative

features, the “Peak-EVR" and “MNI" show the peak location and
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FIGURE 6

Segmentation snapshot of three experimental sessions: (A) habituation (HAB), (B) acquisition (ACQ), (C) extinction (EXT). Di�erent areas are marked

with di�erent colors, for a total of 200 brain partitions.

FIGURE 7

The EVR brain maps (unthreholded), which is the computed by averaging EVR across subjects.

peak intensity of each listed region. From the EVR map, the

discriminative voxels across three experimental sessions largely

pointed to the same regions, including the visual cortical areas

such as calcarine, lingual, cuneus, occipital, and fusiform gyrus,

and a set of functionally connected brain regions such as the

superior frontal gyrus (orbital and medial part), postcentral, the

superior temporal gyrus, the superior and middle temporal pole,

precuneus and parietal gyrus, anterior cingulate cortex, insula,

amygadala and thalamus. For acquisition, ROIs got the highest

regional coverage are: the calcarine, lingual, superior temporal

gyrus, hippocampus and parahippocampus, thalamus, as well as

middle frontal gyrus, parietal, precuneus, postcentral and fusiform

gyrus for their absolute number of discriminative voxels. To test

the influence of Nsel to the results of cluster voting rates, Figure 8 is

added. For most regions, increasing the number of selected clusters

yield larger overlap across subjects.

To quantify the relative importance of discriminative voxels, we

compute the mean effective vote ratio (EVR, see Eqution 6) across

nine subjects. The resulted brainmaps are shown in Figure 7, which

are not thresholded for visualization purposes, meaning that the

zeros displayed are actually zeros. By visual inspection, it is easy

to detect the significant discriminative area. For the convenience of

comparison, we also illustrate the EVR results of nine subjects in

Figure 9, that only data from a single subject are used.

Lastly, we compute the stability index O and the averaged

test accuracy R̄ both for our proposed method and alternative

method. The results are compared for 3 experimental sessions:

habituation (HAB), acquisition (ACQ), and extinction (EXT), as
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TABLE 1 The region size/coverage of discriminative features, the peak EVR value and the corresponding MNI coordinates are listed for each ROI during

the acquisition session.

Location
Region size

MNI Peak-EVR
(coverage)

Calcarine 478/1,285 −6,−49, 5 0.96

Inferior occipital 7/548 −15,−100,−7 0.19

Middle occipital 113/1,592 −30,−85, 35 0.39

Superior occipital 278/840 24,−76, 47 0.98

Lingual 425/1,266 −6,−52, 2 0.90

Cuneus 204/817 6,−82, 41 1.00

Fusiform 207/1,415 −18,−43,−10 0.85

Parietal 375/2,344 9,−82, 50 1.00

Postcentral 243/2,261 −54,−4, 20 0.98

Precuneus 282/2,029 −6,−76, 41 1.00

ACC 29/390 0, 8, 41 0.71

Amygdala 57/136 24,−1,−10 0.92

Thalamus 316/663 −15,−10, 17 0.94

Insula 127/1,101 −45, 8,−7 0.84

Hippocampus 192/562 24,−16,−13 0.86

ParaHippocampus 154/634 21, 5,−25 0.92

Superior temporal 507/1,640 −51,−10,−4 0.90

Superior temporal pole 67/764 63, 14,−1 0.96

Middle temporal pole 86/2,782 −51,−61, 17 1.00

Supplementary motor 45/1,367 −6, 5, 80 0.77

Middle frontal 325/2,947 48, 50, 5 0.95

Middle frontal, orbital 58/538 21, 65,−10 0.88

Inferior frontal, triangular 50/1,435 51, 44, 5 0.83

Superior frontal 104/2,266 −36, 62, 2 0.86

Putamen 25/597 −30,−19, 8 0.28

shown in Table 2. Compared to the alternative approach, the voxels

selected by our method achieves higher test correct ratio/prediction

accuracy. As indicated by the stability index, our results

yield solutions that more consistent and concentrated between

individuals. Meanwhile, the test accuracy stably increases across

experimental sessions and suggests heightened discrimination

between threat and safety in visual regions in acquisition compared

to habituation.

4. Discussion

We conduct numerical experiments on synthetic data and

commonly used public dataset to test and cross-validate our

proposed method. The results show that explicitly accounting for

stability/groupwise consistency during the model optimization can

mitigate some of the instability inherent in sparse methods. In

particular, using the mixed l1 and l2 norm as a joint optimization

criterion allows pooling data from multiple subjects and can

lead to solutions that are concentrated in a few brain regions

between different individuals. The number of selected candidate

features is allowed to be much larger when incorporating group

structure, which allows us a more global search among brain

regions. Introducing groupwise regularization as an additional

optimization criterionmay offer promise for future methodological

developments in the analysis of small-sample fMRI dataset.

These results are in line with recent predictive coding models

(Rao and Ballard, 1999; Friston, 2005; Spratling, 2008), in which

separate populations of neurons within a cortical region code the

current estimate of sensory causes (predictions) and the mismatch

between this estimate and incoming sensory signals (prediction

error). Here, we did not manipulate the prior expectation of the

occurrence or omission of stimuli (grating stimuli were present

in all trials), but the likelihood of the stimulus having a certain
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FIGURE 8

Voting rates changes with di�erent Nsel, in the proportion of the vote across nine subjects. The results are for acquisition for demonstration purposes

only.

FIGURE 9

EVR results of nine subjects of alternative approach on real fMRI data.

feature (i.e., orientation) and it’s followed by an electric shock.

Thus, expectancy about the events during CS− (safe outcome) vs.

CS+ (shock will occur after a fixed time interval) is learned as the

experimental session progresses.

Finally the proposed method also resulted in findings that

converge with other approaches, and with theoretical and

computational models or fear conditioning and object recognition.

Specifically, we found heightened discrimination between threat

and safety in visual regions in acquisition compared to habituation,

and we found increasing sparsification as fear learning progressed.

It is worthy to note that, the prediction accuracy (the correct

ratio on test set) may be significantly above chance, but far

from perfect. This indicates that the code contains some linearly

decodable information, but claims of linear separability may be

difficult to evaluate as it would require attributing the substantial

proportion of errors to limitations of the measurements (noise

and subsampling), rather than to a lack of linear separability of

the neuronal activity patterns. In the case of object perception,

the method proposed in this thesis resulted in more robust

and spatially coherent regions, illustrating its potential usefulness

and applicability to a wide range of questions in cognitive

neuroscience.
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TABLE 2 The stability index and the averaged test accuracy of our proposed method and alternative method across three experimental sessions,

habituation (HAB), acquisition (ACQ), and extinction (EXT), respectively.

Session Oalter. Oour R̄alter. R̄our

HAB 0.12 0.86 0.62 0.65

ACQ 0.20 0.87 0.65 0.69

EXT 0.22 0.87 0.70 0.73
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Introduction: In recent years, extensive research has been conducted on the

synchronous behavior of neural networks. It is found that the synchronization

ability of neurons is related to the performance of signal reception and

transmission between neurons, which in turn a�ects the function of the

organism. However, most of the existing synchronization methods are faced with

two di�culties, one is the structural parameter dependency, which limits the

promotion and application of synchronous methods in practical problems. The

other is the limited adaptability, that is, even when faced with the same control

tasks, for most of the existing control methods, the control parameters still need

to be retrained. To this end, the present study investigates the synchronization

problem of the fractional-order HindmarshRose (FOHR) neuronal models in

unknown dynamic environment.

Methods: Inspired by the human experience of knowledge acquiring,memorizing,

and application, a learning-based sliding mode control algorithm is proposed by

using the deterministic learning (DL) mechanism. Firstly, the unknown dynamics

of the FOHR system under unknown dynamic environment is locally accurately

identified and stored in the form of constant weight neural networks through

deterministic learning without dependency of the system parameters. Then,

based on the identified and stored system dynamics, the model-based and

relearning-based sliding mode controller are designed for similar as well as new

synchronization tasks, respectively.

Results: The synchronization process can be started quickly by recalling the

empirical dynamics of neurons. Therefore, fast synchronization e�ect is achieved

by reducing the online computing time. In addition, because of the convergence

of the identification and synchronization process, the control experience can

be constantly replenished and stored for reutilization, so as to improve the

synchronization speed and accuracy continuously.

Discussion: The thought of this article will also bring inspiration to the related

research in other fields.

KEYWORDS

fractional-order Hindmarsh-Rose system, synchronization control, sliding mode control,

deterministic learning, system identification
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1. Introduction

In recent years, the dynamic behavior of complex networks,

especially neural networks, has attracted extensive attention.

It is found that the performance of signal reception and

transmission between neurons affecting the functions of the

organism depends on the synchronization ability of neurons. The

most commonly mentioned neurological diseases such as Epileptic,

Parkinson’s, Alzheimer’s, autism, and schizophrenia, are closely

related to the synchronization ability of brain neurons (Yang

et al., 2021; Zeng et al., 2023). Precisely, it has been proved

that decreased synchronization can lead to neural disorders such

as schizophrenia, while increased synchronization abnormalities

may induce neurological diseases such Parkinson’s disease and

epilepsy (Uhlhaas et al., 2006). In addition, as presented in

Brown et al. (2004), the firing rate of neurons in the subthalamic

basement nucleus (STN) and the medial Globus Pallidus (GPI)

in Parkinson’s patients not only increased but also tended to

synchronize abnormally.

For these neuropathies mentioned above, electrical stimulation

method (Liu et al., 2019) was the most commonly used clinical

treatment method. The abnormal synchronization of neurons is

calibrated by adjusting the direction, frequency, and amplitude

of the stimulation current. However, for different neurological

diseases, how to choose or set optimal parameters of the stimulation

current is a difficult problem.

Considering that the process of information generation,

transmission, and decoding between neurons are closely related to

their complex discharge activities, it is of paramount significance

to simulate the electrical activity of neurons through mathematical

models. Thus, many research studies are conducted on differential

equation models to further analyze the influence of the parameter

variations on the neuronal electrophysiological processes and

firing activities. Among the various differential neuron models,

such as the Hodgin-Huxley (HH) (Hodgkin and Huxley, 1952),

FitzHugh-Nagumo (FHN) (Fitzhugh, 1961), Hindmarsh-Rose

(HR) (Hindmarsh et al., 1984) and Ermentrout (Ermentrout, 2014)

neuronal models, the HR neuronal model is the most commonly

used one for non-linear dynamic and synchronization analysis

(Parastesh et al., 2019; Liu et al., 2021; Remi et al., 2022).

