About this Research Topic
All members in the radical SAM superfamily share the following common scheme to generate the catalytic radical species. The signature motif provides three cysteinates as external ligands to a [4Fe-4S] cluster and the S-adenosylmethionine (SAM) is bound to the fourth iron via its carboxylate and amino moieties in a bidentate fashion. At the [4Fe-4S] + oxidation state, the cluster donates one electron to SAM to reduce the sulfonium moiety by cleaving the C-S bond and generating a methionine and a 5′-deoxyadenosyl radical (5′-dA•). The 5′-dA• then abstracts an H atom from normally un-activated C-H bonds in substrates, to initiate a wide range of substrate modification reactions, including sulfuration, methylation, methylthiolation, hydroxylation, C-C bond formation or fragmentation, dehydrogenation, decarboxylation, metallocofactor maturation, and structural rearrangements in numerous biological processes such as DNA synthesis and repair, the biosynthesis of cofactors, posttranslational modification, and antiviral response.
Although still at the very early stage, mechanistic studies on enzymes in this superfamily have already radically altered our view in biocatalysis and opened a new chapter in radical enzymology. Undoubtedly, the continuing research will provide more exciting mechanistic insights into biological reactions and expand our knowledge on strategies radical enzymes utilize to achieve efficient catalysis with a wide range of substrates.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.