Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
Plants adjust root morphological and/or exudation traits in response to phosphorus (P) mobilization mediated by microorganisms. We hypothesized that straw application coupled with P fertilization would influence microbial P and then root nutrient-acquisition strategies related to crop growth. Root morphological (length and average diameter) and exudation traits (acid phosphatase and carboxylates) of Brassica chinensis, Solanum lycopersicum, Lactuca sativa, and Vigna unguiculata in response to microbial P dynamics were characterized in no-P and P-fertilized soil with/without straw addition. Straw addition increased the growth of fungi and bacteria, stimulating microbial P immobilization at day 24. The high microbial abundance was associated with four tested crops having short roots in straw-amended compared with no-straw soil at day 24. In straw-amended soil, B. chinensis and S. lycopersicum shifted toward root P-acquisition strategies based on fast elongation and strong carboxylate exudation from days 24 to 40. Such effective root P-acquisition strategies together with microbial P release increased shoot P content in S. lycopersicum in straw-amended compared with those without straw at day 40. Conversely, L. sativa and V. unguiculata produced short roots in response to the stable (or even increased) microbial P after straw addition till day 40. In straw-amended soil, high P application stimulated root elongation and carboxylate exudation in L. sativa and V. unguiculata, whereas carboxylate exudation by S. lycopersicum was decreased compared with the straw-amended but non-fertilized treatment at day 40. In summary, root P-acquisition strategies in response to microbial P differed among the tested crop species. Phosphorus fertilization needs to be highlighted when returning straw to enhance P-use efficiency in vegetable cropping systems.
Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.