The HR model possesses simple polynomial expression and

can accurately describe the process of signal transmission across

neurons. In Boaretto et al. (2018), the HR model was introduced to

study the dynamic mechanism of abnormal phase synchronization.

As discussed in Simo et al. (2021), the effect of the electromagnetic

on the HR model under weak electric environment was considered

to simulate the electrical activities and the synchronization process

of neurons. In Ding et al. (2022), the dynamics of fractional-order

memristor-coupled Hindmarsh-Rose neuron model considering

synaptic crosstalk was investigated. It revealed that there were

differences between the number and stability of equilibrium points

for different crosstalk strength parameters. As discussed in Li et al.

(2023), Fourier coefficients are introduced to investigate the effect

of electric field on vibrational resonance for signal detection in a

single neuron model and a bidirectionally coupled neuron model,

respectively. It was found that the periodic external electric field

of an appropriate frequency significantly enhances the vibrational

resonance, which indicate that the external electric field may

play a constructive role in the detection of weak signals in the

brain and neuronal systems. In addition, the Hopf bifurcation,

one of the typical non-linear dynamic behaviors was investigated

in a memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo

neurons with two time delays in Guo et al. (2023). It revealed that

the time delay in HR neurons has a greater effect on blocking the

synchronization than the time delay in FHN neuron.

Apart from the dynamic analysis using differential models,

a large number of electrophysiological experiments have been

conducted for the electrophysiological mechanism of abnormal

synchronization of neurons (Jia et al., 2012). Through biological

experiments given by Gu et al. (2014), it was found that the

discharge frequency of the neuronal system became faster with

the increase of potassium (K+) concentration. Furthermore, with

the variation of the concentration of potassium, the neuronal

system showed different firing models, which was consistent with

the dynamic performance of HR model under external stimulus

current. In Jia et al. (2017), the authors conducted corresponding

biological experiments on the calcium ion (Ca2+) of neuron cells.

Similar results have been achieved, that is, with the change of

calcium concentration in a certain range, the neurons exhibit

single-cycle, double-cycle, and chaotic electrical activity. In , it

indicates that by adjusting the concentration of calcium ions

(Ca2+) of neurons, the corresponding inter spike interval (ISI)

demonstrates similar features with the dynamic behaviors of the

HR model with the variation of system parameters. These results

further demonstrate that it is feasible and effective to analyze the

electrical activity of neurons according to the non-linear dynamics

of the HR model with different system parameters, such as the

external stimulating current and other related parameters.

Recently, increasing attention has been focused on fractional-

order (FO) calculus (Rihan et al., 2019; Wang et al., 2020;

Jin et al., 2021), which is also very popular in the field of

neuroscience (Dong et al., 2014). It was found that compared

with the integer order model, the fractional neuron models

reveal more advantages, such as the FO neuron models can

describe the physical memory and genetics more accurately and

can illustrate the biological characteristics more correctly in the

presence of noise (Dong et al., 2014). Moreover, the stimulating

dynamical features show that many neural computing features

can be implemented in FO systems, which enriches the functional

neuronal mechanisms. Therefore, the neural dynamic analysis

method based on fractional HR model makes the model-based

modeling of abnormal synchronization of neurons step up to a

new stage.

In addition to the mechanism analysis based on the model

and biological experiments, the synchronization control between

neurons is also one of the core problems attracting people’s

attention. Over the past few decades, various control techniques,

including neural network control (Motallebzadeh et al., 2012),

feedback control (Semenov and Fradkov, 2021), adaptive control

(Deng et al., 2006), fuzzy control (Nirvin et al., 2021), and sliding

mode control (Chen et al., 2012; Vafaei et al., 2019), have been

proposed and applied to the control and synchronization of the

HR model as well as the FOHR models. As presented in Rajagopal

et al. (2019), a feedback synchronization controller was designed
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for the fractional-order HR neuronal model, whose gain was

limited to some parameter conditions. The authors in Giresse et

al. (2019) designed controllers for the synchronized behaviors of

coupled FOEHR neurons. Among these methods, sliding mode

control and adaptive control techniques have attracted much

attention due to their positive features such as guaranteed stability,

strong robustness against parameter variations, and simplicity

in implementation (Meng et al., 2020). As presented in Che et

al. (2010), for unidirectional complete synchronization of HR

neurons, a sliding mode control scheme with additional conditions

was considered. However, the chattering phenomena is the main

problem faced by the sliding mode control methods. Thus, many

research studies are conducted to reduce the chattering problem by

using different sliding mode surfaces. However, most of the results

show that there is a tradeoff between control error and the control

smoothness. In addition to the problem mentioned above, most

of these control methods depend heavily on the system models.

For most of the actual dynamic systems, the system models have

some uncertainty because of the influence of dynamic environment

(Rabah et al., 2017; Xu et al., 2020). How to avoid the influence

of system uncertainty and disturbance on the control system

performance is of great significance for the synchronization control

of chaotic system. As discussed in Liu et al. (2021), the adaptive

radial basis function (RBF) neural network was introduced for the

identification of the unknown system dynamics of the HR model.

However, the training time and computation cost of neural network

observer inevitably increase greatly.

In Wang and Hill (2018), Wang proposed a deterministic

learning (DL) theory mainly discussing the problem of knowledge

learning and reutilization of non-linear dynamic systems under

unknown dynamic environment by using the RBF neural networks.

It has proved that for any period or period-like system input, the

persistence of excitation (PE) condition can be satisfied and the

precise convergence of the neural network weights can be achieved.

With the development of deterministic learning theory, it was

further applied for the problem of dynamic pattern recognition

(Lin et al., 2019), period-doubling bifurcation detection (Chen and

Wang, 2016), and intelligent control (Zhang et al., 2023). The

DL algorithm emphasizes the preservation and reutilization of

system dynamic knowledge. When faced with similar recognition

or control tasks, it can quickly recall the identified and stored

system knowledge so as to reduce the online computation time.

Inspired by the above discussion, the dynamic characteristics

of the HR model, especially the FOHR neuron model under

unknown dynamic environment is considered in this study and the

model-based and learning-based sliding mode control algorithm

are proposed by using the deterministic learning (DL) mechanism.

Since the system dynamics of the slave system is unknown as

considered in this study, in order to achieve ideal robustness effect

of the control system, the traditional sliding mode control method

usually sets too large gain parameters to overcome the system

uncertainties, which in turn leads to serious chattering problem. In

our study, the sliding mode gain parameter is effectively reduced

by compensating the system dynamics with locally accurate

system identification. First, the unknown dynamics of the FOHR

system under unknown dynamic environment is locally accurately

identified and stored in the form of constant weight neural

networks through deterministic learning without dependency of

the system parameters. Then, the model-based and learning-based

sliding mode controllers based on the identified and stored system

dynamics are designed for the similar and new synchronization

tasks, respectively. Therefore, the fast synchronization effect is

achieved through recalling the empirical dynamics of neurons.

Moreover, the control experience can be constantly replenished

and stored for reutilization due to the convergence of the

identification and synchronization process, which help improves

the synchronization speed and accuracy continuously.

2. Methods and innovations

In this section, the method proposed in this study and the

main innovations are briefly introduced. Aiming at the problem

of abnormal synchronization of neurons under unknown dynamic

environment, the sliding-mode control method is introduced.

Different from traditional sliding-mode control policy, the human

experience of knowledge acquisition, storage, and re-application

is introduced to the control process of our study. Precisely, the

unknown dynamic information of the neuron system is identified

and stored according to the deterministic learning mechanism by

using the RBF neural network. The dynamic information is further

applied to the controller to achieve more accurate synchronization

effect, which is called the model-based sliding-mode control.

Considering the case that the stored dynamic information is limited

and the unknown slave system can not be well matched, the

relearning-based sliding-mode control is proposed. During this

propose, the identified and control experience can be updated

and supplemented to the dynamic patter database, which can

provide experience for new and unfamiliar synchronization tasks.

Thus, the online computing time is shortened, and a better

synchronization effect can be achieved. In addition, the problem

of excessive chattering faced by traditional sliding mode control

method can be solved skillfully by selection small sliding-mode gain

by using experiential information. The flowchart of the method

is available in Figure 1. The emphasis of our study is not only

on the effect of synchronization but also on the efficient storage

and reutilization of the experience knowledge in the process of

neural system synchronization, which is the essence of intelligent

learning and intelligent control and not covered by most existing

research studies.

3. Preliminary knowledge

3.1. Fractional-order definition and basic
properties

The fractional order (FO) calculus has a very longmathematical

history and has gained extensive attention in the areas of science

and engineering with the advent of high computational devices

recent years. The FO calculus can be seen as the comprehensive

and generalized version of the conventional integer-order calculus,

which encompassed both fractional and integer-order differential

and integral equations (Dar et al., 2022). Correspondingly, the

FO derivative possesses complex or real arbitrary order, for which

various mathematical operators have been proposed. Among those
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FIGURE 1

Flowchart of the method.

operators, the Grunwald-Letnikov (GL) (Huang, 2016), Liouvill (L)

(Huang, 2016), Riemamn-Liouville (RL) (Efe, 2009), and Caputo

(C) (Gorenflo and Mainardi, 1997) are most commonly used.

Compared with the L, RL, and C operators, the GL operator

pays more attention to the numerical calculation of fractional-

order differentiation. Since the fractional derivative describes

memory and hereditary properties in such an appropriate manner

that it demonstrates much advantages in system representation

compared to the integer-order models, the GL-based fractional

order definition (Huang, 2016) is introduced in this study:

G
aD

q
t f (t) =

dqf (t)

d(t − a)q
= lim

h→0
h−q

n
∑

r=0

(−1)r

(

q

r

)

f (t − rh), (1)

where, G means the GL based fractional calculus, nh = t − a,

if q < 0, the Equation (1) is the G-L based fractional integral

definition; on the contrary, if q > 0, the Equation (1) is the G-L

based differential definition.

3.2. Properties of fractional calculus

The main and commonly used properties of fractional

derivatives are given as follows:

1. For q = n, where n is an integer, the operation 0D
q
t f (t)

gives the same result as classical differentiation of integer

order n. Meanwhile, the fractional derivative degenerate to

integer derivative.

2. For q = 0, the operation becomes the identity operator given as

0D
q
t f (t) = f (t). (2)

3. The additive index law (semigroup property)

0D
α
t 0D

β
t f (t) = 0D

β
t 0D

α
t f (t) = 0D

α+β
t f (t) (3)

holds under some reasonable constraints on the function f (t).

In particular, there is

D
q
t (D

1−q
t f (t)) = D1

t f (t) =
d

dt
f (t), 0 < q < 1. (4)

3.3. The deterministic learning theory

In 2009, the deterministic learning (DL) theory was proposed

for the problem of learning in uncertain dynamic environments

(Wang et al., 2009). It mainly focuses on the dynamic process of

knowledge learning, representation, and utilization in unknown

dynamic environment. With deterministic learning, fundamental

knowledge on system dynamics can be accumulated, stored, and

represented by constant RBF networks in a deterministic manner.

Moreover, in a scenario whereby an adaptive neural network (NN)

controller achieves tracking of a periodic or periodic-like reference

orbit, the deterministic learning mechanism is shown capable of

achieving closed-loop identification of partial system dynamics

during tracking control.

In detail, for any unknown continuous non-linear function

f (X) :�X → R with recurrent system trajectories ψ(x0), in which
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�X ⊂ Rq is a compact set, an ideal constant weight vector W∗ of

the RBF networks exists, that is, f (X) = W∗Tφ(X)+ ε∗, ∀X ∈ �X ,

where ε∗ > 0 is the approximation error andX ∈ �X ⊂ Rq denotes

the input vector of the radial basic function networks (RBFNs),

W∗ = [w∗
1 , · · · ,w

∗
n]

T ∈ RN is the ideal RBFNs weight withN being

the number of neurons. φ(X) = [ϕ1(‖X−c1‖), · · · ,ϕn(‖X−cn‖)]T

is the regression vector of RBFs with ϕi(·) being one of the radial

basic function, and ci is the center of neurons distributed in the

input space. For the radial basic function, the Gaussian function is

one of themost commonly used kernel RBFs given as ϕi(‖X−ci‖) =

exp[−(X−ci)
T (X−ci)

η2i
], in which ηi is the adjacent width of the radial

base kernel. It satisfies the Schoenberg theorem (Schoenberg, 1938)

and is localized basis function in the sense that ϕi(‖X− ci‖) → 0 as

‖X‖ → ∞. All these properties of the Gaussian function provide

a rich source of RBFs that are suitable for interpolation of data

in Euclidean spaces. The conditional non-singularity property is

essential in proving the partial persistent excitation (PE) condition

of RBF networks, which is the key to the accurate identification

ability for the deterministic learning theory.

4. Dynamic identification of the
fractional-order HR model via
deterministic learning

4.1. The fractional-order HR model

With the development of neuroscience, various differential

models have been proposed for describing the neuron system,

including the Hodgin-Huxley (HH) model, the FitzHugh-Nagumo

(FHN) model, the Hindmarsh-Rose (HR) model, and the

Ermentrout neuronal model. Among those models, the HR model,

possessing the simplest system form, can accurately describe the

signal transmission process across the nerve fiber membrane. Thus,

the HR model is commonly used for neuron dynamic describing

and analysis. The classical three-variable HR neuronal model can

be described by the following equations:

ẋ = y− ax3 + bx2 − z + I

ẏ = c− dx2 − y,

ż = r
(

s0(x− q0)− z
)

(5)

where x is the membrane potential, y is the recovery variable

standing for the gating dynamics of the potassium (K+) channel,

and z represents the adaptation current corresponding to the

dynamics of calcium (Ca2+) channel. Moreover, the model

parameters a, b, c, r, and s0 are positive constants, while the

parameter q0 stands for the resting potential, and I represents the

external stimulation input.

The FO differential model has more advantages in neuronal

dynamic description compared to that of the integer-order model.

In addition, the FO system has a wider stability region. Thus, in this

study, the following fractional order HR (FOHR) neuronal model

is introduced, that is,

D
q
t x = y− ax3 + bx2 − z + I

D
q
t y = c− dx2 − y,

D
q
t z = r(s0(x− q0)− z)

(6)

in which, the operator D
q
t represents the GL fractional derivative as

shown in Equation (1).

The state variables and model parameters of the FOHR

model possess the same physical meaning with the integer-order

HR model. Through bifurcation analysis under different values

of the external stimulation input I and fractional order q, the

FOHR model demonstrates a wealth of dynamic behaviors, such

as the subthreshold oscillations, spiking, bursting as well as

chaotic behaviors.

In detail, when taking the fractional order q = 1, the FOHR

model degenerates to an integer-order HR model. By setting q = 1

and the corresponding system parameters a = 1.0, b = 3.0, c =
1.0, d = 6.0, r = 0.013, s = 4.0, and q0 = −1.56, diverse non-

linear dynamics under different external stimulus I of theHRmodel

are generated. By changing the control parameter I, the membrane

potential x presents different state characteristics, which can be

seen from Figure 2, in which the initial system state (x0, y0, z0) is

set as (0.1, 1.0, 0.2).

Precisely, when setting I = 1.5, the neuron produces

slow-peak regular spiking (single-cycle spiking) state as given in

Figure 2A. Gradually increasing I to 1.8, 2.3, 2.8, the HR system

exhibits regular bursting state, shown as the period-2, period-

3, and period-4 bursting behaviors, respectively, which can be

seen from Figures 2B–D. When I increased to 3.2, the state x of

the HR system becomes chaotic as shown in Figure 2E. Further

increasing I to 3.58, the system regresses to a fast single-cycle

spiking state as demonstrated in Figure 2F, in which the period

interval is significantly shorter and the rate of the dynamic

activity is much faster than that of the interval demonstrate

in Figure 2A.

4.2. The dynamic behavior of the FOHR
model under fractional order q

Except for the non-linear behavior of the time response of the

membrane potential x, the inter-spike interval (ISI) (Rabinovich

and Abarbanel, 1998) is one of most commonly used physiological

indicators, which carries important information of neuronal firing.

In the following discussion, the bifurcation diagram of the peak

membrane potential xmax and the ISI sequence of the FOHR neural

system with different bifurcation parameters are considered.

First, the dynamic non-linearity of the FOHR model under

different fractional orders q with the external excitation I = 3

is considered. As shown in Figure 3A, the bifurcation diagram of

the ISI sequence exhibits a comb-shaped region with the increase

of fractional order q. Correspondingly, the bifurcation diagram

of the peak of the membrane potential x (denoted as xmax)

demonstrates that the discharge characteristics of the system varies

more obviously according to the fractional order. That is, with the

increase of the fractional order q within a certain range, the system

as a whole shows the tendency of periodic decline, and the periodic

bursting phenomenon occurs as demonstrated in Figure 3B. In

other words, the firing behavior of neurons becomes more complex

and unstable with the increase of the fractional order of the

neuronal system, exhibiting richer dynamic activity characteristics.
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FIGURE 2

Time response of membrane potential x with di�erent parameters I. (A) I = 1.5. (B) I = 1.8. (C) I = 2.3. (D) I = 2.8. (E) I = 3.2. (F) I = 3.58.

4.3. The dynamic behavior of the FOHR
model under external excitation I

Second, take the external excitation I as the control parameter

for analyzing the dynamic behaviors of the FOHR model with a

certain fractional order. The parameter I is taken within the interval

[1.2, 4.3] and r = 0.013.

The simulation results of the bifurcation diagram of the

ISI sequence (shown in Figure 4) exhibit that the dynamic

characteristics of the FOHR system become more complex with
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FIGURE 3

Bifurcation diagram of the ISI and the xmax sequence with parameter q. (A) bifurcation diagram of ISI. (B) bifurcation diagram of xmax.

the increase of I. Taking the integer order as an example (given

in Figure 4A), the ISI sequence experiences the process of period-2

bifurcation to chaos and then back to single period by the period-

doubling bifurcation process. Correspondingly, the ISI sequence of

the 0.98-order FOHR model indicates similar discharge behaviors

with that of the integer-order model, but the chaos duration is

reduced. In addition, from the amplitude of the ISI sequence, it can

be seen that the effect of external stimulus current on the system

dynamics was much obvious.

According to the bifurcation diagram of the xmax sequence

shown in Figure 5, the dynamical behaviors correspond to the same

fractional order has similar and abundant dynamic characteristics

with that of the ISI sequence. In addition, some hidden information

contained in the integer order can be clearly demonstrated in

the 0.98-order HR model as shown in Figure 5B, such as the

period-4 cluster bursting under I = 3.0, the period-5 cluster

discharge when I = 3.3, the comb-shaped region and the chaotic

region. If a further decrease in the fractional order q to 0.96 and

0.95 as can be seen from Figures 5C, D, the dynamic structure

of the FOHR system changes qualitatively. Precisely, with the

increase of parameter I, the dynamic behavior of the FOHR model

becomes more complex. The structure and stability of the system is

influenced correspondingly.

4.4. The dynamic behavior of the FOHR
model under parameter r

To further analyze the dynamic characteristics of the FOHR

model, another important parameter r which relates to the

calcium (Ca2+) concentration and significant to many neurological

disorders, is considered as the control parameter in this part. All the

other parameters are kept as the same as mentioned above, while

parameter I is fixed to 3.5. When ranging the parameter r from

0.0015 to 0.06, a variety of dynamic behaviors of the FOHR neuron

system are presented. As shown in Figures 6, 7, the bifurcation

diagram of the ISI sequence and the xmax sequence demonstrate

similar non-linear characteristics. Moreover, compared to the

integer-order HR model, the 0.98-order HR model presents a more

detailed and clear dynamic process.

In conclusion, the dynamic simulations given above suggest

that compared to the integer-order HR model, the fractional-order

HR model can describe the numerous computational features and

the non-linear dynamics of the neuron model more accurately,

which help enrich the functional neuron mechanisms and further

ensures more accurate dynamic analysis. Thus, it is necessary and

important to introduce the FOHR model, and the FOHR model

with fractional order q = 0.98 is taken into consideration in the

following study.

5. Identification of the FOHR model via
deterministic learning

The above numerical simulations are obtained based on the

assumption that the parameters of neurons are known, which is

also commonly used in most related research studies. However,

it is too ideal for most practical neuron systems. More precisely,

the neuron parameters are actually unknown and vary dynamically

with the dynamic environment. Therefore, how to identify the non-

linear dynamics of the neuronal model under unknown dynamic

environment is essential for comprehensive understanding of the

non-linear characteristics of the actual HR model. This will be the

focus of the discussion below.

To identify the unknown system dynamics of the fractional

order HR model, the RBF neural network is considered:

fi(x;µ) = ŴT
ξi
φξi (x), (7)

where x ∈ �f ⊂ Rn is the neural networks (NNs) input, Ŵξ =
[Ŵξ1 , · · · , Ŵξn ]

T is the estimate of the ideal weight matrix, and

φξ (x) = [ϕξ1 (x), · · · ,ϕξn (x)]
T is chosen as a vector of Gaussian

functions, that is given as

ϕξi (x) = exp(
−‖X − ci‖

η2i
), i = 1, · · · ,Ni, (8)
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FIGURE 4

Bifurcation diagram of the ISI sequence with parameter I. (A) q = 1. (B) q = 0.98. (C) q = 0.96. (D) q = 0.95.

where ci denotes the center vector of the ith basis function and

ηi is the adjacent width of the basis function, (·)ξ represents

the neurons that was distributed close to the system trajectory,

which plays the main role during the process of the neuronal

dynamic identification.

Since the input of the RBFNN possesses regression property,

the RBF NNs can locally accurately approximate the non-linear

function along the system trajectory, that is,

fi(x;µ) = W∗T
ξi
ϕξi (x)+ εi1 , (9)

where W∗
ξi
is the optimal weights vector and εi1 is the bounded

identification error close to zero.

The dynamic investigations and simulations of the HR model

discussed above have revealed the regression characteristics of the

neuron system. It is the regression property of the HR model that

reminds us of the deterministic learning theory, which emphasizes

that almost any period or period-like (recurrent) NN input can

lead to the satisfaction of the partial persistent excitation condition

(PE) along the system trajectory by using the localized RBFNs.

Furthermore, the identified system dynamics can be stored due to

the convergence of the NN weights; that is,

W̄i = meant∈[ta ,tb]Ŵi(t), (10)

where ta > tb > 0 is the time segment referring to a piece of

time segment within the convergence process of the NN weights

and "mean" is the arithmetic mean. Then, the unknown system

dynamics can be accurately identified and stored by the constant

vector of neural networks, giving as

fi(x;µ) = W̄T
ξi
ϕξi (x)+ εi2 , (11)

where εi2 = εi1 − W̃T
ξi
ϕξi (x) is the practical approximation error of

the system dynamics by using the constant NN vector W̄T
ξi
ϕξi with

W̃i = Ŵi −W∗
i being a small positive number approaching zero.

For different dynamic external excitation I of the FOHR

system under the given fractional order, different state trajectories

are generated. Based on the approximate process by using

the DL method, accurate identification of unknown system

dynamics fi(x;µ) are obtained and stored as constant RBF

neural networks W̄T
ξ iϕ

T
ξ i. Then, a certain number of constant

RBF neural networks compose a pattern base which denoted as

χ = {χk = W̄kT
i | k = 1, · · · ,K}.
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FIGURE 5

Bifurcation diagram of the xmax sequence with parameter I. (A) q = 1. (B) q = 0.98. (C) q = 0.96. (D) q = 0.95.

FIGURE 6

Bifurcation diagram of the ISI sequence with parameter r. (A) q = 1. (B) q = 0.98. (C) q = 0.96.

Remark 1: The process of system dynamics identification and

storage of the FOHR system in unknown dynamic environment

will simulate the way of human learning and memorizing

new knowledge. The created pattern base, that is, the memory

in the mind of knowledge, can be directly invoked in the

control process.
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FIGURE 7

Bifurcation diagram of the xmax sequence with parameter r. (A) q = 1. (B) q = 0.98. (C) q = 0.96.

6. Sliding mode control of the FOHR
system by using deterministic learning

6.1. Problem description

In this sub-section, the model-based sliding mode control

problem of two FOHR neuronal models is considered. The two

neurons interconnect in a master-slave configuration. The master

FOHR neuronal model is given as follows:

D
q
t xm,1 = xm,2 − ax3m,1 + bx2m,1 − xm,3 + I,

D
q
t xm,2 = cm − dx2m,1 − xm,2,

D
q
t xm,3 = r(s0(xm,1 − q0)− xm,3),

(12)

and the slave FOHR neuronal model under control is denoted by

D
q
t xs,1 = xs,2 − ax3s,1 + bx2s,1 − xs,3 + I + d1 + u1,

D
q
t xs,2 = cs − dx2s,1 − xs,2 + d2 + u2,

D
q
t xs,3 = r(s0(xs,1 − q0)− xs,3)+ d3 + u3,

(13)

where di, i = 1, 2, 3 represents the bounded unknown external

disturbance; that is, |di| ≤ d̄i, i = 1, 2, 3 and the terms ui and

i = 1, 2, 3 denote the control inputs of the state variables.

For the convenience of discussion, the simplified master-slave

neuron system models are presented as follows:

D
q
t xm = fm(xm),

D
q
t xs = fs(xs)+ di + ui,

(14)

where xm = [xm,1, xm,2, xm,3]
T and xs = [xs,1, xs,2, xs,3]

T are the

state vectors of the master and slave neuronal system, respectively.

fm represents the known system dynamics vectors of the master

FOHR model. Correspondingly, fs represents the unknown system

dynamics vectors of the slave FOHR model. Precisely, fs is smooth,

but unknown non-linear dynamics of the slave system. di and ui
have the same meaning as the formula given in Equation (13). The

main task in this part is to realize the synchronization of themaster-

slave system with proper amount of calculation and correct the

synchronization error by adjusting the parameters.

6.2. Model-based sliding mode control of
the FOHR system

The synchronization of the master-slave neuronal system is

to drive the slave neuron system to track the state as well as the

trajectory of the master system under certain external disturbance

in unknown dynamic environment by properly designed controller.

In order to achieve ideal stability effect of the control system, the

gain parameters of the traditional sliding mode control algorithm

are usually set too large, which leads to serious chattering problem.

In this part, the obtained system dynamics W̄i stored in the

pattern base χ is applied for the sliding mode control to achieve

fast synchronization performance for the master-slave neuron

system. In addition, the accurate modeling of the system dynamics

help reduce the synchronization error of the master-slave system

without large gain, thus reducing the chattering caused by sliding

mode gain.

The synchronization error of the master-slave FOHR system is

defined as follows;

ei = xs,i − xm,i,

D
q
t ei = fs,i(x)+ di + µi − fm,i(x),

(15)

where i = 1, 2, 3. To achieve fast synchronization of the master-

slave FOHR system, the identified and stored model-based sliding

mode control method is proposed. First, the fractional order

proportional integral sliding surface is designed as follows:

si = ciD
1−q
t ei + ei,

D
q
t si = ciei + D

q
t ei.

(16)

where si, (i = 1, 2, 3) is the fractional order proportional integral

sliding surface. The derivative of the sliding mode surface can be

achieved according to the properties of fractional order models

discussed in Section 3.2, that is,

ṡi = ciei + fs,i(x)+ di + ui − fm,i(x), (17)

where the corresponding constant rate of convergence is

designed as

ṡi = −ηisgn(si). (18)
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The following sliding mode control rate is designed according

to the Equations (17) and (18)

µi = −ηisgn(si)− ciei + fm,i(x)− fs,i(x). (19)

For the unknown system dynamics fm,i(x) of the slave system, the

rapid recognition process is introduced, that is,

˙̄xki = −bi(x̄
k
i − xi)+ W̄kT

i ϕi(x), k = 1, · · · ,K, (20)

in which x̄ki represents the state of the dynamic model and

the corresponding dynamic information of the system has been

identified and stored in the pattern base χ as mentioned above,

xi is the ith state of the unknown slave system, and bi > 0 is a

design parameter.

For the unknown slave FOHR system, the recognition error

system is given as

˙̃xki = −bix̃
k
i + (W̄kT

i ϕi(x)− fs,i(x)), i = 1, · · · , n, (21)

where x̃ki = x̄ki − xi is the state tracking error between the empirical

pattern stored in the base and the unknown slave system.

Commonly, without identifying the unknown dynamics of the

unknown slave FOHR system, the differences between the dynamic

systems stored in the pattern base and the slave pattern denoted as

|W̄kT
i ϕi(x)− fs,i(x)| shown in Equation (21) is unavailable for direct

computation. However, as presented inWang et al. (2009), the state

tracking error |x̃ki | can be explicitly measured.

For any unknown slave FOHR system with regression system

trajectory ϕ(xd0), the tracking error |x̃ki | can be achieved within

finite time by properly selecting the design parameters; that is,

by introducing the average L1-norm based dynamic similarity

measure, that is given as

‖x̃ki (t)‖1 =
1

T

∫ t+T

t
|x̃ki (τ )|dτ , (22)

where T > 0 is a design parameter, and the difference

between system dynamics can be explicitly measured. Based on

the similarity measure, the smallest tracking error between certain

unknown slave system and the system identified as well as stored in

the pattern base χ can be obtained, that is

x0i = min(‖x̃ki ‖, k = 1, · · · ,m), (23)

FIGURE 8

Non-linear dynamic identification of the 0.98-order HR system with I = 1.5 (χ1). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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in which m denotes the number of models stored in the pattern

base χ .

Remark 2: According to the recognition process discussed

above, the dynamic differences between the slave system and those

systems stored in the pattern base can be accurately measured

without identifying of the dynamic information of the slave system.

This process is therefore referred to as rapid recognition. In

particular, the most similar dynamic pattern χk0 can be selected

from the pattern base according to the minimum recognition error,

and the dynamic information of the selected model denoted as

W̄
k0T
i can be used to replace the unknown dynamics fs,i(x) of the

slave FOHR model in the following control process.

Based on the recognition process, the unknown system

dynamics fs,i(x) of the slave system can be locally accurately

identified as well as stored by the constant weight NNs along the

system trajectory, that is,

fs,i(x) = W̄
k0T
i ϕi(x)+ εi2 . (24)

Substituting Equation (24) into Equation (19), the following

control rate is obtained:

ui = −ηisgn(si)− ciei + fm,i(x)− W̄
k0T
i ϕi(x), (25)

where W̄
k0T
i ϕi(x) denotes the most similar dynamic model

recognized from the pattern base to the unknown slave system by

using the localized RBFNNs located close to the system trajectory.

Remark 3: The mode-based sliding mode control is designed

to fit the unknown dynamics of the slave system quickly by

calling the acquired dynamic information of the neurons, and the

experience is applied to the control process. During this process,

the generalization ability of the rapid recognition mechanism based

on deterministic learning provides the right decisions for invoking

right dynamic patterns for better control performance. Put it

another way, the empirical dynamic information learned and stored

in the pattern base is so sufficiently utilized that the on-line control

time is reduced and the fast synchronization is achieved. Compared

with the traditional sliding mode control method, the model based

sliding mode control algorithm can effectively reduce the sliding

mode gain so as to reduce the chattering problem of the system.

FIGURE 9

Non-linear dynamic identification of the 0.98-order HR system with I = 2.5 (χ3). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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6.3. Stability analysis

To verify the stability of the master-slave synchronization

control system, consider the following Lyapunov

function candidate:

Vi =
1

2
s2i . (26)

The derivative of V is

V̇i = si ṡi. (27)

By taking the differential equation of the sliding surface given

in Equation (17) and the sliding mode rate given in Equation (25)

to Equation (27), we have

V̇i = si(ciei + fs,i(x)+ di + ui − fm,i(x)),

= si(fs,i(x)+ di − ηisgn(si)− W̄
k0T
i ϕi(x)).

= si(εi2 + di − ηisgn(si)),

(28)

as shown in Equation (28), the external disturbance di and the

identification error εi2 have an upper bound. Therefore, to ensure

that the function Vi is negative definite, just need to set appropriate

slidingmode gain ηi to make the equation ηi > εi2+di work, which

will further ensure the convergence of synchronization error.

6.4. Relearning-based sliding mode control
of the master-slave FOHR system

As discussed above, the robustness and generalization ability

of the recognition system are greatly related to the richness of

the patterns in the dynamic pattern database. When considering

the condition that there is no ideal similar dynamic pattern in

the pattern base for the unknown slave system, that is,even if the

smallest tracking error exists, the corresponding constant system

dynamics W̄
k0T
i ϕi(x) utilized in the control rate may result in large

synchronization error and affects the stability and convergence of

the control process. This analysis suggests that it is necessary to

further explore how to improve the synchronization effect under

limited off-line pattern base.

In order to solve the above problems to ensure a stable and

rapid control effect, further identification of the unknown slave

system is considered. Based on the selected dynamics W̄
k0T
i ϕi(x)

according to the smallest recognition error, the improved control

FIGURE 10

Non-linear dynamic identification of the 0.98-order HR system with I = 3.6 (χ3). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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rate is proposed below:

ui = −ηisgn(si)− ciei + fm,i(x)− ŴT
i ϕi(x),

ui(0) = −ηisgn(si)− ciei + fm,i(x)− W̄
k0T
i ϕi(x).

(29)

Based on the Equation (29) and Equation (17), the time

derivative of the sliding mode variable is given as

ṡi = −W̃T
i ϕi(x)+ εi − ηisgn(si)+ di, (30)

where −W̃T
i ϕi(x) = fs,i(x) − ŴT

i ϕi(x), |di(t)| ≤ Di, and |εi| ≤ ε̄

are external excitation and identification error with upper bound,

respectively. For convenience of presentation, define Di + ε̄i = κi,

the derivation of the sliding mode surface is given as follows:

ṡi = −W̃i
T
ϕi(x)− ηisgn(si)+ κi. (31)

In addition, the NN adaptive update law of the sliding mode

control is designed as

˙̂Wi =
˙̃Wi = Ŵiϕi(x)si − σiŴi|si|Ŵi, (32)

where Ŵi and σi are positive adjustable parameters. Since κi = Di+
ε̄, the synchronization error is precisely related to the identification

accuracy; that is, the higher the identification accuracy of the

unknown slave system, the better the synchronization effect of the

master-slave neuronal system.

Theorem 1 Consider the master-slaver neuron FOHR system

as shown in Equation (14), the learning-based controller Equation

(29), and the NN weight updating law Equation (32). For initial

condition xd(0) which generates the recurrent orbit ϕd(x0), and

with corresponding initial condition x(0) selected in a close vicinity

of the recurrent orbit, the control error of the master-slave system

described by Equation (15) converges exponentially to a small

neighborhood around zero.

Proof : For the sliding mode-based control system, consider the

following Lyapunov function:

V =
1

2
s2i +

1

2
W̃T

i Ŵ
−1W̃i. (33)

The derivative of V is

V̇i = si ṡi + W̃T
i Ŵ

−1
i

˙̃Wi. (34)

FIGURE 11

Non-linear dynamic identification of the 0.98-order HR system with I = 4 (χ4). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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By introducing the designed sliding mode surface and the

adaptive update rate equation, there is,

V̇i = si(−W̃T
i ϕi(x)− ηisgn(si)+ κi)+ W̃T

i Ŵ
−1
i (Ŵiϕi(x)si

− σiŴi|si|Ŵi),

= siκi − siηisgn(si)− σiW̃T
i |si|Ŵi,

≤ |si|(κi − ηi − σiW̃T
i Ŵi),

(35)

in which,

−σiW̃T
i Ŵi ≤ −σi‖W̃i‖2 + σi‖W̃i‖‖W∗

i ‖,

≤ −
σi

2
‖W̃i‖2 +

σi

2
‖ ¯̄Wi‖2,

(36)

with ¯̄Wi being the upper bound of the ideal identification NN

weightW∗
i . Thus, it follows that

V̇i ≤ |si|(κi − ηi −
σi

2
‖W̃i‖2 +

σi

2
‖ ¯̄Wi‖2). (37)

It is clear that V̇ is negative definite when the following

conditions are met:

|ηi| >
σi

2
‖ ¯̄Wi‖2 + κi or ‖W̃i‖ >

σi

2
‖ ¯̄Wi‖ +

√

2κi

σi
. (38)

Since the ideal identification NN weight W∗
i , the external

excitation di and the estimate error εi are all upper bounded;

therefore, all signals in a closed-loop control system remain

bounded, including the estimate NN weight Ŵi and the sliding

mode variable si.

In addition, to the convergence of the slidingmode variable, the

following Lyapunov function is given as

V =
1

2
s2i . (39)

The corresponding derivative is given as

V̇i = si ṡi,

= si(−W̃T
i ϕi(x)− ηisgn(si)+ di + εi),

≤ −|si|(ηi + W̃T
i ϕi(x)− κi).

(40)

Considering that the Gauss function ϕi(x) and −W̃T
i ϕi(x) + κi

are both bounded, when the gain ηi satisfies the condition that

ηi > −W̃T
i ϕi(x)+ κi, there is

V̇i ≤ −γi|si| = −γi
√

Vi, (41)

where γi = ηi + W̃T
i ϕi(x) − κi. As long as the parameter

ηi is reasonably designed, the convergence of the tracking error

FIGURE 12

Synchronization of the master-slave neuron system. (A) Synchronization of x. (B) Synchronization of z. (C) Synchronization error of x.

(D) Synchronization error of z. (E) Synchronization error of x, y, z.
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is ensured, and the sliding mode variable do converge to some

neighborhood of zero. In addition, the size of the convergence

neighborhood depends on the control parameter; that is, by

properly design the control parameters, ideal synchronization

control performance can be achieved.

Remark 4: According to the relearning-based sliding mode

control algorithm given above, if there is no dynamic pattern that

is sufficiently similar to the unknown slave system in the pattern

base χ , the on-line identification process for the unknown slave

system is started. Different from the initial identification process,

the initial weights of the neural network during the identification

process for unfamiliar synchronization objects are taken from

the constant weight of the dynamic system corresponding to

the minimum recognition error rather than iterating from zero.

Thus, the learned and stored dynamic information help reduce

the on-line identification time. Additionally, the identified dynamic

information of the slave system will be restored in the form of

constant weights and can further utilized to new synchronization

problems. This process will help enrich the empirical dynamics

information of the pattern base to improve the accuracy and

efficiency of the new synchronization tasks.

7. Simulation research

To verify the effectiveness of the control strategy proposed in

this study, simulations of the master-slave FOHR system under

unknown dynamic environment are conducted.

7.1. Identification of the unknown
dynamics of the FOHR system

In this part, the identification of the FOHR system shown in

Equation (6) under unknown dynamic environment is considered.

For the convenience of presentation, the system state x, y, and z

are denoted as x1, x2, and x3, respectively. The corresponding state

vector x = [x1, x2, x3]
T ∈ R3 of the FOHR model is available

from measurement and the parameter µ = [a, b, c, d, r, s0, q0]
T

is taken as a constant vector and chosen as a = 1, b = 3, c =
1, d = 6, r = 0.013, s0 = 4, q0 = −1.56. As demonstrated in

Section 3, by varying the fractional order parameter q and fixing

all the other parameters unchanged, the FOHR system presents

FIGURE 13

Switching control based on recognition error.
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diverse non-linear behaviors. Moreover, the 0.98-order HR model

can best describe the abundant non-linear dynamic characteristic of

neurons. Thus, the 0.98-order HR system is considered for dynamic

identification with the external excitation I being taken as the

control parameter.

To verify the identification effects, four kinds of representative

discharge models of the 0.98-order HR system with the parameters

given above are chosen, that is, the slow-spiking model χ1 with

I = 1.5, the period-3 bursting model χ2 with I = 2.5, the

chaotic bursting model χ3 with I = 3.6 and the fast-spiking model

χ4 with I = 4. The dynamic analysis about FOHR system have

demonstrated that the corresponding state trajectories of the four

dynamic models mentioned above possess regression properties.

Thus, the DL algorithm is introduced for the unknown dynamic

identification process.

According to the DL algorithm, the dynamical RBF network
˙̂x = −A(x̂ − x) + Ŵφ(x) is employed to identify the unknown

system dynamics fi(x;µ)(i = 1, 2, 3) as shown in Equation (6). For

the space limitation, the unknown dynamic f3(x;µ) = r(s0(x −
q0) − z) is taken as an example to show the identification effects.

The center of the neural network is evenly placed on [−2.1, 2.1] ×
[0.9, 5.1] and the widths are set as ηi = 0.3. The weights of the

RBF networks are updated online according the equation ˙̂Wi =
˙̃Wi = −Ŵiϕi(x)x̃i − σiŴiŴi, within which the parameters are

chosen as Ŵi = diag{2, 2, 2}, σi = 0.0001, i = 1, 2, 3 and a3
from A = [a1, a2, a3]

T is set as a3 = 10. The initial condition of

the dynamical system is set as [x1(0), x2(0), x3(0)]
T = [0.3, 1, 3]T ,

[x̂1(0), x̂2(0), x̂3(0)]
T = [0.2, 0.3, 0.0]T , and the initial weights

are Ŵi(0) = 0.0.

First, the 0.98-order HR system with external excitation I =
1.5 denoted in a slow-spiking model as χ1 is to be identified.

Figure 8A is the projection of the state trajectory of the slow-

spiking model on the x − z plane. In Figures 8B, C, it is seen

that the state trajectory can be accurately identified by using the

DL algorithm. More importantly, in addition to the state tracking,

the NN approximation of the system dynamics f3(x;µ) along

the system trajectory is shown in Figure 8C. The convergence of

the weights of the RBF neural network is further obtained from

the Figure 8D. That is, by introducing the DL algorithm, the

unknown dynamic information f3(x;µ) of the FOHR model is

locally accurately approximated by Ŵiϕi(x), and the identified non-

linear dynamic information can be further stored in the constant

weights of networks given as W̄iϕi(x).

Second, similar results are obtained for the identification of

the non-linear dynamics of the 0.98-order HR system with I =
2.5 that exhibiting a period-3 bursting model denoted as χ2. It

can be seen from the Figure 9A that the non-linear dynamics of

the period-3 bursting model are richer than that of the dynamics

presented in Figure 8A. Even though, ideal approximation effects

of both the system state and the unknown system function are

obtained as demonstrated in Figures 9B, C. The parameters of the

corresponding RBF networks also converge to an ideal value, which

can be seen from Figure 9D.

Third, consider the identification of the dynamics of model

χ3 with I = 3.6, as shown in Figure 10. The system state

given in Figure 10A presents a complex state of chaos, which

contains more dynamic information of the FOHR system. By

properly designing the identification parameters, locally accurate

NN approximations of the system state as well as the unknown

system dynamics are achieved along the system trajectory, which

can be seen from Figures 10B, C. In addition, it is noticed from

the Figure 10D that more neurons are involved and activated in

the identification of the chaotic bursting model χ3. Moreover,

the oscillation of the NN weights during the convergence process

is so obvious that more time is needed for it converge to the

ideal values.

FIGURE 14

Synchronization error of master-slave neuron system with di�erent modes.
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Finally, a further increase in the external excitation I to 4

(denoted as model χ4), the system returns back to a simple

discharge state. As can be seen from Figure 11A, the state trajectory

of model χ4 is a typical period-1 behavior, but the discharge rhythm

is faster compared to that of the model χ1 shown in Figure 8A. As

for its identification simulations demonstrated in Figures 11B–D, it

is shown that it achieves better state and dynamic tracking effects,

and the parameter convergence process is much smooth and faster.

7.2. Model-based sliding-mode control of
the FOHR system

Based on the acquisition and storage of the unknown dynamic

information of the FOHR system, the rapid recognition of the

FOHR model is demonstrated in this part. The dynamic models

χ1,2,3,4 mentioned above are taken as the training patterns. The

testing patterns are generated from the FOHR system presented

in Equation (7), with I = 1.43 denoted as χ5, I = 2.3 denoted

as χ6, I = 3.4 denoted as χ7, and I = 4.2 denoted as χ8. The

other parameters are set as the same to the training patterns, that

is, q = 0.98, a = 1, b = 3, c = 1, d = 6, r = 0.013, s = 4, and

q0 = −1.56. For the recognition process, the dynamic NN network

system is introduced, that is,

˙̃xi = −b̄ix̃i + (W̄kT
i ϕi(x)− f ′i (x;µ

′)), i = 1, · · · , n (42)

for which, the initial states is given as [x0, y0, z0]
T = [0.3, 1, 3]T and

[x̃0, ỹ0, z̃0]
T = [0, 0, 0]T .

Based on the obtained dynamic pattern database χ , which

contains the learned system dynamics as experience of the slaw

peak regular spiking model, period-doubling, period-3, period-

4 bursting model, and chaotic bursting model, the simulation of

the learning-based sliding-mode control of the master-slave neural

system is discussed in this part. The corresponding parameters are

given as ηi = 1, ci = 1,Ŵi = 2, and σi = 0.01, (i = 1, · · · , n). The
external disturbances are set as d1(t) = 0.6 + 0.2cos(t), d2(t) =
0.0, d3(t) = 0.01 + 0.05sin(t), and the other parameters of the

master-slave system are given as the same as shown in the previous

section. The external stimulus current of the master system is set as

I = 1.5, while for the slave system, the external stimulus current is

set as I = 3.8. The other parameters are designed as q = 0.98, a =
1, b = 3, c = 1, d = 6, r = 0.013, s = 4, and q0 = −1.56, the initial

state of the master-slave system is given as [x0, y0, z0]
T = [0.313]T ,

and the control will be added at t = 300ms.

As can be seen from the Figures 12A, B, when the control

quantity is added to the slave system at t = 300ms, the state of

the master-slave neurons can quickly reach consistency, and the

selected NN controller achieves good synchronization to themaster

neuron system. Moreover, the synchronization error demonstrated

in Figures 12B–D shows that the FOHR master-slave neuronal

system achieves fast synchronization performance.

Since the external excitation of the master and slave system

are set as I = 1.5 and I = 3.8, respectively, it means that the

master system is in slow-spiking state and the slave system is in a

state of rapid-peak spiking, as described in the identification phase.

For accurate synchronization effect, the rapid-peak spiking model

shown be recalled from the pattern base χ4, which can be validated

from the Figure 13.

In addition, through the simulation comparison by recalling

the rapid-peak spiking model, the ideal known dynamic model

corresponding to the slave system and the slow-spiking model,

respectively, the synchronization errors are shown in Figure 14.

It demonstrate that in terms of convergence speed, accuracy, and

buffeting size, the more accurate the dynamic model is selected,

the better the synchronization effect will be. It further indicates

that the performance of the sliding-mode control algorithm is

highly related to the dynamic information accuracy of the invoked

dynamic models.

7.3. Relearning-based sliding-mode control
of the FOHR system

To verify the effectiveness of the relearning-based sliding-mode

control performance to the master-slave neuronal system, the third

dimension dynamics of the neuron system is taken as an example,

FIGURE 15

Synchronization e�ect of the master-slave neuron system based on relearning control. (A) Synchronization error. (B) Convergence of the NN weight.
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and the sliding-mode controller is set as

µ3 = −η3sgn(s3)− c3e3 + fm,3(x)− ŴT
3 ϕ3(x),

µ3(0) = −ηisgn(s3)− cie3 + fm,3(x)− W̄
K0T
3 ϕ3(x),

(43)

in which the initial NN weight is set as Ŵ3(0) = W̄3, with W̄3

being the constant NN weight. During the control process, the

model-based sliding mode controller is added to the system at 300

ms and at 500 ms switch to the relearning-based sliding mode

controller. The synchronous response of the system can be seen

from Figure 15A. Furthermore, it can be seen from Figure 15A,

when the system switch to the relearning-based sliding mode

control policy, the synchronization error is getting smaller because

of more accurate identification of the dynamics of slave system, and

the cusp error is obviously improved. In addition, the NNweight of

the relearning process can convergence to ideal values as shown in

Figure 15B.

8. Conclusion

Aiming at the problem of abnormal synchronization of

fractional-order Hindmarsh-Rose (FOHR) neuronal system

in unknown dynamic environment, the identification, rapid

recognition, and synchronization control of the unknown

dynamic FOHR system is discussed in this study. For accurate

synchronization of the FOHR neuronal system, the unknown

dynamic information has been identified by using the deterministic

leaning theory. Based on the achieved system dynamics, the

unknown different dynamic patterns generated from the FOHR

system can be rapidly recognized without relearning process. In

addition, the achieved dynamic information has been applied to

the sliding mode controller, resulting in more accurate and efficient

synchronization performance of the master-slaver neuronal

system. From system identification to pattern construction,

then to model-based and relearning-based sliding mode control,

this study emphasizes the whole linkage process, which kindly

displays the human experience of learning and application of

unknown knowledge, which is the essence of intelligent learning

and intelligent control.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

DC, JL, and CY contributed to the methodology, concept, and

design of the study. DC, JL, and JH performed the experiments and

simulation analysis. JL, JH, andWZ prepared the draft manuscript.

All authors participated manuscript organization and approved the

submitted version.

Funding

This study was supported by the National Natural

Science Foundation of China (Grant No. 62106048)

by Guangdong Natural Science Foundation (Grant

No. 2022B1515120003) and by Guangdong Provincial

Laboratory of Marine Science and Engineering

(Grant No. SML2022SP101).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Boaretto, B. R. R., Budzinski, R. C., Prado, T. L., Kurths, J., and Lopes, S. R.
(2018). Neuron dynamics variability and anomalous phase synchronization of neural
networks. Chaos 28, 106304. doi: 10.1063/1.5023878

Brown, P., Mazzone, P., Oliviero, A., Maria, G. A., Fabio, P., Pietro, A. T., et al.
(2004). Effects of stimulation of the subthalamic area on oscillatory pallidal activity in
Parkinson’s disease. Exp. Neurol. 188, 480–490. doi: 10.1016/j.expneurol.2004.05.009

Che, Y. Q., Wang, J., Tsang, K. M., and Chan, W. L. (2010).
Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive
sliding mode control. Nonlinear Anal. Real World Appl. 11, 1096–1104.
doi: 10.1016/j.nonrwa.2009.02.004

Chen, D., and Wang, C. (2016). Prediction of period-doubling bifurcation based
on dynamic recognition and its application to power systems. Int. J. Bifurc. Chaos 26,
1650157. doi: 10.1142/S0218127416501571

Chen, D., Zhang, R., Ma, X., and Liu, S. (2012). Chaotic synchronization and anti-
synchronization for a novel class of multiple chaotic systems via a sliding mode control
scheme. Nonlinear Dyn. 69, 35–55. doi: 10.1007/s11071-011-0244-7

Dar, M. R., Kant, N. A., and Khanday, F. A. (2022). Dynamics and implementation
techniques of fractional-order neuron models: a survey. Fract. Order Syst. 1, 483–511.
doi: 10.1016/B978-0-12-824293-3.00017-X

Deng, B., Wang, J., and Fei, X. (2006). Synchronizing two coupled chaotic neurons
in external electrical stimulation using backstepping control. Chaos Solitons Fractals
29, 182–189. doi: 10.1016/j.chaos.2005.08.027

Ding, D., Chen, X., Yang, Z., Hu, Y., Wang, M., Zhang, H., et al.
(2022). Coexisting multiple firing behaviors of fractional-order memristor-
coupled HR neuron considering synaptic crosstalk and its ARM-based
implementation. Chaos Solitons Fractals 158, 112024. doi: 10.1016/j.chaos.2022.
112014

Dong, J., Zhang, G., Xie, Y., Yao, H., andWang, J. (2014). Dynamic behavior analysis
of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8, 167–175.
doi: 10.1007/s11571-013-9273-x

Duan, Y. (2002). Nonlinear Dynamics in Interspike Intervals of an Experimental
Neural Pacemaker. Fourth Military Medical University.

Frontiers inNeuroscience 19 frontiersin.org144

https://doi.org/10.3389/fnins.2023.1246778
https://doi.org/10.1063/1.5023878
https://doi.org/10.1016/j.expneurol.2004.05.009
https://doi.org/10.1016/j.nonrwa.2009.02.004
https://doi.org/10.1142/S0218127416501571
https://doi.org/10.1007/s11071-011-0244-7
https://doi.org/10.1016/B978-0-12-824293-3.00017-X
https://doi.org/10.1016/j.chaos.2005.08.027
https://doi.org/10.1016/j.chaos.2022.112014
https://doi.org/10.1007/s11571-013-9273-x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1246778

Efe, M. O. (2009). Adaline based robust control in robotics: a Riemann-
Liouville fractional differintegration based learning scheme. Soft Comput. 13, 23–29.
doi: 10.1007/s00500-008-0289-9

Ermentrout, B. (2014). Linearization of f − I curves by adaptation. Neural Comput.
10, 1721–1729. doi: 10.1162/089976698300017106

Fitzhugh, R. (1961). Impulses and physiological states in models of nerve
membrane. Biophys. J. 1, 455.

Giresse, T. A., Crepin, K. T., and Martin, T. (2019). Generalized synchronization of
the extended Hindmarsh-Crose neuronal model with fractional order derivative.Chaos
Solitons Fractals 118, 311–319. doi: 10.1016/j.chaos.2018.11.028

Gorenflo, R., and Mainardi, F. (1997). Fractional Calculus. Springer. Available
online at: https://www.researchgate.net/publication/216225140

Gu, H., Pan, B., Chen, G., and Duan, L. (2014). Biological experimental
demonstration of bifurcations from bursting to spiking predicted by theoretical
models. Nonlinear Dyn. 78, 391–407. doi: 10.1007/s11071-014-1447-5

Guo, Z. H., Li, Z. J., Wang, M. J., and Ma, M. L. (2023). Hopf bifurcation and phase
synchronization in memristor-coupled Hindmarsh–Rose and FitzHugh–Nagumo
neurons with two time delays. Chin. Phys. B 32,038701. doi: 10.1088/1674-1056/aca601

Hindmarsh, J. L., and Rose, R. M. (1984). A model of neuronal bursting using three
coupled first order differential equations. Proc. R. Soc. Lond. Ser. B. 221, 87–102.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544.

Huang, C. (2016). Dynamical Analysis and Control for Several Classes of Fractional
Systems. Southeast University. doi: 10.7666/d.Y3186252

Jia, B., Gu, H., Li, L., and Zhao, X. (2012). Dynamics of period-doubling bifurcation
to chaos in the spontaneous neural firing patterns. Cogn Neurodyn. 6, 89–106.
doi: 10.1007/s11571-011-9184-7

Jia, B., Gu, H., and Xue, L. (2017). A basic bifurcation structure from bursting to
spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodyn.
11, 189–200. doi: 10.1007/s11571-017-9422-8

Jin, T., Gao, S., Xia, H., and Ding, H. (2021). Reliability analysis for the fractional-
order circuit system subject to the uncertain random fractional-order model with
Caputo type. J. Adv. Res. 4, 15–26. doi: 10.1016/j.jare.2021.04.008

Li, X. X., Xue, X. P., Liu, D. J., Yu, T. Y., He, Q. Q., et al. (2023). Effects of electric field
on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection.
Chin. Phys. B 32, 048701. doi: 10.1088/1674-1056/ac9cc0

Lin, P.,Wang,M., andWang, C. (2019). Abrupt stall detection for axial compressors
with non-uniform inflow via deterministic learning. Neurocomputing 338, 163–171.
doi: 10.1016/j.neucom.2019.02.007

Liu, D., Zhao, S., Luo, X., and Yuan, Y. (2019). Unidirectional synchronization of
Hodgkin-Huxley neurons with prescribed performance under transcranial magneto-
acoustical simulation. Front. Neurosci., 13, 1061. doi: 10.3389/fnins.2019.01061

Liu, Y., Sun, Z., Yang, X., and Xu, W. (2021). Rhythmicity and firing modes in
modular neuronal network under electromagnetic field. Nonlinear Dyn. 104, 4391–
4400. doi: 10.1007/s11071-021-06470-8

Meng, F., Zeng, X., Wang, Z., and Wang, X. (2020). Adaptive synchronization of
fractional-order coupled neurons under electromagnetic radiation. Int. J. Bifurc. Chaos.
30, 2050044. doi: 10.1142/S0218127420500443

Motallebzadeh, F., Motlagh, M. R. J., and Cherati, Z. R. (2012). Synchronization
of different-order chaotic systems: adaptive active vs. optimal control.
Commun. Nonlinear Sci. Num. Simul. 17, 3643–3657. doi: 10.1016/j.cnsns.2012.
01.012

Nirvin, P., Rihan, F. A., Rakkiyappan, R., and Pradeep, C. (2021).
Impulsive sampled-data controller design for synchronization of delayed T–

S fuzzy Hindmarsh–Rose neuron model. Math. Comput. Simul. 201, 588–602.
doi: 10.1016/j.matcom.2021.03.022

Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., and Perc, M. (2019). Repnik R
Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput.
350, 217–223. doi: 10.1016/j.amc.2019.01.011

Rabah, K., Ladaci, S., and Lashab,M. (2017). A novel fractional slidingmode control
configuration for synchronizing disturbed fractional-order chaotic systems. Pramana.
89, 1–13. doi: 10.1007/s12043-017-1443-7

Rabinovich, M. I., and Abarbanel, H. D. (1998). The role of chaos in neural systems.
Neuroscience 87, 5–14. doi: 10.1016/S0306-4522(98)00091-8

Rajagopal, K., Khalaf, A. J. M., Parastesh, F., Moroz, I., and Jafari, S. (2019).
Dynamical behavior and network analysis of an extended Hindmarsh-Crose neuron
model. Nonlinear Dyn. 98, 477–487. doi: 10.1007/s11071-019-05205-0

Remi, T., Subha, P. A., and Usha, K. (2022). Collective dynamics of neural network
with distance dependent field coupling. Commun. Nonlinear Sci. Num. Simulat. 110,
106390. doi: 10.1016/j.cnsns.2022.106390

Rihan, F. A., Al-Mdallal, Q. M., AlSakaji, H. J., and Hashish, A. (2019). A fractional-
order epidemic model with time-delay and nonlinear incidence rate. Chaos Solitons
Fractals 126, 97–105. doi: 10.1016/j.chaos.2019.05.039

Schoenberg, I. J. (1938). Metric spaces and completely monotone functions. Ann.
Math. 39, 811–841.

Semenov, D. M., and Fradkov, A. L. (2021). Adaptive synchronization in the
complex heterogeneous networks of Hindmarsh–Rose neurons.Chaos Solitons Fractals
150, 111170. doi: 10.1016/j.chaos.2021.111170

Simo, G.R., Njougouo, T., Aristides, R.P., Louodop, P., Tchitnga, R., et al. (2021).
Chimera states in a neuronal network under the action of an electric field. Phys. Rev. E.
103, 062304. doi: 10.1103/PhysRevE.103.062304

Uhlhaas, P.J., Linden, D. E. J., Singer, W., Haenschel, C., Lindner, M.,
Maurer, K., et al. (2006). Dysfunctional long-range coordination of neural
activity during gestalt perception in schizophrenia. J. Neurosci. 26, 8168–8175.
doi: 10.1523/JNEUROSCI.2002-06.2006

Vafaei, V., Kheiri, H., and Akbarfam, A. J. (2019). Synchronization of fractional-
order chaotic systems with disturbances via novel fractional-integer integral sliding
mode control and application to neuron models. Math. Methods Appl. Sci. 42, 2761–
2773. doi: 10.1002/mma.5548

Wang, C., Chen, T., Chen, G., and Hill, D.J. (2009). Deterministic
learning of nonlinear dynamical systems. Int. J. Bifurc. Chaos 1, 1307–1328.
doi: 10.1142/S0218127409023640

Wang, C., and Hill, D. J. (2018). Deterministic Learning Theory: For Identiflcation,
Recognition, and Conirol. CRC Press. doi: 10.1201/9781420007763

Wang, S., He, S., Yousefpour, A., Jahanshahi, H., Repnik, R., and Perc, M. (2020).
Chaos and complexity in a fractional-order financial system with time delays. Chaos
Solitons Fractals 131, 109521. doi: 10.1016/j.chaos.2019.109521

Xu, J., Li, N., Zhang, X., and Qin, X. (2020). Fuzzy synchronization control
for fractional-order chaotic systems with different structures. Front. Phys. 8, 155.
doi: 10.3389/fphy.2020.00155

Yang, H., Rong, G., Huang, S., Cui, S.,Wang,M., et al. (2021). Research on the effects
of neural network damage on neuronal firing patterns and synchronous behavior. J.
Anhui Norm. Univ. 44, 233–237. doi: 10.14182/J.cnki.1001-2443.2012.03.005

Zeng, W., Shan, L., Su, B., and Du, S. (2023). Epileptic seizure detection with deep
EEG features by convolutional neural network and shallow classifiers. Front. Neurosci.
17, 1145526. doi: 10.3389/fnins.2023.1145526

Zhang, F., Wu, W., and Wang, C. (2023). Pattern-based learning and control of
nonlinear pure-feedback systems with prescribed performance. Sci. China Inform. Sci.
66, 1–22. doi: 10.1007/s11432-021-3434-9

Frontiers inNeuroscience 20 frontiersin.org145

https://doi.org/10.3389/fnins.2023.1246778
https://doi.org/10.1007/s00500-008-0289-9
https://doi.org/10.1162/089976698300017106
https://doi.org/10.1016/j.chaos.2018.11.028
https://www.researchgate.net/publication/216225140
https://doi.org/10.1007/s11071-014-1447-5
https://doi.org/10.1088/1674-1056/aca601
https://doi.org/10.7666/d.Y3186252
https://doi.org/10.1007/s11571-011-9184-7
https://doi.org/10.1007/s11571-017-9422-8
https://doi.org/10.1016/j.jare.2021.04.008
https://doi.org/10.1088/1674-1056/ac9cc0
https://doi.org/10.1016/j.neucom.2019.02.007
https://doi.org/10.3389/fnins.2019.01061
https://doi.org/10.1007/s11071-021-06470-8
https://doi.org/10.1142/S0218127420500443
https://doi.org/10.1016/j.cnsns.2012.01.012
https://doi.org/10.1016/j.matcom.2021.03.022
https://doi.org/10.1016/j.amc.2019.01.011
https://doi.org/10.1007/s12043-017-1443-7
https://doi.org/10.1016/S0306-4522(98)00091-8
https://doi.org/10.1007/s11071-019-05205-0
https://doi.org/10.1016/j.cnsns.2022.106390
https://doi.org/10.1016/j.chaos.2019.05.039
https://doi.org/10.1016/j.chaos.2021.111170
https://doi.org/10.1103/PhysRevE.103.062304
https://doi.org/10.1523/JNEUROSCI.2002-06.2006
https://doi.org/10.1002/mma.5548
https://doi.org/10.1142/S0218127409023640
https://doi.org/10.1201/9781420007763
https://doi.org/10.1016/j.chaos.2019.109521
https://doi.org/10.3389/fphy.2020.00155
https://doi.org/10.14182/J.cnki.1001-2443.2012.03.005
https://doi.org/10.3389/fnins.2023.1145526
https://doi.org/10.1007/s11432-021-3434-9
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Provides a holistic understanding of brain 

function from genes to behavior

Part of the most cited neuroscience journal series 

which explores the brain - from the new eras 

of causation and anatomical neurosciences to 

neuroeconomics and neuroenergetics.

Discover the latest 
Research Topics

See more 

Frontiers in
Neuroscience

https://www.frontiersin.org/journals/Neuroscience/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Brain functional analysis and brain-like intelligence
	Table of contents
	Editorial: Brain functional analysis and brain-like intelligence
	1 Introduction
	2 Published papers
	2.1 Brain image understanding: registration, recognition, and segmentation
	2.2 EEG signal-based epileptic seizure prediction
	2.3 AI for brain science

	3 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Neuromorphic computing facilitates deep brain-machine fusion for high-performance neuroprosthesis
	 1. Introduction
	2. Challenges for high-performance BMIs
	2.1. Degree of freedom and accuracy
	2.2. Adaptation
	2.3. Low-cost computing

	3. Neuromorphic computing facilitates deep brain-machine fusion
	3.1. Providing a deep and precise connection between brain and machine
	3.2. Facilitating brain-machine co-adaptation
	3.3. Enabling fully-implantable BMI devices

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
	1. Introduction
	2. Materials and methods
	2.1. EEG database
	2.1.1. Dataset-1
	2.1.2. Dataset-2

	2.2. Deep feature extraction
	2.3. Machine learning classifiers

	3. Results
	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	STNet: shape and texture joint learning through two-stream network for knowledge-guided image recognition
	1. Introduction
	2. Related work
	2.1. Knowledge-guided medical image analysis
	2.2. Shape and texture feature fusion

	3. Methodology
	3.1. Framework
	3.2. Texture-biased stream
	3.3. Shape-biased stream
	3.4. Channel-attention-based texture and shape feature fusion
	3.5. Joint learning loss function and optimization

	4. Experiments
	4.1. Experimental setup
	4.1.1. Data preparation
	4.1.2. Evaluation metrics
	4.1.3. Implementation

	4.2. Comparison results
	4.3. Ablation analysis
	4.4. Discussion on shape and texture joint learning framework
	4.5. Discussion on parameters of asymmetric loss

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	A semi-independent policies training method with shared representation for heterogeneous multi-agents reinforcement learning
	1. Introduction
	1.1. Main contribution

	2. Background
	2.1. Reinforcement learning
	2.2. Brain's transfer learning on the new tasks
	2.3. Dec-POMDP
	2.4. Parameters sharing
	2.5. Coping with heterogeneity

	3. Preliminary
	3.1. Representation learning
	3.2. Hard/soft parameter sharing
	3.3. Role-based learning method

	4. Proposal
	4.1. Common observation and action representation
	4.2. Intrinsic rewards for environment exploration and unit type identification
	4.3. Common representation based semi-independent policy training

	5. Experiment and results
	5.1. Experiment setting
	5.2. Results and discussion
	5.2.1. Overall performance
	5.2.2. Ablation study

	5.3. Diverged representation embedding training
	5.3.1. Representation transferability and curriculum learning


	6. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Dual consistent pseudo label generation for multi-source domain adaptation without source data for medical image segmentation
	1. Introduction
	2. Related work
	3. Methods
	3.1. Dataset description
	3.2. Measurement of performance
	3.3. Approach
	3.3.1. Inter-domain consistency constraint
	3.3.2. Intra-domain consistency constraint
	3.3.3. Progressive entropy loss


	4. Experiments
	4.1. Experiments setting
	4.2. Ablation experiments
	4.2.1. The impact of inter-domain consistency constraint
	4.2.2. The impact of intra-domain consistency constraint
	4.2.3. The impact of progressive entropy loss

	4.3. Comparison experiments

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	An effective fusion model for seizure prediction: GAMRNN
	1. Introduction
	2. Materials and methods
	2.1. Epileptic seizure prediction model
	2.1.1. Convolutional feature extraction module
	2.1.2. Attention enhancement module
	2.1.3. Temporal modeling and classification module

	2.2. Lion optimizer

	3. Experiment and results
	3.1. Dataset
	3.2. Data preprocessing
	3.3. Experimental setting
	3.4. Metrics for epileptic seizure prediction

	4. Results
	4.1. General results
	4.2. Results of ablation study

	5. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Decoupled learning for brain image registration
	1. Introduction
	2. Related works
	2.1. Deep learning based registration methods
	2.2. Regularization based methods

	3. Method
	3.1. Model framework
	3.2.  Similarity-Net
	3.3.  Denoiser-Net

	4. Experiments
	4.1. Data preparation
	4.2. Experimental setup
	4.3. Evaluation metrics
	4.4. Experimental results

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Enhancing LGMD-based model for collision prediction via binocular structure
	1. Introduction
	2. Related work
	2.1. Motion pattern recognition
	2.2. Binocular structure and stereo vision

	3. Formulation of the model
	3.1. Basic process
	3.1.1. P layer
	3.1.2. IE layer
	3.1.3. S layer
	3.1.4. G layer

	3.2. Disparity layer (DP layer)
	3.2.1. Computing method of disparity
	3.2.2. Computing method of depth distance

	3.3. LGMD layer
	3.3.1. Warning depth distance (DW)
	3.3.2. Activation of the LGMD neuron


	4. Experimental results and analysis
	4.1. Experimental setup
	4.2. Basic synthetic stimuli testing
	4.3. Real physical stimuli testing
	4.4. Model performance testing
	4.4.1. Sensitivity to model parameters
	4.4.2. Adaptability to motion modes
	4.4.3. Robustness to the input image streams
	4.4.3.1. Contrast
	4.4.3.2. Image noise



	5. Further discussion
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Groupwise structural sparsity for discriminative voxels identification
	1. Introduction
	2. Methods
	2.1. Pre-segmentation
	2.2. Classification using groupwise structural sparsity 
	2.3. Algorithmic framework
	2.4. Stability evaluation

	3. Results
	3.1. Synthetic data
	3.2. Ablation study
	3.3. Real fMRI data I—Haxby dataset
	3.4. Real fMRI data II—Fear conditioned dataset

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Learning-based sliding mode synchronization for fractional-order Hindmarsh-Rose neuronal models with deterministic learning
	1. Introduction
	2. Methods and innovations
	3. Preliminary knowledge
	3.1. Fractional-order definition and basic properties
	3.2. Properties of fractional calculus
	3.3. The deterministic learning theory

	4. Dynamic identification of the fractional-order HR model via deterministic learning
	4.1. The fractional-order HR model
	4.2. The dynamic behavior of the FOHR model under fractional order q
	4.3. The dynamic behavior of the FOHR model under external excitation I
	4.4. The dynamic behavior of the FOHR model under parameter r

	5. Identification of the FOHR model via deterministic learning
	6. Sliding mode control of the FOHR system by using deterministic learning
	6.1. Problem description
	6.2. Model-based sliding mode control of the FOHR system
	6.3. Stability analysis
	6.4. Relearning-based sliding mode control of the master-slave FOHR system

	7. Simulation research
	7.1. Identification of the unknown dynamics of the FOHR system
	7.2. Model-based sliding-mode control of the FOHR system
	7.3. Relearning-based sliding-mode control of the FOHR system

	8. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Back Cover



